
Robust and Efficient
Deep Visual Learning

Robust and Efficient
Deep Visual Learning

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Sergey Prokudin
aus Moskau, Russland

Tübingen
2020

Tag der mündlichen Qualifikation: 02.12.2020
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Dr. Peter Vincent Gehler
2. Berichterstatter: Prof. Dr. Zeynep Akata

To my family

Abstract
The past decade was marked by significant progress in the field of artificial intelligence
and statistical learning. Efficient new algorithms, coupled with the availability of large
datasets and the dramatic increase in computing power, led to solutions that match or
exceed human performance in perception tasks such as image and speech recognition,
3D shape analysis and various types of generative modeling.

However, the most impressive of modern models come in the form of computationally
expensive black boxes, with the majority of them lacking the ability to reason about the
confidence of their predictions robustly. Being capable of quantifying model uncertainty
and recognizing failure scenarios is crucial when it comes to incorporating them into
complex decision-making pipelines, e.g. autonomous driving or medical image analysis
systems. It is also important to maintain a low computational cost of these models -
the model that can be deployed on a mobile phone or an average PC rather than a GPU
cluster will have a much higher potential social impact.

In the present thesis, the aforementioned desired properties of robustness and effi-
ciency of deep learning models are studied and developed in the three specific realms of
computer vision. First, we investigate deep probabilistic models that allow uncertainty
quantification, i.e. the models that ”know what they do not know”. Here, we propose a
novel model for the task of angular regression that allows probabilistic object pose es-
timation from 2D images. We also showcase how the general deep density estimation
paradigm can be adapted and utilized in two other real-world applications, ball trajectory
prediction and brain imaging.

Next, we turn to the field of 3D shape analysis and rendering. We propose a method
for efficient encoding of 3D point clouds, the type of data that is hard to handle with
conventional learning algorithms due to its unordered nature. We show that simple neural
networks that use the developed encoding as input can match the performance of state-of-
the-art methods on various point cloud processing tasks while using orders of magnitude
less floating point operations.

Finally, we explore the emerging field of neural rendering and develop the framework
that connects classic deformable 3D body models with modern image-to-image trans-
lation neural networks. This combination allows efficient photorealistic human avatar
rendering in a controlled manner, with the possibility to control the camera flexibly and
to change the body pose and shape appearance.

The thesis concludes with the discussion of the presented methods, including current
limitations and future research directions.

vii

Zusammenfassung
Das vergangene Jahrzehnt war von bedeutenden Fortschritten auf dem Gebiet der künstlichen
Intelligenz und des statistischen Lernens geprägt. Effiziente neue Algorithmen, gepaart
mit der Verfügbarkeit großer Datensätze und einem drastischen Anstieg der Rechenleis-
tung, erlaubten es, die menschliche Wahrnehmung im Bereich der Bild- und Spracher-
kennung, der 3D-Formanalyse und bei verschiedenen Arten der generativen Modellie-
rung zu imitieren, diese in vielen Hinblicken sogar zu übertreffen.

Die beeindruckendsten modernen Modelle sind jedoch rechenintensive Blackboxen,
denen meist die Fähigkeit fehlt, robust über die Zuverlässigkeit ihrer Vorhersagen zu ur-
teilen. Modellunsicherheiten zu quantifizieren und Fehlerszenarien zu erkennen, ist von
entscheidender Bedeutung, wenn es darum geht, sie in komplexe Entscheidungsprozesse,
zu implementieren, z.B. in autonome Fahrsysteme oder medizinische Bildanalysesyste-
me. Ebenso wichtig ist es, die benötigte Rechenleistung dieser Modelle niedrig zu halten
- ein Modell, welches auf einem Mobiltelefon oder einem durchschnittlichen PC und
nicht nur einem GPU-Clusters eingesetzt werden kann, wird potentiell eine viel größere
soziale Auswirkung haben.

In der vorliegenden Arbeit werden die oben genannten, erwünschten Eigenschaften
der Robustheit und Effizienz in Modellen für das tiefe Lernen in drei verschiedenen
Bereichen der Computer Vision untersucht und weiterentwickelt.

Zum einen untersuchen wir tiefe probabilistische Modelle, die eine Quantifizierung
der Unsicherheit erlauben, d.h. solche Modelle, die ”wissen, was sie nicht wissen”. Hier
demonstrieren wir, dass ein neuartiges, von uns entworfenes Modell für die Aufgabe der
Winkelregression, eine probabilistische Abschätzung der Objektposition aus 2D-Bildern
ermöglicht. Wir zeigen auch, wie das allgemeine Paradigma der Schätzung der tiefen
Dichte angepasst und in zwei anderen realen Anwendungen, der Vorhersage der Flug-
bahn von Kugeln und der Bildgebung des Gehirns, verwendet werden kann.

Zum anderen untersuchen wir 3D-Formanalyse und 3D-Rendering. Wir haben eine
effiziente Methode zur Kodierung von 3D-Punktewolken entwickelt, der Art von Daten,
die aufgrund ihrer ungeordneten Natur mit herkömmlichen Lernalgorithmen schwer zu
handhaben sind. Wir zeigen, dass einfache neuronale Netze, die die entwickelte Kodie-
rung als Input verwenden, die Leistung modernster Methoden für verschiedene Aufgaben
der Punktwolkenverarbeitung erreichen können, während sie mit um Zehnerpotenzen ge-
ringeren Fließkommaoperationen arbeiten.

Desweiteren kombinieren wir klassische verformbare 3D-Körpermodelle mit moder-
nen neuronalen Netzwerken zur Bild-zu-Bild-Translation im jungen Gebiet des neuro-
nalen Renderings.Diese Kombination ermöglicht äußerst effizient ein fotorealistisches,

ix

Zusammenfassung

menschliches Avatar-Rendering, mit der Möglichkeit, die Kamera flexibel zu steuern und
die Körperhaltung und das Aussehen des Körpers zu verändern.

Die Dissertation schließt mit der Diskussion der vorgestellten Methoden, einschließ-
lich der aktuellen Grenzen und zukünftigen Forschungsrichtungen.

x

Acknowledgments
I would like to thank the wonderful institutions I have been lucky to be part of and
collaborate with: Max Planck Institute for Intelligent Systems, University of Tübingen,
Amazon, as well as specific people there: Melanie Feldhofer, Prof. Dr. Zeynep Akata.
This work was partially supported by Microsoft Research through its PhD Scholarship
Programme.

This work would be simply impossible without the help and guidance of my super-
visors and senior collaborators: Dr. Peter Vincent Gehler, Dr. Sebastian Nowozin, Dr.
Javier Romero, Dr. Michael J. Black. I would also like to thank my co-authors for
their work, discussions and interdisciplinary research ideas: Dr. Christoph Lassner, Dr.
Sebastian Gomez, Prof. Dr. Moritz Zaiss.

During these years, I have learned a tremendous amount of things from my friends,
from the core computer vision and machine learning knowledge to the art of bicycle
maintenance: Fatma Güney, Laura Sevilla-Lara, Varun Jampani, Thomas Nestmeyer,
Luigi Gresele, Sabrina Klotz, Eric Lacosse, Ilya Tolstikhin.

Finally, I would like to thank my whole family and especially my mother Firaya Proku-
dina for supporting me throughout life in all my best aspirations.

xi

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Organization and Contributions . 2
1.3 List of Publications . 5

I Uncertainty in Deep Visual Models 7

2 Uncertainty Modeling 9
2.1 The Importance of Knowing What We Do Not Know 9
2.2 Uncertainty in Machine Learning Models 10
2.3 Approaches to Uncertainty Quantification 12

2.3.1 Maximum Likelihood Estimation 12
2.3.2 Bayesian Neural Networks . 15
2.3.3 Deep Model Ensembling . 17
2.3.4 Post-Processing Calibration 17
2.3.5 Data Augmentation . 18

2.4 Evaluation of Uncertainty Estimates 19
2.5 Conclusion . 22

3 Probabilistic Circular Regression 25
3.1 Introduction . 25
3.2 Related Work . 26
3.3 Review of Biternion Networks . 27

3.3.1 Biternion Representation . 28
3.3.2 Cosine Loss Function . 28

3.4 Probabilistic models of circular data. 28
3.4.1 Von Mises Biternion Networks 29
3.4.2 Maximizing the von Mises Log-likelihood 30

3.5 Mixture of von Mises Distributions . 31
3.5.1 Finite Mixture of von Mises Distributions 31
3.5.2 Infinite Mixture (CVAE) . 32
3.5.3 Point Prediction . 34

3.6 Experiments . 35
3.6.1 Experimental Setup . 35

xiii

Contents

3.6.2 Results and Discussion . 37
3.7 Conclusion . 39

4 Deep Probabilistic Models in Real-World Systems 41
4.1 DeepCEST: Robust MRI Parameter Determination 42
4.2 Real-Time Trajectory Prediction in High Speed Robotics 43

II Efficient 3D Shape Analysis 47

5 Overview and Foundations 49
5.1 3D Data Acquisition . 49
5.2 Shape Representations . 51
5.3 Rendering . 53
5.4 Conclusion . 55

6 Point Cloud Analysis with Basis Point Sets 57
6.1 Introduction . 57
6.2 Related Work . 59
6.3 Method . 60
6.4 Analysis . 62

6.4.1 Comparison to Occupancy Grids, TSDFs and Plain Point Clouds 62
6.4.2 Basis Point Selection Strategies 64

6.5 Learning with Basis Point Sets . 65
6.5.1 3D Shape Classification . 65
6.5.2 Single-Pass Mesh Registration from 3D Scans 68
6.5.3 Training Details . 71
6.5.4 Encoding Time . 71

6.6 Conclusion and Future Work . 72

7 SMPLpix: Neural Pixels from 3D Human Models 75
7.1 Introduction . 75
7.2 Related Work . 77
7.3 Method . 80

7.3.1 Data . 80
7.3.2 Neural rasterization . 82

7.4 Experiments . 83
7.4.1 Data Details . 83
7.4.2 Quantitative Experiments . 84
7.4.3 Qualitative experiments . 86

7.5 Conclusion and Future Work . 89

xiv

Contents

8 Conclusions and Outlook 91
8.1 Deep Probabilistic Models . 91
8.2 Efficient Learning on Point Clouds . 92
8.3 Neural Human Rendering . 93
8.4 Afterword . 94

Symbols 95

Abbreviations 97

xv

Chapter 1

Introduction

1.1 Motivation

The progress in computer vision was truly remarkable in the past decade. Powered by
the increased availability of 2D and 3D data, computational resources and efficient deep
learning algorithms, visual learning pipelines become a part of our daily life. This in-
cludes algorithms for face identification, image search, character recognition, computa-
tional photography, driving assistance systems and many more.

With the increased role of computer vision in critical applications, two considerations
become of great importance. First, deployed models should be robust to novel input data,
i.e. the one that significantly differs from those seen during the training phase. At the
very least, the model should be able to detect these scenarios and correctly quantify its
uncertainty about the produced results. If uncertainty is not well-calibrated, or—even
worse—is not taken into account at all, then the consequences of decisions made by the
system cannot be accurately assessed, resulting in poor decisions at best, and danger-
ous actions at worst. Examples of such systems include autonomous driving systems,
medical imaging and robotics.

Another desired feature of any real-world system is computational efficiency. The
best of deep learning systems regularly need days and weeks of training time, as well as
powerful GPUs during test time inference. At the same time, there are multiple reasons
why the efficiency of our developed algorithms should be a concern. First, a system that
can be deployed on an average smartphone rather than a GPU cluster will have a much
more social impact. One can think of an analogy with digital photography here: the
ability to take a photo with a smartphone and upload it to the Internet made datasets like
ImagenNet [64] possible, and consequently, marked up the whole new era of data-driven
visual learning. Another rising concern is the carbon footprint of deep learning research.
Recently, it has been shown that training some of the models for NLP tasks results in the
amount of CO2 emissions that are comparable to a lifetime of five average cars [252].

Finally, efficiency and robustness of a visual learning system become essential when
both inference and learning is made on an isolated compact computing device. One
successful example of such a system is Apple Face ID [2] which allows user to unlock a
smartphone via RGB-D image taken with front-face camera sensors. The system learns

1

Chapter 1 Introduction

Figure 1.1: Robust and efficient visual systems in technology and biology: (a) Apple
FaceID technology for image-based authorization running directly on a user device [2,
5]; (b) with only 106 neurons, honeybees are capable of performing large variety of
tasks, including navigation, abstract concept learning, communication and uncertainty
reasoning [178, 3].

a model of an owner’s face from a series of calibration shots. During authorization,
this model is compared to the one obtained from the authorization image. The whole
process of user-dependent model adjustment and test-time inference is made directly on
the device, with no data leaving the protected storage. The system is also continuously
learning to adapt to novel face appearances like changing hairstyles, glasses, etc.

As with many other technological designs, including neural networks themselves, one
can seek inspiration in biological systems. Here, a honeybee and similar species form a
perfect example of a truly efficient perceiving system [178]. The brain of a bee consists
of only ≈ 106 neurons (0.001% that of a human brain). Yet, a single honeybee have a
surprising portfolio of successfully executed perception and behavioral tasks, including
pattern recognition [20], optical flow based navigation [71], communicating via sym-
bolic language [269] and abstract reasoning [19]. Strikingly, they also learn to quantify
the reliability of the obtained information about the environment and learn to pay less
attention to noisy signals [214]. While we do not necessarily want to copy the biological
design, this example showcases that a complex pattern analysis can be done within a
relatively miniature system.

1.2 Organization and Contributions
In this thesis, we focus on three specific topics that contribute to the overall goal of
creating truly robust and efficient visual learning algorithms.

First, we investigate the models that infer object pose from 2D images (Figure 1.2a).
Modern deep learning systems successfully solve this task when the input image is of
high quality. However, in challenging imaging conditions such as on low-resolution

2

1.2 Organization and Contributions

Figure 1.2: Visual learning systems developed in the thesis: (a) probabilistic object pose
estimation framework [215]; (b) basis point set encoding for 3D shape analysis [217]; (c)
neural human rendering pipeline (Chapter 7); work done in collaboration: (d) real-time
ball trajectory prediction for robotic table tennis arm [100]; (e) robust MRI parameter
determination and uncertainty quantification [93].

images or when the image is corrupted by imaging artifacts, current systems degrade
considerably in accuracy. While a loss in performance is unavoidable, we would like
our models to quantify their uncertainty in order to achieve robustness against images
of varying quality. We, therefore, propose a novel probabilistic deep learning model for

3

Chapter 1 Introduction

the task of angular regression that combines the expressive power of deep learning with
uncertainty quantification. Our model uses mixtures of von Mises distributions to predict
a rich distribution over object pose angle. We show how to learn a deep mixture model
using a finite and infinite number of mixture components. We demonstrate on several
challenging pose estimation datasets that our model produces well-calibrated probability
predictions and competitive or superior point estimates compared to the current state-of-
the-art.

The deep probabilistic density estimation framework is, in fact, quite general and ap-
plicable beyond circular regression tasks. We consider two other applications of it, CEST
contrast predictions in magnetic resonance imaging (Figure 1.2e) and probabilistic ball
trajectory prediction in robotics (Figure 1.2d).

Next, we turn to the field of 3D shape analysis. With the increased availability of
3D scanning technology, 3D data in the form of point clouds is moving into the focus
of computer vision as a rich representation of everyday scenes. However, point clouds
are hard to handle for machine learning algorithms due to their unordered structure, and
the deep neural networks working with point clouds directly often use a large number
of parameters. In this thesis, we propose basis point sets (BPS) as a highly efficient
and fully general way to process point clouds with machine learning algorithms (Figure
1.2b). The basis point set representation is a residual representation that can be computed
efficiently and can be used with standard neural network architectures and other machine
learning algorithms. Using the proposed representation in combination with simple neu-
ral networks allows us to match the performance of state-of-the-art deep frameworks
on a shape classification task while using three orders of magnitude less floating-point
operations. We also show how the proposed representation can be used for registering
high-resolution meshes to noisy 3D scans. Here, we present the first method for single-
pass high-resolution mesh registration, avoiding time-consuming per-scan optimization
and allowing real-time execution.

Finally, we address the task of photorealistic human rendering (Figure 1.2c). Recent
advances in deep generative models have led to an unprecedented level of realism for
synthetically generated images of humans. However, one of the remaining fundamental
limitations of these models is the ability to control the generative process flexibly, e.g.
change the camera and human pose while retaining the subject identity. At the same time,
deformable human body models like SMPL [165] and its successors provide full control
over pose and shape but rely on classic computer graphics pipelines for rendering. Such
rendering pipelines require explicit mesh rasterization that (a) does not have the potential
to fix artifacts or lack of realism in the original 3D geometry and (b) until recently, were
not fully incorporated into deep learning frameworks. We propose to bridge the gap
between classic geometry-based rendering and the latest generative networks operating
in pixel space by introducing a neural rasterizer, a trainable neural network module that
directly “renders” a sparse set of 3D mesh vertices as photorealistic images, avoiding
any hardwired logic in pixel colouring and occlusion reasoning. We train our model on a
large corpus of human 3D models and corresponding real photos, and show the advantage

4

1.3 List of Publications

over conventional differentiable renderers both in terms of the level of photorealism and
rendering efficiency.

In summary, we propose three novel techniques that lead to improved robustness and
efficiency of deep visual learning algorithms. Introduced deep probabilistic framework
for angular regression provides a scalable and robust alternative to purely deterministic
regression methods. We show that it allows efficient uncertainty quantification, the prop-
erty crucial for real-world applications. Developed basis point set encoding for point
clouds can serve as an efficient descriptor in a variety of 3D shape analysis tasks, im-
proving by orders of magnitude computational efficiency of state-of-the-art models. We
show how it can be combined with virtually any machine learning algorithm to meet
computational constraints for specific applications. With the neural human rendering
pipeline, we investigate the efficient ways to combine classic and novel approaches in
computer graphics in order to create flexible and photorealistic rendering engines.

1.3 List of Publications

The contributions in this thesis mainly comprise of work from the following publications:

• Prokudin, S., Gehler, P., and Nowozin, S. (2018). Deep directional statistics: pose
estimation with uncertainty quantification. In Proceedings of the European Con-
ference on Computer Vision (ECCV) (pp. 534-551) [215];

• Prokudin, S., Lassner, C., and Romero, J. (2019). Efficient learning on point
clouds with basis point sets. In Proceedings of the IEEE International Confer-
ence on Computer Vision (pp. 4332-4341) [217];

• Prokudin, S., Black, M.J., and Romero, J. (2020). SMPLpix: Neural pixels from
3D Human Models. Submitted to the European Conference on Computer Vision
(ECCV);

• Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., and Peters, J. (2020). Real time
trajectory prediction using deep conditional generative models. IEEE Robotics and
Automation Letters, 5(2), 970-976 [100];

• Glang, F., Deshmane, A., Prokudin, S., Martin, F., Herz, K., Lindig, T., Bender,
B., Scheffler, K. and Zaiss, M. (2019). DeepCEST 3T: Robust MRI parameter
determination and uncertainty quantification with neural networks—application to
CEST imaging of the human brain at 3T. Magnetic Resonance in Medicine [93].

The following research was conducted during the time of a PhD studentship which is
not covered by this thesis:

5

Chapter 1 Introduction

• Prokudin, S., Kappler, D., Nowozin, S., and Gehler, P. (2017, September). Learn-
ing to filter object detections. In German Conference on Pattern Recognition (pp.
52-62). Springer, Cham. [216].

6

Part I

Uncertainty in Deep Visual Models

7

Chapter 2

Uncertainty Modeling

2.1 The Importance of Knowing What We Do Not Know

Self-awareness, the ability to recognize the limits of one’s own understanding of the
world, is a fundamental property of intelligent agents. Often referred to as uncertainty
monitoring in behavioral studies [245], this feature is often associated with higher degree
of consciousness in species, or metacognition. It has been now found in many species
capable of non-trivial intelligent behaviour, including primates, dolphins and bees. The
ability to recognize novel setups and quantify the confidence of observations and actions
is indeed crucial for the agent in order to make optimal decisions, avoid risky actions and
acquire additional information when possible.

Likewise, artificial intelligent systems we create should have the same property [16].
When dealing with noisy, incomplete inputs, learning system should be able to recog-
nize failure scenarios, provide valid confidence intervals or defer prediction until more
information is acquired. Figure 2.1 shows some of the real-world scenarios where cor-
rectly quantifying the degree of uncertainty might be important. Figure 2.1a shows po-
tential use case of the developed probabilistic pose estimation framework [215] in the
autonomous driving system. The system detects pedestrians on the roadside and ana-
lyzes their head pose and gaze direction in order to understand whether they are aware
of approaching car. The system might continue driving or induce extreme braking, de-
pending on the estimated gaze direction. Here, the final decision is crucially dependent
on whether the system is confident about the obtained information or just guessing at
random.

Another example is medical imaging and decease detection [154]. Figure 2.1b shows
MRI CEST contrast image of a brain obtained with a method developed in [93]. This
image can be used in order to define the boundaries of a detected tumor accurately; again,
understanding the confidence of the provided information will be critical for planning
potential surgery.

These are simply two examples that directly involve systems developed in this the-
sis. However, virtually any real-world decision-making process involves some form of
probabilistic reasoning and uncertainty manipulation. Other applications include active
learning, planning in robotics, out-of-distribution sample detection and adversarial ro-

9

Chapter 2 Uncertainty Modeling

Figure 2.1: Importance of uncertainty quantification. (a) Head pose estimation frame-
work [215] in autonomous driving: how sure we are that pedestrians are looking in the
right direction and are aware of the approaching car? We need to know that in the case
we want to make decisions based on our estimates (e.g stop the car or continue). (b)
MRI brain image of a tumor patient [93]: we need to robustly detect the boundaries of a
tumor in order to plan the surgery.

bustness.

2.2 Uncertainty in Machine Learning Models

General machine learning model. Throughout the course of this chapter, we will con-
sider a machine learning system as a function fθ with parameters θ ∈Rp that receives an
input vector x ∈ Rn and maps it to an output vector y ∈ Rk:

fθ (x) : Rn×Rp→ Rk. (2.1)

The learning algorithm then seeks to find the best set of parameters θ ∗ that mini-
mizes some predefined loss function L on a given set of input-output pairsD= (X,Y) =
{(xi,yi)}M

i=1:

θ
∗ = argmin

θ

M

∑
i=1
L(fθ (xi),yi) (2.2)

The optimal value (2.2) is often found via some form of stochastic gradient decent
optimization algorithm [230].

10

2.2 Uncertainty in Machine Learning Models

Figure 2.2: Potential sources of uncertainty in synthetic two-dimensional, two-class clas-
sification data. Aleatoric uncertainty stems from noisy observations, while epistemic
occurs in the areas not covered by the training data.

One particular common example of a loss function for various regression tasks is a
mean squared error (MSE):

L(fθ (x),y) = ||y− fθ (x)||2 (2.3)

In the case of deep neural networks, the exact form of fθ is defined by a network
architecture and parameters θ are the network weights. In the case of binary image
classification, input vector x ∈ Rw×h×3 represents an input image and output vector y ∈
{0,1} represents predicted class label.

Once the system is trained and the optimal value θ ∗ is found, the function fθ∗(x) will
be used to make predictions over the unseen value xnew. At this stage, several potential
problems might arise that we want to be able to detect and diagnose.

Noisy observations. Consider a simple example of classifying synthetic two-dimensional
data visualized in Figure 2.2. First, we want to address the situation when new samples
come from the region where two classes significantly overlap (cyan box). In this case,
the system should signal that the noise and ambiguity in obtained input observations will
not allow it to assign the class label confidently. This is the area of aleatoric uncertainty
which can be resolved in the system by improving the measurement process. In the case
of image processing, this can correspond to improving the quality of input image.

Out-of-distribution samples. While the i.i.d assumption is a cornerstone of machine
learning algorithms, in practice we might draw xnew from the area of input space not seen
during training (solid box in Figure 2.2). In this case, we talk about out-of-distribution
(OOD) samples. Since the model haven’t seen training examples in that area, its pre-

11

Chapter 2 Uncertainty Modeling

diction will likely be less reliable. The associated uncertainty of the model in this case
represents one example of epistemic uncertainty. Epistemic uncertainty arises from the
limited data and incorrect modeling assumptions. This type of uncertainty can be re-
solved by acquiring more data or refusing to make predictions in the areas of model’s
ignorance.

From point estimates to probability densities. In both situations mentioned above,
we are fundamentally interested in the confidence of obtained predictions. The question
of confidence can be formulated in the following way: how likely is the obtained value
fθ∗(xnew) compared to any other possible output? The natural way to answer to this
question is to utilize the language of probabilities [91]. Instead of modeling a single point
estimate fθ (xnew), we aim to model the probability density function over all possible
values y:

pθ (y|x) : Rn×Rp×Rk→ R. (2.4)

There are multiple ways to model pθ (y|x) via deep learning systems. Each of them
emphasizes and reflects different types of uncertainties (i.e. aleatoric or epistemic). We
will now describe the most popular approaches, discussing their theoretical foundations,
empirical performance and potential limitations.

2.3 Approaches to Uncertainty Quantification

2.3.1 Maximum Likelihood Estimation

One of the classic and direct methods of finding the optimal pθ (y|x) is maximum likeli-
hood estimation principle (MLE) [78] that aims to directly maximize the quantity (2.4)
for observed data.

In the context of machine learning models discussed above, this results in the follow-
ing modelling. First, we assume some parametric form of a density function (2.4), with
the parameters of distribution being the outputs of our learning pipeline. For example, in
the case of a neural network regression task, we can assume Gaussian distribution whose
mean and variance are produced by the last layer of a network.

Next, we will fit the parameters of our model in order to maximize the likelihood of ob-
served ground truth data samples, or, equivalently, minimize its negative log-likelihood:

LNLL(θ ,X,Y) =−
m

∑
i=1

log pθ (yi|xi), (2.5)

12

2.3 Approaches to Uncertainty Quantification

θ
∗ = argmin

θ

m

∑
i=1

[
− log pθ (yi|xi)

]
(2.6)

MLE in the case of continuous regression. As was mentioned above, in the case of
a regression task we can model our density function as a normal distribution:

pθ (y|x) =
1√

2πσ2
θ
(x)
∗ exp

[
− ||y−µθ (x)||2

2σ2
θ
(x)

]
, (2.7)

where µθ ,σ
2
θ

are the outputs of the network. We will use this form of a density mod-
eling later in the thesis when we consider applications of deep probabilistic models in
MRI imaging in Section 4.1.

We can gain some intuition about the induced uncertainty model by analyzing the
corresponding negative log-likelihood objective of the Gaussian density. Placing the
Equation (2.7) inside the logarithm and opening the brackets will result in:

− log pθ (y|x) =
1

2σ2
θ
(x)
||y−µθ (x)||2 +

1
2

log2πσ
2
θ (x). (2.8)

The obtained final objective consists of two competing terms, both of which are de-
pendent on the predicted level of noise σ2

θ
: (a) mean squared error term scaled by the

variance; (b) entropy of the predicted Gaussian distribution. This allows the system to
properly model aleatoric uncertainty in the data: increasing predicted variance in the ar-
eas of noisy observations will result in a lower penalty for the potential deviation from
the ground truth at the cost of increased entropy.

Note that we can also interpret vanilla mean squared error loss (2.3) as a case of log-
likelihood model where we assume constant noise level for all observations, commonly
referred to as homoscedastic regression and opposed to heteroscedastic models with the
noise dependent on input [193, 140].

MLE in the case of binary classification. In the case of binary classification, a
convenient and popular modeling distribution of choice is Bernoulli:

pθ (y|x) =


fθ (x), y = 1;

1− fθ (x), y = 0.
(2.9)

Again, here fθ (x) ∈ [0,1] is the output of the network. Negative log-likelihood objec-

13

Chapter 2 Uncertainty Modeling

Figure 2.3: Probability landscapes induced by various deep uncertainty models on the
synthetic classification task. (a) Training a multi-layer perceptron with standard log-
likelihood objective; (b) same model with increased capacity; (c) temperature scaling
[110]; (d) Monte Carlo Dropout as Bayesian inference approximation [86]; (e) Deep
Ensembles [150] with 10 networks in ensemble; (f) Outlier Exposure technique [118,
117].

tive will then take the form:

− log pθ (y|x) =−
[
y∗ log fθ (x)+(1−y)∗ log(1− fθ (x))

]
. (2.10)

Loss function (2.10) is also often referred to as binary cross-entropy in the literature.
Toy example. To provide some empirical intuition and compare various methods of

uncertainty modeling, we will consider a synthetic two-dimensional classification dataset
visualized in Figure 2.2. Blue and orange dots denote two classes of interest, while
black triangles will serve as our test-time out-of-distribution samples. We will use a
simple fully connected [102] neural network with three layers as our base deep model,
with ReLU activations [94] between intermediate layers and a sigmoid activation for

14

2.3 Approaches to Uncertainty Quantification

modelling Bernoulli distribution (2.9):

pθ (y = 1|x) = 1
1+ exp [−gθ (x)]

, (2.11)

where gθ (x) is the output of the last layer of the network.
After the network is trained, we can visualize the obtained class probabilities at each

point of our two-dimensional space. We train two versions of the model, with 128 and
512 neurons in the hidden layers respectively (Figures 2.3a,b).

We can can see that both models correctly assign lower confidence in the noisy bound-
ary area where two classes significantly overlap. However, the smoothness of the bound-
ary is significantly influenced by the model capacity, and the higher capacity model tends
to generate sharper boundaries that will also result in higher number of overconfident yet
incorrect predictions (see also Table 2.1 for numerical comparison of test-time likeli-
hoods).

At the same time, both networks fail shortly in the areas where no training data was ob-
served, simply extrapolating high confidence predictions based on the obtained decision
boundaries.

2.3.2 Bayesian Neural Networks

Another way to model the density function (2.4) is via utilizing full Bayesian framework
in the context of deep learning [169, 187, 65].

In the case of Bayesian neural networks, instead of aiming to find a single best point
estimate (2.6) for the network parameters, we introduce a distribution over all possible
values of θ . Regularly this process is initialized with a Gaussian prior over weights
θ ∼ N (0,σ2I) that is then updated based on the training observations D = (X,Y) =
{(xi,yi)}m

i=1 to obtain posterior distribution:

p(θ |X,Y) =
p(Y|X,θ)p(θ)

p(Y|X)
(2.12)

The numerator consists of a prior over weights p(θ) and a likelihood function of train-
ing data:

p(Y|X,θ) =
m

∏
i=1

pθ (yi|xi), (2.13)

where the density pθ (yi|xi) is modeled by a neural network (e.g. (2.8) or (2.9)).

15

Chapter 2 Uncertainty Modeling

Denominator of (2.12) is computed via integrating over all possible values of θ , the
process known as marginalization:

p(Y|X) =
∫

p(Y|X,θ)p(θ)dθ . (2.14)

Finally, given a novel observation xnew, we can estimate the likelihood of any given
possible output:

p(y|xnew,X,Y) =
∫

pθ (y|xnew)p(θ |X,Y)dθ . (2.15)

While theoretically appealing and elegant in formulation, inference in Bayesian neural
networks face major computational challenges when obtaining the value of a marginal
distribution (2.14).

One way to deal with this problem is to use some form of Monte Carlo [87] approx-
imation of the marginal integral (2.14). Another common solution to this problem is
variational inference [80] that seeks to approximate the posterior weight distribution
p(θ |X,Y) with some simpler distribution qγ(θ). We refer to [183, 31] for a comprehen-
sive study of Bayesian inference techniques.

In the context of modern deep learning, one method commonly used in practice is
based on dropout technique [251]. It was shown in [86, 85] that training neural networks
with dropout can be seen as a form of variational Bayesian approximation. Training
the network with pre-defined dropout probabilities for neurons corresponds to fitting a
specific approximate posterior distribution qγ(θ). We can then obtain samples from this
distribution by simply running the trained network with dropout applied during the test
time and get corresponding induced uncertainty by running Monte Carlo integration over
the model samples.

In the case of classification, this will correspond to the following final model output:

p(y|xnew,X,Y) =
1
S

S

∑
i=1

pθi(y|xnew), (2.16)

also referred to as Monte Carlo (MC) Dropout in the original paper [86]. However,
the quality of the final approximation and the induced uncertainties will largely depend
on the complexity of a model, number of samples S and hyper-parameters such as prior
distribution used for weight initialization, dropout rates, etc.

We showcase the example of probabilities induced by MC Dropout method on our
synthetic classification dataset in Figure 2.3d. It can be seen that using model averaging
scheme defined by (2.16) results in the increased level of uncertainty in the borderline
regions, even far away from the training data. However, the model still outputs high

16

2.3 Approaches to Uncertainty Quantification

confidence predictions in other regions where no actual training data was observed (upper
left and lower right corners).

2.3.3 Deep Model Ensembling
Bayesian inference in the form of Monte-Carlo Dropout (2.16) investigated in the previ-
ous section can, in fact, be interpreted as a form of model ensembling [66], with elements
of the ensemble sharing structure and weights. The idea of using ensembling methods
for deep uncertainty quantification was also investigated in [150].

In particular, it was shown in [150] that reasonable and practically useful uncertainty
estimates can be obtained by a simple averaging of the likelihoods produced by T inde-
pendently trained networks:

p(y|x) = 1
T

T

∑
t=1

pθt(y|x), (2.17)

We visualize the resulting probability landscape on our toy dataset obtained via train-
ing and averaging predicted densities of T = 10 baseline networks in Figure 2.3e. The
overall effect is similar to Monte-Carlo Dropout technique. However, it was shown in
[150] and later in [248] that, in general, likelihood estimates obtained with (2.17) tend
to outperform uncertainties produced via MC Dropout technique both in terms of test set
likelihoods and OOD detection capabilities.

Deep ensembles can be further improved by bringing down computational costs via
ensemble model distillation [119], as well as combined with other methods like adver-
sarial training [150] for further improvement of predictive likelihoods.

2.3.4 Post-Processing Calibration
In principle, likelihood-based training discussed in Section 2.3.1 aims to directly opti-
mize probability scores returned by the model, and the objective (2.5) is minimized if
and only if the model density pθ (y|x) recovers ground truth distribution p(y|x).

However, limited amount of training data and optimization challenges can result in
biased probability scores produced by the network during test time. In this case, we
can utilize some available validation data in order to re-adjust, or calibrate, our final
probabilities.

In the context of deep learning, one popular and effective way to perform calibration
is Platt scaling [210, 110]. The idea behind the method is to learn additional sigmoidal
model based on the validation data Dval = (Xval,Yval) = {(xval

i ,yval
i)}Vi=1:

pθ+(y = 1|x) = 1
1+ exp[α fθ∗(x)+β]

, (2.18)

17

Chapter 2 Uncertainty Modeling

where θ+ = [α,β ,θ ∗] and fθ∗(x) is the output probability of our trained neural net-
work model.

We then optimize the negative log-likelihood of validation data in order to obtain the
optimal parameters of the scaler:

[α∗,β ∗] = argmin
α,β

V

∑
i=1

[
− log pθ+(yval

i |xval
i)
]
. (2.19)

Note that the optimal weights θ ∗ of the original neural network are kept fixed.
A simpler version with no bias term β ∗ is known as temperature scaling and was

shown to be an effective technique for calibrating probabilistic predictions [110].
We visualize the results of a calibrated 512-neuron model in Figure 2.3c. It can be

seen that the calibrated model have softer decision boundaries, which also means higher
uncertainty in the noisy areas.

2.3.5 Data Augmentation
Finally, we can also enforce certain behaviour of our predicted conditional densities on
the unobserved data via data augmentation techniques. In this section, we will briefly
review two general directions.

Boundary smoothing via adversarial training. The first set of methods aims to
model the behaviour near the observed training examples. In particular, these methods
set to enforce predictive likelihoods to behave smoothly in some ε-neighborhood of the
training samples [150, 180]. Enforcing such behaviour along all the input dimensions
might, however, be computationally prohibitive. Instead, [150] propose to utilize ad-
versarial training [104] techniques in order to find the directions in input space (and
corresponding synthetic samples) where the likelihood will decrease the most.

Formally, given a training pair (xtr,ytr)∈Dtr, we will generate a synthetic adversarial
example via fast gradient sign method [104]:

x′ = xtr + ε sign
(

∇xtr [− log pθ (ytr|xtr)]
)
, (2.20)

The pair (x′,ytr) is then added to the training set. More details, as well as experimental
evaluation of this approach, can be found in [150].

Entropy maximization of the OOD samples. We can also force the model to output
uniform predictions in order to reflect its ignorance on the samples outside its training
domain. For the classification task, a generic procedure of outlier exposure was proposed
in [118]. It implies the construction of the additional dataset Dtr

ood = {xr}R
r=1 of samples

that lie far away from the training data, and enforcing the following maximum entropy
auxiliary loss on the density:

18

2.4 Evaluation of Uncertainty Estimates

LOOD =−λ

R

∑
r=1

H
(

pθ (y|xr)
)
= λ

R

∑
r=1

K

∑
k=1

pθ (y = k|xr) log
[
pθ (y = k|xr)

]
. (2.21)

This loss is then added to the maximum likelihood loss (2.5). Intuitively, the loss
(2.21) forces the network to output uniformly distributed probabilities on the OOD sam-
ples.

The choice of Dtr
OOD is the subject to a specific method and dataset. [118] proposed

to use available real-world datasets that would differ significantly from the training data
(e.g. using SVHN [189] images as Dtr

OOD while training on CIFAR [148]), while [117]
advocated for a more agnostic approach via sampling a uniform distribution of the input
domain [0,1]n.

Importantly, it has been shown in both [118] and [117] that the network trained with
the addtional loss (2.21) on Dtr

ood generalizes to other unseen OOD samples Dtest
OOD.

For our toy dataset, we gather outliers Dtr
ood by sampling the interval [−4,4]2 uni-

formly. We also set λ = 1 in Equation (2.21). The results of the training with the addi-
tional max-entropy term are visualized in Figure 2.3f. We can see that this training mode
achieves something we would intuitively expect from the model: high confidence at the
centers of clusters, smooth boundaries and high uncertainty in the rest of domain.

2.4 Evaluation of Uncertainty Estimates
Once the model is trained, we will want to evaluate the quality of our probabilistic model
pθ (y|x). Intuitively, we want the evaluation measure to encourage the network to un-
cover the true underlying distribution of data. This intuition us captured and formalized
in the theory of proper scoring rules [95].

Proper scoring rules. As before, let pθ = pθ (y|x) ∈ P be our obtained probabilistic
estimate, where P is a set of all probabilistic measures. A scoring rule is then a function
that takes potential outcome y ∈ Y together with its estimated likelihood pθ (y|x) and
assigns a real value to the tuple:

S(pθ ,y) : P×Y → R. (2.22)

Now, we can consider a true distribution q = q(y|x) and compute the expected score
of the likelihood model under q:

S(pθ ,q) = Ey∼qS(pθ ,y). (2.23)

The scoring rule (2.22) is then called proper, if

19

Chapter 2 Uncertainty Modeling

S(pθ ,q)≤ S(q,q), ∀pθ ,q ∈ P. (2.24)

The score is strictly proper if equality in (2.24) obtained if and only if pθ = q.
Aside from a general intuition of favoring the models that uncover true distribution of

the data, there is also a strong theoretical justification and practical evidence that support
the usage of proper scoring rules when considering uncertainty estimation. We refer to
[95] for more discussion on the topic.

It turns out that the log-likelihood considered in Section 2.3.1 is a proper scoring
rule [95]. Hence, in order to consistently assess the quality of our probabilistic esti-
mates, we can measure the negative log-likelihood of the test dataDtest = (Xtest ,Ytest) =

{(xi,yi)}Q
i=1:

NLL(pθ ,Dtest) =−
Q

∑
i=1

log pθ (yi|xi). (2.25)

However, one potential drawback of a log-likelihood score as a final evaluation pro-
tocol for certain applications is its tendency to highly penalize confident, but incorrect
predictions [221, 261].

Brier score [39] is another proper scoring rule. For binary classification, it is defined
as a mean squared error between the class label and positive class probability:

BS(pθ ,Dtest) =
Q

∑
i=1

(
yi− pθ (yi = 1|xi)

)2
. (2.26)

Calibration curves. We can also consider a frequentist approach [116] and think of
the probabilistic model as being well-calibrated if the produced probability estimates
reflect the actual statistics on the test data. In the case of binary classification, this would
mean that among all the samples that obtained probability score 0.9 of belonging to
positive class, 90% of the samples do actually have the positive label. Formally,

P(y = 1|pθ (y = 1|x) = p) = p,∀p ∈ [0,1]. (2.27)

However, we cannot compute quantity (2.27) using finite number of samples, and in
practice approximations are used [192, 110].

One such approximation is a reliability curve (or a reliability histogram), an example
of which is shown in Figure 2.4. The basic idea behind reliability curves is to split the
interval [0,1] into L bins with the corresponding probabilities [p1, . . . , pL]. Additionally,
we set p0 = 0 and pL = 1. Given some test data Dtest = (Xtest ,Ytest) = {(xi,yi)}Q

i=1, we

20

2.4 Evaluation of Uncertainty Estimates

can then compare average confidence of a model inside each bin Bl ,

con f (Bl) =
1
|Bl|

Q

∑
i=1

I[pl−1 <= pθ (y = 1|xi)< pl]∗ pθ (y = 1|xi), (2.28)

with the actual accuracy inside this bin,

acc(Bl) =
1
|Bl|

Q

∑
i=1

I[pl−1 <= pθ (y = 1|xi)< pl]∗ I[yi = 1], (2.29)

and compute the calibration score of our model pθ :

sl(pθ ,Dtest) = |con f (Bl)−acc(Bl)|. (2.30)

To compute the overall calibration score of a model, we can take a weighted average
over bins:

ECE(pθ ,Dtest) =
L

∑
l=1

|Bl|
Q

sl(pθ ,Dtest). (2.31)

Expected calibration error (ECE) (2.31), however, is not a proper scoring rule. As was
noticed in [248], simply setting pθ (y|x) to the marginal distribution p(y) computed over
training data will yield perfectly calibrated yet completely uninformative predictions.
Nevertheless, ECE is often used together with reliability curve visualizations as an easy
and intuitive way to diagnose probabilistic behaviour of the model.

Figure 2.4 shows reliability curves for the vanilla likelihood and temperature scaled
versions of the perceptron model fitted on our toy data. We can see that, on average,
the original model tends to overestimate its confidence (upper left plot) and is purely
calibrated in the middle-confidence region. Fitting a single temperature parameter dis-
cussed in Section 2.3.4 significantly reduces the margin between network outputs and
the perfect calibration curve (red diagonal line).

OOD entropy. There is no single widely accepted metric for assessing the quality
of model behaviour on out-of-distribution samples. However, similar to the objective
(2.21), we can measure the level of entropy on the test OOD samples:

HOOD =
R

∑
r=1

H
(

pθ (y|xr)
)
. (2.32)

21

Chapter 2 Uncertainty Modeling

Figure 2.4: Confidence histograms and reliability curves. (a) Before and (b) after temper-
ature scaling [110] applied for the toy moon dataset and multi-layer perceptron model.
See Section 2.4 for discussion.

Higher values of HOOD will indicate better model behaviour since we expect it to be
less confident on the unknown domain.

Table 2.1 accumulates the results of all the discussed metrics and models. Even on
this toy data, we can see that there is no uncertainty model that outperforms the others
on all the metrics. Monte Carlo Dropout might be considered a method of choice if
the test time likelihood is important for the task at hand; however, simple temperature
scaling might be also preferred for this in practice since it adds only minor computational
overhead compared to ensemble methods. Of all the discussed methods, only direct
outlier exposure successfully handles OOD samples and achieves OOD-Entropy that is
close to the maximum value of ≈ 0.7. Interestingly, it also achieves slightly higher test
accuracy, likely due to the positive effect of the noise injection introduced by the outliers
falling in the original class data regions.

2.5 Conclusion
In this chapter, we have inspected some of the popular methods of augmenting neural
network outputs with a measure of uncertainty. The presented overview is, of course, far
from complete. The methods not covered by this survey include modeling the full dis-
tribution p(x,y) [143, 12, 186], as well as augmenting the pipelines with separate OOD

22

2.5 Conclusion

Table 2.1: Comparison of deep uncertainty estimation methods on differerent metrics

Method Accuracy↑ NLL↓ Brier↓ ECE↓ OOD-Entropy↑
Vanilla NLL (128 neurons) 85.8% 0.345 0.102 0.045 0.024
Vanilla NLL (512 neurons) 86.5% 0.437 0.107 0.081 0.009
+ Temperature Scaling [110] 86.5% 0.320 0.098 0.045 0.031
Monte Carlo Dropout [86] 86.8% 0.311 0.093 0.039 0.101
Deep Ensembles [150] 86.8% 0.372 0.102 0.072 0.070
Outlier Exposure [118, 117] 87.5% 0.342 0.101 0.030 0.689

detector modules and ”reject” option [30, 158, 153, 23]. Uncertainty quantification in
deep learning is an emerging field, and we refer to [248] for a more comprehensive re-
cent survey. Closely related to the uncertainty quantification, there is also an extensive
amount of work on constructing networks and optimization techniques robust to adver-
sarial examples [170, 18, 266, 281], which could be considered particularly complex
cases of OOD samples.

The resulting quality of produced uncertainty estimates significantly depends on the
selected method, amount of available data and its dimensionality, as well as the network
design choices and its hyper-parameters. As of today, there is no single method that
will provide ideal uncertainty measures in all scenarios. Therefore, one should always
carefully consider a practical task at hand. In some cases, the i.i.d. assumption about train
and test data can safely be made, and a simple post-processing calibration can achieve
great results. On the other hand, in dynamic real-world environments, detection and
proper handling of out-of-distribution samples is critical [16].

However, we have also observed that defining network outputs as conditional densities
and the usage of proper scoring rules [95] for optimization are the basic building blocks
that allow consistent and rigorous uncertainty reasoning. At the same time, Gaussian
likelihood model discussed in Section 2.3.1 is not a valid choice for all regression tasks.
In particular, for the task of angular regression, when the output values lie in the inter-
val [−π,π], normal distribution will not properly model periodicity of the circular data.
Therefore, in the next chapter, we will study and develop methods for deep probabilistic
circular regression that allow proper modeling of this domain. Additionally, while ba-
sic adaptive noise models like (2.7) can only predict single-mode distributions, we will
develop a framework that allows rich, multi-modal densities.

23

Chapter 3

Probabilistic Circular Regression

3.1 Introduction
Estimating object pose is an important building block in systems aiming to understand
complex scenes and has a long history in computer vision [172, 185]. Whereas early
systems achieved low accuracy, recent advances in deep learning and the collection of
extensive data sets have led to high performing systems that can be deployed in useful
applications [211, 176, 28].

However, the reliability of object pose regression depends on the quality of the image
provided to the system. Key challenges are low-resolution due to distance of an object
to the camera, blur due to motion of the camera or the object, and sensor noise in case of
poorly lit scenes (see Figure 3.1).

We would like to predict object pose in a way that captures uncertainty. As we dis-
cussed in the previous chapter, probability is the right way to capture the uncertainty [26]
and in this chapter we therefore propose a novel model for object pose regression whose
predictions are fully probabilistic. Figure 3.1 depicts an output of the proposed system.
Moreover, instead of assuming a fixed form for the predictive density, we allow for very
flexible distributions, specified by a deep neural network.

The value of quantified uncertainty for the task of object orientation estimation is two-
fold: first, a high prediction uncertainty is a robust way to diagnose poor inputs to the
system; second, given accurate probabilities we can summarize them to improved point
estimates using Bayesian decision theory.

In the following sections we present our method and make the following contributions:

• We demonstrate the importance of probabilistic regression on the application of
object pose estimation;

• We propose a novel efficient probabilistic deep learning model for the task of cir-
cular regression;

• We show on a number of challenging pose estimation datasets (including PASCAL
3D+ benchmark [275]) that the proposed probabilistic method outperforms purely
discriminative approaches in terms of predictive likelihood and shows competitive
performance in terms of angular deviation losses classically used for the tasks.

25

Chapter 3 Probabilistic Circular Regression

Figure 3.1: Our model predicts complex multimodal distributions on the circle (truncated
by the outer circle for better viewing). For difficult and ambiguous images our model
report high uncertainty (bottom row). Pose estimation predictions (pan angle) on images
from IDIAP, TownCentre and PASCAL3D+ datasets.

3.2 Related Work

Estimation of object orientation arises in different applications and in this chapter we
focus on the two most prominent tasks: head pose estimation and object class orientation
estimation. Although those tasks are closely related, they have been studied mostly in
separation, with methods applied to exclusively one of them. We will therefore discuss
them separately, despite the fact that our model applies to both tasks. We present results
for our methods on the standard benchmarks from both domains.

Head pose estimation has been a subject of extensive research in computer vision
for a long time [242, 185] and the existing systems vary greatly in terms of feature
representation and proposed classifiers. The input to pose estimation systems typically
consists of 2D head images [195, 105, 62], and often one has to cope with low resolution
images [184, 77, 25, 242]. Additional modalities such as depth [75] and motion [25,
45] information has been exploited and provide useful cues. However, these are not
always available. Also, information about the full body image could be used for joint
head and body pose prediction [47, 79, 198]. Notably, the work of [79] also promotes
a probabilistic view and fuses body and head orientation within a tracking framework.
Finally, the output of facial landmarks can be used as an intermediate step [61, 287].

Existing head pose estimation models are diverse and include manifold learning ap-
proaches [167, 124, 265, 22], energy-based models [198], linear regression based on
HOG features [89], regression trees [75, 137] and convolutional neural networks [28]. A
number of probabilistic methods for head pose analysis exist in the literature [21, 63, 79],
but none of them combine probabilistic framework with learnable hierarchical feature
representations from deep CNN architectures. At the same time, deep probabilistic mod-

26

3.3 Review of Biternion Networks

els have shown an advantage over purely discriminative models in other computer vision
tasks, e.g., depth estimation [139]. To the best of our knowledge, our work is the first to
utilize deep probabilistic approach to angular orientation regression task.

An early dataset for estimating the object rotation for general object classes was pro-
posed in [235] along with an early benchmark set. Over the years the complexity of data
increased, from object rotation [235] and images of cars in different orientations [200]
to Pascal3D [276]. The work of [276] then assigned a separate Deformable Part Model
(DPM) component to a discrete set of viewpoints. The work of [206, 207] then proposed
different 3D DPM extensions which allowed viewpoint esimation as integral part of the
model. However, both [206] and [207] do not predict a continuous angular estimate but
only a discrete number of bins.

More recent versions make use of CNN models but still do not take a probabilistic
approach [211, 176]. The work of [254] investigates the use of a synthetic rendering
pipeline to overcome the scarcity of detailed training data. The addition of synthetic and
real examples allows them to outperform previous results. The model in [254] predicts
angles and constructs a loss function that penalizes geodesic and `1 distance. In this
work, we advocate the use of likelihood estimation as a principled probabilistic training
objective.

Many works phrase angular prediction as a classification problem [211, 267, 254]
which always limits the granularity of the prediction and also requires the design of a
loss function and a means to select the number of discrete labels. The recent work of
[267] draws a connection between viewpoints and object keypoints. Again, the view-
point estimation is framed as a classification problem in terms of Euler angles to obtain
a rotation matrix from a canonical viewpoint. A benefit of a classification model is that
components like softmax loss can be re-used and also interpreted as an uncertainty esti-
mate. In contrast, our model mitigate this problem: the likelihood principle suggests a
direct way to train parameters, moreover ours is the only model in this class that conveys
an uncertainty estimate.

3.3 Review of Biternion Networks
We build on the Biternion networks method for pose estimation from [28] and briefly
review the basic ideas here. Biternion networks regress angular data and currently define
the state-of-the-art model for a number of challenging head pose estimation datasets.

The key problem is to regress angular orientation which is periodic. The periodicity
prevents a straight-forward application of standard regression methods, including CNN
models with common loss functions. Consider a ground truth value of 0◦, then both
predictions 1◦ and 359◦ should result in the same absolute loss. Applying the mod
operator is no simple fix to this problem, since it results in a discontinuous loss function
that complicates the optimization.

A loss function needs to be defined to cope with this discontinuity of the target value.

27

Chapter 3 Probabilistic Circular Regression

Biternion networks overcome this difficulty by using a different parameterization of an-
gles and the cosine loss function between angles.

3.3.1 Biternion Representation
Beyer et al. [28] propose an alternative representation of an angle φ using the two-
dimensional sine and cosine components y = (cosφ ,sinφ).

This biternion representation is inspired by quaternions, which are popular in com-
puter graphics systems. It is easy to predict a (cos,sin) pair with a fully-connected layer
followed by a normalization layer, that is,

fBT (x;W,b) =
Wx+b
||Wx+b||

. (3.1)

A Biternion network is then a convolutional neural network with a layer (3.1) as the final
operation, outputting a two-dimensional vector ypred . We use VGG-style network [241]
and InceptionResNet [256] networks in our experiments and provide a detailed descrip-
tion of the network architecture in Section 3.6.1. Given recent developments in network
architectures it is likely that different network topologies may perform better than se-
lected backbones. We leave this for future work, as our contributions are orthogonal to
the choice of the basis model.

3.3.2 Cosine Loss Function
The cosine distance is chosen in [28] as a natural candidate to measure the difference
between the predicted and ground truth Biternion vectors. It reads

Lcos(ypred,ytrue) = 1−
ypred ·ytrue

||ypred|| · ||ytrue||
= 1−ypred ·ytrue, (3.2)

where the last equality is due to ||y||= cos2 φ + sin2
φ = 1.

The combination of a Biternion angle representation and a cosine loss solves the prob-
lems of regressing angular values, allowing for a flexible deep network with angular
output. We take this state-of-the-art model and generalize it into a family of probabilistic
models of gradually increasing flexibility.

3.4 Probabilistic models of circular data.
The von Mises (VM) distribution [173] is the basic building block of our probabilistic
framework for circular data. We continue with a brief formal definition and in Sec-
tion 3.4.1 describe a simple way to convert the output of Biternion networks into a VM
density that does not require any network architecture change or re-training as it requires

28

3.4 Probabilistic models of circular data.

Figure 3.2: Left: examples of the von Mises probability density function for different
concentration parameters κ . Center, right: predicted distributions for two images from
the CAVIAR dataset. We plot the predicted density on the viewing circle. For compari-
son we also include the 2D plot (better visible in zoomed pdf version). The distribution
on the center image is very certain, the one on the right more uncertain about the viewing
angle.

only selection of the model variance. We will then use this approach as a baseline for
more advanced probabilistic models. Section 3.4.2 slightly extends the original Biternion
network by introducing an additional network output unit that models uncertainty of our
angle estimation and allows optimization for the log-likelihood of the VM distribution.

The von Mises distribution VM(µ,κ) is a close approximation of a normal distribu-
tion on the unit circle. Its probability density function is

p(φ ; µ,κ) =
exp(κ cos(φ −µ))

2πI0(κ)
, (3.3)

where µ ∈ [0,2π) is the mean value, κ ∈ R+ is a measure of concentration (a reciprocal
measure of dispersion, so 1/κ is analogous to σ2 in a normal distribution), and I0(κ) is
the modified Bessel function of order 0. We show examples of VM-distributions with
µ = π and varying κ values in Figure 3.2 (left).

3.4.1 Von Mises Biternion Networks

A conceptually simple way to turn the Biternion networks from Section 3.3 into a prob-
abilistic model is to take its predicted value as the center value of the VM distribution,

pθ (φ |x;κ) =
exp(κ cos(φ −µθ (x)))

2πI0(κ)
, (3.4)

where x is an input image, θ are parameters of the network, and µθ (x) is the network
output. In order to arrive at a probability distribution we may regard κ > 0 as a hyper-

29

Chapter 3 Probabilistic Circular Regression

parameter. For the fixed network parameters θ we can select κ by maximizing the log-
likelihood of the observed data,

κ
∗ = argmax

κ

N

∑
i=1

log pθ (φ
(i)|x(i);κ). (3.5)

The model (3.4) with κ∗ will serve as the simplest probabilistic baseline in our compar-
isons.

3.4.2 Maximizing the von Mises Log-likelihood

Using a single scalar κ for every possible input in the model (3.4) is clearly a restrictive
assumption: model certainty should depend on factors such as image quality, light con-
ditions, etc. For example, Figure 3.2 (center, right) depicts two low resolution images
from a surveillance camera that are part of the CAVIAR dataset [77]. In the left image
facial features like eyes and ears are distinguishable which allows a model to be more
certain when compared to the more blurry image on the right.

We therefore extend the simple model by replacing the single constant κ with a func-
tion κθ (x), predicted by the Biternion network,

pθ (φ |x) =
exp(κθ (x)cos(φ −µθ (x)))

2πI0(κθ (x))
. (3.6)

We train (3.6) by maximizing the log-likelihood of the data,

logL(θ |X,Φ) =
N

∑
i=1

κθ (x(i))(cos(φ (i)−µθ (x(i)))−
N

∑
i=1

log2πI0(κθ (x(i))). (3.7)

Note that when κ is held constant in (3.7), the second sum in logL(θ |X,Φ) is constant
and therefore we recover the Biternion cosine objective (3.2) up to constants C1, C2,

logL(θ |X,Φ,κ) =C1

N

∑
i=1

cos
(
φ
(i)−µθ (x(i))

)
+C2.

The sum has the equivalent form,

N

∑
i=1

cos
(
φ
(i)−µθ (x(i))

)
=

N

∑
i=1

[
cosφ

(i) cos µθ (x(i))+ sinφ
(i) sin µθ (x(i))

]
(3.8)

=
N

∑
i=1

y
φ (i) ·yµθ (x(i)), (3.9)

where yφ=(cosφ ,sinφ) is a Biternion representation of an angle. Note, that the above

30

3.5 Mixture of von Mises Distributions

Figure 3.3: The single mode von Mises model (VGG backbone variation). A Biternion-
VGG network regresses both mean and concentration parameter of a single vM distribu-
tion.

derivation shows that the loss function in [28] corresponds to optimizing the von Mises
log-likelihood for the fixed value of κ = 1. This offers an interpretation of Biternion
networks as a probabilistic model.

The additional degree of freedom to learn κθ (x) as a function of x allows us to capture
the desired image-dependent uncertainty as can be seen in Figure 3.2.

However, just like the Gaussian distribution, the von Mises distribution makes a spe-
cific assumption regarding the shape of the density. We now show how to overcome this
limitation by using a mixture of von Mises distributions.

3.5 Mixture of von Mises Distributions
The model described in Section 3.4.2 is only unimodal and can not capture ambiguities
in the image. However, in the case of blurry images like the ones in Figure 3.2 we could
be interested in distributing the mass around a few potential high probability hypotheses.
For example, the model could predict that a person is looking sideways, but could not
determine the direction, left or right, with certainty. In this section, we present two mod-
els that are able to capture multimodal beliefs while retaining a calibrated uncertainty
measure.

3.5.1 Finite Mixture of von Mises Distributions
One common way to generate complex distributions is to sum multiple distributions
into a mixture distribution. We introduce K different component distributions and a K-
dimensional probability vector representing the mixture weights. Each component is a
simple von Mises distribution. We can then represent our density function as

pθ (φ |x) =
K

∑
j=1

π j(x,θ) p j(φ |x,θ), (3.10)

31

Chapter 3 Probabilistic Circular Regression

Figure 3.4: The finite VM mixture model. A VGG network predicts K mean and con-
centration values and the mixture coefficients π . This allows to capture multimodality in
the output.

where p j(φ |x,θ) = VM(φ |µ j,κ j) for j = 1, . . . ,K are the K component distributions
and the mixture weights are π j(x,θ) so that ∑ j π j(x,θ) = 1. We denote all parameters
with the vector θ , it contains component-specific parameters as well as parameters shared
across all components.

To predict the mixture in a neural network framework, we need K×3 output units for
modeling all von Mises component parameters (two for modeling the Biternion repre-
sentation of the mean, µ j(x,θ) and one for the κ j(x,θ) value), as well as K units for
the probability vector π j(x,θ), defined by taking the softmax operation to get positive
mixture weights.

The finite von Mises density model then takes form

pθ (φ |x) =
K

∑
j=1

π j(x,θ)
exp
(

κ j(x,θ)cos
(
φ −µ j(x,θ)

))
2πI0

(
κ j(x,θ)

) . (3.11)

Similarly to the single von Mises model, we can train by maximizing the log-likelihood
of the observed data, ∑

N
i=1 log pθ (φ

(i)|x(i)). We show an overview of the model in Fig-
ure 3.4.

3.5.2 Infinite Mixture (CVAE)

To extend the model from a finite to an infinite mixture model, we follow the variational
autoencoder (VAE) approach [142, 223], and introduce a vector-valued latent variable
z. The resulting model is depicted in Figure 3.5. The continuous latent variable be-
comes the input to a decoder network p(φ |x,z) which predicts the parameters—mean
and concentration—of a single von Mises component. We define our density function as
the infinite sum (integral) over all latent variable choices, weighted by a learned distri-
bution p(z|x),

pθ (φ |x) =
∫

p(φ |x,z) p(z|x)dz, (3.12)

32

3.5 Mixture of von Mises Distributions

Figure 3.5: The infinite mixture model (CVAE). An encoder network predicts a distribu-
tion q(z|x) over latent variables z, and a decoder network p(φ |x,z) defines individual
mixture components. Integrating over z yields an infinite mixture of von Mises distribu-
tions. In practice we approximate this integration using a finite number of Monte Carlo
samples z(j) ∼ q(z|x).

where pθ (φ |x,z) = VM(µ(x,θ),κ(x,θ)), and pθ (z|x) = N (µ1(x,θ),σ2
1 (x,θ)). The

log-likelihood log pθ (φ |x) for this model is no longer tractable, preventing simple maxi-
mum likelihood training. Instead, we use the variational autoencoder framework of [142,
223] in the form of the conditional VAE (CVAE) [249]. The CVAE formulation uses an
auxiliary variational density qθ (z|x,φ) =N (µ2(x,φ ,θ),σ2

2 (x,φ ,θ)) and instead of the
log-likelihood optimizes a variational lower bound,

log pθ (φ |x) = log
∫

pθ (φ |x,z)pθ (z|x)dz (3.13)

= log
∫

pθ (φ |x,z)
qθ (z|x,φ)
qθ (z|x,φ)

pθ (z|x)dz (3.14)

= logEz∼qθ (z|x,φ)

[
pθ (φ |x,z)

pθ (z|x)
qθ (z|x,φ)

]
(3.15)

≥ Ez∼qθ (z|x,φ)

[
log pθ (φ |x,z)+ log

pθ (z|x)
qθ (z|x,φ)

]
(3.16)

= Ez∼qθ (z|x,φ)

[
log pθ (φ |x,z)

]
−KL

(
qθ (z|x,φ) ‖ pθ (z|x)

)
, (3.17)

where KL(q||p) is the Kullback-Leibler divergence [149] and (3.16) is due to Jensen’s
inequality [188]. We refer to [142, 249, 67, 223] for more details on VAEs. The CVAE
model is composed of multiple deep neural networks: an encoder network qθ (z|x,φ), a
conditional prior network pθ (z|x), and a decoder network pθ (φ |x,z). Like before, we
use θ to denote the entirety of trainable parameters of all three model components. We
show an overview of the model in Figure 3.5.

The model is trained by maximizing the variational lower bound (3.17) over the train-
ing set (X,Φ), where X = (x(1), . . . ,x(N)) are the images and Φ = (φ (1), . . . ,φ (N)) are the

33

Chapter 3 Probabilistic Circular Regression

ground truth angles. We maximize

L̂CVAE(θ |X,Φ) =
1
N

N

∑
i=1
L̂ELBO(θ |x(i),φ (i)), (3.18)

where we use L̂ELBO to denote the Monte Carlo approximation to (3.17) using S samples.
We can optimize (3.18) efficiently using stochastic gradient descent.

To evaluate the log-likelihood during testing, we use the importance-weighted sam-
pling technique proposed in [42] to derive a stronger bound on the marginal likelihood,

log pθ (φ |x) ≥ log
1
S

S

∑
j=1

pθ (φ |x,z(j)) pθ (z(j)|x)
qθ (z(j)|x,φ)

, (3.19)

z(j) ∼ qθ (z(j)|x,φ) j = 1, . . . ,S. (3.20)

Simplified CVAE. In our experiments we also investigate a variant of the afore-
mentioned model where pθ (z|x) = qθ (z|x,φ) = p(z) = N (0, I). Compared to the full
CVAE framework, this model, which we refer to as simplified CVAE (sCVAE) in the
experiments, sacrifices the adaptive input-dependent density of the hidden variable z for
faster training and test inference, as well as optimization stability. In that case the KL-
divergence KL

(
qθ ‖ pθ

)
term in L̂ELBO becomes zero, and we train for a Monte Carlo

estimated log-likelihood of the data:

L̂sCVAE(θ |X,Φ) =
1
N

N

∑
i=1

log
(1

S

S

∑
j=1

pθ (φ
(i)|x(i),z(j))

)
, (3.21)

z(j) ∼ p(z) =N (0, I), j = 1, . . . ,S. (3.22)

In some applications it is necessary to make a single best guess about the pose, that
is, to summarize the posterior p(φ |x) to a single point prediction φ̂ . We now discuss an
efficient way to do that.

3.5.3 Point Prediction

To obtain an optimal single point prediction, we utilize Bayesian decision theory [26,
213, 36] and minimize the expected loss,

φ̂∆ = argmin
φ∈[0,2π)

Eφ ′∼p(φ |x)
[
∆(φ ,φ ′)

]
, (3.23)

where ∆ : [0,2π)× [0,2π)→ R+ is a loss function. We will use the ∆AAD(φ ,φ
′) loss

which measures the absolute angular deviation (AAD). To approximate (3.23) we draw

34

3.6 Experiments

S samples {φ j} from pθ (φ |x) and then use the empirical approximation of [213],

φ̂∆ = argmin
j=1,...,S

1
S

S

∑
k=1

∆(φ j,φk). (3.24)

We now evaluate our models both in terms of uncertainty, as well as in terms of point
prediction quality.

3.6 Experiments
This section presents the experimental results on several challenging head and object
pose regression tasks. Section 3.6.1 introduces the experimental setup including used
datasets, network architecture and training setup. In Section 3.6.2 we present and discuss
qualitative and quantitative results on the datasets of interest.

3.6.1 Experimental Setup

Network architecture. We build our probabilistic framework on top of the Biternion
network approach. Therefore, for all the experiments on the head pose regression, we
use the same deep batch-normalized VGG-style network [241] architecture as in [28].
The architecture consists of six convolutional layers with 24, 24, 48, 48, 64 and 64
feature channels, respectively, followed by a fully-connected layer of a variable length.
The final layer was set to match the number of required parameters of the probabilistic
model. For the CVAE, the same architecture is used for both the encoder and decoder
network.

For the experiments on the PASCAL3D+ dataset [276], we use InceptionResNet [256]
as a backbone architecture and jointly predict distributions over three angles (azimuth,
elevation and tilt). We use a separate model for each class of objects and consider con-
structing a single shot probabilistic object detector and pose estimator a future work. All
models were implemented in Keras [53] using the TensorFlow [9] back-end. Code and
data for all the experiments are available 1.

Training. We optimize using Adam [141] and perform random search proposed
in [27] for finding the best values of hyper-parameters such as dropout values, batch size,
fully connected layers sizes, learning rate and other optimizer parameters. For the head-
pose estimation tasks, we train all networks for 1000 epochs, with an early stopping in
case of no improvement of validation loss after 200 consecutive steps. For PASCAL3D+,
we train for 200 epochs with an early stopping after 10 epochs of no improvement.

Head pose datasets. We evaluate all methods together with the non-probabilistic
BiternionVGG baseline on three diverse (in terms of image quality and precision of pro-

1https://github.com/sergeyprokudin/deep_direct_stat

35

https://github.com/sergeyprokudin/deep_direct_stat

Chapter 3 Probabilistic Circular Regression

Table 3.1: Quantitative results on the IDIAP head pose estimation dataset [195] for the
three head rotations pan, roll and tilt. In the situation of fixed camera pose, lightning
conditions and image quality, all methods show similar performance (methods are con-
sidered to perform on par when the difference in performance is less than standard error
of the mean).

estimated pose component pan tilt roll
MAAD log-likelihood MAAD log-likelihood MAAD log-likelihood

Beyer et al. ([28]), fixed κ 5.8◦±0.1∗ 0.37±0.01 2.4◦±0.1 1.31±0.01 3.1◦±0.1 1.13±0.01
Ours (single von Mises) 6.3◦±0.1 0.56±0.01 2.3◦±0.1 1.56±0.01 3.4◦±0.1 1.13±0.01
Ours (mixture-CVAE) 6.4◦±0.1 ≈ 0.52±0.02 2.9◦±0.1 ≈ 1.35±0.01 3.5◦±0.1 ≈ 1.05±0.02
*standard error of the mean (SEM).

Table 3.2: Quantitative results on the CAVIAR-o [77] and TownCentre [24] coarse gaze
estimation datasets. We see clear improvement in terms of quality of probabilistic pre-
dictions for both datasets when switching to mixture models that allow to output multiple
hypotheses for gaze direction.

CAVIAR-o TownCentre
MAAD log-likelihood MAAD log-likelihood

Beyer et al. ([28]), fixed κ 5.74◦±0.13 0.262±0.031 22.8◦±1.0 −0.89±0.06
Ours (single von Mises) 5.53◦±0.13 0.700±0.043 22.9◦±1.1 −0.57±0.05
Ours (mixture-finite) 4.21◦±0.16 1.87±0.04 23.5◦±1.1 −0.50±0.04

vided ground truth information) headpose datasets: IDIAP head pose [195], TownCen-
tre [24] and CAVIAR [77] coarse gaze estimation. The IDIAP head pose dataset contains
66295 head images stemmed from a video recording of a few people in a meeting room.
Each image has a complete annotation of a head pose orientation in form of pan, tilt and
roll angles. We take 42304, 11995 and 11996 images for training, validation, and test-
ing, respectively. The TownCentre and CAVIAR datasets present a challenging task of a
coarse gaze estimation of pedestrians based on low resolution images from surveillance
camera videos. In case of the CAVIAR dataset, we focus on the part of the dataset con-
taining occluded head instances (hence referred to as CAVIAR-o in the literature). We
use (10802, 5444, 5445) and (6916, 874, 904) images for the training-validation-testing
split for the CAVIAR and TownCentre datasets, respectively.

PASCAL3D+ object pose dataset. The Pascal 3D+ dataset [276] consists of images
from the Pascal [74] and ImageNet [64] datasets that have been labeled with both de-
tection and continuous pose annotations for the 12 rigid object categories that appear in
Pascal VOC12 [74] train and validation set. With nearly 3000 object instances per cate-
gory, this dataset provide a rich testbed to study general object pose estimation. In our
experiments on this dataset we follow the same protocol as in [254, 267] for viewpoint
estimation: we use ground truth detections for both training and testing, and use Pascal
validation set to evaluate and compare the quality of our predictions.

36

3.6 Experiments

Table 3.3: Results on PASCAL3D+ viewpoint estimation with ground truth bounding
boxes. First two evaluation metrics are defined in [267], where Acc π

6
measures accuracy

(the higher the better) and MedErr measures error (the lower the better). Additionally,
we report the log-likelihood estimation logL of the predicted angles (the higher the bet-
ter). We can see clear improvement on all metrics when switching to probabilistic setting
compared to training for a purely discriminative loss (fixed κ case).

aero bike boat bottle bus car chair table mbike sofa train tv mean
Acc π

6
(Tulsiani et al.[267]) 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.81

Acc π

6
(Su et al.[254]) 0.80 0.82 0.62 0.95 0.93 0.83 0.75 0.86 0.86 0.85 0.82 0.89 0.83

Acc π

6
(Ours, fixed κ) 0.83 0.75 0.54 0.95 0.92 0.90 0.77 0.71 0.90 0.82 0.80 0.86 0.81

Acc π

6
(Ours, single v.Mises) 0.87 0.78 0.55 0.97 0.95 0.91 0.78 0.76 0.90 0.87 0.84 0.91 0.84

Acc π

6
(Ours, mixture-sCVAE) 0.89 0.83 0.46 0.96 0.93 0.90 0.80 0.76 0.90 0.90 0.82 0.91 0.84

MedErr (Tulsiani et al.[267]) 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6
MedErr (Su et al.[254]) 10.0 12.5 20.0 6.7 4.5 6.7 12.3 8.6 13.1 11.0 5.8 13.3 10.4
MedErr (Ours, fixed κ) 11.4 18.1 28.1 6.9 4.0 6.6 14.6 12.1 12.9 16.4 7.0 12.9 12.6
MedErr (Ours, single v.Mises) 9.7 17.7 26.9 6.7 2.7 4.9 12.5 8.7 13.2 10.0 4.7 10.6 10.7
MedErr (Ours, mixture-sCVAE) 9.7 15.5 45.6 5.4 2.9 4.5 13.1 12.6 11.8 9.1 4.3 12.0 12.2
logL(Ours, fixed κ) -0.89 -0.73 -1.21 0.18 2.09 1.43 -0.08 0.69 -0.50 -0.75 0.06 -1.02 −0.07±0.15
logL(Ours, single v.Mises) 0.19 -1.12 -0.30 2.40 4.87 2.85 0.42 0.79 -0.72 -0.54 2.52 0.52 1.17±0.07
logL(Ours, mixture-sCVAE) 0.60 -0.73 -0.26 2.71 4.45 2.52 -0.58 0.08 -0.62 -0.64 2.05 1.14 1.15±0.07

3.6.2 Results and Discussion

Quantitative results. We evaluate our methods using both discriminative and proba-
bilistic metrics. We use discriminative metrics that are standard for the dataset of interest
in order to be able to compare our methods with previous work. For headpose tasks we
use the mean absolute angular deviation (MAAD), a widely used metric for angular re-
gression tasks. For PASCAL3D+, we use the metrics advocated in [267]. Probabilistic
predictions are measured in terms of log-likelihood [101, 96], a widely accepted scor-
ing rule for assessing the quality of probabilistic predictions. We summarize the results
in Tables 3.1, 3.2 and 3.3. It can be seen from results on IDIAP dataset presented in
Table 3.1 that when camera pose, lightning conditions and image quality are fixed, all
methods perform similarly. In contrast, for the coarse gaze estimation task on CAVIAR
we can see a clear improvement in terms of quality of probabilistic predictions for both
datasets when switching to mixture models that allow to output multiple hypotheses for
gaze direction. Here, low resolution, pure light conditions and presence of occlusions
create large diversity in the level of head pose expressions. Finally, on the challenging
PASCAL3D+ dataset, we can see clear improvement on all metrics and classes when
switching to a probabilistic setting compared to training for a purely discriminative loss
(fixed κ case). Our methods also show competitive or superior performance compared
to state-of-the-art methods on disriminative metrics advocated in [267]. Method of [254]
uses large amounts of synthesized images in addition to the standard training set that
was used by our method. Using this data augmentation technique can also lead to an

37

Chapter 3 Probabilistic Circular Regression

Figure 3.6: Qualitative results of our simpified CVAE model on the PASCAL3D+ dataset.
Our model correctly quantifies the uncertainty of pose predictions and is able to model
ambiguous cases by predicting complex multimodal densities (second row). Last row
shows failure cases (confusing head and tail of the object with high confidence, uniform
densities in hard cases).

improved performance of our method and we consider this a future work.
Qualitative results. Examples of probabilistic predictions for PASCAL3D+ dataset

are shown in Figure 3.6. The first row highlights the effect we set out to achieve: to
correctly quantify the level of uncertainty of the estimated pose. For easier examples
we observe sharp peaks and a highly confident detection, and more spread-out densities
otherwise. The examples on the second row highlight the advantage of mixture models,
which allow to model complex densities with multiple peaks corresponding to more than
one potential pose angle. Failure scenarios are highlighted in the last row: high confi-
dence predictions in case if the model confuses head and tail of an object and tendency
to uniform distributions (κ −→ 0) for hard classes.

Uncertainty under image blur. To test whether the predicted uncertainty is cali-
brated, we performed an experiment where we controlled the image quality by Gaussian

38

3.7 Conclusion

Figure 3.7: Effect of Gaussian blur on the log-likelihood performance. Aggregated re-
sults for 1000 images from the IDIAP test set.

Figure 3.8: Probabilistic predictions adapt to increased level of blur in the image. Sam-
ple image from the IDIAP dataset.

blurring. For 1000 test images from IDIAP we applied blurs at different bandwidths and
recorded log-likelihood for the ”pan” prediction of all models. The empirical result is
shown in Figure 3.7 and an example image is shown in Figure 3.8. From the results
we make the following observations. For all models, the performance in log-likelihood
degrades with decreasing image quality. CVAE has the best likelihood estimate and is
thus the best calibrated method. Both the baseline and the single vM model deteriorate
the quickest in terms of log-likelihood. The simple extension of estimating κ success-
fully turns the baseline into a probabilistic model. The finite mixture model and the
CVAE turn out to be most robust among the trained models. All probabilistic models
retain a reasonable likelihood, the baseline model fails due to the fixed κ and the simple
unimodal extension already performs significantly better.

3.7 Conclusion
In this chapter, we demonstrated a new probabilistic model for object pose estimation
that is robust to variations in input image quality and accurately quantifies its uncertainty.
More generally, our results confirm that our approach is flexible enough to accommodate
different output domains such as angular data and enables rich and efficient probabilistic

39

Chapter 3 Probabilistic Circular Regression

deep learning models. We train all models by maximum likelihood but still find it to
be competitive with other works from the literature that explicitly optimize for point
estimates even under point estimate loss functions. In the future, in order to improve
our predictive performance and robustness, we would also like to handle uncertainty of
model parameters [139] and to use the Fisher-von Mises distribution to jointly predict a
distribution of azimuth-elevation-tilt [173].

40

Chapter 4

Deep Probabilistic Models in
Real-World Systems

As was rightly stated by George E.P. Box, all models are wrong but some are useful
[37]. We have observed in Chapter 2 that none of the uncertainty quantification methods
would work ideally in all data distribution scenarios and tasks. It is therefore important
to observe how these models behave in practice; in this chapter, we will explore how
variations of deep probabilistic frameworks discussed in previous sections are deployed
in critical real-world systems that have high demand in computational efficiency and
robustness of generated predictions.

In Section 4.1, we will investigate how deep probabilistic regression models can be ef-
ficiently utilized in brain imaging for robust determination of model contrast parameters.
Substituting conventional methods of the field with neural network based approach leads
to significant improvements in computational efficiency, while also providing useful and
reliable uncertainty estimates.

In Section 4.2, we will use the variational auto-encoder regression framework for the
robust real-time trajectory prediction of the ball in robotic table tennis environment.
Again, we will show how the developed method outperforms classic approaches based
on differential equations, as well as other deep network like long short-term memory
approaches (LSTMs) that are regularly utilized for temporal prediction. The predicted
trajectories are then used in real-time planning of robotic arm movement.

Importantly, both works were done in close collaboration with experts of the corre-
sponding fields, with the strong focus on building reliable holistic systems. The con-
tribution of the author of the present thesis was mainly in providing expertise in deep
uncertainty quantification methods, as well as in creating early prototypes of the respec-
tive components. Therefore, in the follow up sections we will restrict ourselves to a brief
formulation of the domain problem ans the essence of technical contribution, as well as
the qualitative description of the most important results. We refer to original publications
for the comprehensive description of these projects [93, 100].

41

Chapter 4 Deep Probabilistic Models in Real-World Systems

Figure 4.1: DeepCEST framework [93]. Deep neural network is used to shortcut conven-
tional MRI CEST-spectra model parameter determination (PCA denoising, Lorentzian
model least square fitting), as well as to provide uncertainty measurements. This signif-
icantly reduces the amount of time it takes to generate final contrast maps, making an
important step towards online clinical applications of CEST contrasts.

4.1 DeepCEST: Robust MRI Parameter Determination
Problem formulation. Magnetic resonance imaging (MRI) [159, 43] is a powerful tech-
nique that is nowadays widely used in both everyday medical diagnosis and scientific
research. The imaging principle of MRI is based on polarizing atoms of hydrogen (abun-
dant in organic tissues) with a strong magnetic field. The time it takes for the atoms to
return to its normal state (so called relaxation time) will then provide the information
on the type of the tissue it is coming from. E.g., in case of brain imaging, gray and
white matter hydrogen will have different relaxation times. This information is regularly
captured in the form of spectrography data provided for each tissue voxel. The obtained
and processed differences, or contrast maps, can then be used in order to analyze the
structure and detect pathologies in the tissues of interest.

Chemical exchange saturation transfer (CEST) [239, 268] is a relative novel MRI tech-
nique that, compared to conventional techniques, allows to detect chemical compounds
in low concentrations. While have already being proved useful in the analysis of tumor
cells [226], CEST imaging often requires complex and time-consuming mathematical
modeling before contrast generation, e.g. Lorentzian models [278, 273, 98]. This mod-
eling can be error-prone and time-consuming, because it commonly must be carried out
offline and sometimes requires user interaction and expert knowledge.

Here, we introduce a probabilistic deep learning approach to shortcut conventional
Lorentzian least square fitting analysis (Figure 4.1). By making use of the previously
fitted data, this approach addresses the mentioned problems of complex non-linear mod-
els regarding evaluation speed and parameter fine-tuning. The objective is to produce
several informative CEST contrasts simultaneously and robustly with the trained neural
network, in a fraction of the normal evaluation time. At the same time, the networks are
supposed to tell if predictions are trustworthy, or—more importantly—if they are not,

42

4.2 Real-Time Trajectory Prediction in High Speed Robotics

allowing confident interpretation of contrast changes.
Technical contribution. Abstracting away the MRI-related technical details (we refer

to original publication [93] for this), the task of CEST model parameter determination
can be formulated in the following way.

For every brain voxel, the noisy raw spectrography data x ∈ R55 (so called Z-spectra
in CEST literature) is provided as input to the system that estimates parameters of a
specific spectral line model; in this case, multiple Lorentzian models [278, 273] with 10
parameters in total y ∈ R10 were used. Conventionally, this process is done in several
steps that involve denoising [38] and least square fitting of the Lorentzian parameters
[98]. This overall process regularly takes approximately 10 minutes per subject.

The technical contribution of the thesis in this project is defined by substituting the
least square fitting procedure described above with a simple deep probabilistic model
that directly regresses the Lorentzian parameters together with the corresponding un-
certainty estimates (Figure 4.1). The compact deep model is comprised of two hidden
fully connected layers of size 100, each followed by an exponential linear unit func-
tion [54] that regresses mean and variance of the 10-dimensional Gaussian distribution
pθ (x) =N (µθ (x),σθ (x)). Following the approach described in Section 2.3.1, the model
is then trained to minimize negative log-likelihood (equation 2.8) of the parameters ob-
tained with the conventional pipeline.

The network was trained on brain voxel data from 3 healthy human subjects (135,752
training samples in total). Importantly, to improve the quality of provided uncertainty es-
timates, the training data was augmented with samples that contained additive Gaussian
noise of different magnitude, as well as shifted versions of Z-spectra.

Results. While being trained on only three healthy subjects, the network was able to
robustly reproduce the results of conventional fitting on the unseen healthy subject, as
well as brain tumor patient (please see the original paper [93] for extensive quantitative
evaluation). Areas of increased uncertainty predicted by the model were also coherent
with the actual area of high deviation from the ground truth parameters. Finally and
probably most importantly, the overall deepCEST framework was able to achieve these
results in only a fraction of time of the conventional least square fitting (1 second instead
of 10 minutes), bringing down computational costs of obtaining CEST contrast maps in
clinical environments.

4.2 Real-Time Trajectory Prediction in High Speed
Robotics

Problem formulation. Dynamic high speed robotics tasks [82, 40, 182] often require
accurate methods to forecast the future value of a physical quantity based on previous
measurements while respecting the real-time constraints of the particular application.
For example, to hit or catch a flying ball with a robotic system [182], we need to predict

43

Chapter 4 Deep Probabilistic Models in Real-World Systems

Figure 4.2: Probabilistic ball trajectory prediction in robotic table tennis setup [100].
The observed part of trajectory is encoded with conditional variational framework
(CVAE). Samples from the latent distribution are then passed through decoding network
in order to generate distribution over future positions of the ball. The whole frame-
work runs in real-time (8-10ms per prediction) and is integrated into dynamic high speed
robotic system [99].

accurately and fast the trajectory of the ball based on the previous observations that
are often noisy and might include outliers or missing data. Note that the time it takes to
compute the predictions, called latency, is as important for the application as the accuracy
of predictions. In our previous example, the prediction of the future ball positions are
only useful if the computation time is significantly faster than the ball itself.

Both physics-based [284] and data-driven [35] models are used for trajectory forecast-
ing. Physical models based on differential equations have been typically preferred to
model and predict trajectories in high speed robotic systems [182] because they are rel-
atively fast in prediction and are well-studied models known to provide reasonably good
predictions for many problems. However, in some applications like pneumatic muscle
robots [41], the best known physic-based models are not accurate enough to be useful
for control. Even in cases where the physics is relatively well-known, estimating all the
relevant variables to model the system can be difficult. In table tennis, for example, es-
timating the spin of the ball in real time from images is hard. In addition, small lens
distortion on the vision system makes the position estimates not equally accurate in all
the robot work space, rendering the estimation of the initial position and velocity less
accurate. A data-driven approach, on the other hand, may have the potential to estimate
the spin from its effect on the trajectory and ignore the lens distortion as long as it is
present both at training and test time. However, popular data-driven methods for time
series modeling like recurrent neural networks [197] and auto-regressive models [35]
suffer from cumulative errors that render trajectory forecasting inaccurate as we predict
farther into the future. In this section, we propose a novel method for trajectory predic-
tion that mixes the power of deep learning and conditional generative models to provide
a data-driven approach for accurate trajectory forecasting with the low latency required

44

4.2 Real-Time Trajectory Prediction in High Speed Robotics

Figure 4.3: Comparison between proposed trajectory prediction framework (TVAE),
physics-based model [182] and LSTM [121] on (a) simulated and (b) real data. Note that
in the simulated data scenario our model performs as well as the differential equation-
based prediction, which was the model used in simulation and therefore is the best we can
get. On the real data, our model outperforms both the LSTM and differential equation
models, specially as we predict farther into the future. Results from [100].

by real-time applications.
Technical contribution. The proposed model for ball trajectory prediction (developed

together with the main author of [100]) is depicted in Figure 4.2. It closely resembles
the conditional variational autoencoder model (CVAE) we have discussed in Section
3.5.2. Here, we provide the observed part of a trajectory y1:t−1 to a simple two-layer
encoder network in order to estimate the parameters of a latent Gaussian distribution
qφ ∼ N (µθ (y1:t−1),σθ (y1:t−1)). During training, we also provide the full trajectory to
the same encoder and aim to minimize the Kullback-Leibler divergence [149] between
the two induced latent distributions KL(qφ (z|y1:T)||qφ (z|y1:t−1)). Samples z∼ qφ from
this distribution are then passed through a simple two-layer decoder together with the
observed trajectory path in order to produce conditional density function over possi-
ble future trajectories pθ (yt:T |z,y1:t−1). The final conditional density is then given by
marginalizing over z:

p(yt:T |y1:t−1) =
∫

pθ (yt:T |z,y1:t−1)qφ (z|y1:t−1)dz, (4.1)

which can be approximated via Monte Carlo sampling:

p(yt:T |y1:t−1) =
1
S

S

∑
i=1

pθ (yt:T |z(i),y1:t−1),z(i) ∼ qφ (z|y1:t−1). (4.2)

Results. The proposed method to predict the trajectory of a table tennis ball was
evaluated both in simulation and in the real table tennis robotic system. In case of real-

45

Chapter 4 Deep Probabilistic Models in Real-World Systems

world scenario, the system was able to robustly learn the dynamics from a relatively
small amount of observations (614 trajectories). The comparison with existing physics-
based model [182] and alternative deep learning approaches (e.g. LSTMs [121]) was
done both in terms of prediction accuracy and inference time. Overall, the developed
temporal CVAE framework clearly outperformed these competing approaches (Figure
4.3). We refer to the original publication [100] for details on quantitative analysis. Most
importantly, the low latency achieved by the final model (8-10ms per prediction) made it
possible for the probabilistic trajectory predictor to be integrated in the real-time system
that controls robotic arm movement [99].

46

Part II

Efficient 3D Shape Analysis

47

Chapter 5

Overview and Foundations
While modern physics offers multiple alternatives [255, 290], for the majority of prac-
tical purposes, the concept of representing our physical universe with the three spatial
dimensions is still a dominating one. Sensing, analyzing and rendering 3D structures
are the tasks of paramount importance in computer vision, with applications in robotics,
medical imaging, fluid dynamics and computer graphics.

In this chapter, we will review some of the recent developments in the field of 3D
shape analysis. Presenting a comprehensive history of the subject, however, goes beyond
the scope of this thesis, and we will refer to the excellent textbooks and surveys available.
Instead, we will focus on the persistent concepts and observe how recent developments
in deep learning are embracing and reinterpreting classical methodologies.

This chapter is organized as follows. Section 5.1 introduces the main sources of 3D
data. This will include brief description of the various acquisition techniques (lidars,
infrared depth cameras), as well as stereo reconstruction pipelines. Next, we will dis-
cuss available representations, including raw point clouds and voxels, as well as implicit
surface representations that recently attained renowned interest in the context of deep
learning.

Finally, we will discuss 3D data visualisation methodologies and address neural ren-
dering, the growing body of work that aims to combine or substitute classic rendering
techniques with image generators based on neural networks.

5.1 3D Data Acquisition
There are numerous ways to extract 3D shape information of the real world structures
[257]. Their applicability will significantly depend on the task at hand, available hard-
ware and imaging conditions. Below we will simply outline several popular possibilities.

3D Reconstruction from multiple images. A large and diverse set of methods was
developed to reconstruct 3D scenes from a collection of 2D images. Mutli-view stereo
(MVS) algorithms [115, 83] take a set of photos and corresponding camera parameters
in order to create a dense 3D model of the underlying scene. In order to achieve high
quality reconstructions, these methods typically make certain assumptions, the crucial
ones being scene rigidity and known camera parameters. In the most general scenario

49

Chapter 5 Overview and Foundations

Figure 5.1: Sensing 3D world: (a) multi-view stereo reconstruction [236]; (b) smart-
phone RGB-D images combined into a single 3D scene with [190]; (c) monocular depth
estimation with the pre-trained neural network from [152].

of unorganized photo collections, structure from motion (SfM) methods aim to simulta-
neously find correspondences between 2D pixels, estimate cameras parameters and find
the 3D coordinates in some canonical coordinate system [201]. Nowadays, these meth-
ods reached impressive scalability, where the whole cities can be reconstructed from a
collection of unorganized Internet photos [246, 247, 10, 236]. The process of building
a 3D map of environment together with determining the camera positions at each step
is also known as simultaneous localization and mapping (SLAM) in robotics, where the
emphasis is regularly put on the real-time performance and recurrent approach [44].

Nowadays, widely available software packages [236] combine structure from motion
and multi-view stereo algorithms in one solid pipeline, allowing everyone to create high
quality 3D models from a collection of smartphone photos (Figure 5.1a).

Depth sensors. Another approach for 3D reconstruction implies constructing specific
hardware setups for depth sensing. One such approach is based on the structured light
technique, where infrared pattern is being projected and captured by a dedicated module.
Utilized in the camera systems like early Microsoft’s Kinect, this depth sensing module
allowed to augment every pixel of a standard RGB-camera images with the correspond-
ing depth information. The set of obtained RGB-D images can then be combined into a
single coherent scene via algorithms like KinectFusion [190].

One limitation of the most structured light depth sensors is a significant quality deteri-
oration in the presence of a bright sunlight which limits their applicability and reliability
in the open environments. In these scenarios, time-of-flight based depth sensors are reg-
ularly utilized. The measurement principle is based on emitting light signal that is, being
reflected from the surface and captured back by the system, provides the information
on the distance travelled via the time difference between sending and receiving. Lidar

50

5.2 Shape Representations

(light detection and ranging) represent a popular example of this technology widely used
in critical applications like autonomous driving. While being robust in the challenging
open environments, the drawbacks of lidar sensors include high cost and relatively sparse
depth output.

Figure 5.1b shows reconstruction of the indoor scene with the structured light of a
built-in RGB-D camera of a modern smartphone.

Monocular depth and 3D estimation. Finally, with the recent advances of deep
learning, there have been also a significant progress in inferring depth maps and 3D
shapes directly from RGB images [29, 283]. While initial methods [97, 81, 285] have
been heavily tailored to specific final tasks and datasets like KITTI [88], recent works
provide a high level of generalization across wide range of natural scenes [152].

Figure 5.1c shows the depth map obtained via running a pre-trained model of [152] on
the captured indoor photo.

Using various shape priors can dramatically improve the accuracy of 3D reconstruc-
tion. E.g., using deformable 3D human models [166] as a proxy allows us to accurately
estimate 3D shape and pose of a human subject from a single image [131].

5.2 Shape Representations
Another fundamental question arising during all the steps of 3D modeling is the repre-
sentation that will best suit the application purposes. Below we will briefly review the
most common 3D data structures.

Point clouds. The natural output of the most multi-view stereo reconstruction al-
gorithms is a collection of 3D points, or a point cloud (Figure 5.2a). Every point in
the cloud have the information regarding its 3D coordinates in some canonical common
space; additionally, the information about point color, surface normal and material prop-
erties could be stored.

While providing compact yet detailed representation of a scene, point clouds are inher-
ently unstructured data. Therefore, specific neural network designs are regularly needed
that can efficiently handle order-invariant inputs [218, 220, 277]. This also motivates the
need for the generic efficient point cloud encoding technique which we will address in
Chapter 6. We also refer to [111] for a recent comprehensive survey on deep learning on
point clouds.

Voxels. One possible solution to the problem of unorganized point clouds is the pro-
cess of voxelization. In the simplest scenario of binary occupancy voxels, the 3D space is
partitioned into regular cubes of a fixed volume, and each voxel is marked as occupied if
the some point from the cloud lies inside it (Figure 5.2b). Additionally, we can store the
information about the original point inside each voxel, as well as the distance from the
point to the center of a voxel. In the latter case, this representation is regularly referred
to as truncated distance field (TDF).

Voxel representation allows us to convert unordered point clouds into regular grid data

51

Chapter 5 Overview and Foundations

Figure 5.2: Existing 3D representations: (a) point clouds, a set of unordered 3D points;
(b) occupancy voxels, regular grid data; (c) mesh polygons, surface as a set of surface
primitives; (d) implicit functions, surface as the solution to equation f (x,y,z) = 0.

and apply 3D versions of convolutional operations, one of the key ingredients of modern
deep neural networks. However, this tessellation results in a cubical growth of memory
requirements. At the same time, most voxels remain empty which results in rather sparse
inputs to learning algorithms.

A number of network architectures have been proposed that process voxel-based repre-
sentations, with applications including shape classification, segmentation and generation
[177, 219, 181, 224, 133]. One of the interesting directions is substituting simple occu-
pancy flags and truncated distances stored inside each voxel with rich features, including
trainable deep features [243, 164].

Meshes. In the field of computer graphics, probably the most utilized surface rep-
resentation is polygon mesh which represents a shape with a set of 3D vertices V and
surface primitives, or mesh faces F :

V = {v1, . . . ,vn},vk ∈ R3, (5.1)
F = {(vi1,vi2,vi3)},vij ∈V , (5.2)

where each face fi ∈ F defines a triangle formed by vertices (vi1,vi2,vi3).
Mesh model can be obtained from a raw point cloud with the algorithms like Poisson

reconstruction [138]. It is a regular final step in 3D reconstruction pipelines which allows
the usage of the obtained captured scene in various computer graphics applications.

Mesh is also a popular representation of choice in the field of deformable 3D modeling
[32, 17, 129]. High-fidelity mesh-based models exist for human bodies [165], faces
[157] and hands [228], as well as various animals [289, 131]. However, in order utilize

52

5.3 Rendering

the expressive power of these models (i.e. to be able to change pose and shape of the
captured body), we regularly need to bring the captured mesh in correspondence with
some canonical mesh template defined by the deformable 3D model. This process is
known as registration and is traditionally addressed with some iterative optimization
procedures [33, 120]. In the next chapter, we will show how the developed novel basis
point set representation can be utilized to regress human mesh model [165] directly from
the noisy point clouds.

Multiple deep learning methods exist that infer meshes directly from 2D images [131,
113, 92] or build generative models of mesh data [222, 258].

Implicit 3D representations. Finally, the 3D surface S can also be represented im-
plicitly, e.g. by defining a corresponding level set function:

f (x,y,z) : R3→ R, (5.3)
(x,y,z) ∈ S⇔ f (x,y,z) = 0. (5.4)

Originating from physics research [199], these implicit surface representations have
soon proved to be useful in many other areas, including computer vision and graphics
[237]. In the recent years, they have also gained a significant new wave of interest from
deep learning practitioners [179, 202, 232, 244]. The main idea beyond this growing
body of work on deep implicit functions is to model function (5.3) (or similar) with a deep
neural network fθ (x,y,z). The capacity and architecture of the network will then define
the fidelity of the obtained representation. This paradigm have already been proved use-
ful in various 3D modeling tasks, especially the ones that include analysis and synthesis
of complex topologies with large amount of high frequency details [232, 52, 107, 233].

5.3 Rendering
One of the core tasks of 3D modeling is to provide means of efficient geometry visual-
ization. Computer graphics find its applications in diverse set of fields, including various
media content generation, virtual reality, physics and robotics simulation environments
and architecture design and planning.

Mesh-based rasterization. Probably the most widely applied and developed method
of geometry rendering is based on polygon mesh models discussed in the previous sec-
tion. In this scenario, mesh polygons (5.1-5.2) are projected into 2D camera plane and
their visible areas are efficiently determined by a process commonly known as rasteriza-
tion. Importantly, algorithms like z-buffer [262] and back face culling [70] will dramat-
ically minimize the amount of computation by keeping track of visible surfaces. Next,
texture maps are used that will assign RGB color values to each point in each triangle
polygon. This, together with material properties and information about surface normals,
will then define how the final pixel colors should change based on the light source lo-

53

Chapter 5 Overview and Foundations

Figure 5.3: Demonstration of the state-of-the-art rendering systems: (a) Unreal Engine
5 rendering pipeline 1; (b) NVIDIA RTX real time ray tracing 2; (c) synthetic face gen-
erated with StyleGAN2 network [135].

cation via deterministic shading function. Additionally, displacement maps and other
features can be introduced to model fine details and effects of the rendered 3D scene. We
refer to excellent textbooks on modern computer graphics approaches for more informa-
tion [209, 11].

Nowadays, efficient rasterization algorithms and availability of powerful graphics pro-
cessing units allow impressive real time visualizations of complex dynamic scenes. Fig-
ure 5.3a shows a screenshot from one of the latest versions of the popular Unreal Engine
rendering framework.

Voxels and points can also be used as rendering primitives instead of polygon meshes,
e.g. when computational efficiency or modeling high frequency fine details are in focus
[145, 108, 57].

Ray tracing. One of the main limitations of conventional polygon-based rasterization
discussed above is the shading model that assumes a single interaction between surface
and light source. Ray tracing group of techniques aim to overcome this by physically
based modeling of the full light ray path as it travels from the light source to the target
camera pixel. This allows to model realistic effects like multiple light reflections (Figure
3b).

Ray tracing is considerably more demanding computationally compared to the mesh-
based rasterization techniques; initially, it was mostly used to generate high quality im-
ages or video sequences in the offline regime, e.g. for the cinema production or archi-
tecture projects. However, this is also changing rapidly thanks to the increased GPU
performance and improved rendering algorithms: recently, NVIDIA have released first
real-time ray tracing technology with its RTX platform (Figure 5.3b).

1https://youtu.be/qC5KtatMcUw
2https://youtu.be/pNmhJx8yPLk

54

https://youtu.be/qC5KtatMcUw
https://youtu.be/pNmhJx8yPLk

5.4 Conclusion

Neural rendering. Despite the tremendous progress over last decades, classic render-
ing techniques discussed above face fundamental limitations due to their heavy reliance
on the quality and resolution of underlying geometry primitives, as well as deterministic
rendering procedures. An example of this can be seen in the Figure 3a, where the realism
of high frequency, thin 3D structures like hair of the character is hindered by the smooth
geometry used for modeling.

At the same time, deep learning methods like [134] have shown impressive capabilities
in generating photorealistic images with high quality textures (Figure 5.3c). While ini-
tial methods based on generative adversarial networks (GANs) had rather limited control
over the synthesis, large corpus of recent works have explored the ways to additionally
condition and constrain the process [127, 271]. This includes using scene sketches [46],
segmentation maps [127, 271] and full initial mesh renders as inputs [175], as well as
enforcing some form of 3D geometry consistency across multiple generated images of
the same scene [191]. We refer to [260] for a comprehensive survey on the recent devel-
opments in neural rendering.

In Chapter 7, we will review the last group of methods in greater details and present
a new technique that combines efficient point-based graphics with the follow-up image
enhancement done by the neural renderer.

5.4 Conclusion
In the present chapter we have briefly recapped the fundamental steps of 3D modeling.
We have discussed several 3D representation schemes and observed their potential ad-
vantages and limitations. In the next chapter, we will present basis point set encoding,
simple and efficient 3D representation that combines fine geometry preservation pro-
vided by raw point clouds with the advantage of having compact fixed-length vector
descriptor of a scene that can be provided to any machine learning algorithm as input.

We have also discussed state-of-the-art approaches in photorealistic rendering. In
Chapter 7, we will continue this discussion with a strong focus on neural approaches
for human model rendering. We will present SMPLpix, new rendering technique that
combines classic deformable 3D models like SMPL [166] with the efficient image-to-
image neural translation models, allowing us to create controllable photorealistic human
avatars.

55

Chapter 6

Point Cloud Analysis with Basis Point
Sets

6.1 Introduction
Point cloud data is becoming more ubiquitous than ever: anyone can create a point cloud
from a set of photos with easy-to-use photogrammetry software or capture a point cloud
directly with one of many consumer-grade depth sensors available worldwide. These
sensors will soon be used in most aspects of our daily lives, with autonomous cars
recording streets and city environments and VR and AR devices recording our home
environment on a regular basis. The resulting data represents a great opportunity for
computer vision research: it complements image data with depth information and opens
up new fields of research.

However, point cloud data itself is unstructured. This leads to a variety of prob-
lems. First, point clouds have no fixed cardinality, i.e. their size varies depending on
the recorded scene. They are also not ‘registered’ in the sense that it is not trivial to
find correspondences between points across recordings of the same or of a similar scene.
Point clouds have no notion of neighborhood. This means that it is not clear how convo-
lutions, one of the critical operations in deep learning, should be performed.

In this chapter, we present a novel solution to the aforementioned problems, in par-
ticular the varying cloud cardinality. For an illustration, see Figure 7.1. We propose to
encode point clouds as minimal distances to a fixed set of points, which we refer to as
basis point set. This representation is vastly more efficient than classic extensive occu-
pancy grids: it reduces every point cloud to a relatively small fixed-length vector. The
vector length can be adjusted to meet computational constraints for specific applications
and represents a trade-off between fidelity of the encoding and computational efficiency.
Compared to other encodings of point clouds, the proposed representation also has an
advantage in being more efficient with the number of values needed to preserve high
frequency information of surfaces.

Given its fixed length, the presented encoding can be used with most of the standard
machine learning techniques. In this paper, we apply mostly artificial neural networks
to build models with it due to their popularity and accuracy. In particular, we analyze

57

Chapter 6 Point Cloud Analysis with Basis Point Sets

Figure 6.1: Basis point set encoding for point clouds. The encoding of a point cloud
X = {x1, . . . ,xn} is a fixed-length feature vector, computed as the minimal distances to a
fixed set of points B = [b1, ...,bk]

T . This representation can be used as input to arbitrary
machine learning methods, in particular it can be used as input for off-the-shelf neural
networks. This leads to substantial performance gains as compared to occupancy grid
encoding or specialized neural network architectures without sacrificing the accuracy of
predictions.

the performance of the encoding in two applications: point cloud classification and mesh
registration over noisy 3D scans (Figure 6.2).

For point cloud classification, we achieve the same accuracy on the ModelNet40 [274]
shape classification benchmark as PointNet [218], while using an order of magnitude less
parameters and three orders of magnitudes less floating point operations. To demonstrate
the versatility of the encoding, we show how it can be used for the task of mesh registra-
tion. We use the encoded vectors as input to a neural network that directly predicts mesh
vertex positions. While showing competitive performance to the state-of-the-art methods
on the FAUST dataset [33], the main advantage of our method is the ability to produce
an aligned high resolution mesh from a noisy scan in a single feed-forward pass. This
can be executed in real time even on a non-GPU laptop computer, requiring no additional
post-processing steps. We make our code for both presented tasks available, as well as a
library for usage in other projects1.

1https://github.com/sergeyprokudin/bps

58

https://github.com/sergeyprokudin/bps

6.2 Related Work

Figure 6.2: Overview of our proposed model for the task of mesh registration to a noisy
scan. The computed minimal distances to the selected basis point set are provided as
input to a simple dense network with two blocks of two fully connected layers. The
model directly predicts mesh vertex positions, with a forward pass taking less than 1ms.
We also propose a model for shape classification; see Section 6.5 for details.

6.2 Related Work

In this section, we continue the discussion of existing 3D data representations and models
and put them in relation to the presented method. We focus on representations that are
compatible with deep learning models, due to their high performance on a variety of 3D
shape analysis tasks.

Point clouds. Numerous methods [218, 220, 238, 277, 156] were proposed that pro-
cess 3D point clouds directly, amongst which the PointNet family of models gained the
most popularity. This approach processes each point separately with a small neural net-
work followed by an aggregation step with a pooling operation to reason about the whole
point cloud. Similar pooling-based approaches for achieving feature invariance on gen-
eral unordered sets were proposed in other works as well [277]. Other methods working
directly on point clouds organize the data in kd-trees and other graphs [144, 84, 151].
These structures define a neighborhood and thus convolution operations can be applied.
Vice versa, specific convolutional filters can be designed for sparse 3d data [259, 238].

We borrow several ideas from these works, such as using kNN-methods for searching
efficiently through local neighborhoods or achieving order invariance through the use of
pooling operations over computed distances to basis points. However, we believe that
the proposed encoding and model architectures offer two main advantages over existing
point cloud networks: (a) higher computational efficiency and (b) conceptually simpler,
easy-to-implement algorithms that do not rely on a specific network architecture or re-
quire custom neural network layers.

Occupancy grids. Similar to pixels for 2D images, occupancy grid is a natural way of

59

Chapter 6 Point Cloud Analysis with Basis Point Sets

encoding 3D information. Numerous deep models were proposed that work with occu-
pancy grids as inputs [177, 219, 181]. However, the main disadvantage of this encoding is
its cubic complexity. This results in a high amount of data needed to accurately represent
the surface. Even relatively large grids by our current memory standards (1283,2563) are
not sufficient for an accurate representation of high frequency surfaces like human bod-
ies. At the same time, this type of voxelization results in very sparse volumes when used
to represent 3D surfaces: most of the volume measurements are zeros. This makes this
representation an inefficient surface descriptor in multiple ways. A number of methods
was proposed to overcome this problem [270, 224]. However, the problem of repre-
senting high frequency details remains, together with a large memory footprint and low
computational efficiency for running convolutions.

Signed distance fields. Truncated signed distance fields (TSDFs) [58, 190, 225,
250, 280, 60, 202] can be viewed as a natural extension of occupancy grids: they store
distance-to-surface information in grid cells instead of a simple occupancy flag. While
this partially resolves the problem of representing surface information, the cubic require-
ment for memory and the low computational efficiency for convolutions remains. In
comparison, our method can be viewed as one that uses an arbitrary subset of points
from the distance field. The crucial difference is that the distance field we sample from
is unsigned and non-truncated, and the number of samples is proportional to the number
of points in the original cloud. We further investigate the connection between occupancy
grids, TSDFs and BPS in Section 6.4.1.

2D projections. Another common strategy is to project 3D shapes to 2D surfaces and
then apply standard frameworks for 2D input processing. This includes depth maps [274],
height maps [234], as well as a variety of multi-view models [253, 132, 76]. Closely re-
lated are approaches that project 3D shapes into spheres and apply spherical convolutions
to achieve rotational invariance [73, 55]. While projection-based approaches show high
accuracy in discriminative tasks (classification, shape retrieval), they are fundamentally
limited in representing shapes that have multiple ‘folds’, invisible from external views.
In comparison, our encoding scheme can accurately preserve surface information of ob-
jects with arbitrary topology as we show in our experiments in Section 6.4.

We now describe the algorithm for constructing the proposed basis point representa-
tion from a given point cloud.

6.3 Method

Normalization. The presented encoding algorithm takes a set of point clouds as input
X = {Xi, i = 1, . . . , p}. Every point cloud can have a different number of points ni:

Xi = {xi1, . . . ,xini},xi j ∈ Rd, (6.1)

60

6.3 Method

where d = 3 for the case of 3D point clouds. In first step, we normalize all point clouds
to a fit a unit ball:

xi j =
xi j−Exi j∼Xixi j

maxxi j∈Xi ‖xi j−Exi j∼Xixi j‖
,∀i, j. (6.2)

BPS construction. Next, we form a basis point set. For this task, we sample k random
points from a ball of a given radius r:

B = [b1, ...,bk]
T ,b j∈Rd,‖b j‖<= r. (6.3)

It is important to mention that this set is arbitrary but fixed for all point clouds in the
dataset. r and k are hyperparameters of the method, and k can be used to determine the
trade-off between computational complexity and the fidelity of the representation.

Feature calculation. Next, we form a feature vector for every point cloud in a dataset
by computing the minimal distance from every basis point to the nearest point in the
point cloud under consideration:

xB
i = [min

xi j∈Xi
d(b1,xi j), . . . , min

xi j∈Xi
d(bk,xi j)]

T ,xB
i ∈ Rk. (6.4)

Alternatively, it is possible to store the full directional information in the form of delta
vectors from each basis point to the nearest point in the original point cloud:

XB
i =

{(
argmin

xi j∈Xi

d(bq,xi j)−bq
)}
∈ Rk×d. (6.5)

Other information about nearest points (e.g., RGB values, surface normals) can be
saved as part of this fixed representation. The feature computation is illustrated in Fig-
ure 7.1. The formulas (6.4) and (6.5) give us fixed-length representations of the point
clouds that can be readily used as input for learning algorithms.

BPS selection strategies. We investigate a number of basis point selection strategies
and provide details of these experiments in Section 6.4.2. Overall, random sampling
from a uniform distribution in the unit ball provides a good trade-off between efficiency,
universality of the generation process and surface reconstruction results, and we apply
it throughout the experiments in this paper. Alternatively, an extensive 3D grid of basis
points could be used in tandem with any existing 3D convolutional neural network in or-
der to achieve maximum performance at the cost of increased computational complexity.

Complexity. In this work, we use Euclidean distances between points for creating
our encoding, but other metrics could be used in principle. Since we are working with

61

Chapter 6 Point Cloud Analysis with Basis Point Sets

Figure 6.3: Surface encoding with occupancy grids (a,c) and basis point sets (b,d). With
the same length of encoding N our method can capture surface details more accurately.
Even when using only k ≈ 103 basis points, our method can capture details of a surface
(d).

3D point clouds (which corresponds to having a small value for d), the nearest neighbor
search can be made efficient by using data structures like ball trees [196]. Asymptoti-
cally, O(n logn) operations are needed for constructing a ball tree from the point cloud
Xi and O(k logn) operations are needed to run nearest neighbor queries for k basis points.
This leads to an overall encoding complexity of O(n logn+ k logn) per point cloud. The
kNN search step can be also efficiently implemented as part of an end-to-end deep learn-
ing pipeline [130]. Practically, we benchmark our encoding scheme for different values
of n and k and show real-time encoding performance for values interesting for current
real world applications. We will investigate practical encoding performance in Section
6.5.4.

6.4 Analysis

6.4.1 Comparison to Occupancy Grids, TSDFs and Plain Point
Clouds

Informal intuition. Compared to occupancy grids and TSDFs, the efficiency and su-
periority of the proposed BPS encoding is based on two key observations. First, it is
beneficial for both surface reconstruction and learning to store some continuous global
information (e.g., Euclidean distance to the nearest point) in every cell of the grid instead
of simple binary flags or local distances. In the latter case, most of the voxels remain
empty and, moreover, the feature vector will change dramatically when slight transla-
tions or rotations are applied to an object. In comparison, every BPS cell always stores
some information about the encoded object and the feature vector changes smoothly with
respect to affine transformations. From this also stems the second important observation:

62

6.4 Analysis

Figure 6.4: Surface reconstruction quality vs. encoding length for different 3D data
encoding methods. We measured the Chamfer distance on 103 encoded and reconstructed
random shapes from the ModelNet40 dataset. The suggested representation is more
accurate in representing surface details than standard occupancy grid. The performance
of our best basis selection methods is close to encoding the surface with subsampled
unordered point clouds while being a fixed-length representation that can be directly
used with a wide range of machine learning algorithms. See Section 6.4 for further
details.

when every cell stores some global information, we can use a much smaller number of
them in order to represent the shape accurately, thus avoiding the cubical complexity of
the extensive grid representation. This can be seen in Figure 7.1 and Figure 6.3d, where
k ≈ n basis points are able to capture the outline of the original cloud.

We will now validate this intuition by comparing the aforementioned representations
in terms of surface reconstruction and actual learning capabilities.

Surface reconstruction experiments. Independent of a certain point cloud at hand,
how well does the encoding captures details of an object? To answer this question, we
take 103 random CAD models from the ModelNet40 [274] dataset and construct syn-
thetic point clouds by sampling 104 points from each surface. We compare three ap-
proaches of encoding the resulting point clouds: storing them as is (raw point cloud),
occupancy grid and the proposed encoding via basis point sets as suggested in Equa-
tion 6.5.

For all methods we define a fixed allowed description length N (as N floating point
values) and compare the normalized bidirectional Chamfer distance between the original
point cloud X and the reconstructed point cloud X r for the different encodings:

63

Chapter 6 Point Cloud Analysis with Basis Point Sets

Figure 6.5: Different basis point selection strategies. See Section 6.4.2 for details. In this
work, we mainly use random uniform ball sampling for its simplicity and efficiency, as
well as rectangular grid basis that allows us to apply 3D convolutions in a straightforward
manner. Different BPS arrangements allow the usage of different types of convolutions.

dCD(X ,X r) =
1
|X | ∑

xi∈X
min

xri∈X r
||xi−xr

i||2 +
1
|X r| ∑

xri∈X r
min
xi∈X
||xi−xr

i||2. (6.6)

With the same length of the description N we can either store N/3 points from the
original point cloud, 3

√
N× 3
√

N× 3
√

N binary occupancy flags or N/3 basis points with
the matrix XB

i defined in Equation 6.5. From this matrix, a subset of original points
can be reconstructed by simply adding corresponding basis point coordinates to every
delta vector. For the occupancy grid encoding, we use the centers of occupied grid cells;
please note that though a full floating point representation is not necessary to store the
binary flag, in reality the majority of machine learning methods will work with floating
point encoded occupancy grids and we assume this representation.

Figure 6.4 shows the encoding length and the reconstruction quality measured as
Chamfer distance (, Equation 6.6). The proposed encoding produces less than half of the
encoding error compared to occupancy grids for point clouds up to roughly 104 points
(see Figure 6.3 for a qualitative comparison). This is an indicator for its superiority for
preserving shape information. The error curve for the basis point sets is close to the
one of the subsampled point cloud representation. The basis point set representation is
less accurate than the raw point cloud since the resulting extracted points are not neces-
sarily unique. However, the basis point set is an ordered, fixed-length vector encoding
well-suited to apply machine learning methods.

6.4.2 Basis Point Selection Strategies
We investigate four different variants of selecting basis points visualized in Figure 6.5.

Rectangular grid basis. A basic approach to basis set construction is to simply ar-

64

6.5 Learning with Basis Point Sets

range points on a rectangular [−1,1]3 grid. In that case, the basis point set representation
resembles the truncated signed distance field [58] representation. However, one impor-
tant difference is that we do not truncate the distances for far-away basis points, allowing
every point in the set to store some information about the object surface. We will show
in Section 6.5.1 that this small conceptual difference has an important effect on perfor-
mance. We are also allowing the full directional information to be stored in the cell as
defined in Equation 6.5. Finally, BPS does not require the point clouds to be converted
into watertight surfaces since unsigned distances are used.

Ball grid basis. Since all point clouds are normalized to fit in the unit ball by the
transformation defined in Equation 6.2, the basis points at the corners of the rectangular
grid are located far away from the point cloud. These corner points in fact constitute
47.6% of all the samples (this can be derived by comparing the volume ratio of a unit
ball to a unit cube). Hence we can potentially improve our sampling efficiency by simply
trimming the corners of the grid and using more sampling locations within the unit ball.

Random uniform ball sampling. One generic simple strategy to select points lying
inside a d−dimensional ball is uniform sampling. This can be done by either rejection
sampling from a d−dimensional cube or other efficient methods that are summarized in
[114].

Hexagonal close packing (HCP). We also experiment with hexagonal close packing
[56] of basis points. Informal intuition behind this point selection strategy is that it will
optimally cover the unit ball with equally sized balls centered at the basis points [112].

We show the comparison of reconstruction errors of 103 ModelNet objects using the
different sampling strategies in Figure 6.4. Overall, the random uniform and HCP se-
lection strategies provide the best reconstruction results. Using regular grids opens up
possibilities for applying convolution operations and adds the possibility to learn trans-
lation and rotation invariant features.

We now evaluate the different encodings and basis point selection strategies with re-
spect to their applicability with machine learning algorithms.

6.5 Learning with Basis Point Sets

6.5.1 3D Shape Classification
One of the classic tasks to perform on point clouds is classification. We present results
for this task on the ModelNet40 [274] dataset. We benchmark several deep learning
architectures that use the proposed point cloud representation and compare them to ex-
isting methods that use alternative encodings. The dataset consists of 12 · 103 CAD
models from 40 different categories, of which 9.8 · 103 are used for training. We use
the same procedure for obtaining point clouds from CAD models as in [218], i.e., we

65

Chapter 6 Point Cloud Analysis with Basis Point Sets

id Method acc. FLOPs params
1 VoxNet [177] 83.0% > 108 9.0×105

2 Occ-MLP (323 grid) 79.9%±0.3 3.4×107 1.7×107

3 Occ-MLP (83 grid) 74.5%±0.2 1.1×106 5.5×105

4 TDF-MLP (323 grid) 80.0%±0.3 3.4×107 1.7×107

5 TDF-MLP (83 grid) 75.9%±0.3 1.1×106 5.5×105

6 BPS-MLP (323 grid) 88.3%±0.2 3.4×107 1.7×107

7 BPS-MLP (83 grid) 87.6%±0.3 1.1×106 5.5×105

8 BPS-MLP (83 ball) 87.7%±0.3 1.1×106 5.5×105

9 BPS-MLP (83 rand) 88.0%±0.3 1.1×106 5.5×105

10 BPS-MLP (83 HCP) 88.1%±0.3 1.1×106 5.5×105

11 BPS-Conv3D (323 grid) 89.8%±0.2 3.5×108 1.7×107

12 9→ direct. vect. 86.2%±0.3 2.2×106 1.1×106

13 11→ direct. vect. 90.8%±0.3 3.8×108 1.7×107

14 BPS-ERT [90] (163 g.) 85.4%±0.2 N/A N/A
15 BPS-XGBoost (323 g.) 86.1%±0.1 N/A N/A

Table 6.1: Comparison between occupancy grids, truncated distance fields (TDF) and
BPS as input features for 3D shape classification on the ModelNet40 [274] challenge.
We keep the model architecture fixed across experiments. Global BPS encoding signifi-
cantly outperforms its local counterparts. See Section 6.5.1 for further details.

sample n = 2048 points from mesh faces, followed by the normalization process defined
in Equation (6.2).

Comparison to occupancy grids and VoxNet. To show the superiority of BPS fea-
tures and to disambiguate contributions, i.e. the BPS encoding itself and the proposed
network architectures, we fix a simple generic MLP architecture with 2 blocks of [fully-
connected, relu, batchnorm, dropout] layers and perform training with 323 rectangular
grids of occupancy maps, truncated distance fields (TDFs) and BPS as inputs.

Results are summarized in Table 6.1, rows 1-7. Using global distances as features
instead of occupancy flags with the same network clearly improves accuracy, outper-
forming an architecture that was specifically designed for processing this type of input:
VoxNet [177] (row 1). TDFs store only local distances within the grid cell and suffer
from the same locality problem as voxels (r. 4). It is also important to note that reducing
the grid size affects these methods dramatically (rows 3 and 5, 5% drop in accuracy),
while the effect on the BPS is marginal (r. 6, −0.7%).

We also compare different BPS selection strategies in the rows 7-10 of Table 6.1. In
the absence of network operators exploiting the point ordering (e.g. 3D convolutions),
random and HCP strategies give a slight boost in performance. When the point order
in a rectangular BPS grid is exploited with 3D convolutional deep learning models like
VoxNet, performance improves at the cost of increased computational complexity (ap-

66

6.5 Learning with Basis Point Sets

Method acc. FLOPs params
RotationNet 20x [132] 97.37% >109 5.8×107

MVCNN 80x [253] 90.1% 6.2×1010 9.9×107

VoxNet [177] 83.0% >108 9.0×105

Spherical CNNs [73] 88.9% 2.9×107 5.0×105

point cloud based methods:
KD-networks [144] 91.8% >109 >107

KCNet [238] 91.0% >108 9.0×105

SO-Net [156] 90.9% >108 >106

DeepSets [277] 90.0% 1.5×109 2.1×105

PointNet++ [220] 90.7% 1.6×109 1.7×106

PointNet [218] 89.3% 4.4×108 3.5×106

PointNet(vanilla) [218] 87.2% 1.4×108 8.0×105

DeepSets (micro) [277] 82.0% 3.8×107 2.1×105

Ours (BPS-MLP) 89.0% 7.6×105 3.8×105

Ours (BPS-Conv3D) 90.8% 3.5×108 4.4×106

Ours (BPS-Conv3D, 10x) 91.6% 3.5×109 4.4×107

Table 6.2: Results on the ModelNet40 [274] 3D shape classification challenge. Simple
fully connected network can be trained on BPS features in several minutes on a single
GPU to reach the performance of PointNet.

proximately two orders of magnitude more flops, Table 6.1, r. 11).
Substituting Euclidean distances with full directional information defined by Equa-

tion (6.5) negatively affects the performance of a plain fully-connected network (Ta-
ble 6.1, r.12) whereas it improves the performance of a 3D convolutional model (Ta-
ble 6.1, r. 13).

To show the versatility of the proposed representation, we also use the same BPS
features as input to an ensemble of extremely randomized trees (ERT [90]) and XG-
Boost [50] frameworks.

Comparison to other methods. Finally, we combine these findings with other en-
hancements (e.g., augmenting the data with few fixed rotations, improving learning
schedule and regularization - please refer to the supplementary material and correspond-
ing code repository for further details) and compare our two best-performing models to
other methods in Table 6.2.

In summary, simple fully connected network, trained on BPS features in several min-
utes on a single GPU, is reaching the performance of PointNet [218], one of the most
widely used networks for point cloud analysis. 3D-convolutional model trained on BPS

67

Chapter 6 Point Cloud Analysis with Basis Point Sets

Method Inference time (CPU) Inference time (GPU) Model size
KD-networks [144] 130ms 41ms 150MB
PointNet++ [220] - 22ms 5.8MB

PointNet [218] - 8ms 3.2MB
DeepSets [277] 16ms 0.5ms 0.8MB

Ours (BPS-MLP) 0.04ms 0.04ms 1.6MB
Ours (BPS-Conv3D) 56ms 2ms 18MB

Table 6.3: Inference time for different models. Our fully connected model achieve sub-
millisecond inference time on both, CPU and GPU.

rectangular grid is matching the performance of the PointNet++[220], while still being
computationally more efficient. Finally, crude ensembling of 10 such models allows
us to match state-of-the-art performance [144] among methods working only on point
clouds as inputs (e.g., without using surface normals that are available in CAD models
but rarely in real-world scenarios).

Space and time complexity. Apart from the FLOPs comparison on the ModelNet40
task, we also provide inference times for a subset of point cloud processing networks with
available implementations and compare them to our models. The results are presented
in Table 6.3. Compared to other methods, our fully connected model is able to achieve
sub-millisecond inference time even when being executed on a CPU.

6.5.2 Single-Pass Mesh Registration from 3D Scans
We showcase a second experiment with a different, generative task to demonstrate the
versatility and performance of the encoding. For this, we pick the challenging problem
of human point cloud registration. In this problem, correspondences are found between
an observed, unstructured point cloud and a deformable body template. Traditionally,
human point cloud registration has been approached with iterative methods [120, 288].
However, they are typically computationally expensive and require the use of a de-
formable model at application time. Machine learning based methods [109] remove
this dependency by replacing them with a sufficiently large training corpus. However,
current solutions like [109] rely on multi-stage models with complex internal represen-
tations, which makes them slow to train and test. We encourage the reader interested
in human mesh registration to review the excellent summary of previous work provided
in [109].

We use a simple DenseNet-like [125] architecture with two blocks (see Figure 6.2),
where the input is a BPS encoding of a point cloud and the output is the location of each

68

6.5 Learning with Basis Point Sets

Method Intra (cms) Inter (cms)
Stitched puppets [288] 1.568 3.126

3D-CODED [109] 1.985 2.878
Ours 2.327 4.529

Deep functional maps [160] 2.436 4.826
FARM [174] 2.81 4.123

Convex-Opt [49] 4.86 8.304

Table 6.4: Results for all published methods in the intra and inter challenge for the
FAUST dataset, sorted by error in the intra challenge. Our BPS-based network has a
performance comparable to other methods while allowing single pass, real-time mesh
registration, with no per-scan optimizations.

vertex in the common template. Note that there is no deformable model in our system
and that we do not estimate deformable model parameters or displacements; the networks
learns to reproduce coherent bodies just based on its training data.

To generate this training data, we use the SMPL body model [165]. SMPL is a resha-
peable, reposable model that takes as input pose parameters related to posture, and shape
parameters related to the intrinsic characteristics of the underlying body (e.g., height,
weights, arm length). We sample shape parameters from the CAESAR [227] dataset,
which contains a wide variety of ages, body constitution and ethnicities. For sampling
poses we use two sources: the CMU dataset [4] and a small set of poses inferred from
a 3D scanner. Since the CMU dataset is heavily populated with walking and running
sequences, we perform weighted sampling of poses with the inverse Mahalanobis dis-
tance from the sample to the CMU distribution as weight. We roughly align the CMU
poses to be frontal. To increase the variation of the training data, we introduce noise
sampled from the covariance of all the considered poses to half of the data points. From
these meshes, a set of 104 points is sampled uniformly from the surface of the posed and
shaped SMPL template. These point clouds are then used to compute the BPS encoding.
We train the alignment network for 1000 epochs in only 4 hours and its inference time is
less than 1ms on a non-GPU laptop.

To evaluate our method, we process the test set from the FAUST [33] dataset. It
is used to compare mesh correspondence algorithms by using a list of scan points in
correspondence. To find correspondences between two point clouds, we process each
of them with our network, obtaining as a result two registered mesh templates. The
templates then define the dense correspondences between the point clouds.

We obtain an average performance of 2.327cm in the intra-subject challenge and
4.529cm in the inter-subject challenge (see Table 6.4). These numbers are comparable,
but higher than state-of-the-art methods like [109] or [288]. However, we note that the

69

Chapter 6 Point Cloud Analysis with Basis Point Sets

Figure 6.6: Point clouds of the FAUST dataset and the predicted meshes. Blue: point
cloud from a 3D scanner. Skin color: predicted mesh by our model through processing
of its BPS representation. Note that the network produces the position of each output
vertex; their coherent structure is learned solely from the training data.

two methods outperforming BPS in the FAUST intra challenge are orders of magnitude
slower than our system. The two-stage procedure in [109] takes multiple minutes and the
particle optimization in [288] takes hours, while our system produces alignments in 1ms
(for qualitative results, see Figure 6.6). This enables real-time processing of 3D scans,
which was previously impossible, or can be used as a first step for faster multi-stage
systems that refine the accuracy of this single stage method.

Results on DYNAMIC FAUST. The efficiency of BPS allows us to process large
datasets efficiently. We showcase this in the supplementary video2, where thousands of
point clouds from the DYNAMIC FAUST dataset [34] are aligned with BPS. We use
exactly the same network used in the FAUST experiments without any retraining or fine-
tunning; this shows that our network generalizes well to unseen poses and subjects. Each

2https://youtu.be/kc9wRoI5JbY

70

https://youtu.be/kc9wRoI5JbY

6.5 Learning with Basis Point Sets

frame is processed independently and no smoothness post-processing was applied to the
video. The performance is pretty consistent across the sequences, with one negative
factor impacting the accuracy of the alignments: the presence of strong outliers from
the floor and the scanner. While the system is robust to the presence of few spurious
points around the body, it is sensitive to large amounts of points far from it. Those large
chunks drastically change the representation due to the size normalization of the point
cloud, which makes the point cloud very different from any cloud in the training set.
We believe this could be easily alleviated by introducing similar synthetic noise in our
training data or making the normalization more robust to noise.

6.5.3 Training Details
A complete description of network architectures and training strategies is available in
the associated code repository. In the this section, we provide a description of the most
important elements of the training.

ModelNet40 models. For the classification task, our MLP model consists of 2 fully
connected hidden layers, each of size 400. Each layer is followed by a ReLU activation
and dropout (with probability 0.8 and 0.4 repsectively). Class probabilities are given
by a final dense layer with a softmax activation. The model is trained with the Adam
optimizer for 2500 epochs with a batch size of 2048 samples, with an initial learning rate
of 1.0e-4 reduced to 1.0e-5 after 2000 epochs.

Our Conv3D-model is similar to the original VoxNet [177] architecture, with 4 blocks
of 3× 3× 3 convolutions, with each pair of blocks followed by a max-pooling layer of
size 2×2×2. This is followed by 2 fully connected layers of size 512 (with separating
dropout layers of 0.8 and 0.6). The model is trained with the Adam optimizer for 505
epochs with a batch size of 512 samples, with an initial learning rate of 1.0e-4 reduced
to 1.0e-5 after 500 epochs.

FAUST model. For the FAUST model, the architecture is depicted in Figure 2 of the
main manuscript. There, fully connected layers of size 1024 are used. The model is
trained with SGD with momentum of 0.9 for 1000 epochs, with an initial learning rate
of 1.0 and followup reductions by a factor of 0.5 every 5 epochs of no improvement on
the validation set.

6.5.4 Encoding Time
Encoding performance is crucial for real world applications. For our benchmark, we
take a random subset of 103 ModelNet40 CAD models [274] and sample 101 − 105

points from their surfaces. We also vary the number of the basis points k used for
the encoding. We investigate two implementations of the BPS encoding scheme. The
first one uses the k nearest neighbor implementation available in the sklearn scientific
computing package [205]. Here, we use the ball-tree version of kNN search to achieve
O(n logn+ k logn) complexity of the encoding. This version of encoding can be easily

71

Chapter 6 Point Cloud Analysis with Basis Point Sets

Figure 6.7: BPS encoding time. We measure encoding time per point cloud with respect
to the number of input points, basis points k and the implementation variant. Encoding
can be done in real time for the main application cases considered in this paper (point
clouds with n < 105, encoded with BPS of k < 104).

parallelized across multiple CPUs for different point clouds. As an alternative, we also
provide information on TensorFlow [9] implementation of a direct algorithm for comput-
ing pairwise distances. Despite its O(kn) complexity, it shows remarkable performance
even for large values of k and n due to the highly efficient execution on a GPU. Vari-
ous hashing-based algorithms for kNN search designed specifically for 3D data could be
used as well [68, 69].

Results are summarized in Figure 6.7. Both implementations show super-real-time
encoding performance for the main application case considered in this paper (i.e. point
clouds containing n < 105 points encoded with k < 104 points). Combined with the
proposed deep network, this allows real-time mesh registration from raw scans. Overall,
the BPS encoding can be tailored to a specific platform and application via the efficiency-
fidelity trade-off in varying k.

6.6 Conclusion and Future Work

In this chapter, we introduced basis point sets for obtaining a compact fixed-length rep-
resenation of point clouds. BPS computation can be used as a pre-processing step for
a variety of machine learning models. In our experiments, we demonstrated in two
applications and with different models the computational superiority of our approach
with orders of magnitudes advantage in processing time compared to existing methods,
remaining competitive accuracy-wise. We have shown the advantage of using rectan-
gular BPS grid in combination with standard 3D-convolutional networks. However, in

72

6.6 Conclusion and Future Work

future work it would be interesting to consider other types of BPS arrangements and
corresponding convolutions [122, 55, 73, 106] for improved efficiency and learning of
rotation-invariant representations.

73

Chapter 7

SMPLpix: Neural Pixels from 3D
Human Models

7.1 Introduction

Traditional graphics pipelines for human body and face synthesis benefit from explicit,
parameterized, editable representations of 3D shape and the ability to control pose, light-
ing, material properties, and the camera, to animate 3D models in 3D scenes. While
photorealism is possible with classical methods, this typically comes at the expense of
complex systems to capture detailed shape and reflectance or heavy animator input. In
contrast, recent developments in deep learning and the evolution of graphics processing
units is rapidly bringing new tools for human modeling, animation and synthesis. Mod-
els based on generative adversarial networks [103] reach previously infeasible levels of
realism in synthesizing human faces [134, 135], and various models can repose humans
[46], swap identities and appearance [264], etc.

While promising, particularly in terms of their realism, these new “neural” approaches
to synthesizing humans have several drawbacks relative to classical methods. Specif-
ically, a key advantage of classical graphics methods [209] is the ability to fully and
flexibly control the generative process, e.g. change the camera view, the light or even
the pose or shape of the subject. These methods, however, have two main limitations
relative to learning-based image synthesis. First, until recently [136, 162], rendering en-
gines were not fully integrated into deep learning pipelines. Second, explicit mesh-based
rendering methods are limited when it comes to rendering complex, high-frequency ge-
ometry (e.g. hair or fur, wrinkles on clothing, etc.) and dealing with complex, changing,
topology. The future of graphics is likely a synthesis of classical and neural models, com-
bining the best properties of both. Here we make a step in this direction by combining
the parameterized control of 3D body shape and pose with neural point-based rendering,
which replaces the classical rendering pipeline.

Point-based rendering has a long history in computer graphics [108, 145]. Recently,
point-based rendering has been successfully coupled with the neural network pipeline
via learning per-point neural descriptors that are interpreted by the neural renderer [13].
This approach produces photo-realistic novel views of a scene from a captured point

75

Chapter 7 SMPLpix: Neural Pixels from 3D Human Models

Figure 7.1: SMPLpix neural rendering pipeline. Training SMPLpix requires a set of 3D
vertices with the corresponding RGB colors as input X+, along with ground truth camera
parameters (K,R, t). Our training data is obtained by registering a SMPL model to 3D
scans. Using SMPL also allows us to control the coordinates of X+ via a small set of pose
parameters θ . RGB-d training images are created by projecting the vertices, X+ onto an
image plane using a camera model. This image is then fed into a neural rasterizer that
reconstructs surfaces from projected vertices directly in the pixel space. It is trained to
minimize a combination of perceptual and adversarial losses wrt the ground truth image.
Once trained, neural rasterization module generalizes to unseen subjects X+, body poses
θ and camera parameters (K,R, t).

cloud. However, this pipeline has been demonstrated for rendering static scenes with
dense point clouds as inputs, with the need of re-learning point descriptors for every
novel scene.

Our approach is influenced by [13] and [175]. However, along with the technical nov-
elties and simplifications we describe in the follow-up sections, our main aim is to extend
these approaches to enable efficient rendering of human avatars under novel subject iden-
tities and human poses. We accomplish this by introducing SMPL [165], a deformable
3D body model, into the neural rendering loop. This provides us full control over body
pose and shape variation. However, instead of relying on mesh connectivity for explicit
rendering, we simply use mesh vertices and their colors projected onto image plane as
inputs for the neural rendering module. This provides the benefits of a parameterized
body model, while greatly improving the rendering quality, without the complexity of
classical methods.

The overall pipeline, called SMPLpix, is outlined in Figure 7.1. During training, our
framework operates on the data obtained from a commercially available 3D scanner [7].
The SMPL model is registered to the raw scans [33, 165]; other parametric models can
be used in principle [129, 204]. The result of this process is a set of mesh vertices
X ∈ R6890×3, the RGB color of each vertex, and the body pose parameters θ . It is
important to mention that the registration process has inherent limitations like fitting hair
(due to the irregularity of hair and low resolution of the SMPL model) or fitting clothing
(due to the form-fitting topology of SMPL, see Figure 3). The advantage of using the

76

7.2 Related Work

registered vertices over raw scans, however, is that we can control the pose of the vertices
X by varying a small set of inferred pose parameters θ . We project the vertices of the
body model using ground truth scanner camera locations (K,R, t) and obtain an RGB-d
image of the projected vertices. This image is processed by a UNet-like neural rendering
network to produce the rasterized output RGB image that should match the ground truth
image from a scanner camera. At test time, we are given novel mesh vertices X , their
colors, body poses θ and camera locations (K,R, t). Note that this input can also come
from the real images using methods like [14].

Intuition. Our proposed method can be seen as a middle ground between mesh-based
and point-based renderers. While we use the structured nature of mesh vertices to con-
trol the generative process, we ignore the mesh connectivity and treat vertices simply
as unstructured point clouds. Compared with explicit mesh rasterization, the main ad-
vantage of this vertices-as-points approach, along with its computational and conceptual
simplicity, is the ability of the trained neural rasterizer to reproduce complex high fre-
quency surfaces directly in the pixel space, as we will show in the experimental section.
Our approach is also potentially applicable in cases when no explicit mesh connectivity
information is available whatsoever and only a set of 3D anchor points is given.

Contributions. The proposed work offers the three following contributions:

• Deep controlled human image synthesis: apart from the classic mesh-based render-
ers, to the best of our knowledge, the presented approach is the first one that can
render novel human subjects under novel poses and camera views. The proposed
framework produces photo-realistic images with complex geometry that are hard
to reproduce with these classic renderers;

• Neural rasterization: we show how popular image-to-image translation frame-
works can be adapted to the task of translating a sparse set of 3D points to RGB
images, combining several steps (geometric occlusion reasoning and image en-
hancement) into a single neural network module that is trained to reconstruct pro-
jected surfaces directly in the pixel space and can be easily incorporated into a
larger deep learning pipelines;

7.2 Related Work
Our method is connected to several broad branches of 3D modeling and image synthesis
techniques. Here we focus on the most representative work in the field.

3D Human Models. Our method is based on the idea of modeling humans bodies
and their parts via deformable 3D models [32, 17, 129], and in particular SMPL [165].

77

Chapter 7 SMPLpix: Neural Pixels from 3D Human Models

Such models are controllable (essential for graphics) and interpretable (important for
analysis). Extensions of SMPL exist that also model hands [228], faces [157, 204] and
clothing [168]. Separate models exist for capturing and modeling clothing wrinkles and
hair [286, 123]. While powerful, rendering such models requires high quality textures
and accurate 3D geometry, which can be hard to acquire. Even then, resulting rendered
images may look smooth and fail to model details that are not properly captured by the
model or surface reconstruction algorithms.

Neural avatars. Recently, a new body of work was developed dedicated to creating
high fidelity digital avatars [163, 240, 263, 272]. While these works provide a great level
of photo-realism, they are mostly tailored to accurately modeling a single subject, and
part or the whole system needs to be retrained in case of a new input. In contrast, our
system is trained in a multi-person scenario and can render unseen subjects at test time.
Another advantage is that it takes a relatively compact generic input (a set of 3D mesh
vertices and their RGB colors) that can be also inferred from multiple sources at test
time, including from real-world images [14].

Pixel-space image translation and character animation. The second part of our sys-
tem, neural rasterization, is based on the recent success of pixel-to-pixel image trans-
lation techniques [127, 271, 72]. Two particular variations of this framework have the
most resemblance to our model. First, [46] uses a set of sparse body keypoints (inferred
from a source actor) as input to produce an animated image sequence of a target actor.
However, as with the neural avatars discussed above, the system needs to be retrained in
order to operate on a novel target subject. Our work also resembles the sketch-to-image
translation regime, where an edge image is used in order to produce a photo-realistic im-
age of the person’s head [279] or generic objects [51]. Our approach can also be viewed
as translating a sparse set of key points into an image. However, our keypoints come
from a structured 3D template and therefore convey more information about the ren-
dered subject appearance; since they exist in 3D, they can be projected to an image plane
under different camera views. Finally, another advantage of using SMPL topology as
input to our image translation framework is its non-uniform vertex density according to
region importance (i.e. faces and hands are more densely sampled). This makes detailed
rendering of these regions easier, without the need for a specific attention mechanism in
the neural renderer itself.

Differentiable mesh (re-)rendering. There are several available solutions that incor-
porate the mesh rendering step into fully differentiable learning pipelines [165, 136, 162].
However, these methods follow a different line of work: they aim at constructing better
gradients for the mesh rasterization step, while keeping the whole procedure of mesh
face rendering and occlusion reasoning deterministic. This applies also to a soft ras-
terizer [162] that substitutes discrete rasterization step with a probabilistic alternative.

78

7.2 Related Work

While this proved to be useful for the gradient flow, the rendering procedure still lacks
full flexibility that would allow it fix artifacts of the original input geometry. One poten-
tial solution is to enhance the produced incomplete noisy renders by the additional neural
re-rendering module [175, 161]. Our framework can be seen as the one that substitutes
explicit rasterization step and combines it with a follow-up image enhancement into a
one solid, fully differentiable, task-specific neural rasterization module. Considering the
original target application of [175], another potential advantage of our framework for
online conferencing is the reduced amount of data that needs to be transferred over the
network channel to produce the final image.

Point-based rendering. Point-based rendering [108, 145, 155, 208, 231] offers a well-
established, scalable alternative to rendering scenes that can be hard to model with sur-
face meshing approaches. Our inspiration comes mainly from this set of methods; how-
ever, we substitute the fixed logic of rendering (e.g. surfel-based [208]) with the neural
module in order to adapt to sparse point sets with highly non-uniform densities, as well
as to generate photorealistic pixel-space textures.

Rendering from deep 3D descriptors. Another promising direction for geometry-
aware image synthesis aims to learn some form of deep 3D descriptors from a 2D or
3D inputs [13, 164, 243, 244]. These descriptors are processed by a trainable neural
renderer to generate novel views. These methods, however, are limited when it comes to
controlling the generative process; shapes are represented as voxels [164, 243], unstruc-
tured point clouds [13] or neural networks weights [244]. This makes parameterized
control of human pose difficult.

Neural point-based graphics. The closest work to ours is [13]. An obvious difference
with respect to this work is that our input comes from a deformable model, which allows
us to modify the render in a generative and intuitive way. Moreover, our model contains
two additional differences. First, our inputs are considerably sparser and less uniform
than the point clouds considered in [13]. Second, instead of point neural descriptors that
need to be relearned for every novel scene or subject, our rendering network obtains the
specific details of a subject through the RGB colors it consumes as input at test time.
This alleviates the need for retraining the system for every novel scene.

In summary, SMPLpix fills an important gap in the literature, combining the benefits of
parameterized models like SMPL with the power of neural rendering. The former gives
controlability, while the latter provides realism that is difficult to obtain with classical
graphics pipelines. This realism is obtained with only weak guidance (sparse points).
The key novelty is that the neural rasterizer learns how to take such data and produce
realistic images.

79

Chapter 7 SMPLpix: Neural Pixels from 3D Human Models

7.3 Method
As it is common in deep learning systems, our system has two key parts: the data used
for training our model, and the model itself. We describe those two parts in the following
sections.

7.3.1 Data

Scans. Our renderer transforms RGB-D 2D projections of SMPL [165] vertices into
images. Consequently, we need pairs of images in correspondence with projected ver-
tices to train our model. Although it would be ideal to collect such a dataset from images
in the wild, the inaccuracies in methods that infer SMPL bodies from images (e.g. [131])
make this data ineffective. Instead, we use scan data collected in the lab. To that end,
we collected more than a thousand scans with a commercially available 3D scanner [7].
This scanner collects two sets of 137 images of resolution 2464× 3280, at two time
instants separated by around 300 milliseconds. The first set is composed by images col-
lected under a high-frequency pattern illumination created from projectors, and it is used
for reconstructing the geometry of the body. The second set is collected under white
illumination, and is used to create the body texture; we also use it as the source of our
output training data. These images are processed with the commercially available soft-
ware Agisoft Photoscan [1]. The result of this process is raw 3D point clouds (scans)
S ∈ RM×6,M ≈ 106 representing the body geometry, together with camera calibration
(K,R, t) compatible with a pinhole camera model. Note that the subjects are scanned in
a neutral A-pose. Unlike most other image generation methods, this is not a problem for
our system since the strong guidance provided by the input images prevents our method
from overfitting to the input pose, as it can be seen in Section 7.4.2.

Registrations. While these scans could potentially undergo a rendering process like [13],
it would not be possible to deform them in a generative manner, i.e. changing their shape
or pose. To achieve that, we transform those unstructured point clouds into a set of
points X ∈ RN×3,N = 6890 with fixed topology that correspond to a reshapeable and
reposeable mode, SMPL. In its essence, SMPL is a linear blend skinning (LBS) model
which aims to model the observed body vertices X as a function of identity-dependent
and pose-dependent mesh deformations, driven by two corresponding compact sets of
shape ~β ∈ R10 and pose ~θ ∈ R72 parameters:

X =W (TP(~β ,~θ),J(~β),~θ ,W), (7.1)

TP(~β ,~θ) = T̄+BS(~β)+BP(~θ), (7.2)

where TP(~β ,~θ) models shape and pose dependent deformation of the template mesh in
the canonical T pose via linear functions BS and BP, and W corresponds to the LBS

80

7.3 Method

function that takes the T-pose template TP, set of shape-dependent K body joint loca-
tions J(~β) ∈ R3K,K = 23 and applies LBS function W with weights W to produce the
final posed mesh. We refer to the original publication [165] for more details on the
SMPL skinning function. Note that other versions of deformable 3D models [17, 129]
or topologies could be used, including the ones that additionally model hands and faces
[157, 204, 228], as well as clothing deformations [168]. In fact, in Section 7.4.2 we show
experiments with two topologies of different cardinality.

The SMPL registration process optimizes the location of the registration vertices and
the underlying model, so that the distance between the point cloud and the surface en-
tailed by the registration is minimized, while the registration vertices remain close to the
optimized model. It is inspired by the registration in [33] although the texture match-
ing term is not used. It is worth re-emphasizing that these registrations, as registrations
in [33], can contain details about the clothing of the person since their vertices are op-
timized as free variables. This does not prevent us from reposing those subjects after
converting them into SMPL templates T̄∗ through unposing, as explained and shown in
Section 7.4.3. However, these extra geometric details are far from perfect (e.g. they are
visibly wrong in the case of garments with non-anthropomorphic topology, like skirts),
and our model learns to make them more similar to the final images in a data-driven
manner.

Color. Finally, the registered mesh is used in Agisoft Photoscan together with the
original image and camera calibration to extract a high resolution texture image Itex ∈
R8192×8192×3. This texture image is a flattened version of the SMPL mesh, in which
every 3D triangle is SMPL corresponds to a 2D triangle in the texture image. Therefore,
each triangle contains thousands of color pixels representing the appearance of that body
portion. These textures can be used directly by the classic renderer to produce detailed
images, as can be seen in Section 7.4.2. Although it would be possible to exploit the
detail in those textures by a neural renderer, that would slow it down and make it un-
necessarily complex. Instead, we propose to use the sparse set of colors Xc ∈ R6890×3

sampled at the SMPL vertex locations. These colors can be easily extracted from the
texture image, since they are in full correspondence with the mesh topology.

Projections. Having an input colored vertex set X+ = [X ,Xc] ∈ R6890×6 and camera
calibration parameters (K,R, t), we obtain image plane coordinates for every vertex x ∈
X using a standard pinhole camera model [115]:u

v
d

= K(Rx+ t). (7.3)

Next, we form an RGB-D vertex projection image. The projection image PX ∈Rw×h×4

81

Chapter 7 SMPLpix: Neural Pixels from 3D Human Models

is initialized to a value that can be identified as background by its depth value. Since
depth values collected in the scanner have a range between 0.1 and 0.7 meters, a default
value of 1 is used to initialize both RGB and depth in PX . Then, for every vertex x ∈ X ,
its image plane coordinates (u,v,d) and color values (r,g,b) ∈ Xc we assign:

PX [buc,bvc] = (r,g,b,d). (7.4)

In order to resolve collisions during the projection phase (7.4), when different vertices
from X end up sharing the same pixel-space coordinates buc,bvc, we sort the vertices
according to their depth and eliminate all the duplicate consecutive elements of the depth-
wise sorted array of buc,bvc coordinates of X. However, we would also like to note that
since the number of vertices is much smaller than the full resolution of the image plane,
these collisions rarely happen in practice.

The whole vertex projection operation (7.3)-(7.4) can be easily and efficiently im-
plemented within modern deep learning frameworks [203] and, therefore, seamlessly
integrated into bigger pipelines.

Image segmentation. Apart from input projection images, our algorithm also needs
example RGB output images IX ∈ Rw×h×3. We would like to be agnostic to the back-
grounds in training data, so that the model does not learn to replicate the scanner back-
ground. In order to replace the background with a constant value (e.g. white), we au-
tomatically segment the scanner images. We tried off-the-shelf segmentation algorithms
like Deeplab [48], with highly inaccurate results. An alternative would be to use the pro-
jection of the scan to the image plane as a groundtruth mask; however, these projections
are noisy. We found that a good compromise is to train a segmentation model with the
point cloud projections. The network acts as a regularizer and denoiser, giving us better
results than the previous approaches. Note that for the tests in Section 7.4.2 we test the
rendered images against ground truth segmented manually. Manual segmentations have
a better quality than our automatic ones, but are much slower and expensive to obtain
for the full dataset. In this way, we avoid the metrics favouring our method because of
replicating segmentation noise present in our algorithm.

7.3.2 Neural rasterization
Given our training data consisting of pairs of RGB-D projection images PX and seg-
mented output images IX , we train a UNet-type [229] neural network G with parameters
Θ to map inputs to outputs:

GΘ : PX → IX (7.5)

In our experiments, we use one of the publicly available UNet architecture designs [8],
to which we apply only minor changes to adapt it to our types of input and output. We

82

7.4 Experiments

also replace transposed convolutions with upsample-convolutions to avoid checkerboard
artifacts [194]. In general, the particular design of this module can be further optimized
and tailored to a specific target image resolution and hardware requirements; we leave
this optimization and further design search for a future work.

Having the ground truth image Igt for the given subject and camera pose, we optimize
our rendering network GΘ for the weighted combination of perceptual VGG-loss [128],
multi-scale, patch-based GAN loss and feature matching GAN loss [271]:

L(Igt , IX) = αLV GG(Igt , IX)+κLGAN(Igt , IX)+ γLFM(Igt , IX) (7.6)

where α,κ,γ are the loss term weights. The overall setup is similar to [271]. We set α =
1,κ = 0,γ = 0 for the first 100 epochs with the learning rate of Adam [141] optimizer set
to 1.0e-4, proceeding with another 50 epochs with α = 1,κ = 1.0,γ = 0.1 and learning
rate set to 1.0e-5.

Implicitly, the network GΘ is learning to accomplish several tasks. First, it needs to
learn some form of geometric reasoning, i.e. to ignore certain projected vertices based on
their depth values. In that sense, it substitutes fixed-logic differentiable mesh rendering
procedures [136] with a flexible, task-specific neural equivalent. Second, it needs to
learn how to synthesize realistic textures based on a sparse supervision provided by the
projected vertices, as well as to hallucinate whole areas not properly captured by the 3D
geometry, e.g. hair and clothing, to match the real ground truth images. Therefore, we
believe that this approach could serve as potentially superior (in terms of acquired image
realism), as well as easier to integrate, computationally flexible alternative to the explicit
fixed differentiable mesh rendering step of [136].

7.4 Experiments

7.4.1 Data Details

Accurately captured, well-calibrated data is essential for the proposed approach in its
current form. We use 3D scans of 1668 subjects in casual clothing. The subjects are
diverse in gender, body shape, age, ethnicity, as well as clothing patterns and style. For
each subject, we select 20 random photos from one of 137 camera positions available
in the scanner camera rig. We use 1600 subjects for training and 68 subjects for test,
which forms training and test sets of 32000 and 1360 images correspondingly. We use
the image resolution of size 410×308 during all the experiments. Of 68 test subjects, 16
gave their explicit consent for their images to be used in the present submission. We use
these test subjects for the qualitative comparison presented in this chapter, while the full
test set is used for the quantitative evaluation.

83

Chapter 7 SMPLpix: Neural Pixels from 3D Human Models

Figure 7.2: Qualitative comparison between Neural Mesh Renderer and SMPLpix (zoom
in for details).

7.4.2 Quantitative Experiments

In this section, we compare our system with other renderers that can generate images of
reshapeable and reposeable bodies. This limits the other methods to be classic render-
ing pipelines, since, to the best of our knowledge, no other deep learning models offers
this generative behaviour. It is important also for us that the renderers support automatic
differentiation, since our ultimate goal includes integrating the renderer with a fully dif-
ferentiable learning system. With these two constraints, we decided to choose as our
plattform for comparison the neural mesh renderer introduced in [136], in its popular
PyTorch re-implementation [6].

84

7.4 Experiments

Table 7.1: Neural mesh renderer [136] vs SMPLpix neural rasterization pipeline.

Method PSNR ↑ LPIPS ↓ Input size (RGB) Inference t.
1 NMR[136] (7k, per-verts) 23.2 0.072 R6890×3 13ms
2 NMR[136] (7k, full textures) 23.4 0.049 R8192×8192×3 14ms
3 NMR[136] (27k, per-verts) 23.5 0.064 R27578×3 48ms
4 NMR[136] (27k, full textures) 23.6 0.047 R8192×8192×3 50ms
5 SMPLpix (7k verts) 24.2 0.051 R6890×3 16ms
6 SMPLpix (27k verts) 24.6 0.045 R27578×3 17ms

Figure 7.3: Novel view generation.

Metrics. We compare SMPLpix against different versions of classic renders imple-
mented with [6] according to two different quantitative metrics popular in image gen-
eration and super-resolution: peak signal-to-noise ratio (PSNR) and Learned Perceptual
Image Patch Similary (LPIPS, [282]). PSNR is a classic method, while LPIPS has gained
popularity in recent work for being more correlated with the perceptual differences. We
should note that the field of quantitative perceptual evaluation is still an area of research,
and no metric is perfect. Therefore we also provide qualitative results in the next section.

Baseline variants. For [136], we use the following rendering variants. First, we render
the mesh with exactly the same information available to our SMPLpix rendering pipeline,
i.e. only 1 RGB color per vertex 1. Next, we use the much more information-dense
option of texture images Itex. For a fair comparison of inference times, we do not utilize
the full extensive 8k textures, but rather search for the optimal downscaled version of
the texture image, at which no further improvement in terms of PSNR and LPIPS were
observed (Table 7.1, row 2). Since our method can be topology agnostic, we perform
these comparisons for two topologies: the native SMPL topology of 6890 vertices (noted
as 7k) and a subsampled version with a higher vert count of 27578 vertices (noted as
27k).

Results. The values for PSNR and LPIPS are compiled in Table 7.1. The first con-
clusion to extract from this table is that, given a fixed amount of color information (i.e.

1Technically, since [6] does not support per-vertex color rendering, this has to be achieved by performing
linear interpolation between the vertex colors in their per-triangle texture space

85

Chapter 7 SMPLpix: Neural Pixels from 3D Human Models

Figure 7.4: Pose generation.

comparing per-verts NMR against SMPLpix for a fixed topology), SMPLpix clearly out-
performs NMR in both PSNR and LPIPs. Limiting the color information can be useful
in terms of computational and data transmission efficiency, and the use of textures makes
the rendering system arguably more complex. However, we included also a compari-
son against NMR using full textures. Although the values are much closer, SMPLpix
slightly outperforms NMR also in this case. This validates our main hypothesis, i.e.
that the adaptive rendering procedure described in Section 7.3.2 can learn a valid ren-
dering prior of the human texture and surface, and reproduce it based on a sparse input
given by the colored mesh vertices. Moreover, it outperforms the conventional methods
in terms of acquired level of realism since it could be trained end-to-end to reproduce
the corresponding photo. In terms of efficiency, using low dimensional geometry with
no anti-aliasing and full textures achieves the fastest running times, followed closely by
SMPLpix, which obtained better quality metrics. Also, note that for NMR the infer-
ence time grows roughly linearly with the number of geometry elements, while for our
method most of the time is being spent in the neural rasterization module that is agnostic
to the number of projected points. Being a UNet-like neural network, this module can be
further optimised and tailored to specific hardware requirements.

7.4.3 Qualitative experiments
Since it is well known that perceptual metrics are not perfect in capturing the quality
of synthetic images, we also provide in this section examples for the reader to judge
the quality of our method and experience the potential applications that its generative
character bring to the field of neural rendering.

Qualitative comparison. We can see a visual comparison of ground truth and the
methods previously described in Figure 7.2. First thing to note is that these images con-
tain elements which are known to be difficult to model with SMPL topology: hair, baggy
clothes or shoes, for example. We can observe that since the relation between geometry
and pixel colors in NMR is very constrained, the geometry artifacts are still visible in
the renders. Please note for example the unrealistic hair buns in NMR, smoothed out
clothes in the first column, and the unrealistic ear shape in the sixth column due to the
lack of independent hair geometry that covers the ears in the SMPL topology. In com-

86

7.4 Experiments

neutral -PC1 +PC1 -PC2 +PC2 -PC3 +PC3

Figure 7.5: Shape variations with SMPLpix. First column shows the render of the orig-
inal subject, subsequent columns explore the first three directions of the SMPL shape
space, in the negative and positive directions, on top of the subject specific model.

parison, SMPLpix learns to correlate those artifacts with specific combinations of vertex
locations and shapes, and recreates loose hair, pony tails, or loose clothing (up to some
extent). Another type of artifact that is corrected is wrong textures due to misalignments:
as we can see in the fourth column, the hand area contain pixels of background color
for this reason. SMPLpix learns to correct this artifact too. Finally, pay attention to the
toes rendered on the shoes by NMR, due to the SMPL topology, which are corrected
by our renderer in the next to last column. It is important to note that some of these
details are reconstructed in a plausible way, though not in the exact way they are present
in the ground truth. On the negative side, high frequency patterns like the striped shirt
in the last column are not captured well by the sparsely sampled vertex colors, as can be
seen both in NMR per-vertex renders and SMPLpix. Higher sampling resolution helps,
although ensuring perfect reproducibility would be too expensive with this method. An
alternative, left to study in future work, is to include per vertex deep descriptors in the
projected image used as input.

Novel view generation. A first question about SMPLpix generalization capabilities is
how well does it generalize to novel views. Figure 7.3 shows images generated from
novel viewpoints with our algorithm. Given the ample coverage of views achieved by
the scanning data, we can generate views from almost arbitrary orientations. However,
we should note that the distance to the subject is not covered nearly as well in our setup,
and the quality of our results degrade when the camera is too far or too close to the
person. A possible way to handle this, left for future work, is to augment the data with
arbitrary scalings of the input mesh and image.

Pose generation. An advantage of our method with respect to the main other point-
based renderer [13] is that we can alter the renders in a generative manner, thanks to the
SMPL model that generates our inputs. To that end, we take the registrations previously

87

Chapter 7 SMPLpix: Neural Pixels from 3D Human Models

Figure 7.6: SMPLpix using textures inferred by [15] from in the-wild-photos.

mentioned and create a subject specific model in the same spirit as in [212]. A subject
specific model has a template which is obtained by reverting the effects of the estimated
registration pose. More specifically, it involves applying the inverse of the LBS trans-
formation W−1 and subtracting the pose-dependent deformations BP(~θ) (Equations 7.1
and 7.2) to the registration. We can repose this subject specific model to any set of
poses compatible with the SMPL model. To that end, we tried some sequences from
AMASS [171]. As can be seen in Figure 7.4, bodies can deviate largely from the A-
pose in which most of the subjects stand in the training data. Experimentally, we have
observed that this is very different for other neural renderers like [46].

Shape generation. Although [13] cannot generate people arbitrarily posed, other ren-
derers like [46, 240] potentially can, if they have a way to generate new skeleton images.
However, shape cannot change with those approaches, since skeletons only describe the
length of the bones and not body structure. We can see this potential application in Fig-
ure 7.5. For this figure, we used the previously mentioned subject-specific SMPL model
for two of the subjects, and modified their shape according to the first three components
of the original SMPL shape space. We can see that shape variations are realistic, and de-
tails like hair or clothing remain more realistic than in the classic renders images. To our
knowledge, this is the first realistic shape morphing obtained through neural rendering.

Subject color from images. A reasonable objection to SMPLpix is that the results
that we have shown here use texture images extracted from high-end scanners. However,
this is not a hard requirement from our method (Figure 7.6). Although there is a clear
drop in image quality performance, due to the worse quality of the input colors, we see
that our method can generate good images from textures provided by the authors of [15].
These textures were computed from a set of images of a person rotating in front of a
camera, out of the lab. In order to eliminate the artifacts present in the images, a possible
future direction would be to train our system with the outputs from the algorithm used to
generate images at test time (e.g. [15]).

88

7.5 Conclusion and Future Work

7.5 Conclusion and Future Work
In this work, we presented SMPLpix, a deep learning model that combines deformable
3D models with neural rendering. This combination allows SMPLpix to generate novel
bodies under clothing, with the advantages that neural rendering has: better quality and
data-driven results. Unlike any other body neural renderer, SMPLpix can vary the shape
of the person and does not require to be retrained for each subject.

Apart from the advantages previously mentioned, one of the key characteristics of
SMPLpix is that, unlike the classic renderers, it is improvable and extensible in a number
of ways. We are particularly interested in integrating the renderer with systems that infer
SMPL bodies from images (e.g. [131, 147, 146] to enable an end-to-end system for body
image generation trained from images in the wild.

SMPLpix is a relevant step towards controllable body neural renderers, but it can ob-
viously be improved. Rendering high frequency textures remains a challenge, although
including extra information (like per-vertex image descriptors, similar to the local image
descriptors pooled across views in [232]) in our input projection image is a promising
approach.

89

Chapter 8

Conclusions and Outlook
In this thesis, we have studied and developed several techniques that contribute to the
overall goal of building robust and computationally efficient vision systems. Below we
summarize the main results and provide an outlook for a future work in each direction.

8.1 Deep Probabilistic Models
We have investigated efficient ways to combine modern deep learning systems with prob-
abilistic reasoning. We have provided a brief survey of the current approaches in uncer-
tainty reasoning, showcasing potential advantages and shortcomings of each method.

The dedicated family of methods was developed that addresses the task of probabilistic
regression of circular data. We have shown that these methods can efficiently infer object
orientation from images of different modalities and of varying quality and complexity,
providing rich multimodal densities that reflect potential ambiguities in observations in
object orientation. This allows to incorporate these systems into larger vision pipelines
that involve complex decision making, e.g. autonomous driving and other robotic sys-
tems.

Via close collaboration with the experts of respective fields, we have also investigated
variants of deep probabilistic framework that could be efficiently deployed in critical
real-world applications. Namely, we developed a method for obtaining MRI CEST con-
trasts useful in medical diagnosis in a fast and robust manner, considerably reducing the
computational time compared to conventional methods. Additionally, we have investi-
gated deep trajectory predictors models for high speed dynamic robotic environments.
Here, the developed temporal model proved to be superior to classic approaches based
on physics modeling. Its small inference time allowed us to incorporate it into the real
time control loop of a robotic arm in a table tennis environment.

Limitations and future work. In essence, all the developed frameworks are based
on constructing suitable probabilistic outputs on top of existing neural network mod-
els and utilizing maximum likelihood principle. This allows them to efficiently handle
noisy and ambiguous observations and indicate their lack of confidence in predicted val-
ues via increased level of uncertainty in a theoretically rigorous and consistent manner.
However, as we have also observed on a simple example in Chapter 2, pure maximum

91

Chapter 8 Conclusions and Outlook

likelihood based training mostly addresses the aleatoric uncertainty in the data. It should
be combined with other methods or data augmentation techniques in order to efficiently
handle epistemic uncertainty. This is essential for practical applications where out-of-
distributions samples can occur.

Moreover, as computer vision pipelines become a part of our daily lives, they are also
becoming a target for various types of attacks and misuses, e.g. by mining adversarial
examples that try to actively fool the system. Such samples could be considered a hard
case of out-of-distribution data, and truly robust systems should be able to handle them
properly.

Another important prospect for the future of robust systems is coming up with effi-
cient evaluation protocols for the provided probabilistic predictions. Classic evaluation
methodologies like test time likelihoods or calibration curves all have their potential
shortcomings. It might be therefore desirable to link the quality of provided uncertainty
estimates to the final performance of the holistic decision making system. In case of
robotics applications, this will mean that we would judge the efficiency of the compo-
nent by its influence on the final task performance.

8.2 Efficient Learning on Point Clouds
We have proposed a novel representation for 3D point clouds, a type of data that is
gaining increasing attention in computer vision research due to the large availability of
depth sensing devices and multi view reconstruction software. The developed basis point
set (BPS) encoding method implies a simple and efficient way to convert unordered sets
of points of variable length into fixed vector representation that can be easily used with
virtually any machine learning algorithm.

We have shown the efficiency of the proposed point cloud encoding when combined
with deep neural networks. Compared to other popular deep learning approaches, our
pipelines were able to achieve competitive or superior 3D shape classification accuracy
with orders of magnitude lower amount of computations. Additionally, we have shown
how it can be efficiently utilized in the task of inferring parametric human body mod-
els from raw scans, with a potential to substitute time-consuming iterative optimization
registration pipelines.

Limitations and future work. Presented approach opens up several directions for the
future work. First, in the present work we have investigated mainly applications where
input point clouds can be effectively downsampled to a convenient size (104-105 points).
However, many real-worlds 3D captures [59] can induce point clouds that are at least
an order of magnitude bigger. Encoding such point clouds will likely require additional
modifications in order to maintain accuracy and efficiency of the representation.

Additionally, basis point set encoding in its current form provides a global vector
descriptor of a point cloud. However, in many tasks, e.g. point cloud segmentation,
it is required to provide per-point predictions of various kinds. One simple, yet not a

92

8.3 Neural Human Rendering

particularly efficient way to achieve this goal would be to simply process every point
together with the global BPS vector via some additional network module.

Another limitation that BPS representation shares with the majority of 3D processing
frameworks is its non-invariance to 3D rotations. In both considered applications we
have dealt with the objects that were roughly aligned along the axes, something that
would rarely happen if we consider dynamic 3D capture environments. Possible crude
solutions to this problem include additional pose estimation framework that will bring
the object to canonical pose, as well as augmenting training data with rotated versions
of objects. However, building truly rotation invariant BPS shape descriptors is the most
elegant way to handle rotations.

More generally, while provided method have been proved useful as an input represen-
tation for point clouds, the search for optimal output representation for 3D surfaces is
an ongoing endeavour. Here, exploring the full representational power of deep implicit
functions might highlight a new era of high accuracy 3D reconstructions from noisy data.

8.3 Neural Human Rendering
We have proposed a novel rendering pipeline that combines merits of classical deformable
3D models with the power of learning-based adaptive rendering. While deformable mod-
els allow us to flexibly control human avatar shape and pose, neural rendering module
can fix the visual artifacts and fill in missing details directly in the pixel space. This al-
lows us to render more realistically high frequency geometry details like hair, parts that
are regularly hard to address with classic mesh rasterization rendering schemes.

We have trained our model on a large number of 3D human scans and have observed
its generalization capabilities with respect to novel subjects, camera parameters, body
poses and shapes. We have shown both qualitatively and quantitatively that the proposed
hybrid approach to computer graphics can achieve superior results compared to classic
pipelines. We believe that this opens new possibilities for the truly photorealistic com-
puter graphics.

Limitations and future work. There are multiple exciting directions of future re-
search in the neural rendering field. First, in order to create an avatar, our model in its
current form requires a relatively expensive setup for obtaining 3D scan of a person. Ex-
ploring the ways to obtain the necessary 3D information from uncalibarated collections
of photos can be a huge democratizing factor that will allow everyone to create their
visual digital copy.

Second, the introduced neural rendering module in its current form assumes fixed light
model. However, in order to be able to immerse created avatars into virtual environments
in a realistic manner, we will need to be able to change the rendering results based on
the ambient light. Potential solutions here include augmenting the initial 3D model with
some features that reflect material properties, as well as conditioning the neural rasteri-
zation framework on the light source.

93

Chapter 8 Conclusions and Outlook

Finally, currently we rely on models like SMPL [165] for initial 3D modeling. While
being expressive in terms of body shape and pose variation, these models are limited in
terms of reflecting clothing details that deviate significantly from the minimally clothed
body topology. One of the promising research directions in this regard is investigating
other forms of parameterizing 3D shapes and non-rigid deformations, e.g. deformation-
aware implicit functions [126].

8.4 Afterword
We are living in the time when machine learning and computer vision algorithms are
influencing almost every side of our daily live, from the everyday shopping experience
to the diagnosis of the most serious deceases. In order to bring a truly revolutionary
change, however, these technologies should be able to act in and adapt to complex dy-
namic environments. They should also be easily accessible by a large audience. Practi-
cally, this means two things. First, the models we deploy should be able to make robust
decisions, even under situations with a high degree of uncertainty. Second, they should
be computationally- and energy-efficient in order to be deployed massively and run on
compact computational devices. We hope that the algorithms considered and developed
in this thesis will serve as important building blocks in the large scale computer vision
technologies of tomorrow.

94

Symbols

x variable
x vector
R real numbers
||x|| L2 norm of a vector x
KL(q||p) Kullback-Leibler divergence between two distributions

95

Abbreviations

API Application programming interface
CVAE Conditional variational autoencoder
GPU Graphics processing unit
i.i.d Independent and identically distributed
MLE Maximum likelihood estimation
MSE Mean squared error
NLL Negative log-likelihood
OOD Out of distribution (data)
RGB Red-green-blue (image)
SfM Structure from motion
SLaM Simultaneous localization and mapping
SMPL Skinned multi-person linear model [165]
VAE Variational autoencoder

97

Bibliography
[1] Agisoft photoscan. https://www.agisoft.com/. Accessed: 2020-03-05.

[2] Apple face id security guide. https://www.apple.com/ca/business-docs/

FaceID_Security_Guide.pdf. Accessed: 2020-04-15.

[3] A bee c: Scientists translate honeybee queen duets. https://www.bbc.com/

news/science-environment-53029218. Accessed: 2020-04-15.

[4] Cmu graphics lab motion capture database. http://mocap.cs.cmu.edu. Ac-
cessed: 2020-06-30.

[5] The five biggest questions about apple’s new facial recognition
system. https://www.theverge.com/2017/9/12/16298156/

apple-iphone-x-face-id-security-privacy-police-unlock. Accessed:
2020-04-15.

[6] Pytorch neural renderer. https://github.com/daniilidis-group/neural_

renderer. Accessed: 2020-02-24.

[7] Tredys 3d scanner. http://www.treedys.com/. Accessed: 2020-02-24.

[8] U-net neural network in pytorch. https://github.com/milesial/

Pytorch-UNet. Accessed: 2020-02-24.

[9] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv:1603.04467, 2016.

[10] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless,
Steven M Seitz, and Richard Szeliski. Building rome in a day. Communications
of the ACM, 54(10):105–112, 2011.

[11] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-time rendering.
Crc Press, 2019.

[12] Alexander A Alemi, Ian Fischer, and Joshua V Dillon. Uncertainty in the varia-
tional information bottleneck. arXiv preprint arXiv:1807.00906, 2018.

99

https://www.agisoft.com/
https://www.apple.com/ca/business-docs/FaceID_Security_Guide.pdf
https://www.apple.com/ca/business-docs/FaceID_Security_Guide.pdf
https://www.bbc.com/news/science-environment-53029218
https://www.bbc.com/news/science-environment-53029218
http://mocap.cs.cmu.edu
https://www.theverge.com/2017/9/12/16298156/apple-iphone-x-face-id-security-privacy-police-unlock
https://www.theverge.com/2017/9/12/16298156/apple-iphone-x-face-id-security-privacy-police-unlock
https://github.com/daniilidis-group/neural_renderer
https://github.com/daniilidis-group/neural_renderer
http://www.treedys.com/
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet

Bibliography

[13] Kara-Ali Aliev, Dmitry Ulyanov, and Victor Lempitsky. Neural point-based
graphics. arXiv preprint arXiv:1906.08240, 2019.

[14] Thiemo Alldieck, Marcus Magnor, Bharat Lal Bhatnagar, Christian Theobalt, and
Gerard Pons-Moll. Learning to reconstruct people in clothing from a single rgb
camera. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1175–1186, 2019.

[15] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, and Gerard
Pons-Moll. Detailed human avatars from monocular video. In International Con-
ference on 3D Vision, pages 98–109, Sep 2018.

[16] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman,
and Dan Mané. Concrete problems in ai safety. arXiv preprint arXiv:1606.06565,
2016.

[17] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim
Rodgers, and James Davis. Scape: shape completion and animation of people. In
ACM SIGGRAPH 2005 Papers, pages 408–416. 2005.

[18] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. arXiv
preprint arXiv:1802.00420, 2018.

[19] Aurore Avarguès-Weber, Adrian G Dyer, Maud Combe, and Martin Giurfa. Si-
multaneous mastering of two abstract concepts by the miniature brain of bees.
Proceedings of the National Academy of Sciences, 109(19):7481–7486, 2012.

[20] Aurore Avarguès-Weber and Martin Giurfa. Conceptual learning by minia-
ture brains. Proceedings of the Royal Society B: Biological Sciences,
280(1772):20131907, 2013.

[21] Sileye O Ba and Jean-Marc Odobez. A probabilistic framework for joint head
tracking and pose estimation. In Pattern Recognition, 2004. ICPR 2004. Proceed-
ings of the 17th International Conference on, volume 4, pages 264–267. IEEE,
2004.

[22] Chiraz BenAbdelkader. Robust head pose estimation using supervised manifold
learning. Computer Vision–ECCV 2010, pages 518–531, 2010.

[23] Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1563–1572, 2016.

100

Bibliography

[24] Ben Benfold and Ian Reid. Stable multi-target tracking in real-time surveillance
video. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 3457–3464. IEEE, 2011.

[25] Ben Benfold and Ian Reid. Unsupervised learning of a scene-specific coarse gaze
estimator. In Computer Vision (ICCV), 2011 IEEE International Conference on,
pages 2344–2351. IEEE, 2011.

[26] James O Berger. Statistical Decision Theory and Bayesian Analysis. Springer,
1980.

[27] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[28] Lucas Beyer, Alexander Hermans, and Bastian Leibe. Biternion nets: Continuous
head pose regression from discrete training labels. In German Conference on
Pattern Recognition, pages 157–168. Springer International Publishing, 2015.

[29] Amlaan Bhoi. Monocular depth estimation: A survey. arXiv preprint
arXiv:1901.09402, 2019.

[30] Christopher M Bishop. Novelty detection and neural network validation. IEE
Proceedings-Vision, Image and Signal processing, 141(4):217–222, 1994.

[31] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[32] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d
faces. In Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, pages 187–194, 1999.

[33] Federica Bogo, Javier Romero, Matthew Loper, and Michael J Black. Faust:
Dataset and evaluation for 3d mesh registration. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 3794–3801, 2014.

[34] Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J. Black. Dynamic
FAUST: Registering human bodies in motion. In Proceedings IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) 2017, Piscataway, NJ, USA,
July 2017. IEEE.

[35] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. Conditional
time series forecasting with convolutional neural networks. arXiv preprint
arXiv:1703.04691, 2017.

[36] Diane Bouchacourt, Pawan K Mudigonda, and Sebastian Nowozin. DISCO Nets:
DISsimilarity COefficients Networks. In Advances in Neural Information Pro-
cessing Systems, pages 352–360, 2016.

101

Bibliography

[37] George EP Box. Science and statistics. Journal of the American Statistical Asso-
ciation, 71(356):791–799, 1976.

[38] Johannes Breitling, Anagha Deshmane, Steffen Goerke, Andreas Korzowski, Kai
Herz, Mark E Ladd, Klaus Scheffler, Peter Bachert, and Moritz Zaiss. Adap-
tive denoising for chemical exchange saturation transfer mr imaging. NMR in
Biomedicine, 32(11):e4133, 2019.

[39] Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly
weather review, 78(1):1–3, 1950.

[40] Oliver Brock and Oussama Khatib. High-speed navigation using the global dy-
namic window approach. In Proceedings 1999 ieee international conference on
robotics and automation (Cat. No. 99CH36288C), volume 1, pages 341–346.
IEEE, 1999.

[41] Dieter Büchler, Heiko Ott, and Jan Peters. A lightweight robotic arm with pneu-
matic muscles for robot learning. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 4086–4092. IEEE, 2016.

[42] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted au-
toencoders. arXiv preprint arXiv:1509.00519, 2015.

[43] Richard B Buxton. Introduction to functional magnetic resonance imaging: prin-
ciples and techniques. Cambridge university press, 2009.

[44] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J Leonard. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age. IEEE Transactions
on robotics, 32(6):1309–1332, 2016.

[45] Isarun Chamveha, Yusuke Sugano, Daisuke Sugimura, Teera Siriteerakul,
Takahiro Okabe, Yoichi Sato, and Akihiro Sugimoto. Head direction estimation
from low resolution images with scene adaptation. Computer Vision and Image
Understanding, 117(10):1502–1511, 2013.

[46] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Everybody
dance now. In Proceedings of the IEEE International Conference on Computer
Vision, pages 5933–5942, 2019.

[47] Cheng Chen and Jean-Marc Odobez. We are not contortionists: Coupled adaptive
learning for head and body orientation estimation in surveillance video. In Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages
1544–1551. IEEE, 2012.

102

Bibliography

[48] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In The European Conference on Computer Vision (ECCV), Septem-
ber 2018.

[49] Qifeng Chen and Vladlen Koltun. Robust nonrigid registration by convex opti-
mization. In ICCV. IEEE Computer Society, 2015.

[50] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794. ACM, 2016.

[51] Wengling Chen and James Hays. Sketchygan: Towards diverse and realistic sketch
to image synthesis. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9416–9425, 2018.

[52] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in
feature space for 3d shape reconstruction and completion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6970–
6981, 2020.

[53] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[54] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

[55] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns.
arXiv preprint arXiv:1801.10130, 2018.

[56] John Horton Conway and Neil James Alexander Sloane. Sphere packings, lattices
and groups, volume 290. Springer Science & Business Media, 2013.

[57] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. Gigavox-
els: Ray-guided streaming for efficient and detailed voxel rendering. In Proceed-
ings of the 2009 symposium on Interactive 3D graphics and games, pages 15–22,
2009.

[58] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. 1996.

[59] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,
and Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor
scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5828–5839, 2017.

103

https://github.com/fchollet/keras

Bibliography

[60] Angela Dai and Matthias Nießner. Scan2mesh: From unstructured range scans to
3d meshes. arXiv preprint arXiv:1811.10464, 2018.

[61] Matthias Dantone, Juergen Gall, Gabriele Fanelli, and Luc Van Gool. Real-time
facial feature detection using conditional regression forests. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2578–2585.
IEEE, 2012.

[62] Meltem Demirkus, James J Clark, and Tal Arbel. Robust semi-automatic head
pose labeling for real-world face video sequences. Multimedia Tools and Appli-
cations, 70(1):495–523, 2014.

[63] Meltem Demirkus, Doina Precup, James J Clark, and Tal Arbel. Probabilistic
temporal head pose estimation using a hierarchical graphical model. In European
Conference on Computer Vision, pages 328–344. Springer, 2014.

[64] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[65] John S Denker and Yann LeCun. Transforming neural-net output levels to proba-
bility distributions. In Advances in neural information processing systems, pages
853–859, 1991.

[66] Thomas G Dietterich. Ensemble methods in machine learning. In International
workshop on multiple classifier systems, pages 1–15. Springer, 2000.

[67] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[68] Bertram Drost and Slobodan Ilic. A hierarchical voxel hash for fast 3d nearest
neighbor lookup. In German Conference on Pattern Recognition, pages 302–312.
Springer, 2013.

[69] Bertram H Drost and Slobodan Ilic. Almost constant-time 3d nearest-neighbor
lookup using implicit octrees. Machine Vision and Applications, 29(2):299–311,
2018.

[70] David Eberly. 3D game engine design: a practical approach to real-time computer
graphics. CRC Press, 2006.

[71] Harald E Esch, Shaowu Zhang, Mandyan V Srinivasan, and Juergen Tautz.
Honeybee dances communicate distances measured by optic flow. Nature,
411(6837):581–583, 2001.

104

Bibliography

[72] Patrick Esser, Ekaterina Sutter, and Björn Ommer. A variational u-net for condi-
tional appearance and shape generation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8857–8866, 2018.

[73] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Dani-
ilidis. Learning so (3) equivariant representations with spherical cnns. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pages 52–68,
2018.

[74] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and An-
drew Zisserman. The pascal visual object classes (voc) challenge. International
journal of computer vision, 88(2):303–338, 2010.

[75] Gabriele Fanelli, Juergen Gall, and Luc Van Gool. Real time head pose estima-
tion with random regression forests. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 617–624. IEEE, 2011.

[76] Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and Yue Gao. Gvcnn:
Group-view convolutional neural networks for 3d shape recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
264–272, 2018.

[77] Robert Fisher, Jose Santos-Victor, and James Crowley. Caviar: Context aware
vision using image-based active recognition, 2005.

[78] Ronald Aylmer Fisher et al. 012: A mathematical examination of the methods of
determining the accuracy of an observation by the mean error, and by the mean
square error. 1920.

[79] Fabian Flohr, Madalin Dumitru-Guzu, Julian F. P. Kooij, and Dariu Gavrila. A
probabilistic framework for joint pedestrian head and body orientation estimation.
IEEE Transactions on Intelligent Transportation Systems, 16:1872–1882, 2015.

[80] Charles W Fox and Stephen J Roberts. A tutorial on variational bayesian infer-
ence. Artificial intelligence review, 38(2):85–95, 2012.

[81] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng
Tao. Deep ordinal regression network for monocular depth estimation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2002–2011, 2018.

[82] Noriatsu Furukawa, Akio Namiki, Senoo Taku, and Masatoshi Ishikawa. Dynamic
regrasping using a high-speed multifingered hand and a high-speed vision system.
In Proceedings 2006 IEEE International Conference on Robotics and Automation,
2006. ICRA 2006., pages 181–187. IEEE, 2006.

105

Bibliography

[83] Yasutaka Furukawa and Carlos Hernández. Multi-view stereo: A tutorial. Foun-
dations and Trends® in Computer Graphics and Vision, 9(1-2):1–148, 2015.

[84] Matheus Gadelha, Subhransu Maji, and Rui Wang. Shape generation using spa-
tially partitioned point clouds. arXiv preprint arXiv:1707.06267, 2017.

[85] Yarin Gal. Uncertainty in deep learning. University of Cambridge, 1:3, 2016.

[86] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning. In international conference on ma-
chine learning, pages 1050–1059, 2016.

[87] Dani Gamerman and Hedibert F Lopes. Markov chain Monte Carlo: stochastic
simulation for Bayesian inference. CRC Press, 2006.

[88] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3361. IEEE, 2012.

[89] Xin Geng and Yu Xia. Head pose estimation based on multivariate label distri-
bution. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1837–1842, 2014.

[90] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees.
Machine learning, 63(1):3–42, 2006.

[91] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence.
Nature, 521(7553):452–459, 2015.

[92] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh r-cnn. In Proceed-
ings of the IEEE International Conference on Computer Vision, pages 9785–9795,
2019.

[93] Felix Glang, Anagha Deshmane, Sergey Prokudin, Florian Martin, Kai Herz, To-
bias Lindig, Benjamin Bender, Klaus Scheffler, and Moritz Zaiss. Deepcest 3t:
Robust mri parameter determination and uncertainty quantification with neural
networks—application to cest imaging of the human brain at 3t. Magnetic Reso-
nance in Medicine, 2019.

[94] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 315–323, 2011.

[95] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction,
and estimation. Journal of the American statistical Association, 102(477):359–
378, 2007.

106

Bibliography

[96] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction,
and estimation. Journal of the American Statistical Association, 102(477):359–
378, 2007.

[97] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monoc-
ular depth estimation with left-right consistency. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 270–279, 2017.

[98] Steffen Goerke, Yannick Soehngen, Anagha Deshmane, Moritz Zaiss, Johannes
Breitling, Philip S Boyd, Kai Herz, Ferdinand Zimmermann, Karel D Klika,
Heinz-Peter Schlemmer, et al. Relaxation-compensated apt and rnoe cest-mri of
human brain tumors at 3 t. Magnetic resonance in medicine, 82(2):622–632, 2019.

[99] Sebastian Gomez-Gonzalez, Gerhard Neumann, Bernhard Schölkopf, and Jan Pe-
ters. Adaptation and robust learning of probabilistic movement primitives. IEEE
Transactions on Robotics, 36(2):366–379, 2020.

[100] Sebastian Gomez-Gonzalez, Sergey Prokudin, Bernhard Schölkopf, and Jan Pe-
ters. Real time trajectory prediction using deep conditional generative models.
IEEE Robotics and Automation Letters, 5(2):970–976, 2020.

[101] Irving John Good. Rational decisions. Journal of the Royal Statistical Society.
Series B (Methodological), pages 107–114, 1952.

[102] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[103] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in neural information processing systems, pages 2672–2680,
2014.

[104] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[105] Nicolas Gourier, Daniela Hall, and James L Crowley. Estimating face orientation
from robust detection of salient facial structures. In FG Net Workshop on Visual
Observation of Deictic Gestures, volume 6, 2004.

[106] Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolu-
tional networks. arXiv preprint arXiv:1706.01307, 2017.

[107] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit
geometric regularization for learning shapes. arXiv preprint arXiv:2002.10099,
2020.

107

Bibliography

[108] Markus Gross and Hanspeter Pfister. Point-based graphics. Elsevier, 2011.

[109] Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan Russell, and Mathieu
Aubry. 3d-coded : 3d correspondences by deep deformation. September 07 2018.

[110] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of
modern neural networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1321–1330. JMLR. org, 2017.

[111] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed
Bennamoun. Deep learning for 3d point clouds: A survey. arXiv preprint
arXiv:1912.12033, 2019.

[112] Thomas C Hales. A proof of the kepler conjecture. Annals of mathematics, pages
1065–1185, 2005.

[113] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and
Daniel Cohen-Or. Meshcnn: a network with an edge. ACM Transactions on
Graphics (TOG), 38(4):1–12, 2019.

[114] Radoslav Harman and Vladimı́r Lacko. On decompositional algorithms for uni-
form sampling from n-spheres and n-balls. Journal of Multivariate Analysis,
101(10):2297–2304, 2010.

[115] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003.

[116] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference, and prediction. Springer Science & Business
Media, 2009.

[117] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu net-
works yield high-confidence predictions far away from the training data and how
to mitigate the problem. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 41–50, 2019.

[118] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detec-
tion with outlier exposure. arXiv preprint arXiv:1812.04606, 2018.

[119] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[120] David A Hirshberg, Matthew Loper, Eric Rachlin, and Michael J Black. Coregis-
tration: Simultaneous alignment and modeling of articulated 3d shape. In Euro-
pean Conference on Computer Vision, pages 242–255. Springer, 2012.

108

Bibliography

[121] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[122] Emiel Hoogeboom, Jorn WT Peters, Taco S Cohen, and Max Welling. Hexaconv.
arXiv preprint arXiv:1803.02108, 2018.

[123] Liwen Hu, Derek Bradley, Hao Li, and Thabo Beeler. Simulation-ready hair cap-
ture. In Computer Graphics Forum, volume 36, pages 281–294. Wiley Online
Library, 2017.

[124] Dong Huang, Markus Storer, Fernando De la Torre, and Horst Bischof. Supervised
local subspace learning for continuous head pose estimation. In Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 2921–2928.
IEEE, 2011.

[125] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 4700–4708, 2017.

[126] Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and Tony Tung. Arch: Ani-
matable reconstruction of clothed humans. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 3093–3102, 2020.

[127] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1125–1134, 2017.

[128] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time
style transfer and super-resolution. In European conference on computer vision,
pages 694–711. Springer, 2016.

[129] Hanbyul Joo, Tomas Simon, and Yaser Sheikh. Total capture: A 3d deformation
model for tracking faces, hands, and bodies. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 8320–8329, 2018.

[130] Łukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. Learning to remem-
ber rare events. arXiv preprint arXiv:1703.03129, 2017.

[131] Angjoo Kanazawa, Michael J Black, David W Jacobs, and Jitendra Malik. End-
to-end recovery of human shape and pose. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7122–7131, 2018.

[132] Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi Nishida. Rotationnet: Joint
object categorization and pose estimation using multiviews from unsupervised
viewpoints. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5010–5019, 2018.

109

Bibliography

[133] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-view stereo
machine. In Advances in neural information processing systems, pages 365–376,
2017.

[134] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture
for generative adversarial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4401–4410, 2019.

[135] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Analyzing and improving the image quality of stylegan. arXiv preprint
arXiv:1912.04958, 2019.

[136] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3907–3916, 2018.

[137] Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with an
ensemble of regression trees. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1867–1874, 2014.

[138] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface recon-
struction. In Proceedings of the fourth Eurographics symposium on Geometry
processing, volume 7, 2006.

[139] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep
learning for computer vision? In Advances in neural information processing
systems, pages 5574–5584, 2017.

[140] Kristian Kersting, Christian Plagemann, Patrick Pfaff, and Wolfram Burgard.
Most likely heteroscedastic gaussian process regression. In Proceedings of the
24th international conference on Machine learning, pages 393–400, 2007.

[141] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[142] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[143] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
Semi-supervised learning with deep generative models. In Advances in neural
information processing systems, pages 3581–3589, 2014.

[144] Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for
the recognition of 3d point cloud models. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 863–872, 2017.

110

Bibliography

[145] Leif Kobbelt and Mario Botsch. A survey of point-based techniques in computer
graphics. Computers & Graphics, 28(6):801–814, 2004.

[146] Muhammed Kocabas, Nikos Athanasiou, and Michael J Black. Vibe:
Video inference for human body pose and shape estimation. arXiv preprint
arXiv:1912.05656, 2019.

[147] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and Kostas Daniilidis.
Learning to reconstruct 3d human pose and shape via model-fitting in the loop.
In Proceedings of the IEEE International Conference on Computer Vision, pages
2252–2261, 2019.

[148] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[149] Solomon Kullback and Richard A Leibler. On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86, 1951.

[150] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In Advances in
neural information processing systems, pages 6402–6413, 2017.

[151] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic seg-
mentation with superpoint graphs. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4558–4567, 2018.

[152] Katrin Lasinger, René Ranftl, Konrad Schindler, and Vladlen Koltun. Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. arXiv preprint arXiv:1907.01341, 2019.

[153] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified frame-
work for detecting out-of-distribution samples and adversarial attacks. In Ad-
vances in Neural Information Processing Systems, pages 7167–7177, 2018.

[154] Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, and
Siegfried Wahl. Leveraging uncertainty information from deep neural networks
for disease detection. Scientific reports, 7(1):1–14, 2017.

[155] Marc Levoy and Turner Whitted. The use of points as a display primitive. Citeseer,
1985.

[156] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-organizing network for
point cloud analysis. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 9397–9406, 2018.

111

Bibliography

[157] Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier Romero. Learning
a model of facial shape and expression from 4d scans. ACM Transactions on
Graphics (ToG), 36(6):194, 2017.

[158] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliabil-
ity of out-of-distribution image detection in neural networks. arXiv preprint
arXiv:1706.02690, 2017.

[159] Zhi-Pei Liang and Paul C Lauterbur. Principles of magnetic resonance imaging:
a signal processing perspective. SPIE Optical Engineering Press, 2000.

[160] Or Litany, Tal Remez, Emanuele Rodolà, Alexander M. Bronstein, and
Michael M. Bronstein. Deep functional maps: Structured prediction for dense
shape correspondence. CoRR, abs/1704.08686, 2017.

[161] Lingjie Liu, Weipeng Xu, Marc Habermann, Michael Zollhoefer, Florian Bernard,
Hyeongwoo Kim, Wenping Wang, and Christian Theobalt. Neural human video
rendering: Joint learning of dynamic textures and rendering-to-video translation.
arXiv preprint arXiv:2001.04947, 2020.

[162] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable
renderer for image-based 3d reasoning. In Proceedings of the IEEE International
Conference on Computer Vision, pages 7708–7717, 2019.

[163] Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. Deep appear-
ance models for face rendering. ACM Transactions on Graphics (TOG), 37(4):1–
13, 2018.

[164] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas
Lehrmann, and Yaser Sheikh. Neural volumes: Learning dynamic renderable
volumes from images. ACM Transactions on Graphics (TOG), 38(4):65, 2019.

[165] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J Black. Smpl: A skinned multi-person linear model. ACM transactions
on graphics (TOG), 34(6):248, 2015.

[166] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. Smpl: a skinned multi-person linear model. ACM Trans. Graph,
34(6):248:1–248:16, 2015.

[167] Jiwen Lu and Yap-Peng Tan. Ordinary preserving manifold analysis for human
age and head pose estimation. IEEE Transactions on Human-Machine Systems,
43(2):249–258, 2013.

112

Bibliography

[168] Qianli Ma, Jinlong Yang, Anurag Ranjan, Sergi Pujades, Gerard Pons-Moll, Siyu
Tang, and Michael J Black. Learning to dress 3d people in generative clothing.
arXiv preprint arXiv:1907.13615, 2019.

[169] David JC MacKay. A practical bayesian framework for backpropagation net-
works. Neural computation, 4(3):448–472, 1992.

[170] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083, 2017.

[171] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and
Michael J Black. Amass: Archive of motion capture as surface shapes. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages 5442–
5451, 2019.

[172] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. Pose estimation for
augmented reality: a hands-on survey. IEEE transactions on visualization and
computer graphics, 22(12):2633–2651, 2016.

[173] Kanti V Mardia and Peter E Jupp. Directional statistics, volume 494. John Wiley
& Sons, 2009.

[174] Riccardo Marin, Simone Melzi, Emanuele Rodolà, and Umberto Castellani.
Farm: Functional automatic registration method for 3d human bodies. CoRR,
abs/1807.10517, 2018.

[175] Ricardo Martin-Brualla, Rohit Pandey, Shuoran Yang, Pavel Pidlypenskyi,
Jonathan Taylor, Julien Valentin, Sameh Khamis, Philip Davidson, Anastasia
Tkach, Peter Lincoln, et al. Lookingood: enhancing performance capture with
real-time neural re-rendering. arXiv preprint arXiv:1811.05029, 2018.

[176] Francisco Massa, Renaud Marlet, and Mathieu Aubry. Crafting a multi-task cnn
for viewpoint estimation. arXiv preprint arXiv:1609.03894, 2016.

[177] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural net-
work for real-time object recognition. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 922–928. IEEE, 2015.

[178] Randolf Menzel. The honeybee as a model for understanding the basis of cogni-
tion. Nature Reviews Neuroscience, 13(11):758–768, 2012.

[179] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and
Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function
space. arXiv preprint arXiv:1812.03828, 2018.

113

Bibliography

[180] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adver-
sarial training: a regularization method for supervised and semi-supervised learn-
ing. IEEE transactions on pattern analysis and machine intelligence, 41(8):1979–
1993, 2018.

[181] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. V2v-posenet: Voxel-to-
voxel prediction network for accurate 3d hand and human pose estimation from
a single depth map. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5079–5088, 2018.

[182] Katharina Mülling, Jens Kober, and Jan Peters. A biomimetic approach to robot
table tennis. Adaptive Behavior, 19(5):359–376, 2011.

[183] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[184] Erik Murphy-Chutorian, Anup Doshi, and Mohan Manubhai Trivedi. Head pose
estimation for driver assistance systems: A robust algorithm and experimental
evaluation. In Intelligent Transportation Systems Conference, 2007. ITSC 2007.
IEEE, pages 709–714. IEEE, 2007.

[185] Erik Murphy-Chutorian and Mohan Manubhai Trivedi. Head pose estimation in
computer vision: A survey. IEEE transactions on pattern analysis and machine
intelligence, 31(4):607–626, 2009.

[186] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lak-
shminarayanan. Hybrid models with deep and invertible features. arXiv preprint
arXiv:1902.02767, 2019.

[187] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer
Science & Business Media, 2012.

[188] Tristan Needham. A visual explanation of Jensen’s inequality. The American
mathematical monthly, 100(8):768–771, 1993.

[189] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. Reading digits in natural images with unsupervised feature learning.
2011.

[190] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and An-
drew Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking.
In 2011 IEEE International Symposium on Mixed and Augmented Reality, pages
127–136. IEEE, 2011.

114

Bibliography

[191] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang
Yang. Hologan: Unsupervised learning of 3d representations from natural images.
In Proceedings of the IEEE International Conference on Computer Vision, pages
7588–7597, 2019.

[192] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with
supervised learning. In Proceedings of the 22nd international conference on Ma-
chine learning, pages 625–632, 2005.

[193] David A Nix and Andreas S Weigend. Estimating the mean and variance of the tar-
get probability distribution. In Proceedings of 1994 ieee international conference
on neural networks (ICNN’94), volume 1, pages 55–60. IEEE, 1994.

[194] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checker-
board artifacts. Distill, 2016.

[195] Jean Marc Odobez. IDIAP Head Pose Database. https://www.idiap.ch/

dataset/headpose.

[196] Stephen M Omohundro. Five balltree construction algorithms. International
Computer Science Institute Berkeley, 1989.

[197] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. arXiv preprint arXiv:1601.06759, 2016.

[198] Margarita Osadchy, Yann Le Cun, and Matthew L Miller. Synergistic face detec-
tion and pose estimation with energy-based models. Journal of Machine Learning
Research, 8(May):1197–1215, 2007.

[199] Stanley Osher and James A Sethian. Fronts propagating with curvature-dependent
speed: algorithms based on hamilton-jacobi formulations. Journal of computa-
tional physics, 79(1):12–49, 1988.

[200] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for category specific multiview
object localization. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 778–785, 2009.

[201] Onur Özyeşil, Vladislav Voroninski, Ronen Basri, and Amit Singer. A survey of
structure from motion*. Acta Numerica, 26:305–364, 2017.

[202] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. Deepsdf: Learning continuous signed distance functions for shape
representation. arXiv preprint arXiv:1901.05103, 2019.

115

https://www.idiap.ch/dataset/headpose
https://www.idiap.ch/dataset/headpose

Bibliography

[203] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

[204] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed AA
Osman, Dimitrios Tzionas, and Michael J Black. Expressive body capture: 3d
hands, face, and body from a single image. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 10975–10985, 2019.

[205] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[206] Bojan Pepik, Peter Gehler, Michael Stark, and Bernt Schiele. 3d2pm – 3d de-
formable part models. In Proceedings of the European Conference on Computer
Vision (ECCV), Lecture Notes in Computer Science, pages 356–370, Firenze, Oc-
tober 2012. Springer.

[207] Bojan Pepik, Michael Stark, Peter Gehler, and Bernt Schiele. Teaching 3d ge-
ometry to deformable part models. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3362 –3369, Providence, RI, USA, June 2012.
IEEE. oral presentation.

[208] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus Gross. Surfels:
Surface elements as rendering primitives. In Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques, pages 335–342, 2000.

[209] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering:
From theory to implementation. Morgan Kaufmann, 2016.

[210] John Platt et al. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in large margin classifiers, 10(3):61–
74, 1999.

[211] Patrick Poirson, Phil Ammirato, Cheng-Yang Fu, Wei Liu, Jana Kosecka, and
Alexander C Berg. Fast single shot detection and pose estimation. In 3D Vision
(3DV), 2016 Fourth International Conference on, pages 676–684. IEEE, 2016.

[212] Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J. Black.
Dyna: A model of dynamic human shape in motion. ACM Transactions on Graph-
ics, (Proc. SIGGRAPH), 34(4):120:1–120:14, August 2015.

116

Bibliography

[213] Vittal Premachandran, Daniel Tarlow, and Dhruv Batra. Empirical minimum
Bayes risk prediction: How to extract an extra few % performance from vision
models with just three more parameters. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1043–1050, 2014.

[214] RI’Anson Price, N Dulex, N Vial, C Vincent, and Christoph Grüter. Honeybees
forage more successfully without the “dance language” in challenging environ-
ments. Science advances, 5(2):eaat0450, 2019.

[215] Sergey Prokudin, Peter Gehler, and Sebastian Nowozin. Deep directional statis-
tics: Pose estimation with uncertainty quantification. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 534–551, 2018.

[216] Sergey Prokudin, Daniel Kappler, Sebastian Nowozin, and Peter Gehler. Learning
to filter object detections. In German Conference on Pattern Recognition, pages
52–62. Springer, 2017.

[217] Sergey Prokudin, Christoph Lassner, and Javier Romero. Efficient learning on
point clouds with basis point sets. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 4332–4341, 2019.

[218] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 1(2):4, 2017.

[219] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and
Leonidas J Guibas. Volumetric and multi-view cnns for object classification on
3d data. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5648–5656, 2016.

[220] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in Neural
Information Processing Systems, pages 5099–5108, 2017.

[221] Joaquin Quinonero-Candela, Carl Edward Rasmussen, Fabian Sinz, Olivier Bous-
quet, and Bernhard Schölkopf. Evaluating predictive uncertainty challenge. In
Machine Learning Challenges Workshop, pages 1–27. Springer, 2005.

[222] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J Black. Generating
3d faces using convolutional mesh autoencoders. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 704–720, 2018.

[223] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014.

117

Bibliography

[224] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep
3d representations at high resolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3577–3586, 2017.

[225] Gernot Riegler, Ali Osman Ulusoy, Horst Bischof, and Andreas Geiger. Octnet-
fusion: Learning depth fusion from data. In 2017 International Conference on 3D
Vision (3DV), pages 57–66. IEEE, 2017.

[226] Michal Rivlin, Judith Horev, Ilan Tsarfaty, and Gil Navon. Molecular imaging
of tumors and metastases using chemical exchange saturation transfer (cest) mri.
Scientific reports, 3(1):1–7, 2013.

[227] Kathleen M. Robinette, Sherri Blackwell, Hein Daanen, Mark Boehmer, Scott
Fleming, Tina Brill, Dãvid Hoeferlin, and Dennis Burnsides. Civilian American
and European Surface Anthropometric Resource (CAESAR) final report. Techni-
cal report, US Air Force Laboratory, 2002.

[228] Javier Romero, Dimitrios Tzionas, and Michael J Black. Embodied hands: Mod-
eling and capturing hands and bodies together. ACM Transactions on Graphics
(ToG), 36(6):245, 2017.

[229] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[230] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[231] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point render-
ing system for large meshes. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pages 343–352, 2000.

[232] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo
Kanazawa, and Hao Li. Pifu: Pixel-aligned implicit function for high-resolution
clothed human digitization. In The IEEE International Conference on Computer
Vision (ICCV), October 2019.

[233] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo. Pifuhd: Multi-
level pixel-aligned implicit function for high-resolution 3d human digitization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 84–93, 2020.

118

Bibliography

[234] Kripasindhu Sarkar, Basavaraj Hampiholi, Kiran Varanasi, and Didier Stricker.
Learning 3d shapes as multi-layered height-maps using 2d convolutional net-
works. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 71–86, 2018.

[235] Silvio Savarese and Li Fei-Fei. 3d generic object categorization, localization and
pose estimation. In Computer Vision, 2007. ICCV 2007. IEEE 11th International
Conference on, pages 1–8. IEEE, 2007.

[236] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revis-
ited. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[237] James Albert Sethian. Level set methods and fast marching methods: evolving
interfaces in computational geometry, fluid mechanics, computer vision, and ma-
terials science, volume 3. Cambridge university press, 1999.

[238] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Mining point cloud local
structures by kernel correlation and graph pooling. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4548–4557, 2018.

[239] A Dean Sherry and Mark Woods. Chemical exchange saturation transfer contrast
agents for magnetic resonance imaging. Annu. Rev. Biomed. Eng., 10:391–411,
2008.

[240] Aliaksandra Shysheya, Egor Zakharov, Kara-Ali Aliev, Renat Bashirov, Egor
Burkov, Karim Iskakov, Aleksei Ivakhnenko, Yury Malkov, Igor Pasechnik,
Dmitry Ulyanov, Alexander Vakhitov, and Victor Lempitsky. Textured neural
avatars. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[241] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[242] Teera Siriteerakul. Advance in head pose estimation from low resolution images:
A review. International Journal of Computer Science Issues, 9(2), 2012.

[243] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wet-
zstein, and Michael Zollhofer. Deepvoxels: Learning persistent 3d feature embed-
dings. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2437–2446, 2019.

[244] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representa-
tion networks: Continuous 3d-structure-aware neural scene representations. In
Advances in Neural Information Processing Systems, 2019.

119

Bibliography

[245] J David Smith, Wendy E Shields, and David A Washburn. The comparative psy-
chology of uncertainty monitoring and metacognition. Behavioral and brain sci-
ences, 26(3):317–339, 2003.

[246] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring
photo collections in 3d. In ACM Siggraph 2006 Papers, pages 835–846. 2006.

[247] Noah Snavely, Steven M Seitz, and Richard Szeliski. Modeling the world from
internet photo collections. International journal of computer vision, 80(2):189–
210, 2008.

[248] Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian
Nowozin, D Sculley, Joshua Dillon, Jie Ren, and Zachary Nado. Can you trust
your model’s uncertainty? evaluating predictive uncertainty under dataset shift. In
Advances in Neural Information Processing Systems, pages 13969–13980, 2019.

[249] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output repre-
sentation using deep conditional generative models. In Advances in Neural Infor-
mation Processing Systems, pages 3483–3491, 2015.

[250] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. Semantic scene completion from a single depth image. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1746–1754, 2017.

[251] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfit-
ting. The journal of machine learning research, 15(1):1929–1958, 2014.

[252] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy con-
siderations for deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

[253] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller.
Multi-view convolutional neural networks for 3d shape recognition. In Proceed-
ings of the IEEE international conference on computer vision, pages 945–953,
2015.

[254] Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas. Render for cnn:
Viewpoint estimation in images using cnns trained with rendered 3d model views.
In Proceedings of the IEEE International Conference on Computer Vision, pages
2686–2694, 2015.

[255] Leonard Susskind. The world as a hologram. Journal of Mathematical Physics,
36(11):6377–6396, 1995.

120

Bibliography

[256] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In AAAI, volume 4, page 12.

[257] Richard Szeliski. Computer vision: algorithms and applications. Springer Sci-
ence & Business Media, 2010.

[258] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Variational autoencoders
for deforming 3d mesh models. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 5841–5850, 2018.

[259] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. Tangent
convolutions for dense prediction in 3d. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3887–3896, 2018.

[260] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lom-
bardi, Kalyan Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih,
Matthias Nießner, et al. State of the art on neural rendering. arXiv preprint
arXiv:2004.03805, 2020.

[261] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation
of generative models. arXiv preprint arXiv:1511.01844, 2015.

[262] Theoharis Theoharis, Georgios Papaioannou, and Evaggelia-Aggeliki Karabassi.
The magic of the z-buffer: A survey. 2001.

[263] Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural rendering:
Image synthesis using neural textures. ACM Transactions on Graphics (TOG),
38(4):1–12, 2019.

[264] Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and
Matthias Nießner. Face2face: Real-time face capture and reenactment of rgb
videos. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2387–2395, 2016.

[265] Diego Tosato, Mauro Spera, Marco Cristani, and Vittorio Murino. Characterizing
humans on riemannian manifolds. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(8):1972–1984, 2013.

[266] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv
preprint arXiv:1705.07204, 2017.

[267] Shubham Tulsiani and Jitendra Malik. Viewpoints and keypoints. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1510–1519, 2015.

121

Bibliography

[268] Peter CM Van Zijl and Nirbhay N Yadav. Chemical exchange saturation trans-
fer (cest): what is in a name and what isn’t? Magnetic resonance in medicine,
65(4):927–948, 2011.

[269] Karl Von Frisch. The dance language and orientation of bees. 1967.

[270] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-
cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM
Transactions on Graphics (TOG), 36(4):72, 2017.

[271] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. High-resolution image synthesis and semantic manipulation with con-
ditional gans. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8798–8807, 2018.

[272] Shih-En Wei, Jason Saragih, Tomas Simon, Adam W Harley, Stephen Lom-
bardi, Michal Perdoch, Alexander Hypes, Dawei Wang, Hernan Badino, and Yaser
Sheikh. Vr facial animation via multiview image translation. ACM Transactions
on Graphics (TOG), 38(4):1–16, 2019.

[273] Johannes Windschuh, Moritz Zaiss, Jan-Eric Meissner, Daniel Paech, Alexander
Radbruch, Mark E Ladd, and Peter Bachert. Correction of b1-inhomogeneities for
relaxation-compensated cest imaging at 7 t. NMR in biomedicine, 28(5):529–537,
2015.

[274] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1912–1920, 2015.

[275] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond pascal: A benchmark
for 3d object detection in the wild. In Applications of Computer Vision (WACV),
2014 IEEE Winter Conference on, pages 75–82. IEEE, 2014.

[276] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond pascal: A benchmark
for 3d object detection in the wild. In IEEE Winter Conference on Applications of
Computer Vision (WACV), 2014.

[277] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R
Salakhutdinov, and Alexander J Smola. Deep sets. In Advances in neural infor-
mation processing systems, pages 3391–3401, 2017.

[278] Moritz Zaiss, Johannes Windschuh, Daniel Paech, Jan-Eric Meissner, Sina Burth,
Benjamin Schmitt, Philip Kickingereder, Benedikt Wiestler, Wolfgang Wick,
Martin Bendszus, et al. Relaxation-compensated cest-mri of the human brain at

122

Bibliography

7 t: unbiased insight into noe and amide signal changes in human glioblastoma.
Neuroimage, 112:180–188, 2015.

[279] Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and Victor Lempitsky. Few-
shot adversarial learning of realistic neural talking head models. In Proceedings of
the IEEE International Conference on Computer Vision, pages 9459–9468, 2019.

[280] Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao, and
Thomas Funkhouser. 3dmatch: Learning local geometric descriptors from rgb-d
reconstructions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1802–1811, 2017.

[281] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui,
and Michael I Jordan. Theoretically principled trade-off between robustness and
accuracy. arXiv preprint arXiv:1901.08573, 2019.

[282] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
The unreasonable effectiveness of deep features as a perceptual metric. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 586–595, 2018.

[283] Chaoqiang Zhao, Qiyu Sun, Chongzhen Zhang, Yang Tang, and Feng Qian.
Monocular depth estimation based on deep learning: An overview. arXiv preprint
arXiv:2003.06620, 2020.

[284] Yongsheng Zhao, Rong Xiong, and Yifeng Zhang. Model based motion state
estimation and trajectory prediction of spinning ball for ping-pong robots using
expectation-maximization algorithm. Journal of Intelligent & Robotic Systems,
87(3-4):407–423, 2017.

[285] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Unsupervised
learning of depth and ego-motion from video. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1851–1858, 2017.

[286] Yi Zhou, Liwen Hu, Jun Xing, Weikai Chen, Han-Wei Kung, Xin Tong, and Hao
Li. Hairnet: Single-view hair reconstruction using convolutional neural networks.
In Proceedings of the European Conference on Computer Vision (ECCV), pages
235–251, 2018.

[287] Xiangxin Zhu and Deva Ramanan. Face detection, pose estimation, and landmark
localization in the wild. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pages 2879–2886. IEEE, 2012.

[288] Silvia Zuffi and Michael J Black. The stitched puppet: A graphical model of 3d
human shape and pose. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3537–3546, 2015.

123

Bibliography

[289] Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and Michael J Black. 3d
menagerie: Modeling the 3d shape and pose of animals. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 6365–6373,
2017.

[290] Barton Zwiebach. A first course in string theory. Cambridge university press,
2004.

124

	1 Introduction
	1.1 Motivation
	1.2 Organization and Contributions
	1.3 List of Publications

	I Uncertainty in Deep Visual Models
	2 Uncertainty Modeling
	2.1 The Importance of Knowing What We Do Not Know
	2.2 Uncertainty in Machine Learning Models
	2.3 Approaches to Uncertainty Quantification
	2.3.1 Maximum Likelihood Estimation
	2.3.2 Bayesian Neural Networks
	2.3.3 Deep Model Ensembling
	2.3.4 Post-Processing Calibration
	2.3.5 Data Augmentation

	2.4 Evaluation of Uncertainty Estimates
	2.5 Conclusion

	3 Probabilistic Circular Regression
	3.1 Introduction
	3.2 Related Work
	3.3 Review of Biternion Networks
	3.3.1 Biternion Representation
	3.3.2 Cosine Loss Function

	3.4 Probabilistic models of circular data.
	3.4.1 Von Mises Biternion Networks
	3.4.2 Maximizing the von Mises Log-likelihood

	3.5 Mixture of von Mises Distributions
	3.5.1 Finite Mixture of von Mises Distributions
	3.5.2 Infinite Mixture (CVAE)
	3.5.3 Point Prediction

	3.6 Experiments
	3.6.1 Experimental Setup
	3.6.2 Results and Discussion

	3.7 Conclusion

	4 Deep Probabilistic Models in Real-World Systems
	4.1 DeepCEST: Robust MRI Parameter Determination
	4.2 Real-Time Trajectory Prediction in High Speed Robotics

	II Efficient 3D Shape Analysis
	5 Overview and Foundations
	5.1 3D Data Acquisition
	5.2 Shape Representations
	5.3 Rendering
	5.4 Conclusion

	6 Point Cloud Analysis with Basis Point Sets
	6.1 Introduction
	6.2 Related Work
	6.3 Method
	6.4 Analysis
	6.4.1 Comparison to Occupancy Grids, TSDFs and Plain Point Clouds
	6.4.2 Basis Point Selection Strategies

	6.5 Learning with Basis Point Sets
	6.5.1 3D Shape Classification
	6.5.2 Single-Pass Mesh Registration from 3D Scans
	6.5.3 Training Details
	6.5.4 Encoding Time

	6.6 Conclusion and Future Work

	7 SMPLpix: Neural Pixels from 3D Human Models
	7.1 Introduction
	7.2 Related Work
	7.3 Method
	7.3.1 Data
	7.3.2 Neural rasterization

	7.4 Experiments
	7.4.1 Data Details
	7.4.2 Quantitative Experiments
	7.4.3 Qualitative experiments

	7.5 Conclusion and Future Work

	8 Conclusions and Outlook
	8.1 Deep Probabilistic Models
	8.2 Efficient Learning on Point Clouds
	8.3 Neural Human Rendering
	8.4 Afterword

	Symbols
	Abbreviations

