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“It is that range of biodiversity that we must care for — the whole
thing — rather than just one or two stars.”

David Attenborough
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Abstract

Biodiversity comprises life in all forms and functions. Its complexity is difficult to
grasp in one glance, and to aid in this, biodiversity is commonly divided into three
broad categories: ecosystems, species, and genes. Although it defines the world we
live in, and provides fundamental ecosystem services, human activities increasingly
threaten biodiversity at all levels, and the intensification of efforts to protect it is ur-
gently needed. Such efforts are often impeded by a lack of knowledge on the distri-
bution of biodiversity. Mapping biodiversity at all levels of organization is therefore
an essential step in better informing conservation decisions.

One of the key factors in determining where biodiversity is richest, how it is dis-
tributed or even how well biodiversity can bounce back from changes and threats
it might experience, is the environment. Because environmental data have become
widely available, knowledge on how the environment is related to the occurrence of
biodiversity can greatly facilitate creating continuous maps of its distribution. More-
over, because human activities severely modify environmental conditions, disentan-
gling their individual effects in driving spatial patterns of biodiversity plays a cen-
tral in evolutionary biology, ecology and conservation. Within a changing environ-
ment, habitats may become unfavorable, and species may respond by shifting their
ranges. The current level of habitat fragmentation, however, severely limits range
shifts. Thus, species must respond adaptively to the modified or new selection pres-
sures in order to persist in the long run. Such rapid evolutionary responses rely on
standing genetic variation, representing adaptations to the environment. It is there-
fore indispensable to map the spatial distribution of adaptive genetic variation in or-
der to maximize species’ evolutionary potential. This equips scientists to understand
how changes in the environment may affect biodiversity and can eventually lead to
a more fitting and adjusted conservation effort and better management practices.

In this thesis, I aimed to (1) assess the relative influence of environment on different
ecological and evolutionary processes, which themselves influence spatial patterns
of biodiversity and to (2) evaluate how this understanding can be used for mapping
and ultimately protecting biodiversity. I focused on several different components of
biodiversity: habitats, species and genes. To cover multiple categories of biodiver-
sity, I investigated (i) the distributional patterns of two closely related bumble bee
species (the buff-tailed (Bombus terrestris) and the white-tailed bumble bee (Bombus
lucorum)), and how those patterns are determined by the environment; (ii) the use in
spatial conservation prioritization of environmental heterogeneity as a surrogate for
species distributions and vice versa; (iii) the role of environment in shaping popu-
lation divergence in the house sparrow (Passer domesticus); and (iv) signals of local
adaptations in the buff-tailed bumble bee (Bombus terrestris).

This work was conducted in two eastern European countries, Romania and Bulgaria.
These countries comprise a highly heterogeneous environment, representing a suit-
able area for evaluating the effect of the environment on the distribution of biodiver-
sity (species and genes). Parts of my work resulted in specific recommendations for
conservation. These are very timely, since the European Union set new biodiversity
targets for 2030, requesting member states to increase their protected areas network
to 30% of the total land area.
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I found that: (i) both vegetation and climatic variables play a role in determining
the distributions of the two bumble bee species, in particular vegetation cover and
elevation-correlated climatic variables; (ii) environmental heterogeneity is not as a
sufficient surrogate for species (based on bird species data) as the other way around,
confirming the recommendation to use more than one type of surrogate in spatial
conservation prioritization; (iii) and (iv) there is evidence of environmental selection
and patterns of ‘isolation by environment’ determining population structure in both
bumble bees and sparrows. I also identified a set of genes that may be adapted to
local conditions in bumble bees.

This thesis shows that the environment largely determines how biodiversity is dis-
tributed, and yet is a poor surrogate in spatial conservation prioritization. It also pro-
vides strong evidence that it is one of the main drivers shaping the genetic structure
of species. These findings should encourage scientists to continue mapping spatial
patterns of biodiversity and particularly focus on the genetic level of biodiversity.
Understanding the drivers and patterns of adaptive genetic variation in populations
is providing insight in evolutionary processes and helps ensure that the evolutionary
potential of species can be maximized.



Zusammenfassung

Biodiversitdt umfasst Leben in allen Formen und Funktionen. Thre Komplexitat ist
auf einen Blick schwer zu erfassen und um dies zu unterstiitzen, wird die biologis-
che Vielfalt {iblicherweise in drei grole Kategorien unterteilt: Okosysteme, Arten
und Gene. Obwohl sie die Welt in der wir leben definiert und grundlegende Okosys-
temleistungen erbringt, bedrohen menschliche Aktivitidten zunehmend die biologis-
che Vielfalt auf allen Ebenen. Eine Intensivierung der Bemiithungen um ihren Schutz
ist daher dringend erforderlich. Solche Bemiithungen werden oft durch mangelndes
Wissen tiber die Verteilung der Biodiversitdt behindert. Die Kartierung der biologis-
chen Vielfalt auf allen Organisationsebenen, ist daher ein wesentlicher Schritt, um
bessere und erfolgreichere Entscheidungen zum Naturschutz treffen zu kénnen.

Die Umwelt ist einer der Schliisselfaktoren die bestimmt, wo die biologische Vielfalt
am reichsten ist, wie sie verteilt ist oder sogar wie gut sich die biologische Vielfalt
von Verdnderungen und Bedrohungen erholen kann. Da Umweltdaten inzwischen
in grofilem Ausmaf3 zur Verfiigung stehen, kann das Wissen dartiber, wie die Umwelt
mit dem Vorkommen der biologischen Vielfalt zusammenhingt, die Erstellung kon-
tinuierlicher Karten ihrer Verteilung erheblich erleichtern. Da menschliche Aktiv-
itdten zudem die Umweltbedingungen stark verdndern, spielt die Entflechtung ihrer
individuellen Auswirkungen auf die raumlichen Muster der Biodiversitét eine zen-
trale Rolle in der Evolutionsbiologie, Okologie und Naturschutz. Innerhalb einer sich
verandernden Umwelt konnen Lebensraume unbewohnbar werden, und Arten kon-
nen darauf mit einer Verschiebung ihrer Verbreitungsgebiete reagieren. Der gegen-
wartige Grad der Habitatfragmentierung schranktjedoch die Reichweite solcher ,, Ver-
schiebungen” stark ein. Daher miissen die Arten anpassungsfahig sein, um auf den
verdnderten oder neuen Selektionsdruck reagieren und langfristig tiberleben zu kon-
nen. Solche raschen evolutiondren Reaktionen basieren auf vorhandener genetis-
cher Variation, die eine Anpassung an die Umwelt erméglicht. Es ist daher uner-
lasslich, die raumliche Verteilung der adaptiven genetischen Variation zu kartieren,
um das evolutiondre Potenzial der Arten zu maximieren. Auf diese Weise konnen
Wissenschaftler verstehen, wie sich Verdnderungen in der Umwelt auf die biologis-
che Vielfalt auswirken kénnen und schliefillich zu angemesseneren Erhaltungsmaf-
nahmen und besseren Managementpraktiken greifen.

In dieser Arbeit zielte ich darauf ab, (1) den relativen Einfluss der Umwelt auf ver-
schiedene ckologische und evolutiondre Prozesse abzuschdtzen, die ihrerseits die
rdumlichen Muster der Biodiversitidt beeinflussen, und (2) zu bewerten, wie dieses
Verstandnis fiir die Kartierung und letztlich fiir den Schutz der Biodiversitit genutzt
werden kann. Ich habe mich mit verschiedenen Komponenten der Biodiversitit,
wie Lebensrdume, Arten und Gene auseinandergesetzt. Um mehrere Kategorien
der Biodiversitdt abzudecken, untersuchte ich (i) die Verbreitungsmuster zweier eng
verwandter Hummelarten (die dunkle Erdhummel (Bombus terrestris) und die helle
Erdhummel (Bombus lucorum)) und wie diese Muster durch die Umwelt bestimmt
werden; (ii) die Verwendung der Heterogenitat der Umwelt als Stellvertreter fiir die
Verteilung der Arten und umgekehrt; (iii) die Rolle der Umwelt bei der Gestaltung
der Populationsdivergenz beim Haussperling (Passer domesticus); und (iv) Signale fiir
lokale Anpassungen bei der dunklen Erdhummel (Bombus terrestris).



Diese Arbeiten wurden in zwei osteuropédischen Lindern, Ruménien und Bulgar-
ien, durchgefiihrt. Diese Lander umfassen eine sehr heterogene Umwelt, die ein
geeignetes Gebiet fiir die Bewertung der Auswirkungen der Umwelt auf die Verteilung
der Biodiversitdt (Arten und Gene) darstellt. Teile meiner Arbeit fiihrten zu spezifis-
chen Empfehlungen fiir die Erhaltung. Diese kommen genau zum richtigen Zeit-
punkt, da die Européaische Union neue Ziele fiir die biologische Vielfalt bis 2030 fest-
gelegt und die Mitgliedstaaten aufgefordert hat, ihr Netz von Schutzgebieten auf 30%
der Gesamtfldche zu erweitern.

Meine Ergebnisse zeigen, dass: (i) sowohl Vegetations- als auch Klimavariablen bei
der Bestimmung der Verteilung der beiden Hummelarten eine Rolle spielen, ins-
besondere die Vegetationsbedeckung und die hohenkorrelierten Klimavariablen; (ii)
die Heterogenitdt der Umwelt nicht als ausreichender Stellvertreter fiir Artenvielfalt
(auf der Grundlage von Vogelartdaten) dient, sondern umgekehrt. Das bestitigt die
Empfehlung, bei der Festlegung von Prioritédten fiir Schutzgebiete, mehr als eine Art
als Stellvertreter fiir Biodiversitat im Allgemeinen zu verwenden; (iii) und (iv) es Hin-
weise auf eine Selektion durch die Umwelt (genannt: ,Isolation by distance”) gibt,
die die Populationsstruktur sowohl bei Hummeln als auch bei Spatzen bestimmen.
Ich habe auch eine Reihe von Genen identifiziert, die an die lokalen Bedingungen bei
Hummeln angepasst sein konnten.

Diese Arbeit zeigt, dass die Umwelt weitgehend bestimmt, wie die biologische Vielfalt
verteilt ist und dennoch ein schlechter Ersatz fiir die Prioritdtensetzung bei Schutzge-
bieten ist. Sie liefert auch tiberzeugende Beweise dafiir, dass die Umwelt eine der
Haupttriebkréfte ist, die die genetische Struktur der Arten pragt. Diese Erkenntnisse
sollten Wissenschaftler dazu ermutigen, die Kartierung der raumlichen Muster der
Biodiversitit fortzusetzen und sich insbesondere auf die genetische Ebene der Biodi-
versitdt zu konzentrieren. Das verstehen der genetischen Muster die Populationen zu
Anpassung an die Umwelt benétigen, ermdglicht Einblicke in evolutionére Prozesse.
Mit diesem Verstdandnis, und dem Wissen tiber potenzielle Triebkréfte kann das evo-
lutiondre Potenzial von Arten maximiert werden.
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1 General Introduction 1

1 General Introduction

Biodiversity and its spatial patterns

The term ‘biodiversity’ is often used casually in the media, and common perception
usually involves the variability in species. However, biodiversity is much more com-
plex, and defined as the “variability of life in all forms, levels and combinations”
(Glowka et al., 1994). It comprises structural, functional and compositional compo-
nents, each structured along different organizational levels, ranging from landscapes
through ecosystems and habitats to species and populations; and on the finest scale
to genes and genetic processes (Noss, 1990). This complexity is often compressed
into three main components: ecosystems, species, and genes. The ecosystem is the
highest level of organization and can be seen as a functional unit comprising biotic
and abiotic factors as well as their interactions. The population and species level
of biodiversity comprises the diversity of all species and variability between popu-
lations. The diversity of species within a geographical area is often referred to as
‘species richness’, a commonly used measure in biodiversity research and conserva-
tion. Finally, the genetic level of biodiversity is considered to be the genetic variation
within organisms as well as the genetic differences among individuals or populations
(Glowka et al., 1994; Noss, 1990). The hierarchical organization of these three levels
of biodiversity demonstrates their connectedness. At the same time it becomes clear
that one level of biodiversity cannot capture the entirety of biodiversity as a whole
(Pereira et al., 2010).

Biodiversity at all levels is heterogeneously distributed across the world, with some
areas being more diverse than others, and no single area capturing all existing di-
versity (Gaston, 2000). This naturally raises the question: what shapes the spatial
patterns of biodiversity? A variety of factors have been hypothesized to be key de-
terminants of the distribution of biodiversity (reviewed by Fine, 2015; Peters et al.,
2016, including temperature and latitude (e.g. (Mittelbach et al., 2007), the strength
of biotic interactions (e.g. competition, predation) (e.g. (Mittelbach et al., 2007), the
size of the area species occur in (Rosenzweig, 1995), the amount of available water
(Hawkins et al., 2003), or the level of plant diversity present (e.g. (Novotny et al.,
2006). Some studies suggest an interplay of different drivers, such as the size of an
area and fluctuations in the amount of available habitat, in combination with temper-
ature (Belmaker and Jetz, 2015). Indeed, it is apparent that at global scales no single
driver can attribute for the heterogeneous distribution of biodiversity, but rather a
multitude of drivers interacting in complex ways. At smaller scales, however, a few
dominant drivers may determine the distribution of biodiversity on multiple levels
(Belmaker and Jetz, 2015; Peters et al., 2016). Most of the potential drivers are related
to the abiotic environment, such as climate, water, the geographical location of an
area, or even unpredictable, environmentally related processes such as natural dis-
turbance regimes (like floods, fires or droughts). It is important to bear in mind that
the environment drives ecological processes, setting the stage for biotic interactions,
and at the same time provides the basis for micro- and macro-evolutionary processes
(Jetz et al., 2012).
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An ecological process is a widely used and relatively broad term entailing for instance
climatic processes, interactions between organisms (and their environment), hydro-
logical processes or the movement of organisms (Bennett et al., 2009). These pro-
cesses influence the distribution of biodiversity, e.g. by determining where species
occur, live in competition, or migrate (Belmaker and Jetz, 2015; Gaston, 2000; Pavé,
2007; Peters et al., 2016). Some of these processes are unpredictable in the magnitude,
location and timing of their occurrence. Such chance ecological processes, like eco-
logical drift (=random change in species abundance), random extinction or random
historical events may have large effects on the distribution of biodiversity on earth
(Bennett et al., 2009; Hubbell, 2001).

Micro- and macro-evolutionary processes such as genetic mutations, gene flow (the
transmission of genetic variation from one population to another), genetic drift (the
random change in allele frequencies in a population) and natural selection are par-
tially influenced by the environment themselves and in addition influence biodiver-
sity (on the species and genetic level) (Gaggiotti et al., 2009). The nature, magni-
tude, and influence of the variety of potential micro- and macro-evolutionary pro-
cesses on generating and maintaining biodiversity comprise a major field of study
and continue to be debated (reviewed by Dietrich, 2010; Li et al., 2018; Simons, 2002).
Briefly, genetic variation within and between populations is a balance between mu-
tation rates, genetic drift, gene flow, and selection. Selection by the environment may
increase or decrease genetic variation within and between populations, depending
on the heterogeneity of the environment and the associated differential fitness con-
sequences. In contrast, genetic drift is a neutral process, resulting in random allele
frequency changes, decreased variation within populations, and increased popula-
tion divergence. Drift is balanced by new mutations and gene flow, which itself may
be influenced by neutral factors, such as landscape barriers or the geographic dis-
tance between populations, resulting in genetic patterns of ‘isolation by distance’ (=
positive relationship between genetic differentiation and geographic distance) (IBD;
Wright, 1943). Interestingly, however, the reduction in fitness of maladapted dis-
persers in a new location may also limit gene flow, and thus enhance the effects of ge-
netic drift. Thus, the signature of local adaptations may be detectable across the entire
genome, resulting in genetic patterns of ‘isolation by adaptation’ (= relationship be-
tween adaptive phenotypic divergence and genetic differentiation) (IBA; Nosil et al.,
2009) and “isolation by environment’ (= environmental heterogeneity shaping genetic
structure) (IBE; Wang and Bradburd, 2014).

In a nutshell, environmental factors influence both ecological as well as evolution-
ary processes, which themselves determine the distribution of biodiversity across
multiple levels of organization (from ecosystems to genes). The influence of human
activities on the environment - and hence biodiversity - is bigger than ever before.
The successful conservation of biodiversity requires a thorough understanding of
how changes in the environment affect biodiversity. In addition, areas for protec-
tion should be identified in a way that they most effectively and efficiently conserve
biodiversity. Mapping the spatial distribution of biodiversity and relating this to the
prevailing environmental conditions are thus key components in informing conser-
vation decisions.
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The main goals of this thesis are therefore to assess to what extent biodiversity
dependents on the environment and how we can use this knowledge to map and
protect biodiversity?

Biodiversity in the ‘Anthropocene’

Life on earth is dominated by human actions (Lewis and Maslin, 2015), and to re-
flect the pervasiveness of our influence, the time period we are living in has been
coined the “Anthropocene’ (Crutzen, 2006). Human activities severely alter the en-
vironment and constitute the biggest threat to biodiversity. Anthropogenic stressors
are diverse, and include -but are not limited to- habitat alteration and loss (through
fragmentation or destruction), pollution, overexploitation, the introduction of poten-
tially invasive species (Hoffmann et al., 2010; Pereira et al., 2012; Primack, 2002),
the spread of pathogens (Smith et al., 2006), and anthropogenically-induced climate
change (Scheffers et al., 2016).

These threats have for the last couple of hundred years severely altered the world
around us, disrupting evolutionary ecological processes, and changing the distribu-
tion and abundance of species, ultimately even leading to extinctions (review by Bel-
lard et al., 2012; Pereira et al., 2012. Among the diverse array of threats to biodiversity,
habitat change or loss is the most critical (Pereira et al., 2012), resulting in decreasing
population sizes, isolation of populations and hence restricted gene flow, all affecting
genetic variation in natural populations (DiBattista, 2008; Hoffmann and Sgro, 2011;
Kremer et al., 2012; Willi et al., 2007). Environmental change also alters selection
pressures (Hoffmann and Sgro, 2011), and populations and species need to respond
to these changes to persist in the long term. Species’ responses can be ecological,
such as shifting their ranges to match their optimal habitat (Anderson et al., 2012;
Harrisson et al., 2014), or evolutionary, by adapting to the new conditions (Ander-
son et al., 2012). These responses are not mutually exclusive, and most species may
need to respond in both ways in order to persist in the face of human influences (An-
derson et al., 2012). Thus, in order to effectively protect biodiversity it is crucial to
understand how it is distributed, what factors determine its distribution, and how it
is responding to environmental change (De Mazancourt et al., 2008).

Several factors influencing species distributions have been identified, including the
abiotic environment (Costa et al., 2008; Elith and Leathwick, 2009) as well as biotic
interactions in this environment (Pearson and Dawson, 2003; Wisz et al., 2013) and
chance (demographic) processes (Roland Pitcher et al., 2012). The relative contribu-
tions of these factors may vary, and one might ask to what extent the environment
determines the distribution of a given species? To answer this question (Chapter I), so
called Species Distribution Models (SDMs) are often used. SDMs correlate species’
occurrence and abundance data with the environmental conditions they live in, and
can accurately predict species’ ranges (Elith and Leathwick, 2009). With improve-
ments in remote sensing and spatial analyses, a suit of environmental, ecologically
meaningful variables have over the past 20 years become available (Penado et al,,
2016), enabling us to gain insight in species-specific habitat suitability (Elith and
Leathwick, 2009; Guisan and Thuiller, 2005) and to predict the effects of environ-
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mental change (Keitt et al., 2002). Moreover, given the dearth of high-quality survey
data in many countries, it also provides a cost-effective and relatively quick means
of mapping where species occur. Such knowledge about a species’ geographical dis-
tribution and its abundances is crucial for adjusting practices with respect to land
management, climate change policies, and conservation (Guisan et al., 2013; Jetz et
al., 2012; Pearson, 2007). As such, species distribution models play an important
role in systematic conservation planning and spatial conservation prioritization ap-
proaches (Margules and Pressey, 2000). Under the assumption of niche conservatism,
future predictions (for instance with the incorporation of future climatic conditions)
can also help to understand the potential for or limitations to range shifts over time
(Wiens et al., 2010).

When populations cannot shift their ranges, however, their only means to survive
over the long run is by responding plastically or adaptively to environmental change
(Anderson et al., 2012; Harrisson et al., 2014). Phenotypic plasticity is the expres-
sion of various phenotypes by one genotype and may occur when species experience
‘short-term’ environmental changes, such as predictable seasonal events (Oostra et
al., 2018). Evolutionary adaptation on the other hand is a common response to ‘long-
term’ changes (Barrett and Schluter, 2008; Hoffmann and Sgro, 2011; Savolainen et
al., 2013; Sgro et al., 2011). Although the magnitude by which populations can re-
spond plastically may have a genetic basis (Bijlsma and Loeschcke, 2012), and phe-
notypic plasticity may be crucial for the immediate future, it is likely too limited to
be an adequate long-term response to the large environmental changes inflicted by
human actions (Anderson et al., 2012; Bijlsma and Loeschcke, 2012; DeWitt et al.,
1998; Hendry et al., 2008). To this end, adaptive responses may be most fundamental
for the persistence of species (Hoffmann and Sgro, 2011), but highly depend on the
amount of available standing genetic variation (Etterson and Shaw, 2001). Thus, pro-
tecting intra-specific genetic variation that express adaptations to the environment is
central to protecting biodiversity (Hoffmann and Sgro, 2011; Miraldo et al., 2016).

Biodiversity conservation — from landscapes to genes

Protected areas are a vital component of conservation efforts, having the potential
to protect biodiversity at multiple levels of organization. Historically, protected ar-
eas have often been identified based on low economic values, landscape features,
the presence of a particular species of concern, or expert knowledge on the available
biodiversity (Brooks et al., 2006; Myers et al., 2000; Sarkar et al., 2006). Systematic
conservation planning aims to provide more objective decision support for the allo-
cation of resources in biodiversity conservation and the implementation of conser-
vation actions (Margules and Pressey, 2000; McIntosh et al., 2017). It is considered
to be an unbiased and evidence-based approach in order to provide accountable and
transparent advice when important decisions need to be taken (McIntosh et al., 2017).
Different strategies, such as including stakeholders in the planning region, thorough
collection of biological and socioeconomic data, and multi-level analyses to satisfy
the opposing socioeconomic and biological goals of the stakeholders in the planning
area are implemented in systematic conservation planning (Sarkar et al., 2006). The
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main tool of systematic conservation planning is spatial conservation prioritization,
aiming to identify a set of reserves that protect as much biodiversity as possible most
effectively and efficiently, i.e. in the smallest area possible (Margules et al., 2002). The
optimization of a network of reserves, embedded within current or future spatial and
socio-economic constraints is a highly complex problem for which several algorithms
have been developed (McIntosh et al., 2017; Sarkar et al., 2006). Whereas the concep-
tual framework of these so-called spatial conservation practices has been relatively
well developed, its practical implementation is typically limited by the amount and
the quality of the available data on biodiversity.

Due to the above described complexity of biodiversity it is not possible to survey and
map all levels of biodiversity at once (Williams et al., 2006). Limited resources (fi-
nancial, personnel) and different interests of conservation stakeholders add to the
difficulty of this issue. Conservation planners must therefore revert to ‘biodiver-
sity surrogates” as a shortcut in spatial conservation prioritization (Margules and
Pressey, 2000; Sarkar et al., 2005). Surrogates are ecological processes or elements
(e.g. species, ecosystems or abiotic factors) representing another aspect of an eco-
logical system (Hunter et al., 2016). Different surrogates have been used to identify
areas of high conservation value, such as taxonomic (species) or environmental sur-
rogates (Grantham et al., 2010; Oliver et al., 2004; Sarkar et al., 2005), but the concept
can be used at any level of biodiversity. The most often used surrogate is species oc-
currence, identifying hotspots of species richness, rarity, and complementarity (e.g.
Arponen et al., 2008). However, although species level data (Gomes et al., 2018) is
increasingly becoming available, extensive high-quality data on species distributions
are still lacking for most taxonomic groups and most areas of the world (Arponen
et al., 2008; Beier et al., 2015). Environmental data representing habitat structure,
complexity, and heterogeneity, on the other hand can be quite easily and cheaply ac-
quired, aiding spatial conservation planning (Arponen et al., 2008; Beier et al., 2015;
Grantham et al., 2010; Rodrigues and Brooks, 2007). It was recognized early on that it
is also important to not only protect species, but also biodiversity at the higher levels
of organization, i.e. habitats and ecosystems themselves (Noss, 1990). The assump-
tion is that by protecting environmental heterogeneity one might also protect many
species living in that variety of different habitats (e.g. Arponen et al., 2008; Bonn
and Gaston, 2005. Yet, studies on the power of environment as a surrogate for bio-
diversity (mostly at the species level) remain inconclusive, demonstrating adequate
(Sarkar et al., 2005; Trakhtenbrot and Kadmon, 2005), but also insufficient ‘surrogacy
power’ (Aratjo et al., 2007; Bonn and Gaston, 2005). More research is thus needed to
clarify whether biodiversity surrogates are adequately representing one another and
thus can be reliably used in conservation prioritization (Chapter 1I).

Environmental diversity also constitutes the arena in which species adapt to differ-
ent conditions and exhibit spatial and temporal differences in their phenotype and
genotype. Environmental heterogeneity is therefore expected to harbor phenotypic
and genetic variation, for instance across environmental gradients, relevant for the
long-term persistence of species (Conover et al., 2009; Smith et al., 2001). This is
very important when species face environmental changes, since they will most likely
need to rely on a combination of ecological and evolutionary responses (Anderson
et al., 2012). Many species have already been document to have shifted their ranges
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poleward and to higher elevations because of climate change (Parmesan, 2006). One
problem however is that responding just ecologically might not do the trick, since
range shifts may not be possible, and are likely to come with some degree of novel
abiotic and biotic conditions and novel interactions, which might require long-term
adaptive changes (Anderson et al., 2012; Etterson and Shaw, 2001). And what will
happen if even those northern or higher regions become warmer and unsuitable? In
order to avoid extinction in this scenario, species have to respond evolutionarily to
these changes and adapt locally (Anderson et al., 2012; Hoffmann and Sgro, 2011).
Local adaptation occurs when a population shows higher fitness in its native habitat
compared to any other population that would be introduced and is largely influenced
by natural selection and gene flow. Looking at signs of local adaptation in popu-
lations with ongoing gene flow provides an opportunity to identify selective forces
imposed by particular environmental differences (Kawecki and Ebert, 2004). The spa-
tial extent of local adaptation is therefore depending on the strength of selection, gene
flow (and migration) between populations (Kawecki and Ebert, 2004), and most im-
portantly the underlying genetic diversity of these populations (Vincent et al., 2013).
This so called ‘standing genetic variation” (which is the presence of alternative alleles
at a given locus) is the basis for rapid genetic adaptations (Barrett and Schluter, 2008;
Biodiversity, Council, et al., 1999; Etterson and Shaw, 2001; Thomassen et al., 2011).
Several studies revealed a correlation between genetic variation and the long-term
viability of species (Arenas Busto et al., 2014; Laikre, 2010; Vangestel et al., 2012) as
well as the expression of higher rates of adaptability (Barrett and Schluter, 2008).

The importance of genetics in conservation was already recognized decades ago by
Frankel, 1974, but just protecting species will not automatically protect its associ-
ated genetic diversity (Glowka et al., 1994). Genetic diversity is facing the exact same
threats as other levels of biodiversity and is decreasing worldwide (Leigh et al., 2019).
The loss of genetic diversity is permanent and even though species might recover in
numbers again, the amount of genetic diversity remains low for many generations,
leading to lowered adaptive potential and increased extinction risks (Brondizio et al.,
2019). However, to protect biodiversity on the genetic level as well, we need to under-
stand how it is influenced by human-induced threats and global changes (Miraldo et
al., 2016; Palumbi, 2001). At the broad scale, regions more disturbed and influenced
by humans were shown to harbor less genetic diversity than regions with lower hu-
man influences (DiBattista, 2008). Knowledge like this is important, and mapping
genetic variation and its distribution is crucial (Miraldo et al., 2016; Pereira et al.,
2013). In particular that part of genetic variation that is correlated to environmental
characteristics (also known as environmentally associated variation (EAV)) may be
most relevant to adapting to novel environmental conditions and changed habitats.
Hence, a prudent strategy to protect biodiversity in the face of environmental and
climate change is to maximize species’ adaptive potential through mapping and pro-
tecting the current distribution of EAV (Frankham, 2010; Sgro et al., 2011; Vandergast
et al., 2008; Vandersteen Tymchuk et al., 2010).

The problem however is that despite its widely recognized importance in conser-
vation, genetic diversity is still lacking in many conservation policies and practical
management (Laikre, 2010). Indeed, the distribution of genetic variation (Pereira et
al., 2012) as well as the rate of its loss is unknown for most of the world (Leigh et al.,
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2019). There is thus an urgent need to map the genetic level of biodiversity in order
to detect and monitor its distribution and loss.

Landscape genetics as a tool for mapping spatial patterns of
(genetic) diversity

A set of tools was developed over the years that have proven extremely useful to
map environmentally associated genetic variation (EAV), investigate its distribution,
and identify important drivers in shaping it. These so called landscape genetic ap-
proaches combine population genetic methods with landscape ecology (Manel et al.,
2003). Landscape genetics enhances our understanding of how the environment is
shaping genetic variation of individuals (or entire populations) by looking at the in-
teraction between the environment and the genetic make-up of individuals and pop-
ulations (Balkenhol et al., 2017; Guillot et al., 2005a; Manel et al., 2003). Molecular
markers (e.g. microsatellites, single-nucleotide polymorphisms (SNPs)) genotyped
in individuals distributed across a geographic area are used to identify genetic pat-
terns (e.g. population structure, or distribution of genetic variation) and are then
correlated to landscape features (e.g. barriers) and environmental variables (Chap-
ter III) (Manel et al., 2003; Storfer et al., 2018). Potential selective drivers of genetic
variation, such as ‘isolation by adaptation” (IBA; Nosil et al., 2009) and “isolation by
environment’ (IBE; Wang and Bradburd, 2014) can be identified by these methods,
and teased apart from neutral evolutionary processes, such as ‘isolation by distance’
(IBD; Wright, 1943).

With technological advances in recent years, such as high throughput sequencing and
new analytical tools, landscape genetics developed into landscape genomics, further
advancing our understanding of the contribution of the environment on evolution-
ary processes (Henriques et al., 2018; Storfer et al., 2018). So called gene-environment
associations (GEAs) help to identify potential selection pressures driving local adap-
tation by scanning the genome for loci that are significantly associated to the environ-
ment or profusely differentiated between populations (Chapter IV) (Capblancq et al.,
2018; Frichot et al., 2013; Hoban et al., 2016; Joost et al., 2007). In Moroccan sheep pop-
ulations, for example, candidate loci (located in a gene responsible for wax secretion)
were associated to precipitation indicating potential adaptations to ‘wetter” environ-
mental conditions (Duruz et al., 2019). In Californian oak trees, climate-associated
functional genes were identified, with differences between populations also demon-
strating adaptations to different environmental settings (Sork et al., 2016).

Such landscape genetic or genomic approaches can also benefit biodiversity conser-
vation directly by informing us, for example, which (combination of) populations
possess high levels of standing genetic variation, which populations might be ex-
posed to higher risks of anthropogenic threats and/or climate change (e.g. Jia et al.,
2020; Martins et al., 2018), and which populations may require adjusted management
practices (Gugger et al., 2018; Harrisson et al., 2014). The incorporation of evolution-
ary processes such as adaptation and gene flow in spatial conservation planning is
thus hypothesized to decrease biodiversity loss under rapid environmental change
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(Hoffmann and Sgro, 2011). Particularly understanding the relative roles of the en-
vironment in shaping the distribution of genetic diversity as well as other levels of
biodiversity, can advance biodiversity conservation practices and eventually protect
what is left of the precious diversity on our planet.

Objectives of this thesis

As outlined above, the relationship between the environment and patterns of bio-
diversity is important to understand in order to effectively protect biodiversity on
earth. With this work I want to help fill in the knowledge gap existing around the
spatial patterns of biodiversity, and demonstrate some of the methods one can use
to map biodiversity, especially the so far rather neglected genetic level of biodiver-
sity. Work for this thesis was conducted in two Eastern-European countries: Romania
and Bulgaria (Figure 1). Both countries cover an area of approximately 350 000 km?
and comprise distinct climatic zones,
such as the continental and tem-
perate climatic zones in Romania,
and the continental and Mediter-
ranean climatic zones in Bulgaria.
This leads to highly divergent cli-
matic conditions on a relatively
small scale and is supplemented
by a variety of habitats with dif-
fering intensity of human-influence
such as agricultural and indus-
trial areas, as well as natural ar-
eas like mountain ranges, river val-
leys, forests and grasslands. The
Danube River, represents a natural
border between these countries, lo-
cated in the South of Romania and
the North of Bulgaria. Both coun-  FiGuURE 3: Study region

tries contain large mountainous ar-

eas; in Romania the Carpathian

mountain region is predominant, whereas the Balkan, Rhodope, Rila and Pirin moun-
tains merge to a large mountainous area in Bulgaria. This variety of habitats resulted
in the recognition of different biogeographical regions: the continental, alpine, step-
pic, Black Sea, and pannonian regions ((CoE), 2015). This high environmental hetero-
geneity potentially imposes divergent selection pressures on species and populations
and is therefore the ideal testbed to investigate the relationship between environment
(and its change) and spatial patterns of biodiversity and assess the influence of envi-
ronment on biological diversity.

Since 2007 both countries are members of the European Union (EU) and are also part
of the NATURA 2000 network, which required the identification and implementa-
tion of protected areas. The Natura 2000 network is the most important large-scale
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biodiversity conservation measure in Europe (Gaston et al., 2008). Different types of
protected areas are implemented in the network, on the basis of different biodiversity
features: the terrestrial Sites of Community Importance and Special Areas of Conser-
vation (SCI and SAC, for habitats and/or species) and terrestrial Special Protection
Areas (SPA, for bird protection only) (Commission, 2007). Approximately 20% of the
total landscape area of Romania and Bulgaria is dedicated to nature conservation,
however under the new European Union Biodiversity Strategy for 2030 (Commis-
sion, 2020) the percentage of protected areas should be increased to 30%. This hands
us the opportunity to scrutinize the current status of biodiversity and its conservation
status quo in both countries.

In CHAPTER I of this thesis, I correlated species occurrence and abundance data with
environmental data in order to evaluate the influence of environmental variation on
the distributional patterns of two closely related bumble bee species (the buff-tailed
(Bombus terrestris) and the white-tailed bumble bee (Bombus lucorum)). The partial
overlap in their occurrence patterns posed the question about ecological drivers shap-
ing those distributions and how the habitat requirements differ between both species.
I used an ensemble of different species distribution modelling techniques to combine
the occurrence and abundance data I collected with a set of ecologically important
environmental variables.

In CHAPTER 1I, I investigated if environmental heterogeneity, which is playing a
major role in determining species distributions and occurrences (e.g. Elith and Leath-
wick, 2009), could be used as a conservation surrogate for the species level of biodi-
versity. Here I used a measure of bird species richness and classified environmen-
tal diversity to evaluate their use as surrogates for one another. With the help of a
spatial conservation prioritization method, I designed protected areas based on both
measures of biodiversity and additionally assessed how those two measures are cap-
tured by already existing protected areas.

In CHAPTER III of this thesis, I investigated the influence of the environment on the
genetic level of biodiversity and if population divergence of house sparrows (Passer
domesticus) can be explained by environmental variation. Since species might likely
respond in several ways to environmental change I also included phenotypic data.
With the help of a landscape genetics approach, I correlated phenotypic and genetic
diversity with a set of environmental variables. The goal was to detect signatures of
environmental selection hinting towards local adaptations.

In CHAPTER 1V, I took the landscape genetics towards the landscape genomics level
by using adaptive genetic markers (single-nucleotide polymorphisms, SNPs) to fur-
ther investigate the broad ecological patterns influencing the occurrence of the buff-
tailed bumble bee (Bombus terrestris) I discovered in Chapter I. Here, I identified gene-
environment associations (GEAs) between a whole genome SNP data set and the
same set of ecological important environmental variables (as in Chapter I I aimed to
characterize potential selection pressures driving local adaptation in B. terrestris and
identify loci under selection which could underline the occurrence patterns found in
Chapter I.
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Abstract

Co-occurrence of closely related species is often explained through resource partition-
ing, where key morphological or life-history traits evolve under strong divergent se-
lection. In bumble bees (genus Bombus), differences in tongue lengths, nest sites, and
several life-history traits are the principal factors in resource partitioning. However,
the buff-tailed and white-tailed bumble bee (Bombus terrestris and Bombus lucorum
respectively) are very similar in morphology and life history, but their ranges never-
theless partly overlap, raising the question how they are ecologically divergent. What
little is known about the environmental factors determining their distributions stems
from studies in Central and Western Europe, but even less information is available
about their distributions in Eastern Europe, where different subspecies occur. Here,
we aimed to disentangle the broad habitat requirements and associated distributions
of these species in Romania and Bulgaria. First, we genetically identified sampled in-
dividuals from many sites across the study area. We then not only computed species
distributions based on presence-only data, but also expanded on these models us-
ing relative abundance data. We found that B. terrestris is a more generalist species
than previously thought, but that B. lucorum is restricted to forested areas with colder
and wetter climates, which in our study area are primarily found at higher eleva-
tions. Both vegetation parameters such as annual mean Leaf Area Index and canopy
height, as well as climatic conditions, were important in explaining their distribu-
tions. Although our models based on presence-only data suggest a large overlap in
their respective distributions, results on their relative abundance suggest that the two
species replace one another across an environmental gradient correlated to elevation.
The inclusion of abundance enhances our understanding of the distribution of these
species, supporting the emerging recognition of the importance of abundance data in
species distribution modeling.

KEYWORDS
Bombus lucorum, Bombus terrestris, Eastern Europe, pollinators, random forests, rela-
tive abundance, species distribution
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Introduction

The co-occurrence of closely related species has long puzzled evolutionary ecologists.
Closely related species are expected to occupy similar niche space through niche con-
servatism, and thus occur in the same regions, but also to compete more strongly
with one another than more distantly related species (Anacker and Strauss, 2016).
Strong competition may result in the exclusion of the weaker competitor, as well as
in rapid divergent evolution of key life-history traits or phenotypes as a result of re-
source partitioning (Gause, 1934). In bumble bees (genus Bombus), a classical theory
is that species evolved a range of different tongue lengths, allowing them to spe-
cialize on different floral resources, and to occur sympatrically as a result (Goulson
and Darvill, 2004). Other mechanisms of resource partitioning include differences
in nest sites, foraging distances, and the spatial use of habitat (Stanley et al., 2013;
Westphal et al., 2006). However, two of the most common bumble bee species in
Europe, the buff-tailed bumble bee (Bombus terrestris) and the white-tailed bumble
bee (Bombus lucorum), co-occur (pers. obs.; (Goulson, 2010; Goulson et al., 2008a;
Kells et al., 2001; Stanley et al., 2013)), despite being very similar in their morphol-
ogy, choice of nest sites, and life-history (Goulson, 2010; Stanley et al., 2013). They
even possess the same tongue lengths (Goulson et al., 2005; Stanley et al., 2013) and
hence occupy a very similar dietary niche space (Goulson et al., 2008a).This begs the
question to what extent their ecological niches overlap and conversely how they are
divergent. Despite many studies into their ecology and behavior (e.g. (Bossert et al.,
2016; Scriven et al., 2015; Stanley et al., 2013; Walther-Hellwig and Frankl, 2000), and
broad-scale evidence that their ranges only partially overlap (e.g. (Rasmont et al.,
2015a), their distributions at smaller scales remain equivocal. One reason for this am-
biguity may be the fact that these species are morphologically highly variable within
species, yet very similar between species (Bossert, 2014; Murray et al., 2007; Waters
et al.,, 2011). As a consequence, they may be difficult to distinguish in the field, de-
pending on where they occur and whether queens, males, or workers are compared.
In mainland Europe, identification can be complex because both species possess a
white abdomen (Gammans et al., 2018; Rasmont et al., 2013), in contrast to those in
Great Britain (Murray et al., 2007). Queens and males can be distinguished (Bertsch
et al., 2004; Goulson, 2010), but workers (especially of some subspecies of B. terrestris)
are difficult to discriminate (Williams, 1994). Indeed, in Central Europe, only 45.5%
of B. lucorum workers could be correctly identified and distinguished from B. ter-
restris workers using the most up-to-date morphological key (Wolf et al., 2009). As
a consequence, many studies focusing on the ecology or behavior of European bum-
ble bees group these taxonomically well-recognized species together (Bommarco et
al., 2011; Carvell, 2002; Goulson et al., 2005; Meek et al., 2002; Pywell et al., 2005;
Walther-Hellwig and Frankl, 2000), leading to imprecise information on habitat pref-
erences (Murray et al., 2007; Scriven et al., 2015) and other life-history traits (Stanley
et al.,, 2013). One of the few studies that investigated the ecological preferences of
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those species separately identified differences in nesting site selection at small spatial
scales in Sweden (Svensson et al., 2000) where B. terrestris preferred more open habi-
tat, such as fields in agricultural landscapes, and B. lucorum preferentially built nests
close to forest boundaries. Also in Austria, B. lucorum appeared to frequently occur
in forested areas (Bossert et al., 2016). At the scale of Europe, B. lucorum occurs at
higher latitudes than B. terrestris, suggesting a differentiation based on temperature
(Rasmont et al., 2015a). Most studies on these species focused on Western and Cen-
tral Europe, but little attention has been paid to Eastern Europe, where the situation
is complicated by the occurrence of two subspecies of B. terrestris, B. t. terrestris and
B. t. dalmatinus, that are morphologically variable (Lecocq et al., 2013; Rasmont et al.,
2013). Hence, their distribution patterns in Eastern Europe remain equivocal.

Here, we investigate the distributions and broad habitat characteristics of buff-tailed
(B. terrestris) and white-tailed bumble bee (B. lucorum) in Bulgaria and Romania,
where they are the two most common bumble bee species. B. lucorum is one of three
cryptic species, the other two being B. cryptarum and B. magnus. Here, we only in-
clude B. lucorum, because we did not find any individuals of the latter two species,
despite extensive sampling efforts. We hypothesized that the differential habitat use
at small scales can be scaled up to landscape scale habitat preferences across a spatial
extent of hundreds of kilometers. We first genetically identified the species at sites
where multiple individuals were sampled, providing a reliable tool for species identi-
fication (Bossert et al., 2016; Murray et al., 2007; Stanley et al., 2013; Waters et al., 2011;
Williams et al., 2012; Wolf et al., 2009). We subsequently created species distribution
models (SDMs), which have been used previously in quantitative ecological studies
of bumble bees (Casey et al., 2015; Herrera et al., 2014; Kadoya et al., 2009; Prader-
vand et al., 2014; Rasmont et al., 2015a). They are usually based on presence-only or
presence—absence data, with the assumption that the modeled probabilities of occur-
rence are indicative of abundance (e.g. (Dallas and Hastings, 2018)). However, recent
work across multiple species suggests that these so-called abundance—suitability re-
lationships are often weak (Dallas and Hastings, 2018; Howard et al., 2014; Mi et al.,
2017). For that reason, the collection and use of abundance data to improve the accu-
racy of species distribution models was highly recommended (Howard et al., 2014),
but still not commonly applied to date. To improve our distribution models, and to
specifically investigate their co-occurrence and the associated abiotic factors driving
variation in abundance patterns, we therefore also collected and modeled the relative
abundance of these species.
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Methods

Study species and study area

Bumble bees (Bombus sp.) are important pollinators for crops and wild plants, in par-
ticular in temperate ecosystems (Corbet et al., 1991; Murray et al., 2007). Their body is
covered in a dense, colored fur that enables them to be endothermic (Heinrich, 1993),
and hence adapt to cold climates, such as alpine and arctic environments. Their dis-
tribution extends much further north than that of other bees, and their colonies have
been found in the extreme northern regions of the northern hemisphere (Goulson,
2010). Bombus terrestris and Bombus lucorum are two of the most common bumble bee
species in Europe. These species have very similar life cycles and are often found in
the same areas. Both species use underground nest sites and often choose already ex-
isting holes, previously used by small rodents (Goulson, 2010). They possess similar
tongue lengths, and as a result forage primarily on the same short corollas and daisy
type of flowers (personal observation and (Goulson et al., 2008b). In addition, their
workers almost perfectly resemble each other, and only the queens and males can
be identified reliably (Murray et al., 2007, Wolf et al., 2009), but field identification
remains complicated due to the subtlety of morphological differences.

We conducted our study in Bulgaria and Romania, two neighboring countries in
southeastern Europe, covering an area of approximately 350.000 km?. These coun-
tries present a heterogeneous landscape, comprising continental, Mediterranean, and
temperate climatic zones, consisting of natural areas such as mountains, river valleys,
forests, open woodlands, and grasslands, as well as areas inhabited and influenced
by humans, including extensive agricultural lands. The Danube River forms a natu-
ral border along much of its length between Romania in the north and Bulgaria in the
south. Large mountainous areas are present in both countries: the Carpathians in Ro-
mania, and the Balkan, Rila, Rhodope, and Pirin mountains in Bulgaria. As a result
of this variety of habitats, different biogeographical regions are recognized: the con-
tinental, alpine, steppic, Black Sea, and pannonian regions ((CoE), 2015). This high
habitat heterogeneity represents an interesting area for evaluating habitat preferences
and niche differentiation within and among species.

Sampling

We collected 743 individuals compromising queens and workers of Bombus terrestris
and Bombus lucorum over a timeframe of 4 years (2013, 2014, 2015, and 2017), in each
between April and July. We sampled 44 locations in total (Figure la and Table 1),
which were selected to span a broad range of habitat conditions in both entirely nat-
ural and semi-natural or cultivated environments, as well as along environmental
gradients (altitude, vegetation, and climate). We visited additional locations where
we searched for, but did not find any bumble bees. These locations were not included
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as true absences in our species distribution models, but served in computing a sam-
pling bias map (see below).

(a) Study region and sampling sites (b) ESM B. terrestris

FIGURE 2: Study region with sampling sites, species distribution modeling results based on ensembles of
small models, and relative abundance modeling results. (a) Study area with sampling sites indicated in
black stars for Bombus terrestris and in white diamonds for B. lucorum. Sites where we searched for
bumble bees, but did not find any are indicated in black triangles. The background map is annual mean
Leaf Area Index (LAI mean), a measure of vegetation greenness. (b) Ensemble of small models for B.
terrestris (c) Ensemble of small models for B. lucorum. The colors in panel (b) and (c) indicate the
probability of occurrence, with warmer colors indicating higher probabilities. Black stars (b) and white
diamonds (c) indicate the sampling populations. (d) Machine learning ensemble for the relative
abundance of B. lucorum. Warmer colors indicate a higher abundance of B. lucorum relative to B. terrestris.

Sampling locations were located at least 20 km apart to rule out the possibility of
overlapping foraging ranges (Chapman et al., 2003; Westphal et al., 2006) and were
visited only once. At each sampling location, capturing efforts were undertaken by
2-3 people for 1.5-2 hrs between 1 hr after sunrise and 1 hr before sunset. Individuals
were collected on suitable forage patches with a radius of 100 m, using an entomo-
logical net. Individuals were visually identified as one of the two study species, anes-
thetized in a killing jar with a 1.5 cm layer of plaster of paris saturated with ethyl ac-
etate, and immediately upon cessation of movement stored in 96% ethanol (Smithers,
1988). After fieldwork, specimens were stored frozen at —20 °C in the laboratory at
the University of Tiibingen.
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TABLE 1: Sampling locations and sample sizes of Bombus terrestris and Bombus lucorum
No. of Individuals

Location Latitude Longitude Bombus terrestris  Bombus lucorum
1  Baita Plai 46.46871 22.61674 21 0
2 Billed 4591412 20.94701 9 0
3 Blandesti 47.71380  26.86323 33 0
4  Brebu 4542815 21.97966 20 1
5 Burja 43.02797 2532507 5 0
6  Carei 47.69646  22.48073 24 0
7 Cerna 45.15962 22.80671 4 16
8  Coastra 4514758  24.22260 9 0
9  Corbeni 4529905 24.60912 5 8
10  Dobrovat 46.99043  27.65404 24 1
11 Dragusani 46.29929  26.97973 22 2
12 Foen 4551085 20.87627 31 1
13 Golitsa 4290956 27.52514 13 0
14 Gothal 45.40790  21.42069 29 0
15  Grohotno 4170118 24.38684 10 25
16 Gura Glodului ~ 47.13575 25.50107 2 20
17 Gura Haitii 47.17505 25.25018 0 15
18 Handal 47.65028 23.89441 0 21
19 Hlyabovo 42.06055 26.26459 11 0
20 Tesle 4731038  25.89774 1 12
21 Iod 46.93652 25.00172 0 12
22 Kamenitsa 41.64449  23.17299 12 0
23 Koevtsi 43.15832  25.09082 21 0
24 Levochevo 41.60707  24.72302 2 28
25 Mengishevo 43.03566 26.64753 13 0
26 Ojdula 45.98988  26.29976 1 15
27 Orsova 44.75420 22.39480 14 2
28 DPastra 4212283  23.20023 3 0
29 Pietroasa 46.58998 22.58807 12 0
30 Pirin 4152480 23.58790 4 11
31 Poienita 45.82299 24.57591 19 1
32 Polovragi 4521492 23.77486 0 12
33 Razdelna 4218144 2590854 4 0
34 Rilski Manastir ~ 42.09243 23.38633 0 3
35 Rish 4297442 26.90731 32 0
36 Sinemorets 42.04499  27.95808 11 1
37 Stambolovo 41.78435 25.63166 15 0
38 Strumeshnitsa  41.39833 23.06046 20 0
39 Topa Mica 46.92851  23.40238 21 0
40 Toplita 46.98115 25.40812 0 2
41 Valea Hotarului 47.93870 23.83761 20 1
42 Valea Padurii 46.62236  24.02727 12 0
43 Zdravets 4294361 24.15964 6 9
44 Zlatitza 42.70908 24.12053 3 6

total 518 225
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Species identification

Because of the previously described difficulties in distinguishing species based on
external morphology, we used a 1,043 bp long fragment of the cytochrome ¢ oxi-
dase subunit I (COI) gene, which is known for its relatively fast mutation rate, and is
used across many taxa for genetic identification purposes, including bumble bees
(Bertsch et al., 2004; Bossert et al., 2016; Hebert et al., 2004, Murray et al., 2007;
Waugh, 2007; Williams et al., 2012). This long fragment is completely overlapping
with an 890 bp region used by Bertsch et al., 2004 to distinguish between the closely
related Bombus cryptarum, B. magnus, and B. lucorum and was therefore used here
to distinguish between B. lucorum and B. terrestris. DNA was extracted from one or
both middle legs using the QIAmp DNA Micro Kit (Qiagen) following the manufac-
turer’s protocol. PCR was performed with primers originally developed for Apis
(Tanaka et al., 2001): forward 5-ATAATTTTTTTTATAGTTATA-3" and reverse 5'-
GATATTAATCCTAAAAAATGTTGAGG-3". They were used to amplify a 1,043 bp
long fragment of the COI gene. The PCR reaction mix consisted of 2.5 pl of 10x PCR
Buffer S (Genaxxon), 15.4 pl HPLC water, 1.0 pl dANTP’s, 1.0 ul MgCl2 (25 mM), 1.0 pl
BSA, 1.0 pl of each primer (0.1 mM), 0.1 pl Taq polymerase, and 2 ul extracted DNA.
PCRs were performed with a Mastercycler epgradient (Eppendorf) with the follow-
ing conditions: an initial denaturation step at 95 °C for 1 min, followed by 55 cycles of
a 3-step process: denaturation for 40 s at 95 °C, annealing for 1 min at 45 °C, and ex-
tension for 2 min at 60 °C with a final extension step at 60 °C for 4 min. PCR products
were visualized using agarose gel electrophoresis to check for the amplification of the
fragment. Successfully amplified PCR products were cleaned up using the Promega
Wizard SV Gel and PCR Clean-Up System according to the manufacturer’s protocol.
Cleaned up samples were then sent to LGC Genomics for sequencing with the re-
verse primer only. Sequences were visualized and edited with Geneious R8 (Biomat-
ters,(Kearse et al., 2012)). None of the obtained sequences showed any signs of cross-
contamination (e.g., double peaks in the chromatograms or ambivalent species iden-
tification). We used two methods to assign a species to the sequenced samples. First,
we blasted sequences in GenBank (NIH genetic equences database) and assigned the
species with the highest identity (range 95%-100%) to the corresponding sample
(Table S1). In addition, we created a phylogenetic tree (Figure S1), which included
reference sequences for various Bombus species obtained from Genbank (Table 2).
We included reference sequences from various geographic origins, because we ex-
pected that genetic intraspecific variability should be smaller than interspecific dif-
ferences, and thus that a well-supported clustering of our samples with the reference
sequences suggests high confidence in the species identification. To construct the
phylogenetic tree, we first identified the most likely substitution model in MEGA-
X (Kumar et al., 2018). We then created a Bayesian phylogenetic tree in Geneious
R8 with the MrBayes module (Huelsenbeck and Ronquist, 2001), using one cold and
four heated chains with a temperature of 0.2 and a chain length of 1.1 million and
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a burn-in of 100,000, five gamma categories, a sampling frequency of 200, uncon-
strained branch lengths (GammaDir [1,0.1,1,1]), and exponential shape distribution.
We used a reference sequence of B. pascuorum as an outgroup (Table 2). Individuals
that were included in a monophyletic group with reference sequences of B. terrestris
or B. lucorum were considered members of the corresponding target species. Com-
parisons to the blast results revealed no differences, and all individuals of B. terrestris
and B. lucorum were included in subsequent species distribution models.

TABLE 2: Reference COI sequences obtained from GenBank and used for the
phylogenetic tree.

Species GenBank accession No. Author
AY181171 Pedersen, 2002

B. terrestris AY181170 Pedersen, 2002

' AY181169 Pedersen, 2002

KT164618 Tang et al., 2015
AY181121 Pedersen, 2002

B. lucorum AY181119 Pedersen, 2002

' AY181117 Pedersen, 2002

KT164681 Tang et al., 2015

B. sporadicus  AF279500 Tanaka et al., 2001
AY181163 Pedersen, 2002
MF409659 Yu et al., 2017

B. cryptarum  AY181100 Pedersen, 2002
AY530011 Bertsch et al., 2004
AF279485 Tanaka et al., 2001

B. magnus AY181123 Pedersen, 2002
AY530014 Bertsch et al., 2004
KC192046 Vesterlund et al., 2014

B. hortorum AY181105 Pedersen, 2002

B. pratorum AY181145 Pedersen, 2002

B. pascuorum  AY181141 Pedersen, 2002

Environmental variables

In order to create species distribution models, we used a set of environmental vari-
ables at 30 arcsec resolution (Table 3). We initially considered 19 climate variables
from the WorldClim database (http://www.world clim.org), which included tem-
perature and precipitation variables based on a 30-year climatology from 1970 to 2000
(Fick and Hijmans, 2017). Additionally, elevation data were acquired from the Shuttle
Radar Topography Mission (SRTM; https://www2 jplnasa.gov), and used directly,
as well as to compute aspect and slope. Because distribution patterns and habitat
preferences of bumble bees have previously been suggested to relate to vegetation
characteristics and forest cover, we also included spatial and temporal vegetation
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patterns derived from satellite data. We used percent tree cover and Leaf Area Index
(LAI, the one-sided green leaf area per unit ground area), which were both obtained
from the Global Land Cover Facility database (http://www.glcf.umd.edu/data/).
Information on the vertical forest structure, that is, canopy height, was derived from
space-borne LiDAR from 2011 (Simard et al., 2011). Canopy height was found to be
a better predictor for species distributions than other remote sensing variables such
as canopy cover or land-use variables (Ficetola et al., 2014; Goetz et al., 2007), and
we hypothesized that it may be related to forest understory flower availability and
the presence and abundance of flowering tree species relevant for these bumble bee
species. Finally, to include information about surface moisture, we included annual
mean, minimum, maximum, and seasonality, computed from raw Quickscat data
(Geue et al., 2016). To do so, we used daily raw backscatter measurements down-
loaded from the BYU Scatterometer Climate Record Pathfinder database

(http:/ /www.scp.byu.edu/data/Quiks cat/SIRv2 /qush/Eurhtml) over the period
the instrument was online (2000-2008). We excluded highly correlated variables,
which we identified by means of their variance inflation factor (VIF). To do so, we
used the automated stepwise exclusion procedure implemented in the “usdm” pack-
age v. 1.1-18 in R 3.6.1 (R Development Core Team, 2008), keeping only those vari-
ables with VIF < 10. The final data set consisted of 16 variables (Table 3).

Species distribution modeling
Spatial autocorrelation and sampling bias

Spatial autocorrelation is a major statistical challenge in spatial analyses, causing in-
flated measures of predictive power and incorrect distribution models (e.g. Guélat
and Kéry, 2018; Segurado et al., 2006). There are two main causes for spatial autocor-
relation in species distribution modeling.

First, there is often a spatial clustering of sampling sites. Reasons for such cluster-
ing are manifold and may be related to the sampling design (for instance ease of
access, or issues with the logistics of evenly spaced sampling), or to the biotic and
abiotic drivers of species distributions themselves, such as gaps in a species’ range
due to unsuitable habitat. Many approaches have been proposed to correct for sam-
pling bias, among which subsampling locations to acquire a more even distribution of
known presences are optimal in most cases (Fourcade et al., 2014). As a first step, we
therefore removed one of the sites of pairs that were located within 20 km from one
another. However, because in our study the number of locations is rather limited,
further subsampling would result in an even smaller data set. Hence, in a second
step, we instead weighted each location based on the density of known presences
within a given radius, which was shown to be a good alternative to subsampling as
a correction method (Fourcade et al., 2014; Stolar and Nielsen, 2015). To do so, we
created a bias grid in QGIS 3.4.4. (Team et al., 2016) at 30 arcsec resolution, with
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each grid cell representing the density of sampling locations within a 50 km radius,
and kernel densities following a Gaussian distribution (Balestrieri et al., 2016). We
used the inverse of the density to weight each presence and background location (see
below), thus downweighting clustered locations. We not only included locations of
known presence in this bias grid, but also locations where we searched for bumble
bees with similar effort, but did not find any. We restricted these putative absence lo-
cations to those that were at least 50 km apart from known presences. We specifically
only included these sites in our sampling bias map, and not in our models, because
we cannot be sure that these represent true absences.

The second cause of spatial autocorrelation in SDMs is the often inherent spatial auto-
correlation of habitat conditions, in particular climate variables. In this case, species
occurrences are spatially dependent on the underlying habitat variables and thus rep-
resent a true association between species presence and local conditions. It is often
impossible and undesirable to a priori remove spatial autocorrelation due to spatial
dependence. Instead, spatial autocorrelation is expected to be absent in model resid-
uals, regardless of the presence of initial spatial dependence. Models should correctly
predict the presence or absence of a species at any given location, independent of its
spatial relation to other locations. We thus tested for spatial autocorrelation in the
probabilities of occurrence at known presence locations using global Moran’s I in the
R package “Ictools” v.0.2-7. We used four neighbors and tested the significance of
correlations with resampling and randomization procedures.

Presence-only data

To model species distributions based on presence-only data, we used an ensemble
method, which has been shown to perform better than any given individual mod-
eling method (e.g. Aragjo et al., 2007; Elith and Leathwick, 2009; Marmion et al.,
2009. Because the number of known locations of species presence was limited, we em-
ployed the ensemble of small models approach implemented in the “ecospat” R pack-
age (Breiner et al., 2015; Breiner et al., 2018; Di Cola et al., 2017). Ecospat fits bivariate
models of presence/(pseudo-)absence with two predictor variables at a time, creat-
ing an ensemble of “small” models weighted by each bivariate model’s performance.
It can do so for multiple modeling approaches, using the “Biomod2” package for R
(Thuiller et al., 2009). Hence, for each modeling approach, bivariate (small) models
are combined into a model ensemble, and model ensembles are in turn combined
into an overall ensemble. We used ecospat v.3.1 and Biomod2 v.3.3-19 to run Max-
ent models (specifically the MAXENT.Phillips models, as implemented by Phillips
et al., 2006, generalized linear models (GLM), classification tree analysis (CTA, also
known as classification and regression trees (CART); Breiman et al., 1984, and artifi-
cial neural networks (ANN; Ripley, 2007). In a recent study comparing 10 different
modeling approaches implemented in ecospat and Biomod2, these were shown to be
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the top performing ones, while keeping computation times manageable (Breiner et
al., 2018). We used model tuning to optimize the parameter settings for each model.
We generated input files using presence-only sites and 5,000 background points that
were sampled randomly at a minimum distance of 20 km from known presences. To
correct for sampling bias, we extracted weights for all locations, which were imple-
mented using the Yweights argument in ecospat.

TABLE 3: Environmental variables used for species distribution modeling and random forest analyses.
Variables marked in bold were selected for our models after stepwise removal of variables with a
variance inflation factor > 10.

Variable Meaning Source
Bio1 Annual mean temperature http://www.worldclim.org
Bio 2 Mean diurnal range mean of monthly  http://www.worldclim.org
(max temp — min temp)
Bio 3 Isothermality (Bio2/Bio7) * 100 http://www.worldclim.org
Bio 4 Temperature seasonality standard de- http://www.worldclim.org
viation*100
Bio 5 Max temperature of warmest month http:/ /www.worldclim.org
Bio 6 Minimum temperature of coldest http://www.worldclim.org
month
Bio 7 Temperature annual range (Bio5-Bio6)  http://www.worldclim.org
Bio 8 Mean temperature of wettest quarter  http://www.worldclim.org
Bio 9 Mean temperature of driest quarter http://www.worldclim.org
Bio 10 Mean temperature of warmest quarter  http:/ /www.worldclim.org
Bio 11 Mean temperature of coldest quarter  http://www.worldclim.org
Bio 12 Annual precipitation http:/ /www.worldclim.org
Bio 13 Precipitation of wettest month http:/ /www.worldclim.org
Bio 14 Precipitation of driest month http://www.worldclim.org
Bio 15 Precipitation seasonality (coefficient http://www.worldclim.org
of variation)
Bio 16 Precipitation of wettest quarter http:/ /www.worldclim.org
Bio 17 Precipitation of driest quarter http:/ /www.worldclim.org
Bio 18 Precipitation of warmest quarter http:/ /www.worldclim.org
Bio 19 Precipitation of coldest quarter http://www.worldclim.org
Elevation Elevation https:/ /www2 jpl.nasa.gov/srtm/
Aspect Aspect https://www2.jpl.nasa.gov/srtm/
Slope Slope https://www2.jpl.nasa.gov/srtm/
LAI sd Leaf Area Index standard deviation http://www.glcf.umd.edu/data/
across the year
LAI min Leaf Area Index annual minimum http:/ /www.glcf.umd.edu/data/
LAI mean Leaf Area Index annual mean http://www.glcf.umd.edu/data/
LAI max Leaf Area Index annual maximum http:/ /www.glcf.umd.edu/data/
Tree Percent tree cover http://www.glcf.umd.edu/data/
Canopy Canopy height Simard et al., 2011
QSCAT mean  Surface moisture (mean) http://www.scp.byu.edu, Geue et al., 2016
QSCAT min Surface moisture (min) http:/ /www.scp.byu.edu, Geue et al., 2016
QSCAT max Surface moisture (max) http://www.scp.byu.edu, Geue et al., 2016
QSCAT season Surface moisture (coefficient of varia- http://www.scp.byu.edu, Geue et al., 2016

tion)
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To evaluate model performance, we computed various evaluation scores and used
K-fold cross-validation with subsets of training and testing data. The Boyce index
(Hirzel et al., 2006) is specifically designed and hence a particularly appropriate eval-
uation score for presence-only models. It is limited between -1 and 1, with 0 indi-
cating model performance no better than random, and values close to 1 indicating
high performance. We used the Boyce index to assess model performance, but also
report the area under the receiver operator curve (AUC; Swets, 1988), Cohen’s kappa
(Cohen, 1960; Hirzel et al., 2006), and the true skill statistic (TSS; (Allouche et al.,
2006)). To create training and testing data partitions for K-fold cross-validation, we
used spatial blocking. Partitioning the data into spatial blocks has the advantage
over random allocation of sites that it is better suited to evaluate model performance
in the potential presence of spatial autocorrelation (e.g. Roberts et al., 2017). If a
model performs well, it is expected to correctly predict occurrences in both distant
as well as nearby locations (Telford and Birks, 2009). We generated spatial blocks of
training and testing data with the R package “’blockCV” v.2.0.0. (Valavi et al., 2019).
We created fivefold and set the size of the spatial blocks to the median of the spatial
autocorrelation range across the input environmental variables, which were sampled
at 5,000 random locations. To find evenly dispersed folds, we ran 100 iterations.

Finally, to visually inspect species occurrence as a function of environmental condi-
tions, we created two types of response curves. In the first, we plotted the response
as a function of one environmental variable, while letting all other variables covary.
These curves are particularly useful to understand the spatial patterns of species dis-
tributions. The curves cover the full range of responses, where the model takes ad-
vantage of sets of variables changing together. Second, we also plotted marginal
response curves, where we plotted the effect of one environmental variable, while
keeping all other variables at their sampled median. These curves are informative
with respect to the individual contributions of each environmental variable.

Relative abundance data

To test whether the relative abundance of B. lucorum compared to B. terrestris is as-
sociated with environmental conditions, we used a machine learning approach im-
plemented in the “SuperLearner” (v.2.0-25) package for the R statistical framework.
SuperLearner uses model tuning to optimize model parameter settings and cross-
validation to estimate the performance of multiple models. It creates optimized en-
sembles, weighted by the performance of the individual models. Where possible, we
ran models similar to those for the presence-only data: generalized additive mod-
els (GAM; Hastie and Tibshirani, 1990), generalized linear models (GLM), Bayesian
addi-tive regression trees (BART; Chipman et al., 2010), random forests (RF; Breiman
etal., 1984; Breiman, 1996; Breiman, 2001), and neural networks (ANN; Ripley, 2007).
We also ran a very simple mean-of-abundance model as a baseline. We corrected for
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sampling bias using the weighting method described above, but we also fitted mod-
els to uncorrected abundance. We ran models on the full data set, where bagging and
randomization were done internally, as well as on a partial data set, where we omit-
ted 20% of the data, which were used as test data for independent cross-validation.
For each model, we report its associated risk (a measure of model performance) and
coefficient (the weight with which it is included in the ensemble). Response curves
were created as described above.

To subsequently create a map of the predicted relative abundance of B. [ucorum across
the entire study area, we extracted the values for environmental variables at all 30 arc-
sec gridcells within Bulgaria and Romania. We then used the “predict.SuperLearner”
function to project the known relationship between relative abundance and environ-
mental conditions onto the entire landscape. These values were imported and con-
verted to a raster format in QGIS 3.4.4 (Team et al., 2016).

Results

Species identification

The most likely substitution model was the General Time Reversible (GTR) model
with gamma distribution, which we implemented to create the phylogenetic tree. We
found that 514 individuals clustered with reference sequences of B. terrestris and 220
with those of B. lucorum (Table 1).

Presence-only data

Boyce indices for individual K-fold cross-validated models for B. terrestris ranged
between 0.434 and 0.878 (median 0.751), suggesting overall decent to good model
performance, except for those based on classification trees (CTA; Table 4). CTA mod-
els were therefore not included in the final ensemble. Boyce indices for ensemble
cross-validated models ranged between 0.133 and 0.869. For B. lucorum, Boyce in-
dices for individual cross-validated models ranged between 0.594 and 0.936 (median
0.766), and for ensembles between 0.650 and 0.870 (Table 4). CTA models performed
as poorly as those for B. terrestris and were not included in the ensembles. Overall,
models for B. lucorum performed slightly better than those for B. terrestris.

Spatial autocorrelation in the predicted occurrences was absent for B. lucorum (Moran’s
I=0.08, expected I = -0.04, resampling z = 1.08, resampling p = 0.280, randomization
z = 1.09, randomization p = 0.276). However, for B. terrestris we still found signif-
icant spatial autocorrelation, despite correcting for sampling bias (Moran’s I = 0.41,
expected I = -0.03, resampling z = 4.44, resampling p < 0.001, randomization z =
4.47, and randomization p < 0.001). We visually inspected the predictive map and
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compared it to maps of important environmental variables. We found that partic-
ularly high probability of occurrence was predicted for sites in Mediterranean Bul-
garia, which is consistent with the pattern of seasonality in surface moisture (QS-
CAT season), the most important variable in predicting the species” distribution. We
suspected that the remaining spatial auto-correlation was the result of spatial depen-
dence rather than of sampling bias. We further tested for residual spatial autocorrela-
tion in a second analysis, where we also extracted the predictions for sites where we
searched for bumble bees, but did not find any, despite making the same sampling
effort. These sites were the same as those used to generate a sampling bias grid and
were located at least 50 km from known presences. Although these sites were not
included in the models as true absences, we expected that a well-performing model
should predict low probability of occurrence for these sites. Indeed, this time we
found no evidence for spatial autocorrelation (Moran’s I = 0.12, expected I = -0.02, re-
sampling z = 1.67, resampling p = 0.096, randomization z = 1.65, and randomization
p =0.099), and we concluded that sampling bias was sufficiently well corrected for.
Interestingly, the most important variables in limiting each species’ distribution over-
lapped between species. The top four variables for B. terrestris were seasonality in
surface moisture (QSCAT season), mean temperature of the wettest quarter (Bio 8),
mean leaf area index (LAl mean), and temperature seasonality (Bio 4; Table 5). For B.
lucorum, these variables comprised mean leaf area index (LAI mean), canopy height,
seasonality in surface moisture (QSCAT season), and percent tree cover (Tree; Table
6), subsequently followed by mean temperature of the wettest quarter (Bio 8). For
both species, the ranking of variables by their importance was largely consistent be-
tween modeling approaches. The main difference in the response curves between
the two species is that those for B. lucorum are generally much steeper than those for
B. terrestris, suggesting a stronger influence of the environment on B. lucorum (Fig-
ures 2 and 3). This difference is particularly pronounced for the top most important
variables that were not overlapping between species, that is, percent tree cover and
canopy height.

Consistent with the response curves, B. terrestris was predicted to be widely dis-
tributed, with medium suitability in lowland areas (in the north of Bulgaria and
south of Romania) and low suitability in the Danube Delta and at the highest ele-
vations (Figure 1b). Very high suitability was predicted for Mediterranean Bulgaria,
south of the Balkan Mountains. Conversely, the range of B. lucorum was predicted
to be much more restricted to higher elevations (the Carpathian Mountains and sur-
rounding lowlands and the Balkan, Rila, Rhodope, and Pirin Mountains; Figure 1c).
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TABLE 4: Performance scores of ESMs using presence-only data. Five cross-validated

models were run based on spatial blocks generated with the R package ‘blockCV’.
MAXENT.P is the MAXENT.Phillips model. ENS is the ensemble of small models.

B. terrestris B. lucorum

Model Boyce AUC Kappa TSS Boyce AUC Kappa TSS
RUN1_ANN 0751 0.69 0 0 0.701 0782 0 0
RUN1_CTA - 0.5 0 0 - 05 0 0
RUN1_GLM 0.871 0.708 0 0 0841 0754 0 0
RUNI_MAXENT.P 0553 0.69 0.014 036 0716 0.774 0.027 0594
RUN1_ENS 0.632 0.69 0.012 0332 0725 0.774 0.021 0.561
RUN2_ANN 0737 0599 0 0 0.825 0.796 0 0
RUN2_CTA - 0.5 0 0 - 05 0 0
RUN2_GLM 0.694 0.665 0 0 0936 0.862 0.179 0.327
RUN2_MAXENT.P 0467 0.65  0.009 032 0837 0791 0.01 0.654
RUN2_ENS 0.555 0.65 0.027 0262 0.87 0.796  0.008 0.611
RUN3_ANN 0.814 0755 0.067 0.149 0.644 0.838 0 0
RUN3_CTA - 0.5 0 0 - 05 0 0
RUN3_GLM 0.833 0.736 0.285 0167 0721 0.839 0 0
RUN3_MAXENT.P 0434 071 0.007 0413 0.766 0.818 0.024 0.638
RUN3_ENS 0.133  0.714 0.006 0.367 0.779 0.82  0.023 0.636
RUN4_ANN 0764 0.782 0.136 0.27 0.808 0.688 0 0
RUN4_CTA - 0.5 0 0 - 0.5 0 0
RUN4_GLM 0.636 0.785 0.13 0.355 0.755 0.662 0 0
RUN4_MAXENT.P 0476 0.724 0.013 0369 0.844 0.684 0.007 0515
RUN4_ENS 0.635 074 0.015 0.368 0.854 0.685 0.005 0.459
RUNS5_ANN 0.852 0.761 0 0 0819 0779 0 0
RUNS5_CTA - 0.5 0 0 - 05 0 0
RUN5_GLM 0.821 0779 0.068 0214 0721 0.829 0.11 0.334
RUN5_MAXENT.P 0.878 0.768 0.021 0458 0594 0.815 0.055 0.677
RUNS5_ENS 0.869 077 0.017 0414 0.65 0.816 0.051 0.666

TABLE 5: Variable importance scores for ESMs based on
presence-only data for B. terrestris. Scores for CTA are not
included, because of its low model performance. MAXENT.P is
the MAXENT.Phillips models. ENS is the ensemble of small
models. See Table 1 for the meaning of the variables.

Variable ANN GLM MAXENTP ENS
QSCAT season 0140 0.099  0.088 0.109
Bio 8 0104 0088 0.098 0.096
LAI mean 0.083 0.067 0.088 0.079
Bio 4 0.055 0.080 0.085 0.073
Bio 3 0.047 0080 0.091 0.073
LAI sd 0.068 0.057 0.060 0.062
Slope 0.071 0053 0.062 0.062
Bio 11 0.049 0059 0.064 0.057
Bio 9 0.063 0.055 0.050 0.056
Bio 19 0.045 0063 0.059 0.056
QSCATmean 0079 0.042 0.032 0.051
Bio 14 0.056 0048 0.046 0.050
Canopy height 0.038  0.053  0.054 0.049
Tree 0.036 0062 0.037 0.046
Bio 15 0.040 0.049 0.040 0.043

Aspect 0.023 0.045 0.046 0.038
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FIGURE 3: Overall (top panels) and marginal (bottom panels) response curves for presence-only model
predictions for Bombus terrestris. Overall response curves were generated for each variable, while letting
all other variables covary. In contrast, marginal response curves were created for each variable, while
keeping all other variables at their median observed values
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keeping all other variables at their median observed values.
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TABLE 6: Variable importance scores for ESMs based on
presence-only data for B. lucorum. Scores for CTA are not
included, because of its low model performance.
MAXENT.P is the MAXENT.Phillips models. ENS is the
ensemble of small models. See Table 1 for the meaning of
the variables.

Variable ANN GLM MAXENTP ENS
LAImean 0.091 0.088 0.092 0.090
Canopy height 0.082 0.089 0.083 0.085
QSCAT season  0.087 0.079  0.080 0.082
Tree 0.086 0.075 0.080 0.081
Bio 8 0.068 0.081 0.073 0.074
LAIsd 0.078 0.069 0.075 0.074
Slope 0.080 0.055 0.066 0.067
Bio 4 0.060 0.062 0.055 0.059
Bio 3 0.063 0.054 0.045 0.054
QSCAT mean  0.072 0.048 0.042 0.054
Bio 15 0.048 0.052 0.056 0.052
Bio 11 0.041 0.051 0.054 0.049
Bio 19 0.040 0.053 0.052 0.048
Bio 9 0.040 0.047 0.052 0.046
Bio 14 0.038 0.045 0.046 0.043
Aspect 0.027 0.051 0.048 0.042
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FIGURE 5: Variable importance inferred from a BART model for the relative abundance of
Bombus lucorum. This model had a coefficient > 0.9 in the ensemble model, and it was the
single best performing one in a nested crossvalidation analysis. We therefore used its
robust estimate of variable importance to assess the contribution of each variable in the
overall ensemble.



30 2 CHAPTER |

Relative abundance data

Models of relative abundance that were corrected for sampling bias performed con-
siderably worse than uncorrected models (corrected models: BART coefficient = 0.885,
BART risk = 0.404, GLM coefficient = 0.115, and GLM risk = 0.682). We therefore
report results for uncorrected models from here onwards. The only two models in-
cluded in the ensemble were GAM (coefficient = 0.084, risk = 0.199) and BART (co-
efficient = 0.916, risk = 0.093). K-fold nested cross-validation with fivefold suggested
that the single best model was BART, which performed even slightly better than the
ensemble model, yet statistically nonsignificant (Table 7). Because of the high weight
of the BART model, we evaluated variable importance based on BART only, pro-
viding a robust posterior importance score (Chipman et al., 2010; Herndndez et al.,
2018). The top most important variable was canopy height, subsequently followed
by percent tree cover and three temperature variables (Figure 4), which is broadly
consistent with the results for the presence-only data. Overall and marginal response
curves suggest that B. lucorum is more abundant in more densely vegetated, wet and
cool areas (Figure 5).

To gain further insight in how our two target species differ in their preferred habi-
tat conditions, we visually inspected scatter-plots of the relative abundance of B. lu-
corum as a function of the most important variable, canopy height. We noted that
the major mountain ranges in Romania and Bulgaria are a prominent feature in our
distribution maps, which is consistent with previous descriptions of occurrence pat-
terns. Although we dropped elevation from our analyses because of its high VIE, we
also created a scatter plot of relative abundance versus elevation. Visual inspection
of these plots suggested that B. lucorum does not occur in unforested areas with a
canopy height under 20 m (Figure 6a). Yet, the dichotomy between species is par-
ticularly striking for elevation, where B. lucorum is almost completely absent below
600 m, but makes up the majority of the two species at higher elevations (Figure 6b).
Hence, elevation captures the combined influence of correlated environmental vari-
ables on limiting the distribution of B. lucorum particularly well.

TABLE 7: Risk scores of five-fold cross-validated models of
relative abundance, with mean, standard error, minimum,
and maximum values. The lower the risk, the better the
model performance. The single best model was the BART
model. SuperLearner is the ensemble of all models.

Algorithm Mean SE Min Max
SuperLearner 0.096303 0.020817 0.04578  0.15106
MEAN 0.162742  0.022342 0.130919 0.22429
GLM 0.137423  0.033966 0.058933 0.22817
GAM 0.137423 0.033966 0.058933 0.22817
BART 0.095774 0.019007 0.052584 0.1495
RF 0.096686 0.021774 0.043806 0.15481

ANN 0.162742  0.022342  0.130919 0.22429
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Discussion

Here, we modeled the distributions and relative abundance of two cryptic bumble
bee species in Bulgaria and Romania from samples that were assigned to one of the
species using a long fragment of the COI gene for genetic identification. We demon-
strated that even though there is a certain degree of overlap between the ranges of
the two species, B. lucorum has a much more restricted distribution than B. terrestris.
Our models suggested that both vegetation and climate variables are key factors in
determining their distributions. These results are concordant with previous stud-
ies for B. lucorum suggesting that it prefers closed habitat near forests (Bossert et al.,
2016; Svensson et al., 2000). Our findings also support observations that B. lucorum
occurs at higher elevations (Ban-Calefariu and Sarospataki, 2007; Bossert et al., 2016;
Goulson et al., 2008a; Ploquin et al., 2013; Tomozei, 2006), which was suggested to be
the result of an adaptation to colder climates (Benton, 2006). Indeed, in northern Eu-
rope, B. lucorum generally occurs in colder areas, where it at least partly substitutes B.
terrestris (Rasmont et al., 2015a). Many environmental variables change along an ele-
vation gradient, and elevation itself is unlikely to determine the distribution of these
species, but rather its covariates (Bossert et al., 2016). In our study, mean temperature
of the coldest quarter (Bio 11), canopy height, percent tree cover, and mean leaf area
index (LAI mean) were particularly highly correlated with elevation (Pearson corre-
lation coefficient > 0.6). Hence, the distribution of B. lucorum is clearly restricted to
the mountainous areas in Bulgaria and Romania (Figure 1c,d), where temperatures
are lower, precipitation is higher, and where most of the forest is remaining.

In contrast, our findings for B. terrestris suggest that it is not as restricted to open
habitat as previously thought (Bossert et al., 2016; Svensson et al., 2000), but rather is
a generalist species, occurring in open as well as more densely vegetated areas. This
notion is also apparent in our maps, showing a wide distribution for B. terrestris.
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Interestingly, our presence-only species distribution models showed a considerable
overlap between the ranges of B. terrestris and B. lucorum, but analyses of their rela-
tive abundance evoke a much stronger separation between these species. Although
the use of relative abundance does not allow for conclusions regarding the absolute
abundance of either one of the species, the large range of relative abundance values
for B. lucorum, spanning from 0 to 0.94, suggests that the two species replace one an-
other across an environmental gradient. Thus, the inclusion of abundance enhances
our understanding of the distribution of these species based on presence-only mod-
els.

Although the conservation status of our study species across the European continent
is “least concern” (Rasmont et al., 2015b; Rasmont et al., 2015c), they are “vulnera-
ble” or “nearly threatened” in a few countries (Kosior et al., 2007). A previous cross-
continent study suggested that both B. terrestris and B. lucorum may suffer from range
contractions under future climate change (Rasmont et al., 2015a). The study by Ras-
mont et al., 2015a provides a great overview of overall distributions and risks posed
by climate change. Yet, such large-scale models of species distributions, spanning
major latitudinal and environmental gradients, and based on climate variables only,
may be of limited use at intermediate to smaller spatial extents. Indeed, we found
that vegetation characteristics were among the most important variables explaining
the distribution and relative abundance of our study species, and it will be difficult
to predict how these variables will change in the future, both as a result of climate
change, as well as due to changes in forest management. We did not proceed with
an attempt to predict the distribution of B. lucorum onto future climate conditions,
because a model based on only current climate conditions failed to even broadly re-
semble that based on both climate and vegetation variables (not shown). Moreover,
populations are likely adapted to local and regional conditions, and may not respond
the same to changing environmental conditions. Our study provides further insight
by teasing apart the habitat preferences of these species in southeastern Europe, pro-
viding higher resolution range maps that are probably more relevant for the region,
where the distribution of B. lucorum is assumed to be rather disjunct. Despite the
complexity of predicting future changes in vegetation characteristics, the difference
in habitat requirements between these species is expected to have implications for
the way they respond to changing climate conditions. Our finding that B. lucorum
is rather restricted in its suitable habitat conditions compared to B. terrestris, may
suggest that it is more vulnerable to climate change than the latter.

We genetically identified a large number of individuals of two closely related bum-
ble bee species sampled at many sites and modeled their distributions and gained
insight into their habitat requirements. We showed that B. terrestris is rather a gener-
alist species, whereas B. [ucorum is restricted to colder and wetter climates in forested
areas, which in our study area primarily occur at higher elevations. We support the
emerging recognition of the importance of abundance data in species distribution
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modeling. Despite the overlap in occurrence suggested by presence-only data, their
relative abundance gradually changes along a major environmental gradient, with
one of the species being virtually absent at the extreme ends of this gradient. Our
study contributes to the urgent need to fill a major gap of knowledge in the distri-
bution and ecology of these species that can help facilitate the assessment of their
conservation status and the development of management plans where necessary.
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Abstract

Because it is impossible to comprehensively characterize biodiversity at all levels
of organization, conservation prioritization efforts need to rely on surrogates. As
species distribution maps of relished groups as well as high-resolution remotely sensed
data increasingly become available, both types of surrogates are commonly used. A
good surrogate should represent as much of biodiversity as possible, but it often re-
mains unclear to what extent this is the case. Here, we aimed to address this question
by assessing how well bird species and habitat diversity, two frequently used bio-
diversity surrogates, represent one another. We conducted our study in Romania, a
species-rich country with high landscape heterogeneity where bird species distribu-
tion data have only recently started to become available. First, we prioritized areas
for conservation based on either 137 breeding bird species or 36 habitat classes, and
then evaluated their reciprocal surrogacy performance. Second, we examined how
well these features are represented in already existing protected areas. Finally, we
identified target regions of high conservation value for the potential expansion of the
current network of reserves (as planned under the new EU Biodiversity Strategy for
2030). We found that bird species were a better surrogate for habitat diversity than
vice versa. Highly ranked areas based on habitat diversity were represented better
than areas based on bird species, which varied considerably between species. Our
results highlight that taxonomic and environmental data may be poor surrogates for
one another and that different types of biodiversity surrogates should be combined
in spatial conservation prioritization.

KEYWORDS
biodiversity surrogate, bird species, habitat type, spatial conservation prioritization,
Zonation software, Romania
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Introduction

The ultimate goal of conservation prioritization is the protection of biodiversity at all
levels of organization (Pressey, 2004). However, limited financial resources and com-
peting stakeholder interests constrain the area that can reasonably be protected. The
process of identifying potential regions for designation as protected area (PA) should
therefore be undertaken thoroughly and strategically (Bottrill et al., 2008; Joseph et
al., 2009), see Margules and Pressey, 2000 for a review). The striking obstacle is how-
ever that biodiversity is very complex and difficult to characterize (Noss, 1990), and
surveying biodiversity in its entirety is nearly impossible. Shortcuts necessarily need
to be taken to quicken the prioritization process and make it more feasible (Andelman
and Fagan, 2000). One of these shortcuts is using a biodiversity or environmental in-
dicator as a conservation surrogate (see Margules and Pressey, 2000 for a review;
(Sarkar et al., 2005), which is: “An ecological process or element (e.g., species, ecosys-
tem, or abiotic factor) that [should] [...] represent (i.e., serve as a proxy for) another
aspect of an ecological system” (Hunter et al., 2016). The efficacy and efficiency of
surrogates for overall biodiversity (known and unknown) have progressively been
evaluated (Aratjo et al., 2007; Di Minin and Moilanen, 2014; Gaston et al., 2008;
Oliver et al., 2004; Sarkar et al., 2005; Sauberer et al., 2004), and appear to be influ-
enced by factors such as the size of the study area, type of surrogate, and the spatial
resolution of surrogate data (e.g. Di Minin and Moilanen, 2014; Franco et al., 2009;
Grantham et al., 2010). Nevertheless, it often remains ambiguous to what extent a
surrogate represents other levels of biodiversity, in particular across different levels
of organization.

Biodiversity surrogates are usually subdivided into taxonomic and environmental
surrogates (Grantham et al., 2010; Oliver et al., 2004; Sarkar et al., 2005). Many stud-
ies have evaluated the efficacy of taxonomic surrogates for other taxonomic groups
(e.g. see Andelman and Fagan, 2000; Caro and O’Doherty, 1999 for a review; (Lawler
et al., 2003; Lund and Rahbek, 2002; Rozylowicz et al., 2011; Sibarani et al., 2019;
Wiens et al., 2008). The general consensus is that one taxonomic group alone might
not be an adequate surrogate for others (Bertrand et al., 2006; Billeter et al., 2008; Di
Minin and Moilanen, 2014; Franco et al., 2009; Moritz et al., 2001); see Rodrigues and
Brooks, 2007 for a review), and the identification of PAs should include more than
one species or taxonomic group (Franco et al., 2009; Larsen et al., 2012). Yet again,
for many areas in the world accurate species distribution data is scarce. However,
one of the taxonomic groups for which rich datasets are available are birds, because
they are of interest to many people and are therefore one of the best surveyed taxa
in the world (Garson et al., 2002; Larsen et al., 2012; Verissimo et al., 2009). As such,
birds are often used as biodiversity indicators and conservation surrogates, and their
surrogacy effectiveness varies from representing overall species diversity well (other
taxa than birds) (Juutinen and Moénkkonen, 2004; Larsen et al., 2012; Rodrigues and
Brooks, 2007; Sauberer et al., 2004), or threatened birds being adequate surrogates for
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non-threatened bird species (Franco et al., 2009), to being poor surrogates for other
taxa (Lund and Rahbek, 2002; Moore et al., 2003; Williams et al., 2006). Adding more
taxa (Larsen et al., 2012) or even different biodiversity features, such as environmen-
tal diversity (Bonn and Gaston, 2005; Di Minin and Moilanen, 2014), increased the
overall surrogacy of birds for other levels of biodiversity.

Environmental diversity, in particular habitat diversity, has the potential to be a pow-
erful surrogate and represent other levels of biological organization, because habitat
data can be generated quickly and relatively inexpensively from remotely sensed or
extrapolated ground data (Arponen et al., 2008; Beier et al., 2015; Grantham et al.,
2010; Rodrigues and Brooks, 2007; Sarkar et al., 2005). Furthermore, environmental
surrogates may capture interactions between species and their environment (Bonn
and Gaston, 2005), and compensate for a potential lack of congruence between tax-
onomic surrogates (Moritz et al., 2001). However, compared to taxonomic surro-
gates, the application of environmental surrogates received less attention. Results
suggest that continuously distributed environmental variables (e.g. climate vari-
ables such as temperature and precipitation, or vegetation characteristics such as
percent tree cover) may not be adequate (Aratjo et al., 2001; Di Minin and Moila-
nen, 2014; Rodrigues and Brooks, 2007) or at most better than random surrogates for
species occurrence (Sarkar et al., 2005). Categorical environmental data in the form
of pre-classified information (e.g. land classes, ecological vegetation classes or habi-
tat types) may be better surrogates than continuous environmental data. However,
habitat or land cover categories vary in their representation of other levels of bio-
diversity, for instance weak for plant species (Bonn and Gaston, 2005; Carmel and
Stoller-Cavari, 2006), but better for plants than for vertebrates (Di Minin and Moila-
nen, 2014; Grantham et al., 2010; Lombard et al., 2003; Mac Nally et al., 2002; Oliver
et al.,, 2004). Yet, such contrasting results could also result from differences in the
spatial extent and resolution of the study area, as well as the type of environmental
data used as a surrogate (vegetation or climate-based) (Grantham et al., 2010; Hess
et al., 2006; Margules and Pressey, 2000; Reyers et al., 2002).

Given uncertainties surrounding the potential for categorical habitat data to serve as
a surrogate for biodiversity, the goal of our study was to evaluate its representation
of one of the most frequently used biodiversity surrogates, bird species distributions,
and vice versa. We implemented this analysis for Romania, a country within the Eu-
ropean Union exhibiting high bird species and habitat diversity, likely caused by the
variety of biogeographic regions it comprises (Ioras, 2003; Schmitt and Réakosy, 2007).
While 23% of Romania is protected, either under the pan-European Natura 2000 net-
work or as natural or national parks or biosphere reserves (Niculae et al., 2017), and
despite its high levels of biodiversity, efforts to identify conservation priorities and
evaluate the efficacy of the network of reserves to protect biodiversity have been
sparse (mentioned by Gaston et al., 2008 but not examined; Iojd et al., 2010; Miu et al.,
2018; Niculae et al., 2017; Popescu et al., 2013; Rozylowicz et al., 2011). One reason
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for this disparity is that species distribution data have only recently become widely
available. As such, PA management could greatly benefit from prioritization efforts
using systematic conservation planning principles and the latest available data, par-
ticularly when establishing new PAs (lojd et al., 2010; Niculae et al., 2017). The im-
plementation of such scientific research in the establishment and governance process
of PAs is, however, often limited (Opermanis et al., 2014; Popescu et al., 2014). This
is not a unique situation, as for instance Natura 2000 sites consist of a diverse array
of reserves designed for particular species, but not to protect biodiversity as a whole,
so they often represent species and habitat diversity only to a limited extent (Aratjo
et al.,, 2001; D’Amen et al., 2013; Ioj4 et al., 2010; Pechanec et al., 2018). Furthermore,
the European Commission decided to set new targets for 2030 and increase the per-
centage of protected areas in EU member states to 30% (Commission, 2020). Hence,
there is a need to identify additional areas for protection, which is best done using
the principles of systematic conservation planning (Miu et al., 2020).

In this study, we first evaluated whether breeding bird species and habitat diversity
based on remote-sensing data are adequate surrogates for one another. We assessed
surrogacy of the two datasets using high-resolution data (1km) of (a) 137 modelled
breeding bird species distributions and (b) 36 classes of mapped habitat types from
the “Ecosystem Types of Europe” (ETE) data set (Agency, 2016). Second, we evalu-
ated whether existing protected areas (national and natural parks, biosphere reserves,
wetland reserves and SPAs (as part of the Natura 2000 network)) in Romania are ef-
fective in representing areas of conservation concern for both birds and habitats. Fi-
nally, we identified additional areas that could be prioritized in an effort to expand
the current PA network to more comprehensively protect bird and habitat diversity.

Methods

Study region

Romania is located in Eastern Europe, at the western shores of the Black Sea. It covers
238 397 km? and natural landmarks and borders are dominated by the Carpathian
Mountains and the Danube River. Five biogeographical regions have been char-
acterized across Romania: Pannonian, Continental, Alpine, Steppic, and Black Sea.
The heterogeneous landscape consists of an alternation between intensive and exten-
sive agricultural areas and (semi-) natural areas, such as forest, open woodland, and
grassland.As a member of the European Union, Romania is bound to the directives
of the Natura 2000 network, and dedicated about 23% of its total landscape to conser-
vation. The Natura 2000 network is an important biodiversity conservation measure
(Gaston et al., 2008), and consists of different types of protected areas: the terrestrial
Special Protection Areas (SPA, for bird protection only), the terrestrial Sites of Com-
munity Importance, and Special Areas of Conservation (SCI and SAC, for habitats
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and/or species) (Commission, 2007)). In addition to, but partly overlapping with
the Natura 2000 network, Romania also implemented protected areas designated as
natural and national parks as well as biosphere reserves (Niculae et al., 2017).

Biodiversity features
Bird species distributions

Bird species occurrence data (from the years 2006-2018) were obtained from the forth-
coming Romanian Breeding Bird Atlas (Fantana and Kovdcs, 2020, in preparation), a
scheme run by Milvus Group Association and the Romanian Ornithological Soci-
ety. We modelled the distributions of 137 breeding bird species using MaxEnt v.3.4.1
(Phillips et al., 2017) at two different resolutions (1km and 2km), depending on the
species’ ecology or in some cases by the available data (Table A.2, Appendix A). Ap-
pendix B provides in-depth details on the species distribution modeling approach.

Habitat types

We used the published maps of habitat types classified in the “Ecosystem Types of
Europe” (ETE) data set (version 3.1)(Agency, 2016). ETE is a combination of the non-
spatially referenced EUNIS (European Nature Information System) habitat classifica-
tion scheme and a spatially explicit habitat data set, the Corine-based “Mapping and
Assessment of Ecosystem and their services (MAES)” ecosystem classes (Weiss and
Banko, 2018). In Romania, 42 ETE habitat classes are mapped (level 2 classification)
at 100 m resolution (Table A.3, Appendix A). Habitat classes including highly built-
up areas (six classes) were excluded in the subsequent spatial conservation mapping.
These built-up areas where selected according to the ETE classification category “J”
(J1-J6, see Table A.3, Appendix A), which include buildings in cities and villages, in-
dustrial sites, transport networks, artificial water structures and waste deposits. To
produce maps of habitat types that match the spatial resolution of those for the bird
species, we split the ETE data set into single data layers per class (36 in total) and
calculated the proportion of each habitat type within 1 km? grid cells.

Data handling

All spatial data layers were re-projected to the Dealul Piscului 1970/ Stereo 70 pro-
jection and processed at a 1 km resolution containing a total number of 381 248 grid
cells. Species distribution models at 2 km resolution were resampled to 1 km grid cell
size. Preparation of input maps and post-processing of results was done in R (version
3.6.1), using the packages (zonator, raster, rgdal, rgeos, sp, maptools, tiff, data.table,
plyr, dplry, ggplot2, zoo). Maps were visualized in QGIS (version 3.10.6 A Coruia’).
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Spatial conservation prioritization

We prioritized areas for conservation using the software Zonation 4.0 (Moilanen and
Kujala, 2006). Zonation can handle large data sets (Kremen et al., 2008) and provides a
priority ranking over the entire landscape rather than satisfying a specific target. The
ranking is produced by iteratively discarding locations (grid cells) with the lowest
conservation values, retaining the ones with the highest conservation value through-
out the process (Di Minin and Moilanen, 2012; Moilanen et al., 2005).

We used the additive-benefit function (ABF), which directly sums up the conserva-
tion value across features (Moilanen et al., 2011) and results in a reserve network
with high average performance across all features (Arponen et al., 2005). The ABF
algorithm is appropriate for our study since we aim to identify areas representing
overall richness rather than core areas that lead to the equal representation of both
common and rare species or habitats. The algorithm accounts for the total and re-
maining distributions of features, and optional feature-weights can be implemented
(Di Minin and Moilanen, 2014). We equally weighted habitat types and bird species
distributions at the aggregate level to avoid prioritization biases due to the different
numbers of features contained within (e.g., combined weights for 137 bird species or
for 36 habitat types summed to 1). To exclude land uses that for administrative or
ecological reasons did not contribute to either overall conservation value or to the
expansion of protected areas (six classes of built-up area), we applied a cumulative
negative weight of -1 to these layers (Moilanen et al., 2011). These build up areas
where selected according to the ETE classification category "J" (J1-J6), which include
buildings in cities and villages, industrial sites, transport networks, artificial water
structures and waste deposits.

Performance curves were produced with the R package ‘zonator” (Lehtoméki, 2016-
2018). These curves show the proportion of the original occurrence of features re-
maining in the landscape as a function of the proportion of the landscape that is lost
(Lehtomaki and Moilanen, 2013). The curves start at 1.0, where the entire distribution
of features is represented in the full landscape, and end at 0.0, where the entire land-
scape is lost. Because we observed a wide spread in the performance curves of the
bird species, we explored potential underlying patterns related to their broad habitat
requirements. We grouped species into their preferred breeding habitat types (Table
A.2, Appendix A) to assess differences between groups and their performance when
the prioritization is accounting for all bird species. We also suspected that the range
size of feature types, in particular within bird species, influences their performance
in the prioritization. Specifically, we assumed that range restricted species would
perform better, since these species might be retained throughout many prioritization
iterations. Yet, this may only be the case when range-restricted features largely over-
lap with more widespread features. To explore this further, we calculated the AUC
(area under the curve) of each feature performance curve, and plotted these as a func-
tion of range size (Figure 4). For bird species we calculated range sizes by summing
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the Maxent probabilities, and for habitat types we summed the area in km?.

Surrogacy analyses

We evaluated the reciprocal surrogacy of bird species and habitat types, and assessed
the efficacy of the existing network of protected areas to protect these biodiversity
features. To test the surrogacy of the two feature types, we ran separate analyses
using one feature type as the surrogate and the other as the target. To do so, bird
species and habitat types were both included in each run, but positive weights (=1)
were only assigned to the surrogate, while the target was assigned a weight of 0.

We evaluated the surrogacy power of each feature type using the performance curves.
A performance curve by itself provides, however, little information, and for correct
interpretation it should be compared to an optimal and a random curve (Rodrigues
and Brooks, 2007). For instance, when testing whether habitat types are a good surro-
gate for bird species, the optimal curve is equivalent to the surrogacy of bird species
for themselves. The random curve in this scenario reflects the representation of bird
species expected in the absence of biological data, when ‘area’ is used as a surro-
gate (Rosenzweig, 1995). Qualitatively the surrogacy value can be assessed visually
by comparing the three curves. The closer the target curve is to the optimal curve,
the higher the surrogacy value. To quantify the surrogacy power, we calculated an
equivalent to the species accumulation index (SAI; Ferrier, 2002):

SAI = (S-R)/(O-R),

where S is the area under the target curve, R is the area under the random curve,
and O is the area under the optimal curve. The optimal curve was extracted from
the runs when targets were used as a surrogate themselves. To create the random
curve, we executed 100 surrogacy runs with randomly, uniformly distributed data as
a surrogate and bird species and habitat types as targets. We used the mean of the
corresponding target curves to calculate SAL

Evaluation and potential expansion of protected area network

To evaluate the representation of habitat and birds in existing reserves, we specifi-
cally focussed on SPAs, national and natural parks, and biosphere reserves. We thus
excluded the SCI and SAC areas (Natura 2000 sites), since they are designed to protect
specific species or habitats, but do not necessarily protect others - or even biodiver-
sity as a whole. To evaluate the effectiveness of the current network in Romania,
we tested 1) how well current PAs represent areas of conservation concern for bird
species and habitat types, and 2) how much of the individual feature type’s distribu-
tions are represented within the current network. Furthermore, we 3) assessed which
areas should be prioritized when expanding the current conservation network.
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The analyses for 1) and 3) were based on a Zonation prioritization outputs, where
both bird species and habitat types had been considered simultaneously. We did
not differentiate between protection levels of the existing PAs. If PAs had been se-
lected indiscriminately, we expected that Zonation values within PAs would be uni-
formly distributed, as they are across the entire study region. We thus tested the
frequency of Zonation values within PAs against a uniform distribution using a Chi-
square test. For 2) we summarized the distribution of bird species and habitat types
within current PAs as a proportion of their total distribution via boxplots (Figure A.3,
Appendix).

To identify potential areas that should be prioritized when expanding the current
network of PAs, we performed a mask analysis (Moilanen et al., 2014). In this anal-
ysis, current PAs are included as a mask layer, and are assigned a high rank (=1) in
the final prioritization map. As such, the next highly ranked areas outside protected
areas can be identified as potential expansion areas that represent bird and habitat
diversity well.

(a) Bird species + habitat types - Zonation ranking (b) Mask analysis - Zonation ranking
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FIGURE 1: Study region with Zonation ranking based on bird species and habitat type data without (a)

and with (b) considering currently protected areas (mask analysis). Colors indicate importance ranking

scores for conservation, with 0 meaning lowest importance and 1 meaning highest importance. Built-up
areas are indicated in white and were excluded from prioritization. Purple in panel (b) indicates current
protected areas.

Results

Spatial conservation prioritization

Both the separate and combined prioritization using bird species and habitat types re-
sulted in broadly similar patterns, with highly ranked areas in the Carpathian Moun-
tains, river valleys and parts of the Danube Delta. However smaller-scale differences
are apparent, in particular with respect to the size and clustering of those areas (Fig-
ure A.1, Appendix A, Figure 1a).
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The overall performance of bird species for themselves was rather low (AUC=0.65,
area under the bird performance curve) (Figure 2a, Table A.1, Appendix A), but we
observed considerable differences between groups based on breeding habitat (Table
A2, Appendix A). Wetland and shore-breeders were best retained through the rank-
ing process, followed by those breeding in “forest to (dense) woodland” areas (Figure
3). In contrast, birds breeding in “arable land, open woodland to grassland” or being
“generalist and close to humans” were lost much more quickly (Figure 3). To explore
this further, we plotted each species’ performance as a function of its range size (Fig-
ure 4, Table A.2, Appendix A), and found a clear negative trend. “Wetland and shore”
breeders include more range-restricted species compared to other groups and at the
same time performed best in the prioritization, whereas forest, generalist and grass-
land birds overall have larger ranges, and performed worst in the prioritization. In
addition, the distributions of wetland and shore breeders often overlap with those of
other groups, those resulting in areas of high species richness that are preferentially
prioritized by the ABF algorithm (Figure A.2, Appendix A).

Habitat types were generally retained well throughout the prioritization process
(AUC=0.9, area under the habitat surrogate curve) (Figure 2b, Table A.1, Appendix
A). We observed that features with smaller ranges were retained the longest (Figure
4, Table A.3, Appendix A).

(a) Bird species as surrogate (b) Habitat types as surrogate
100 § Nsm— - SAI=0.60 1.00 = SAI=0.44
1 Surrogate: 1 Surrogate:
! Bird species ! Habitat types
1 1
0075 0,75
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£ habitat curve g 1 bird curve
2 2 J
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FIGURE 2: Performance and surrogacy curves quantifying the average proportion of original feature
distributions represented as landscape is lost. Built-up areas were negatively weighted and hence
excluded from the prioritization (lower dashed line). The area between the target curve and the random
curve divided by the area between the optimal curve and random curve represents the efficacy of the
surrogate (SAL Species accumulation index). In panel (a) bird species were used as a surrogate for habitat
types and in (b) habitats were used as a surrogate for birds.
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Surrogacy analyses

Birds were a moderately good surrogate for habitats (SAI = 0.60). Interestingly, birds
represented habitats better than themselves (Figure 2a), although as shown above
this is only true for the representation of all birds combined, and there are large dif-
ferences between bird groups (Figure 3). The reciprocal representation of habitats for
birds was less effective (SAI = 0.44; Figure 2b).

Evaluation of protected areas and identification of expansion regions

We found that the Zonation values within current PAs, when both habitat types and
bird species were considered, differ significantly from a uniform distribution, with an
overrepresentation of higher values (Chi2 test, Chi2 = 29289, df = 9, p-value < 2.2e-16)
(Figure A.3a, Appendix A).

These results suggest that current

PAs generally comprise areas of
high conservation value better than
would be expected based on a
random assignment of areas for

Bird species groups

100 Bird breeding habitat

— — FOREST
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---= WETLAND
""" GENERALIST

— All Bird species

conservation. However, current

PAs also comprise a considerable

amount of land surface area with
— —_ Excluded
Build up areas

Prop. of distributions remaining

relatively low conservation values
based on bird and habitat diver-

0.00

sity, suggesting that improvements 060 035 o030 035 100
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could be made.

Habitat types are relatively well FiGURE 3: Performance curves for bird species split by

represented in the current pro- breeding habitats. The soliFl line is. the average
performance curve of all bird species used in the

tected areas network (Figure A.3c, surrogacy approach. Built-up areas were negatively
Appendix A), with the exception weighted and hence excluded from the prioritization
(lower dashed line).

of grassland, heathland and wood-
land habitats. Among the breeding groups, generalist and grassland breeders are on
average represented less well than expected under a random assignment, although
in the grassland breeding group much variation between the species can be observed
(Figure A.3b, Appendix A). The mask analysis highlighted transition areas from high-
land to lowland regions, such as along the northern Carpathian Mountains, the east-
ern foothills of the Carpathian Mountains, and the eastern part of the Apuseni Moun-
tains (Figure 1b) as particularly important expansion sites for bird and habitat con-
servation.
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FIGURE 4: The Zonation performance of individual features (AUC) as a function of its corresponding
range size. (a) Individuals bird species, belonging to one of the four breeding habitat groups. Green
triangle = forest to (dense) woodland; grey cross = generalist and close to humans; yellow square = arable
land, open woodland to grassland; blue square = wetland and shores. The values for the range sizes of
bird species were computed by adding up Maxent species distribution values. (b) Individual habitat

types.

Discussion

The necessity to rely on surrogates for conservation prioritization raises the ques-
tion of how effective they are. Here we evaluated the mutual surrogacy power of
bird species and habitat types in Romania, an area in Europe with high biodiver-
sity, and demonstrated that neither birds nor habitat types are effective surrogates of
one another. Birds represented 60% of habitat conservation priorities, while habitats
were less effective at representing bird conservation priorities (44%). These results
are concordant with studies in other regions suggesting to use more than one type
of surrogate for conservation prioritization (Bonn and Gaston, 2005; Di Minin and
Moilanen, 2014; Lombard et al., 2003). We also found that existing protected areas
in Romania capture areas of high conservation value for both biodiversity features
better than expected at random, but could potentially be designed more effectively
and more efficiently. Finally, we identified additional areas that should be prioritized
in case the existing network were to be expanded under the European Union Biodi-
versity Strategy to 2030, or where conservation strategies for conserving avian and
habitat diversity on private lands could be incentivized.

Bird species as a surrogate

The effectiveness of 137 breeding bird species as a surrogate for habitats was ~ 60%
of that of habitats for themselves (Figure 2a). Thus, in the absence of other data,
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birds could represent habitat types better than random, but only to a limited extent.
These results appear robust because we included many bird species, breeding in a
wide variety of habitats (Table A.1, Appendix A), thus covering the existing habitat
diversity quite well. Our results corroborate other studies that found that taxonomic
groups are poor surrogates for one another (for other taxonomic groups, e.g. Billeter
et al., 2008; Di Minin and Moilanen, 2014; Franco et al., 2009; Larsen et al., 2012), and
should be used cautiously as surrogates for habitat diversity.

Interestingly, when prioritizing bird species only (Figure 3) we found that wetland
and shore birds were much better represented than forest, grassland, and general-
ist species. This unexpected result corroborates the focal areas of the Bird Direc-
tive, which demands particular attention to wetland species (Commission, 2009), Art
4 (2)). A potential explanation for this representation bias is the emphasis of the
additive-benefit function (ABF) on high average performance across all features - in
the case of bird species, areas with high species richness (Arponen et al., 2005) - com-
bined with differences in range sizes between the bird groups (Franco et al., 2009;
Moilanen et al., 2005). We found that species richness was highest in areas where the
distributions of wetland-breeding species overlapped with those of species breeding
in other types of habitat (Figure A.2, Appendix A). Because wetland birds generally
have small ranges due to the limited availability of suitable habitat (Tozer et al., 2010),
Zonation prioritized the species-rich wetlands over areas with fewer species, where
more widely distributed species occur (Figure 4). These results are in line with simi-
lar patterns in small versus large-range moths (Lund and Rahbek, 2002), butterflies,
reptiles, and amphibians (Franco et al., 2009). The representation bias in our study
may be exacerbated by associations of generalist species to human-dominated land-
scapes. Because we negatively weighted and hence excluded built-up areas from the
prioritization, species occurring in those areas may be underrepresented in the final
results.

Habitats as a surrogate

Habitats as a surrogate for birds were only 44% as effective as the maximum possi-
ble. This result is consistent with other studies showing that environmental diversity
may not a good proxy for the diversity of small vertebrates (including bird species)
(Bonn and Gaston, 2005; Popescu et al., 2020). Yet, habitats represented birds bet-
ter than random (Figure 2b), potentially due to the influence of habitat structure on
bird species occurrence and distributions (Mac Nally et al., 2002), and may therefore
have merit for prioritization when no other data are available. It remains unclear
whether higher spatial and thematic resolutions — in particular more detailed habitat
classifications — could improve the mutual representation.

Previous studies suggested that pre-classified environmental data such as the ETE
dataset (Agency, 2016) perform better as a surrogate for species diversity than con-
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tinuous environmental variables (e.g. Bonn and Gaston, 2005; Grantham et al., 2010;
Lombard et al., 2003; Oliver et al., 2004). Thus, easily obtained environmental data
could act as a biodiversity surrogate for other levels of biodiversity (Beier et al., 2015;
Engelbrecht et al., 2016). Our results suggest however that habitat classes performed
relatively poorly at representing bird biodiversity, and ideally should not be used on
their own in prioritization efforts. Instead, combining taxonomic and environmental
surrogates could increase the surrogacy power for the protection of overall biodi-
versity (Di Minin and Moilanen, 2014; Lombard et al., 2003), but a single taxonomic
group may not suffice. For instance, habitats and birds did not perform well in rep-
resenting amphibians and reptiles in other areas (Aratjo et al., 2001; Grantham et al.,
2010; Mac Nally et al., 2002). Thus, we recommend to combine environmental and
taxonomic surrogates, preferentially from multiple taxonomic groups.

Representation in existing protected areas and conservation
implications

We found that a considerable fraction of PAs is located in areas with high conser-
vation values. It is important to stress, however, that our evaluations by no means
suggest that the current network of PAs is sufficient. Around 23% of Romania’s land
surface area is currently under protection, and improvements to the protected area
network may be necessary (Iojd et al., 2010; Niculae et al., 2017). Large ecoregions
and several widespread bird and mammal species may be protected sufficiently well,
but smaller ecoregions, as well as invertebrate and plant species are for example un-
derrepresented in the existing Natura 2000 network (lojd et al., 2010). The current
network of PAs consists of reserves designed for various purposes. In our evaluation,
we specifically focused on those that have been designed to protect birds, habitats, or
biodiversity as a whole, i.e. SPAs, national and natural parks, and biosphere reserves.
We found that these PAs represent areas of high bird or habitat conservation value
better than a random assignment of areas for protection. However, habitats were bet-
ter represented than birds (Figure A.3b and ¢, Appendix A). We also found that rare
habitats are well represented, which is consistent with results for the Czech Republic
(Pechanec et al., 2018). These habitats typically are wetlands and shores, large ar-
eas of which are protected in the Danube Delta. Surprisingly, the representation of
grassland and woodland habitats was rather poor. A likely reason for this result is
the large area of wood- and grassland habitats in Romania, only part of which can
be represented in PAs (Figure A.4, Appendix A). In contrast, rare habitats such as
littoral areas are represented at high percentages, because they can be entirely con-
tained within a fraction of the total land surface area. Despite the fact that current PAs
capture important areas for conservation relatively well, a tail of areas with low con-
servation value can also be observed (Fig. A.3A). It remains unclear whether these
areas may be important for other reasons, such as for other taxonomic groups, or as
corridors between areas of high conservation value. Yet, the presence of areas with
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low conservation value also suggests that improvements in both the efficiency and
efficacy of the network may be possible. To this end, we identified areas that should
be prioritized based on bird and habitat diversity in a scenario of future expansions
of the current network. A recent study suggests that such improvements may best
be developed at the level of Biogeographical Regions rather than at the national level
(Miu et al., 2020). Protected areas are a crucial component of conservation, but the
identification and designation of PAs is often a lengthy and difficult process. In ad-
dition, even when the new targets for the EU Biodiversity Strategy are met, 70% of
the land surface area will remain unprotected. Hence, effective conservation also de-
pends on the protection of biodiversity outside of PAs. To do so, the development of
incentives for targeted management practices to retain high diversity of species and
habitats should be prioritized (Manolache et al., 2020), yet scientific research that can
support management decision is largely lacking (Nita et al., 2019).

Our study adds to the body of evidence that taxonomic and environmental surro-
gates represent one another only to a limited extent. Hence, the use of just one type
of surrogate likely does not capture the broad patterns of biodiversity sufficiently
well. This situation is less than ideal, as conservation measures respond to the biodi-
versity crisis, with little time to collect data on the distribution of species or habitats.
Although these data are becoming increasingly available, our results highlight the
need for investing in survey and monitoring schemes in countries such as Romania,
where data still remains relatively scarce. Our study also presents an example of the
importance of scientific research in informing conservation strategies as a stakeholder
than often remains underrated (Opermanis et al., 2014; Popescu et al., 2014).
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Appendix A. Supplementary data

(a) Bird species - Zonation ranking (b) Habitat types - Zonation ranking

Built-up areas
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FIGURE A.1: Study region with Zonation ranking based on (a) Bird species and (b) habitat types. Colors
indicate importance ranking scores for conservation, with 0 meaning lowest importance and 1 meaning
highest importance. Built-up areas are indicated in white and were excluded from prioritization.
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FIGURE A.2: Overlapping bird species occurrences per breeding habitat group: (a) forests to (dense)
woodland, (b) generalist and close to humans, (c) arable land, open woodland to grasslands, and (d)
wetlands and shores. Red indicates species-rich areas; white to grey indicate no or low overlap of species

occurrences.
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FIGURE A.3: Barplot of conservation values of areas in current reserves. The horizontal dashed line
indicates the expected frequency of each conservation value (freq = 3338.6), had the current PAs be

selected at random. The high frequencies of high conservation values, combined with the low frequencies
of low conservation values suggest that current PAs were selected efficiently. (b-c) Box-and-whisker plots
for birds (b) and habitats (c) showing the proportion of the total distribution of each group of feature
types that is represented in the existing protected area network. A dotted line indicates the random

expectation for the representation of each feature class based on the amount of protected area in Romania

(~ 23% of land surface area).

(a) ETE - only forest habitats

broadicaved decidious ot
B coniferous forest -
[ mixed decidious and
coniferous forest
b
[ anthropogenic (-
woodland

I protecied

arcas.

(b) ETE - only grassland habitats

Sty grassland
I mesic grassland
wet grassland

[ 2lpine and subalpine g -
grassland 4
inland st seppesé~

B

I sarsely wnud:‘a

erassland

-wmw ngr <
L

FIGURE A.4: Study region with (a) forest habitats and (b) grassland habitats highlighted. The used

protected area network is highlighted in grey.



Appendix A

Table A.1: AUC values for all the performance curves within each of the surrogacy analyses.

Bird species as surrogate

Habitat types as surrogate

Curve AUC Curve AUC
Surrogate: Bird species 0.6563234  Surrogate: Habitat types 0.901305
Target: Habitat types 0.7418273 Target: Bird species 0.5609637
Optimal habitat curve 0.901305 Optimal bird curve 0.6563234
Random habitat curve 0.4992973 Random bird curve 0.4846996

Table A.2 — Bird species included in prioritization analyses, sorted by breeding habitat. For each species, the common name, breeding habitat, conservation

status, range size and AUC of the Zonation performance curve, as well as the resolution of the species distribution maps and the regularization multiplier for each

species in order to reduce the model complexity are provided.

species common name breeding habitat conservatio | range size AUC resolution | regularization
n status multiplier

Accipiter brevipes Levant sparrowhawk forest to (dense) woodland least concern | 8061.57016 | 0.74990883 | 1km 1
Accipiter gentilis Northern goshawk forest to (dense) woodland least concern | 77534.98407 | 0.59119630 | 1km 1
Accipiter nisus Eurasian sparrowhawk forest to (dense) woodland least concern | 90978.51613 | 0.58160768 | 1km 1
Acrocephalus agricola Paddyfield warbler wetlands and shores least concern | 121.65638 0.99784597 | 1km 1
Acrocephalus arundinaceus Great reed warbler wetlands and shores least concern | 39035.58315 | 0.59233947 | 1km 1
Acrocephalus palustris Marsh warbler arable land, open woodland | least concern | 43637.63396 | 0.54630492 | 1km 1

to grassland
Acrocephalus schoenobaenus | Sedge warbler wetlands and shores least concern | 12035.75636 | 0.73894781 lkm 1
Acrocephalus scirpaceus Eurasian reed warbler wetlands and shores least concern | 6736.38939 | 0.86876331 lkm 1
Aegithalos caudatus Long-tailed tit forest to (dense) woodland least concern | 57872.27831 | 0.59468770 | 1km 1
Alauda arvensis Eurasian skylark arable land, open woodland | least concern | 87559.61642 | 0.48238245 | 1km 1

to grassland
Alcedo atthis Common kingfisher wetlands and shores least concern | 9597.15719 | 0.81748182 | 1km 1
Anas platyrhynchos Mallard wetlands and shores least concern | 63027.82016 | 0.57953751 | 2km 1
Anas strepera Gadwall wetlands and shores least concern | 2874.35555 | 0.92502952 | 2km 1
Anser anser Greylag goose wetlands and shores least concern | 2058.04150 | 0.92071810 | 2km 1

cs
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Anthus campestris Tawny pipit arable land, open woodland | least concern | 50424.37797 | 0.50528700 | lkm 1
to grassland

Anthus spinoletta Water pipit arable land, open woodland | least concern | 968.85526 0.87441015 1km 1
to grassland

Anthus trivialis Tree pipit arable land, open woodland | least concern | 63217.79347 | 0.58182476 | 1km 2
to grassland

Aquila pomarina Lesser spotted eagle arable land, open woodland | least concern | 55005.77685 | 0.58658109 | 1km 1
to grassland

Asio otus Long-eared owl arable land, open woodland | least concern | 61755.49970 | 0.55281792 | 1km 1
to grassland

Athene noctua Little owl generalist and close to least concern | 51542.02505 | 0.56806267 | 1km 1
humans

Bonasa bonasia Hazel grouse forest to (dense) woodland least concern | 10857.52089 | 0.69164888 1km 1

Bubo bubo Eurasian eagle-owl arable land, open woodland | least concern | 14583.92646 | 0.69569954 | 1km 1
to grassland

Burhinus oedicnemus Eurasian stone-curlew arable land, open woodland least concern | 8085.43081 0.71756006 1km 1
to grassland

Buteo buteo Common buzzard arable land, open woodland least concern | 116307.1436 | 0.54823333 1km 1
to grassland 1

Buteo rufinus Long-legged buzzard arable land, open woodland | least concern | 34836.83075 | 0.55854096 | lkm 1
to grassland

Calandrella brachydactyla Greater short-toed lark arable land, open woodland | least concern | 7761.67829 | 0.47625058 lkm 1
to grassland

Caprimulgus europaeus European nightjar arable land, open woodland | least concern | 40532.75741 | 0.61605196 | 1km 1
to grassland

Carduelis cannabina Common linnet arable land, open woodland | least concern | 52845.10863 | 0.59140200 | 1km 1
to grassland

Carduelis carduelis European goldfinch generalist and close to least concern | 86726.94063 | 0.58135138 | 1km 1
humans

Carduelis chloris European greenfinch generalist and close to least concern | 70295.94246 | 0.60629425 | 1km 1
humans

Carduelis spinus Eurasian siskin forest to (dense) woodland least concern | 2839.96055 | 0.85193304 1km 1

Certhia brachydactyla Short-toed treecreeper forest to (dense) woodland least concern | 2013.28922 | 0.83382209 | lkm 1

Certhia familiaris Eurasian treecreeper forest to (dense) woodland least concern | 44435.41463 | 0.60044900 1km 1

Charadrius alexandrinus Kentish plover wetlands and shores least concern | 402.80379 0.98700321 | 2km 1

Charadrius dubius Little ringed plover wetlands and shores least concern | 11437.19756 | 0.76026444 | 1km 1

Cinclus cinclus White-throated dipper wetlands and shores least concern | 9042.78134 | 0.65070329 | 1km 2

Coccothraustes coccothraustes | Hawfinch forest to (dense) woodland least concern | 50998.87105 | 0.57640894 lkm 1
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Columba livia domestica Domestic pigeon generalist and close to least concern | 54317.06182 | 0.56837325 lkm 1
humans

Columba oenas Stock dove arable land, open woodland least concern | 21185.92176 | 0.57768825 1km 1
to grassland

Coracias garrulus European roller arable land, open woodland | least concern | 24555.93468 | 0.58215295 | 1km 1
to grassland

Coturnix coturnix Common quail arable land, open woodland | least concern | 83034.01921 | 0.50421482 | 1km 1
to grassland

Crex crex Corn crake arable land, open woodland | least concern | 50193.95260 | 0.54882257 | 1km 1
to grassland

Cuculus canorus Common cuckoo arable land, open woodland least concern | 120210.3499 | 0.54176096 1km 1
to grassland 7

Cygnus olor Mute swan wetlands and shores least concern | 7537.50276 | 0.87129993 | 2km 1

Delich