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Abstract

In der Geschichte der Graphtheorie sind Parameter nicht wegzudenken. Sie stellen
wichtige Indikatoren für die Eigenschaften von Graphen und Graphzeichnungen dar.
Außerdem sind sie oft ein Hauptkriterium für die Klassifikation von Graphen und
für deren visuelle Wahrnehmung. In dieser Arbeit zeigen wir neue Resultate für die
folgenden Graphparameter:

– Die Segmentkomplexität von Bäumen;

– die Zugehörigkeit von Graphen mit beschränktem Knotengrad zu bestimmten
Graphklassen;

– die Zugehörigkeit von vollständigen und vollständig bipartiten Graphen zu
bestimmten Graphklassen;

– die Kreuzungszahl von Graphen;

– die maximale Anzahl an Kanten in outer-gap-planaren Graphen und in bipartiten
gap-planaren Graphen mit bestimmten Eigenschaften;

– die maximale Anzahl an Kanten in 2-Layer Graphen, sowie Beziehungen zwischen
verschiedenen 2-Layer Graphklassen und Charakterisierungen für vollständige
bipartite 2-Layer Graphen.





Abstract

Parameters for graphs appear frequently throughout the history of research in this
field. They represent very important measures for the properties of graphs and
graph drawings, and are often a main criterion for their classification and their
aesthetic perception. In this direction, we provide new results for the following
graph parameters:

– The segment complexity of trees;

– the membership of graphs of bounded vertex degree to certain graph classes;

– the maximal complete and complete bipartite graphs contained in certain graph
classes beyond-planarity;

– the crossing number of graphs;

– edge densities for outer-gap-planar graphs and for bipartite gap-planar graphs
with certain properties;

– edge densities and inclusion relationships for 2-layer graphs, as well as character-
izations for complete bipartite graphs in the 2-layer setting.
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Chapter 1

Introduction

The start of graph theory dates back to the 18th century, when Leonhard Euler
published a paper which is considered as the first one in this field: His paper about
the – nowadays – very famous Seven Bridges of Königsberg [37, 68]. Thereby he
asked the question if all seven bridges of Königsberg1 can be traversed exactly once;
see Fig. 1.1 for an illustration. In fact, this problem can be stated in terms of graphs:
The three land masses are represented by vertices and the bridges between them by
edges; then the task is to find a path that contains every edge exactly once, a so-
called Eulerian Path. In general, an Eulerian Path in a connected graph G exists if
and only if exactly zero or two vertices in G have odd degree [68,85], where the degree
of a vertex is the number of its neighbors. So, already in the early days of graph
theory, parameters played an important role, in this case vertex degrees of a graph.

(a) (b)

Fig. 1.1: (a) The bridges of Königsberg. (b) The graph corresponding to the bridges of
Königsberg.

The very same Leonhard Euler also discovered the relation between geometric
entities in a crossing-free drawing of a connected graph, namely the formula
n−m+ f = 2 for the number of vertices n, the number of edges m, and the number
of faces2 f [121]. A well-known consequence of this formula is an upper bound of
3n−6 edges for planar graphs. For a collection of graphs with certain properties – a

1Today: Kaliningrad in Russia.
2A faces in a drawing is a region bounded by edges.
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so-called graph class –, the edge density, i. e. the (tight) upper bound on the number
of edges, usually is one of the first parameters that is searched for.3 It provides a
fast indicator for the affiliation of a graph to a certain graph class; namely, the
compliance of the edge density is necessary for a graph to belong to a graph class.

Another famous historic problem of graph theory, which reaches back to 1852, is
the one of coloring a map such that neighboring regions have different colors [104];
an example is depicted in Fig. 1.2. Thereby Francis Guthrie conjectured that four
colors are always sufficient to solve this task. Early proofs for Guthrie’s conjecture
turned out to be incorrect [134]. On the other hand, in 1890 Heawood was able to
show the five color theorem: Every map can be colored with at most five colors, such
that neighboring regions receive different colors [83]. Surprisingly it took until 1976
and the assistance of a computer to prove the original four color theorem [20,21].

The minimal number of colors needed to color the vertices of a graph such that
adjacent vertices have different colors is called the chromatic number and represents
a parameter for a graph class. Since any planar map is equivalent to a planar graph,
where the regions correspond to vertices and two vertices are connected by an edge
if the corresponding regions have a common border, the four color theorem states
that the chromatic number of a planar graph is 4.

Fig. 1.2: Example for a map coloring with 4 colors, such that no two neighboring regions
have the same color.

These historic examples already indicate the importance of parameters in graph
theoretical questions. In general, such parameters help to understand better the
structure, the properties, the benefits, and the limitations of graphs and graph
classes. E. g. the number of crossings is an important measure for the aesthetic
quality of a graph [117] and hence it is beneficial to draw graphs planar; on the
other hand, the class of planar graphs is very restricted, since its members have not
more than 3n−6 edges, and, due to this fact, one may encounter a non-planar graph
with high probability.

3For an overview of known edge densities see [61].
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To overcome some disadvantages of planar graphs, other graph classes were defined.
One of them is the class of k-planar graphs, where each edge is allowed to have at
most k crossings [2, 40, 106, 108, 122]. This class plays the major role when proving
lower bounds on the number of crossings for arbitrary drawings. Namely, the known
upper bounds on the number of edges for k-planar graphs, where k ≤ 4 [3,106,108,
122], are the key ingredient for showing the well-known Crossing Lemma [3,7,67,102],
which in turn also provides an upper bound on the number of edges in k-planar
graphs for k > 4 [3,14]. Here parameters are used to derive other parameters, all of
which are valuable for graph theory and graph drawing in their own right.

Compared to planar graphs, k-planar graphs have the advantage that, given a
graph, a value k can be chosen such that this specific graph is k-planar. The downside
is that drawings, where edges have many crossing, are not perceived very well. To
this end, beside the k-planar graphs, several other graph classes were introduced;
refer e g. to [5,9,30,93,140]. Since these classes allow edge crossings, they are called
graphs beyond-planarity or beyond-planar graphs.

In order to decide to which classes a graph belongs to, or in which way a graph
may be drawn such that its aesthetics are beneficial for the viewer, it helps to know
many parameters for a graph class. In this spirit, we provide important parameters
for several graph classes beyond-planarity.

We start by introducing notations and definitions for graph theory and graph
drawing in Chapter 2.

Chapter 3 is dedicated to the so-called segment complexity. Thereby a segment
consists of one or more consecutive edges, all of which are drawn as a straight-line
segment in the plane. The goal is the minimize the number of segments used. In
this way, edges may be easier to follow by the law of continuation of the Gestalt
principles of perception [98], and the aesthetics may be influenced positively [96]. We
specialize on the improvement of a result by Hültenschmidt et al. [89], who recently
provided an algorithm to draw a tree on a grid with 3

4n segments and O(n3.58) area;
more precisely, we improve the area bound to n× n, while still using 3

4n segments.
More details and references to previous works for this and the following chapters
can be found in the introductory parts of the corresponding chapters.

In Chapter 4 the parameter “vertex degrees” is considered. Namely, we study
graphs where the maximal vertex degree is bounded by a constant c (so-called graphs
of maximum degree c, or short, graphs of degree c), and decide if graphs with this
property always belong to certain graph classes or not. To answer this question in
the positive, one usually needs to find an algorithm for drawing all graphs of degree c
according to the rules in the considered graph class. On the other hand, this question
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can be answered in the negative if a graph of degree c is known that does not belong
to a certain graph class. However, since for small values of c graphs of degree c are
very sparse, it is usually not easy to construct such graphs and, in general, leads to
large case analyses which often require some kind of graph enumeration.

Note that graph enumeration dates back to 1857, when the famous British
mathematician Arthur Cayley consider the enumeration of trees [49]. Other
important contributors to this field are for example Frank Harary [79, 81], Howard
Redfield [119, 120] and George Pólya [114]. Nowadays there also exist various
databases for graphs with certain properties [46, 110, 129], which can be accessed
online (see e. g. https://hog.grinvin.org/ which is presented in [46]).

We address an aspect of the enumeration issue in Chapter 5, where we provide an
algorithm to enumerate all complete and complete bipartite graphs for certain graph
classes. Thereby a graph with n vertices is complete if there is an edge between
every pair of vertices; we denote complete graphs by Kn. A graph is bipartite if its
edges can be partitioned in two disjoint sets, such that there are only edges between
vertices of these two sets. A bipartite graph is complete if every vertex of the first set
is connected to every vertex of the second set; we denote complete bipartite graphs
by Ka,b, where a and b are the sizes of the two vertex sets. For the considered graph
class, the goal of our enumeration is to find the largest n, such that Kn belongs to
it, while Kn+1 does not. Similarly, for bipartite graphs, we aim at finding the largest
graphs Ka,b that belong to a certain graph class.

A complete subgraph in a graph G is also denoted by a clique. The problem of
finding the largest clique arises e. g. in questions regarding (social) networks [80,103],
or when determining lower bounds for the chromatic number. Hence, the knowledge
of complete graphs provides a valuable contribution to these fields. The same holds
true for complete bipartite graphs, since bipartite graphs appear in many situations,
from trees over (social) networks [26,138] and chemistry [51] to scheduling tasks [55,
90,135], just to name some.

As already mentioned, the number of crossings in a drawing is an important
measure for its aesthetic qualities [116]. Moreover it has many applications
e. g. in combinatorial geometry [105, 107, 133] and Very Large-Scale Integration
design [35,101,102]. So the lower bound on the number of crossings for each drawing
of a graph, described by the Crossing Lemma [3,7,67,102], is an important parameter
in graph drawing. In Chapter 6, we generalize the well-known Crossing Lemma to
a Meta Theorem. More precisely, we show that the number of crossings in a graph
G with properties P (such a property is e. g. “bipartite”) is lower bounded by cm3

n2 .
Thereby n and m are the number of vertices and edges of G, and c is a constant that

https://hog.grinvin.org/
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depends on the maximal number of edges in k-planar graphs (for small values of k)
with properties P . Moreover, from our Meta Crossing Theorem we deduce Meta
Theorems for edge density bounds of k-planar and k-gap-planar graphs (where the
graphs also have properties P). Finally we show how to apply the Meta Theorems to
outer-k-planar graphs and to bipartite k-gap-planar graphs, and also provide some
additional edge density results for 1-gap-planar graphs.

A special drawing paradigm for a bipartite graph is the drawing of its vertices on
several parallel lines. This approach and a corresponding drawing algorithm was
first introduced by Sugiyama [131] and is beneficial for the perception of bipartite
graphs. Various subsequent works considered the crossing minimization of layered
graphs [65, 91, 136]. In Chapter 7 we focus on graphs that can be drawn on two
parallel lines, such that the edges are represented by monotonic curves between
them (so-called 2-layer graph). This drawing style is also one of the main parts in
Sugiyama’s drawing algorithm and has recently been studied for RAC-graphs [56]
and fan-planar graphs [38]. We provide upper bounds on the number of edges for
several graph classes, apply the generalized Crossing Lemma of Chapter 6 to 2-layer
k-planar graphs, and study the relationships between different 2-layer graph classes.

Finally we summarize our findings in Chapter 8.





Chapter 2

Definitions

In this chapter we introduce vocabulary of graph theory and graph drawing that is
used throughout this work.

2.1 Graphs and Drawings

A graph G = (V,E) consists of a set of vertices V and a set of edges E ⊆ V × V ,
where e ∈ E is a tuple of vertices, that is e = (u, v) for some u, v ∈ V ; thereby the
vertices u and v are called end vertices of e. The vertex set V is also denoted by
V (G) or VG, and the edge set by E(G) or EG.

The graph G is called a directed graph if (u, v) and (v, u) are considered to be
different, otherwise G is called undirected1. Throughout this work, we study only
undirected graphs and just call them “graphs”, omitting the word “undirected”.

A graph is simple if it has at most one edge between each pair of vertices (“no
parallel edges”) and no self-loops, i. e. E contains no edge (u, u) for some vertex
u ∈ V . Otherwise G is called multi-graph. Observe that a simple graph with n

vertices has at most 1
2n(n− 1) edges.

For an edge e = (u, v) ∈ E we say that v is a neighbor of u, v is connected to u, or
v is adjacent to u; further we call u (and v) incident to e. Two edges are adjacent if
they share a common end vertex. The degree deg(v) of a vertex v ∈ V is the number
of vertices adjacent to it.

A drawing Γ of a graph in the plane R2 is defined as follows: Every vertex v ∈ V
is mapped to a point pv in the plane; every edge e = (u, v) is drawn as a Jordan
curve Je connecting the points pu and pv in the plane. In the following we refer to
pv simply by v and to Je by e.

1In the literature, the notation e = {u, v} is often used for undirected edges.
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A drawing is called simple2, if no edge crosses itself (referred to as “self-crossing”),
and each pair of distinct edges have at most one point in common; i. e. they have
either one single crossing or one single common endpoint.

An edge that does not cross any other edge is called crossing-free or planar. The
drawing Γ is planar if all its edges are planar; the graph G is planar if a planar
drawing for G exists. In a planar drawing, each area delimited by edges is a face;
the edges delimiting a face f are incident to f . Note that each edge is incident to
two (not necessarily distinct) faces. We call the unbounded face the outer face of Γ
(refer to Fig. 2.1a).

u

ve

e′

x
y z

(a)

u

ve

e′

x
y z

(b)

Fig. 2.1: (a) A drawing Γ of a graph. The vertices u and v are adjacent, as well as the
edges e and e′. The vertices u and v are incident to e. The two yellow regions
are examples for faces in Γ. The outer face of Γ is indicated by the bright red
area. (b) A subdrawing of Γ. The highlighted blue part illustrates an induced
subdrawing of {u, v, x, y, z}.

A subgraph H = (VH , EH) of G is a graph with VH ⊆ V and EH ⊆ E such that
EH ⊆ VH × VH . For V ′ ⊆ V , the induced subgraph G[V ′] is the subgraph H of G
with VH = V ′ and EH = {(u, v) ∈ E | u ∈ V ′ and v ∈ V ′}. A subdrawing ΓH of
Γ is the part of the drawing Γ that consists of vertices VH and edges EH for some
subgraph H of G. An induced subdrawing Γ[V ′] is a subdrawing for an induced
subgraph G[H ′] (for an illustration see Fig. 2.1b).

If H is a subgraph of G, we call G an augmentation of H; similarly, we call Γ an
augmentation of Γ′ if Γ′ is a subdrawing of Γ.

A matching is a set of edges E ′ ⊆ E, such that no two edges of E ′ share a common
end vertex. Two edges e1, e2 ∈ E are independent if the set {e1, e2} is a matching,
or, in other words if e1 and e2 are not adjacent.

In a graph G = (V,E), we call p = (v0, v1, . . . , vt) a path of length t if (vi−1, vi) ∈ E
for all 1 ≤ i ≤ t. Note that a single vertex is a path of length 0, and a single edge

2In the literature, “simple drawings” are also called “good drawings”, see e. g. [97].
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is a path of length 1. For t ≥ 1 the tuple c = (v1, . . . , vt, v1) is a cycle of size t if
(v1, . . . , vt) is a path of length t− 1, and additionally (vt, v1) ∈ E.

Let n = |V | be the number of vertices in G. A Hamiltonian cycle is a cycle
c = (v1, . . . , vn, v1), such that the vertices v1, . . . , vn are pairwise distinct; that is,
cycle c contains all vertices of G. The graph G is called Hamiltonian if it contains
a Hamiltonian cycle.

We call G connected if for every pair u, v ∈ V there exists a path p between u and
v; e. g. a Hamiltonian graph is connected. Otherwise G is disconnected. A connected
component of G is an induced subgraph G[V ′] of G such that G[V ′] is connected,
and for every vertex v ∈ V \ V ′ (if any) the subgraph G[V ′ ∪ {v}] is disconnected
(for an illustration of connected components refer to Fig. 2.2). In other words: In a
connected component of G, every pair of vertices is connected by a path.

Fig. 2.2: Illustration of the connected components (gray) of a graph. The cut vertices are
blue and the bridges are red.

The graph G is called biconnected (or 2-connected) if G[V \ {v}] is connected
for every vertex v ∈ V . More generally, G is k-connected if G[V \ {v1, . . . , vk}] is
connected for every {v1, . . . , vk} ⊆ V .

Let H = (VH , EH) be a connected component of a graph G. Then v ∈ VH is a cut
vertex of G if H[VH \ {v}] is disconnected. An edge e ∈ EH is called a bridge in G
if H \ {e} is disconnected. Note that biconnected graphs have neither cut vertices
nor bridges.

2.2 Special Types of Graphs

Usually it is (almost) impossible to derive algorithms or certain parameters for
general graphs. However, if we impose more restrictions on graphs, that is, if we
consider graphs with special properties, it becomes possible to do so. In the following
we give some classes of graphs which are defined solely on the graph itself, in contrast
to Secs. 2.3 and 2.7, where the existence of certain drawings indicate that a graph
belongs to a class.
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We already know paths and cycles. The two terms induce the classes of path-graphs
and cycle-graphs, which consist of graphs that are paths, and graphs that are cycles,
respectively.

A well studied class of graphs are the so-called trees. Thereby a tree is a connected
graph which contains no cycle (illustrated in Fig. 2.3a). On the other hand, if a
graph is disconnected and has no cycles, then it is called a forest. In this case the
connected components are trees. Since a path-graph contains no cycles, it belongs
to the class of trees.

The definition for a pseudo-tree is very similar to the one of a tree. The only
difference is that in a pseudo-tree at most one cycle is allowed (see e. g. Fig. 2.3b).
So the trees and the cycle-graphs form subclasses of the class of pseudo-trees.
Corresponding to a forest for trees, a pseudo-forest is a graph such that all its
components are pseudo-trees.

(a) (b) (c)

Fig. 2.3: Drawings for: (a) A tree; (b) a pseudo-tree (the cycle is red); (c) a 3-regular
graph.

For some d ≥ 0, we call a graph d-regular if each of its vertices has degree d. For
example, a 0-regular graph consists of a set of vertices and no edges, a 1-regular
graph is a matching, and a 2-regular graph consists of a set of cycles. The 3-regular
graphs are also called cubic graphs (illustrated in Fig. 2.3c).

A simple (n − 1)-regular graph is called complete; that is, in a complete graph
each pair of distinct vertices is connected by exactly one edge. We denote complete
graphs with n vertices by Kn (see Fig. 2.4a for an illustration of K3 and K4). Note
that the number of edges in a d-regular graph is 1

2dn, and hence, a complete graph
has exactly 1

2n(n− 1) edges. For n = 3 a complete graph is also called a triangle.

For a graph G, consider an induced subgraph H with k vertices. A complete
subgraph H is also called a clique of size k or a k-clique. On the other hand, if H is
0-regular (that is, there are no edges between its vertices), then H is an independent
set of size k (for an illustration see Fig. 2.4b). The size of the largest clique in
G, referred to as clique number, is denoted by ω(G), and the size of a maximal
independent set is denoted by α(G). It is not difficult to observe that ω(G) = α(G),
where G = (V, {(u, v) ∈ V 2 | u 6= v and (u, v) /∈ E}) is the complement of G.
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For example the real world problem of finding k mutually friends in social networks
translates into the problem of finding a k-clique in a graph.3

(a) (b) (c) (d)

Fig. 2.4: (a) The complete graphs K3 and K4. (b) A graph with a 5-clique (blue) and an
independent set of size 6 (red). (c) The complete bipartite graph K2,3 and the
star K1,5; the two independent parts are indicated by different colors. (d) The
complete 3-partite graph K2,2,2.

A graph G = (V,E) is bipartite if V can be split into two disjoint sets U,W ⊆ V ,
such that E ⊆ {(u,w) | u ∈ U and w ∈ W}. In particular, there are no edges
between two vertices of U , and no edges between two vertices of W ; hence, U and
W are independent sets. When considering bipartite graphs, we refer to U and
W as the independent parts or independent sets of G. Allocation problems are a
typical example for a field where bipartite graphs appear, e. g. in the assignment of
teachers to classes, where the set of all teachers and the set of all classes are the two
independent parts.

Graph G is called complete bipartite if E = {(u,w) | u ∈ U and w ∈ W}. A
complete bipartite graph with a = |U | and b = |W | has exactly a · b edges and is
denoted by Ka,b. Complete bipartite graphs K1,b are called stars (see Fig. 2.4c).
An important characterization of bipartite graphs is the following (see e. g. [27]): A
graph is bipartite if and only if all its cycles have even length.

Bipartite graphs are generalized by the so-called k-partite (multipartite) graphs,
where V can be split into k disjoint independent sets U1, . . . , Uk. For 3-partite graph
also the term tripartite is commonly used. If G has the maximal number of edges,
i. e. there is an edge (ui, uj) in G for every ui ∈ Ui and uj ∈ Uj where i 6= j, then G is
complete k-partite. A complete k-partite graph with ai = |Ui| has exactly a1a2 · · · ak
edges and is denoted by Ka1,...,ak

.

3Note that most variants of the clique problem are NP-hard.
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2.3 Special Types of Drawings

Recall from school that a (straight) line is a curve whose coordinate points (x, y)
satisfy y = ax+ b for some constants a, b ∈ R. Further, a segment is a part of a line
such that y = ax+ b holds for x ∈ [`, r], where `, r ∈ R are constants. In a straight-
line drawing Γ, every edge is represented by a segment (for example, the drawing
in Fig. 2.4b represents a straight-line drawing). On the other hand, if every edge
consists of at most (k + 1) segments, such that consecutive segments have different
slopes, then Γ is called a k-bend drawing (illustrated in Fig. 2.5a).

(a) (b)

Fig. 2.5: (a) A 2-bend drawing Γ. (b) The planarization Γp of drawing Γ from Fig. 2.5a.
Real vertices and edges that are also in Γ are black. Dummy vertices and edges
incident to them are red.

Let Γ be a non-planar drawing. The planarization Γp of Γ is defined as follows
(see also Fig. 2.5b):

– The vertices of Γp are the vertices of Γ together with the crossing points of Γ. A
crossing point is called a dummy vertex or a crossing (vertex); a vertex of Γ is
called a real vertex.

– The edges of Γp are the planar edges of Γ, as well as the planar edge parts between
real vertices and dummy vertices, and the planar edge parts between two dummy
vertices in Γp.

The faces in Γ are defined as the faces of the planarization Γp; the outer face of Γ is
the outer face of Γp.

An outerplanar drawing is a planar drawing where all vertices lie on the boundary
of the outer face (see Fig. 2.6a). For a non-planar drawing Γ we say that Γ
is outerplanar if the corresponding planarization Γp is outerplanar. A graph is
outerplanar if it has an outerplanar drawing.

A 2-layer drawing is a drawing where all vertices are placed on two parallel lines
(usually the lines are horizontally); the edges are usually drawn as straight lines
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between vertices of the two layers4 (see Fig. 2.6b). Thus a 2-layer drawing is
necessarily bipartite. Note that all vertices of a 2-layer drawing are on the outer
face, hence such a drawing is outerplanar.

(a) (b) (c)

Fig. 2.6: (a) An outerplanar drawing. (b) A 2-layer drawing Γ. (c) A drawing of the
crossing graph X(Γ) in red, where Γ is the drawing in Fig. 2.6b.

We conclude this section by three special types of graphs, which, in fact, are not
drawings, but defined by drawings.

For a drawing Γ, the crossing graph X = X(Γ) = (VX , EX) consists of the following
vertices and edges (refer also to Fig. 2.6c):

– The vertices VX of X are the edges E of Γ, that is, VX = E;

– if two edges e1, e2 ∈ E cross each other in Γ, then (e1, e2) is an edge in X, that is,
(e1, e2) ∈ EX if and only if e1 and e2 cross in Γ.

The second type of graphs we want to introduce are the permutation graphs.
Permutation graphs were first introduced in [70, 113] and defined as follows. Let
π = (π1, . . . , πN) be a permutation of the set {1, . . . , N} for some N ≥ 1, that
is π(i) = πi for i = 1, . . . , N , and {π1, . . . , πN} = {1, . . . , N}. Further let Γπ be
the drawing consisting of line segments Li with endpoints (i, 1) and (πi, 0), where
1 ≤ i ≤ N . Then the permutation graph Gπ = (Vπ, Eπ) is defined as the crossing
graph of Γπ: the vertex set is Vπ = {L1, . . . , LN}, and, for i 6= j, the edge (Li, Lj)
belongs to Eπ if and only if Li and Lj cross in Γπ. Figure 2.7 shows an example for
a permutation graph with N = 6 vertices.

The last graph type we introduce in this section is the so-called dual graph of a
planar drawing Γ. The dual graph D = D(Γ) = (VD, ED) is defined as follows (for
an illustration see Fig. 2.8):

– The vertices VD of D are the faces of Γ;

– for every edge (u, v) in Γ there is an edge (f1, f2) in VE, where f1 and f2 are the
two (not necessarily distinct) faces incident to (u, v).

4For horizontal layers, it suffices to assume that the edges are y-monotonic curves between the
two layers; otherwise the edges are monotonic with respect to the direction perpendicular to
the two lines.



Definitions 14

2 31

π1

4 5 6

π6π2π4π5π3

L1

L2

L3

L4

L6

L5

Fig. 2.7: Left: A drawing Γπ, where the permutation is given by π = (5, 4, 1, 3, 2, 6). The
lines Li are numbered according to the order of the end point (i, 1) (top line).
Right: The corresponding permutation graph.

Note that D(Γ) is in general not a simple graph, since it may contain self-loops and
multiple edges. If Γ is not planar, we define the dual graph of Γ as the dual graph
of the planarization of Γ.

(a) (b)

Fig. 2.8: (a) A drawing and (b) an illustration of its corresponding dual graph.

2.4 Embeddings

A single graph can be represented by infinitely many drawings, even by drawings that
have the same properties. For example, all drawings of Fig. 2.9 are planar drawings
of the same graph. However, in the drawing of Fig. 2.9d, the vertex v3 belongs to
a different face as in the other three drawings and hence the order of the vertices
around v2 is different; namely, the vertices in clockwise order are v1, v6, v5, v3, while
the corresponding order in the other drawings is v1, v3, v6, v5. This gives rise to the
following definition.

A rotation system is the order in which incident edges appear around each vertex in
a drawing Γ. Further, a coarse embedding of a graph G is an equivalence class which
contains all drawings of G that have the same rotation system, and where each edge
is crossed by the same edges. In this sense the drawings of Figs. 2.9a to 2.9c are
all representatives of the same coarse embedding, while Fig. 2.9d represents another
coarse embedding of the same graph.

We define a (fine) embedding by the drawings that belong to the same equivalence
class: Let Γ1 and Γ2 be two drawings of a graph G that represent the same coarse
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v4 v5 v6

v1 v2 v3

(a)
v4 v5 v6

v1 v2 v3

(b)
v4 v5

v6

v1
v2 v3

(c)
v4 v5 v6

v1 v2

v3

(d)

Fig. 2.9: Several drawings of the same graph. The non-planar drawings in (a), (b) and (c)
represent the same coarse embedding; in contrast, the drawing in (d) is planar,
yielding a different coarse embedding.

embedding. Then Γ1 and Γ2 are representatives of the same (fine) embedding if for
every edge e ∈ G the order of the edges that cross e is the same in Γ1 and Γ2. If
this is the case, Γ1 and Γ2 are called equivalent (e. g. the drawings in Fig. 2.9a and
Fig. 2.9c are equivalent). Note that, in the planarizations of equivalent drawings
Γ1 and Γ2, the order of incident edges around each (dummy and real) vertex is the
same; hence two drawings are equivalent if and only if their planarizations have the
same rotation system.5

Each equivalence class for coarse embeddings might contain several equivalence
classes regarding fine embeddings. Therefore two drawings that are not equivalent
(regarding fine embeddings) can represent the same coarse embedding; refer to
Fig. 2.10 for an example.

v4 v5 v6

v1 v2 v3

(a)
v4 v5 v6

v1 v2 v3

(b)
v4 v5 v6

v1 v2 v3

(c)

Fig. 2.10: Several drawings of the same graph. In (a) and (b) the edge (v2, v5) is crossed
by the same two edges, but in a different order, hence the drawings are not
equivalent. On the other hand, the drawings in (b) and (c) are equivalent.
Although the drawings of (a) and (b) are not equivalent, they are isomorphic,
as the mapping indicated by the vertex colors show.

In the following we consider only fine embeddings (if not stated otherwise) and
call them just embeddings. Further, for an embedding D with drawing Γ, we call
the planarization of Γ a planarization of D. An embedding is simple if one of its
representative drawings is simple (which implies that all drawings representing the
considered embedding are simple by the definition of a fine embedding).

Let D1 and D2 be embeddings of the same connected graph G. Then D1 and
D2 are isomorphic if there exists a bijective mapping f of their vertices such that

5For a planar drawing, fine and coarse embeddings coincide, since all its edges are crossing-free.
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D′1 = D2, where D′1 is the embedding obtained by applying f to the vertex set of
D1. Two drawings Γ1 and Γ2 are isomorphic if the embeddings they represent are
isomorphic; that is, if and only if the planarizations of Γ1 and Γ2 are equivalent after
relabeling vertices, edges, and faces of Γ1. If no such relabeling exists, then Γ1 and
Γ2 are called non-isomorphic. For example, the drawings in Figs. 2.10a and 2.10b,
which are not equivalent, are isomorphic; the corresponding mapping is indicated
by the different colors of the vertices.

2.5 The Crossing Number

Let cr(Γ) be the number of crossings in a drawing Γ of G. Then the crossing number
cr(G) of G is the minimal value of cr(Γ) over all drawings Γ of G, that is,

cr(G) := min{cr(Γ) | Γ is a drawing of G}.

For complete graphs Kn the bound

cr(Kn) ≤ 1
4 ·
⌊n

2

⌋
·
⌊
n− 1

2

⌋
·
⌊
n− 2

2

⌋
·
⌊
n− 3

2

⌋
holds [75], while for complete bipartite graphs Ka,b the upper bound

cr(Ka,b) ≤
⌊a

2

⌋
·
⌊
a− 1

2

⌋
·
⌊
b

2

⌋
·
⌊
b− 1

2

⌋
is known [139]. The conjecture is that these bounds are tight, that is, the inequalities
are conjectured to be in fact equalities. This was proven for some special cases, but
is still open in the general case [74,75,123].

Regarding general graphs, the lower bound for the crossing number is cm3

n2 , where
c is a constant [67]. Currently the best value for c is 1

29 [3].

2.6 The Chromatic Number

Let G = (V,E) be a graph, t ≥ 1 a positive integer and c1, . . . , ct colors. A (vertex)
coloring of G is a mapping c : V −→ {c1, . . . , ct}, such that adjacent vertices are
mapped to different colors; that is, c(u) 6= c(v) for each (u, v) ∈ E (see Fig. 2.11 for
an illustration).

If the mapping c is surjective, i. e. if c−1(cj) 6= ∅ for every j (at least one vertex
has color j), then c is called a t-coloring and G is called t-colorable. The (vertex)
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Fig. 2.11: A coloring of a graph with 5 different colors.

chromatic number χ = χ(G) of G is the minimal number of colors needed in any
coloring of G. One observation is that a graph is bipartite if and only if it has
chromatic number χ = 2 [27]; this implies e. g. that every tree and every cycle-
graph with a cycle of even length is 2-colorable. Another important observation is
that, for every graph G, the clique number ω(G) is a lower bound for χ(G).

Corresponding to a vertex coloring, an edge coloring is usually defined as a mapping
c : E −→ {c1, . . . , ct}, such that adjacent edges are mapped to different colors. The
edge chromatic number χe = χe(G) of G is the minimal number of colors needed in
any edge coloring of G.

However, the concept of an edge coloring can be transformed into a vertex coloring
by the following construction: Let G′ = (V ′, E ′), where V ′ := E and (e1, e2) ∈ E ′

if and only if e1 and e2 have a common endpoint in G. Then an edge coloring of
G corresponds to a vertex coloring of G′. For this reason edge colorings are usually
not considered in the literature.

We want to use the term “edge coloring” for a different situation. Let Γ be a
drawing of G. For us, an edge coloring is a mapping c : E −→ {c1, . . . , ct}, such
that c(e1) 6= c(e2) if e1 and e2 cross in Γ. That is, an edge coloring corresponds to
a vertex coloring in the crossing graph X of Γ, and the edge chromatic number of Γ
corresponds the the chromatic number of X.

We conclude this section with a class of graphs that are defined by the chromatic
number and the clique number. Namely, a graph G is called perfect if its chromatic
number χ equals its clique number ω. Examples for perfect graphs are complete
graphs (for G = Kn we have obviously ω(G) = n = χ(G)), bipartite graphs (where
ω = χ = 2), and permutation graphs [70].

2.7 Graph Classes

Recall that a drawing Γ is planar if it has no crossings, and a graph G is planar if a
planar drawing of G exists. A planar drawing Γ is maximal if no edge can be added
to Γ without violating planarity; in this case Γ is called a triangulation, since all its
faces are bounded by exactly three edges (see e. g. Fig. 2.12).
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(a) (b)

Fig. 2.12: Two triangulations. The triangulation in (b) is a straight-line drawing.

As a consequence of Euler’s formula6, a maximal planar drawing Γ has 3n − 6
edges, where n is the number of vertices of Γ. Thus, the number of edges in planar
graphs is upper bounded by 3n−6 and, since every triangulation reaches this upper
bound, it is a tight upper bound. We refer to the maximal number of edges in a
class of graphs also as edge density of this class.

Apart from the class of planar graphs, there exist many more interesting graph
classes. In the following we explain some of them, namely the ones which we study
in this work, together with their edge density bounds. In contrast to planar graphs,
these classes allow a graph to have crossings, and are hence “more than planar”, or
“graph classes beyond planarity”; see e. g. [61,87].

We start with a natural generalization of planar graphs. For k ≥ 1 a drawing is
called k-planar [2, 40, 106, 108, 122] if each of its edges has at most k crossings; a
graph is k-planar if it has a k-planar drawing7; refer to Fig. 2.13a. The general edge
density for k-planar graphs is 3.81

√
kn [3]. However, for k ≤ 4 there exist better

upper bounds on the number of edges, namely 4n−8 edges for 1-planar graphs [122],
5n − 10 edges for 2-planar graphs [108], 11

2 n − 11 edges for 3-planar graphs [106],
and 6n− 12 edges for 4-planar graphs [3].

For the definition of the next two graph classes, assume that Γ contains two
pairs of crossing edges E1 := {(u1, u2), (v1, v2)} and E2 := {(w1, w2), (z1, z2)}. Let
V ′ := {u1, u2, v1, v2} ∩ {w1, w2, z1, z2} be the set of their common endpoints. A
drawing is IC-planar [9,141] (IC is short for “independent crossing”) if V ′ is empty
(refer to Fig. 2.13b), and NIC-planar [140] (NIC is short for “nearly independent
crossing”), if V ′ contains at most one vertex (refer to Fig. 2.13c). In other words, no
two pairs of crossing edges share an end vertex in an IC-planar drawing; two pairs of
crossing edges share at most one end vertex in NIC-planar drawings. By definition,
every IC-planar drawing is NIC-planar, while every NIC-planar drawing is 1-planar.

6Euler’s formula states that n−m+ f = 2 holds in connected planar drawings, where n, m and
f are the numbers of vertices, edges and faces, respectively; refer e. g. to [121].

7Note that we always declare a graph as belonging to a certain graph class by the existence of a
drawing with corresponding properties.
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(a) 2-planar (b) IC-planar (c) NIC-planar

Fig. 2.13: Allowed (green box) and forbidden (red box) configurations in (a) 2-planar
drawings; the red edge has 3 crossings, which violates 2-planarity. (b) IC-
planar drawings; the red vertices are shared by two pairs of crossing edges.
(c) NIC-planar drawings; the two red vertices are shared by the same pair of
crossing edges.

The maximal number of edges in IC- and NIC-planar graphs is 13
4 n − 6 [141] and

18
5 n−

36
5 [140], respectively.

For k ≥ 3, a drawing is called k-quasi-planar [4, 5, 71] if it contains no k mutually
crossing edges; refer to Fig. 2.14a. It is known that 3-quasi-planar graphs, also
referred to as quasi-planar graphs, have an edge density of 13

2 n− 20 [4].

(a) quasi-planar (b) fan-crossing (c) fan-planar

Fig. 2.14: Allowed (green box) and forbidden (red box) configurations in (a) quasi-planar
drawings. (b) fan-crossing drawings; the red edges are independent. (c) fan-
planar drawings; the red edges are independent; the red arrows indicate a
crossing of an edge from different sides.

A fan is a set of edges which are all incident to the same vertex. Recall that two
edges are independent if they share no common endpoint. We say that a drawing Γ is
fan-crossing [43,44] if each edge in Γ crosses no two independent edges, i. e. an edge
in Γ may either be planar, or cross a single edge, or cross a fan; refer to Fig. 2.14b.

If for every edge, that is crossed by more than one edge, it also holds that the
crossings are from the same “side”, then Γ is fan-planar [32, 38, 39, 93]; refer to
Fig. 2.14c. Although the fan-planar graphs are a subclass of the class of fan-crossing
graphs, both classes have the same tight edge density of 5n− 10 [43,93].

In a sense complementary to the fan-crossing graphs are the fan-crossing free
graphs. Thereby a drawing is fan-crossing free [44,50] if no edge crosses a fan, that
is, every edge may only cross independent edges; refer to Fig. 2.15a. The maximal
number of edges in fan-crossing free graphs is 4n− 8 [50].
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Let C be the set of crossings of a drawing Γ with edge set E. For k ≥ 1, we call a
drawing Γ k-gap-planar [30] if a mapping f : C −→ E exists, such that the inverse
image f−1(e) of every e ∈ E contains at most k crossings; that is, each crossing is
mapped to an edge such that each edge has at most k crossings mapped to it; refer
to Fig. 2.15b. We call the crossings that are mapped to an edge also gaps and draw
them as gaps in Γ to enhance the readability of Γ. The edge density of 1-gap-planar
graphs – often just called gap-planar graphs – is known to be 5n− 10 [30].

Bae et al. [30] showed that a drawing Γ is k-gap-planar if and only if the number
of edges in every induced subgraph Γ[E ′], where E ′ ⊆ E, contains at most k|E ′|
crossings. Moreover, they observed that a graph is k-gap-planar, if and only if it
allows a drawing whose crossing graph can be covered by at most k pseudoforests.
For gap-planar graphs this means that a graph is gap-planar, if and only if it allows
a drawing whose crossing graph is a pseudoforest.

(a) fan-crossing free (b) gap-planar (c) fanbundle-planar

Fig. 2.15: Allowed (green box) and forbidden (red box) configurations in (a) fan-crossing
free drawings; the red edges are not independent. (b) gap-planar drawings;
two crossings are mapped to one of the edges, since there are only five edges
but six crossings. (c) fanbundle-planar drawings.

The next class we consider is the one of k-fanbundle-planar graphs [13] (if k = 1,
we say just “fanbundle-planar graphs”). Similar to a fan, a (fan)bundle is a set of
edges incident to the same vertex. The difference of both concepts is the way how
they are drawn. While in a fan each edge is still drawn individually, this is not the
case for a bundle. Namely, every edge e = (u, v) of a 1-sided k-fanbundle-planar
drawing consists of two parts (see also Figs. 2.15c and 2.16a):

– The bundle Bu, which belongs to one of the vertices u or v, say u (called origin of
Bu), and may be shared with several other edges incident to u. Bundle Bu is drawn
as a segment starting in u and ending in a point tu, the so-called terminal of Bu. It
is allowed that Bu crosses at most k other bundles with an origin different from u.

– The non-bundle part of e, which is drawn crossing-free between tu and v; this part
is also called planar part of e.

The number of edges in 1-sided fanbundle-planar graphs is 13
3 n−

26
3 [13], which is a

tight bound.
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The 2-sided k-fanbundle-planar drawings are defined accordingly; the only
difference to 1-sided k-fanbundle-planar drawings is, that every edge e = (u, v)
consists of three parts: bundles Bu and Bv with origins u and v, respectively, and
a planar part between the terminals of Bu and Bv. Here the known edge density
bound is 8.6n− 15.6 [13]. The lower bound construction in [13] provides a drawing
with only 7n− 18 edges, so the bound is not tight.

u

v

Bu
tu

(a)

90◦
>90◦

(b) RAC

Fig. 2.16: (a) Illustration for a bundle Bu with origin u and terminal tu. (b) Allowed
(green box) and forbidden (red box) configurations in RAC drawings.

We conclude with the so-called RAC (right-angle crossing) drawings [59, 60, 64],
where edges are drawn straight-line and may only cross at right angles; refer to
Fig. 2.16b. For RAC graphs the edge density is 4n − 10 [59]. Compared with the
other graph classes introduced in this section, RAC graphs are different, because
their drawings have straight-line edges by definition, while this is not necessarily the
case for the other graph classes.





Chapter 3

Drawing a Tree with Few Segments

One measure for the quality of a graph drawing is the number of simple geometric
entities used in it, the so-called visual complexity [127]. For a straight-line drawing
Γ of a graph, the visual complexity is the number of segments in Γ, referred to as
segment complexity, where one segment consists of a path in Γ, i. e. each segment may
consist of several edges. This approach can be attributed to the Gestalt principles
of perception [98], which are laws describing how the mind typically perceives and
organizes a scene with several objects in it. Thereby edges grouped together to a
segment may be easier to follow by the law of continuation, and drawings with fewer
segments might hence improve the perceptual processing of them. Also aesthetics
may be influenced in a positive way by reducing the number of segments in a drawing,
as a recent user study suggested [96].

Results regarding the segment complexity stem e. g. from Durocher and Mon-
dal [63], who provided an algorithm to draw a triangulation with 7

3n−O(1) segments,
and from Dujmović et al. [62], who proved upper and lower bounds for the number of
segments in several graph classes. In particular they showed that every tree can be
drawn with ϑ

2 segments, where ϑ is the number of odd-degree vertices; moreover, this
bound is tight, that is, there exists trees which need ϑ

2 segments. Another result in
this direction is by Hültenschmidt et al. [89]. Recently they presented an algorithm
to draw a tree on a grid with 3

4n segments and O(n3.58) area. In this chapter1 we
improve their area bound to n× n, while retaining the number of segments.

1The results of this chapter are part of the conference paper “Drawing planar graphs with few
segments on a polynomial grid” [95].
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3.1 Preliminaries

Let T = (V,E) be a tree and Γ a drawing of T . A segment in Γ is a (maximal)
path p = (v1, v2, . . . , vt), such that all vertices of p, lie on the same straight line. As
already mentioned, the segment complexity of Γ is the number of segments in Γ. A
grid drawing is a drawing Γ, such that all its vertices lie on grid points (x, y) ∈ Z×Z.
For convenience, we set −(x, y) := (−x,−y).

3.2 How to Draw T with few Segments on a Grid

In the following we describe an algorithm to draw the tree T with at most 3n
4 − 1

segments on an n× n grid. Our algorithm runs in O(n) time. To this end, let α be
the number of leaves of T , and β the number of degree-2 vertices of T .

If T is a path, it can be drawn with one segment and n× 1 area. In the following
we assume that T is not a path, that is, T has a vertex of degree larger than 2. We
choose such a vertex as root of our tree T .

Contraction of degree-2 vertices. We create another tree T ′ by contracting all
degree-2 vertices of T (refer to Figs. 3.1a and 3.1b). The new tree T ′ has n − β

vertices and still α leaves. For a degree-2 vertex u ∈ T we say that u belongs to v if
v is the first descendent of u in T with a degree different from 2 (refer to Fig. 3.1a).
Note that the running time for this step is O(n), since each vertex of T must be
considered only once.

Removing leaves. We create a new tree T ′′ by removing all leaves from T ′. The
tree T ′′ has n − β − α vertices. (see Fig. 3.1c). The running time to do so is
O(n− β) = O(n).

Before describing the next steps of our algorithm, we explain the main idea. We
draw T ′′ with n − β − α segments, that is, each edge of T ′′ is one segment. Then
we add the α leaves such that a leaf either extends a segment of T ′′, or every pair of
leaves belong to one segment. Thus we need at most α

2 additional segments, yielding
at most n − β − α

2 segments for T ′. Observe that more than half of the vertices of
T ′ are leaves, i. e. α > n−β

2 , since T ′ has no degree-2 vertices; this implies an upper
bound of 3

4(n− β) ≤ 3
4n segments for T ′. Finally we re-insert the degree-2 vertices

without increasing the number of segments.

We use the following definitions in our algorithm. For a vertex v of T ′′ we denote
the subtree of T rooted at v by Tv and the number of vertices of Tv by nv. Our goal
is to draw Tv inside a polygon Pv, where Pv has the dimensions `v, rv, tv, bv and hv
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u′

v′

u

v

(a) (b) (c)

(d)

Fig. 3.1: (a) A tree T . Degree-2 vertices are blue and leaves are red. Vertex u belongs
to v and vertex u′ belongs to v′. (b) The tree T ′, where all degree-2 vertices
from T are contracted. (c) The tree T ′′, where all leaves from T ′ are removed.
(d) The drawing our algorithm produces.

as indicated in Fig. 3.2a. We create the drawing of Tv recursively (using a pre-order
walk), while maintaining the following two properties:

Property 1: No vertex of Tv is placed to the top left of v;

Property 2: the polygon Pv has area nv × nv.

If v is a leaf of T ′′, we place it at (relative) position s = (0, 0) and both properties
are clearly fulfilled. Otherwise we assume that v1, . . . , vk are the children of v in
T ′′, and that each subtree Ti := Tvi

is drawn inside a polygon Pi with dimensions
`i, ri, ti, bi and hi such that Properties 1 and 2 hold. Again, let s = (0, 0) be the
(relative) position of v; further, for a vertex u ∈ Tv, let s + (x(u), y(u)) be its
coordinates with respect to v. For each vertex v, we save the dimensions of the
corresponding polygon and the number of degree-2 vertices belonging to v; further,
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we save the position of v relative to its parent, in order to guarantee a linear running
time for our algorithm.

`v
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v

Pv
bv

hv
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wv

(a)

v

vk

Pk

v1
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vi−1

Pi−1

vi

Pi

`iri−1

ti−1

(b)

v

vk

Pk

v1

P1

vi−1

Pi−1

vi

Pi

βi

(c)

Fig. 3.2: (a) The polygon Pv and its dimensions. (b) The drawing of Tv after Step 1.
(c) The drawing of Tv after Step 2.

Step 1. We place v1 directly below v, and we place each polygon Pi, where i ≥ 2
to the right of Pi−1, such that vi is aligned with the top boundary of Pi−1 (refer
to Fig. 3.2b). That is, the position of v1 is s − (0, 1 +

∑k
i=1 ti), and for i ≥ 2 the

position of vertex vi is (x(vi−1) + ri−1 + `i + 1, y(vi−1) + ti−1). By Property 2 the
total width and height of this drawing is at most

∑k
i=1 ni, where ni is the number

of vertices in subtree Ti.

Step 2. Let βi be the number of degree-2 vertices belonging to vi. We move each
polygon Pi down by βi and place the degree-2 vertices that belong to vi directly above
vi, that is, at positions (x(vi), y(vi)+1), . . . , (x(vi), y(vi)+βi) (for an illustration see
Fig. 3.2c). This does not change any edge incident to v and the polygons P1, . . . ,Pk

are still disjoint, since they are only moved down. Therefore the drawing is still
planar. The width of the drawing remains

∑k
i=1 ni, and the height increases at most

by max(β1, . . . , βk) ≤
∑k

i=1 βi, so the height is now at most
∑k

i=1(ni + βi).

Step 3. If v has no leaf-children in T ′ then continue with the next vertex (which is
either a sibling of v, or the parent of v, or no vertex at all). Otherwise let u1, . . . , ua

be the leaf-children of v in T ′ and γ1, . . . , γa the number of degree-2 vertices belonging
to them. We assume without loss of generality γ1 ≥ γ2 ≥ · · · ≥ γa.2 Further let Cv

2We stress that this ordering can be done in time O(a), e. g. by using CountingSort [52,128].
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be the subtree of Tv induced by v, u1, . . . , ua and the degree-2 vertices belonging to
u1, . . . , ua.

First suppose that a is even, say a = 2j for some j > 0. We place the leaves
alternating to the bottom-left and top-right of v, such that

– u2i−1, v and u2i lie on a segment with slope 1
i
for each i = 1, . . . , j, and

– the degree-2 vertices belonging to u2i−1 and u2i can be placed on this segment.

To this end, vertex u2i−1 is placed at coordinate s − ((γ2i−1 + 1) · i, γ2i−1 + 1) and
u2i at coordinate s+ ((γ2i + 1) · i, γ2i + 1). The γ2i−1 degree-2 vertices belonging to
u2i−1 are placed at coordinates

s− (i, 1), s− (2i, 2), s− (3i, 3), . . . , s− (γ2i−1 · i, γ2i−1),

while the γ2i degree-2 vertices belonging to u2i are placed at coordinates

s+ (i, 1), s+ (2i, 2), s+ (3i, 3), . . . , s+ (γ2i−1 · i, γ2i−1)

(refer to Fig. 3.3a).

v

u2i−1

u2i

(2i, 2)

v1

P1u1

u2

ua

ua−1

(a)

v

ua
u1

ua−1
u2

ua−2

(b)

v

ua

u1

ua−1
u2

ua−2

(c)

Fig. 3.3: The placing of u1, . . . , ua and their degree-2 vertices. (a) a is even. (b) a is odd
and v is a leaf in T ′′. (c) a is odd and neither is v the first child of its parent,
nor belongs a degree-2 vertex to v.

Now suppose that a is odd. In this case we apply the procedure described above
for the leaves u1, . . . , ua−1. The rules for placing ua are the following.

– If v is a leaf in T ′′, we place ua below v at coordinate s − (0, γa + 1) (see e. g.
Fig. 3.3b).

– If v is not a leaf in T ′′, and no degree-2 vertex belongs to v, and v is not the first
child of its parent in T ′′ (i. e. no edge leaves v vertically above), then we place ua
directly above v at coordinate s + (0, γa + 1). In this case, edge (v, ua) shares a
segment with (v, v′), where v′ is v1 or a degree-2 vertex belonging to v1 (see e. g.
Fig. 3.3c).

– Otherwise ua is placed like every other vertex with odd index, that is, at coordinate
s− ((γa + 1) · i, γa + 1).
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Step 4. By construction, no segment drawn in Step 3 crosses P2, . . . ,Pk. However,
there might be an intersection with P1; refer to the segment between u1 and u2 in
Fig. 3.3a. If this is the case, we move P1 down until the crossing disappears.

With Steps 1-4 we have created a drawing of Tv in a polygon Pv such that
Property 1 hold. We show that Pv also satisfies Property 2, that is Pv has area
nv × nv.

We have already seen that after Step 2, i. e. before Cv was drawn, the width of the
drawing of Tv is

∑k
i=1 ni and the height is at most

∑k
i=1(ni + βi). Now we analyze

the width and height of Cv in our drawing after Steps 3 and 4. To this end, let
γL =

∑da2 e
i=1 γ2i−1 be the number of degree-2 vertices of Cv which are drawn to the

left of v, and γR =
∑ba2 c

i=1 γ2i the number of degree-2 vertices of Cv which are drawn
to the right of v. Further let γ = γL + γR.

Since γ1 ≥ γ2 ≥ · · · ≥ γa and since ui is placed at y-coordinate s ± (γi + 1), the
vertices with the lowest and highest y-coordinate are u1 and u2, respectively. This
yields

– a height of 1 + γ = 1 + a+ γ for Cv if v has no leaf-children in T ′, that is a = 0;

– a height of 2 + γ1 = 1 + a + γ for Cv if v has exactly one leaf-child in T ′, that is
a = 1 and γ = γ1;

– a height of 3 + γ1 + γ2 ≤ 1 + a+ γ for Cv if v has more than one leaf-child in T ′,
that is a ≥ 2 and γ ≥ γ1 + γ2.

In every case the height of Cv is at most 1 + a+ γ.

To analyze the width of Cv, consider the leftmost vertex u2`−1 and the rightmost
vertex u2r among the vertices u1, . . . , ua. Since u2`−1 has x-coordinate s−(γ2`−1+1)·`
and u2r has x-coordinate s+ (γ2r + 1) · r, the width of Cv is

w(Cv) := 1 + (γ2`−1 + 1) · `+ (γ2r + 1) · r = 1 + γ2`−1`+ `+ γ2rr + r.

Observe that the order γ1 ≥ γ2 ≥ · · · ≥ γa implies

γL =
da2 e∑
i=1

γ2i−1 ≥
∑̀
i=1

γ2i−1 ≥ ` · γ2`−1

and

γR =
ba2 c∑
i=1

γ2i ≥
r∑
i=1

γ2i ≥ r · γ2r.
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Hence we have

w(Cv) ≤ 1 + `+ r + γL + γR ≤ 1 + 2 max(`, r) + γ ≤ 1 + a+ γ.

So in Step 3 the width of the drawing of Tv increases by at most 1 + a+ γ, while
the height increases by at most 1

2(a+γ) (only the part above v increases the height).
In Step 4 the drawing of T1 is moved down if it is crossed by the segment between
u1 and v. Because y(u1) > y(v1) implies that there is no such crossing, it suffices to
move T1 down by |y(u1)| ≤ 1

2(a + γ). Together with Step 3, the height increases at
most by 1 + a+ γ. So the width is at most

k∑
i=1

ni + 1 + a+ γ ≤ 1 +
r∑
i=1

(ni + βi) + a+ γ = nv,

and the height is at most

k∑
i=1

(ni + βi) + 1 + a+ γ ≤ 1 +
r∑
i=1

(ni + βi) + a+ γ = nv.

This complies with Property 2.

In the following we show that T has at most 3
4n− 1 segments. To this end let r be

the root of T . Further, for a vertex v ∈ T ′′ \ {r} let pv be the parent of v in T ′′, Pv
the path between v and pv in T , and ev the edge incident to pv on Pv (see Fig. 3.4).
Let T+

v := Tv ∪Pv, further let n+
v be the number of vertices in T+

v , and let sv be the
number of segments in the drawing of T+

v . For the number of segments in T+
i = T+

vi

we set si := svi
.

v

vk

v1

pv
ev

ev1

n′

a
b

Fig. 3.4: Illustration for the tree T+
v .
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Lemma 3.1. If ev is drawn vertically, then sv ≤ 3n+
v −1
4 , otherwise sv ≤ 3

4n
+
v .

Proof. We prove the lemma by induction on the height of T ′′. Assume that the
bound on the number of segments holds for all children of v in T ′′ (the base of the
induction will be proved in the first two cases of the case analysis below). Recall that
v1, . . . , vk are the children of v in T ′′ and u1, . . . , ua are the leaf-children of v in T ′.
Let b be the number of degree-2 vertices belonging to v and n′ :=

∑k
i=1 n

+
i . Then

n+
v = n′ + a+ γ + b+ 1 ≥ n′ + a+ b+ 1

(refer to Fig. 3.4). By induction we have s1 ≤ 3n+
1 −1
4 (recall that ev1 is drawn

vertically) and si ≤ 3
4n

+
i for i = 2, . . . , k. This yields

k∑
i=1

si ≤ 3n+
1 −1
4 +

k∑
i=1

3
4n

+
i = 3n′−1

4 .

In the following we analyze the number of segments for Cv and Pv with a case
analysis.

v is a leaf in T′′ and b = 0. Since v is a leaf in T ′′ we have n′ = 0 and v has at
least two children in T ; so n+

v ≥ n′+ a+ b+ 1 = a+ 1 and a ≥ 2. Also b = 0 implies
that the path Pv consists only of the edge ev.

• If a is even, we draw Cv with a
2 segments, and the edge ev with one additional

segment. Thus

sv ≤
a

2 + 1 ≤ n+
v − 1

2 + 1 = 3n+
v − n+

v + 2
4 ≤ 3n+

v − 1
4

since n+
v ≥ 3.

• If a is odd, we have a ≥ 3 and n+
v ≥ 4. The leaves u1, . . . , ua−1 (together with

the degree-2 vertices belonging to them) are drawn with 1
2(a− 1) segments. If

ev is vertical, it shares a segment with ua, yielding

sv ≤
a− 1

2 + 1 ≤ n+
v − 2

2 + 1 = 3n+
v − n+

v

4 ≤ 3n+
v − 4
4 = 3

4n
+
v − 1.

Otherwise, that is if ev is not vertical, we have one more segment and obtain
sv ≤ 3

4n
+
v .
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v is a leaf in T′′ and b > 0. We still have n′ = 0 and a ≥ 2, which implies
n+
v ≥ n′ + a+ b+ 1 = a+ b+ 1 ≥ a+ 2 ≥ 4. But now the path Pv consists of more

than one edge.

• If a is even, we draw Cv with a
2 segments. Moreover, if ev is vertical, the edge

ev and the degree-2 vertices belonging to v lie on a common vertical segment.
We obtain

sv ≤
a

2 + 1 ≤ n+
v − 2

2 + 1 = n+
v

2 = 3n+
v − n+

v

4 ≤ 3
4n

+
v − 1.

On the other hand, if ev is not vertical, the degree-2 vertices belonging to v
and the edge ev belong to two different segments; hence sv ≤ 3

4n
+
v .

• If a is odd, then we draw u1, . . . , ua−1 with 1
2(a − 1) segments, and ua on a

vertical segment together with the degree-2 vertices belonging to v. If ev is
also vertical, we obtain

sv ≤
a− 1

2 + 1 ≤ n+
v − 3

2 + 1 = n+
v − 1

2 ≤ n+
v

2 ≤
3
4n

+
v − 1,

otherwise we need one more segment for ev and obtain sv ≤ 3
4n

+
v .

v is not a leaf in T′′ and b = 0. Then we have n+
v ≥ n′ + a+ b+ 1 = n′ + a+ 1.

• Let a be even. Then Cv is drawn with a
2 segments (if a = 0 then Cv is drawn

with a
2 = 0 segments). If ev is vertical, then it shares a segment with ev1 and

we have

sv ≤
3n′ − 1

4 + a

2 = 3n′ + 2a− 1
4 ≤ 3(n+

v − a− 1) + 2a− 1
4

= 3n+
v − a− 4

4 ≤ 3
4n

+
v − 1.

On the other hand, if ev is not vertical, we need an additional segment, hence
sv ≤ 3

4n
+
v .

• Let a be odd. Then we use 1
2(a− 1) segments for u1, . . . , ua−1. If ev is vertical,

then it shares a segment with ev1 , but we have an additional segment for ua.
On the other hand, if ev is not vertical, then we need an additional segment
for ev, but ua is drawn above v and shares a segment with ev1 . Hence, in every
case we have

sv ≤
3n′ − 1

4 + 1 ≤ 3(n+
v − a− 1) + 3

4 = 3n+
v − 3a

4 ≤ 3n+
v − 3
4 .
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v is not a leaf in T′′ and b > 0. In this case we have n+
v ≥ n′+a+b+1 ≥ n′+a+2.

• If a is even, we draw u1, . . . , ua with 1
2a segments. The edges of Pv share a

vertical segment with ev1 and we use at most one additional segment for ev;
hence

sv ≤
3n′ − 1

4 + a

2 + 1 = 3n′ + 2a+ 3
4 ≤ 3(n+

v − a− 2) + 2a+ 3
4

= 3n+
v − a− 3

4 ≤ 3n+
v − 3
4 .

• Let a be odd. We draw u1, . . . , ua with 1
2(a+ 1) segments. Since the edges of

Pv share a segment with ev1 , they don’t need an additional segment. So, if ev
is vertical (and hence shares also a segment with ev1), we obtain

sv ≤
3n′ − 1

4 + a+ 1
2 ≤ 3(n+

v − a− 2) + 2a+ 1
4 = 3n+

v − a− 5
4 ≤ 3n+

v − 5
4 .

If ev is not vertical we need one more segment and have sv ≤ 3
4n

+
v .

We use Lemma 3.1 to give a bound for the total number of segments in the drawing
of T .

Lemma 3.2. For n ≥ 3, our algorithm draws T with at most 3
4n− 1 segments.

Proof. We use the same notation as in Lemma 3.1.

If T is a path with length n ≥ 3, then the bound clearly holds.

If T is no path and T ′′ consists of one vertex v, that is, T = Cv and b = 0 (in
this case T is a star or the subdivision of a star), we have 1

2a ≤
1
2(n− 1) ≤ 3

4n− 1
segments if a is even, and also 1

2(a + 1) ≤ 1
2n ≤

3
4n − 1 segments if a is odd (note

that n ≥ 4 when a is odd and T is not a path).

Otherwise T ′′ consists of more than one vertex. Let r be the root of T ′′ and
v1, . . . , vk be the children of r. By Lemma 3.1, in the drawing of T , the subtrees
T+

1 , . . . , T
+
k contribute at most 1

4(3n′ − 1) segments, where n′ =
∑k

i=1 n
+
i . Let

u1, . . . , ua be the leaf-children of r in T ′. If a is even, we draw them with 1
2a segments;

otherwise, we draw u1, . . . , ua−1 with 1
2(a− 1) < 1

2a segments, and align ua with the
vertical segment of v1. Also observe that the relation n ≥ n′ + a + 1 holds. Hence,
the number of segments in our drawing is upper bounded by

3n′ − 1
4 + 1

2a = 3n′ − 1 + 2a
4 ≤ 3n− 3a− 3− 1 + 2a

4 = 3n− a− 4
4 ≤ 3

4n− 1.
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Since all steps of our algorithm can be executed in linear time, we obtain the
following theorem.

Theorem 3.3. Any tree with n ≥ 3 vertices can be drawn planar on an n× n grid
with 3

4n− 1 segments in time O(n).

3.3 Conclusions and Open Problems

We provided a linear-time algorithm that calculates a grid-drawing of a tree using
at most 3

4n − 1 segments in an area of n × n. With that we improved the O(n3.58)
area of Hültenschmidt et al. [89] to O(n2). However, we were not able to construct
a corresponding lower bound example, that is, a family of trees on n vertices such
that these trees all need n× n area. Hence, the question remains open, if a tree can
be drawn with the same number of segments on a grid smaller than O(n2).





Chapter 4

Graphs of Low Degree

We call a graph G of degree d if d is an upper bound on the vertex degrees for G. In
this chapter we establish lower and upper bounds for the values of d, such that every
graph of degree d belongs to a certain graph class beyond planarity. More precisely,
for a graph class C, we aim at determining a value d` such that every degree-d graph
with d ≤ d` belongs to C, as well as a value du such that there exists a graph of
degree du that does not fulfill the properties of class C. By definition the inequality
d` < du holds. Ideally, we have d` + 1 = du for a class C.

An easy observation is that every graph of degree 2 can be drawn in a planar way
and therefore belongs to every graph class beyond planarity. So the lower bound d`
is at least 2, independent of the beyond-planarity graph class.

For deriving an upper bound du there exists a standard technique: By using the
maximum edge density it is possible to find complete or complete bipartite graphs
not belonging to the considered graph class. However, since graphs of low degree are
very sparse (in fact, graphs of degree d ≤ 5 are even sparser than planar graphs), this
technique fails in our case or gives lower and upper bounds that are far from tight.

Other than in this work, which is based on a publication in [15], graphs of low
degree were already considered in several papers. Thereby a long-standing open
question was if all graphs of degree 3 belong to the class of RAC-graphs [18, 59],
[60, Problem 6], [61, Problem 8]. Argyriou et al. [23] answered this question in
the positive for degree-3 graphs that are additionally Hamiltonian, and Angelini et
al. [18] for graphs of degree 3 that are allowed to have one bend per edge. In contrast
to these results, Didimo et al. [58] showed that not all graphs of degree 4 are RAC.
More precisely, the 4-regular complete bipartite graph K4,4 does not allow a RAC
drawing. Since K4,4 is Hamiltonian, we obtain d` = 3 and du = 4 for the class of
Hamiltonian RAC graphs by combining the two results of Argyriou et al. [58] and
Didimo et al. [58].
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Regarding the quasi-planar graphs, Alam et al. made two observations [8]:

(1) Every graph G = (V,E) of degree 4 is quasi-planar: The edges E of a degree-
4 graph can be decomposed into two disjoint sets E1 and E2 such that planar
drawings Γ1 and Γ2 of G1 = (V,E1) and G2 = (V,E2), respectively, exist, where
Γ1 and Γ2 use the same point set to draw the vertices of V . Since in the stacked
drawing Γ of Γ1 and Γ2 (which is a drawing for G), the edges of E1 can only
cross the edges of E2 and vice versa, there are no three mutually crossing edges
in Γ (refer also to Fig. 4.1). Thus, the drawing Γ is quasi-planar. This yields a
lower bound of d` = 4 for the class of quasi-planar graphs.

(a) (b) (c)

Fig. 4.1: Illustration for stacking two drawings using the same point set. (a) and (b) show
two planar drawings Γ1 and Γ2 for graphs G1 = (V,E1) and G2 = (V,E2).
(c) shows the stacked quasi-planar drawing of Γ1 and Γ2 for the graph
G = (V,E1 ∪ E2).

(2) Graphs of degree 3 that can be decomposed into a matching and a set of cycles
(the bipartite 3-regular graphs are an example for graphs having this property),
are quasi-planar and fan-crossing free at the same time. We remark that RAC
graphs are quasi-planar and fan-crossing free, so quasi-planarity and the fan-
crossing free property are two necessary conditions for a graph to be RAC.

We contribute to this discussion by studying various graph classes and showing
lower and upper bounds for the maximum degree d of graphs belonging to those
classes. Table 4.1 gives an overview of our results and the state of the art.

4.1 The Classes of k-Gap-Planar Graphs

First we consider the class of k-gap-planar graphs. Recall that a drawing Γ of a graph
G is k-gap-planar if there is a mapping f from the crossings to the edges, such that
the inverse image f(e) of an edge contains at most k crossings (in other words: each
edge gets at most k crossings assigned to it). Also recall that every graph of degree
2 is planar and therefore k-gap-planar. We show that d` cannot be larger than 2 by
showing that du = 3 for k-gap-planar graphs. In doing so we obtain tight bounds
for this class of graphs. In fact, we will even prove a stronger result in Thm. 4.1.
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Table 4.1: The largest known value d` such that all graphs of degree d ≤ d` belong to
the indicated graph class C, and the smallest value du where a graph is known
that does not belong to C.

graph class C d` du

k-planar Hamiltonian bipartite 2 3 (CCCn, Cor. 4.2)
fan-planar Hamiltonian bipartite 2 3 (CCCn, Cor. 4.3)
k-gap-planar Hamiltonian bipartite 2 3 (CCCn, Thm. 4.1)
quasi-planar 4 [8] 10 (K11, ref. [4])
RAC (0-bend) 2 4 (K4,4, ref. [58])
RAC (0-bend) Hamiltonian 3 [22] 4 (K4,4, ref. [58])
RAC 1-bend 3 [18] 9 (K10, ref. [10])
RAC 2-bends 6 [18] 148 (K149, ref. [24])
fan-crossing free 3 (Thm. 4.4) 5 (K5,5, Thm. 4.5)

For our proof we need the following theorem by Bae et al. [30]:

Let Γ be a drawing of a graph G = (V,E). The drawing Γ is k-gap-planar
if and only if for each set E ′ ⊆ E the subdrawing Γ[E ′] contains at most
k · |E ′| crossings.

Since every drawing of a graph G has at least cr(G) crossings, the theorem by Bae
et al. has the following implication: If cr(G) > k|E| then no drawing Γ of G is k-
gap-planar and by definition G is not k-gap-planar in this case. We use this fact to
prove the next theorem.

Theorem 4.1. For every k ≥ 1, there exist infinitely many bipartite Hamiltonian
3-regular graphs that are not k-gap-planar.

Proof. In order to prove the theorem, we need some definitions.

Harary [78] introduced the so-called hypercube graph Qn = (Vn, En) as follows:
The vertex set Vn consists of 2n vertices; each vertex is denoted by a unique distinct
n-digit binary number. Two vertices v and w are connected by an edge in En if and
only if the binary representations of v and w differ in a single digit; see Figs. 4.2a
and 4.2b for an illustration. Clearly each vertex is adjacent to exactly n other
vertices of Vn; therefore the graph Qn is n-regular.

Starting from Qn we obtain the so-called cube-connected cycles CCCn [115] as
follows: Each vertex v of Qn is replaced with a cycle v1, . . . , vn of length n. Let
e1, . . . , en be the edges incident to v in Qn. Then the edge ei is attached to vi; for an
illustration see Fig. 4.2c. Note that each vertex in CCCn has exactly 3 neighbors;
thus, the graph CCCn is 3-regular.
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Since Qn has 2n vertices, the number of vertices in CCCn is n2n, and since CCCn
is a 3-regular graph, the sum of the vertex degrees in CCCn is 3n2n, which implies
a number of 3n2n−1 edges for CCCn.

000

001

011

010
100

110

111

101

(a) (b)

(c)

Fig. 4.2: (a) Illustration of Q3, in which each vertex is labeled by a distinct 3-digit binary
number. (b) Illustration of Q4. The graph Q4 is created by connecting two
duplicates of Q3 as depicted by the red edges. (c) Illustration of CCC4, in which
each vertex of Q4 is replaced by a cycle of length 4 (see black edges). The 4
edges incident to each vertex in Q4 are distributed such that each vertex of the
corresponding cycle in CCC4 is incident to exactly one of them.

According to Sýkora and Vrtó [132] the crossing number1 cr(CCCn) of CCCn is
lower bounded by

1
204n − (9n+ 1)2n−1.

It is easy to see that for each k ≥ 1 there exist infinitely many n such that

2
3n·202n − 9n+1

3n > k.

For infinite many values of n this yields

cr(CCCn) ≥ 1
204n − (9n+ 1)2n−1 > k · 3n2n−1 = k|E|.

1Recall that the crossing number cr(G) of a graph G describes the minimal number of edge
crossing that an arbitrary drawing of G has.
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To complete our proof we show that CCCn is bipartite and Hamiltonian for infinite
many n. Hsu et al. [88] derived the exact length of cycles occurring in the graph
CCCn: If L(n) denotes the set of all possible lengths of cycles in CCCn, then

L(n) = {n} ∪ {i | i is even, 8 ≤ i ≤ n+ 5, and i 6= 10} ∪ {i | n+ 6 ≤ i ≤ n2n}

if n is odd, and

L(n) = {n} ∪ {i | i is even, 8 ≤ i ≤ n2n, and i 6= 10}

if n is even and n ≥ 6. Since CCCn has n2n vertices and a cycle of length n2n, the
graph CCCn is Hamiltonian for n ≥ 6. Further, since a graph is bipartite if and
only if it contains cycles of even length exclusively, the cube-connected cycles CCCn
is bipartite for n ≥ 6 and n even.

We conclude this section by noting that, since degree-4 graphs are quasi-planar,
Thm. 4.1 gives an alternative proof (to the proof of Bae [30]) that there exist quasi-
planar graphs which are not k-gap-planar for any fixed k.

4.2 The Class of k-Planar Graphs

Recall that a graph is k-planar if it can be drawn such that each edge has at most
k crossings. Similar to the k-gap-planar graphs, we show that d` cannot be larger
than 2 by showing that du = 3 for the class of k-planar graphs. This result is an
easy consequence of Thm. 4.1 and a result by Bae [30].

Corollary 4.2. For every k ≥ 1, there exist infinitely many bipartite Hamiltonian
3-regular graphs that are not k-planar.

Proof. Bae [30] showed that the class of (2k)-planar graphs are a subclass of the k-
gap-planar graphs. Since there are infinitely many bipartite Hamiltonian 3-regular
graphs not belonging to the class of k-gap-planar graphs by Thm. 4.1, we obtain that
these graphs also do not belong to the class of k′-planar graphs for each k′ ≤ 2k.

We observe that Cor. 4.2 can also be obtained by considering the average number
of crossings per edge: Since we have cr(CCCn) ≥ 1

204n − (9n + 1)2n−1 [132], the
average number of crossings per edge in CCCn is:

2·cr(CCCn)
|E(CCCn)| > 2 · (1/20)·4n−(9n+1)·2n−1

3n·2n−1 = 1
10 ·

4n

3n·2n−1 − (9n+1)·2n

3n·2n−1 = 1
15 ·

2n

n
− 6− 2

3n .
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Since this is a lower bound for the average number of crossings, the graph CCCn

contains an edge that is crossed by at least⌈ 1
15

2n

n
− 6− 2

2n

⌉
edges. So, for a fixed k ≥ 1, the graph CCCn is not k-planar for every n satisfying
the inequality

k <
⌈ 1

15
2n

n
− 6− 2

2n

⌉
.

4.3 The class of fan-planar graphs

Recall that a graph is fan-planar if an edge does not cross two independent edges.
First we observe the following for a drawing Γ of a 3-regular fan-planar graph
G = (V,E): Since an edge e ∈ E can cross at most a complete fan in Γ, that is all
edges incident to a vertex v ∈ V , and the degree of v is 3, we conclude that Γ is also
3-planar. As a consequence, a 3-regular graph that is not 3-planar cannot be fan-
planar. Applying Cor. 4.2 for k = 3 we obtain the following corollary, which implies
a value of du = 3 for the class of fan-planar graphs.

Corollary 4.3. There exist infinitely many 3-regular bipartite Hamiltonian graphs
that are not fan-planar.

4.4 The Class of Fan-Crossing Free Graphs

This section is dedicated to the fan-crossing free graphs. We recall that a graph
is fan-crossing free if no edge crosses a fan, i. e. each edge is only allowed to cross
independent edges. We prove that d` = 3 and du = 5, leaving only open the question
if all graphs of degree 4 are fan-crossing free.

4.4.1 An algorithm to draw a degree-3 graph fan-crossing free

As already mentioned before, Alam et al. [8] observed that every degree-3 graph
which can be decomposed into a matching and a set of cycles, is simultaneously
fan-crossing free and quasi-planar. However, Alam et al. did not give a concrete
algorithm to produce such a drawing. Instead they are referring to a paper by
Argyriou et al. [22], whose drawing algorithm for degree-3 Hamiltonian RAC graphs
creates in fact quasi-planar and fan-crossing free graphs. But it is not obvious how
to adjust this algorithm in order to work for general graphs of degree 3.
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So we developed our own algorithm for drawing a degree-3 graph in a fan-crossing
free style, and thereby showing that d` = 3.

Algorithm. Let G = (V,E) be a graph of degree 3. We assume that G is connected
(otherwise we can draw each component independently). If G has at least one bridge
e = (v, w), consider the components G1 and G2 of G \ {e}. Let Γ1 and Γ2 be fan-
crossing free drawings of G1 and G2, respectively. Then we can change Γ1 and Γ2

such that v and w are on the outer face of Γ1 and Γ2 (see also Fig. 4.3) and both
drawings are still fan-crossing free, and re-insert the bridge e in a planar way.

Another observation is that graphs of degree 2 are planar and therefore fan-crossing
free. Thus, we assume in the following that G is a connected bridgeless graph that
contains a vertex of degree 3. Since G has no bridge, there is no degree-1 vertex in G.

(a) (b) (c)

Fig. 4.3: (a) A drawing of an arbitrary graph G. Suppose the red vertex must be on the
outer face. (b) and (c) show how to achieve this by rerouting two edges. In
(b) the solid gray edge is rerouted to the solid red edge. In (c) the dashed gray
edge is rerouted to the dashed red edge. The result is another drawing of graph
G such that the red vertex is placed on the outer face.

In a preprocessing step, we perform the following operation: While there is a
degree-2 vertex v with neighbors u and w in the graph, we remove v together with its
incident edges (v, u) and (v, w) and insert the edge (u,w). Note that this operation
does not change the degree of u and w, but might create multiple edges.

Let G′ = (V ′, E ′) be the graph obtained after executing the preprocessing step.
Then G′ is a 3-regular, bridgeless multigraph. By Petersen’s theorem [111] there is
a perfect matchingM ⊆ E ′ in G′. Since G′ is 3-regular, the set C := E ′ \M consists
of cycles, i. e. C = C1 ∪C2 ∪ · · · ∪Ck, where C1, . . . , Ck ⊆ C are disjoint cycles. For
i = 1, . . . , k, let Ci = (vi,1, . . . , vi,αi

, vi,1).

Let U be the unit circle in the plane R2. Recall that the unit circle is the set
of points with distance one to the origin (0, 0) of R2. Starting at position (0, 1)
with vertex v1,1, we put the vertices v1,1, v1,2, . . . , v1,α1 , v2,1, . . . , vk,αk

of C1, . . . , Ck
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on the unit circle (clockwise or counter-clockwise) such that consecutive vertices are
equidistant. For i = 1, . . . , k and j = 1, . . . , αi − 1, the edge (vi,j, vi,j+1) is drawn
by following U . The edge (vi,1, vi,αi

) is drawn as a half-circle outside of the unit disc
(see black edges in Fig. 4.4). Then the edges of C are drawn in a planar way and
no edge of C is drawn in the interior of U .

Further, we draw each edge e = (vi,j, vi′,j′) ∈M , where i, i′ = 1, . . . , k, j = 1, . . . , αi
and j′ = 1, . . . , αi′ , by connecting vi,j and vi′,j′ using a straight line (see blue edges in
Fig. 4.4). In doing so we ensure that edges belonging to M are drawn in the interior
of U . Thus, edges from M and C do not intersect each other. Different edges from
M might cross, but since each vertex of G′ is incident to at most one edge of M , all
edges in M are independent and therefore no edge of M is part of a fan-crossing.

C1

C2

C3

C4

C5

C6

C7

C8

v1,1

v1,2

v1,3

v2,1

v2,6

v6,3 v7,3

v2,3

v4,4

v8,1

Fig. 4.4: A fan-crossing free drawing for a 3-regular graph, using our algorithm. The
edges belonging to the cycles C1, . . . , Ck are black, and the matching edges are
blue, except one: The red edge shows a matching edge that is a second version
of another edge, namely the black edge (v2,1, v2,6) belonging to the cycle C2.

At this point we have a closer look what happens with multiple edges. Suppose
there are vertices v and w that have a multiple edge (v, w). We consider different
cases:



43 Graphs of Low Degree

(1) Edge (v, w) appears four more times. Then we would have deg(v), deg(w) ≥ 4,
which is not possible.

(2) Edge (v, w) appears three times. Since the degree of v and w is three and G′ is
connected, the whole graph G′ consists of v, w and the three versions of (v, w).
One version (v, w) belongs to M , the other two belong to C. This configuration
is drawable as described above.

(3) Edge (v, w) appears twice and both versions belong to M . This is clearly not
possible, since M is a matching.

(4) Edge (v, w) appears twice and both versions belong to C. In this case one cycle
of C consists of v and w only. This can be drawn as described above (see black
edges of cycle C5 in Fig. 4.4).

(5) Edge (v, w) appears twice and one version belongs to M , the other to C. Say
e1 ∈ C and e2 ∈ M . The vertices and edges can be drawn as described above.
Thereby the vertices v and w belong to a cycle of length at least 3 and are placed
either consecutively on U , or at the extremal positions of the cycle they belong
to (see the cycle C2 in Fig. 4.4).

So, in fact, our drawing algorithm for G′ works also for multiple edges.

Let Γ′ be the drawing we constructed so far for the graph G′. In the final step our
goal is to extend Γ′ in order to obtain a drawing Γ of G. That is, we want to re-insert
the degree-2 vertices into Γ′ such that the resulting drawing is still fan-crossing free.
We re-insert these vertices in the reversed order as we have removed them. Suppose
v is a degree-2 vertex that has been removed in some preprocessing step. Let u
and w be the neighbors of v before the removal. Then we also removed the edges
(v, u) and (v, w), but added the edge (u,w). We re-insert v now by subdividing the
edge (u,w) such that between the subdivision vertex v and the vertex u there is no
crossing. Then the edge (v, u) is planar, while the edge (v, w) has the same crossings
as the edge (u,w) before the subdivision. This implies that the drawing is still fan-
crossing free after re-inserting v.

The drawing algorithm described above yields the following theorem.

Theorem 4.4. Every graph of degree 3 is fan-crossing free.

Given a degree-3 graph, our algorithm produces a fan-crossing free drawing, using
a decomposition into a matching and a set of cycles. Since Alam et al. [8] observed
that every degree-3 graph which can be decomposed into a matching and a set
of cycles, is simultaneously fan-crossing free and quasi-planar, a natural question
is if our algorithm also produces a drawing that is not only fan-crossing free but
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also quasi-planar. However, the answer to this is negative, as Fig. 4.4 shows: The
highlighted gray area indicates three mutually crossing edges, namely the edges
(v1,1, v6,3), (v2,3, v7,3) and (v4,4, v8,1) (in fact, there can be found several triples of
mutually crossing edges in Fig. 4.4).

4.4.2 A degree-5 graph that is not fan-crossing free

As we have seen, every graph of degree 3 is fan-crossing free. However, this is not
true for all graphs of degree 5. To prove this, we consider the complete bipartite
graph K5,5. We show not only that it is not fan-crossing free, but even give a
characterization of the bipartite fan-crossing free graphs in general. Note that such
characterizations also exist for other graph class, see e. g. [53,58].

Theorem 4.5. The complete bipartite graph Ka,b, with a ≤ b, is fan-crossing free if
and only if

(i) a ∈ {1, 2}, or

(ii) a ∈ {3, 4} and b ≤ 6.

In particular, K5,5 is not fan-crossing free.

We prove the theorem in several steps. Lemma 4.6 shows the sufficiency of
Conditions i and ii in Thm. 4.5.

Lemma 4.6.

(i) The graph K2,b is fan-crossing free.

(ii) The graph K4,6 is fan-crossing free.

Proof. Since the graph K2,b is planar for every positive integer b, it is clearly fan-
crossing free. Moreover, Fig. 4.5 shows a fan-crossing free drawing of the graph K4,6.
The statement follows.

Fig. 4.5: A fan-crossing free drawing of K4,6.
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To prove the necessity of Conditions i and ii in Thm. 4.5, we show in the following
that neither of the two graphs K5,5 and K3,7 allow a fan-crossing free drawing.
Thereby we assume simplicity of the drawings. During the proof we consider various
complete bipartite subgraphs of K5,5 and K3,7. For such a graph Ka,b we denote the
two independent parts by U = {u1, . . . , ua} and W = {w1, . . . , wb}, respectively.

We start by considering the common subgraph K2,2 of K5,5 and K3,7. There
are two different simple embeddings for K2,2. Figure 4.6 shows drawings for these
embeddings. Since the graph K3,5 is a subgraph of both, graph K5,5 as well as K3,7,
the next lemma states that it is not necessary to consider both embeddings of K2,2.

(a) (b)

Fig. 4.6: Drawings for the two simple embeddings of K2,2. Note that the drawing in (a)
has no crossings, while the drawing in (b) has exactly one crossing.

Lemma 4.7. Let Γ3,5 be a fan-crossing free drawing of K3,5. There is a K2,2-
subgraph of K3,5 whose edges do not cross each other in Γ3,5.

Proof. Let H be the K2,2-subgraph induced by u1, u2, w1, w2 and ΓH the drawing of
H in Γ3,5. If no two edges of ΓH cross each other, the statement follows immediately.
So we assume that there is at least one pair of crossing edges in ΓH . Simplicity
implies that only the edge pairs (u1, w2) and (u2, w1), or (u1, w1) and (u2, w2), can
cross each other in ΓH . Also by simplicity, it is not possible that both these pairs
cross each other; see Fig. 4.7 for an illustration. Thus, we can assume that exactly
one of these two edge pairs cross, say the pair (u1, w2) and (u2, w1). Figure 4.8a
shows this configuration.

Now we consider another vertex w3 ∈ W of Γ3,5 and determine in which of the
regions depicted in Fig. 4.8a it may be placed.

First we consider the case in which w3 is in the region R1 (see Fig. 4.8b). For the
edges incident to w3 the following hold:

– Since adjacent edges are not allowed to cross, the edge (u1, w3) can cross neither
(u1, w1) nor (u1, w2). For the same reason the edges (u1, w3) and (u2, w3) cannot
cross.
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w1 w2u1

u2

c
A

(a)

w1 w2u1

u2

(b)

Fig. 4.7: (a) If (u2, w1) crosses (u1, w2) at a point c, then the cycle (w1, u1, c, w1) encloses
an area A. (b) If additionally (u1, w1) and (u2, w2) cross, then the edge (u2, w2)
“enters” A at one point. In order to “leave” this area again, the condition of
simplicity is violated: Either the edge (u1, w1) is crossed twice by (u2, w2), or
(u2, w2) is crossing the adjacent edge (u2, w1).

– If the edge (u1, w3) would cross (u2, w1), it also would have to cross (u2, w2) in
order to connect u1 and w3. But then (u1, w3) would cross a fan incident to u2.
So (u1, w3) cannot cross (u2, w1).

– Further, the edge (u1, w3) cannot cross the remaining edge (u2, w2), since otherwise
it would have to cross a fan incident to u2, too.

As a consequence, the edge (u1, w3) cannot cross any edge of H. Because of
symmetry the same is also true for the edge (u2, w3). This implies that there are
even two K2,2-subgraphs in Γ3,5 whose edges do not cross each other: the subgraph
induced by the vertices u1, u2, w3, w1, and the subgraph induced by u1, u2, w3, w2.

w1

u1 u2

w2

R1

R2 R3

(a)
w1

u1 u2

w2

w3

(b)
w1

u1 u2

w2

w3

(c)

Fig. 4.8: (a) A drawing of the only embedding of H in which (u1, w2) and (u2, w1) cross
each other. (b) Vertex w3 is placed in the region R1. The edges (u1, w3) and
(u2, w3) (red edges) are crossing-free. (c) Vertex w3 is placed in the region R2.
The edge (u1, w3) is crossing-free; the edge (u2, w3) crosses (u1, w1).

Finally we consider the case in which w3 lies in region R2 (see Fig. 4.8c). The case
in which w3 lies in R3 is symmetric. Again we argue about the edges:

– Since adjacent edges do not cross, the edge (u1, w3) has no crossing with (u1, w1),
(u1, w2) and (u2, w3).

– For the same reason the edge (u2, w3) has no crossing with (u2, w1) and (u2, w2).
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– Further, the edge (u1, w3) cannot cross the edge (u2, w1), as otherwise (u2, w1)
would be crossed by a fan, namely the fan (u1, w2), (u1, w3) anchored at u1.

– The edge (u2, w3) cannot cross the edge (u1, w2) for the same reason.

Hence, the edge (u1, w3) has no crossing at all and the only possible crossing for
(u2, w3) is a crossing with (u1, w1) (see Fig. 4.8c). However, in this specific case
there is a K2,2-subgraph with non-crossing edges: the graph induced by the vertices
u1, u2, w2, w3. The statement of the lemma follows.

Like in the proof of Lemma 4.7, let H be the graph induced by the vertices
u1, u2, w1, w2. According to Lemma 4.7, we may assume in the following that in any
fan-crossing free drawing of the graphs K3,7 or K5,5, respectively, the subgraph H

is drawn in such a way that no two of its edges cross each other. Let ΓH be such a
drawing of H.

In the next step we insert successively the vertices w3, w4, and w5 into the planar
drawing of H. This is an intermediate step in reaching our final goal: We want
to try to create all non-isomorphic fan-crossing free embeddings of K5,5 and K3,7,
and – by finding no such embeddings – show that the graphs K5,5 and K3,7 are not
fan-crossing free. In the following, we give representative drawings for the created
embedding, rather than describing the embedding itself. Moreover, in an abuse of
notation we use the word “embedding” and “drawing” as synonyms in the remainder
of this chapter.

4.4.2.1 Adding vertex w3

In this section we want to determine the set D2,3 of all non-isomorphic fan-crossing
free embeddings that can be obtained when inserting vertex w3 together with the
edges (u1, w3) and (u2, w3) into ΓH . Recall that each drawing D ∈ D2,3 must be
simple, so edge (u1, w3) may cross neither of the edges (u1, w1), (u1, w2), and (u2, w3).
Further, the edge (u1, w3) is not allowed to cross both edges (u2, w1) and (u2, w2)
because the drawing D is fan-crossing free. However, edge (u1, w3) can have a
crossing with at most one of the edges (u2, w1) and (u2, w2).

Similarly, we observe that the second “new” edge (u2, w3) is not allowed to cross
one of the edges (u2, w1), (u2, w2), and (u1, w3); it can possibly cross one of edges
(u1, w1) and (u1, w2), but not both.

Using these restrictions on (u1, w3) and (u2, w3), we obtain the fan-crossing free
drawings that are listed in Fig. 4.9 when adding w3, (u1, w3) and (u2, w3) to ΓH .
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However, many drawings in Fig. 4.9 are isomorphic, namely:

– Figs. 4.9a and 4.9j;

– Figs. 4.9b, 4.9d, 4.9f, 4.9h, 4.9k, 4.9m, 4.9n and 4.9p;

– Figs. 4.9c, 4.9e, 4.9g, 4.9i, 4.9l and 4.9o;

Given some different isomorphic embeddings we only need to consider one of them,
since from all such embeddings we would obtain the same embeddings while inserting
more vertices. Thus we only need to consider three different configurations; we will
consider the ones from Figs. 4.9a to 4.9c, and denote them by D1, D2 and D3,
respectively.

4.4.2.2 Adding vertex w4.

Let D2,4 be the set of all non-isomorphic fan-crossing free embeddings that can be
obtained when inserting vertex w4 together with the edges (u1, w4) and (u2, w4) into
each of the drawings from D2,3 = {D1, D2, D3}. We consider the three different
drawings separately and give restrictions on the configurations in each case.

For the drawing D1 (see Fig. 4.9a and, for the reader’s convenience, also Fig. 4.10a)
we have the following:

– By simplicity, the edge (u1, w4) is not allowed to cross one of the edges (u1, w1),
(u1, w2), (u1, w3) and (u2, w4);

– the edge (u1, w4) can cross at most one of the edges (u2, w1), (u2, w2) or (u2, w3)
because of the fan-crossing free property;

– also by simplicity, the edge (u2, w4) is not allowed to cross (u2, w1), (u2, w2),
(u2, w3) and (u1, w4);

– the fan-crossing freeness implies that (u2, w4) may cross at most one of the edges
(u1, w1), (u1, w2) or (u1, w3).

These conditions yield the three non-isomorphic drawings depicted in Fig. 4.10.

Using simplicity and the fan-crossing free property also for D2 (see Fig. 4.9b and
also Fig. 4.11a), we obtain:

– the edge (u1, w4) cannot cross (u1, w1), (u1, w2), (u1, w3), (u2, w4) and (u2, w1);

– it is allowed to cross at most one of (u2, w2) and (u2, w3);

– the edge (u2, w4) cannot cross any of the edges (u2, w1), (u2, w2), (u2, w3), (u1, w4),
and (u1, w3);

– it is allowed to cross at most one of the two edges (u1, w1) and (u1, w2).
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Fig. 4.9: All cases that preserve the fan-crossing free property when adding a third node
w3 (red) to the drawing ΓH of K2,2. The dashed red edges indicate the newly
added edges.
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Fig. 4.10: (a) Drawing D1. (b)–(d) All non-isomorphic drawings that preserve the fan-
crossing free property when adding a fourth node w4 to drawing D1.

The seven non-isomorphic drawings we obtain by respecting these restrictions are
shown in Fig. 4.11.
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Fig. 4.11: (a) Drawing D2. (b)–(h) All non-isomorphic drawings that preserve the fan-
crossing free property, when adding a fourth node w4 into D2.

Finally, we have the following restrictions when considering D3 (see Figs. 4.9c
and 4.12a):

– since the edge (u1, w4) is not allowed to cross any of (u1, w1), (u1, w2), (u1, w3),
(u2, w4), (u2, w1) and (u2, w3), the only edge it can actually cross is the edge
(u2, w2);

– the edge (u2, w4) can also cross only one edge, namely the edge (u1, w1), since it
is not allowed to cross (u2, w1), (u2, w2), (u2, w3), (u1, w4), (u1, w2) and (u1, w3).

Using these conditions we obtain only one non-isomorphic drawing when inserting
w4, (u1, w4) and (u2, w4) into D3: the drawing in Fig. 4.12.
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Fig. 4.12: (a) Drawing D3. (b) The only drawing that preserves the fan-crossing free
property, when adding a fourth node w4 to D3.

Comparing the drawings from Figs. 4.10, 4.11 and 4.12b, we observe that the
following figures represent isomorphic embeddings:

– Figs. 4.10c and 4.11b;

– Figs. 4.10d, 4.11c, 4.11f and 4.12b;

– Figs. 4.11d and 4.11g;

– Figs. 4.11e and 4.11h.

So, in the following, it is sufficient to consider the five non-isomorphic configurations
from Figs. 4.10b to 4.10d, 4.11d and 4.11e. Let the drawings in these figures be
denoted by D′1, D′2, D′3, D′4 and D′5, respectively. Thus, the set of non-isomorphic
drawings is here D2,4 = {D′1, D′2, D′3, D′4, D′5}.

4.4.2.3 Adding vertex w5.

Similarly to the last section, by D2,5 we denote the set of all non-isomorphic fan-
crossing free embeddings that can be obtained by inserting vertex w5, and edges
(u1, w5) and (u2, w5) into each of the drawings from D2,4 in all possible ways.
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w1 w2
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(a)

u1
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w4
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Fig. 4.13: (a) Drawing D′1. (b)–(d) All non-isomorphic drawings that preserve the fan-
crossing free property when adding a fifth node w5 (together with its incident
edges (u1, w5) and (u2, w5)) to the drawing D′1.
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First consider D′1 (depicted in Figs. 4.10b and 4.13a). We observe the following:

– The edge (u1, w5) may not cross any of the edges (u1, w1), (u1, w2), (u1, w3),
(u1, w4) and (u2, w5);

– it may cross at most one of the edges (u2, w1), (u2, w2), (u2, w3) and (u2, w4);

– the edge (u2, w5) is not allowed to cross any of the edges (u2, w1), (u2, w2), (u2, w3),
(u2, w4) and (u1, w5);

– while it can cross at most one of the edges (u1, w1), (u1, w2), (u1, w3) and (u1, w4).

These restrictions yield the three non-isomorphic drawings shown in Fig. 4.13.

The restrictions for inserting w5 into D′2 (see Figs. 4.10c and 4.14a) are as follows:

– the edge (u1, w5) cannot cross any of (u1, w1), (u1, w2), (u1, w3), (u1, w4), (u2, w5)
and (u2, w1);

– it is allowed to cross at most one of the edges (u2, w2), (u2, w3) and (u2, w4).

– the edge (u2, w5) cannot cross any of (u2, w1), (u2, w2), (u2, w3), (u2, w4), (u1, w5)
and (u1, w4);

– it may cross at most one of the edges (u1, w1), (u1, w2) and (u1, w3).

Taking these restrictions into account, we obtain the 12 (not necessarily non-
isomorphic) drawings shown in Fig. 4.14.

In the next step we consider the drawing D′3 (see Figs. 4.10d and 4.15a):

– the edge (u1, w5) is not allowed to cross any of the edges (u1, w1), (u1, w2), (u1, w3),
(u1, w4), (u2, w5), (u2, w1) and (u2, w4);

– it is allowed to cross at most one of the edges (u2, w2) and (u2, w3);

– the edge (u2, w5) cannot cross any of (u2, w1), (u2, w2), (u2, w3), (u2, w4), (u1, w5),
(u1, w4) and (u1, w2);

– however, it can cross at most one of the edges (u1, w1) and (u1, w3).

These restrictions yield the drawings given in Fig. 4.15.

The drawing D′4 (see Figs. 4.11d and 4.16a) gives us the following restrictions:

– the edge (u1, w5) is not allowed to cross any of (u1, w1), (u1, w2), (u1, w3), (u1, w4),
(u2, w5), (u2, w1) and (u2, w2);

– it may cross at most one of (u2, w3) and (u2, w4);

– the edge (u2, w5) is not allowed to cross any of (u2, w1), (u2, w2), (u2, w3), (u2, w4),
(u1, w5), (u1, w3) and (u1, w4);

– but it may cross at most one of the edges (u1, w1) and (u1, w2).
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Fig. 4.14: (a) Drawing D′2. (b)–(m) All drawings that preserve the fan-crossing free
property, when adding w5 to D′2.

Using these restrictions we obtain the drawings shown in Fig. 4.16.

In the last step we consider the drawing D′5 (see Figs. 4.11e and 4.17a). The
restrictions are in this case:

– the edge (u1, w5) is not allowed to cross any of the edges (u1, w1), (u1, w2), (u1, w3),
(u1, w4), (u2, w5), (u2, w1) and (u2, w2);

– however, it is allowed to cross at most one of the edges (u2, w3) and (u2, w4);
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Fig. 4.15: (a) Drawing D′3. (b)–(f) All fan-crossing free drawings we obtain by adding
vertex w5 to drawing D′3.

– the edge (u2, w5) cannot cross any of (u2, w1), (u2, w2), (u2, w3), (u2, w4), (u1, w5),
(u1, w3) and (u1, w4);

– it may cross at most one of the edges (u1, w1) and (u1, w2).

Minding these restrictions, we obtain the drawings depicted in Fig. 4.17.

Finally, by comparing the drawings from Figs. 4.13 to 4.17, we observe that the
following figures represent isomorphic embeddings:

(1) Figs. 4.13c and 4.14b;

(2) Figs. 4.13d, 4.14h, 4.14i and 4.15b;

(3) Figs. 4.14c, 4.14j and 4.16c;

(4) Figs. 4.14d, 4.14k, 4.15d, 4.15e, 4.16d to 4.16g, 4.17e and 4.17g;

(5) Figs. 4.14e, 4.14g, 4.14l, 4.17b and 4.17c;

(6) Figs. 4.14f, 4.14m and 4.16b;

(7) Figs. 4.15f, 4.17d, 4.17f and 4.17g. In fact, these embeddings are isomorphic to
the embeddings listed in Point 4.

Note that the drawing shown in Fig. 4.13b is not isomorphic to any other
drawing and therefor has to be considered further. Therefore we have to consider
seven non-isomorphic embeddings in the future: The ones given in Figs. 4.13b
to 4.13d and 4.14c to 4.14f. We denote these drawings by Γ1 to Γ7, and thus
have D2,5 = {Γ1,Γ2,Γ3,Γ4,Γ5,Γ6,Γ7}. For the reader’s convenience these drawings
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Fig. 4.16: (a) Drawing D′4. (b)–(g) All drawings that preserve the fan-crossing free
property when adding vertex w5 to D′4.

are shown again in Fig. 4.18. Summarizing our results so far, we have shown the
following lemma.

Lemma 4.8. There are exactly seven simple non-isomorphic fan-crossing free
embeddings of K2,5, namely the embeddings in D2,5.

Recall that our goal is to show that neither of the two graphs K3,7 and K5,5 is fan-
crossing free. By Lemma 4.8, it suffices to show the following:

(1) It is not possible to add the remaining vertices u3, u4 and u5 to a drawing of
D2,5 without violating the fan-crossing free property. This will show that K5,5

is not fan-crossing free.

(2) It is not possible to add the remaining vertices u3, w6 and w7 to a drawing of
D2,5 without violating the fan-crossing free property. This will show that K3,7

is not fan-crossing free.

We will consider both graphs separately. Before we do so, we introduce two lemmas
that are useful in the further proof.

4.4.2.4 Lemmas for the proof

We start by observe the following: Given a drawing Γ with vertices u1, . . . , ua ∈ U
and w1, . . . , wb−1 ∈ W (thereby U and W and the corresponding vertices are
swappable). In order to respect simplicity and fan-crossing freeness, the insertion of
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Fig. 4.17: (a) Drawing D′5. (b)–(g) All fan-crossing free drawings we obtain when adding
w5 to D′5.

wb is subject to some restrictions. Namely, there are some regions (where a region
is a face in the planarization of Γ) in which vertex wb cannot be inserted without
violating simplicity or fan-crossing freeness for an edge (ui, wb) incident to a certain
vertex ui. We call such a region blocked for wb with respect to ui. Further, the range
of vertex ui regarding wb is the union of all regions that are not blocked for wb. The
common range with respect to wb of two or more vertices from U is the intersection
of the ranges for these vertices. Note that if the common range is empty, then it is
not possible to place wb in Γ.

The first lemma points out such a configuration, in which a specific region of a
drawing is blocked for another vertex from U . This configuration is illustrated in
Fig. 4.19a.

Lemma 4.9 (Triangle Lemma). Let Γ be a fan-crossing free drawing of Ka,b with
a ≥ 3 and b ≥ 5. Suppose there is a region R of Γ bounded by an edge (u1, wi) and
by two crossing edges (u1, wj), (u2, wi), with 1 ≤ i, j ≤ 5. If at least four vertices of
W lie outside of the region R, there is no vertex uh ∈ U , where 3 ≤ h ≤ a, inside R.

Stating the Triangle Lemma in terms of blocked regions, we have that R is blocked
for uh with respect to some vertex wi ∈ W .

Proof. Suppose for a contradiction that R contains a vertex uh ∈ U , with 3 ≤ h ≤ a,
and at least four vertices of W lie outside of R. Let e1, . . . , e4 be edges between uh
and four different vertices which are positioned outside of R. Then each of e1, . . . , e4
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Fig. 4.18: All topologically different drawings of the subgraph K2,5 that are fan-crossing
free. Note that the nodes are relabeled in comparison to the Figures above.

crosses at least one of the three edges bounding R. By the pigeonhole principle, at
least one of these three bounding edges must be crossed by two (or more) edges of
e1, e2, e3 and e4. However, this would violate the fan-crossing free property of Γ, a
contradiction.

The second lemma considers another configuration, in which we can say something
about the number of vertices in certain regions. An illustration for this configuration
can be found in Figs. 4.19b and 4.19c.
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Fig. 4.19: (a) Illustration for the configuration of the Triangle Lemma (Lemma 4.9).
(b) and (c) are illustrations for the configurations of the Beetle Lemma
(Lemma 4.10).
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Lemma 4.10 (Beetle Lemma). Let Γ be a fan-crossing free drawing of Ka,b with
a ≥ 3 and b ≥ 5 and let 1 ≤ i, j, k ≤ 5. Suppose there is a region R1 that does not
contain the vertices wi and wj and is bounded by two edges (u1, wk) and (u2, wk),
and by two edges (u1, wj) and (u2, wi) that cross each other. Further suppose that
there is a region R2 bounded by the edges (u1, wi) and edge (u1, wj), and a region R3

bounded by the edges (u2, wj) and (u2, wi). Then the following holds:

(i) At most one vertex uh ∈ U is placed in R1, where 3 ≤ h ≤ a.

(ii) If a vertex uh is placed in R1, the edge (uh, wi) crosses (u1, wk) and the edge
(uh, wj) crosses (u2, wk).

(iii) Further, if a vertex uh is placed in R1, at most two vertices of W \{wi, wj, wk}
are placed outside R1; one of these vertices lies in R2 and the other in R3.

Proof. Suppose that a vertex uh, with 3 ≤ h ≤ a, is placed in the region R1.

First we claim that (uh, wi) and (uh, wj) cross the edges (u1, wk) and (u2, wk),
respectively; see Fig. 4.19b. Observe that edge (uh, wi) cannot cross (u1, wj), since
such a crossing would create a fan-crossing, namely (u1, wj) would be crossed by the
fan {(wi, uh), (wi, u2)}. Further, the edge (uh, wi) is not allowed to cross (u2, wi),
since then it would have to cross edge (u2, wj) as well; however, this would be a fan-
crossing. Because of symmetry, the edge (uh, wj) also crosses neither (u1, wj) nor
(u2, wi). If both edges (uh, wi) and (uh, wj) would cross (u1, wk), the drawing Γ would
contain a fan-crossing; so this constellation is not possible, as well as a crossing of
(u2, wk) by both edges (uh, wi) and (uh, wj). Thus, there are two possible crossing
configurations for the edges (uh, wi) and (uh, wj): Either (uh, wi) crosses (u1, wk)
and (uh, wj) crosses (u2, wk), or (uh, wi) crosses (u2, wk) and (uh, wj) crosses (u1, wk).
But in fact, the latter constellation is impossible: if (uh, wi) crosses (u2, wk), and
(uh, wj) crosses (u1, wk), then (uh, wi) and (uh, wj) cross each other, which violates
simplicity. The claim follows.

Now it is easy to see that another vertex uz ∈ U , with z ∈ {3, . . . , a}\{h} cannot be
placed in R1: For such a vertex the same “rules” would hold as for uh and its edges.
So the edge (uz, wi) would need to cross (u1, wk), creating a fan-crossing between
(u1, wk) and {(wi, uh), (wi, uz)}. So the first statement of the lemma follows.

To prove the second statement, we assume that uh is placed in R1, and as a
consequence edge (uh, wi) crosses (u1, wk) and edge (uh, wj) crosses (u2, wk). We
consider the placement of a vertex wx ∈ W \ {wi, wj, wk} in Γ outside of the region
R1 (for an illustration see Fig. 4.19c). Suppose that wx is also outside of R2 and
R3. In this case, by the fan-crossing free property, the edge (uh, wx) crosses both
edges (u1, wj) and (u2, wi); therefore it is (again by the fan-crossing property) not



59 Graphs of Low Degree

possible to place any other vertex of W \ {wi, wj, wk, wx} outside of R1. Finally,
if wx is placed in R2, the edge (uh, wx) can be drawn such that it crosses only the
single edge (u1, wj); in doing so, we still have the option to place an additional vertex
wy ∈ W \ {wi, wj, wk, wx} in the region R3 and draw the edge (uh, wy) by crossing
(u2, wi). We conclude by noting that if both edges, (uh, wx) as well as (uh, wy), are
present in Γ, there cannot be another vertex of W outside the region R1 without
violating fan-crossing freeness.

In the following we call the vertices wi and wj in Lemma 4.10 the eyes of the
beetle, the vertex wk the tail, the vertices u1 and u2 legs, the region R1 shell, and
for a vertex uh placed in R1 we call (uh, wi) and (uh, wj) wings of the beetle.

The next corollary is a direct consequence of Lemma 4.10.

Corollary 4.11 (Empty-Shell Corollary). Let 1 ≤ i, j, k, ` ≤ 5 pairwise distinct.
Suppose a drawing Γ fulfills the requirements of the Beetle Lemma for legs u1, u2,
eyes wi, wj, tail wk and shell R1. Further suppose that Γ also fulfills the requirements
of the Beetle Lemma for legs u1, u2, eyes wi, wj, tail w` and shell R′1. Then there is
no vertex uh ∈ U in the common region R?

1 = R1 ∩R′1 of R1 and R′1.

Proof. Suppose there is a vertex uh ∈ U in R?
1 (for an illustration see Fig. 4.20). By

Property ii of the Beetle Lemma, the wing (uh, wi) crosses both edges (u1, wk) and
(u1, w`). This violates the fan-crossing free property of Γ. The statement follows.
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R3 R?
1
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Fig. 4.20: Illustration for Cor. 4.11.

In the reminder of this chapter we exploit the Triangle Lemma, the Beetle Lemma,
the Empty-Shell Corollary, as well as the observation from the beginning of blocked
regions and the range of a certain vertex.
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4.4.2.5 The graph K5,5 is not fan-crossing free

In this section we continue with the proof of Thm. 4.5; namely we show the following
lemma.

Lemma 4.12. None of the seven drawings Γ1, . . . ,Γ7 of K2,5 can be extended to a
drawing of K5,5.

Proof. We prove the statement by looking at each of the seven fan-crossing free
drawings Γ1, . . . ,Γ7 of K2,5, and by arguing why none of them can be extended to a
fan-crossing free drawing of K5,5.

The drawing Γ1. There are five regions in Γ1. We denote these regions by
R1, . . . , R5, as depicted in Fig. 4.21a. Since all these regions are topologically
equivalent, it suffices to consider the placement of u3 in only one of them, say R1.

u1

u2

w1

w4w2 w3
w5

R1

R2

R3 R4

R5

(a)

u1

u2

w1

w4w2 w3
w5

R1

R2

R3 R4

u3
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w4w2 w3
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R2

R3 R4

u3

(c)

Fig. 4.21: (a) The regions in Γ1. (b) The dashed red line represents the edge (u3, w3).
(c) The range of w3 with respect to u3 is highlighted in gray. The bold edges
indicate the boundary of the range.

In order to draw the edge (u3, w3) in a fan-crossing free way, it is necessary to cross
exactly one edge incident to u1 and exactly one edge incident to u2; without loss
of generality we assume that (u1, w5) and (u2, w4) are these edges (see the dashed
red edge in Fig. 4.21b for an illustration). With this configuration we observe the
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following: The edge (u3, w4) may not cross (u1, w5) (otherwise the fan-crossing free
property is violated), and it may not cross (u3, w3) (because of simplicity). Further,
it cannot cross a fan. Thus, the region R1 is not in the range of w3 regarding u3 (see
also Fig. 4.21c).

So we have shown that it is not even possible to extend Γ1 to a fan-crossing free
drawing of K3,5.

The drawing Γ2. There are six regions in Γ2, which we denote by R1, . . . , R6 as
shown in Fig. 4.22a.
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R2

R3

u3
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Fig. 4.22: (a) The regions in Γ2. (b) Vertex u3 is placed in region R1 and the edge (u3, w3)
(dashed red) crosses (u1, w5) and (u2, w4). It is not possible to connect u3
and w4 (filled vertices) without violating simplicity or fan-crossing freeness. In
order to satisfy the fan-crossing free condition for the edge (u3, w4), this edge
may not “leave” the gray area.

First we observe that the following configurations are impossible:

– The vertices u3, u4, u5 cannot lie in the regions R2 or R3 by the Triangle Lemma;

– the vertices u3, u4, u5 cannot be in the regions R4 or R5 by the Empty-Shell
Corollary Cor. 4.11;

– at most one of vertices u3, u4, u5 can lie in region R6 by Property i of the Beetle
Lemma.

By the previous analysis, at least two vertices, say u3 and u4, are placed in region
R1. At most one of the two edges (u3, w3) and (u4, w3) can cross the edge pair
(u1, w2) and (u2, w1). This implies that at least one of these edges has to cross the
pair (u1, w4) and (u2, w5), or the pair (u1, w5) and (u2, w4). We assume w. l. o. g that
(u3, w3) crosses (u1, w5) and (u2, w4) (see the dashed red edge in Fig. 4.22b). But
then it is no longer possible to draw the edge (u3, w4) without violating simplicity
or the fan-crossing free property: Region R1, where u3 is located, is not in the range
of w4 regarding u3 (for an illustration see the gray area in Fig. 4.22b). Namely,
by simplicity the edge (u3, w4) cannot cross (u3, w3); since crossing (u1, w5) would
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create a fan-crossing, this is also not possible; in fact, the edge (u3, w4) is allowed
to cross (u1, w3) and (u2, w1), nevertheless it cannot cross any of the edges (u1, w2),
(u2, w3) and (u2, w2) (see the thick black edges in Fig. 4.22b).

The arguments above imply that Γ2 cannot be extended to a fan-crossing free
drawing of K5,5.

The drawing Γ3. There are seven regions in Γ3, which we denote by R1, . . . , R7 as
shown in Fig. 4.23a.
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Fig. 4.23: (a) The regions in Γ3. (b) The area A = R2 ∪ R3 in gray. A vertex u3 and
the edge (u3, w1) (dashed red) must be in this area. (c) The dashed blue lines
indicate the two edges (u3, w4) and (u3, w5) that are not drawable without fan-
crossings when adding vertex u3 in R2.

Again we observe some implications of the Triangle Lemma, the Beetle Lemma,
and the Empty-Shell Corollary:

– the Triangle Lemma implies that none of the vertices u3, u4, u5 can be in R3 or in
R5;

– none of the vertices u3, u4, u5 can be in R6 by the Empty-Shell Corollary;

– also by the Empty-Shell Corollary, none of the vertices u3, u4, u5 can lie in R1,
where w2 and w3 are the eyes of both beetles, vertex w4 and w5, respectively, are
the tails of the beetles, and R1 is the intersection of the two shells of the beetles;
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– the vertices u3, u4, u5 cannot lie in region R7 by Property ii of the Beetle Lemma:
if ui is placed in R7 for 3 ≤ i ≤ 5, the edge (u1, w3) would be crossed by the fan
{(ui, w1), (ui, w2)}.

Thus, the vertices u3, u4, u5 can only be placed in the regions R2 and R5.

Now consider the edges (u3, w1), (u4, w1) and (u5, w1). None of these edges can
cross (u1, w2), since this would create a fan-crossing. Further the fan-crossing free
property implies that only one of these edges can cross the edge (u1, w3), and only
one of them can cross (u2, w2). Since w1 lies in an area A = R2 ∪ R3 delimited by
(u1, w2), (u1, w3) and (u2, w2) (see gray area in Fig. 4.23b), at least one of of the
edges (u3, w1), (u4, w1) and (u5, w1) must be entirely in A. Consequently, one of the
vertices u3, u4, u5 must be in A, say u3, and since u3 cannot be in R3 it must lie in R2.

Then the edge (u3, w3) can neither cross (u1, w3), nor (u2, w2), nor the pair of
edges (u1, w1) and (u1, w2), nor the pair (w1, u1) and (w1, u2). This implies that
the edge (u3, w3) must cross (u1, w2) (see dashed red edge in Fig. 4.23c). Further
we note that the edges (u3, w4) and (u3, w5) can cross neither (u3, w3) (this would
violate simplicity) nor (u1, w2) (this would violate the fan-crossing free property).
So both edges (u3, w4) and (u3, w5) have to cross (u1, w3) (see the dashed blue edges
in Fig. 4.23c). However, this configuration has a fan-crossing and is therefore also
not possible.

Hence, the drawing Γ3 cannot be extended to a fan-crossing free drawing of K5,5.

The drawing Γ4. There are seven regions in Γ4, which we denote by R1, . . . , R7 as
shown in Fig. 4.24.

u1

u2

w1

w5

w2

R1

R2

R3

w4

w3

R4

R5

R6

R7

Fig. 4.24: The seven regions in Γ4.

For Γ4 we have the following consequence of the Beetle Lemma, Property i: At
most one of the vertices u3, u4, u5 can be in R4 ∪ R5 ∪ R6 ∪ R7, and at most one of
them can be in R1 ∪ R2 ∪ R3 ∪ R4. We obtain immediately that not all the three
vertices u3, u4, u5 and their incident edges can be placed in Γ4 such that the resulting
drawing is a fan-crossing free drawing of K5,5.
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The drawing Γ5. In Γ5 we have eight regions, which we denote by R1, . . . , R8 as
shown in Fig. 4.25.

u1

u2

w1

w2

w3

R5

R3

R2

w5

w4

R6

R7

R8

R1

R4

Fig. 4.25: The eight regions in Γ5.

The Triangle Lemma 4.9 and the Empty-Shell Corollary 4.11 imply the following:

– According to the Triangle Lemma, none of the vertices u3, u4, u5 can lie in
R3, R5, R7, R8;

– the vertices u3, u4 and u5 can be neither in R4 nor in R6 by the Empty-Shell
Corollary;

– also none of the vertices u3, u4 and u5 can be in region R1, again by the Empty-
Shell Corollary (note that the eyes of the two beetles are w2 and w3, the tails are
w4 and w5, respectively, the shells are R1 ∪R8 and R1 ∪R7, respectively).

So all vertices u3, u4, u5 must be in the region R2, but this is not possible: According
to the Beetle Lemma, Property ii, at most one of the vertices u3, u4 and u5 can be
in R2.

This shows that the drawing Γ5 cannot be extended to a fan-crossing free drawing
of the bipartite graph K5,5.

The drawing Γ6. There are seven regions in the drawing Γ6, which are denoted by
R1, . . . , R7 as depicted in Fig. 4.26.

u1

u2

w1

w5

w2

R1

R2

R3

R4

R5

R6

R7

w3

w4

Fig. 4.26: The regions in Γ6.
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We observe the following:

– None of the vertices u3, u4, u5 can lie in any of the regions R2, R3, R5, R6 by the
Triangle Lemma;

– further, none of the vertices u3, u4, u5 can be placed in R1, R4 or R7 by the Empty-
Shell Corollary.

Hence, the drawing Γ6 cannot be extended to a fan-crossing free drawing of K5,5.

The drawing Γ7. Finally we consider drawing Γ7. There are seven regions which
we denote by R1, . . . , R7 as shown in Fig. 4.27a.

u1

u2

w1

w2

R1

R2

R3

R4 w3

w4

w5

R5

R6

R7

(a)

u1

u2
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w2

R1

R2

R3

R4 w3

w4

w5

R5

R6

R7

(b)

Fig. 4.27: (a) The regions of Γ7. (b) The only two ways to connect w3 to u3, u4 and u5
in R1.

The implications from the Lemmas and the Corollary of Sec. 4.4.2.4 for Γ7 are:

– None of the vertices u3, u4, u5 can be placed in any of the regions R2, R3, R6, R7

by the Triangle Lemma;

– none of the vertices u3, u4, u5 can be placed in R4 or R5 by the Empty-Shell
Corollary.

Thus, all of the vertices u3, u4, u5 must be in region R1. In order to not violate the
fan-crossing free property, every edge connecting one of u3, u4 or u5 with w3 can
cross neither both edges (u1, w2) and (u1, w1), nor both edges (u2, w1) and (u2, w2),
nor both edges (u1, w5) and (u1, w4), nor both edges (u2, w4) and (u2, w5). Therefore
each of the edges (u3, w3), (u4, w3) and (u5, w3) must cross either the edge pair
(u1, w2) and (u2, w1), or the edge pair (u1, w5) and (u2, w4) (see Fig. 4.27b). By the
pigeon principle, one of the two edge pairs is crossed by two of the edges (u3, w3),
(u4, w3) and (u5, w3) – a violation of the fan-crossing free property.

Consequently, the drawing Γ7 can also not be extended to a fan-crossing free
drawing of the bipartite graph K5,5.

Since it is not possible to extend one of the drawings Γ1, . . . ,Γ7 to a fan-crossing
free drawing of K5,5, this graph is not fan-crossing free.
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4.4.2.6 The graph K3,7 is not fan-crossing free

Finally we complete the proof of Thm. 4.5 by showing the following lemma.

Lemma 4.13. None of the seven drawings Γ1, . . . ,Γ7 of the graph K2,5 can be
extended to a drawing of K3,7.

Proof. We follow the same approach as in Sec. 4.4.2.5 and try to insert the vertices
u3, w6 and w7 into each of the seven drawings Γ1, . . . ,Γ7.

The drawing Γ1. In Sec. 4.4.2.5 we already proved that it is not possible to insert
vertex u3 into Γ1 (see Fig. 4.21a which is shown again in Fig. 4.28 for the readers
convenience) without violating fan-crossing freeness. Hence, Γ1 cannot be extended
to a fan-crossing free drawing of K3,5.

u1

u2

w1

w4w3
w5

R4 R5

R6

w2

R1

R2

R3

Fig. 4.28: The drawing Γ1.

The drawing Γ2. We denote the six regions R1, . . . , R6 of Γ2 as in Fig. 4.22a. For
the readers convenience this figure is also shown in Fig. 4.29a.

As we have already seen in the previous section, the following configurations for
u3 are not possible:

– The vertex u3 cannot lie in the regions R2 or R3 by the Triangle Lemma;

– it can also not be in the regions R4 or R5 by the Empty-Shell Corollary.

Thus, the vertex u3 must be in one of the regions R1 or R6.

First, we consider the case where u3 is placed in the region R1. With the same
argumentation as in the corresponding case of Sec. 4.4.2.5 for K5,5, the edge (u3, w3)
cannot be drawn through the regions R5 and R6. The only way to draw (u3, w3) is by
crossing both edges (u1, w2) and (u2, w1). Further, the edge (u3, w4) must cross either
(u1, w5) or (u2, w5) in order to satisfy the fan-crossing free property. We assume
without loss of generality that (u3, w4) crosses (u1, w5). For an illustration of this
configuration see Fig. 4.29b. Note that the two regions R1 and R6 are subdivided by
(u3, w3) and (u3, w4). In the following, two of these subdivided regions are important
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Fig. 4.29: (a) The six regions of Γ2. (b) Vertex u3 is placed in region R1. The edge
(u3, w3) crosses both edges (u1, w2) and (u2, w1), and edge (u3, w4) crosses
(u1, w5). After inserting the two edges, some of the regions R1, . . . , R6 are
subdivided; the red labels denote such subdivisions.

for us, namely the region R′1, which is bounded by (u1, w1), (u1, w5), (u3, w3) and
(u3, w4), and the region R′6, which is bounded by (u1, w5), (u2, w4), (u2, w5) and
(u4, w4).

In the next steps we prove that placing u3 in R1 does not lead to a valid fan-
crossing free drawing of K3,7. To this end we try to put the vertex w6 ∈ V2 into the
drawing shown in Fig. 4.29b.

(1) The vertex w6 cannot be placed in region R2, and for symmetry reasons also
not in R3: For a contradiction suppose it is in R2. Neither of the edges (u2, w6)
and (u3, w6) can cross (u1, w2) or (u2, w1), since this would create a fan-crossing
or violate simplicity. Thus, both edges (u2, w6) and (u3, w6) must cross (u1, w1),
which yields a fan-crossing – a contradiction.

(2) Further, placing vertex w6 in one of the regions R4 and R5 is not possible: Due
to simplicity an edge incident to u3 (dashed red edges in Fig. 4.30a) may not be
crossed by (u3, w6). To avoid a fan-crossing where the fan is anchored at u3, the
edge (u3, w6) can cross neither of the edges (u1, w2), (u2, w1) or (u1, w5) (thick
black edges in Fig. 4.30a). The last option is the one where (u3, w6) crosses
(u2, w5) and (u2, w4) – a fan anchored at u2 (green edges in Fig. 4.30a). So
indeed w6 cannot be placed in R4 or R5.

(3) Now we assume that w6 is in the region R6. Then, by the observations above, the
edge (u3, w6) crosses (u2, w5) and w6 lies in the region R′6 (see Fig. 4.30b). Using
similar arguments, we obtain that edge (u1, w6) has to cross (u2, w4). Consider
now the placement of vertex w7. Note that all the arguments above for w6 also
apply to w7, implying that w7 has to be in region R′6 or R1. But also by the
arguments above, if w7 is placed in R′6, then the edge (u3, w7) would have to cross
(u2, w5), yielding a fan-crossing. Consequently, vertex w7 is placed in R1. For
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Fig. 4.30: Vertex u3 is placed in region R1 of Γ2. (a) In a simple fan-crossing free drawing
neither the thick red and black edges can be crossed by (u3, w6), nor the green
fan. (b) Vertex w6 is placed in the region R′6. Edge (u3, w6) crosses (u2, w5),
and edge (u1, w6) crosses (u2, w4). (c) Vertex w7 has to be placed in region R′1:
The thick red and black edges are not allowed to be crossed by (u1, w7). The
gray area is the range of u2 regarding w7. (d) Vertices w6 and w7 are in the
region R′1. The thick edges are non-crossable edges for (u2, w6) and (u2, w7).
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the edge (u1, w7) we observe the following, again because of the fan-crossing free
property: It can cross neither the edge (u3, w3), nor (u3, w4), nor (u2, w4), nor the
pair (u2, w3) and (u2, w1) (see Fig. 4.30c). This implies that w7 must be placed
in R′1. However, in this case the edge (u2, w7) yields inevitably a fan-crossing:
The region R′1 is not in the range of u2 with respect to w7. So we are not able to
obtain a simple fan-crossing free drawing of K3,7 when placing w6 in region R6.

(4) To complete the case where u3 is placed in R1, it remains to consider the
placement of vertex w6 in the region R1. First we observe that the dashed red,
the blue and the bold black edges in Fig. 4.30a are not crossable by (u1, w6).
Therefore w6 must be in region R′1.

By the arguments of the previous case the vertex w7 cannot be in R6, and
therefore must be also in R1. Moreover, by the same arguments as for w6,
vertex w7 is placed in R′1. We conclude by observing that the edges (u2, w6) and
(u2, w7) can cross neither (u3, w3), nor the fan {(u1, w3), (u1, w2)}, nor the fan
{(u1, w4), (u1, w5)} (see also Fig. 4.30d). This implies that both, (u2, w6) and
(u2, w7), have to cross (u3, w4), violating the fan-crossing free property.

From this case analysis, we conclude that placing u3 in region R1 yields no valid
simple crossing-free drawing of K3,7.

In the last part of the proof for the drawing Γ2 we consider the case in which u3

is placed in region R6. By Property i of the Beetle Lemma, the edges (u3, w1) and
(u3, w2) cross the edges (u1, w5) and (u2, w5), respectively (for an illustration see
Fig. 4.31a). Due to the fan-crossing free property, edge (u3, w3) crosses either (u1, w4)
or (u2, w4). We assume without loss of generality that (u3, w3) crosses (u1, w4). By
simplicity and the fan-crossing free property, any other edge incident to u3 can cross
neither (u1, w4), nor (u1, w5), nor (u2, w5), nor (u3, w3) (more generally, no edge
incident to u3), nor the fan {(u2, w3), (u2, w4)}. So the edge (u3, w4) must be drawn
without crossings, and both vertices w6 and w7 must be placed in R5 or R6. Again
the regions R5 and R6 are subdivided. The important regions are denoted as follows:

– Region R′5 is delimited by the edges (u1, w4), (u2, w3), (u2, w4), and (u3, w3);

– region R′6 is delimited by the edges (u1, w4), (u2, w4), (u2, w5), and (u3, w2);

We note that the restrictions on edges incident to u3 (see arguments above) imply
that, if one of the vertices w6 or w7 is placed in R5, it must be placed in R′5. Further,
Fig. 4.31b shows the range of u1 regarding w6 (and w7), implying that there are only
two regions where w6 or w7 might be: The region R′5 or region R′6. In the following
we discuss each of the options.
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Fig. 4.31: The vertex u3 is placed in region R6 of Γ2. (a) The edge (u3, w1) crosses
(u1, w5), edge (u3, w2) crosses (u2, w5) and edge (u3, w3) crosses (u1, w4).
Another edge incident to u3 is not allowed to cross the bold black and red
edges or the green fan. Important subregions of R5 and R6 are colored in red.
(b) Another edge incident to u1 is not allowed to cross the bold black and
red edges or the green fan. The gray area shows the range of u1 regarding
w6. (c) Vertex w6 is placed in R′6. (d) Edge (u2, w6) crosses (u3, w3). Vertex
w7 must be placed in R′5. It should be placed in the blue area to satisfy fan-
crossing freeness for (u1, w7), but it should be placed in the red area to satisfy
fan-crossing freeness for (u3, w7).

(1) First we assume that w6 is in R′6 (see Fig. 4.31c). Since neither of the edges
(u1, w6) and (u3, w6) is allowed to cross any of (u1, w4), (u1, w5), (u3, w1) and
(u3, w3) (otherwise fan-crossing freeness is violated), the only way to insert
(u1, w6) and (u3, w6) into the drawing is to draw them entirely in the region R′6.
Further we observe that the edge (u2, w6) can cross neither (u1, w2), nor (u3, w2),
nor the fan {(u3, w3), (u3, w4)}, nor the fan {(u1, w3), (u1, w4)}; the only way to
draw (u2, w6) is by crossing (u1, w4) and (u3, w3). Since the same arguments also
apply to vertex w7, it cannot be placed in region R′6: If we would place it in R′6 as
well, then the edge (u3, w4) would be crossed by the fan {(u2, w6), (u2, w7)}. As a
consequence, vertex w7 is placed in R′5. However, adding the edges (u1, w7) and
(u3, w7) to the drawing yields a fan-crossing. Either the edge (u1, w7) crosses the
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fan {(u2, w3), (u2, w6)} or the edge (u3, w7) crosses the fan {(u2, w4), (u2, w6)};
refer also to Fig. 4.31d, which shows valid placements of w7 regarding the
edge (u1, w7) (bright blue area), and valid placements of w7 regarding the edge
(u3, w7), respectively (bright red area). So it is not possible to place w6 (or w7)
in R′6.

(2) It remains to consider the placement of w6 and w7 in region R′5.

u1
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w1

w4
w3 w5

w2

u3R1

R2

R3

R4 R′
5

w7

w6

Fig. 4.32: Both vertices w6 and w7 are placed in region R′5 of Γ2, yielding two fan-
crossings.

From the discussion before (see i. e. Figs. 4.31a and 4.31b), both edges (u1, w6)
and (u1, w7) must cross (u2, w3), and both edges (u3, w6) and (u3, w7) must cross
(u2, w4) (see Fig. 4.32). Since this violates the fan-crossing free property, there
is no valid drawing when w6 and w7 are placed in region R′5.

We conclude that Γ2 cannot be extended to a fan-crossing free drawing of K3,7.

The drawing Γ3. As in the previous section, we denote the seven regions of Γ3 by
R1, . . . , R7 as in Fig. 4.23a. For the readers convenience this figure is shown again
in Fig. 4.33a.

In the previous section we have already observed the following: The vertex u3 can
be neither in R3 or R5 (Triangle Lemma), nor in R1 or R6 (Empty-Shell Corollary),
nor in R7 (Property ii of the Beetle Lemma). Consequently, vertex u3 must be
placed in one of the regions R2 or R4.

We observe that none of the vertices w6 and w7 may be placed in R4 or R5,
since they are blocked for u1 by (u1, w2), (u2, w1) and (u2, w2) regarding w6 (for an
illustration see Fig. 4.33b). An immediate implication of this observation is, that u3

cannot lie in R4: If it would be in this region, then w6 needs to be in R4 or R5 by
the Triangle Lemma, which is not possible.

A similar observation is that none of the vertices w6 and w7 may be placed in R2 or
R3, since (u1, w2), (u1, w3) and (u2, w2) represent an impenetrable barrier for edges
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Fig. 4.33: (a) The seven regions of Γ3. (b) The bold edges show a barrier for any edge
incident to vertex u1; so the vertices w6 and w7 cannot be in the gray area.
(c) Here the bold edges represent a barrier for any edge incident to vertex u2;
so the vertices w6 and w7 cannot be in the gray area.

incident to u2 (for an illustration refer to Fig. 4.33c). Thus, u3 can also not lie in
R2 as a consequence of the Triangle Lemma.

Our case analysis proves that Γ3 cannot be extended to a fan-crossing free drawing
of K3,7.

The drawing Γ4. Recall that this drawing has seven regions R1, . . . , R7 as shown
in Fig. 4.34a (and Fig. 4.24). Further recall that vertex u3 cannot be in any of the
regions R2, R3, R5 and R6 (Triangle Lemma), and not in the region R4 (Empty-Shell
Corollary). So we have only to consider the case where u3 is in R7 (the case where
u3 is placed in R1 is symmetric).

To this end we assume that u3 is lying in R7. Then, by the Beetle Lemma 4.10, the
wing (u3, w1) crosses (u1, w5), and the wing (u3, w2) crosses (u1, w2) (see Fig. 4.34b).
Because of simplicity and fan-crossing freeness, all three edges (u3, w3), (u3, w4) and
(u3, w5) must be crossing-free.

We determine the range of u1 regarding w6 (and w7) as follows: Simplicity prevents
any crossing with another edge incident to u1; the fan-crossing free property prevents
a crossing with (u2, w1), (u2, w3), (u3, w1), and the fan {(u3, w3), (u3, w4)}. Thus,
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Fig. 4.34: (a) The seven regions in Γ4. (b) Vertex u3 is in region R7; the red edges show
the (topologically) only way to draw (u3, w1), . . . , (u3, w5). (c) The range of u1
(bright red) and u2 (bright blue) regarding w6. The common range is R4 ∪R′7
(bright red and blue). (d) Vertex w6 is placed in R′7. (e) Vertex w6 is placed
in R4.

the range of u1 regarding w6 contains the regions R2, R4, R5 and parts of R1 and
R7. The range of u2 regarding w6 is symmetric to the range of u1 regarding w6 and
therefore contains the regions R3, R4, R6 and parts of R1 and R7. Both ranges are
illustrated in Fig. 4.34c, as well as the common range consisting of R4 and a part of
R7, which we denote by R′7. Consequently, both vertices w6 and w7 must be in one
of the regions R4 or R′7. We consider the cases separately.
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(1) First assume that w6 is placed in R′7. Then simplicity and fan-crossing
freeness implies that (u1, w6) crosses (u3, w3), and (u2, w6) crosses (u3, w4) (see
Fig. 4.34d). If w7 would also be in R′7, then, by symmetry, the edge (u1, w7)
would cross (u3, w3), yielding a fan-crossing. So w7 must be in R4. But in this
case the edge (u3, w7) is not realizable: The range of u3 is the area delimited by
(u1, w5), (u1, w6), (u2, w5) and (u2, w6) (see gray area in Fig. 4.34d).

(2) The analysis above shows that both vertices w6 and w7 must be in R4.
Since the edge (u3, w6) can cross neither (u1, w5), nor (u2, w5), nor the fan
{(u1, w3), (u1, w4)}, nor the fan {(u2, w3), (u2, w4)}, it has to cross (u1, w4) and
(u2, w3) (as illustrated in Fig. 4.34e). But, as the same is true for (u3, w7),
inserting (u3, w7) would create a fan-crossing. This rules out the last case.

We conclude that the drawing Γ4 cannot be extended to a fan-crossing free drawing
of K3,7.

The drawing Γ5. Figure 4.35a shows the eight regions R1, . . . , R8 of Γ5 again (see
also Fig. 4.25 in Sec. 4.4.2.5). As already proved in Sec. 4.4.2.5, the vertex u3 cannot
be in any of the regions R3, R5, R7 and R8 by the Triangle Lemma, and it cannot
be in the regions R1, R2, R4 and R6 by the Empty-Shell Corollary.
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w1

w2

w3
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R3

R2

w5

w4

R6
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R1

R4
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u2

w1
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w2
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R3

R4

R5

R6

R7

w3

w4

(b)

Fig. 4.35: (a) The eight regions in Γ5. (b) The eight regions in Γ6.

Thus, the drawing Γ5 cannot be extended to a fan-crossing free drawing of K3,7.

The drawing Γ6. In Γ6, we have the seven regions R1, . . . , R7 as illustrated in
Fig. 4.26 and, for the readers convenience, also in Fig. 4.35b. In Sec. 4.4.2.5 we
proved already that the vertex u3 can lie neither in R2, R3, R5, R6 (Triangle Lemma),
nor in R1, R4, R7 (Empty-Shell Corollary). Therefore we can directly conclude that
the drawing Γ5 cannot be extended to a fan-crossing free drawing of K3,7.

The drawing Γ7. The seven regions R1, . . . , R7 of Γ7 are shown again in Fig. 4.36a
(see also Fig. 4.27a). We have already seen in Sec. 4.4.2.5 that the vertex u3 cannot
be positioned in any of the regions R2, R3, R6 and R7 (Triangle Lemma), and in any
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of the regions R4 and R5 (Empty-Shell Corollary). It remains to consider the case
where u3 is placed in region R1.

In this case the edge (u3, w3) can be drawn in two ways without introducing fan-
crossings: It crosses either both edges (u1, w2) and (u2, w1), or both edges (u1, w5)
and (u1, w4). We assume without loss of generality that (u3, w3) crosses (u1, w2)
and (u2, w1). Then, by simplicity and fan-crossing freeness, each of the edges
(u3, w1), (u3, w2), (u3, w4) and (u3, w5) must be crossing-free (for an illustration see
Fig. 4.36b).

Now we consider w6 and w7. First we observe that R2, R3 and R4 are not in the
range of u3 with respect to w6 (or w7). Of the remaining regions, the region R7 and
parts of region R1 are not in the range of u1, and R6 and parts of region R1 are
not in the range of u2, regarding w6 (see also Fig. 4.36c). This implies that w6 (and
w7) are in R5 or the region of R1 that is delimited by (u1, w5), (u2, w4), (u3, w4) and
(u3, w5), in the following denoted by R′1.

(1) First assume that w6 is placed in R′1. Then it is necessary for the edge (u1, w6)
to cross (u3, w4) and for the edge (u2, w6) to cross (u3, w5) (by simplicity and
the fan-crossing free property). If w7 would also be in R′1, then (u1, w7) must
also cross (u3, w4), yielding a fan-crossing. Hence, there is only one vertex in
R′1, and vertex w7 lies in R5 (see Fig. 4.36d for an illustration of this situation).
But now the region R5 is not in the range of u3 (regarding w7) anymore (the
range of u3 is the non-gray area in Fig. 4.36d). This rules out the case in which
w6 ∈ V2 is in R1.

(2) Finally we consider the case in which w6 and w7 are both in R5. There is only one
way to realize the edge (u3, w6) such that the resulting drawing is fan-crossing
free: This edge must cross (u1, w5) and (u2, w4) (see Fig. 4.36e). Since the same
holds for (u3, w7) as well, the edge (u1, w5) is crossing the fan {(u3, w6), (u3, w7)}.
Thus, the last case is ruled out.

We conclude that Γ7 cannot be extended to a fan-crossing free drawing of K3,7.

Combining the results from Lemma 4.6, Lemma 4.8, Lemma 4.12, and Lemma 4.13,
the statement of Thm. 4.5 follows.

4.4.2.7 A note on the simplicity assumption

The assumption that a graph is simple, i. e. no adjacent edges cross each other, no
edge crosses itself, and each pair of edges crosses at most once, is very common,
see e. g. Kleitman [97], or Pach and Tóth [108]. In fact, for some graph classes it
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Fig. 4.36: (a) The seven regions in Γ7. (b) Vertex u3 is in R1. (c) The ranges of u1, u2
and u3 regarding w6 and w7: The gray area is not in the range of u3, the bright
red area is not in the range of u1, and the bright blue area is not in the range
of u2. (d) Vertex w6 is in R′1. (e) Vertex w6 is placed in R5.
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is known that this assumption is no constraint in the following sense: If there is
a non-simple drawing of a graph G belonging to a certain graph class C, then this
drawing can be changed such that it is simple and still belongs to C. Examples for
such classes are the k-planar graphs for k ≤ 3, see [122] and [106]. However, there
exist also classes where this is not true. Such an example are the 4-planar graphs,
see Schaefer [125]. Another prominent example is the class of quasi-planar graphs.
Ackerman [4] showed that the upper bound on the edge density for simple quasi-
planar graphs is 6.5n − 20, while it is 8n − 20 for non-simple quasi-planar graphs.
Moreover, he constructed a family of non-simple quasi-planar graphs that exceed
the bound of 6.5n− 20 edges, showing that the class of simple quasi-planar graphs
is a proper subclass of the non-simple quasi-planar graphs.

An easy observation is that each self-crossing can be avoided – no matter which
graph class is considered (possibly with the exception of future graph classes that are
defined in a very strange way, not complying to the common definitions nowadays).
If there is a self-crossing e = (v1, v2) for two vertices v1, v2 in a drawing Γ, the loop
caused by it can be erased in order to obtain an edge that is non-self-crossing; namely,
e can be replaced by the edge consisting of the arc of e from v1 to the crossing, joined
with the arc of e from v2 to the crossing (see Fig. 4.37a for an illustration). Note
that this does not introduce any new crossings, and for some edges (including e)
even reduces the number of crossings; thus Γ still belongs to the same graph class
as it belonged to before redrawing e.

e

v1 v2

(a)

v1 v2

v′1 v′2

(b)

v1
v2

v′2

(c)

Fig. 4.37: (a) A self-crossing edge. It can be replaced by the dashed red edge. (b) Two
edges that cross each other twice, where the area between the two crossings
(called “lens”) is empty. The red edges indicate how this configuration can be
resolved. (c) Adjacent edges that cross, such that the lens they form (from
the common vertex to the crossing point) is empty; the red edges show how to
resolve this configuration.

In general, it is also possible to eliminate empty lenses. Thereby a lens is defined
as follows:

(a) Given two edges e = (v1, v2) and e′ = (v′1, v′2) that cross each other twice. Let c1

and c2 be the crossing points, ec1,c2 the part of e between c1 and c2, and e′c1,c2 the
part of e′ between c1 and c2. Then a lens is the area enclosed by ec1,c2 and e′c1,c2 .
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(b) Given two adjacent edges e = (v1, v2) and e′ = (v1, v
′
2) that cross each other.

Let c2 be the crossing point, ev1,c2 the part of e between v1 and c2, and e′v1,c2 the
part of e′ between v1 and c2. Then a lens is the area enclosed by ev1,c2 and e′v1,c2 .

The dashed red edges in Figs. 4.37b and 4.37c show how to eliminate lenses if they
are empty. Since the lenses are empty, the crossing configuration for edges not equal
to e or e′ does not change, while the number of crossing for e and e′ is reduced by
one, which also does not affect the graph class Γ belongs to.

While empty lenses always can be avoided, the discussion above shows that the
same is not true for non-empty lenses. However, in the case of a fan-crossing free
complete bipartite graph Ka,b, where b ≥ a, a ≥ 4 and b ≥ 5, there can in fact be
no non-empty lenses.

To see this we consider two different cases. Like before, let U = {u1, . . . , ua} and
W = {w1, . . . , wb} be the two independent parts for Ka,b and Γ a drawing of Ka,b

(or a drawing of a subgraph of Ka,b).

Adjacent edges cannot cross. Suppose to the contrary that there is a crossing
c of two adjacent edges e = (u1, w1) and e′ = (u1, w2). Then eu1,c and e′u1,c enclose
a region R (see Fig. 4.38a). As already discussed, if this region does not contain
a vertex, then e and e′ can be rerouted such that this region vanishes. So let us
assume that there is a vertex in R.

u1

w1 w2

R

(a)

u1

w1 w2

u3

u2

(b)

u1

w1 w2

w3

u3u2

(c)

Fig. 4.38: (a) Adjacent edges that cross each other with enclosed area R. (b) A node
u2 ∈ U is in R. (c) A node w3 ∈W is in R.

First we consider the case, where a vertex u2 ∈ U is in R. Then the edge (u2, w1)
cannot cross (u1, w2) since this would create a fan-crossing; for the same reason the
edge (u2, w2) is not allowed to cross (u1, w1). This yields crossings of (u2, w1) with
(u1, w1), and of (u2, w2) with (u1, w2) (see dashed red edges in Fig. 4.38b). The vertex
u2 has edges to all nodes in W , so there must be at least edges (u2, w3), (u2, w4)
and (u2, w5) in Γ. Fan-crossing freeness disallows these edges to cross (u1, w1) or
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(u1, w2), implying that w3, w4 and w5 are placed in region R. Now consider u3, which
has edges to w3, w4 and w5. Since at most two of these edges can cross (u1, w1) or
(u1, w2), vertex u3 must also be in R. But then it is impossible to draw the edge
(u3, w1) without a fan-crossing (see dashed blue edge in Fig. 4.38b). So, in this case
there is no valid fan-crossing free drawing of Ka,b.2

Now consider the case where a vertex w3 ∈ W is in R (see Fig. 4.38c). Then at
most one of the edges (u2, w3), (u3, w3) and (u4, w3) is allowed to cross (u1, w1), and
at most one of them can cross (u1, w2). Thus, at least one of the vertices u2, u3, u4

must be in R. But we already ruled out this case.3 So adjacent edges indeed cannot
cross each other.

Two distinct edges cannot cross twice. Assume that there are two distinct
edges e = (u1, w1) and e′ = (u2, w2) in Ka,b, that cross each other twice.

First we assume that the lens enclosed by e and e′ does not contain any of the
vertices u1, u2, w1, w2 (see Fig. 4.39a). Since the lens is not empty, it contains a vertex
v, either belonging to U or to W , say to W (the other case is symmetric). The edge
(u1, v) cannot cross e′, since this would create a fan-crossing (see dashed red edge in
Fig. 4.39a). But it can also not cross e, since this would create a configuration with
crossing adjacent edges (see dashed gray edge in Fig. 4.39a).

v
u1

w1

u2 w2

(a)

u1

u2

w1

w2

(b)

u1

w2

w1

u2

w3

R
R′

(c)

Fig. 4.39: (a) Edges that cross each other twice with empty lens. (b) Two edges that cross
each other twice, where two vertices of W are in the lens. (c) Two edges that
cross each other twice, where one vertex of U and one vertex ofW is in the lens.

Next we assume that the lens enclosed by e and e′ contains w1 and w2 (see
Fig. 4.39b). This configuration is not possible, since the edge (u1, w2) crosses (u2, w2)
(see dashed red edge in Fig. 4.39b), or it crosses (u1, w1) (see dashed gray edge in
Fig. 4.39b), yielding a fan-crossing.

Finally assume that the lens R enclosed by e and e′ contains u2 and w1. Note
that R′ in Fig. 4.39c is also a lens, this one contains u1 and w2, and note also that
considering R′ instead of R is a symmetric case. So we can assume without loss
of generality that R contains another vertex w3 ∈ W . The edge (u1, w3) cannot

2Note that this argument only works for |U | ≥ 3 and |W | ≥ 5.
3Note that for this argument we need |U | ≥ 4 and, from the first case, |W | ≥ 5.
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cross (u1, w1) by the discussion above, and hence has to cross (u2, w2) (red edge in
Fig. 4.39c), yielding a fan-crossing. This rules out the last case.

These arguments show the following: If there is a non-simple fan-crossing free
drawing of Ka,b for b ≥ a, where a ≥ 4 and b ≥ 5, then there is also a simple fan-
crossing free drawing for Ka,b. Conversely, since there is no such drawing for the
bipartite graphs K5,5 and K4,7 that is simple, there is also no such drawing when
abandoning the simplicity assumption. However, as the arguments above need the
assumption |U | ≥ 4 and |W | ≥ 5, we cannot conclude the same for the graph K3,7,
but we believe it also holds for this graph and that it can be proven by a more
detailed case analysis.

4.5 Conclusions and Open Problems

For some graph classes we answered the question if all graphs of a certain degree
d belong to it or not. In the case of k-planar, k-gap-planar and fan-planar graphs
we were able to give tight bounds, even for the more restrictive case of Hamiltonian
bipartite graphs. However, for various graph classes there are still gaps between
the lower and upper bounds of d (see Table 4.1). In particular, the long-standing
question if all degree-3 graphs are RAC is still open. Since fan-crossing freeness and
quasi-planarity are necessary conditions for a graph to be RAC, and all graphs of
degree 3 are fan-crossing free and quasi-planar, there is hope to find an algorithm
to draw such graphs with right angle crossings. If the claim by Alam et al. [8], that
all degree-3 graphs have a drawing that is fan-crossing free and quasi-planar at the
same time, turns out to be true, then this would be another important step towards
showing that all degree-3 graphs are RAC.

Another interesting question arising from our results is whether degree-4 graphs are
fan-crossing free. More general, we pose as future goals to narrow down the gaps for
the graph classes presented in Table 4.1, namely for quasi-planar, RAC 1-bend, and
RAC 2-bend graphs. The upper bounds du in the table are derived from the known
upper bounds on the maximum edge density of graphs in these classes [4, 10, 24].
So the hope is to find some low-degree graphs not belonging to these classes using
direct arguments, like we did for the fan-crossing free graphs.



Chapter 5

Enumeration of Drawings for
Complete and Complete Bipartite
Graphs

In order to find graphs of low degree that are not fan-crossing free, we proved
a characterization for the class of bipartite fan-crossing free graphs in Thm. 4.5.
Such characterizations are not only interesting in the low-degree setting, but also of
interest in itself, since the size of the largest complete or complete bipartite graph is
a common measure to understand the extent of a specific graph class [30,42,53,58].
Moreover, it has implications for different areas of graph theory and graph drawing
and has been studied in related fields, refer e.g. to [25, 41, 47, 66, 69, 82, 130]. One
such example is the chromatic number [76], which is lower bounded by the largest
n such that Kn is contained in the considered graph class.

In this chapter, which is based on our conference paper “Efficient Generation of
Different Topological Representations of Graphs Beyond-Planarity” [16], we study
different graph classes, aiming at giving an algorithm to characterize complete and
complete bipartite graphs.1

5.1 Preliminaries

In the following we give definitions that are relevant for the current chapter.
Moreover, in this section we discuss the state of the art regarding characterizations
of complete and complete bipartite graphs.

1Our paper was also invited to a special issue of the Journal of Graph Algorithms and Applications
(JGAA), dedicated to selected papers from “Graph Drawing and Network Visualization 2019”
(GD 2019). Thus, an extended version appeared in JGAA [17].
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5.1.1 Definitions

We focus our studies on simple graphs, i. e. graphs without self-loops or multi-edges,
and on simple drawings, that is drawings where each edge pair has at most one point
in common.2

For a drawing D of a graph G = (V,E), we denote the planarization3 of D by
ΓD. If we have a set of drawings D1, . . . , Dk for some k ∈ N, we also denote the
planarization of Di (1 ≤ i ≤ k) by Γi instead of ΓDi

. Recall that the planarization
of a drawing is obtained by replacing each of its crossings with a dummy vertex. In
the following we refer to these dummy vertices also as crossing vertices, while the
original vertices are called real vertices.

Let V = {u1, . . . , un} be the vertices for a complete graph Kn, while we assume
that for a complete bipartite graph Ka,b the vertices are given by the two disjoint
independent sets U = {u1, . . . , ua} and W = {w1, . . . , wb}.

In the following we consider graphs belonging to certain graph classes. To this end
we denote a graph class by C. If the drawing of a graph respects the restrictions
of C, we say the drawing is C-drawable. Recall the following graph classes beyond-
planarity:

– k-planar graphs, in which each edge may be crossed by at most k other edges;

– fan-planar graphs, in which each edge can cross only a fan and edges of the fan
must cross from the same “side” [32,38,39,93];

– fan-crossing free graphs, in which no edge is allowed to cross a fan [45,50];

– gap-planar graphs, in which each crossing is assigned to one of the two crossing
edges, such that each edge receives at most one crossing assigned to it [30];

– RAC graphs, in which edges are only allowed to cross at right angles [59,60,64];

– the IC-planar graphs, in which no two pairs of crossing edges share a vertex
(referred to as independent crossings) [9, 141];

– the NIC-planar graphs, in which no two pairs of crossing edges share more than
one vertex (referred to as nearly independent crossings) [140];

– and finally the fan-crossing graphs [43, 44], which are defined like fan-planar
graphs, except that edges of a fan are allowed to cross from different sides.

2Note that the simplicity assumption may be not without loss of generality for some of the graph
classes; e.g., for the quasi-planar graphs [4]. We refer also to Sec. 4.4.2.7, which contains a short
discussion about this assumption.

3For the detailed definitions we refer to Chapter 2.
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5.1.2 Known results

For some of the aforementioned classes, characterizations for complete or complete
bipartite graphs are already known.

One of these classes is the class of 1-planar graphs, where Czap and Hudák [53]
proved that Kn belongs to it if and only if n ≤ 6, while Ka,b, with a ≤ b, is 1-planar
if and only if a ≤ 2, or a = 3 and b ≤ 6, or a = b = 4.

For the IC-planar, NIC-planar and RAC graphs, the complete graph Kn belongs
to any of these classes if and only if n ≤ 5 [59, 140, 141]. Moreover, the graph Ka,b,
with a ≤ b, is IC-planar if and only if a ≤ 2, or a = b = 3 [140], and NIC-planar or
RAC if and only if a ≤ 2, or a = 3 and b ≤ 4 [58,140].

However, when considering quasi-planar graphs, gap-planar graphs, and fan-
crossing free graphs, there exist only characterizations for complete graphs in the
literature. Namely Kn is quasi-planar if and only if n ≤ 10 [4,42], gap-planar if and
only if n ≤ 8 [30], and fan-crossing free if and only if n ≤ 6 [50,53].

As already mentioned, we were able to provide the characterization for fan-crossing
free complete bipartite graphs, refer to Thm. 4.5. More details about the state of
the art and our findings are collected in Tables 5.1 and 5.2.

5.1.3 Techniques

We note that, while it suffices to find a certificate drawing for showing that a certain
graph belongs to a specific graph class, it is in general more difficult to show that
a graph is not part of a graph class, since one needs to argue that there exist no
drawing at all which respects the constraints of the class.

A main technique to prove the latter is by using the edge density for the considered
graph class (density bounds for several graph classes are also provided in Tables 5.1
and 5.2). For example, the 1-planar and fan-crossing free graphs have an edge
density of 4n − 8 edges [50, 108], yielding that the complete graph K7 is in neither
of the two classes.4

Nevertheless, this technique fails in most cases. E. g. for the class of 2-planar
graphs, the edge density of 5n − 10 only ensures that K9 does not belong to this
class, while it provides no answer to the question if K8 is also 2-planar or not. In
regard to the complete bipartite graphs, the limitations of this approach are even
more evident, due to the fact that they are sparser than the complete graphs.

4In greater detail: The graph K7 has 21 edges, while 1-planar and fan-crossing free graphs with
7 vertices allow only for 4 · 7− 8 = 20 edges.
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Table 5.1: Known results and our findings for complete graphs. For each class, we present
the largest complete graph that belong to this class (col. “∈”), and the smallest
one that does not (col. “/∈”).

Class Density Ref. ∈ Ref. /∈ Ref.
IC-planar 13

4 n− 6 [141] K5 [64, Fig.5] K6 [141, Prp.2.1]
NIC-planar 18

5 n−
36
5 [140] K5 [140, Thm.7] K6 [140, Thm.7]

1-planar 4n− 8 [122] K6 [53, Fig.1] K7 [108, Thm.1]
2-planar 5n− 10 [108] K7 [39, Fig.7] K8 Char. 5.3
3-planar 11

2 n− 11 [106] K8 Char. 5.3 K9 Char. 5.3
4-planar 6n− 12 [3] K9 Char. 5.3 K10 Char. 5.3
5-planar < 8.52n [3] K9 Char. 5.3 K10 Char. 5.3
6-planar < 9.34n [3] K10 Fig. 5.7c K20 [3]
fan-planar 5n− 10 [93] K7 [39, Fig.7] K8 Char. 5.8
fan-crossing

fan-crossing 4n− 8 [50] K6 [53, Fig.1] K7 [50, Thm.1]
free
gap-planar 5n− 10 [30] K8 [30, Fig.7] K9 [30, Thm.23]
RAC 4n− 10 [59] K5 [64, Fig.5] K6 [59, Thm.1]
quasi-planar 13

2 n− 20 [4] K10 [42, Fig.1] K11 [4, Thm.5]

Another technique to obtain the desired characterizations takes the crossings into
account. More precisely, the minimum number of crossings required by any drawing
of a certain graph G (as derived by, e.g., the Crossing Lemma [3, 6, 7, 102, 106] or
closed formulas [75,139]) is compared to the maximum number of crossings allowed
in the considered graph class C. If the former number exceeds the latter, the graph
G cannot be part of C. However, to make good use of this technique, graph classes
must impose such restrictions (like e. g. gap-planar and 1-planar graphs [29, 53]),
and these restrictions should yield tight bounds.

Since it is in general not easy or presumably impossible to find combinatorial
arguments while proving characterizations for certain complete or complete bipartite
graphs, often a large case analysis is needed (refer to the proofs in Sec. 4.4.2 and [58]).
We noticed that a characterization for the complete bipartite 2-planar graphs [94]
could be derived in a similar manner as the corresponding one for fan-crossing free
graphs. This was our motivation to develop a systematic method to find complete
and complete bipartite graphs belonging to a certain graph class beyond-planarity,
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Table 5.2: Known results and our findings for complete bipartite graphs. For each class,
we present the largest complete bipartite graphs that belong to this class (col.
“∈”), and the smallest ones that do not (col. “/∈”). Color gray indicates weaker
results that follow from other entries. A star behind the density indicates that
it is the same bound as in the general case, since no density tailored for the
bipartite case is known.

Class Density Ref. ∈ Ref. /∈ Ref.
IC-planar 9

4n− 4 [14] K3,3 [140, Cor.19] K3,4 [140, Cor.19]
NIC-planar 5

2n− 5 [14] K3,4 [140, Thm.9] K3,5 [140, Thm.9]
K3,4 K4,4 [140, Thm.9]

1-planar 3n− 8 [54] K3,6 [53, Fig.2] K3,7 [53, Lem.4.2]
K4,4 [53, Fig.3] K4,5 [53, Lem.4.3]

2-planar 7
2 − 7 [14] K3,10 [13, Lem.1] K3,11 [13, Lem.1]

K4,6 Char. 5.4 K4,7 Char. 5.4
K4,5 K5,5 Char. 5.4 [94]

3-planar < 5.21n [14] K3,14 [13, Lem.1] K3,15 [13, Lem.1]
K4,9 Char. 5.5 K4,10 Char. 5.5
K5,6 Char. 5.5 K5,7 Char. 5.5
K5,6 K6,6 Char. 5.5

4-planar 6n− 12* [3] K3,18 [13, Lem.1] K3,19 [13, Lem.1]
K4,11 Obs. 5.6 K4,19
K5,8 Obs. 5.6 K5,19
K6,6 Obs. 5.6 K6,19

5-planar < 6.72n [14] K3,22 [13, Lem.1] K3,23 [13, Lem.1]
K4,11 K4,23
K5,8 K5,23
K6,7 Obs. 5.7 K6,23

fan-planar 4n− 12 [14] K4,n [93, Fig.3] K5,5 Char. 5.9
fan-crossing

fan-crossing 4n− 8* [50] K3,6 K3,7 Char. 5.11
free K4,6 Char. 5.11 K4,7

K4,5 K5,5 Char. 5.11
gap-planar 5n− 10* [30] K3,12 [30, Fig.7] K3,14 [29, Thm.1]

K4,8 [30, Fig.9] K4,9 Obs. 5.13
K5,6 [30, Fig.9] K5,7 [30]
K5,6 K6,6 [29, Thm.1]

RAC 3n− 7 [14] K3,4 [58, Fig.4] K3,5 [58, Thm.2]
K3,4 K4,4 [58, Thm.2]

quasi-planar 13
2 n− 20* [4] K4,n [93, Fig.3] –

K5,18 Obs. 5.15 ?
K6,10 Obs. 5.15 ?
K7,7 Obs. 5.15 K7,52 [4, Thm.5]
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or, alternatively, for proving that there exists no drawing for a specific graph Kn or
Ka,b, respectively.

5.2 Our Contribution

The case analyses for the proofs that the bipartite graph K5,5 is neither fan-crossing
free (Thm. 4.5) nor 2-planar [94] use the same technique of considering all possible
drawings and discarding isomorphic drawings regularly. This caused us to ask the
question if the proofs can be automated and generalized, such that the automation
also works for other graph classes. We were able to answer this question in the
positive for topological graph classes, while it does not extend to the geometric ones
(such as the class of RAC graphs). Moreover, our technique is tailored for complete
and complete bipartite graphs, since we highly exploit the symmetry of such graphs.

Our algorithm consists of two main steps, which are applied in turns. The first
one is the generation of all possible embeddings that can be obtained by inserting
a vertex into a given complete (bipartite) graph, while respecting the constraints of
the graph class considered. The second step is the elimination of isomorphic graphs,
which generally discards a large number of them and thus reduces the search space
extremely.

We will describe our algorithm in detail and start with the isomorphic test, which
is not only applicable to drawings of complete or complete bipartite graphs, but
even to drawings of general connected graphs.5

5.3 Testing for Isomorphism

Let D1 and D2 be embeddings of a connected graph G with planarizations Γ1 and Γ2

respectively. Recall that D1 and D2 are isomorphic if Γ1 and Γ2 can be transformed
into each other by relabeling (dummy and real) vertices, edges, and faces of Γ1.

We remark that a weaker definition of isomorphism is used in several works (see,
e.g., [1, 73, 118]) that generate simple drawings of complete graphs. More precisely,
the drawings D1 and D2 are called weakly isomorphic [99], if there is an incidence
preserving bijection between their vertices and edges, such that two edges cross in
D1 if and only if they do in D2. Figure 5.1 shows that both terms are not the same,

5We remark that the isomorphic test can also be adjusted to non-connected graphs. However,
since we only consider connected graphs and the number of possible configurations to check is
higher in non-connected graphs, we focus only on the connected case.
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as two graphs that are weakly isomorphic might differ in the order in which their
edges cross [72]; refer also to the discussion in Sec. 2.4.

e1

e2

(a)

e1

e2

(b)

Fig. 5.1: The drawings in (a) and (b) are weakly isomorphic, but not isomorphic, since
the planarization of drawing (b) has a face of size 5 (area colored in red), while
the planarization of drawing (a) has no such face. Note that the order of e1 and
e2 along the red edge is different in both drawings.

Further, two simple drawings of a complete graph are weakly isomorphic if and
only if they have the same rotation system6 [72,109]. So, in order to find all simple
drawings that are not weakly isomorphic, it suffices to find all rotation systems
that yield a simple drawing [100]. Since this property is only true for complete
graphs [1], and regarding complete bipartite graphs only partial results are known
in the literature [48], we followed another approach.

Our first observation is that the number of each, the dummy vertices, the real
vertices, the edges and the faces, must be the same in Γ1 and in Γ2. Apart from this
easy observation, at first sight testing for isomorphism seems to be a difficult task,
since one could think that it is necessary to try all the possible mappings for the
vertices of Γ1. Doing so would lead to a number of n! different mappings, where n is
the number of real and dummy vertices in Γ1 (and by the observation before in Γ2,
as well) – alone to assign the vertices of Γ1 and Γ2 to each other. However, it is not
necessary to run such an extraordinarily large test, as we will see soon. To this end
we introduce the so-called valid bijective mapping. Thereby a bijective mapping7

between vertices, crossings, edges, and faces of Γ1 and Γ2 is valid if and only if the
following two properties hold:

6Recall that a rotation system describes the cyclic order of edges around each vertex.
7The word “bijective” implicitly implies that the number of crossings, real vertices, edges and
faces is the same for both planarizations. It also implies that crossings and real vertices in Γ1
are mapped to the same type of vertices in Γ2.
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Prop. 1 If an edge (v1, w1) of Γ1 is mapped to an edge (v2, w2) of Γ2, and v1 is
mapped to v2, then w1 is mapped to w2 (see Fig. 5.2a).

Prop. 2 If a face f1 of Γ1 is mapped to a face f2 of Γ2, and an edge e1 incident to
f1 is mapped to an edge e2 incident to f2, then the predecessor (successor)
of e1 is mapped to the predecessor (successor) of e2 when walking along
the boundary of f1 in counter-clockwise direction and along the boundary
of f2 in clockwise or counter-clockwise direction (see Fig. 5.2b). Also, the
face incident to the other side of e1 is mapped to the face incident to the
other side of e2 (see Fig. 5.2c).

w1 w2

v1 v2

(a)

f1

e1

f2

e2

(b)

f1
e1

f2

e2

(c)

Fig. 5.2: Illustration of the properties for a valid bijective mapping. (a) If v1 and (v1, w1)
are mapped to v2 and (v2, w2), respectively (blue arrows), then w1 is mapped
to w2 (red arrow). (b) If e1 and f1 are mapped to e2 and f2, respectively (blue
arrows), then the successor of e1 is mapped to the successor of e2 (red arrow).
(c) If e1 and f1 are mapped to e2 and f2, respectively (blue arrows), then the face
on the other side of e1 is mapped to the face on the other side of e2 (red arrow).

Clearly these Properties are sufficient for D1 and D2 to be isomorphic. Next we
argue that they are also necessary.

To this end, suppose that D1 and D2 are isomorphic. Then Γ1 can be transformed
into Γ2 by relabeling the vertices, edges, and faces of Γ1, that is, there is a bijective
mapping ϕ between the vertices, edges, and faces of Γ1 and Γ2.

If ϕ maps some vertex v1 of Γ1 to a vertex v2 in Γ2, then ϕ necessarily maps one
of the edges incident to v1 to one of the edges incident to v2, since ϕ transforms Γ1

into Γ2. For the same reason, the order of the edges around v1 must be the same
as the order of the edges around v2, namely, if e1, e2, . . . , eδ are the edges around v1
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in clockwise order, where δ is the degree of v1, then ϕ(e1), ϕ(e2), . . . , ϕ(eδ) are the
edges around v2 = ϕ(v1) in clockwise or counterclockwise order. Moreover, the face
fi whose boundary contains both edges ei and ei+1 (where 1 ≤ i ≤ δ and δ + 1 is
identified with 1), must be mapped to the face whose boundary contains both edges
ϕ(ei) and ϕ(ei+1). This implies the second condition of Property 2.

Suppose now that ϕ maps an edge (v1, w1) of Γ1 to an edge (v2, w2) of Γ2, and v1 to
v2. Again, since ϕ transforms Γ1 into Γ2, it must map w1 to w2. So Property 1 holds.

Finally, we claim that the first condition of Property 2 is also true for ϕ by a similar
argument as above: If ϕ(f1) = f2 for faces f1 and f2 in Γ1 and Γ2, respectively, the
mapping ϕ must be such that the order of the edges along the boundaries of f1 and
f2 is preserved; that is, if e1, e2, . . . , eδ appear in this (clockwise) order along the
boundary of f1 (where δ is the degree of f1), then ϕ(e1), ϕ(e2), . . . , ϕ(eδ) are the
edges along f2 in clockwise or counterclockwise order.

So Properties 1 and 2 are indeed necessary for D1 and D2 to be isomorphic and
we obtain the following lemma.

Lemma 5.1. Two drawings D1 and D2 of the same graph G are isomorphic if and
only if there is a valid bijective mapping between their planarizations Γ1 and Γ2.

Algorithm. Next we describe an algorithm that tests if D1 and D2 are isomorphic.
More precisely, we test if there is a valid bijective mapping between Γ1 and Γ2.

(1) First we select an edge e1 = (v1, w1) in Γ1. This is our base edge. Let
e2 = (v2, w2) be an edge in Γ2 whose end vertices are compatible with the ones
of e1 (i. e., both vertices v1 and v2 are real vertices or crossings, and the same
holds for w1 and w2). Let f1 be the face of Γ1 that is on the left side of e1 when
walking along e1 from v1 to w1. Further let f2 be one of the two faces that are
incident to e2 in Γ2, say f2 is the face on the left side of e2 when walking along
e2 from v2 to w2.

We bijectively map edge e1 to e2, (real or crossing) vertex v1 to v2, vertex w1 to
w2 (these three mappings complies with Property 1), and face f1 to f2. We call
this mapping a base mapping. The idea of the main step of our algorithm is to
try to extend this base mapping to a valid bijection between Γ1 and Γ2. Note
that the case when f2 is on the right side of e2 is symmetric and is part of another
base mapping. Further note that we consider the edge (w2, v2) as different from
e2 = (v2, w2), so (w2, v2) gives rise to two additional base mappings (see Fig. 5.3
for an illustration of the four different cases that an edge of Γ2 generates).
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f1
e1

v1

w1

(a)

f2 e2

v2

w2

(b)

f2
e2

v2

w2

(c)

f2
e2

v2

w2

(d)

f2

e2

v2

w2

(e)

Fig. 5.3: The four different base mappings a single edge e2 of Γ2 can be part of. The
colors indicate which edges and faces are mapped to each other. For the edges,
only the mapping of the successor of base edge e1 to the successor of e2 is shown
(red arrows). (a) A partial drawing of Γ1. (b)–(e) Partial drawings of Γ2; each
figure shows one of the four possible base mappings in which edge e2 is involved.

(2) In order to extend the base mapping, it is necessary for f1 and f2 to have the
same degree δ. If not, we can discard the current base mapping immediately.
Otherwise we walk simultaneously in counter-clockwise direction along the
boundaries of f1 and f2, starting at e1 and e2 respectively.8 To meet the
requirements of Property 2, for each i = 1, . . . , δ, we bijectively map the i-th
vertex of f1 to the i-th vertex of f2, and the i-th edge of f1 to the i-th edge of
f2.9 (See also Fig. 5.3, where, in each drawing, the blue arrow represent the first
edge on the boundaries of f1 and f2, respectively, and the red arrow represent
the second edge.)

We discard the current base mapping if a crossing is mapped to a real vertex, or
if the degrees of two mapped vertices are different, since in this case Property 1
or Property 2 is violated.

(3) In the next step we consider the two maximal connected subdrawings Γ′1 and
Γ′2 of Γ1 and Γ2, respectively, such that each edge of Γ′1 and Γ′2 has at least one
face incident to it that is already mapped.

If Γ′1 = Γ1 and Γ′2 = Γ2, we were able to extend the base mapping to a valid
bijection. Otherwise, there is an edge e′1 in Γ′1 that is incident to only one

8When f2 is on the right side of e2, we walk along the boundary of f2 in clockwise direction.
9Note that, if we were successful, all the edges mapped so far have at least one face incident to it
that is already mapped (namely the faces f1 and f2, respectively); so this gives us the base of
Step 3.
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mapped face f ′1, and another face f ?1 which is not mapped yet. Let e′2 be the
edge of Γ′2 that is mapped to e′1. The edge e′2 must be incident to a face f ′2 that is
mapped to f ′1 and to a face f ?2 that is not mapped yet (otherwise we would have
discarded the current base mapping already in a step before, since Property 2
would have been violated). Then, by Property 2, we are forced to map f ?1 to f ?2 .

We continue by applying the procedure described in Step 1 to f ?1 and f ?2 , that
is, we walk along the boundaries of f ?1 and f ?2 simultaneously, while ensuring
that the mapping remains valid. Here the direction of the boundary walk for f ?2
is given by the known mapping of the endpoints of e′1 to the endpoints of e′2.

If this procedure can be performed successfully, we obtain two subdrawings Γ′′1
and Γ′′2 of Γ1 and Γ2, respectively, such that Γ′1 ⊆ Γ′′1, Γ′2 ⊆ Γ′′2, and each edge of
Γ′′1 and Γ′′2 has at least one face incident to it that is already mapped. Therefore
we can recursively apply Step 3 to Γ′′1 and Γ′′2. As the number of faces in Γ1

is finite, this process will eventually terminate – either with a valid bijective
mapping or with discarding the current base mapping.

(4) If the base mapping can be extended, the drawings D1 and D2 are isomorphic.
Otherwise we start with Step 1 again, using a different base mapping. If none
of the base mappings can be extended, then D1 and D2 are not isomorphic.

Observe that, if we fix a base mapping, all other assignments between vertices,
edges and faces of Γ1 and Γ2 are forced by Properties 1 and 2. Thus, the number
of tests depend on the number of different base mappings, or more precisely on the
number of edges of Γ2. However, we can reduce the number of base mappings we
have to consider: We count the number of edges of Γ1 and Γ2 whose endpoints are
both real vertices, whose endpoints are both crossing vertices, and whose endpoints
consists of one real vertex and one crossing vertex. If the drawings D1 and D2 are
isomorphic, these numbers must clearly be the same for both drawings Γ1 and Γ2. If
this is the case, we choose as base edge an edge of the type with the smallest positive
number of occurrences, since it suffices to consider base mappings only restricted to
one of the three types of edges.

We conclude this section by mentioning that in the worst case we still have to
consider all |E(Γ2)| edges, which gives rise to 4 · |E(Γ2)| base mappings. But in
general it will be a much smaller number, in most cases less than one third of the
aforementioned number.
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5.4 Insertion Procedure

In this section we describe how to insert a vertex and its incident edges into a
drawing, such that simplicity and the restrictions of a graph class C are respected.

5.4.1 Pathways

We start with the basic definitions used in our algorithm.

Let G = (V ,E) be a graph, G = (V,E) a subgraph of G which belongs to class C,
D a C-drawing of G, and Γ = Γ(D) its planarization.

u

ρ1
ρ2

f

f1

f2

(a)

v

u

(b)

Fig. 5.4: (a) Two pathways ρ1 (solid red) and ρ2 (dashed red) for u of length 2, with
destinations f1 and f2 (the crosses indicate dummy vertices of Γ). For the class
of 2-planar graphs, ρ1 is valid, while ρ2 is not valid, since in its presence the
bold drawn edge has three crossings. (b) An augmentation of Γ by edge (u, v),
using the valid pathway ρ1.

Let Γd be the dual of Γ, vertex u a vertex of Γ and f a face incident to u. Then
a half-pathway for u is a path in Γd starting from f and ending at some face f ′ in
Γ (note that f ′ = f is allowed). We call f ′ the destination of the half-pathway (see
Fig. 5.4 for an illustration). The length of a half-pathway is the number of edges in
this path. A half-pathway ρ for u is called valid with respect to class C if Γ can be
augmented such that:

(i) a vertex v ∈ V \ V is placed in the interior of the destination of ρ,

(ii) edge (u, v) is drawn as a curve from u to v in such a way that this curve only
crosses the edges dual to the edges in ρ, in the same order, and

(iii) drawing edge (u, v) in D with the same curve as in Γ, results in a simple C-
drawing.

Given two vertices u, v ∈ V and an edge (u, v) ∈ E \ E, we define a pathway for
(u, v) as a half-pathway for u, whose destination is a face incident to v. Analogously
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to a valid half-pathway, a pathway ρ is called valid for (u, v) with respect to C, if Γ
can be augmented such that:

(i) edge (u, v) is drawn as a curve from u to v such that it only crosses the edges
dual to the edges in ρ, in the same order, and

(ii) drawing edge (u, v) in D with the same curve as in Γ, results in a simple C-
drawing.

So the only difference between a valid pathway and a valid half-pathway is that v
does not need to be placed in Γ, since it is already part of it.

5.4.2 Insertion algorithm

By means of half-pathways and pathways we describe our algorithm for inserting a
vertex v ∈ V \V (together with its edges) into D, given a certain graph class C (also
refer to Alg. 1). To this end let u1, . . . , uk be the neighbors of v in G.

Algorithm 1: Insertion Algorithm
Input: A vertex v, a drawing D, and a class C
Output: All non-isomorphic drawings that contain v, belong to C, and have

D as a subdrawing.
Insert(Vertex: v, Drawing: D, Class: C)

1 u1, . . . , uk ← the neighbors of v in G;
2 S1,S2 ← ∅;
3 foreach valid half-pathway ρ for u1 in D do

/* choose a face for v and connect it to u1 */
4 Add to S1 the drawing obtained by inserting an edge (following ρ) and a

new vertex v (in the destination of ρ) into D;
5 end
6 for i = 2, . . . , k do

/* connect v to all its other neighbors */
7 foreach drawing D′ in S1 do
8 foreach valid pathway ρ for (v, ui) in D′ do
9 Add to S2 the drawing obtained by inserting an edge (following ρ)

into D′;
10 end
11 end
12 S1 ← S2;
13 S2 ← ∅;
14 end
15 return S1
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fp

u1
e1

e2

(a)

fp
e3

(b)

fp
e4

(c)

Fig. 5.5: The prohibited edges (blue) for a half-pathway (red dashed) that ends in a face
fp. The thick blue edges are prohibited, because they are crossed by the half-
pathway. In (a) edges e1 and e2 are prohibited, since they are incident to u1.
In (b) edge e3 is prohibited, since, in order to cross this edge, the half-pathway
would make a self-crossing. In (c) edge e4 is prohibited, since it is part of a
crossed edge.

First we compute all possible valid half-pathways for u1 in Γ with respect to C. For
each such half-pathway we construct a C-drawing by augmenting D with the edge
(u1, v) (see Line 3 of Alg. 1).

We compute these valid half-pathways (and also the valid pathways) recursively.
Note that, in order to be valid, a half-pathway must violate neither simplicity nor the
restrictions of class C. So there are some edges in Γ, which we call prohibited edges,
that a valid half-pathway is not allowed to cross (see Fig. 5.5). While creating the
half-pathways we maintain a list of prohibited edges for each half-pathway, ensuring
the validity of it.

In the base of the recursion, we determine all valid half-pathways for u1 of length
zero. In other words, for each face f that is incident to vertex u1, we create a half-
pathway starting at f with its destination also at f . Such a half-pathway (which
is clearly valid) corresponds to placing the vertex v in f and drawing edge (v, u1)
crossing-free (we refer to Fig. 5.6 for an example). For each such half-pathway the
list of prohibited edges is initialized with all edges of Γ corresponding to edges of D
that are incident to u1.

Now assume that we have already computed all valid half-pathways of some length
i ≥ 0 in Γ. We show how to compute all valid half-pathways for u1 of length i + 1
(if any). On that account we consider a valid half-pathway ρ of length i. Let fρ be
its destination and ` its list of prohibited edges. Every non-prohibited edge e on the
boundary of fρ yields a new half-pathway ρe of length i+ 1, composed of ρ followed
by the edge that is dual to e in Γ. For ρe we create the list `e of prohibited edges by
first copying `. Then we add to `e all edges of Γ that correspond to the same edge of
G as e (see Fig. 5.5c) to guarantee simplicity, as well as the edges of Γ that cannot
be further crossed due to the restrictions of class C. Note that the list of prohibited
edges will increase at least by one, because e is admitted into `e. So this process
will finally terminate, since the number of edges of Γ is bounded.
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Fig. 5.6: An example for the insertion of a vertex v into a crossing-free 4-cycle, such that
v is connected to two vertices u1 and u2. In each drawing, the dashed red edge
is the newly inserted edge; the blue edges are prohibited; the turquoise edges are
the edges that are marked as prohibited while computing the half-pathway that
corresponds to the red edge. Figures 5.6a to 5.6j illustrate all possible ways for
drawing edge (v, u1). Figures 5.6k to 5.6o illustrate all possible ways for inserting
edge (v, u2) into the drawing of Fig. 5.6a. Note that among the drawings that
contain edge (v, u2), the drawings of Figs. 5.6l and 5.6n are isomorphic, as well
as the drawings Figs. 5.6m and 5.6o. Moreover, all drawings illustrated here are
legal for the topological graph classes mentioned at the beginning of this chapter
(in Sec. 5.1.1), except for the class of 1-planar graphs.



Enumeration of Drawings for Complete and Complete Bipartite Graphs 96

As already outlined before, for each valid half-pathway ρ we obtain a new
(intermediate) drawing by inserting (u1, v) into Γ following ρ and by inserting v into
the destination of ρ (see Line 4 of Alg. 1).

In order to get a C-drawing for G[V ∪ {v}], it remains to insert the edges
(u2, v), . . . , (uk, v) into each of these (intermediate) drawings, again in all possible
ways (see Lines 6 to 13 of Alg. 1). The insertion process for these edges is mostly
the same as the one for (u1, v) described above, with one difference: Instead of valid
half-pathways, we search for valid pathways for each edge (v, ui), 2 ≤ i ≤ k, that
is, we only consider pathways starting in a face incident to v and ending in a face
incident to ui.

During this procedure, it may happen that we encounter an edge (v, ui) such that
there is no valid pathway at all (for none of the intermediate drawings). In this case
Γ cannot be extended to a simple C-drawing of G[V ∪ {v}] and we can report this
fact. Otherwise, we compute all simple C-drawings of G[V ∪ {v}] and can use them
for further computations in the general procedure, see the following section.

5.5 Generation Procedure

Using the algorithms from Secs. 5.3 and 5.4, we are now able to formulate an
algorithm to calculate all simple non-isomorphic C-drawings of a complete or a
complete bipartite graph G for some topological graph class C.10 We describe our
algorithm in a recursive way. Thereby a set S is computed, which contains all non-
isomorphic simple C-drawings of G (if any). For an outline of the main steps of our
algorithm we refer to Alg. 2.

Recall that the insertion procedure in Sec. 5.4 and the isomorphic test in Sec. 5.3
are both defined on planarizations of drawings. For this reason, with a slight abuse
of terminology, we assume in the following (sometimes implicitly) that S contains
the planarizations of the drawings of G.

We distinguish two cases for the base of the recursion (see Line 10 of Alg. 2):

• If we consider complete graphs, then the base of the recursion is a cycle of
length 3, that is G = K3. In this case the set S only contains a single drawing,

10We remark that our approach can also be applied to graphs that are neither complete nor
complete bipartite. However, in this case the number of non-isomorphic drawings increases
drastically, and thus the running time, up to the point that it is not possible to execute our
algorithm within appropriate time. We give more details about the effect of the isomorphic test
in Sec. 5.8.



97 Enumeration of Drawings for Complete and Complete Bipartite Graphs

Algorithm 2: Enumeration Algorithm
Input: A complete (bipartite) graph G and a graph class C beyond planarity.
Output: All non-isomorphic drawings of G that are certificates that G

belongs to C.
Enumerate(Graph G)

1 if G /∈ {K3, K2,2} then
2 v ← a vertex of G;
3 S ′ ← Enumerate(G \ {v});
4 S ← ∅;
5 foreach drawing D in S ′ do

/* Add v and its edges to D in all possible ways respecting C */
6 S ← S ∪ Insert(v,Γ, C);
7 end
8 Remove drawings from S that are isomorphic to other ones in S;
9 else

/* G is the complete graph K3 or the complete bipartite graph K2,2 */
10 S ← all non isomorphic drawings of G;
11 end
12 return S;

namely a planar drawing of K3, since all other drawings are isomorphic to this
one or non-simple.

• If we consider complete bipartite graphs, then the base of the recursion is a
cycle of length 4, that is G = K2,2. In this case the set S contains two drawings,
namely a planar drawing and one with a crossing between two non-adjacent
edges.

In the recursive step we consider a vertex v of G (see Line 2 of Alg. 2). Note that
the vertex v can be chosen arbitrarily for complete graphs; for a complete bipartite
graph Ka,b the running time may differ, depending to which of the two independent
parts of Ka,b the vertex v belongs to. We refer to the discussion in Sec. 5.8.

We recursively compute a set S ′ which contains all non-isomorphic simple C-
drawings of G[V \ {v}] (refer to Line 3 of Alg. 2). If S ′ is empty, graph G does not
belong to class C. So we may assume w. l. o. g that S ′ 6= ∅. For each drawing D ∈ S ′,
our algorithm reports all simple C-drawings of G with D as subdrawing, by means
of the procedure described in Sec. 5.4 (see Alg. 1). All these drawings are saved in
a set S that is initially empty (Line 6 of Alg. 2). In the final step we ensure that S
only contains non-isomorphic drawings (see Line 8 of Alg. 2), using the procedure
described in Sec. 5.3.
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We summarize our results in the following theorem.

Theorem 5.2. Let G be a complete (or a complete bipartite) graph and let C be a
beyond-planarity class of topological graphs. Then G belongs to C if and only if our
algorithm returns a drawing of G.
In particular, if G ∈ C, our algorithm returns all non-isomorphic drawings for G.

5.6 Data Structure

In this section we give a brief high-level introduction in the data structure we used
in our implementation.

The requirement for saving a planarization Γ of a drawing D for a connected graph
G is the following: The data structure should be such that it is possible to implement
the insertion of a new vertex and new edges easily. It turned out to be a good
choice to use a so-called doubly-connected edge list (see e. g. Berg et al.[34, Section
2.2]). The doubly-connected edge list consists of collections of (real and crossing)
vertices, faces, and so-called half-edges. Thereby each (undirected) edge (u, v) of Γ
is represented by two directed half-edges, one with source u and target v, the other
with source v and target u. The most important details for these data types are as
follows:

• A vertex v contains a pointer to one of its incident half-edges; this half-edge
must have v as its source. Further v contains a variable, indicating whether v is
a crossing or a real vertex. It is not necessary for our algorithm, but beneficial
for drawing the planarization, to create a field for the vertex coordinate.

• A face f contains a pointer to one of the half-edges on its boundary.

• A half-edge e = (u, v), where u is the source of e and v the target, contains
several pointers:

– a pointer to the source u;

– a pointer to the target v;

– a pointer to its twin half-edges, that is the edge with source v and target u;

– a pointer to the face fe “left” of e;

– a pointer to the successor of e, that is the edge (with source v) following e
when walking along the boundary of fe;

– a pointer to the predecessor of e, that is the edge (with target u) that has e
as successor when walking along the boundary of fe.
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Note that, since Γ is connected, all elements are defined in such a way that it is
possible to traverse the whole planarization starting at an arbitrary element. In
particular, the boundary of a face and the edges around a vertex can be traversed
easily. Thus, it is not difficult to obtain the prohibited edges mentioned in Sec. 5.4.
Further, inserting vertices and its incident edges is just a matter of creating new
vertices, edges and faces, and of changing pointers. So our main requirement is
fulfilled. Since it is easy to traverse the planarization, and such a simultaneous
traversal is the main part of our isomorphic test, the doubly-connected edge list also
supports the second part of Alg. 2 in an efficient way.

Apart from the doubly-connected edge list, no special data structures are needed.
All other steps of the algorithm could be executed using basic structures like lists,
sets, etc.

We close this section by mentioning one important issue. It might not be
practicable to keep all the data in main memory, since the number of different
non-isomorphic drawings is too large for this strategy in most of the cases.11 We
accommodated this fact by saving only a small number of the drawings in main
memory, while saving them on hard disc if a certain number was reached.

5.7 Proof of Concept – Applications

We implemented the algorithm described in Sec. 5.5 for some topological graph
classes C.12 In this section we use our implementation to test if there exist simple
C-drawings for certain complete or complete bipartite graphs. Further we give
corresponding characterizations – if possible – and describe how our results are
positioned within the literature (see also Tables 5.1 and 5.2). We refer to the smallest
instances reported as negative by our algorithm (or by other means) as upper bounds
for C. Likewise, lower bounds are instances reported as positive, i. e., our algorithm
found a drawing which certifies that a particular graph belongs to class C.

Our implementation is available to the community in the following repository:

https://github.com/beyond-planarity/complete-graphs

In the following we discuss our findings for various classes of beyond-planar graphs.

11We will list statistics of our calculations in Sec. 5.8.
12We chose graph classes where we hoped to obtain results in reasonable time; refer also to the

discussion in Sec. 5.8.

https://github.com/beyond-planarity/complete-graphs
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5.7.1 The class of k-planar graphs

Recall that k-planar graphs are such that each edge may be crossed at most k times.

Regarding the complete 1-planar graphs, we already mentioned that Czap and
Hudák [53] showed that Kn is 1-planar if and only if n ≤ 6. Further, it was already
known that K9 is not 2-planar, since every 2-planar graph has at most 5n − 10
edges [108], while K7 belongs to the class of 2-planar graphs (see Fig. 7 in [39]).
However, the question if K8 is a 2-planar graph was still open. We were able to
answer this question with our implementation by reporting that K8 is not 2-planar.

For complete 3-, 4-, and 5-planar graphs, a similar edge-density argument can
be applied as for the 2-planar graphs [3, 106] (for the densities of these classes we
refer to Table 5.1), proving that K10, K11, and K19 are not 3-, 4-, and 5-planar,
respectively. Again we could improve these upper bounds with our implementation,
by concluding that even K9 is not 3-planar, while K10 is neither 4- nor 5-planar.
Moreover, our algorithm provided a 3-planar drawing of K8 (see Fig. 5.7a), and a
4-planar (which is of course also 5-planar) drawing of K9 (see Fig. 5.7b), while we
constructed a 6-planar drawing of K10 (see Fig. 5.7c) by adding one extra vertex
inside the red colored triangle in the 4-planar drawing of K9 in Fig. 5.7b.13

(a) (b) (c)

Fig. 5.7: (a) A 3-planar drawing of K8. (b) A 4-planar drawing of K9. (c) A 6-planar
drawing of K10.

We summarize these results in the following characterization.

Characterization 5.3. For k ∈ {1, 2, 3, 4}, the complete graph Kn is k-planar if
and only if n ≤ 5 + k. Also, Kn is 5-planar if and only if n ≤ 9.

A consequence of the fact that K8 is 3-planar is that the chromatic number of
3-planar graphs is at least 8. Similarly, the chromatic number of 4- and 5-planar
graphs is lower bounded by 9, and the one of 6-planar graphs by 10.

13Density arguments imply that K20 is not 6-planar.
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Another result from our experiments is that K6 has a unique 1-planar drawing
(up to isomorphism), the graph K7 has only two 2-planar drawings, K8 has three
3-planar drawings, while K9 has 35 drawings that are 4-planar. The number of 5-
planar drawings for K9 is drastically larger, namely there are 29,939 of them. More
statistics regarding complete and complete bipartite graphs can be found in Sec. 5.8.

With a slight modification of our algorithm we were even able to determine an edge-
exact bound when aiming to draw complete graphs. More precisely, it is possible
to insert into the maximal C-drawable complete graph another vertex together with
some edges incident to it. We could determine how many edges can be added
such that the resulting graph still belongs to class C. For 1-planar graphs, one can
add three more edges to K6, as the 1-planar drawing in Fig. 5.8a shows, while we
concluded (by trying all possibilities using our implementation) that it is not possible
to add to K6 one vertex together with four incident edges, such that the resulting
drawing is still 1-planar. The corresponding maximal numbers of edges that can be
added for the other complete graphs considered above are as follows. The graph K7

enriched with one vertex and 5 edges incident to it is still 2-planar (see Fig. 5.8b for
a certificate drawing). The graph K8 plus a vertex together with 5 incident edges is
3-planar (see Fig. 5.8c). Regarding 4-planarity, one may add a vertex and 3 incident
edges to K9 without losing this property (see Fig. 5.8d), while K10 minus one edge
is still 5-planar (see Fig. 5.8e). In the case of 6-planar graphs we cannot provide
such an edge-exact bound, since the corresponding calculation was to extensive.

Now we turn our attention to complete bipartite graphs Ka,b with a ≤ b. The first
general observation (not only for k-planar graphs) is that the graph Ka,b is even
planar for a ≤ 2, which implies that graphs with this property belong trivially to all
beyond-planar graph classes.

As already stated at the beginning of this chapter, the graph Ka,b is 1-planar if
and only if a ≤ 2, or a = 3 and b ≤ 6, or a = b = 4 [53]. Further, Angelini et al.
proved that K3,b is k-planar if and only if b ≤ 4k+ 2 [13]. Due to these facts we can
focus on the case where a ≥ 4.

By a recent result, complete bipartite 2-planar graphs have at most 3.5n − 7
edges [14]. Consequently neither of the graphs K4,15 nor K5,8 are 2-planar. However,
with our implementation we were able to conclude that even K4,7 and K5,5 are not
2-planar, while in Fig. 5.9a we provide a 2-planar drawing for K4,6.

The following characterization depicts a summary of these results.
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(a) (b) (c)

(d) (e)

Fig. 5.8: Drawings for edge-exact bounds in the case of (a) the 1-planar graphs: K6 plus
a vertex (red) with 3 edges; (b) the 2-planar graphs: K7 plus a vertex with 5
edges; (c) the 3-planar graphs: K8 plus a vertex with 5 edges; (d) the 4-planar
graphs: K9 plus a vertex with 3 edges; (e) the 5-planar graphs: K10 minus one
edge (the edge between the red vertices is missing).

Characterization 5.4. The complete bipartite graph Ka,b (with a ≤ b) is 2-planar
if and only if

(i) a ≤ 2, or

(ii) a = 3 and b ≤ 10, or

(iii) a = 4 and b ≤ 6.

The upper bound of 5.5n− 11 edges [106] for general 3-planar graphs implies that
K6,b, with b ≥ 45, is not 3-planar, while the result by Angelini et al. [13] even implies
that graphsKa,15 with a ≥ 3 do not belong to this class. However, with our approach
we could improve this upper bound significantly by reporting the graphs K4,10, K5,7,
and K6,6 as not 3-planar, while, in contrast, the graphs K4,9 and K5,6 belong to the
class of 3-planar graphs (see Figs. 5.9b and 5.9c for certificate drawings). We want
to note here that recently there was proven an edge density of 4n− 8 edges tailored
for 3-planar bipartite graphs [112], implying that neither K5,13 nor K6,9 are 3-planar.
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(a) (b) (c)

Fig. 5.9: (a) A drawing of K4,6 that is both, 2-planar and fan-crossing free. (b) A 3-
planar drawing of K4,9. (c) A 3-planar drawing of K5,6.

Even compared to this new result, our findings present much better upper bounds
for the class of 3-planar graphs.

Our results are summarized in the following characterization.

Characterization 5.5. The complete bipartite graph Ka,b (with a ≤ b) is 3-planar
if and only if

(i) a ≤ 2, or

(ii) a = 3 and b ≤ 14, or

(iii) a = 4 and b ≤ 9, or

(iv) a = 5 and b ≤ 6.

For the 4-planar bipartite complete graphs, there is an upper bound of 5.741n
edges [112], implying an upper bound of K5,134. However, this bound is by far worse
than the one obtained from the fact that K3,19 is not 4-planar [13], namely the
graphs Ka,19 are not 4-planar for a ≥ 3.

In the case of this graph class, we were not able to provide better upper bounds,
since the search space turned out to be drastically larger compared to the previous
cases and therefore our generation technique could not terminate. Again we want
to refer to Sec. 5.8 and especially to Table 5.3, where one can find clear evidence
about this increase of the search space.

In order to obtain at least some certificate drawings for the lower bound, we slightly
refined our generation technique. We explain this refinement in Sec. 5.7.2. With
this addition to our implementation we were able to report the graphs K4,11, K5,8,
and K6,6 as 4-planar (see Fig. 5.10).

The following observation summarizes our results regarding the 4-planar graphs.
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(a) (b) (c)

Fig. 5.10: Illustration of 4-planar drawings for (a) K4,11, (b) K5,8 and (c) K6,6.

Observation 5.6. The complete bipartite graph Ka,b (with a ≤ b) is 4-planar if

(i) a ≤ 2, or

(ii) a = 3 and b ≤ 18, or

(iii) a = 4 and b ≤ 11, or

(iv) a = 5 and b ≤ 8, or

(v) a = 6 and b = 6.

Further, Ka,b is not 4-planar if a ≥ 3 and b ≥ 19.

Finally, for the 5-planar graphs we did not even try to find a characterization,
since such graphs are a super-class of the 4-planar graphs and we explained already
the problems with the latter class. So the upper bound stems again from Angelini
et al. [13], namely the complete bipartite graph Ka,23 is not 5-planar for all a ≥ 3.
However, we were able to provide at least a certificate drawing for K6,7 in Fig. 5.11,
again by using our refined generation technique.

Fig. 5.11: A 5-planar drawing for K6,7.
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The following observation summarizes our findings. Note that, since K4,11 and
K5,8 are both 4-planar, they are also 5-planar.

Observation 5.7. The complete bipartite graph Ka,b (with a ≤ b) is 5-planar if

(i) a ≤ 2, or

(ii) a = 3 and b ≤ 22, or

(iii) a = 4 and b ≤ 11, or

(iv) a = 5 and b ≤ 8, or

(v) a = 6 and b ≤ 7.

Further, Ka,b is not 5-planar if a ≥ 3 and b ≥ 23.

5.7.2 A DFS-like approach to obtain certificate drawings

As mentioned above, for certain graph classes C it is not always possible to calculate
all simple non-isomorphic complete or complete bipartite C-drawings. We have
already seen that the complete bipartite 4-planar graphs are such an example. Later
on we will see more examples where we cannot calculate all drawings needed for a
characterization (at least not in appropriate time). Nonetheless, by a modification
of our technique we can at least obtain partial results. In particular, in order to
calculate a simple C-drawing for Ka,b, we try to compute a few sample drawings of
Ka,b−1 orKa−1,b, instead of computing all possible non-isomorphic simple C-drawings
for them. The hope is to find a corresponding certificate drawing for Ka,b only based
on these few samples.

We call this the DFS-like approach, since we aim at going “deep”, that is, insert
as many vertices as fast as possible into a base drawing. Figure 5.12 shows a sketch
of this approach and also the original one, which we denote by BFS-like approach.

The advantage of the DFS-like approach is indeed that one may obtain drawings
with many vertices fast. On the other hand, since not all the drawings for a graph
Ka,b are calculated, it is not possible to benefit from the isomorphic test in such
a large scale as in the BFS-like approach. As a consequence, the latter should be
applied to show that a certain graph is not C-drawable, and in contrast, the DFS-
like approach should be used when the BFS-like approach does not terminate within
reasonable time, aiming to find at least positive certificate drawings for some graphs.
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Current Variant (BFS)

K2,2

K3,3

K2,3

K3,4

K4,4

K4,5

New Variant (DFS)

Fig. 5.12: A sketch of the BFS-like (left) and the DFS-like (right) approach. Each square
represents a drawing. Filled squares indicate that the next vertex has already
been inserted into the corresponding drawing, while this step was not yet
executed for empty ones. Note that in the BFS-like approach, the next vertex
is inserted into every drawing of a certain graph Ka,b, while in the DFS-like
approach the next vertex is inserted in only one drawing of a certain graphKa,b.

5.7.3 The classes of fan-crossing and fan-planar graphs

Recall that it is not allowed for an edge to be crossed by two independent edges in
a fan-crossing drawing, and it is additionally not allowed for an edge to be crossed
by two adjacent edges from different directions in a fan-planar drawing. We remark
that both graph classes have the same edge density of 5n− 10 edges [43, 93]14, but
despite this, the class of fan-planar graphs is a proper subclass of the class of fan-
crossing graphs [43]. In this section we will see that these two graph classes are also
“equivalent” regarding the largest complete and complete bipartite graphs belonging
to them.

Again we consider first the complete graphs. The density bound mentioned above
implies that the graph K9 is neither fan-crossing nor fan-planar. Since Fig. 7 in [39]
shows that K7 is fan-planar (and thus fan-crossing), the only open case is the graph
K8. With our implementation we could solve this case in the negative: K8 is not
fan-crossing and therefore also not fan-planar. We summarize these results in the
following characterization.

14Kaufmann and Ueckerdt [93] observed that the bound for the edge density is tight for both classes.
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Characterization 5.8. The complete graph Kn is fan-crossing and fan-planar if
and only if n ≤ 7.

Like for k-planar graphs, we could even determine an edge-exact bound for both
graph classes. Namely, the graph obtained from K8 by removing one edge is fan-
planar (refer to Fig. 5.13) and thus also fan-crossing.15

Fig. 5.13: A fan-planar drawing of the graph obtained from K8 by removing one edge
(the edge connecting the two red-colored vertices is missing).

Next we consider complete bipartite graphs Ka,b with a ≤ b. Kaufmann and
Ueckerdt [93] observed that for a ≤ 4 the graph Ka,b is fan-planar for any value of b
(and consequently also fan-crossing). Using the upper bound of 4n − 12 edges [14]
for bipartite fan-planar graphs, we can conclude that K5,9 is not fan-planar. (As far
as we know, there exists no density bound for fan-crossing graphs that is specially
tailored for bipartite graphs.) With our implementation we were able to concluded
that even the graph K5,5 is not fan-crossing, and thus not fan-planar. We summarize
these results in the following characterization.

Characterization 5.9. The complete bipartite graph Ka,b (with a ≤ b) is fan-
crossing and fan-planar if and only if a ≤ 4.

5.7.4 The class of fan-crossing free graphs

First we recall that in each fan-crossing free drawing, no edge is allowed to be
crossed by a fan (i. e. two or more adjacent edges). An immediate consequence of
this definition and the one for 1-planar graphs is that each 1-planar drawing is fan-
crossing free. To obtain a characterization for complete fan-crossing free graphs we
combine two known results: The graph K6 is fan-crossing free, since it is 1-planar;
second, the edge density of 4n − 8 edges for a fan-crossing free graph [50] implies
that K7 is not fan-crossing free. Thus we have the following characterization.

15Brandenburg [45] claimed that the graph obtained from K8 by removing one edge is not fan-
crossing, but without giving the details of the proof of this claim. Our result shows that this
claim does not hold.
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Characterization 5.10 (Cheong et al. [50], Czap et al. [53]). The complete graph
Kn is fan-crossing free if and only if n ≤ 6.

Moreover, with our implementation we could report that K6 has a unique (up
to isomorphism) fan-crossing free drawing (see Sec. 5.8), and further determine an
edge-exact bound of K6 plus one additional vertex with 3 edges (see Fig. 5.8a).

We already proved in Sec. 4.4.2 the following characterization for complete bipartite
fan-crossing free graphs.16

Characterization 5.11. The complete bipartite graph Ka,b (with a ≤ b) is fan-
crossing free if and only if

(i) a ≤ 2, or

(ii) a ≤ 4 and b ≤ 6.

5.7.5 The class of gap-planar graphs

Recall that a drawing is gap-planar if there is a mapping from the crossings to the
edges, such that each edge gets at most one crossings assigned to it. Regarding
complete gap-planar graphs, Bae et al. [30] already provided a characterization.

Characterization 5.12 (Bae et al. [30]). The complete graph Kn is gap-planar if
and only if n ≤ 8.

Again we could refine the characterization by determining the edge-exact bound.
Namely, the graph K8 is still gap-planar when it is extended by a vertex together
with four edges incident to it (refer to Fig. 5.14), while there is no gap-planar drawing
when adding a vertex and five edges to K8.

Also for complete bipartite gap-planar graphs Bae et al. [30] were able to provide
some partial results: They showed that the graphs K3,12, K4,8, and K5,6 are gap-
planar, while neither K3,15, nor K4,11, nor K5,7 belong to this class. Note that
the latter results were obtained by using the technique mentioned in Sec. 5.1.3,
which compares the crossing number of these graphs with the maximum number of
crossings allowed in gap-planar drawings.17

Bachmaier et al. [29] refined this technique and showed that even the graphs K3,14,
K4,10, and K6,6 are not gap-planar. It remains to answer the question if the two

16We stress that the scale of the case analysis in the proof is dramatically long. However, we
obtained the same result using our implementation in less than a second!

17Bae et al. [30] observed that a k-gap-planar graph allows at most k|E| crossings.
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Fig. 5.14: A gap-planar drawing of the graph obtained from K8 by inserting a vertex (in
red) and four edges incident to it. The edge to which a crossing is mapped to
is drawn with a gap.

graphsK3,13 andK4,9 are gap-planar or not. We were able to answer this question for
K4,9, which is in fact not gap-planar, while our implementation could not give a result
for K3,13 until now. The difficulty in solving this question is the large number of non-
isomorphic gap-planar drawings, which becomes already evident while considering
K3,7 (at the time of writing, our implementation has been running for three months
and already reported more than one million such drawings; however, it was not even
close to finish the creation of drawings for K3,7).

The results are summarized in the following observation.

Observation 5.13. The complete bipartite graph Ka,b (with a ≤ b) is gap-planar if

(i) a ≤ 2, or

(ii) a = 3 and b ≤ 12, or

(iii) a = 4 and b ≤ 8, or

(iv) a = 5 and b ≤ 6.

Further, Ka,b is not gap-planar if

(i) a = 3 and b ≥ 14, or

(ii) a = 4 and b ≥ 9, or

(iii) a = 5 and b ≥ 7, or

(iv) a ≥ 6 and b ≥ 6.
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5.7.6 The class of quasi-planar graphs

Finally we consider the class of quasi-planar graphs, where three pairwise crossing
edges are forbidden. Here we obtain a characterization for the complete graphs by
combining two known results. On one side, the graph K11 is not quasi-planar, since
every simple quasi-planar graph has at most 6.5n−20 edges [4]. On the other hand,
Brandenburg [42] observed that K10 is quasi-planar.18 These two observations are
summarized in the following characterization.

Characterization 5.14 (Ackerman et al. [4], Brandenburg [42]). The complete
graph Kn is quasi-planar if and only if n ≤ 10.

Again we determined the edge-exact bound also for quasi-planar graphs. Namely,
the graph K10 still belongs to the quasi-planar graphs after adding another vertex
v together with six edges incident to it (refer to Fig. 5.15), while K10 cannot be
enriched by v and seven edges incident to v, such that the resulting graph is still
quasi-planar.

Fig. 5.15: A quasi-planar drawing of the graph obtained from K10 by inserting a vertex
(red) together with six edges incident to it (between the red vertex and the
blue vertices).

We consider now a complete bipartite graph Ka,b with a ≤ b. Since Ka,b is fan-
planar for a ≤ 4 and every value of b [93], and the fan-planar graphs are a subclass
of the quasi-planar graphs, these graphs are quasi-planar as well. Further, the fact

18Since it is in general not easy to observe that a specific drawing is quasi-planar, we describe in
Sec. 5.7.7 how to achieve this systematically.
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that a quasi-planar graph with n vertices has at most 6.5n−20 edges [4] only implies
that K7,52 is not quasi-planar, while for a ∈ {5, 6} no bound on b is known.

With our implementation we were not able to improve the upper bounds for quasi-
planar graph, due to a similar problem as the one described for complete bipartite
4-planar graphs. For more details we refer to Sec. 5.8. However, our DFS-like
approach provided at least some positive certificate drawings for K5,18 (Fig. 5.16a),
K6,10 (Fig. 5.16b), and K7,7 (Fig. 5.16c).

(a)

(b) (c)

Fig. 5.16: Quasi-planar drawings of (a) K5,18, (b) K6,10, and (c) K7,7.



Enumeration of Drawings for Complete and Complete Bipartite Graphs 112

The results for complete bipartite quasi-planar graphs from above are summarized
in the following observation.

Observation 5.15. The complete bipartite graph Ka,b (with a ≤ b) is quasi-planar
for the following values of a and b:

(i) a ≤ 4, or

(ii) a = 5 and b ≤ 18, or

(iii) a = 6 and b ≤ 10, or

(iv) a = 7 and b ≤ 7.

Further, Ka,b is not quasi-planar if a ≥ 7 and b ≥ 52.

5.7.7 How to decide if a drawing is quasi-planar

In the previous section we provided several quasi-planar drawings, without showing
that they are indeed quasi-planar. Instead of doing this for each of these drawings,
we explain here a method how to decide if a drawing has the quasi-planar property
and apply it exemplary to the drawing of K7,7 depicted in Fig. 5.16c.

The key of this method is to consider an edge e and determine if e belongs to a
triple of mutually crossing edges. If this is not the case we delete e from the drawing
and continue with another edge in the reduced drawing.

There are several cases for an edge e:

(1) If e is crossing free, then it is surely not part of three mutually crossing edges.

(2) If e is crossed by a single edge, then it also cannot belong to such a triple.

(3) If e is crossed by edges e1, . . . , ek, where k ≥ 2, and none of the edges e1, . . . , ek

cross each other, then e does not belong to a set of three mutually crossing
edges. Otherwise it does and the drawing is not quasi-planar.

To test case (3) it is useful to color all edges which cross e in the same color; then
edges of the same color must not cross. In order to accelerate this process, we can
even use this coloring technique to test several non-crossing edges at the same time.
To this end, first color the edges that should be tested in one color, say red. The
red edges should be chosen such that they do not cross each other. Further, color
all edges that cross at least one of the red edges in another color, say blue. If the
blue edges do also not cross each other, then none of the red edges is part of three
mutually crossing edges and all of them can be removed from the drawing.

As already mentioned, we show an example for this procedure in Fig. 5.17.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.17: The figures show step-by-step how the quasi-planarity for the drawing of K7,7,
given in Fig. 5.16c, can be decided. Green edges are crossed by at most one
edge, so they are not part of three mutually crossing edges and can be deleted
immediately. Red edges are tested in the current step; every edge that is crossed
by a red edge is colored blue. Note that neither a red edge crosses another red
edge, nor a blue edge crosses another blue edge.
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5.8 Statistics

In this section we present some statistics from the computations we made in order to
check whether certain complete and complete bipartite graphs belong to a specific
graph class. Our algorithm was implemented in Java and executed on a Windows
machine with 2 cores at 2.9 GHz, 8 GB RAM and an SSD for fast access to the hard
disc.

5.8.1 General statistics

Recall that our algorithm works with two main steps (see Sec. 5.5): All possible
C-drawings are constructed for a certain complete or complete bipartite graph
G = (V,E) by adding a vertex v ∈ V to each of the non-isomorphic drawings of
the subgraph G[V \{v}]; then the obtained drawings are compared for isomorphism
and out of isomorphic drawings only one drawing is saved. In Tables 5.3 and 5.4
we report the number of drawings generated in this process in the column “Gen”
(generated), while the number of the non-isomorphic drawings can be found in the
column “N-I” (non-isomorphic). In the column “time” one can find the total time
(in seconds) our implementation needed for generating the drawings and filtering
them for isomorphism. The bottommost row of each section in the table corresponds
to a negative instance, i. e. our implementation reported that there were no simple
C-drawings and thus, the corresponding graph does not belong the the considered
graph class. There are two exceptions, namely the classes of complete bipartite 4-
planar and quasi-planar graphs, since, in both cases, we were not able to calculate
all non-isomorphic drawings of K4,5 in appropriate time.

In the following we give a typical example for an intermediate step in our
computations. While we tried to calculate all 3-planar drawings for the bipartite
graph K6,6 (which resulted in a negative answer), our implementation created all
non-isomorphic drawings of K4,5. The number of such drawings was 7,653. Into
each of these drawings, a new vertex was inserted in all possible ways, aiming to
calculate all non-isomorphic drawings of K5,5 (see gray colored entry of Table 5.3).
Thereby a total number of 20,043 drawings were generated (column “Gen”), and
further, after testing for isomorphism, there remained 1,899 drawings (column “N-
I”). The time it took to calculate these 20,043 drawings and reduce them to 1,899
non-isomorphic drawings was 199.908 seconds (column “Time”). The two steps of
generating all drawings and testing them for isomorphism were repeated, first for
K5,6 (which resulted in 2,516 generated and 438 non-isomorphic drawings), and then
for K6,6 (where no drawing was found).
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Table 5.3: A summary of the required time (in sec.), the number of generated drawings
(Gen.), and the number of non-isomorphic drawings (N-I.) for different
complete and complete bipartite graphs in case of k-planar graphs (1 ≤ k ≤ 5).

complete complete bipartite
Class Graph Gen N-I Time Graph Gen N-I Time
1-planar K4 8 2 0.043 K2,3 34 3 0.061

K5 13 1 0.043 K3,3 14 2 0.049
K6 4 1 0.020 K3,4 16 3 0.065
K7 0 0 0.006 K4,4 5 2 0.044

K4,5 0 0 0.010
total: 25 4 0.112 total: 69 10 0.229

2-planar K4 8 2 0.028 K2,3 76 6 0.090
K5 89 4 0.105 K3,3 243 19 0.254
K6 56 6 0.233 K3,4 526 71 1.458
K7 38 2 0.119 K4,4 310 38 1.152
K8 0 0 0.029 K4,5 318 37 1.826

K5,5 0 0 0.357
total: 191 14 0.514 total: 1473 171 5.137

3-planar K4 8 2 0.042 K2,3 76 6 0.234
K5 109 5 0.195 K3,3 678 69 1.802
K6 548 39 0.953 K3,4 7141 1188 16.969
K7 648 39 3.459 K4,4 24058 2704 97.801
K8 20 3 1.153 K4,5 44822 7653 310.194
K9 0 0 0.065 K5,5 20043 1899 199.908

K5,6 2516 438 47.396
K6,6 0 0 4.822

total: 1333 88 5.867 total: 99334 13957 679.126

4-planar K4 8 2 0.040 K2,3 76 6 0.108
K5 109 5 0.222 K3,3 968 102 2.146
K6 1374 95 4.080 K3,4 32454 6194 163.000
K7 14728 1266 79.842 K4,4 681196 81817 34096.183
K8 7922 833 84.725 K4,5 ? ? ?
K9 353 35 33.672
K10 0 0 1.175
total: 24494 2236 203.756 total: ? ? ?

5-planar K4 8 2 0.059
K5 109 5 0.259
K6 1752 119 4.716
K7 83710 8318 1396.781
K8 1190765 138750 262419.413
K9 285847 29939 32299.196
K10 0 0 2783.813
total: 1562191 177133 298904.237
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Table 5.4: A summary of the required time (in sec.), the number of generated drawings
(Gen.), and the number of non-isomorphic drawings (N-I.) for different
complete and complete bipartite graphs. Here the remaining graph classes
considered in this chapter are depicted.

complete complete bipartite
Class Graph Gen N-I Time Graph Gen N-I Time
fan-crossing K4 8 2 0.034 K2,3 76 6 0.110

K5 89 5 0.133 K3,3 127 9 0.292
K6 147 39 0.226 K3,4 295 43 0.757
K7 75 39 0.405 K4,4 255 29 0.972
K8 0 0 0.196 K4,5 324 48 1.624

K5,5 0 0 0.637
total: 319 22 0.994 total: 1077 135 4.392

fan-crossing K4 8 2 0.049 K2,3 34 3 0.057
free K5 13 1 0.054 K3,3 38 5 0.092

K6 4 1 0.038 K3,4 28 5 0.098
K7 0 0 0.009 K4,4 19 4 0.106

K4,5 16 2 0.075
K5,5 0 0 0.012

total: 25 4 0.150 total: 135 19 0.440

gap-planar K4 14 2 0.135 K2,3 169 14 0.256
K5 243 10 0.366 K3,3 1425 266 4.359
K6 739 237 4.726 K3,4 16898 7466 170.396
K7 1124 665 13.943 K3,5 148527 56843 12032.226
K8 1 1 16.347 K4,5 199778 148367 28457.751
K9 0 0 0.019 K4,6 408476 246318 132622.664

K4,7 173271 101428 32958.628
K4,8 5981 4015 2708.278
K4,9 0 0 99.583

total: 2121 915 35.536 total: 954525 564717 209054.141

quasi-planar K4 8 2 0.082 K2,3 76 6 0.187
K5 109 5 0.193 K3,3 604 53 0.859
K6 936 63 1.820 K3,4 11902 2248 34.073
K7 16505 1607 69.943 K4,4 386241 46711 11328.401
K8 173199 20980 4044.264 K4,5 ? ? ?
K9 209248 23011 35163.772
K10 81 9 7593.865
K11 0 0 5.225
total: 400086 45677 46879.164 total: ? ? ?
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The numbers depicted in the tables also give evidence for the limitations of our
algorithm. As already mentioned, we were not able to derive characterizations for
complete bipartite 4-planar and quasi-planar graphs, since our implementation got
stuck on the generation of the drawings for K4,5. When looking at the corresponding
entries in Table 5.3 (4-planar) and Table 5.4 (quasi-planar), the reason for this
becomes clear: The calculation of all 81,817 non-isomorphic 4-planar drawings for
K4,4 already took a large amount of time, namely more than 34,000 seconds (which
is more than 9 hours). Also for the quasi-planar graphs there exist 47,711 non-
isomorphic drawings of K4,4, which were calculated in 11,328 seconds.

We conclude our discussion of Tables 5.3 and 5.4 by making some additional
observations.

First, it is eye-catching that the number of both, the generated and the non-
isomorphic drawings, are significantly smaller for the complete graphs compared the
corresponding numbers for the complete bipartite graphs. This large difference can
be explained by the fact that the complete graphs are very symmetric and denser
than the complete bipartite graphs. We also refer to the discussion in Sec. 5.8.2.

Moreover, regarding the k-planar graphs, we observe a behavior which we expected
for the numbers of generated and non-isomorphic drawings: As k grows, these
numbers also grow in both, the complete and the complete bipartite setting. This
growth becomes significantly larger from 3-planar to 4-planar graphs, up to the point
that it is highly time consuming to calculate all complete bipartite drawings for the
class of 4-planar graphs, as already mentioned above.

Another observation concerns the fan-crossing and fan-crossing free graphs, which
are in a sense complementary to each other. Here we can observe significant
differences in the number of drawings. In particular, the number of non-isomorphic
fan-crossing free drawings are always single digits, while this is not the case for non-
isomorphic fan-crossing drawings.

Finally we observe that, if all non-isomorphic drawings of the maximal realizable
graph of a certain graph class have been computed, it is not very time-consuming
to conclude that a graph does not belong to this class; refer to the bottommost row
of every section in Tables 5.3 and 5.4, where mostly a few seconds were reported
for executing this task. More generally, the numbers of non-isomorphic drawings
grow until they reach a peak, and then they decrease again. These peaks seems to
appear more “to the end” (i. e. belong to a graph where only a very small number of
additional vertices can be added, such that the graph still belongs to the considered
graph class), rather than at the beginning.
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Table 5.5: A comparison between the two most “extremal” orders while showing thatK5,5
is not 2-planar and K6,6 is not 3-planar, respectively. Listed are the required
time (in sec.), the number of generated drawings (Gen.), and the number of
non-isomorphic drawings (N-I.).

non-alternating order alternating order
Class Graph Gen. N-I Time Graph Gen. N-I Time

2-planar K2,3 76 6 0.150 K2,3 76 6 0.090
K2,4 131 20 0.275 K3,3 243 19 0.254
K2,5 415 52 0.471 K3,4 526 71 1.458
K3,5 625 91 3.619 K4,4 310 38 1.152
K4,5 141 37 2.875 K4,5 318 37 1.826
K5,5 0 0 0.540 K5,5 0 0 0.357
total: 1388 206 7.930 total: 1473 171 5.137

3-planar K2,3 76 6 0.101 K2,3 76 6 0.234
K2,4 236 40 0.488 K3,3 678 69 1.802
K2,5 1450 221 2.973 K3,4 7141 1188 16.969
K2,6 7281 1093 11.162 K4,4 24058 2704 97.801
K3,6 53396 12334 583.402 K4,5 44822 7653 310.194
K4,6 27047 6413 341.739 K5,5 20043 1899 199.908
K5,6 2242 438 59.433 K5,6 2516 438 47.396
K6,6 0 0 5.327 K6,6 0 0 4.822
total: 91728 20545 1,004.625 total: 99334 13957 679.126

5.8.2 Comparing different insertion orders for complete bipartite
graphs

For the statistics shown in Tables 5.3 and 5.4, we inserted vertices into drawings of
complete bipartite graphs in an alternating order19; that is, for the vertices in the
independent parts U and W , after we inserted a vertex from U , we inserted one
from W and vice versa. First, this seems a random choice, but in fact it turned out
to be a good one.

In Table 5.5, we compare the alternating order we used in our implementation
to calculate all drawings of Ka,b with the following one (which is in a sense
complementary to the alternating order): We first compute all drawings for the
graphs K2,2, K2,3, . . . , K2,b, and continue with K3,b, K4,b, . . . , Ka,b.

One huge disadvantage of the second order is that we do not know which graph
Ka,b is “the first” one that does not belong to C (since this is exactly the question

19Note that for the general complete graphs there is no such choice.
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we want to answer). So the second order cannot be used without prior knowledge,
while the alternating order allows it to find such an “upper bound” graph, more
precisely one with the property that a and b differ at most by one.

The other disadvantage we are aware of is the slower running time when using
the second order. Also the total number of non-isomorphic drawings is higher for
this order (at least for the considered classes), as well as the number of generated
drawings in the peak. However, the total number of generated graphs is smaller in
comparison with the corresponding number for the alternating inserting order (refer
to the columns “total” in Table 5.5). We cannot explain why, despite this lower
number, the running time is slower for the non-alternating order. Our guess is that
one reason for this effect is the larger number of non-isomorphic drawings and also
the larger number of generated drawings in the peaks (which are the graphs K3,5 in
the non-alternating order and K3,4 in the alternating order for 2-planar graphs, and
K3,6 and K4,5 in the non-alternating and alternating order, respectively, in case of
3-planar graphs).

On the other hand, we believe that the smaller number for the non-alternating
order is due to an effect that only appears while considering graphs of the form Kb,b.
During the isomorphic test for drawings of a graph Kb,b, b ≥ 3, we rightly discard
isomorphic drawings that map all vertices of one independent part ofKb,b to the other
one (for an example see Fig. 5.18). However, in the next step, that is the insertion of
one vertex into all these non-isomorphic drawings in order to generate the drawings
for Kb,b+1, one then has to be careful: For a drawing Γ, the new vertex wb+1 ∈ W
must be connected to each vertex u1, . . . , ub. But, since we discarded isomorphic
drawings, this new vertex must also be regarded as belonging to set U and connected
to w1, . . . , wb, otherwise we would miss some configurations. This issue can be solved
by creating a copy of Γ with switched labels for the two independent parts of Kb,b.

(a) (b)

Fig. 5.18: The drawings of K3,3 in (a) and (b) are isomorphic, but a (new) vertex in the
gray area of (a) can be connected to the blue vertices by crossing-free edges,
while this is not possible in (b).

Note that this special treatment of graphs Kb,b is only needed when aiming at
calculating all drawings for graphs Ka,b, where a < b. Otherwise, that is, if our
goal is to compute all non-isomorphic C-drawings for Kb,b, where b ≥ 3, (or showing
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that no such drawing exists), then it is not necessary. Although we miss some
configurations for the drawings of Kb′,b′+1 (3 ≤ b′ < b) in this case, we in fact do
not miss any configuration for Kb′+1,b′+1 because this graph is symmetric regarding
its two independent parts. For an example, consider Fig. 5.18, where vertices from
U are blue (this set belongs to the first index of Ka,b) and vertices from W are red.
Inserting vertex wb′+1 into the gray area of the left drawing in all possible ways, and
then inserting the vertex ub′+1 into all these drawings (again in all possible ways), is
equivalent to inserting vertex wb′+1 into the right drawing in all possible ways, and
then inserting the vertex ub′+1 into the gray area of all these drawings.

Finally, also observe the following regarding the different orders: The graph K2,b is
planar for every b. So one can expected to find “many” C-drawings for those graphs
(and for graphs Ka,b, where a� b), while there should be less and less such drawings
when “diverging” from K2,b, where diverging means to get closer to a graph of the
form Kb,b. This could also explain why it is beneficial to use the alternating order
while calculating all non-isomorphic drawings.

5.8.3 The effect of the isomorphic test

One of the two main steps of our algorithm is the elimination of isomorphic drawings.
Table 5.6 shows that this test brings indeed a huge benefit. Thereby we consider
the computations for complete and complete bipartite graphs in case of the 1- and
2-planar graphs. By comparing the number of generated drawings and the running
time while using the isomorphism test and while not using it, we already observe
a significant difference in these measures for both graph classes. For example,
to test whether K7 is 1-planar, our implementation created 25 drawings in total
and needed 0.112 seconds (including the time for performing all isomorphism tests
and eliminations), while disabling the isomorphic test yields a total number of 158
drawings in 1.434 seconds. Even more evident is this difference when showing that
K5,5 is not 2-planar. Here our implementation created 1333 drawings in total in
approximately 5 seconds, compared to 1,423,684 drawings created in about 22,159
seconds without isomorphic test.
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Table 5.6: A comparison of the number of drawings reported by our algorithm with the
elimination of isomorphic drawings (col. “Gen.”) and without it (col. “All”)
for the classes of 1- and 2-planar graphs; the corresponding execution times
(in sec.) to compute these drawings are reported next to them.

complete complete bipartite
Class Graph Gen. Time All Time Graph Gen. Time All Time
1-planar K4 8 0.043 8 0.043 K2,3 34 0.061 34 0.061

K5 13 0.043 30 0.206 K3,3 14 0.049 84 0.539
K6 4 0.020 120 0.737 K3,4 16 0.065 960 5.642
K7 0 0.006 0 0.448 K4,4 5 0.044 1584 10.871

K4,5 0 0.010 0 7.198
total: 25 0.112 158 1.434 total: 69 0.229 2662 24.311

2-planar K4 8 0.028 8 0.028 K2,3 76 0.090 76 0.090
K5 89 0.105 294 2.661 K3,3 243 0.254 2352 10.571
K6 56 0.233 2664 3.292 K3,4 526 1.458 52248 244.964
K7 38 0.119 8400 55.323 K4,4 310 1.152 168624 1128.457
K8 0 0.029 0 51.321 K4,5 318 1.826 1200384 8135.843

K5,5 0 0.357 0 12639.293
total: 191 0.514 11366 112.625 total: 1333 5.137 1423684 22159.218

5.9 Conclusions and Open Problems

We presented an efficient algorithm to generate all non-isomorphic drawings for
complete and complete bipartite graphs for topological graph classes. This algorithm
consists of two main steps, which are executed alternately: the insertion of a new
vertex and the test for isomorphism. In Sec. 5.8 we stated clearly the importance of
this isomorphism test.

As a proof of concept, we implemented our algorithm and applied it to several
important graph classes, in order to deduce characterizations for them. Further, if
this was not possible due to running time issues, we gave at least certificate drawings
for several classes.

Note that these results also have some theoretical implications regarding problems
stated in other works. Namely, Char. 5.9 implies that the graph K5,5 is not fan-
crossing, which answers the conjecture of Angelini et al. [14] that this graph is
not fan-planar in the positive. Further the fact that the graph K5,5 is gap-planar
(Obs. 5.13), but not fan-planar (Char. 5.9), shows that there are gap-planar graphs
which are not fan-planar. On the other hand, the graph K4,9 is fan-planar but not
gap-planar. Both observations combined imply that the classes of fan-planar graphs
and gap-planar graphs are not comparable. This answers a related question in [30]
about the relationship between 1-gap-planar and fan-planar graphs.
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One main open problem is the question if our approach (or our implementation)
can be accelerated such that it provides characterizations for more graph classes,
e. g. for complete and complete bipartite k-planar graphs where k ≥ 6 and k ≥ 4,
respectively. A promising idea in this direction would be to use multi-threading20 in
an intelligent way.

Another question is, if our algorithm can be extended to other types of graphs,
apart from complete and complete bipartite ones, e. g. to multipartite graphs, k-
trees or k-degenerate graphs (for small values of k). In fact it is possible to apply
our approach on multipartite graphs. However, we expect the running time to be
to slow, even for tripartite graphs, so we didn’t tailor our implementation for this
setting. Also the issue discussed in Sec. 5.8.2 about bipartite graphs of the formKa,b,
where a = b, has to be considered for tripartite graphs Ka,b,c (where a ≤ b ≤ c).
This problem becomes even more complex, since one needs to treat each of the three
cases a 6= b and b = c, a = b and b 6= c, and a = b = c differently. Moreover, for
graphs that are not as symmetric as complete and complete bipartite graphs, there
are more non-isomorphic drawings. This increases the search space and therefore
the running time of our algorithm.

Finally, we observe that there exists a characterization for general k in case of
bipartite graphs K3,b [13]. So we ask whether it is possible to obtain corresponding
characterizations for complete graphs or complete bipartite graphsKa,b, where a > 3,
by means of combinatorial proofs.21 In this direction, our result might help by giving
ideas how such characterizations could look like (refer to Fig. 5.19). Specifically we
want to state the questions, if the following graphs are k-planar for every k ≥ 3:
The bipartite graphs K4,3k, K5,2k and K6,k+2.

20Up to the time of writing we could not provide an idea that helps accelerating by more than
a small factor; the main issue is that with multi-threading it becomes difficult to execute the
isomorphic test

21The known general edge density [3] of at most 3.81n
√
kn edges implies that complete graphs

Kn, where n > 7.62
√
k − 1 are not k-planar. This indicates that the growth of n with respect

to k is less than linear. The same is true for complete bipartite graphs Kn/2,n/2, since the edge
density of at most 3.01

√
kn edges for bipartite graphs [14] imply that such graphs are not k-

planar when n > 12.04
√
k.
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Fig. 5.19: Illustration of the k-planar graphs Ka,b (here we don’t assume a < b) for small
values of k.





Chapter 6

A Meta Crossing Lemma and Edge
Densities

In Chapter 5 we learned that the crossing number may be used to decide which
complete and complete bipartite graphs do not belong to a certain graph class.
Beyond that, it is also an important measure for the readability of a graph
drawing [116] and has many applications in combinatorial geometry [105, 107, 133]
and VLSI (Very large-scale integration) design [35,101,102].

In this direction, the Crossing Lemma for general graphs G with n vertices and m
edges, where m ≥ 4n, states that the number of crossings cr(G) in every drawing
of G is lower bounded by cm

3

n2 , where c is a (known) constant. This relation was
first conjectured by Erdős and Guy [67] and proved by Leighton [102] and Ajtai et
al. [7] independently. The first value that was derived for c was 1

64 . It was improved
successively and is currently at 1

29 [3].

Chazelle, Sharir and Welzl provided a simple probabilistic proof for the Crossing
Lemma [6, Chapter 35], which is commonly adapted when deriving better lower
bounds in the Crossing Lemma, see e. g. [3, 108]. Moreover, the proof of Chazelle,
Sharir and Welzl was adapted recently for bipartite k-planar graphs [14]. Since
Chapter 7 contains a corresponding Crossing Lemma for 2-layer k-planar drawings,
we generalize the proof by Chazelle, Sharir and Welzl and also show some
applications in this chapter.1

1The Meta Crossing Lemma (Sec. 6.2), as well as the general edge density bound for k-planar
graphs (Thm. 6.3), together with results from Chapter 7 are part of our paper “2-Layer k-
Planar graphs: Density, Crossing Lemma, Relationships, and Pathwidth” [19].
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6.1 Preliminaries

As usually we denote a graph by G = (V,E), and the number of its vertices and
edges by n = |V | and m = |E|, respectively. Let R be some restriction on a graph,
e. g. R can be “no restriction”, “bipartite”, or “drawable on 2 layers”. Further, to
simplify notation, we sometimes use the term “0-planar” instead of “planar”.

In the following we assume that upper boundsm ≤ αin−βi for the number of edges
inR-restricted i-planar graphs are given, where i = 0, . . . , k̂−1 for some appropriate
k̂ > 0, and αi, βi ∈ R are non-negative. Note that, since the class of i-planar graphs
is a subclass of the class of (i + 1)-planar graphs, the family (αin − βi)i≥0 is non-
decreasing in i. Let α :=

∑k̂−1
i=0 αi and β :=

∑k̂−1
i=0 βi. Note that αi and βi, and hence

α and β depend on the restriction R.

6.2 The Crossing Lemma

Our goal is to formulate the Crossing Lemma in terms of the variables α, β and k̂.
Thereby we follow the proof of Chazelle, Sharir and Welzl [6].

Lemma 6.1. Let G be a simple R-restricted graph with n ≥ 4 vertices and m edges.
Then the following inequality holds for the crossing number cr(G):

cr(G) ≥ k̂m− αn+ β.

Proof. Assume that m > α0n−β0. Then, in every drawing of G, there exists at least
m− (α0n− β0) edges of G which are crossed at least once. If m > α1n− β1, there
exists at least m− (α1n− β1) edges in G that are crossed at least twice. Iteratively
we obtain that, if m > αi−1n− βi−1, there exists at least m− (αin− βi) edges in G
that have at least i crossings. This implies

cr(G) ≥
k̂−1∑
i=0

[m− (αin− βi)] = k̂m− αn+ β.
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On the other hand, if there exists a j ∈ {0, . . . , k̂ − 1} such that m > αin − βi for
all 0 ≤ i ≤ j − 1 and m ≤ αin− βi for all i ≥ j, we obtain

cr(G) ≥
j−1∑
i=0

[m− (αin− βi)]

≥
j−1∑
i=0

[m− (αin− βi)] +
k̂−1∑
i=j

[m− (αin− βi)]︸ ︷︷ ︸
≤0

=
k̂−1∑
i=0

[m− (αin− βi)]

= k̂m− αn+ β.

The statement follows.

With the help of the previous auxiliary lemma we are able to prove the following
theorem, which generalizes the Crossing Lemma.

Theorem 6.2 (Meta Crossing Lemma). Let G be a simple R-restricted graph with
n ≥ 4 vertices and m ≥ 3α

2k̂n edges. Then the following inequality holds for the
crossing number cr(G):

cr(G) ≥ 4k̂3

27α2
m3

n2 . (6.1)

Proof. Consider a drawing Γ of G with cr(G) crossings and let p = 3αn
2k̂m ≤ 1. With

probability p choose every vertex of G independently. Let Gp be the subgraph of G
induced by the randomly chosen vertices and Γp the subdrawing of Γ representing
Gp. Consider random variables np, mp and cp, which denote the number of vertices,
edges and crossings in Γp. Then the expectations are E[np] = np, E[mp] = p2m

(both end points of an edge must be chosen) and E[cp] = p4cr(G) (all four end
points of the two edges involved in the crossing must be chosen).

By Lemma 6.1 the inequality cp ≥ k̂mp − αnp + β holds. Taking expectations on
this relationship, we have:

p4cr(G) ≥ k̂p2m− αpn =⇒ cr(G) ≥ k̂m

p2 −
αn

p3 .

We obtain Inequality (6.1) by plugging p = 3αn
2k̂m into the inequality above.2

2The value for p is obtained by maximizing k̂m
p2 − αn

p3 .
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6.3 Upper Bounds on the Number of Edges

The Crossing Lemma is used to derive upper bounds for the maximal number
of edges in R-restricted k-planar graphs (see e. g. [3, 14]). In this direction, our
generalized version of the Crossing Lemma implies the following theorem.

Theorem 6.3. Let G be a simple R-restricted k-planar graph with n ≥ 4 vertices
for some k ≥ 0. Then

m ≤

(
max

{
1,

√
3k
2k̂

})
· 3α

2k̂
n.

Proof. If m ≤ 3α
2k̂n, the statement follows immediately. Otherwise, we obtain from

Thm. 6.2 and from the fact that a k-planar graph has at most 1
2mk crossings3:

4k̂3

27α2
m3

n2 ≤ cr(G) ≤ 1
2mk.

This implies:

m ≤ 3α
2k̂

√
3k
2k̂
n

which completes the proof.

Using the Meta Crossing Lemma, we can also give a generalized version for the
edge density in k-gap-planar graphs (for the original formulation see [30]).

Theorem 6.4. Let G be a simpleR-restricted k-gap-planar graph with n ≥ 4 vertices
for some k ≥ 1. Then

m ≤

(
max

{
1,

√
3k
k̂

})
· 3α

2k̂
n.

Proof. If m ≤ 3α
2k̂n, the statement follows immediately. Otherwise, we obtain from

Thm. 6.2 and from the fact that cr(G) ≤ km in k-gap-planar graphs [30]:

4k̂3

27α2
m3

n2 ≤ cr(G) ≤ km.

3Note that every edge in G can be crossed at most k times; since each crossing involves two edges,
G cannot have more than 1

2mk crossings.
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This implies:

m ≤ 3α
2k̂

√
3k
k̂
· n.

The statement follows.

6.4 Edge Density of Outer-k-Planar Graphs

As already mentioned, Crossing Lemmas were formulated for general graphs (most
recently by Ackerman [3]) and for bipartite graphs [14]. However, we are not aware of
such a formulation regarding outer-k-planar graphs, in which all vertices are placed
on the outer face and each edge is crossed at most k times. So we provide one here,
using our Meta Crossing Lemma.

First note that each outerplanar graph has at most 2n− 3 edges. Auer et al. [28]
showed that the edge density of an outer-1-planar graph is 2.5n− 4. Thus, we have
k̂ = 2, α0 = 2, α1 = 2.5 and α = 4.5. We derive a Crossing Lemma for outer-k-
planar graphs by plugging these values for k̂ and α into Thm. 6.2.

Corollary 6.5. Let G be a simple outer-k-planar graph with n ≥ 4 vertices and
m ≥ 27

8 . Then

cr(G) ≥ 27m3

35n2 = 128m3

243n2 ≥ 0.526 · m
3

n2 .

The associated upper bound on the maximal number of edges in outer-k-gap planar
graphs, derived from Thm. 6.3, is the following.

Corollary 6.6. Let G be a simple outer-k-planar graph with n ≥ 4 vertices for some
k ≥ 2. Then

m ≤ max
{

27
8 ,

27
√

3
16
√
k

}
n = 27

√
3

16
√
kn =≤ 2.923

√
kn.

6.5 The Class of k-Gap-Planar Graphs

Bae et al. [30] provided already an edge density of max(5.58
√
k, 17.17) · n edges for

general k-gap-planar graphs. Very recently, Angelini et al. [14] derived a Crossing
Lemma and an edge density of 3.005

√
kn for bipartite k-planar graphs. Their results

imply k̂ = 3 and α = 8.5; consequently we are able to formulate the following
corollary due to Thm. 6.4.
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Corollary 6.7. Let G be a simple bipartite k-gap-planar graph with n ≥ 4 for some
k ≥ 1. Then

m ≤

(
max

{
1,
√

3k
3

})
· 3 · 8.5

2 · 3 n =
(

max
{

1,
√
k
})
· 4.25n = 4.25

√
kn.

For bipartite 1-gap-planar graphs (denoted just by “gap-planar graphs”) whose
crossing graph has special properties, we are able to provide an upper bound for the
maximum number of edges that is even better than 4.25n. Recall from Chapter 2
that the crossing graph of a gap-planar graph is a pseudo forest [30], that is a set of
pseudo trees; thereby a pseudo tree is “almost” a tree, except that it is allowed to
have one cycle in a pseudo tree, while a tree cannot have cycles at all.

We start by considering a lower bound for the maximal number of edges in bipartite
gap-planar graphs.

Theorem 6.8. There are infinitely many embeddings with 4n − 16 edges that are
gap-planar and bipartite.

Proof. Consider the drawing Γ in Fig. 6.1. Clearly a drawing with the same pattern
as in Γ can be constructed for every n ≥ 16 where n = |V | is a multiple of 4. We
count the number of edges for such a drawing. There are 8 vertices of degree 5 (refer
to the vertices of the innermost and outermost ring), and 8 vertices of degree 7
(refer to the vertices of the second-innermost and second-outermost ring). All other
vertices have degree 8. Thus, the number of edges is

1
2(8 · 5 + 8 · 7 + (n− 16) · 8) = 4n− 16.

As mentioned before, we consider gap-planar graphs with certain properties and
show an upper bound on the number of edges for them. Thereby this bound is
“almost” tight, since it differs only by a constant number of edges from the lower
bound stated in Thm. 6.8.

In the following we assume that G = (V,E) is a simple connected bipartite gap-
planar graph with n = |V | and m = |E|, and V = U ∪̇W are the two independent
parts of G. Let Γ be a simple gap-planar drawing of G and X = (E,EX) the crossing
graph of Γ. Since X is a pseudo forest [30], its connected components X1, . . . , Xt,
t ≥ 1, are pseudo trees.
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Fig. 6.1: A drawing of a bipartite gap-planar graph with 4n − 16 edges. The edge, to
which a crossing is assigned to, has a gap. Every time a red or blue edge crosses
a black edge, the gap is assigned to the black edge. Every blue edge crosses two
red edges. The inner crossing is assigned to the red edge and the outer crossing
to the blue edge.

Lemma 6.9. Let I ⊆ E be an independent set in X. If I contains at least m
2

elements, then Γ has at most 4n− 8 edges.

Proof. We observe that, by definition of the crossing graph, two vertices e1, e2 ∈ E
of X are connected by an edge in X if and only if they cross each other in Γ. Since
I is an independent set in X, no two edges in I cross pairwise in Γ. Thus, the
subdrawing Γp of Γ, which consists of the vertices V and the edges I, is planar. As a
consequence of the Euler Theorem (see e. g. [121, Chapter 12]), the bipartite planar
drawing Γp has at most 2n− 4 edges. Since |I| ≥ m

2 , we conclude

m ≤ 2|I| ≤ 4n− 8.

Lemma 6.9 provides a tool for finding conditions such that Γ has an edge density
of 4n− 8. Namely, it is sufficient to find an independent set of size at least m

2 in the
crossing graph of Γ. The following lemma proves a result in this direction.
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Lemma 6.10. Let X = X1, i. e. the crossing graph X of Γ consists of only one
component, and let I ⊆ E be a maximal independent set in X. Then the following
hold:

(i) If |E| is even or X contains no cycle of odd length, then I has at least m
2

elements;

(ii) if |E| is odd and X contains a cycle of odd length, then I has at least m−1
2

elements.

Since the two conditions cover all cases, we have I ≥ m−1
2 for a component X in

every case.

Proof. We color the vertices of X in red and blue, such that red vertices form an
independent set. Let the set of red vertices be R ⊆ E, and the set of blue vertices be
B ⊆ E. The red vertices are independent if the endpoints of every edge in EX are
not both red. Our goal is to construct such a set R that complies with Statements i
and ii, (except that R might not be maximal), which implies the existence of a
corresponding maximal independent set I.

First consider the configuration, where X has no cycle, that is, X is a tree. Choose
one vertex as root of the tree X, and then color the vertices red (including the root),
if their distance to the root is even, and otherwise blue. Then both sets R and B
are independent and one of them has at least |E|2 = m

2 elements. Without loss of
generality we can assume that the larger set is R (otherwise switch the sets). So, if
X has no cycles, the statement is true.

In the next step we assume that X has a cycle c. In this case we remove one edge
e ∈ EX from c and obtain a tree T = (E,EX \ {e}). We determine the sets R and
B for T as described above.

If the length of c is even, then the endpoints of e have different colors, since their
distance in T is odd. Thus, set R is also an independent set in X and has at least
m
2 elements. Note that we have shown now that the statement of the lemma is true
if X contains no cycle of odd length.

Finally we assume that the length of c is odd. Then both endpoints of e have the
same color. If their color is blue, the set R has the required property. So let us
assume that they are both red. We consider several cases. To this end let e = (u, v)
for vertices u, v ∈ E.

(1) |R| ≥ |B|+ 2: We change the color of u from red to blue, and set R′ := R \ {u}
and B′ := B ∪ {u}. Then we have |R′| = |R| − 1 ≥ |B| + 1 = |B′|, that is, R′
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contains at least m
2 elements and is still an independent set. Note that in this

case the number of elements in E = R ∪̇B might be even or odd.

(2) |R| = |B|: We exchange R and B. Then the endpoints of e are both blue and
we can reinsert e such that R is still an independent set. Here the number of
elements in R is m

2 . Note that |E| is even, since m = |E| = |R|+ |B| = 2|R|.

(3) |R| = |B| + 1: Like in the first case we set R′ := R \ {u} and B′ := B ∪ {u}.
Then we have |R′| = |R| − 1 = |B| + 1 − 1 = |B′| − 1 and further
m = |R′| + |B′| = |R′| + |R′| + 1 = 2|R′| + 1, which implies |R′| = m−1

2 .
Since we selected a certain coloring at the beginning, another such choice might
yield a larger independent set, that is |I| ≥ m−1

2 . Note that |E| is odd, since
|E| = |R|+ |B| = 2|B|+ 1.

This completes the proof of the lemma.

By means of the previous lemmas we formulate conditions for a bipartite gap-
planar drawing to have at most 4n− 8 edges.

Theorem 6.11. Let G = (V,E) be a simple connected bipartite gap-planar graph
with n = |V | and m = |E|. Further let Γ be a simple gap-planar drawing of G,
X = (E,EX) the crossing graph of Γ, and X1, . . . , Xt (where t ≥ 1) the connected
components of X. Then Γ has at most 4n− 8 edges if at least one of the following
conditions holds:

(i) X has no cycles at all;

(ii) X has only cycles of even length;

(iii) the number of crossing-free edges in Γ is at least as large as the number of
components in X which have both, a cycle of odd length and also an odd number
of vertices.

In general, the graph G has at most min(4n− 8 + t, 4.25n) edges.

Proof. For j = 1, . . . , t let Ej be the vertices of component Xj, and let Ij be a
maximal independent set in Xj. Note that E = E1 ∪̇E2 ∪̇ · · · ∪̇Et. Further assume
without loss of generality that, for some s ∈ {0, . . . , t}, each of the components
X1, . . . , Xs has both, a cycle of odd length and an odd number of vertices. By
Lemma 6.10 each independent set Ij has at least |Ej |

2 elements for j = s+ 1, . . . , t.

Let Γ′ be the drawing obtained from Γ when removing edges e1, . . . , es, where ej
belongs to the odd cycle of Xj for every j = 1, . . . , s. For j = 1, . . . , s let X ′j
be the corresponding component without ej and vertex set E ′j := Ej \ {ej}. Note
that |E ′j| > 0, since Xj contains an odd cycle. Let I ′j, j = 1, . . . , s be a maximal
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independent set in X ′j. By Lemma 6.10 each independent set I ′j has at least |E
′
j |

2
elements for j = 1, . . . , s.

Since Xi and Xj are disjoint for 1 ≤ i < j ≤ t, and therefore also X ′i and X ′j
for 1 ≤ i < j ≤ s, as well as X ′i and Xj for 1 ≤ i ≤ s and s + 1 ≤ j ≤ t, the set
I ′ := I ′1∪· · ·∪I ′s∪Is+1∪· · ·∪It is independent in X ′ := X ′1∪· · ·∪X ′s∪Xs+1∪· · ·∪Xt.
If E ′ := E \ {e1, . . . , es} are the edges of Γ′, we have

|I ′| = |I ′1|+ · · ·+ |I ′s|+ |Is+1|+ · · ·+ |It|

≥ |E′1|
2 + · · ·+ |E′s|

2 + |Es+1|
2 + · · ·+ |Et|

2

= |E′|
2 .

Thus, Lemma 6.9 implies that Γ′ has at most 4n− 8 edges. It follows that Γ has at
most |E ′|+ s = 4n− 8 + s edges.

If X has no cycles at all or only cycles of even length, we have s = 0 and therefore
at most 4n − 8 edges in Γ. On the other hand, if s = t the drawing Γ has at most
4n− 8 + t edges. Together with the result from Cor. 6.7, this yields an upper bound
of min(4n− 8 + t, 4.25n) edges.

Finally consider the case when 1 < s < t and there are at least s crossing free edges
in Γ. Each such edge is represented by a component consisting of a single vertex in
the crossing graph X. For each j = 1, . . . , s, we uniquely map a crossing free edge
with Xj. Let e? and X? be such a mapped pair. We merge e? ∈ E = V (X) and
X? to a single component in X by adding an edge to EX which connects e? with an
arbitrary vertex in X?. Then the number of vertices in the new component is even,
which corresponds to Statement i in Lemma 6.10. In a similar manner as above we
obtain that Γ has at most 4n− 8 edges.

If each optimal bipartite gap-planar drawing Γ, that fulfills neither of the conditions
in Thm. 6.11, could be transformed into another bipartite gap-planar drawing Γ′,
such that the number of edges in Γ and Γ′ are equal and such that Γ′ fulfills one of
the conditions in Thm. 6.11, then the density bound of 4n − 8 could be extended
to general bipartite gap-planar graphs. We are not sure if this is possible; however,
we conjecture that the upper bound on the number of edges in bipartite gap-planar
graphs is 4n− 8.

We finish our study of gap-planar graphs by determining the edge density for such
graphs in the outerplanar setting, that is, when all the vertices are placed on the
outer face.
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Theorem 6.12. Every outer-1-gap-planar graph has at most 3n− 5 edges.

Proof. Let G = (V,E) be an outer-1-gap-planar graph with a maximum number of
edges, and let m = |E| and n = |V |. Further let Γ be an outer-1-gap-planar drawing
of G, and let V = {v1, . . . , vn} be the vertices on the outer face in counter-clockwise
order.

We can assume without loss of generality that the edges (vi, vi+1), i = 1, . . . , n
(where n + 1 is identified with 1) are bounding the outer face of Γ (otherwise one
may first delete these edges and draw them as described). We call edges, that are
not on the outer face, interior edges of Γ (refer to the blue edges in Fig. 6.2). The
number of interior edges is m− n.

v1
v2

v3

vn

vn−1

Fig. 6.2: Illustration for the proof of Thm. 6.12. The black edges are the edges on the
outer face of Γ, while blue edges are interior edges. The red edges are copies of
the interior edges.

Now consider the drawing Γ? that is obtained from Γ by copying the interior edges
of Γ into the outerface of Γ (refer to the red edges in Fig. 6.2). Clearly the drawing Γ?

is 1-gap-planar and even though it has multiple edges, there are no homotopic edges.
By Bae at all [30], a 1-gap-planar drawing with such properties has at most 5n− 10
edges. Since Γ? has n+ 2 · (m− n) = 2m− n edges, we conclude 2m− n ≤ 5n− 10,
and subsequently m ≤ 3n− 5.

Figure 6.3 shows that the lower bound of 3n−5 is almost tight, except for one edge.
The figure gives rise to a lower bound construction for outer-gap-planar graphs.

Theorem 6.13. For every n ≥ 4, where n is even, there exists an outer-gap-planar
drawing with 3n− 6 edges.

Proof. We construct an outer-gap-planar drawing Γ with n vertices and m = 3n− 6
edges. The vertices v = v1, v2, v3, . . . , vn of Γ are placed on a circle in clockwise or
counter-clockwise order (refer also to Fig. 6.3). The edges of Γ are the following:
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v
v2

v3

vn

Fig. 6.3: A drawing of an outer-1-gap-planar graph with 3n− 6 edges: On the outer face
are n edges; there is an interior edge from vertex v to every other vertex, except
to v itself and its two neighbors, yielding n− 3 edges; each interior black edge is
crossed by another (blue or red) interior edge, which gives n−3 additional edges.

– For every i = 1, . . . , n (where vn+1 is identified with v1) there is an edge (vi, vi+1);

– for every i = 3, . . . , n− 1 there is an edge (v, vi);

– and for every i = 2, . . . , n− 2 there is an edge (vi, vi+2).

All these edges are drawn as straight lines (in Fig. 6.3 edges (vi, vi+1) are drawn
slightly curved for aesthetic reasons).

For i = 2, . . . , n − 2, the edge (vi, vi+2) crosses (v, vi+1); this crossing is assigned
to (v, vi+1). Further, for i = 2, . . . , n− 3, the edge (vi, vi+2) crosses (vi+1, vi+3); this
crossing is assigned to (vi, vi+2). As no edge has more than one crossing assigned to
it, the drawing is indeed gap-planar.

The counting of the edges is as follows: On the outer face are n edges (black edges
on the circle in Fig. 6.3), the number of interior edges incident to v (black edges) is
n− 3, and also the number of edges (vi, vi+2), where i = 2, . . . , n− 2 (red and blue
edges), is n− 3. Thus the total number of edges sums up to 3n− 6.
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6.6 Conclusions and Open Problems

We generalized the Crossing Lemma to a Meta Theorem and used it to prove Meta
Theorems also for the maximal number of edges in k-planar and in k-gap-planar
graphs. Further, we applied these Meta Theorems to outer-k-planar graphs and
bipartite k-gap-planar drawings. For k = 1, the latter have an edge density of
4.25n by Thm. 6.11. We were able to improve this bound to 4n − 8 under certain
assumptions on the drawing. Finally, we showed an upper bound of 3n − 5 edges
for outer-1-gap-planar graphs.

Since the upper bound for bipartite 1-gap-planar graphs is only applicable for
drawings with certain properties, we ask if this bound can be extended to general
bipartite 1-gap-planar graphs. Moreover, the lower bound construction for such
graphs gives 4n− 16 edges, leaving a gap of 8 edges. Is it possible to close this gap
by either constructing a lower bound example with more edges, or by improving
the upper bound? We state a similar question for the outer-1-gap planar graphs:
Our lower bound construction has 3n− 6 edges, while we proved an upper bound of
3n− 5 edges for these graphs; is it possible to close this gap?

Regarding the Meta Theorems, we have seen that applications for them can be
found in the classes of k-planar and k-gap-planar graphs. Do these Theorems give
rise to more Meta Theorems, maybe also in other graph classes? Finally, we state
the question if there are more graph types – beside the general graphs, the bipartite
graphs, the outer-planar graphs, and the 2-layer graphs – where an application of
these Meta Theorems might be interesting.





Chapter 7

Drawing Graphs on Two Layers

The hierarchical drawing of graphs is of importance in various fields, e. g. in
the visualization of software architecture [31, 124], social networks [84], or in
profiling [92]. One main approach in this direction is to place all vertices on parallel
(horizontal) lines, so-called layers. There exist different settings regarding the vertex
placement on these layers: Mostly it is not allowed to place adjacent vertices on the
same layer, in order to increase the readability of the drawing. Apart from this,
another requirement may be that adjacent vertices are positioned on consecutive
layers (refer e. g. to Biedl et al. [36]). Restrictions can also be imposed on the edges.
Namely, a common assumption is that each edge is drawn as a straight line (see
e. g. [38, 56]) or as a sequence of straight lines, using bends (see e. g. [131]).

The concept of drawing graphs on parallel layers was originally introduced by
Sugiyama [131], together with a corresponding drawing algorithm. An important
part of this so-called Sugiyama framework is the visualization of a graph using only
two layers. Other than illustrating the structure of bipartite graphs clearly, this is
one of the main motivations to study the problem of placing vertices of a graph on
two parallel horizontal layers.

Since edge crossings disturb the readability of a drawing, but cannot always be
avoided, many papers focus on the minimization of crossings in 2-layer drawings,
see e. g. [65,91,136]. Other works study specifically a particular graph class beyond
planarity. For example, characterizations for graphs admitting a 2-layer drawing,
as well as testing and drawing algorithms for such graphs, were provided for RAC-
graphs by Di Giacomo et al. [56], and for fan-planar graphs by Binucci et al. [38]
(for examples of different types of 2-layer graphs refer to Fig. 7.1).

An important parameter for 2-layer graphs is the maximal number of edges that
a certain graph class admits. In this direction, known edge density bounds tailored
for the 2-layer setting are n − 1 edges for planar graphs [77], 3

2n − 2 edges for 1-
planar graphs [57] and RAC graphs [56], 2n − 4 edges for fan-planar graphs [39],
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(a) planar (b) 1-planar

(c) IC-planar (d) NIC-planar

(e) fan-planar (f) quasi-planar

90◦90◦

90◦

90◦
90◦

(g) RAC (h) fan-crossing free

(i) 1-sided fanbundle-planar (j) 2-sided fanbundle-planar

(k) gap-planar

Fig. 7.1: Examples for 2-layer drawings of different graph classes.
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5n−7
3 edges for 1-sided fanbundle-planar (1-sided fbp) graphs [13], and 3n− 7 edges

for 2-sided fanbundle-planar (2-sided fbp) graphs [13]. All these bounds are tight
with the exception of 2-sided fanbundle-planar graphs, since there only exists a lower
bound construction with 2n− 4 edges [13].

Further, Di Giacomo et al. [56] showed that a connected graph is 2-layer RAC,
if and only if it has a 2-layer drawing without fan-crossings. Note that the latter
is exactly the definition for connected 2-layer fan-crossing free graphs; thus, the
classes of 2-layer RAC and 2-layer fan-crossing free graphs coincide1, which yields
the following observation.

Observation 7.1. Every 2-layer fan-crossing free graph has at most 1.5n−2 edges.
This bound is tight.

Note also that the class of fan-planar graphs is a subclass of the class of fan-crossing
graphs. Their definitions differ in only one point: In contrast to fan-planar graphs,
different edges of a fan may cross an edge from different directions in fan-crossing
graphs. However, such a crossing configuration is not possible in 2-layer graphs,
since each edge e divides a 2-layer drawing in a “left” and a “right” side, and every
edge incident to a vertex on the left (right) side of e crosses e from the left (right).
As a consequence, the class of fan-crossing graphs and the class of fan-planar graphs
are the same in the 2-layer setting, yielding a tight upper bound of 2n− 4 edges for
fan-crossing graphs as well:

Observation 7.2. Every 2-layer fan-crossing graph has at most 1.5n − 2 edges,
which is a tight bound.

In this chapter we study the edge densities of several 2-layer graph classes.2 An
overview of our findings and the state of the art can be found in Table 7.1. We
stress that one of our results is a tight bound for 2-sided fanbundle-planar graphs,
which closes the gap between the upper bound and the lower bound constructions
in [13]. Further, we were able to provide characterizations for optimal 2-layer 2- and
4-planar graphs, each of which is a consequence of the proof for the corresponding
edge density. In the last part of this chapter, relations between different classes of
2-layer graphs are discussed.

1If a 2-layer graph is not connected, the connected components can be drawn independently. So
this statement is in fact true without the connectivity assumption.

2The results for the 2-layer k-planar edge densities and the inclusion relationship between 2-layer
k-planar and 2-layer k-quasi-planar graphs of this chapter are part of our paper “2-Layer k-
Planar graphs: Density, Crossing Lemma, Relationships, and Pathwidth” [19], together with
the Meta Crossing Lemma (Sec. 6.2), and the general edge density bound for k-planar graphs
(Thm. 6.3).
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Table 7.1: Lower and upper bounds on the maximal number of edges in 2-layer drawings
for several graph classes. The general bound for k-planar graphs is valid for
k ≥ 6. For quasi-planar graphs, the upper bound holds for k ≥ 3 and n ≥ 3,
while the lower bound holds for k ≥ 3 and sufficiently large n. For k-gap-
planar drawings the general bound is valid for k ≥ 2.

Class Lower Bound Reference Upper Bound Reference
planar n− 1 [77] n− 1 [77]
1-planar 3

2n− 2 [57] 3
2n− 2 [57]

2-planar 5
3n−

7
3 Thm. 7.15 5

3n−
7
3 Thm. 7.15

3-planar 2n− 4 Thm. 7.17 2n− 4 Thm. 7.19
4-planar 2n− 3 Thm. 7.20 2n− 3 Thm. 7.23
5-planar 9

4n−
9
2 Thm. 7.25 9

4n−
9
2 Thm. 7.31

6-planar 5
2n− 6 Thm. 7.32 3.19n Cor. 7.34

k-planar b
√
kc+2
2 n−O(

√
k) Thm. 7.36 125

96

√
kn Cor. 7.34

IC-planar 5
4n− 1 Thm. 7.7 5

4n− 1 Thm. 7.9
NIC-planar 4

3n−
4
3 Thm. 7.7 4

3n−
4
3 Thm. 7.10

k-quasi-planar (k − 1)n− (k − 1)2 Thm. 7.6 (k − 1)(n− 3) + 2 Thm. 7.4
fan-planar 2n− 4 [39] 2n− 4 [39]
fan-crossing 2n− 4 Obs. 7.2 2n− 4 Obs. 7.2
fan-cr. free 3

2n− 2 Obs. 7.1 3
2n− 2 Obs. 7.1

gap-planar 2n− 4 Thm. 7.37 2n− 4 Thm. 7.41
k-gap-planar 2n− 4 Thm. 7.37 125

48
√

2

√
kn Cor. 7.35

1-sided 1-fbp 5
3n−

7
3 [13] 5

3n−
7
3 [13]

2d-layer 2n− 4 [13] 2n− 4 Thm. 7.422-sided 1-fbp
2-sided 1-fbp 17

8 n−
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7.1 Preliminaries

We consider the following beyond-planarity graph classes:3

– the class of k-planar graphs Pk, where k ≥ 1 (see e. g. Figs. 7.1a and 7.1b);

– the class of k-quasi-planar graphs Qk, where k ≥ 3 (see e. g. Fig. 7.1f); if k = 3,
we also use the notation “quasi-planar” and Q instead of “3-quasi-planar” and Q3;

– the class of k-gap-planar graphs Gk, where k ≥ 1 (see e. g. Fig. 7.1k); if k = 1, we
also use the notation “gap-planar” and G instead of “1-gap-planar” and G1;

– the class of fan-planar graphs F (see e. g. Fig. 7.1e);

– the class of fan-crossing free graphs X ; (see e. g. Fig. 7.1h)

– the class of 1-sided fbp graphs B1 (see e. g. Fig. 7.1i);

– the class of 2-sided fbp graphs B2 (see e. g. Fig. 7.1i);

– the class of independent crossing (IC) graphs PIC (see e. g. Fig. 7.1c);

– and the class of nearly independent crossing (NIC) graphs PNIC (see e. g.
Fig. 7.1d).

For a graph class C, we denote the corresponding 2-layer graph class by C=. Note
that by Di Giacomo et al. [56] (see above) the class of 2-layer RAC graphs and the
class X= of 2-layer fan-crossing free graphs coincide, so we only consider the class
X= in the following. Further note that for 2-sided fbp graphs we introduce two
corresponding 2-layer graph classes, denoted by B=

2 and B=
2d. We explain later the

difference between them (refer to Sec. 7.6).

Let G = (V,E) be a connected graph belonging to the 2-layer graph class C=, that
is G ∈ C=, and let Γ be a corresponding drawing. We say that G is a C=-graph,
and Γ is C=-drawable. In an abuse of notation, we denote the latter also by Γ ∈ C=.
Except for the class of 2-sided fbp graphs, we require that Γ is simple and that the
edges are straight lines.4 We specify the requirements for 2-sided fbp graphs later
(see Sec. 7.6).

Let V = U ∪̇W be the disjoint union of the two independent sets U andW ; further
we define a := |U | ≥ 1, b := |W | ≥ 1, n := |V | and m := |E|. We assume that the
vertex orders of Γ along the top and bottom layers (from left to right) are given by

3Definitions for the classes can be found in Chapter 2, and also later in this chapter, when the
density of the corresponding 2-layer graph class is studied.

4It is not difficult to see that the simplicity and the existence of a 2-layer C=-drawing (that has
not necessarily straight edges) implies that there is a simple 2-layer C=-drawing, where all edges
are straight. However, some 2-layer graph classes may require straight line edges by definition,
e. g. the 2-layer RAC graphs.
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u1, . . . , ua and w1, . . . , wb, respectively. The order of the vertices along one of the
layers is denoted by “≺”, that is ui ≺ uj for two vertices ui and uj of the top layer
if and only if i < j, and ui 4 uj if and only if i ≤ j; the order for the bottom layer
is defined in a similar way. We also use the indexes i and j to describe the order of
ui and uj.

For 1 ≤ ` ≤ r ≤ a and 1 ≤ `′ ≤ r′ ≤ b, we call the subdrawing Γ[U ′ ∪W ′], where
U ′ = {u`, . . . , ur} and W ′ = {w`′ , . . . , wr′}, a snippet Γ′ of Γ and denote it solely by
its extremal indexes, that is, by Γ′ = [`, r | `′, r′]. A snipped [`, r | `′, r′] is called a
brick if the following two properties hold (see Fig. 7.2 for an illustration):

(i) The edges (u`, w`′) and (ur, wr′) are planar in Γ, and (u`, w`′) 6= (ur, wr′);

(ii) if (ui, wi′) ∈ E for some ` ≤ i ≤ r and `′ ≤ i′ ≤ r′, then (ui, wi′) is planar (in
Γ) if and only if (i = ` and i′ = `′) or (i = r and i′ = r′).

u`

w`′

ur

wr′

(a)

u`

w`′

ur

wr′

(b)

u`

w`′

ur

wr′

(c)

u`

w`′

ur

wr′

(d)

Fig. 7.2: (a) The brick [`, r | `′, r′] is highlighted in red. (b) The snippet [`, r | `′, r′] is no
brick, since Property i is violated. In (c) and (d) the snippet [`, r | `′, r′] is no
brick, since Property ii is violated.

We call Γ maximal if no edge can be added to it without violating the properties
of class C=. The drawing Γ (and graph G) is optimal, if it has the maximal possible
number of edges regarding class C=. Note that every optimal drawing is maximal,
but not vice versa. Also observe that every maximal drawing (and therefore every
optimal drawing) Γ contains both planar edges (u1, w1) and (ua, wb) and hence at
least one brick.

Similar to the chapters before, we usually use “embedding” and “drawing” as
synonyms. For 2-layer drawings, we use the term “weakly isomorphic” as defined
in Sec. 5.3, that is, two drawings are weakly isomorphic if their edges appear in
the same order around each vertex. Note that for two drawings to be isomorphic,
also the order in which an edge is crossed by other edges must be the same in both
drawings. However, we do not need to consider this order for 2-layer graphs, since
the regions bounded by three or more mutually crossing edges will be empty (in
contrast to the drawings in Sec. 5.3, where we used these regions to place vertices;
refer also to Fig. 7.3). For this reason, we denote weakly isomorphic drawings – in
an abuse of notation – just as isomorphic drawings.
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(a) (b)

Fig. 7.3: Two 2-layer drawings that are weakly isomorphic, but not isomorphic. Note that
in the red areas the order of the edges differ, when walking along the border
clockwise. However, these areas will always be empty by the definition of 2-layer
drawings.

7.2 Density of 2-Layer Quasi-Planar Graphs

We start by considering quasi-planar graphs. Recall that, for k ≤ 3, in a k-quasi-
planar drawing the existence of k mutually crossing edges is forbidden. For the
class of 2-layer 3-quasi-planar graphs Q=, a lower bound construction can easily be
obtained.

Theorem 7.3. For infinitely many n there is a Q=-graph on n vertices with 2n− 4
edges.

Proof. We describe a family of graphs with n = a + b = 2a vertices, where each
layer has a = b vertices; for an illustration refer to Fig. 7.4. A graph of our family
has the edges:

– (ui, wi) for 1 ≤ i ≤ a;

– (ui, wi+1) for 1 ≤ i ≤ a− 1;

– (ui, wi−1) for 2 ≤ i ≤ a;

– and (ui, wi+2) for 1 ≤ i ≤ a− 2.

· · ·

· · ·

· · ·

u1

w1

ua

wa

u2

w2

u3

w3

Fig. 7.4: A family of quasi-planar graphs with n = 2a vertices and 2n− 4 edges. The two
colors depict two sets of crossing free edges. The number of black edges is n−1,
and the number of red edges is n− 3.

Then each vertex has degree 4, except the following ones: the four vertices u1,
ua−1, w2 and wa have degree three, and the two vertices ua and w1 have degree two.
Therefore the sum of all vertex degrees is 4n− 8, yielding 2n− 4 edges.



Drawing Graphs on Two Layers 146

We show that 2n − 4 is also an upper bound for the number of edges in 2-layer
quasi-planar graphs, that is, the upper bound of 2n − 4 edges for the class Q= is
tight. In fact, we even prove a more general statement.

Theorem 7.4. Let k ≥ 3. Every 2-layer k-quasi-planar graph on n ≥ 3 vertices has
at most (k − 1)(n− 3) + 2 edges.

Observe that a Q=
k -graph on n = 2 vertices has at most 1 edge; so the bound does

not hold for n = 2.

In order to prove Thm. 7.4, we follow the argumentation of Bartosz Walczak, who
addressed this problem in his invited talk5 at The 27th International Symposium on
Graph Drawing and Network Visualization [137] (as far as we know, there exist no
corresponding publication). However, we were able to improve the upper bound of
(k − 1)(n− 1) which he stated in his talk to (k − 1)(n− 3) + 2.

We start by recalling the so-called permutation graphs, which play a major role
in our proof. Let π = (π1, . . . , πN) be a permutation of the set {1, . . . , N} for some
N ≥ 1. Consider the drawing Γπ, whose edges are line segments Li, 1 ≤ i ≤ N ,
with endpoints (i, 1) and (πi, 0), and whose vertices are these endpoints (see also
Fig. 7.5). Then the permutation graph Gπ = (Vπ, Eπ) is the crossing graph of Γπ,
that is Vπ = {L1, . . . , LN} and for i 6= j, edge (Li, Lj) ∈ Eπ if and only if Li and Lj
cross in Γπ.

2 31

5

4 5 6

64321

L1
L2 L3

L4

L6

L5

L1

L2

L3

L4

L6

L5

Fig. 7.5: Left: A drawing Γπ, where the permutation is given by π = (3, 2, 5, 6, 1, 4).
Right: The corresponding permutation graph.

Permutation graphs were first introduced in [70,113]. Even et al. [70] showed that
such graphs are perfect, i. e. the size ω = ω(Gπ) of the maximal clique in Gπ (referred
to as clique number ; see also Chapter 2) equals the chromatic number χ = χ(Gπ).
Recall that the (vertex) chromatic number χ is defined as follows: Let t ≥ 1 be
a positive integer. A (vertex) coloring of Gπ (or some other graph) is a mapping
c : Vπ −→ {c1, . . . , ct}, such that no two adjacent vertices are mapped to the same
color ci. The chromatic number χ is the minimal number of colors needed over all
possible colorings; in the following we denoted a coloring that needs only χ colors a

5Slides to his talk are currently available at https://kam.mff.cuni.cz/gd2019/program.html.

https://kam.mff.cuni.cz/gd2019/program.html
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minimal (vertex) coloring. Analogously, an edge coloring of Γπ (or some arbitrary
drawing) is a mapping c : Eπ −→ {c1, . . . , ct}, such that edges which cross each
other are mapped to different colors; the edge chromatic number χe is the minimal
possible value for the number of colors t.

By definition of the crossing graph, a vertex coloring of Gπ corresponds to an edge
coloring of Γπ (refer to the colors in Fig. 7.5). On the other hand, a clique of size k
in Gπ corresponds to a set of k mutually crossing edges in Γπ, which establishes a
relation to k-quasi-planar graphs. We use this relation as one ingredient in our proof
of Thm. 7.4. Another ingredient is the following observation by Even et al. [70].

Observation 7.5 (Even). The crossing graph of every 2-layer drawing Γ is a
permutation graph.

(a) (b)

Fig. 7.6: (a) A 2-layer drawing Γ. (b) The “trimming” Γ′ of Γ. Note that the crossing
graphs of Γ and Γ′ are identical.

To see that this observation is correct, “subdivide” each vertex of Γ, such that each
subdivided part of the original vertex has just one edge incident to it (see Fig. 7.6 for
an illustration). The drawing obtained in this way corresponds to the drawing Γπ
described in the definition of permutation graphs, and has the same crossing graph
as Γ. Evan referred to this subdividing operation as “trimming” [70].

Now we are prepared to prove the upper bound on the number of edges for Q=
k .

Proof of Thm. 7.4. Let G = (V,E) be a 2-layer k-quasi-planar graph with n ≥ 3
edges and m vertices, and let Γ be a corresponding Q=

k -drawing of G. Without loss
of generality we can assume that the planar edges (u1, w1) and (ua, wb) are part of
Γ (otherwise, augmenting Γ by them yields a drawing with even more edges); refer
to the dashed blue edges in Fig. 7.7. Since n ≥ 3, these edges are different, that is
(u1, w1) 6= (ua, wb).

Let χ = χ(Γ) be the edge chromatic number of Γ. Consider a minimal edge coloring
c : E −→ {c1, . . . , cχ} of Γ. For 1 ≤ i ≤ χ we denote the set of edges mapped to
color ci by Ci := c−1(ci). The subdrawing Γ[Ci], consisting of the vertices of Γ and
the edges Ci, is planar (recall that edges with the same color do not cross each other
in an edge coloring); refer to the differently colored edges in Fig. 7.7. Like above,
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u1

w1

ua

wb

Fig. 7.7: Illustration for the proof of Thm. 7.4.

we argue that, if the planar edges e1 := (u1, w1) and e2 := (ua, wb) do not belong
to Γ[Ci], one may add these edges to Γ[Ci] without violating the planarity, that is,
Γ[Ci ∪ {e1, e2}] is still a planar drawing. Since planar 2-layer graphs have at most
n− 1 edges, and since e1, e2 ∈ Γ[Ci ∪ {e1, e2}] for each 1 ≤ i ≤ χ, we obtain

m = m1 + · · ·+mχ − 2(χ− 1) ≤ χ(n− 1)− 2(χ− 1) = χ(n− 3) + 2,

where mi is the number of edges in Γ[Ci ∪ {e1, e2}].

Let X be the crossing graph of Γ. As each edge coloring of Γ corresponds to a
vertex coloring in X, the vertex chromatic number of X equals χ. Moreover, due
to k-quasi-planarity, drawing Γ does not contain k mutually crossing edges. So the
size of the largest clique in X is at most k − 1, yielding ω ≤ k − 1 for the clique
number ω of X. By Obs. 7.5, the graph X is a permutation graph, which implies
χ = ω [70], and consequently

m ≤ χ(n− 3) + 2 = ω(n− 3) + 2 ≤ (k − 1)(n− 3) + 2.

The statement follows.

As already mentioned, the bound of (k − 1)(n − 3) + 2 edges is tight for k = 3.
However, we believe that this is not the case for k > 3, due to the following reason.
If, in the previous proof, we assume that edges e1 and e2 belong to C1, then C1

has at most n − 1 edges, while Ci has at most n − 3 edges for i = 2, . . . , χ. But it
seems that the upper bound of n− 3 edges is an overestimation for most of the sets
C2, . . . , Cχ, since again there are edges in Γ′ := Γ[E \ {e1, e2}] that play the same
role as e1 and e2 in Γ. In fact, we believe that it is possible to show that there is
a coloring, such that |Ci| ≤ n − 1 − 2(i − 1) for i = 1, . . . , χ, which would yield an
upper bound of (k − 1)n − (k − 1)2 edges in k-quasi-planar graphs for sufficiently
large n. We support this conjecture by a corresponding lower bound construction
for 2-layer k-quasi-planar graphs.
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· · ·

· · ·

· · ·

u1

w1

ua

wa

u2

w2

u3

w3

ua−1

wa−1

ua−2

wa−2

Fig. 7.8: A family of 4-quasi-planar graphs with n = 2a vertices and 3n− 9 edges.

Theorem 7.6. Let k ≥ 3. For infinitely many n there is a 2-layer k-quasi-planar
graph on n vertices with (k − 1)n− (k − 1)2 edges.

Proof. According to Thm. 7.3, there exists such a family for k = 3. Note that, in
a drawing Γ3 constructed as in Thm. 7.6, there are two disjoint paths: one path
p1 := (u1, w1, u2, w2, . . . , ua−1, wa−1, ua, wa) of length n− 1 (black edges in Figs. 7.4
and 7.8), and a second path p2 := (w2, u1, w3, u2, w4, u3, . . . , wa−1, ua−2, wa, ua−1) of
length n− 3 (red edges in Figs. 7.4 and 7.8). Each path p1 and p2 has the property
that no two edges of the same path cross each other; so there are no three mutually
crossing edges in Γ3 for k = 3.

For k = 4, we create a drawing Γ4 from Γ3 by augmenting it with another path
p3. Thereby we ensure that p3 has the same property as p1 and p2, namely, no two
edges of p3 cross each other, which implies that Γ4 does not contain four mutually
crossing edges. Let p3 := (u3, w1, u4, w2, u5, w3, . . . , ua−1, wa−3, ua, wa−2) (blue edges
in Fig. 7.8). Path p3 has n− 5 edges, since u1, u2, wa−1 and wa do not belong to p3.
Thus, Γ4 has exactly 3n− 9 = (k − 1)n− (k − 1)2 edges.

It is possible to iteratively create k-quasi-planar drawings Γk for k ≥ 5 by adding
another path pk−1 of length n − 2k + 3 to Γk−1. More precisely, we add the path
pk−1 := (uk−1, w1, uk, w2, uk+1, w3, . . . , ua−1, wa−k, ua, wa−k+1)) if k is odd, and the
path pk−1 := (wk−1, u1, wk, u2, wk+1, u3, . . . , wa−1, ua−k, wa, ua−k+1) if k is even. By
construction, all edges of the paths p1, . . . , pk−1 are distinct. The number of edges
in Γk sums up to

k∑
i=2

(n− 2i+ 3) = (k − 1)(n+ 3)− 2
(
k(k + 1)

2 − 1
)

= (k − 1)(n+ 3)− k(k + 1) + 2
= (k − 1)n+ 3(k − 1)− k(k − 1)− 2k + 2
= (k − 1)n− (k − 1)2,

which completes the proof.
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We conclude this section by mentioning that most of the density proofs in this
chapter differentiate between the case, where the drawing is quasi-planar and
therefore has at most 2n− 4 edges (or respectively 2n− 3 for n = 2), and the case
where there exists a triple of mutually crossing edges in the drawing.

7.3 Density of 2-Layer IC-Planar and NIC-Planar
Graphs

We study the maximal number of edges in the class P=
IC of 2-layer IC-planar graphs,

and the class P=
NIC of NIC-planar graphs. Recall from Chapter 2 the definition

of these graphs: If each of {(u1, w1), (u2, w2)} and {(u3, w3), (u4, w4)} is a pair of
crossing edges, then the set {u1, u2, w1, w2} ∩ {u3, u4, w3, w4}

– must be empty in IC-planar drawings (where “IC” stands for “independent
crossing”),

– is not allowed to contain more than one element in NIC-planar drawings (where
“NIC” stands for “nearly independent crossing”).

By definition, IC-planar graphs are a subclass of NIC-planar graphs, while NIC-
planar graphs represent a subclass of 1-planar graphs. This implies that, in the 2-
layer setting, the number of edges in both graph classes is at most 3

2n − 2. In this
section we establish tight upper bounds that are even smaller than 3

2n− 2 for both
graph classes. Thereby we start by considering lower bound constructions.

Theorem 7.7. For infinitely many n, there is a P=
IC-graph on n vertices with 5

4n−1
edges, and a P=

NIC-graph with 4
3n−

4
3 edges.

Proof. First we describe a family of IC-planar graphs with n = a+ b = 2a vertices,
where each layer has a = b vertices and a is even; for an illustration refer to Fig. 7.9a.
Our graph contains the edges

– (ui, wi) for 1 ≤ i ≤ a,

– (ui, wi−1) for 2 ≤ i ≤ a, and

– (ui, wi+1) for all odd i where 1 ≤ i ≤ a− 1.

Then the number of edges is m = a+ (a− 1) + 1
2a = 5

2a− 1 = 5
4n− 1.

Now we describe a family of NIC-planar graphs with 4
3n −

4
3 edges. The family

consists of t > 0 consecutive drawings of K2,2, such that each two consecutive
drawings are joined at one vertex; see Fig. 7.9b. Depending on t, the number of
vertices is n = 1 + 3t, and the number of edges is m = 4t = 4

3(n− 1) = 4
3n−

4
3 .
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· · ·

· · ·
u1

w1

u2

w2

ua

wa

(a)

· · ·

· · ·

(b)

Fig. 7.9: (a) A family of IC-planar graphs with n vertices and 5
4n− 1 edges. (b) A family

of NIC-planar graphs with n vertices and 4
3n−

4
3 edges.

In the following we prove that 5
4n − 1 and 4

3n −
4
3 are upper bounds for 2-layer

IC-planar and NIC-planar graphs, respectively. We start with an auxiliary lemma.

Lemma 7.8. Let G be a graph that has a vertex v with degree 1. If the induced
subgraph G′ := G[V \ {v}] has at most (1 + ε)n′ − c edges, where n′ = n − 1 is the
number of vertices in G′, and ε ≥ 0 and c ≥ 0 are some constants, then G has at
most (1 + ε)n− c edges.

Proof. Let G and G′ be as described in the lemma, m the number of edges in G,
and m′ the number of edges in G′. Since deg(v) = 1, we have m = m′+ 1 and hence

m = m′ + 1 ≤ (1 + ε)n′ − c+ 1 = (1 + ε)(n− 1)− c+ 1
= (1 + ε)n− c− ε ≤ (1 + ε)n− c.

The statement follows.

Lemma 7.8 shows that it suffices to consider graphs without degree-1 vertices,
when proving upper bounds of the form (1 + ε)n − c. We use this fact in the next
two theorems.

Theorem 7.9. A 2-layer IC-planar graph has at most 5
4n− 1 edges.

Proof. Let Γ be a P=
IC-drawing with n vertices andm edges. We prove the statement

by induction on the number of vertices. For the base of the induction, assume that
Γ has n ≤ 3 vertices. Then Γ is planar and has n− 1 ≤ 5

4n− 1 edges.

For the induction step assume that Γ has n > 3 vertices and every graph with
less than n vertices has at most 5

4n − 1 edges. Again, if Γ is planar the statement
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follows immediately. On the other hand, if Γ has a vertex of degree 1, the induction
hypothesis and Lemma 7.8 imply m ≤ 5

4n− 1.

Suppose now that Γ is not planar and contains no vertex of degree 1. Then there
exists a pair (uh, wi′), (ui, wh′) of crossing edges in Γ for some 1 ≤ h < i ≤ a and
1 ≤ h′ < i′ ≤ b. If i > h + 1, then there is a vertex between uh and ui on the
top layer which has degree 0 – a contradiction to the connectivity of Γ. So we have
i = h+ 1 and for similar reasons i′ = h′ + 1.

Consider the case, where drawing Γ contains edges (uh, wx′) and (uh, wy′) for
1 ≤ x′ < y′ < h′ (see red edges in Fig. 7.10a). Then the vertex wy′ has degree 1,
since otherwise IC-planarity would be violated. But this contradicts our assumption
that there is no degree-1 vertex in Γ. Thus uh is incident to at most one edge
(uh, wx′), where 1 ≤ x′ < h′, and – if this edge exists – we have x′ = h − 1, since
Γ is connected. Similarly, each of the vertices uh+1, wh′ , and wh′+1 has at most one
neighbor outside the set {uh, uh+1, wh′ , wh′+1}, and if they have one neighbor it is
the vertex wh′+2 for uh+1, the vertex uh−1 for wh′ , and the vertex uh+2 for wh′+1.

uh+1

wh′+1

uh

wh′
· · ·

· · ·· · ·

· · ·
wy′wx′

u1

w1

ua

wb

(a)

uh+1

wh′+1

uh

wh′
· · ·

· · ·· · ·

· · ·

Γ1 Γ2

wh′−1

uh−1u1

w1

ua

wb

uh+2

wh′+2

(b)

Fig. 7.10: Illustration for the proof of Thm. 7.9.

Next observe that at most one of the two edges (uh, wh′−1) and (uh−1, wh′) is in
Γ, otherwise IC-planarity would be violated; the same holds for (uh+1, wh′+2) and
(uh+2, wh′+1) (see red edges in Fig. 7.10b).

For h > 1, h′ > 1, h + 1 < a and h′ + 1 < b we define the two snippets
Γ1 := [1, h − 1 | 1, h′ − 1] and Γ2 := [h + 2, a | h′ + 2, b]. Let ni and mi be the
number of vertices and edges of Γi, where i = 1, 2. Then Γ1 and Γ2 clearly have less
pairs of crossing edges than Γ, so mi ≤ 5

4ni − 1. Moreover, we have n = n1 + n2 + 4
and m ≤ m1 +m2 + 6, yielding

m ≤
(5

4n1 − 1
)

+
(5

4n2 − 1
)

+ 6 = 5
4(n1 + n2) + 4 = 5

4(n− 4) + 4 = 5
4n− 1.

On the other hand, if h = h′ = 1, h + 1 = a and h′ + 1 = b, the drawing Γ consists
of 4 vertices and thus at most 4 edges, implying m ≤ 5

4n− 1.

Consider the case where h = 1, and h + 1 < a or h′ + 1 < b. If h′ > 1, vertex
w1 has degree 1, because the edge (uh, wh′+1) = (u1, wh′+1) is already crossed once,
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and therefore every vertex w ≺ wh′ can only be adjacent to u1. As a consequence
we have h′ = 1 as well. Similar arguments show that a vertex of degree 1 exists
if h + 1 = a or h′ + 1 = b; thus we can assume that h + 1 < a and h′ + 1 < b.
This implies the existence of exactly one of the edges (uh+1, wh′+2) = (u2, w3) or
(uh+2, wh′+1) = (u3, w2), so the snippets Γ′1 := [1, 2 | 1, 2] and Γ′2 := [3, a | 3, b] are
connected by exactly one edge. Because Γ′1 has 4 vertices and at most 4 edges, while
Γ′2 has n′ = n− 4 vertices and at most m′ ≤ 5

4n
′ − 1 edges by induction, we obtain

m ≤ m′ + 4 + 1 ≤
(5

4n
′ − 1

)
+ 5 = 5

4(n− 4)− 1 + 5 = 5
4n− 1.

Since the cases h′ = 1, h + 1 = a and h′ + 1 = b are symmetric to the considered
case, the statement follows.

We conclude this section by showing a corresponding upper bound for NIC-planar
graphs. The proof uses similar arguments as the one for IC-planar graphs.

Theorem 7.10. A 2-layer NIC-planar graph has at most 4
3n−

4
3 edges.

Proof. Let Γ be a P=
NIC-drawing with n vertices and m edges. We prove the

statement by induction on the number of vertices. For the base of the induction,
assume that Γ has n ≤ 3 vertices. Then Γ is planar and hasm ≤ n−1 ≤ 4

3n−
4
3 edges.

For the induction step assume that Γ has n > 3 vertices and every graph with
less than n vertices has at most 4

3n −
4
3 edges. If Γ is planar the statement

follows immediately, and if Γ has a vertex of degree 1, the induction hypothesis and
Lemma 7.8 imply m ≤ 4

3n−
4
3 .

Suppose now that Γ is not planar and contains no vertex of degree 1. Then there
exists a pair (uh, wi′), (ui, wh′) of crossing edges in Γ for some 1 ≤ h < i ≤ a and
1 ≤ h′ < i′ ≤ b. Similar to the proof of Thm. 7.9, we have i = h+ 1 and i′ = h′ + 1.

For 1 ≤ x < h and 1 ≤ x′ < h′, at most one of the edges (ux, wh′) and (uh, wx′)
is in Γ, otherwise NIC-planarity would be violated. Similarly, for h + 1 < y ≤ a

and h′ + 1 < y′ ≤ b, at most one of the edges (uy, wh′+1) and (uh+1, wy′) is in Γ
(see red edges in Fig. 7.11). We assume without loss of generality that (ux, wh′) and
(uy, wh′+1) does not belong to Γ.

Define the snippets Γ1 := [1, h | 1, h′ − 1] and Γ2 := [h+ 1, a | h′ + 2, b] (where Γ1

consists only of uh when h′ = 1, and Γ2 consists only of ua when h′ + 1 = b). For
i = 1, 2 let ni and mi be the number of vertices and edges of Γi. Then Γ1 and Γ2

have less vertices than Γ, so we obtain inductively mi ≤ 4
3ni −

4
3 .
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uh+1

wh′+1

uh

wh′
· · ·

· · ·· · ·

· · ·

Γ1 Γ2

wx′

uxu1

w1

ua

wb

uy

wy′

Fig. 7.11: Illustration of the proof for Thm. 7.10.

The number of vertices is given by n = n1 + n2 + 2. Since Γ contains at
most four edges more than m1 + m2 (the edges (uh, wh′), (uh, wh′+1), (uh+1, wh′),
and (uh+1, wh′+1)), and since there are no edges between Γ1 and Γ2, we obtain
m ≤ m1 +m2 + 4. This yields

m ≤
(4

3n1 − 4
3

)
+
(4

3n2 − 4
3

)
+ 4 = 4

3(n1 + n2) + 4
3 = 4

3(n− 2) + 4
3 = 4

3n−
4
3 .

Combining the results of this section, that is Thms. 7.7, 7.9 and 7.10, we obtain
that 5

4n − 1 is a tight upper bound for the number of edges in 2-layer IC-planar
graphs, while 4

3n−
4
3 is the corresponding tight upper bound for the number of edges

in 2-layer NIC-planar graphs.

7.4 Density of 2-Layer k-Planar Graphs

In this section we study k-planar graphs on 2-layers, in particular their edge density.
For k ∈ {2, . . . , 5} we give tight bounds on the maximum number of edges in such
graphs. Additionally, we provide a lower bound for the number of edges in optimal
2-layer 6-planar graphs.

7.4.1 2-planar graphs

First we consider the class of 2-layer 2-planar graphs P=
2 . To this end, let Γ be a

P=
2 -drawing. We start by giving a lower bound construction for the class P=

2 .

Theorem 7.11. For infinitely many n there is a P=
2 -graph on n vertices with 5

3n−
7
3

edges.

Proof. Consider the family of graphs defined in Fig. 7.12, which consist of t > 0
bricks, such that each of them represents a graph K2,3 and consecutive bricks share a
planar edge. Then the number of vertices is n = 2+ 3t, while the number of edges is

m = 1 + 5t = 1 + 5
3(n− 2) = 5

3n−
7
3 .
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· · ·

· · ·

· · ·

Fig. 7.12: A family of 2-layer 2-planar graphs with n = 2a vertices and 5
3n−

7
3 edges.

We aim at proving that 5
3n−

7
3 is also the upper bound for the number of edges in

2-layer 2-planar graphs. In this direction, we start with an auxiliary lemma.

Lemma 7.12. Let B = [`, r | `′, r′] be a brick in a P=
2 -drawing Γ. Then one of the

following properties holds:

(i) The brick B contains only two vertices on the top layer, or only two vertices
on the bottom layer, i. e. r = `+ 1 or r′ = `′ + 1.

(ii) There exists a vertex in B with degree one.

(iii) There exists a non-planar edge e in B such that removing e and adding one
of the edges (u`, w`′+1), (u`+1, w`′), or (u`+1, w`′+1) (in a crossing free way),
yields a P=

2 -drawing Γ′, where [`, r | `′, r′] is subdivided into two bricks; one of
the bricks is [`, `+ 1 | `′, `′], [`, ` | `′, `′ + 1], or [`, `+ 1 | `′, `′ + 1].

(iv) The edge (u`+2, w`′+1) or the edge (u`+1, w`′+2) can be added crossing-free to Γ;
this subdivides B into two smaller bricks, one of which is a K2,3 brick.

Proof. If r = ` + 1 or r′ = `′ + 1 the statement follows immediately. On the other
hand, if r = ` (or r′ = `′), then B is a star and we have r′ = `′+ 1 by the properties
of a brick. Hence we assume r > `+ 1 and r′ > `′ + 1. We consider three cases.

First assume that neither (u`, w`′+1) nor (u`+1, w`′) belongs to E (see dashed red
edges in Fig. 7.13a). If u` is incident to only one single edge e = (u`, wi′) for
`′ + 1 < i′ ≤ r′ (see green edge in Fig. 7.13a), we obtain a drawing Γ′ by removing
e from Γ and adding the edge (u`+1, w`′), which is then planar; i. e. [`, r | `′, r′] is
subdivided into the two bricks [`, ` + 1 | `′, `′] and [` + 1, r | `′, r′]. A symmetric
argument holds if w`′ is incident to only one edge (ui, w`′) for ` + 1 < i ≤ r. On
the other hand, if both, u` and w`′ , are incident to two such edges, that is, if there
are edges (u`, wi′) and (u`, wj′) for `′ + 1 < i′ < j′ ≤ r′, and (ui, w`′) and (uj, w`′)
for ` + 1 < i < j ≤ r (see Fig. 7.13b), we observe that u`+1 and w`′+1 are both
inside regions bounded by two edges that are crossed twice. Hence u`+1 and w`′+1

are isolated (degree-0) vertices, contradicting the connectivity of G.

Secondly, consider the case where exactly one of the edges (u`, w`′+1) and (u`+1, w`′)
belongs to E, say (u`, w`′+1) ∈ E (see solid and dashed red edges in Fig. 7.13c). If
u` is not incident to any edge (u`, wi′) for `′ + 1 < i′ ≤ r′, we obtain Γ′ by removing
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Fig. 7.13: Illustrations for the proof of Lemma 7.12. (a) First case: u` is incident to
only one edge (u`, wi′), `′ < i′ ≤ r′. (b) First case: the vertices u` and w`′ are
isolated. (c) Second case: u` is not incident to an edge (u`, wi′), `′+1 < i′ ≤ r′.
(d) Second case: exactly one of (u`+1, w`′) and (u`, w`′+1) is in E. (e) Third
case: both edges (u`, wi′) and (ui, w`′) are in E. (f) and (g) Third case: edge
(ui, w`′) is in E and (u`, wi′) not.

e = (u`, w`′+1) and adding the – then planar – edge (u`+1, w`′); this yields a brick
[`, ` + 1 | `′]. Otherwise an edge (u`, wi′) is part of Γ, where `′ + 1 < i′ ≤ r′ (see
Fig. 7.13d). By the properties of a brick, edge (u`, w`′+1) is not planar, which implies
that there is also an edge (ui, w`′) in E, where `+1 < i ≤ r. Since this edge is crossing
both, (u`, w`′+1) and (u`, wi′), the vertex u`+1 cannot have any edges incident to it
without violating 2-planarity and is therefore isolated – again a contradiction.

Finally we assume that both edges (u`, w`′+1) and (u`+1, w`′) are in E (see solid
red edges in Fig. 7.13e). Then, due to 2-planarity, vertex u` can be incident to at
most one more edge (u`, wi′) with `′ + 1 < i′ ≤ r′. Also w`′ can be incident to at
most one more edge (ui, w`′) with `+ 1 < i ≤ r.

– Suppose that both edges (u`, wi′) and (ui, w`′) are in E. In this case the vertices
u`+1 and w`′+1 are located inside regions that are bounded by two edges with
two crossings (refer to the blue areas in Fig. 7.13e). Thus, each of these vertices
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is incident to only one edge, namely to (u`+1, w`′) and (u`, w`′+1), respectively,
implying that u`+1 and w`′+1 are degree-1 vertices.

– Now suppose that only one of the edges (u`, wi′) and (ui, w`′) in in E, say (ui, w`′)
(green edge in Fig. 7.13f). If (u`+1, w`′+1) does not belong to E, we replace
e = (ui, w`′) by it and obtain a smaller brick [`, ` + 1 | `′, `′ + 1] (see red area
in Fig. 7.13f).

On the other hand, if (u`+1, w`′+1) already belongs to E, the edge (ui, w`′) is
crossed twice. Hence, Γ contains no edge (u`+1, wj′), where j′ > `′ + 1, and –
since G is connected – we have i = ` + 2. As a consequence it is possible to add
the planar edge (ui, w`′+1) to Γ (by the assumption r > ` + 1, r′ > `′ + 1, and
the properties of B = [`, r | `′, r′] it is not yet in Γ). This yields a smaller brick
[`, `+ 2 | `′, `′ + 1] corresponding to a graph K2,3 (see Fig. 7.13g).

Note that Properties iii and iv of Lemma 7.12 imply that Γ′ has the same vertices
as Γ and also the same number of edges. However, the drawing Γ′ has more planar
edges and might not be maximal – even if Γ is maximal.

By the fact that there is a unique6 2-layer drawing (up to isomorphism) of K3,3

and of K2,4 (see Fig. 7.14a and Fig. 7.14b), we observe the following.

Observation 7.13. The bipartite graphs K3,3 and K2,4 are not 2-layer 2-planar.

(a) (b)

Fig. 7.14: (a) Unique 2-layer drawing ofK3,3. (b) Unique 2-layer drawing ofK2,4. In both
drawings the red edges have more than 2 crossing, which violates 2-planarity.

The following lemma, together with Lemma 7.12, are main ingredients for proving
an upper bound for the number of edges in 2-layer 2-planar graphs, and for a
characterization of corresponding optimal graphs.

Lemma 7.14. Let Γ be an optimal 2-layer 2-planar drawing and B = [`, `+1 | `′, r′]
a brick. Then either r′ ≤ `′+ 2, or there is a vertex wi′ with `′ < i′ < r′ of degree at
most one.

6Whenever we speak of “unique” 2-layer drawings, we assume implicitly that edges are represented
as a single Jordan curve, i. e. there are no bundles and no gaps allowed; otherwise the drawings
might not be unique.
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Proof. If r′ ≤ `′ + 2 the lemma follows directly from the fact that K2,3 is 2-layer
2-planar.

Otherwise there are at least four vertices w`′ , . . . , wr′ on the bottom layer. By
the definition of a brick, the edges (u`, w`′) and (u`+1, wr′) must be in E and drawn
crossing free (blue edges in Fig. 7.15). So each vertex w`′+1, . . . , wr′−1 is only adjacent
to u` or u`+1. Further note that both edges (u`, wr′) and (u`+1, w`′) must be in E

(solid black edges in Fig. 7.15), otherwise the – then planar – edges (u`+1, wr′−1) or
(u`, w`+1) are part of Γ by optimality, contradicting the definition of a brick. Since
Γ cannot contain a K2,4-subdrawing (refer to Obs. 7.13), at least one of the vertices
w`′+1 or wr′−1 has a degree smaller than two.

w`′ w`′+1 wr′wr′−1

u` u`+1

· · ·

Fig. 7.15: Illustration for the proof of Lemma 7.14.

In the next theorem we prove an upper bound for the maximal number of edges
in a 2-layer 2-planar graph.

Theorem 7.15. Any 2-layer 2-planar graph on n ≥ 2 vertices has at most 5
3n −

7
3

edges.

Proof. Let G be an optimal 2-layer 2-planar graph and Γ a corresponding drawing.
By optimality, the edges (u1, w1) and (ua, wb) are part of Γ.

First consider the case were G is a star, that is G = K1,b. Then G is 2-layer planar
and has exactly m = n − 1 edges, yielding m = n − 1 < 5

3n −
7
3 for n > 2 and

m = 5
3n−

7
3 for n = 2. In the following we assume that G is not a star.

We use induction on the number of vertices. For n ∈ {2, 3} graph G is a star. For
n = 4 consider the graph K2,2, which provides an upper bound on the number of
edges of m ≤ 4 < 5

3n −
7
3 . Similarly, for n = 5 the graph K2,3 provides the upper

bound m ≤ 6 ≤ 5
3n−

7
3 .

Assume now that Γ is a 2-layer 2-planar drawing with n > 5 vertices.

Suppose that Γ contains a planar edge (ui, wi′), where (i, i′) /∈ {(1, 1), (a, b)}. Let
Γ1 := [1, i | 1, i′] and Γ2 := [i, a | i′, b]; further, for i = 1, 2, let ni and mi be the
number of vertices and edges of Γi. Then we have n = n1 +n2−2 and, since (ui, wi′)
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is shared by Γ1 and Γ2, m = m1 +m2 − 1. By induction we obtain

m ≤ 5
3n1 − 7

3 + 5
3n2 − 7

3 − 1 = 5
3(n+ 2)− 7

3 −
10
3 = 5

3n−
7
3 .

On the other hand, if Γ contains no planar edge (ui, wi′) except (u1, w1) and (ua, wb),
then Γ is a maximal brick. If Γ has a degree-1 vertex v, consider the subdrawing
Γ[V \ {v}] with n? = n− 1 vertices and m? = m− 1 edges. Inductively we obtain

m = m? + 1 ≤ 5
3n

? − 7
3 + 1 = 5

3n−
5
3 −

7
3 + 1 < 5

3n−
7
3 .

Assume now that Γ has no degree-1 vertex. Then Lemma 7.14 and the assumption
n > 5 implies a > 2 and b > 2. Thus, Properties i and ii of Lemma 7.12 do not hold;
observe that, by optimality of Γ, Property iv does not hold as well. Consequently,
by Property iii, there is a drawing Γ′ with n vertices and m edges, consisting of two
bricks B1, B2; moreover, one of the bricks, say B1, is [1, 2 | 1, 1], [1, 1 | 1, 2], or
[1, 2 | 1, 2] (here the indexes correspond to drawing Γ′). For i = 1, 2, let n′i and m′i
be the number of vertices and edges of Bi If B1 = [1, 2 | 1, 1], or B1 = [1, 1 | 1, 2],
vertex u1 or w1, respectively has degree 1; we already showed that the upper bound
holds in this case. Otherwise B1 = [1, 2 | 1, 2], n′1 = 4, m′1 = 4, and n′2 = n− 2. By
induction we obtain

m ≤ m′1 +m′2− 1 ≤ 4 + 5
3n
′
2− 7

3 − 1 = 3 + 5
3(n− 2)− 7

3 = 5
3n−

7
3 −

1
3 <

5
3n−

7
3 .

A close inspection of the proof for Thm. 7.15 yields a characterization for optimal
2-layer 2-planar graphs.

Theorem 7.16. For n > 2 a 2-layer 2-planar graph is optimal if and only if it is
a sequence of copies of K2,3, such that consecutive K2,3-graphs are merged at one
planar edge.

Proof. Clearly a sequence of K2,3 bricks is optimal; refer also to Thm. 7.11.

Assume now that G is an optimal 2-layer 2-planar graph and Γ is a corresponding
drawing of G. Then Γ is maximal. The optimality of Γ implies the optimality of
each brick of Γ. So it suffices to consider a brick Γ. The proof of Thm. 7.15 shows
the following:

– Brick Γ is no star (hence a > 1 and b > 1);

– it has no degree-1 vertices;
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– it must contain two vertices on the top layer, or two vertices on the bottom
layer (otherwise there is a drawing with the same number of vertices and edges
containing a K2,2 brick, which yields less edges than 5

3n−
7
3).

This implies that Γ represents a graph K2,b for some b ≥ 2. The proof of Thm. 7.15
excludes the case b = 2, and Lemma 7.14 excludes b > 3. The statement follows.

We conclude our study of 2-layer 2-planar graphs by pointing out that not every
maximal P=

2 -drawing is optimal; Fig. 7.16 shows a counterexample, i. e., a P=
2 -

drawing which is maximal and consists of only one brick that is not a K2,3-drawing,
and is hence not optimal. Note that it has n+ 1 edges.

· · ·

· · ·

· · ·

Fig. 7.16: A maximal P=
2 -drawing that is not optimal.

7.4.2 3-planar graphs

In this section we give a tight bound for 2-layer 3-planar graphs. We start with a
lower bound construction.

Theorem 7.17. For infinitely many n there is a P=
3 -graph on n vertices with 2n−4

edges.

Proof. The quasi-planar family of graphs defined in Thm. 7.3, which has 2n − 4
edges, is also 2-layer 3-planar; refer also to Fig. 7.17.

· · ·

· · ·

· · ·

Fig. 7.17: A family of 3-planar graphs with n = 2a vertices and 2n− 4 edges.

The following lemma is a key ingredient to prove a corresponding upper bound for
2-layer 3-planar graphs.
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Lemma 7.18. For 1 ≤ h < i < j ≤ a and 1 ≤ h′ < i′ < j′ ≤ b, let (uh, wj′), (ui, wi′)
and (uj, wh′) be a triple of pairwise crossing edges in a 2-layer 3-planar drawing Γ.
Then the number of edges adjacent to (ui, wi′) is at most 2.

Proof. Consider the triple of edges defined in the lemma; for an illustration see
Fig. 7.18. If ui has an edge to a vertex w 6= wi′ , then the edge (ui, w) intersects
(uh, wj′) or (uj, wh′) (see dashed red edge in Fig. 7.18). The same is true if wi′ is
connected to a vertex u 6= ui. Since the triple of crossing edges yields two crossings
for each of (uh, wj′) and (uj, wh′), the edge (ui, wi′) can be adjacent to at most two
edges.

ui

wi′

uj

wj′

uh

wh′ w

Fig. 7.18: A triple of pairwise intersecting edges in a 2-layer 3-planar drawing.

Now we provide the mentioned upper bound on the maximal number of edges in
2-layer 3-planar graphs.

Theorem 7.19. Any 2-layer 3-planar graph G on n ≥ 3 vertices has at most 2n−4
edges. Moreover, optimal 2-layer 3-planar graphs are also 2-layer quasi-planar.

Proof. Consider a P=
3 -drawing Γ of G. We show the statement with induction on

the number of triples of pairwise crossing edges. If there is no such triple, Γ is quasi-
planar and hence has at most 2n− 4 edges for n ≥ 3 by Thm. 7.4.

Assume now that (uh, wj′), (ui, wi′) and (uj, wh′) is a triple of pairwise crossing
edges in Γ for some 1 ≤ h < i < j ≤ a and 1 ≤ h′ < i′ < j′ ≤ b. Lemma 7.18 implies
that (ui, wi′) is adjacent to at most two edges. Let Γ′ be the drawing obtained from
Γ by removing ui and wi′ . Then Γ′ has n′ = n − 2 vertices and m′ ≥ m − 3 edges.
By induction we obtain m′ ≤ 2n′ − 4, and consequently

m ≤ m′ + 3 ≤ (2n′ − 4) + 3 = 2(n− 2)− 1 = 2n− 4− 1 < 2n− 4.

In particular, a P=
3 -drawing with three mutually crossing edges is not optimal.
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7.4.3 4-planar graphs

We follow the approach from Sec. 7.4.2 and start with a lower bound on the number
of edges for 2-layer 4-planar graphs.

Theorem 7.20. For infinitely many n there exists a P=
4 -graph on n vertices with

2n− 3 edges.

Proof. We describe a family of drawings with n = 2a vertices, where each layer has
a = b vertices; for an illustration refer to Fig. 7.19. Each drawing Γ consists of a
sequence B1, . . . ,Bt of K3,3-bricks such that Bi and Bi+1 share a planar edge for
1 ≤ i ≤ t− 1.

· · ·

· · ·

· · ·

Fig. 7.19: A family of P=
4 -graphs with n = 2a vertices and 2n− 3 edges.

Since K3,3 has a total of 9 edges and since consecutive bricks share one edge,
drawing Γ, which consists of t such bricks, has m = 8t+ 1 edges. Further, as a brick
has 6 vertices, Γ has n = 4t + 2 vertices. It follows that t = 1

4(n− 2) and therefore
m = 8 · 1

4(n− 2) + 1 = 2n− 3.

In the following we show that 2n − 3 is also an upper bound for the number of
edges in 2-layer 4-planar graphs. We begin with two auxiliary lemmas.

Lemma 7.21. Let Γ be a 2-layer 4-planar drawing with the following properties:

(i) There is a triple of pairwise crossing edges (uh, wj′), (ui, wi′) and (uj, wh′) in
Γ for some 1 ≤ h < i < j ≤ a and 1 ≤ h′ < i′ < j′ ≤ b;

(ii) there is a vertex ux ∈ U such that h < x < j and x 6= i, or a vertex wx′ ∈ W
such that h′ < x′ < j′ and x′ 6= i′.

Let Γ′ be the subdrawing of Γ obtained by deleting ui, wi′, ux, wx′ (if present in Γ),
and their incident edges. If Γ′ has at most 2n′ − 3 edges, where n′ is the number of
vertices in Γ′, then Γ has at most 2n− 3 edges.

Proof. Let Γ and Γ′ be as described in the lemma.

We assume that there is a vertex ux in Γ such that h < x < j and x 6= i (see
Fig. 7.20 for an illustration of Γ). Each of the edges (uh, wj′) and (uj, wh′) has two
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ui

wi′

uj

wj′

uh

wh′

ux

Fig. 7.20: The configuration when there exists a vertex ux 6= ui between uh and uj in Γ.

crossings from the triple of pairwise crossing edges, so each of them can only be
intersected by two more edges. Hence, there are at most five edges incident to the
vertices ui, ux and wi′ in Γ (including the edge (ui, wi′); see e. g. the dashed red
edges in Fig. 7.20). So for the number of edges m′ in Γ′ the inequality m′ ≥ m− 5
holds, and we have also n′ = n− 3. This implies

m ≤ m′ + 5 ≤ 2n′ − 3 + 5 = 2(n− 3)− 3 + 5 = 2n− 3− 1 < 2n− 3.

The case where only wx′ is in Γ is symmetric, and the case where both vertices ux and
wx′ are in Γ yieldsm ≤ 2n−3−3 < 2n−3. The statement of the lemma follows.7

In order to prove an upper bound for 2-layer 4-planar graphs, we know from
Lemma 7.21 that it is sufficient to consider only drawings where in each triple of
pairwise crossing edges (uh, wj′), (ui, wi′) and (uj, wh′) the vertices uh, ui and uj are
consecutive, as well as the vertices wh′ , wi′ and wj′ . So we assume in the following
that all 2-layer 4-planar drawings have this property, and call it the triple-crossing
property. It is essential for proving the following lemma.

Lemma 7.22. Let Γ be a 2-layer 4-planar drawing with the triple-crossing property,
such that edges (uh, wh′+2), (uh+1, wh′+1) and (uh+2, wh′) form a triple of mutually
crossing edges for some 1 ≤ h ≤ a and 1 ≤ h′ ≤ b. Further let Γ1 be the snippet
[1, h | 1, h′], and Γ2 the snippet [h + 2, a | h′ + 2, b]. Then the only edges of Γ
not belonging to Γ1 or Γ2 are (uh, wh′+2), (uh+2, wh′), and all edges incident to the
vertices uh+1 or wh′+1.

Proof. Assume to the contrary that Γ1 and Γ2 are not only connected by
(uh, wh′+2), (uh+2, wh′), or edges incident to uh+1 or wh′+1. Then there is an edge
(ux, wx′) 6= (uh, wh′+2) such that 1 ≤ x ≤ h and h′+ 2 ≤ x′ ≤ b. This edge intersects
(uh+1, wh′+1), and at least one of the edges (uh, wh′+2) or (uh+2, wh′), say (uh+2, wh′).
Thus, (ux, wx′), (uh+2, wh′) and (ui, wi′) form a triple of pairwise crossing edges with

7Note that the proof of Lemma 7.21 shows even more: Every 2-layer 4-planar drawing with three
mutually crossing edges that also fulfills Property ii, cannot be optimal regarding the edge
density.
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ux ≺ uh ≺ uh+1 ≺ uh+2 (for an illustration see Fig. 7.21); this is a contradiction to
the triple-crossing property.

uh+1

wh′+1

uh+2

wh′+2

uh

wh′

u1

w1

ua

wb

ux

Γ1 Γ2

Fig. 7.21: The situation with a vertex ux between u1 and uh, and an edge (ux, wh′+2);
note that wx′ = wh′+2 in this figure.

Now we have the means to prove the tight upper bound on the number of edges
for 2-layer 4-planar graphs.

Theorem 7.23. Any 2-layer 4-planar graph on n vertices has at most 2n− 3 edges.

Proof. Let Γ be a P=
4 -drawing on n vertices. As already mentioned, we can assume

without loss of generality that Γ has the triple-crossing property.

We prove the statement by induction on the number of triples of pairwise crossing
edges. If Γ has no such triple, then it is quasi-planar and has therefore at most
2n− 4 edges if n ≥ 3, and at most 1 = 2n− 3 edges for n = 2.

uh+1

wh′+1

uh+2

wh′+2

uh

wh′

u1

w1

ua

wb

Γ1 Γ2

Fig. 7.22: A triple of pairwise crossing edges “separates” a P=
4 -drawing.

For the induction step, we assume that Γ has a triple of pairwise crossing edges
(uh, wh′+2), (uh+1, wh′+1) and (uh+2, wh′) for some 1 ≤ h ≤ a and 1 ≤ h′ ≤ b.
Further let Γ1 = [1, h | 1, h′] and Γ2 = [h + 2, a | h′ + 2, b] be snippets of Γ. Then
both subdrawings of Γ are only connected by (uh, wh′+2), (uh+2, wh′) and possibly
edges incident to uh+1 or wh′+1, as stated in Lemma 7.22 (see also Fig. 7.22). By 4-
planarity, we deduce that uh+1 and wh′+1 together are incident to at most 5 edges,
including the edge (uh+1, wh′+1).

For i = 1, 2 let ni and mi denote the number of vertices and edges, respectively, in
Γi. Clearly, each of these snippets have less triples of pairwise crossing edges than
Γ, so we obtain mi ≤ 2ni− 3 by induction. Further we observe that n = n1 +n2 + 2
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and m ≤ m1 +m2 + 7. We conclude that Γ has at most

m ≤ (2n1 − 3) + (2n2 − 3) + 7 = 2(n1 + n2) + 1 = 2(n− 2) + 1 = 2n− 3

edges.

Reading the proof of Thm. 7.23 carefully, we observe that Γ is optimal, if and only
if the subdrawings Γ1 and Γ2 are optimal (that is m1 = 2n1 − 3 and m2 = 2n2 − 3),
and if there are exactly four edges adjacent to (uh+1, wh′+1) (that ism = m1+m2+7).
We use this observation to conclude our study of 2-layer 4-planar graphs by showing
a characterization for optimal P=

4 -graphs.

Theorem 7.24. A graph is an optimal P=
4 -graph if and only if

(a) it has n = 2 vertices u ∈ U and w ∈ W , and an edge (u,w), or

(b) it has n ≥ 3 vertices and consist of a series G1, . . . , Gt of subgraphs K3,3, such
that

– Gi and Gi+1 (where 1 ≤ i < t) share exactly one edge (u,w), and

– the edge shared between Gi and Gi−1 (where 1 < i < t) is not incident to one
of the vertices u or w.

Proof. Clearly each graph consisting of a series ofK3,3 is optimal, refer to Thms. 7.20
and 7.23.

Assume now that Γ is a drawing of an optimal 2-layer 4-planar graph. Then Γ
has 2n − 3 edges. Like in the proof of Thm. 7.23, we use induction on the number
of triples of pairwise crossing edges. If Γ has no such triple, then it is quasi-planar
and can only be optimal if a = b = 1 and if it has an edge (u1, w1), otherwise the
number of edges is less than 2n− 3.

For the induction step we assume that Γ has a triple of pairwise crossing edges
(uh, wh′+2), (uh+1, wh′+1) and (uh+2, wh′) for some 1 ≤ h ≤ a and 1 ≤ h′ ≤ b

(the vertices of the triple are consecutive by the proof of Lemma 7.21; the triple of
crossing edges is colored green in Fig. 7.23).

Consider the snippets Γ1 = [1, h | 1, h′] and Γ2 = [h + 2, a | h′ + 2, b]. For i = 1, 2
let ni and mi be the number of vertices edges in Γi. Since Γ is optimal we have
mi = 2ni − 3 (see the note before this theorem). Therefore Γ1 and Γ2 are also
optimal. Thus, by induction each drawing Γ1 and Γ2 consists of a series of graphs
K3,3 (or of a single edge if h = h′ = 1, or if h+ 2 = a and h′ + 2 = b).
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

uh

wh′

uh+2

wh′+2

u1

w1

ua

wb

Fig. 7.23: Illustration of the proof for Thm. 7.24.

Observe that either h = h′ = 1, or both edges (uh−2, wh′) and (uh, wh′−2) of Γ1

are crossed already four times (see solid red edges in Fig. 7.23). So, if there is an
edge from uh+1 or wh′+1 to a vertex in Γ1, it must be to wh′ or to uh, respectively.
Similarly, if there is an edge from uh+1 or wh′+1 to a vertex in Γ2, it must be incident
to wh′+2 or to uh+2, respectively. The optimality of Γ implies that there are exactly
four edges adjacent to (uh+1, wh′+1), yielding the four edges (uh, wh′+1), (uh+2, wh′+1),
(uh+1, wh′), and (uh+1, wh′+2). The statement follows.

7.4.4 5-planar graphs

Again we start by providing a lower bound on the maximal number of edges.

Theorem 7.25. For infinitely many n there exists a 2-layer 5-planar graph on n

vertices with 9
4n−

9
2 edges.

Proof. Consider the lower bound construction Γ from Thm. 7.20 for 2-layer 4-planar
graphs, consisting of a sequence of K3,3-bricks B1, . . . ,Bt such that consecutive
bricks share a planar edge. Recall that Γ has n = 4t + 2 vertices and
m = 8t + 1 = 2n − 3 edges. We augment Γ to a 5-planar drawing Γ′ by adding a
path p of length t − 1. More precisely, for i odd, where 1 ≤ i ≤ t − 1, we add an
edge between the middle vertex on the top layer of Bi and the middle vertex on the
bottom layer of Bi+1; for i even, where 1 ≤ i ≤ t− 1, we add an edge between the
middle vertex on the bottom layer of Bi and the middle vertex on the top layer of
Bi+1 (refer to the dashed red edges in Fig. 7.24). Then Γ′ still has n = 4t+2 vertices,
but the number of edges is now m = 8t + 1 + (t − 1) = 9t, yielding m = 9

4n −
9
2

edges for Γ′. The drawing Γ′ is 5-planar: By construction, no two different edges of
p cross the same edge of Γ, hence the original edges of Γ have at most one additional
crossing in Γ′ (which is a crossing with an edge of p); also by construction, every
edge of p has exactly 5 crossings. The statement follows.
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· · ·

· · ·

· · ·

Fig. 7.24: A family of 5-planar graphs with n = 2a vertices and 9
4n−

9
2 edges.

In order to establish 9
4n−

9
2 as a tight upper bound for the number of edges in P=

5

(as we will see later with the exception of n = 2, 8), we first prove a few auxiliary
lemmas.

Lemma 7.26. Let Γ ∈ P=
5 be a 2-layer 5-planar drawing with the following

properties:

(i) There is a triple of pairwise crossing edges (uh, wj′), (ui, wi′) and (uj, wh′) in
Γ for some 1 ≤ h < i < j ≤ a and 1 ≤ h′ < i′ < j′ ≤ b;

(ii) there are two vertices ux, uy ∈ U \{ui} such that h < x < y < j, or two vertices
wx′ , wy′ ∈ W \ {wi′} such that h′ < x′ < y′ < j′, or a vertex ux ∈ U \ {ui} and
a vertex wx′ ∈ W \ {wi′} such that h < x < j and h′ < x′ < j′.

Let Γ′ be the subdrawing of Γ obtained by deleting ui, wi′, ux, uy, wx′, wy′ (if present
in Γ), and their incident edges. If Γ′ has at most 9

4n
′ − 9

2 edges, where n′ is the
number of vertices in Γ′, then Γ has at most 9

4n−
9
2 edges.

Moreover, if Γ′ has n′ = 8 vertices and 14 edges, then Γ also has not more than
9
4n−

9
2 edges (Note that 14 > 9

4n
′ − 9

2 for n′ = 8).

ui

wi′

uj

wj′

uh

wh′

ux uy

Fig. 7.25: The configuration when there exist distinct vertices ux 6= ui and uy between
uh and uj in Γ.

Proof. Let Γ and Γ′ be as described in the lemma. (see Fig. 7.25 for an illustration).

We assume that there are vertices ux and uy in Γ such that h < x < y < j and
x, y 6= i. Each of the edges (uh, wj′) and (uj, wh′) has two crossings from the triple of
pairwise crossing edges, so each of them can only be intersected by three more edges.
Hence, there are at most seven edges incident to the vertices ui, ux, ux′ and wi′ in Γ,
including the edge (ui, wi′) (see e. g. the red edges in Fig. 7.25). So for the number of
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edges m′ in Γ′ the inequality m′ ≥ m−7 holds, and we have n′ = n−4. This implies

m ≤ m′ + 7 ≤ 9
4n
′ − 9

2 + 7 = 9
4(n− 4)− 9

2 + 7 = 9
4n−

9
2 − 2 < 9

4n−
9
2 .

The case where both vertices wx′ and wy′ are in Γ is symmetric, while the cases
where there are at least the vertices ux and wx′ are in Γ also yields m < 9

4n−
9
2 .

Finally, for n′ = 8 and m′ ≤ 14 we have

m ≤ m′ + 7 ≤ 21 < 22.5 = 9
4(n′ + 4)− 9

2 <
9
4n−

9
2 .

The statement of the lemma follows.

So, when proving an upper bound for 2-layer 5-planar graphs, we can assume that
for each triple of pairwise crossing edges (uh, wj′), (ui, wi′) and (uj, wh′), there is
either at most one vertex ux 6= ui such that uh ≺ ux ≺ uj and only wi′ between wh′
and wj′ , or at most one vertex wx′ 6= wi′ such that wh′ ≺ wx′ ≺ wj′ and only ui

between uh and uj. We call this property triple+-crossing property.

Lemma 7.27. Let Γ ∈ P=
5 have the triple+-crossing property and let (uh, wj′),

(ui, wi′) and (uj, wh′) form a triple of mutually crossing edges in Γ for some
1 ≤ h < i < j ≤ a and 1 ≤ h′ < i′ < j′ ≤ b. Further let Γ1 = [1, h | 1, h′], and
Γ2 = [j, a | j′, b]. Then Γ1 and Γ2 are only connected by

– edges (uh, wj′) and (uj, wh′) (black in Fig. 7.26),

– possibly edges incident to ui or wi′ (dashed red in Fig. 7.26),

– possibly edges either incident to a vertex ux, where h < x < j and x 6= i (dashed
orange in Fig. 7.26), or incident to a vertex wx′, where h′ < x′ < j′ and x′ 6= i′,

– possibly edges (uy, wy′), where y ∈ {h, j} or y′ ∈ {h′, j′} (dashed purple in
Fig. 7.26).

ui

wi′

uj

wj′

uh

wh′

u1

w1

ua

wb

Γ1 Γ2

ux

Fig. 7.26: Illustration of Lemma 7.27.



169 Drawing Graphs on Two Layers

Proof. Assume to the contrary that there is an edge (uy, wy′) such that 1 ≤ y < h

and j < y′ ≤ b. This edge intersects all three edges (uh, wj′), (ui, wi′) and (uj, wh′).
But then (uy, wy′), (ui, wi′) and (uj, wh′) form a triple of pairwise crossing edges and
uh is between uy and uj, while wj′ is between wh′ and wy′ – a contradiction to the
triple+-crossing property (for an illustration see Fig. 7.27).

ui

wi′

uj

wj′

uh

wh′

u1

w1

ua

wb

uy

Γ1 Γ2

wy′

Fig. 7.27: The situation with a vertex uy between u1 and uh, a vertex wy′ between wj′
and wb, and an edge between them.

The following observation is a consequence of 5-planarity.

Observation 7.28. Let Γ1 and Γ2 be defined as in Lemma 7.27, m1 the number of
edges in Γ1, and m2 the number of edges in Γ2. If m is the number of edges in Γ,
then the difference between m and m1 +m2 is at most m− (m1 +m2) ≤ 9.

This observation is used in the proof of the next lemma, that gives already upper
bounds on the number of edges for small values of n and will serve later, in the proof
of Thm. 7.31, as base of the induction.

Lemma 7.29. The maximal number of edges for 2-layer 5-planar graphs on n ≤ 9
vertices are as follows (where (n,m) means that for n vertices the upper bound is
m): (0, 0), (1, 0), (2, 1), (3, 2), (4, 4), (5, 6), (6, 9), (7, 11), (8, 14) and (9, 15).

Proof. Clearly there exist no edges at all in graphs with n ∈ {0, 1}.

Consider the graph Kx,n−x, for some 1 ≤ x < n, which has n vertices and
f(x) := x(n−x) edges. An easy calculation shows that f(x) has a global maximum
in x = 1

2n. So, for even n, the graph K 1
2n,

1
2n

is the bipartite graph with the maximal
number of edges, while the same holds for K 1

2 (n−1), 1
2 (n+1) and odd n. We use this

fact for our argumentation.

– For n = 2, the graph K1,1 has 1 edge.

– For n = 3, the graph K1,2 has 2 edges.

– For n = 4, the graph K2,2 has 4 edges.

– For n = 5, the graph K2,3 has 6 edges.
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– For n = 6, the graph K3,3 has 9 edges.

Note that all these graphs are 2-layer 5-planar, as Fig. 7.28 shows.

(a) (b) (c) (d) (e)

Fig. 7.28: Unique 2-layer drawings (up to isomorphism) of (a) graph K1,1; (b) graph K1,2;
(c) graph K2,2; (d) graph K2,3; (e) graph K3,3. All these drawings are 5-planar.

For n = 7, the graphK3,4 has 12 edges. However, this graph is not 2-layer 5-planar,
see Fig. 7.29. But removing one edge from the (up to isomorphism) unique 2-layer
drawing of K3,4 yields a P=

5 -drawing with 11 edges. This (and the fact that K2,5 has
only 10 edges) implies that any P=

5 -graph with 7 vertices has at most 11 edges.

Fig. 7.29: Unique 2-layer drawing (up to isomorphism) of K3,4. Removing the red edge
yields an optimal 5-planar drawing with 11 edges.

Next consider a 2-layer drawing Γ with n = 8 vertices. Note that, since K4,4 is not
5-planar, it is not sufficient to consider only a = b = 4. If Γ is quasi-planar, it has
at most 2n − 4 = 13 edges. Otherwise there is a triple (uh, wj′), (ui, wi′), (uj, wh′)
of mutually crossing edges in Γ, where 1 ≤ h < i < j ≤ a and 1 ≤ h′ < i′ < j′ ≤ b.
This implies (a, b) ∈ {(3, 5), (4, 4)}. By Lemma 7.26 we can assume that one of the
following configurations holds for a 2-layer 5-planar drawing Γ:

(1) There exists exactly one vertex ux 6= ui with h < x < j, and the vertices wh′ ,
wi′ and wj′ are consecutive, i. e. i′ = h′ + 1 and j′ = h′ + 2;

(2) there exists exactly one vertex wx′ 6= wi′ with h′ < x′ < j′, and the vertices uh,
ui and uj are consecutive, i. e. i = h+ 1 and j = h+ 2;

(3) the vertices uh, ui and uj are consecutive on the top layer, and the vertices wh′ ,
wi′ and wj′ are consecutive on the bottom layer, i. e. i = h + 1, j = h + 2,
i′ = h′ + 1, and j′ = h′ + 2.

If Γ is a drawing with a = 3 and b = 5, then its number of edges is at most
M := max(1 + 9 + 3, 2 + 9 + 2, 1 + 9 + 2) = 13. Instead of explaining these numbers
with a tedious case analysis, we refer to Fig. 7.30, where the red area represents the
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u1

w1

u2 u3

w2 w3 w4 w5

(a)

u1

w1

u2 u3

w2 w3 w4 w5

(b)

u1

w1

u2 u3

w2 w3 w4 w5

(c)

Fig. 7.30: Different configurations for three mutually crossing edges in a drawing with
(a, b) = (3, 5). Except for the triple of mutually crossing edges, the edges
belonging to Γ \ (Γ1 ∪ Γ2) are not drawn. (a) The subdrawing Γ1 = [1, 1 | 1, 1]
has at most 1 edge, while Γ2 = [3, 3 | 3, 5] has at most 3 edges, yielding an
upper bound of 1 + 9 + 3 = 13 edges. (b) This configuration has at most
2 + 9 + 2 = 13 edges. (c) This configuration has at most 1 + 9 + 2 = 12 edges.

difference between Γ and the union of Γ1 := [1, h | 1, h′] and Γ2 := [j, 3 | j′, 5] for
different values of h, h′, j and j′.

The counting in the different sums of the maximum M is as follows: The first
summand is the maximal number of edges in Γ1 (left of the red area in the figures),
while the last summand is the maximal number of edges in Γ2 (right of the red area).
The middle summand is an upper bound on the additional number of edges of Γ
compared to the union of Γ1 and Γ2. According to Obs. 7.28 this upper bound is 9.
When we consider the different cases to calculate the maximal number of edges, we
refrain from showing isomorphic settings.

We also take into account the three configurations deduced from Lemma 7.26.
Observe that Configs. 1 and 2, i. e. the configurations where the snippet [h, j | h′, j′]
contains more than 6 vertices, do never yield the maximum in our calculation: The
red area contributes at most 9 edges to Γ, no matter how many vertices are in this
area, but more vertices in the red area imply less vertices in Γ1 or Γ2, and hence less
edges in Γ1 and Γ2 (refer to Fig. 7.30c). So it suffices to consider Config. 3.

u1

w1

u2 u3

w2 w3 w4

u4

(a)

u1

w1

u2 u3

w2 w3 w4

u4

(b)

u2

w2

u3

w3

u1

w1

u4

w4

(c)

Fig. 7.31: Different configurations for three mutually crossing edges in a drawing with
(a, b) = (4, 4). (a) The subdrawing Γ1 = [1, 1 | 1, 1] has at most 1 edge, and
Γ2 = [3, 4 | 3, 4] has at most 4 edges, yielding an upper bound of 1 + 9 + 4 = 14
edges. (b) This configuration has at most 2 + 9 + 2 = 13 edges. (c) A 2-layer
5-planar drawing with (a, b) = (4, 4) that has exactly 14 edges, which is the
unique optimal such drawing for 8 vertices.
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If Γ is a P=
5 -drawing with a = 4 and b = 4, similar considerations as above imply an

upper bound of max(1+9+4, 2+9+2) = 14 edges (refer to Fig. 7.31). Figure 7.31c
shows a corresponding drawing with 14 edges, hence this bound is tight.

Finally we study drawings Γ with n = 9 vertices. If Γ is quasi-planar, it has at
most 2n − 4 = 14 edges. Otherwise there is a triple (uh, wj′), (ui, wi′), (uj, wh′) of
mutually crossing edges in Γ, where 1 ≤ h < i < j ≤ a and 1 ≤ h′ < i′ < j′ ≤ b.
This implies (a, b) ∈ {(3, 6), (4, 5)}. Similar as for n = 8, we obtain an upper bound
of max(1 + 9 + 4, 2 + 9 + 3) = 14 edges for (a, b) = (3, 6), and an upper bound of
max(1+9+6, 2+9+4, 3+9+2) = 16 edges for (a, b) = (4, 5) (refer to Fig. 7.32). Note
that only the configuration from Fig. 7.32c (or one symmetric to it) is responsible
that the maximum for (a, b) = (4, 5) is 16. For this reason we study the drawing Γ
in Fig. 7.32c in detail.

u1

w1

u2 u3

w2 w3 w4 w5 w6

(a)

u1

w1

u2 u3

w2 w3 w4 w5 w6

(b)

u1

w1

u2 u3

w2 w3 w4 w5

u4

(c)
u1

w1

u2 u3

w2 w3 w4 w5

u4

(d)

u1

w1

u2 u3

w2 w3 w4 w5

u4

(e)

Fig. 7.32: Different configurations for three mutually crossing edges in a drawing with
(a, b) = (3, 6) in (a) and (b), and with (a, b) = (4, 5) in (c)–(e). (a) The
subdrawing Γ1 = [1, 1 | 1, 1] has at most 1 edge and Γ2 = [3, 3 | 3, 6] has at
most 4 edges, yielding an upper bound of 1 + 9 + 4 = 14 edges. (b) This
configuration has at most 2 + 9 + 3 = 14 edges. (c) This configuration has at
most 1 + 9 + 6 = 16 edges. (d) This configuration has at most 2 + 9 + 4 = 15
edges. (e) This configuration has at most 3 + 9 + 2 = 14 edges.

First observe that, if the snippet [3, 4 | 3, 5] in Γ is not a complete bipartite
graph, then Γ has at most 15 edges. Thus we assume in the following that it is a
complete bipartite graph. Further note that there can be neither an edge (u1, w5),
nor an edge (u1, w4), nor an edge (u4, w1), as otherwise the (smaller) upper bound
of another configuration applies (e. g., in the presence of edge (u1, w4), the triple
(u1, w4), (u2, w2) and (u3, w1) of mutually crossing edges yields an upper bound of
1 + 9 + 4 = 14 edges). So each vertex u1 and w1 can only be incident to one more
edge, namely (u1, w2) and (u2, w1), respectively.
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It is also not possible that Γ contains both edges (u2, w4) and (u4, w2), since this
would give rise to another triple of crossing edges, namely (u2, w4), (u3, w3), and
(u4, w2), with at most 4 + 9 + 2 = 15 edges. Similarly Γ cannot contain both edges
(u2, w5) and (u4, w2).

Assume first that edge (u4, w2) is in Γ (solid green edge in Fig. 7.33a). Then the
only other edges Γ can possibly have are (u1, w2), (u2, w1), (u2, w3), and (u3, w2)
(dashed green edges in Fig. 7.33a), so that in this case Γ has at most 15 edges.

u1

w1

u2 u3

w2 w3 w4 w5

u4

(a)

u1

w1

u2 u3

w2 w3 w4 w5

u4

(b)

u1

w1

u2 u3

w2 w3 w4 w5

u4

(c)

Fig. 7.33: Different configurations for three mutually crossing edges in the drawing with
(a, b) = (4, 5) that has potentially 16 edges. (a) Edge (u4, w2) is in Γ. (b) Edge
(u4, w2) is not in Γ and (u2, w5) belongs to it. (c) Edges (u4, w2) and (u2, w5)
are not in Γ.

Now we assume that the edge (u4, w2) is not part of Γ. If (u2, w5) is in Γ (solid
green edge in Fig. 7.33b), none of the edges (u3, w3) and (u4, w3) belongs to Γ, since
otherwise 5-planarity is violated by (u2, w5). So Γ potentially contains the edges
(u1, w2), (u2, w1), (u2, w3), and (u3, w2) (dashed green edges in Fig. 7.33b), and again
Γ has at most 15 edges (in fact, the upper bound is even 14, since (u3, w1) is not
allowed to have 6 crossings).

Last, consider the case where (u2, w5) also does not belong to Γ. Here Γ potentially
contains only the five additional edges (u1, w2), (u2, w1), (u2, w3), (u3, w2), and
(u3, w2) (dashed green edges in Fig. 7.33c), yielding at most 15 edges for Γ.

Since, in none of the cases, we obtain a valid drawing with more than 15 edges, the
upper bound on the number of edges for 2-layer 5-planar graphs with n = 9 vertices
is m = 15.

Inspecting the proof for n = 8 closely, we observe that only a configuration like the
one depicted in Fig. 7.31a leads to m = 14 edges. Since the snippets Γ1 = [1, 1 | 1, 1]
and Γ2 = [3, 4 | 3, 4] in this drawing can have at most m1 ≤ 1 and m2 ≤ 4 edges,
respectively, and since the difference m− (m1 +m2) in the number of edges between
Γ and the union of Γ1 and Γ2 is at most 9, the value of 14 edges can only be achieved
if m1 = 1, m2 = 4 and m − (m1 + m2) = 9. So both edges (u1, w3) and (u3, w1)
must necessarily have 5 crossings, which implies that all the edges (u1, w2), (u2, w1),
(u2, w3), (u2, w4), (u3, w2), and (u4, w5) are present in Γ. As a consequence, the
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drawing from Fig. 7.31c is the only drawing for an optimal 2-layer 5-planar graph
(up to isomorphism) with 8 vertices.

Observation 7.30. There is only one drawing (up to isomorphism) for an optimal
2-layer 5-planar graph on n = 8 vertices, namely the drawing from Fig. 7.31c.

At this point, we are finally prepared to prove an upper bound for P=
5 -graphs.

Theorem 7.31. Any 2-layer 5-planar graph on n ≥ 3 vertices has at most 9
4n −

9
2

edges, except for n = 8, where the upper bound is 14 > 13.5 = 9
4n−

9
2 .

Proof. Let Γ be a 2-layer 5-planar drawing with n vertices and m edges. According
to Lemma 7.26, we can assume that Γ has the triple+-crossing property. If Γ has
no triple of mutually crossing edges, it is quasi-planar and has therefore at most
2n − 4 edges, which is smaller than 9

4n −
9
2 for n ≥ 3. Thus, we can assume that

Γ has a triple of pairwise crossing edges (uh, wj′), (ui, wi′) and (uj, wh′) for some
1 ≤ h < i < j ≤ a and 1 ≤ h′ < i′ < j′ ≤ b. We prove the statement by induction
on the number of vertices.

For 3 ≤ n ≤ 9 the claim holds by Lemma 7.29, and for n = 2 the number of edges
is at most 1. In the following we assume that n ≥ 10 and the lemma is true for all
2-layer 5-planar drawings with less than n vertices..

Let Γ1 and Γ2 be the snippets [1, h | 1, h′] and [j, a | j′, b], respectively, and for
i = 1, 2, let ni and mi the number of vertices and edges for Γi. By Obs. 7.28, we
conclude thatm−(m1+m2) ≤ 9, that is, Γ1 and Γ2 are connected by at most 8 edges
(excluding (ui, wi′)). Further, we observe that n = n1 + n2 + 2 or n = n1 + n2 + 3
by the triple+-crossing property, so n1 + n2 ≤ n − 2, and m ≤ m1 + m2 + 9. Since
each of Γ1 and Γ2 have less vertices than Γ, we can apply induction on them. We
consider several configurations, aiming at covering all cases.

General Configuration. Suppose first that there exists a triple of pairwise crossing
edges, such that n1, n2 /∈ {2, 8}. Then we inductively have m1 ≤ 9

4n1 − 9
2 and

m2 ≤ 9
4n2 − 9

2 , yielding

m ≤ m1 +m2 + 9 ≤
(9

4n1 − 9
2

)
+
(9

4n2 − 9
2

)
+ 9

= 9
4(n1 + n2) ≤ 9

4(n− 2) = 9
4n−

9
2 .

In the following we consider the case where (without loss of generality) n1 ∈ {2, 8}.
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Three-Vertex Configuration. We assume that n = n1 + n2 + 3. Note that we
cannot have (n1, n2) = (2, 2), because n is at least 10. If n1 = 2 and n2 6= 8, we obtain

m ≤ m1 +m2 + 9 ≤ m2 + 10 ≤ 9
4n2 − 9

2 + 10
= 9

4(n− 5)− 9
2 + 10 = 9

4n−
9
2 −

5
4 <

9
4n−

9
2 .

If n1 = 8 and n2 /∈ {2, 8}, we obtain

m ≤ m1 +m2 + 9 ≤ m2 + 23 ≤ 9
4n2 − 9

2 + 23
= 9

4(n− 11)− 9
2 + 23 = 9

4n−
9
2 −

7
4 <

9
4n−

9
2 .

If n1 = 2 and n2 = 8, we have

m ≤ m1 +m2 + 9 ≤ 1 + 14 + 9 = 24 ≤ 99
4 = 9

4 · 13− 9
2 = 9

4n−
9
2 ,

and if n1 = 8 and n2 = 8, we have

m ≤ m1 +m2 + 9 ≤ 14 + 14 + 9 = 37 ≤ 153
4 = 9

4 · 19− 9
2 = 9

4n−
9
2 .

Since all other cases are symmetric, the statement is true when n = n1 + n2 + 3.
Thus, it remains to consider the cases where n = n1 + n2 + 2, that is i = h + 1,
j = h+ 2, i′ = h′ + 1, and j′ = h′ + 2.

Left-2 General-Right Configuration. If n1 = 2 and n2 /∈ {2, 8}, we have
m2 ≤ 9

4n2 − 9
2 , n2 = n− 4, and m2 ≤ 1, yielding an upper bound of

m ≤ m1 +m2 + 9 ≤
(9

4n2 − 9
2

)
+ 1 + 9 ≤ 9

4(n− 4)− 9
2 + 10 = 9

4n−
9
2 + 1

edges. However, this upper bound can only be achieved if m1 = 1, m2 = 9
4n2 − 9

2 ,
and m− (m1 +m2) = 9. We show that this is not the case in a valid 2-layer 5-planar
drawing.

First observe that, for n1 = 2, we have h = h′ = 1. Moreover, we can assume that
there is neither an edge (u1, wx′) for some x′ > 3 (for an illustration see Fig. 7.34a),
nor an edge (ux, w1) for some x > 3, since otherwise we would have the Three-Vertex
Configuration for the triple (u1, wx′), (u2, w2), (u3, w1), or to the triple (u1, w3),
(u2, w2), (ux, w1). Thus, there exist at most 5 edges which are incident to u1 or
w1, including (u1, w1). If this number is smaller than 5, we apply induction on the
snippet [2, a | 2, b] and obtain

m ≤ 4 + 9
4(n− 2)− 9

2 <
9
4n−

9
2 ,



Drawing Graphs on Two Layers 176

for n > 10, or
m ≤ 4 + 14 = 18 = 9

4n−
9
2

for n = 10 (that is, the snippet [2, a | 2, b] has 8 vertices and 14 edges). Otherwise
Γ contains the edges (u1, w1), (u1, w2) and (u2, w1) (see red edges in Fig. 7.34b).

u1

w1

u2 u3

w2 w3 wx′

ux

(a)

u1

w1

u2 u3

w2 w3 wx′

ux

(b)

Fig. 7.34: Illustrations for the proof of Thm. 7.31, where n1 = 2 and n2 /∈ {2, 8}. (a) An
edge (u1, wx′) for some x′ > 3 gives rise to another triple of pairwise crossing
edges. (b) Vertices u1 and w1 are incident to five edges; there are edges (u2, wx′)
and (ux, w2) in Γ.

Because of 5-planarity and m− (m1 +m2) = 9, each vertex u2 and w2 is incident
to exactly two more edges. Thus, there is an edge (u2, wx′) for some x′ > 3, and
an edge (ux, w2) for some x > 3 (refer to the solid blue edges in Fig. 7.34b). We
identify two cases regarding edge (u3, w3).

– This edge does not belong to Γ. Then we can enrich Γ2 with this edge, apply
induction on the new drawing, and obtain m2 + 1 ≤ 9

4n2 − 9
2 , which yields an

upper bound of

m ≤ m1 +m2 + 9 ≤ 1 + 9
4n2 − 9

2 − 1 + 9 = 9
4(n− 4)− 9

2 + 9 = 9
4 −

9
2

edges for Γ.

– Otherwise (u3, w3) belongs to Γ (refer to the dashed blue edge in Fig. 7.34b), and
(u2, wx′), (u3, w3) and (ux, w2) form a triple of mutually crossing edges. We can
assume that x = x′ = 4, since otherwise we find the Three-Vertex Configuration
in Γ.

Consider the snippets Γ′1 = [1, 2 | 1, 2] and Γ′2 = [4, a | 4, b] with n′1 = 4 and n′2
vertices. Since n ≥ 10, we do not have n′2 = 2, and since we already considered
the General Configuration (and n′1 /∈ {2, 8}), we can assume that Γ′2 has exactly
8 vertices. Then Γ′1 has m′1 = 4 edges, Γ′2 has at most m′2 ≤ 14 edges, while
m− (m′1 +m′2) ≤ 9. This results in

m ≤ m′1 +m′2 + 9 ≤ 4 + 14 + 9 = 27 = 9
4n−

9
2

for n = n′1 + n′2 + 2 = 14 vertices.
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We conclude that the statement holds for n1 = 2 and n2 /∈ {2, 8}.

Left-8 General-Right Configuration. If n1 = 8 and n2 /∈ {2, 8}, we have
m1 ≤ 14, m2 ≤ 9

4n2− 9
2 , m− (m1 +m2) ≤ 9, and n = n2 + 10. The triple of crossing

edges is in this case (u4, w6), (u5, w5) and (u6, w4). Ifm1 ≤ 13 we immediately obtain

m ≤ m1 +m2 + 9 ≤ 13 + 9
4n2 − 9

2 + 9
= 22 + 9

4(n− 10)− 9
2 = 9

4n−
9
2 −

1
2 <

9
4n−

9
2 .

Otherwise m1 = 14, that is, Γ1 is the unique drawing depicted in Fig. 7.31c. In this
case we consider the triple (u1, w3), (u2, w2), (u3, w1) of pairwise crossing edges (red
edges in Fig. 7.35), the snippets Γ′1 = [1, 1 | 1, 1] (left yellow part in Fig. 7.35) and
Γ′2 = [3, a | 3, b] (right yellow part in Fig. 7.35). Since Γ′1 has 2 vertices and Γ′2 has
at least 9 vertices (as a consequence of the assumption n2 /∈ {2, 8}), the statement
follows by applying the Left-2 General-Right Configuration to Γ′1 and Γ′2.

u2

w2

u3

w3

u1

w1

u4

w4

u5 u6 ua

w5 w6 wb

Γ′
2

· · ·

· · ·

Fig. 7.35: Illustration for the Left-8 General-Right Configuration. The snippets Γ1 and
Γ2 are indicated by the dotted rectangles, and the snippets Γ′1 and Γ′2 by the
yellow area.

Left-2 Right-8 Configuration. If n1 = 2 and n2 = 8, we have m1 ≤ 1, m2 ≤ 14
and n = n1 + n2 + 2 = 12. First assume that Γ2 contains no triple of mutually
crossing edges. Then Γ2 is quasi-planar and has at most 2n2−4 = 12 edges, yielding

m ≤ m1 +m2 + 9 ≤ 1 + 12 + 9 = 22 < 22.5 = 9
4n−

9
2 .

Otherwise m2 ∈ {13, 14}, and Γ2 contains a triple of crossing edges (see e. g. green
edges in Fig. 7.36). Then this triple must be (ua−2, wb), (ua−1, wb−1), (ua, wb−2),
otherwise we are in the General Configuration or the Three-Vertex Configuration.
Note that, since this second triple belongs entirely to Γ2, the edges (u1, w3), (u2, w2),
(u3, w1), (ua−2, wb), (ua−1, wb−1), and (ua, wb−2) are all different.

Consider the drawing Γ′ obtained from Γ by deleting (u2, w2) and (ua−1, wb−1). If
Γ′ contains at most 20 edges, then Γ contains at most 22 < 9

4n −
9
2 edges. On the

other hand, if Γ′ contains at least 21 > 2n − 4 edges (recall that n = 12), it is not
quasi-planar, and therefore contains a triple (ux, wx′+2), (ux+1, wx′+1), (ux+2, wx′) of
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u4

w4

u5

w5

u3

w3

u6

w6

u1

w1

u2

w2

Fig. 7.36: Illustration for the Left-2 Right-8 Configuration.

pairwise crossing edges (the vertices can be assumed to be consecutive because of
the Three-Vertex Configuration), where 1 ≤ x ≤ a − 2, 1 ≤ x′ ≤ b − 2 (see e. g.
red edges in Fig. 7.36). By construction of Γ′, this triple also belongs to Γ, and we
have x 6= 1 or x′ 6= 1, and x + 2 6= a or x′ + 2 6= a. So the number of vertices of
each snippet [1, x | 1, x′] and [x + 2, a | x′ + 2, b] is different from 2 and 8, and we
can apply the General Configuration on them.8 The statement follows for the case
n1 = 2 and n2 = 8.

Left-8 Right-8 Configuration. In the final configuration we have n1 = 8 and
n2 = 8, thus m1 ≤ 14, m2 ≤ 14, and n = n1 +n2 + 2 = 18. If m1 = m2 = 14, Γ1 and
Γ2 are both copies of the unique optimal drawing for 8 vertices depicted in Fig. 7.31c
(see Fig. 7.37 for an illustration). Since the four edges (u2, w4), (u4, w2), (u6, w8),
and (u8, w6) are fully crossed, we havem−(m1+m2) ≤ 7, yielding an upper bound of

m ≤ m1 +m2 + 7 = 14 + 14 + 7 = 35 < 36 = 9
4n−

9
2

edges.

u2

w2

u3

w3

u1

w1

u4

w4

u5 u6

w5 w6

u7

w7

u8

w8

u9

w9

Fig. 7.37: Illustration for the Left-8 Right-8 Configuration, where m1 = m2 = 14. The
copies of the unique optimal drawings with 8 vertices are highlighted in yellow.

On the other hand, if m1 ≤ 13, or m2 ≤ 13, we obtain

m ≤ m1 +m2 + 9 ≤ 13 + 14 + 9 = 36 = 9
4n−

9
2 .

This completes the proof of Thm. 7.31.

8Note that the General Configuration implies that Γ has at most m ≤ 9
4n −

9
2 = 22.5 edges; it

follows that a subdrawing Γ′ with 2 edges less than Γ has in fact not more than 20 edges.
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· · ·

· · ·

· · ·

Fig. 7.38: A family of 6-planar graphs with n = 2a vertices and 5
2n− 6 edges.

7.4.5 6-planar graphs

We were not able to derive an upper bound on the number of edges for the class of
2-layer 6-planar graphs; however, we can provide at least a lower bound.

Theorem 7.32. For infinitely many n, there exists a P=
6 -graph with 5

2n− 6 edges.

Proof. We augment the lower bound construction for P=
5 -graphs (see Thm. 7.25)

by a path of length t − 1 (symmetric to the path added in Thm. 7.25), where t is
the number of K3,3 subgraphs; for an illustration refer to the dashed green edges in
Fig. 7.38. The graph we obtain still has n = 4t+ 2 vertices; the number of edges is
m = 8t+ 1 + 2(t− 1) = 10t− 1. An easy calculation shows m = 5

2n− 6.

We conjecture that, for n large enough, 5
2n − 6 is also an upper bound for the

number of edges in 2-layer 6-planar graphs.

7.4.6 k-planar graphs for k ≥ 6

Recall the Meta Crossing Lemma (see Thm. 6.2) of Chapter 6: If, for i = 0, . . . , k̂−1
and some k̂ > 0, edge densities forR-restricted i-planar graphs are given by αin−βi,
and α :=

∑k̂−1
i=0 αi, then the number of crossings in every drawing of an R-restricted

graph G is lower bounded by

cr(G) ≥ 4k̂3

27α2
m3

n2

for m ≥ 3α
2k̂n and n ≥ 4. Further, every R-restricted k-planar graph has at most

m ≤

(
max

{
1,

√
3k
2k̂

})
· 3α

2k̂
n

edges (see Thm. 6.3), while R-restricted k-gap-planar graphs have at most

m ≤

(
max

{
1,

√
3k
k̂

})
· 3α

2k̂
n
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edges (see Thm. 6.4).

We apply Thms. 6.2 and 6.3 to P=
k -graphs for k̂ = 6 and the following values αi:

– α0 = 1, corresponding to the edge densitym ≤ n−1 for the class P=
0 (refer to [77]);

– α1 = 3
2 , corresponding to the edge density m ≤ 3

2n− 2 for P=
1 (refer to [57]);

– α2 = 5
3 , corresponding to the edge densitym ≤ 5

3n−
7
3 for P=

2 (refer to Thm. 7.15);

– α3 = 2, corresponding to the edge density m ≤ 2n−4 for P=
3 (refer to Thm. 7.19);

– α4 = 2, corresponding to the edge density m ≤ 2n−3 for P=
4 (refer to Thm. 7.23);

– α5 = 9
4 , corresponding to the edge density m ≤ 9

4n−
9
2 for P=

5 when n ≥ 9 (refer
to Thm. 7.31).

This yields a value of α = 125
12 and thus the following Crossing Lemma for 2-layer

graphs.

Corollary 7.33. Let G be a simple 2-layer graph with n ≥ 9 vertices and m ≥ 125
48 n

edges. Then, the following inequality holds for the crossing number cr(G):

cr(G) ≥ 4.608
15.625

m3

n2 ≈ 0.295m
3

n2 .

By plugging the numbers into Thm. 6.3, we obtain the following corollary.

Corollary 7.34. Let G be a simple 2-layer k-planar graph on n ≥ 9 vertices with
m edges. For k ≥ 6 we have

m ≤ max
{

125
48 ,

125
96
√
k

}
· n = 125

96
√
kn.

And by plugging the numbers into Thm. 6.4, we obtain a corresponding corollary
for 2-layer gap-planar graphs.

Corollary 7.35. Let G be a simple 2-layer k-gap-planar graph with n ≥ 9 vertices
and m edges. Then

m ≤ max
{

1,
√
k√
2

}
125
48 · n.

Especially we have m ≤ 125
48 n for k = 1, and m ≤ 125

√
k

48·
√

2 · n for k ≥ 2.

We remark that m ≤ 3.19n for 2-layer 6-planar graphs by Cor. 7.34, which leaves
only a gap of 0.69n regarding the lower bound established in Thm. 7.32. In the
following theorem, we additionally show that the multiplicative constant 125

96

√
k in

Cor. 7.34 is within a factor of 1.85 of the optimal achievable upper bound for large k.



181 Drawing Graphs on Two Layers

Theorem 7.36. For any k and infinitely many n, there exists a 2-layer k-planar
graph on n vertices with

⌊√
k/2
⌋
n−O(k) edges.

Proof. We construct a drawing Γ with the properties demanded in the theorem.
Let the number n of vertices in Γ be even; further, let both layers have the same
number of vertices, that is a = b = n

2 , and let c :=
⌊√

k/2
⌋
. For i = 1, . . . , a − 1

and c(i) := min(c, a − i), the vertex ui has edges to wi+1, wi+2, . . . , wi+c(i), and wi

has edges to ui+1, ui+2, . . . , ui+c(i). Suppose that the edges are oriented from left to
right. Since we aim at calculating an upper bound for the number of crossings a
single edge can have, we assume c(i) = c for all 1 ≤ i ≤ a. We count the number of
crossings for an edge e := (ux, wx′), where 1 ≤ x ≤ a− 1 and x < x′ ≤ x+ c.

– For x′−c < j < x, all edges (uj, wj′), where x′ < j′ ≤ j+c, cross e; see Fig. 7.39a.
This contributes the following number of crossings for e:

1 + 2 + · · ·+ (x+ c− 1− x′) = 1
2(x+ c− 1− x′)(x+ c− x′)

= 1
2(c− (x′ − x))2 − 1

2(x− x′) + 1
2c.

– For x < j < x′ − 1, all edges (uj, wj′), where j < j′ < x′, cross e; see Fig. 7.39b.
Hence, e is crossed by

1 + 2 + · · ·+ (x′ − 1− (x+ 1)) = 1
2(x′ − x)(x′ − x+ 1)

= 1
2(x′ − x)2 + 1

2(x′ − x)

such edges.
uj

wj′

ux

wx+1 wx′ wx+cwj+cwx′+1

(a)

uj

wj′

ux

wx+1 wx′ wx+cwx′−1wj+1

(b)

uj

wj′

ux

wx+1 wx′ wx+c

ux+1 uj′+c

(c)

uj

wj′

ux

wx+1 wx′ wx+c

ux+1 uj′+c

(d)

uj

wj′

ux

wx+1 wx′ wx+c

ux+1 uj′+c

(e)

Fig. 7.39: Illustration for the proof of Thm. 7.36. (a) The case x′−c < j < x. (b) The case
x < j < x′ − 1. (c) The case x− c < j′ < x. (d) and(e) The case x ≤ j′ < x′.
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– For x− c < j′ < x, all edges (uj, wj′), where x < j ≤ j′+ c, cross e; see Fig. 7.39c.
We obtain

1 + 2 + · · ·+ (c− 1) = 1
2(c− 1)c = 1

2c
2 − 1

2c

crossings on e from this case.

– For x ≤ j′ < x′, all edges (uj, wj′), where j′ < j ≤ j′ + c, cross e; see Figs. 7.39d
and 7.39e. Here the contribution to the number of crossings of e is c(x′ − x).

The numbers of crossings on e in the different cases sum up to

1
2(c− (x′ − x))2 + 1

2(x′ − x)2 + 1
2c

2 + c(x′ − x) = c2 + (x′ − x)2 ≤ 2c2.

Further we have
2c2 = 2

(⌊√
k/2
⌋)2
≤ 2

(√
k/2
)2

= k.

It remains to count the edges. Recall that they are oriented from left to right. By
construction, the out-degree for every vertex is c =

⌊√
k/2
⌋
, except for such vertices

ui and vi, where a − c < i ≤ a. These vertices have out-degree a − i. This yields
cn− 2 · (1 + 2 + · · ·+ c) = cn− c(c+ 1) = cn− c2− c edges for Γ. Hence, the number
of edges is

⌊√
k/2
⌋
n−O(k).

As already mentioned, the multiplicative constant 125
96

√
k in Cor. 7.34 is within a

factor of
125
√
k

96

b
√
k√
2c
≤

125
√
k

96√
k√
2 − 1

= 125
96 ·

1
1√
2 −

1√
k

−−−−→
k→∞

125
96 ·

√
2 ≤ 250

96 < 1.85

of the optimal achievable upperbound, when k is large enough.

7.5 Edge Density of Gap-Planar Graphs

Recall that in gap-planar graphs, a crossing is represented by a gap in one of the two
corresponding edges, such that each edge has not more than one gap. We start by
giving a lower bound for the number of edges in optimal 2-layer gap-planar graphs.

Theorem 7.37. For infinitely many n, there exists a 2-layer gap-planar graph on
n vertices with 2n− 4 edges.

Proof. We observe that the 2-layer quasi-planar family of graphs with 2n− 4 edges
presented in Thm. 7.3 is also gap-planar. For a corresponding 2-layer gap-planar
drawing refer to Fig. 7.40.
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· · ·

· · ·

· · ·

Fig. 7.40: The family of 3-planar graphs presented in Fig. 7.17 is also gap-planar.

By Cor. 7.35, gap-planar graphs on 2-layers have at most 125
48 n ≈ 2.604n edges. In

the following we even show an upper bound of 2n− 4 edges for such graphs, which
provides – together with Thm. 7.37 – a tight bound. In order to achieve this, we
introduce the following three lemmas.

Lemma 7.38. Let Γ be a 2-layer gap-planar drawing with a triple of pairwise
crossing edges (uh, wj′), (ui, wi′) and (uj, wh′) for some 1 ≤ h < i < j ≤ a and
1 ≤ h′ < i′ < j′ ≤ b. Then there is no edge (ux, wx′) in Γ, where

– index x < i and x′ > i′, or

– index x > i and x′ < i′, or

– index x = i, h′ < x′ < j′ and x′ 6= i′, or

– index x′ = i, h < x < j and x 6= i.

Proof. Recall that the crossing graph X = (E,EX) of Γ is a pseudo forest [30],
that is, each connected component of X has at most one cycle. The triple (uh, wj′),
(ui, wi′) and (uj, wh′) of mutually crossing edges already yields a cycle of length
3 in X (see black vertices in Fig. 7.41b, which correspond to the black edges in
Fig. 7.41a). Thus, no other edge in Γ may cross two of the edges of this triple. If
an edge (ux, wx′) exists in Γ with one of the properties described in the statement of
the lemma, then it would cross two edges of the triple (see e. g. the dashed red edge
in Fig. 7.41a and the corresponding red vertex and dashed red edges in Fig. 7.41b).
The statement follows.

ui

wi′

uj

wj′

uh

wh′wx′

ux

e1

e2

e3 e4

(a)

e2

e1
e3

e4

(b)

Fig. 7.41: Illustration for the proof of Lemma 7.38. (a) The triple (uh, wj′), (ui, wi′) and
(uj , wh′) of pairwise crossing edges is shown in black, an edge (ux, wx′) for x < i
and x′ > i′ in red. (b) The corresponding crossing graph for Fig. 7.41a.
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Lemma 7.38 shows that the edge (ui, wi′) represents a kind of a barrier: Except
(uh, wj′) and (uj, wh′), there is no edge between the snippet [1, i− 1 | 1, i′ − 1] (the
“left” side of (ui, wi′)) and the snippet [i+1, a | i′+1, b] (the “right” side of (ui, wi′)).
The next lemma defines another forbidden configuration, given a triple of mutually
crossing edges.

Lemma 7.39. Let Γ be a connected 2-layer gap-planar drawing with a triple of
pairwise crossing edges (uh, wj′), (ui, wi′) and (uj, wh′) for some 1 ≤ h < i < j ≤ a

and 1 ≤ h′ < i′ < j′ ≤ b. Consider two edges (ux, wy′) and (uy, wx′).

(i) For 1 ≤ x < h, h < y ≤ i, 1 ≤ x′ < h′, and h′ < y′ ≤ i′ (that is ux ≺ uh,
wh′ ≺ wy′ 4 wi′, uh ≺ uy 4 ui and wx′ ≺ wh′), only one of the edges (ux, wy′)
and (uy, wx′) can be in Γ.

(ii) For i ≤ x < j, j < y ≤ a, i′ ≤ x′ < j′, and j′ < y′ ≤ b, (that is ui 4 ux ≺ uj,
wj′ ≺ wy′, uj ≺ uy and wi′ 4 wx′ ≺ wj′) only one of the edges (ux, wy′) and
(uy, wx′) can be in Γ.

Proof. Let X = (E,EX) be the crossing graph of Γ. Then e1 := (uh, wj′),
e2 := (ui, wi′) and e3 := (uj, wh′) form a cycle in X. Since the two statements of the
lemma are symmetric, it suffices to consider only one of them, say the first one.

Assume to the contrary that two edges e4 := (ux, wy′) and e5 := (uy, wx′) are in
Γ, where 1 ≤ x < h, h < y ≤ i, 1 ≤ x′ < h′, and h′ < y′ ≤ i′ (for an illustration
see Fig. 7.42). But then e4 crosses e3 and e5, while e5 crosses additionally e1, which
yields a second cycle in X – a contradiction to the gap-planarity of Γ.

ui

wi′

uj

wj′

uh

wh′wx′

ux

e1

e2

e3e4

uy

wy′

e5

(a)

e2

e1
e3

e4e5

(b)

Fig. 7.42: Illustration for the proof of Lemma 7.39. (a) The triple (uh, wj′), (ui, wi′)
and (uj , wh′) of pairwise crossing edges is shown in black, edges (ux, wy′) and
(uy, wx′) in red. (b) The corresponding crossing graph for Fig. 7.42a.

Lemma 7.39 especially implies that, if Γ is connected and has a triple (uh, wj′),
(ui, wi′), (uj, wh′) of pairwise crossing edges, not both edges (ui, wx′) and (ux, wi′)
(where x < h and x′ < h′) can be part of Γ.

In the third lemma we define a forbidden configuration for three edges.
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ui

wi′

uj

wj′

uh

wh′wx′

e1

e2

e3

e4

ux

e5

e6

wy′

(a)

e2

e1 e3

e4e5
e6

(b)

Fig. 7.43: Illustration for the proof of Lemma 7.40. (a) The triple (uh, wj′), (ui, wi′)
and (uj , wh′) of pairwise crossing edges is shown in black, edges (ui, wx′) and
(ui, wy′) in solid red and (ux, wh′) in dashed red. (b) The corresponding
crossing graph for Fig. 7.43a.

Lemma 7.40. Let Γ be a connected 2-layer gap-planar drawing with a triple
(uh, wj′), (ui, wi′) and (uj, wh′) of pairwise crossing edges for some 1 ≤ h < i < j ≤ a

and 1 ≤ h′ < i′ < j′ ≤ b.

(i) If there are two edges (ui, wx′) and (ui, wy′) in Γ for 1 ≤ x′ < y′ < h′, then Γ
does not contain an edge (ux, wh′) for 1 ≤ x < i.

(ii) If there are two edges (ui, wx′) and (ui, wy′) in Γ for j′ < x′ < y′ ≤ b, then Γ
does not contain an edge (ux, wj′) for i ≤ x ≤ a.

(iii) If there are two edges (ux, wi′) and (uy, wi′) in Γ for 1 ≤ x < y < h, then Γ
does not contain an edge (uh, wx′) for 1 ≤ x′ < i′.

(iv) If there are two edges (ux, wi′) and (uy, wi′) in Γ for j < x < y ≤ a, then Γ
does not contain an edge (uj, wx′) for i′ ≤ x′ ≤ b.

Proof. Let X = (E,EX) be the crossing graph of Γ. Then e1 := (uh, wj′),
e2 := (ui, wi′) and e3 := (uj, wh′) form a cycle in X. Since the four statements of
the lemma are symmetric, it suffices to consider only one of them, say the first one.
So let e4 := (ui, wx′) and e5 := (ui, wy′) for 1 ≤ x′ < y′ < h′ be in Γ (see solid red
edges in Fig. 7.43a).

Assume to the contrary that Γ also contains an edge e6 := (ux, wh′) for some
1 ≤ x < i (dashed red edge in Fig. 7.43a). But then e6 crosses (at least) e4 and
e5, while e4 and e5 both cross e1, yielding a second cycle (e1, e4, e6, e5, e1) in X – a
contradiction to the gap-planarity of Γ.

Using the three previous lemmas, we have the means to prove the mentioned upper
bound for the class of 2-layer gap-planar graphs G=.

Theorem 7.41. Every 2-layer gap-planar graph on n ≥ 3 vertices has at most 2n−4
edges.
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Proof. Let Γ be a G=-drawing with n ≥ 3 vertices and m edges. Note that every
drawing with 2 vertices has at most 1 = 2n− 3 edges. If Γ is quasi-planar, it clearly
has at most 2n − 4 edges. So we can assume in the following that there is a triple
of pairwise crossing edges (uh, wj′), (ui, wi′), (uj, wh′) in Γ, where 1 ≤ h < i < j ≤ a

and 1 ≤ h′ < i′ < j′ ≤ b.

We show the theorem by induction on the number of vertices. For the base of the
induction, observe that Γ is quasi-planar if n < 6, and therefore has at most 2n− 4
edges.

Now assume that the statement holds for all drawings with less than n vertices. If
Γ contains a vertex u of degree at most 2, we consider the drawing Γ′ obtained from
Γ by deleting u and edges incident to u. Then Γ′ has n′ = n−1 vertices and at most
m′ ≤ 2n′ − 4 = 2n− 6 edges by induction. Thus, m ≤ 2n− 6 + 2 = 2n− 4 and the
statement follows. In the following we assume that each vertex has at least degree 3.

Since ui and wi′ have degree at least 3, there are edges (ui, wx′), (ui, wy′), (ux, wi′)
and (uy, wi′) in Γ for some 1 ≤ x < y ≤ a, x, y 6= i, and 1 ≤ x′ < y′ ≤ b, x′, y′ 6= i′.
Observe the following:

– By Lemma 7.38 we have: x ≤ h or x ≥ j, y ≤ h or y ≥ j, x′ ≤ h′ or x′ ≥ j′, and
y′ ≤ h′ or y′ ≥ j′.

– By Lemma 7.39 we further conclude that either x, y ≤ h and x′, y′ ≥ j′, or x, y ≥ j

and x′, y′ ≤ h′. Without loss of generality we assume the latter (see Fig. 7.44a).

– Since also uj and wh′ have at least degree 3, Lemmas 7.38 and 7.40 imply that
x = j and y′ = h′ (see Fig. 7.44b).

– We have already seen that for all neighbors w of ui the condition w 4 wh′ holds.
We have also seen that ui cannot have two neighbors that lie left of wh′ , since it
would block the third edge incident to wh′ . As a consequence, ui has degree 3.
Similarly, wi′ has degree 3.

ui

wi′

uj

wj′

uh

wh′wx′

uy

wy′

ux

(a)

ui

wi′

uj

wj′

uh

wh′wx′

uy

Γ2Γ1

(b)

Fig. 7.44: Illustration for the proof of Thm. 7.41. (a) The edges (ui, wx′), (ui, wy′),
(ux, wi′) and (uy, wi′) in solid red. The dashed red edge represents a forbidden
configuration by Lemma 7.40. (b) The subdrawings Γ1 and Γ2 are highlighted
in yellow.
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Consider the subdrawings Γ1 := [1, i − 1 | 1, i′ − 1] with n1 < n vertices, and
Γ2 := [i + 1, a | i′ + 1, b] with n2 < n vertices (illustrated in Fig. 7.44b). Since Γ1

contains the distinct vertices uh, wx′ , and wh′ , we have n1 ≥ 3; similarly n2 ≥ 3
holds, because uj, uy and wj′ are three different vertices in Γ2. Thus, we can apply
induction on Γ1 and Γ2, and obtain an upper bound of m1 ≤ 2n1 − 4 edges for Γ1,
and a corresponding upper bound of m2 ≤ 2n2 − 4 edges for Γ2.

By Lemma 7.38 the only edges of Γ that do not belong to Γ1 or Γ2 are the seven
edges (uh, wj′), (ui, wx′), (ui, wh′), (ui, wi′), (uj, wh′), (uj, wi′), and (uy, wi′). So we
have m ≤ m1 +m2 + 7, which yields (together with n = n1 + n2 + 2)

m ≤ (2n1 − 4) + (2n2 − 4) + 7 = 2(n1 + n2)− 1
= 2(n− 2)− 1 = 2n− 5 < 2n− 4.

This completes the proof.

7.6 Edge Density of 2-Layer 2-Sided
Fanbundle-Planar Graphs

Recall that in 2-sided fanbundle-planar (short: fbp) graphs, it is allowed to bundle
edges that are incident to the same vertex. Thereby each edge (u,w) has three parts:
Two end parts, that belong to a bundle Bu of u and a bundle Bw of w, respectively,
and a middle part. While each bundle is allowed to have at most one crossing, the
middle part of each edge must be drawn planar.

We use the notation introduced by Angelini et al. [13]: If Bu is a fanbundle incident
to vertex u, then u is called the origin of Bu, while Bu is called anchored at u. The
endpoint of Bu that is different from u is called terminal of Bu.

As mentioned at the beginning of this chapter, for 2-layer 2-sided fbp graphs
different requirements are needed, compared to the other graph classes in this
chapter. Since each edge consists of three parts, and some edges may belong to the
same bundle and therefore share the same end part, we would restrict the drawing
extremely by forcing the whole edge with all three parts to be straight-line. Instead,
we only require that

(a) the middle part of each edge is straight;

(b) the end parts, that is the bundles, are straight (allowing bends between the
bundle parts and the non-bundle part of an edge);

(c) all parts of an edge are drawn between the top and the bottom layer.
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In the following we often draw bundles slightly curved for aesthetic reasons. In
fact, it is easy to see that drawing bundles straight or slightly curved makes no
difference in the sense that exchanging a straight-line bundle by such a curved bundle
produces an isomorphic drawing, and vice versa (as long as the curved bundle does
not introduce new crossings).

Note that 2-sided fanbundle-planar drawings are “almost simple”, that is, no two
bundles incident to the same vertex cross each other. However, two edges may cross
twice and edges incident to the same vertex can also cross.

Angelini et al. [13] provided an upper bound of 3n − 7 edges for the class of 2-
layer 2-sided fbp graphs. However, this bound is not tight, since their lower bound
construction has only 2n− 4 edges (we have redrawn it in Fig. 7.45). Observe also
that the bundles in this construction only cross if they are anchored at vertices
belonging to the same layer. We call the class, where all bundles have this property
2d-layer 2-sided fbp and denote it by B=

2d. (The “d” stands for “double”, since beside
the vertices, also the terminals of the bundles can be placed on a layer, such that
terminals of bundles whose origin is a top-layer vertex are on one layer, and terminals
of bundles anchored at bottom-layer vertices are on another extra layer.) Clearly
2d-layer 2-sided fbp graphs are a subclass of 2-layer 2-sided fbp graphs (denoted by
B=

2 ). However, in the following we will see that both classes are different, so the first
one is a proper subclass of the second one.9 We start by giving an upper bound for
2d-layer 2-sided fbp graphs.

· · ·

· · ·

· · ·
· · ·

· · ·

Fig. 7.45: The lower bound construction for 2-layer 2-sided fbp graphs of Angelini et
al. [13]. In fact, this is a even a lower bound construction for 2d-layer 2-sided
fbp graphs.

Theorem 7.42. Every 2d-layer 2-sided fanbundle-planar graph on n ≥ 3 vertices
has at most 2n− 4 edges.

Proof. Let Γ be a connected B=
2d-graph on n ≥ 3 vertices withm edges. First observe

that, if two bundles Bh and Bj anchored at non-consecutive top-layer vertices uh
and uj cross (that is, j ≥ h + 2), then all vertices between uh and uj have degree

9We note that this is not true for 1-sided fbp graphs: The corresponding 2d-layer 1-sided fbp
graph class coincides with the one of 2-layer 1-sided fbp graphs; refer to the results for 2-layer
1-sided fbp graphs in [13] (and their proofs).
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0 (for an illustration see Fig. 7.46a); a contradiction to our assumption. A similar
observation holds for bundles anchored at two bottom-layer vertices.

uh uj

wj′

(a)

uh ujui

wi′ wj′wh′

uh ujui

wi′ wj′wh′

uh ujui

wi′ wj′wh′

(b)

Fig. 7.46: Illustration for the proof of Thm. 7.42. (a) Two crossing bundles with origins
that are not consecutive. (b) Left: A triple (uh, wj′), (ui, wi′) and (uj , wh′) of
pairwise crossing edges. Middle and Right: The two options for the bundle
crossing, indicated by the thick red lines.

Suppose now that there are three mutually crossing edges (uh, wj′), (ui, wi′),
(uj, wh′) in Γ. To allow the crossing of (uh, wj′) and (uj, wh′), we have two options:
Either a bundle Bh anchored at uh crosses a bundle Bj anchored at uj, or a bundle
Bh′ anchored at wh′ crosses a bundle Bj′ anchored at wj′ (see Fig. 7.46b). In the
former case, the vertex ui is isolated, while in the latter case the vertex wi′ is isolated.
This yields that Γ cannot contain any triple of pairwise crossing edges. Thus, Γ is
quasi-planar and has therefore at most 2n− 4 edges.

Note that Thm. 7.42 shows even more: The class of 2d-layer 2-sided fbp graphs is
a subclass of the 2-layer quasi-planar graphs.

Observation 7.43. We have B=
2d ⊆ Q=.

The next theorem, which gives a lower bound for 2-layer 2-sided fbp graphs, shows
that this class is indeed a proper superclass of 2d-layer 2-sided fbp graphs.

Theorem 7.44. For infinitely many n, there exists a 2-layer 2-sided fanbundle-
planar drawing on n vertices with 17

8 n−
13
4 edges.

Proof. Consider the B=
2 -drawing Γ from Fig. 7.47. It consists of t identical bricks

(delimited by the blue edges). Each brick consists of 10 vertices, such that five
vertices are on the top layer, and five vertices are on the bottom layer. We only
give the 18 edges of the first brick (which is sufficient, since all bricks are identical).
These are (u1, w1), (u1, w2), (u1, w3), (u2, w1), (u2, w2), (u2, w3), (u3, w1), (u3, w2),
(u3, w3), (u3, w4), (u3, w5), (u4, w2), (u4, w3), (u4, w4), (u4, w5), (u5, w3), (u5, w4), and
(u5, w5). Then Γ has n = 2 + 8t vertices and m = 1 + 17t = 17

8 n−
13
4 edges.
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· · ·

· · ·

· · ·

u1

w1

u2

w2

u3

w3

u4

w4

u5

w5

Fig. 7.47: The lower bound construction for 2-layer 2-sided fbp graphs with 17
8 n −

13
4

edges. The bricks are delimited by blue edges.

We conclude this section by showing that the maximal number of edges in 2-layer
2-sided fbp graphs is 17

8 n−
13
4 , as well. To this end we first prove the following lemma.

Lemma 7.45. Let Γ ∈ B=
2 and n ≥ 3 be the number of vertices in Γ. If Γ

contains a triple (uh, wj′), (ui, wi′), (uj, wh′) such that 1 ≤ h < i < j ≤ a and
1 ≤ h′ < i′ < j′ ≤ b then

– two bundles anchored at uh and wh′ cross each other, or

– two bundles anchored at uj and wj′ cross each other.

On the other hand, if no such triple exists in Γ, the number of edges is at most 2n−4.

Proof. Assume that Γ contains a triple (uh, wj′), (ui, wi′), (uj, wh′) such that
1 ≤ h < i < j ≤ a and 1 ≤ h′ < i′ < j′ ≤ b. The crossing of (uh, wj′) and (uj, wh′)
must be covered by bundles. Since, in a valid drawing, it is not possible that bundles
anchored at uh and uj cross each other, or bundles anchored at wh′ and wj′ cross
each other (refer also to the proof of Thm. 7.42), there must be bundles anchored
at uh and wh′ that cross, or bundles anchored at uj and wj′ that cross.

If Γ contains no triple (uh, wj′), (ui, wi′), (uj, wh′) such that 1 ≤ h < i < j ≤ a and
1 ≤ h′ < i′ < j′ ≤ b, then the drawing Γq with the same vertex order along the two
layers and straight-line edges is quasi-planar. Since Γq and Γ have the same number
of vertices and edges, and the edge density of quasi-planar graphs is 2n− 4 (refer to
Thm. 7.4), we obtain m ≤ 2n− 4 for Γ.

In the following we call a bundle crossing between bundles anchored at vertices of
different layers a UW -bundle crossing.

The next lemma is useful for proving the edge density of B=
2 , as well as in the

characterization of complete B=
2 -graphs.

Lemma 7.46. The graph K3,4 is not in B=
2 .
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Proof. For a contradiction let Γ be a drawing of K3,4 such that Γ ∈ B=
2 . First

observe that a UW -bundle crossing of two bundles anchored at ui and wi′ , where
(i, i′) /∈ {(1, 1), (3, 4)}, isolates at least one vertex in Γ (see e. g. Fig. 7.48a). Hence
such a crossing cannot be part of Γ.

u1

w1 w2

u3

w3 w4

u2

(a)

u1

w1

u2

w2

u3

w3 w4

(b)

Fig. 7.48: (a) The dashed bundle crossing isolates u1. (b) The edge (u1, w4) isolates
vertex u2.

On the other hand, even if crossing bundles anchored at u1 and w1, or at u3 and
w4 are allowed, the edge (u1, w4) isolates vertex u2 (refer to Fig. 7.48b) – no matter
how this edge is drawn.

The following theorem uses induction to show the mentioned upper bound on the
number of edges for 2-layer 2-sided fanbundle-planar graphs.

Theorem 7.47. Every B=
2 -graph on n ≥ 2 vertices has at most 17

8 n−
13
4 edges.

Proof. Let Γ be a B=
2 -drawing on n ≥ 2 vertices with m edges. We prove the

statement by induction on the number of vertices.

For n = 2, the drawing Γ has at most 1 = 17
8 n−

13
4 edges; for 3 ≤ n ≤ 5, drawing Γ

is quasi-planar and has at most 2n− 4 ≤ 17
8 n−

13
4 edges; and for n = 6, the number

of edges in K3,3 provides an upper bound of 9 < 9.5 = 17
8 n−

13
4 edges for Γ. Assume

now that Γ has n > 6 vertices and the statement is true for all drawings with less
than n vertices.

If Γ contains a degree-0 or a degree-1 vertex v, the drawing Γ \ {v} has n − 1
vertices and by induction m ≤ 17

8 (n − 1) − 13
4 + 1 < 17

8 n −
13
4 edges. Further, if

Γ ∈ B=
2d then it has at most 2n− 4 ≤ 17

8 n−
13
4 edges.

In the following we assume that Γ is connected, has no degree-1 vertices, and that
Γ contains a UW -bundle crossing, that is, a pair of crossing bundles Bh and Bh′ ,
anchored at vertices uh and wh′ , respectively.

First suppose that h > 1 or h′ > 1, and h < a or h′ < b (see e. g. Fig. 7.49). Then
Bh and Bh′ represent a barrier in Γ, since these bundles are already crossed once:
There cannot be an edge (ux, wx′), where x < h and x′ > h′ (refer to the gray edge
in Fig. 7.49), or where x > h and x′ < h′.
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uh

wh′ wj′

u1 ua

w1 wb

· · ·

· · ·

· · ·

· · ·

uj· · ·

· · ·

ux

wx′

Fig. 7.49: Illustration for the proof of Thm. 7.47. The red segments represent a UW -
bundle crossing; the dashed gray edge cannot be part of Γ.

We can assume that the edge (uh, wh′) is part of Γ, as otherwise we can add it
in a planar way and obtain a drawing with more edges (see dashed black edge in
Fig. 7.49).

Let Γ1 := [1, h | 1, h′] and Γ2 := [h, a | h′, b] be snippets of Γ. Further let ni and
mi, where i = 1, 2, be the number of vertices and edges of Γi. The assumption h > 1
or h′ > 1, and h < a or h′ < b implies ni < n, thus mi ≤ 17

8 ni−
13
4 by induction. For

the number of vertices we have n = n1 + n2 − 2, since Γ1 and Γ2 share the vertices
uh and uh′ . Because the edge (uh, wh′) belongs to both, Γ1 and Γ2, the equation
m = m1 +m2 − 1 holds for the number of edges. This yields

m ≤
(17

8 n1 − 13
4

)
+
(17

8 n2 − 13
4

)
− 1

= 17
8 (n1 + n2)− 13

4 −
17
4

= 17
8 (n+ 2)− 13

4 −
17
4

= 17
8 n+ 17

4 −
13
4 −

17
4

= 17
8 n−

13
4 .

Now suppose that (h, h′) = (1, 1) or (h, h′) = (a, b) holds for every choice of Bh

and Bh′ , that is, there are at most two UW -bundle crossings in Γ.

If Γ contains no triple (uh, wj′), (ui, wi′), (uj, wh′) for some 1 ≤ h < i < j ≤ a

and 1 ≤ h′ < i′ < j′ ≤ b, then we obtain m ≤ 2n − 4 by quasi-planarity and the
statement follows.

On the other hand, if such a triple exists, then bundles anchored at uh and wh′

cross each other, or bundles anchored at uj and wj′ cross each other by Lemma 7.45.
Assume without loss of generality the former. Then we have h = h′ = 1; refer to
Fig. 7.50a for an illustration. Further a, b ≥ 3 and, since n > 6, at least one of a
and b is larger than 3, say b ≥ 4.

The crossings between (ui, wi′) and (uj, w1), and between (ui, wi′) and (u1, wj′)
require bundle crossings of bundles anchored at ui and uj, and of bundles anchored
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ui

wi′ wj′

u1 ua

w1 wb

· · ·

· · ·

uj

(a)

ui

wi′ wj′

u1 ua

w1 wb

· · ·

· · ·

uju

w

(b)

Fig. 7.50: (a) A UW -bundle crossing of bundles anchored at the leftmost vertices.
(b) Bundle crossings between bundles anchored at ui and uj , and between
bundles anchored at wi′ and wj′ .

at wi′ and wj′ , respectively (illustrated in Fig. 7.50b). Note that these two bundle
crossings are even needed if the second UW -bundle crossing is present.

Vertex u1 can only be adjacent to w1, wi′ , wj′ and possible degree-1 vertices between
w1 and wi′ (colored blue in Fig. 7.50b). By assumption, Γ has no degree-1 vertex, so
u1 has at most 3 neighbors. Similarly, w1 has at most 3 neighbors, and one of them
is possibly u1. Thus, there are at most 5 edges incident to {u1, w1}. Connectivity
implies ui = u2, uj = u3, wi′ = w2 and wj′ = w3;

Let n′ and m′ be the number of vertices and edges of Γ′ := [2, a | 2, b]. Then
n′ = n − 2 and m′ ≥ m + 5. If Γ′ does not contain a triple of mutually crossing
edges, we have m′ ≤ 2n′ − 4 by quasi-planarity and consequently

m ≤ m′ + 5 ≤ 2(n− 2)− 4 + 5 = 2n− 3 ≤ 17
8 n−

13
4 .

Otherwise, using the same arguments as above again for the drawing Γ′, there is a
triple (ua−2, wb), (ua−1, wb−1) and (ua, wb−2) of mutually crossing edges in Γ′, a UW -
bundle crossing between bundles anchored at ua and wb, and at most 5 edges are
incident to {ua, wb}.

Let n? andm? be the vertices and edges of Γ? := [2, a−1 | 2, b−1]. Then n? = n−4
and m? ≥ m + 10. Since Γ contains at most two UW -bundle crossings, Γ? cannot
contain a triple of mutually crossing edges by Lemma 7.45, hence

m ≤ m? + 10 ≤ 2n? − 4 + 10 = 2(n− 4) + 6 = 2n− 2 ≤ 17
8 n−

13
4

for n ≥ 10. It remains to study the cases n ∈ {7, 8, 9}.

The case n = 7. Since a ≥ 3 and b ≥ 4, we have (a, b) = (3, 4). We have already
seen in Lemma 7.46 that K3,4 is not B=

2 -drawable, which implies that Γ has at most
11 edges. So m ≤ 17

8 n−
13
4 is satisfied.
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The case n = 8. Since 17
8 n −

13
4 = 13.75, we have to show that Γ has at most 13

edges. Since a ≥ 3 and b ≥ 4, it suffices to consider (a, b) ∈ {(3, 5), (4, 4)}.

First assume that Γ represents a subgraph of K3,5. By Lemma 7.46 there are
values 1 ≤ x ≤ 3 and 1 ≤ x′ ≤ 5, such that (ux, wx′) does not belong to Γ. Applying
Lemma 7.46 to Γ[V \{wx′}], which represents a subgraph of K3,4, implies that there
are values 1 ≤ y ≤ 3 and 1 ≤ y′ ≤ 5, y′ 6= x′, such that (uy, wy′) is not in Γ. We
obtain that Γ has at most 3 · 5− 2 = 13 edges.

Next assume that Γ represents a subgraph of K4,4. By the arguments above,
Γ contains the edges (u1, w3), (u2, w2), (u3, w1), (u2, w4), (u3, w3), and (u4, w2),
and these edges must be routed like the black edges in Fig. 7.51a (refer also to
Fig. 7.50b). Possible other edges are (u1, w1), (u1, w2), (u2, w1), (u4, w4), (u4, w3),
(u3, w4), (u2, w3), and (u3, w2) (refer to the blue edges in Fig. 7.51a), which yields
14 edges in total. However, not both edges (u2, w3) and (u3, w2) can be in Γ, thus
we have m ≤ 13.

u1

w1

u3

w2

u4

w3 w4

u2

(a)

u1

w1

u2

w2

u4

w3 w5w4

u3

(b)

Fig. 7.51: (a) The case n = 8. Not both dashed blue edges can be in Γ. (b) The case
n = 9. Not both dashed black edges can be in Γ.

The case n = 9. Since 17
8 n−

13
4 = 15.875, we have to show that Γ has at most 15

edges. Since a ≥ 3 and b ≥ 4, it suffices to consider (a, b) ∈ {(3, 6), (4, 5)}.

First assume that Γ represents a subgraph of K3,6. Note that K3,6 has 18 edges.
Similar as in the case n = 9 (for (a, b) = (3, 5)) we obtain that Γ has at most
3 · 6− 3 = 15 edges.

Next assume that Γ represents a subgraph of K4,5. By the arguments above, Γ
contains the edges (u1, w3), (u2, w2), (u3, w1), (u2, w5), (u3, w4), and (u4, w3), and
these edges must be routed like the solid and dashed black edges in Fig. 7.51b. This
is a contradiction to the properties of class B=

2 , since the planar parts of (u2, w2)
and (u3, w4) cross each other (refer to the dashed black edges in Fig. 7.51b). The
statement follows.
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7.7 Characterizations of Complete Bipartite 2-Layer
Graphs

In Chapter 5 we already provided several characterizations for complete bipartite
graphs. However, many drawings that are valid C-drawings for a bipartite graph
class C become invalid when imposing the restriction on them that the vertices must
be placed on two parallel layers. In contrast to drawings without this restriction,
where large case analyses are most common when proving characterizations, it is
much easier to derive such characterizations for the 2-layer setting. This stems from
the fact that drawings of complete bipartite graphs on 2-layers are unique (up to
isomorphism) for many graph classes. Also the density bounds for the number of
edges10 are a very helpful tool in showing that certain graphs do not belong to some
2-layer graph class. Our first lemma makes use of this tool.

Lemma 7.48. The following negative results for complete bipartite graphs hold.

(i) A graph class with edge density 3
2n− 2 does not allow a drawing of K2,3.

(ii) A graph class with edge density 5
3n −

7
3 does neither allow a drawing of K2,4,

nor a drawing of K3,3.

(iii) A graph class with edge density 2n− 4 does not allow a drawing of K3,3.

(iv) A graph class with edge density 2n − 3 or edge density 9
4n −

9
2 does not allow

a drawing of K3,4.

Proof. All claims follow by density arguments: The graph K2,3 has n = 5 vertices
and 6 edges, while the density of 3

2n − 2 only allows 5 edges; the graph K2,4 has
n = 6 vertices and 8 > 7 = 5

3n −
7
3 edges; the graph K3,3 has n = 6 vertices and 9

edges, which exceeds 2n− 4 = 8 and 5
3n−

7
3 = 7; the graph K3,4 has 7 vertices and

12 edges, which exceeds 2n− 3 = 11 and 9
4n−

9
2 = 11.25.

We observe that the graph K2,2 belongs to a certain graph class C= if it is “more
than planar”, that is, if C= allows at least one pair of crossing edges. Further, the
graph K1,b is planar for every b ≥ 1 and therefore belongs to every graph class
beyond planarity. These two observations already provide partial characterizations
for several 2-layer graph classes.

Recall that 2-layer 1-planar and 2-layer fan-crossing free graphs both have an edge
density of 3

2 − 2, which yields, together with Lemma 7.48, the following theorem.

10Refer to Table 7.1 for the edge densities.
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Theorem 7.49. Let C= ∈ {P=
1 ,P=

IC ,P=
NIC ,X=}. Then, for a ≤ b, the graph Ka,b is

C=-drawable, if and only if a = 1 or a = b = 2.

u1

w1

u2

w2

(a)

u1

w1

u2

w2 w3

(b)

u1

w1

u2

w2 w3

(c)

Fig. 7.52: (a) A 2-layer drawing of K2,2. (b) A 2-layer drawing of K2,3. (c) A 2-layer
1-sided fanbundle-planar drawing of K2,3.

Proof. Since each of the classes in the theorem allows for one crossing, the graph
K2,2 belongs to them (refer also to Fig. 7.52a, which shows the unique C=-drawing of
K2,2). On the other hand, K2,3 is not in C= by Lemma 7.48, and by the fact that the
classes of IC-planar and NIC-planar graphs are subclasses of the 1-planar graphs.

Recall that for both, 2-layer 2-planar and 2-layer 1-sided fbp graphs, the edge
density is 5

3n−
7
3 . Moreover, it is not difficult to verify that K2,3 belongs to a certain

graph class. Thus, we can state the following theorem.

Theorem 7.50. Let C= ∈ {P=
2 ,B=

1 }. Then, for a ≤ b, the graph Ka,b is C=-
drawable, if and only if a = 1 or a = 2 and b ≤ 3.

Proof. For both classes, the graph K2,3 is drawable on two layers; refer to Figs. 7.52b
and 7.52c. Further there exist no C=-drawings of K2,4 or of K3,3 by Lemma 7.48.
The statement follows.

In fact, in the 2-layer setting we are able to characterize complete bipartite k-
planar graphs for every k.

Theorem 7.51. For a ≤ b, we have Ka,b ∈ P=
k if and only if k ≥ (a− 1)(b− 1).

Proof. Consider a 2-layer drawing Γ of Ka,b (recall that such a drawing is unique up
to isomorphism). Let u1, . . . , ua be the vertices on the top layer (in this order), and
w1, . . . , wb the vertices on the bottom layer (in this order); see e. g. Fig. 7.53, which
shows the case a = 2. The edge (u1, wb) (and also edge (ua, w1)) receives the most
crossings, since it is crossed by all edges (ui, wj), where 2 ≤ i ≤ a and 1 ≤ j ≤ b−1.
This implies that Γ is 2-layer k-planar if and only if edge (u1, wb) has at most k
crossings. The statement follows by the observation that (u1, wb) has (a− 1)(b− 1)
crossings.
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u1

w1 w5

u2

w2 w3 w4

Fig. 7.53: The unique 2-layer drawing of K2,5. It is 3-planar, but not 2-planar, since the
dashed edges are crossed three times.

We apply Thm. 7.51 exemplary to the class of 2-layer 3-planar graphs.

Corollary 7.52. For a ≤ b the graph Ka,b is 2-layer 3-planar if and only if a = 1,
or a = 2 and b ≤ 4.

Since Thm. 7.51 is used several times in Sec. 7.8 for a = 2, we formulate this case
separately.

Corollary 7.53. The graph K2,b belongs to P=
k if and only if b ≤ k+1. In particular,

the graph K2,k+2 is 2-layer (k + 1)-planar but not 2-layer k-planar.

Binucci et al. [39] gave K2,n−2 as an example for an optimal 2-layer fan-planar
graph. Since it is also quasi-planar (it consists of two fans, where each fan can be
drawn planar), we obtain the following characterization.

Corollary 7.54. For a ≤ b the graph Ka,b is 2-layer fan-planar and 2-layer quasi-
planar, if and only if a ≤ 2.

Proof. The edge density bounds of 2n − 4 for 2-layer fan-planar and 2-layer quasi-
planar graphs imply thatK3,3 does not belong to these classes (refer to Lemma 7.48).
Together with Binucci’s observation [39] the statement follows.

The key to observe quasi-planarity for K2,n−2 is the partitioning of a drawing in
two planar parts. We generalize this concept to k-quasi-planar graphs, where k ≥ 3.

Lemma 7.55. Let Γ be a drawing of a graph with vertex set V and edge set E,
and let E1, . . . , Ek−1 be a partition of E. Further, for 1 ≤ i ≤ k − 1, let Γi be the
subdrawing consisting of V and Ei. If Γi is planar for every 1 ≤ i ≤ k − 1, then Γ
is k-quasi-planar.

Proof. For a contradiction suppose that Γi is planar for every 1 ≤ i ≤ k but Γ is
not k-quasi-planar. Then there is a set E ′ ⊆ E with size k whose edges cross each
other pairwise. By the pigeonhole principle two edges e1, e2 ∈ E ′ belong to the same
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subdrawing Γj for some j ∈ {1, . . . , k − 1}. Since e1 and e2 cross each other, this is
a contradiction to the planarity of Γj.

A consequence of Lemma 7.55 is that, for each k ≥ 3 and each b ≥ 1, the graph
Kk−1,b is 2-layer k-quasi-planar (the unique drawing of this graph consists of k − 1
fans, see Fig. 7.54a). On the other hand, the graph Kk,k is not k-quasi-planar, since
the edges (u1, wk), (u2, wk−1), (u3, wk−2), . . . , (uk, w1) are a set of k pairwise crossing
edges in its (unique) drawing (refer to Fig. 7.54b). Thus we obtain the following
theorem.

u1

w2

u2

w3 wbw1

uk−1

· · ·

· · ·

(a)

u1

w2

u2

wk−1 wkw1

uk

· · ·

· · ·
uk−1

(b)

Fig. 7.54: (a) A 2-layer k-quasi-planar drawing of Kk−1,b; the different colors show a
partitioning into k−1 planar subdrawings, each of them is a fan. (b) The unique
2-layer drawing of Kk,k. The red edges form a set of k pairwise crossing edges.

Theorem 7.56. For a ≤ b the graph Ka,b is 2-layer k-quasi-planar if and only if
a ≤ k − 1.

We are also able to characterize 2-layer gap-planar graphs, by means of the crossing
graph and the fact that such graphs have at most 2n− 4 edges.

Theorem 7.57. For a ≤ b the graph Ka,b is 2-layer gap-planar if and only if a = 1
or a = 2 and b ≤ 4.

Proof. The drawing of K2,4 in Fig. 7.55a is 2-layer gap-planar. Graph K2,5 is not
gap-planar, since the crossing graph of the unique drawing (i. e. unique when not
considering gaps) of this graph is not a pseudo-forest (refer to Fig. 7.55b). By
Lemma 7.48, graph K3,3 is not gap-planar, which concludes the proof.

For 2d-layer 2-sided fanbundle-planar graphs there exists already a characterization
(see [126, Theorem 8.4]). The 2d-layer 2-sided fbp drawing forK2,6 can also be found
in Fig. 7.56a.

Theorem 7.58 ([126]). For a ≤ b, the graph Ka,b is 2d-layer 2-sided fanbundle-
planar if and only if a = 1 or a = 2 and b ≤ 6.
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u1

w1

u2

w2 w3 w4

(a)

u1

w2

u2

w3 w4 w5w1

(b)

Fig. 7.55: (a) A 2-layer gap-planar drawing of K2,4. (b) The unique straight-line 2-layer
drawing of K2,5. The red area indicates cycles in the crossing graph.

Recall that, in 2-layer 2-sided fbp graphs we additionally allow that bundles
anchored at vertices of different layers may cross. Although this definition is only
slightly different than the one of 2d-layer 2-sided fbp graphs, we could observe that
2-layer 2-sided fbp graphs have a higher edge density. The next theorem shows
that the latter graph class also allows drawings for complete bipartite graphs with
a larger number of vertices.

(a) (b)

(c)

ui

wi′

uj

wj′

(d)

Fig. 7.56: (a) A 2d-layer 2-sided 1-fbp drawing of K2,6. (b) A 2-layer 2-sided 1-fbp
drawing of K3,3. (c) A 2-layer 2-sided 1-fbp drawing of K2,8. (d) Illustration
of the barrier property for two crossing bundles anchored at different layers.

Theorem 7.59. For a ≤ b the graph Ka,b is 2-layer 2-sided fanbundle-planar if and
only if a = 1, or a = 2 and b ≤ 8, or a = b = 3.

Proof. By Lemma 7.46, the graph K3,4 does not belong to B=
2 , while Figs. 7.56b

and 7.56c depict B=
2 -drawings of K2,8 and K3,3, respectively.

It remains to show that K2,9 is not 2-layer 2-sided fbp. For a contradiction assume
that there is such a drawing Γ of K2,9. Suppose that in Γ two bundles B and B′

cross, where B is anchored at ui for i ∈ {1, 2}, and B′ is anchored at wi′ for some
1 ≤ i′ ≤ 9. Note that, since B and B′ are already crossed and may not be crossed
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by another bundle, they represent a “barrier” in Γ in the following sense: There
cannot be an edge (uj, wj′), such that j < i and j′ > i′, or such that j > i and
j′ < i′ (refer to the dashed blue edge in Fig. 7.56d). Thus, if (i, i′) /∈ {(1, 1), (2, 9)},
it is not possible to draw all edges.

As a consequence we can assume that, if there are crossing bundles anchored at
vertices of different layers, then they are anchored at u1 and w1, or at u2 and w9.
Consider the subdrawing Γ′ = [1, 2 | 2, 8] of Γ. It is a 2-layer 2-sided fbp drawing of
K2,7 with the property that only bundles anchored at vertices of the same layer cross;
hence, it is a 2d-layer 2-sided fbp drawing of K2,7 – a contradiction to Thm. 7.58.
It follows that K2,9 cannot belong to the class of 2-layer 2-sided fbp graphs.

In Table 7.2 we give an overview of the characterizations of complete bipartite 2-
layer graphs. On one side, the results in this section are of interest in itself and can
help to decide whether certain graphs are C=-drawable. On the other side, they will
help us to recognize how different 2-layer graph classes are related in Sec. 7.8.
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Table 7.2: Characterizations for complete bipartite graphs Ka,b (where a ≤ b) in 2-layer
drawings for several graph classes. Stated are values for b, given a = 2, a = 3,
and a ≥ 4. If no drawing exists for b ≥ a, the corresponding entry is “–” (in
words: minus). Question marks indicate that the characterization is still open.

Class a = 2 a = 3 a ≥ 4
1-planar b ≤ 2 – –
2-planar b ≤ 3 – –
3-planar b ≤ 4 – –
4-planar b ≤ 5 b ≤ 3 –
5-planar b ≤ 6 b ≤ 3 –
k-planar b ≤ 1 + k b ≤ 1 + k

2 b ≤ 1 + k
a−1

IC-planar b ≤ 2 – –
NIC-planar b ≤ 2 – –
3-quasi-planar all b – –
4-quasi-planar all b all b –
fan-planar all b – –
fan-cr. free b ≤ 2 – –
1-gap-planar b ≤ 4 – –
k-gap-planar b ≤ 2k + 2 ? ? ?
1-sided 1-fbp b ≤ 3 – –
2-sided 1-fbp b ≤ 8 b ≤ 3 –
2d-layer 2-sided 1-fbp b ≤ 6 – –
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7.8 Relationships Between 2-Layer Beyond Planarity
Graph Classes

In this section we study how the graph classes considered in this chapter are related.
As already mentioned at the beginning of the chapter, in the 2-layer setting every
RAC graph is fan-crossing free and vice versa [56]. For this reason, we only consider
fan-crossing free graphs in the following.

An easy observation is that the class of planar graphs is a subclass of all other
graph classes. Further, if there is a graph G that belongs to a certain graph class
C1, but not to another class C2, it follows that C1 6⊂ C2. Using this argument, the
characterizations from Sec. 7.7 (see also Table 7.2) yield that, if a certain complete
bipartite graph Ka,b (for some a and b) is in class C=

1 , but not in C=
2 , then C=

1 6⊂ C=
2 .

The following corollary summarizes the implications of the results from Sec. 7.7.

Corollary 7.60. By the characterizations of complete bipartite graphs the following
holds (thereby the graph which causes the separation of the classes is in parenthesis).

(a) If C= ∈ {P=
k ,X=,G=,B=

1 ,B=
2d,B=

2 }, where k ≥ 1, we have F= 6⊂ C= and
Q= 6⊂ C= (graph K2,n).

(b) If C= ∈ {P=
k ,B=

2 }, where k ≥ 4, we have C= 6⊂ F= and C= 6⊂ Q= (graph K3,3).

(c) For k ≥ 2 we have P=
k 6⊂ X= (graph K2,3).

(d) If C= ∈ {P=
1 ,P=

2 ,X=,B=
1 }, we have G= 6⊂ C= (graph K2,4).

(e) For k ≥ 3 we have P=
k 6⊂ B=

1 (graph K2,4); also B=
1 6⊂ P=

1 (graph K2,2).

(f) For k ≥ 6 we have P=
k 6⊂ B=

2 (graph K3,4), and for k ≥ 4 we have P=
k 6⊂ B=

2d

(graph K3,3).

(g) If C= ∈ {P=
k ,X=,G=,B=

1 ,B=
2d}, where k ≤ 6, we have B=

2 6⊂ C= (graph K2,8).

(h) If C= ∈ {P=
k ,X=,G=,B=

1 }, where k ≤ 4, we have B=
2d 6⊂ C= (graph K2,6).

In this section we provide more results in this direction. We remark that
corresponding results for general graphs (without the restriction of placing the
vertices on two parallel lines) are known; for an overview refer to [61].
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7.8.1 k-planar graphs

We start with the study of k-planar graphs and their relationship with themselves,
that is with k′-planar graphs for k′ ≥ k. The result concerning these classes is not
surprising: k-planar graphs are contained in the (k + 1)-planar graphs.

Theorem 7.61. In the 2-layer setting, the class of k-planar graphs is a proper
subclass of the class of (k + 1)-planar graphs for every k ≥ 1.

Proof. Clearly the k-planar graphs are a subclass of the (k + 1)-planar graphs. By
Cor. 7.53, the graph K2,k+2 is (k + 1)-planar, but not k-planar. The statement
follows.

7.8.2 k-quasi-planar graphs

Between k-quasi-planar and k′-quasi-planar graphs, where k′ ≥ k, the relationship
is analogically to the one among k-planar graphs.

Theorem 7.62. The relation Q=
k ( Q=

k+1 holds for every k ≥ 1.

Proof. By definition Q=
k ⊆ Q=

k+1 hold. Now consider the unique drawing Γ
of Kk,k. It is (k + 1)-quasi-planar, since its edges consist of k disjoint sets
Vi := {(ui, wj) | 1 ≤ j ≤ k}, i = 1, . . . , k, where each subdrawing Γ[Vi] of Γ
is planar; thus, only edges belonging to different sets Vi, Vj, i 6= j may cross,
which yields at most k mutually crossing edges. On the other hand, the k edges
(u1, wk), (u2, wk−1), (u3, wk−2), . . . , (uk, w1) are mutually crossing in Γ, which shows
that Kk,k is not k-quasi-planar.

For k-gap-planar and (k + 1)-gap-planar graphs a corresponding theorem is true.
However, we postpone it, since we first need to provide the tools to prove such a
result.

7.8.3 k-planar and k-gap-planar graphs

We compare k-planar graphs and k′-gap-planar graphs for appropriate k′. For
general graphs Bae et al. [30] showed that (2k)-planar graphs are a proper subclass
of k-gap-planar graphs. However, while their construction to prove the “proper”
part works for general graphs, it cannot be applied to the 2-layer model. Hence, we
have to provide another construction for our case.
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Lemma 7.63. For every k ≥ 1, the graph K2,2k+2 is k-gap-planar.

Proof. We start by considering the case k = 1 explicitly. Let Γ1 be the unique
drawing of K2,4. We distribute the crossings of Γ1 as follows:

– The crossing of (u1, w2) and (u2, w1) is assigned to (u1, w2);

– the crossing of (u1, w3) and (u2, w1) is assigned to (u1, w3);

– the crossing of (u1, w3) and (u2, w2) is assigned to (u2, w2);

– the crossing of (u1, w4) and (u2, w1) is assigned to (u2, w1);

– the crossing of (u1, w4) and (u2, w2) is assigned to (u1, w4);

– the crossing of (u1, w4) and (u2, w3) is assigned to (u2, w3).

Then no edge has more than one crossing assigned to it (as usually, we refer to it as
a “gap”), hence Γ1 is 1-gap-planar (for an illustration see Fig. 7.57a).

u1

w1

u2

w2 w3 w4

(a)

u1

w2

u2

w3 w4 w5w1 w6

(b)

Fig. 7.57: Illustration for the proof of Lemma 7.63. (a) A 2-layer 1-gap-planar drawing
of K2,4. (b) A 2-layer 2-gap-planar drawing of K2,6.

Next we construct a 2-layer 2-gap-planar drawing Γ2 of K2,6. In order to do this,
we augment Γ1 in several steps.

(1) First rename w1, . . . , w4 to w2, . . . , w5.

(2) In the next step, add a new vertex w1 that is placed left of w2, and a new vertex
w6 that is placed right of w5 on the bottom layer (refer to the blue vertices in
Fig. 7.57b). Also add the crossing-free edges (u1, w1) and (u2, w2).

(3) Now we add the edge (u2, w1) (colored blue in Fig. 7.57b) and assign each
crossing of this edge to the other edge participating in the crossing; that is, each
of (u1, w2), (u1, w3), (u1, w4) and (u1, w5) receives (another) gap. Since these
edges had at most one gap before this operation (recall that they were part
of the 1-gap-planar drawing Γ1), they now have at most two gaps. Note that
currently the new edge (u2, w1) has no gap at all. Further note that we did not
touch any of the edges (u2, w2), (u2, w3), (u2, w4) and (u2, w5), which implies
that each of them still has at most one gap.
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(4) Finally we add edge (u1, w6), which has crossings with (u2, w1), . . . , (u2, w5).
Again we assign each crossing of (u1, w6) to the other edge participating in
this crossing. By the same arguments as above, it follows that the number of
crossings is not more than two for each such edge. Therefore the drawing Γ2 of
K2,6, which we obtain in the end, is 2-gap-planar.

We stress that in the creation of Γ2, each edge in Γ1 received exactly one more
gap; out of the four new edges (the blue edges in Fig. 7.57b), only the edge (u2, w1)
received a gap, while the others are gap-free. Also, the construction does not depend
on the number of vertices that are on the bottom layer in Γ1, but only on the
property that Γ1 is a G=

1 -drawing with 2 vertices on the top layer. As a consequence,
by applying our construction algorithm to Γ2 (adapted to the different number of
vertices on the bottom layer), we obtain a drawing Γ3 of K2,8 that belongs to G=

3 .

We conclude that, if we start with a G=
k -drawing Γk of K2,2k+2, our construction

algorithm creates a G=
k+1-drawing Γk+1 of K2,2(k+1)+2. The statement follows.

With the construction of Lemma 7.63 we have the means to prove a theorem
about the relationship between 2-layer k-gap-planar and 2-layer k-planar graphs,
corresponding to the one Bae et al. showed for these graph classes in the general
case [30].

Theorem 7.64. The relation P=
2k ( G=

k holds for every k ≥ 1.

Proof. By Bae et al. [30], general 2k-planar graphs are a proper subclass of k-gap-
planar graphs. Since they showed in fact a stronger result, namely that every 2k-
planar drawing is k-gap-planar, the relation P=

2k ⊆ G=
k follows immediately. On the

other hand, for k ≥ 1, the graph K2,2k+2 belongs to G=
k by Lemma 7.63, but not to

P=
2k by Cor. 7.53. This proves that P=

2k is a proper subclass of G=
k .

Since, by Thm. 7.64, the 2-layer (2k)-planar graphs form a subclass of k-gap-planar
graphs, the question arises, what the relation between 2-layer (2k + 1)-planar and
k-gap-planar graphs is. The next lemma answers this question partly.

Lemma 7.65. For every k ≥ 1 there is a 2-layer k-gap-planar graph that is not 2-
layer (2k + 1)-planar.

Proof. According to Lemma 7.63, the graph K2,2k+2 is 2-layer k-gap-planar. Further
it has a unique 2-layer drawing (without taking the gaps into account). We create two
copies H1 = (U1 ∪̇W1, E1) and H2 = (U2 ∪̇W2, E2) of this graph. Let U1 = {u1, u2},
W1 = {w1, . . . , w2k+2}, U2 = {uk+4, uk+5}, and W2 = {w3k+4, . . . , w5k+5}. We
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construct a graph G = (U ∪̇ W,E) as follows (the case k = 1 is illustrated in
Fig. 7.58):

U := U1 ∪ U2 ∪ {u3, . . . , uk+3},
W := W1 ∪W2 ∪ {w2k+3, . . . , w3k+3} and
E := E1 ∪ E2 ∪ E3 ∪ {(u2, w2k+3), (uk+4, w2k+2)}, where
E3 := {(ui, w2k+i), (ui, w2k+i+1) | 3 ≤ i ≤ k + 3}.

In order to create a k-gap-planar drawing Γ of G, we place a k-gap-planar drawing
of H1 to the left of a k-gap-planar drawing of H2, such that u2 and w2k+2 are the
rightmost vertices of U1 and W1, and uk+4 and w3k+4 are the leftmost vertices of
U2 and W2. Further, we place u3, . . . , uk+3 in this left-to-right order on the top
layer of Γ between u2 and uk+4, and w2k+3, . . . , w3k+3 in this left-to-right order
on the bottom layer of Γ between w2k+2 and w3k+4. Then each of the edges in
E ′ := E3 ∪ {(u2, w2k+3)} has exactly one crossing in Γ, namely a crossing with the
edge e := (uk+4, w2k+2), and apart from crossings between edges of E1 and between
edges of E2, these are all crossings in Γ. We assign the crossing of each edge e′ ∈ E ′

with e to e′, which yields a 2-layer k-gap-planar drawing Γ.

u1

w1 w5

u2

w2 w3 w4

u3 u4 u5 u6

w6 w7 w8 w9 w10

Fig. 7.58: Illustration for Lemma 7.65 in the case k = 1: A 2-layer 1-gap-planar drawing
Γ of the graph G.

It remains to show that G is not in P=
2k+1. Assume to the contrary that there is a

P=
2k+1-drawing Γ′ of G. First note that the (up to isomorphism) unique drawing Γ1 of

H1 in Γ has edges that are already fully crossed, and these edges do not allow for any
vertex v ∈ U \(U1∪W1) to be placed “inside” Γ1, that is, all vertices v ∈ U \(U1∪W1)
must be placed either left of the leftmost vertex of Γ1, or right of the rightmost
vertex of Γ1. Similarly, no vertex v ∈ U \ (U2 ∪W2) can be placed “inside” Γ2. We
assume without loss of generality that Γ1 is entirely to the left of Γ2. Because of
the edge (uk+4, w2k+2) (refer to the red edge in Fig. 7.58) and the path between u2

and w3k+4 (refer to the blue path in Fig. 7.58), vertices u2 and w2k+2 must be the
rightmost vertices of Γ1, and vertices uk+4 and w3k+4 must be the leftmost vertices
of Γ2. But then the edge (uk+4, w2k+2) receives a crossing from each of the 2k + 3
edges in the set E ′ = E3 ∪ {(u2, w2k+3)} – a contradiction to (2k + 1)-planarity.
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Lemma 7.65 shows that the class of 2-layer k-gap-planar graphs G=
k is not included

in P=
2k+1. However, we were not able to find a 2-layer (2k + 1)-planar graph that is

not 2-layer k-gap-planar. So the question if P=
2k+1 ⊆ G=

k remains open for general k.
But at least for k = 1 we can answer this question in the negative.

Lemma 7.66. There is a graph that is 2-layer 3-planar and 2-layer quasi-planar,
but not 2-layer gap-planar.

Proof. Consider the graph G = (U ∪̇W,E) defined by drawing Γ in Fig. 7.59. Note
that Γ is 2-layer 3-planar and 2-layer quasi-planar. It remains to show that there
exists no 2-layer gap-planar embedding of G.

For a contradiction assume that there exists a 2-layer gap-planar drawing Γ′ of G.
In our arguments we use the fact that the crossing graph X(Γ′) of Γ′ is a pseudo
forest [30], i. e. each connected component of X(Γ′) contains at most one cycle.

u1

w1 w5

u2

w2 w3 w4

u3 u4 u5

Fig. 7.59: A 2-layer drawing Γ of graph G, which is 3-planar and quasi-planar at the same
time.

Both vertices u3 and w3 have degree 5. We differentiate between the “directions”,
in which the edges incident to them can point (thereby we neglect symmetric cases).

– Suppose u1, u2, u4 and u5 are placed right of u3, while w1, w2, w4 and w5 are placed
left of w3 (refer to Fig. 7.60a).

w3

u3

(a)
w3

u3

w1

(b)
w3

u3

w4w2

(c)

Fig. 7.60: Illustration for the proof of Lemma 7.66. (a) The case where the vertices
u1, u2, u4 and u5 are right of u3, while w1, w2, w4 and w5 are left of w3. (b) The
situation when w1 or w5 belongs to the two leftmost vertices. (c) The situation
when w2 and w4 are the two leftmost vertices.

Assume that w1 is one of the two leftmost vertices on the bottom layer of Γ′ (see
Fig. 7.60b). In this case the edges (u1, w1) and (u2, w1) cause two cycles in the
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crossing graph X(Γ′), no matter how the other vertices are placed (refer to the red
area in Fig. 7.60b); a contradiction to gap-planarity. So w1 cannot be one of the
two leftmost vertices on the bottom layer. By the same argument, w5 cannot be
one of the two leftmost vertices on the bottom layer. Thus, w2 and w4 are the two
leftmost vertices on the bottom layer. But then again, there are two edges, namely
(u1, w2) and (u5, w4), that cause at least two cycles in the crossing graph X(Γ′)
(refer to the red area in Fig. 7.60c), contradicting gap-planarity. We conclude
that this configuration is not leading to a 2-layer gap-planar drawing of G.

– Suppose that exactly one of u1, u2, u4 and u5 is placed left of u3, while three of
them are right of u3. Placing two or more of the vertices w1, w2, w4, w5 right of
w3 yields immediately two cycles in the crossing graph X(Γ′) (refer to Fig. 7.61a).
Thus, there is exactly one such vertex placed to the right of w3, while the others
are placed left of w3 (see Fig. 7.61b).

w3

u3

(a)

w3

u3u` uh ui uj

wr′wj′wi′wh′

(b)

w3

u3u` uh ui uj

wr′wj′wi′wh′

(c)

Fig. 7.61: Illustration for the proof of Lemma 7.66. (a) The case where three of the
vertices u1, u2, u4, u5 are right of u3, and two vertices of w1, w2, w4, w5 are right
of w3. (b) The situation when exactly one of the vertices u1, u2, u4, u5 is left of
u3, and exactly one of w1, w2, w4, w5 is right of w3. (c) No two edges can cross
(u3, w3).

Let the vertices be denoted as in Fig. 7.61b. We observe the following for a gap-
planar drawing Γ′:

(]) There is at most one edge (u,w) in Γ, where u ∈ {uh, ui, uj} and
w ∈ {wh′ , wi′ , wj′}.

The reason for this is the following: Each such edge crosses (u`, w3), (u3, w3),
and (u3, wr′); this yields at least two cycles in a single component of the crossing
graph, contradicting the properties of gap-planar graphs (see also Fig. 7.61c).

Since there are edges (u1, w1) and (u1, w2) in G, as well as edges (u5, w4) and
(u5, w5), not both vertices u1 and u5 can belong to {uh, ui, uj} by (]). We assume
without loss of generality that u` = u1. Then {uh, ui, uj} = {u2, u4, u5}. Again by
(]), the existence of (u4, w5) and (u5, w5) imply that wr′ = w5. As a consequence,
we have {wh′ , wi′ , uj′} = {w1, w2, w4}. But now the edges (u2, w1) and (u5, w4)
violate (]).
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– Finally suppose that exactly two of the vertices u1, u2, u4 and u5 are placed left of
u3. Now placing three or more of the vertices w1, w2, w4, w5 right (or left) of w3

yields immediately two cycles in the crossing graph X(Γ′) (refer also to Fig. 7.61a,
which shows a symmetric case). Thus, there are also exactly two of w1, w2, w4, w5

placed to the right of w3 (see Fig. 7.62a).

u3

w3

(a)

u3

w3

(b)

u3

w3

u1

w2w1

(c)

Fig. 7.62: Illustration for the proof of Lemma 7.66. (a) The case where exactly two of the
vertices u1, u2, u4, u5 are right of u3, and exactly two vertices of w1, w2, w4, w5
are right of w3. (b) A crossing of (u3, w3) yields two cycles in the crossing
graph. (c) The situation when u1 is the second vertex on the top layer.

No edge in Γ′ can cross (u3, w3), otherwise the crossing graph X(Γ′) is not a
pseudo forest (refer to the red area in Fig. 7.62b). Without loss of generality we
can assume that u1 is right of u3. Then the existence of edges (u1, w1) and (u1, w2)
imply that w1 and w2 are left of w3, and further, the existence of edge (u2, w1)
yields that also u2 is left of u3.

If not both vertices u1 and w1 are the leftmost vertices on the top and bottom
layer respectively, gap-planarity is violated (refer to the blue area in Fig. 7.62c).
By symmetry we obtain that u5 and w5 are the rightmost vertices on the top and
bottom layer, respectively. This yields exactly the drawing from Fig. 7.59, which
is not gap-planar.

We conclude that the graph G is not gap-planar.

By combining Lemma 7.65 and Lemma 7.66, we obtain the following theorem.

Theorem 7.67. The classes P=
3 and G= are incomparable.

Another result regarding k-planar and k-gap-planar graphs is the following
consequence of Cor. 7.53.

Corollary 7.68. In the 2-layer setting, (4k+ 1)-planar graphs are not a subclass of
k-gap-planar graphs.
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Proof. By Cor. 7.53 the graph G := K2,4k+2 belongs to P=
4k+1. We show that G is

not 2-layer k-gap-planar.

Let Γ be the unique drawing of G = (U ∪̇ W,E), where U = {u1, u2} are the
vertices of the top layer and W = {w1, . . . , w4k+2} are the vertices on the bottom
layer, in this order.

We count the crossings in Γ. Since edges incident to u2 only cross edges incident
to u1, it suffices to count the crossings of edges incident to u1. Edge (u1, w1) is
crossing free; edge (u1, w2) has one crossing; edge (u1, w3) has two crossings; and in
general, for 1 ≤ i ≤ 4k+ 2, edge (u1, wi) has exactly i− 1 crossings. So the number
of crossings in G is cr(G) = 1

2(4k + 1)(4k + 2).

The number of crossings in k-gap-planar graphs is upper bounded by k|E|; refer
to [30]. Here we have k|E| = 2k(4k + 2) < cr(G), which yields that G is not k-gap-
planar.

7.8.4 k-gap-planar graphs

We compare the classes of 2-layer k-gap-planar and 2-layer k′-gap-planar graphs,
where k′ ≥ k.

Theorem 7.69. For every k ≥ 1 we have G=
k ( G=

k+1.

Proof. By definition each k-gap-planar graph is (k + 1)-gap-planar. It remains to
show that there is a 2-layer (k+1)-gap planar graph that is not 2-layer k-gap-planar.

We know that K2,2k+2 is 2-layer k-gap-planar (see Lemma 7.65), while K2,4k+2 is
not (refer to Cor. 7.68). As a consequence, there is an x ∈ {2k + 2, . . . , 4k + 1}
such that K2,x is k-gap-planar, and K2,x+1 is not. With a similar construction as in
Lemma 7.65 it follows that K2,x+1 (and even K2,x+2) is (k + 1)-gap-planar.

7.8.5 k-planar and fan-planar graphs

Concerning general graphs, Binucci et al. [39] showed that for k ≥ 1 there exist
graphs which are fan-planar but not k-planar, and that for k ≥ 2 there exists graphs
which are k-planar but not fan-planar. However, their constructions are not tailored
for the 2-layer setting and hence we can not apply them here.

Even so, from Cor. 7.60 we know already that 2-layer fan-planar graphs are not 2-
layer k-planar for k ≥ 1, while 2-layer k-planar graphs are not 2-layer fan-planar for
k ≥ 4. We improve the latter result by showing that even 2-layer 2-planar graphs
are not necessarily 2-layer fan-planar.
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Lemma 7.70. There exist a graph that is both, 2-layer 2-planar and 2-layer quasi-
planar, but not 2-layer fan-planar.

Proof. Consider the bipartite graph H = (U ∪̇W,E), where U = {u1, u2, u3, u4},
W = {w1, w2, w3, w4}, and E consists of the edges (u1, w1), (u1, w2), (u2, w1),
(u2, w3), (u3, w1), (u3, w4), (u4, w2), (u4, w3), and (u4, w4). Figure 7.63a shows a 2-
layer drawing for H that is 2-planar and quasi-planar.

u1

w1

u2

w2 w3 w4

u3 u4

(a)

u1

w1 u2

w2

w3

w4u3 u4

(b)
w1

u4

2

2

2

(c)

Fig. 7.63: Illustration for the proof of Lemma 7.70. (a) A 2-layer drawing of H that
is 2-planar and quasi-planar. (b) A planar drawing of H; the three maximal
degree-2 chains are colored differently. (c) A planar drawing of H ′ with the
weights of the edges.

It remains to show that graph H is not 2-layer fan-planar. Note that H is
biconnected. According to Binucci et al. [38], a biconnected graph G is 2-layer fan-
planar if and only if it is a spanning subgraph of a snake.11

Binucci et al. [38] also gave another characterization for 2-layer fan-planar graphs.
They consider chains p = (v0, v1, . . . , vj, vj+1) of a graph G, such that every vertex
v1, . . . , vj has degree 2, and p is a maximal path in G with this property. A weighted
multi-graph G′ is created from G, by contracting each such chain to an edge with
weight j. Edges of G′ that are also in G get a weight of 0. For our purpose, it is
enough to consider one necessary condition of Binucci’s characterization:

Let G be a bipartite biconnected graph that is not a simple cycle. If G is
a spanning subgraph of a snake, then there exists an embedding of G′ such
that all edges of G′ with weight at least 2 are on the external face.

In Fig. 7.63c, one embedding of H ′ is shown. Clearly, in every one of the three
embeddings (each face can be the outer face) of H ′, there is an edge of weight 2 that
is not on the external face. Thus, H is not fan-planar. The statement follows.

Now we are able to describe the relation between k-planar graphs and fan-planar
graphs in the 2-layer setting completely.

11For the definition of a snake, see [38].
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Theorem 7.71. Consider 2-layer graphs. Then the following holds.

(a) The 1-planar graphs are a proper subclass of the fan-planar graphs.

(b) For k ≥ 2, the classes of k-planar and fan-planar graphs are incomparable.

Proof. Each 1-planar drawing is fan-planar by the definitions of 1-planar and fan-
planar graphs. Further, 2-layer fan-planar graphs are not a subclass of the k-
planar graphs, where k ≥ 1 (refer to Cor. 7.60). Thus, the class of 1-planar graphs
represents a proper subclass of the fan-planar graphs.

On the other hand, there is a 2-layer 2-planar graph that is not 2-layer fan-planar
(refer to Lemma 7.70), yielding that, for k ≥ 2, the class of 2-layer k-planar graphs
cannot be contained in the class of 2-layer fan-planar graphs.

Note that the relations stated in Thm. 7.71 are the same as the relations between
Pk and F for general graphs (see [39]).

7.8.6 k-planar and fan-crossing free graphs

Here, like for the relation between fan-planar and k-planar graphs, we are as well
able to give a complete description of the inclusion relationship between 2-layer fan-
crossing free and 2-layer k-planar graphs. We start with the comparison of 1-planar
and fan-crossing free graphs.

Lemma 7.72. The relation P=
1 ( X= holds.

Proof. By definition every 2-layer 1-planar drawing is a 2-layer fan-crossing free
drawing, so we have P=

1 ⊆ X=. It remains to show that there is a 2-layer fan-
crossing free graph that is not 2-layer 1-planar.

First consider the bipartite graph H that corresponds to drawing ΓH of Fig. 7.64a.
Graph H is a subgraph of K3,3, such that exactly four vertices of H have degree 2,
and two vertices have degree 3.

We show that ΓH is a unique 2-layer 1-planar drawing (up to isomorphism) of H.
To this end, consider the unique drawing Γ3,3 of K3,3 in Fig. 7.64b. Suppose that,
beside ΓH , there is another 1-planar drawing Γ′H of H. Because H is a subgraph of
K3,3, it follows that Γ′H is a subdrawing of Γ3,3. We denote the vertices of Γ′H and
Γ3,3 as in Fig. 7.64b. The assumption Γ′H 6= ΓH implies that at least one of the edges
(u1, w3) or (u3, w1) is part of Γ′H (see dashed red edges in Fig. 7.64b), say (u1, w3).
But, since H has two edges less than K3,3, and since (u1, w3) is crossed by the four
edges (u2, w1), (u2, w2), (u3, w1) and (u3, w2) in Γ3,3, the edge (u1, w3) is crossed by
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w2 w3
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u1

w1
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w2 w3
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w2 w3 w4

u3 u4 u5 u7

w6

u8

w7 w8

u9u6

(c)

Fig. 7.64: (a) A 1-planar drawing ΓH of a graph H. (b) The unique 2-layer drawing Γ3,3
of K3,3. Without the dashed red edges, it is a unique 2-layer 1-planar drawing
of H. (c) A 2-layer drawing Γ that is fan-crossing free; the corresponding graph
G is not 2-layer 1-planar.

at least two edges in Γ′H – a contradiction to the 1-planarity of Γ′H . So the drawing
ΓH is indeed a unique 2-layer 1-planar drawing of H.

We define a new graph G by the drawing Γ of Fig. 7.64a and denote the vertices
of G accordingly. As Γ shows, this graph is 2-layer fan-crossing free. We prove that
G has no 2-layer 1-planar embedding.

Note that the snippets B1 := [1, 3 | 1, 3] and B2 := [7, 9 | 6, 8] of Γ represent copies
H1 and H2 of graph H, which has a unique drawing ΓH . Thus, the vertices of each
of the subgraphs H1 and H2 are fixed in every drawing of G.

Further observe that none of the vertices ui of G, where 4 ≤ i ≤ 9, can be placed
between u1 and u3, since this would violate 1-planarity. Likewise, none of the vertices
ui of G, where 1 ≤ i ≤ 6, can be placed between u7 and u9; none of the vertices wi′
of G, where 4 ≤ i′ ≤ 8, can be placed between w1 and w3; none of the vertices wi′ of
G, where 1 ≤ i′ ≤ 5, can be placed between w6 and w8. So we can assume without
loss of generality that drawing Γ1 of H1 is drawn left of drawing Γ2 of H2, and that
the vertices u4, u5, u6, w4 and w5 are placed between the unique drawings Γ1 and Γ2.

Note that by the arguments before also the drawing consisting of Γ1, Γ2, vertex u5

and its incident edges (u5, w3) and (u5, w6) is unique (the black edges in Fig. 7.64c
represent this drawing). For each of the paths (u3, w4, u6) and (u7, w5, u4) of G
(blue and red paths in Fig. 7.64c) there exists two possible placements: While the
placement of w4 and w5 must be between w3 and w6, the vertices u4 and u6 can
be placed between u3 and u5, or between u5 and u7. However, since each of the
edges (u3, w4), (u4, w5), (u6, w4) and (u7, w5) crosses either (u5, w3) or (u5, w6), four
crossings are distributed among only two edges, which yields at least two crossings
for one of (u5, w3) or (u5, w6). So G is not 1-planar.
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In the next step we study how the classes of 2-layer fan-crossing free (which coincide
with 2-layer RAC graphs) and 2-layer k-planar graphs are related for k ≥ 2. In order
to do so, we use some terms and results from Giacomo et al. [56].

Let Γ be a 2-layer drawing. Then a path p = (ui, wj′ , uj, wi′) is called a butterfly
blocker if i < j and i′ < j′, or if i > j and i′ < j′; in other words, the edges (ui, wj′)
and (uj, wi′) cross each other (see also Fig. 7.65a). In a butterfly blocker, we denote
the edge (uj, wj′) as wall (refer to the red edge in Fig. 7.65a).

uj

wi′ wj′

ui uj

wi′wj′

ui· · ·

· · ·

· · · · · ·

· · ·· · · · · ·

· · · · · ·

· · · · · ·

· · ·

(a)

uj

wi′ wj′

ui

wx′

(b)

uj

wi′ wj′

ui

(c)

Fig. 7.65: (a) The two configurations for a butterfly blocker. The red edge is the wall.
(b) and (c) A butterfly blocker “blocks” e. g. the dashed red edges.

As the name indicates, the butterfly blocker “blocks” edges in a fan-crossing free
drawing. Namely, there cannot be an edge (ux, wx′) in Γ such that x < j and x′ > j′,
or such that x > j and x′ < j′, without violating fan-crossing freeness (illustrated
in Fig. 7.65b). Moreover, if i < j and i′ < j′, there can neither be an edge (uj, wx′)
such that x′ < j′ and x′ 6= i′ (illustrated in Fig. 7.65c), nor an edge (ux, wj′) such
that x < j and x 6= i; if i > j and i′ > j′, there can neither be an edge (uj, wx′) such
that x′ > j′ and x′ 6= i′, nor an edge (ux, wj′) such that x > j and x 6= i. Again,
such edges would not be compatible with the fan-crossing free property.

For some t ≥ 2 a path p = (v1, . . . , vt) in a 2-layer drawing Γ is called monotone,
if either vi ≺ vi+2 for all i = 1, . . . , t− 2, or if vi � vi+2 for all i = 1, . . . , t− 2. For
monotone paths, Giacomo et al. proved to following property:

Property 7 [56]: Let v1 ∈ U , z1 ∈ W be two vertices belonging to different
independent parts of G, and let p1 = (v1, v2, . . . , vt) and p2 = (z1, z2, . . . , zt′) be two
monotone paths in a 2-layer fan-crossing free drawing Γ. If (v1, v2) crosses (z1, z2)
in Γ, then (vi−1, vi) crosses (zi−1, zi) in Γ for 2 ≤ i ≤ min(t, t′).

Using butterfly blockers, monotone paths, and Property 7, we are able to show
the following lemma about the relationship between fan-crossing free and k-planar
graphs.

Lemma 7.73. For k ≥ 2, the class of 2-layer fan-crossing free graphs is a proper
subclass of the class of 2-layer k-planar graphs.
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Proof. Recall that we have P=
k 6⊂ X= for k ≥ 2 (see Point c of Cor. 7.60); this proves

the “proper”.

Let Γ be a X=-drawing of a graph G. We can assume that Γ is connected, since
otherwise the connected components can be drawn separately. In the following we
show that no edge in Γ is crossed more than twice.

Assume to the contrary that there is an edge e that is crossed by (at least) three
edges e1, e2, e3. First observe that there are no three mutually crossing edges in a
connected 2-layer fan-crossing free drawing Γ (refer to [56, Property 1]); thus the
edges e1, e2 and e3 are ordered, in the sense that (without loss of generality) e2

lies completely right of e2, while e3 lies completely right of e2; see also Fig. 7.66a.
Let e = (ur, w`′), e1 = (uh, wh′), e2 = (ui, wi′), and e3 = (uj, wj′). Then we have
h < i < j and h′ < i′ < j′. We assume without loss of generality that j < r and
`′ < h′ (the case r < h and `′ > j′ is symmetric).

Since Γ is connected, there exists shortest paths ps, s = 1, 2, 3, between e and
es.12 However, because Γ is fan-crossing free and due to the arguments before, none
of the following edges can belong to such a path (see also the dashed gray edges
in Fig. 7.66a as an example for two of these edges): (uh, wi′), (uh, wj′), (ui, w`′),
(ui, wh′), (ui, wj′), (uj, w`′), (uj, wh′), (uj, wi′), (ur, wh′), and (ur, wi′).
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wh′w`′
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ui ur
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· · ·

· · ·
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(b)

uj

wi′

uh
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wj′
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Fig. 7.66: Illustration for the proof of Lemma 7.73. (a) An edge (red) that violates 2-
planarity. The dashed gray edges cannot be part of a fan-crossing free drawing.
(b) The edge (uh, w`′) creates a butterfly blocker. (c) The vertex wh′ has
another edge incident to it.

12We define a shortest path ps between e and es as a path consisting of edges e and es, together
with a shortest path p′

s between end vertices of e and es with the following property: If p′ 6= p′
s

is a shortest path between end vertices of e and es, then p′ has at least the same length as p′
s.
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Consider p1, which is the path that contains e. We show that p1 contains a butterfly
blocker. If the edge (uh, w`′) is part of p1 (see the blue edge in Fig. 7.66b), this
edge already creates a butterfly blocker. Otherwise there is at least one more edge
incident to one of uh, ur, w`′ , or wh′ . We consider the case where an edge (ux, wh′)
exists, such that x /∈ {h, i, j, r} (refer to the blue edge in Fig. 7.66c; for the other
cases similar arguments hold). Let qe = (v1, v2, . . . , vt), where v1 = w`′ , v2 = ur and
t ≥ 2, be the maximal monotone subpath of p1 starting in w`′ ; further, for some
t′ ≥ 3, let q1 = (z1, . . . , zt′) be such that (i) z1 = uh, z2 = wh′ , z3 = ux; (ii) q1

is a monotone subpath of p1; (iii) q1 has no edge in common with qe; and (iv) q1

is maximal with this properties. Then, since (v1, v2) and (z1, z2) cross, Property 7
of [56] implies that (vs−1, vs) crosses (zs−1, zs) in Γ for 2 ≤ s ≤ min(t, t′). Now there
might be two different situations:

(1) The vertices vt and zt′ are the same (illustrated in Fig. 7.67a). Here the subpath
(vt−2, vt−1, vt, zt′−1) represents a butterfly blocker.

(2) The vertices vt and zt′ are not the same (illustrated in Fig. 7.67b). Assume
that t ≤ t′ and let vt+1 6= vt−1 be the vertex on path p1 that is adjacent to vt.
Then vt+1 is left of vt−1 and also left of zt, which implies that edge (vt, vt+1)
crosses (zt−1, zt). But the latter edge is already crossed by (vt−1, vt), yielding
a fan-crossing – a contradiction. Since the assumption t ≤ t′ also leads to a
contradiction, we conclude that vt and zt′ must coincide.

Next, consider the path p2, which is the path that contains e and e2. In the same
way as for p1, we obtain that also p2 contains a butterfly blocker, which cannot have
the same wall as p1 (by the properties of a butterfly blocker and the assumption
that Γ is fan-crossing free). Thus, the butterfly blocker of p2 cannot be on the same
side of e as the one for p1, since otherwise either p1 would block an edge of p2, or
vice versa (for an illustrated refer to Fig. 7.67c). Likewise p3 contains a butterfly
blocker in Γ, whose wall neither coincides with the one of p1, nor with the one of p2.
But since it must be on one of the two sides of e, at least one edge of p1, p2 or p3 is
blocked by a butterfly blocker.

We conclude that there is no edge e in Γ that is crossed more than twice.

The following theorem combines Lemmas 7.72 and 7.73 to provide a complete
description of the inclusion relationship between 2-layer fan-crossing free and 2-layer
k-planar graphs.



217 Drawing Graphs on Two Layers
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· · ·

· · ·

· · ·
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v3 vt−1

vt

z4

z5

zt′−1

(a)

uj

wi′

uh

wh′w`′

· · ·

· · ·

· · ·

· · ·
wj′

ui ur ux v4

v3 vtz4

z5 zt

zt′

vt+1 vt−1

(b)

uj

wi′

uh

wh′w`′

· · ·

· · ·

· · ·

· · ·
wj′

ui ur

(c)

Fig. 7.67: Illustration for the proof of Lemma 7.73. The paths qe and q1 are colored in
red and blue, respectively. (a) The case where vt and zt′ coincide. (b) The edge
(uh, w`′) creates a butterfly blocker. (c) Both paths p1 (red and blue edges)
and p2 (red and green edges) have a butterfly blocker on the same side of e
(signified by the gray areas).

Theorem 7.74. Consider 2-layer graphs. Then the following holds.

(a) The 1-planar graphs are a proper subclass of the fan-crossing free graphs.

(b) For k ≥ 2, the class of fan-crossing free graphs is a proper subclass of the one
of k-planar graphs.

7.8.7 k-planar and k-quasi-planar graphs

Regarding general graphs, it is known that, for k ≥ 3, every k-planar graph is (k+1)-
quasi-planar [12, 86]. In the 2-layer setting an even stronger result holds.

Theorem 7.75. Every 2-planar graph is 3-quasi-planar and, for k ≥ 3, the relation
P=
k ( Q=

k? holds, where k? := d2
3k + 2e.

Proof. If G ∈ P=
k is not connected, we can draw each connected component of G

separately. So we assume in the following that G is connected.
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First consider a 2-layer 2-planar graph G with a corresponding drawing Γ. Suppose
that Γ contains 3-mutually crossing edges (uh, wj′), (ui, wi′) and (uj, wh′) for some
1 ≤ h < i < j ≤ a and 1 ≤ h′ < i′ < j′ ≤ b (refer to Fig. 7.68a). Then (uh, wj′)
and (uj, wh′) are already crossed twice and therefore the edge (ui, wi′) represents a
connected component in Γ; a contradiction. Thus, every 2-layer 2-planar graph is
2-layer quasi-planar.

wh′

uh ui uj

wi′ wj′

(a)
z1

v1 v2 v3 v4

z2 z3 z4

e′2 = e′3

(b)
z1

v1 v2 v3 v4

z2 z3 z4

e′3e′2

(c)

Fig. 7.68: Illustration for the proof of Thm. 7.75. (a) Three mutually crossing edges in
a 2-planar graph. (b) and (c) Additional crossings in the presence of k? = 4
mutually intersecting edges.

Next we show the relationship P=
k ⊆ Q=

k? . To this end, let k ≥ 3, and let Γ be a
P=
k -drawing. Assume for a contradiction that Γ contains k? mutually crossing edges

ei := (vi, zk?+1−i), where 1 ≤ i ≤ k?, v1 ≺ v2 ≺ · · · ≺ vk? , and z1 ≺ z2 ≺ · · · ≺ zk? .
Note that the k? mutually crossing edges already imply k? − 1 crossings on each,
e1 = (v1, zk?) and e2 = (vk? , z1). Further note that, since Γ is connected, each edge
ei must be adjacent to at least one more edge e′i /∈ {e1, . . . , ek?}. If e′i = e′j for some
i 6= j and i, j /∈ {1, k?}, then e′i crosses both edges e1 and ek? (see dashed blue edge
in Fig. 7.68b); otherwise e′i, where 1 < i < k?, crosses at least one of e1 or ek? (refer
to the dashed blue edges in Fig. 7.68c). In total this gives rise to k? − 2 additional
crossings on {e1, ek?}. Consequently, one of the edges e1 or e?k receives at least

k? − 1 +
⌈
k? − 2

2

⌉
≥ k? − 1 + k? − 2

2 = 3
2k

? − 2 ≥ 3
2

(
2
3k + 2

)
− 2 = k + 1

crossings; a contradiction to the k-planarity of Γ.

Finally observe that the graph K2,k+2 is 2-layer quasi-planar for every k ≥ 1, but
not k-planar (refer to Cor. 7.53). This shows that P=

k 6= Q=
k? .

By Cor. 7.60, the classes of 2-layer k-planar graphs P=
k and the one of 2-layer

quasi-planar graphs Q= = Q=
3 are incomparable for k ≥ 4. On the other hand,

Thm. 7.75 shows that P=
2 ⊆ Q= holds. We state the relations between P=

k and Q=

in the following theorem.
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Theorem 7.76. Consider 2-layer graphs. Then the following holds.

(a) For k ≤ 2, the k-planar graphs are a proper subclass of the quasi-planar graphs.

(b) For k ≥ 4, the classes of k-planar and quasi-planar graphs are incomparable.

(c) The quasi-planar graphs are not contained in the class of 3-planar graphs.

Proof. As already mentioned, by Cor. 7.60 the classes P=
k and Q= are incomparable

for k ≥ 4.

From Thm. 7.75 we conclude that the relation P=
2 ⊆ Q= holds. On the other

hand, for every k ≥ 1, the graph K2,k+2 is 2-layer quasi-planar (for an illustration
see Fig. 7.69), but not 2-layer k-planar (refer to Cor. 7.53). Thus, the class of 2-layer
quasi-planar graphs is not a subclass of P=

k . The statement follows.

u1

w1 wk+2

u2

· · ·

Fig. 7.69: The unique 2-layer drawing of K2,k+2. It is quasi-planar (and fan-planar), but
not k-planar.

We remark that we were not able to answer the question if every 2-layer 3-planar
graph is 2-layer quasi-planar or not. However, Thm. 7.19 shows that every optimal
2-layer 3-planar graph is 2-layer quasi-planar; we conjecture that this is also true
when neglecting the optimality. Note that a similar result is known in case of general
graphs: Every optimal 3-planar graph is quasi-planar [33], while it is not known if
the relation P3 ⊆ Q holds.

7.8.8 Fan-planar and quasi-planar graphs

It is known that a fan-planar drawing does not contain three mutually crossing
edges [39]. Together with Lemma 7.70 we obtain that the class of 2-layer fan-planar
graphs represents a proper subclass of the 2-layer quasi-planar graphs.

Theorem 7.77. The inclusion relationship F= ( Q= holds.

7.8.9 Fan-planar and fan-crossing free graphs

Results of Binucci et al. [38] are that biconnected 2-layer RAC graphs form a
proper subclass of the biconnected 2-layer fan-planar graphs, while there are 2-
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layer RAC graphs which are not 2-layer fan-planar if neglecting the “biconnected”.
As a consequence of this and Cor. 7.60, the class of 2-layer fan-planar graphs is
incomparable with the class of 2-layer fan-crossing free graphs (which coincides with
the class of RAC graphs).

Theorem 7.78. The classes F= and X= are incomparable.

7.8.10 Fan-planar and k-gap-planar graphs

Regarding the relation of fan-planar graphs with k-gap-planar graphs, we observe
the following: On one hand, for every k ≥ 1, the graph K2,4k+2 is 2-layer fan-planar
but not 2-layer k-gap-planar (see Cor. 7.68).

On the other hand, the 2-layer 2-planar graphs are a subclass of 2-layer 1-gap-
planar graphs; this yields, that, if the class of 2-layer 1-gap-planar graphs would be
a subclass of the 2-layer fan-planar graphs, then every 2-layer 2-planar graph would
also be 2-layer fan-planar, contradicting Lemma 7.70. Consequently the classes of
2-layer fan-planar and 2-layer k-gap-planar graphs are incomparable.

Theorem 7.79. The classes of 2-layer fan-planar graphs and 2-layer k-gap-planar
graphs are incomparable for every k ≥ 1.

7.8.11 Fanbundle-planar graphs

The relationships between the different classes of 2-layer fanbundle-planar graphs
are clearly B=

1 ( B=
2d ( B=

2 by definition; the “proper” follows from Cor. 7.60.

7.8.12 Fan-planar and fanbundle-planar graphs

For 2-layer 1-sided fbp graphs we have the chain P=
1 ⊆ B=

1 ⊆ F= of inclusion
relationships, which was already noticed by Angelini et al. [13] in case of general
graphs. Using the statements of Cor. 7.60, namely the fact that K2,4 is 2-layer fan-
planar and not 2-layer 1-sided fbp, we conclude that the class of 2-layer 1-sided fbp
graphs is a proper subclass of the 2-layer fan-planar graphs. The following theorem
contains this relation as first statement.

Theorem 7.80.

(a) The relation B=
1 ( F= holds.

(b) The class F= is incomparable with both, the class B=
2d and the class B=

2 .
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Proof. We already explained why the first statement holds.

By Cor. 7.60 the class B=
2 is incomparable with F=. Also by Cor. 7.60, the class

of 2-layer fan-planar graphs is not a subclass of 2d-layer 2-sided fbp graphs.

We conclude with the observation that the graph constructed in Lemma 7.70 is 2d-
layer 2-sided fbp (see Fig. 7.70), but not 2-layer fan-planar; hence, 2d-layer 2-sided
fbp graphs are not a subclass of 2-layer fan-planar graphs.

Fig. 7.70: The drawing from Lemma 7.70 (left), which is 2d-layer 2-sided fbp (right), but
not fan-planar.

7.8.13 k-planar and fanbundle-planar graphs

As already mentioned in the previous section, for 2-layer 1-sided fbp graphs we have
the inclusion relationship P=

1 ⊆ B=
1 ; together with the results from Cor. 7.60, we

conclude that the class of 2-layer 1-planar graphs is a proper subclass of the 2-layer
1-sided fbp graphs.

Since the 2-layer 1-sided fbp graphs are a subclass of the 2-layer fan-planar
graphs, and since there is a 2-layer 2-planar graph that is not fan-planar (refer
to Lemma 7.70), we conclude that, for k ≥ 2, the class of 2-layer k-planar graphs
cannot be a subclass of the 2-layer 1-sided fbp graphs. The following lemma provides
a construction for a family of graphs which are 2-layer 1-sided fbp, but not 2-layer
k-planar, yielding that the corresponding graph classes are incomparable.

Lemma 7.81. For every k ≥ 2, there exists a graph that is 2-layer 1-sided fbp, but
not 2-layer k-planar.

Proof. Let G = (U ∪̇W,E) be the graph consisting of vertices u1, u2, u3 ∈ U , vertices
x, vi, wi, zi ∈ W , where 1 ≤ i ≤ 2k + 1, and the following edges:

– Edges (u1, vi), (u2, wi), and (u3, zi), where 1 ≤ i ≤ 2k + 1;

– and edges (ui, x), where 1 ≤ i ≤ 3.

Figure 7.71a shows a 2-layer 1-sided fbp drawing of this graph.

It remains to show that G is not 2-layer k-planar. Assume to the contrary that
G ∈ P=

k and Γ is a P=
k -drawing of G. For i = 1, 2, 3, let Si be the subgraph induced
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x

u1 u2 u3

vi wi zi

(a)

u2 u3

wk+1x

u1

w2k+1w1

(b)

Fig. 7.71: (a) A 2-layer 1-sided fbp drawing of G (here we have k = 2). (b) In Γ, edge
(u1, x) requires vertex x (red) to be left of wk+1, while edge (u3, x) requires
vertex x to be right of wk+1.

by ui and its neighbors in G. Then Si is a star, and all stars Si share one and only
one vertex, namely x. By construction of G, the three vertices u1, u2, u3 must be
placed on one layer, say the top layer, while all other vertices must be placed on the
bottom layer. By symmetry of S1, S2 and S3, we suppose that u1 ≺ u2 ≺ u3 in Γ.

In Γ[S1], each order of the vertices vi along the bottom layer is equivalent; thus we
assume that v1 ≺ v2 ≺ · · · ≺ v2k+1. Similarly we can assume w1 ≺ w2 ≺ · · · ≺ w2k+1,
and z1 ≺ z2 ≺ · · · ≺ z2k+1.

Since Γ is k-planar and u1 ≺ u2, the edge (u1, x) can cross at most k edges incident
to u2, namely the edges (u2, w1), . . . , (u2, wk). Thus, we have x ≺ wk+1 as a first
condition (for an illustration see Fig. 7.71b). On the other hand, we have u2 ≺ u3,
which implies that (u3, x) can cross at most the k edges (u2, wk+2), . . . , (u2, w2k+1).
As second condition, we obtain wk+1 ≺ x; a contradiction to the first one. We
conclude that G is not 2-layer k-planar.

Theorem 7.82 summarizes our results for 1-sided fbp graphs.

Theorem 7.82. In the 2-layer setting, the following holds.

(a) The class of 2-layer 1-planar graphs is a proper subclass of the 1-sided fbp graphs.

(b) For k ≥ 2, the classes of 2-layer k-planar and 2-layer 1-sided fbp graphs are
incomparable.

For 2d-layer 2-sided fbp graphs we have the inclusion P=
2 ⊆ B=

2d (by definition of
the two graph classes), which was also observed in [13] for general graphs. Together
with Cor. 7.60 we conclude that P=

2 ( B=
2 . Note that, as B=

1 ⊆ B=
2d ⊆ B=

2 holds,
Lemma 7.81 also shows that B=

2d 6⊂ P=
k and B=

2 6⊂ Pk for k ≥ 2.

Since 2-layer 5-planar graphs have a tight edge density of 9
4n−

9
2 , while 2-layer 2-

sided fbp graphs only admit drawings with at most 17
8 n−

13
4 edges, we have P=

k 6⊂ B=
2

for k ≥ 5. As a consequence, we obtain the following theorem.



223 Drawing Graphs on Two Layers

Theorem 7.83. For 2-layer 2-sided fanbundle-planar and k-planar graphs, the
following holds.

(a) We have P=
2 ( B=

2 .

(b) For k ≥ 5, the classes P=
k and B=

2 are incomparable.

(c) For k = 3, 4 we have B=
2 6⊂ P=

k .

Note that it is still open if P=
k ⊂ B=

2 for k ∈ {3, 4}. However, we can give a
complete characterization of the relationship between the classes B=

2d and P=
k . In

order to do so, we use the following lemma.13

Lemma 7.84 ([126]). Let Γ be a connected 2d-layer 2-sided fbp drawing with vertices
u1, . . . , ua ∈ U and w1, . . . , wb ∈ W . If there is an edge (ui, wi′) in Γ for appropriate
i and i′, then Γ cannot contain (uj, wj′), where j ≤ i − 2 and j′ ≥ i′ + 2, or where
j ≥ i+ 2 and j ≤ i′ − 2.

Proof. Let (ui, wi′) be in Γ. We assume that there is also an edge (uj, wj′) in Γ,
where j ≤ i − 2 and j′ ≥ i′ + 2; the other cases are symmetric. Let Bi and Bi′ be
the two bundle parts of (ui, wi′) in Γ, where Bi is anchored at ui and Bi′ is anchored
at wi′ . Further let Bj and Bj′ be the two bundle parts of (uj, wj′), where Bj is
anchored at uj and Bj′ is anchored at wj′ .

The two bundles Bi and Bj cannot cross each other, since this would isolate vertex
ui−1. Similarly, Bi′ cannot cross Bj′ without isolating wi′+1. As a consequence, the
terminal tj of Bj is left of the terminal ti of Bi, and the terminal tj′ of Bj′ is right
of the terminal ti′ of Bi′ (refer to Fig. 7.72). Because the edge (ui, wi′) is planar
between ti and ti′ , and the edge (uj, wj′) is planar between tj and tj′ , both edge
parts cross each other in Γ – a contradiction to the definition of B=

2d.

wi′

uj

wj′

ui

Bj

Bi′

Bi

Bj′

titj

ti′ tj′

ui−1

wi′+1

Fig. 7.72: Illustration for the proof of Lemma 7.84. The terminals ti, tj , ti′ and tj′ are
blue. The supposedly planar edge parts (ti, ti′) and (tj , tj′) are solid black and
dashed black, respectively.

Now we can compare the classes P=
k and B=

2d. The only case that we have not
proven yet is the one for k = 3, where the edge density for both classes is the same.
13This lemma corresponds to Lemma 8.7 in [126]. However, we reformulated it slightly and

improved the structure of the proof.
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Theorem 7.85. For 2d-layer 2-sided fanbundle-planar and 2-layer k-planar graphs,
the following holds.

(a) We have P=
2 ( B=

2d.

(b) For k ≥ 3, the classes P=
k and B=

2d are incomparable.

Proof. The first statement follows directly from the definitions of P=
2 and B=

2d, and
from their different tight edge densities.

Observe that P=
k 6⊂ B=

2d for k ≥ 4, since P=
4 has a tight edge density of 2n−3, while

the edge density of B=
2d is only 2n− 4. We have B=

2d 6⊂ P=
k for k ≥ 2 by Lemma 7.81.

This shows that the classes P=
k and B=

2d are incomparable for k ≥ 4.

It remains to show that P=
3 6⊂ B=

2d. In order to do so, consider the 2-layer drawing Γ
of Fig. 7.73a, which is 3-planar. LetG be the graph defined by Γ. For a contradiction,
we assume that G ∈ B=

2d. Let Γ′ be a B=
2d-drawing of G.

Note that u3 and w3 both have degree 5. We observe that if in Γ′ two or more
vertices of u1, u2, u4, u5 are left (right) of u3, and at the same time two or more of
the vertices w1, w2, w4, w5 are left (right) of w3, then Γ′ cannot belong to B=

2d by
Lemma 7.84 (for an illustration see e. g. Fig. 7.73a).

u1

w1 w5

u2

w2 w3 w4

u3 u4 u5

(a)
w3

u3u u1

w1 w2

(b)

w3

u3 u1

(c)
w3

u3u

(d)

Fig. 7.73: (a) A 2-layer 3-planar drawing Γ. (b) The case where one vertex is left of u3
and none is left of w3. (c) The case where no vertex is left of u3 and none is left
of w3. (d) The case where one vertex is left of u3 and one is left of w3. In (b)–
(d) the regions which disagree with a B=

2d drawing according to Lemma 7.84
are colored red.

Assume without loss of generality that there is at most one vertex left of u3. Then
there are at least three vertices right of u3, implying that right of w3 is not more
than one vertex by Lemma 7.84. We analyze the different cases.
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– One vertex u is left of u3 and none is right of w3 (refer to Fig. 7.73b): Then at
least one of u1 and u5 is right of u3, say u1. If w1 ≺ w2, we have u ≺ u3 ≺ u1 and
w1 ≺ w2 ≺ w3, which contradicts Γ′ ∈ B=

2d according to Lemma 7.84; otherwise
we have w2 ≺ w1, which also leads to a contradiction by Lemma 7.84.

– One vertex is right of w3 and none is left of u3: This is symmetric to the first case.

– No vertex is left of u3 and none is right of w3: In this case, both vertices u1 and
u5 are right of u3. Assume without loss of generality that u5 ≺ u1. Like before,
both cases w1 ≺ w2 and w2 ≺ w1 lead to a contradiction by Lemma 7.84 (refer to
Fig. 7.73c).

– One vertex u is left of u3 and one vertex w is right of w3: The edges (u1, w2),
(u2, w1), (u4, w5) and (u5, w4) are four independent edges in G. Thus, one of the
two leftmost vertices on the bottom layer must necessarily be incident to an edge
whose other endpoint is right of u3 (refer to the dashed red edge in Fig. 7.73d).
This yields again a contradiction by Lemma 7.84.

As no case leads to a valid B=
2d-drawing of G, we conclude that G does not belong

to this class. The statement follows.

7.8.14 Fan-crossing free graphs compared with gap-, quasi-, and
fanbundle-planar graphs

The class of 2-layer fan-crossing free graphs is a proper subclass of the 2-layer 2-
planar graphs (refer to Thm. 7.74), while the 2-layer 2-planar graphs represent a
proper subclass of the following classes:

– 2-layer 1-gap-planar graphs (refer to Thm. 7.64),

– 2-layer 3-quasi-planar graphs (refer to Thm. 7.75),

– 2d-layer 2-sided fanbundle-planar graphs (refer to Thm. 7.85).

The next corollary is due to transitivity of the class inclusion relationship.

Corollary 7.86. For 2-layer graphs we have the following inclusion relationships:

(a) X= ( G=
k for all k ≥ 1;

(b) X= ( Q=
k for all k ≥ 3;

(c) X= ( B=
2d and consequently X= ( B=

2 .

Further, we have the following corollary regarding the relationship between fan-
crossing free and 1-sided fbp graphs.
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Corollary 7.87. The classes X= and B=
1 are incomparable.

Proof. The 2-layer 1-sided fbp graphs are a subclass of the 2-layer fan-planar graphs
(refer to Thm. 7.80), while there are 2-layer fan-crossing free graphs which do not
belong to F=; hence X= 6⊆ B=

1 .

On the other hand, we have X= ⊆ P=
2 (refer to Thm. 7.74), and there exist 2-layer

1-sided fbp graphs which do not belong to P=
2 (see Lemma 7.81), and hence not to

X=. We conclude that B=
1 6⊆ X=.

7.8.15 Quasi-planar and k-gap-planar graphs

Bae et al. [30] showed that every k-gap-planar drawing is (2k + 2)-quasi-planar.
Together with the fact that the graph K2,b is quasi-planar for every b ≥ 2, but
K2,4k+1 is not k-gap-planar by Cor. 7.68, we obtain the following theorem.

Theorem 7.88. The relation G=
k ( Q=

2k+2 holds.

By Thm. 7.88, 1-gap-planar graphs are a subclass of 4-quasiplanar graphs. The
question arises if even G=

1 ⊆ Q=
3 holds. We could answer this question neither in the

positive, nor in the negative.

We conclude the comparison of the two graph classes by pointing out that the graph
K3,3 is a 2-layer 2-gap-planar graph (see Fig. 7.74) that is not 2-layer 3-quasiplanar.
This is due to the edge density of 2n−4 in Q=

3 , which only allows 8 edges for graphs
with n = 6 vertices. Hence we have G=

2 6⊂ Q=
3

Fig. 7.74: Illustration for the proof of Thm. 7.88.

7.8.16 Quasi-planar and fanbundle-planar graphs

We start with the comparison of Q=
3 and B=

1 . Since we have B=
1 ( F= (see

Thm. 7.80) and F= ( Q=
3 (see Thm. 7.77), transitivity implies B=

1 ( Q=
k for all

k ≥ 3.

Corollary 7.89. For 2-layer graphs the relationships B=
1 ( Q=

k holds for all k ≥ 3.
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Note that Cor. 7.89 is also a consequence of the next theorem, as we have B=
1 ⊆ B=

2d.

Theorem 7.90. The relationships B=
2d ( Q=

k holds for all k ≥ 3. More precisely,
every B=

2d-drawing is quasi-planar.

Proof. Let Γ be a B=
2d-drawing. Assume to the contrary that Γ contains 3 mutually

crossing edges (uh, wj′), (ui, wi′) and (uj, wh′) for some 1 ≤ h < i < j ≤ a and
1 ≤ h′ < i′ < j′ ≤ b. But this describes exactly the forbidden configuration for B=

2d-
drawings stated in Lemma 7.84; a contradiction.

The inclusion relationship is proper, since K2,b is quasi-planar for every b, but
K2,7 /∈ B=

2d. The statement follows.

It remains to study the relationship between 2-layer k-quasi-planar and 2-layer 2-
sided fbp graphs.

Theorem 7.91. In the 2-layer setting, the following holds.

(a) The classes Q=
3 and B=

2 are incomparable.

(b) The class B=
2 is a proper subclass of Q=

k for all k ≥ 4. In particular, every B=
2 -

drawing is 4-quasi-planar.

Proof. The graph K2,9 is in Q=
3 but not in B=

2 ; the graph K3,3 belongs to B=
2 , but

not to Q=
3 . Hence Q=

3 and B=
2 are incomparable.

Consider a 2-layer 2-sided fanbundle-planar drawing Γ. Assume to the contrary
that Γ contains 4 mutually crossing edges (u`, wr′), (ui, wj′), (uj, wi′) and (ur, w`′)
for some 1 ≤ ` < i < j < r ≤ a and 1 ≤ `′ < i′ < j′ < r′ ≤ b (refer to Fig. 7.75a).

Recall that a UW -bundle crossing is a crossing of bundles anchored at vertices
belonging to different layers. Observe that, in the presence of the four mutually
crossing edges, there cannot be a UW -bundle crossing between bundles anchored at
u ∈ {u`, ui, uj, ur} and w ∈ {w`′ , wi′ , wj′ , wr′}, where (u,w) /∈ {(u`, w`′), (ur, wr′)}.

In order to realize the drawing Γ, there are basically three bundles and thus three
terminals available for each vertex v: a left, a middle, and a right terminal (see
Fig. 7.75b for an illustration). Consider the edge e := (u`, wr′). No matter which of
the three terminals of u` and wr′ are used to draw the planar part of e, the vertices
uj and wi′ are separated by e; that is, the edge (uj, wi′) cannot be drawn anymore
without violating the properties of a 2-layer 2-sided fbp drawing.

We conclude that Γ does not contain 4 mutually crossing edges, which yields a 4-
quasi-planar drawing Γ. Since, K2,9 ∈ Q=

k \B=
2 for every k ≥ 3, we obtain B=

2 ( Q=
k

for all k ≥ 4.
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w`′

u` ui uj ur

wi′ wj′ wr′

(a)

w`′

u` ui uj ur

wi′ wj′ wr′

(b)

Fig. 7.75: Illustration for the proof of Thm. 7.91. (a) Four mutually crossing edges.
(b) The dashed black edges show some possible routings for edge (u`, wr′).

7.8.17 Gap-planar and fanbundle-planar graphs

Since the graph K2,4 is 2-layer 1-gap-planar, but not 2-layer 1-sided fbp, we have
G=
k 6⊂ B=

1 for all k ≥ 1. However, we were not able to determine if B=
1 ⊂ G=

k for
some k ≥ 1.

In regard of the 2-sided fbp graphs, we first recall that neither B=
2 nor B=

2d is
a subclass of G=

1 (refer to Cor. 7.60). On the other hand, the graph K3,4 is 2-
layer 2-gap-planar (see Fig. 7.76), but not 2-layer 2-sided fanbundle-planar (refer to
Thm. 7.59); thus we have G=

k 6⊂ B=
2 and consequently G=

k 6⊂ B=
2d for k ≥ 2. Note that

the question if G=
1 is a subset of B=

2d, or – if not – if it is a subset of B=
2 is still open.

Fig. 7.76: A 2-layer 2-gap-planar drawing of K3,4.

7.8.18 Overview

Oriented on Table 4 in A Survey on Graph Drawing Beyond Planarity by Didimo et
al. [61] we present a corresponding table for 2-layer graphs in Fig. 7.77. In Fig. 7.78
we also provide an illustration which shows the relationships between the graph
classes P=

1 , P=
2 , Q=

3 , Q=
4 , F=, X=, B=

1 , B=
2d and B=

2 . Figure 7.78 does not include
the classes G=

k , since we could not determine the relationship between them and the
other graph classes well enough.
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G=k

B=1

B=2d

B=2

P=
h

k ≥ 5

B=2d

k ≥ 2 k ≥ 2
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k ≥ 3

k ≥ 4

?

k ≤ 2h f(k) ≤ h k ≥ 4

2h+2≤k

?

Fig. 7.77: Overview over the relationships between different 2-layer graph classes. If not
specified otherwise, we assume h ≥ k. The black and red circles represent the
corresponding classes in the leftmost column and topmost row. The function
f is defined by f(k) = 2

3k + 2.

P=
1 X=B=1 P=

2 B=2dF=

B=2

Q=
3

Q=
4

Fig. 7.78: Inclusion relationships between certain 2-layer graph classes. We also illustrate
these relationships (in a different way) in Chapter 8; refer to Fig. 8.2.
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7.9 Conclusion and Open Problems

In this chapter we proved tight edge density bounds for various 2-layer graph classes.
Regarding 2-layer 2-sided fanbundle-planar graphs, we were able to improve the
bound stated by Angelini et al. in [13].

Since our upper bound for 2-layer k-quasi-planar graphs is (k−1)(n−3)+2, while
the lower bound construction consists of a graph family with n vertices and only
(k− 1)n− (k− 1)2 edges, the bound is not tight for k > 3. So we ask if it is possible
to close the gap between the two values.

For 2-layer k-gap-planar graphs, where k > 1, we have no construction which
provides a lower bound for the edge density; on the other hand, the upper bound is
a consequence of the Crossing Lemma and cannot be expected to be tight. Therefore
an interesting task for future research would be to prove better upper bounds for
these graph classes and also find some lower bound construction.

In Sec. 7.4.1 we gave an example for a maximal 2-layer 2-planar drawing that has
not the optimal number of edges. Namely, it only has n+1 edges, while the optimal
number of edges is 5

3n−
7
3 . We ask if this is the sparsest maximal drawing (or graph)

in this graph class, that is, the maximal drawing (graph) with the smallest number
of edges among all maximal drawings with n vertices. More general, we ask for
sparsest maximal drawings (graphs) for all 2-layer graph classes.

As last point for the edge densities we remark that, if one can prove upper bounds
for the number of edges in 2-layer 6-planar graphs, then at the same time the
Crossing Lemma (refer to Cor. 7.33), as well as the general bounds for 2-layer k-
planar and 2-layer k-gap-planar graphs (refer to Cors. 7.34 and 7.35), are improved.

We used the new edge density bounds to derive characterizations for complete
bipartite graphs for several 2-layer graph classes. Thereby the characterization for
k-gap-planar graphs, where k ≥ 2, is missing. We suggest this problem as a future
research direction.

With the help of the aforementioned results we derived inclusion relationships
between various graph classes. However, there are still some questions open in this
field. Especially we ask the following:

– Is every 2-layer 1-gap-planar graph also 2-layer 3-quasi-planar?

– Are 2-layer 3- and 4-planar graphs 2-layer 2-sided fanbundle-planar?

– Is the class of 2-layer k-gap-planar graphs a subclass of the 2-layer (2k+ 1)-quasi-
planar graphs?
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– Is every 2-layer 1-sided fanbundle-planar graph k-gap-planar for some k ≥ 1?

– Is the class of 2-layer 1-gap-planar graphs G=
1 a subclass of the 2d-layer 2-sided

fanbundle-planar graphs? And if not, is G=
1 a subclass of the 2-layer 2-sided

fanbundle-planar graphs?

Answers to these questions will help in understanding better the relations between
different graph classes, and are therefore of interest for the graph drawing
community.

We conclude by the following observation. Beside the commonly studied classes
of k-planar graphs (where k ≥ 1), k-quasi-planar graphs (where k ≥ 3) and k-gap-
planar graphs (where k ≥ 1), results have been proven for the general edge density of
k-fan-crossing free graphs (where k ≥ 2) [50].14 Moreover, there exists the definition
of k-fanbundle-planar graphs (for k ≥ 1), where a fanbundle may cross at most k
other fanbundles [13]. However, the k-fan-crossing free graphs have not been studied
in the 2-layer setting for k ≥ 3, and the k-fanbundle-planar graphs have not been
studied at all for k ≥ 2. Another generalization that never has been considered (as
far as we know) is the one of k-fan-planar graphs (for k ≥ 2), where an edge may
cross at most k fans. All three families, the k-fan-crossing graphs, the k-fanbundle-
planar graphs, and the k-fan-planar graphs, are interesting for future research –
both, in the 2-layer and the general setting.

14A drawing is k-fan-crossing free, if no edge crosses a fan consisting of k edge, i. e. a set of k edges
that all have a common end vertex.





Chapter 8

Conclusion and Open Problems

In this work we provided several new parameters for graphs and graph drawing,
which are important indicators for the potential of graph classes, and measures
regarding the human perception of drawn graphs.

In Chapter 4 we studied how the maximal vertex degree of a graph guarantees its
membership in certain graph classes.

Namely, we showed that every graph with maximal vertex degree 3 is fan-crossing
free by describing a corresponding drawing algorithm. On the other hand, not every
graph of degree 5 is a member of the class of fan-crossing free graphs, since the
complete bipartite graph K5,5 does not belong to it. This leads immediately to the
question whether all graphs of degree 4 are fan-crossing free.

With a lengthy proof using an enumeration technique, we not only showed that
K5,5 is not a member of the class of fan-crossing free graphs, but also that K3,7

is not fan-crossing free. Together with the fact that K2,b (where b > 0) is planar
and a corresponding certificate drawing of K4,6, this yielded a characterization for
complete bipartite fan-crossing free graphs.

We also showed that there are Hamiltonian bipartite graphs of degree 3 which
are neither k-planar, nor fan-planar, nor k-gap-planar. To this end we considered
the cube-connected cycles CCCn which are 3-regular but do not belong to any of
the three mentioned classes as their number of edges exceeds the number of edges
allowed in these classes (for n large enough).

However, the question if a maximum degree d for all vertices of a graph guarantees
its membership in a certain graph class remains open for d > 2 in most cases. In
particular, it is unknown if all degree-3 graphs are RAC, even though degree-3 graphs
are fan-crossing free and quasi-planar – both are necessary conditions for a graph to
be RAC.
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An overview of our findings and the state of the art can be found in Table 4.1,
which is repeated in Table 8.1 for the readers convenience.

Table 8.1: The largest known value d` such that all graphs of degree d ≤ d` belong to
the indicated graph class C, and the smallest value du where a graph is known
that does not belong to C (refer to Chapter 4).

graph class C d` du

k-planar Hamiltonian bipartite 2 3 (CCCn, Cor. 4.2)
fan-planar Hamiltonian bipartite 2 3 (CCCn, Cor. 4.3)
k-gap-planar Hamiltonian bipartite 2 3 (CCCn, Thm. 4.1)
quasi-planar 4 [8] 10 (K11, ref. [4])
RAC (0-bend) 2 4 (K4,4, ref. [58])
RAC (0-bend) Hamiltonian 3 [22] 4 (K4,4, ref. [58])
RAC 1-bend 3 [18] 9 (K10, ref. [10])
RAC 2-bends 6 [18] 148 (K149, ref. [24])
fan-crossing free 3 (Thm. 4.4) 5 (K5,5, Thm. 4.5)

In Chapter 5 we addressed the question which complete and complete bipartite
graphs belong to certain graph classes beyond-planarity. More precisely, given a
graph class C, our goal was it to find the largest n, such that Kn belongs to C and
Kn+1 does not, and to find values a, b, such that Ka,b belongs to C while Ka,b+1

does not. This task usually involves large case analyses; therefore we developed an
efficient algorithm to support the corresponding extensive analysis. The two main
steps of the algorithm are the insertion of a new vertex – in all possible ways such
that the properties of class C are respected – into every drawing of a complete or
complete bipartite graph, and the elimination of isomorphic drawings.

We implemented our algorithm and applied it to several important graph classes,
yielding characterizations for them, or at least certificate drawings, if very long
running times did not allow for characterizations. We refer to Table 8.2 for an
overview of the state of the art including our results. Corresponding references to
the literature and to our results can be found in Tables 5.1 and 5.2 (note that the
results for complete bipartite 6-planar graphs are a consequence of [13] and of the
results for corresponding 5-planar graphs).

Our results also answered some questions stated in other works. Angelini et al. [14]
conjectured that K5,5 is not fan-planar, which we could answer in the positive (refer
to Char. 5.9). Moreover, the graph K5,5 is gap-planar (Obs. 5.13), but not fan-
planar (Char. 5.9), while the graphK4,9 is fan-planar but not gap-planar. This shows
that the classes of fan-planar and gap-planar graphs are incomparable, answering a
question posted in [30].
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Table 8.2: Overview over the state of the art for (partial) characterizations regarding
complete and complete bipartite graphs of several graph classes (refer to
Chapter 5). We present the largest n (first entry in the tuple) such that Kn

belongs to a class, and the smallest n (second entry in the tuple) such that Kn

does not belong to the corresponding class. Moreover, for complete bipartite
graphs Ka,b, where a ≤ b and 3 ≤ a ≤ 7, we present the largest known value
for b such that Ka,b belongs to a graph class (first entry in the tuple), and
the smallest known value for b such that Ka,b does not belong to it (second
entry in the tuple). If no drawing exists for b ≥ a, the corresponding entry is
“–”. Question marks indicate that we don’t know a value for b such that Ka,b

belongs to the considered class.

complete complete bipartite
Class a = 3 a = 4 a = 5 a = 6 a = 7
IC-planar (5,6) (3,4) – – – –

NIC-planar (5,6) (4,5) – – – –

1-planar (6,7) (6,7) (4,5) – – –

2-planar (7,8) (10,11) (6,7) – – –

3-planar (8,9) (14,15) (9,10) (6,7) – –

4-planar (9,10) (18,19) (11,19) (8,19) (6,19) (?,19)

5-planar (9,10) (22,23) (11,23) (8,23) (7,23) (?,23)

6-planar (10,20) (26,27) (11,27) (8,27) (7,27) (?,27)

fan-planar (7,8) (∞,∅) (∞,∅) – – –
fan-crossing

fan-cr. free (6,7) (6,7) (6,7) – – –

gap-planar (8,9) (12,14) (8,9) (6,7) – –

RAC (5,6) (4,5) – – – –

quasi-planar (10,11) (∞,∅) (∞,∅) (18,?) (10,?) (7,52)
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A main problem of our implementation is that it fails to derive characterizations
e. g. for complete k-planar graphs if k ≥ 6, and for complete bipartite k-planar
graphs if k ≥ 4. Using multi-threading might accelerate our implementation.
However, we were not able to develop an idea in this direction, since with multi-
threading it becomes very difficult to execute the isomorphism test efficiently. We
pose the question if it is possible to overcome this difficulty. In general, is it possible
to improve our algorithm or implementation, such that characterizations for more
graph classes regarding complete and complete bipartite graphs can be obtained? Is
it possible to also apply our algorithm to graphs which are less symmetric, e. g. to
tripartite graphs, such that a result can be found within a reasonable time?

Regarding k-planar graphs, Angelini et al.[13] gave a characterization for K3,b.
Namely, the graph K3,b is k-planar if and only if b ≤ 4k+ 2. Inspired by this result,
we state the question if there exist corresponding characterizations for Ka,b when
a > 3? In particular, are the graphs K4,3k, K5,2k and K6,k+2 k-planar for k ≥ 3, and
the graphs K4,3k+1, K5,2k+1 and K6,k+3 not, as might be conjectured by Fig. 5.19?

In Chapter 6 we provided a generalized version of the well-known Crossing Lemma
and used it to prove Meta Theorems for the maximal number of edges in k-planar
and in k-gap-planar graphs. Using these theorems we showed that general outer-k-
planar graphs (where k ≥ 2) can have at most 2.924

√
kn edges, and that bipartite

k-gap-planar graphs (where k ≥ 1) have at most 4.25
√
kn edges. The latter implies

that the number of edges in bipartite 1-gap-planar graphs is upper bounded by 4.25n;
we showed that this bound can be improved to 4n − 8 under certain assumptions.
On the other hand, we gave a lower bound construction for bipartite 1-gap-planar
graphs containing 4n−16 edges. We conjecture that the edge density of these graphs
is between 4n− 8 and 4n− 16, even when dropping the special assumptions.

Further, outer-1-gap-planar graphs have at most 3n − 5 edges (see Thm. 6.13),
while our lower bound construction shows that the edge density of this class cannot
be less then 3n− 6. This gives rise to the question, which of the two formulas is the
true edge density, either 3n− 5 or 3n− 6.

Our final question regarding the Meta Theorems is the following: Beside the
applications mentioned above (and the one in Chapter 7), are there more cases where
they, or similar Meta Theorems, are of interest?

The 2-layer setting, where vertices are placed on two parallel horizontal lines and
the edges are (usually straight-line) y-monotonic curves, was studied in Chapter 7.
This chapter consists of three main parts.
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Table 8.3: Lower and upper bounds on the maximal number of edges in 2-layer drawings
for several graph classes (refer to Chapter 7). The general bound for k-planar
graphs is valid for k ≥ 6. For quasi-planar graphs, the upper bound holds for
k ≥ 3 and n ≥ 3, while the lower bound holds for k ≥ 3 and sufficiently large
n. For k-gap-planar drawings the general bound is valid for k ≥ 2.

Class Lower Bound Reference Upper Bound Reference
planar n− 1 [77] n− 1 [77]
1-planar 3

2n− 2 [57] 3
2n− 2 [57]

2-planar 5
3n−

7
3 Thm. 7.15 5

3n−
7
3 Thm. 7.15

3-planar 2n− 4 Thm. 7.17 2n− 4 Thm. 7.19
4-planar 2n− 3 Thm. 7.20 2n− 3 Thm. 7.23
5-planar 9

4n−
9
2 Thm. 7.25 9

4n−
9
2 Thm. 7.31

6-planar 5
2n− 6 Thm. 7.32 3.19n Cor. 7.34

k-planar b
√
kc+2
2 n−O(

√
k) Thm. 7.36 125

96

√
kn Cor. 7.34

IC-planar 5
4n− 1 Thm. 7.7 5

4n− 1 Thm. 7.9
NIC-planar 4

3n−
4
3 Thm. 7.7 4

3n−
4
3 Thm. 7.10

k-quasi-planar (k − 1)n− (k − 1)2 Thm. 7.6 (k − 1)(n− 3) + 2 Thm. 7.4
fan-planar 2n− 4 [39] 2n− 4 [39]
fan-crossing 2n− 4 Obs. 7.2 2n− 4 Obs. 7.2
fan-cr. free 3

2n− 2 Obs. 7.1 3
2n− 2 Obs. 7.1

gap-planar 2n− 4 Thm. 7.37 2n− 4 Thm. 7.41
k-gap-planar 2n− 4 Thm. 7.37 125

48
√

2

√
kn Cor. 7.35

1-sided 1-fbp 5
3n−

7
3 [13] 5

3n−
7
3 [13]

2d-layer 2n− 4 [13] 2n− 4 Thm. 7.422-sided 1-fbp
2-sided 1-fbp 17

8 n−
13
4 Thm. 7.44 17

8 n−
13
4 Thm. 7.47

RAC 3
2n− 2 [56] 3

2n− 2 [56]

In the first part, edge densities were proved for the classes of k-quasi-planar,
IC-planar, NIC-planar, k-planar, gap-planar and fanbundle-planar graphs; refer to
Table 7.1, which is, for the readers convenience, again shown in Table 8.3.

For k-quasi-planar graphs we improved the upper bound of (k−1)(n−1) [137] edges
to (k − 1)(n− 3) + 2 and gave a lower bound construction with (k − 1)n− (k − 1)2

edges. This yields a tight bound of 2n − 4 edges for k = 3. We conjecture that
(k− 1)n− (k− 1)2 is in fact also an upper bound on the number of edges in 2-layer
k-planar graphs.

We further remark that also our tight upper bounds on the number of edges in 2-
layer 2-sided fanbundle-planar and 2d-layer 2-sided fanbundle-planar graphs present
an improvement of known results; refer to Angelini et al. [13].
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Since, in case of k > 1, the upper bound on the number of edges in 2-layer k-gap-
planar graphs stems from the Meta Theorem of Chapter 6, it cannot be expected to
be tight. Thus, an interesting problem is to find such a tight bound for general k.

Other consequences of the Meta Crossing Lemma were a Crossing Lemma tailored
for 2-layer graphs, stating that every drawing of such a graph has at least 0.295m3

n2

crossings, and a general upper bound of 125
96

√
kn edges for 2-layer k-planar graphs

when k ≥ 6. Both results can be improved if a tight edge density bound for 2-layer
6-planar graphs is found.

For 2-layer 2-planar graphs we provided a maximal drawing Γ with n + 1 edges.
Since an optimal 2-layer 2-planar graph possesses 5

3n − 73 edges, Γ is not optimal.
An interesting question is if Γ is the sparsest maximal drawing, or if there exists a
maximal 2-layer 2-planar planar with n edges or less.1 More generally: How many
edges do the sparsest maximal 2-layer drawings (or graphs) have for the different
graph classes?

In the second part of Chapter 7, we characterized complete bipartite graphs in the
2-layer setting for the aforementioned graph classes (refer to Table 7.2, again shown
in Table 8.4). However, for k-gap-planar graphs, where k ≥ 2, we could not provide
such a characterization. So this might be an interesting problem for future research.

In the final part of Chapter 7, the inclusion relationships between different 2-layer
graph classes were studied extensively. To some extent using the results from the
first two parts, we were able to reveal many such relations; refer to Figs. 7.77 and 7.78
in Chapter 7 and to Fig. 8.2.

An important result is that every 2-layer k-planar graph is 2-layer f(k)-quasi-
planar, where f(k) = d2

3k + 2e is a function in k. The question if such a function
f exists was asked in [11] for general graphs; by our result we can answer it in the
positive at least for the 2-layer setting.

We were able to show that the 2-layer 1-planar graphs belong to all other graph
classes discussed in Chapter 7, and that the 2-layer 2-planar graphs belong to
almost all those classes, except three. Namely, the class of 2-layer 2-planar graphs
is incomparable to the one of 2-layer 1-sided fanbundle-planar and to the one of 2-
layer fan-planar graphs, while the 2-layer fan-crossing free graphs are contained in it.
Hence, the class of 2-layer fan-crossing free graphs (which coincides with the class of
2-layer RAC graphs) lies “between” the 2-layer 1-planar and 2-layer 2-planar graphs.

1Note that 2-layer planar drawings have n− 1 edges, thus the number of edges of Γ is “close” the
the number of edges 2-layer planar drawings have at most.
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Table 8.4: Characterizations for complete bipartite graphs Ka,b (where a ≤ b) in 2-layer
drawings for several graph classes (refer to Chapter 7). Stated are values for
b, given a = 2, a = 3, and a ≥ 4. If no drawing exists for b ≥ a, the
corresponding entry is “–” (in words: minus). Question marks indicate that
the characterization is still open.

Class a = 2 a = 3 a ≥ 4
1-planar b ≤ 2 – –
2-planar b ≤ 3 – –
3-planar b ≤ 4 – –
4-planar b ≤ 5 b ≤ 3 –
5-planar b ≤ 6 b ≤ 3 –
k-planar b ≤ 1 + k b ≤ 1 + k

2 b ≤ 1 + k
a−1

IC-planar b ≤ 2 – –
NIC-planar b ≤ 2 – –
3-quasi-planar all b – –
4-quasi-planar all b all b –
fan-planar all b – –
fan-cr. free b ≤ 2 – –
1-gap-planar b ≤ 4 – –
k-gap-planar b ≤ 2k + 2 ? ? ?
1-sided 1-fbp b ≤ 3 – –
2-sided 1-fbp b ≤ 8 b ≤ 3 –
2d-layer 2-sided 1-fbp b ≤ 6 – –

By Bae et al. [30], the class of (2k)-planar graphs is a proper subclass of the k-
gap-planar graphs, and the latter is a proper subclass of the (2k + 2)-quasi-planar.
We proved that these inclusion relationships also hold for 2-layer graphs.

In general, the class of 2-layer quasi-planar graphs contains most of the classes
studied in Chapter 7, except the classes of 2-layer 2-sided fanbundle-planar graphs
and 2-layer k-planar graphs when k > 2 (and, of course, k-quasi-planar graphs for
k > 3). Also the relationship between 2-layer quasi-planar and 2-layer gap-planar
graphs is still open.

Regarding fanbundle-planar graphs, we realized that there are two different
drawing styles in the 2-layer setting: One, where bundles anchored at vertices of
different layers may cross, and one where this is not allowed (we called them 2d-layer
2-sided fan-bundle planar graphs). We showed that the former are incomparable to 2-
layer quasi-planar graphs, while the latter are contained in the class of 2-layer quasi-
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Fig. 8.1: Overview over the relationships between different 2-layer graph classes. If not
specified otherwise, we assume h ≥ k. The black circle symbolizes the classes
of the left column in the table, while the red circle represents the classes of the
top row in the table. The function f(k) is defined by f(k) = d2

3k + 2e.

planar graphs. Considering the relations between the different fanbundle-planar
types, we recognized that 2-layer 1-sided fanbundle-planar graphs are a subclass of
2d-layer 2-sided fanbundle-planar graphs, and, on the other hand, 2d-layer 2-sided
fanbundle-planar graphs are a subclass of 2-layer 2-sided fanbundle-planar graphs.

For our other results concerning the relationships between different 2-layer graph
classes we refer to Figs. 8.1 and 8.2.

Open questions regarding these relationships are:

– Is every 2-layer 1-gap-planar graph also 2-layer 3-quasi-planar?

– Are 2-layer 3- and 4-planar graphs 2-layer 2-sided fanbundle-planar?

– Is the class of 2-layer k-gap-planar graphs a subclass of the 2-layer (2k+ 1)-quasi-
planar graphs?

– Is every 2-layer 1-sided fanbundle-planar graph k-gap-planar for some k ≥ 1?

– Is the class of 2-layer 1-gap-planar graphs a subclass of the 2d-layer 2-sided
fanbundle-planar graphs? And if not, is the class of 2-layer 1-gap-planar graphs
a subclass of the 2-layer 2-sided fanbundle-planar graphs?
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Fig. 8.2: The inclusion relationships between certain 2-layer graph classes. The edge
densities are given as well. A star indicates that the bound might not be tight.
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We conclude with our results from Chapter 3, where grid-drawings of trees with
few segments were considered.

Hültenschmidt et al. [89] showed that every tree can be drawn on a grid of size
O(n3.58) using at most 3

4n − 1 segments. We improved the area requirement to
n×n = O(n2), while preserving the upper bound on the number of segments. To this
end, we described a linear-time algorithm which can solve this task. Our algorithm
first reduces the given tree by contracting degree-2 vertices, and then removes the
leaves of the resulting tree (refer to Fig. 8.3, which is a copy of Fig. 3.1). Finally
the tree is drawn recursively, such that each subtree is placed inside a box and no
vertex of the subtree is to the top left of its root – which is the key to draw the edge
from the root to the parent vertex of the root.

(a) (b) (c)

(d)

Fig. 8.3: Illustration for the different steps of our tree drawing algorithm. (a) A tree T .
Degree-2 vertices are blue and leaves are red. (b) The tree T ′, where all degree-
2 vertices from T are contracted. (c) The tree T ′′, where all leaves from T ′ are
removed. (d) The drawing our algorithm produces.
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The question remains open if the area of n× n is optimal for trees when using at
most 3

4n− 1 segments, or if a smaller grid size is possible. The latter would also be
an interesting question if a slightly larger number of segments is allowed.

Altogether, we were able to provide many new parameters for various graph classes
that help to understand better the properties and limitations of graphs belonging
to these classes. However, the considerations above show that there are still many
open problems, whose addressing might be interesting for future research.
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