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“It is that range of biodiversity that we must care for – the whole
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Abstract

Biodiversity comprises life in all forms and functions. Its complexity is difficult to
grasp in one glance, and to aid in this, biodiversity is commonly divided into three
broad categories: ecosystems, species, and genes. Although it defines the world we
live in, and provides fundamental ecosystem services, human activities increasingly
threaten biodiversity at all levels, and the intensification of efforts to protect it is ur-
gently needed. Such efforts are often impeded by a lack of knowledge on the distri-
bution of biodiversity. Mapping biodiversity at all levels of organization is therefore
an essential step in better informing conservation decisions.
One of the key factors in determining where biodiversity is richest, how it is dis-
tributed or even how well biodiversity can bounce back from changes and threats
it might experience, is the environment. Because environmental data have become
widely available, knowledge on how the environment is related to the occurrence of
biodiversity can greatly facilitate creating continuous maps of its distribution. More-
over, because human activities severely modify environmental conditions, disentan-
gling their individual effects in driving spatial patterns of biodiversity plays a cen-
tral in evolutionary biology, ecology and conservation. Within a changing environ-
ment, habitats may become unfavorable, and species may respond by shifting their
ranges. The current level of habitat fragmentation, however, severely limits range
shifts. Thus, species must respond adaptively to the modified or new selection pres-
sures in order to persist in the long run. Such rapid evolutionary responses rely on
standing genetic variation, representing adaptations to the environment. It is there-
fore indispensable to map the spatial distribution of adaptive genetic variation in or-
der to maximize species’ evolutionary potential. This equips scientists to understand
how changes in the environment may affect biodiversity and can eventually lead to
a more fitting and adjusted conservation effort and better management practices.
In this thesis, I aimed to (1) assess the relative influence of environment on different
ecological and evolutionary processes, which themselves influence spatial patterns
of biodiversity and to (2) evaluate how this understanding can be used for mapping
and ultimately protecting biodiversity. I focused on several different components of
biodiversity: habitats, species and genes. To cover multiple categories of biodiver-
sity, I investigated (i) the distributional patterns of two closely related bumble bee
species (the buff-tailed (Bombus terrestris) and the white-tailed bumble bee (Bombus
lucorum)), and how those patterns are determined by the environment; (ii) the use in
spatial conservation prioritization of environmental heterogeneity as a surrogate for
species distributions and vice versa; (iii) the role of environment in shaping popu-
lation divergence in the house sparrow (Passer domesticus); and (iv) signals of local
adaptations in the buff-tailed bumble bee (Bombus terrestris).
This work was conducted in two eastern European countries, Romania and Bulgaria.
These countries comprise a highly heterogeneous environment, representing a suit-
able area for evaluating the effect of the environment on the distribution of biodiver-
sity (species and genes). Parts of my work resulted in specific recommendations for
conservation. These are very timely, since the European Union set new biodiversity
targets for 2030, requesting member states to increase their protected areas network
to 30% of the total land area.
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I found that: (i) both vegetation and climatic variables play a role in determining
the distributions of the two bumble bee species, in particular vegetation cover and
elevation-correlated climatic variables; (ii) environmental heterogeneity is not as a
sufficient surrogate for species (based on bird species data) as the other way around,
confirming the recommendation to use more than one type of surrogate in spatial
conservation prioritization; (iii) and (iv) there is evidence of environmental selection
and patterns of ‘isolation by environment’ determining population structure in both
bumble bees and sparrows. I also identified a set of genes that may be adapted to
local conditions in bumble bees.
This thesis shows that the environment largely determines how biodiversity is dis-
tributed, and yet is a poor surrogate in spatial conservation prioritization. It also pro-
vides strong evidence that it is one of the main drivers shaping the genetic structure
of species. These findings should encourage scientists to continue mapping spatial
patterns of biodiversity and particularly focus on the genetic level of biodiversity.
Understanding the drivers and patterns of adaptive genetic variation in populations
is providing insight in evolutionary processes and helps ensure that the evolutionary
potential of species can be maximized.
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Zusammenfassung

Biodiversität umfasst Leben in allen Formen und Funktionen. Ihre Komplexität ist
auf einen Blick schwer zu erfassen und um dies zu unterstützen, wird die biologis-
che Vielfalt üblicherweise in drei große Kategorien unterteilt: Ökosysteme, Arten
und Gene. Obwohl sie die Welt in der wir leben definiert und grundlegende Ökosys-
temleistungen erbringt, bedrohen menschliche Aktivitäten zunehmend die biologis-
che Vielfalt auf allen Ebenen. Eine Intensivierung der Bemühungen um ihren Schutz
ist daher dringend erforderlich. Solche Bemühungen werden oft durch mangelndes
Wissen über die Verteilung der Biodiversität behindert. Die Kartierung der biologis-
chen Vielfalt auf allen Organisationsebenen, ist daher ein wesentlicher Schritt, um
bessere und erfolgreichere Entscheidungen zum Naturschutz treffen zu können.
Die Umwelt ist einer der Schlüsselfaktoren die bestimmt, wo die biologische Vielfalt
am reichsten ist, wie sie verteilt ist oder sogar wie gut sich die biologische Vielfalt
von Veränderungen und Bedrohungen erholen kann. Da Umweltdaten inzwischen
in großem Ausmaß zur Verfügung stehen, kann das Wissen darüber, wie die Umwelt
mit dem Vorkommen der biologischen Vielfalt zusammenhängt, die Erstellung kon-
tinuierlicher Karten ihrer Verteilung erheblich erleichtern. Da menschliche Aktiv-
itäten zudem die Umweltbedingungen stark verändern, spielt die Entflechtung ihrer
individuellen Auswirkungen auf die räumlichen Muster der Biodiversität eine zen-
trale Rolle in der Evolutionsbiologie, Ökologie und Naturschutz. Innerhalb einer sich
verändernden Umwelt können Lebensräume unbewohnbar werden, und Arten kön-
nen darauf mit einer Verschiebung ihrer Verbreitungsgebiete reagieren. Der gegen-
wärtige Grad der Habitatfragmentierung schränkt jedoch die Reichweite solcher „Ver-
schiebungen“ stark ein. Daher müssen die Arten anpassungsfähig sein, um auf den
veränderten oder neuen Selektionsdruck reagieren und langfristig überleben zu kön-
nen. Solche raschen evolutionären Reaktionen basieren auf vorhandener genetis-
cher Variation, die eine Anpassung an die Umwelt ermöglicht. Es ist daher uner-
lässlich, die räumliche Verteilung der adaptiven genetischen Variation zu kartieren,
um das evolutionäre Potenzial der Arten zu maximieren. Auf diese Weise können
Wissenschaftler verstehen, wie sich Veränderungen in der Umwelt auf die biologis-
che Vielfalt auswirken können und schließlich zu angemesseneren Erhaltungsmaß-
nahmen und besseren Managementpraktiken greifen.
In dieser Arbeit zielte ich darauf ab, (1) den relativen Einfluss der Umwelt auf ver-
schiedene ökologische und evolutionäre Prozesse abzuschätzen, die ihrerseits die
räumlichen Muster der Biodiversität beeinflussen, und (2) zu bewerten, wie dieses
Verständnis für die Kartierung und letztlich für den Schutz der Biodiversität genutzt
werden kann. Ich habe mich mit verschiedenen Komponenten der Biodiversität,
wie Lebensräume, Arten und Gene auseinandergesetzt. Um mehrere Kategorien
der Biodiversität abzudecken, untersuchte ich (i) die Verbreitungsmuster zweier eng
verwandter Hummelarten (die dunkle Erdhummel (Bombus terrestris) und die helle
Erdhummel (Bombus lucorum)) und wie diese Muster durch die Umwelt bestimmt
werden; (ii) die Verwendung der Heterogenität der Umwelt als Stellvertreter für die
Verteilung der Arten und umgekehrt; (iii) die Rolle der Umwelt bei der Gestaltung
der Populationsdivergenz beim Haussperling (Passer domesticus); und (iv) Signale für
lokale Anpassungen bei der dunklen Erdhummel (Bombus terrestris).
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Diese Arbeiten wurden in zwei osteuropäischen Ländern, Rumänien und Bulgar-
ien, durchgeführt. Diese Länder umfassen eine sehr heterogene Umwelt, die ein
geeignetes Gebiet für die Bewertung der Auswirkungen der Umwelt auf die Verteilung
der Biodiversität (Arten und Gene) darstellt. Teile meiner Arbeit führten zu spezifis-
chen Empfehlungen für die Erhaltung. Diese kommen genau zum richtigen Zeit-
punkt, da die Europäische Union neue Ziele für die biologische Vielfalt bis 2030 fest-
gelegt und die Mitgliedstaaten aufgefordert hat, ihr Netz von Schutzgebieten auf 30%
der Gesamtfläche zu erweitern.
Meine Ergebnisse zeigen, dass: (i) sowohl Vegetations- als auch Klimavariablen bei
der Bestimmung der Verteilung der beiden Hummelarten eine Rolle spielen, ins-
besondere die Vegetationsbedeckung und die höhenkorrelierten Klimavariablen; (ii)
die Heterogenität der Umwelt nicht als ausreichender Stellvertreter für Artenvielfalt
(auf der Grundlage von Vogelartdaten) dient, sondern umgekehrt. Das bestätigt die
Empfehlung, bei der Festlegung von Prioritäten für Schutzgebiete, mehr als eine Art
als Stellvertreter für Biodiversität im Allgemeinen zu verwenden; (iii) und (iv) es Hin-
weise auf eine Selektion durch die Umwelt (genannt: „Isolation by distance“) gibt,
die die Populationsstruktur sowohl bei Hummeln als auch bei Spatzen bestimmen.
Ich habe auch eine Reihe von Genen identifiziert, die an die lokalen Bedingungen bei
Hummeln angepasst sein könnten.
Diese Arbeit zeigt, dass die Umwelt weitgehend bestimmt, wie die biologische Vielfalt
verteilt ist und dennoch ein schlechter Ersatz für die Prioritätensetzung bei Schutzge-
bieten ist. Sie liefert auch überzeugende Beweise dafür, dass die Umwelt eine der
Haupttriebkräfte ist, die die genetische Struktur der Arten prägt. Diese Erkenntnisse
sollten Wissenschaftler dazu ermutigen, die Kartierung der räumlichen Muster der
Biodiversität fortzusetzen und sich insbesondere auf die genetische Ebene der Biodi-
versität zu konzentrieren. Das verstehen der genetischen Muster die Populationen zu
Anpassung an die Umwelt benötigen, ermöglicht Einblicke in evolutionäre Prozesse.
Mit diesem Verständnis, und dem Wissen über potenzielle Triebkräfte kann das evo-
lutionäre Potenzial von Arten maximiert werden.
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1 General Introduction 1

1 General Introduction

Biodiversity and its spatial patterns

The term ‘biodiversity’ is often used casually in the media, and common perception
usually involves the variability in species. However, biodiversity is much more com-
plex, and defined as the “variability of life in all forms, levels and combinations”
(Glowka et al., 1994). It comprises structural, functional and compositional compo-
nents, each structured along different organizational levels, ranging from landscapes
through ecosystems and habitats to species and populations; and on the finest scale
to genes and genetic processes (Noss, 1990). This complexity is often compressed
into three main components: ecosystems, species, and genes. The ecosystem is the
highest level of organization and can be seen as a functional unit comprising biotic
and abiotic factors as well as their interactions. The population and species level
of biodiversity comprises the diversity of all species and variability between popu-
lations. The diversity of species within a geographical area is often referred to as
‘species richness’, a commonly used measure in biodiversity research and conserva-
tion. Finally, the genetic level of biodiversity is considered to be the genetic variation
within organisms as well as the genetic differences among individuals or populations
(Glowka et al., 1994; Noss, 1990). The hierarchical organization of these three levels
of biodiversity demonstrates their connectedness. At the same time it becomes clear
that one level of biodiversity cannot capture the entirety of biodiversity as a whole
(Pereira et al., 2010).

Biodiversity at all levels is heterogeneously distributed across the world, with some
areas being more diverse than others, and no single area capturing all existing di-
versity (Gaston, 2000). This naturally raises the question: what shapes the spatial
patterns of biodiversity? A variety of factors have been hypothesized to be key de-
terminants of the distribution of biodiversity (reviewed by Fine, 2015; Peters et al.,
2016, including temperature and latitude (e.g. (Mittelbach et al., 2007), the strength
of biotic interactions (e.g. competition, predation) (e.g. (Mittelbach et al., 2007), the
size of the area species occur in (Rosenzweig, 1995), the amount of available water
(Hawkins et al., 2003), or the level of plant diversity present (e.g. (Novotny et al.,
2006). Some studies suggest an interplay of different drivers, such as the size of an
area and fluctuations in the amount of available habitat, in combination with temper-
ature (Belmaker and Jetz, 2015). Indeed, it is apparent that at global scales no single
driver can attribute for the heterogeneous distribution of biodiversity, but rather a
multitude of drivers interacting in complex ways. At smaller scales, however, a few
dominant drivers may determine the distribution of biodiversity on multiple levels
(Belmaker and Jetz, 2015; Peters et al., 2016). Most of the potential drivers are related
to the abiotic environment, such as climate, water, the geographical location of an
area, or even unpredictable, environmentally related processes such as natural dis-
turbance regimes (like floods, fires or droughts). It is important to bear in mind that
the environment drives ecological processes, setting the stage for biotic interactions,
and at the same time provides the basis for micro- and macro-evolutionary processes
(Jetz et al., 2012).
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An ecological process is a widely used and relatively broad term entailing for instance
climatic processes, interactions between organisms (and their environment), hydro-
logical processes or the movement of organisms (Bennett et al., 2009). These pro-
cesses influence the distribution of biodiversity, e.g. by determining where species
occur, live in competition, or migrate (Belmaker and Jetz, 2015; Gaston, 2000; Pavé,
2007; Peters et al., 2016). Some of these processes are unpredictable in the magnitude,
location and timing of their occurrence. Such chance ecological processes, like eco-
logical drift (=random change in species abundance), random extinction or random
historical events may have large effects on the distribution of biodiversity on earth
(Bennett et al., 2009; Hubbell, 2001).

Micro- and macro-evolutionary processes such as genetic mutations, gene flow (the
transmission of genetic variation from one population to another), genetic drift (the
random change in allele frequencies in a population) and natural selection are par-
tially influenced by the environment themselves and in addition influence biodiver-
sity (on the species and genetic level) (Gaggiotti et al., 2009). The nature, magni-
tude, and influence of the variety of potential micro- and macro-evolutionary pro-
cesses on generating and maintaining biodiversity comprise a major field of study
and continue to be debated (reviewed by Dietrich, 2010; Li et al., 2018; Simons, 2002).
Briefly, genetic variation within and between populations is a balance between mu-
tation rates, genetic drift, gene flow, and selection. Selection by the environment may
increase or decrease genetic variation within and between populations, depending
on the heterogeneity of the environment and the associated differential fitness con-
sequences. In contrast, genetic drift is a neutral process, resulting in random allele
frequency changes, decreased variation within populations, and increased popula-
tion divergence. Drift is balanced by new mutations and gene flow, which itself may
be influenced by neutral factors, such as landscape barriers or the geographic dis-
tance between populations, resulting in genetic patterns of ‘isolation by distance’ (=
positive relationship between genetic differentiation and geographic distance) (IBD;
Wright, 1943). Interestingly, however, the reduction in fitness of maladapted dis-
persers in a new location may also limit gene flow, and thus enhance the effects of ge-
netic drift. Thus, the signature of local adaptations may be detectable across the entire
genome, resulting in genetic patterns of ‘isolation by adaptation’ (= relationship be-
tween adaptive phenotypic divergence and genetic differentiation) (IBA; Nosil et al.,
2009) and ‘isolation by environment’ (= environmental heterogeneity shaping genetic
structure) (IBE; Wang and Bradburd, 2014).

In a nutshell, environmental factors influence both ecological as well as evolution-
ary processes, which themselves determine the distribution of biodiversity across
multiple levels of organization (from ecosystems to genes). The influence of human
activities on the environment - and hence biodiversity - is bigger than ever before.
The successful conservation of biodiversity requires a thorough understanding of
how changes in the environment affect biodiversity. In addition, areas for protec-
tion should be identified in a way that they most effectively and efficiently conserve
biodiversity. Mapping the spatial distribution of biodiversity and relating this to the
prevailing environmental conditions are thus key components in informing conser-
vation decisions.
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The main goals of this thesis are therefore to assess to what extent biodiversity
dependents on the environment and how we can use this knowledge to map and
protect biodiversity?

Biodiversity in the ‘Anthropocene’

Life on earth is dominated by human actions (Lewis and Maslin, 2015), and to re-
flect the pervasiveness of our influence, the time period we are living in has been
coined the ‘Anthropocene’ (Crutzen, 2006). Human activities severely alter the en-
vironment and constitute the biggest threat to biodiversity. Anthropogenic stressors
are diverse, and include -but are not limited to- habitat alteration and loss (through
fragmentation or destruction), pollution, overexploitation, the introduction of poten-
tially invasive species (Hoffmann et al., 2010; Pereira et al., 2012; Primack, 2002),
the spread of pathogens (Smith et al., 2006), and anthropogenically-induced climate
change (Scheffers et al., 2016).

These threats have for the last couple of hundred years severely altered the world
around us, disrupting evolutionary ecological processes, and changing the distribu-
tion and abundance of species, ultimately even leading to extinctions (review by Bel-
lard et al., 2012; Pereira et al., 2012. Among the diverse array of threats to biodiversity,
habitat change or loss is the most critical (Pereira et al., 2012), resulting in decreasing
population sizes, isolation of populations and hence restricted gene flow, all affecting
genetic variation in natural populations (DiBattista, 2008; Hoffmann and Sgrò, 2011;
Kremer et al., 2012; Willi et al., 2007). Environmental change also alters selection
pressures (Hoffmann and Sgrò, 2011), and populations and species need to respond
to these changes to persist in the long term. Species’ responses can be ecological,
such as shifting their ranges to match their optimal habitat (Anderson et al., 2012;
Harrisson et al., 2014), or evolutionary, by adapting to the new conditions (Ander-
son et al., 2012). These responses are not mutually exclusive, and most species may
need to respond in both ways in order to persist in the face of human influences (An-
derson et al., 2012). Thus, in order to effectively protect biodiversity it is crucial to
understand how it is distributed, what factors determine its distribution, and how it
is responding to environmental change (De Mazancourt et al., 2008).

Several factors influencing species distributions have been identified, including the
abiotic environment (Costa et al., 2008; Elith and Leathwick, 2009) as well as biotic
interactions in this environment (Pearson and Dawson, 2003; Wisz et al., 2013) and
chance (demographic) processes (Roland Pitcher et al., 2012). The relative contribu-
tions of these factors may vary, and one might ask to what extent the environment
determines the distribution of a given species? To answer this question (Chapter I), so
called Species Distribution Models (SDMs) are often used. SDMs correlate species’
occurrence and abundance data with the environmental conditions they live in, and
can accurately predict species’ ranges (Elith and Leathwick, 2009). With improve-
ments in remote sensing and spatial analyses, a suit of environmental, ecologically
meaningful variables have over the past 20 years become available (Penado et al.,
2016), enabling us to gain insight in species-specific habitat suitability (Elith and
Leathwick, 2009; Guisan and Thuiller, 2005) and to predict the effects of environ-



4 1 General Introduction

mental change (Keitt et al., 2002). Moreover, given the dearth of high-quality survey
data in many countries, it also provides a cost-effective and relatively quick means
of mapping where species occur. Such knowledge about a species’ geographical dis-
tribution and its abundances is crucial for adjusting practices with respect to land
management, climate change policies, and conservation (Guisan et al., 2013; Jetz et
al., 2012; Pearson, 2007). As such, species distribution models play an important
role in systematic conservation planning and spatial conservation prioritization ap-
proaches (Margules and Pressey, 2000). Under the assumption of niche conservatism,
future predictions (for instance with the incorporation of future climatic conditions)
can also help to understand the potential for or limitations to range shifts over time
(Wiens et al., 2010).

When populations cannot shift their ranges, however, their only means to survive
over the long run is by responding plastically or adaptively to environmental change
(Anderson et al., 2012; Harrisson et al., 2014). Phenotypic plasticity is the expres-
sion of various phenotypes by one genotype and may occur when species experience
‘short-term’ environmental changes, such as predictable seasonal events (Oostra et
al., 2018). Evolutionary adaptation on the other hand is a common response to ‘long-
term’ changes (Barrett and Schluter, 2008; Hoffmann and Sgrò, 2011; Savolainen et
al., 2013; Sgro et al., 2011). Although the magnitude by which populations can re-
spond plastically may have a genetic basis (Bijlsma and Loeschcke, 2012), and phe-
notypic plasticity may be crucial for the immediate future, it is likely too limited to
be an adequate long-term response to the large environmental changes inflicted by
human actions (Anderson et al., 2012; Bijlsma and Loeschcke, 2012; DeWitt et al.,
1998; Hendry et al., 2008). To this end, adaptive responses may be most fundamental
for the persistence of species (Hoffmann and Sgrò, 2011), but highly depend on the
amount of available standing genetic variation (Etterson and Shaw, 2001). Thus, pro-
tecting intra-specific genetic variation that express adaptations to the environment is
central to protecting biodiversity (Hoffmann and Sgrò, 2011; Miraldo et al., 2016).

Biodiversity conservation – from landscapes to genes

Protected areas are a vital component of conservation efforts, having the potential
to protect biodiversity at multiple levels of organization. Historically, protected ar-
eas have often been identified based on low economic values, landscape features,
the presence of a particular species of concern, or expert knowledge on the available
biodiversity (Brooks et al., 2006; Myers et al., 2000; Sarkar et al., 2006). Systematic
conservation planning aims to provide more objective decision support for the allo-
cation of resources in biodiversity conservation and the implementation of conser-
vation actions (Margules and Pressey, 2000; McIntosh et al., 2017). It is considered
to be an unbiased and evidence-based approach in order to provide accountable and
transparent advice when important decisions need to be taken (McIntosh et al., 2017).
Different strategies, such as including stakeholders in the planning region, thorough
collection of biological and socioeconomic data, and multi-level analyses to satisfy
the opposing socioeconomic and biological goals of the stakeholders in the planning
area are implemented in systematic conservation planning (Sarkar et al., 2006). The
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main tool of systematic conservation planning is spatial conservation prioritization,
aiming to identify a set of reserves that protect as much biodiversity as possible most
effectively and efficiently, i.e. in the smallest area possible (Margules et al., 2002). The
optimization of a network of reserves, embedded within current or future spatial and
socio-economic constraints is a highly complex problem for which several algorithms
have been developed (McIntosh et al., 2017; Sarkar et al., 2006). Whereas the concep-
tual framework of these so-called spatial conservation practices has been relatively
well developed, its practical implementation is typically limited by the amount and
the quality of the available data on biodiversity.

Due to the above described complexity of biodiversity it is not possible to survey and
map all levels of biodiversity at once (Williams et al., 2006). Limited resources (fi-
nancial, personnel) and different interests of conservation stakeholders add to the
difficulty of this issue. Conservation planners must therefore revert to ‘biodiver-
sity surrogates’ as a shortcut in spatial conservation prioritization (Margules and
Pressey, 2000; Sarkar et al., 2005). Surrogates are ecological processes or elements
(e.g. species, ecosystems or abiotic factors) representing another aspect of an eco-
logical system (Hunter et al., 2016). Different surrogates have been used to identify
areas of high conservation value, such as taxonomic (species) or environmental sur-
rogates (Grantham et al., 2010; Oliver et al., 2004; Sarkar et al., 2005), but the concept
can be used at any level of biodiversity. The most often used surrogate is species oc-
currence, identifying hotspots of species richness, rarity, and complementarity (e.g.
Arponen et al., 2008). However, although species level data (Gomes et al., 2018) is
increasingly becoming available, extensive high-quality data on species distributions
are still lacking for most taxonomic groups and most areas of the world (Arponen
et al., 2008; Beier et al., 2015). Environmental data representing habitat structure,
complexity, and heterogeneity, on the other hand can be quite easily and cheaply ac-
quired, aiding spatial conservation planning (Arponen et al., 2008; Beier et al., 2015;
Grantham et al., 2010; Rodrigues and Brooks, 2007). It was recognized early on that it
is also important to not only protect species, but also biodiversity at the higher levels
of organization, i.e. habitats and ecosystems themselves (Noss, 1990). The assump-
tion is that by protecting environmental heterogeneity one might also protect many
species living in that variety of different habitats (e.g. Arponen et al., 2008; Bonn
and Gaston, 2005. Yet, studies on the power of environment as a surrogate for bio-
diversity (mostly at the species level) remain inconclusive, demonstrating adequate
(Sarkar et al., 2005; Trakhtenbrot and Kadmon, 2005), but also insufficient ‘surrogacy
power’ (Araújo et al., 2007; Bonn and Gaston, 2005). More research is thus needed to
clarify whether biodiversity surrogates are adequately representing one another and
thus can be reliably used in conservation prioritization (Chapter II).

Environmental diversity also constitutes the arena in which species adapt to differ-
ent conditions and exhibit spatial and temporal differences in their phenotype and
genotype. Environmental heterogeneity is therefore expected to harbor phenotypic
and genetic variation, for instance across environmental gradients, relevant for the
long-term persistence of species (Conover et al., 2009; Smith et al., 2001). This is
very important when species face environmental changes, since they will most likely
need to rely on a combination of ecological and evolutionary responses (Anderson
et al., 2012). Many species have already been document to have shifted their ranges
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poleward and to higher elevations because of climate change (Parmesan, 2006). One
problem however is that responding just ecologically might not do the trick, since
range shifts may not be possible, and are likely to come with some degree of novel
abiotic and biotic conditions and novel interactions, which might require long-term
adaptive changes (Anderson et al., 2012; Etterson and Shaw, 2001). And what will
happen if even those northern or higher regions become warmer and unsuitable? In
order to avoid extinction in this scenario, species have to respond evolutionarily to
these changes and adapt locally (Anderson et al., 2012; Hoffmann and Sgrò, 2011).
Local adaptation occurs when a population shows higher fitness in its native habitat
compared to any other population that would be introduced and is largely influenced
by natural selection and gene flow. Looking at signs of local adaptation in popu-
lations with ongoing gene flow provides an opportunity to identify selective forces
imposed by particular environmental differences (Kawecki and Ebert, 2004). The spa-
tial extent of local adaptation is therefore depending on the strength of selection, gene
flow (and migration) between populations (Kawecki and Ebert, 2004), and most im-
portantly the underlying genetic diversity of these populations (Vincent et al., 2013).
This so called ‘standing genetic variation’ (which is the presence of alternative alleles
at a given locus) is the basis for rapid genetic adaptations (Barrett and Schluter, 2008;
Biodiversity, Council, et al., 1999; Etterson and Shaw, 2001; Thomassen et al., 2011).
Several studies revealed a correlation between genetic variation and the long-term
viability of species (Arenas Busto et al., 2014; Laikre, 2010; Vangestel et al., 2012) as
well as the expression of higher rates of adaptability (Barrett and Schluter, 2008).

The importance of genetics in conservation was already recognized decades ago by
Frankel, 1974, but just protecting species will not automatically protect its associ-
ated genetic diversity (Glowka et al., 1994). Genetic diversity is facing the exact same
threats as other levels of biodiversity and is decreasing worldwide (Leigh et al., 2019).
The loss of genetic diversity is permanent and even though species might recover in
numbers again, the amount of genetic diversity remains low for many generations,
leading to lowered adaptive potential and increased extinction risks (Brondizio et al.,
2019). However, to protect biodiversity on the genetic level as well, we need to under-
stand how it is influenced by human-induced threats and global changes (Miraldo et
al., 2016; Palumbi, 2001). At the broad scale, regions more disturbed and influenced
by humans were shown to harbor less genetic diversity than regions with lower hu-
man influences (DiBattista, 2008). Knowledge like this is important, and mapping
genetic variation and its distribution is crucial (Miraldo et al., 2016; Pereira et al.,
2013). In particular that part of genetic variation that is correlated to environmental
characteristics (also known as environmentally associated variation (EAV)) may be
most relevant to adapting to novel environmental conditions and changed habitats.
Hence, a prudent strategy to protect biodiversity in the face of environmental and
climate change is to maximize species’ adaptive potential through mapping and pro-
tecting the current distribution of EAV (Frankham, 2010; Sgro et al., 2011; Vandergast
et al., 2008; Vandersteen Tymchuk et al., 2010).

The problem however is that despite its widely recognized importance in conser-
vation, genetic diversity is still lacking in many conservation policies and practical
management (Laikre, 2010). Indeed, the distribution of genetic variation (Pereira et
al., 2012) as well as the rate of its loss is unknown for most of the world (Leigh et al.,
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2019). There is thus an urgent need to map the genetic level of biodiversity in order
to detect and monitor its distribution and loss.

Landscape genetics as a tool for mapping spatial patterns of

(genetic) diversity

A set of tools was developed over the years that have proven extremely useful to
map environmentally associated genetic variation (EAV), investigate its distribution,
and identify important drivers in shaping it. These so called landscape genetic ap-
proaches combine population genetic methods with landscape ecology (Manel et al.,
2003). Landscape genetics enhances our understanding of how the environment is
shaping genetic variation of individuals (or entire populations) by looking at the in-
teraction between the environment and the genetic make-up of individuals and pop-
ulations (Balkenhol et al., 2017; Guillot et al., 2005a; Manel et al., 2003). Molecular
markers (e.g. microsatellites, single-nucleotide polymorphisms (SNPs)) genotyped
in individuals distributed across a geographic area are used to identify genetic pat-
terns (e.g. population structure, or distribution of genetic variation) and are then
correlated to landscape features (e.g. barriers) and environmental variables (Chap-
ter III) (Manel et al., 2003; Storfer et al., 2018). Potential selective drivers of genetic
variation, such as ‘isolation by adaptation’ (IBA; Nosil et al., 2009) and ‘isolation by
environment’ (IBE; Wang and Bradburd, 2014) can be identified by these methods,
and teased apart from neutral evolutionary processes, such as ‘isolation by distance’
(IBD; Wright, 1943).

With technological advances in recent years, such as high throughput sequencing and
new analytical tools, landscape genetics developed into landscape genomics, further
advancing our understanding of the contribution of the environment on evolution-
ary processes (Henriques et al., 2018; Storfer et al., 2018). So called gene-environment
associations (GEAs) help to identify potential selection pressures driving local adap-
tation by scanning the genome for loci that are significantly associated to the environ-
ment or profusely differentiated between populations (Chapter IV) (Capblancq et al.,
2018; Frichot et al., 2013; Hoban et al., 2016; Joost et al., 2007). In Moroccan sheep pop-
ulations, for example, candidate loci (located in a gene responsible for wax secretion)
were associated to precipitation indicating potential adaptations to ‘wetter’ environ-
mental conditions (Duruz et al., 2019). In Californian oak trees, climate-associated
functional genes were identified, with differences between populations also demon-
strating adaptations to different environmental settings (Sork et al., 2016).

Such landscape genetic or genomic approaches can also benefit biodiversity conser-
vation directly by informing us, for example, which (combination of) populations
possess high levels of standing genetic variation, which populations might be ex-
posed to higher risks of anthropogenic threats and/or climate change (e.g. Jia et al.,
2020; Martins et al., 2018), and which populations may require adjusted management
practices (Gugger et al., 2018; Harrisson et al., 2014). The incorporation of evolution-
ary processes such as adaptation and gene flow in spatial conservation planning is
thus hypothesized to decrease biodiversity loss under rapid environmental change



8 1 General Introduction

(Hoffmann and Sgrò, 2011). Particularly understanding the relative roles of the en-
vironment in shaping the distribution of genetic diversity as well as other levels of
biodiversity, can advance biodiversity conservation practices and eventually protect
what is left of the precious diversity on our planet.

Objectives of this thesis

As outlined above, the relationship between the environment and patterns of bio-
diversity is important to understand in order to effectively protect biodiversity on
earth. With this work I want to help fill in the knowledge gap existing around the
spatial patterns of biodiversity, and demonstrate some of the methods one can use
to map biodiversity, especially the so far rather neglected genetic level of biodiver-
sity. Work for this thesis was conducted in two Eastern-European countries: Romania
and Bulgaria (Figure 1). Both countries cover an area of approximately 350 000 km2

FIGURE 3: Study region

and comprise distinct climatic zones,
such as the continental and tem-
perate climatic zones in Romania,
and the continental and Mediter-
ranean climatic zones in Bulgaria.
This leads to highly divergent cli-
matic conditions on a relatively
small scale and is supplemented
by a variety of habitats with dif-
fering intensity of human-influence
such as agricultural and indus-
trial areas, as well as natural ar-
eas like mountain ranges, river val-
leys, forests and grasslands. The
Danube River, represents a natural
border between these countries, lo-
cated in the South of Romania and
the North of Bulgaria. Both coun-
tries contain large mountainous ar-
eas; in Romania the Carpathian
mountain region is predominant, whereas the Balkan, Rhodope, Rila and Pirin moun-
tains merge to a large mountainous area in Bulgaria. This variety of habitats resulted
in the recognition of different biogeographical regions: the continental, alpine, step-
pic, Black Sea, and pannonian regions ((CoE), 2015). This high environmental hetero-
geneity potentially imposes divergent selection pressures on species and populations
and is therefore the ideal testbed to investigate the relationship between environment
(and its change) and spatial patterns of biodiversity and assess the influence of envi-
ronment on biological diversity.

Since 2007 both countries are members of the European Union (EU) and are also part
of the NATURA 2000 network, which required the identification and implementa-
tion of protected areas. The Natura 2000 network is the most important large-scale
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biodiversity conservation measure in Europe (Gaston et al., 2008). Different types of
protected areas are implemented in the network, on the basis of different biodiversity
features: the terrestrial Sites of Community Importance and Special Areas of Conser-
vation (SCI and SAC, for habitats and/or species) and terrestrial Special Protection
Areas (SPA, for bird protection only) (Commission, 2007). Approximately 20% of the
total landscape area of Romania and Bulgaria is dedicated to nature conservation,
however under the new European Union Biodiversity Strategy for 2030 (Commis-
sion, 2020) the percentage of protected areas should be increased to 30%. This hands
us the opportunity to scrutinize the current status of biodiversity and its conservation
status quo in both countries.

In CHAPTER I of this thesis, I correlated species occurrence and abundance data with
environmental data in order to evaluate the influence of environmental variation on
the distributional patterns of two closely related bumble bee species (the buff-tailed
(Bombus terrestris) and the white-tailed bumble bee (Bombus lucorum)). The partial
overlap in their occurrence patterns posed the question about ecological drivers shap-
ing those distributions and how the habitat requirements differ between both species.
I used an ensemble of different species distribution modelling techniques to combine
the occurrence and abundance data I collected with a set of ecologically important
environmental variables.

In CHAPTER II, I investigated if environmental heterogeneity, which is playing a
major role in determining species distributions and occurrences (e.g. Elith and Leath-
wick, 2009), could be used as a conservation surrogate for the species level of biodi-
versity. Here I used a measure of bird species richness and classified environmen-
tal diversity to evaluate their use as surrogates for one another. With the help of a
spatial conservation prioritization method, I designed protected areas based on both
measures of biodiversity and additionally assessed how those two measures are cap-
tured by already existing protected areas.

In CHAPTER III of this thesis, I investigated the influence of the environment on the
genetic level of biodiversity and if population divergence of house sparrows (Passer
domesticus) can be explained by environmental variation. Since species might likely
respond in several ways to environmental change I also included phenotypic data.
With the help of a landscape genetics approach, I correlated phenotypic and genetic
diversity with a set of environmental variables. The goal was to detect signatures of
environmental selection hinting towards local adaptations.

In CHAPTER IV, I took the landscape genetics towards the landscape genomics level
by using adaptive genetic markers (single-nucleotide polymorphisms, SNPs) to fur-
ther investigate the broad ecological patterns influencing the occurrence of the buff-
tailed bumble bee (Bombus terrestris) I discovered in Chapter I. Here, I identified gene-
environment associations (GEAs) between a whole genome SNP data set and the
same set of ecological important environmental variables (as in Chapter I I aimed to
characterize potential selection pressures driving local adaptation in B. terrestris and
identify loci under selection which could underline the occurrence patterns found in
Chapter I.
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UNRAVELING THE HABITAT PREFERENCES OF TWO CLOSELY RELATED

BUMBLE BEE SPECIES IN EASTERN EUROPE
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Abstract

Co-occurrence of closely related species is often explained through resource partition-
ing, where key morphological or life-history traits evolve under strong divergent se-
lection. In bumble bees (genus Bombus), differences in tongue lengths, nest sites, and
several life-history traits are the principal factors in resource partitioning. However,
the buff-tailed and white-tailed bumble bee (Bombus terrestris and Bombus lucorum

respectively) are very similar in morphology and life history, but their ranges never-
theless partly overlap, raising the question how they are ecologically divergent. What
little is known about the environmental factors determining their distributions stems
from studies in Central and Western Europe, but even less information is available
about their distributions in Eastern Europe, where different subspecies occur. Here,
we aimed to disentangle the broad habitat requirements and associated distributions
of these species in Romania and Bulgaria. First, we genetically identified sampled in-
dividuals from many sites across the study area. We then not only computed species
distributions based on presence-only data, but also expanded on these models us-
ing relative abundance data. We found that B. terrestris is a more generalist species
than previously thought, but that B. lucorum is restricted to forested areas with colder
and wetter climates, which in our study area are primarily found at higher eleva-
tions. Both vegetation parameters such as annual mean Leaf Area Index and canopy
height, as well as climatic conditions, were important in explaining their distribu-
tions. Although our models based on presence-only data suggest a large overlap in
their respective distributions, results on their relative abundance suggest that the two
species replace one another across an environmental gradient correlated to elevation.
The inclusion of abundance enhances our understanding of the distribution of these
species, supporting the emerging recognition of the importance of abundance data in
species distribution modeling.

KEYWORDS

Bombus lucorum, Bombus terrestris, Eastern Europe, pollinators, random forests, rela-
tive abundance, species distribution
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Introduction

The co-occurrence of closely related species has long puzzled evolutionary ecologists.
Closely related species are expected to occupy similar niche space through niche con-
servatism, and thus occur in the same regions, but also to compete more strongly
with one another than more distantly related species (Anacker and Strauss, 2016).
Strong competition may result in the exclusion of the weaker competitor, as well as
in rapid divergent evolution of key life-history traits or phenotypes as a result of re-
source partitioning (Gause, 1934). In bumble bees (genus Bombus), a classical theory
is that species evolved a range of different tongue lengths, allowing them to spe-
cialize on different floral resources, and to occur sympatrically as a result (Goulson
and Darvill, 2004). Other mechanisms of resource partitioning include differences
in nest sites, foraging distances, and the spatial use of habitat (Stanley et al., 2013;
Westphal et al., 2006). However, two of the most common bumble bee species in
Europe, the buff-tailed bumble bee (Bombus terrestris) and the white-tailed bumble
bee (Bombus lucorum), co-occur (pers. obs.; (Goulson, 2010; Goulson et al., 2008a;
Kells et al., 2001; Stanley et al., 2013)), despite being very similar in their morphol-
ogy, choice of nest sites, and life-history (Goulson, 2010; Stanley et al., 2013). They
even possess the same tongue lengths (Goulson et al., 2005; Stanley et al., 2013) and
hence occupy a very similar dietary niche space (Goulson et al., 2008a).This begs the
question to what extent their ecological niches overlap and conversely how they are
divergent. Despite many studies into their ecology and behavior (e.g. (Bossert et al.,
2016; Scriven et al., 2015; Stanley et al., 2013; Walther-Hellwig and Frankl, 2000), and
broad-scale evidence that their ranges only partially overlap (e.g. (Rasmont et al.,
2015a), their distributions at smaller scales remain equivocal. One reason for this am-
biguity may be the fact that these species are morphologically highly variable within
species, yet very similar between species (Bossert, 2014; Murray et al., 2007; Waters
et al., 2011). As a consequence, they may be difficult to distinguish in the field, de-
pending on where they occur and whether queens, males, or workers are compared.
In mainland Europe, identification can be complex because both species possess a
white abdomen (Gammans et al., 2018; Rasmont et al., 2013), in contrast to those in
Great Britain (Murray et al., 2007). Queens and males can be distinguished (Bertsch
et al., 2004; Goulson, 2010), but workers (especially of some subspecies of B. terrestris)
are difficult to discriminate (Williams, 1994). Indeed, in Central Europe, only 45.5%
of B. lucorum workers could be correctly identified and distinguished from B. ter-

restris workers using the most up-to-date morphological key (Wolf et al., 2009). As
a consequence, many studies focusing on the ecology or behavior of European bum-
ble bees group these taxonomically well-recognized species together (Bommarco et
al., 2011; Carvell, 2002; Goulson et al., 2005; Meek et al., 2002; Pywell et al., 2005;
Walther-Hellwig and Frankl, 2000), leading to imprecise information on habitat pref-
erences (Murray et al., 2007; Scriven et al., 2015) and other life-history traits (Stanley
et al., 2013). One of the few studies that investigated the ecological preferences of
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those species separately identified differences in nesting site selection at small spatial
scales in Sweden (Svensson et al., 2000) where B. terrestris preferred more open habi-
tat, such as fields in agricultural landscapes, and B. lucorum preferentially built nests
close to forest boundaries. Also in Austria, B. lucorum appeared to frequently occur
in forested areas (Bossert et al., 2016). At the scale of Europe, B. lucorum occurs at
higher latitudes than B. terrestris, suggesting a differentiation based on temperature
(Rasmont et al., 2015a). Most studies on these species focused on Western and Cen-
tral Europe, but little attention has been paid to Eastern Europe, where the situation
is complicated by the occurrence of two subspecies of B. terrestris, B. t. terrestris and

B. t. dalmatinus, that are morphologically variable (Lecocq et al., 2013; Rasmont et al.,
2013). Hence, their distribution patterns in Eastern Europe remain equivocal.

Here, we investigate the distributions and broad habitat characteristics of buff-tailed
(B. terrestris) and white-tailed bumble bee (B. lucorum) in Bulgaria and Romania,
where they are the two most common bumble bee species. B. lucorum is one of three
cryptic species, the other two being B. cryptarum and B. magnus. Here, we only in-
clude B. lucorum, because we did not find any individuals of the latter two species,
despite extensive sampling efforts. We hypothesized that the differential habitat use
at small scales can be scaled up to landscape scale habitat preferences across a spatial
extent of hundreds of kilometers. We first genetically identified the species at sites
where multiple individuals were sampled, providing a reliable tool for species identi-
fication (Bossert et al., 2016; Murray et al., 2007; Stanley et al., 2013; Waters et al., 2011;
Williams et al., 2012; Wolf et al., 2009). We subsequently created species distribution
models (SDMs), which have been used previously in quantitative ecological studies
of bumble bees (Casey et al., 2015; Herrera et al., 2014; Kadoya et al., 2009; Prader-
vand et al., 2014; Rasmont et al., 2015a). They are usually based on presence-only or
presence–absence data, with the assumption that the modeled probabilities of occur-
rence are indicative of abundance (e.g. (Dallas and Hastings, 2018)). However, recent
work across multiple species suggests that these so-called abundance–suitability re-
lationships are often weak (Dallas and Hastings, 2018; Howard et al., 2014; Mi et al.,
2017). For that reason, the collection and use of abundance data to improve the accu-
racy of species distribution models was highly recommended (Howard et al., 2014),
but still not commonly applied to date. To improve our distribution models, and to
specifically investigate their co-occurrence and the associated abiotic factors driving
variation in abundance patterns, we therefore also collected and modeled the relative
abundance of these species.
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Methods

Study species and study area

Bumble bees (Bombus sp.) are important pollinators for crops and wild plants, in par-
ticular in temperate ecosystems (Corbet et al., 1991; Murray et al., 2007). Their body is
covered in a dense, colored fur that enables them to be endothermic (Heinrich, 1993),
and hence adapt to cold climates, such as alpine and arctic environments. Their dis-
tribution extends much further north than that of other bees, and their colonies have
been found in the extreme northern regions of the northern hemisphere (Goulson,
2010). Bombus terrestris and Bombus lucorum are two of the most common bumble bee
species in Europe. These species have very similar life cycles and are often found in
the same areas. Both species use underground nest sites and often choose already ex-
isting holes, previously used by small rodents (Goulson, 2010). They possess similar
tongue lengths, and as a result forage primarily on the same short corollas and daisy
type of flowers (personal observation and (Goulson et al., 2008b). In addition, their
workers almost perfectly resemble each other, and only the queens and males can
be identified reliably (Murray et al., 2007; Wolf et al., 2009), but field identification
remains complicated due to the subtlety of morphological differences.

We conducted our study in Bulgaria and Romania, two neighboring countries in
southeastern Europe, covering an area of approximately 350.000 km2. These coun-
tries present a heterogeneous landscape, comprising continental, Mediterranean, and
temperate climatic zones, consisting of natural areas such as mountains, river valleys,
forests, open woodlands, and grasslands, as well as areas inhabited and influenced
by humans, including extensive agricultural lands. The Danube River forms a natu-
ral border along much of its length between Romania in the north and Bulgaria in the
south. Large mountainous areas are present in both countries: the Carpathians in Ro-
mania, and the Balkan, Rila, Rhodope, and Pirin mountains in Bulgaria. As a result
of this variety of habitats, different biogeographical regions are recognized: the con-
tinental, alpine, steppic, Black Sea, and pannonian regions ((CoE), 2015). This high
habitat heterogeneity represents an interesting area for evaluating habitat preferences
and niche differentiation within and among species.

Sampling

We collected 743 individuals compromising queens and workers of Bombus terrestris

and Bombus lucorum over a timeframe of 4 years (2013, 2014, 2015, and 2017), in each
between April and July. We sampled 44 locations in total (Figure 1a and Table 1),
which were selected to span a broad range of habitat conditions in both entirely nat-
ural and semi-natural or cultivated environments, as well as along environmental
gradients (altitude, vegetation, and climate). We visited additional locations where
we searched for, but did not find any bumble bees. These locations were not included
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as true absences in our species distribution models, but served in computing a sam-
pling bias map (see below).

FIGURE 2: Study region with sampling sites, species distribution modeling results based on ensembles of
small models, and relative abundance modeling results. (a) Study area with sampling sites indicated in
black stars for Bombus terrestris and in white diamonds for B. lucorum. Sites where we searched for
bumble bees, but did not find any are indicated in black triangles. The background map is annual mean
Leaf Area Index (LAI mean), a measure of vegetation greenness. (b) Ensemble of small models for B.
terrestris (c) Ensemble of small models for B. lucorum. The colors in panel (b) and (c) indicate the
probability of occurrence, with warmer colors indicating higher probabilities. Black stars (b) and white
diamonds (c) indicate the sampling populations. (d) Machine learning ensemble for the relative
abundance of B. lucorum. Warmer colors indicate a higher abundance of B. lucorum relative to B. terrestris.

Sampling locations were located at least 20 km apart to rule out the possibility of
overlapping foraging ranges (Chapman et al., 2003; Westphal et al., 2006) and were
visited only once. At each sampling location, capturing efforts were undertaken by
2–3 people for 1.5–2 hrs between 1 hr after sunrise and 1 hr before sunset. Individuals
were collected on suitable forage patches with a radius of 100 m, using an entomo-
logical net. Individuals were visually identified as one of the two study species, anes-
thetized in a killing jar with a 1.5 cm layer of plaster of paris saturated with ethyl ac-
etate, and immediately upon cessation of movement stored in 96% ethanol (Smithers,
1988). After fieldwork, specimens were stored frozen at −20 °C in the laboratory at
the University of Tübingen.
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TABLE 1: Sampling locations and sample sizes of Bombus terrestris and Bombus lucorum

No. of Individuals
Location Latitude Longitude Bombus terrestris Bombus lucorum

1 Baita Plai 46.46871 22.61674 21 0
2 Billed 45.91412 20.94701 9 0
3 Blandesti 47.71380 26.86323 33 0
4 Brebu 45.42815 21.97966 20 1
5 Burja 43.02797 25.32507 5 0
6 Carei 47.69646 22.48073 24 0
7 Cerna 45.15962 22.80671 4 16
8 Coastra 45.14758 24.22260 9 0
9 Corbeni 45.29905 24.60912 5 8
10 Dobrovat 46.99043 27.65404 24 1
11 Drăgusani 46.29929 26.97973 22 2
12 Föen 45.51085 20.87627 31 1
13 Golitsa 42.90956 27.52514 13 0
14 Gothal 45.40790 21.42069 29 0
15 Grohotno 41.70118 24.38684 10 25
16 Gura Glodului 47.13575 25.50107 2 20
17 Gura Haitii 47.17505 25.25018 0 15
18 Handal 47.65028 23.89441 0 21
19 Hlyabovo 42.06055 26.26459 11 0
20 Iesle 47.31038 25.89774 1 12
21 Iod 46.93652 25.00172 0 12
22 Kamenitsa 41.64449 23.17299 12 0
23 Koevtsi 43.15832 25.09082 21 0
24 Levochevo 41.60707 24.72302 2 28
25 Mengishevo 43.03566 26.64753 13 0
26 Ojdula 45.98988 26.29976 1 15
27 Orsova 44.75420 22.39480 14 2
28 Pastra 42.12283 23.20023 3 0
29 Pietroasa 46.58998 22.58807 12 0
30 Pirin 41.52480 23.58790 4 11
31 Poienita 45.82299 24.57591 19 1
32 Polovragi 45.21492 23.77486 0 12
33 Razdelna 42.18144 25.90854 4 0
34 Rilski Manastir 42.09243 23.38633 0 3
35 Rish 42.97442 26.90731 32 0
36 Sinemorets 42.04499 27.95808 11 1
37 Stambolovo 41.78435 25.63166 15 0
38 Strumeshnitsa 41.39833 23.06046 20 0
39 Topa Mica 46.92851 23.40238 21 0
40 Toplita 46.98115 25.40812 0 2
41 Valea Hotarului 47.93870 23.83761 20 1
42 Valea Pădurii 46.62236 24.02727 12 0
43 Zdravets 42.94361 24.15964 6 9
44 Zlatitza 42.70908 24.12053 3 6

total 518 225
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Species identification

Because of the previously described difficulties in distinguishing species based on
external morphology, we used a 1,043 bp long fragment of the cytochrome c oxi-
dase subunit I (COI) gene, which is known for its relatively fast mutation rate, and is
used across many taxa for genetic identification purposes, including bumble bees
(Bertsch et al., 2004; Bossert et al., 2016; Hebert et al., 2004; Murray et al., 2007;
Waugh, 2007; Williams et al., 2012). This long fragment is completely overlapping
with an 890 bp region used by Bertsch et al., 2004 to distinguish between the closely
related Bombus cryptarum, B. magnus, and B. lucorum and was therefore used here
to distinguish between B. lucorum and B. terrestris. DNA was extracted from one or
both middle legs using the QIAmp DNA Micro Kit (Qiagen) following the manufac-
turer’s protocol. PCR was performed with primers originally developed for Apis

(Tanaka et al., 2001): forward 5’-ATAATTTTTTTTATAGTTATA-3’ and reverse 5’-
GATATTAATCCTAAAAAATGTTGAGG-3’. They were used to amplify a 1,043 bp
long fragment of the COI gene. The PCR reaction mix consisted of 2.5 µl of 10× PCR
Buffer S (Genaxxon), 15.4 µl HPLC water, 1.0 µl dNTP’s, 1.0 µl MgCl2 (25 mM), 1.0 µl
BSA, 1.0 µl of each primer (0.1 mM), 0.1 µl Taq polymerase, and 2 µl extracted DNA.
PCRs were performed with a Mastercycler epgradient (Eppendorf) with the follow-
ing conditions: an initial denaturation step at 95 °C for 1 min, followed by 55 cycles of
a 3-step process: denaturation for 40 s at 95 °C, annealing for 1 min at 45 °C, and ex-
tension for 2 min at 60 °C with a final extension step at 60 °C for 4 min. PCR products
were visualized using agarose gel electrophoresis to check for the amplification of the
fragment. Successfully amplified PCR products were cleaned up using the Promega
Wizard SV Gel and PCR Clean-Up System according to the manufacturer’s protocol.
Cleaned up samples were then sent to LGC Genomics for sequencing with the re-
verse primer only. Sequences were visualized and edited with Geneious R8 (Biomat-
ters,(Kearse et al., 2012)). None of the obtained sequences showed any signs of cross-
contamination (e.g., double peaks in the chromatograms or ambivalent species iden-
tification). We used two methods to assign a species to the sequenced samples. First,
we blasted sequences in GenBank (NIH genetic equences database) and assigned the
species with the highest identity (range 95%–100%) to the corresponding sample
(Table S1). In addition, we created a phylogenetic tree (Figure S1), which included
reference sequences for various Bombus species obtained from Genbank (Table 2).
We included reference sequences from various geographic origins, because we ex-
pected that genetic intraspecific variability should be smaller than interspecific dif-
ferences, and thus that a well-supported clustering of our samples with the reference
sequences suggests high confidence in the species identification. To construct the
phylogenetic tree, we first identified the most likely substitution model in MEGA-
X (Kumar et al., 2018). We then created a Bayesian phylogenetic tree in Geneious
R8 with the MrBayes module (Huelsenbeck and Ronquist, 2001), using one cold and
four heated chains with a temperature of 0.2 and a chain length of 1.1 million and
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a burn-in of 100,000, five gamma categories, a sampling frequency of 200, uncon-
strained branch lengths (GammaDir [1,0.1,1,1]), and exponential shape distribution.
We used a reference sequence of B. pascuorum as an outgroup (Table 2). Individuals
that were included in a monophyletic group with reference sequences of B. terrestris

or B. lucorum were considered members of the corresponding target species. Com-
parisons to the blast results revealed no differences, and all individuals of B. terrestris

and B. lucorum were included in subsequent species distribution models.

TABLE 2: Reference COI sequences obtained from GenBank and used for the
phylogenetic tree.

Species GenBank accession No. Author

B. terrestris

AY181171 Pedersen, 2002
AY181170 Pedersen, 2002
AY181169 Pedersen, 2002
KT164618 Tang et al., 2015

B. lucorum

AY181121 Pedersen, 2002
AY181119 Pedersen, 2002
AY181117 Pedersen, 2002
KT164681 Tang et al., 2015

B. sporadicus AF279500 Tanaka et al., 2001
AY181163 Pedersen, 2002
MF409659 Yu et al., 2017

B. cryptarum AY181100 Pedersen, 2002
AY530011 Bertsch et al., 2004
AF279485 Tanaka et al., 2001

B. magnus AY181123 Pedersen, 2002
AY530014 Bertsch et al., 2004
KC192046 Vesterlund et al., 2014

B. hortorum AY181105 Pedersen, 2002

B. pratorum AY181145 Pedersen, 2002

B. pascuorum AY181141 Pedersen, 2002

Environmental variables

In order to create species distribution models, we used a set of environmental vari-
ables at 30 arcsec resolution (Table 3). We initially considered 19 climate variables
from the WorldClim database (http://www.world clim.org), which included tem-
perature and precipitation variables based on a 30-year climatology from 1970 to 2000
(Fick and Hijmans, 2017). Additionally, elevation data were acquired from the Shuttle
Radar Topography Mission (SRTM; https://www2.jpl.nasa.gov), and used directly,
as well as to compute aspect and slope. Because distribution patterns and habitat
preferences of bumble bees have previously been suggested to relate to vegetation
characteristics and forest cover, we also included spatial and temporal vegetation
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patterns derived from satellite data. We used percent tree cover and Leaf Area Index
(LAI, the one-sided green leaf area per unit ground area), which were both obtained
from the Global Land Cover Facility database (http://www.glcf.umd.edu/data/).
Information on the vertical forest structure, that is, canopy height, was derived from
space-borne LiDAR from 2011 (Simard et al., 2011). Canopy height was found to be
a better predictor for species distributions than other remote sensing variables such
as canopy cover or land-use variables (Ficetola et al., 2014; Goetz et al., 2007), and
we hypothesized that it may be related to forest understory flower availability and
the presence and abundance of flowering tree species relevant for these bumble bee
species. Finally, to include information about surface moisture, we included annual
mean, minimum, maximum, and seasonality, computed from raw Quickscat data
(Geue et al., 2016). To do so, we used daily raw backscatter measurements down-
loaded from the BYU Scatterometer Climate Record Pathfinder database
(http://www.scp.byu.edu/data/Quiks cat/SIRv2 /qush/Eur.html) over the period
the instrument was online (2000–2008). We excluded highly correlated variables,
which we identified by means of their variance inflation factor (VIF). To do so, we
used the automated stepwise exclusion procedure implemented in the “usdm” pack-
age v. 1.1-18 in R 3.6.1 (R Development Core Team, 2008), keeping only those vari-
ables with VIF < 10. The final data set consisted of 16 variables (Table 3).

Species distribution modeling

Spatial autocorrelation and sampling bias

Spatial autocorrelation is a major statistical challenge in spatial analyses, causing in-
flated measures of predictive power and incorrect distribution models (e.g. Guélat
and Kéry, 2018; Segurado et al., 2006). There are two main causes for spatial autocor-
relation in species distribution modeling.

First, there is often a spatial clustering of sampling sites. Reasons for such cluster-
ing are manifold and may be related to the sampling design (for instance ease of
access, or issues with the logistics of evenly spaced sampling), or to the biotic and
abiotic drivers of species distributions themselves, such as gaps in a species’ range
due to unsuitable habitat. Many approaches have been proposed to correct for sam-
pling bias, among which subsampling locations to acquire a more even distribution of
known presences are optimal in most cases (Fourcade et al., 2014). As a first step, we
therefore removed one of the sites of pairs that were located within 20 km from one
another. However, because in our study the number of locations is rather limited,
further subsampling would result in an even smaller data set. Hence, in a second
step, we instead weighted each location based on the density of known presences
within a given radius, which was shown to be a good alternative to subsampling as
a correction method (Fourcade et al., 2014; Stolar and Nielsen, 2015). To do so, we
created a bias grid in QGIS 3.4.4. (Team et al., 2016) at 30 arcsec resolution, with
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each grid cell representing the density of sampling locations within a 50 km radius,
and kernel densities following a Gaussian distribution (Balestrieri et al., 2016). We
used the inverse of the density to weight each presence and background location (see
below), thus downweighting clustered locations. We not only included locations of
known presence in this bias grid, but also locations where we searched for bumble
bees with similar effort, but did not find any. We restricted these putative absence lo-
cations to those that were at least 50 km apart from known presences. We specifically
only included these sites in our sampling bias map, and not in our models, because
we cannot be sure that these represent true absences.

The second cause of spatial autocorrelation in SDMs is the often inherent spatial auto-
correlation of habitat conditions, in particular climate variables. In this case, species
occurrences are spatially dependent on the underlying habitat variables and thus rep-
resent a true association between species presence and local conditions. It is often
impossible and undesirable to a priori remove spatial autocorrelation due to spatial
dependence. Instead, spatial autocorrelation is expected to be absent in model resid-
uals, regardless of the presence of initial spatial dependence. Models should correctly
predict the presence or absence of a species at any given location, independent of its
spatial relation to other locations. We thus tested for spatial autocorrelation in the
probabilities of occurrence at known presence locations using global Moran’s I in the
R package ‘’lctools” v.0.2-7. We used four neighbors and tested the significance of
correlations with resampling and randomization procedures.

Presence-only data

To model species distributions based on presence-only data, we used an ensemble
method, which has been shown to perform better than any given individual mod-
eling method (e.g. Araújo et al., 2007; Elith and Leathwick, 2009; Marmion et al.,
2009. Because the number of known locations of species presence was limited, we em-
ployed the ensemble of small models approach implemented in the “ecospat” R pack-
age (Breiner et al., 2015; Breiner et al., 2018; Di Cola et al., 2017). Ecospat fits bivariate
models of presence/(pseudo-)absence with two predictor variables at a time, creat-
ing an ensemble of “small” models weighted by each bivariate model’s performance.
It can do so for multiple modeling approaches, using the “Biomod2” package for R
(Thuiller et al., 2009). Hence, for each modeling approach, bivariate (small) models
are combined into a model ensemble, and model ensembles are in turn combined
into an overall ensemble. We used ecospat v.3.1 and Biomod2 v.3.3-19 to run Max-
ent models (specifically the MAXENT.Phillips models, as implemented by Phillips
et al., 2006, generalized linear models (GLM), classification tree analysis (CTA, also
known as classification and regression trees (CART); Breiman et al., 1984, and artifi-
cial neural networks (ANN; Ripley, 2007). In a recent study comparing 10 different
modeling approaches implemented in ecospat and Biomod2, these were shown to be
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the top performing ones, while keeping computation times manageable (Breiner et
al., 2018). We used model tuning to optimize the parameter settings for each model.
We generated input files using presence-only sites and 5,000 background points that
were sampled randomly at a minimum distance of 20 km from known presences. To
correct for sampling bias, we extracted weights for all locations, which were imple-
mented using the Yweights argument in ecospat.

TABLE 3: Environmental variables used for species distribution modeling and random forest analyses.
Variables marked in bold were selected for our models after stepwise removal of variables with a
variance inflation factor > 10.

Variable Meaning Source

Bio 1 Annual mean temperature http://www.worldclim.org
Bio 2 Mean diurnal range mean of monthly

(max temp – min temp)
http://www.worldclim.org

Bio 3 Isothermality (Bio2/Bio7) * 100 http://www.worldclim.org

Bio 4 Temperature seasonality standard de-

viation*100

http://www.worldclim.org

Bio 5 Max temperature of warmest month http://www.worldclim.org
Bio 6 Minimum temperature of coldest

month
http://www.worldclim.org

Bio 7 Temperature annual range (Bio5-Bio6) http://www.worldclim.org
Bio 8 Mean temperature of wettest quarter http://www.worldclim.org
Bio 9 Mean temperature of driest quarter http://www.worldclim.org

Bio 10 Mean temperature of warmest quarter http://www.worldclim.org
Bio 11 Mean temperature of coldest quarter http://www.worldclim.org

Bio 12 Annual precipitation http://www.worldclim.org
Bio 13 Precipitation of wettest month http://www.worldclim.org
Bio 14 Precipitation of driest month http://www.worldclim.org

Bio 15 Precipitation seasonality (coefficient

of variation)

http://www.worldclim.org

Bio 16 Precipitation of wettest quarter http://www.worldclim.org
Bio 17 Precipitation of driest quarter http://www.worldclim.org
Bio 18 Precipitation of warmest quarter http://www.worldclim.org
Bio 19 Precipitation of coldest quarter http://www.worldclim.org

Elevation Elevation https://www2.jpl.nasa.gov/srtm/
Aspect Aspect https://www2.jpl.nasa.gov/srtm/

Slope Slope https://www2.jpl.nasa.gov/srtm/

LAI sd Leaf Area Index standard deviation

across the year

http://www.glcf.umd.edu/data/

LAI min Leaf Area Index annual minimum http://www.glcf.umd.edu/data/
LAI mean Leaf Area Index annual mean http://www.glcf.umd.edu/data/

LAI max Leaf Area Index annual maximum http://www.glcf.umd.edu/data/
Tree Percent tree cover http://www.glcf.umd.edu/data/

Canopy Canopy height Simard et al., 2011

QSCAT mean Surface moisture (mean) http://www.scp.byu.edu, Geue et al., 2016

QSCAT min Surface moisture (min) http://www.scp.byu.edu, Geue et al., 2016
QSCAT max Surface moisture (max) http://www.scp.byu.edu, Geue et al., 2016
QSCAT season Surface moisture (coefficient of varia-

tion)

http://www.scp.byu.edu, Geue et al., 2016
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To evaluate model performance, we computed various evaluation scores and used
K-fold cross-validation with subsets of training and testing data. The Boyce index
(Hirzel et al., 2006) is specifically designed and hence a particularly appropriate eval-
uation score for presence-only models. It is limited between -1 and 1, with 0 indi-
cating model performance no better than random, and values close to 1 indicating
high performance. We used the Boyce index to assess model performance, but also
report the area under the receiver operator curve (AUC; Swets, 1988), Cohen’s kappa
(Cohen, 1960; Hirzel et al., 2006), and the true skill statistic (TSS; (Allouche et al.,
2006)). To create training and testing data partitions for K-fold cross-validation, we
used spatial blocking. Partitioning the data into spatial blocks has the advantage
over random allocation of sites that it is better suited to evaluate model performance
in the potential presence of spatial autocorrelation (e.g. Roberts et al., 2017). If a
model performs well, it is expected to correctly predict occurrences in both distant
as well as nearby locations (Telford and Birks, 2009). We generated spatial blocks of
training and testing data with the R package ‘’blockCV” v.2.0.0. (Valavi et al., 2019).
We created fivefold and set the size of the spatial blocks to the median of the spatial
autocorrelation range across the input environmental variables, which were sampled
at 5,000 random locations. To find evenly dispersed folds, we ran 100 iterations.

Finally, to visually inspect species occurrence as a function of environmental condi-
tions, we created two types of response curves. In the first, we plotted the response
as a function of one environmental variable, while letting all other variables covary.
These curves are particularly useful to understand the spatial patterns of species dis-
tributions. The curves cover the full range of responses, where the model takes ad-
vantage of sets of variables changing together. Second, we also plotted marginal
response curves, where we plotted the effect of one environmental variable, while
keeping all other variables at their sampled median. These curves are informative
with respect to the individual contributions of each environmental variable.

Relative abundance data

To test whether the relative abundance of B. lucorum compared to B. terrestris is as-
sociated with environmental conditions, we used a machine learning approach im-
plemented in the “SuperLearner” (v.2.0-25) package for the R statistical framework.
SuperLearner uses model tuning to optimize model parameter settings and cross-
validation to estimate the performance of multiple models. It creates optimized en-
sembles, weighted by the performance of the individual models. Where possible, we
ran models similar to those for the presence-only data: generalized additive mod-
els (GAM; Hastie and Tibshirani, 1990), generalized linear models (GLM), Bayesian
addi-tive regression trees (BART; Chipman et al., 2010), random forests (RF; Breiman
et al., 1984; Breiman, 1996; Breiman, 2001), and neural networks (ANN; Ripley, 2007).
We also ran a very simple mean-of-abundance model as a baseline. We corrected for
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sampling bias using the weighting method described above, but we also fitted mod-
els to uncorrected abundance. We ran models on the full data set, where bagging and
randomization were done internally, as well as on a partial data set, where we omit-
ted 20% of the data, which were used as test data for independent cross-validation.
For each model, we report its associated risk (a measure of model performance) and
coefficient (the weight with which it is included in the ensemble). Response curves
were created as described above.

To subsequently create a map of the predicted relative abundance of B. lucorum across
the entire study area, we extracted the values for environmental variables at all 30 arc-
sec gridcells within Bulgaria and Romania. We then used the “predict.SuperLearner”
function to project the known relationship between relative abundance and environ-
mental conditions onto the entire landscape. These values were imported and con-
verted to a raster format in QGIS 3.4.4 (Team et al., 2016).

Results

Species identification

The most likely substitution model was the General Time Reversible (GTR) model
with gamma distribution, which we implemented to create the phylogenetic tree. We
found that 514 individuals clustered with reference sequences of B. terrestris and 220
with those of B. lucorum (Table 1).

Presence-only data

Boyce indices for individual K-fold cross-validated models for B. terrestris ranged
between 0.434 and 0.878 (median 0.751), suggesting overall decent to good model
performance, except for those based on classification trees (CTA; Table 4). CTA mod-
els were therefore not included in the final ensemble. Boyce indices for ensemble
cross-validated models ranged between 0.133 and 0.869. For B. lucorum, Boyce in-
dices for individual cross-validated models ranged between 0.594 and 0.936 (median
0.766), and for ensembles between 0.650 and 0.870 (Table 4). CTA models performed
as poorly as those for B. terrestris and were not included in the ensembles. Overall,
models for B. lucorum performed slightly better than those for B. terrestris.

Spatial autocorrelation in the predicted occurrences was absent for B. lucorum (Moran’s
I = 0.08, expected I = -0.04, resampling z = 1.08, resampling p = 0.280, randomization
z = 1.09, randomization p = 0.276). However, for B. terrestris we still found signif-
icant spatial autocorrelation, despite correcting for sampling bias (Moran’s I = 0.41,
expected I = -0.03, resampling z = 4.44, resampling p < 0.001, randomization z =
4.47, and randomization p < 0.001). We visually inspected the predictive map and
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compared it to maps of important environmental variables. We found that partic-
ularly high probability of occurrence was predicted for sites in Mediterranean Bul-
garia, which is consistent with the pattern of seasonality in surface moisture (QS-
CAT season), the most important variable in predicting the species’ distribution. We
suspected that the remaining spatial auto-correlation was the result of spatial depen-
dence rather than of sampling bias. We further tested for residual spatial autocorrela-
tion in a second analysis, where we also extracted the predictions for sites where we
searched for bumble bees, but did not find any, despite making the same sampling
effort. These sites were the same as those used to generate a sampling bias grid and
were located at least 50 km from known presences. Although these sites were not
included in the models as true absences, we expected that a well-performing model
should predict low probability of occurrence for these sites. Indeed, this time we
found no evidence for spatial autocorrelation (Moran’s I = 0.12, expected I = -0.02, re-
sampling z = 1.67, resampling p = 0.096, randomization z = 1.65, and randomization
p = 0.099), and we concluded that sampling bias was sufficiently well corrected for.
Interestingly, the most important variables in limiting each species’ distribution over-
lapped between species. The top four variables for B. terrestris were seasonality in
surface moisture (QSCAT season), mean temperature of the wettest quarter (Bio 8),
mean leaf area index (LAI mean), and temperature seasonality (Bio 4; Table 5). For B.

lucorum, these variables comprised mean leaf area index (LAI mean), canopy height,
seasonality in surface moisture (QSCAT season), and percent tree cover (Tree; Table
6), subsequently followed by mean temperature of the wettest quarter (Bio 8). For
both species, the ranking of variables by their importance was largely consistent be-
tween modeling approaches. The main difference in the response curves between
the two species is that those for B. lucorum are generally much steeper than those for
B. terrestris, suggesting a stronger influence of the environment on B. lucorum (Fig-
ures 2 and 3). This difference is particularly pronounced for the top most important
variables that were not overlapping between species, that is, percent tree cover and
canopy height.
Consistent with the response curves, B. terrestris was predicted to be widely dis-
tributed, with medium suitability in lowland areas (in the north of Bulgaria and
south of Romania) and low suitability in the Danube Delta and at the highest ele-
vations (Figure 1b). Very high suitability was predicted for Mediterranean Bulgaria,
south of the Balkan Mountains. Conversely, the range of B. lucorum was predicted
to be much more restricted to higher elevations (the Carpathian Mountains and sur-
rounding lowlands and the Balkan, Rila, Rhodope, and Pirin Mountains; Figure 1c).
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TABLE 4: Performance scores of ESMs using presence-only data. Five cross-validated
models were run based on spatial blocks generated with the R package ‘blockCV’.
MAXENT.P is the MAXENT.Phillips model. ENS is the ensemble of small models.

B. terrestris B. lucorum

Model Boyce AUC Kappa TSS Boyce AUC Kappa TSS

RUN1_ANN 0.751 0.696 0 0 0.701 0.782 0 0
RUN1_CTA - 0.5 0 0 - 0.5 0 0
RUN1_GLM 0.871 0.708 0 0 0.841 0.754 0 0
RUN1_MAXENT.P 0.553 0.69 0.014 0.36 0.716 0.774 0.027 0.594
RUN1_ENS 0.632 0.69 0.012 0.332 0.725 0.774 0.021 0.561
RUN2_ANN 0.737 0.599 0 0 0.825 0.796 0 0
RUN2_CTA - 0.5 0 0 - 0.5 0 0
RUN2_GLM 0.694 0.665 0 0 0.936 0.862 0.179 0.327
RUN2_MAXENT.P 0.467 0.65 0.009 0.32 0.837 0.791 0.01 0.654
RUN2_ENS 0.555 0.65 0.027 0.262 0.87 0.796 0.008 0.611
RUN3_ANN 0.814 0.755 0.067 0.149 0.644 0.838 0 0
RUN3_CTA - 0.5 0 0 - 0.5 0 0
RUN3_GLM 0.833 0.736 0.285 0.167 0.721 0.839 0 0
RUN3_MAXENT.P 0.434 0.71 0.007 0.413 0.766 0.818 0.024 0.638
RUN3_ENS 0.133 0.714 0.006 0.367 0.779 0.82 0.023 0.636
RUN4_ANN 0.764 0.782 0.136 0.27 0.808 0.688 0 0
RUN4_CTA - 0.5 0 0 - 0.5 0 0
RUN4_GLM 0.636 0.785 0.13 0.355 0.755 0.662 0 0
RUN4_MAXENT.P 0.476 0.724 0.013 0.369 0.844 0.684 0.007 0.515
RUN4_ENS 0.635 0.74 0.015 0.368 0.854 0.685 0.005 0.459
RUN5_ANN 0.852 0.761 0 0 0.819 0.779 0 0
RUN5_CTA - 0.5 0 0 - 0.5 0 0
RUN5_GLM 0.821 0.779 0.068 0.214 0.721 0.829 0.11 0.334
RUN5_MAXENT.P 0.878 0.768 0.021 0.458 0.594 0.815 0.055 0.677
RUN5_ENS 0.869 0.77 0.017 0.414 0.65 0.816 0.051 0.666

TABLE 5: Variable importance scores for ESMs based on
presence-only data for B. terrestris. Scores for CTA are not
included, because of its low model performance. MAXENT.P is
the MAXENT.Phillips models. ENS is the ensemble of small
models. See Table 1 for the meaning of the variables.

Variable ANN GLM MAXENT.P ENS

QSCAT season 0.140 0.099 0.088 0.109
Bio 8 0.104 0.088 0.098 0.096
LAI mean 0.083 0.067 0.088 0.079
Bio 4 0.055 0.080 0.085 0.073
Bio 3 0.047 0.080 0.091 0.073
LAI sd 0.068 0.057 0.060 0.062
Slope 0.071 0.053 0.062 0.062
Bio 11 0.049 0.059 0.064 0.057
Bio 9 0.063 0.055 0.050 0.056
Bio 19 0.045 0.063 0.059 0.056
QSCAT mean 0.079 0.042 0.032 0.051
Bio 14 0.056 0.048 0.046 0.050
Canopy height 0.038 0.053 0.054 0.049
Tree 0.036 0.062 0.037 0.046
Bio 15 0.040 0.049 0.040 0.043
Aspect 0.023 0.045 0.046 0.038
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FIGURE 3: Overall (top panels) and marginal (bottom panels) response curves for presence-only model
predictions for Bombus terrestris. Overall response curves were generated for each variable, while letting
all other variables covary. In contrast, marginal response curves were created for each variable, while
keeping all other variables at their median observed values
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FIGURE 4: Overall (top panels) and marginal (bottom panels) response curves for presence-only model
predictions for Bombus lucorum.Overall response curves were generated for each variable, while letting all
other variables covary. In contrast, marginal response curves were created for each variable, while
keeping all other variables at their median observed values.
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TABLE 6: Variable importance scores for ESMs based on
presence-only data for B. lucorum. Scores for CTA are not
included, because of its low model performance.
MAXENT.P is the MAXENT.Phillips models. ENS is the
ensemble of small models. See Table 1 for the meaning of
the variables.

Variable ANN GLM MAXENT.P ENS

LAI mean 0.091 0.088 0.092 0.090
Canopy height 0.082 0.089 0.083 0.085
QSCAT season 0.087 0.079 0.080 0.082
Tree 0.086 0.075 0.080 0.081
Bio 8 0.068 0.081 0.073 0.074
LAI sd 0.078 0.069 0.075 0.074
Slope 0.080 0.055 0.066 0.067
Bio 4 0.060 0.062 0.055 0.059
Bio 3 0.063 0.054 0.045 0.054
QSCAT mean 0.072 0.048 0.042 0.054
Bio 15 0.048 0.052 0.056 0.052
Bio 11 0.041 0.051 0.054 0.049
Bio 19 0.040 0.053 0.052 0.048
Bio 9 0.040 0.047 0.052 0.046
Bio 14 0.038 0.045 0.046 0.043
Aspect 0.027 0.051 0.048 0.042

FIGURE 5: Variable importance inferred from a BART model for the relative abundance of
Bombus lucorum. This model had a coefficient > 0.9 in the ensemble model, and it was the
single best performing one in a nested crossvalidation analysis. We therefore used its
robust estimate of variable importance to assess the contribution of each variable in the
overall ensemble.
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Relative abundance data

Models of relative abundance that were corrected for sampling bias performed con-
siderably worse than uncorrected models (corrected models: BART coefficient = 0.885,
BART risk = 0.404, GLM coefficient = 0.115, and GLM risk = 0.682). We therefore
report results for uncorrected models from here onwards. The only two models in-
cluded in the ensemble were GAM (coefficient = 0.084, risk = 0.199) and BART (co-
efficient = 0.916, risk = 0.093). K-fold nested cross-validation with fivefold suggested
that the single best model was BART, which performed even slightly better than the
ensemble model, yet statistically nonsignificant (Table 7). Because of the high weight
of the BART model, we evaluated variable importance based on BART only, pro-
viding a robust posterior importance score (Chipman et al., 2010; Hernández et al.,
2018). The top most important variable was canopy height, subsequently followed
by percent tree cover and three temperature variables (Figure 4), which is broadly
consistent with the results for the presence-only data. Overall and marginal response
curves suggest that B. lucorum is more abundant in more densely vegetated, wet and
cool areas (Figure 5).

To gain further insight in how our two target species differ in their preferred habi-
tat conditions, we visually inspected scatter-plots of the relative abundance of B. lu-

corum as a function of the most important variable, canopy height. We noted that
the major mountain ranges in Romania and Bulgaria are a prominent feature in our
distribution maps, which is consistent with previous descriptions of occurrence pat-
terns. Although we dropped elevation from our analyses because of its high VIF, we
also created a scatter plot of relative abundance versus elevation. Visual inspection
of these plots suggested that B. lucorum does not occur in unforested areas with a
canopy height under 20 m (Figure 6a). Yet, the dichotomy between species is par-
ticularly striking for elevation, where B. lucorum is almost completely absent below
600 m, but makes up the majority of the two species at higher elevations (Figure 6b).
Hence, elevation captures the combined influence of correlated environmental vari-
ables on limiting the distribution of B. lucorum particularly well.

TABLE 7: Risk scores of five-fold cross-validated models of
relative abundance, with mean, standard error, minimum,
and maximum values. The lower the risk, the better the
model performance. The single best model was the BART
model. SuperLearner is the ensemble of all models.

Algorithm Mean SE Min Max

SuperLearner 0.096303 0.020817 0.04578 0.15106
MEAN 0.162742 0.022342 0.130919 0.22429
GLM 0.137423 0.033966 0.058933 0.22817
GAM 0.137423 0.033966 0.058933 0.22817
BART 0.095774 0.019007 0.052584 0.1495
RF 0.096686 0.021774 0.043806 0.15481
ANN 0.162742 0.022342 0.130919 0.22429
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FIGURE 6: Overall (top panels) and marginal (bottom panels) response curves for relative abundance
model predictions. Overall response curves were generated for each variable, while letting all other
variables covary. In contrast, marginal response curves were created for each variable, while keeping all
other variables at their median observed values.
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FIGURE 7: Scatterplots of the observed relative abundance of Bombus lucorum as a function of (a) canopy
height, the most important variable in the BART model, and (b) elevation. Elevation was not entered in
our models, because it was correlated to many environmental variables.

Discussion

Here, we modeled the distributions and relative abundance of two cryptic bumble
bee species in Bulgaria and Romania from samples that were assigned to one of the
species using a long fragment of the COI gene for genetic identification. We demon-
strated that even though there is a certain degree of overlap between the ranges of
the two species, B. lucorum has a much more restricted distribution than B. terrestris.
Our models suggested that both vegetation and climate variables are key factors in
determining their distributions. These results are concordant with previous stud-
ies for B. lucorum suggesting that it prefers closed habitat near forests (Bossert et al.,
2016; Svensson et al., 2000). Our findings also support observations that B. lucorum

occurs at higher elevations (Ban-Calefariu and Sárospataki, 2007; Bossert et al., 2016;
Goulson et al., 2008a; Ploquin et al., 2013; Tomozei, 2006), which was suggested to be
the result of an adaptation to colder climates (Benton, 2006). Indeed, in northern Eu-
rope, B. lucorum generally occurs in colder areas, where it at least partly substitutes B.

terrestris (Rasmont et al., 2015a). Many environmental variables change along an ele-
vation gradient, and elevation itself is unlikely to determine the distribution of these
species, but rather its covariates (Bossert et al., 2016). In our study, mean temperature
of the coldest quarter (Bio 11), canopy height, percent tree cover, and mean leaf area
index (LAI mean) were particularly highly correlated with elevation (Pearson corre-
lation coefficient > 0.6). Hence, the distribution of B. lucorum is clearly restricted to
the mountainous areas in Bulgaria and Romania (Figure 1c,d), where temperatures
are lower, precipitation is higher, and where most of the forest is remaining.

In contrast, our findings for B. terrestris suggest that it is not as restricted to open
habitat as previously thought (Bossert et al., 2016; Svensson et al., 2000), but rather is
a generalist species, occurring in open as well as more densely vegetated areas. This
notion is also apparent in our maps, showing a wide distribution for B. terrestris.
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Interestingly, our presence-only species distribution models showed a considerable
overlap between the ranges of B. terrestris and B. lucorum, but analyses of their rela-
tive abundance evoke a much stronger separation between these species. Although
the use of relative abundance does not allow for conclusions regarding the absolute
abundance of either one of the species, the large range of relative abundance values
for B. lucorum, spanning from 0 to 0.94, suggests that the two species replace one an-
other across an environmental gradient. Thus, the inclusion of abundance enhances
our understanding of the distribution of these species based on presence-only mod-
els.

Although the conservation status of our study species across the European continent
is ‘’least concern” (Rasmont et al., 2015b; Rasmont et al., 2015c), they are ‘’vulnera-
ble” or ‘’nearly threatened” in a few countries (Kosior et al., 2007). A previous cross-
continent study suggested that both B. terrestris and B. lucorum may suffer from range
contractions under future climate change (Rasmont et al., 2015a). The study by Ras-
mont et al., 2015a provides a great overview of overall distributions and risks posed
by climate change. Yet, such large-scale models of species distributions, spanning
major latitudinal and environmental gradients, and based on climate variables only,
may be of limited use at intermediate to smaller spatial extents. Indeed, we found
that vegetation characteristics were among the most important variables explaining
the distribution and relative abundance of our study species, and it will be difficult
to predict how these variables will change in the future, both as a result of climate
change, as well as due to changes in forest management. We did not proceed with
an attempt to predict the distribution of B. lucorum onto future climate conditions,
because a model based on only current climate conditions failed to even broadly re-
semble that based on both climate and vegetation variables (not shown). Moreover,
populations are likely adapted to local and regional conditions, and may not respond
the same to changing environmental conditions. Our study provides further insight
by teasing apart the habitat preferences of these species in southeastern Europe, pro-
viding higher resolution range maps that are probably more relevant for the region,
where the distribution of B. lucorum is assumed to be rather disjunct. Despite the
complexity of predicting future changes in vegetation characteristics, the difference
in habitat requirements between these species is expected to have implications for
the way they respond to changing climate conditions. Our finding that B. lucorum

is rather restricted in its suitable habitat conditions compared to B. terrestris, may
suggest that it is more vulnerable to climate change than the latter.

We genetically identified a large number of individuals of two closely related bum-
ble bee species sampled at many sites and modeled their distributions and gained
insight into their habitat requirements. We showed that B. terrestris is rather a gener-
alist species, whereas B. lucorum is restricted to colder and wetter climates in forested
areas, which in our study area primarily occur at higher elevations. We support the
emerging recognition of the importance of abundance data in species distribution
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modeling. Despite the overlap in occurrence suggested by presence-only data, their
relative abundance gradually changes along a major environmental gradient, with
one of the species being virtually absent at the extreme ends of this gradient. Our
study contributes to the urgent need to fill a major gap of knowledge in the distri-
bution and ecology of these species that can help facilitate the assessment of their
conservation status and the development of management plans where necessary.
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Abstract

Because it is impossible to comprehensively characterize biodiversity at all levels
of organization, conservation prioritization efforts need to rely on surrogates. As
species distribution maps of relished groups as well as high-resolution remotely sensed
data increasingly become available, both types of surrogates are commonly used. A
good surrogate should represent as much of biodiversity as possible, but it often re-
mains unclear to what extent this is the case. Here, we aimed to address this question
by assessing how well bird species and habitat diversity, two frequently used bio-
diversity surrogates, represent one another. We conducted our study in Romania, a
species-rich country with high landscape heterogeneity where bird species distribu-
tion data have only recently started to become available. First, we prioritized areas
for conservation based on either 137 breeding bird species or 36 habitat classes, and
then evaluated their reciprocal surrogacy performance. Second, we examined how
well these features are represented in already existing protected areas. Finally, we
identified target regions of high conservation value for the potential expansion of the
current network of reserves (as planned under the new EU Biodiversity Strategy for
2030). We found that bird species were a better surrogate for habitat diversity than
vice versa. Highly ranked areas based on habitat diversity were represented better
than areas based on bird species, which varied considerably between species. Our
results highlight that taxonomic and environmental data may be poor surrogates for
one another and that different types of biodiversity surrogates should be combined
in spatial conservation prioritization.

KEYWORDS

biodiversity surrogate, bird species, habitat type, spatial conservation prioritization,
Zonation software, Romania
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Introduction

The ultimate goal of conservation prioritization is the protection of biodiversity at all
levels of organization (Pressey, 2004). However, limited financial resources and com-
peting stakeholder interests constrain the area that can reasonably be protected. The
process of identifying potential regions for designation as protected area (PA) should
therefore be undertaken thoroughly and strategically (Bottrill et al., 2008; Joseph et
al., 2009), see Margules and Pressey, 2000 for a review). The striking obstacle is how-
ever that biodiversity is very complex and difficult to characterize (Noss, 1990), and
surveying biodiversity in its entirety is nearly impossible. Shortcuts necessarily need
to be taken to quicken the prioritization process and make it more feasible (Andelman
and Fagan, 2000). One of these shortcuts is using a biodiversity or environmental in-
dicator as a conservation surrogate (see Margules and Pressey, 2000 for a review;
(Sarkar et al., 2005), which is: “An ecological process or element (e.g., species, ecosys-
tem, or abiotic factor) that [should] [. . . ] represent (i.e., serve as a proxy for) another
aspect of an ecological system” (Hunter et al., 2016). The efficacy and efficiency of
surrogates for overall biodiversity (known and unknown) have progressively been
evaluated (Araújo et al., 2007; Di Minin and Moilanen, 2014; Gaston et al., 2008;
Oliver et al., 2004; Sarkar et al., 2005; Sauberer et al., 2004), and appear to be influ-
enced by factors such as the size of the study area, type of surrogate, and the spatial
resolution of surrogate data (e.g. Di Minin and Moilanen, 2014; Franco et al., 2009;
Grantham et al., 2010). Nevertheless, it often remains ambiguous to what extent a
surrogate represents other levels of biodiversity, in particular across different levels
of organization.

Biodiversity surrogates are usually subdivided into taxonomic and environmental
surrogates (Grantham et al., 2010; Oliver et al., 2004; Sarkar et al., 2005). Many stud-
ies have evaluated the efficacy of taxonomic surrogates for other taxonomic groups
(e.g. see Andelman and Fagan, 2000; Caro and O’Doherty, 1999 for a review; (Lawler
et al., 2003; Lund and Rahbek, 2002; Rozylowicz et al., 2011; Sibarani et al., 2019;
Wiens et al., 2008). The general consensus is that one taxonomic group alone might
not be an adequate surrogate for others (Bertrand et al., 2006; Billeter et al., 2008; Di
Minin and Moilanen, 2014; Franco et al., 2009; Moritz et al., 2001); see Rodrigues and
Brooks, 2007 for a review), and the identification of PAs should include more than
one species or taxonomic group (Franco et al., 2009; Larsen et al., 2012). Yet again,
for many areas in the world accurate species distribution data is scarce. However,
one of the taxonomic groups for which rich datasets are available are birds, because
they are of interest to many people and are therefore one of the best surveyed taxa
in the world (Garson et al., 2002; Larsen et al., 2012; Veríssimo et al., 2009). As such,
birds are often used as biodiversity indicators and conservation surrogates, and their
surrogacy effectiveness varies from representing overall species diversity well (other
taxa than birds) (Juutinen and Mönkkönen, 2004; Larsen et al., 2012; Rodrigues and
Brooks, 2007; Sauberer et al., 2004), or threatened birds being adequate surrogates for
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non-threatened bird species (Franco et al., 2009), to being poor surrogates for other
taxa (Lund and Rahbek, 2002; Moore et al., 2003; Williams et al., 2006). Adding more
taxa (Larsen et al., 2012) or even different biodiversity features, such as environmen-
tal diversity (Bonn and Gaston, 2005; Di Minin and Moilanen, 2014), increased the
overall surrogacy of birds for other levels of biodiversity.

Environmental diversity, in particular habitat diversity, has the potential to be a pow-
erful surrogate and represent other levels of biological organization, because habitat
data can be generated quickly and relatively inexpensively from remotely sensed or
extrapolated ground data (Arponen et al., 2008; Beier et al., 2015; Grantham et al.,
2010; Rodrigues and Brooks, 2007; Sarkar et al., 2005). Furthermore, environmental
surrogates may capture interactions between species and their environment (Bonn
and Gaston, 2005), and compensate for a potential lack of congruence between tax-
onomic surrogates (Moritz et al., 2001). However, compared to taxonomic surro-
gates, the application of environmental surrogates received less attention. Results
suggest that continuously distributed environmental variables (e.g. climate vari-
ables such as temperature and precipitation, or vegetation characteristics such as
percent tree cover) may not be adequate (Araújo et al., 2001; Di Minin and Moila-
nen, 2014; Rodrigues and Brooks, 2007) or at most better than random surrogates for
species occurrence (Sarkar et al., 2005). Categorical environmental data in the form
of pre-classified information (e.g. land classes, ecological vegetation classes or habi-
tat types) may be better surrogates than continuous environmental data. However,
habitat or land cover categories vary in their representation of other levels of bio-
diversity, for instance weak for plant species (Bonn and Gaston, 2005; Carmel and
Stoller-Cavari, 2006), but better for plants than for vertebrates (Di Minin and Moila-
nen, 2014; Grantham et al., 2010; Lombard et al., 2003; Mac Nally et al., 2002; Oliver
et al., 2004). Yet, such contrasting results could also result from differences in the
spatial extent and resolution of the study area, as well as the type of environmental
data used as a surrogate (vegetation or climate-based) (Grantham et al., 2010; Hess
et al., 2006; Margules and Pressey, 2000; Reyers et al., 2002).

Given uncertainties surrounding the potential for categorical habitat data to serve as
a surrogate for biodiversity, the goal of our study was to evaluate its representation
of one of the most frequently used biodiversity surrogates, bird species distributions,
and vice versa. We implemented this analysis for Romania, a country within the Eu-
ropean Union exhibiting high bird species and habitat diversity, likely caused by the
variety of biogeographic regions it comprises (Ioras, 2003; Schmitt and Rákosy, 2007).
While 23% of Romania is protected, either under the pan-European Natura 2000 net-
work or as natural or national parks or biosphere reserves (Niculae et al., 2017), and
despite its high levels of biodiversity, efforts to identify conservation priorities and
evaluate the efficacy of the network of reserves to protect biodiversity have been
sparse (mentioned by Gaston et al., 2008 but not examined; Iojă et al., 2010; Miu et al.,
2018; Niculae et al., 2017; Popescu et al., 2013; Rozylowicz et al., 2011). One reason
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for this disparity is that species distribution data have only recently become widely
available. As such, PA management could greatly benefit from prioritization efforts
using systematic conservation planning principles and the latest available data, par-
ticularly when establishing new PAs (Iojă et al., 2010; Niculae et al., 2017). The im-
plementation of such scientific research in the establishment and governance process
of PAs is, however, often limited (Opermanis et al., 2014; Popescu et al., 2014). This
is not a unique situation, as for instance Natura 2000 sites consist of a diverse array
of reserves designed for particular species, but not to protect biodiversity as a whole,
so they often represent species and habitat diversity only to a limited extent (Araújo
et al., 2001; D’Amen et al., 2013; Iojă et al., 2010; Pechanec et al., 2018). Furthermore,
the European Commission decided to set new targets for 2030 and increase the per-
centage of protected areas in EU member states to 30% (Commission, 2020). Hence,
there is a need to identify additional areas for protection, which is best done using
the principles of systematic conservation planning (Miu et al., 2020).

In this study, we first evaluated whether breeding bird species and habitat diversity
based on remote-sensing data are adequate surrogates for one another. We assessed
surrogacy of the two datasets using high-resolution data (1km) of (a) 137 modelled
breeding bird species distributions and (b) 36 classes of mapped habitat types from
the “Ecosystem Types of Europe” (ETE) data set (Agency, 2016). Second, we evalu-
ated whether existing protected areas (national and natural parks, biosphere reserves,
wetland reserves and SPAs (as part of the Natura 2000 network)) in Romania are ef-
fective in representing areas of conservation concern for both birds and habitats. Fi-
nally, we identified additional areas that could be prioritized in an effort to expand
the current PA network to more comprehensively protect bird and habitat diversity.

Methods

Study region

Romania is located in Eastern Europe, at the western shores of the Black Sea. It covers
238 397 km2 and natural landmarks and borders are dominated by the Carpathian
Mountains and the Danube River. Five biogeographical regions have been char-
acterized across Romania: Pannonian, Continental, Alpine, Steppic, and Black Sea.
The heterogeneous landscape consists of an alternation between intensive and exten-
sive agricultural areas and (semi-) natural areas, such as forest, open woodland, and
grassland.As a member of the European Union, Romania is bound to the directives
of the Natura 2000 network, and dedicated about 23% of its total landscape to conser-
vation. The Natura 2000 network is an important biodiversity conservation measure
(Gaston et al., 2008), and consists of different types of protected areas: the terrestrial
Special Protection Areas (SPA, for bird protection only), the terrestrial Sites of Com-
munity Importance, and Special Areas of Conservation (SCI and SAC, for habitats
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and/or species) (Commission, 2007)). In addition to, but partly overlapping with
the Natura 2000 network, Romania also implemented protected areas designated as
natural and national parks as well as biosphere reserves (Niculae et al., 2017).

Biodiversity features

Bird species distributions

Bird species occurrence data (from the years 2006-2018) were obtained from the forth-
coming Romanian Breeding Bird Atlas (Fântânâ and Kovács, 2020, in preparation), a
scheme run by Milvus Group Association and the Romanian Ornithological Soci-
ety. We modelled the distributions of 137 breeding bird species using MaxEnt v.3.4.1
(Phillips et al., 2017) at two different resolutions (1km and 2km), depending on the
species’ ecology or in some cases by the available data (Table A.2, Appendix A). Ap-
pendix B provides in-depth details on the species distribution modeling approach.

Habitat types

We used the published maps of habitat types classified in the “Ecosystem Types of
Europe” (ETE) data set (version 3.1)(Agency, 2016). ETE is a combination of the non-
spatially referenced EUNIS (European Nature Information System) habitat classifica-
tion scheme and a spatially explicit habitat data set, the Corine-based “Mapping and
Assessment of Ecosystem and their services (MAES)” ecosystem classes (Weiss and
Banko, 2018). In Romania, 42 ETE habitat classes are mapped (level 2 classification)
at 100 m resolution (Table A.3, Appendix A). Habitat classes including highly built-
up areas (six classes) were excluded in the subsequent spatial conservation mapping.
These built-up areas where selected according to the ETE classification category “J”
(J1-J6, see Table A.3, Appendix A), which include buildings in cities and villages, in-
dustrial sites, transport networks, artificial water structures and waste deposits. To
produce maps of habitat types that match the spatial resolution of those for the bird
species, we split the ETE data set into single data layers per class (36 in total) and
calculated the proportion of each habitat type within 1 km2 grid cells.

Data handling

All spatial data layers were re-projected to the Dealul Piscului 1970/ Stereo 70 pro-
jection and processed at a 1 km resolution containing a total number of 381 248 grid
cells. Species distribution models at 2 km resolution were resampled to 1 km grid cell
size. Preparation of input maps and post-processing of results was done in R (version
3.6.1), using the packages (zonator, raster, rgdal, rgeos, sp, maptools, tiff, data.table,
plyr, dplry, ggplot2, zoo). Maps were visualized in QGIS (version 3.10.6 ’A Coruña’).
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Spatial conservation prioritization

We prioritized areas for conservation using the software Zonation 4.0 (Moilanen and
Kujala, 2006). Zonation can handle large data sets (Kremen et al., 2008) and provides a
priority ranking over the entire landscape rather than satisfying a specific target. The
ranking is produced by iteratively discarding locations (grid cells) with the lowest
conservation values, retaining the ones with the highest conservation value through-
out the process (Di Minin and Moilanen, 2012; Moilanen et al., 2005).

We used the additive-benefit function (ABF), which directly sums up the conserva-
tion value across features (Moilanen et al., 2011) and results in a reserve network
with high average performance across all features (Arponen et al., 2005). The ABF
algorithm is appropriate for our study since we aim to identify areas representing
overall richness rather than core areas that lead to the equal representation of both
common and rare species or habitats. The algorithm accounts for the total and re-
maining distributions of features, and optional feature-weights can be implemented
(Di Minin and Moilanen, 2014). We equally weighted habitat types and bird species
distributions at the aggregate level to avoid prioritization biases due to the different
numbers of features contained within (e.g., combined weights for 137 bird species or
for 36 habitat types summed to 1). To exclude land uses that for administrative or
ecological reasons did not contribute to either overall conservation value or to the
expansion of protected areas (six classes of built-up area), we applied a cumulative
negative weight of -1 to these layers (Moilanen et al., 2011). These build up areas
where selected according to the ETE classification category "J" (J1-J6), which include
buildings in cities and villages, industrial sites, transport networks, artificial water
structures and waste deposits.

Performance curves were produced with the R package ‘zonator’ (Lehtomäki, 2016-
2018). These curves show the proportion of the original occurrence of features re-
maining in the landscape as a function of the proportion of the landscape that is lost
(Lehtomäki and Moilanen, 2013). The curves start at 1.0, where the entire distribution
of features is represented in the full landscape, and end at 0.0, where the entire land-
scape is lost. Because we observed a wide spread in the performance curves of the
bird species, we explored potential underlying patterns related to their broad habitat
requirements. We grouped species into their preferred breeding habitat types (Table
A.2, Appendix A) to assess differences between groups and their performance when
the prioritization is accounting for all bird species. We also suspected that the range
size of feature types, in particular within bird species, influences their performance
in the prioritization. Specifically, we assumed that range restricted species would
perform better, since these species might be retained throughout many prioritization
iterations. Yet, this may only be the case when range-restricted features largely over-
lap with more widespread features. To explore this further, we calculated the AUC
(area under the curve) of each feature performance curve, and plotted these as a func-
tion of range size (Figure 4). For bird species we calculated range sizes by summing
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the Maxent probabilities, and for habitat types we summed the area in km2.

Surrogacy analyses

We evaluated the reciprocal surrogacy of bird species and habitat types, and assessed
the efficacy of the existing network of protected areas to protect these biodiversity
features. To test the surrogacy of the two feature types, we ran separate analyses
using one feature type as the surrogate and the other as the target. To do so, bird
species and habitat types were both included in each run, but positive weights (=1)
were only assigned to the surrogate, while the target was assigned a weight of 0.

We evaluated the surrogacy power of each feature type using the performance curves.
A performance curve by itself provides, however, little information, and for correct
interpretation it should be compared to an optimal and a random curve (Rodrigues
and Brooks, 2007). For instance, when testing whether habitat types are a good surro-
gate for bird species, the optimal curve is equivalent to the surrogacy of bird species
for themselves. The random curve in this scenario reflects the representation of bird
species expected in the absence of biological data, when ‘area’ is used as a surro-
gate (Rosenzweig, 1995). Qualitatively the surrogacy value can be assessed visually
by comparing the three curves. The closer the target curve is to the optimal curve,
the higher the surrogacy value. To quantify the surrogacy power, we calculated an
equivalent to the species accumulation index (SAI; Ferrier, 2002):

SAI = (S-R)/(O-R),

where S is the area under the target curve, R is the area under the random curve,
and O is the area under the optimal curve. The optimal curve was extracted from
the runs when targets were used as a surrogate themselves. To create the random
curve, we executed 100 surrogacy runs with randomly, uniformly distributed data as
a surrogate and bird species and habitat types as targets. We used the mean of the
corresponding target curves to calculate SAI.

Evaluation and potential expansion of protected area network

To evaluate the representation of habitat and birds in existing reserves, we specifi-
cally focussed on SPAs, national and natural parks, and biosphere reserves. We thus
excluded the SCI and SAC areas (Natura 2000 sites), since they are designed to protect
specific species or habitats, but do not necessarily protect others - or even biodiver-
sity as a whole. To evaluate the effectiveness of the current network in Romania,
we tested 1) how well current PAs represent areas of conservation concern for bird
species and habitat types, and 2) how much of the individual feature type’s distribu-
tions are represented within the current network. Furthermore, we 3) assessed which
areas should be prioritized when expanding the current conservation network.
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The analyses for 1) and 3) were based on a Zonation prioritization outputs, where
both bird species and habitat types had been considered simultaneously. We did
not differentiate between protection levels of the existing PAs. If PAs had been se-
lected indiscriminately, we expected that Zonation values within PAs would be uni-
formly distributed, as they are across the entire study region. We thus tested the
frequency of Zonation values within PAs against a uniform distribution using a Chi-
square test. For 2) we summarized the distribution of bird species and habitat types
within current PAs as a proportion of their total distribution via boxplots (Figure A.3,
Appendix).

To identify potential areas that should be prioritized when expanding the current
network of PAs, we performed a mask analysis (Moilanen et al., 2014). In this anal-
ysis, current PAs are included as a mask layer, and are assigned a high rank (=1) in
the final prioritization map. As such, the next highly ranked areas outside protected
areas can be identified as potential expansion areas that represent bird and habitat
diversity well.

FIGURE 1: Study region with Zonation ranking based on bird species and habitat type data without (a)
and with (b) considering currently protected areas (mask analysis). Colors indicate importance ranking
scores for conservation, with 0 meaning lowest importance and 1 meaning highest importance. Built-up
areas are indicated in white and were excluded from prioritization. Purple in panel (b) indicates current
protected areas.

Results

Spatial conservation prioritization

Both the separate and combined prioritization using bird species and habitat types re-
sulted in broadly similar patterns, with highly ranked areas in the Carpathian Moun-
tains, river valleys and parts of the Danube Delta. However smaller-scale differences
are apparent, in particular with respect to the size and clustering of those areas (Fig-
ure A.1, Appendix A, Figure 1a).
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The overall performance of bird species for themselves was rather low (AUC=0.65,
area under the bird performance curve) (Figure 2a, Table A.1, Appendix A), but we
observed considerable differences between groups based on breeding habitat (Table
A.2, Appendix A). Wetland and shore-breeders were best retained through the rank-
ing process, followed by those breeding in “forest to (dense) woodland” areas (Figure
3). In contrast, birds breeding in “arable land, open woodland to grassland” or being
“generalist and close to humans” were lost much more quickly (Figure 3). To explore
this further, we plotted each species’ performance as a function of its range size (Fig-
ure 4, Table A.2, Appendix A), and found a clear negative trend. “Wetland and shore”
breeders include more range-restricted species compared to other groups and at the
same time performed best in the prioritization, whereas forest, generalist and grass-
land birds overall have larger ranges, and performed worst in the prioritization. In
addition, the distributions of wetland and shore breeders often overlap with those of
other groups, those resulting in areas of high species richness that are preferentially
prioritized by the ABF algorithm (Figure A.2, Appendix A).

Habitat types were generally retained well throughout the prioritization process
(AUC=0.9, area under the habitat surrogate curve) (Figure 2b, Table A.1, Appendix
A). We observed that features with smaller ranges were retained the longest (Figure
4, Table A.3, Appendix A).

FIGURE 2: Performance and surrogacy curves quantifying the average proportion of original feature
distributions represented as landscape is lost. Built-up areas were negatively weighted and hence
excluded from the prioritization (lower dashed line). The area between the target curve and the random
curve divided by the area between the optimal curve and random curve represents the efficacy of the
surrogate (SAI; Species accumulation index). In panel (a) bird species were used as a surrogate for habitat
types and in (b) habitats were used as a surrogate for birds.
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Surrogacy analyses

Birds were a moderately good surrogate for habitats (SAI = 0.60). Interestingly, birds
represented habitats better than themselves (Figure 2a), although as shown above
this is only true for the representation of all birds combined, and there are large dif-
ferences between bird groups (Figure 3). The reciprocal representation of habitats for
birds was less effective (SAI = 0.44; Figure 2b).

Evaluation of protected areas and identification of expansion regions

We found that the Zonation values within current PAs, when both habitat types and
bird species were considered, differ significantly from a uniform distribution, with an
overrepresentation of higher values (Chi2 test, Chi2 = 29289, df = 9, p-value < 2.2e-16)
(Figure A.3a, Appendix A).

FIGURE 3: Performance curves for bird species split by
breeding habitats. The solid line is the average
performance curve of all bird species used in the
surrogacy approach. Built-up areas were negatively
weighted and hence excluded from the prioritization
(lower dashed line).

These results suggest that current
PAs generally comprise areas of
high conservation value better than
would be expected based on a
random assignment of areas for
conservation. However, current
PAs also comprise a considerable
amount of land surface area with
relatively low conservation values
based on bird and habitat diver-
sity, suggesting that improvements
could be made.
Habitat types are relatively well
represented in the current pro-
tected areas network (Figure A.3c,
Appendix A), with the exception
of grassland, heathland and wood-
land habitats. Among the breeding groups, generalist and grassland breeders are on
average represented less well than expected under a random assignment, although
in the grassland breeding group much variation between the species can be observed
(Figure A.3b, Appendix A). The mask analysis highlighted transition areas from high-
land to lowland regions, such as along the northern Carpathian Mountains, the east-
ern foothills of the Carpathian Mountains, and the eastern part of the Apuseni Moun-
tains (Figure 1b) as particularly important expansion sites for bird and habitat con-
servation.
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FIGURE 4: The Zonation performance of individual features (AUC) as a function of its corresponding
range size. (a) Individuals bird species, belonging to one of the four breeding habitat groups. Green
triangle = forest to (dense) woodland; grey cross = generalist and close to humans; yellow square = arable
land, open woodland to grassland; blue square = wetland and shores. The values for the range sizes of
bird species were computed by adding up Maxent species distribution values. (b) Individual habitat
types.

Discussion

The necessity to rely on surrogates for conservation prioritization raises the ques-
tion of how effective they are. Here we evaluated the mutual surrogacy power of
bird species and habitat types in Romania, an area in Europe with high biodiver-
sity, and demonstrated that neither birds nor habitat types are effective surrogates of
one another. Birds represented 60% of habitat conservation priorities, while habitats
were less effective at representing bird conservation priorities (44%). These results
are concordant with studies in other regions suggesting to use more than one type
of surrogate for conservation prioritization (Bonn and Gaston, 2005; Di Minin and
Moilanen, 2014; Lombard et al., 2003). We also found that existing protected areas
in Romania capture areas of high conservation value for both biodiversity features
better than expected at random, but could potentially be designed more effectively
and more efficiently. Finally, we identified additional areas that should be prioritized
in case the existing network were to be expanded under the European Union Biodi-
versity Strategy to 2030, or where conservation strategies for conserving avian and
habitat diversity on private lands could be incentivized.

Bird species as a surrogate

The effectiveness of 137 breeding bird species as a surrogate for habitats was ∼ 60%
of that of habitats for themselves (Figure 2a). Thus, in the absence of other data,
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birds could represent habitat types better than random, but only to a limited extent.
These results appear robust because we included many bird species, breeding in a
wide variety of habitats (Table A.1, Appendix A), thus covering the existing habitat
diversity quite well. Our results corroborate other studies that found that taxonomic
groups are poor surrogates for one another (for other taxonomic groups, e.g. Billeter
et al., 2008; Di Minin and Moilanen, 2014; Franco et al., 2009; Larsen et al., 2012), and
should be used cautiously as surrogates for habitat diversity.

Interestingly, when prioritizing bird species only (Figure 3) we found that wetland
and shore birds were much better represented than forest, grassland, and general-
ist species. This unexpected result corroborates the focal areas of the Bird Direc-
tive, which demands particular attention to wetland species (Commission, 2009), Art
4 (2)). A potential explanation for this representation bias is the emphasis of the
additive-benefit function (ABF) on high average performance across all features - in
the case of bird species, areas with high species richness (Arponen et al., 2005) - com-
bined with differences in range sizes between the bird groups (Franco et al., 2009;
Moilanen et al., 2005). We found that species richness was highest in areas where the
distributions of wetland-breeding species overlapped with those of species breeding
in other types of habitat (Figure A.2, Appendix A). Because wetland birds generally
have small ranges due to the limited availability of suitable habitat (Tozer et al., 2010),
Zonation prioritized the species-rich wetlands over areas with fewer species, where
more widely distributed species occur (Figure 4). These results are in line with simi-
lar patterns in small versus large-range moths (Lund and Rahbek, 2002), butterflies,
reptiles, and amphibians (Franco et al., 2009). The representation bias in our study
may be exacerbated by associations of generalist species to human-dominated land-
scapes. Because we negatively weighted and hence excluded built-up areas from the
prioritization, species occurring in those areas may be underrepresented in the final
results.

Habitats as a surrogate

Habitats as a surrogate for birds were only 44% as effective as the maximum possi-
ble. This result is consistent with other studies showing that environmental diversity
may not a good proxy for the diversity of small vertebrates (including bird species)
(Bonn and Gaston, 2005; Popescu et al., 2020). Yet, habitats represented birds bet-
ter than random (Figure 2b), potentially due to the influence of habitat structure on
bird species occurrence and distributions (Mac Nally et al., 2002), and may therefore
have merit for prioritization when no other data are available. It remains unclear
whether higher spatial and thematic resolutions – in particular more detailed habitat
classifications – could improve the mutual representation.

Previous studies suggested that pre-classified environmental data such as the ETE
dataset (Agency, 2016) perform better as a surrogate for species diversity than con-
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tinuous environmental variables (e.g. Bonn and Gaston, 2005; Grantham et al., 2010;
Lombard et al., 2003; Oliver et al., 2004). Thus, easily obtained environmental data
could act as a biodiversity surrogate for other levels of biodiversity (Beier et al., 2015;
Engelbrecht et al., 2016). Our results suggest however that habitat classes performed
relatively poorly at representing bird biodiversity, and ideally should not be used on
their own in prioritization efforts. Instead, combining taxonomic and environmental
surrogates could increase the surrogacy power for the protection of overall biodi-
versity (Di Minin and Moilanen, 2014; Lombard et al., 2003), but a single taxonomic
group may not suffice. For instance, habitats and birds did not perform well in rep-
resenting amphibians and reptiles in other areas (Araújo et al., 2001; Grantham et al.,
2010; Mac Nally et al., 2002). Thus, we recommend to combine environmental and
taxonomic surrogates, preferentially from multiple taxonomic groups.

Representation in existing protected areas and conservation

implications

We found that a considerable fraction of PAs is located in areas with high conser-
vation values. It is important to stress, however, that our evaluations by no means
suggest that the current network of PAs is sufficient. Around 23% of Romania’s land
surface area is currently under protection, and improvements to the protected area
network may be necessary (Iojă et al., 2010; Niculae et al., 2017). Large ecoregions
and several widespread bird and mammal species may be protected sufficiently well,
but smaller ecoregions, as well as invertebrate and plant species are for example un-
derrepresented in the existing Natura 2000 network (Iojă et al., 2010). The current
network of PAs consists of reserves designed for various purposes. In our evaluation,
we specifically focused on those that have been designed to protect birds, habitats, or
biodiversity as a whole, i.e. SPAs, national and natural parks, and biosphere reserves.
We found that these PAs represent areas of high bird or habitat conservation value
better than a random assignment of areas for protection. However, habitats were bet-
ter represented than birds (Figure A.3b and c, Appendix A). We also found that rare
habitats are well represented, which is consistent with results for the Czech Republic
(Pechanec et al., 2018). These habitats typically are wetlands and shores, large ar-
eas of which are protected in the Danube Delta. Surprisingly, the representation of
grassland and woodland habitats was rather poor. A likely reason for this result is
the large area of wood- and grassland habitats in Romania, only part of which can
be represented in PAs (Figure A.4, Appendix A). In contrast, rare habitats such as
littoral areas are represented at high percentages, because they can be entirely con-
tained within a fraction of the total land surface area. Despite the fact that current PAs
capture important areas for conservation relatively well, a tail of areas with low con-
servation value can also be observed (Fig. A.3A). It remains unclear whether these
areas may be important for other reasons, such as for other taxonomic groups, or as
corridors between areas of high conservation value. Yet, the presence of areas with
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low conservation value also suggests that improvements in both the efficiency and
efficacy of the network may be possible. To this end, we identified areas that should
be prioritized based on bird and habitat diversity in a scenario of future expansions
of the current network. A recent study suggests that such improvements may best
be developed at the level of Biogeographical Regions rather than at the national level
(Miu et al., 2020). Protected areas are a crucial component of conservation, but the
identification and designation of PAs is often a lengthy and difficult process. In ad-
dition, even when the new targets for the EU Biodiversity Strategy are met, 70% of
the land surface area will remain unprotected. Hence, effective conservation also de-
pends on the protection of biodiversity outside of PAs. To do so, the development of
incentives for targeted management practices to retain high diversity of species and
habitats should be prioritized (Manolache et al., 2020), yet scientific research that can
support management decision is largely lacking (Nita et al., 2019).

Our study adds to the body of evidence that taxonomic and environmental surro-
gates represent one another only to a limited extent. Hence, the use of just one type
of surrogate likely does not capture the broad patterns of biodiversity sufficiently
well. This situation is less than ideal, as conservation measures respond to the biodi-
versity crisis, with little time to collect data on the distribution of species or habitats.
Although these data are becoming increasingly available, our results highlight the
need for investing in survey and monitoring schemes in countries such as Romania,
where data still remains relatively scarce. Our study also presents an example of the
importance of scientific research in informing conservation strategies as a stakeholder
than often remains underrated (Opermanis et al., 2014; Popescu et al., 2014).
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Appendix A. Supplementary data

FIGURE A.1: Study region with Zonation ranking based on (a) Bird species and (b) habitat types. Colors
indicate importance ranking scores for conservation, with 0 meaning lowest importance and 1 meaning
highest importance. Built-up areas are indicated in white and were excluded from prioritization.

FIGURE A.2: Overlapping bird species occurrences per breeding habitat group: (a) forests to (dense)
woodland, (b) generalist and close to humans, (c) arable land, open woodland to grasslands, and (d)
wetlands and shores. Red indicates species-rich areas; white to grey indicate no or low overlap of species
occurrences.
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FIGURE A.3: Barplot of conservation values of areas in current reserves. The horizontal dashed line
indicates the expected frequency of each conservation value (freq = 3338.6), had the current PAs be
selected at random. The high frequencies of high conservation values, combined with the low frequencies
of low conservation values suggest that current PAs were selected efficiently. (b-c) Box-and-whisker plots
for birds (b) and habitats (c) showing the proportion of the total distribution of each group of feature
types that is represented in the existing protected area network. A dotted line indicates the random
expectation for the representation of each feature class based on the amount of protected area in Romania
(∼ 23% of land surface area).

FIGURE A.4: Study region with (a) forest habitats and (b) grassland habitats highlighted. The used
protected area network is highlighted in grey.



Appendix A 

 

Table A.1: AUC values for all the performance curves within each of the surrogacy analyses. 

 

Bird species as surrogate Habitat types as surrogate 

Curve AUC Curve AUC 

Surrogate: Bird species 0.6563234 Surrogate: Habitat types 0.901305 

Target: Habitat types 0.7418273 Target: Bird species 0.5609637 

Optimal habitat curve 0.901305 Optimal bird curve 0.6563234 

Random habitat curve 0.4992973 Random bird curve 0.4846996 

 

Table A.2 – Bird species included in prioritization analyses, sorted by breeding habitat. For each species, the common name, breeding habitat, conservation 

status, range size and AUC of the Zonation performance curve, as well as the resolution of the species distribution maps and the regularization multiplier for each 

species in order to reduce the model complexity are provided. 

species common name breeding habitat conservatio

n status 

range size AUC resolution regularization 

multiplier 

Accipiter brevipes Levant sparrowhawk forest to (dense) woodland least concern 8061.57016 0.74990883 1km 1 

Accipiter gentilis Northern goshawk forest to (dense) woodland least concern 77534.98407 0.59119630 1km 1 

Accipiter nisus Eurasian sparrowhawk forest to (dense) woodland least concern 90978.51613 0.58160768 1km 1 

Acrocephalus agricola  Paddyfield warbler wetlands and shores least concern 121.65638 0.99784597 1km 1 

Acrocephalus arundinaceus  Great reed warbler wetlands and shores least concern 39035.58315 0.59233947 1km 1 

Acrocephalus palustris  Marsh warbler arable land, open woodland 

to grassland 

least concern 43637.63396 0.54630492 1km 1 

Acrocephalus schoenobaenus Sedge warbler wetlands and shores least concern 12035.75636 0.73894781 1km 1 

Acrocephalus scirpaceus  Eurasian reed warbler wetlands and shores least concern 6736.38939 0.86876331 1km 1 

Aegithalos caudatus  Long-tailed tit forest to (dense) woodland least concern 57872.27831 0.59468770 1km 1 

Alauda arvensis  Eurasian skylark arable land, open woodland 

to grassland 

least concern 87559.61642 0.48238245 1km 1 

Alcedo atthis  Common kingfisher wetlands and shores least concern 9597.15719 0.81748182 1km 1 

Anas platyrhynchos Mallard wetlands and shores least concern 63027.82016 0.57953751 2km 1 

Anas strepera  Gadwall wetlands and shores least concern 2874.35555 0.92502952 2km 1 

Anser anser  Greylag goose wetlands and shores least concern 2058.04150 0.92071810 2km 1 
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Anthus campestris Tawny pipit arable land, open woodland 

to grassland 

least concern 50424.37797 0.50528700 1km 1 

Anthus spinoletta  Water pipit arable land, open woodland 

to grassland 

least concern 968.85526 0.87441015 1km 1 

Anthus trivialis  Tree pipit arable land, open woodland 

to grassland 

least concern 63217.79347 0.58182476 1km 2 

Aquila pomarina Lesser spotted eagle arable land, open woodland 

to grassland 

least concern 55005.77685 0.58658109 1km 1 

Asio otus Long-eared owl arable land, open woodland 

to grassland 

least concern 61755.49970 0.55281792 1km 1 

Athene noctua Little owl generalist and close to 

humans 

least concern 51542.02505 0.56806267 1km 1 

Bonasa bonasia Hazel grouse forest to (dense) woodland least concern 10857.52089 0.69164888 1km 1 

Bubo bubo Eurasian eagle-owl arable land, open woodland 

to grassland 

least concern 14583.92646 0.69569954 1km 1 

Burhinus oedicnemus Eurasian stone-curlew arable land, open woodland 

to grassland 

least concern 8085.43081 0.71756006 1km 1 

Buteo buteo Common buzzard arable land, open woodland 

to grassland 

least concern 116307.1436

1 

0.54823333 1km 1 

Buteo rufinus Long-legged buzzard arable land, open woodland 

to grassland 

least concern 34836.83075 0.55854096 1km 1 

Calandrella brachydactyla  Greater short-toed lark arable land, open woodland 

to grassland 

least concern 7761.67829 0.47625058 1km 1 

Caprimulgus europaeus European nightjar arable land, open woodland 

to grassland 

least concern 40532.75741 0.61605196 1km 1 

Carduelis cannabina  Common linnet arable land, open woodland 

to grassland 

least concern 52845.10863 0.59140200 1km 1 

Carduelis carduelis  European goldfinch generalist and close to 

humans 

least concern 86726.94063 0.58135138 1km 1 

Carduelis chloris  European greenfinch generalist and close to 

humans 

least concern 70295.94246 0.60629425 1km 1 

Carduelis spinus  Eurasian siskin forest to (dense) woodland least concern 2839.96055 0.85193304 1km 1 

Certhia brachydactyla  Short-toed treecreeper forest to (dense) woodland least concern 2013.28922 0.83382209 1km 1 

Certhia familiaris  Eurasian treecreeper forest to (dense) woodland least concern 44435.41463 0.60044900 1km 1 

Charadrius alexandrinus  Kentish plover wetlands and shores least concern 402.80379 0.98700321 2km 1 

Charadrius dubius  Little ringed plover wetlands and shores least concern 11437.19756 0.76026444 1km 1 

Cinclus cinclus  White-throated dipper wetlands and shores least concern 9042.78134 0.65070329 1km 2 

Coccothraustes coccothraustes  Hawfinch forest to (dense) woodland least concern 50998.87105 0.57640894 1km 1 
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Columba livia domestica  Domestic pigeon generalist and close to 

humans 

least concern 54317.06182 0.56837325 1km 1 

Columba oenas  Stock dove arable land, open woodland 

to grassland 

least concern 21185.92176 0.57768825 1km 1 

Coracias garrulus  European roller arable land, open woodland 

to grassland 

least concern 24555.93468 0.58215295 1km 1 

Coturnix coturnix Common quail arable land, open woodland 

to grassland 

least concern 83034.01921 0.50421482 1km 1 

Crex crex Corn crake arable land, open woodland 

to grassland 

least concern 50193.95260 0.54882257 1km 1 

Cuculus canorus  Common cuckoo arable land, open woodland 

to grassland 

least concern 120210.3499

7 

0.54176096 1km 1 

Cygnus olor  Mute swan wetlands and shores least concern 7537.50276 0.87129993 2km 1 

Delichon urbicum  Common house martin generalist and close to 

humans 

least concern 43626.40116 0.62783735 1km 1 

Dendrocopos leucotos White-backed woodpecker forest to (dense) woodland least concern 22250.06326 0.58679011 1km 1 

Dendrocopos major Great spotted woodpecker forest to (dense) woodland least concern 78391.42973 0.59522897 1km 1 

Dendrocopos medius Middle spotted woodpecker forest to (dense) woodland least concern 32955.40140 0.61298939 1km 1 

Dendrocopos minor Lesser spotted woodpecker forest to (dense) woodland least concern 38934.26162 0.63192121 1km 1 

Dendrocopos syriacus Syrian woodpecker generalist and close to 

humans 

least concern 50665.64839 0.60917411 1km 1 

Dryocopus martius Black woodpecker forest to (dense) woodland least concern 54417.02676 0.61511955 1km 1 

Emberiza cia  Rock bunting arable land, open woodland 

to grassland 

least concern 2271.28839 0.76424958 1km 1 

Emberiza cirlus  Cirl bunting arable land, open woodland 

to grassland 

least concern 1344.30056 0.83244702 1km 1 

Emberiza citrinella  Yellowhammer arable land, open woodland 

to grassland 

least concern 73230.19592 0.56465259 1km 1 

Emberiza hortulana  Ortolan bunting arable land, open woodland 

to grassland 

least concern 46165.78880 0.48603792 1km 1 

Emberiza melanocephala  Black-headed bunting arable land, open woodland 

to grassland 

least concern 16282.96982 0.42695403 1km 1 

Emberiza schoeniclus  Common reed bunting wetlands and shores least concern 5717.80150 0.87258025 1km 1 

Erithacus rubecula  European robin forest to (dense) woodland least concern 73091.24488 0.59193831 1km 1 

Falco subbuteo Eurasian hobby arable land, open woodland 

to grassland 

least concern 80250.96856 0.57867657 1km 1 

Falco tinnunculus Common kestrel arable land, open woodland 

to grassland 

least concern 101869.9298
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0.52123089 1km 1 
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Ficedula parva  Red-breasted flycatcher forest to (dense) woodland least concern 9690.38547 0.59766073 1km 1 

Ficedula semitorquata  Semicollared flycatcher forest to (dense) woodland least concern 187.86025 0.98597321 1km 1 

Fringilla coelebs  Common chaffinch forest to (dense) woodland least concern 84296.54300 0.58662739 1km 1 

Fulica atra  Eurasian coot wetlands and shores least concern 10633.35631 0.84990775 1km 1 

Galerida cristata  Crested lark arable land, open woodland 

to grassland 

least concern 40207.25027 0.56719285 1km 1 

Gallinula chloropus  Common moorhen wetlands and shores least concern 14865.47427 0.78560910 1km 1 

Garrulus glandarius  Eurasian jay forest to (dense) woodland least concern 78083.09732 0.58596724 1km 1 

Hieraaetus pennatus Booted eagle arable land, open woodland 

to grassland 

least concern 21325.78723 0.65608778 1km 1 

Himantopus himantopus  Black-winged stilt wetlands and shores least concern 7601.28856 0.82358760 2km 1 

Hippolais icterina  Icterine warbler forest to (dense) woodland least concern 4734.55775 0.76345323 1km 1 

Hippolais pallida  Eastern olivaceous warbler arable land, open woodland 

to grassland 

least concern 636.41807 0.88715480 1km 1 

Hirundo rustica  Barn swallow generalist and close to 

humans 

least concern 92684.57095 0.54812916 1km 1 

Ixobrychus minutus  Little bittern wetlands and shores least concern 9672.45646 0.83022420 1km 1 

Lanius collurio  Red-backed shrike arable land, open woodland 

to grassland 

least concern 105283.6251

9 

0.53238743 1km 2 

Lanius minor  Lesser grey shrike arable land, open woodland 

to grassland 

least concern 49545.80656 0.56142450 1km 1 

Locustella fluviatilis River warbler wetlands and shores least concern 9883.75889 0.68186192 1km 1 

Locustella luscinioides  Savi's warbler wetlands and shores least concern 13024.20543 0.78439736 1km 1 

Loxia curvirostra Red crossbill forest to (dense) woodland least concern 12968.37490 0.73620076 1km 2 

Lullula arborea Woodlark arable land, open woodland 

to grassland 

least concern 53795.41696 0.59298697 1km 1 

Luscinia luscinia  Thrush nightingale arable land, open woodland 

to grassland 

least concern 13674.82363 0.57008231 1km 1 

Luscinia megarhynchos Common nightingale arable land, open woodland 

to grassland 

least concern 51973.65397 0.58210337 1km 1 

Melanocorypha calandra Calandra lark arable land, open woodland 

to grassland 

least concern 10370.97087 0.46776981 1km 1 

Merops apiaster  European bee-eater arable land, open woodland 

to grassland 

least concern 56258.58013 0.60406792 1km 1 

Motacilla alba White wagtail generalist and close to 

humans 

least concern 80438.03822 0.61047234 1km 1 

Motacilla cinerea  Grey wagtail wetlands and shores least concern 23852.95797 0.61261186 1km 1 
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Motacilla flava  Western yellow wagtail arable land, open woodland 

to grassland 

least concern 59462.76328 0.46563968 1km 1 

Nucifraga caryocatactes  Spotted nutcracker forest to (dense) woodland least concern 7249.30683 0.77635845 1km 1 

Oenanthe isabellina  Isabelline wheatear arable land, open woodland 

to grassland 

least concern 1217.57581 0.88971704 1km 1 

Oenanthe oenanthe  Northern wheatear arable land, open woodland 

to grassland 

least concern 45487.63231 0.59425191 1km 1 

Oriolus oriolus Eurasian golden oriole forest to (dense) woodland least concern 89862.92670 0.56965290 1km 1 

Otus scops Eurasian scops owl arable land, open woodland 

to grassland 

least concern 55827.45031 0.57201477 1km 1 

Parus caeruleus  Eurasian blue tit forest to (dense) woodland least concern 62848.64603 0.59909183 1km 1 

Parus cristatus  European crested tit forest to (dense) woodland least concern 8947.17371 0.74419417 1km 1 

Parus lugubris  Sombre tit arable land, open woodland 

to grassland 

least concern 3738.45119 0.74668054 1km 1 

Parus major  Great tit generalist and close to 

humans 

least concern 104681.2629

2 

0.56798917 1km 1 

Parus montanus  Willow tit forest to (dense) woodland least concern 14259.97792 0.69191956 1km 1 

Parus palustris  Marsh tit forest to (dense) woodland least concern 51336.50316 0.56590091 1km 1 

Passer domesticus  House sparrow generalist and close to 

humans 

least concern 62745.54466 0.57630376 1km 1 

Passer hispaniolensis Spanish sparrow arable land, open woodland 

to grassland 

least concern 14484.03502 0.58587226 1km 1 

Phoenicurus ochruros  Black redstart generalist and close to 

humans 

least concern 41834.92825 0.61907826 1km 1 

Phylloscopus collybita  Common chiffchaff forest to (dense) woodland least concern 71431.24855 0.59370802 1km 1 

Phylloscopus sibilatrix  Wood warbler forest to (dense) woodland least concern 25237.17963 0.59518699 1km 1 

Pica pica  Eurasian magpie arable land, open woodland 

to grassland 

least concern 99061.75709 0.51677079 1km 1 

Picoides tridactylus Eurasian three-toed 

woodpecker 

forest to (dense) woodland least concern 6997.02729 0.76442532 1km 1 

Picus canus Grey-headed woodpecker forest to (dense) woodland least concern 54437.01940 0.60940213 1km 1 

Picus viridis European green woodpecker arable land, open woodland 

to grassland 

least concern 52897.80818 0.59607385 1km 1 

Podiceps cristatus  Great crested grebe wetlands and shores least concern 7371.90259 0.85279854 2km 1 

Prunella collaris  Alpine accentor arable land, open woodland 

to grassland 

least concern 235.86942 0.99085294 1km 1 

Prunella modularis  Dunnock arable land, open woodland 

to grassland 

least concern 5153.02586 0.77200520 1km 1 
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Pyrrhula pyrrhula  Eurasian bullfinch forest to (dense) woodland least concern 7230.06574 0.76103579 1km 1 

Rallus aquaticus  Water rail wetlands and shores least concern 5556.81137 0.86233389 1km 1 

Recurvirostra avosetta Pied avocet wetlands and shores least concern 3202.83744 0.86916668 2km 1 

Regulus regulus  Goldcrest forest to (dense) woodland least concern 15427.99648 0.69644053 1km 1 

Saxicola rubetra  Whinchat arable land, open woodland 

to grassland 

least concern 29109.11443 0.52158472 1km 1 

Saxicola torquatus  African stonechat arable land, open woodland 

to grassland 

least concern 52718.00252 0.55167082 1km 1 

Serinus serinus  European serin generalist and close to 

humans 

least concern 9720.81702 0.66615576 1km 1 

Sitta europaea  Eurasian nuthatch forest to (dense) woodland least concern 64966.35194 0.57578479 1km 1 

Streptopelia decaocto Eurasian collared dove generalist and close to 

humans 

least concern 55746.31333 0.56628207 1km 1 

Streptopelia turtur  European turtle dove arable land, open woodland 

to grassland 

least concern 62021.97272 0.59983583 1km 1 

Strix aluco Tawny owl forest to (dense) woodland least concern 53225.06837 0.57489893 1km 1 

Strix uralensis Ural owl forest to (dense) woodland least concern 32850.95119 0.59425224 1km 1 

Sturnus vulgaris Common starling generalist and close to 

humans 

least concern 100143.4893

5 

0.54204224 1km 1 

Sylvia atricapilla  Eurasian blackcap forest to (dense) woodland least concern 83074.98241 0.59172058 1km 2 

Sylvia communis  Common whitethroat arable land, open woodland 

to grassland 

least concern 89801.92144 0.50865592 1km 2 

Sylvia curruca  Lesser whitethroat arable land, open woodland 

to grassland 

least concern 83056.52531 0.59982587 1km 1 

Sylvia nisoria  Barred warbler arable land, open woodland 

to grassland 

least concern 28279.00220 0.66816209 1km 2 

Tachybaptus ruficollis  Little grebe wetlands and shores least concern 15069.00180 0.69765523 2km 1 

Tadorna ferruginea  Ruddy shelduck wetlands and shores least concern 1481.95172 0.90693381 2km 1 

Tadorna tadorna  Common shelduck wetlands and shores least concern 1028.39293 0.93484062 2km 1 

Troglodytes troglodytes  Eurasian wren forest to (dense) woodland least concern 38787.66051 0.55674206 1km 1 

Turdus merula  Common blackbird generalist and close to 

humans 

least concern 76184.82882 0.58633076 1km 1 

Turdus philomelos Song thrush forest to (dense) woodland least concern 71071.01128 0.59438408 1km 1 

Turdus torquatus  Ring ouzel arable land, open woodland 

to grassland 

least concern 2106.73183 0.85863618 1km 1 

Turdus viscivorus  Mistle thrush arable land, open woodland 

to grassland 

least concern 48748.68883 0.56797913 1km 2 
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Tyto alba Western barn owl arable land, open woodland 

to grassland 

least concern 13425.57259 0.55469077 1km 1 

Upupa epops  Eurasian hoopoe arable land, open woodland 

to grassland 

least concern 64782.17531 0.60267177 1km 1 

Vanellus vanellus  Northern lapwing arable land, open woodland 

to grassland 

least concern 44779.79424 0.53426956 2km 1 

 

 

Table A.3 – Habitat types included in prioritization analyses (sorted by ETE abbreviation). For each habitat type, the abbreviation, the habitat name, range size 

and AUC of the Zonation performance curve are provided. Habitat types in bold where excluded from surrogacy analyses, due to their built-up character (with 

weight=0 in surrogacy analyses).  

habitat type habitat name own habitat code range size AUC 
A100 Littoral undetermined substrate with no sea ice presence 41 68.36000 0.99772770 

A105 Littoral sand with no sea ice presence 42 0.30000 0.99983000 

A200 Infralittoral undetermined substrate with no sea ice presence 32 5.90000 0.99947803 

A205 Infralittoral sand with no sea ice presence 33 138.39000 0.99867043 

A206 Infralittoral mud with no sea ice presence 35 1.78000 0.99981548 

A306 Circalittoral mud with no sea ice presence 36 7.61000 0.99969668 

B1 Coastal dunes and sandy shores 34 5.10000 0.99955978 

B2 Coastal shingle 37 13.71000 0.99824092 

C1 Surface standing waters 6 1560.24000 0.91355051 

C2 Surface running waters 2 1597.55000 0.87395398 

C3 Littoral zone of inland surface waterbodies 19 1621.58000 0.94670255 

D1 Raised and blanket bogs 40 0.03000 0.99983000 

D4 Base-rich fens and calcareous spring mires 28 1.72000 0.99968006 

D5 Sedge and reedbeds 8 1249.69000 0.92751736 

D6 Inland saline and brackish marshes and reedbeds 38 0.68000 0.99979106 

E1 Dry grasslands 11 6374.13999 0.78522941 

E2 Mesic grasslands 4 29647.62997 0.50813865 

E3 Seasonally wet and wet grasslands 27 3118.05000 0.82308049 

E4 Alpine and subalpine grasslands 22 1586.63000 0.95684484 

E6 Inland salt steppes 30 115.01000 0.98268017 

E7 Sparsely wooded grasslands 16 25.43000 0.97878650 

F2 Arctic 23 452.03000 0.98696866 

5
8

3
C

H
A

P
T

E
R

II



F3 Temperate and mediterranean-montane scrub 24 97.41000 0.99374123 

F4 Temperate shrub heathland 25 68.68000 0.99090658 

F5 Maquis 31 0.12000 0.99983000 

FB Shrub plantations 7 6060.00999 0.73127128 

G1 Broadleaved deciduous woodland 3 58187.91002 0.54242909 

G3 Coniferous woodland 14 13062.37999 0.81423318 

G4 Mixed deciduous and coniferous woodland 10 7558.81999 0.76408771 

G5 Lines of trees 5 2767.76999 0.81223679 

H2 Screes 13 347.36000 0.93751919 

H3 Inland cliffs 12 87.41000 0.99084328 

H5 Miscellaneous inland habitats with very sparse or no vegetation 17 110.99000 0.96018654 

I1 Arable land and market gardens 1 90784.89003 0.34219191 

I2 Cultivated areas of gardens and parks 26 130.16000 0.90673659 

J1 Buildings of cities 9  -  - 

J2 Low density buildings 15  -  - 

J3 Extractive industrial sites 21  -  - 

J4 Transport networks and other constructed hard-surfaced areas 18  -  - 

J5 Highly artificial man-made waters and associated structures 20  -  - 

J6 Waste deposits 29  - -  

X2_3 Coastal lagoons 39 666.38000 0.98499521 
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60 3 CHAPTER II

Appendix B. Supplementary data

Bird species distribution modeling

For the species distribution models, we used presence data from the years 2006-
2018 (occasional observations included) originating from three data bases: Ornito-
data (Ornitodata, 2018), OpenBirdMaps (OpenBirdMaps, 2018) and Rombird (Rom-
bird, 2018), and an initial set of 172 environmental variables. To reduce redundancy
and autocorrelation between the environmental variables, we identified pairs of vari-
ables with a Pearson correlation coefficient > 0.8, and excluded the one with the high-
est correlations with other variables. Furthermore, habitat data was obtained from
multiple sources, but in the final covariates we selected only the set that performed
the best in the preliminary models. Hence our final data set consisted of 73 variables
(Table B.1).

Climate variables were obtained from the CliMond repositories (Kriticos et al., 2012),
percentual habitat cover data from Corine Land Cover 2012, the Ecosystem types of
Europe from EUNIS (European Nature Information System). Information on pedo-
logical data were extracted from the European Soil Data Centre (Panagos et al., 2012)
and remote sensing data on vegetation from the Copernicus Global Land Service.
Furthermore, variables describing open areas, shrubs, woodlands and wetlands in
surrounding areas, and distance to water at the landscape level were derived from
Corine Land Cover 2012.

To reduce sampling bias caused by unequal coverage and the use of occasional ob-
servations, we resampled occurrence data. From every 1x1 km grid cell only one
observation was used, and remaining data were further rarefied by selecting a max-
imum of five presences in every grid cell of the ETRS89 LAEA 10x10 km grid. To
further reduce the effects of sampling bias, we created a bias file using simple spatial
interpolation of all observations, and used this in the model building process in Max-
Ent. We ran and averaged 100 models for each species with default parameters. For
some species model complexity was reduced by increasing the regularization multi-
plier from 1 to 2 (Table A.2, Appendix A) (Radosavljevic and Anderson, 2014).

Finally, we truncated the resulting maps using one of the threshold values offered by
MaxEnt. Because the thresholds are case specific and hard to select based only on
calculation only (Liu et al., 2013), threshold selection was done for each species using
expert opinion by the Romanian Atlas Committee, taking into account the omission
error and the distribution area.



Table B.1 – Environmental variables used for species distribution modeling. Variables marked in bold were included in our models, after highly cross-correlated 

variables (with Pearson correlation coefficient > 0.8) were omitted. 

Code Description Source 
alt altitudinea CliMond repositories  

Bio01 Annual mean temperature (°C) CliMond repositories  

Bio02 Mean diurnal temperature range (mean(period max-min)) (°C) CliMond repositories  

Bio03 Isothermality (Bio02 ÷ Bio07) CliMond repositories  

Bio04 Temperature seasonality (C of V) CliMond repositories  

Bio05 Max temperature of warmest week (°C) CliMond repositories  

Bio06 Min temperature of coldest week (°C) CliMond repositories  

Bio07 Temperature annual range (Bio05-Bio06) (°C) CliMond repositories  

Bio08 Mean temperature of wettest quarter (°C) CliMond repositories  

Bio09 Mean temperature of driest quarter (°C) CliMond repositories  

Bio10 Mean temperature of warmest quarter (°C) CliMond repositories  

Bio11 Mean temperature of coldest quarter (°C) CliMond repositories  

Bio12 Annual precipitation (mm) CliMond repositories  

Bio13 Precipitation of wettest week (mm) CliMond repositories  

Bio14 Precipitation of driest week (mm) CliMond repositories  

Bio15 Precipitation seasonality (C of V) CliMond repositories  

Bio16 Precipitation of wettest quarter (mm) CliMond repositories  

Bio17 Precipitation of driest quarter (mm) CliMond repositories  

Bio18 Precipitation of warmest quarter (mm) CliMond repositories  

Bio19 Precipitation of coldest quarter (mm) CliMond repositories  

Bio20 Annual mean radiation (W m-2) CliMond repositories  

Bio21 Highest weekly radiation (W m-2) CliMond repositories  

Bio22 Lowest weekly radiation (W m-2 CliMond repositories  

Bio23 Radiation seasonality (C of V) CliMond repositories  

Bio24 Radiation of wettest quarter (W m-2) CliMond repositories  

Bio25 Radiation of driest quarter (W m-2) CliMond repositories  

Bio26 Radiation of warmest quarter (W m-2) CliMond repositories  

Bio27 Radiation of coldest quarter (W m-2) CliMond repositories  

Bio28 Annual mean moisture index CliMond repositories  

Bio29 Highest weekly moisture index CliMond repositories  

Bio30 Lowest weekly moisture index CliMond repositories  

Bio31 Moisture index seasonality (C of V) CliMond repositories  

Bio32 Mean moisture index of wettest quarter CliMond repositories  
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Bio33 Mean moisture index of driest quarter CliMond repositories  

Bio34 Mean moisture index of warmest quarter CliMond repositories  

Bio35 Mean moisture index of coldest quarter CliMond repositories  

Bio36 First principal component of the first 35 Bioclim variables CliMond repositories  

Bio37 Second principal component of the first 35 Bioclim variables CliMond repositories  

Bio38 Third principal component of the first 35 Bioclim variables CliMond repositories  

Bio39 Fourth principal component of the first 35 Bioclim variables CliMond repositories  

Bio40 Fifth principal component of the first 35 Bioclim variables CliMond repositories  

aglim1 Code of the most important limitation to agricultural use of the STU. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

aglim2 Code of a secondary limitation to agricultural use of the STU. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

fao90fu Full soil code of the STU from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

parmado Code for dominant parent material of the STU. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

parmase Code for secondary parent material of the STU. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

slopedo Dominant slope class of the STU. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

slopese Secondary slope class of the STU. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

usedo Code for dominant land use of the STU. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

usese Code for secondary land use of the STU. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

vs Volume of stones. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

wm1 Code for normal presence and purpose of an existing water management system 

in agricultural land on more than 50% of the STU. 

European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

wr Dominant annual average soil water regime class of the soil profile of the STU. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

il Code for the presence of an impermeable layer within the soil profile of the 

STU. 

European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

pmh Parent material hydrogeological type. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

dr Depth to rock. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 
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ILSWE Index of Land Susceptibility to Wind Erosion 1981-2010 European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

desiccation Desiccation European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

andosol Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

arenosol Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

cambisol Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

chernozem Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

fluvisol Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

gleysol Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

greyzem Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

kastanozem Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

leptosol Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

luvisol Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

phaeozem Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

podzol Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

regosol Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

vertisol Soil tipe extracted from the 1990 FAO-UNESCO Soil Legend. European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

dist2water1km Distance to water Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div3_1_10 Forest in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div3_1_100 Forest in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 
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div3_1_20 Forest in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div3_1_50 Forest in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div3_2_10 shrub and/or herbaceous vegetation in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div3_2_100 shrub and/or herbaceous vegetation in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div3_2_20 shrub and/or herbaceous vegetation in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div3_2_50 shrub and/or herbaceous vegetation in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div3_3_10 open spaces with little or no vegetation Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div3_3_100 open spaces with little or no vegetation Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div3_3_20 open spaces with little or no vegetation Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div3_3_50 open spaces with little or no vegetation Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div4_1_10 inland wetlands in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div4_1_100 inland wetlands in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div4_1_20 inland wetlands in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div4_1_50 inland wetlands in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div4_2_10 coastal wetlands in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div4_2_100 coastal wetlands in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div4_2_20 coastal wetlands in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div4_2_50 coastal wetlands in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div5_1_10 inland waters in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 
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div5_1_100 inland waters in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div5_1_20 inland waters in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

div5_1_50 inland waters in surrounding area of x km Covariat derivat from Corine Land Cover - compiled and 

calculated by SOVON (Netherlands) 

eco_f0 Littoral rock and other hard substrata EUNIS: Ecosystem types of Europe 

eco_f10 Coastal lagoons EUNIS: Ecosystem types of Europe 

eco_f11 Coastal dunes and sandy shores EUNIS: Ecosystem types of Europe 

eco_f14 Surface standing waters EUNIS: Ecosystem types of Europe 

eco_f15 Surface running waters EUNIS: Ecosystem types of Europe 

eco_f16 Littoral zone of inland surface waterbodies EUNIS: Ecosystem types of Europe 

eco_f20 Base-rich fens and calcareous spring mires EUNIS: Ecosystem types of Europe 

eco_f21 Sedge and reedbeds, normally without free-standing water EUNIS: Ecosystem types of Europe 

eco_f23 Dry grasslands EUNIS: Ecosystem types of Europe 

eco_f24 Mesic grasslands EUNIS: Ecosystem types of Europe 

eco_f25 Seasonally wet and wet grasslands EUNIS: Ecosystem types of Europe 

eco_f26 Alpine and subalpine grasslands EUNIS: Ecosystem types of Europe 

eco_f28 Inland salt steppes EUNIS: Ecosystem types of Europe 

eco_f31 Arctic, alpine and subalpine scrub EUNIS: Ecosystem types of Europe 

eco_f32 Temperate and mediterranean-montane scrub EUNIS: Ecosystem types of Europe 

eco_f38 Riverine and fen scrubs EUNIS: Ecosystem types of Europe 

eco_f40 Shrub plantations EUNIS: Ecosystem types of Europe 

eco_f41 Broadleaved deciduous woodland EUNIS: Ecosystem types of Europe 

eco_f43 Coniferous woodland EUNIS: Ecosystem types of Europe 

eco_f44 Mixed deciduous and coniferous woodland EUNIS: Ecosystem types of Europe 

eco_f45 Lines of trees, small anthropogenic woodlands, recently felled woodland, 

early-stage woodland and coppice 

EUNIS: Ecosystem types of Europe 

eco_f47 Screes EUNIS: Ecosystem types of Europe 

eco_f48 Inland cliffs, rock pavements and outcrops EUNIS: Ecosystem types of Europe 

eco_f50 Miscellaneous inland habitats with very sparse or no vegetation EUNIS: Ecosystem types of Europe 

eco_f52 Arable land and market gardens EUNIS: Ecosystem types of Europe 

eco_f53 Cultivated areas of gardens and parks EUNIS: Ecosystem types of Europe 

eco_f54 Buildings of cities, towns and villages EUNIS: Ecosystem types of Europe 

eco_f55 Low density buildings EUNIS: Ecosystem types of Europe 

eco_f56 Extractive industrial sites EUNIS: Ecosystem types of Europe 

eco_f57 Transport networks and other constructed hard-surfaced areas EUNIS: Ecosystem types of Europe 
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eco_f59 Waste deposits EUNIS: Ecosystem types of Europe 

Ecoreg Unitati de relief. http://www.geo-spatial.org/download/harta-unitati-relief-

romania 

fma_f2_1km Forest management: close-to-nature   

fma_f3_1km Forest management: combined objective forestry   

fma_f4_1km Forest management: even-aged forestry   

fma_f5_1km Forest management: short rotation forestry   

soil_clay Soil: clay content European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

soil_oc Soil: organic carbon content European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

soil_ph Soil: PH European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

soil_salt Soil: availability of salt European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

soil_silt Soil: silt content European Soil Data Centre (ESDAC), esdac.jrc.ec.europa.eu, 

European Commission, Joint Research Centre 

ndeposition_1km Total nitrogen deposition   

sdeposition_1km Total deposition of oxidized sulpher   

pet_he_yr Potential Evapotransporation   

tsum Total sum of daily average temperatures   

inhabited_land_clc Localitati, suprafete antropizate CorineLandCover2006 

urban_habitat_clc Habitate urbane CorineLandCover2006 

rural_habitat_clc Habutate rurale din localitati CorineLandCover2006 

rural_landskape_clc Peisaj rural CorineLandCover2006 

arable_clc Teren arat, agriculutura intensa neirigata CorineLandCover2006 

open_habitat_clc Habitate deschise, pasuni CorineLandCover2006 

shrubs_clc Tufarisuri CorineLandCover2006 

rock_clc Suprafete de piatra si pietris CorineLandCover2006 

wetland_clc Habitate umede CorineLandCover2006 

water_body_clc Luciuri de apa CorineLandCover2006 

conifer_forest_wwf Paduri rasinoase Proiect LIFE05 NAT/RO/000176 "Habitate prioritare alpine, 

subalpine si forestiere din Romania" 

fagus_coniferus_mix_

wwf 

Amestec de fag si rasinoase Proiect LIFE05 NAT/RO/000176 "Habitate prioritare alpine, 

subalpine si forestiere din Romania" 

fagus_forest_wwf Paduri de fag Proiect LIFE05 NAT/RO/000176 "Habitate prioritare alpine, 

subalpine si forestiere din Romania" 
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riparian_forest_wwf Paduri ripariene Proiect LIFE05 NAT/RO/000176 "Habitate prioritare alpine, 

subalpine si forestiere din Romania" 

quercus_forest_wwf Cvercinee Proiect LIFE05 NAT/RO/000176 "Habitate prioritare alpine, 

subalpine si forestiere din Romania" 

RO_population_2011 populatia romania ROStat 

ALBH_2014apr Bihemispheric Albedo Copernicus Global Land Service 

ALDH_2014apr Directional Albedo Copernicus Global Land Service 

DMP_2016apr Dry Matter Productivity Copernicus Global Land Service 

FAPAR_2016apr Fraction of Absorbed Photosynthetically Active Radiation Copernicus Global Land Service 

FCOVER_2016apr Fraction of green Vegetation Cover Copernicus Global Land Service 

LAI_2016apr Leaf Area index Copernicus Global Land Service 

NDVI_2014apr Normalized Difference Vegetation Index Copernicus Global Land Service 

tcd_33 Tree Cover Density 2012 0-33% acoperire Copernicus Global Land Service 

tcd_33_66 Tree Cover Density 2012 33-66% acoperire Copernicus Global Land Service 

tcd_66_100 Tree Cover Density 2012 66-100% acoperire Copernicus Global Land Service 

tcd_total Tree Cover Density 2012 Copernicus Global Land Service 

TOCR_2014apr Top Of Canopy Reflectances Copernicus Global Land Service 

VCI_2016apr Vegetation Condition Index Copernicus Global Land Service 
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Abstract

Both neutral and adaptive evolutionary processes can cause population divergence,
but their relative contributions remain unclear. We investigated the roles of these pro-
cesses in population divergence in house sparrows (Passer domesticus) from Romania
and Bulgaria, regions characterized by high landscape heterogeneity compared to
Western Europe. We asked whether morphological divergence, complemented with
genetic data in this human commensal species, was best explained by environmen-
tal variation, geographic distance, or landscape resistance - the effort it takes for an
individual to disperse from one location to the other - caused by either natural or an-
thropogenic barriers. Using generalized dissimilarity modeling, a matrix regression
technique that fits biotic beta diversity to both environmental predictors and geo-
graphic distance, we found that a small set of climate and vegetation variables ex-
plained up to ∼ 30% of the observed divergence, whereas geographic and resistance
distances played much lesser roles. Our results are consistent with signals of selection
on morphological traits and of isolation by adaptation in genetic markers, suggest-
ing that selection by natural environmental conditions shapes population divergence
in house sparrows. Our study thus contributes to a growing body of evidence that
adaptive evolution may be a major driver of diversification.

KEYWORDS

Eastern Europe, evolutionary process, isolation by adaptation, isolation by distance,
landscape genetics, Passer domesticus
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Introduction

It has become clear through theoretical and empirical research that neutral as well as
selective evolutionary processes can result in population divergence and ultimately
lead to speciation (e.g., Coyne and Orr, 2004). While neutral processes such as isola-
tion by dispersal limitation (IBDL; Orsini et al., 2013) can lead to a pattern of isolation
by distance (IBD; Wright, 1943) or isolation by landscape resistance (McRae, 2006), it
is unclear how influential these forces are, and recent evidence suggests instead that
divergent selection may be a major driver of evolutionary change (e.g.,Ellner et al.,
2011; Hendry and Kinnison, 2001). Currently, the relative importance of each of these
processes often remains unresolved (Mitchell-Olds et al., 2007).

Both neutral and selective processes have been well studied and documented (e.g.,
Mitchell-Olds et al., 2007), but have in many cases been investigated independently
from one another. However, it is crucial to simultaneously assess the potential role
of neutral divergence and that of selection in a comparative framework. Classic ap-
proaches to demonstrate the presence of selection and local adaptation in a species are
common garden or reciprocal transplant experiments in which the fitness of individu-
als from locations with strong environmental differences are compared (Kawecki and
Ebert, 2004). Advantages to this approach include the acquisition of direct evidence
for local adaptation and the potential to quantify the resulting fitness consequences
to then identify the specific agent of selection (Kawecki and Ebert, 2004). However,
such experiments are difficult to apply to organisms with long generation times, com-
plex ecological requirements, or life cycles that are difficult to mimic experimentally
(Savolainen et al., 2013).

As an alternative, landscape genetic approaches directly associate phenotypes or
genotypes with environmental variables and measures of geographic distance or to-
pography (Manel et al., 2003; Storfer et al., 2007). While these approaches do not pro-
vide fitness estimates, their power lies within the joint processing of biological traits
and a large variety of environmental variables measured on the ground and from re-
mote sensors. To this end, morphological measurements are useful markers as they
may directly represent responses to natural selection. However, whether or not such
a response has an adaptive genetic basis, or is merely plastic, remains unclear. To
complement morphological measurements, as a genetic marker of choice, easily ob-
tained microsatellite repeat markers do not provide insight into specific adaptations,
but are nevertheless useful in a first order assessment of the overall relative impor-
tance of neutral and selective processes in driving and maintaining population diver-
gence (Orsini et al., 2013). Such neutral markers diverge through the process of ge-
netic drift, effects of which are maintained by either increasing geographic distance,
physical barriers or inhospitable habitat conditions between populations (landscape
resistance; McRae, 2006), or by the reduced fitness of dispersing individuals that are
maladapted to the conditions at new locations (Nosil et al., 2009). Thus, a correla-
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tion between neutral markers and environmental variables that cannot be explained
by geographic distance alone may be indicative of divergent selection driving pop-
ulation divergence, a phenomenon termed isolation by adaptation (IBA; Nosil et al.,
2009).

House sparrows (Passer domesticus) are a suitable species to examine landscape-level
patterns of intraspecific variation, because they are widespread and occur along a
range of different environmental conditions that may pose divergent selection pres-
sures (Kekkonen et al., 2011; MacGregor-Fors et al., 2010; Vangestel et al., 2012). Here,
we studied the relative roles of neutral and selective processes on the divergence of
natural house sparrow populations in Romania and Bulgaria, a still understudied
region in Europe. To do so, we: (1) analyze the population genetic structure based
on microsatellite markers; (2) relate morphological and genetic variation to environ-
mental variables and measures of geographic distance and landscape resistance; and
(3) compare the importance of natural habitat variables with those related to human
habitation. Finally, because protecting standing intraspecific variation will help max-
imizing a species’ evolutionary potential facing changing environmental conditions
(Brooks et al., 2015; Dawson et al., 2011; Frankham, 2010; Grivet et al., 2008; Hartl
et al., 2003; Matala et al., 2014; Smith et al., 2001; Thomassen et al., 2011; Vander-
gast et al., 2008), and intraspecific variation in common species may represent that in
species of conservation concern (e.g., Thomassen et al., 2011), we also aimed to map
intraspecific variation in house sparrows in Romania and Bulgaria for conservation
purposes. We used morphological and genetic data collected from 691 individuals
from 33 populations distributed across and along environmental gradients in temper-
ature, precipitation, elevation, and land cover. As morphological markers, we used
the size and shape components resulting from a ”PCA ratio spectrum” analysis (Baur
and Leuenberger, 2011) of a set of measurements describing primarily wing, tail, and
tarsus sizes. We complemented our morphological dataset with twelve microsatellite
markers, eight of which were found to be polymorphic. To then relate intraspecific
variation to environmental variables, we used a dissimilarity-based matrix regres-
sion (generalized dissimilarity modeling; GDM) technique that - in contrast to other
methods often applied - can simultaneously take into account the effects of distance
and environment (Ferrier et al., 2007).

Methods

Study region

Romania and Bulgaria are located in southeastern Europe (Figure 1a) and comprise
distinct climatic zones: the continental and Mediterranean climatic zones in Bulgaria,
and the continental and temperate climatic zones in Romania. The Danube River
forms a natural border along much of its length between Romania in the north and
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Bulgaria in the south. Large mountainous areas, with peaks up to about 2,500 m,
cover much of the land surface in these countries; in Romania, the Carpathian moun-
tain region is predominant, whereas the Balkan, Rhodope, Rila, and Pirin mountains
merge to a large mountainous area in Bulgaria (Figure 1b). At a smaller scale, the
landscape in this region can be characterized as extensive and intensive agriculture
interspersed with seminatural areas consisting of forest, open woodland, and grass-
land. As a result of this variation of habitats, different biogeographical regions are
recognized, includ-ing the continental, alpine, steppic, black sea, and pannonian re-
gions ((CoE), 2015). This habitat mosaic constitutes an ideal test bed to study evo-
lutionary processes in natural populations, because of its high habitat heterogeneity
across short distances, allowing for the potential of strong divergent selection pres-
sures on natural populations.

Study species

House sparrows are a widespread, synanthropic species (Anderson, 2006). It has
been suggested that factors related to human habitation and land use play a key role
in the abundance and genetic diversity of house sparrow populations (Kekkonen et
al., 2011; Vangestel et al., 2012). Postnatal dispersal distances are low, ranging be-
tween 1 and 1.7 km (Anderson, 2006; Paradis et al., 1998), allowing for the potential
for population divergence to be driven by IBD (Kekkonen et al., 2011; Vangestel et
al., 2012). Previous studies of house sparrow population structure in other regions
demonstrated varying levels of divergence. For instance, Finnish populations were
found to be essentially panmictic, with little evidence for a pattern of IBD (Kekko-
nen et al., 2011). In contrast, populations in mainland Norway and associated is-
lands showed low- to- moderate divergence, most likely caused by IBD (Jensen et al.,
2013). Similarly, weak but significant structure was observed in native populations
in Belgium (Vangestel et al., 2012) and France (Liu et al., 2013), and in introduced
populations in Brazil (Lima et al., 2012).

Field sampling

Samples were collected in 2007 and 2008, and 2013–2015 at 33 locations throughout
Romania and Bulgaria (Figure 1b; Table S1). Sites were selected based on two key
criteria: (1) the full set of sites covers as much as possible of the environmental niche
breadth observed in the study area and (2) sites are located across as well as along
environmental gradients, such that the potential effects of geographic distance and
environmental gradients on population divergence are decoupled and can be distin-
guished in subsequent correlative analyses. Identification of gradients and selection
of sites were performed using available climate and satellite remotely sensed habi-
tat data at 0.25- to 1- km resolutions (see below). All sampling locations were near
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anthropogenic sites. Birds were captured using mist nets, which were set up around
villages and at the edges of gardens or farms. Individuals were sexed, morphological
measurements were recorded, and DNA samples obtained via two tail feather and
blood samples. Feathers were stored dry in envelopes and blood samples in >96%
ethanol. Birds were banded and released immediately after processing at the site of
their capture. In total, 691 individuals were sampled (on average ∼ 21 per site): 314
males, 302 females, and 75 unsexed individuals.

FIGURE 1: Study region, sampling sites, and generalized dissimilarity modeling results. (a) Location of
the study region within Eastern Europe, with average temperature of the year (Bio 1). (b) Overview of the
study area, with sampling sites (crosses) on a hillshade map and an overlay of percent tree cover. (c–e)
GDM results for the second morphological shape component for females (c), the morphological size
component in females and the first shape component for males (d), and microsatellites (e). The color
difference between two locations along the color bar (c, d) or on the RGB color cube (e) in the GDM maps
represents the magnitude of the difference in the biotic response variable, that is, morphological variable
or FST.
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Morphological measurements and analyses

Because samples were collected over the course of several years and additional mea-
surements were added later in this study, a set of three morphological measure-
ments were available for all individuals (wing length, tail length, and tarsus length),
and an additional four measurements for only a subset of our samples (populations
from Ognyanovo, Beli bryag, Jasna poljana, Popovits, Golica, Poiana, Berzovia, Sa-
lonta, Parta, Caransebeş, Mihăes, ti, Hălmagiu, Măgherus, , Runc and Lăzarea): culmen
length, bill depth, head width, and head length. Morphological data were analyzed
for adult indi-viduals only, and because of sexual dimorphism in this species (with
males being generally larger than females), for males and females independently.
Raw morphological measures are unlikely to be independent from one another due
to allometric relationships, and as a result, we used the raw morphological data to
create a size and several independent shape components using the ”PCA ratio spec-
trum” method developed by Baur and Leuenberger, 2011 (Appendix S1). For the size
component and each shape component that explained >10% of the total variation in
the PCA, we computed population pairwise differences as follows: |x − y|/σx + σy,
where x and y are the averages for populations x and y and σx and σy are their stan-
dard deviations. Because we only had partial datasets-one with three morphological
variables (wing, tail, and tarsus lengths) for all locations, and one with all morpholog-
ical variables (also including culmen and head lengths, head width, and bill depth)
for only nine locations, we evaluated which one was the most appropriate to use.
Our assessment suggested that the three- variables- all- locations dataset gave the
most robust results (Appendix S1).

Laboratory methods and genotyping

DNA was extracted using the QIAGEN DNeasy Blood & Tissue Kit (Qiagen, Hilden,
Germany) following the manufacturer’s protocol. Because of potential misidentifica-
tion of Spanish sparrows (P. hispaniolensis) as house sparrows, we genetically iden-
tified individuals to species from southern sampling sites using the cytochrome c
oxidase subunit I (COI) mitochondrial gene (Appendix S1).
We genotyped house sparrow individuals for twelve published microsatellite loci
(Dawson et al., 2012; Garnier et al., 2009; Griffith et al., 2007) (Table S2). Of these
twelve loci, two were monomorphic in the majority of the sampling locations after
initial genotyping of a subset of individuals and omitted from further analyses. Frag-
ment length analysis was carried out on an ABI 3730 sequencer at the University of
Turku, Finland. Results were analyzed with GeneMarker V2.4.1 (Softgenetics, State
College, PA, USA).
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Population genetic analyses

Because only a few birds could be sampled at certain locations, we calculated the
geographic distances between locations, and pooled locations with small sampling
sizes with those nearby (Măgherus, and Runc were 13.8 km apart; Parta 1 and Parta 2
3.6 km). Loci were checked for the presence of null alleles using MICRO-CHECKER
(Van Oosterhout et al., 2004), deviations from Hardy–Weinberg Equilibrium (HWE)
using GenAlEx 6.501 (Peakall and Smouse, 2006), and Linkage Disequilibrium (LD)
using GENEPOP web version 4.2 (Rousset, 2008). We used COLONY version 2.0.5.9
to identify full siblings within sampling sites. Presence of full siblings would con-
found Bayesian clustering analyses and FST estimates. All individuals were coded
as offspring. No full-sib ships were detected (results not shown); hence, all individ-
uals were kept for subsequent analyses. To assess the level of genetic structure, we
conducted two Bayesian clustering analyses: STRUCTURE (Pritchard et al., 2000) and
GENELAND (Guillot et al., 2005a; Guillot et al., 2005b; Guillot et al., 2008) (Appendix
S1).

For subsequent landscape genetic analyses, we calculated site pairwise FST values.
Because a signal of null alleles was detected, we computed corrected FST using the
”excluding null alleles” (ENA) method implemented in FreeNA with 10,000 boot-
strap replicates (Chapuis and Estoup, 2007). To minimize the risk that potential cor-
relations between FST and environmental variables are the result of demographic
processes, we evaluated whether or not population divergence was simply a result
of differences in genetic variation within populations (Appendix S1). We also tested
whether morphological divergence and genetic population divergence were concor-
dant using a Mantel test with 999 permutations.

Environmental variables

To describe environmental conditions across Romania and Bulgaria, we compiled a
set of 34 environmental variables related to climate, topography, vegetation, and hu-
man habitation (Table S3) at 30 arc-sec resolution. Although the home-range sizes of
individual birds are likely much smaller, spatial heterogeneity in climate variables
within each grid cell is small compared to that between distant grid cells, and dis-
persal has been reported to be up to 1.7 km (Anderson, 2006; Paradis et al., 1998).
The used spatial resolution of variables thus balances home-range size with dispersal
distances as well as availability and computational tractability of subsequent anal-
yses. Bioclimatic variables expressing variations in temperature and precipitation
were obtained from WorldClim (http://www.worldclim.org/) (Hijmans et al., 2005).
These variables are derived from a network of weather stations and are based on a
50-year climatology from 1950 to 2000. Elevation data were obtained from the Shuttle
Radar Topography Mission (SRTM) and used directly in further analyses as well as
to compute slope (steepness of the terrain) and aspect (the compass direction that a
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slope faces). Vegetation data included the percent tree cover from 2001 (Hansen et al.,
2002) and Leaf Area Index (LAI; Myneni et al., 2002) obtained from the Global Land
Cover facility database (http://www.glcf.umd.edu/data/). We also used a measure
of surface moisture based on the QuikSCAT microwave instrument (QSCAT; Long
et al., 2001). For areas with dense forest, QSCAT is sensitive to canopy roughness.
We computed multiyear (2000-2008) averages of raw backscatter measurements at
the horizontal polarization, including means, minima, maxima, and seasonality (ex-
pressed as the coefficient of variation). Further details on the computation of QSCAT
variables are provided in Appendix S1.

Because sparrows are commensal with anthropogenic activity, we also included two
measures of human habitation as predictors: road density and human population
density. The road density layer was created out of a shape file of roads (Digital Chart
of the World, downloaded from http://www.diva-gis.org/gdata on 21 November
2013), processed in ArcGIS 10.0 (ESRI, Redlands, USA) using the ”line density tool.”
The output cell size was set to 0.0083333 degrees (i.e., 30 arcsec) to match the other en-
vironmental variables, and because of the short natal dispersal and small home-range
sizes of sparrows (Anderson, 2006; Paradis et al., 1998), the search radius was set to
five map units (∼ 5 km). Human population density data were obtained from the
Gridded Population of the World dataset, version 3 for the year 2000 at 2.5 arcmin
(∼ 5 km) resolution (Center for International Earth Science Information Network
(CIESIN), Columbia University 2005; http://sedac.ciesin.columbia.edu retrieved 12
May 2015).

In addition to straight-line geographic distance, we included two other types of dis-
tance that may be more realistic measures of the distance dispersing individuals have
to travel to reach another location. First, because of the short postnatal dispersal dis-
tances of house sparrows (1–1.7 km; Anderson, 2006; Paradis et al., 1998) and the
width of the Danube River at places reaching 1.5 km, the Danube was included as
a barrier to dispersal. In a GIS layer, areas north of the Danube River were coded
0, and those south 1, resulting in differences of 1 between sampling sites across the
river and of 0 between those on one side of the river. Second, we computed resistance
distances based on human population density in Circuitscape 3.5.8 (McRae, 2006). To
do so, human population density was treated as a conductance map (i.e., higher den-
sities are favorable to dispersal and gene flow), and a cell connection scheme of eight
neighbors was used.

To reduce this set of environmental variables to a smaller suite that each provided
unique information, we extracted their values at the sampling sites using ArcMap
10.2.2 (ESRI, Redlands, USA) and computed Pearson correlation coefficients (logistic
regression in the case of the Danube River barrier) in R 3.1.2 (Table S4). When two
variables had a Pearson correlation coefficient ”a ≥ b”0.7 (or p < .05 for the logistic
regression), one of them was excluded from further analyses. Of those pairs, we
retained the one that is more easily interpretable (e.g., Bio 1: mean temperature of the
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year versus Bio 3: isothermality).

Landscape genetic analyses

To assess correlations of morphological or genetic data with environmental variables,
geographic distance, and landscape resistance, we used generalized dissimilarity
modeling (GDM; Ferrier et al., 2007), implemented in the R package gdm (Manion
et al., 2016). GDM has increasingly been used in landscape genetic studies, including
in tests for IBA (Freedman et al., 2010; Mitchell et al., 2015; Thomassen et al., 2010). It
is an iterative matrix regression method that fits dissimilarities of predictor variables
to dissimilarities of a response variable. It can analyze and predict spatial patterns
of beta diversity across large areas, using I- spline basis functions to adjust nonlin-
ear relationships between environmental variables and biological variation (Ferrier
et al., 2007). In this work, GDM was used to predict the relationship between a set of
predictor variables and pairwise genetic distances (FST) or morphological differences
as response variables. The predictor variables consisted of environmental variables,
geographic distance, resistance distance, and the Danube barrier, and were selected
to determine the biotic variation that is explained by IBA, isolation by distance (IBD;
Wright, 1943), or resistance by the habitat matrix in between populations. The im-
portance of predictor variables is tested by permutations, where only variables that
contribute significantly to explaining variation in the response variable are retained.
The relative importance of predictor variables can be evaluated by examining the
maximum height that is reached in variable response curves. In total, five types of
models were performed: (1) a best fit model (including all environmental variables,
as well as geographic distance); (2) a model with only the environmental variables;
(3) a model with only straight-line geographic distance; (4) a model with only resis-
tance distances; and (5) a set of 1,000 models with random environmental variables to
evaluate the significance of the variation explained by the best fit model. The best fit
model was considered not significant if the variation explained fell below the upper
95% confidence interval of the random models. Model fit was visualized in a scatter
plot of predicted versus observed response values.

In a subsequent step, the spatial distribution of the response variable can be projected
across the study area using the known environmental conditions (obtained from the
predictor variables) outside the sampling locations and the calculated relationship
between the environment and biological variation. We visualized this variation in
the response variables in three-dimensional RGB color space. To do so, we followed
the computationally tractable approach from Fitzpatrick and Keller, 2015. Briefly,
we first extracted the values of the retained environmental variables at a grid with
30 arcsec resolution, corresponding to the midpoints of grid cells in the 30 arcsec
WorldClim dataset. We then ”transformed” the environmental variables for these
sites into a set of ”genetic importance” variables (Fitzpatrick and Keller, 2015). We
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conducted a principal component analysis (PCA) on these transformed variables to
obtain a smaller set of independent variables. We then matched RGB values to the
first three PC axes, which were subsequently combined into one multiband RGB GIS
layer in ArcMap 10.2.2 (ESRI, Redlands, USA). We verified that the resulting maps
were concordant with those obtained using the ”predict.gdm” function with subse-
quent multidimensional scaling, but which was only possibly at low resolution due
to computational limitations (Appendix S1).

Finally, to inform conservation practices in Romania and Bulgaria, we visually as-
sessed whether current protected areas capture genetic and morphological variation
in house sparrows sufficiently well (Appendix S1).

Results

Size and shape components of morphological measurements

We used the ”PCA ratio spectrum” method to distinguish between the size and shape
components of the morphological measurements. PCA results of the shape compo-
nent are shown in Table S5. For both males and females, the first two extracted prin-
cipal shape components explained all of the observed variation. PCA ratio spectra
for wing, tail, and tarsus length are nearly identical for males and females (Figure S1)
and suggest that most variation along the first axis is explained by the ratio of tail and
tarsus, and along the second axis by the ratio of tail and wing. These results for the
dataset with just wing, tail, and tarsus length but for all locations are supported by
those for the all-variables-nine-locations dataset for the first axis. This was, however,
not the case for the second axis, where tail and wing are close to one another on the
axis (explaining very little of the variation), bill depth is positioned on one end of the
spectrum, contrasted on the other end by tarsus and culmen in males and by tarsus
and head measures in females. Along the third axis, most variation is explained by
the ratio between culmen and tail in both males and females, but bill depth is also im-
portant in males, whereas it is not in females. We conducted subsequent landscape
genetic analyses using the PC scores of the size component and the first two shape
components in males and females separately.

Population genetic analyses

The number of effective alleles (NE) ranged from 3.184 to 6.887; HO from 0.583 to
0.846; and HE from 0.590 to 0.794 (Table S6). Two microsatellite loci were found
to be out of HWE in many sampling locations: Pdo31 significantly deviated from
HWE in 15 locations and Pdo7 in 25 locations. These loci were, therefore, omitted
from further analyses. After Bonferroni correction, no loci were in significant LD. We
found a signal for the presence of null alleles and therefore calculated ENA-corrected
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(Chapuis and Estoup, 2007) FST values for the remaining eight loci to be used in
subsequent landscape genetic analyses. The global population variation across all
loci and all sites was FST = 0.011.

STRUCTURE analyses using the admixture model with location prior and either cor-
related or noncorrelated allele frequencies suggested there is no clear genetic struc-
turing among sparrow populations in Romania and Bulgaria (K = 1). Inclusion of
the spatial component using GENELAND supported this finding. When we did not
use a model for null alleles, all ten independent runs inferred six clusters (K = 6).
However, assignments of cluster membership were highly inconsistent between runs
(not shown), and we therefore concluded that there was little evidence for signifi-
cant population structure based on these analyses. A lack of clear population genetic
structure, however, does not necessarily mean a lack of IBD or IBA; merely that selec-
tion pressures may be relatively low, or there is a much relatively recent or ongoing
gene flow. In fact, correlation analyses between genetic divergence and environmen-
tal heterogeneity may be better suited to identify potential patterns of IBD or IBA
than those purely based on genetic data. We, therefore, proceeded with landscape
genetic analyses using the ENA- corrected FST values (Chapuis and Estoup, 2007).

Mantel tests between FST and morphological divergence were only significant for
shape PC2 in females but with a low correlation (Z = 23.80624, r = .289, p = .001 for
999 permutations; for female size Z = 17.79662, r = .111, p = .063 for 999 permutations;
for male PC1 Z = 24.01073, r = .137, p = .075 for 999 permutations).

Landscape genetic analyses

Among the morphological variables, models for the first shape com-ponent (shape
PC1) in males and for the size and second shape (shape PC2) components in females
performed better than random models (Table 1). For shape PC1 in males, geographic
distance was included in the best fit model, but explained very little of the variation
when used alone, and similar results were found for size and shape PC2 in females.
Thus, IBD appears to play only a minor role in driving population divergence in mor-
phological variables. This finding is supported by the lack of a correlation between
morphological divergence and geographic distance (Figures S2c–S4c). The mean tem-
perature of the driest quarter (Bio 9) was the most important variable explaining vari-
ation in PC1 for males and size in females (Figures S2a and S3a), whereas minimum
leaf area index (LAImin) was the most important variable describing variation in
shape PC2 in females (Figure S4a). Variables related to human habitat contributed
little (for shape PC2 in females) to no explanatory power to help distinguish mor-
phological variation.

The best fit generalized dissimilarity model for microsatellites, where all variables
were entered in the model, explained 24.95% of the observed variation (Table 1) and
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only retained environmental variables in the final model. A model with only geo-
graphic distance or resistance distance as the predictor variable explained 3.84% and
7.93% of the variation, respectively, and random models explained 4.35% of the vari-
ation, with an upper confidence level of 4.44%. These results also suggest that local
environmental conditions rather than isolation by distance or isolation by resistance
are important in generating house sparrow population genetic divergence, which is
supported by a lack of correlation between FST and geographic distance (Figure S5c).
The variables most important in explaining the observed genetic variation were an-
nual precipitation (Bio 12), mean leaf area index (LAImean, a measure of greenness),
mean temperature of the driest quarter (Bio 9), and precipitation of the driest month
(Bio 14) (Figure S5a). Road density was also retained as an explanatory variable, but
did not contribute as much as the above-mentioned climate and vegetation variables.

TABLE 1: Results of generalized dissimilarity models of the size and shape components of
wing, tail, and tarsus length measurements and of microsatellites.Numbers represent the total
observed variance (%) explained by the best fit model (Best fit) and models with only
environmental variables (Env only), only geographic distance (Dist only), and the mean value
of 1000 models with random environmental variables (Random) and the associated confidence
intervals (Lower CI, Upper CI).

Best fit Env only Dist only Random Lower CI Upper CI

Males size 6.8 6.8 0.2 6.3 6.2 6.4
Males shape PC1 30.3 30.1 0.0 7.0 6.9 7.2
Males shape PC2 6.6 6.6 0.0 6.5 6.4 6.6
Females size 14.7 14.4 0.0 6.5 6.3 6.6
Females shape PC1 2.1 2.1 0.0 5.6 5.5 5.7
Females shape PC2 27.3 27.3 1.9 6.5 6.4 6.7
Microsatellites 25.0 25.0 3.8 4.4 4.3 4.4

Discussion

Landscape genetic analyses

We examined whether neutral (isolation by dispersal limitation) or selective evolu-
tionary processes are the most important drivers of house sparrow population diver-
gence in Romania and Bulgaria and whether measures of human habitation play a
role in the divergence in this human commensal species. We found that IBDL could
not explain either morphological or genetic divergence, whereas environmental vari-
ables explained a large proportion (up to 30%) of the observed variation. Our results
for morphological measurements were thus consistent with a signal of selection. Al-
though the number of polymorphic microsatellite markers was relatively low, and a
large set of SNP markers will be more suited to get insight into population divergence
and selection at the genetic level, results for microsatellites were nevertheless consis-
tent with a pattern of IBA, and thus support the morphological data in the notion
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that adaptive processes are more important than neutral ones in driving population
divergence. Our results suggesting that divergent natural selection is a main driver
of intraspecific variation in this species are in agreement with findings for popula-
tions in Norway (Holand et al., 2011), Brazil (Lima et al., 2012), and France (Liu et al.,
2013). However, these studies were conducted at much smaller scales, with much
fewer populations. Moreover, those in Norway and Brazil did not relate population
divergence to environmental variables, but rather compared FST to estimates of mor-
phological divergence (QST or PST). Perhaps more importantly, the study in France
found fine-scale spatial autocorrelation, suggesting IBDL at short distances, but the
potential effect of distance was not included in subsequent correlative analyses with
environmental factors, making it difficult to assess the relative importance of IBDL
versus IBA.

The spatial patterns of morphological variation in the size component in females and
shape PC1 in males show a very sharp division between higher and lower elevation
areas (Figure 1d) due to a large response to small differences in mean temperature of
the driest quarter (Bio 9) between mountain and lowland areas, which then levels off
to a flat response at larger differences (Figures S2a and S3a). In contrast, the spatial
pattern of variation in shape PC2 in females is more complex (Figure 1c): the main
turnover of the morphological measures occurs at smaller differences in minimum
leaf area index (LAI min; Figure S4a). The potential underlying causal relationship
between shape PC2 in females-dominated by wing length- and minimum leaf area
index remains unclear. Wing length in birds is often related to vegetation density,
where individuals from forests tend to have shorter wings than those from the open
field because of the advantage of shorter wings for maneuverability in dense vege-
tation; however, we did not find such a relationship in our house sparrow samples
(results not shown), nor did we find that leaf area index was an important factor in
the shape components of males, as would be expected given that both males and
females should exhibit similar selection pressures for wing length related to vegeta-
tion. As for microsatellite variation, spatial patterns roughly follow a lowland versus
highland and Mediterranean versus continental subdivision (Figure 1e). Specifically,
higher elevation populations are genetically similar, but lowland populations from
southern Bulgaria, with a more Mediterranean climate, are distinct from those in Ro-
mania, where a more continental climate prevails. In addition, lowland populations
from the Danube Delta are nearly as distinct from other lowland populations as the
latter are from higher elevation populations.

Despite only subtle population differentiation at the genetic level, we found that di-
vergence is tied to the environment, independent of geographic distance. Further
support for these findings comes from visual inspection of observed versus pre-
dicted values and plots of population divergence versus geographic distance (Fig-
ures S2b–S5b and S2c–S5c, respectively). Of all variables entered into the models,
only a small set was selected that explained most of the observed vari-ation (Fig-
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ures S2a–S5a), notably mean temperature of the driest quarter (Bio 9), annual pre-
cipitation (Bio 12), and mean and minimum leaf area index (LAI mean, LAI min).
However, visual examination of the shape of the response curves suggests that the
effects of those predictor variables vary between response variables. For instance,
for the shape PC1 in males (Figure S2a) and the size component in females (Figure
S3a), there is a very steep response to small changes in the mean temperature of the
driest quarter (Bio 9), which then quickly levels off. In contrast, for genetic variation,
small differences in the mean temperature of the driest quarter (Bio 9) do not result
in larger FST values (Figure S5a); larger differences, however, result in exponentially
increasing divergence. These results thus suggest that divergence in morphological
traits is not shaped by the same environmental variables as in microsatellites. Further
insight into this issue comes from the correlations between FST and morphological
divergence, as well as from a comparison of the spatial patterns of variation shown
in the GDM maps (Figures 1c–e). A crude subdivision into highland and lowland
populations in both morphological traits and microsatellites and a small but signifi-
cant correlation between FST and female shape PC2 suggest that similar factors may
underlie population divergence in phenotype and genotype. However, finer sub-
structuring of populations and a lack of correlations between FST and female size
and male shape PC1 indicate that such a pattern is not broadly supported. Thus, if
genetic divergence indeed is related to IBA, the factors that limit gene flow, leading to
neutral divergence in microsatellites, must be primarily physiological characteristics
or morphological variables other than those measured here.

Although in our study selective processes appeared to be the most important factors
underlying population divergence, most of the variation (∼ 70% or more; see also
the spread of points in Figures S2b–S5b) could not be explained, despite the fact that
many predictor variables were considered. We can only speculate about additional
factors that may cause population divergence. One explanation may be that habi-
tat conditions other than the ones included may cause strong divergent selection or
limit dispersal between populations. Such conditions should be measured at much
smaller scales than those used in our study and may include microhabitat character-
istics such as the grain size of crops grown, types of cattle feed used, and available
to this granivorous species, or food availability, which was found to be related to
population divergence in a valley in France (Liu et al., 2013). A similar result was
found for rural and urban populations in Hungary, but common garden experiments
suggested that food availability did not result in a short-term response in body mass
(Liker et al., 2008). The high level of heterogeneity of the landscape mosaic in Roma-
nia and Bulgaria suggests that the process of local adaptation may occur at relatively
small scales in those countries. If so, our estimate of the relative importance of IBA in
population divergence is conservative. Another category of factors that may explain
the remaining variation is related to chance events that are not linked to long-term
environmental conditions or the distance between populations, such as population
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demographic fluctuations or isolation by colonization (IBC; De Meester et al., 2002;
Orsini et al., 2013). Under IBC, a signal of founder effects can persist over time due
to monopolization, where local adaptation is based only on standing genetic varia-
tion present in the first colonizers. However, relatively high population divergence
is expected under such a scenario, which does not seem to be the case in our study
region. Finally, morphological characteristics may rather be shaped by sexual than by
environmental selection. Most studies on sexual selection in house sparrows have fo-
cused on the size of the black patch on males’ chests and on the white wing stripe, but
females have also been shown to prefer larger males in some populations (Moreno-
Rueda and Hoi, 2012). Although the morphological traits measured here have not
been implicated in sexual selection so far, it is conceivable that at least part of the
divergence -in particular in the size component in males- can be attributed to differ-
ences in mate preferences between populations.

Influence of human habitation

Measures of human habitation appear to have little effect (positive or negative) on
population divergence of house sparrows in Romania and Bulgaria. First, although
road density was selected as a predictor in microsatellite variation and in the shape
component PC2 in females, it did not contribute much to explaining the observed
variation. Similarly, human population density was among the predictors in the
model for microsatellite variation, but this variable retained a comparatively low im-
portance score. Even though we have not sampled house sparrows in cities and thus
lack information on this extreme end of the range of niches available along gradients
in human-dominated landscapes, our results are broadly concordant with those of
Vangestel et al., 2012, who found no evidence for divergence between urban and ru-
ral house sparrow populations in Belgium (but see e.g., Liker et al., 2008 for morpho-
logical characteristics). Second, despite a lack of clear genetic structure, we expected
that trends in genetic and morphological variation would be correlated to dispersal
pathways facilitated by human habitation. For instance, Schrey et al., 2014 found
evidence that population expansion of house sparrows in Kenya could be explained
by human-mediated dispersal. However, in our study, resistance distances based on
human habitation were not included in any of the models, suggesting that dispersal
in these populations is not limited nor mediated by human activities.

Conservation recommendations

Although house sparrows are listed by the IUCN as of least concern (IUCN 2015),
their populations are declining, most notably in their native range (Anderson, 2006;
De Laet and Summers-Smith, 2007; Murgui and Macias, 2010). The underlying causes
of their decline remain poorly understood, but may be related to predation, competi-



4 CHAPTER III 85

tion, disease occurrence (Kruszewicz et al., 1995), an increase in pollution (Summers-
Smith, 1999), and changes in anthropogenic activity that led to a shortage in food
sources (Hole et al., 2002) and nest sites (Siriwardena et al., 2002). While house spar-
rows currently appear to be abundant in Romania and Bulgaria, the ongoing mod-
ernization of agriculture (Ioras, 2003) and predicted climate change may thus impact
their numbers and require adaptive genetic or phenotypic changes. Moreover, in-
traspecific variation in these house sparrows may be a surrogate for that in other, less
common species. In our preliminary and qualitative assessment, we found that envi-
ronmentally associated intraspecific variation is likely insufficiently protected (Figure
S6; Appendix S1). Particular conservation attention is warranted for lowland areas
bordering the Danube River in the west, and the elevation gradient along the south-
ern Carpathian Mountains. The results from the current study will be incorporated in
much more detail in forthcoming work aiming at prioritizing areas for conservation
in this biologically rich region, unique for Europe (e.g., Iojă et al., 2010; Wilson et al.,
2012).

In summary, we found that selection by environmental variables, but not IBDL, is
the main driver of population divergence in Romanian and Bulgarian house sparrow
populations. Variables related to climate and vegetation best explained intraspecific
variation, whereas those related to human habitation contributed comparatively lit-
tle. Our study thus contributes to a growing body of literature suggesting that di-
vergent selection may be a key driver of population divergence in many species and
populations, and it improves our understanding of the spatial patterns and drivers
of biodiversity in an understudied region.
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Supplementary information

Supplementary Materials and Methods

Genetic identification of Passer domesticus and P. hispaniolensis

In the southern part of its range in Bulgaria, house sparrows (Passer domesticus) co-
occur with the Spanish sparrow, P. hispaniolensis, and are even found breeding in
mixed colonies. Males of the two species are easily distinguishable, but females are
very similar in appearance. We, therefore, identified the species of females sampled
in southern populations using molecular methods. To do so, we sequenced a 749-
base pair region of the cytochrome c oxidase subunit I (COI) mitochondrial gene us-
ing the primers BirdF1 and BirdR1 (Hebert et al., 2004). The COI gene is known for
its relatively fast mutation rate and its use across many taxa for barcoding purposes.
The PCR reaction mix consisted of 2.5 µl 10× PCR buffer, 13.4 µl HPLC water, 1.0
µl dNTP’s (10 mM), 2.0 µl MgCl2 (25 mM), 1.0 µl BSA (20 mg/ml), 1.0 µl of each
primer (0.1 mM), 0.1 µl Taq DNA polymerase and 3.0 µl extracted DNA per reac-
tion. PCR conditions were: 94°C initial denaturation for 5 minutes; 39 cycles of 94°C
denaturation for 40 seconds, 50°C annealing for 40 seconds, and 72°C extension for
1 minute; and 72°C final extension for 10 minutes. PCR products were visualized
using agarose gel electrophoresis to check for the amplification of the fragment. Suc-
cessfully amplified PCR products were cleaned up using the Promega Wizard© SV
Gel and PCR Clean-Up System according to the manufacturer’s protocol. Cleaned up
samples were then sent to LGC Genomics (Berlin, Germany) for sequencing. Result-
ing sequences with corresponding chromatograms were visualized and edited where
necessary with Unipro UGENE v1.12.2 (Okonechnikov et al., 2012). We used ClustalX
2.1 (Larkin et al., 2007; Thompson et al., 1997) to align sequences with each other and
with reference sequences for P. domesticus, P. hispaniolensis, and P. montanus, obtained
from GenBank. We then used Mega v. 6 (Tamura et al., 2013) to construct a Maxi-
mum Likelihood tree using the Hasegawa-Kishino-Yano (HKY) substitution model
with uniform rates and 1000 bootstrap replicates. Individuals that were included
in a monophyletic group with reference sequences of P. domesticus were considered
members of the target species and included in further microsatellite analyses.

Morphological measurements and analyses

Morphological measures are unlikely to be completely independent from one an-
other. If an individual grows isometrically, i.e. without changing shape, all measures
will be affected equally. For multivariate analyses, it is therefore essential to distin-
guish between the isometric size component and the allometric (shape) component
of these measures. Several methods are available to do so, such as Procrustes analy-
ses on morphological landmarks, or standardization using an independent measure
of body size. However, neither of these were available based on our collection meth-
ods, so we used the “PCA ratio spectrum” method developed by Baur and Leuen-
berger, 2011. This method identifies common patterns - that could represent isomet-
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ric growth - among all possible ratios of morphological measurements, and returns
independent PCA scores for one size and several shape components. For the size
component and each shape component that explained > 10% of the total variation in
the PCA, we computed population pairwise differences as follows: |x − y|/σx + σy,
where x and y are the averages for populations x and y and σx and σy are their stan-
dard deviations. Because we only had partial datasets - one with three morphological
variables (wing, tail, and tarsus lengths) for all locations, and one with all morpholog-
ical variables (also including culmen and head lengths, head width, and bill depth)
for only nine locations - we needed to decide which of those datasets was most appro-
priate to use. To further explore these datasets, we in fact ran PCA ratio spectra and
generalized dissimilarity models for both and compared the results (not shown). We
found that the percent of total variation explained by our models was about twice as
high for the all-variables-nine-location dataset as compared to the three-variables-all-
locations dataset. To investigate whether this could potentially be explained by the
difference in the number of locations, we reduced the three-variables-all-locations
dataset to only comprise the nine locations of the other dataset, and ran GDMs with
this reduced dataset. We found that this data reduction method almost doubled the
percent of total variation explained in GDMs. Although we cannot rule out that this
is a real pattern among those nine locations, we suspected that these results were an
artifact of entering too few locations in the models, and we only present the results for
the three-variables-all-locations dataset, except for the results from PCA ratio spectra.

Microsatellite analysis

The extracted DNA was used to determine intraspecific genetic variation by geno-
typing an initial set of twelve microsatellite loci (Pdo31, Pdo75, Pdoµ3, PdoA06,
PdoA08, PdoH05, Pdo7, Pdo10, Pdo16, Pdo36, Pdo46, and PdoF05) by using the
M13-hybrid primer process (Boutin-Ganache et al., 2001; Schuelke, 2000). This proce-
dure uses three types of primers: first a hybrid primer, which consists of the forward
primer with a tagged-on M13F sequence (16p: 5’-GTAAAACGACGGCCAG-3’) on
the 5’end; second the corresponding reverse primer; and third a dye labeled M13F
primer, which is complementary to the M13F sequence. The primer mix consisted
of 4 µl of the reverse primer (100 µl), 8 µl forward-M13 hybrid primer (2.5 µM), 8 µl
M13 dye labeled primer (2.5 µl) and 180 µl water. To run the multiplex PCR, a PCR
reaction mix was made, for each 10 µl reaction consisting of 1.0 µl primer mix, 2.1 µl
water, 0.4 µl Bovine Serum Albumin, and 5.0 µl Qiagen Multiplex Mastermix added
to 1.5 µl sample DNA. The PCR was then run as a two-stage cycle starting with 15
minutes at 95 °C, followed by the first cycle which consists of three steps: 30 seconds
at 94 °C, 90 seconds at 55 °C/56 °C/60 °C(depending on the primer mix) and 60 sec-
onds at 72 °C, repeated 25 times. The second cycle also consisted of three steps and
was conducted as follows: 94 °C for 30 seconds, then 90 seconds at 53 °C and finally
60 seconds at 72 °C, repeated 20 times. After these cycles, a final step of 60 °C or 30
minutes was run. Fragment analysis was carried out on an ABI 3730 sequencer at the
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University of Turku, Finland. Results were analyzed with GeneMarker V2.4.1 (Soft-
genetics, State College, PA). We used the following peak detection settings: detection
range between 100 and 400 base pairs (bp); peak detection threshold with an intensity
between 100 and 8000; stutter peak filter of 5% on the left side and 40% on the right
side. The detected peaks were then examined visually, and edited where necessary.

Population genetic structure

To assess the level of genetic structure, we conducted two Bayesian clustering analy-
ses. First, we ran STRUCTURE (Pritchard et al., 2000) which uses the genotypic data
only and is capable of incorporating putative population origin as prior information,
but does not incorporate the geographic sampling location of individuals. We ran
five independent runs of 500,000 iterations after a burn-in of 50,000 iterations, explor-
ing values of K - the assumed number of different genetic clusters - ranging from K
= 1 to K = 31, which corresponds to the maximum number of sampling locations. In
two different analyses, we assumed an admixture model with either correlated or un-
correlated allele frequencies and the sampling site as prior information (LOCPRIOR).
The most likely number of clusters was determined using the method proposed by
Evanno et al., 2005 in STRUCTURE HARVESTER (Earl et al., 2012).

The second Bayesian clustering method we implemented was GENELAND 4.0 (Guil-
lot et al., 2005a; Guillot et al., 2005b; Guillot et al., 2008), run in R 3.1.2 (R Develop-
ment Core Team, 2008). In contrast to STRUCTURE, GENELAND explicitly takes
into account the spatial location and orientation of samples. Here, we also assumed
an admixture model with either correlated or uncorrelated allele frequencies. Be-
cause MICRO-CHECKER results suggested the presence of null alleles, we also im-
plemented a null allele model, which attempts to correct for the false identification
of genetic structure as a result of the presence of an excess of homozygotes due to
null alleles. We ran ten independent runs of 500,000 iterations, thinning of 100, and a
burn-in of 50,000 for K = 1 - 31.

Influence of the number of loci on estimates of FST

The genetic data used here consists of a relatively small set of eight microsatellite
markers. To get insight into the robustness of this data set, we computed FST values
of further reduced data sets consisting of all possible combinations of six and seven
loci, and correlated these FST values with those from the full set of eight loci. The
average R2 of correlations between all sets of seven loci and the full data set was 0.87
(SD = 0.11; median R2 = 0.93); the average R2 of correlations between all 28 sets of
six loci and the full data set was 0.75 (SD = 0.14; median R2 = 0.76). These results
suggest that a general trend of genetic divergence is detectable in our data set, and
that this trend is conveyed by different combinations of microsatellite loci. We may
thus expect that this same trend continues to be found when more loci are added,
and therefore that our results of subsequent landscape genetic analyses are relatively
robust, even with the data set presented here.
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FST versus allelic richness

The level of divergence between populations is susceptible to differences in alpha
diversity (e.g. allelic richness) within populations. Lower alpha diversity may in-
crease divergence, in particular when divergence is a result from genetic drift after
for instance a bottleneck event. Such a scenario would result in spurious correlations
between FST and environmental variables if bottleneck or founder events systemat-
ically occur in a certain type of environment. To assess whether GDM correlations
between FST values and environmental variables could be attributed to differences
in alpha diversity within populations, we used the following two approaches. We
calculated overall allelic richness (ar) across all loci per sampling site. We then cal-
culated location-pairwise differences in ar and plotted the negative log-transformed
values against the corresponding FST values (Fig. S7). If alpha diversity is affecting
beta diversity, we would expect a positive correlation between ar and FST . However,
we did not find a significant correlation between these variables (slope = -0.001, R2 =
0.0013). Even given the results above, it is conceivable that populations in different
environments exhibit different levels of allelic richness. We, therefore, also tested for
linear correlations between ar and environmental variables using the “lm” function in
R, and found no significant linear model (P > 0.05 for each variable; overall adjusted
R2 = -0.117, F = 0.8255, P = 0.6537). From these results we concluded that correlations
between FST and environmental heterogeneity were not the result of differences in
population-wise genetic variation (i.e. alpha diversity; allelic richness).

Range expansion

Demographic processes may influence genetic diversity within and between popula-
tions, and as a result could confound tests for selection and IBD. Since the Last Glacial
Maximum, house sparrows have likely expanded their range from southern refugia,
or even from a refugium within the Carpathian Mountains. Range expansions are
expected to result in lowered genetic variation in peripheral populations, in the di-
rection of the expansion. Even though it appeared unlikely that a signal of past range
expansion would still be present in these southern European populations after thou-
sands of generations, we visually assessed the geographic pattern of allelic richness
(which was similar between populations, ranging from 3.63 – 4.33) by plotting ar per
population on a map (Fig. S8). If a signal of range expansion would still be present,
we would have expected to see diminishing ar from south to north or away from the
Carpathian Mountains. However, we found no such pattern, and concluded that past
range expansion and associated effects on intraspecific variation is unlikely to affect
our landscape genetic analyses.

Environmental variables - computation of QSCAT

A measure of surface moisture and canopy roughness (over dense forest) was ob-
tained from the QuikScat microwave instrument (QSCAT; (Long et al., 2001)). We
computed multi-year (2000 - 2008) averages of raw backscatter measurements at the
horizontal polarization. To do so, daily data records for Europe for the years 2000
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- 2008 were downloaded from the BYU Scatterometer Climate Record Pathfinder
database (http://www.scp.byu.edu/data/Quikscat/SIRv2/qush/Eur.html).
The downloaded .SIR datafiles were converted to GeoTIFF files using “sir_utils”,
available from NASA SCP (http://www.scp.byu.edu/docs/geotiff.html). Further
processing was then done in ArcGIS 10.2.2 (ESRI, Redlands, USA). We visually in-
spected daily images for potential anomalies, such as large areas with missing data
and geometric patterns that could indicate an error of the sensor. Out of the 365 daily
images, a minimum of 0 and maximum of 7 images showed errors and were omitted
from further processing. We then computed yearly averages, minima, maxima, and
seasonality for each year; we subsequently averaged these variables across the years
2000 - 2008. To focus more on climatology and less on short-term extreme weather
events, we did not use the daily images to compute minima and maxima, but first cal-
culate two-week averages, of which we then took the minima and maxima. Finally,
to compute QSCAT seasonality, we used the coefficient of variation, analogous to the
WorldClim variable Bio 15: precipitation seasonality (www.worldclim.org/bioclim).
We first computed monthly averages and then defined seasonality as: 100 × (SD-
monthly mean / |average of monthly mean|).

Visualization of biotic variation across the landscape

To visualize biotic variation across our study area, we used the approach from Fitz-
patrick and Keller, 2015. In brief, the turnover functions derived from GDMs were
used to transform the retained environmental variables into indices of genetic im-
portance. These genetic importance values were subsequently reduced into orthog-
onal axes by a Principal Components Analysis (PCA), and the first three axes were
mapped to the red, green, and blue channels in a RGB composite layer. One caveat of
this approach is that not all variation in the genetic importance variables is explained
by the first three PC axes.

A more proper way to visualize biotic variation is to use the ‘predict.gdm’ function
in the ‘gdm’ package with subsequent multidimensional scaling to reduce the n-
dimensional GDM matrix into three dimensions that can be mapped to RGB values.
However, in the current set-up (R package ‘gdm’ version 1.1.2, run on a stand-alone
PC with 8 Gb of RAM), it was only possible to do so for a maximum of 3000 locations.
To evaluate whether the high resolution spatial projections from the approach from
(Fitzpatrick and Keller, 2015) were broadly consistent with those at low resolution
using the ‘predict.gdm’ function, we created maps using both approaches and visu-
ally compared the results. We extracted the values of environmental variables at 3000
locations randomly distributed across the study area. We then predicted the biotic
response between those 3000 locations based on the GDM turnover functions, and
subsequently used the ‘cmdscale’ function in R to reduce the 3000-dimensional GDM
matrix into three dimensions. We created spatial interpolations for each of these di-
mensions using Empirical Bayesian Kriging (EBK) in ArcGIS 10.2.2 (ESRI, Redlands,
USA). EBK accounts for the error in estimating the semivariogram model by estimat-
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ing and using many different semivariograms and attempting to find the optimal pa-
rameters for the spatial interpolation. We used EBK with no transformation; a power
semivariogram; maximum number of points in each local model: 100; local model
area overlap factor: 1; number of simulated semivariograms: 100; standard circular
search neighborhood; maximum 15 neighbors. Resulting maps were visually very
similar to those obtained through ordinary kriging with a spherical semivariogram,
variable search radius, and twelve points in the search radius. Maps for each of the
three dimensions were combined into a composite RGB map. The spatial projections
of biotic variation were highly consistent between methods (results not shown). As a
result, we only show the high resolution maps obtained through a transformation of
environmental variables into genetic importance values and a subsequent PCA.

Conservation of intraspecific variation

We visually compared the overlap of protected areas in Romania and Bulgaria with
the full range of environmentally associated intraspecific variation in house spar-
rows. This evaluation is by no means meant to be a detailed analysis of the protec-
tion status of intraspecific variation, but can serve as a preliminary and qualitative
assessment. The current study will contribute to a larger forthcoming comparative
study of multiple species, integrating intraspecific variation with other measures of
biodiversity. We plotted protected areas recorded in the Natura 2000 database
(http://natura2000.eea.europa.eu/), updated till 2014, on the maps of GDM results
(Fig. S6). We did not distinguish between the protection status of sites, or whether
protection had been implemented. For both genetic and morphological variation in-
complete coverage of the full range of variation (all colors in the maps) can be ob-
served. Insufficient protection of genetic variation and variation in morphology in
females (PC2) is suggested in the lowland areas bordering the Danube River, where
protected areas only to a small extent overlap with the blue-black colors (microsatel-
lites; Fig. S6a) and the green and brown colors (female PC2; Fig. S6b). In addition,
female size and the first shape component in males change rapidly along the eleva-
tion gradient in the southern Carpathian Mountains, but hardly any of these areas
are under protection (Fig. S6c).
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Supplementary Figures

FIGURE S1: PCA ratio spectra for the shape component of males and females for a dataset including all
locations but only three morphological variables (wing, tail, and tarsus length), or for only three locations
but all morphological variables.
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FIGURE S2: (A) Generalized dissimilarity model response curves for the best fit models for the first
principal shape component of morphological variables for males (males PC1). The maximum height
reached by a variable represents the relative importance of that variable compared to the others. The slope
of the curves is indicative of the turnover rate of the response variable as a function of the turnover in the
predictor variable. (B) Observed versus GDM-predicted dissimilarities based on a model that included all
of the variables from panel (A). (C) Observed dissimilarities as a function of geographic distance.
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FIGURE S3: S3 Same as Fig. S2, but for the morphological size component for females.
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FIGURE S4: Same as Fig. S2, but for the second principal shape component for females (females PC2).
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FIGURE S5: Same as Fig. S2, but for microsatellite variation.
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FIGURE S6: GDM results with protected areas (Natura 2000 sites as identified or implemented by 2014)
indicated in cross-hatching. (a) microsatellites; (b) the second shape component (PC2) for females; (c) the
size component for females and the first shape component (PC1) for males. Color differences between
two locations indicated the magnitude of divergence in genetic or morphological variation on the RGB
color cube (a), or along the corresponding color bar (b and c).
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FIGURE S7: Scatterplot of FST values as a function of log-transformed differences in allelic richness (ar).

FIGURE S8: Map of allelic richness per population.
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Supplementary Tables

TABLE S1: Overview of sampling locations including coordinates and number of
sampled individuals. Locations 1 to 5 are situated in Bulgaria and locations 6 to 33 in
Romania. Locations 24 and 25, as well as 29 and 30 (bold) were pooled together because
of small sampling size and/or they were close together.

No. of Individuals
Location Latitude Longitude Total Males Females Unknown

1 Ognyanovo 41.61487 23.79100 7 7 0 0
2 Beli bryag 42.24340 25.94131 3 3 0 0
3 Jasna poljana 42.28058 27.61904 6 0 6 0
4 Popovits 42.83530 27.78912 8 1 2 5
5 Golica 42.91410 27.54206 16 16 0 0
6 Poiana 43.73681 24.95477 3 3 0 0
7 Berzovia 45.42264 21.62602 3 3 0 0
8 Cluj Napoca 46.74912 23.52103 31 15 15 1
9 Cojocna 46.73354 23.82930 33 12 20 1
10 Vama Seăca 46.35025 23.93556 40 15 15 10
11 Bălcaciu 46.19968 24.05896 34 15 15 4
12 Agnita 45.98115 24.64165 33 15 15 3
13 Făgăras, 45.84098 25.00389 31 15 15 1
14 Independent,a 44.28193 27.16513 30 15 15 0
15 Văcăreni 45.31745 28.20522 40 15 15 10
16 Bros, teni 44.66979 26.73272 30 15 15 0
17 Cornes, ti 44.76584 25.88395 30 16 14 0
18 Balda 46.73661 24.14184 29 15 14 0
19 Pinticu 46.95053 24.54299 33 17 16 0
20 Lechint,a 47.01407 24.32037 30 15 15 0
21 Turulung 47.92441 23.08823 32 16 16 0
22 Petres, ti 47.59987 22.37137 31 15 16 0
23 Salonta 46.78522 21.58472 25 11 10 4
24 Part,a1 45.61900 21.14103 11 1 9 1

25 Part,a2 45.64539 21.13206 19 4 7 8

26 Caransebes, 45.40022 22.24125 28 14 10 4
27 Mihăes, ti 45.02586 24.25767 31 18 13 0
28 Hălmagiu 46.25341 22.56737 14 0 6 8
29 Măgherus, 46.91388 25.33898 3 1 2 0

30 Runc 46.89917 25.44515 2 0 2 0

31 Lăzarea 46.75690 25.52250 3 2 1 0
32 Tintes, ti 45.06982 26.86985 15 0 0 15
33 Dunavăt,u de Jos 44.98804 29.21840 7 4 3 0

total 691 314 302 75
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TABLE S2: Microsatellite loci used, with repeat unit (motif), primers, range of allele sizes, corresponding annealing temperatures, references, and the multiplex
primer mix it was used it. Loci highlighted in bold were used in the final analyses.

Primer Motif Forward/reverse primers Allele

size

(bp)

PCR-Temp Reference Primer combination

Pdo31 CTCA GATCCACAGACGCAGACACAG CATGCTGAATACTTTGTGAACTTGC 232-
279

55 °C Dawson
et al., 2012

PM 1

Pdo75 GAAA GCATGACCTACAAACAGTTGC TCCACCTATCTGATTCTGTCAAG 94-149 55 °C Dawson

et al., 2012

PM 1

Pdoµ3 CCAT CTGTTCATTAACTCACAGGT AGTGAAACTTTAATCAGTTG 140 55 °C Griffith1999 PM 4

PdoA06 GT GGCTTGAAGGACAGTGTATG TTTCAAAAGGCACAGGTCT 103 56 °C Garnier

et al., 2009

PM 3

PdoA08 TG AGCTTTTCAGGTCTCCTTCT CTACACCAGCAAGATCCATT 189 56 °C Garnier

et al., 2009

PM 3

PdoH05 AC CAAAGAATTTAAGGGGTGAA ATGAACAACTCTCCAGCATC 151 56 °C Garnier et
al., 2009

PM 3

Pdo7 TTTC AAATGCAAATAAATGTGCGG GGCAAAGCCTTCCTTATCTC 162-
285

60 °C Griffith et
al., 2007

PM 5

Pdo10 CA AATGTGAATCCCTCCAGAAAC ATGGAGTTTGGGGAATGG 113-

147

60 °C Griffith

et al., 2007

PM 6

Pdo46 CA GTGGGTGTGCCTGAAGATGTG AGCGGGTCAGGAGCCTCTC 191-

211

60 °C Dawson

et al., 2012

PM 6

Pdo16 CA GTGTATATGCAAATGACAAGACCAAAGC TCACGCTGACCTAGATGCTATCAGAG 282-

297

60 °C Dawson

et al., 2012

PM 2

Pdo36 GT GCATTCAAAAATGGCAAGAGGA GAGGCTACCCCTTTCCTGAACA 183-

221

60 °C Dawson

et al., 2012

PM 2

PdoF05 TG GCATATTTCTGGCATTCTTC TCAAATAAAGTGCTCCACAA 103 60 °C Garnier et
al., 2009

PM 2
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TABLE S3: Environmental variables obtained for this study. Variables highlighted in bold were included
in generalized dissimilarity models, after highly cross-correlated ones (with Pearson correlation
coefficients > 0.7) were omitted.

Name Attribute Source

Bio 1 Annual mean temperature WorldClim

Bio 2 Mean diurnal range [mean of

monthly (max temp – min temp)]

WorldClim

Bio 3 Isothermality [(Bio2/Bio7) * 100] WorldClim
Bio 4 Temperature seasonality (standard

deviation*100)

WorldClim

Bio 5 Maximum temperature of the warmest
month

WorldClim

Bio 6 Minimum temperature of the coldest
month

WorldClim

Bio 7 Temperature annual range (Bio5-Bio6) WorldClim
Bio 8 Mean temperature of the wettest quar-

ter
WorldClim

Bio 9 Mean temperature of the driest quar-

ter

WorldClim

Bio 10 Mean temperature of the warmest
quarter

WorldClim

Bio 11 Mean temperature of the coldest quar-
ter

WorldClim

Bio 12 Annual precipitation WorldClim

Bio 13 Precipitation of the wettest month WorldClim
Bio 14 Precipitation of the driest month WorldClim

Bio 15 Precipitation seasonality (coefficient of
variation)

WorldClim

Bio 16 Precipitation of the wettest quarter WorldClim
Bio 17 Precipitation of the driest quarter WorldClim
Bio 18 Precipitation of the warmest quarter WorldClim
Bio 19 Precipitation of the coldest quarter WorldClim

ELV Elevation SRTM
SLOPE Slope SRTM

ASPECT Aspect SRTM

TREE2001 Percent tree cover Global Land Cover facility

LAI sd Lead Area Index standard deviation Global Land Cover facility
LAI min Leaf Area Index minimum Global Land Cover facility

LAI mean Leaf Area Index mean Global Land Cover facility

LAI max Leaf Area Index maximum Global Land Cover facility
QSCAT min Quickscat minimum NASA SCP
QSCAT mean Quickscat mean NASA SCP

QSCAT max Quickscat maximum NASA SCP

QSCAT seasonality Quickscat seasonality (coefficient of

variation)

NASA SCP

Road density Road density Digital Chart of the World

Danube barrier Danube as barrier

Human pop dens Human population density Gridded Population of the World



Table S4 Pearson correlation coefficients for environmental variables obtained for this study.

Pearson r below the diagonal; p-values above the diagonal.

Pearson r Bio 1 Bio 2 Bio 3 Bio 4 Bio 6 Bio 7 Bio 8 Bio 9 Bio 12 Bio 13 Bio 14 Bio 15 Bio 16 Bio 17 Bio 18

Bio 1 1 0.0089 0.0267 0.3910 0.0000 0.0333 0.2559 0.0000 0.0012 0.0000 0.1007 0.0000 0.0000 0.0034 0.0000

Bio 2 -0.45 1 0.0000 0.0169 0.0001 0.0000 0.1387 0.0372 0.0013 0.0001 0.7961 0.0004 0.0001 0.2687 0.0000

Bio 3 -0.39 0.87 1 0.7313 0.0089 0.0075 0.6719 0.6805 0.0000 0.0001 0.7795 0.0018 0.0000 0.7825 0.0008

Bio 4 -0.15 0.41 -0.06 1 0.0231 0.0000 0.0000 0.0005 0.1969 0.8913 0.9465 0.3491 0.8566 0.0492 0.1654

Bio 6 0.94 -0.63 -0.45 -0.39 1 0.0001 0.0381 0.0000 0.0032 0.0000 0.1162 0.0000 0.0000 0.0013 0.0000

Bio 7 -0.37 0.83 0.46 0.83 -0.64 1 0.0009 0.0010 0.2855 0.0335 0.9897 0.0099 0.0211 0.0643 0.0015

Bio 8 -0.20 0.26 -0.08 0.72 -0.36 0.55 1 0.0000 0.7185 0.1730 0.4276 0.1759 0.2478 0.1248 0.0178

Bio 9 0.69 -0.36 -0.07 -0.57 0.75 -0.55 -0.69 1 0.1720 0.0017 0.7810 0.0005 0.0013 0.0380 0.0000

Bio 12 -0.54 0.54 0.67 -0.23 -0.50 0.19 -0.07 -0.24 1 0.0000 0.0220 0.0024 0.0000 0.0550 0.0000

Bio 13 -0.77 0.61 0.63 0.02 -0.76 0.37 0.24 -0.53 0.88 1 0.4609 0.0000 0.0000 0.7201 0.0000

Bio 14 0.29 0.05 0.05 0.01 0.28 0.00 0.14 -0.05 0.40 0.13 1 0.0156 0.9403 0.0000 0.8948

Bio 15 -0.89 0.58 0.52 0.17 -0.89 0.44 0.24 -0.57 0.51 0.81 -0.42 1 0.0000 0.0002 0.0000

Bio 16 -0.85 0.64 0.65 0.03 -0.83 0.40 0.21 -0.54 0.84 0.98 -0.01 0.89 1 0.2651 0.0000

Bio 17 0.50 -0.20 -0.05 -0.35 0.54 -0.33 -0.27 0.36 0.34 -0.06 0.87 -0.61 -0.20 1 0.0752

Bio 18 -0.91 0.65 0.56 0.25 -0.92 0.53 0.41 -0.74 0.71 0.92 -0.02 0.88 0.95 -0.31 1

Bio 19 0.63 -0.30 -0.03 -0.58 0.70 -0.51 -0.56 0.69 0.18 -0.26 0.57 -0.69 -0.36 0.87 -0.54

Elevation -0.85 0.33 0.47 -0.23 -0.70 0.06 -0.27 -0.30 0.52 0.63 -0.35 0.75 0.71 -0.38 0.66

Slope -0.37 -0.10 0.09 -0.45 -0.21 -0.31 -0.50 -0.04 0.16 0.18 -0.33 0.34 0.24 -0.20 0.16

Aspect 0.05 0.11 0.24 -0.18 0.07 -0.04 -0.03 0.06 0.35 0.16 0.42 -0.16 0.09 0.40 0.08

LAI mean -0.25 0.05 0.31 -0.59 -0.13 -0.32 -0.16 0.03 0.50 0.48 -0.04 0.34 0.46 0.07 0.32

LAI sd -0.55 0.19 0.32 -0.36 -0.45 -0.08 0.01 -0.28 0.60 0.65 -0.04 0.55 0.66 -0.06 0.61

LAI min 0.38 -0.23 0.07 -0.65 0.47 -0.52 -0.40 0.59 0.14 -0.05 0.08 -0.21 -0.09 0.36 -0.31

LAI max -0.31 0.04 0.24 -0.51 -0.20 -0.26 -0.13 -0.03 0.52 0.50 -0.02 0.37 0.49 0.08 0.38

Percent tree cover -0.53 0.23 0.36 -0.18 -0.41 0.01 0.05 -0.26 0.45 0.54 -0.06 0.51 0.56 -0.15 0.54

QSCAT mean 0.46 -0.25 -0.27 -0.06 0.45 -0.21 0.06 0.13 -0.25 -0.34 0.24 -0.44 -0.39 0.24 -0.35

QSCAT min 0.34 -0.25 -0.13 -0.33 0.40 -0.37 -0.27 0.30 -0.05 -0.15 0.16 -0.27 -0.20 0.26 -0.30

QSCAT max 0.31 -0.42 -0.58 0.25 0.28 -0.11 0.34 -0.10 -0.62 -0.55 -0.08 -0.40 -0.54 -0.16 -0.35

QSCAT seasonality 0.03 -0.13 -0.39 0.52 -0.08 0.25 0.50 -0.30 -0.52 -0.36 -0.25 -0.11 -0.31 -0.40 -0.08

Road density -0.13 0.14 0.13 0.12 -0.10 0.08 0.17 -0.15 -0.02 0.09 -0.07 0.22 0.13 -0.19 0.17

Danube barrier* -1.88 -1.89 5.30 -0.12 -0.54 2.59 0.49 0.20 0.21 -1.15 14.18 6.93 -0.36 -1.79 -1.24

Human pop density -0.19 0.21 0.18 0.07 -0.18 0.12 0.12 -0.18 0.15 0.25 -0.07 0.30 0.26 -0.15 0.27

* The Danube barrier was coded as 0 vs 1. Figures provided are coefficient estimates and p-values of a logistic regression.
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Bio 19 Elevation Slope Aspect LAI mean LAI sd LAI min LAI max

Percent 

tree cover

QSCAT 

mean QSCAT min

QSCAT 

max

QSCAT 

seasonality

Road 

density

Danube 

barrier*

Human pop 

density

0.0001 0.0000 0.0336 0.7627 0.1546 0.0009 0.0301 0.0775 0.0016 0.0066 0.0544 0.0768 0.8722 0.4676 1.0000 0.2930

0.0870 0.0614 0.5709 0.5557 0.7962 0.2849 0.2004 0.8135 0.1963 0.1644 0.1664 0.0163 0.4784 0.4208 1.0000 0.2465

0.8876 0.0054 0.6328 0.1753 0.0827 0.0672 0.7120 0.1771 0.0425 0.1254 0.4553 0.0004 0.0259 0.4828 1.0000 0.3238

0.0004 0.1927 0.0092 0.3226 0.0003 0.0387 0.0000 0.0026 0.3282 0.7545 0.0573 0.1552 0.0020 0.4965 1.0000 0.7092

0.0000 0.0000 0.2501 0.6929 0.4868 0.0079 0.0062 0.2695 0.0181 0.0087 0.0194 0.1121 0.6610 0.5886 1.0000 0.3228

0.0023 0.7280 0.0836 0.8141 0.0733 0.6392 0.0018 0.1429 0.9714 0.2375 0.0343 0.5524 0.1630 0.6539 1.0000 0.5126

0.0008 0.1234 0.0031 0.8736 0.3803 0.9477 0.0211 0.4617 0.8033 0.7322 0.1333 0.0565 0.0034 0.3334 1.0000 0.5141

0.0000 0.0880 0.8120 0.7553 0.8746 0.1107 0.0003 0.8653 0.1499 0.4781 0.0927 0.5713 0.0904 0.3948 1.0000 0.3177

0.3159 0.0019 0.3655 0.0476 0.0034 0.0002 0.4450 0.0018 0.0080 0.1581 0.7687 0.0001 0.0019 0.8930 1.0000 0.4100

0.1397 0.0001 0.3275 0.3719 0.0048 0.0000 0.7802 0.0033 0.0013 0.0535 0.3970 0.0009 0.0385 0.6011 1.0000 0.1572

0.0005 0.0477 0.0615 0.0152 0.8182 0.8241 0.6659 0.9009 0.7416 0.1779 0.3829 0.6466 0.1653 0.6900 1.0000 0.7103

0.0000 0.0000 0.0511 0.3787 0.0518 0.0008 0.2303 0.0357 0.0027 0.0112 0.1294 0.0204 0.5466 0.2135 1.0000 0.0896

0.0369 0.0000 0.1753 0.6204 0.0070 0.0000 0.6319 0.0037 0.0008 0.0263 0.2708 0.0013 0.0812 0.4843 1.0000 0.1436

0.0000 0.0278 0.2659 0.0204 0.7080 0.7457 0.0390 0.6552 0.3957 0.1779 0.1377 0.3611 0.0228 0.2819 1.0000 0.3965

0.0011 0.0000 0.3859 0.6393 0.0721 0.0002 0.0784 0.0309 0.0013 0.0461 0.0908 0.0469 0.6598 0.3551 1.0000 0.1286

1 0.0442 0.5377 0.0367 0.4755 0.4610 0.0011 0.6503 0.2851 0.1900 0.0788 0.4075 0.0195 0.1882 1.0000 0.2104

-0.35 1 0.0004 0.6865 0.0449 0.0013 0.4260 0.0457 0.0024 0.0143 0.5993 0.0073 0.0474 0.6238 1.0000 0.3641

-0.11 0.58 1 0.8201 0.0809 0.0219 0.6475 0.0869 0.0766 0.3239 0.4991 0.0963 0.0530 0.7058 1.0000 0.8540

0.36 -0.07 -0.04 1 0.8139 0.5355 0.9683 0.5616 0.9738 0.8230 0.4926 0.6701 0.8897 0.0703 1.0000 0.0328

0.13 0.35 0.31 0.04 1 0.0000 0.0000 0.0000 0.1622 0.8420 0.2796 0.0536 0.0129 0.9458 1.0000 0.3426

-0.13 0.54 0.40 0.11 0.81 1 0.1847 0.0000 0.0423 0.9585 0.3404 0.2332 0.0659 0.3731 1.0000 0.1559

0.54 -0.14 0.08 0.01 0.68 0.24 1 0.0002 0.4744 0.7868 0.1480 0.0801 0.0155 0.4592 1.0000 0.7077

0.08 0.35 0.30 0.10 0.94 0.87 0.60 1 0.2793 0.8817 0.4164 0.1103 0.0539 0.9412 1.0000 0.4812

-0.19 0.51 0.31 -0.01 0.25 0.36 -0.13 0.19 1 0.3566 0.8915 0.3898 0.3053 0.1307 1.0000 0.2654

0.23 -0.42 -0.18 -0.04 -0.04 0.01 0.05 -0.03 -0.17 1 0.0000 0.0000 0.8277 0.0434 1.0000 0.0457

0.31 -0.09 0.12 -0.12 0.19 0.17 0.26 0.15 -0.02 0.80 1 0.2071 0.0008 0.0688 1.0000 0.0256

-0.15 -0.46 -0.29 -0.08 -0.34 -0.21 -0.31 -0.28 -0.15 0.66 0.23 1 0.0000 0.3993 1.0000 0.9445

-0.40 -0.35 -0.34 -0.03 -0.43 -0.32 -0.42 -0.34 -0.18 -0.04 -0.55 0.66 1 0.4330 1.0000 0.1154

-0.23 0.09 0.07 -0.32 0.01 0.16 -0.13 0.01 0.27 0.35 0.32 0.15 -0.14 1 1.0000 0.0004

0.17 -0.06 0.76 0.00 0.74 -15.53 -11.13 5.74 -0.57 -29.83 4.23 33.16 -3.79 0.00 1 1.0000

-0.22 0.16 -0.03 -0.37 0.17 0.25 -0.07 0.13 0.20 0.35 0.39 0.01 -0.28 0.58 0.03 1
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TABLE S5: PCA results for the shape component of
wing, tail, and tarsus lengths in males and females
based on the three-variables-all-locations dataset.
Numbers indicate factor loadings and proportion of
variance explained. The first two axes explained all
shape variation. Prop Var = Proportion of variance
explained by each morphological shape component.

Shape PC1 Shape PC2

Females Wing length 0.1049 -0.8097
Tail length 0.6488 0.4957
Tarsus length -0.7537 0.3140
Prop Var 0.8142 0.1858

Males Wing length -0.0396 0.8155
Tail length -0.6865 -0.4421
Tarsus length 0.7261 -0.3734
Prop Var 0.7261 0.2739

TABLE S6: Basic population genetic statistics for each
sampling location. NE = number of effective alleles; HO =
observed heterozygosity; HE = expected heterozygosity; F
= fixation index.

Population NE HO HE F

Agnita Mean 6.066 0.785 0.759 -0.044
SE 0.857 0.087 0.085 0.034

Bălcaciu Mean 5.094 0.846 0.771 -0.094
SE 0.563 0.063 0.044 0.044

Balda Mean 5.574 0.808 0.753 -0.075
SE 0.713 0.093 0.082 0.042

Beli bryag Mean 4.049 0.844 0.722 -0.164
SE 0.482 0.066 0.040 0.056

Berzovia Mean 3.220 0.708 0.639 -0.099
SE 0.401 0.098 0.061 0.093

Bros, teni Mean 4.893 0.750 0.740 0.008
SE 0.708 0.087 0.062 0.084

Caransebes, Mean 4.890 0.761 0.727 -0.053
SE 0.728 0.087 0.078 0.042

Cluj Napoca Mean 5.479 0.808 0.766 -0.067
SE 0.701 0.061 0.063 0.034

Cojocna Mean 5.291 0.757 0.725 -0.043
SE 0.649 0.117 0.104 0.055

Cornes, ti Mean 5.618 0.725 0.726 0.000
SE 0.834 0.108 0.105 0.039

Dunavăt,u de Jos Mean 4.558 0.625 0.737 0.207
SE 0.581 0.117 0.052 0.142

Făgăras, Mean 5.124 0.698 0.732 0.028
SE 0.772 0.089 0.081 0.072

Golica Mean 6.887 0.801 0.794 0.000
SE 0.928 0.079 0.070 0.033

Hălmagiu Mean 6.477 0.731 0.767 0.034
SE 0.884 0.090 0.091 0.044
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SIGNS OF LOCAL ADAPTATIONS IN THE BUFF-TAILED BUMBLE BEE

(BOMBUS TERRESTRIS)

Julia C. Geue, Madleina Caduff, Vivian Link, Daniel Wegmann and Henri A. Thomassen



106 5 CHAPTER IV

Abstract

Insect pollinators provide one of the most important ecosystem services to humans.
With ongoing global change, however, the long-term survival of these species is at
stake. Species likely need to adapt to new environmental conditions, but depend on
‘standing genetic variation’ to do so. Thus, it is critical to map standing genetic vari-
ation correlated to the environment in order to understand how species are adapted
to their current environment, how they will be affected by future changes, and what
populations to protect in order to maximize their adaptive potential. So far, however,
only little is known about local adaptations in pollinator species.
Here, we aimed to identify loci showing signs of local adaption in the buff-tailed
bumble bee (Bombus terrestris) in Romania and Bulgaria, one of the most important
pollinator species in Europe. First, we conducted whole genome sequencing of hun-
dreds of individuals to create a large Single Nucleotide Polymorphism (SNP) data
set. We then combined the resulting SNP markers with a set of 16 environmental
variables in order to detect ‘gene-environment’ associations (GEAs). Using Latent
Factor Mixed Modeling we identified 29 significant associations with nine of the in-
vestigated environmental variables. We found that seasonality in temperature and
precipitation as well as vegetation variables were significantly associated to SNPs lo-
cated in coding regions of the genome, suggesting potential local adaptations in B.

terrestris. Interestingly, we previously found the same environmental variables to be
important in determining the spatial distribution of this species.
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Introduction

Environmental stressors resulting from ongoing global change through human-induced
threats such as habitat alteration, industrial development, and climate change are
challenging for many species and have major impacts on biodiversity (Vanbergen
and Initiative, 2013). Mounting evidence suggests that one of the most affected tax-
onomic groups are insects, where particularly pollinator species such as wild bees
have declined in recent years (e.g.Hallmann et al., 2017; Potts et al., 2010). Loss of in-
sect diversity and a decrease in pollination activity may thus have adverse effects on
global food security, floral biodiversity, and indeed entire food-webs and ecosystems
(reviewed by Potts et al., 2010).

One of the biggest threats to biodiversity is habitat loss (Pereira et al., 2012), being re-
sponsible for reductions in species richness and abundance of wild bees (Goulson and
Sparrow, 2008; Kennedy et al., 2013). In addition, anthropogenically-induced climate
change is assumed to affect the availability of important resources for wild bees (e.g.
nest sites, flower abundance), changing their distributional patterns and population
sizes (Kerr et al., 2015; Pyke et al., 2016). The resulting new environmental conditions
will modify natural selection pressures (Hoffmann and Sgrò, 2011), forcing popula-
tions to either shift their distributional range or respond plastically or evolutionary
and adapt to those novel conditions (Anderson et al., 2012). Phenotypic plasticity
is considered a ‘short-term’ response crucial for the immediate future (Oostra et al.,
2018), but may not be sufficient for the expected magnitude of changes necessary in
the more distant future (Anderson et al., 2012; Bijlsma and Loeschcke, 2012; Hendry
et al., 2008). Evolutionary responses, however, help species to persist and survive
over the long run (Anderson et al., 2012; Hoffmann and Sgrò, 2011). An emerging
issue in a rapidly changing environment is that mutation rates are likely too low for
new advantageous genotypes to arise (Barrett and Schluter, 2008; Savolainen et al.,
2013), and adaptive responses are contingent upon standing genetic variation (Etter-
son and Shaw, 2001). It is thus crucial to protect as much standing genetic variation
as possible in order to maximize a species’ evolutionary potential. A practical strat-
egy may be to map this standing genetic variation (in particular that part of genetic
variation that represents adaptations to different environmental conditions). Doing
so could enhance our understanding of the (underlying) processes of local adaptation
and the role of genetic diversity herein, and eventually will help us to disentangle the
relative influence of human-induced threats (De Mazancourt et al., 2008), and to pre-
dict species’ future responses to these threats (Bay et al., 2017; Hoffmann and Sgrò,
2011).

Here we aimed to explore patterns of local adaptation to diverse environmental con-
ditions in the buff-tailed bumble bee (Bombus terrestris). B. terrestris is a widespread
and important pollinator species of crops and wild plants, experiencing diverse en-
vironmental conditions, which in return pose different selection pressures (Goulson,
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2010; Rasmont et al., 2013). Such widespread species are expected to show a distinct
genetic composition between populations as a result of local adaptations (Vincent et
al., 2013). The buff-tailed bumble bee is well studied with respect to its behavior (e.g.
Kraus et al., 2009; Walther-Hellwig and Frankl, 2000; Woodard et al., 2015), distri-
bution (e.g Chapter I (Geue and Thomassen, 2020), Polce et al., 2018; Rasmont et al.,
2015a), and habitat preference (e.g. Carvell, 2002; Scriven et al., 2015; Svensson et al.,
2000). As is the case for other important pollinator species,B. terrestris may also be af-
fected by human induced habitat alterations and future climatic change (Brown and
Paxton, 2009; Kerr et al., 2015; Kosior et al., 2007; Rasmont et al., 2015a). However,
only little attention has been paid to the genetic consequences of threats imposed by
humans. Because B. terrestris is not threatened yet, its genetics and adaptive potential
have so far been neglected. Only in recent years, studies investigated signatures of lo-
cal adaptation to environmental conditions in other pollinator species, including the
tropical bee Melipona subnitida (Jaffé et al., 2019), the honey bee Apis mellifera (Hen-
riques et al., 2018), two alpine bumble bees Bombus balteatus and B. sylvicola (Miller-
Struttmann et al., 2015), and the red-tailed bumble bee Bombus lapidarius (Theodorou
et al., 2018). Both the tropical bee and the honey bee showed signs of local adaptations
to climatic conditions, in particular precipitation (Henriques et al., 2018; Jaffé et al.,
2019). The two bumble bee studies demonstrated the ability of these species to adapt
to environmental change in both urban and alpine environments (Miller-Struttmann
et al., 2015; Theodorou et al., 2018).

We implemented a landscape genomics approach to assess genomic adaptations to
the environment and elucidate the ecological importance of loci putatively under se-
lection (‘selective loci’ from here onwards). Landscape genomics is a quickly devel-
oping field, combining genomic data with environmental information, thus facilitat-
ing the mapping of genetic diversity, and providing a way to identify adaptations to
local environmental conditions (Balkenhol et al., 2017; Guillot et al., 2005a; Holdereg-
ger et al., 2006; Manel et al., 2010; Manel et al., 2003; Storfer et al., 2018). Technological
advances, such as high throughput sequencing and new analytical tools aid in these
attempts (Henriques et al., 2018; Storfer et al., 2018). So called gene-environment as-
sociations (GEA) scan the genome for loci (such as single-nucleotide polymorphisms,
SNPs) with allele frequencies correlated to environmental features, indicating poten-
tial selection pressures driving local adaptation providing an advantage in some envi-
ronments (Frichot et al., 2013; Joost et al., 2007). Linking molecular markers with the
corresponding functional genes can enhance our knowledge about key processes in-
fluenced by environmental selection (Bonin, 2008; Parisod and Holderegger, 2012). A
widely-used method for this kind of analysis are latent factor mixed models (LFMM;
Frichot et al., 2013). LFMM accounts for population structure (in the form of latent
factors), limiting potential false positives in the detected genotype environment as-
sociations. LFMM was shown to be a good compromise between error rates and the
detection power of important loci (Rellstab et al., 2015).
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In this study, we specifically aimed to identify signals of local adaptations to dif-
ferent environmental conditions in the buff-tailed bumble bee (Bombus terrestris) by
combining a large genomic dataset with a set of ecologically meaningful environmen-
tal variables. We whole-genome sequenced (WGS) hundreds of individuals from 25
locations at low coverage to identify single-nucleotide polymorphism (SNPs) across
the genome, and correlated these to a set of 16 environmental variables. Based on
the documented habitat preferences (Chapter I (Geue and Thomassen, 2020), Svens-
son et al., 2000) and its seasonal-dependent life-cycle (Goulson, 2010), we expected
to find signatures of selection related to seasonality in temperature and precipitation
as well as to vegetation parameters. We also traced back selective loci to the genome,
and identified genes that may be relevant relevant for the adaptability of B. terrestris

to its habitat.

Material and Methods

Study species and study area

The buff-tailed bumble bee, Bombus terrestris is one of the most common bumble bee
species in Europe and an important pollinator species (Corbet et al., 1991; Murray et
al., 2007). It is considered to be a generalist species showing highly polylectic feeding
behavior (collecting pollen from flowers of a variety of unrelated plants) (Rasmont et
al., 2013; Westphal et al., 2009) and occurring in a wide geographical range compris-
ing different habitats (Goulson, 2010; Rasmont et al., 2013). B. terrestris is currently
not threatened within its native range, however with ongoing human-related reduc-
tion of suitable habitat and climate change it was predicted to be highly affected and
hence could experience population declines (Rasmont et al., 2015a).

This study was conducted in Bulgaria and Romania, two southeastern European
countries, covering an area of 350.000 km2. Both countries are shaped mainly by
mountain ranges (the Rila, Rhodope and Balkan Mountains in Bulgaria, the Carpathian
mountains in Romania) and the Danube River representing the border between both
countries. Bulgaria and Romania are environmentally highly heterogeneous, com-
prising different climatic zones (continental, mediterranean and temperate) resulting
in a wide variety of habitats. These habitats include areas inhabited and influenced
by humans, as well as natural areas such as mountains, river valleys, forests, open
woodlands, and grasslands. The resulting habitat heterogeneity is ideal to assess the
influence of the environment on biological diversity, such as genetic diversity and
offer the opportunity to look for signs of local adaptations.
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Sampling, WGS library preparation and sequencing

We used 411 Bombus terrestris samples from 25 locations in Romania and Bulgaria
(Table 1), which are part of the dataset in Chapter I. DNA was extracted as described
in Chapter I (Geue and Thomassen, 2020). We prepared a WGS library for those 411
samples using the ‘Nextera XT DNA library Preparation Kit’ (Illumina, FC 131-1096),
following the previously established protocol by Baym et al., 2015. The detailed pro-
tocol can be found in the Supplementary Information.

TABLE 1: Sampling locations and sample sizes for each location. Some samples had to be
excluded because of bad sequencing quality. The location Billed was removed from further
analyses because most of the samples showed a bad sequencing quality and a sample size of
three was not considered to be representative enough.

Location Latitude Longitude No. of Individuals sequenced No. of individuals in
downstream analyses

1 Baita Plai 46.46871 22.61674 21 20
2 Billed 45.91412 20.94701 9 -
3 Blandesti 47.71380 26.86323 20 20
4 Brebu 45.42815 21.97966 20 18
5 Carei 47.69646 22.48073 19 18
6 Coastra 45.14758 24.22260 9 8
7 Dobrovat 46.99043 27.65404 20 20
8 Drăgusani 46.29929 26.97973 20 20
9 Föen 45.51085 20.87627 20 14
10 Golitsa 42.90956 27.52514 13 13
11 Gothal 45.40790 21.42069 20 17
12 Hlyabovo 42.06055 26.26459 11 11
13 Kamenitsa 41.64449 23.17299 12 11
14 Koevtsi 43.15832 25.09082 19 19
15 Mengishevo 43.03566 26.64753 13 12
16 Orsova 44.75420 22.39480 14 12
17 Pietroasa 46.58998 22.58807 12 12
18 Poienita 45.82299 24.57591 19 17
19 Rish 42.97442 26.90731 20 20
20 Sinemorets 42.04499 27.95808 14 11
21 Stambolovo 41.78435 25.63166 15 15
22 Strumeshnitsa 41.39833 23.06046 20 16
23 Topa Mica 46.92851 23.40238 19 19
24 Valea Hotarului 47.93870 23.83761 20 19
25 Valea Pădurii 46.62236 24.02727 12 12

total 411 374

Briefly, DNA was normalized to 2.5 ng/µl and was then fragmented with a sin-
gle “tagmentation” enzymatic reaction. With help of a PCR, dual-matched index
adapters with Unique Molecular Indices (UMI) (produced by Integrated DNA Tech-
nologies, Inc. (IDT)) were ligated to the DNA fragments. We specifically used unique
adapters on both the 5’ and 3’ ends to make sure that potential index hopping could
be detected in downstream bioinformatics analyses. Index-hopping can occur on se-
quencing machines when the adapters attached to different DNA fragments are par-
tially overlapping and switch between fragments, resulting in erroneous assignments
of reads to individuals after de-multiplexing the pooled samples (Ros-Freixedes et al.,
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2018). PCRs were performed with a Mastercycler epgradient (Eppendorf) with the
following conditions: initial denaturation steps at 72 °C for 3 minutes and followed
by an additional step at 95 °C for 3 minutes; then 13 cycles of a 3-step process: de-
naturation for 20 seconds at 98 °C, annealing for 15 seconds at 62 °C and extension
for 1 minute at 72 °C with a final extension step at 72 °C for 1 minute. A double
size selection with magnetic beads (Beckman Coulter™ Agencourt AMPure XP) was
then performed to get fragments in the size range of 450-700 bp. Fragment sizes of
the final libraries of the individual samples were checked on a Tapestation 4150 (Ag-
ilent Technologies) and quantified using a Qubit fluorometer (Waltham, MA) with
the High Sensitivity DNA assay. Samples were subsequently, in a randomized order,
pooled in five different libraries, containing 25 ng/µl of each sample. Paired-end se-
quencing (2x 150bp) was performed on an Illumina HiSeq3000 (Max-Planck Institute,
Tübingen, Germany).

Bioinformatic analyses and SNP discovery

The raw sequencing files were trimmed using Trimmomatic v0.36 (Bolger et al., 2014)
and all adapter sequences and low-quality bases (quality score <20) were removed.
Reads shorter than 50 nucleotides after trimming were discarded. The remaining
reads were then mapped to a ‘reference’ genome of Bombus terrestris (NCBI, Gen-
Bank assembly accession: GCA_000214255.1) using the Burrows-Wheeler Aligner
mem (BWA-MEM) with the default parameters (Li and Durbin, 2010). The result-
ing SAM files were transformed into BAM files and merged with ‘samtools’ (Li et al.,
2009) so that genome-wide information was available for every individual. Using
‘picardtools’ (Picard toolkit 2018) ‘readgroups’ were added, which was important be-
cause the individual libraries were pooled and run on different lanes of the sequenc-
ing machine. Additionally, PCR duplicates were marked, but not removed. In a lot
of cases, PCR duplicates are removed because there is concern that they can lead to
false positive variant calls. We however decided to just mark them, since they seem
to only have a minimal effect on the accuracy of subsequent variant calls (Ebbert et
al., 2016).

For the remaining bioinformatics analyses, ATLAS, a tool mainly developed for an-
cient and low coverage DNA sequencing approaches was used (Link et al., 2017). As
a first step, we used ATLAS to merge paired-end reads, so that in the overlapping
region only one of the two reads would be considered (task=mergeReads). We ran-
domly selected the read to be considered with the parameter "keepRandomRead".
Using ATLAS (task=recal), we estimated base sequencing quality score recalibration
parameters for every BAM file. The BAM files were recalibrated with the help of
ultra-conserved elements (UCE) in order to remove monomorphic sites (UCE’s were
based on: Faircloth et al., 2015). Those recalibration parameters were then considered
when estimating genotype likelihoods for every BAM file (task=GLF). We inferred
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the two most likely alleles for each site and created a VCF (Variant Call File) contain-
ing the genotype likelihoods for all individuals using ATLAS (task=majorMinor). For
this step, we restricted the output to contain only variant sites with the parameter
"minVariantQuality=40" and used the parameter: “skotte”, where genotype frequen-
cies for the best allelic combination with the highest likelihood are selected (Skotte
et al., 2012).

For the subsequent landscape genomics analysis we split our genome into the 18
chromosomes and imputed the genotype likelihoods with STITCH (Davies et al.,
2016) and created a dataset with posterior genotypes. We ran initial tests to esti-
mate the number of ancestral haplotypes (called ‘K’). To do so, we chose 10 random
samples with a higher sequencing depth (5X) and created a gen-file based on these
samples to have a ‘reference’ for the certainty of potential genotypes. We tested dif-
ferent values for K ranging from 10-100. Larger values for K allow for more accurate
imputation. Whereas it is important to assess the accuracy of the imputation, the
feasibility of the procedure is constrained by computational limitations (Davies et al.,
2016). Based on the 10 randomly selected samples we determined that K=60 pro-
vided the most accurate and still computationally feasible setting for the ancestral
haplotypes. The final settings for STITCH where: K=60, 1333 generations and a shuf-
fle bin radius of 1000. We combined the separate Chromosome files (pre-imputation)
again by using ‘bcftools’ (Li, 2011) and removed SNPs with a minor allele frequency
(MAF) < 5%.

Landscape genomics analyses

To assess the contribution of the environment in structuring genetic variation and to
identify selective loci associated to the environment, we performed gene-environment
associations (GEAs) with the same set of environmental variables we used to model
the distribution of Bombus terrestris in Chapter I (Chapter I, Table 3). In order to identify
SNPs, which are highly correlated to our 16 environmental variables, we used Latent
Factor Mixed Models (LFMM). LFMM is one of the most commonly used methods for
doing GEAs (Ahrens et al., 2018) and correlates genetic markers and environmental
variables, while at the same time estimating the hidden factors of population struc-
ture and subsequently correcting for these (Frichot et al., 2013). Population structure
is modelled via so called latent factors (‘K’). Prior knowledge about population struc-
ture, for example through clustering approaches such as STRUCTURE (Pritchard et
al., 2010) should be directly implemented as a measure of K (=integer for the number
of latent factors used in the regression model) (Frichot et al., 2013). If no prior knowl-
edge about population structure is present, so called Principal Component Analyses
(PCAs) can assist in detecting some structure and determining the number of latent
factors. Studies on the buff-tailed bumble bee suggest that genetic diversity is pre-
dominantly unstructured, with a rather panmictic pattern, indicating high rates of
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gene flow (Lecocq et al., 2013; Silva et al., 2020; Woodard et al., 2015). The selection of
our sampling locations was guided by the dispersal ability and large foraging ranges
of this species (Chapman et al., 2003) and we ensured that locations were located at
least 20 km apart (see Chapter I, section 2.2). We considered therefore the number of
sampling locations as a good estimate for population structure and ran a PCA with 25
principle component axes and determined the number of latent factors K according
to the ‘knee’ point of the curve (Figure 1).

FIGURE 3: Scree plot for the percentage of variance
explained by 25 PC-Axes (number of populations in
analysis) in order to identify latent factor (K) for the
LFMM analysis by using ‘prcomp’. Blue line indicates the
knee point at K = 9 with nine major genetic clusters in the
data.

However, the PCA plot did not
only show one clear ‘knee’ point
at K=9, but also one less distinct
‘knee’ point at K=5. We thus ran the
analyses with latent factors rang-
ing between 4 and 11 and conser-
vatively focused on those correla-
tions that were consistent across
multiple values for K. Latent fac-
tor mixed model analyses were im-
plemented in the R package lfmm
(Caye et al., 2019). We decided to
run the advanced version LFMM2
(hereafter just LFMM), since this
version can handle the posterior
genotypes we have in our dataset.
We ran LFMM with the following
settings: K=4-11, lambda=1e-05, al-
gorithm=analytical, it.max=10 000
and the default setting for the num-
ber of burn-ins (5000). Resulting P-
values were adjusted for multiple
tests using a false discovery rate (FDR; corrected P-value < 0.05 and < 0.01) correc-
tion with the Benjamini-Hochberg algorithm (Benjamini and Hochberg, 1995). This
threshold implies that 5% or 1% of our associations are expected to be false positive.
For each significantly associated environmental variable, SNP associations were plot-
ted in ‘Manhattan Plots’ and patterns within and between sampling locations were
explored in ‘scatter plots’ in R 3.6.1 (R Development Core Team, 2008). Noteworty
patterns were then visualized by creating ‘polar coordinated pie chart’ with the “gg-
plot2” package in R and combined with maps produced with QGIS 3.10.6 (QGIS,
2017). These “polar coordinated pie charts” visualize the posterior genotypes of each
individual in each location. Every line indicates one individual and the genotypes are
shown clockwise: starting with the homozygous (0 at 12 o’clock), the heterozygous
(1 at 6 o’clock) and ending with the other homozygous (2 at 12 o’clock again).
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Selective loci were mapped back to the genome using the website ‘Ensembl’ (Hunt et
al., 2018). According to their location on the genome, genes around those loci or close
by were identified (±100.000bp) and where then blasted on ‘NCBI’ (Coordinators,
2016) to investigate possible functions.

TABLE 2: LFMM results – showing the significant associations with environmental variables. Markers are
consistent between all three K values (K=9 ±1). P- and q-values are the mean between the different
LFMM runs (K=9 ±1). Color coding indicates similar SNP marker between the environmental variables.
Associations in bold are highly significant with a FDR (False Discovery Rate) of 1%.

Env. variable SNP Marker p-value q-value (5%) Position in genome Chromosome

QSCATseason V841835 2.34E-08 0.0383 NC_015770.1:973808 Chr 9
Bio 8 V1285063 4.40E-09 0.0072 NC_015773.1:10980707 Chr 12

V802687 2.83E-08 0.0232 NC_015769.1:5731985 Chr 8
Bio 4 V466493 1.29E-09 0.0009 NC_015766.1:6120680 Chr 5

V647421 1.34E-09 0.0009 NC_015768.1:5413242 Chr 7

Bio 3 V466493 4.99E-08 0.0412 NC_015766.1:6120680 Chr 5
V1355085 7.63E-08 0.0412 NC_015774.1:7344328 Chr 13
V1503835 5.60E-08 0.0412 NC_015776.1:6611877 Chr 15
V280355 1.11E-07 0.0454 NC_015764.1:7252345 Chr 3

LAIsd V511914 2.23E-08 0.0365 NC_015767.1:275765 Chr 6
Bio 11 V466493 3.02E-10 0.000494 NC_015766.1:6120680 Chr 5

V647421 7.47E-09 0.00611 NC_015768.1:5413242 Chr 7

Bio19 V1463790 1.99E-09 0.00325 NC_015776.1:2064504 Chr 15

V915653 6.88E-08 0.0427 NC_015770.1:9935769 Chr 9
V307659 1.88E-07 0.0432 NC_015764.1:9864342 Chr 3
V676937 1.17E-07 0.0432 NC_015768.1:9628798 Chr 7
V1516520 1.62E-07 0.0432 NC_015776.1:8010461 Chr 15
V1463770 1.95E-07 0.0432 NC_015776.1:2062133 Chr 15
V1334923 2.07E-07 0.0432 NC_015774.1:4329591 Chr 13
V560136 2.61E-07 0.0436 NC_015767.1:5787495 Chr 6

Tree cover V1457378 1.31E-08 0.0210 NC_015776.1:1253942 Chr 15
V69823 5.91E-08 0.0265 NC_015762.1:10211783 Chr 1
V511914 6.49E-08 0.0265 NC_015767.1:275765 Chr 6
V1063161 4.56E-08 0.0265 NC_015771.1:13309360 Chr 10
V1060815 1.24E-07 0.0366 NC_015771.1:13140800 Chr 10
V788356 1.36E-07 0.0366 NC_015769.1:4062621 Chr 8
V441690 1.66E-07 0.0388 NC_015766.1:2462459 Chr 5
V179495 1.99E-07 0.0407 NC_015763.1:7568447 Chr 2

Bio 15 V466493 1.68E-08 0.0274 NC_015766.1:6120680 Chr 5
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Results

Sequence data

Our whole-genome sequencing approach generated approximately 256 million paired-
end reads from 411 individuals. 248 million reads (96,8%) passed initial quality filters.
The average individual coverage was 4X, when calculated across the entire genome.
A total of 34 individuals with bad sequencing quality were discarded. This left one
location (‘Billed’) with only three individuals. We decided to drop the entire location,
since the significance of genetic patterns could not be assured, resulting in a final data
set of 374 individuals from 24 locations (Table 1).
The VCF with the genotype likelihood scores contained 11,961,795 SNPs; and after
imputation 9,752,655 SNPs. After a final filtering for MAF (5%) the number of SNPs
was reduced to 1,635,950 distributed over the 18 chromosomes.

Landscape genomics

To identify associations between individual SNPs and the 16 environmental vari-
ables, we used Latent Factor Mixed Models with K (the number of latent factors)
ranging between 4 and 11. LFMM detected between 37 and 60 SNPs (depending on
the value for K) significantly associated with one or more environmental variable.
The set of environmental variables associated with one or more SNP markers were
consistent across values for K, with one exception: with latent factors ranging be-
tween K=4 and K=8, we detected additional associations with ‘canopy height’. Com-
paring all the genotype-environment associations, we found that the set of markers
in Table 2 was present in all LFMM runs. LFMM runs with K=4 – K=7 and K=11
showed some additional markers in comparison to K=8 – K=10, so we decided to act
very conservatively and only consider the common SNP marker between all LFMM
runs (K=4-11). We chose a tight range of latent factors (K=9 ±1), because an incor-
rect assumption about underlying population structure was shown to increase type I
and type II errors (Cushman et al., 2010; Storfer et al., 2018). Consequently, we only
considered loci detected for all three runs (K=9 ±1).

Our most conservative estimates for significance (based on K=9 ±1) resulted in 29 sig-
nificant associations between SNPs and environmental variables (with seven show-
ing an FDR-corrected p-value < 0.01). The nine environmental variables significantly
associated to genetic markers were: QSCATseason (seasonality in surface moisture
(coefficient of variation)), Bio 8 (mean temperature of the wettest quarter), Bio 4 (tem-
perature seasonality), Bio 3 (isothermality), LAIsd (seasonality in Leaf Area Index
(standard deviation across the year)), Bio 11 (mean temperature of the coldest quar-
ter), Bio 19 (precipitation of the coldest quarter), percent tree cover and Bio 15 (pre-
cipitation seasonality). For each of these, a Manhattan plot was generated (Figure
2).
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The significant SNPs were broadly distributed across the genome, except of Chro-
mosomes 4, 11, 14, 16 – 18. Gene-environment associations of three loci (V466493,
V647421 and V511914) were detected repeatedly across the environmental variables
used in this study. They were located in Chromosome 5, 6 and 7. These associations
were plotted, but no clear visual pattern could be identified (Figure 3). Four loci
(V466493, V647421, V1285063 and V1463790) showed highly significant associations
(FDR of 1%) (Figure 3 B-F, Figure 4). A noteworthy pattern existed (Figure 4 A) in
the association of V1285063 and the mean temperature of the wettest quarter (Bio 8),
which we additionally visualized on a map (Figure 5). Whereas only heterozygotes
and homozygotes for the reference allele are present in populations with mean tem-
peratures of the wettest quarter below 15 °C, in warmer regions also individuals that
are homozygote for the alternative allele occur.

All SNP markers (except V441690, in Chromosome 5) are located in coding regions
and are associated with 44 genes in total (either inside a gene or located within ±
100.000 bp) (Table S1). Bombus terrestris shares 6,768 orthologs with the honey bee
(Apis melifera) (Woodard et al., 2011), so it was not surprising that all SNP markesr in
this study were located in or close to genes which are also orthologs with genes found
in Apis melifera. Nine of the genes were uncharacterized without any known func-
tion. Seven genes were orthologs with genes in the fruit fly (Drosophila melanogaster)
and 28 of the identified genes showed a variety of functions in humans, spanning
from developmental processes through DNA-repair mechanisms to other biologi-
cal processes. We want to highlight two genes, which have previously been iden-
tified in wild bee genomes: LOC100647823 is the ‘poly(rC)-binding protein 3’, which
was identified to be involved in the evolution of eusociality in bees (Woodard et al.,
2011). LOC100648854, which is the ‘ABC transporter G family member 22’, an ABC
transporter, is commonly associated to insecticide resistance in insects (Broehan et al.,
2013).
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FIGURE 3: Scatter plots of the three marker (V466493 (Plot A-D), V647421 (Plot E and F) and V511914
(Plot G and H)) significantly associated to more than one environmental variable. The values for each
environmental variable with the posterior genotypes of each samples individual per location is plotted
here. Plot B – F show highly significant associations with a FDR of 1%. Sampling locations are indicated
in different colors.
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FIGURE 4: Scatter plots of two marker (V1285063 and V1463790) highly significantly associated (FDR of
1%). The values for each environmental variable with the posterior genotypes of each samples individual
per location is plotted here. Sampling locations are indicated in different colors.
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FIGURE 5: Mapped association between V1285063 with Bio 8 (mean temperature of the coldest quarter).
For each location a polar coordinated pie chart is visualizing the posterior genotypes of each individual in
each location. Every line indicates one individual and the genotypes are shown clockwise: starting with
the homozygous (0 at 12 o’clock), the heterozygous (1 at 6 o’clock) and ending with the other
homozygous (2 at 12 o’clock again). Colder colors (blue) indicate colder temperatures.
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Discussion

Here, we present the first genome-wide analysis of potential local adaptations in the
buff-tailed bumble bee (Bombus terrestris) using whole-genome sequencing. With the
help of gene-environment associations (GEAs) we identified 29 loci significantly as-
sociated to 9 (out of 16) environmental variables. As hypothesized based on their
habitat preferences and life-cycle, we found molecular markers to be associated with
seasonality in temperature and precipitation, as well as vegetation variables. Our
results suggest that these variables are key factors in structuring genetic variation
and may impose selection pressures, driving local adaptation. With this work we
added to the small list of studies investigating local adaptation in bumble bees, such
as the study by Miller-Struttmann et al., 2015 who identified signs of local adaptation
in two alpine bumble bee species as a response to a decrease in floral resources, as
well as another study showing the adaptability of the red-tailed bumble bee (Bombus

lapidarius) to the urban environment (Theodorou et al., 2018).

In Chapter I, we investigated the habitat preferences of B. terrestris with the help of
species distribution modeling (SDM), using the same set of environmental variables.
Among the top six (most influential) variables determining the habitat suitability for
B. terrestris, we found seasonality in surface moisture (QSCATseason), mean temper-
ature of wettest quarter (Bio 8), temperature seasonality (Bio 4), isothermality (Bio
3) and the standard deviation of the Leaf Area Index (LAIsd). This set is concordant
with the results of the GEAs in this study, further suggesting that these environmental
conditions may be important for the ecology of this species and might drive evolu-
tionary adaptations to local conditions. B. terrestris, like other bumble bee species, ex-
hibits a highly seasonal life cycle: it occurs usually as early as March and disappears
between September and October (Goulson, 2010). Therefore, it may be no surprise
that we found significant associations to the seasonality variables within our data
set (seasonality in surface moisture, temperature and precipitation). Here we should
point out that in some European countries such as Turkey, the UK and countries in
the Mediterranean region, more and more evidence is found that B. terrestris averts
diapause and is therefore considered to be ‘winter-active’ (Owen et al., 2013; Stelzer
et al., 2010). We however do not have any indications that this might be the case for
the bumble bees collected for this study, since Romania (and partially Bulgaria) still
experience harsh winters.

We did not only find associations to seasonality variables but also to variables de-
scribing climate in the coldest or wettest months (Bio 8, Bio 11 and Bio 19). These
results are concordant with morphological adaptations of bumble bee species, which
are covered in dense fur to enable them to adapt to cold climates (Goulson, 2010), and
are supported by the fact that climate is an important determinant of geographical
ranges and habitat choice (Williams and Osborne, 2009). Similar genomic signatures
of adaptation were found in a recent landscape genomics study of the tropical bee
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Melipona subnitida, where temperature, precipitation and forest cover were among
the strongest associated environmental variables (Jaffé et al., 2019). For honey bees
(Apis melifera) from the Iberian Peninsula, precipitation was also one of the strongest
associated environmental variables (Henriques et al., 2018).

Interestingly, the most important variables for explaining the occurrence patterns
(QSCATseason, Bio 8, Bio 4 and Bio 3; see Chapter I) were also associated to one
or more loci in this study (Table 1, Figure 3). Particular attention is warranted for
the three loci associated to several environmental variables (V466493 with Bio 3, Bio
4, Bio 11 and Bio 15; V647421 with Bio 4 and Bio 11; V511914 with LAIsd and tree
cover). The repeated detection of these loci makes it less likely that the associations
are strongly influenced by population structure or the covariance between variables
(Rellstab et al., 2015), and suggest an important ecological meaning of these environ-
mental variables. Visual evaluations of those associations did however not suggest
any clear patterns within and between locations (Figure 3).

In addition, a total of four markers (V466493, V647421, V1285063 and V1463790)
showed particularly significant associations (q-value < 0.01). One of these associa-
tions is showing an interesting pattern (V1285063 with Bio 8; Figure 4 A), suggesting
that in regions where the mean temperature of the wettest quarter is below 15 °C only
individuals homozygous for the reference allele are present. In ‘warmer’ regions with
a mean temperature over 15 °C both the heterozygous and homozygous genotype for
the non-reference allele are also present, although at relatively low frequencies. These
results may suggest that negative selection against the heterozygous and homozy-
gous (for non-reference allele) genotypes in ‘colder’ regions. We might speculate that
under climate change this negative selection pressure will be reduced, resulting in
higher frequencies of the heterozygous and alternative homozygous genotypes.

For most of the potential genes we here identified, little is known about their func-
tion in insect species, and even less so in bumble bees. Drawing conclusions on the
functional relevance of the identified genes with respect to the associated environ-
mental variables is therefore extremely limited, in particular because most of them
are only known for their function in humans (Table S1). There are two exceptions:
LOC100647823 a ‘poly(rC)-binding protein 3’, which is known to be involved in the
evolution of eusociality in bees (Woodard et al., 2011) and LOC100648854, an ‘ABC
transporter G family member 22’, which is related to insecticide resistance in insects
(Broehan et al., 2013). In the buff-tailed bumble bee, these genes are located in Chro-
mosome 3 and 15, and associated to ‘isothermality’ (Bio 3) and ‘precipitation of the
coldest quarter’ (Bio 19) respectively. However, how these factors may be related to
eusociality and insecticide resistance remains unclear.

In general, climate and other environmental factors are known to pose selection pres-
sures on natural populations (Joshi et al., 2001). The here used gene-environment
associations help to disentangle these pressures and indicate what environmental
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variables might shape genetic structure for the species being investigated (Frichot
et al., 2013; Joost et al., 2007). They expand our understanding of evolutionary pro-
cesses influenced by environmental selection (Bonin, 2008; Parisod and Holderegger,
2012), but may be particularly relevant for conservation.

Although the conservation status of B. terrestris is “least concern”, it was predicted
that it might suffer from population declines due to climate change and human habi-
tat alterations (Rasmont et al., 2015a). We here found significant associations of ge-
nomic markers with several climate variables, suggesting that global warming will
likely affect buff-tailed bumble bees. For example the shift in seasons is directly
linked to warmer global temperatures (Carré and Cheddadi, 2017). This could re-
sult in a change in the life-cycle of this species, and might even provoke B. terrestris

to become ‘winter-active’ in Romania and Bulgaria. In addition, increases in precip-
itation seasonality are predicted as a result of climate change (Williams and Middle-
ton, 2008), and will likely require adaptive responses as well. Although the exact
nature and magnitude of these effects and responses are difficult to forecast, our re-
sults provide insights into which regions of the genome may be particularly affected
by changing habitat conditions. Moreover, because under the current rate of envi-
ronmental change, species’ adaptive responses are highly dependent on the already
available genetic variation, it is crucial to protect a set of populations that together
possess both the reference and alternative alleles of the here identified significantly
associated loci. Such a network of reserves must not protect locations and popula-
tions as isolated entities, but also safeguard the potential for gene flow.
So far, little attention has been paid to the genetic structure and the adaptive potential
of B. terrestris. With this study, we took a first step towards filling this gap. Future
work is needed to better understand the functional context of genomic adaptations
in B. terrestris, which are facilitated by the fact that the ecology of B. terrestris has been
relatively well studied. To this end, our study provides a set of candidate loci and
genes that warrant further investigation.
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Supplementary information



Table S1 – List of significant SNP Marker associated to environmental variables. Information of the position in the genome, Chromosome, if they are located in coding regions and if they are located 

in genes or close to genes. The name of the genes, the location and the potential function in either Humans (Homo sapiens) or if available in Fruit flies (Drosophila melanogaster) is described. 

Env. variable SNP 

Marker 

Position in genome Chrom-

osome 

Coding 

region 

Genes  Potential function 

QSCATseason V841835 NC_015770.1:973808   Chr 9 yes LOC100646111  

Location: 983,273-986,393 

ankyrin repeat and MYND domain-

containing protein 2 

Humans: enzyme binding (involved in the trafficking 

of signalling proteins to the cilia) 

Bio 8 V1285063 NC_015773.1:10980707 Chr 12 IN gene LOC100648067 

Location: 10,909,367-11,030,506 

transcription factor SPT20 homolog 

Humans: Developmental protein (involved in 

Autophagy and Gastrulation) 

 

 

 V802687 NC_015769.1:5731985 Chr 8 IN gene LOC100648283  

Location: 5,688,473- 5,844,250 

aryl hydrocarbon receptor protein 1 

D. melanogaster: involved in the control of 

breathless expression and in the cellular or tissue 

response to oxygen deprivation 

Bio 4 V466493 NC_015766.1:6120680   Chr 5 yes LOC100651835 

Location: 6,128,724-6,163,862  

tubulin polyglutamylase TTLL5 

Humans: Developmental protein (involved in 

transcription) 

LOC100642245 

Location: 6,121,046-6,128,513 

zinc finger protein 16 

Humans: Developmental protein (involved in Cell 

cycle, Cell division, Transcription, Transcription 

regulation) 

LOC100646176 

Location: : 6,119,114-6,120,392 

uncharacterized 

 

LOC100642448 

Location: 6,115,454-6,118,582 

transferrin receptor protein 1 

Humans: involved in Endocytosis, Host-virus 

interaction 

LOC100642566 

Location: 6,114,379-6,115,885 

uncharacterized 

 

 V647421 NC_015768.1:5413242   Chr 7 yes LOC110119146 

Location: 5,414,421-5,415,904 

D. melanogaster: involved in sugar transport 
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UDP-sugar transporter UST74c 

LOC100649656 

Location: 5,413,929-5,419,399  

 ubiquinone biosynthesis protein 

COQ4 homolog, mitochondrial 

Humans: involved in ubiquinone biosynthesis 

 

 

LOC100649295  

Location: 5,409,433-5,413,456  

protoheme IX farnesyltransferase, 

mitochondrial 

Humans: Transferase in heme biosynthesis 

LOC100647971 

Location: 5,417,443-5,425,368 

discoidin domain-containing 

receptor 2  

Humans: involved in osteogenesis 

Bio 3 V466493 NC_015766.1:6120680   Chr 5 yes LOC100651835 

Location: 6,128,724-6,163,862  

tubulin polyglutamylase TTLL5 

Humans: Developmental protein (involved in 

transcription) 

LOC100642245 

Location: 6,121,046-6,128,513 

zinc finger protein 16 

Humans: Developmental protein (involved in Cell 

cycle, Cell division, Transcription, Transcription 

regulation) 

LOC100646176 

Location: : 6,119,114-6,120,392 

uncharacterized 

 

LOC100642448 

Location: 6,115,454-6,118,582 

transferrin receptor protein 1 

Humans: involved in Endocytosis, Host-virus 

interaction 

LOC100642566 

Location: 6,114,379-6,115,885 

uncharacterized 

 

 V1355085 NC_015774.1:7344328 Chr 13 yes LOC100650416 

Location: 7,247,835-7,339,008 

protein tiptop 

D. melanogaster: developmental protein 

 

5
C

H
A

P
T

E
R

IV
1

2
5



 V1503835 NC_015776.1:6611877 Chr 15 IN the 

gene 

LOC100647823 

Location: 6,594,424-6,771,007 

poly(rC)-binding protein 3 

Humans: involved in RNA-binding 

Genes involved in convergent evolution of 

eusociality in bees (Woodard et al., 2011) 

 V280355 NC_015764.1:7252345     Chr 3 IN the 

gene 

LOC100650996 

Location: 7,097,441-7,628,587 

lachesin 

D. melanogaster: developmental protein (required 

for normal tracheal development and maintenance 

of the trans-epithelial diffusion barrier) 

LAIsd V511914 NC_015767.1:275765        Chr 6 IN the 

gene 

LOC110119371 

Location: 249,570-297,467 

uncharacterized 

 

Bio 11 V466493 NC_015766.1:6120680   Chr 5  LOC100651835 

Location: 6,128,724-6,163,862  

tubulin polyglutamylase TTLL5 

Humans: Developmental protein (involved in 

transcription) 

LOC100642245 

Location: 6,121,046-6,128,513 

zinc finger protein 16 

Humans: Developmental protein (involved in Cell 

cycle, Cell division, Transcription, Transcription 

regulation) 

LOC100646176 

Location: : 6,119,114-6,120,392 

uncharacterized 

 

LOC100642448 

Location: 6,115,454-6,118,582 

transferrin receptor protein 1 

Humans: involved in Endocytosis, Host-virus 

interaction 

LOC100642566 

Location: 6,114,379-6,115,885 

uncharacterized 

 

 V647421 NC_015768.1:5413242   Chr 7  LOC110119146 

Location: 5,414,421-5,415,904 

UDP-sugar transporter UST74c 

D. melanogaster: involved in sugar transport 

LOC100649656 

Location: 5,413,929-5,419,399  

 ubiquinone biosynthesis protein 

COQ4 homolog, mitochondrial 

Humans: involved in ubiquinone biosynthesis 
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LOC100649295  

Location: 5,409,433-5,413,456  

protoheme IX farnesyltransferase, 

mitochondrial 

Humans: Transferase in heme biosynthesis 

LOC100647971 

Location: 5,417,443-5,425,368 

discoidin domain-containing 

receptor 2  

Humans: involved in osteogenesis 

Bio19 V1463790 NC_015776.1:2064504 Chr 15 IN the 

gene 

And 1 

really 

close 

LOC100651020 

Location: 1,669,726-2,210,653 

suppressor of lurcher protein 1 

 

LOC110119947 

Location: 2,055,928-2,059,531 

uncharacterized 

 

 V915653 NC_015770.1:9935769   Chr 9 IN the 

gene 

And 2 

really 

close 

LOC100649027 

Location: 9,891,067-10,118,404 

neuroligin-4, X-linked 

Humans: involved in cell adhesion 

LOC100648829 

Location: 9,879,245-9,887,975 

ras-related protein Rab6  

D. melanogaster: involved in protein transport 

(regulator of membrane traffic from the Golgi 

apparatus towards the endoplasmic reticulum (ER)) 

LOC100648714 

Location: 9,874,683-9,878,945 

protein FAM8A1 

 

 V307659 NC_015764.1:9864342 Chr 3 IN the 

gene 

 

LOC100648854 

Location: 9,657,786-9,923,274 

ABC transporter G family member 

22 

important physiological functions in all living 

organisms.  

In insects, ABC transporters are of special interest 

because of their role in insecticide resistance. 

(Broehan et al., 2013) 

 V676937 NC_015768.1:9628798 Chr 7 IN the 

gene 

LOC100648397 

Location: 9,524,224-9,635,260 
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And 2 

really 

close 

ankyrin repeat domain-containing 

protein SOWAHB 

LOC100648635 

Location: 9,638,884-9,666,426 

serine/threonine-protein kinase N 

Humans: involved in Apoptosis 

LOC100648514 

Location: 9,636,206-9,637,441  

uncharacterized 

 

 V1516520 NC_015776.1:8010461 Chr 15 IN the 

gene 

And 1 

really 

close 

LOC100650939 

Location: 8,002,941-8,064,830  

serine-rich adhesin for platelets 

Humans: key players in cancer biology, as well as 

inflammation 

 

LOC100651055 

Location: 7,998,214-8,000,747 

selenocysteine insertion sequence-

binding protein 2-like 

 

 V1463770 NC_015776.1:2062133 Chr 15 IN the 

gene 

 

LOC100651020 

Location: 1,669,726-2,210,653 

suppressor of lurcher protein 1 

 

 V1334923 NC_015774.1:4329591 Chr 13 IN the 

gene 

LOC100650658 

Location: 4,195,490-4,369,953 

metabotropic glutamate receptor 2 

D. melanogaster: G-protein coupled receptor, 

Receptor, Transducer 

 V560136 NC_015767.1:5787495    Chr 6 IN the 

gene 

And 1 

really 

close 

LOC100650482 

Location: 5,784,209-5,787,516 

potassium/sodium 

hyperpolarization-activated cyclic 

nucleotide-gated channel 1-like 

Humans: involved in Ion transport, Potassium 

transport, Sodium transport 

LOC100644721 

Location: 5,046,661-5,760,540 

teneurin-a 

D. melanogaster: involved in neural development, 

regulating the establishment of proper connectivity 

within the nervous system. 

Tree cover V1457378 NC_015776.1:1253942   Chr 15  LOC110119922 

Location: 1,252,102-1,253,251 
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uncharacterized 

LOC100643343 

Location: 1,246,486-1,250,242 

DNA replication licensing factor 

Mcm6 

Humans: involved in cell cycle, DNA replication 

 

LOC100645539  

Location: 1,242,472-1,245,796 

uncharacterized  

 

 V69823 NC_015762.1:10211783   Chr 1  LOC110119719 

Location: 10,197,277-10,197,349 

transfer rna phenylalanine 

 

LOC100646973 

Location: 10,212,445-10,218,399  

uncharacterized 

 

LOC100651910  

Location: B01: 10,219,602-

10,226,126 

uncharacterized 

 

LOC100647090  

Location: 10,226,244-10,229,784 

another transcription unit protein 

 

 V511914 NC_015767.1:275765        Chr 6  LOC110119371 

Location: 249,570-297,467 

uncharacterized 

 

 V1063161 NC_015771.1:13309360 Chr 10 IN the 

gene 

 

LOC105666188 

Location: 12,974,121-13,453,525 

CCR4-NOT transcription complex 

subunit 6-like 

Humans: involved in Transcription, Transcription 

regulation, Translation regulation, mRNA processing, 

RNA-mediated gene silencing,  

 V1060815 NC_015771.1:13140800 Chr 10 IN the 

gene 

 

LOC105666188 

Location: 12,974,121-13,453,525 

Humans: involved in Transcription, Transcription 

regulation, Translation regulation, mRNA processing, 

RNA-mediated gene silencing,  
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CCR4-NOT transcription complex 

subunit 6-like 

 V788356 NC_015769.1:4062621 Chr 8 IN the 

gene 

 

LOC100642492 

Location: 4,012,209-4,176,608 

Fanconi anemia group J protein 

homolog 

Humans: involved in DNA damage, DNA repair 

 V441690 NC_015766.1:2462459 Chr 5 NO   

 V179495 NC_015763.1:7568447 Chr 2 IN the 

gene 

And 3 

really 

close 

LOC100644876 

Location: 7,551,296-7,622,375 

LIM domain only protein 3 

Humans: involved in DNA damage, DNA repair  

LOC100643967 

Location: 7,529,932-7,532,068 

cell cycle checkpoint protein RAD1 

Humans: involved in DNA damage, DNA repair 

LOC100643844 

Location: 7,460,929-7,538,283 

calmodulin 

Humans: involved in ATP-binding, Nucleotide-binding 

Bio 15 V466493 NC_015766.1:6120680   Chr 5  LOC100651835 

Location: 6,128,724-6,163,862  

tubulin polyglutamylase TTLL5 

Humans: Developmental protein (involved in 

transcription) 

LOC100642245 

Location: 6,121,046-6,128,513 

zinc finger protein 16 

Humans: Developmental protein (involved in Cell 

cycle, Cell division, Transcription, Transcription 

regulation) 

LOC100646176 

Location: : 6,119,114-6,120,392 

uncharacterized 

 

LOC100642448 

Location: 6,115,454-6,118,582 

transferrin receptor protein 1 

Humans: involved in Endocytosis, Host-virus 

interaction 

LOC100642566 

Location: 6,114,379-6,115,885 

uncharacterized 
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6 General Discussion

With ongoing global environmental change and human-induced threats such as habi-
tat alteration, pollution, overexploitation, and climate change, species are challenged,
and biodiversity as a whole is under major pressure (Hoffmann et al., 2010; Pereira
et al., 2012; Vanbergen and Initiative, 2013). It is now more important than ever to act
and protect biodiversity. Its complexity, however, presents an obstacle in the efficient
and effective implementation of protection and management strategies (Bartkowski
et al., 2015; Noss, 1990), and an in-depth understanding of how environmental con-
ditions and future changes influence biodiversity is urgently needed.

There is ample evidence that environment is one of the main drivers of spatial pat-
terns of biodiversity (Fine, 2015; Jetz et al., 2012; Peters et al., 2016). Environment
is acting on ecological and evolutionary processes, which themselves shape all lev-
els of biodiversity in one way or the other; ranging from habitat types being defined
by different climatic and geological conditions (e.g. presence of water, altitude) (e.g.
Belmaker and Jetz, 2015; Mittelbach et al., 2007; Peters et al., 2016), through species
being influenced in their distribution and abundance (e.g. Costa et al., 2008; Elith and
Leathwick, 2009; Peters et al., 2016), to genetic diversity being shaped by environ-
mental characteristics and differences (e.g. Conover et al., 2009; Wang and Bradburd,
2014). With selective pressures by the environment on natural populations being just
one factor shaping the spatial distribution of biodiversity (Joshi et al., 2001; Mosca
et al., 2012), it is important to disentangle its effects from those of other components.
One way to do this is by first mapping the spatial distribution of biodiversity (such
as the distribution of habitats, species and genes) and relating this to the prevailing
environmental conditions. Additionally, insights gained by these approaches can be
then used to adjust management practices and conservation efforts (Guisan et al.,
2013; Jetz et al., 2012; Pearson, 2007).

In this thesis, I investigated the relationship between environment and the spatial

patterns of biodiversity in in the context of biodiversity conservation. The aim of
my thesis was to assess the relative influence of environment on biodiversity and to
evaluate how this understanding can be used for mapping and ultimately protecting
biodiversity.

To do so, I focused on several different components of biodiversity: habitats, species
and genes. This work was conducted in two eastern European countries, Romania
and Bulgaria. These countries are an interesting area for evaluating the effect of envi-
ronment on the distribution of biodiversity because of the high levels of environmen-
tal heterogeneity present within their borders. In Chapter I, I investigated the distri-
butional patterns of two closely related bumble bee species (the buff-tailed (Bombus

terrestris) and the white-tailed bumble bee (Bombus lucorum)) and the influence of en-
vironmental characteristics in determining those patterns. In Chapter II, I examined
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how environmental heterogeneity (in form of different habitat types) can be used as
a conservation surrogate for the occurrence of species and vice versa. Additionally,
I was interested in how well these two levels of biodiversity (habitats and species)
are represented by already existing conservation areas. In Chapter III, I moved on
to the genetic level of biodiversity, and studied the role of environment in shaping
the distribution of genetic and morphological diversity in the house sparrow (Passer

domesticus). Finally, in Chapter IV, I moved from using neutral markers exhibiting
patterns of isolation by adaptation towards genome-wide SNP markers to home in on
signs of local adaptations in coding regions in the genome of the buff-tailed bumble
bee (Bombus terrestris).

Influence of the environment on species distributions

In Chapter I, focussed on the influence of environmental variation on the occurrence
patterns of two closely related bumble bee species (the buff-tailed (Bombus terrestris)
and the white-tailed bumble bee (Bombus lucorum)). The distributions of these species
partially overlap, leading to the question how the habitat requirements and the eco-
logical drivers shaping their distributions differ between species.

Because the majority of the samples were workers, which are difficult to distinguish
just morphologically, in a first step, I genetically identified individuals to the species
level (e.g. Bertsch, 2010; Gammans et al., 2018; Williams, 1994). I then correlated
species occurrence and abundance data with environmental data in order to model
the species’ distributions. I used ensemble Species Distribution Modeling (SDM)
techniques to improve the validity of my results. I found that despite their partial
overlap, B. terrestris has a much wider distribution than B. lucorum, which was mainly
restricted to mountainous areas. In the SDMs, both vegetation and climatic variables
played a major role in determining the distributions of both species. These results
are concordant with the literature, indicating that these species prefer different veg-
etation types and densities (Bossert et al., 2016; Svensson et al., 2000), and occur at
different elevations (e.g. Bossert et al., 2016; Ploquin et al., 2013). The resulting differ-
ences in habitat requirements between these species suggest they will exhibit differ-
ential responses to future environmental and climate change. Such responses can be
ecological, evolutionary or a combination of both (Anderson et al., 2012). Knowledge
on the distribution and ecology of species is thus key to facilitate the assessment of
their conservation status, and the development of management practices in order to
protect them (Guisan et al., 2013; Jetz et al., 2012; Pearson, 2007).

Reciprocal surrogacy of habitat and species diversity

Because environmental heterogeneity at least partially determines the distribution
of species (my work and for example Costa et al., 2008; Elith and Leathwick, 2009),
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one might expect that it can be used as a surrogate for other measures of biodiver-
sity (Arponen et al., 2008; Beier et al., 2015; Engelbrecht et al., 2016; Grantham et
al., 2010). However, previous studies showed contradictory results in the surrogacy
performance of environmental diversity (Bonn and Gaston, 2005; Sarkar et al., 2005;
Trakhtenbrot and Kadmon, 2005). In Chapter II, I thus aimed to test the reciprocal
use of classified environmental diversity (in form of habitat types) and a measure
of bird species richness, in many countries the two best known and most easily ob-
tained measures of biodiversity of high quality. Using a spatial conservation prioriti-
zation method, I identified areas of conversation concern based on both habitats and
birds, and evaluated their representation for one another. I found that bird species
were a better surrogate for habitat diversity than vice versa. This result was rather
surprising, because one might expect that by covering a certain amount of environ-
mental heterogeneity, a large proportion of species diversity should also be protected
(Engelbrecht et al., 2016). So even though environment plays an important role for
species distributions, the results of this chapter show the limitations of the use of
environment as a conservation surrogate (concordant with Araújo et al., 2007; Bonn
and Gaston, 2005). These results highlight that species and environmental data may
be poor surrogates for one another and that different types of biodiversity measures
should be combined in spatial conservation prioritization (Arponen et al., 2008; Bonn
and Gaston, 2005; Di Minin and Moilanen, 2014; Lombard et al., 2003).

In a second step, I evaluated the representation of habitat types and bird species in
existing protected areas and additionally identified potential expansion regions. This
is of particular interest under the new targets of the European Union Biodiversity
Strategy for 2030, where each country has to increase their network of protected ar-
eas up to 30% of the total land surface area (Commission, 2020). I found that habitat
diversity was generally better represented than bird species. In particular elevation
gradients and rural grassland regions were underrepresented and identified as po-
tential expansion areas.

Relationship between the environment and genetic diversity

In Chapter III and Chapter IV, I investigated the influence of the environment on
the genetic level of biodiversity. When species face environmental changes, they will
most likely need to rely on a combination of ecological and evolutionary responses
(Anderson et al., 2012). While adaptive evolution can be quick, it strongly depends on
the currently available genetic variation, i.e. standing genetic variation (Moritz et al.,
2001; Thomassen et al., 2011)), and in particular on that part of genetic variation that is
correlated to current environmental characteristics (environmentally-associated vari-
ation, EAV), and may thus be under natural selection. It is therefore essential to
understand the spatial patterns of EAV in natural populations in order to assess the
impact of environmental change and predict species’ responses (Miraldo et al., 2016;
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Palumbi, 2001).
In Chapter III, I assessed the effect of environment on genetic population structure
and morphological divergence of house sparrows (Passer domesticus). Using a land-
scape genomics approach, I correlated phenotypic (wing, tail and tarsus length) and
genetic (pairwise genetic differences based on microsatellite marker) data with a set
of environmental variables. The results suggest that ‘isolation by distance’ (IBD;
Wright, 1943) did not have any influence on the observed morphological and ge-
netic variation. In contrast, up to 30% of the observed population divergence could
be explained by the environment (mainly climate and vegetation variables), which is
hinting towards a scenario of ‘isolation by environment’, where signatures of selec-
tion are detectable in neutral markers (IBE; Wang and Bradburd, 2014). Our finding
that local environmental conditions to a considerable extent explain genetic variation,
and thus that selective processes may be a major driver of genetic diversity in house
sparrows are concordant with previous results in other countries (Holand et al., 2011;
Lima et al., 2012; Liu et al., 2013), and my work added to a growing body of evidence
that adaptive evolution may be a major driver of diversification.
Based on this, I moved on from neutral molecular markers towards single-nucleotide
polymorphisms (SNPs) that can be traced to intronic and exonic regions of the genome,
and thus provide more detailed information on potential adaptations and responses
to future environmental changes. In Chapter IV I looked for signs of local adap-
tations related to environmental heterogeneity in the buff-tailed bumble bee (Bom-

bus terrestris). I used whole-genome data of the same individuals that I collected for
Chapter I. Based on the confirmed influence of the environment on shaping the dis-
tribution of this species, I aimed to further investigate its genetic basis. With the help
of gene-environment associations (GEAs), I correlated genotypic data with the same
set of environmental variables used in Chapter I. I found loci putatively under selec-
tion, which were correlated to the same climatic and vegetation variables shaping B.

terrestris’ distributional patterns, suggesting that these are key factors in structuring
genetic variation in this species. My results add to a better understanding of how
populations are adapted to local conditions, and whether these adaptations may be
relevant for future responses to changing environments (Capblancq et al., 2018; Fri-
chot et al., 2013; Hoban et al., 2016; Joost et al., 2007).
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Conclusions and Outlook

In this work, I demonstrated the tight link between environmental conditions and
biodiversity, and teased apart the relative roles of environmental variables in shaping
the spatial distribution of biodiversity. I investigated the influence of environment on
different ecological and evolutionary processes using a multi-species approach. This
gave me the advantage to look at different processes in the same species (e.g. the buff-
tailed bumble bee, Chapter I and Chapter IV), but also compare similar processes
between different species (the buff-tailed and white-tailed bumble bee in Chapter I,
and the house sparrow and buff-tailed bumble bee in Chapter III and IV).

Here, I showed how two closely related species are differentially distributed across
the landscape depending on environmental conditions. I was also able to add to
the body of evidence that environment is a key driver in shaping the genetic struc-
ture of species. I investigated patterns of coding genetic markers (single-nucleotide
polymorphisms (SNPs) located in genes) and those in neutral genetic markers (e.g.
microsatellites), presenting a scenario of ‘isolation by environment’. I demonstrated
methods to map the spatial patterns of biodiversity, such as species distribution mod-
eling (SDM) approaches, and landscape genomic approaches to correlate genetic data
with environmental diversity. Mapping these spatial patterns is particularly impor-
tant for biodiversity conservation, since protection can only succeed contingent upon
high-quality data on the presence and abundance of biodiversity.

I additionally evaluated the use of environmental heterogeneity as a conservation
surrogate in spatial conservation planning, and assessed its representation for the
species-level of biodiversity. I found a rather limited surrogacy performance of envi-
ronment for species, leading to the question the same holds true for other taxonomic
groups, and in particular for the genetic level of biodiversity. Because genotyping
many individuals from many locations remains prohibitively expensive and time
consuming, an adequate and easy to obtain surrogate for genetic diversity would
be extremely valuable.

In nature conservation, ideally all levels of biodiversity are equally well protected
(Pressey, 2004). However, because of the complexity of biodiversity and financial
and personnel constraints, shortcuts need to be taken (Andelman and Fagan, 2000;
Williams et al., 2006). Using conservation surrogates is a commonly used ‘shortcut’
and shows great potential (Margules and Pressey, 2000; Sarkar et al., 2005). So far, ge-
netic data was rather underrepresented in conservation planning, mainly because of
the high costs to generate meaningful and useful data (Frankham et al., 2002; Laikre,
2010). With technological advances, it is getting cheaper to generate genetic data, in
particular whole genome data (Imelfort et al., 2009; Storfer et al., 2018). Conserva-
tionists should keep in mind that the genetic level and its variation is essential for
species to adapt to environmental changes (Barrett and Schluter, 2008; Etterson and
Shaw, 2001), and integrating evolutionary processes such as adaptation and gene
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flow in spatial conservation planning is predicted to decrease biodiversity loss (Hoff-
mann and Sgrò, 2011). When levels of standing genetic variation are reduced, species
are likely unable to adapt to new conditions, and consequently experience elevated
extinction risks (Kawecki and Ebert, 2004; Vincent et al., 2013). Using genomic data
can also benefit biodiversity conservation immensely by informing us which pop-
ulations showed the strongest decline in genetic diversity and therefore might be
at imminent risk under ongoing environmental change (Jia et al., 2020; Martins et
al., 2018). This knowledge can help to adjust conservation practices and manage-
ment (Gugger et al., 2018; Harrisson et al., 2014; Segelbacher et al., 2010). In recent
years, more and more efforts were made to call attention for the importance of ge-
netic diversity in nature conservation (Hoban et al., 2020; Laikre, 2010). Initiatives
such as the Genomic Biodiversity Knowledge for resilient Ecosystems (G-BiKE) Ac-
tion (https://sites.google.com/fmach.it/g-bike-genetics-eu/home) were established
to enable standard tools for monitoring and managing genetic diversity and the re-
lated adaptive potential of populations. This can be seen as a first step towards a
better and more efficient biodiversity conservation strategy and should be continued
in order to find accessible, informative and flexible ways to incorporate the genetic
level of biodiversity into biodiversity conservation.
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Niculae, Mihait, ă Iulian, Sorin Avram, Gabriel Ovidiu Vânău, and Maria Pătroescu
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