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Abstract  

Maghemitization of magnetite is an important topic in rock magnetism. It happens as low-

temperature oxidation (LTO) under normal atmospheric conditions, causing gradual 

transformation of magnetite to maghemite, and potentially culminating in transformation to 

hematite. Better understanding of how humidity and temperature affect LTO is of great interest 

for paleoclimate studies, which use magnetic properties as proxies.  

A laboratory experiment was conducted under controlled humidity and temperature conditions. 

Natural magnetite powder samples were exposed to different relative humidity (rH) at room 

temperature (room humidity and rH >90 %) and at 70 °C (rh of 5 %, 13 %, >90 %). After one 

year, the magnetite sample that was exposed to highest relative humidity (>90 %) at 70 °C 

showed the strongest increase in the oxidation degree by ~3 % according to Verwey transition 

temperature (Tv), and it was the only setup in which hematite was detected by Mössbauer 

analysis. Other setups at 70 °C also showed a measurable change in the degree of LTO, but the 

dependence on humidity was found to be non-linear. For better understanding the influence of 

humidity and temperature on magnetite oxidation in natural environments, magnetic properties 

of basalts and weathered pebble samples directly above the fresh rock were studied. Basalts and 

pebble samples were collected from the Deccan traps in India along a gradient of mean annual 

precipitation (MAP) between ~500 and ~4000 mm, and from the Emeishan traps in SW-China 

allowing a comparison of alteration at approximately same MAP (~1000 mm) but ~15 °C 

different mean annual temperatures. The selected basalts contain magnetite that probably 

derived from exsolution during cooling. The weathered pebbles were divided into five groups 

by their grain size, and an increasing tendency of alteration is expected with grain size fining. 

The results suggest no systematic humidity-related changes of magnetic parameters between 

basalts and their weathered pebbles. Combining the results of both the laboratory experiment 

and the study of natural basalts, a humidity and temperature influence on the degree of oxidation 

is evidenced, however, it does not occur in a linear way, and the initial rock composition seems 

to mask the climate-related alteration effects in nature. Further studies on natural rock settings 

with other rock types and laboratory experiments with more variable humidity and temperature 

conditions are needed. 

LTO could also play a role when material is translocated from the source to a sink. Soil and 

lake sediments archives often preserve important paleoclimate signals. In a source-sink setting, 

in which soil contributes as the major source for lake sediments or basin deposits, the possible 
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changes of the properties of magnetic minerals during transport are important factors for 

interpreting magnetic properties in the sink material as climate proxies. A study was conducted, 

in which the only important magnetic source material delivered to a small lake (Caohai Lake) 

is highly magnetic red soil with susceptibilities (χ) of ~10-5 m3/kg, dominated by pedogenic 

highly maghemitized nano-magnetite (~10-15 nm) arranged in aggregates of ~100 nm, causing 

superparamagnetic (SP) behavior that tails into the stable single-domain (SSD) range. Partial 

disintegration of the aggregates and increasing alteration of the magnetite nanoparticles to 

hematite during transfer of the source material to Caohai Lake was interpreted from 

transmission electron microscopy results and frequency dependence of χ. The results indicate 

that the contribution of magnetite nano-particles to the magnetic properties of lake sediments 

diminishes by disintegration of aggregates and increased magnetite-to-hematite transformation 

and may even become neglectable compared to the larger sized detrital magnetic fraction. The 

ratio of saturation magnetization and χ is suggested as a useful proxy in red soil, caused by 

climate-related initial LTO degree in the nano-particles of the aggregates.  
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Zusammenfassung 

Die Maghemitisierung von Magnetit ist von großer Bedeutendung im Gesteinsmagnetismus. 

Sie erfolgt als Niedertemperatur-Oxidation (LTO) unter normalen atmosphärischen 

Bedingungen und verursacht eine graduelle Umwandlung von Magnetit in Maghemit, welche 

zur Umwandlung in Hämatit führen kann. Ein besseres Verständnis darüber, wie Feuchtigkeit 

und Temperatur LTO beeinflussen, ist von großem Interesse für Paläoklimastudien, die 

magnetische Eigenschaften als Proxy verwenden.  

Ein Laborexperiment wurde unter kontrollierten Feuchtigkeits- und Temperaturbedingungen 

durchgeführt. Proben aus natürlichem Magnetitpulver wurden bei Zimmertemperatur 

(Raumfeuchte und rh >90 %) und bei 70 °C (rh von 5 %, 13 %, >90 %) unterschiedlichen 

relativen Feuchten (rh) ausgesetzt. Nach einem Jahr zeigte die Magnetitprobe, die bei 70 °C der 

höchsten relativen Luftfeuchtigkeit (>90 %) ausgesetzt war, die stärkste Zunahme des 

Oxidationsgrades um ~3 %, entsprechend der Verwey Übergangstemperatur (Tv), und es war 

die einzige Anordnung, in der Hämatit durch Mössbauer-Analyse nachgewiesen wurde. Andere 

Anordnungen bei 70 °C zeigten ebenfalls eine messbare Änderung des LTO-Grades, aber die 

Abhängigkeit von der Feuchtigkeit war nicht linear. Um den Einfluss von Feuchtigkeit und 

Temperatur auf die Magnetit-Oxidation in natürlicher Umgebung besser zu verstehen, wurden 

die magnetischen Eigenschaften von Basalten und Verwitterungspartikel direkt über dem 

frischen Gestein untersucht. Dazu wurden Proben in zwei Gebieten genommen,  entlang eines 

Gradienten des mittleren Jahresniederschlags (MAP) zwischen ~500 und ~4000 mm in den 

Deccan-Flutbasalten in Indien und in den Emeishan-Flutbasalten in SW-China, welche einen 

Vergleich bei~15 °C verschiedenen Jahresmitteltemperaturen bei ungefähr gleichem MAP 

(~1000 mm) ermöglichten. Die ausgewählten Basalte enthalten Magnetit, welcher 

wahrscheinlich durch Entmischung beim Abkühlen entstanden ist. Die Verwitterungspartikel 

wurden nach ihrer Korngröße in fünf Gruppen unterteilt, wobei angenommen wird, dass mit 

Korngrößenverfeinerung eine Tendenz zunehmender Alteration verbunden ist. Die Ergebnisse 

zeigen keine systematischen feuchtigkeitsbedingten Veränderungen der magnetischen 

Parameter zwischen Basalten und den Verwitterungspartikel. Kombiniert man die Ergebnisse 

des Laborexperiments und der Untersuchung der Basalte, so lässt sich ein Einfluss der 

Feuchtigkeit und der Temperatur auf den Oxidationsgrad feststellen, welcher jedoch nicht 

linear ist und wobei die anfängliche Gesteinszusammensetzung die klimabedingten 

Veränderungen zu überdecken scheint. Weitere Studien natürliche Gesteinssettings mit anderen 
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Gesteinsarten und Laborexperimente mit variableren Feuchtigkeits- und 

Temperaturbedingungen sind erforderlich, um zusätzliche Informationen zu gewinnen. 

LTO könnte auch eine Rolle spielen, wenn Material von der Quelle in eine Senke umgelagert 

wird. In Böden und Seesedimenten werden oft wichtige Paläoklimasignale gespeichert. In 

einem Quelle-Senke-Szenario, in der der Böden als Hauptquelle für Seesedimente oder 

Beckenablagerungen fungieren, sind die möglichen Veränderungen der Eigenschaften von 

magnetischen Mineralien während des Transports wichtige Faktoren für die Interpretation der 

magnetischen Eigenschaften als Klima-Proxies. Es wurde eine Studie durchgeführt, in der 

hochmagnetische rote Böden mit Suszeptibilitäten (χ) von ~10-5 m3/kg das einzige wichtige 

magnetische Ausgangsmaterial für einen kleinen See (Caohai-See) sind. Die Böden werden von 

pedogenem hochmagnetischen Nanomagnetit-Partikel (~10-15 nm) dominiert, welche in 

Aggregaten von ~100 nm angeordnet sind. Dadurch werden superparamagnetische (SP) 

Eigenschaften verursacht und teilweise auch stabiles Einbereichsteilchen (SSD) Verhalten. 

Anhand der Ergebnisse von Transmissionselektronenmikroskopie und der 

Frequenzabhängigkeit von χ wurde ein teilweiser Zerfall der Aggregate und eine zunehmende 

Umwandlung der Magnetit-Nanopartikel in Hämatit während des Materialtransfers in den 

Caohai-Seeinterpretiert. Die Ergebnisse deuten darauf hin, dass der Beitrag von Magnetit-

Nanopartikeln zu den magnetischen Eigenschaften von Seesedimenten durch den Zerfall von 

Aggregaten und eine verstärkte Magnetit-Hämatit-Umwandlung abnimmt und im Vergleich zur 

detritischen Fraktion mit größeren Magnetitpartikeln sogar vernachlässigbar werden kann. Das 

Verhältnis der Sättigungsmagnetisierung und χ könnte ein aussagekräftiger Proxy in roten 

Böden darstellen, verursacht durch den klimabedingten LTO-Grad in den Nanopartikeln der 

Aggregate bei deren Bildung. 
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Chapter Ⅱ: Introduction 

Rock magnetism deals with magnetic properties of various materials such as rocks, sediments, 

soils, sands, dusts, contaminants, archeological materials, meteorites. Magnetic minerals in 

rocks and sediments carry information of the ambient geomagnetic field during their formation, 

and they record the past climate change history. Thus, magnetic characteristics could be used 

for reconstruction and semi-quantifying of paleoclimate conditions.  

Magnetite is the most common and important magnetic mineral in nature, and its alteration in 

basalts was intensively studied with regard to the interpretation of remanent magnetizations 

(Irving, 1970; Petersen & Vali, 1987; Xu et al., 1997; Zhou et al., 2001). Low-temperature 

oxidation (LTO), also known as maghemitization, is a common alteration process of magnetite 

under normal atmospheric conditions. LTO gradually alters magnetite by oxidation of Fe(Ⅱ) to 

Fe(Ⅲ), leading to lattice vacancies, with maghemite (γ-Fe2O3) as the fully oxidized form 

(Readman & O’Reilly, 1972; O’Reilly 1984). Van Velzen & Dekkers (1999) suggested that 

LTO could occur during weathering in the outcrop and also during transport and deposition. 

Preliminary studies show that oxidation in air at room temperature can take place in time scales 

of several hundred days (Topsøe et al., 1974; Bourgeois et al., 2013), when grain-size is getting 

smaller from about 100 nm to sizes of few nm (Demortière et al., 2011; Byrne et al., 2016). 

Presence of bacterial activity can speed up the reactions to days (Byrne et al., 2015). Ahmed & 

Maher (2018) also reported a strong dependence of LTO on geochemical conditions such as 

pH. Paleoenvironmental studies have so far paid only little attention to climatic related 

magnetite alteration that happens during rock weathering. This is the basic motivation for the 

present dissertation study. 

Maghemitization and the transformation of magnetite to hematite or goethite likely depends on 

moisture availability as iron oxidation requires an electrolyte such as water to occur (Davison 

& Seed, 1983). In some recent paleoclimate archives studies humidity-control of magnetite 

weathering in the catchment was proposed (Basavaiah & Khadikar, 2004; Herb et al., 2013; 

Basavaiah et al., 2015; Hu et al., 2015). Using magnetic properties as paleoclimate proxies 

needs improved understanding on how humidity and temperature affect such processes.  

The fundamental question underlying the work in my PhD addresses the possible humidity 

control of magnetite alteration during rock weathering. How can this hypothesis be tested and 

analyzed? An actualistic study of natural rock weathering in different climates is certainly the 
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most direct way, but controlled humidity and temperature conditions and time can be better 

achieved in laboratory experiments. For better understanding the influence of humidity and 

temperature on the alteration of magnetite and how it impacts paleomagnetic studies, both a 

laboratory study (Fig. 1A) and an actualistic study (Fig. 1B) were chosen in the present work. 

First, magnetite alteration was studied under controlled temperature and humidity conditions in 

laboratory setups (Chapter Ⅲ). The challenge in interpreting the results obtained for laboratory 

conditions is the transformation to natural processes in which much longer times are involved. 

Second, in an actualistic approach, magnetite alteration was investigated on natural rocks in 

different settings of mean annual precipitation and mean annual temperature, for which basalts 

and related weathered pebbles from the Deccan traps in India and the Emeishan traps in SW-

China were investigated (Chapter Ⅳ). However, natural processes are always affected by the 

complexity of different influencing factors, which are often very difficult to discriminate. The 

uncertainties in this study arise from unknown initial stoichiometry, cation substitution, and the 

presence of other magnetic mineral phases, which partly obscure the results. 

Figure 1. The three approaches of the PhD work. 

Another important issue is the question where and under which conditions alteration happens 

between in situ rock weathering, producing the source material for erosion, and the arrival of 

the weathered materials in a sink such as in a lake. Lake sediments are important archives for 

paleoenvironment studies (Gasse et al., 1991; An et al., 2011). To investigate such scenarios 

magnetic proxies are often considered because of fast and non-constructive measurement 
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procedures. However, the link between soil (source material of sediments) and sediments (sink 

of source material) are rarely studied. Changes of source areas, weathering in the catchment 

area, transport-related effects, and authigenic processes, potentially influence magnetic 

properties of the sediments. Knowledge of the catchment characteristics can provide a better 

understanding of response mechanisms of paleoclimate variation and changes during material 

translocation. A source-sink case study is presented in Chapter Ⅴ, which addresses magnetite 

alteration during relocation of weathered material for a specific case (Fig. 1C). 

Magnetite alteration in a laboratory experiment (Chapter III) 

Natural magnetite from Sweden was chosen for a one-year laboratory experiment (Chapter III). 

Grain sizes of these magnetite particles range from <1 µm to ~30 µm as detected by 

micrographs. According to the results of X-ray diffraction and thermomagnetic analyses 

(Verwey transition temperature and Curie temperature), the used magnetites are near 

stoichiometric (~2 % of LTO).   

Magnetite samples were placed into six 20ᵡ26ᵡ30-cm large experimental containers at different 

temperature (T) and relative humidity (rH) conditions (Fig. 2) for one year. A heating pad and 

a humidifier with self-regulation devices were used to control temperature and relative 

humidity. The magnetite starting material was sealed and sheltered from sunlight.  When ending 

the experimental exposure after one year, the samples were air dried at room temperature. 

(Zhang et al., 2020) 

Low-temperature thermomagnetic curves are often used to determine the Verwey transition of 

magnetite. Result from this experiment show a systematic shift of the Verwey transition towards 

lower temperature for all 70 °C setups. The sample from setup HH shows the lowest Verwey 

transition temperature (Tv), followed by HD and HH-HD with almost the same Tv shift (Fig.3). 

The χ-T slope of the χ-T curves at T=Tv were additionally calculated. All 70 °C setups show a 

flatter slope compared to the original magnetite, with similar flattening for HS, HD and HH-

HD, and a clearly flattest slope for HH (Fig. 4). Increasing flattening suggests a stronger 

gradient of different LTO degree. Sample HH also show the highest Curie Temperature (Tc) 

(596 °C) compared to all the other setups (Tc~584-586 °C), which is in agreement with the 

concluded highest degree of oxidation for HH. 
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Figure 2. Scheme of the laboratory experimental setup model (drawing not to scale). 

Lattice constants (a) show significant differences between each sample, sample HH with the 

lowest value of a corresponding to the highest degree of maghemitization. The combined results 

of Tv and a indicate that the alteration affects the particles as a whole, not only a surface layer. 

Strongly altered thin particle surfaces may also exist and may escape our analytical results. 

However, such thin surface layers will only make up a minor fraction of the total particle 

volumes and therefore will only contribute little to macroscopic magnetic properties.  

Samples placed in extremely dry conditions at 70 °C (HD), and also samples which were 

alternatingly exposed to extremely dry and wet conditions (HH-HD) both acquired a smaller 

degree of LTO. The smallest change of the high temperature setups was revealed for the sample 

with intermediate rH of ~13 % (HS). Mössbauer analysis indicates that hematite was produced 

during the experimental period in setup HH, even though it is not detected by the X-ray 

diffraction result.   
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Figure 3. Low-temperature thermomagnetic curves (normalized to room temperature χ-values), shown as full 

curves (small plot) and enlarged for T<130 K Verwey transition (main plot).  

 

Figure 4. Verwey transition temperature (Tv), slope at Tv (lower value means flatter slope), ∆χ/χ0 ratios (relative 

χ-loss between heating and cooling curves), and lattice constant (a). 

Magnetite alteration in rock weathering (Chapter IV) 

Even though the laboratory experiment already demonstrates that humidity and temperature 

affect the alteration process (Zhang et al., 2020, Chapter Ⅲ), studies on natural rocks could 

bring insights and useful information about how these conditions influence the characteristics 

in natural weathering. Basalts were chosen as they contain a large magnetite fraction that allows 
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studies of representative small samples. The Deccan traps on the Indian subcontinent provide 

suitable material for our study with its large area of flood basalts, a large gradient of mean 

annual precipitation, and magnetite or near-magnetite as the dominating ferrimagnetic phase 

that formed by exsolution during cooling and is thus a primary component of the fresh rock. 

The Deccan traps are located in central and southern India (Fig. 5), covering nearly 500,000 

km2 large area, which were erupted at around the Cretaceous-Tertiary boundary (Allegre et al., 

1999; Basavaiah et al., 2018). At present, a strong MAP gradient exists in this area ranging 

from ~500 mm to ~4000 mm (Fig. 5, right). The MAT is relatively high across the whole 

Deccan plateau area (~25 ℃ to ~28 ℃). 

 

Figure 5. Upper left: Three sampling sites from Emeishan traps, China. Lower left: geology map of Deccan traps 

modified from Sheth (2005). Right: Nine sampling sites from Deccan traps with ERA-Interim MAP map (35-years 

climate averages reanalysis data; Dee et al., 2011).  

The Emeishan traps are located in south-western China (Fig. 5, upper left), between the western 

margin of the Yangtze Block and the eastern margin of the Tibetan Plateau, covering an area 

of ~0.3×106 km2 (Shellnutt & Jahn, 2011). Geochemical data indicates both high-Ti and low-

Ti lavas are existing within Emeishan basalt province (Xu et al. 2001). Across the sampled area 

the MAP is ~800 mm and the MAT is ~12.8 ℃. 

Fresh basalts and weathered pebbles nearby (Fig. 6) were sampled from 42 locations in the 

Deccan traps, distributed across the MAP gradient, and 17 sample sets were obtained from the 

Emeishan traps. Preferred samples are those with coexisting magnetite and ilmenite, formed by 

exsolution during relatively slow cooling. After careful site selection, 9 sites from the Deccan 
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traps and 3 sites from the Emeishan traps (Fig. 5) were chosen. At each site, material was 

collected from 5 sub-sites for obtaining information on site-internal consistency. Detailed 

sampling was done in 2017. Polished sections were prepared for light microscopy analysis. 

Main results were obtained from bulk magnetic parameters measurements, low-and high-

temperature thermomagnetic runs and light microscopy analysis. 

 

Figure 6. Photographs of sampling areas in the Deccan traps and Emeishan traps, showing fresh rock and 

weathered pebbles and how they are related to each other. 

The results in Fig. 7 show magnetic susceptibility values of all sample materials from three 

representative sites (DE04, DS02, ZT06). With fining of the pebbles, the alteration of magnetic 

mineral is assumed to increase. A linear trend line of several parameters and parameter ratios 

was analyzed (χ, χfd%, SIRM, SIRM/χ, S-ratio, ARM/SIRM). For checking the reliability of the 

regression results, four different grouping methods were applied : (ⅰ) all sample material (FR, 

WP1-5), (ⅱ) only pebbles, to exclude uncertainties that pebbles did not originate directly from 

the underlying fresh rock (WP1-5), (ⅲ) excluding the finest fraction that may be influenced by 

pedogenesis (FR, WP1-4), (ⅳ) excluding both fresh rock and finest pebble (WP1-4). The results 

show both cases an increasing (DE04, DS02) and decreasing (ZT06) trend of magnetic 

susceptibility (χ) with fining of the pebbles grain size, but the results from different grouping 

methods are mostly similar. 
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A decrease in concentration dependent parameters (χ and SIRM) is an indicator of 

transformation of magnetite (i.e., maghemitized magnetite) to hematite. An increase of 

ARM/SIRM can be related to grain size fining (i.e., magnetic domain state shifting towards 

single-domain behavior), due to higher degree of weathering that increases the inhomogeneity 

in terms of magnetic domain states within particles. A simultaneous decrease of SIRM/χ, which 

is partly observed, can be explained by finer particle-internal subdivisions with a shift towards 

superparamagnetic behavior in parts of the particles. As shown in Fig. 8, the results of the 

Emeishan basalts show a clear decrease of concentration dependent parameters, however only 

part of the Deccan basalts display a decrease, and there is no obvious systematic dependence 

on MAP.  

 

Figure 7. Magnetic susceptibility (χ) of all sample material from 3 representative sites (DE04, DS02, ZT06). Four 

different grouping strategies are shown: FR: basalts fresh rock, WP: weathered pebble samples (WP1 >4 mm, 

WP2 2-4 mm, WP3 1-2 mm, WP4 0.5-1 mm, WP5 <0.5 mm). All values are normalized to WP1 of the sub-sample 

set, linear fit with 95 % confidence interval. 
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Figure 8. Slope of regression line for each sampling setting (including 5 fresh basalts and 20 pebble samples WP1-

4) with confidence limits (95 %) plot of magnetic susceptibility χ, percentage frequency-dependent susceptibility 

χfd%, saturation isothermal remanence (SIRM), SIRM/χ ratio, S-ratio, ARM/SIRM ratio. Black and blue symbols 

denote Deccan and Emeishan results, respectively. 

Unfortunately, the results from natural rock and weathered pebble materials does not show 

consistent oxidation signal based on our studies. The complexity of the rocks, i.e., the variations 

of rock magnetic behavior of the fresh rock between sampled sites, and even within sampled 

sites, likely override the climate-related weathering effects.   

Red soil and lake sediments in a source-sink transfer (Chapter V)  

The Heqing Basin (Fig. 9) in Yunnan province (SW China) is situated at about 2200 m above 

sea level, and present climate conditions are subtropical, with mean annual temperature of 

13.5 °C and mean annual precipitation of nearly 1000 mm (Xiao et al., 2010). Hu et al. (2005, 

2015) interpreted magnetic properties of a 168-m deep lacustrine drill core (Core-HQ; Fig. 9) 

from Heqing basin in terms of paleoclimate evolution during the past ~900 ka. They identified 

magnetite, maghemite and hematite as the main ferro(i)magnetic mineral components. Hu et al. 

(2015) also proposed that the superparamagnetic magnetite fraction which dominates the 

strongly magnetic red soil all around the basin is almost absent in Core-HQ, and the detrital 

fraction inherited from weathering of the very low magnetic bedrock in the surrounding of 

Heqing Basin dominates the magnetic properties in the lacustrine sediments. It was speculated 
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that superparamagnetic magnetite particles were lost during transport into the lake due to 

dissolution in surface water.  

 

Figure 9. Study area and sampling conditions, Caohai Lake (upper right), red soil and bedrocks (lower right). 

The crucial question concerns the possible fading of fine magnetite particles on the pathway 

from their origin to the sink. A source-sink setting with both red soil and sediments from the 

Caohai Lake in the basin was studied. A total of 45 red soil samples were collected from the 

uppermost ~10 cm all around the basin. Three short (~45 cm) sediment cores were recovered 

from Caohai Lake. From the main bedrock (limestone), 4 samples were collected at the western 

basin margin (Fig. 9).  

Magnetic parameters and geochemical parameters were measured, and in addition, X-ray 

diffraction and TEM analyses were applied. Data from those measurements provides important 

information related to the identification of magnetic minerals, the characterization of the 

magnetic grain size (i.e., magnetic domain state), and the spatial (red soil) and vertical (lake 

sediments) distribution of magnetic parameters, aiming to decipher the change of magnetic 

properties during the pathway from the source to the sink. 

The highly magnetic red soil with susceptibilities (χ) of ~10-5 m3/kg are the only important 

source material for the Caohai Lake. Observations by TEM show that pedogenic nano-

magnetites (~10-15 nm) are dominating in red soil. They are arranged in aggregates of ~100 

nm, with particle interaction that causes a wide effective grain size distribution in the 
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superparamagnetic (SP) range tailing into stable single-domain (SSD) behavior. Corresponding 

with broadband-frequency χ(f) results, an assumption has been made that partial disintegration 

of the aggregates happened during the transfer of source material (red soil) to the sink (Caohai 

Lake), and the alteration of magnetite nanoparticles to hematite is increased. Both changes shift 

the domain state behavior to smaller effective magnetic grain sizes, resulting in lower χfd% and 

χ values. (Chapter Ⅴ) 

A conceptual sketch shown in Fig. 10 illustrate the expected dependence of χ-values as a 

function of grain size and frequency. The dependence of χ versus grain size shows a peak-

shaped behavior with highest values and strong frequency dependence in the range of thermal 

activation, a constant and frequency-independent lower χ when approaching the SSD range, 

and decreasing χ-values towards smaller SP particle sizes (underlying χ-relationships are given 

in Fig. 10).  

 
Figure 10. Sketch of the conceptual relationship of χ versus grain diameter (d) for four frequencies in 

logarithmically equal increments (increasing from f to 8f), modified from Kodama (2013), and following the theory 

presented by Worm (1998) and Shcherbakov and Fabian (2005). The principle relationships for smaller SP grains 

(below thermal activation), SP grains in the range of thermal activation (frequency-dependent; in-phase part), and 

larger grains in the SSD range are shown (Ms: saturation magnetization, Hk: microcoercivity, χSP: 

superparamagnetic susceptibility for zero frequency, V: grain volume, τ: relaxation time, T: temperature, f: 

frequency, ω: angular frequency, μ0: magnetic permeability of free space, k: Boltzmann constant). The orange and 

gray fields display schematic distributions of effective grain sizes of the nano-magnetite aggregates in red soil (A) 

and lake sediments (B), respectively. Aggregates in red soil are assumed to be tighter packed and possibly also 

larger than in lake sediments, and according to the ELNES results more hematite is existing in the nanoparticles 

of the lake sediments.   
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Hematite in the nanoparticles, either existing as full nanoparticles or as shells of magnetite cores 

(Fig. 10), will increase the distance between neighboring magnetite. Both the hematite fraction 

in the aggregates and the tighter or looser packing of nanoparticles affect the interaction 

between the magnetites, and therefore will have an impact on the resulting χfd% and χ values. 

Aggregates in state (B) have a looser packing and more hematite than aggregates in state (A), 

thus the frequency dependence in the lower frequency range is decreased.  

 

References 

Ahmed, I.A.M. & Maher, B.A. (2018). Identification and paleoclimatic significance of magnetite 

nanoparticles in soils. Proc. Natl. Acad. Sci., 115(8), 1736-1741. 

https://doi.org/10.1073/pnas.1719186115 

Allegre, C.J., Birck, J.L., Capmas, F. & Courtillot, V. 1999. Age of the Deccan traps using 187Re–

187Os systematics. Earth and Planetary Science Letters, 170, 3, 197-204. 

https://doi.org/10.1016/S0012-821X(99)00110-7 

An, Z.S., Clemens, S.C., Shen, J., Qiang, X., Jin, Z.D., Sun, Y.B., et al. (2011). Glacial-interglacial 

Indian summer monsoon dynamics. Science, 333, 719-723. 

https://doi.org/10.1126/science.1203752 

Basavaiah, N. & Khadkikar, A.S. (2004). Environmental magnetism and its application towards 

palaeomonsoon reconstruction. Journal of the Indian Geophysical Union, 8/1, 1-14. 

Basavaiah, N., Mahesh Babu, J.L.V., Gawali, P.B., Naga Kumar, K.Ch.V., Demudu, G., Prizomwala, 

S.P., Hanamgond, P.T. & Nageswara Rao, K. (2015). Late Quaternary environmental and sea level 

changes from Kolleru Lake, SE India: Inferences from mineral magnetic, geochemical and textural 

analyses. Quat. Int., 371, 197-208. https://doi.org/10.1016/j.quaint.2014.12.018 

Basavaiah, N., Satyanarayana, K.V.V., Deenadayalan, K. & Prasa, J.N. (2018). Does Deccan Volcanic 

Sequence contain more reversals than the three-Chron N–R–N flow magnetostratigraphy? a 

palaeomagnetic evidence from the dyke-swarm near Mumbai. Geophys. J. Int., 213, 1503-1523. 

https://doi.org/10.1093/gji/ggy041 

Bourgeois, F., Gergaud, P., Renevier, H., Leclere, C. & Feuillet, G. (2013). Low temperature oxidation 

mechanisms of nanocrystalline magnetite thin film. J. Appl. Phys., 113, 013510. 

https://doi.org/10.1063/1.4772714 

Byrne, J.M., Klueglein, N., Pearce, C., Rosso, K.M., Appel, E. & Kappler, A. (2015). Redox cycling of 

Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science, 347, 1473-1476. 

https://doi.org/10.1126/science.aaa4834 

Byrne, J.M., van der Laan, G., Figueroa, A.I., Qafoku, O., Wang, C.M., Pearce, C.I., Jackson, M., 

Feinberg, J., Rosso, K.M. & Kappler, A. (2016). Size dependent microbial oxidation and reduction 

of magnetite nano- and micro-particles. Sci. Rep., 6, 30969. https://doi.org/10.1038/srep30969 

Davison, W. & Seed, G. (1983). The kinetics of the oxidation of ferrous iron in synthetic and natural 

waters. Geochim. Cosmochim. Acta., 47, 67-79. https://doi.org/10.1016/0016-7037(83)90091-1 

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, 

M.A. et al.  (2011). The ERA-Interim reanalysis: configuration and performance of the 

dataassimilation system. Q. J. R. Meteorol. Soc., 137, 553–597. https://doi.org/10.1002/qj.828 

Demortière, A., Panissod, P., Pichon, B.P., Pourroy, G., Guillon, D., Donnio, B. & Bégin-Colin, S. 

(2011). Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale. 3(1), 225-32. 

https://doi.org/10.1039/c0nr00521e 

Gasse, F., Arnold, M., Fontes, J.C., Fort, M., Gibert, E., Huc, A., et al. (1991). A 13,000-year climate 

record from western Tibet. Nature, 353, 742-745. https://doi.org/ 10.1038/353742a0 

Herb, C., Zhang, W.L., Koutsodendris, A., Appel, E., Fang, X.M. & Pross, J. (2013). Environmental 

implications of the magnetic record in Pleistocene lacustrine sediments of the Qaidam Basin, NE 

Tibetan Plateau. Quat. Int., 313-314, 218-229. https://doi.org/10.1016/j.quaint.2013.06.015 

https://doi.org/10.1073/pnas.1719186115
https://doi.org/10.1016/S0012-821X(99)00110-7
https://doi.org/10.1126/science.1203752
https://doi.org/10.1016/j.quaint.2014.12.018
https://doi.org/10.1126/science.aaa4834
https://doi.org/10.1038/srep30969
https://doi.org/10.1039/c0nr00521e
https://doi.org/10.1016/j.quaint.2013.06.015


Chapter Ⅱ: Introduction 

14 

 

Hu, S.Y., Goddu, S.R., Appel, E., Verosub, K., Yang, X.D., & Wang, S. (2005). Palaeoclimatic changes 

over past one million years derived from lacustrine Sediments of Heqing Basin (Yunnan, China). 

Quaternary International, 136, 123-129. https://doi.org/10.1016/j.quaint.2004.11.013 

Hu, S.Y., Goddu, S.R., Herb, C., Appel, E., Gleixner, G., Wang, S.M., Yang, X.D. & Zhu, X.H. (2015). 

Climate variability and its magnetic response recorded in a lacustrine sequence in Heqing basin at 

the SE Tibetan Plateau since 900 ka. Geophys. J. Int., 201, 444-458. 

https://doi.org/10.1093/gji/ggv033 

Irving, E. (1970). The Mid-Atlantic Ridge at 45°N, XIV, Oxidation and magnetic properties of basalts: 

Review and discussion. Can. J. Earth Sci., 7, 1528-1538. https://doi.org/10.1139/e70-144 

Kodama, K. (2013). Application of broadband alternating current magnetic susceptibility to the 

characterization of magnetic nanoparticles in natural materials. Journal of Geophysical Research 

Solid Earth, 118, 1-12. https//doi.org/10.1029/2012JB009502  

O’Reilly, W. (1984). Rock and Mineral Magnetism. Blackie London, 220 p. 

Petersen, N. & Vali, H. (1987). Observation of shrinkage cracks in ocean floor titanomagnetites. Phys. 

Earth Planet. Inter., 46, 197-205. https://doi.org/10.1016/0031-9201(87)90182-8 

Readman, P. & O'Reilly, W. (1972). Magnetic properties of oxidized (cation-deficient) titanomagnetites 

(Fe,Ti)3O4. J. Geomag. Geoelec., 24, 69-90. https://doi.org/10.5636/jgg.24.69 

Shcherbakov, V.P., & Fabian, K. (2005). On the determination of magnetic grain-size distributions of 

superparamagnetic particle ensembles using the frequency dependence of susceptibility at different 

temperatures. Geophysical Journal International, 162, 736-746. https://doi.org/ 10.1111/j.1365-

246X.2005.02603.x 

Shellnutt, J.G. & Jahn, B.-M. (2011). Origin of Late Permian Emeishan basaltic rocks from the Panxi 

region (SW China): Implications for the Ti-classification and spatial–compositional distribution of 

the Emeishan flood basalts. J. Volcanol. Geoth. Res., 199, 85-95. 

https://doi.org/10.1016/j.jvolgeores.2010.10.009 

Sheth, H. C., 2005. From Deccan to Réunion: no trace of a mantle plume. In: Foulger, G. R., Natland, 

J. H., Presnall, D. C., Anderson, D. L. (Eds.), Plates, Plumes, and Paradigms. Geol. Soc. Am. Spec. 

Pap. 388, 477-501. 

Topsøe, H., Dumesic, J.A. & Boudart, M. (1974). Mössbauer spectra of stoichiometric and 

nonstoichiometric Fe3O4 Smicrocrystal. J. Phys. (Paris), 35, C6-411-C6-413. http://dio.org/ 

10.1051/jphyscol:1974680 

Van Velzen, A.J. & Dekkers, M. (1999). Low-temperature oxidation of magnetite in loess-paleosol 

sequences: A correction of rock magnetic parameters. Stud. Geophys. Geod., 43, 357-375. 

http://doi.org/10.1023/A:1023278901491 

Worm, H.U. (1998). On the superparamagnetic-stable single domain transition for magnetite, and 

frequency dependence of susceptibility. Geophysical Journal International, 133, 201-206. 

https://doi.org/10.1046/j.1365-246X.1998.1331468.x 

Xiao, X.Y., Shen, J., Wang, S.M., Xiao, H.F., & Tong, G.B. (2010). The variation of the southwest 

monsoon from high resolution pollen record in Heqing Basin, Yunnan Province, China for the last 

2.78 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 287, 45-57. 

https://doi.org/10.1016/j.palaeo.2010.01.013 

Xu, Y.G., Chung, S.L., Jahn, B. & Wu, G.Y. (2001). Petrologic and geochemical constraints on the 

petrogenesis ofPermian–Triassic Emeishan flood basalts in southwestern China. Lithos, 58, 145-

168. https://doi.org/10.1016/S0024-4937(01)00055-X 

Xu, W.X., Peacor, D.R., Dollase, W.A., Van der Voo, R. & Beaubouef, R. (1997). Transformation of 

titanomagnetite to titanomaghemite: A slow, two-step, oxidation-ordering process in MORB. 

Amer. Miner., 82, 1101-1110. https://doi.org/10.2138/am-1997-11-1207 

Zhang, Q., Appel, E., Stanjek, H., Byrne, J.M., Berthold, C., Sorwat, J., Rösler, W. & Seemann, T. 

(2020). Humidity related magnetite alteration in an experimental setup. Geophys. J. Int.  

https://doi.org/10.1093/gji/ggaa394 

Zhou, W.M., Van der Voo, R., Peacor, D.R., Wang, D.M. & Zhang, Y.X. (2001). Low-temperature 

oxidation in MORB of titanomagnetite to titanomaghemite: A gradual process with implications 

for marine magnetic anomaly amplitudes. J. Geophys. Res. Solid Earth, 106(B4), 6409-6421. 

https://doi.org/10.1029/2000JB900447 

https://doi.org/10.1016/j.quaint.2004.11.013
https://doi.org/10.1093/gji/ggv033
https://doi.org/10.1016/0031-9201(87)90182-8
https://doi.org/10.5636/jgg.24.69
https://doi.org/10.1016/j.jvolgeores.2010.10.009
http://doi.org/10.1023/A:1023278901491
https://doi.org/10.1016/j.palaeo.2010.01.013
https://doi.org/10.2138/am-1997-11-1207
https://doi.org/10.1029/2000JB900447


Chapter Ⅲ: Humidity related magnetite alteration in an experimental setup 

15 

 

Chapter Ⅲ: Humidity related magnetite alteration in an 

experimental setup 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author 
Author 

position 

Scientific 

ideas % 

Data 

generation % 

Analysis & 

interpretation % 

Paper 

writing % 

Qi     

Zhang 
1 40 65 35 50 

Erwin 

Appel 
2 40 - 30 35 

Helge 

Stanjek 
3 10 15 10 10 

James 

Byrne 
4 - 5 10 5 

Christoph 

Berthold 
5 - 5 5 - 

Julian 

Sorwat 
6 - 5 5 - 

Wolfgang 

Rösler 
7 10 - - - 

Timo 

Seemann 
8 - 5 5 - 

Status in publication process:                                Accepted 



Chapter Ⅲ: Humidity related magnetite alteration in an experimental setup 

16 

 

Humidity related magnetite alteration in an experimental setup 

Qi Zhang1, Erwin Appel1*, Helge Stanjek2, James M. Byrne3,4, Christoph Berthold5, Julian 

Sorwat3, Wolfgang Rösler1, Timo Seemann2 

1 Geophysics, Center for Applied Geoscience, University of Tübingen, Hölderlinstr.12, 72074 Tübingen, Germany 

2 Clay and Interface Mineralogy (CIM), RWTH Aachen University, Bunsenstraße 8, 52072 Aachen, Germany  

3.Geomicrobiology, Center for Applied Geoscience, University of Tübingen, Hölderlinstr.12, 72074 Tübingen, 

Germany 

4School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United 

Kingdom 

5Mineralogy and Geodynamics, Department of Geosciences, University of Tübingen, Lothar-Meyer Bau, 

Wilhelmstr. 56, 72074 Tübingen, Germany 

 

Summary 

Low-temperature oxidation (LTO) of magnetite is an alteration process which occurs under 

normal atmospheric conditions, causing maghemitization. The use of magnetic properties as 

paleoclimate proxies requires improved understanding of how humidity and temperature affect 

such processes. We exposed natural magnetite, with grain size ranging from <1 μm to ~30 μm, 

to different humidity conditions at room temperature and 70 °C for one year. Changes in room 

temperature setups were very minor, but in all 70 °C setups alteration was detected by magnetic 

and mineralogical properties. Lowering of the Verwey transition temperature (Tv) turned out to 

be the most sensitive indicator of LTO, and also lattice constants correlate well with the shift 

of Tv. Thermomagnetic curves and XRD-results indicate that LTO affects the entire volume of 

the particles rather than only surface layers. The sample exposed to high relative humidity 

(rH) >90 % at 70 °C showed the strongest degree of LTO with an increase of the oxidation 

degree by ~3 % according to Tv, and it was the only setup where partial alteration to hematite 

was indicated by Mössbauer analysis. The sample with extremely dry conditions (rH of ~5 %) 

at 70 °C, and the sample that was exposed to cycles of high and low humidity in 2-weeks 

alternation at 70 °C, both revealed a smaller degree of LTO. The smallest change of the high 

temperature setups was observed for the sample with intermediate rH of ~13 %. The results 

suggest a non-linear sensitivity of magnetite alteration to humidity conditions, high humidity 

strongly favors alteration, but alteration is strongly reduced when extreme humidity alternates 

with dry conditions, suggesting an importance of seasonality in natural weathering. 
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1. Introduction 

Alteration of magnetite has been extensively studied for understanding magnetic remanences 

carried by (titano-)magnetite in basalts (Irving, 1970; Petersen & Vali, 1987; Xu et al., 1997; 

Zhou et al., 2001), principles of rock weathering, sediment transport and deposition related to 

paleoclimate research (Van Velzen & Dekkers, 1999; Demory et al., 2005; Herb et al., 2013), 

many of them in the field of pedogenic processes (Chen et al., 2005; Liu Q.S. et al., 2005) and 

core-shell structures in pedogenic nanoparticles (Ge et al., 2014; Ahmed & Maher, 2018), but 

also in other fields such as heavy metal remediation (Liu W. et al., 2015), medical and bio-

applications (Widdrat et al., 2014; Schwaminger et al., 2017), and technical applications such 

as thin films (Bourgeois et al., 2013).  Magnetite is the most common of ferro(i)magnetic 

minerals in nature, and it plays an important role in the use of magnetic properties as 

paleoclimate proxies in terrestrial archives such as soil, eolian deposits, and lake sediments. 

Changes of source areas, weathering in the catchment area, transport-related effects, and 

authigenic processes, potentially influence magnetic properties of the sediments. In this paper, 

we address the impact of humidity on the oxidation kinetics of magnetite, which is relevant for 

climate-related inorganic magnetite alteration during weathering of source rocks. Oxidation of 

magnetite with oxygen preserves the spinel structure, but with vacancies (◻) on the octahedral 

site: 

8Fe3+[Fe2+Fe3+]O4 + 2O2 ⇋ 9[Fe1.67
3+ ◻0.33]O4 (1) 

Magnetite and maghemite form a continuous solid-solution series (Basta, 1959), in which 

intermediate oxidation states written as Fe[Fe2−δ ◻δ]O4 (0≤δ≤1/3) show Vegard behavior for 

cell edge length a, summarized by Gorski & Scherer (2010) and Cervellino et al. (2014). The 

oxidation mechanism involves attachment of an oxygen molecule to the surface of the 

magnetite, where it oxidizes two surficial Fe2+ ions and becomes incorporated into the surface. 

This topotactic reaction does not change the morphology (Feitknecht & Lehmann, 1959; Jolivet 

& Tronc, 1988), the surface area remains the same and no porosity develops (Sidhu et al., 1977). 

The Fe has to diffuse within a solid, the kinetics of which has been addressed manifold (e.g., 

Gallagher et al., 1968; Gillot et al., 1978; Mazanek et al., 1973; Bourgeois et al., 2013). Apart 

from particle size (Elder, 1965; Colombo et al., 1968; Haneda & Morrish, 1977; Gillot et al., 

1978) the kind of diffusion mechanism (grain boundary diffusion, diffusion along defects and 

through a defect-free structure) is important (Bourgeois et al., 2013). The concomitant 

activation energies of about 81 kJ/mol (Sidhu et al., 1977) are small enough to convert 
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nanosized magnetite within years to maghemite. Murad & Schwertmann (1993) observed on 

synthetic magnetite of submicron size that within five years its oxidation state increased from 

an initial δ=0.14 to δ=0.18. For magnetite characteristic first-order phase transitions occur at 

the Curie temperature (Tc) of ~580 °C (Petersen & Bleil, 1982) and a low temperature transition 

at around 120 K to 125 K known as the Verwey transition at which the crystal lattice transforms 

from cubic (T>Tv) to monoclinic (T<Tv) (Hamilton, 1958; Jackson et al., 2011). Just above Tv 

the magnetocrystalline anisotropy shows a zero-intersection.  

Increase of δ lowers the saturation magnetization (Readman & O’Reilly, 1972), increases Tc 

(Readman & O’Reilly, 1972), decreases Tv (Aragón et al., 1985) and decreases the lattice 

constant (Basta, 1959; Cervellino et al., 2014). Maghemite can transform to low-magnetic 

hematite (DeBoer & Selwood, 1954; Swaddle & Oltmann, 1980; Sidhu, 1988; Li et al., 2019), 

but depending on particle size, hematite can also form by direct oxidation of magnetite at 

temperatures above about 300 °C (Nasrazadani & Raman, 1993; Li et al., 2019; Knafelc et al., 

2019), and also through martitization in natural environments (Davis et al., 1968). Temperature 

does not only determine the speed of reactions, but also whether magnetite-to-hematite 

conversion happens directly, or via low-temperature oxidation (LTO). Taylor & Schwertmann 

(1974 a & b) found that maghemite forms through slow oxidation under certain pH conditions, 

while fast oxidation preferentially produces hematite. Depending on water availability the final 

product can be goethite instead of hematite (Abrajevitch & Kodama, 2009).  

The governing question behind our study is whether climate-specific weathering of bedrock, in 

particular the influence of humidity, produces typical magnetic characteristics of magnetite 

contained in the rocks. Van Velzen & Dekkers (1999) suggested that LTO could occur during 

weathering in the outcrop, as well as during transport and deposition. Weathered rock materials 

serve as primary source for paleoclimate archives such as lake sediments (Demory et al., 2005) 

or loess deposits (Begét et al., 1990; Liu et al., 2004a). Paleoclimate investigations so far paid 

surprisingly little attention to the effects of LTO on iron-oxide stability as a function of climatic 

conditions. In some studies, humidity-control of magnetite weathering in the catchment was 

proposed (Basavaiah & Khadikar, 2004; Herb et al., 2013; Basavaiah et al., 2015; Hu et al., 

2015). Swaddle & Ostmann (1980) suggested that the rate of LTO depends on dry or wet 

conditions, but their experimental study was performed under hydrothermal conditions which 

are different from rock weathering processes. In principle, oxidation in air at room temperature 

can take place in time scales of several hundred days (Topsøe et al., 1974; Bourgeois et al., 
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2013), with increasing oxidation rate for grain-size fining from about 100 nm to sizes of few 

nm (Demortière et al., 2011; Byrne et al., 2016), and presence of bacterial activity can speed 

up the reactions to even days (Byrne et al., 2015). Ahmed & Maher (2018) found a strong 

dependence of LTO on geochemical conditions such as pH. 

Investigating weathered sample materials of natural rocks in different climates as a function of 

humidity and temperature is a possible approach to tackle the question of climate-related 

magnetite alteration. However, studying magnetite alteration in natural environments is a 

complex task due to the unavoidable mineralogical variability, which makes it difficult to obtain 

suitable sample collections from different climatic settings. We therefore performed a 

laboratory experiment using well-characterized natural magnetite as starting material, 

investigated the alteration of magnetite after one year of exposure to different controlled 

conditions of humidity and temperature. In our experimental setup, we used a maximum 

temperature of 70 °C, which is high enough to detect magnetite alteration, and still as close as 

possible to natural conditions for minimizing uncertainty in transferring the results to natural 

processes. To the best of our knowledge, controlled experiments with well-defined natural 

magnetite particles at or near ambient temperatures have not been previously attempted. We 

then applied a combination of mineralogical, spectroscopic, magnetic and chemical techniques 

to elucidate which factors most strongly influence LTO.    

2. Samples and methods 

2.1 Starting material and control sample 

The magnetite sample used in our experimental setup was selected upon the following criteria: 

(i) The crystallographic structure should be as close as possible to stoichiometric magnetite, 

and (ii) the sample should comprise a wide grain size range of particles to represent a suitable 

analogue of magnetite released by bedrock weathering. Magnetite particles smaller than about 

one micron would be principally most suitable because of their high surface-to-volume ratio, 

but they do not fulfill the second criterion, and it is also difficult to obtain such material without 

notable alteration from natural sources or by synthesizing sufficiently homogeneous non-

oxidized particles (Tang et al., 2013). We tested a series of different natural and synthetic 

samples, based on these test results we selected a commercial magnetite (sampled from Sweden, 

probably Kiruna). Micrographs show a grain size range of <1 µm to ~30 µm, and the results 

from X-ray diffraction and thermomagnetic analyses (Verwey transition and Curie temperature) 
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document magnetite close to a stoichiometric composition (for presentation of results we refer 

to the ‘Results’ section). 

The chosen laboratory setups differed in temperature (T) and relative humidity (rH) conditions. 

The results after one year of exposure are presented in this paper. The original magnetite 

material, which was kept in a self-sealed plastic bag during this year in the same room as the 

experimental setups, was re-analyzed after terminating the experiment as a control sample for 

comparison with the treated setups. 

2.2 Experimental approach 

For the experimental setups, we used 20ᵡ26ᵡ30-cm large experimental containers made of 

stainless steel (Fig. 1). We equipped them with a heating pad as thermal source, connected with 

a self-regulation thermometer for switching the heating pad on or off when the temperature 

deviated ±5 °C from 70 °C. Water vapor produced by a humidifier was added into the container 

via a rubber tube, and a self-regulation hygrometer was installed in the container to keep the 

humidity constant. Around 4 g of the magnetite starting material was placed on a non-magnetic 

tinfoil plat. Small holes at the bottom of the plates avoided water accumulation, and a fine filter 

membrane above the holes prevented the loss of magnetite. The containers were sealed and 

placed in the laboratory at University of Tübingen for one year, sheltered from sunlight. 

Temperature and humidity conditions in the 70 °C-setups HH, HH-HD, HS, and HD were kept 

constant by the temperature and humidity controllers, respectively. The setup RH varied with 

the ambient room temperature in the laboratory temperature of about 20-30 °C while humidity 

was kept constant, and RR was exposed to the laboratory conditions of both temperature and 

humidity. After one year of exposure in the experimental setups, the samples were collected 

from the containers and air dried at room temperature for two weeks.     
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Figure 1. Schematic laboratory setup; temperature and relative humidity conditions of each experimental 

container.  

2.3 Analytical methods 

Magnetic susceptibility (χ) was measured with an MFK-1 Kappabridge (Agico) at frequencies 

of 976 Hz and 15616 Hz (χlf and χhf), then normalized to mass-specific values. For accurate 

measurement of small amounts of material (0.4-1.0 g), and for minimizing anisotropy effects, 

we wrapped the magnetite samples with plastic film into a spherical shape and fixed it in the 

middle of a 2ᵡ2ᵡ2-cm plastic sample box with non-magnetic plasticine. Magnetic susceptibility 

was then measured in three orthogonal directions, averaging the three values to obtain the 

sample result.  The measurement was only accepted when χ-values of the three orthogonal 

directions differed by less than 5 %. We repeated the above procedure ten times, preparing new 

samples from the same material, and from these ten sets, we calculated the mean and standard 

deviation. Percentage frequency-dependence (χfd%) was calculated by [(χlf-χhf)/χlf]ᵡ100 

(Dearing et al., 1996). In addition, we determined the broadband-frequency dependence of χ 

with an SM150L device (ZH Instruments) at 9 frequencies between 65 Hz and 16 kHz. 
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Low- and high-temperature thermomagnetic curves of magnetic susceptibility (χ-T curves) 

were performed with sample masses of ~0.15 g on a KLY-3 Kappabridge combined with a CS-

3 furnace and a CS-4 cryostat, warming the sample from liquid nitrogen to room temperature 

and heating it to 700 °C in argon atmosphere. For each sample type, we measured low-

temperature thermomagnetic curves for five different sub-samples, and then calculated an 

average curve. 

Ten sub-samples (~0.01 g) of each sample type were prepared for measuring hysteresis curves 

with a PMC MicroMag 2900 AGM (Lake Shore Cryotronics), to obtain the saturation 

magnetization (Ms) and the saturation isothermal remanent magnetization (SIRM) at 0.8 T. 

Moreover, we measured first-order reversal curves (FORC) and processed these results with 

the software FORCinel (Harrison & Feinberg, 2008). With the MicroMag, we obtained IRM 

acquisition curves at 100 steps in regular log-increments up to 0.8 T, for five sub-samples 

(~0.01 g) from each sample type. The IRM curves were unmixed by log-normal Gaussian 

distributions utilizing the program MAX UnMix of Maxbauer et al. (2016), extracting Bh (field 

at which SIRM/2 is reached) and DP (width of distribution) values.  

In addition, we characterized the sample materials for their mineralogical and chemical 

composition. For these analyses, we used the bulk sample powders, and also produced polished 

sections after embedding some sample materials (last polishing step with 1-μm diamond paste).  

On the polished sections, we performed reflected light microscopy with immersion oil lenses 

and applied ferrofluid on the surface for safely discriminating strong magnetic phases from 

others. After additional coating with carbon (twice 2-4 nm), we analyzed the polished sections 

with a PHENOM XL scanning electron microscope (SEM) with a CeB6 electron source, 

operated in back-scattered mode (15 kV; working distances 10-30 μm) to reveal contrasts 

potentially related to different maghemitization degrees. Another SEM (LEO 1450VP) 

microscope equipped with tungsten filament was used for bulk powder material to measure size 

and shape of the magnetite particles (8 kV, working distance 10 mm). The size of magnetite 

particles was determined from SEM images by utilizing ImageJ software.  

Powder X-ray diffraction (XRD) measurements were performed on several samples (original 

magnetite, HH, original magnetite after annealing at 300 ℃ and 380 ℃ in argon) using a 

BRUKER D8-advance diffractometer equipped with Cu-sealed tube running at 40 kV/20 mA, 

a Goebel-mirror parallel beam optic to suppress CuKβ and measuring with the CuKα duplet 
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with a weighted mean value (0.15418 nm), a 0.2 mm primary divergence slit, a knife edge with 

fixed 1 mm distance to the sample surface to suppress air scattering, and a 1D-VÅNTEC-1 

detector with 3° window in scanning mode. The sample was prepared without grinding on a 

low background silicon wafer and fixed with hairspray. There was a certain surface roughness, 

which could influence the peak profile, but this influence can be neglected due to the used 

parallel beam optic by the Goebel mirror mounted on the primary side. Quartz powder was 

mixed to some of the samples as internal standard. The sample was rotated during measurement, 

step size was 0.008°Θ, and the measurement time was 1600-7700 s per step (line detector) 

depending on the sample amount. Additional powder scans were run on a conventional 

BRUKER D8 diffractometer for magnetite samples from all setups, using a low-background 

sample holder (Si crystal) by mixing KCl with the magnetites. Before the measurements, the 

samples were ground by hand in a bornitrate mortar under ethanol, together with the KCl. The 

cell edge length of KCl was calibrated against NIST corundum and held fix during the 

refinement with BGMN/Profex (Doebelin & Kleeberg, 2015). Both size and strain broadening 

parameters were refined and corrected for instrumental broadening.  

57Fe Mössbauer spectroscopy was used to measure the Fe-bearing mineralogy of bulk powder 

materials of the original magnetite (the control sample) and all treated setups. Samples were 

loaded as dried powders into 1 cm² plexiglas holders and transferring them to a closed-cycle 

exchange gas cryostat (Janis cryogenics). Data were collected at 140 K with a constant 

acceleration drive system (WissEL) in transmission mode with a 57Co/Rh source and calibrated 

against a 7 µm thick α-57Fe foil measured at room temperature. All spectra were analyzed 

utilizing the software Recoil (University of Ottawa) by applying a Voight Based Fitting (VBF) 

routine (Rancourt et al., 1991). The half-width at half maximum was fixed to a value of 0.133-

0.136 mm/s for all samples.  

Argon physisorption isotherms were measured on 90-350 mg of dried magnetite powder using 

the manometric Quantachrome Autosorb 1 MP equipped with a CryoSync thermostat 

(regulating the temperature at 87.3 K). Uptake of Ar was determined at 43 and 25 discrete 

pressure points in ad- and desorption mode between 0.001 to 0.995 P/P0. The saturation 

pressure of the adsorptive was specified manually at 10.1297 MPa (normal boiling point at 

87.3 K). Tolerance to partial pressure fluctuations was zero below 0.1 P/P0 and 2 above 

0.1 P/P0. Thermodynamic equilibrium was assumed when the pressure drop rate was 

<15 Pa/min for 5 min. All samples were first evacuated to <10 μPa for several hours at ambient 
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temperature (~25 °C). After pre-drying, the sample material was stepwise heated under vacuum 

to 105 °C for 24 h before measuring full ad- and desorption isotherms. To check the drying 

state of the sample, a pressure-rise test (~30-40 mPa/min) was performed before each 

measurement. For quantitative analysis of the micropore range and the specific surface area, we 

used the Dubinin-Astakhov (DA) and Brunauer-Emmett-Teller (BET) theories, respectively 

(Dubinin and Astakhov, 1971; Brunauer et al., 1938). The analysis of the specific surface area 

(A_BET) was performed according to the principles laid out by Rouquerol et al. (2007). 

 3. Results 

3.1 Properties of the original magnetite material (control sample) 

SEM analysis indicated a large variability of grain sizes (Fig. 2c) ranging from larger particles 

with a diameter of about 5-30 µm to many smaller particles <1 µm. Edges of the larger grains 

are expected to be more sensitivity to alteration due to a locally higher surface-to-volume ratio, 

and edges will also contribute to fine magnetic domain state behavior (Pokhil & Moskowitz 

1997). The cell edge length of 8.39458(6) Å agrees with almost stoichiometric magnetite (Fig. 

2a), and the Mössbauer spectrum (see section 3.2) can be well fitted by stoichiometric 

magnetite. The Verwey transition is at 116.1 K (see section 3.2), which according to Aragón et 

al. (1985) indicates a very small (<2 %) degree of maghemitization. The high temperature 

thermomagnetic curve (Fig. 2b) yields a Curie temperature (Tc) of 586 °C determined by 

extrapolation of 1/χ to χ=0 (Petrovský & Kapička, 2006). The ~6 °C higher than expected Tc is 

within an acceptable limit regarding uncertainties residing in the Tc determination method and 

temperature calibration. A hump occurs in the heating curve culminating at around 300-350 °C 

followed by a strong decay to ~400 °C. Irreversible partial heating-cooling cycles reveal that 

the decay is caused by transformation of magnetite to a low-magnetic phase (Fig. 2b). The XRD 

results show no mineralogical change after annealing the original magnetite material at 300 °C, 

but transformation of magnetite to hematite is clearly evidenced after 380 °C annealing (Fig. 

2a), which proves that the decay in the χ-T behavior at ~300-400 °C is caused by magnetite-to-

hematite transformation, as often described in literature (Liu et al., 2005; Knafelc et al., 2019). 

Semiquantitative Rietveld analysis of the crystalline phase yields ~40 wt% hematite in the 

380 °C annealed sample, consistent with the χ-loss at ~300-400 °C during heating.   

https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Petrovsk%C3%BD%2C+E
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Figure 2. (a) XRD results of the original magnetite, HH, and original magnetite after annealing at 300 °C and 

380 °C (Fe-fluorescence background subtracted; diffractograms scaled for similar intensity of the magnetite main 

peak). The small plot shows a comparison of the characteristic (311) magnetite peak for the original magnetite and 

HH. Expected peak positions of magnetite and maghemite, as well as hematite, are indicated; quartz was added as 

standard; peaks in HH marked by “?” cannot be assigned to any known Fe-oxide or Fe-hydroxide phase; 

microscopy results (Fig. 8a) indicate that they stem from contamination of the sample with filter material used for 

the high-humidity setups. (b) Thermomagnetic χ-T curve and partial heating-cooling cycles (inlet figure). (c) SEM 

image of the original magnetite.  

The measured saturation magnetization of Ms=82.49 Am2/kg is lower than the theoretical value 

of 92 Am2/kg for magnetite, most likely because of the known decrease of Ms for fine particles 

(Mascolo et al., 2013; Li et al., 2017), which could be due to physically fine particles and 

particle-internal sub-division. Pre-existing slight LTO cannot explain the effect, as a ~10 % 

decrease in Ms would correspond to nearly 50 % oxidation (Readman & O’Reilly, 1972). 
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Reflected light microscopy (Fig. 8a) revealed that the original magnetite sample contains 

impurities, but their contribution is too low to influence concentration-dependent magnetic 

parameters as Ms. 

3.2 Treated samples   

Figure 3a shows the concentration-dependent parameters (χ, SIRM, Ms) after one year of 

exposure. There are no discernible differences between the results for the original magnetite 

(our control) and RR exposed to air; RH also does not show a change. In contrast, these three 

parameters are lower for the 70 °C setups, with a similar relative decrease for χ and Ms, and a 

larger one for the SIRM. The HH sample shows the by far most pronounced drop (χ: -13.4 %, 

SIRM: -31.6 %, Ms: -12.3 %), and for two of the three parameters (χ, SIRM) the results do not 

overlap with the control sample (original magnetite) within standard deviations.  

 

Figure 3. (a) Means and standard deviations for magnetic susceptibility (χ), saturation magnetization (Ms), and 

saturation isothermal remanence (SIRM). (b) Frequency-dependent susceptibility (χfd%) with means and standard 

deviations (lower plot), and broadband-frequency dependence of χ normalized to the 65 Hz value (upper plot).  

Broadband-frequency results of χ (Fig. 3b; Table A1, appendix A) show a slightly decreasing 

trend with frequency that indicates a contribution of superparamagnetic behavior. However, 

frequency-dependent χ (χfd%) is generally low (~2.3-2.7 %; Fig. 3b), which means that the 

superparamagnetic contribution is only minor, with no detectable differences for all setups.  

Parameters (Bh, DP) resulting from IRM modeling, using a single log-Gaussian distribution, are 

plotted in Figure 4. The width of the coercivity distribution (DP) is higher for all treated setups 
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(2.27-2.34; highest for HH and HD) compared to the original magnetite (2.24). The measure of 

the mean coercivity (Bh) is similar for all samples (21-23 mT) except for HH (26 mT). 

The use of FORC diagrams for identifying magnetic grain sizes and particle interactions is 

becoming increasingly common (Roberts et al., 2014). For our samples, the obtained FORC 

diagrams do not show relevant differences (Fig. 4).  

 

Figure 4. Bh and DP from cumulative log-Gaussian unmixing of IRM acquisition curves after Maxbauer et al. 

(2016); Bh: applied field at which the mineral phase acquires half of its saturation IRM (SIRM), DP: dispersion 

parameter (width of the log-Gaussian distribution). Top: FORC diagrams (smoothing factor 4). 

The measured Mössbauer spectra (Fig. 5) are characteristic of magnetite, with two sextets 

corresponding to tetrahedral (MagT) Fe3+ and octahedral (MagO) Fe2+-Fe3+ sites (for modeling 

results see Table A2, appendix A). The only sample showing an additional sextet is HH (for 

spectra of other setups see Figure B1, appendix B). This modeled additional sextet accounts for 

~9 % of the spectral area. It is characterized by a negative quadrupole shift (Q-shift), which is 

typical of an Fe oxide such as hematite or goethite. As we measured at 140 K, the high hyperfine 

field value (50 T) is more indicative of hematite than goethite. A significant contribution of 

ferrihydrite (Fh) can be excluded. Above 77 K, 2-line Fh is characterized by a duplet, and even 

though 6-line Fh shows some magnetic ordering, it is relatively incomplete and the hyperfine 
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parameters are very different from those expected for hematite. The integrated areas of the 

magnetite sextets (i.e., relative abundances of MagT and MagO) allows to estimate the 

stoichiometry (i.e. Fe2+/Fe3+ ratio) of the sample using the equation 

Fe2+/Fe3+=0.5ᵡMagO/(0.5ᵡMagO+MagT) (Gorski & Scherer, 2010). In general, all samples 

obey the expected stoichiometric ratio for magnetite (i.e. 0.5). 

 

Figure 5. Mössbauer spectra of the original magnetite and the HH setup. Enlarged parts reveal the additional 

contribution of a second phase in HH, likely hematite.  

The XRD result of HH (Fig. 2a) does not show a skew or broadening of the characteristic 

magnetite diffraction peak (311 peak) towards larger 2Θ-angles. In contrast to the Mössbauer 

result, hematite is not detected in the diffractogram of HH, but there are several small peaks 

which cannot be assigned to any Fe-containing phase. A significant contribution of ferrihydrite 

can be excluded based on the Mössbauer results and because of the fact that ferrihydrite will 

not survive at 70 °C for one year (Schwertmann et al., 2004). In order to check whether the 

small peak shift for the HH samples towards larger diffraction angles (Fig. 2a) represents a 

significant maghemitization effect, we analyzed the lattice constants from the XRD results of 

the different setups (Fig. B2, appendix B). The lattice constants vary on the third digit (in Å), 

with a reproducibility of 0.0001 Å determined by preparing and measuring samples twice 

(Table 1). They show significant differences between different samples (Fig. 7), with the lowest 
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value for the sample HH corresponding to the highest degree of maghemitization. The grain 

sizes calculated from the pure size broadening parameter B1 range from 100 to 130 nm, and the 

strain broadening parameter k2 is consistently zero in contrast to the KCl, which showed some 

strain broadening. The differences between the measured and the calculated magnetite peaks 

did not show any indication of asymmetry. 

Thermomagnetic curves show the most distinct changes between the different setups (Fig. 6). 

The onset of the decay in the low-temperature χ-T curves is approximately matching with the 

expected Verwey transition of stoichiometric magnetite, but the Tv-values determined by the 

inflection point of the χ-T curve (i.e., the maximum of the first derivative), are up to ~10 °C 

lower. A homogeneous phase (stoichiometric or homogeneously oxidized magnetite) would 

exhibit a steep drop in the χ-T curve at Tv. The slope in the measured curves probably indicates 

gradual maghemitization. The low-temperature χ-T curves (Fig. 6a) show a systematic shift of 

the Verwey transition towards lower temperature for all 70 °C setups. The determined Tv is 

lowest for HH, followed by HD and HH-HD with almost the same Tv shift (Fig. 7). HS also 

shows a clear Tv shift, while no significant change compared to the original magnetite is 

observed for RH and RR. We additionally calculated the χ-T slope of the χ-T curves at T=Tv. 

For this, we normalized the curves to the difference between the cold and warm ends to 

eliminate the effect of the peak slightly above Tv, which is due to magnetocrystalline isotropy. 

All 70 °C setups show a flatter slope compared to the original magnetite, with similar flattening 

for HS, HD and HH-HD, and a clearly flattest slope for HH (Fig. 7). 

High-temperature χ-T curves of all samples, including RR, show a less pronounced hump and 

smaller decrease at ~300-400 °C than the original magnetite; the biggest change is again 

observed for the sample HH setup. The χ values in the cooling curves are much lower indicating 

a strong loss of magnetite that occurs in two temperature intervals during heating, at ~300-

400 °C and above Tc of magnetite.  All samples except HH show a very similar Curie 

temperature (Tc ~584-586 ℃). The clearly higher Tc for HH (596 °C) is reversible in heating 

and cooling curves and the slope of the χ-T curve near Tc is equally steep as for the other setups. 

The experimental argon sorption isotherms (Fig. B3, appendix B) are classified as type II 

according to the most recent IUPAC classification (Thommes et al., 2015). Neither a plateau 

nor hysteresis are observed. All isotherms possess an ill-defined point B indicating overlap of 

mono- and multilayering processes. The absence of a plateau close to P/P0 =1 suggests 

continuous and unrestricted thickening of the adsorbate layer up to the saturation pressure. This 
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is typical for nonporous or macroporous adsorbents (Rouquerol et al., 2013). Quantitative 

analysis of the micropore range (P/P0 <0.15) using the Dubinin-Astakhov theory of volume 

filling yields no evidence of microporosity. This is in qualitative agreement with the shape of 

the isotherms and the anticipated material properties. Application of BET-theory provides 

specific surface areas between 1.4 and 0.8 m2/g applying a Rouquerol-plot for objective 

constraints of the fitting range (Rouquerol et al., 2007). 

 

Figure 6. Thermomagnetic curves of magnetic susceptibility χ (each the mean from ten curves): (a) Low-

temperature χ-T (warming) curves (normalized to room temperature χ-values), shown as full curves (small plot) 

and enlarged for T<130 K; the range of expected Tv values for stoichiometric magnetite is shown by the gray bar 

(Aragón et al., 1985; Brabers et al., 1998; García et al., 2001; Jackson et al., 2011); the peak at slightly above Tv is 

due to the isotropic point of magnetocrystalline anisotropy. (b) High-temperature thermomagnetic χ-T curves 

(normalized to the starting value). 
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Figure 7. Verwey transition temperature (Tv) represented by the inflection point of χ-T curves, slope at Tv (lower 

value means flatter slope), ∆χ/χ0 ratios (relative χ-loss between heating and cooling curves), and lattice constant 

(a), for the measured setups.   

Light microscopy (Fig. 8) revealed magnetite surfaces homogeneously covered with ferrofluid 

for all samples except sample HH, where small spots with no ferrofluid cover are visible inside 

of particles (Fig. 8e). These ferrofluid-free spots unambiguously represent non-magnetic or 

weakly magnetic inclusions. In sample HH, also some larger parts of particles are not covered 

with ferrofluid and the transition between these parts and the ferrofluid-covered magnetite is 

diffuse (Fig. 8b). Moreover, there are non-magnetic areas not covered with ferrofluid with a 

sharp contact to magnetite (Figs 8a and c). They represent impurities, which could be 

intergrowths with ilmenite due to exsolution during formation. The back-scattered electron 

images of the SEM results indicate patches with different reflectivity in sample HH (Fig. 9c), 

which might be due to partial maghemitization or hematite. However, this conclusion has to be 

considered with great caution as the smoothness of sample surfaces could be different, and the 

contrast could be also influenced by the electron beam characteristics. 
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Figure 8. Micrographs from reflected light microscopy. All shown images are taken with ferrofluid cover 

(brownish fine patterns of ferrofluid nanoparticles accumulation, which mainly represent maze patterns due to 

polishing-induced inhomogeneous surface stresses) that identify strongly magnetic phases, and unambiguously 

document magnetite or maghemitized magnetite. Non-magnetic or weakly magnetic impurities with sharp 

boundary to magnetite are visible in (a) and (c), marked by circles. Small spots inside particles without ferrofluid 

cover in (e) within the marked circle are non-magnetic or weakly magnetic and could represent hematite. The 

particle within the circle of (b) shows a larger area without ferrofluid cover with diffuse transition to the magnetite. 

In (d) contamination with filter material is identified. 
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Figure 9. SEM images in back-scattered mode, comparing surfaces of (a) the original magnetite sample and (b, c) 

the altered HH setup (line meshes are scratches from polishing). The surface in (c) shows patches with different 

reflectivity. The lighter rim at the particle edges is most probably caused by surface relief.  

 

Figure 10. Bivariate plots of lattice constants (a) versus Verwey transition temperatures (Tv), and slope factors (of 

χ-T curves at Tv) versus Tv. Correlation coefficients for a vs Tv and slope vs Tv are r=0.65 and r=0.97, respectively. 

Table 1. Means and standard deviations for relevant parameters, χ: magnetic susceptibility; SIRM: saturation 

isothermal remanent magnetization; Ms: saturation magnetization; χfd: percentage-frequency dependence of χ; Bh, 

DP: IRM unmixing parameters; Tv: Verwey transition temperature; slope: slope factor at Tv; a: lattice constant 

(with control measurements for RH and HH-HD, marked by stars); Tc: Curie temperature; Δχ/χ0: relative χ-loss 

between heating and cooling curves). Number of samples for standard deviations: N=10 for χ, SIRM, Ms, χfd, Bh, 

DP; N=5 for Tv and slope (except N=4 for RH); internal single sample error for a.  
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4. Discussion 

The variants of storing the magnetite samples at room temperature and 70 °C with relative 

humidity range between dry and humid. Regarding relative humidity, a sequence (from higher 

to lower alteration) was expected starting with HH (permanently at >90 %), followed by HH-

HD (cycling between 5 % and >90 %), HS (permanently at 13 %), HD (permanently at 5 %), 

all at 70 °C, and ending with the room temperature setups RH and RR, and the original 

magnetite (control sample). In the sub-sections below, we discuss the observed changes of 

properties as a function of humidity and the possible mechanism of alteration, and we identify 

the most sensitive indicators for LTO. 

4.1 Observed changes for the different setups related to humidity 

Some parameters remained constant within experimental errors. Specific surface areas 

remained constantly low, crystal coherence lengths did not change and Ar sorption isotherms 

provided no indication for micro- and mesoporosity. This agrees with findings of Sidhu et al. 

(1977). The apparent absence of micro- and mesoporosity and the low specific surface areas 

limit also potential amounts of ferrihydrite, because ferrihydrite has specific surface areas >200 

m2/g and substantial microporosity (Cornejo et al., 1984; Stanjek & Weidler, 1992). 

Furthermore, within one year at 70 °C ferrihydrite would fully transform to hematite or goethite 

(Schwertmann et al., 2004). The formation of hematite (observed by Mössbauer spectroscopy 

in sample HH only) is also less likely, as the direct transformation of magnetite to hematite 

(martitization) involves the development of substantial porosity (Anand & Gilkes, 1984). Pores 

could speed up Fe diffusion inside of particles akin to ion exchange reactions in minerals, where 

the replacement of larger cations by smaller ones produces microporosity (Putnis, 2002).  

Other parameters, however, did change, and relevant numerical results are summarized in 

Table 1.  Alterations after one year of exposure are small, as expected, but detectable. Both 
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low- and high-temperature χ-T curves show clear differences between the setups, also lattice 

constants and concentration-dependent magnetic parameters (χ, Ms, SIRM), as well as IRM 

acquisition curves (Bh, DP) reveal changes. FORCs and frequency-dependence of χ turned out 

to be not sensitive enough within their limits of uncertainty and therefore these results will be 

omitted in the discussion. Moreover, there are several striking observations, which are difficult 

to explain and require further research.  

The first is the smaller hump and smaller subsequent decrease at ~300-400 °C in the high-

temperature χ-T curves which appears in all altered setups and is most pronounced for HH 

(Fig. 6). The weaker the hump, the smaller is the χ-loss after heating (Figs 6 and 7).  It seems 

that the type of alteration acquired during the one year of exposure protects the magnetite from 

oxidation during heating.  

The second remarkable observation is the almost double as large decrease of the SIRM 

compared to χ and Ms for HH (Fig. 3a), which implies that HH is magnetically softer. Magnetic 

hardness is expected to increase with maghemitization due to inhomogeneous stress distribution 

(Appel, 1987; Van Velzen & Dekkers, 1999) and only decreases again near full (90 %) 

maghemitzation (Ge et al., 2014). However, a decrease of the magnetocrystalline constant K1 

(Goss, 1988) would cause the opposite effect in case of low stress. Moreover, inhomogeneous 

maghemitization could lead to particle-internal fining (Appel & Soffel, 1984), which may cause 

increasing superparamagnetic behavior, thereby reducing the IRM capacity. Particle-internal 

fining is in fact supported by the slight symmetric peak broadening of the main 311 magnetite 

XRD peak for HH (Fig. 2a), but the generally low χfd% values (Fig. 3b) put this in question as 

a major effect.  Eventually, explaining the inconsistency in the decrease of SIRM, χ and Ms 

remains an open issue. In this context, also the higher Bh-value for HH (Fig. 4) is of importance 

that indicates an increase in magnetic hardness, which is another enigma. 

The Mössbauer result for HH (Fig. 5) suggests the presence of a considerably large hematite 

content (~9 %), but surprisingly hematite is not detected in the XRD results (Fig. 2a). The 

presence of ferrihydrite would give a different spectrum in the Mössbauer result and can be 

excluded as mentioned above. Moreover, at 70 °C ferrihydrite would transform into hematite 

within weeks (Schwertmann et al., 2004). The ~12-13 % drop of χ and Ms for HH compared to 

the original magnetite (Fig. 3a) might be interpreted as a measure of the amount of magnetite 

transformed to hematite. However, because of the unknown amount of contamination with filter 

material, the decrease in χ and Ms should be generally interpreted with caution. The indication 



Chapter Ⅲ: Humidity related magnetite alteration in an experimental setup 

36 

 

of hematite by the Mössbauer result is a rather robust result, and even if the 9 % hematite 

content is strongly overestimated, which might be the case, it should still be in the detection 

range of XRD. It could be speculated that ultrafine crystallite size of the newly formed hematite 

fraction that causes extreme broadening of the XRD peaks might lower the peak heights to 

below the noise level. 

As expected, the most obvious deviations in all parameters occurred for sample HH, held at 70 

°C and high relative humidity >90 %. Sample HH is different from all other samples by the 

lowest Verwey transition temperature, in agreement with the lowest lattice constant (Figs 7 and 

10). It shows the highest Bh and DP values (Fig. 4), the lowest concentration-dependent 

magnetic parameters (χ, Ms, SIRM) relative to the other samples (Fig. 7), and the high-

temperature  χ-T curve shows a broader hump at ~300-400 °C with a subsequent decrease which 

is lowest of all samples (Figs 6 and 7). Within the samples HH-HD, HD and HS, the sequence 

is different from the expected one, as HD shows larger changes than HS, and the changes 

observed for HH-HD and HD are similar. Properties of the room temperature setups (RR, RH) 

are very similar to the original magnetite. Slight effects in high-temperature χ-T curves (less 

intense hump and smaller loss of χ after heating-cooling) and in the Verwey transition (slight 

slope decrease) indicate a very minor change (Figs 6 and 7). This does not mean that humidity 

has no effect on magnetite alteration at room temperature, but either the alteration process is 

too slow at this low temperature to be detectable within the one-year period, or only an altered 

thin surface layer has formed with a too small volume fraction to influence the analytical results.  

The deviations from the expected sequence could be due to stoichiometric gradients within the 

particles (so-called core-shell structures) stemming from diffusional migration of Fe2+ towards 

the particle surface (Signorini et al., 2003). Gallagher et al. (1968) monitored the 440 reflection, 

which changed from a symmetric peak at the beginning of the oxidation reaction to an 

asymmetric peak in the middle of the reaction and became symmetric again after full oxidation 

to maghemite. Our XRD data gave no evidence of this kind of broadening, as the strain 

parameter k2 converged for all samples to zero, whereas the KCl consistently had some strain. 

The presence of significant chemical gradients across larger parts of particle volumes is 

therefore less likely. 

A linear decrease of Tv with maghemitization has been observed by Aragón et al. (1985), 

reaching a value of 82 K for about 15 % of oxidation (corresponding to δ of ~0.05 in equation 

1), the strongest degree of non-stoichiometry at which a Verwey transition was still observed. 
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According to the results of Aragón et al. (1985), the observed 8.5 °C decrease of Tv for HH 

compared to the original magnetite corresponds to an increase of the LTO degree by about 3 % 

(change of δ by about 0.01). The change of the lattice constant yields a lower LTO degree of 

~1 % by using the relationship of Cervellino et al. (2014) and Gorski & Scherer (2010). 

Regardless of this discrepancy in the absolute degree of LTO, there is a good correlation 

(r=0.65) between the Tv values and the lattice constants (Fig. 10).  

From the above-mentioned results, it is obvious that we obtained consistent data, and that the 

Verwey transition is the most sensitive parameter tracing the detected LTO effects, 

accompanied by a small but well-correlated change in the slope of the χ-T curves at Tv (Fig. 10). 

However, the observed changes do not confirm the expected sequence, which indicates that 

water vapor at 70 °C seems to influence the oxidation reaction in a non-linear manner. In the 

second next sub-section, we discuss this in detail. 

4.2 Whole particle alteration versus core-shell structure 

A remarkable observation is the increase of the Curie temperature for HH (Fig. 6) by about 

10 °C compared to the original magnetite and also all other setups (Figs 6 and 7). LTO is known 

to cause an increase of Tc, as often observed for oceanic basalts (Nishitani & Kono, 1983). 

However, the determination of Tc for maghemite is uncertain due to its thermal instability. 

Dunlop & Özdemir (1997) proposed a value of Tc=675 °C, which corresponds to an LTO degree 

of ~10 % for an increase of Tc by 10 °C. This differs substantially from the degree of 

maghemitization resulting from the shift of Tv and from the decrease of the lattice constant.  

If as often proposed, a core-shell structure exists (Cui et al., 1994; Liu et al., 2004b; Byrne et 

al., 2015), the gradient across different LTO degrees will cause a tail in the low temperature χ-

T curves towards lower temperatures. A flatter slope is in fact observed for HH (and also for 

other 70 °C setups), and there is a very strong bivariate relationship (r=0.97) between Tv and 

the slope factor of the χ-T curves at Tv (Fig. 10), indicating that a stronger gradient of alteration 

developed in parallel increasing LTO. However, the shift of the low-temperature χ-T curve as 

a whole is more pronounced (Fig. 6) than the slope change. The almost parallel shift of the 

decay at Tc in the high-temperature χ-T curve of HH (Fig. 6), and the consistently zero strain 

broadening parameter k2 in the XRD curves, both support the interpretation that the gradient of 

the oxidation degree is relatively minor compared to the absolute change of the LTO degree 

throughout the whole volume of particles. Observations from reflected light microscopy and 
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back-scattered electron SEM additionally support the interpretation that alteration happens 

within the interior of particles (Fig. 8e).  Still, thin surface layers with significantly stronger 

LTO might exist, making up extremely little of the total particle volume and thus are undetected 

by the applied analyses. Nedkov et al. (2006) reported oxidized very thin layers of about 3 nm, 

where the oxidation state varied from zero to about 0.2, revealed by surface-sensitive 

Mössbauer spectroscopy.   

How could the interior of the particles acquire a relatively homogeneous degree of alteration 

without a strong gradient? Shrinkage cracks forming at advanced LTO due to the decreasing 

lattice parameter (Petersen & Vali, 1987) create internal surfaces and allow water vapor and 

oxygen to penetrate into the interior of particles, which could decrease the inhomogeneity of 

LTO. However, the oxidation degree in the studied samples is most probably not sufficient to 

initiate shrinkage cracks, and the Ar isotherm results clearly show that no porosity developed. 

The rate limiting step of the well-established oxidation mechanism of magnetite is the diffusion 

of Fe ions towards the surface, which has an activation energy of about 81 kJ/mol (Sidhu et al., 

1977). This activation energy is low enough to oxidize submicron magnetites even at room 

temperature, as Murad & Schwertmann (1993) documented by an increase of the oxidation state 

from δ=0.14 to δ=0.18 within five years for synthetic magnetites of submicron size. 

4.3 The impact of water on the oxidation reaction 

Albeit the oxidation reaction (equation 1) does not contain water molecules, the presence of 

water or OH groups within or on magnetite has been reported already by David & Welch (1956) 

and Egger & Feitknecht (1962), who observed that even after heating samples in Ar to 960 °C 

magnetites retained residual water contents of 2 mg/g. These water contents stem very likely 

from the solution pathway, where green rust precursors yield some incorporation of OH groups 

into the spinel structure (e.g. Olowe et al., 1989; Ruby, 2015). We did not find any information 

about structural OH contents in natural magnetites. 

Water contents of 2 to 10 mg/g sorbed on magnetite correspond to a monolayer of water 

molecules, which is liberated by heating to 100 °C (Egger & Feitknecht, 1962). These water 

molecules interact with surface OH groups on magnetite, which are of variable coordination. 

Rustad et al. (2003) distinguish twelve different coordination sites ranging from singly 

coordinated ones (e.g. FetOH and FeoOH) to triply coordinated surface groups Fe2
𝑜Fe2O(H) and 

Fe3
𝑜O(H). These functional sites are not all fully protonated, but on freshly cleaved magnetite 
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hydroxylation starts at water pressures as low as 0.1 Pa and produces hydroxylation extending 

several layers (up to 8 Å) into the bulk structure (Kendelewicz et al., 2000). The oxidation state 

of iron, however, does not change after converting a water molecule into two structural OH 

groups (Kendelewicz et al., 2000). Yet, Eltouny & Ariya (2014), found slight oxidation of 

magnetite after adsorbing water vapor. 

Regardless of whether the surface undergoes redox reactions or not, these surface OH groups 

provide sufficient bonding strength for adsorbing additional water molecules. Egger & 

Feitknecht (1962) mention that magnetite dried over P2O5 warms up considerably after adding 

water vapor. This chemical bonding expresses also as a pronounced hysteresis in the water 

adsorption isotherm between P/P0 =0.15 and 1.0 (Tombacz et al., 2009). Regarding our 

measurements, the magnetites held at relative humidity of >90 % should be covered by at least 

a monolayer of water molecules. In a simple interpretation, this adsorbed water layer should 

hinder the free access of oxygen molecules to the surface and, therefore, oxidation rates should 

decrease with adsorbed water. Eltouny & Ariya (2014) found that the adsorption of toluene 

onto magnetite was reduced or completely hindered by varying relative humidities. 

This interpretation, however, is in contrast to our finding because sample HH is the most 

oxidized one. This indicates that adsorption of water molecules itself might enhance the 

oxidation kinetics. Calculations with density functional theory by Mulakaluri et al. (2009) and 

Kendelewicz et al. (2013) show that the surface layer of magnetite exclusively contains Fe3+, 

which results in an enlarged band gap of 0.3 eV in the surficial octahedral layer. Adsorption of 

water molecules and the formation of surface hydroxyl groups, however, lower this band gap 

towards half-metallic behavior (Mulakaluri et al., 2009). Water adsorption in combination with 

the complex restructuring of magnetite surfaces may therefore enhance the redox kinetics of 

the magnetite-maghemite transformation. 

The discrepancy between the expected sequence and the observed degrees of LTO for the 

experimental setups, however, remains to be solved in future work, in which the presumably 

non-linear interaction of water sorption needs to be investigated. The only work known to us, 

where redox kinetics were measured at various water vapor pressures is from Viswanath et al. 

(1975), who observed minima and maxima in the reduction kinetics of hematite with hydrogen 

and increasing partial water pressures. 
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 5. Conclusions      

Maghemitization is observed in all 70 °C setups by a shift of the Verwey transition temperature 

(Tv).  The Verwey transition is the most sensitive property for discriminating different LTO 

degrees, also lattice constants show a significant change correlating well with the observed 

trend of Tv. Effects in the high-temperature χ-T curves are likewise sensitive, however the 

underlying mechanism remains an open question. 

Our study provides evidence that the interaction of water at ambient conditions (in contrast to 

ultrahigh vacuum conditions of most studies) may enhance LTO. Permanently high relative 

humidity >90 % caused the strongest degree of alteration (HH setup), and only for this setup 

there is an indication for transformation of magnetite to hematite. However, our results do not 

support a linear humidity dependence. The sample that stayed at permanently dry conditions of 

~5 % relative humidity (HD setup) and alternating relative humidity between >90 % and ~5 % 

(HH-HD setup) show clearly lower alteration than the HH setup, and both developed a very 

similar degree of LTO. Intermediate relative humidity (HS setup) seems to cause less alteration 

than extremely dry conditions. While a humidity effect on magnetite alteration at relatively low 

temperature (70 °C) is obvious from our results, we are still far from establishing any transfer 

function for magnetic properties. The much lower alteration of HH-HD compared to HH is an 

important indication of seasonality effects in natural weathering.  

The χ-T curves, in particular low-temperature curves, and the XRD results, suggest that 

alteration affects the particles as a whole, without developing a strong gradient in the particle 

interior. Possibly existing stronger altered thin particles will escape our analytical results 

because of their small contribution to the total volume. 

In future studies, surface-sensitive methods could be applied to tackle the open question of thin 

surface layers with higher degree of LTO. A larger number of setups should be installed at 

different temperatures for more detailed assessment of humidity control, and sampling after 

regular time intervals would allow further insight into the timing of progressing processes. 
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Appendix A 

Table A1. Broadband-frequency dependence of magnetic susceptibility  

Frequency [Hz] Original RR RH HD HS HH-HD HH 

65 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

125 0.993 0.996 0.987 0.996 0.994 0.993 0.989 

250 0.989 0.996 0.989 0.999 0.992 0.991 0.990 

500 0.992 0.996 0.987 0.992 0.993 0.990 0.991 

1000 0.991 0.993 0.987 0.990 0.990 0.987 0.985 

2000 0.986 0.991 0.981 0.986 0.981 0.985 0.985 

4000 0.986 0.989 0.981 0.982 0.978 0.982 0.983 

8000 0.983 0.989 0.978 0.980 0.980 0.986 0.984 

16000 0.979 0.984 0.977 0.979 0.980 0.984 0.981 

 

Table A2. Fitting results of Mössbauer spectroscopy. CS: center shift; Qshift: quadrupole shift; H: hyperfine 

magnetic field; stdev(H): standard deviation of hyperfine field; R.A.: Relative abundance; χ2: goodness of fit. 

    CS Qshift H stdev(H) R.A. Error χ 2 Fe(II)/Fe(III)Mag 

    [mm/s] [mm/s] [T] [T] [%]       

Original MagT 0.45 0.02 50.9 0.9 40.3 2.3 1.1 0.43 

  MagO 0.72 0.01 47.5 1 59.7 2.3     

RH MagT 0.37 0 50.4 0.4 35.2  1.9 0.48 

  MagO 0.75 0 47.9 1.3 64.8       

HD MagT 0.37 0 50.4 0.4 34 0.8 2.2 0.49 

  MagO 0.74 0 47.9 1.3 66 0.8     

HS MagT 0.37 0 50.4 0.3 32.2 1.9 0.9 0.51 

  MagO 0.75 0.01 48 1.5 67.8 1.9     

HH-HD MagT 0.37 0 50.5 0.5 34.1 1.2 1.6 0.49 

  MagO 0.74 0 47.8 1.4 65.9 1.2     

HH MagT 0.38 -0.01 49.8 0 29.4 1.2 42.3 0.51 

 MagO 0.76 0.04 46.9 1.4 61.6 1.3   
  Hem 0.39 -0.15 50.6 0 9 1.4     

 

  

https://doi.org/10.2138/am-1997-11-1207
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Appendix B 

Figure B1. Mössbauer spectra collected at 140 K 
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Figure B2. Rietveld fits of X-ray diffraction results of all magnetite samples measured on the conventional 

BRUKER D8, prepared on a Si wafer and KCl added as an internal standard. The top curve (black) shows the scan 

of the original magnetite (control sample), the green curve is the fit of this scan and the red curve is the residual 

(difference between measured and calculated results). Peaks other than magnetite belong to KCl. The two strongest 

reflections of KCl and magnetite are capped for improving vertical resolution. For all other magnetite samples, 

only the residuals are shown, because the scans look de facto identical to each other. 

 
 

Figure B3. Argon physisorption isotherms at 87 K, measured on ~0.09-0.35 g of dry sample material using the 

manometric method. 
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Summary 

Knowledge on the (in)stability of magnetic minerals is crucial when using magnetic properties 

as paleoclimate proxies or interpreting paleomagnetic results. Magnetic minerals preserved in 

paleoclimate archives may be related to weathering under different climate conditions. We 

present an actualistic study on magnetic properties of magnetite in basalts and weathered 

pebbles at basalt surfaces, using samples from the Deccan traps in India and the Emeishan traps 

in SW-China. The magnetite occurs mainly in magnetite-ilmenite lamellae structures related to 

exsolution during magma cooling. The Deccan samples comprise sites across a large gradient 

of mean annual precipitation (MAP; ~500-4000 mm). The Emeishan samples allow a 

comparison at same MAP in the order of ~1000 mm, but with ~10-15 °C different mean annual 

temperature. In order to investigate the effect of gradual magnetite alteration, the weathered 

pebbles were divided into five groups by their grain sizes. Alteration is assumed to increase 

with grain size fining. Along with the degree of weathering no systematic changes of both 

concentration and grain size dependent parameters were observed. Based on our 

results, we suggest that magnetic properties of ferrimagnetic minerals in basalts and their 

weathering materials mainly dependent on the rock types, overriding climate-related alteration 

effects. The latter may cause distracting noise on magnetic properties in paleoclimate archives 

such as lake sediments.  

1.Introduction  

Studies on concentration, specific compositions, and magnetic domain state of magnetic 

minerals in sedimentary archive such as marine or lake sediments and loess deposits can provide 
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valuable information on paleoclimate (Maher & Hu, 2006). Variation of magnetic properties can 

be caused by dilution with non-magnetic fractions (Peck et al., 1994), dissolution of magnetic 

phases (Negrini et al., 2000), authigenic formation of magnetic minerals (Snowball et al., 2002), 

and changes in the catchment influencing the erosional input (Eriksson & Sandgren, 1999) or 

pedogenic processes (Lise-Pronovost et al., 2014). Moreover, alteration of magnetic minerals 

can influence remanent magnetizations in rocks and understanding the effects of alteration on 

the stability of magnetic remanence is crucial (Irving, 1970). Basalts play an important role for 

conservation of remanence in rocks and as source materials for paleoclimate archives. In this 

respect, weathering processes of (titano-)magnetite have to be considered that may critically 

depend on climate conditions. 

Kent & Gee (1996) showed that already zero-age oceanic basalt can be magnetically altered 

before further aging. The alteration process of magnetite under normal atmospheric conditions 

starts from the particle surface and progresses into the interior gradually alters magnetite 

towards maghemite by oxidation of Fe(II) to Fe(III), diffusion of Fe(II) to the crystal’s surface, 

and the formation of lattice vacancies (Readman & O'Reilly, 1972; O'Reilly 1984) associated 

with lattice shrinking and shrinkage cracks at advanced alteration (Petersen & Vali, 1987). As 

a result of this low-temperature oxidation (LTO) or so-called maghemitization, the internal 

crystal structure and the internal stress distribution become inhomogeneous, thereby causing an 

increase of magnetic hardness (Appel, 1987; Cui et al., 1994; Keller & Schmidbauer, 1999; 

Wang et al., 2006). The formation of shrinkage cracks will allow moisture and oxygen to 

penetrate into the interior of particles, and through chemical weathering maghemite can finally 

transform into hematite (Sidhu 1988; Torrent et al. 2006) or goethite (He & Traina, 2007).  

Recently, variation of magnetic properties due to maghemitization and hematite formation in 

lacustrine sediments around the Tibetan Plateau (Herb et al., 2013; Hu et al., 2015) and on the 

Indian subcontinent (Basavaiah et al., 2015) were interpreted as humidity-induced changes of 

magnetite alteration in the catchment area, and likewise humidity in soil is seen as a major 

driver of pedogenic magnetite alteration (Maxbauer et al., 2016). In a laboratory experiment we 

have studied magnetite oxidation under different humidity conditions at low temperature (70 

℃) during one year of exposure, and the results of this study showed that extreme humidity 

accelerates the alteration process (Zhang et al. 2020). The controlled laboratory experiment 

suggests that relatively higher humidity in natural environments could lead to a higher degree 

of magnetite oxidation, however, it also indicates that the relationship of magnetite alteration 

and humidity could be non-linear. To further investigate the possible influence of humidity, an 
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actualistic study of magnetite alteration during rock weathering in different climates is 

desirable. In this paper, we present magnetic property changes of magnetite during rock 

weathering as a function of humidity, and also compare regions with different temperature 

ranges but same mean annual precipitation (MAP). Such a study requires (i) an area with 

sufficiently similar rock magnetic mineralogy, that (ii) spreads across sufficiently different 

climatic settings.  

Basalts have the advantage of containing a large ferro(i)magnetic fraction that allows studies 

of representative small samples, including microscopic observations. The Deccan traps on the 

Indian subcontinent provide a promising natural laboratory for our study with its large area of 

flood basalts and a large MAP-gradient. The Deccan basalts were intensively studied in the past 

decades, however, most of this research focused on paleomagnetism. Basic rock properties 

investigations started with simple instrumentation, especially conducted by Radhakrishnamurty 

et al. (1967, 1977, 1978, 1981). Their results from a huge number of basalt sites of different 

ages and modes of origin suggest a variety of different characteristics in domain structure, in 

composition of the (titano-)magnetites, and also in the degree of cation deficiency 

(Radhakrishnamurty et al. 1978). Additionally, we investigated the magnetic properties of the 

Emeishan basalts in south-western China, as they are expected to represent a similar genesis of 

flood basalts as the Deccan traps, and located in an area with much lower mean annual 

temperature (MAT) at an overlapping range of MAP.  

2. Samples and methods  

The Deccan traps are located in central and southern India (Fig. 1). The nearly 500,000 km2 

large Deccan flood basalts erupted at around the Cretaceous-Tertiary boundary (Allegre et al., 

1999; Basavaiah et al., 2018) and is one of the largest known continental basalts. The Deccan 

lavas are predominantly tholeiitic with a wide variety in textural character (Wensink, H., 1973), 

they were extensively altered and leached in position (Widdowson & Cox, 1996; Kısakürek et 

al., 2004). At present, a strong MAP gradient exists in this area ranging from ~500 mm to ~4000 

mm (Fig. 1). About 80 % of rainfall occurs during the monsoon season (June to September). 

The MAT is relatively high across the whole Deccan plateau area (~25 ℃ to ~28 ℃).  
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Figure 1. Upper left: Three sampling sites from the Emeishan traps, SW-China. Lower left: Geology map of the 

Deccan traps modified from Sheth (2005). Right: Nine sampling sites from the Deccan traps plotted on ERA-

Interim MAP distribution (35-years climate averages reanalysis maps after Dee et al., 2011). 

The Emeishan traps are located in south-western China (Fig. 1), between the western margin of 

the Yangtze Block and the eastern margin of the Tibetan Plateau, covering an area of ~0.3×106 

km2 (Shellnutt & Jahn, 2011). Studies on Emeishan Basalts started in the late 1970s, 

geochemical data indicates both high-Ti and low-Ti lavas (Xu et al. 2001). Across the sampled 

area of the Emeishan basalts, the MAP is ~800 mm and the MAT is ~12.8 ℃. (MAP and MAT 

data are from: climate-data.org). 

We sampled fresh rock and well-related weathered pebbles on top of the fresh rock (Fig. 2). In 

a first field campaign in 2015, forty-two locations from the Deccan traps and seventeen 

locations from the Emeishan traps were collected and tested for obtaining a most suitable 

sample collection. Careful site selection is crucial to obtain sample sets with as best as possible 

similar rock magnetic mineralogy. Preferred samples are those with coexisting magnetite and 

ilmenite, that formed by exsolution during relatively slow cooling, avoiding a mixture with Ti-

rich titanomagnetites that may survive metastable during fast cooling. After this site selection, 

nine sites from the Deccan traps and three sites from the Emeishan traps (Fig.1) were chosen, 

based on microscopic observations, thermomagnetic curves (-194 ℃ to 700 ℃) and bulk 

magnetic properties (magnetic susceptibility, anhysteretic remanent magnetization, isothermal 

remanent magnetization. In 2017, we then sampled these twelve sites in detail.  
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Figure 2. Deccan traps and Emeishan traps (images on top show outcrop settings), example show basalt sample 

and how pebbles are related to the rock.  

For detailed sampling, we collected fresh bedrock (core samples obtained by drilling and rock 

samples crushed by hammer) and pebbles (~100 g) from five different spots at each site within 

an area of maximum ~50 m. The pebbles were collected as best as possible from spots with 

direct association to the underlying rock (Fig. 2). Barren locations were chosen for avoiding an 

influence of soil formation in the pebbles.  Visible organic matters such as withered grass etc. 

were carefully removed from the weathered pebble material. In the laboratory, the weathered 

pebble materials were sieved and divided into five individual samples by grain size (WP1 >4 

mm, WP2 2-4 mm, WP3 1-2 mm, WP4 0.5-1 mm, WP5 <0.5 mm). The degree of weathering 

is assumed to increase with fining of the pebbles. For further bulk measurements, the sample 

materials were then placed into cylindrical plastic sample boxes and weighed. 

High-temperature (between room temperature and 700 °C) and low-temperature (from -196 ℃ 

to room temperature) thermomagnetic curves of magnetic susceptibility (χ-T curves) were 

measured by using a KLY-3 Kappabridge combined with a CS-3 furnace and a CS-L cryostat. 

Magnetic susceptibility (χ) at frequencies of 976 Hz and 15616 Hz (χlf and χhf) were measured 

with an MFK-1 Kappabridge (Agico), then normalized to mass-specific values. Percentage 

frequency-dependence (χfd%) was calculated by [(χlf-ꭕhf)/ χlf] ᵡ 100 (Dearing et al.,1996). For 

remanence measurements, we imparted an anhysteretic remanent magnetization (ARM) using a 

DC-SQUID magnetometer (2G Enterprises) with attached degausser and DC coil, 
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superimposing a 50 µT DC field and a decaying alternating field (max. 100 mT). Saturation 

isothermal remanent magnetizations (SIRM2T) were imparted at a 2 T field with a MMPM9 

pulse magnetizer, and then a reverse IRM was produced in a field of 300 mT (IRM-0.3T). IRMs 

were measured with Molspin spinner magnetometer. An S-ratio was calculated by [1-IRM-

0.3T/SIRM2T]/2 (Bloemendal et al., 1992).  

Polished sections of representative samples from each sampling location have been examined 

in reflection mode by using an optical microscope with immersion oil and ferrofluid to detect 

strong magnetic phases. All measurements were carried out in the Geoscience Department of 

University of Tübingen.  

For bulk measurements, we first normalized all values from the same spot of a site to the value 

of WP1. With these data, we applied linear regression analysis for the entire sample set of one 

site using all sub-location samples, determining the slope and its 95 % confidence interval for 

the sequence ‘fresh rock, followed by coarser to finer pebble fractions, i.e., from assumed low 

to high alteration degree. We choose four different grouping methods for the regression 

analysis, (ⅰ) fresh rock and weathered pebbles 1-5, (ⅱ) weathered pebbles 1-5, (ⅲ) fresh rock 

and weathered pebble 1-4, (ⅳ) weathered pebbles 1-4. Due to the lack of material, DE01 and 

DE27 are without WP5 (<0.5 mm). A lateral shift of pebble material cannot be ruled out with 

absolute certainty, and therefore direct relation of the weathered pebble material to the 

underlying fresh rock is not guaranteed, which matters in consideration of variable rock 

magnetic properties of the bedrock at different spots. The finest pebble fraction is also special 

as it could be influenced by pedogenic influences although no signs of soil formation processes 

are visible. The sampling strategy and separation of the pebble material into different grain size 

fractions ensures that the pebble fractions 1-4 are exactly from the same spot, and that there is 

no possible influence of pedogenetic processes. 

3. Results  

Thermomagnetic curves of both fresh basalt rocks and weathered pebbles were measured, 

allowing to identify ferro(i)magnetic phases by their Curie temperature and other phase 

transitions such as the Verwey transition. In Figure 3, representative high temperature χ-T 

curves of basalts and weathered pebbles from each sampling sites are presented (for clearness 

only heating curves are shown). Curie temperatures range from ~580 ℃ to ~660 ℃. At around 

300 – 350 ℃ most samples show a hump-like peak, and for part of the samples a second 
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increase occurs before fully dropping at the Curie temperature. An irreversible hump-like peak 

at ~350 ℃ is mostly explained by meta-stable maghemite that transforms to hematite (Dunlop 

& Ozdemir, 1997; Deng et al., 2004), or it may be caused by Ti-rich titanomagnetite. However, 

for part of the sites such as DE11, DS08 and ZT03, the fresh rock does not show a hump (or 

the hump is small), while a larger hump is observed for the related pebble fractions, which 

cannot be explained by Ti-rich titanomagnetite, since it is expected that during weathering Ti-

rich titanomagnetite is not formed but destroyed. According to a recent study on magnetite 

alteration in a laboratory experiment (Zhang et al., 2020), the decrease after the hump at around 

300-350 °C may due to fine-particle behavior.  Some of the samples show a more pronounced 

increase of the hump-like peak with decreasing particle size, which is most systematic for 

DE22. On the other hand, site DS02 shows an opposite trend, i.e., fresh rock and larger pebbles 

show more pronounced peaks, and as the grain size decrease both the first and second peak 

become less obvious. It should be noted that most of the fresh rock curves show less significant 

changes than weathered pebbles between heating and cooling curves.  

It is noteworthy that only a few low-temperature thermomagnetic curves show a Verwey 

transition (Fig. 2), which is an indication of relatively high maghemitization degree. The 

Verwey transition is a very sensitive property for discrimination the degree of maghemitization 

(Zhang et al., 2020), and according to Aragón et al. (1985) the Verwey transition does not exist 

for an oxidation degree of >15 %.  

Optical micrographs of polished sections are shown in Figure 4. Differently shaped and sized 

magnetites are observed, occurring predominantly as large (DE01, DE04, DE11, DE22, DE29, 

DE33, DS02, DS08, ZT03, ZT06) or small crystals (DE27, ZT17). Intergrowths of magnetite 

with a non-ferrimagnetic phase are clearly revealed in particles, which are large enough to be 

well resolved by the light microscopy. (Ti-)Magnetite is evidenced in such particles by coverage 

with ferrofluid (dark cover). The coexistence of magnetite with a non-ferrimagnetic phase could 

reflect an alteration of magnetite (such as DE01), but in most cases it occurs as lamellae 

structures, which are very likely magnetite-ilmenite intergrowths formed by exsolution during 

magma cooling (Mücke, 2003). These lamellae-structures are more (DE04, DE11, DE22, 

DE29, DS02, DS08) or less (ZT03, ZT06) clear, and also entirely ferrofluid-covered particles 

(DE33) are observed which indicates a different type magma source. The particles of DE27 and 

ZT17 are too small to be adequately resolved by light microscopy.  



Chapter Ⅳ: Is alteration of magnetite in rock weathering related to climate 

57 

 

 

Figure 3. High and low-temperature thermomagnetic curves (χ-T) of fresh rock (FR) and weathered pebbles (WP) 

from all sites (WP1 >4 mm, WP2 2-4 mm, WP3 1-2 mm, WP4 0.5-1 mm, WP5 <0.5 mm). Only heating curves 

are shown for high-temperature thermomagnetic curves. Solid and dashed lines of low-temperature 

thermomagnetic curves represent fresh rock and one representative weathered pebble from each of the sampling 

sites. 
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 Figure 4. Optical micrographs of basalt samples from each site  

One of the concentration dependent parameters (χ) and one domain-state (or magnetic mineral 

composition) dependent parameter (SIRM/χ) are presented in Figure 5 and Figure 6. More 

results (SIRM, S-ratio, χfd%, ARM/SIRM) can be found in appendix. MAP values (source: 

climate-data.org) of the 12 sites, and mean absolute values of WP1 from the 5 sub-sites and 

their standard deviations are listed in Table.1. Slope values of the linear regression fits and their 

95 % confidence limits are shown in Figure 7.  

Magnetic susceptibility (χ) and saturation isothermal remanent magnetization (SIRM) are both 

intensity indicators of the concentration of ferrimagnetic minerals. The results in Figure 5 show 

both an increasing (DE01, DE04, DE11, DE22, DE27, DE29, DS02) and a decreasing (DE33, 
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DS08, ZT03, ZT06, ZT17) trend of χ with fining of the pebbles grain size, and all four different 

grouping ensembles yield similar results (appendix). The SIRM shows a more consistent 

decreasing trend, except for DE04, DE33 and DS02. The S-ratio values are very close to the 

maximum value (1.00) for all sites and thus do not provide discriminative results. The 

frequency-dependent susceptibility (χfd%) is known to be very sensitive on grain sizes at the 

superparamagnetic (SP) and stable single domain (SSD) boundary. DE04 and DE29 show 

relatively higher χfd% (~8-9 %) while all other sites have a similar small value (~2-5 %). 

Increasing χfd% values with decreasing pebble size indicate more finer particle behavior in 

smaller pebbles, however, most sites show an opposite trend. ARM/SIRM and SIRM/χ ratios are 

related to the magnetic domain state and the latter is also sensitive for magnetic mineralogy. 

For the studied basalts particle-internal subdivision is expected to play an important role for the 

domain state. For the ARM/SIRM and SIRM/χ ratios, four Deccan sites (DE01, DE11, DE27, 

DS08) and all three Emeishan sites (ZT03, ZT06, ZT17) show a tendency of increasing 

ARM/SIRM ratio and simultaneously decreasing SIRM/χ ratio with fining of the pebble grain 

size. As paramagnetic contributions to magnetic parameters are meaningless in strongly 

magnetic basalts, this can only be explained by a shift towards fine particle behavior with 

increasing weathering that partly reaches into the superparamagnetic range and thus causes a 

relative increase in χ (i.e., in the finer pebble fractions). A simultaneous decrease of the absolute 

value of χ (as obvious in DS08 and all three ZT sites) implies that part of the magnetite was 

transformed to a non-ferrimagnetic phase (such as hematite), which causes a decrease of all 

three concentration dependent parameters (χ, SIRM, ARM). 

The behavior of magnetic parameters and ratios of the Emeishan basalts is more consistent than 

for the Deccan basalts. All three sample sets have high χ, a high S-ratio close to 1.0, and similar 

low χfd% (~2.7-4.0 %). Along with decreasing pebble grain size, χ and the SIRM show a 

decreasing tendency, SIRM/χ decreases (ZT03 within confidence limits) while ARM/SIRM 

shows an increasing tendency, and χfd% increases (within confidence limits).  
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Table 1. Mean values with standard deviations of the 5 sub-samples from pebble fraction 1 (WP 1). Magnetic 

susceptibility (χ); SIRM; S-ratio; χfd%; SIRM/χ; ARM/SIRM. 

  
MAP 

[mm] 

χ  

[10-8 m3kg-1] 

SIRM  

[Am2kg-1] 

S-ratio  

[-] 

χfd  

[%] 

SIRM/χ 

[kAm-1] 

ARM/SIRM  

[-] 

DE01 515 1402.6±492.8 0.44±0.24 0.99±0.009 3.34±1.67 30.57±9.08 0.0043±0.0009 

DE04 593 340.6±102.8 0.08±0.03 0.94±0.025 8.13±3.4 23.13±6.25 0.0065±0.0018 

DE11 812 455.9±170.9 0.08±0.03 0.97±0.017 4.96±2.82 16.78±1.56 0.0054±0.0013 

DE22 1148 632.9±155.2 0.17±0.03 0.98±0.005 3.33±1.42 27.01±6.44 0.0043±0.0025 

DE27 3846 852.5±227.5 0.21±0.02 0.98±0.009 2.7±0.54 26.91±11.39 0.0049±0.0018 

DE29 3044 602.3±127.3 0.09±0.02 0.95±0.020 9.74±2.12 14.92±1.96 0.0097±0.0007 

DE33 2667 2358.3±187.0 0.08±0.02 0.99±0.003 2.58±0.14 3.43±1.10 0.0104±0.0012 

DS02 3917 1543.9±192.6 0.23±0.03 0.99±0.007 3.98±0.72 14.71±0.75 0.0082±0.0005 

DS08 3918 2525.9±120.6 0.38±0.06 0.99±0.004 3.76±0.22 14.89±2.70 0.0056±0.0010 

ZT03 ~800 1282.9±337.8 0.34±0.07 0.99±0.008 3.19±0.07 26.99±3.63 0.0053±0.0006 

ZT06 ~800 2483.8±431.3 0.31±0.11 0.99±0.004 2.70±0.18 12.73±4.44 0.0050±0.0015 

ZT17 ~800 1232.6±225.6 0.25±0.04 0.99±0.008 3.14±0.27 20.32±4.62 0.0060±0.0008 

  

 

Figure 5. Magnetic susceptibility (χ) versus alteration degree (increasing from FR to WP5), all values normalized 

to WP1 of each sub-sample set. Linear fits with 95 % confidence intervals are shown.  
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Figure 6. SIRM/χ ratio versus alteration degree (increasing from FR to WP5), all values normalized to WP1 of 

each sub-sample set. Linear fits with 95 % confidence intervals are shown. 

 

Figure 7. Slope values of regression lines (including FR and WP1-4) with 95 % confidence limits. χ: magnetic 

susceptibility, χfd%: percentage frequency-dependent susceptibility, SIRM: saturation isothermal remanent 

magnetizations, S-ratio and ratios of SIRM/χ and ARM/SIRM. Black and blue symbols denote Deccan and 

Emeishan results, respectively. 
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4. Discussion  

4.1 Magnetic properties  

Studies on the Deccan traps at the beginning mainly focused on paleomagnetism 

(Bhimasankaram, 1965; Wensink & Klootwijk, 1971). Later rock magnetic studies suggested 

that variability of domain structures is the main factor explaining the magnetic properties, and 

that also differences in the composition and cation deficiency of the magnetite play a role 

(Radhakrishnamurty et al. 1978). Based on these results, the authors proposed a classification 

of more than 95 % of the studied basalts into three categories. Later results of Senanayake & 

McElhinny (1981, 1982) principally agreed with these findings, however, they disagreed with 

the cation-deficient type which was interpreted by Radhakrishnamurty et al. (1978) based on 

the thermal behavior of susceptibility and coercivity. Senanayake & McElhinny presented a 

similar approach of grouping the basalts, in which the cation-deficient type proposed by 

Radhakrishnamurty et al. was associated with titanomagnetites containing exsolved ilmenite 

lamellae. Our study is in accordance with the conclusion of Senanayake & McElhinny, that 

lamellae-structured samples have a higher magnetic susceptibility value at liquid nitrogen 

temperature (-196 ℃) compared to room temperature. In general, it has to be noted that the 

exsolution into magnetite and ulvöspinel (the latter then usually altered to ilmenite) is a primary 

feature of the original genesis of the basalts during cooling. For the later alteration of magnetite, 

the relative portions of magnetite and ilmenite are meaningless, but the shape and embedding 

of the magnetite is relevant, which is causing a difference in the climate-related alteration 

processes. Therefore, a bias of the results in terms of ambient humidity and temperature 

conditions by the variability in the rock mineralogy is expected.    

The relatively higher observed Curie temperature than expected for magnetite is indicating 

cation-deficient magnetite. An increase of Tc by LTO was often observed on oceanic basalts 

(Nishitani & Kono, 1983). During rock weathering, magnetite oxidation happens first at its 

outer shell or through fissures, along with proceeding processes of oxidation, magnetite 

properties are affected by lowering saturation magnetization and increasing Curie temperature. 

However, in the recent study of controlled laboratory experiments (Zhang et al., 2020) it was 

surprisingly found that LTO occurs relatively uniform across the entire particle volume except 

of a possible higher oxidized shell that does not contribute much to the results of macroscopic 

measurements.  
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Cation-deficient magnetite can be easily converted by slight heating (Dunlop & Özdemir, 

1997). A susceptibility drop that follows a hump-like peak in thermomagnetic curves between 

~300 ℃ and ~450 ℃ was often explained by the existence of thermally unstable maghemite 

based on the studies of Chinese loess and paleosols (Deng et al, 2004), and such an explanation 

was also proposed recently by Bilardello & IRM (2020). However, we suggest it can be also 

explained by fine particle effects, caused by particle-internal subdivision that creates sub-

regions acting like stable single domain (SSD) particles, which then become superparamagnetic 

(SP) during heating. Inhomogeneous alteration causing increased portions of vortex structures 

(Appel & Soffel, 1984), which will likely lead to an increasing proportion of sub-regions, with 

a broad range of unblocking temperatures, and also could tail into SP contributions. 

A decrease in concentration dependent parameters (χ and SIRM) would be a perfect indicator 

of transformation of magnetite (i.e., maghemitized magnetite) to hematite. As shown in 

Figure 7, the results of the Emeishan basalts show a clear decrease of concentration dependent 

parameters with alteration, while only part of the Deccan basalts display a decrease. The 

increase of ARM/SIRM combined with a decrease of SIRM/χ reveal domain state fining along 

with higher degree of weathering, which is likely related to the increased formation of particle-

internal sub-regions with more SP contribution that increases χ.  

Do these effects of alteration systematically appear as a function of humidity and temperature? 

In case of a linear relationship with these parameters, a higher degree of weathering is expected 

for higher MAT and higher MAP. In general, the magnetic properties variation of the Deccan 

basalts and their weathered pebbles show less consistency than the Emeishan basalts. Sample 

sets from low MAP (<800 mm) Deccan traps area (DE01, DE04, DE11) show a quite consistent 

increase of χ, but the sample sets from high MAP (>3800 mm) areas of Deccan traps (DE27, 

DS02, DS08) are internally inconsistent. As mentioned above, along with the weathering 

degree, formation of particle-internal subregions could lead to an increase of χ because of more 

SP contributions, but the change of the ARM/SIRM and SIRM/χ ratios for DE01, DE04, DE11 

is not compatible with such a scenario. The increase of χ could be also caused by Ti-rich 

titanomagnetite exsolution that forms magnetite with higher χ. The results from the relatively 

lower MAT area of the Emeishan basalts (with similar MAP as the Deccan sites DE01, DE04, 

DE11) show an interestingly consistent decrease of χ, and a decrease of SIRM/χ together with 

an increase of ARM/SIRM. These results are well compatible with the scenario of particle-

internal subdivision tailing into SP behavior.  
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Although there are no consistent signals of humidity related weathering, there are effects of 

weathering, which are likely related to climate conditions, but strongly biased by the original 

rock composition. The laboratory experiments of Zhang et al. (2020) have demonstrated a 

dependence of magnetite alteration on humidity, with a strongest effect for persistently high 

humidity, but a non-linear behavior for drier conditions or alternating dry-humid conditions. 

One would like to validate this observation for natural environments. However, this study of 

basalts reveals that the natural rock-magnetic variability overrides the climate effect, and the 

results within the sub-samples of the same site show that a considerable variability of rock 

magnetic properties already exists of rather small scale <102 to 103 m2, i.e., the size of individual 

sites in our sampling. Weathered pebbles are not always clearly related to the rock that crops 

out at the sampling spot, and the finest pebble fraction could be influenced by soil forming 

processes. However, as the slope tendencies are quite similar when excluding the fresh rock 

and WP5 fraction (see table and figures in the Appendix), this cannot be the reason for the 

missing systematic climate-dependence in our study results. 

Our results have consequences when studying a sedimentary archive such as a lake sediment 

sequence, for which climate-related weathering conditions in the catchment area are considered 

for interpretation. Lake sediments will receive material from a larger catchment and source 

rocks in the catchment are inhomogeneous even at smaller scale. The variability of rock 

magnetic mineralogy will therefore matter a lot when climate variation is associated with a shift 

in collective input from different parts of the catchment. Such shifts will naturally occur by 

displacements of river systems and atmospheric circulation changes that impact the transport 

of material from the source area to the sedimentary sink. Thus, climate-related effects of rock 

weathering in the catchment will most probably be hidden in the magnetic properties of 

sedimentary archives.   

As shown by the macroscopic results in Figure 5, Figure 6 and Figure 7, most weathered 

pebbles do not show a strong signature of LTO or indication for significant magnetite-to-

hematite transformation. In general, comparing the magnetic properties of fresh rock and 

pebbles, the alteration of magnetite during strong weathering causes only relatively small 

changes in the macroscopic parameters, which is a good meassage for paleomagnetic studies. 

Basalt material that is weathered, but still not decomposed from the solid rock, as shown in 

Figure 2, is likely not altered to a degree where magnetic remanences are strongly affected.   
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5. Conclusions  

Magnetic properties of magnetite in basalts and their weathering material mainly depend on the 

rock type, climate-related weathering may be important, but plays a subordinate role compared 

to the rock-type dependent variability, at least among the studied basalts.   

The variability of weathering-related magnetic properties is already strong within the scale of 

the studied individual sites (i.e., below 102 to 103 m2 large areas). Therefore, changes in the 

relative mixing proportions of weathered material from an area at such scale can lead to 

significant changes of the rock magnetic properties in the material that is transported to a sink 

(climate archive such as lake sediments). This may happen without a systematic climate related 

dependence and thus add significantly to the magnetic proxy record at the sink. Climate related 

properties in the archive sequence such as authigenic processes could therefore suffer from 

considerable noise due to non-climate related processes routing in the rock variability in the 

catchment.  

However, there is also a good message from the results of this study. According to the relatively 

small differences of magnetic properties in the fresh rocks and their related weathered pebbles, 

the alteration of magnetite is relatively small in the course of rock weathering. In consequence 

it is likely that magnetic remanences recorded in the rocks are only little affected by the 

alteration, and weathering will not easily destroy paleomagnetic information.  
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Appendix A 

Table 1. Slope and confidence limits values of χ, SIRM, S-ratio, χfd%, SIRM/χ, ARM/SIRM by four grouping 

methods (0: Fresh rock, 1: WP1, 2: WP2, 3: WP3, 4: WP4, 5: WP5). 
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Appendix B 

Figure B1. SIRM values of all sample sets (0: Fresh rock, 1: WP1, 2: WP2, 3: WP3, 4: WP4, 5: WP5) with linear 

regression analysis and 95 % confidence limits. 

 

Figure B2. S-ratio values of all sample sets (0: Fresh rock, 1: WP1, 2: WP2, 3: WP3, 4: WP4, 5: WP5) with linear 

regression analysis and 95 % confidence limits. 
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Figure B3. χfd% values of all sample sets (0: Fresh rock, 1: WP1, 2: WP2, 3: WP3, 4: WP4, 5: WP5) with linear 

regression analysis and 95 % confidence limits. 

 

Figure B4. ARM/SIRM values of all sample sets (0: Fresh rock, 1: WP1, 2: WP2, 3: WP3, 4: WP4, 5: WP5) with 

linear regression analysis and 95 % confidence limits. 
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Figure B5. Slope values of χ sample sets, with linear regression analysis for the different groups of fresh rock 

(FR) and weathered pebble (WP1 to 5).  

 

Figure B6. Slope values of SIRM sample sets with linear regression analysis for the different groups of fresh rock 

and weathered pebble WP1 to 5. 
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Figure B7. Slope values of S-ratio sample sets with linear regression analysis for the different groups of fresh 

rock (FR) and weathered pebble (WP1 to 5). 

 

Figure B8. Slope values of χfd% sample sets with linear regression analysis for the different groups of fresh rock 

(FR) and weathered pebble (WP1 to 5). 
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Figure B9. Slope values of SIRM/χ sample sets with linear regression analysis for the different groups of fresh 

rock (FR) and weathered pebble (WP1 to 5). 

 

Figure B10. Slope values of ARM/SIRM sample sets with linear regression analysis for the different groups of 

fresh rock (FR) and weathered pebble (WP1 to 5). 
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Abstract 

Soil and lake sediments are important paleoclimate archives often forming a source-sink setting. 

To better understand magnetic properties in such settings, we studied red soil on low-magnetic 

bedrock, and sub-recent sediments of Caohai Lake (CL) in Heqing Basin (HB), China. Red soil 

is the only important source material for the CL sediments, it is highly magnetic with 

susceptibilities (χ) of ~10-5 m3/kg. The red soil is dominated by pedogenic nano-magnetite 

(~10-15 nm) arranged in aggregates of ~100 nm, with particle interaction that causes a wide 

effective grain size distribution in the superparamagnetic (SP) range tailing into stable single-

domain (SSD) behavior. Transmission electron microscopy and broadband-frequency χ(f) 

suggest partial disintegration of the aggregates and increased alteration of the nanoparticles to 

hematite during transfer of red soil material to CL. This shifts the domain state behavior to 

smaller effective magnetic grain sizes, resulting in lower χfd% and χ values, and a characteristic 

change of χ(f). The SP-SSD distribution of the aggregates in red soil could be climate-

dependent, and the ratio of saturation remanence to χ is a potential bedrock-specific 

paleoclimate proxy reflecting it. Magnetic properties of the CL sediments are controlled by an 

assemblage of nanoparticle aggregates and larger sized bedrock-derived magnetite. The results 

challenge the validity of the previous paleoclimate interpretation from the 168-m long Core-
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HQ (900-30 ka) in HB. Disintegration of aggregates could lead to SP behavior with low χfd% 

without extinction of individual magnetite nanoparticles, and the χfd%-based assumption of SP 

magnetite dissolution may be wrong. 

1. Introduction 

Soil properties can serve as an important indicator for paleoclimate conditions (Tabor & Myers, 

2015). Soil also contributes as source material for basin deposits such as lake sediments 

(Lavrieux et al., 2019). In settings where the catchment is well-defined and where soil is the 

major source for lake sediments, the relationship between the source (soil) and the sink (lake 

sediment) can be systematically studied. 

Lake sediments are important paleoclimate archives (Gasse et al., 1991; An et al., 2011; 

Koutsodendris et al., 2018). Magnetic properties were often used to deduce information on 

paleoenvironmental conditions and processes (Peck et al., 1994; Geiss et al., 2003; Hu et al., 

2015). The origin of ferro(i)magnetic minerals in lake sediments are either detrital or 

authigenic. Magnetic minerals from the catchment transported to lakes by surface water or wind 

may reach their sink without notable changes, but often they are subjected to alteration such as 

change or fractionation of grain size, and mineral transformation (Oldfield et al., 1985; 

Snowball et al., 1993). Ferro(i)magnetic minerals can form authigenically in lake sediments by 

inorganic processes (Maher et al., 1988) or through bacterial activity (Kodama et al., 2013). 

Biomineralization also happens in soil, forming magnetosomes (Fassbinder et al., 1990) and 

extracellular magnetite (Maher, 1998). The complexity of magnetic mineral sources and the 

possible change of their properties during transport and residence time in lake sediments are a 

great challenge when using magnetic properties as paleoenvironmental proxy. Environmental 

magnetic studies of lake sediments mostly focus on proxies recorded in drill cores, whereas the 

catchment is less considered. However, knowledge of materials and processes in the source area 

can provide a better understanding of response mechanisms to paleoclimate conditions, and 

therefore allow better-founded interpretations of lake sediment records. 

Heqing Basin (Fig. 1) in Yunnan province (SW China) is an example of thick lacustrine 

sediments deposited in a basin-wide paleolake that existed from 2.78 Ma until sub-recent (An 

et al. 2011, Deng et al., 2019). It represents an important terrestrial archive for studying Indian 

monsoon evolution in the southeastern margin of the Tibetan Plateau (An et al., 2011; Hu et al., 

2015). Hu et al. (2005, 2015) interpreted magnetic properties of a 168-m deep lacustrine drill 
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core (Core-HQ; Fig. 1) in terms of paleoclimate evolution since ~900 ka until the large lake 

drained at ~30 ka. They identified magnetite, maghemite and hematite as the main 

ferro(i)magnetic components and concluded that the variation in the sediment magnetic 

properties is mainly controlled by low-temperature oxidation of magnetite (maghemitization) 

and transformation of magnetite to hematite. Hu et al. (2015) also noted that superparamagnetic 

magnetite that dominates the highly magnetic red soil all around the basin is practically absent 

in Core-HQ. They speculated that the superparamagnetic magnetite in the red soil was lost 

during transport due to dissolution in surface water, and concluded that the detrital fraction 

inherited from the very low-magnetic bedrock in the Heqing Basin catchment dominates the 

magnetic properties of the lacustrine deposits in Core-HQ.  

 

Figure 1. Mass-specific magnetic susceptibility (χ) and percentage frequency-dependence of susceptibility (χfd%) 

of red soil samples distributed around the basin (for data see Table 1 and Table S1), visualized by circle size (χ) 

and fill color (χfd%). The locations of Core-HQ and Caohai Lake are shown and labeled (referring to site-specific 

data in Table S1), and sampling sites of limestone bedrock fragments are marked by crosses. Map modified from 

Hu et al. (2015). 
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Red soil is a common soil type in subtropical China (He et al., 2004) and in other subtropical 

and tropical parts of the world (Yaalon et al., 1997; Bronger et al., 1997). In China, it developed 

since the mid-Pleistocene during warm and humid periods (Wang et al., 2013). Highly magnetic 

red soil is found above strongly magnetic basalt (Liu et al., 2017), but also on low-magnetic 

sedimentary bedrock (Lu et al., 2012; Khadkikar & Basavaiah, 2004). Magnetic properties of 

red soil are climate sensitive (Liu et al., 2012; Wang et al., 2013; Yin et al., 2018), and the soil 

may also serve as important source material for lake sediment archives as in Heqing Basin. 

Using magnetic properties as paleoclimate proxies in the context of such scenarios requires an 

understanding of the formation and characteristics of pedogenic ferro(i)magnetic minerals, as 

well as subsequent alterations that occur during transport, deposition and diagenesis.  

Heqing Basin is not only a suitable target for investigating the magnetic signature of modern 

red soil, but also for assessing its spatial variability as a function of bedrock lithology and the 

possible change of magnetic properties during relocation of soil material. As exclusively very 

low-magnetic bedrock occurs in the Heqing Basin catchment, and the highly magnetic soil 

cover is widely distributed, it is expected that the magnetic properties of lake sediments in the 

basin are dominated by material derived from red soil. In consideration of the favorable setting, 

we performed a study in Heqing Basin, investigating in detail the magnetic characteristics and 

spatial variability of red soil in the catchment, and comparing its magnetic signature with sub-

recent lake sediments of a small modern lake in the basin (Fig. 1).  

2 Samples and Methods 

2.1 Geological setting and sampling 

Heqing Basin is situated at about 2200 m above sea level. Present-day climate conditions are 

subtropical, mean annual temperature and precipitation are 13.5 °C and ~1000 mm, 

respectively, with strong seasonality in humidity due to monsoon-related major rainfall in the 

summer months (Xiao et al., 2010). Rock types around the basin (Fig. 1), forming the main 

sources of detritus for lakes in the basin, consist of very low-magnetic limestones at the western 

side of the basin, sandstone and conglomerates (composed of sandstone and limestone) at the 

eastern side, and some shales at the southwestern basin margin (Yang et al., 2009). All around 

Heqing Basin, the bedrock is covered by red soil with thicknesses of some ten centimeters to 

few meters. The red soil is undoubtedly formed in situ as there is a gradual transition of the soil 

into the bedrock, which is also described for southwestern China in general (Feng et al., 2009). 
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Caohai Lake (26°35’43’’N, 100°11’04’’E) (lake area 1.8 km2) is the largest of few small 

modern lakes in the basin, with shallow water depth (~1 to 2 m) and about half meter of 

sediments. The lake sediments formed above the fluvial sediments that were deposited after the 

termination of the large Heqing paleo-lake. According to the positions of Caohai Lake and the 

Core-HQ drilling site (Fig. 1), it is expected that sediments for both Core-HQ and Caohai Lake 

mainly derived from the limestone terrain at the western basin margin.  

We studied samples from the red soil and the Caohai Lake sediments, and from the bedrock. In 

2016-2019, we collected red soil of the uppermost ~10 cm from a total of 45 sites all around 

the basin, avoiding possible anthropogenic influence; additionally, we included the results of 

five samples published by Hu et al. (2015). At three sites at the western basin we collected soil 

material from short (5 cm) vertical sections, in particularly discriminating between loose 

material at the surface (carefully sampled with a soft brush) and underlying compact soil. In 

addition, we sampled limestone fragments from four sites at the western basin margin (Fig. 1). 

To compare properties of red soil with a sink of red soil material, we recovered three sediment 

cores from Caohai Lake penetrating through the entire sediment thickness (~0.5 m) using a 

gravity corer.  

In the lab, we cut the cores into sub-samples at intervals of 1 cm, then air-dried and sieved the 

sample material. All red soil and lake sediment samples were placed in 2ᵡ2ᵡ2 cm cubic plastic 

boxes (weighed for determining mass-specific magnetic parameters), which were used for most 

measurements. For part of the analyses smaller sub-samples were used. Some of the analyses 

were performed with magnetic extracts. We prepared the extracts by mixing several samples of 

the same type, sieved the material through a 74-μm wire mesh, stirred it in about one-liter Milli-

Q water adding a deflocculant to suppress clumping of clay, and dispersed the suspension for 

several minutes in an ultrasonic bath while continuing stirring. Taking about 0.5 l of the 

obtained suspension and putting it in a magnetic stirrer (HI190M) at ~500 rpm, we performed 

magnetic separation for about two hours, using a separate latex-covered cylindrical magnet 

(length/diameter 20/12 mm) with relatively weak magnetic moment (20 mAm2) for extraction. 

The material was collected several times during this procedure, and before removing the latex 

cover from the magnet, the extracted material was carefully flushed with Milli-Q water to wash 

out clay minerals. 

2.2 Magnetic measurements 
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In the field we used an SM30 sensor (ZH Instruments) to quickly obtain magnetic susceptibility 

values from the red soil and the bedrock for overview. All laboratory magnetic measurements 

were carried out at University of Tübingen, Germany, Department of Geosciences. We 

determined susceptibility with an MFK-1 Kappabridge (Agico), normalized the results to mass-

specific values (χ), and calculated the percentage frequency-dependence of χ (χfd%) by [(χlf - 

χhf)/χlf]ᵡ100 (Dearing et al.,1996), χlf and χhf representing readings at frequencies of 976 Hz and 

15616 Hz. Additionally, we measured the broadband-frequency dependence at eight 

frequencies between 125 Hz and 16 kHz with an SM150L device (ZH Instruments). Using an 

KLY-3 Kappabridge combined with a CS-3 furnace and a CS-4 cryostat (Agico), we obtained 

low-temperature and high-temperature thermomagnetic curves of magnetic susceptibility (χ-T 

curves) for sample masses of ~0.15 g, warming the sample from liquid nitrogen to room 

temperature and heating it to 700 °C in argon atmosphere, respectively.  

We obtained anhysteretic remanent magnetizations (ARM) using a DC-SQUID magnetometer 

(2G Enterprises) with attached degausser and DC coil, superimposing a 50 µT DC field and a 

decaying alternating field (max. 100 mT). Subsequently, we imparted an isothermal remanent 

magnetization (IRM) at a 2 T field with an MMPM9 pulse magnetizer (Magnetic 

Measurements), which we consider as saturation IRM (SIRM), then applied a 300 mT reverse 

field (IRM-0.3T), and calculated the HIRM (high-coercivity IRM) by [(SIRM+IRM-0.3T]/2 and an 

S-ratio by [1- IRM-0.3T/SIRM]/2 (Bloemendal et al., 1992). For selected samples, we obtained 

detailed IRM acquisition curves with 46 steps up to 2.0 T and applied unmixing with log-normal 

distributions using the MAX UnMix routine of Maxbauer et al. (2016). For some samples the 

SIRM was thermally demagnetized in a TD48 (ASC Scientific) furnace. All IRM intensity 

measurements were performed with a Minispin spinner magnetometer. 

Using small sub-samples of ~0.01 g, we obtained hysteresis curves and backfield curves on an 

PMC MicroMag 2900 AGM (Lake Shore Cryotronics). We analyzed these results in terms of 

magnetic domain state properties using the Day diagram (Day et al., 1977) and mixing curves 

of Dunlop (2002). For some samples, we measured first-order reversal curves (FORC) using 

the MicroMag AGM and processed these results with the software FORCinel (Harrison & 

Feinberg, 2008). 

Moreover, we subjected ten samples to citrate-bicarbonate-dithionite (CBD) treatment, which 

removes a large part of fine iron oxide particles in the samples (Hunt et al., 1995). Before the 

treatment, we gently grinded and sieved the samples through a 74-µm mesh. The further 
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experimental procedure followed the method of Mehra and Jackson (1960) and processing of 

van Oorschot and Dekkers (1999); a detailed description of the CBD-treatment is given in 

Supporting Information. Using ~3-4 g, we measured χ-values and χ-T curves of the same 

sample before and after CBD treatment. 

2.3 Non-magnetic analyses 

We performed high-resolution imaging of the magnetic extracts by transmission electron 

microscopy (TEM), using a JEOL ARM-200F TEM operated at 200 kV equipped with a cold 

field emission gun, a CEOS probe corrector for spherical aberrations, and a Gatan Quantum 

electron energy loss spectrometer (EELS) with DualEELS capability. Samples were prepared 

by putting droplets from suspension on carbon-coated copper grids. For TEM observation of 

original red soil, we put material into alcohol, shaking it carefully to avoid changes of the 

original texture, before taking droplets. Core-loss EELS spectroscopy was used to identify 

magnetite (or maghemite) and hematite by examining both the core loss peaks and the related 

energy-loss near-edge structure (ELNES). Spatial elemental mapping was done using spectrum 

imaging (SI) combining EELS spectroscopy and scanning transmission electron microscopy 

(STEM) imaging modes; reciprocal-space information was obtained from both Fourier-

transformed high-resolution STEM/TEM images and from diffraction-mode data. 

For detecting larger ferro(i)magnetic minerals, we carried out reflected light microscopy (at 

University of Tübingen, Department of Geosciences) with oil immersion objectives on 

embedded polished samples prepared from magnetic extracts. For identifying strong magnetic 

phases, we used ester-based ferrofluid on the sample surface covered with a glass slip. 

X-ray diffraction (XRD) analysis of the magnetic extracts was performed using a Bruker D8 

ADVANCE Eco diffractometer with a Cu Kα tube (40 kV, 25 mA) and an LYNXEYE 1-D 

SSD160 detector. The samples were measured with an angular range of 5° to 80° 2Θ, an 

increment of 0.02° and a measurement time of 1 s per step. Total time of all detector pixels sum 

up to 160 s measurement time per step 2Θ; samples used for quantitative analyses were 

measured until the strongest peak reached at least 40,000 counts. The X-ray powder diffraction 

data were evaluated using DIFFRAC.EVA V4.2 and Diffrac.TOPAS V5 with an ICSD 

database. Refined parameters of the Rietveld analysis are background parameters, zero-error, 

sample displacement error, scaling factors, cell parameters, crystallinity and preferred 

orientation values of all phases except nano-crystalline kaolinite. The parameters of nano-
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crystalline kaolinite were refined only in an early stage of the analysis and then fixed to stabilize 

the optimization process. 

Bulk sediment samples were scanned with an Avaatech (GEN-4) X-ray fluorescence (XRF) 

core scanner, using a Rh anode X-ray tube following the protocol of Kern et al. (2019). Prior 

to scanning, about 0.5 g of bulk sediment was placed in a Micro X-Cell® and was covered with 

4-μm-thick Ultralene® foil. Measurements were carried out at 10 kV without a filter and a 

current of 1000 mA, and at 30 kV with a Pd-thick filter and a current of 2000 mA. Counting 

time was 30 seconds, and the slit size was 3ᵡ3 mm. Data processing of the X-ray spectra was 

performed using the bAxilBatch software (Version 1.4, July 2016; www.brightspec.be). Single 

element counts were normalized to total counts. 

To analyze the organic matter content, the loss on ignition (LOI) method after Dean (1974) and 

Bengtsson (1986) was applied, in which weight loss is measured after heating. About 1 g of 

homogenized dry material was put in crucibles and heated in a ROHDE TC304 muffle furnace 

at 550 °C for four hours to combust organic matter to ash and CO2 (Heiri et al., 2001). From 

the dry weights before and after the combustion (DW and DW550) the LOI550 is obtained by 

100ᵡ(DW-DW550)/DW (Heiri et al., 2001).  

For two red soil and three lake sediment sample sets (mixed from several samples), we 

determined the content of dissolved organic carbon (DOC) with a TOC analyzer (Elementar, 

highTOC II, version “L”), and the inorganic carbonate (CaCO3) by titration with NaOH, after 

digestion with 0.8 % HCl.  

The TEM studies were carried out at the NMI Reutlingen; XRD, XRF and DOI analyses were 

done at Heidelberg University, Germany (Institute of Earth Sciences); organic and inorganic 

carbon contents were measured at University of Tübingen, Germany (Department of 

Geosciences). 

3 Results 

The experimental results comprise the identification of ferro(i)magnetic minerals (section 3.1), 

their grain size and magnetic domain state (section 3.2), and the determination of the spatial 

(red soil) and vertical (lake sediments) variabilities of magnetic parameters (section 3.3). Means 

and standard deviations are listed in Table 1, and for detailed sample results see Tables S1-7 in 

Supporting Information.   

http://www.brightspec.be/
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3.1 Magnetic mineralogy 

χ-T curves (Fig. 2a) allow the identification of ferro(i)magnetic phases by their Curie 

temperature and other typical phase transitions. The measured high-temperature χ-T runs are 

partly compromised by the formation of new magnetite starting around 400-450 °C during 

heating. Despite this effect, the shape of the heating curves together with the single Curie 

temperature observed at ~580 °C prove the existence of magnetite in both the original red soil 

and lake sediment materials. The low-temperature χ-T dependence does not show the Verwey 

transition of magnetite. Non-stoichiometry induced by low-temperature oxidation is known to 

suppress this transition at an already low degree of oxidation (Aragón et al., 1985).  

A striking feature of the red soil results is the increase of χ-values between -196 °C and ~250 °C 

with a hump and subsequent decrease. This effect is also seen in the χ-T curves of the lake 

sediments, however, less pronounced. At a first glance, partial heating-cooling curves (Fig. S1) 

to subsequently increasing maximum temperatures of about 210 °C, 250 °C and 280 °C look 

irreversible and seem to indicate destruction of maghemite during heating as it is often argued 

in literature (Bilardello & IRM, 2020). In fact, this might be the case. Remarkably the χ-values 

in the cooling curves of the first two runs return to about the starting value before heating, which 

is incompatible with maghemite destruction. The increase and hump could be alternatively 

explained by fine magnetite particles, which show a typical maximum-type χ-T dependence 

when transforming from stable single domain (SSD) to the superparamagnetic (SP) state (see 

review in Bowles et al., 2009). For magnetite the SP-SSD transition is at ~25 nm (Worm, 1998). 

A broad hump will result from superposition of fine magnetite particles with different grain 

sizes and therefore different SSD-SP transition temperatures. We interpret the apparent 

irreversible behavior in the χ-T curves as thermal hysteresis residing in fine particle behavior, 

which so far seems unrecognized in rock magnetism, however, such kind of magnetocaloric 

effects are reported in literature related to technical applications (Souza et al., 2019). After the 

CBD treatment, which destroyed a large fraction of fine magnetite particles (but not all), the 

hump is less distinct for red soil and no more detectable for lake sediments.  
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Figure 2. (a) χ-T curves for red soil and Caohai Lake sediments(out of 5 measured samples for each) of magnetic 

susceptibility (χ) before and after citrate-bicarbonate-dithionite (CBD) treatment, and (b) SIRM thermal 

demagnetization (all measured samples) for limestone, red soil, and Caohai Lake sediments (starting values of 

SIRM are listed and labeled; for red soil numbers relate to sites in Fig. 1, for the lake sediments numbers are depth 

levels). Large plots in (a) show heating curves with absolute χ-values (bold curves); rescaled curves are post-CBD 

results normalized to the starting value of the pre-CBD curves (allowing better comparison of their shapes); the 

smaller plots in (a) show heating and cooling runs, together with low-temperature χ-T results; partial heating-

cooling curves for red soil are shown in Supporting Information (Fig. S1). Gray arrows in (b) indicate pronounced 

IRM intensity loss. 

A distinctly stronger drop of the remanence intensity close to 580 °C in thermal 

demagnetization curves of SIRM (Fig. 2b) suggests the presence of magnetite in all samples, 

including the limestone bedrock despite its weak SIRM. Moreover, the presence of hematite is 

evidenced for all measured lake sediment samples and part of the red soil samples, shown by a 

residual remanence beyond 580 °C that is demagnetized until 700 °C. 

XRD results for magnetic extracts from both red soil and lake sediment material confirm the 

presence of magnetite and hematite (Fig. 3). The diffraction peaks are shifted to larger 2Θ-

angles than expected for stoichiometric magnetite, corresponding to a lattice constant of 

0.833 nm (Rietveld analysis of the red soil extract), which indicates a strong degree of 
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maghemitization (Readman and O’Reilly, 1972). The strong degree of maghemitization, as 

documented by the XRD results of the red soil sediment material, implies a transition process 

from magnetite to (potentially tetragonal) maghemite, which we will further discuss in section 

4.1. The XRD result of the original red soil allows to estimate the content of hematite 

(~5 vol.%), while magnetite is below the detection limit. The hematite peaks are close to pure 

α-Fe2O3, which means that Al-substituted hematite that is often found in soil (Jiang et al., 2012) 

is of minor importance in our samples. The cell volume (0.3013 nm3) determined from the 

Rietveld fit corresponds to an Al2O3-content of 1-3 vol.% according to the cell parameters of 

Feenstra et al. (2005) for Fe2O3-Al2O3 solid solutions. The mineral assemblages revealed by the 

XRD results show obvious similarities between red soil and lake sediment materials, indicating 

that there is a notable relationship between them. A difference is a strong XRD signal of calcite 

for the lake sediment extract, which is not appearing in the red soil result. Chemical analysis of 

inorganic carbonate yielded a much higher content in the lake sediment (~25 wt.%) compared 

to red soil (4-5 wt.%), which hints at a large amount of calcite that was directly transferred from 

weathered limestones to the lake, either by detrital input or authigenic precipitation of dissolved 

carbonate.  

 

Figure 3. X-ray diffractograms of original red soil and for magnetic extracts of red soil and Caohai Lake 

sediments. Main peaks are labeled. For the red soil extract, a Rietveld model for 49.2 vol.% nano-

maghemite (16 nm size; a=0.833 nm according to Pecharromán et al., 1995) is shown (green 

diffractogram). The entire model diffractogram (red) fitting the measured diffractogram involves the 

nano-maghemite, 12.6 % quartz, 15.8 % hematite, 8.1 % Illite, 10.9 % kaolinite, 2.1 % muscovite and 
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1.4 % anatase (all values vol.%). Purple bars show the expected positions of magnetite peaks 

(a=0.8397 nm according to O'Neill & Dollase, 1994). The inset plot above the red soil extract 

diffractogram shows a high-resolution measurement of this material for the 2Θ-range of 12.5-19°; 

vertical bars mark the position of theoretical magnetite and maghemite peaks. From the XRD result of 

the original red soil the hematite (a=0.5026 nm, c=1.377 nm, cell volume 0.3013 nm3) content is 

estimated at ~5 vol.%. 

3.2 Grain size of the magnetite fraction 

The width of the magnetite (maghemite) diffraction peaks were modeled by a Rietveld fit 

(Fig. 3) using a crystal size of 16-nm (cube-shaped). Direct measure of the physical grain size 

results from TEM observations and optical microscopy. In the first set of TEM analyses we 

used magnetic extracts with an enrichment of magnetite to roughly 10-15 wt.% (estimated from 

χ-values).  

TEM images (Figs. 4 and 5) reveal the presence of numerous up to >100 nm large aggregates 

of ultrafine particles with individual sizes of ~5-20 nm (mostly ~10-15 nm). High-resolution 

transmission electron microscopy (HRTEM) images (Figs. 4d and 5c) show coherent lattice 

structures across ~10-15 nm dimension. ELNES point-analysis along line scans (Figs. 4b,c and 

5b) with a beam width of ~5 nm allows the discrimination between magnetite (or maghemite) 

and hematite by the existence (in case of magnetite or maghemite) or absence (in case of 

hematite) of a small peak or shoulder (marked by dashed boxes in Figs. 4e and 5d) in the O K-

edge (Colliex et al., 1991; Golla-Schindler et al., 2006). We found that ELNES results are more 

useful for discrimination between magnetite/maghemite and hematite than power spectra of 

Fourier transforms because the determinative lattice spacings are not necessarily present in any 

particular high-resolution image due to orientation, and many reciprocal-space lattice spacings 

are similar between the materials. The ELNES characteristics of the red soil (Fig. 4e) clearly 

reveal magnetite (or maghemite) in the nanoparticles of the aggregates, and variable expression 

of the sensitive peak/shoulder indicates that some spots represent a significant contribution of 

hematite. Likewise, the nanoparticles in the aggregates of the lake sediments show ELNES 

patterns (Fig. 5d) typical for magnetite (or maghemite) and hematite. The discrimination 

between magnetite (or maghemite) and hematite is less clear than for the red soil sample, 

indicating a larger contribution of hematite than in red soil.  

Results of reflected light microscopy (Figs. 4f and 5e) prove the additional presence of large 

detrital magnetite particles with grain sizes up to several tens of micrometer. Surfaces with 
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ferrofluid provide unambiguous evidence strong magnetic particles, and these particles could 

be identified as magnetite or maghemite by the appearance of magnetite-ilmenite exsolution 

structures and an isotropic behavior in crossed polarizers. Besides the magnetite (maghemite), 

oxidation to hematite (martitization) is observed in surface areas not covered by ferrofluid 

(optically anisotropic). 

In order to check whether the aggregates of magnetite nanoparticles were formed by clumping 

during the magnetic extraction process, we performed a further TEM analysis using the original 

red soil material. No noteworthy differences between original red soil and magnetic extracts 

from red soil were found in the appearance of the aggregates (Fig. 6a). Within the aggregates, 

it's hard to distinguish individual particles, except through lattice fringes. HRTEM images 

(Fig. 6b, c) indicate that lattice fringes aren't aligned, suggesting that the particles didn’t grow 

epitaxially. Around the aggregates we found splattered smaller crystalline particles (Fig. 6d), 

which are typically thinner in the interior than at the rim (identified by HAADF scanning mode). 

This observation might indicate that some parts of the aggregates fell apart. Such donut-like 

shapes unlikely represent minimum-energy structures, which means they didn’t form as 

separate nanoparticles. Moreover, if the aggregates were formed during sample preparation, 

then particle splatter away from the aggregates too should be seen. Because of these 

observations, clumping of the magnetite nanoparticles during magnetic extraction or any other 

sample preparation process is unlikely, but the opposite, i.e., breakup of aggregates, might be 

the case. 

After CBD treatment, the χ-values at room temperature decreased on average by 70.6 % for red 

soil and 55.1 % for lake sediments (Table S4). The CBD procedure efficiently dissolves fine 

magnetite particles smaller than about 1 μm, while larger particles are much less affected 

because of their smaller surface-to-volume ratio (Hunt et al., 1995). After CBD treatment, the 

hump in the χ-T curves is still clearer for red soil than for the lake sediments, which together 

with the larger decrease of χ-values indicate a higher proportion of fine magnetite particles in 

red soil. This is further confirmed by the χfd% values before and after CBD treatment (Table 

S4), which are quite stable for red soil (decrease of the mean from 18.5 % to 18.3 %) and 

decrease substantially for the lake sediments (from 12.9 % to 5.2 %). The CBD treatment 

dissolves SP particles efficiently, but not completely. According to the χ-decrease, about ~1/3 

of the magnetite is still existing in the red soil after CBD treatment, and the rather unchanged 

χfd% proves that SP grains are still highly predominant after the CBD treatment. This means 

that larger multi-domain (MD) magnetite grains inherited from the bedrock contribute only very 
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little to the total magnetite content in the red soil. In the lake sediments, where the χ-decrease 

after CBD treatment is less and χfd% decreases significantly, the relative χ-proportion of SP 

magnetite compared to bedrock-derived larger grains is clearly lower than in red soil. 

 

Figure 4. TEM images of the magnetic extract from red soil (a) with enlargements (b, c), showing aggregates of 

nanoparticles. The HRTEM image (d) shows coherency of lattice structures across ~10 nm. In (e) ELNES results 

of the O K-edge and Fe L2,3-edge structures are shown for selected spots (marked in b, c) along two traverses 

(marked in a,b,c), identifying magnetite or maghemite (M) by a peak or shoulder in the O K-edge (clear magnetite-

maghemite signals are marked by red circles within the dashed box); the additional contribution of hematite (H) 

is indicated by the variable expression of the peak. Unclear interpretation or absence of Fe-oxides is marked by 

“?”. All other measured ELNES spectra from red soil are shown in Supporting Information (Figs. S2 and S3). 
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Reflected light microscopy images in (f) show several 10-μm large detrital magnetite particles (the dark brown 

ferrofluid cover evidences strong magnetic phases).  

 

Figure 5. TEM images of the magnetic extract from lake sediments (a) with and enlargement (b), showing 

aggregates of nanoparticles. The HRTEM image (c) shows coherency of lattice structures across ~10 nm.  In (d) 

ELNES results of the O K-edge and Fe L2,3-edge structures are shown for selected spots (marked in b) along a 

traverse (marked in a, b), identifying magnetite or maghemite (M) and by a peak or shoulder in the O K-edge (clear 

magnetite-maghemite signals are marked by red circles within the dashed box); the additional contribution of 

hematite (H) is indicated by the variable expression of the peak. Unclear interpretation or absence of Fe-oxides is 

marked by “?”. The EELS spectrometer was operated to capture two simultaneous core-losses in dual-EELS mode, 

thus the exact energy offset was not recorded and energy offsets between 6d and Fig. 4e are not interpretable. All 

other measured ELNES spectra from lake sediments are shown in Supporting Information (Fig. S4). Reflected 
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light microscopy images in (e) show several 10-μm large detrital magnetite particles (the dark brown ferrofluid 

cover evidences strong magnetic phases).  

 

Figure 6. (a) TEM image of original red soil showing an overview of a sample patch with different particles, 

including numerous aggregates of nanoparticles. (b,c) HRTEM images of nanoparticle aggregates. The image in 

(d) obtained in high-angle annular dark-field (HAADF) scanning mode shows donut-like nanoparticles with 

thicker rims (lighter) and thinner interior, which were found splattering around aggregates. 

The broadband-frequency results of χ between 125-16,000 Hz show a decrease of χ with 

frequency (f) (Fig. 7 and Table S5) as expected for superparamagnetic behavior. The shape of 

the χ(f)-dependence is related to the specific grain-size distribution of particles in the SP range, 

with larger SP particles showing a stronger χ(f) decrease at lower frequencies and vice versa 

(Kodama, 2013). It is obvious that the χ-log(f) dependence of the lake sediment samples with 
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lower susceptibility (lake sediments L) flattens in the lower frequency range. Calculating 

regression lines separately for the lower-frequency (0.125-1 kHz) and higher-frequency (1-

16 kHz) parts allows a quantitative assessment of the χ-log(f) slopes in the two frequency 

ranges. For the red soil H samples, the slope at 0.125-1 kHz is slightly steeper than at 1-16 kHz. 

For the lake sediments L, it is the opposite and the slopes at 0.125-1 kHz and 1-16 kHz are 

different at a 95 %-confidence level (for statistical results see Table S6). This indicates a loss 

of SP behavior in the larger SP grain size range for the lake sediments, which we will elaborate 

further in the discussion. 

 

Figure 7. Broadband-frequency dependence of magnetic susceptibility for red soil (red: samples with χ>10-5 

m3/kg, green: samples with χ<10-5 m3/kg; ten samples each) and Caohai Lake sediments (orange; broken curves 

represent samples with higher-H and lower-L χ-values taken from 31-35 cm and 9-13 cm depths, respectively; the 

full curve shows the means of both). For the full curves the mean values represent an average of ten samples, for 

the broken curves the mean is obtained from five samples. The χ-values were first normalized by their 16-kHz 

value, then means and standard deviations of the normalized values were calculated (thus the 16-kHz value has no 

standard deviation). The two frequencies used for the MFK-1 for determining (χfd%) of bulk samples are marked 

(F1, F3), and mean values of χfd% for the used samples are listed in the legend (in brackets). For detailed data see 

Table S5.   

The IRM results provide information about the ferro(i)magnetic fraction in the SSD to MD 

state. During thermal demagnetization most of the remanence intensity is lost far below the 

Curie temperature of magnetite (Fig. 2b). This lower-temperature loss is much stronger in red 
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soil than in lake sediments (indicated by gray arrows in Fig. 2b). The decay of SIRM at low to 

medium temperatures likely reflects remanence unblocking of fine magnetite particles when 

they undergo the SSD-SP transition. This is in line with the interpretation of the hump in the χ-

T curves (Fig. 2a) in terms of fine-particle behavior, and with the IRM unmixing results 

(Fig. S5). Values of Bh for the lower coercivity component range from few mT to several 

10 mT. The lowermost Bh-values can be related to magnetite particles at the transition from 

SSD to SP, and the relatively higher Bh-values indicate magnetite with SSD behavior and/or 

larger magnetite particles in the MD range (which cannot be discriminated by IRM unmixing). 

For the limestone samples, only the relatively higher coercivity fraction is observed.  

In the Day diagram, the data of the red soil and lake sediment samples plot in a region of mixed 

SP, SSD and MD particles (Fig. S6). Despite the criticism on the significance of the Day plot 

(Roberts et al., 2018), we think that the results can be considered as a rough estimate of similar 

portions of SSD and MD, plus a substantial SP contribution. The red soil samples from the 

western basin deviate most from the SSD-MD mixing line towards an increasingly larger SP 

contribution. The lake sediments plot closest to the SSD-MD mixing line indicating a relatively 

lower SP proportion. FORC diagrams (Fig. S6) support a wide grain size range of the fine 

magnetite fraction, but a conclusive comparison of red soil and lake sediments is not possible 

because the latter are too weakly magnetic to obtain meaningful FORC results without magnetic 

extraction. 

3.3 Spatial and vertical magnetic parameter distribution of red soil and lake sediments  

An overview of the spatial distribution of χ and χfd% for red soil is shown in Figure 1. Means 

and standard deviations are listed in Table 1 (site-specific data in Table S1), together with other 

parameters. All red soil samples show high χ-values, higher above the limestone bedrock at the 

western basin (ranging from 216ᵡ10-8 m3/kg to 2331ᵡ10-8 m3/kg, mean of 1085ᵡ10-8 m3/kg) than 

above conglomerates and sandstones at the eastern basin (ranging from 60ᵡ10-8 m3/kg to 

751ᵡ10-8 m3/kg, mean of 302ᵡ10-8 m3/kg). Values of χfd% are much less different between the 

western (mean of 17.8 %) and eastern (mean of 15.1 %) sides of the basin. 

The samples from the short surface-near vertical profiles taken at three sites were studied to 

check for possible differences between loose material at the surface (carefully sampled with a 

soft brush) and the underlying 5-6 cm of red soil. The χ-values of the surface samples and 

deeper levels do not differ systematically and the differences are within the range of surface χ-
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variations measured in situ within an area of few m2 (Fig. S7a, b). Likewise, χfd% values do not 

show a clear difference (Fig. S7a). 

Table 1. Mean values with standard deviations for magnetic parameters from red soil and lake sediments. 

  units Red soil W Red soil E Caohai sediments 

    (N=20) (N=30) (N=44) 

χ  [10-8 m3/kg] 1085.3 ± 579.5 302.0 ± 160.4 41.0 ± 15.1 

χfd  [%] 17.8 ± 3.0 15.1 ± 3.1 10.6 ± 2.5 

  (N=17) (N=28) (N=44) 

SIRM [10-3 Am2/kg] 38.8 ± 17.6 18.3 ± 10.7 3.7 ± 1.1 

HIRM [10-5 Am2/kg] 84.2 ± 62.3 110.4 ± 85.8 35.8 ± 11.7 

S-ratio [-] 0.98 ± 0.02 0.93 ± 0.07 0.9 ± 0.02 

SIRM/χ [kA/m] 4.2 ± 1.6 6.5 ± 3.1 9.4 ± 1.1 

HIRM/χ [kA/m] 0.12 ± 0.13 0.58 ± 0.92 0.94 ± 0.26 

  (N=17) (N=28) (N=13) 

Mr/Ms [-] 0.18 ± 0.01 0.20 ± 0.05 0.20 ± 0.04 

Hcr/Hc [-] 2.82 ± 0.30 2.61 ± 0.45 2.47 ± 0.24 

Note. Definition of parameters see Methods (section 2.2). N: number of samples included. Red soil separated into 

western and eastern basin sides. For detailed sample results see Tables S1-3 in Supporting Information.  

 Magnetic data and geochemical data of the Caohai Lake sediments versus depth are shown in 

Figure 8 and listed in Table 1 (for data see Table S2). Part of the magnetic parameter means 

from red soil are also plotted in Figure 8 for comparison. Compared to the red soil, the χ-values 

of the lake sediments are much lower (ranging from 20ᵡ10-8 m3/kg to 61ᵡ10-8 m3/kg, mean of 

41ᵡ10-8 m3/kg). They show an increase from ~15 cm downward and reach about twice as high 

values compared to the top part at ~30 cm. Values of χfd% are between 6.2 % and 14.2 %, (mean 

of 10.6 %) with downward increasing trend. The SIRM is relatively stable in the upper ~15 cm, 

increases gradually by a factor of about two at ~15-40 cm, and then shows a strong increase in 

the lowermost ~5 cm. The HIRM is only slightly increasing downward to ~40 cm, and then 

doubles within the lowermost ~5 cm.  

The XRF data show two distinctive features in the downcore sediment geochemistry, i.e., a 

gradual increase in the Fe/Mn ratio towards the top of the sequence and pronounced increases 

in the Fe/Ti and Si/Ti ratios, and the S and Br counts in the uppermost 10 cm, with a drop of 

these values for the topmost samples, in particular for Fe/Mn, S and Br. The LOI that is a proxy 

of the organic carbon content follows the vertical trend of the various XRF results also shows 

a distinctive drop at the top. Organic carbon (OC) analyses of mixed samples from three 
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different depth intervals confirm the trend of the LOI values (Fig. 8). The OC contents range 

between 2.2 and 5.0 wt.%, which is relatively low for lake sediments, and not much higher than 

in the red soil (2.1 and 3.4 wt.% for two samples analyzed).  From comparison of data in Figure 

8, we notice that the increase of the geochemical parameters occurs at a clearly shallower depth 

as for the magnetic parameters χ and χfd%. In the discussion, we will assess the relationship of 

magnetic and geochemical in terms of possible solution of Fe-oxides based on the significance 

of the geochemical parameters for reductive conditions. 

 

Figure 8. Magnetic and geochemical parameter variations versus depth for the Caohai Lake sediments: (a) 

magnetic susceptibility (χ); (b) saturation isothermal remanence (SIRM): (c) hard isothermal remanence (HIRM); 

(d) percentage frequency-dependence of χ (χfd%); (e) S-ratio; (f) SIRM/χ ratio; (g) HIRM/χ ratio; (h) 

iron/manganese (Fe/Mn) ratio; (i) iron/titanium (Fe/Ti) ratio; (j) silicon/titanium (Si/Ti) ratio; (k, l) relative 

contents of sulphur (S) and bromine (Br), (m) loss of ignition at 550 °C (LOI) and wt.% of organic carbon content 

for three mixed samples. Curves in (a) and (d) without symbols show data from two additional cores for 

consistency check. In (d-g) magnetic parameter means of red soil at the western and eastern basin are shown by 

red full and dashed arrows, respectively, for comparison. Concentration-dependent parameters (a-c) see Table 1 

and Table S2. The column at the left side indicates that the sediment color is getting darker downcore. 

4 Discussion 

In the discussion, we focus on the following aspects: (i) The nature of ferro(i)magnetic minerals 

in the red soil and the Caohai Lake sediments; (ii) the spatial variability of magnetic parameters 

of modern red soil in Heqing Basin in order to identify possible environmental proxies; (iii) 

characteristic differences of magnetic properties of the red soil and the Caohai Lake sediments  
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with regard to changes during transfer from in situ to the sink (lake sediments); (iv) relevance 

of the results for using magnetic properties as paleoclimate proxies in settings as studied. 

According to the presented results, the studied samples contain magnetite with different degree 

of maghemitization. The resulting assemblages of particles may range from near-stoichiometric 

magnetite to fully altered maghemite, which we interpret to reflect a causal relationship of 

alteration. For the sake of simplicity, we will speak of ‘magnetite’ in the further course of the 

discussion when interpreting the results in principle, unless the difference between magnetite 

and maghemitized magnetite plays an important role. 

4.1 Magnetic characteristics of red soil versus lake sediments 

In previous works, magnetic signals in modern soils and paleosols were mainly ascribed to 

pedogenic formation of magnetite or maghemite in the SP and SSD range, with χ-values ranging 

up to ~500ᵡ10-8 m3/kg, mostly centered around 100ᵡ10-8 m3/kg (Dearing et al., 1996; Maher, 

1998; Deng et al., 2004; Song et al., 2014). An exceptionally large amount of fine magnetite in 

the SP range was observed throughout a ~7 m thick section of red soil above low-magnetic 

calcareous rock in southwest China, with the highest χ-values (up to ~6000ᵡ10-8 m3/kg) ever 

reported in soil (Lu et al., 2012). Khadikar and Basavaiah (2004) also observed high values up 

to ~1000ᵡ10-8 m3/kg for modern red soil on karst terrain in India, however, with surprisingly 

low χfd% of around 2 % that cannot be explained by the specific frequencies of the used 

instrument (Bartington MS2B). The χ-enhancement in the red soil of Heqing Basin is 

approximately similar to these previous studies of red soil.    

In Heqing Basin, the highly magnetic red soil above low magnetic bedrock occurs on large 

spatial scale. It contains magnetite and hematite, as verified by XRD results (Fig. 3), ELNES 

spectra (Figs. 4d and 5c), and χ-T curves. Their molar contents are roughly ~0.5 vol.% and 

~5 vol.% for magnetite (estimated from χ and Ms) and hematite (estimated from XRD results 

and HIRM), respectively. The extremely asymmetric 2Θ-peak at 18.4° degree in the XRD 

results (Fig. 3) suggests a mixture of maghemitized magnetite with a cubic structure and a 

tetragonal superstructure (Bowles et al., 2011), which would explain the small lattice constant 

observed by Rietveld refinements using magnetite structures. The intensity maximum of this 

peak fits to magnetite, cubic maghemite and synthetic maghemite. If the tetragonal maghemite 

cell is adjusted to the shoulder of the 18.4° 2Θ-peak, the position 102 and the 112 peak move 

to areas where no peaks are measured. This observation may fit to cubic maghemites which 



Chapter Ⅴ: Nano-magnetite aggregates in red soil on low magnetic bedrock, their change during transport and implications for paleoclimate 

studies 

97 

 

suffer a higher loss of iron that may change the structure from cubic to tetragonal. The observed 

material seems to be in a transitional state between both structures or it contains oxides of both 

structures. The mixture would also explain the extremely small cell constants observed by 

Rietveld refinements using magnetite structures. The value of the maximum intensity at the 

18.4° 2Θ-peak is located in the known range of common magnetite or maghemites.  

The generally high χfd% of the red soil (~15-18 %; Table 1), together with the almost stable 

χfd% after CBD treatment (Table S4), prove a strong dominance of fine magnetite in the SP 

range, even in samples with relatively lower magnetic concentrations as shown by χfd% values 

>15 % for χ-values above several hundred 10-8 m3/kg (Fig. 9a). The SP fraction hides the 

presence of larger-sized bedrock-derived MD magnetite that is revealed by reflected light 

microscopy. The results of χ-T behavior, broadband-frequency dependence χ(f), thermal 

demagnetization of SIRM, IRM-unmixing, and data distribution in the Day plot, all together 

suggest that the fine magnetite fraction occurs in a wide grain size distribution of SP particles 

that also tails into the SSD range. The presence of magnetite nanoparticles with sizes from 

<10 nm to about 20 nm, mostly occurring in aggregates of up to ~100 nm is clearly evidenced 

by the TEM results (Figs. 4 to 6).  

From the values of χ and Ms we can roughly estimate the magnetite content. Because of its very 

high intrinsic susceptibility, the measured χ-value is a function of the inverse of the 

demagnetization factor (N) and the magnetite content. Assuming spherical single domain 

particles (N=1/3 SI), the mean χ-value of the red soil at the western basin (1085ᵡ10-8 m3/kg) 

corresponds to ~0.5 vol.% of magnetite. As SP particles have a higher susceptibility than SSD 

or MD particles (Worm, 1998) the content is probably overestimated. The mean of Ms 

(0.32 Am2kg-1) obtained from the hysteresis data yields a consistent magnetite content of 

~0.35 vol.%. For hematite, which contributes only very little to the χ-values, we can estimate a 

content of ~5 vol.% from the XRD result of original red soil from the western basin. The HIRM 

allows another crude estimation of the hematite content. The result is consistent with the 

~5 vol.% from XRD, if the Mrs/Ms ratio is ~0.05 (Ms for hematite: 0.4 Am2/kg). This low Mrs/Ms 

ratio indicates very soft hematite, either existing as fine viscous grains or large MD grains. An 

alternative explanation would be an imperfect hematite with much lower Ms. 

According to the position of the Caohai Lake, the predominant source area of the lake sediments 

is the nearby limestone terrain at the western basin (Fig. 1). Magnetic concentration values in 

the Caohai Lake sediments vary by a factor of three, and they are more than one order lower 
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than the mean of the red soil. The quite high χfd% values (mean 10.6 %) indicates that a 

substantial part of the SP magnetite in the red soil material that was delivered to the lake is still 

existing after deposition.  

 

Figure 9. Magnetic parameters plotted versus magnetic susceptibility (χ); (a) χfd%, (b) HIRM, (c) S-

ratio, (d) SIRM. Data are separated for red soil at the western and eastern basin, and Caohai Lake 

sediments. Dotted lines in (d) show linear regressions of the three sub-datasets. The small plots in (b, d) 

amplify the results of the lake sediments. 

The lake sediments show a similar appearance of magnetite nanoparticles in aggregates as 

revealed by the TEM observations (Fig. 5a). However, other contributions strongly dilute the 

red soil material in the sediment. These contributions stem from the bedrock directly (measured 

carbonate content ~25 %), from enrichment of clay minerals, and fragments of shell or snail 

shells. The amount of these non-ferro(i)magnetic contributions is large, and therefore the lower 

χ-values in the lake sediments do not allow any statement on possible loss of magnetite during 

material transfer to the lake. However, the lower χfd% of the Caohai Lake sediments compared 

to the red soil (mean of 10.6 % versus 17.8 % at the western basin), the strong decrease of χfd% 
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values after CBD treatment (from 12.9 % to 5.2 %) compared to stable values for red soil of 

the western basin, a smaller decrease of χ-values after CBD treatment  (55 % compared to 

70 %), and a much higher SIRM/χ ratio (Fig. 8f) are compatible with a higher relative 

contribution of larger-sized bedrock-derived MD magnetite to the magnetic properties in the 

lake sediments compared to red soil. From these data one may conclude that a large part of the 

SP magnetite did not reach the lake. However, in the following section, we will present a model 

that could explain the observed difference of magnetic properties in the red soil and lake 

sediments without a loss of SP particles. 

4.2 Magnetic changes in red soil material during source-sink transfer 

The appearance of the magnetite nanoparticles in the red soil and the Caohai Lake sediments is 

similar as observed by Lu et al. (2012) in the afore-mentioned thick red soil sequence in 

southwest China and by several authors in paleosols of the Chinese Loess Plateau (Chen et al., 

2005; Ahmed & Maher, 2018; Liu et al., 2007). It was suggested that the nanoparticles are 

formed as extracellular precipitates due to bacterial activity, consisting of magnetite that is 

aging by maghemitization and final oxidation to hematite (Chen et al., 2005; Nie et al., 2010; 

Ahmed & Maher, 2018). Clear evidence for such bacterial-driven processes is provided by 

laboratory experiments, showing extracellular production of 20-50 nm large magnetite 

nanoparticles within days or weeks by Fe-reducing bacteria, arranged in framboidal aggregates 

with sizes <100 nm or even up to ~500 nm (O’Loughlin et al., 2015). The question how the 

magnetite nanoparticles in the red soil of Heqing Basin were formed is not a key part of this 

paper, but in consideration of previous literature, we assume that they are a product of bacterial 

processes at the weathered limestone top, where iron is released from paramagnetic minerals 

through weathering of the limestone.  

Comparison of the red soil and the Caohai Lake sediments allows the analysis of changes in the 

magnetic signatures during source-sink transfer. In this respect, the Caohai Lake acts as a sink 

of red soil material after translocation through wind and surface water. Any model explaining 

the magnetic changes of red soil material during this transfer must account for the decreased 

contribution of the SP fraction to the χ-signal and the decreased χfd% in the lake sediments. As 

mentioned above, the lower χ-values of the lake sediments cannot be interpreted directly in 

terms of SP-loss because of unknown dilution effects by other input materials. 
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Reflected light microscopy revealed that the larger magnetite particles in the Caohai Lake 

sediments are clearly detrital (i.e., not authigenic). Sediment input from far-distant sources such 

as eolian dust can be excluded (Yang et al., 2009), and besides the red soil only very low-

magnetic sedimentary rocks exist in the catchment of Heqing Basin. Input of MD magnetite 

directly from bedrock weathering certainly contributes to the magnetic signal, but the question 

is whether this can significantly modulate the magnetic properties. In the red soil, the 

contribution of bedrock-inherited magnetite to the total magnetite fraction is minor as shown 

by the high χfd% that is stable after CBD treatment. In contrast, the lower χfd% of the lake 

sediments indicates roughly equal proportions of SP magnetite (pedogenic) and larger MD 

magnetite (bedrock-related). To explain this by dilution due to direct input of MD magnetite 

released from limestones, the weathered bedrock has to deliver about the same amount of 

magnetite to the lake as the deposited red soil. In situ χ-measurements of the limestone-bedrock 

mostly yielded negative χ-values. Taking a χ-value of zero (which is higher than mostly 

measured in situ) and χ = -1.2ᵡ10-5 SI for calcite (Schmidt et al., 2006), and assuming that the 

limestone is composed of nearly 100 % calcite plus a minor magnetite fraction (i.e., ignoring a 

paramagnetic contribution), we yield a magnetite content of <0.5ᵡ10-3 vol.%, i.e., three orders 

of magnitude less than the total magnetite content in red soil. Therefore, an at least a 103 times 

larger volume of weathered and eroded limestones than red soil has to be delivered to the lake 

to achieve the necessary dilution. Such a dilution scenario can be ruled out, as red soil is widely 

covering the catchment area of Heqing Basin and is easily movable.  

Differences of the magnetic characteristics between the red soil and the Caohai Lake sediments 

are therefore undoubtedly associated with changes of the nano-sized magnetite fraction. A 

possible process is dissolution of a large part of the fine magnetite particles in surface water or 

during the initial contact with lake water, as it was speculated by Hu et al. (2005). In order to 

test this, we filled several kg of red soil material from Heqing Basin into plastic containers and 

placed them permanently in the Caohai Lake at the sediment surface. The containers were 

perforated, allowing drainage by lake water. Measurements of samples taken every six months 

did not show significant changes after four years of permanent exposure. Although the 

experimental conditions do not reflect the conditions of fine particles suspended in the lake 

water or at the top of the sediment column, the absence of any change in magnetic concentration 

can at least be taken as a hint that dissolution is not a major mechanism during initial contact 

with lake water.  
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The XRF and LOI results and comparison with variations of magnetic parameters versus depth 

(Fig. 8) allow further assessment of possible dissolution effects. Because in a reducing 

environment the solubility of Fe and Mn increases but Mn is more readily affected, the Fe/Mn 

is used as an indicator for bottom-water oxygenation in lakes (e.g., Croudace and Rothwell, 

2015; Morellón et al., 2016; Koutsodendris et al., 2017). On this basis, the Fe/Mn ratio suggests 

a gradual decrease of bottom-water oxygen content through time that can be either attributed to 

enhanced stratification in the water column or to de-oxygenation from organic decay following 

enhanced biological productivity. Because the water depth of Caohai lake is only 1-2 m, the 

first scenario can be firmly excluded; hence an increase in biological productivity appears to be 

the driving mechanism behind the increase in reducing conditions in the lake. The biological 

activity appears particularly enhanced in the uppermost 10 cm if considering the increasing 

Si/Ti ratio, which has been widely used to differentiate between biogenic silica (predominantly 

related to diatom blooms in lakes) and detrital input reflected in Ti (e.g., Croudace and 

Rothwell, 2015; Morellón et al., 2016; Koutsodendris et al., 2017). Increased productivity in 

the uppermost 10 cm could be responsible for an intensification of oxygen reduction in the 

water column leading to an increase in organic material deposition and preservation. This view 

is supported by the elevated counts of S and Br, which can be attributed to increased pyrite 

formation in organic sediments and formation of strong covalent bonds with organic molecules, 

respectively (e.g., Croudace and Rothwell, 2015). The downward variation of the LOI that 

represents the organic carbon is well matching with the S and Br results.  

Under such a reducing environment with increased influx of organic matter, dissolution of 

magnetite could be expected; this view is supported by the increase in the Fe/Ti ratio in the 

uppermost 10 cm, on the basis that Fe is redox-sensitive in contrast to Ti (e.g., Aufgebauer et 

al., 2012; Croudace and Rothwell, 2015). Altogether, the XRF-based geochemical data suggest 

a strengthening of the oxygen depletion only in the uppermost 10 cm of the Caohai Lake 

sediment profile that could be responsible for magnetite dissolution. Comparing the 

geochemical and magnetic results, we notice that the geochemically indicated possible 

dissolution zone is at a much shallower level than the change in the χ-values that represents a 

magnetite-concentration measure and is starting to increase substantially at ~20-25 cm. 

Moreover, the χ-values are stable in the upper part until the top, whereas the LOI, Fe/Mn, S, 

Br, and in a less degree also Fe/Ti decrease at the top few cm.  

The comparison of downcore variations strongly supports the view that the content of magnetite 

nanoparticles is not driven by dissolution effects, at least not to a degree that matters for the 
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major changes of magnetic parameters. The broadband-frequency χ(f) results (Fig. 7) confirm 

this conclusion. The lake sediments show a decrease of the χ(f)-variation in the lower-frequency 

range, which indicates a depletion of the larger-sized SP contribution (Kodama, 2013), contrary 

of what is expected for dissolution that erases smaller grains faster.   

The observed differences may be associated with oxidation of fine magnetite to hematite. The 

redox potential in red soil (Wheeler et al., 1999) favors low-temperature oxidation and 

transformation to hematite in situ. In fact, presence of hematite in the nanoparticles is indicated 

by the ELNES results (Figs. 4d and 5c). According to modeling results of Ahmed & Maher 

(2018), complete oxidation of small (10 nm) magnetite particles into maghemite takes about 

one million years at pH=8, but it may also work much faster by bacterial activity (Byrne et al., 

2015). As shown by the results from the vertical sections (Fig. S7), there is no indication that 

cease of nano-magnetite production in red soil happens in situ. However, it can be speculated 

that bacterially induced production of nano-magnetite in red soil ceases when the red soil 

material is eroded and transferred to the sink (lake) by wind and surface water, while magnetite 

alteration still continues.  

The higher SIRM/χ and HIRM/χ ratios (Fig. 8f, g) in the Caohai Lake sediments compared to 

the red soil are compatible with such a scenario. However, it is questionable whether the time 

for oxidation during transfer from the origin to the sink is long enough to accomplish the 

conversion of a large part of magnetite into hematite. Moreover, it is unclear whether the 

hematite content in the red soil is generally related to oxidation of magnetite. If hematite 

originates from magnetite oxidation, be it via maghemite or by direct transformation, more 

nano-magnetite will lead to more hematite for the same degree of oxidation, and thus the HIRM 

in the red soil should correlate positively with χ, the S-ratio should be constant for different χ-

values, and in the lake sediments the HIRM should inversely vary with χ, as higher χ-values in 

the sediments implies that less nano-magnetite is oxidized to hematite. However, none of these 

relationships is observed (Fig. 9b-d). In summary, partial loss of magnetite by oxidation to 

hematite in red soil material during transfer to the lake is possible and is supported by the higher 

hematite content in the nanoparticles of aggregates as we observed by the ELNES results (Figs. 

4e and 5d), but it unlikely is the major process that causes the observed differences of magnetic 

properties in red soil and the Caohai Lake sediments.  

The TEM results (Figs. 4 to 6) and the broadband-frequency dependence χ(f) (Fig. 7) provide 

the crucial clue to understand the key mechanism of magnetic differences. Close contact of 
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nanoparticles within aggregates causes magnetostatic interaction between them, leading to 

larger effective grain sizes in terms of the domain state behavior than the physical size of the 

individual particles, as it is shown by theoretical models and experimental data studying such 

kind of ultrafine particle assemblages (Chen et al., 2008; Mørup et al., 2010; Souza et al., 2019). 

According to these results, variable arrangement of nanoparticles within different aggregates in 

the red soil and the Caohai Lake sediments will lead to a wide distribution of the effective grain 

sizes throughout the SP range, which can tail into the range of SSD behavior as shown by the 

cited works above. The resulting distribution of effective grain sizes will depend on the overall 

size of the aggregates, a denser or looser packing of the nanoparticles, and partial alteration 

(maghemitization or hematite formation) of the nano-magnetite. In our observations, the size 

of individual nanoparticles is similar in the red soil and the lake sediments, but their 

arrangement in the aggregates appears to be tighter in the red soil. Moreover, the size of the 

aggregates in the red soil are apparently larger. If these differences between the aggregates as 

seen in the TEM samples are representative of the materials as a whole, then it is plausible that 

mechanical stresses (e.g. during wind stress) led to differences in the aggregates. The donut-

like small nanoparticle that are splattered around aggregates in the original red soil (Fig. 6d) 

are not compatible with minimum-energy shapes that formed separately. They likely broke 

away from the aggregates, indicating that the aggregates are mechanically fragile.  

The measured χ-values are a function of the effective grain size and the applied frequency. The 

theoretical background has been presented by Worm (1998) and Shcherbakov and Fabian 

(2005). In Figure 10, we present a conceptual sketch that explains the expected dependence of 

χ-values as a function of grain size and frequency. The dependence of χ versus grain size shows 

a peak-shaped behavior with highest values and strong frequency dependence in the range of 

thermal activation, a constant and frequency-independent lower χ when approaching the SSD 

range, and decreasing χ-values towards smaller SP particle sizes (underlying χ-relationships are 

given in Fig. 10). For aggregates in state (A), with a denser packing of nanoparticles and less 

hematite, we assume a similar difference of χ-values between the shown frequencies, whereas 

for aggregates in state (B), with looser packing and more hematite, the frequency dependence 

is stronger in the higher frequency range. This will lead to a typical difference in the broadband-

frequency dependence χ(f), together with a decrease of χ-values due to the shift to smaller 

effective grain size, as shown by the principle χ(f) sketch (Fig. 10).  
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Figure 10. Conceptual sketch of the principle relationship of χ versus grain diameter (d) for four frequencies in 

logarithmically equal increments (increasing from f to 8f), modified from Kodama (2013), and following the theory 

presented by Worm (1998) and Shcherbakov and Fabian (2005). The principle relationships for smaller SP grains 

(below thermal activation), SP grains in the range of thermal activation (frequency-dependent; in-phase part), and 

larger grains in the SSD range are shown (Ms: saturation magnetization, Hk: microcoercivity, χSP: 

superparamagnetic susceptibility for zero frequency, V: grain volume, τ: relaxation time, T: temperature, f: 

frequency, ω: angular frequency, μ0: magnetic permeability of free space, k: Boltzmann constant). The orange and 

gray fields display schematic distributions of effective grain sizes of the nano-magnetite aggregates in red soil (A) 

and lake sediments (B), respectively. Aggregates in red soil are assumed to be tighter packed and possibly also 

larger than in lake sediments, and according to the ELNES results more hematite is existing in the nanoparticles 

of the lake sediments.   

Such difference can be seen in the measured broadband-frequency behavior of red soil and 

Caohai Lake sediment samples (Fig. 7). The curves for red soil show an approximately linear 

decay of χ with log(f) throughout the frequency range of 125 Hz to 16 kHz, whereas for the 

low-χ samples from the lake sediments the frequency dependence mainly occurs at f >1 kHz. 

For the difference between red soil H and lake sediment L samples, the slope change is 

statistically significant at 95 % confidence (Table S6). Kodama (2013) presented a method to 

determine the particle size from broadband-frequency data. Even without a quantitative 

inversion it becomes obvious from χ(f) that the effective SP grain size is smaller in the Caohai 

Lake sediments than in the red soil, which can be explained by the less compact aggregates of 

nanoparticles in the lake sediments as observed in the TEM studies.  

With this model the macroscopic magnetic differences (χ, χfd%) between red soil and the Caohai 

Lake sediments can explained without a loss of individual magnetite nanoparticles. The nano-
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magnetite fraction does not vanish, it simply becomes magnetically hidden as fining of the 

effective grain sizes due to increased separation of magnetite nanoparticles will lower the χ-

values (Fig. 10) and will lead to a decline of χfd%. Partial transformation of magnetite to 

hematite as indicated by the ELNES results will cause an additional decrease of the χ-value and 

χfd%. Hematite in the nanoparticles, either existing as full nanoparticles or as shells of magnetite 

cores (Fig. 10), will also contribute to a shift towards smaller effective grain sizes through an 

increased distance between neighboring magnetite. Both the hematite fraction in the aggregates 

and the tighter or looser packing of nanoparticles affect the interaction between the magnetites, 

and therefore will have an impact on the resulting χfd% and χ values. How much both effects 

contribute to the observed differences between the red soil and Caohai Lake sediment properties 

is an open issue. 

4.3 Relevance for paleoclimate studies  

Heqing Basin accommodates two types of paleoclimate archives, the red soil and lake 

sediments, the latter concerning the modern lake sediments of Caohai Lake and the thick 

lacustrine sediment sequence accumulated in the large paleolake which existed in the basin 

throughout the Pleistocene until ~30 ka. The latter depends on the former by source-sink 

relationships. Lake sediments with red soil in the catchment is a frequently occurring setting in 

tropical and subtropical regions. Possible changes of pedogenic fine magnetite in red soil 

material, during transfer from the source (in situ) to the sink, and further changes in the lake 

have to be understood when employing magnetic proxies for paleoclimate studies. In Heqing 

Basin, red soil is the only relevant source of ferro(i)magnetic materials, and thus our 

investigation area provides a unique opportunity to study possible magnetic changes in the red 

soil material, which happened during material transfer to lake. In the context of our study, the 

Caohai Lake acts as a sink of red soil material. It is not our aim to reconstruct the 

paleoenvironmental evolution as a function of the geological age, thus dating of the Caohai 

Lake sediments is not required for this purpose. 

One of the questions regarding red soil archives is the possible environmental control of the 

amount of pedogenic ferro(i)magnetic minerals. In the Chinese Loess Plateau, paleorainfall was 

quantified from χ-enhancement in the paleosols (Maher & Thompson, 1995). In red soil, the 

relationship between environmental conditions and fine magnetite production seems to be more 

complex. Liu et a. (2012) and Wang et al. (2013) suggested that magnetic signatures related to 

transformation of magnetite (maghemite) to hematite can be used to detect the degree of 
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pedogenesis in vermiculated red soil. According to Wang et al. (2013) stronger pedogenesis 

leads to more hematite formed under warm climate with dry-moist seasonality. Yin et al. (2018) 

used the ratio of hematite and goethite contents in red soil as an indicator for climate conditions, 

determined by reflectance spectrophotometry, but they also concluded that its climate 

sensitivity is limited. As addressed above, the origin of magnetite or maghemite in soil has often 

been related to bacterial activity (Maher & Thompson, 1995; Chen et al., 2005; Hu et al., 2015), 

either by formation of extracellular SP magnetite as a metabolism product (Lovley et al., 1987; 

Sundaram et al., 2012; Ahmed & Maher, 2018), or intracellular magnetosomes in the SSD range 

(Fassbinder et al., 1990). In the studied red soil of Heqing Basin, the observed aggregates of 

nanoparticles likely represent extracellular magnetite; magnetosomes were not detected. The 

appearance of the aggregates resembles Fe-oxyhydroxide nanoparticle aggregates of up to 

>100 nm large attached to the outer membrane of living bacteria (Luef et al. 2013), which could 

be a hint on the origin of the aggregates in the red soil. This issue is an exciting research question 

for future study, but it is beyond the scope of this paper. 

The about threefold higher mean χ-values of red soil above the limestone bedrock at the western 

basin (χ=1085ᵡ10-8 m3/kg) compared to red soil on sandstone and conglomerate at the eastern 

basin (χ=302ᵡ10-8 m3/kg) indicates that there is no matching climate-related χ-enhancement. As 

calcite dissolves relatively fast during weathering, more efficient release of Fe is expected for 

limestone bedrock. However, the spatial distribution of the χ-values (Fig. 1, Tables 1 and S1) 

clearly shows that the amount of pedogenic magnetite does not only strongly differ for the 

different bedrock types, but also varies within the same type (standard deviation of χ for red 

soil on both limestones and sandstones/conglomerates is 53 % of the mean χ-value). Therefore, 

neither χ-values nor χfd% of red soil are suitable to discriminate different environmental 

conditions. If hematite derives from alteration of fine magnetite, as suggested by earlier studies 

of red soil (Liu et al., 2012; Wang et al., 2013), and also proposed by Torrent et al. (2006) for 

aerobic soil, the relative proportions of fine magnetite and hematite could provide useful 

information on environmental conditions, and the HIRM/χ ratio may be a suitable proxy. 

However, the bivariate plot of HIRM versus χ (Fig. 9b) shows strong scattering of the data.  

In contrast, there is a good linear relationship of SIRM and χ (Fig. 9d) for the red soil above 

limestones (r = 0.92) and still reasonable for red soil above sandstones/conglomerates 

(r = 0.64). The latter correlation is probably lower because of the more variable bedrock 

lithology. The SIRM/χ ratio is strongly different for the limestones (4.20 kA/m) and 
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sandstones/conglomerates (6.52 kA/m), but if it is possible to establish separate transfer 

functions for different bedrock types, this ratio may be a suitable proxy parameter for the degree 

of pedogenesis as previously suggested (Liu et al., 2012; Wang et al., 2013). The scattered 

HIRM versus χ distribution, point out that there is no simple systematic mechanism of 

magnetite-to-hematite transformation. The about 1:10 molar ratio of magnetite (estimated from 

χ and Ms) and hematite (estimated from XRD) contents in the red soil suggests that only a 

smaller part of the hematite sits in the nanoparticle aggregates.  

But why does the SIRM correlate with χ? If there is a climate-specific development of the 

nanoparticle aggregates, expressed by denser/looser packing of nanoparticles, different size of 

aggregates, or different proportion of hematite, a characteristic SP-SSD behavior distribution 

(according to the schematic relationship shown in Fig. 10) could be imprinted in the relative 

proportions of SSD magnetite (controlling SIRM) and SP magnetite (dominating χ) behaviors. 

In such case, the SIRM/χ-ratio is mainly dependent on the nano-magnetite in the aggregates, 

with only very little contribution of hematite. Further studies are needed to understand the 

underlying processes and to develop meaningful transfer functions. 

Studies of lake sediments in settings with red soil as the dominating source material, as in 

Heqing Basin, suffer from several uncertainties. According to our model presented in section 

4.2, the pedogenic fine magnetite fraction of the red soil material is to a large extent still existing 

after deposition. However, due to the decreased effective magnetic grain size of the nano-

magnetite aggregates it is less contributing to the χ-values and χfd% (Fig. 10). Comparison of 

geochemical and magnetic parameter variations throughout the Caohai Lake sediment sequence 

(Fig. 8a-c) indicate that there is no substantial loss of the nano-magnetite by dissolution. 

Magnetic concentration values in the lower part of the Caohai Lake sediments are about double 

as high as in the upper part (Fig. 8a-c). This variation with depth may indicate a response to 

climate change or a change in the hydrological conditions during the deposition period, residing 

in both the nanoparticle aggregates and the bedrock-inherited MD magnetite. As it is a mixed 

signal, the underlying control of magnetic properties require further detailed study, which is 

beyond the scope of this paper.  

What is the meaning of the new results for the interpretation of magnetic proxies in the long 

Core-HQ from the large paleolake in Heqing Basin (Fig. 1)? Hu et al. (2015) concluded from 

the very low χfd% throughout the 168-m long sequence (mean χfd% ~2.5 %) that SP magnetite 

derived from red soil is absent, and they reconstructed paleo-humidity conditions assuming an 
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alteration mechanism of the remaining bedrock-inherited larger sized magnetite. Results from 

other lakes in southwestern China, with similar setting as Heqing Basin, suggest that SP 

fractions are indeed effectively dissolved below a certain depth in the sediment column. In Erhai 

Lake this depth occurs at ~50-60 cm (Dearing et al., 2008), and in Xingyun Lake below ~1 m 

sediment depth (Chen et al., 2014), both lakes having a similar size as the Heqing paleo-lake. 

In the modern Caohai Lake efficient dissolution is not observed, which could be due to the only 

~0.5-m sediment thickness. Moreover, redox conditions in the small Caohai Lake with low 

water depth cannot directly be compared to the much larger and deeper Heqing paleolake.  

According to our model presented in section 4.2, there is a possible completely different 

explanation. Advanced disintegration of the aggregates of magnetite nanoparticles could drive 

the effective magnetic grain size to an SP range with low χfd% (i.e., a smaller effective size). 

For this reason, the validity of the paleo-humidity reconstruction of Hu et al. (2015) for the 

~900-30 ka period in Core-HQ, based on the assumption that SP magnetite from red soil has 

been erased, is challenged by our new results. A substantial SP magnetite fraction originating 

from disintegrated aggregates may still exist in the sediments, forming separated nanoparticles 

or small aggregates. Although not contributing to magnetic remanence parameters, this SP 

fraction would carry part of the χ-signal on which Hu et al. (2015) partly built their 

interpretation. 

5. Conclusions 

Heqing Basin is a useful example for studying changes of magnetic properties in a setting of 

lake sediments with red soil as the only important source of ferro(i)magnetic input. The results 

detect the nature and macroscopic expression of magnetic changes in red soil material during 

transfer from the origin to the sink (Caohai Lake sediments), with implications for paleoclimate 

studies: 

(1) Highly magnetic red soil on low-magnetic sedimentary bedrock with up to ~0.5 % magnetite 

(according to χ and Ms) occurs throughout the Heqing Basin catchment. Extremely high χfd% 

(~15-20 %) shows that SP magnetite is strongly dominating, which is likely an extracellular 

product of bacterial activity during pedogenesis. 

(2) The TEM results reveal ~100 nm large aggregates of mainly ~10-15 nm sized nanoparticles 

in the red soil and in the Caohai Lake sediments. The nanoparticles in the aggregates are tighter 

packed in red soil than in the lake sediments, and the aggregates in the red soil appear to be 
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larger. ELNES results identify the nanoparticles as magnetite and/or maghemite (which cannot 

be discriminated), with higher contribution of hematite in aggregates of the Caohai Lake 

sediments. Interaction of the nano-magnetite particles leads to a wide range of effective grain 

sizes in terms of their domain state behavior. The effective grain size is naturally larger than 

the physical size of individual nanoparticles, and tails into the SSD range. Interaction is less for 

looser packing and for larger hematite content that creates larger distances between magnetites. 

This model explains the observed differences of macroscopic magnetic characteristics between 

red soil and lake sediments by a shift of the effective grain size distribution towards smaller 

size. The results of broadband-frequency dependence of χ support the model.  

(3) Spatial distributions of magnetic parameters in the red soil around Heqing Basin clearly 

show that the amount of pedogenically produced nano-magnetite is bedrock-dependent, and 

even varies within the same bedrock type. The SIRM/χ ratio is relatively constant for red soil 

above the same bedrock type, it is assumed to be controlled by a shift of the specific SP-SSD 

distribution in the aggregates possibly related to environmental conditions and is therefore a 

potential paleoclimate proxy. Further research is required to elucidate whether bedrock-specific 

transfer functions can be determined.  

(4) The magnetic signature of the Caohai Lake sediments is controlled by both magnetite 

nanoparticle aggregates and MD magnetite inherited from bedrock weathering. A composed 

paleoclimate signature of the magnetic parameter variations might exist, but a complex control 

mechanism is expected, which requires further research. The validity of the paleoclimate 

reconstruction of Hu et al. (2015) from the 168-m long Core-HQ in Heqing Basin, spanning the 

period of ~900-30 ka, is challenged. The underlying assumption of SP magnetite extinction by 

dissolution, derived from low χfd% values, could be wrong. According to the new results, 

disintegrated magnetite aggregates may represent an SP state with low χfd%, without loss of 

nanoparticles.  
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Appendix   

Text S1. CBD (Citrate-bicarbonate-dithionite) treatment procedure: 

1. Milling soil and sediment samples and sieving through a 0.074-mm mesh 

2. Measuring magnetic susceptibility at two frequencies (976 Hz and 15616 Hz) and 

running thermomagnetic curves (under argon) 

3. Adding ~4 g sample in a 100 mL centrifuge tube 

4. Adding 40 mL 0.3 M citrate solution and 5 mL 1 M sodium bicarbonate solution 

5. Heating to 70 ℃ 

6. Adding 1 g sodium dithionite 

7. Heating in a water bath for 15 min (70 ℃) and stirring gently while heating 

8. Centrifugation at 4000 rpm for 10 min, then decant the supernatant 

9. Drying in an anoxic glove box (100 % N2) for 5 days 

10. Measuring magnetic susceptibility at two frequencies (976 Hz and 15616 Hz) and 

running thermomagnetic curves (below) 
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Figure S1. Temperature dependence of magnetic susceptibility of a red soil sample for three partial heating-

cooling cycles (red/black denote heating/cooling). 

 

Figure S2. ELNES results from red soil profile Ⅰ (Fig. 4b shows the measured traverse, Fig. 4e shows part of the 

ELNES results). Spaces between each curve were adjusted in order to plot the curves clearly.   
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Figure S3. ELNES results from red soil profile Ⅱ (Fig. 4c shows the measured traverse, Fig. 4e shows part of the 

ELNES results). Spaces between each curve were adjusted in order to plot the curves clearly.   

 

Figure S4. ELNES results from Caohai Lake sediments (Fig. 5b shows the measured traverse, Fig. 5d shows part 

of the ELNES results). Spaces between each curve were adjusted in order to plot the curves clearly.   
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Figure S5. Unmixing of IRM acquisition curves after Maxbauer et al. (2016) for limestone bedrock, red soil, and 

Caohai Lake sediments. Blue, green and pink show model distributions (two components for red soil and lake 

sediments, three components for limestone), yellow ones display their sum, and gray ones are measured results. 

For numerical results of Bh, DP and IRM contribution of measured samples (3 from limestone; 4 from red soil; 3 

from Caohai Lake sediments) see Table S7. 

 

Figure S6. Hysteresis and back-field data (separated for red soil at the western and eastern basin, and Caohai Lake 

sediments), plotted in the Day diagram with mixing lines (Dunlop, 2002) (Note: ‘SD’ means stable single domain, 

termed ‘SSD’ in this paper). Ms: saturation magnetization, Mrs: saturation remanence, Hc: coercivity, Hcr: 

coercivity of remanence. The small figures show typical FORC diagrams (smoothing factor 4) for the red soil 

(original sample) and lake sediments (magnetic extract). For numerical results of Mrs/Ms and Hcr/Hc (17 from red 

soil-W; 27 from red soil-E; 13 from Caohai Lake sediments) see Table S3. 
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Figure S7. (a) Mass-specific susceptibility (χ) and percentage frequency-dependence χfd% in three vertical sections 

of red soil (1 & 2 close to site 13; 3 closes to site 7 in Fig. 1); crosses denote loose surface material collected with 

a soft brush.  (b) Spatial variability of surface volume-specific magnetic susceptibility (κ) at the sampling sites 

shown in Fig. 1 (mean value of each sites obtained from 7 readings, including standard deviations (except 5 

additionally samples from Hu et al., 2015). 
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Table S1. Magnetic parameters for red soil (numbers according to Fig. 1), with mean values and standard 

deviations (std): magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic 

remanent magnetization (ARM), hard isothermal remanent magnetization (HIRM), S-ratio, percentage frequency-

dependence of χ (χfd%), SIRM/χ ratio, HIRM/χ ratio. Samples marked by star (*) are from Hu et al. (2015). 

    χ SIRM   ARM    HIRM    S-ratio   χfd    SIRM/χ HIRM/χ 

    [10-8 m3/kg] [10-3 Am2/kg] [10-3 Am2/kg] [10-5 Am2/kg] [-] [%] [kA/m] [kA/m] 

West 

1 683.1 26.98 0.99 124.34 0.95 16.6 3.95 0.18 

2 875.3 28.62 1.56 46.26 0.98 19.5 3.27 0.05 

3 1477.7 46.01 2.60 115.04 0.97 20.2 3.11 0.08 

4 243.3 23.81 0.36 137.02 0.94 12.2 9.79 0.56 

5 1171.6 59.02 1.54 265.02 0.96 14.6 5.04 0.23 

6 903.0 36.82 2.01 22.20 0.99 19.5 4.08 0.02 

7* 2331.0     16.7   

8 1735.8 53.50 3.26 30.65 0.99 20.6 3.08 0.02 

9 2055.2 74.27 4.22 62.56 0.99 20.4 3.61 0.03 

10 1152.2 30.97 2.45 31.49 0.99 19.3 2.69 0.03 

11 995.3 32.78 1.67 83.53 0.97 18.4 3.29 0.08 

12* 1016.0     14.7   

13 1870.1 64.75 3.62 67.86 0.99 19.3 3.46 0.04 

14 1390.4 57.78 2.84 62.61 0.99 18.4 4.16 0.05 

15* 940.0     9.8   

16 417.7 20.24 0.60 10.24 0.99 16.7 4.85 0.02 

17 890.7 32.87 1.78 117.73 0.96 19.6 3.69 0.13 

18 781.5 32.89 1.48 127.23 0.96 18.3 4.21 0.16 

19 216.3 8.17 0.36 26.88 0.97 21.1 3.78 0.12 

20 560.0 30.28 0.96 100.54 0.97 19.2 5.41 0.18 
 mean 1085.3 38.81 1.90 84.19 0.98 17.8 4.20 0.12 

  std 579.5 17.61 1.13 62.34 0.02 3.0 1.61 0.13 

East 

21 337.5 20.94 0.75 83.61 0.96 17.9 6.20 0.25 

22 59.9 7.87 0.13 287.44 0.63 20.8 13.14 4.80 

23 413.4 46.81 0.55 360.14 0.92 9.7 11.33 0.87 

24 234.7 23.68 0.40 192.60 0.92 12.0 10.09 0.82 

25 337.9 16.93 0.53 136.80 0.92 18.0 5.01 0.40 

26 650.8 36.09 1.46 157.44 0.96 17.6 5.55 0.24 

27* 323.0     10.9   

28 271.2 23.34 0.68 134.68 0.94 14.5 8.61 0.50 

29 324.8 21.86 0.56 151.36 0.93 13.2 6.73 0.47 

30 589.4 29.80 0.89 86.49 0.97 14.7 5.06 0.15 

31 162.6 23.51 0.50 191.99 0.92 14.7 14.45 1.18 

32 358.4 26.70 0.58 141.07 0.95 14.0 7.45 0.39 

33 313.0 22.46 0.71 131.42 0.94 15.4 7.18 0.42 

34 420.4 26.68 0.93 162.51 0.94 18.3 6.35 0.39 

35 318.9 18.26 0.44 154.32 0.92 14.0 5.73 0.48 

36 283.5 15.27 0.49 86.50 0.94 15.4 5.39 0.31 

37 414.0 8.49 0.55 35.53 0.96 20.0 2.05 0.09 

38 366.2 14.46 0.53 42.87 0.97 16.2 3.95 0.12 

39 324.0 10.20 0.41 35.34 0.97 16.7 3.15 0.11 

40 122.4 5.28 0.13 11.62 0.98 14.1 4.31 0.09 

41 44.8 4.23 0.05 58.74 0.86 16.6 9.45 1.31 

42 114.6 10.78 0.19 127.75 0.88 13.9 9.41 1.11 

43 183.6 8.23 0.21 51.01 0.94 16.1 4.48 0.28 

44 151.5 11.98 0.15 110.94 0.91 9.5 7.91 0.73 

45 236.9 10.07 0.35 30.07 0.97 16.3 4.25 0.13 

46 454.1 13.61 0.64 9.64 0.99 18.9 3.00 0.02 

47* 82.0     9.2   

48 290.5 8.89 0.46 0.00 1.00 17.7 3.06  

49 188.8 6.85 0.24 4.47 0.99 16.4 3.63 0.02 

50 687.6 38.61 0.84 4.47 1.00 11.2 5.62 0.01 
 mean 302.0 18.28 0.51 106.46 0.93 15.1 6.52 0.58 

  std 160.4 10.72 0.30 86.72 0.07 3.0 3.10 0.92 
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Table S2. Magnetic and geochemical parameters for Caohai Lake sediments (depths according to Fig. 8), with mean values and standard deviations (std): magnetic susceptibility 

(χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (ARM), hard isothermal remanent magnetization (HIRM), S-ratio, percentage 

frequency dependence of χ (χfd%), SIRM/χ ratio, HIRM/χ ratio, Fe/Mn, Fe/Ti, Si/Ti, S, Br, loss of ignition (LOI). 

Depth χ SIRM ARM HIRM  S-ratio χfd SIRM/χ HIRM/χ Fe/Mn Fe/Ti Si/Ti S  Br LOI (550) 

[cm] [10-8 m3/kg] [10-5 Am2/kg] [10-6 Am2/kg] [10-5 Am2/kg] [-] [%] [kA/m] [kA/m] [-] [-] [-] [-] [-] [-] 

0-1 25.5 22.9 24.2 259.1 93.0 22.64 0.91 9.1 9.4 8.9 10.17 0.89 65.97 6.99 3.38 0.19 0.0122 45.27 

1-2 23.4 22.9 24.3 241.2 95.1 23.63 0.90 7.7 8.9 8.0 10.30 1.01 74.07 6.96 2.82 0.19 0.0142 43.37 

2-3 23.6 22.7 24.3 243.7 95.9 21.50 0.91 9.5 8.9 10.2 10.34 0.91 90.42 6.92 3.31 0.25 0.0167 68.92 

3-4 23.0 22.0 24.6 241.4 92.1 23.25 0.90 8.9 8.5 10.3 10.48 1.01 100.65 7.29 2.95 0.23 0.0184 35.16 

4-5 22.0 21.3 24.0 238.0 98.3 22.33 0.91 8.2 8.1 9.4 10.81 1.01 100.43 6.85 3.13 0.32 0.0167 34.53 

5-6 21.6 21.2 23.7 240.6 91.3 24.91 0.90 7.9 7.1 8.7 11.15 1.15 97.59 7.16 3.05 0.33 0.0229 33.18 

6-7 21.2 20.6 24.9 232.6 86.1 23.72 0.90 8.0 7.0 7.6 10.98 1.12 105.27 6.98 3.02 0.32 0.0192 36.00 

7-8 20.1 23.3 25.8 223.7 74.2 25.39 0.89 7.1 7.3 7.6 11.13 1.26 105.90 6.95 2.64 0.40 0.0170 33.10 

8-9 21.7 25.9 26.1 237.6 65.3 30.92 0.87 6.2 7.9 6.4 10.96 1.43 89.85 6.47 2.70 0.20 0.0098 24.93 

9-10 21.9 27.7 25.7 230.0 63.1 29.31 0.87 6.3 8.6 6.6 10.50 1.34 91.01 6.58 2.73 0.24 0.0126 25.15 

10-11 26.5 29.1 25.6 273.0 76.6 34.82 0.87 8.1 8.0 7.1 10.32 1.32 73.33 6.18 2.47 0.13 0.0060 19.61 

11-12 26.1 37.1 28.0 268.9 76.2 32.98 0.88 8.0 10.6 7.5 10.32 1.27 95.68 6.33 2.37 0.17 0.0056 19.90 

12-13 24.8 44.5 28.0 253.4 72.5 31.50 0.88 7.2 12.1 9.0 10.22 1.27 95.81 6.76 2.45 0.27 0.0070 19.90 

13-14 26.1 47.2 29.0 272.1 71.3 33.04 0.88 7.2 13.3 8.5 10.42 1.27 94.12 6.15 2.53 0.13 0.0072 20.81 

14-15 27.8 52.6 31.5 282.4 77.5 32.85 0.88 7.9 13.6 9.1 10.14 1.18 76.46 6.17 2.52 0.09 0.0045 17.70 

15-16 30.6 55.2 34.3 298.1 85.9 34.83 0.88 8.4 14.1 10.5 9.76 1.14 93.60 6.15 2.40 0.07 0.0072 19.59 

16-17 32.3 56.9 41.5 314.9 98.7 32.45 0.90 9.0 14.3 12.1 9.76 1.01 87.75 6.26 2.46 0.08 0.0076 17.66 

17-18 33.3 58.1 41.6 320.0 103.1 33.27 0.90 9.5 13.6 11.8 9.61 1.00 85.13 6.27 2.50 0.07 0.0058 15.13 

18-19 31.9 57.1 40.1 302.7 102.9 35.09 0.88 11.1 14.6 13.2 9.47 1.10 90.98 6.41 2.32 0.08 0.0057 15.78 

19-20 39.0 57.5 42.7 362.5 124.6 35.02 0.90 11.6 14.4 12.4 9.28 0.90 87.07 6.47 2.37 0.08 0.0046 16.62 

20-21 40.4 57.1 42.7 376.5 131.0 36.09 0.90 10.6 14.3 13.3 9.32 0.89 78.26 6.51 2.47 0.10 0.0036 18.34 

21-22 35.7 57.3 44.9 331.1 115.8 34.52 0.90 11.0 14.5 13.4 9.27 0.97 85.42 6.29 2.48 0.08 0.0054 15.63 

22-23 40.7 55.4 47.6 370.3 123.0 35.15 0.91 11.3 14.2 12.5 9.09 0.86 86.41 6.48 2.49 0.09 0.0073 17.10 

23-24 42.0 54.4 49.4 364.4 123.7 35.84 0.90 11.5 14.1 13.4 8.68 0.85 79.87 6.08 2.35 0.08 0.0019 15.63 

24-25 47.3 54.4 52.9 389.0 139.0 35.64 0.91 12.6 14.1 14.3 8.23 0.75 79.80 6.35 2.42 0.07 0.0036 14.60 

25-26 53.2 52.5 57.4 429.4 158.6 35.72 0.92 13.3 13.5 14.5 8.06 0.67 77.62 6.25 2.47 0.06 0.0041 14.54 

26-27 56.3 50.5 60.7 447.3 178.8 34.89 0.92 13.7 13.4 14.0 7.94 0.62 77.99 6.08 2.48 0.06 0.0034 13.85 

27-28 58.4 49.4 62.9 454.2 183.9 35.94 0.92 13.7 13.3 14.3 7.78 0.62 74.67 6.32 2.53 0.06 0.0034 14.87 

28-29 59.7 48.9 62.5 459.6 192.2 34.69 0.92 13.9 13.4 14.3 7.70 0.58 80.40 6.20 2.51 0.05 0.0042 13.93 

29-30 61.1 47.1 64.5 472.6 193.3 34.13 0.93 13.1 13.2 14.6 7.74 0.56 72.28 6.16 2.44 0.05 0.0053 14.26 
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30-31 58.8 45.6 65.4 464.4 188.0 34.30 0.93 13.7 12.9 14.8 7.90 0.58 77.34 6.28 2.59 0.06 0.0025 14.53 

31-32 57.6 44.8 65.6 446.9 170.8 32.27 0.93 13.8 12.9 14.4 7.76 0.56 74.12 6.23 2.43 0.06 0.0050 12.99 

32-33 58.6 44.1 62.7 446.1 181.3 35.76 0.92 14.0 13.2 14.6 7.61 0.61 70.22 6.24 2.55 0.07 0.0070 13.07 

33-34 58.9 45.2 62.6 466.8 186.5 33.75 0.93 14.0 12.3 15.2 7.93 0.57 79.42 6.21 2.55 0.05 0.0054 13.38 

34-35 58.6 41.5 60.5 514.5 178.6 33.17 0.94 12.6 12.7 13.8 8.78 0.57 77.70 6.33 2.63 0.05 0.0041 14.15 

35-36 53.2 41.5 58.7 439.9 167.6 35.73 0.92 13.1 11.5 14.1 8.28 0.67 65.18 6.21 2.68 0.05 0.0059 13.12 

36-37 53.5 39.8 57.5 451.8 170.4 41.11 0.91 14.2 11.3 14.5 8.44 0.77 79.88 6.33 2.56 0.05 0.0050 12.90 

37-38 53.3 36.3 56.1 470.5 166.2 42.17 0.91 12.8 9.6 13.1 8.83 0.79 61.39 6.28 2.56 0.06 0.0046 15.68 

38-39 53.2  54.6 450.0 162.1 40.92 0.91 13.0  13.4 8.47 0.77 74.05 6.02 2.58 0.06 0.0053 14.22 

39-40 53.2  51.7 484.8 158.3 43.59 0.91 12.4  13.6 9.12 0.82 71.14 6.12 2.72 0.05 0.0044 14.04 

40-41 53.8  50.8 517.1 152.6 53.09 0.90 11.8  12.4 9.62 0.99 66.43 6.21 2.65 0.04 0.0035 12.24 

41-42 56.5  49.1 535.4 132.2 61.88 0.88 11.0  12.4 9.48 1.10 59.77 6.59 2.53 0.05 0.0045 11.63 

42-43 57.7  47.9 589.8 136.9 63.99 0.89 10.2  12.6 10.22 1.11 35.57 6.68 2.83 0.05 0.0069 11.37 

43-44 61.7  47.4 680.3 107.6 86.31 0.87 8.4  9.8 11.02 1.40 36.55 6.00 2.64 0.04 0.0048 9.48 

mean 41.0 41.9 43.8 372.5 125.9 35.77 0.90 10.6 11.7 11.6 9.40 0.94 80.06 6.43 2.62 0.12 0.0075 20.41 

std 15.1 13.2 14.8 114.3 41.8 11.69 0.02 2.5 2.6 2.7 1.12 0.26 14.99 0.33 0.25 0.10 0.0051 11.49 
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Table S3. Ms: saturation magnetization, Hc: coercivity and hysteresis ratios Mrs/Ms, Hcr/Hc of red soil (separated into samples from the western and eastern basin) and Caohai 

Lake sediments, with mean values and standard deviations (std). 

Red soil 

west 
Ms [nAm2] Hc [mT] Mrs/Ms Hcr/Hc 

Red soil 

east 
Ms [nAm2] Hc [mT] Mrs/Ms Hcr/Hc 

Caohai 

sediments 
Ms [nAm2] Hc [mT] Mrs/Ms Hcr/Hc 

1 1801.00 5.68 0.17 3.21 21 873.70 8.77 0.22 2.52 HQ01-1 36.27 12.14 0.17 2.69 

2 2902.00 5.19 0.19 2.79 22 169.40 24.16 0.38 2.50 HQ01-5 35.31 14.80 0.22 2.50 

3 4670.00 5.01 0.19 2.71 23 2173.00 11.86 0.19 2.37 HQ01-7 41.47 14.21 0.21 2.40 

4 14150.00 6.31 0.19 2.59 24 1099.00 10.84 0.20 2.33 HQ01-9 18.61 13.65 0.14 2.55 

5 5802.00 6.74 0.18 3.25 25 1231.00 7.07 0.16 2.96 HQ01-11 38.78 16.88 0.25 2.00 

6 1541.00 5.85 0.21 2.45 26 1231.00 6.42 0.19 2.55 HQ01-15 62.98 12.45 0.20 2.58 

8 5732.00 4.77 0.18 2.68 28 3159.00 9.30 0.24 2.12 HQ01-23 53.65 11.46 0.17 2.52 

9 3333.00 4.89 0.19 2.54 29 1568.00 10.27 0.27 2.13 HQ01-27 56.46 11.44 0.22 2.45 

10 4927.00 5.49 0.19 2.47 31 951.50 12.17 0.26 2.02 HQ01-28 70.45 11.49 0.26 2.32 

11 3312.00 5.20 0.16 3.09 32 1178.00 7.32 0.15 3.35 HQ01-29 73.45 9.81 0.20 2.57 

13 3299.00 4.82 0.18 2.70 33 1889.00 8.00 0.24 2.24 HQ01-35 56.51 11.41 0.20 2.21 

14 1969.00 5.70 0.19 2.62 34 972.20 7.92 0.23 2.37 HQ01-39 70.65 11.87 0.21 2.37 

16 738.20 5.64 0.18 2.86 35 1539.00 7.20 0.21 2.20 HQ01-44 150.50 10.86 0.16 2.99 

17 1590.00 5.64 0.18 2.88 36 1273.00 7.32 0.20 2.56 mean 58.85 12.50 0.20 2.47 

18 1279.00 6.24 0.20 2.56 37 1562.00 4.09 0.14 3.41 STD 32.05 1.91 0.04 0.24 

19 409.90 5.57 0.17 3.24 38 1673.00 4.76 0.16 2.97      

20 1503.00 8.18 0.21 3.37 39 1070.00 4.78 0.16 2.81      

mean 3468.12 5.70 0.18 2.82 40 480.80 4.59 0.15 2.03      

STD 3224.58 0.84 0.01 0.30 41 635.10 14.64 0.23 2.84      

     42 1532.00 9.99 0.23 1.84      

     43 460.20 7.05 0.19 3.13      

     44 1524.00 8.92 0.16 2.85      

     45 775.20 5.88 0.17 3.14      

     46 1059.00 4.66 0.14 3.13      

     48 514.30 5.07 0.16 3.04      

     49 313.70 4.58 0.14 2.91      

     50 8016.00 7.93 0.19 2.11      

     mean 1441.56 8.35 0.20 2.61      

          STD 1456.00 4.13 0.05 0.45           

 



Chapter Ⅴ: Nano-magnetite aggregates in red soil on low magnetic bedrock, their change during transport and implications for paleoclimate 

studies 

123 

 

Table S4. Magnetic susceptibility (χ) and percentage frequency-dependence of χ (χfd%) before and after CBD 

treatment, with mean values and standard deviations (std) 

  Before CBD After CBD % change after CBD 

  χ [10-8 m3/kg] χfd [%] χ [10-8 m3/kg] χfd [%] χ [%] χfd [%] 

R
ed

 s
o
il

 

268.6 18.2 92.1 17.5 -65.7 -3.6 

455.9 18.0 47.4 19.4 -89.6 +7.5 

706.1 19.7 399.3 20.4 -43.5 +3.5 

172.2 18.7 35.5 18.3 -79.4 -2.1 

167.5 17.7 41.8 16.1 -75.0 -9.0 

mean 354.1 18.4 123.2 18.3 -70.6 -0.8 

std 228.8 0.8 155.9 1.7 17.5 6.4 

C
a
o
h

a
i 

la
k

e 

se
d

im
en

ts
  

7.8 11.8 4.2 4.7 -46.3 -60.3 

8.2 11.9 4.5 5.4 -45.1 -54.5 

18.3 15.8 5.1 5.2 -72.1 -67.4 

17.9 14.7 5.9 5.7 -67.2 -61.4 

19.1 10.2 10.6 5.1 -44.5 -50.2 

mean 14.3 12.9 6.1 5.2 -55.1 -58.8 

std 5.7 2.3 2.6 0.4 13.5 6.6 
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Table S5. Broadband-frequency dependence of magnetic susceptibility for red soil separated in samples with χ>10-

5 m3/kg (red soil H) and χ<10-5 m3/kg (red soil L) and Caohai Lake sediments with lower χ (L) from 9-13 cm and 

higher χ (H) from 31-35 cm. 

Frequency [Hz] 125 250 500 1000 2000 4000 8000 16000 

R
ed

 s
o

il
 H

 n
o

rm
a

li
ze

d
  

 χ
 

1.440 1.356 1.262 1.255 1.192 1.147 1.102 1.000 

1.308 1.254 1.171 1.190 1.143 1.119 1.090 1.000 

1.457 1.404 1.254 1.292 1.231 1.193 1.095 1.000 

1.441 1.353 1.262 1.245 1.174 1.133 1.085 1.000 

1.451 1.359 1.248 1.255 1.193 1.153 1.110 1.000 

1.446 1.354 1.238 1.259 1.200 1.165 1.124 1.000 

1.401 1.328 1.276 1.223 1.134 1.085 1.003 1.000 

1.364 1.292 1.243 1.190 1.131 1.090 1.049 1.000 

1.411 1.337 1.289 1.239 1.176 1.137 1.095 1.000 

1.326 1.265 1.220 1.177 1.105 1.085 1.046 1.000 

mean 1.405 1.330 1.246 1.233 1.168 1.131 1.080 1.000 

std 0.054 0.047 0.033 0.037 0.038 0.036 0.036 0.000 

R
ed

 s
o

il
 L

 n
o

rm
a

li
ze

d
  

 χ
 1.380 1.301 1.179 1.239 1.192 1.179 1.163 1.000 

1.345 1.277 1.137 1.238 1.202 1.190 1.181 1.000 

1.461 1.380 1.216 1.291 1.240 1.216 1.189 1.000 

1.422 1.374 1.195 1.282 1.234 1.207 1.191 1.000 

1.331 1.273 1.233 1.186 1.113 1.068 1.006 1.000 

1.342 1.279 1.232 1.186 1.119 1.096 1.057 1.000 

1.350 1.287 1.236 1.173 1.126 1.096 1.056 1.000 

1.321 1.254 1.215 1.171 1.115 1.078 1.047 1.000 

1.297 1.242 1.202 1.169 1.106 1.084 1.053 1.000 

1.442 1.354 1.296 1.235 1.138 1.119 1.067 1.000 

mean 1.369 1.302 1.214 1.217 1.158 1.133 1.101 1.000 

std 0.055 0.050 0.041 0.046 0.053 0.058 0.071 0.000 

L
a

k
e 

  
  

  
  

  
  

  
  

  
  

se
d

im
en

ts
 L

  
  

  
 

n
o

rm
a

li
ze

d
 χ

 

1.065 1.006 1.036 1.067 1.028 0.978 1.027 1.000 

1.034 1.044 1.080 1.057 1.051 1.035 1.002 1.000 

1.047 1.077 1.072 1.091 1.075 1.062 1.080 1.000 

1.033 0.997 1.047 1.006 1.012 0.984 0.989 1.000 

1.104 1.080 1.094 1.089 1.048 1.041 1.037 1.000 

mean 1.057 1.041 1.066 1.062 1.043 1.020 1.027 1.000 

std 0.029 0.038 0.024 0.034 0.024 0.037 0.035 0.000 

L
a
k

e 
  
  

  
  

  
  

  
  

se
d

im
en

ts
 H

  
  
  

  
  

 

n
o

rm
a
li

ze
d

 χ
 

1.234 1.177 1.168 1.126 1.097 1.016 1.033 1.000 

1.245 1.186 1.166 1.126 1.093 1.061 1.039 1.000 

1.247 1.175 1.168 1.136 1.095 1.073 1.044 1.000 

1.240 1.175 1.149 1.127 0.982 1.057 1.029 1.000 

1.213 1.165 1.144 1.117 1.082 1.055 1.039 1.000 

mean 1.236 1.176 1.159 1.126 1.070 1.052 1.037 1.000 

std 0.014 0.008 0.012 0.006 0.050 0.021 0.006 0.000 
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Table S6. Statistical results for the broadband-frequency dependence of magnetic susceptibility for red soil H and 

lake sediments L samples (see Fig. 7): slopes of χ-log(f) in the frequency ranges 0.125-1 kHz (lf) and 1-16 kHz 

(hf), slope difference between these two ranges (Δslope), and 95 % confidence range of the slope difference 

(product of slope standard error and t-score). For slope calculation, χ-values normalized to their 16 kHz result are 

used, and log(f) is obtained by inserting f in Hz. Values (a) result by calculating slopes using all data points, values 

(b) result from averaging sample slopes (values in brackets list the number N of data points in the analysis, defining 

the degree of freedom N-2 for determining the t-score). 

  red soil H lake sediment L 

  (a) (b) (a) (b) 

slope lf -0.19920(40) -0.19920(10) +0.011343(20) +0.011342(5) 

slope hf -0.18378(50) -0.18268(10) -0.04634(25) -0.04634(5) 

Δslope +0.01542 +0.01652 -0.05977 -0.05976 

95 % range of Δslope ±0.05014 ±0.08294 ±0.04281 ±0.04417 

 

Table S7. Bh, DP and IRM contribution obtained from IRM unmixing.  

        comp 1 comp 2 comp 3 

li
m

es
to

n
e 

1 

Bh [mT] 79.9 1269 19.32 

DP [-] 2.03 10.8 1.38 

IRM contribution  [%] 58.1% 30.5% 11.5% 

3 

Bh [mT] 56.2 417 20.69 

DP [-] 1.86 3.84 1.83 

IRM contribution  [%] 32.8% 58.1% 9.1% 

4 

Bh [mT] 74.4 1612 17.24 

DP [-] 1.91 6.39 1.64 

IRM contribution  [%] 70.7% 12.5% 16.8% 

re
d

 s
o

il
 

9 
Bh [mT] 3.59     

DP [-] 6.40     

14 
Bh [mT] 18.8     

DP [-] 2.06     

18 

Bh [mT] 18.3 314   

DP [-] 2.20 2.15  

IRM contribution  [%] 89.1% 10.9%   

23 

Bh [mT] 28.4 452  

DP [-] 2.11 2.59  

IRM contribution  [%] 83.0% 17.0%   

C
ao

h
ai

 s
ed

im
en

ts
 8 

Bh [mT] 38.4 384   

DP [-] 2.36 1.96  

IRM contribution  [%] 83.4% 16.6%   

29 

Bh [mT] 24.0 384   

DP [-] 2.53 2.68  

IRM contribution  [%] 83.6% 16.4%   

44 

Bh [mT] 27.6 421  

DP [-] 2.62 1.97  

IRM contribution  [%] 80.5% 19.5%   



Chapter Ⅵ: Conclusions and outlook 

126 

 

Chapter Ⅵ: Conclusions and outlook 

The fundamental question of the study was the possible humidity control of magnetite alteration 

in rock weathering. The entity of the results supports the hypothesis that humidity favors 

magnetite oxidation, most clearly shown by the laboratory experiment. However, the laboratory 

results also indicate that the alteration of magnetite does not systematically vary with humidity. 

From the results of the actualistic study we learn that the original rock composition and the type 

of weathering (i.e., physical or chemical) will very likely override climate-related effects of 

magnetite weathering. At least for basalts, which are the by far strongest magnetic rocks 

delivering weathered materials to sinks, the rock magnetic inhomogeneities are too much 

different within spatial scales of several meters and even less, and thus varying mixtures of 

weathered materials from eroded areas will produce considerable differences in the magnetic 

properties. Even if climate conditions matter for the type and degree of magnetite alteration, 

material mixtures due to spatial variation of erosion and transport by surface water and wind 

will very likely also change in different climates, and the mixed materials arriving in sinks such 

as lake sediments will be strongly affected by the variation in material mixing. It is thus 

expected that magnetic variation in paleoclimate archives will likely not record magnetite 

alteration in the catchment due to climate, although the alteration may be climate-specific. On 

the one hand this is a disappointing message for interpreting magnetic proxies in paleoclimate 

archives, on the other hand the results suggest that within the multiple processes that could 

influence magnetic properties in sediments, the climate-specific magnetite alteration during 

rock weathering can be excluded as a major control.  

The actualistic study shows that magnetite alteration in the basalts is relatively mild, even when 

the properties of strongly weathered pebbles and fresh rock properties are compared. The degree 

of magnetite alteration at partially weathered rock surfaces was not investigated in detail in this 

study, but it is certainly even less than in the pebbles that are already released from the solid 

rock. A good message from these results is that weathering of basalts will not or at least not 

generally affect the properties of magnetite in an extensive way and therefore will not easily 

destroy natural remanent magnetizations that are used in paleomagnetic studies. 

In detail, we can summarize that according to the results of laboratory experiment, alteration of 

magnetite is observed in all 70 °C setups with a shift of the Verwey transition temperature.  The 

Verwey transition and lattice constant turns out to be the most sensitive indicators of 

maghemitization. Even though, the experiment proved that humidity is important for LTO, and 



Chapter Ⅵ: Conclusions and outlook 

127 

 

higher and long-lasting humidity causes the strongest degree of alteration (HH setup), but there 

is no linear humidity dependence as we can recognize from the larger alteration of the very dry 

setup compared to the intermediate humidity setup. Additionally, the χ-T curves, in particular 

low-temperature curves, suggest that alteration is not producing a shell-core structure but 

instead the entire volume of particles is similarly affected.  

The actualistic study is not as straightforward as the laboratory experiment. As mentioned, the 

alteration of magnetite is relatively small, and it seems that magnetic properties variations of 

magnetite in basalts and their weathering materials mainly depend on the rock types, and there 

is no evidence that climate conditions control the alteration of magnetite in the basalts beyond 

the effects caused by rock mineralogy. Differences in original rock composition and in type of 

weathering (physical/chemical) will very likely override climate-related effects of magnetite 

weathering. 

The source-sink study in Heqing Basin suggest a surprising explanation for the absence of a 

superparamagnetic signature in the long Heqing core (Core-HQ) that was used for paleoclimatic 

interpretation for the past ~1 Ma (Hu et al., 2015). The TEM results reveal ~100 nm large 

aggregates of mainly ~10-15 nm sized nanoparticles in the red soil and in the Caohai Lake 

sediments. The nanoparticles in the aggregates are tighter packed in red soil than in the lake 

sediments, and the aggregates in the red soil appear to be larger. ELNES results identify the 

nanoparticles as magnetite (and/or maghemite), with higher contribution of hematite in 

aggregates of the Caohai Lake sediments. Interaction of the nano-magnetite particles leads to a 

wide range of effective magnetic grain sizes in terms of their domain state behavior. The 

effective grain size is naturally larger than the physical size of the individual nanoparticles, and 

tails into the SSD range. Interaction is less for looser packing and in the presence of hematite 

that creates larger distances. This model explains the observed differences of macroscopic 

magnetic characteristics between red soil and lake sediments by a shift of the effective grain 

size distribution towards smaller size. The results of broadband-frequency dependence of χ 

support the model. In view of these results, it can be speculated that in Core-HQ, the magnetite 

nanoparticles are not or only partially erased, and the absence of a superparamagnetic signature 

could be explained by strong disintegration of the nanoparticle aggregates. In this case, the 

properties of the nano-magnetite fraction would still contribute to the overall magnetic 

properties of the lacustrine sediments, at least to magnetic susceptibility and saturation 

magnetization, in contrast to the interpretation of Hu et al. (2015), who related the magnetic 
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proxy signal to climate-specific alteration of the bedrock-inherited larger sized magnetite 

fraction assuming complete dissolution of the superparametic magnetite particles. 

Another aspect from the source-sink study concerns the possible climate-specific properties of 

the nano-magnetite. Spatial distributions of magnetic parameters in the red soil around Heqing 

Basin clearly show that the amount of pedogenically produced nano-magnetite is bedrock-

dependent, and even varies within the same bedrock type. The contribution of magnetite nano-

particles to the magnetic properties of lake sediments diminishes by disintegration of aggregates 

and increased magnetite-to-hematite transformation and may even become neglectable 

compared to the larger sized detrital magnetic fraction. The ratio of saturation magnetization 

and magnetic susceptibility is suggested as a useful proxy in red soil, caused by climate-related 

initial LTO degree in the nano-particles of the aggregates.   

The obtained results encourage several meaningful future studies, in both ways, laboratory 

setups and natural environments. One can make use of the advantage of laboratory experiments, 

i.e. the control of potentially influencing factors as well as the experimental period, and other 

natural settings could be used for actualistic studies.  

In this present work, only one type of natural magnetite sample was used for the laboratory 

experiment. In future experimental designs, magnetite samples with different grain size, and 

also natural soil and weathered material from rocks could be taken into consideration. 

Moreover, setups with a larger temperature range between ~50 °C to 100 °C and more variable 

humidity options could improve our knowledge on extrapolating to room temperature processes 

that happen on a longer (i.e., beyond laboratory) timescale. Finally, the experimental time and 

pH conditions could be varied, and sampling in more time intervals could provide more detailed 

information about the temporal course of ongoing processes. 

In this present work, basalts and their well-related pebbles do not show consistent climate-

dependent variations, which partially might be due to the influence of the variability in rock 

mineralogy that is hiding climate effects. In future studies, other type of rocks with less 

variability of rock mineralogy, such as granites, could be tested. It is suggested that sampling 

of weathered pebbles should be done with extreme caution to ensure an intimate relationship 

with the underlying fresh rock. Studies could be also extended to soil material above the fresh 

rock, which is further influenced by pedogenic processes.  
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The source-sink study has indicated several interesting aspects which are worth to be considered 

for further investigations. Red soil above low-magnetic bedrock is a very common natural 

setting and therefore deserves more research on potential use of their magnetic properties 

related to climate conditions. The origin of the high-magnetic red soil is speculated to be a 

produced by bacterial activities. Aggregates resembles Fe-oxyhydroxide nanoparticle 

aggregates of up to >100 nm observed by TEM which brings up a possible approach for future 

studies on the origin of the pedogenic nano-magnetites. Researching the magnetic properties 

caused by the different structure and magnetic mineral contents of the aggregates are another 

challenging aspect. Moreover, it is a challenging question, how one could discriminate the 

magnetic signature of the Caohai Lake sediments into the contributions of the magnetite 

nanoparticle aggregates and the larger sized multidomain magnetite inherited from bedrock 

weathering. Finally, the SIRM/χ ratio is found to be relatively constant for red soil above the 

same bedrock type, which is assumed to be controlled by a shift of the specific SP-SSD 

distribution in the aggregates. This could be related to environmental conditions and is therefore 

a potential paleoclimate proxy. Further research is required to elucidate whether bedrock-

specific transfer functions can be determined. 
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Appendix  

Notations and abbreviations  

κ magnetic susceptibility in SI unit 

χ mass-specific magnetic susceptibility  

χlf low frequency mass-specific magnetic susceptibility  

χhf high frequency mass-specific magnetic susceptibility  

χfd% frequency-dependent susceptibility 

χ(f) broadband frequency dependent susceptibility 

ARM anhysteretic remanent magnetizations  

IRM isothermal remanent magnetization 

SIRM saturation isothermal remanent magnetization 

HIRM hard isothermal remanent magnetization 

Ms saturation magnetization 

Mrs saturation remanent 

Hc  coercive force 

Hcr remanent coercive force 

Tv Verwey transition temperature 

Tc Curie temperature 

Bh applied field at which the mineral phase acquires half of its SIRM 

DP dispersion parameter  

XRD X-ray diffraction  

XRF X-ray fluorescence  

TEM transmission electron microscopy 

SEM scanning electron microscope 

HRTEM high-resolution transmission electron microscopy 

EELS electron energy loss spectrometer 

ELNES energy-loss near-edge structure  

SI spectrum imaging  

LOI loss on ignition  

DOC dissolved organic carbon  

FORC first‐order reversal curve 

CBD citrate-bicarbonate-dithionite treatment 

SD single-domain  

SSD stable single-domain 

MD multi-domain 

LTO low-temperature oxidation  

 


