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1. Berichterstatter: Prof. Dr. Martin Oettel
2. Berichterstatter: Prof. Dr. Roland Roth





List of published work

Most results of this thesis have already been published in academic journals,
and the corresponding publications are listed as following.

Phase diagrams and crystal–fluid surface tensions in additive and
nonadditive two–dimensional binary hard–disk mixtures
Shang-Chun Lin and Martin Oettel, Physical Review E 98.1.012608 (2018),
DOI: 10.1103/PhysRevE.98.012608

Abstract: Using density functionals from fundamental measure
theory, phase diagrams and crystal–fluid surface tensions in addi-
tive and nonadditive (Asakura–Oosawa model) two–dimensional
binary hard–disk mixtures are determined for the whole range
of size ratios q=small diameter/large diameter, assuming random
disorder (lattice points or interstitial occupied by large or small
disks at random) in the crystal phase. The fluid–crystal transi-
tions are first order due to the assumption of a periodic unit cell
in the density–functional calculations. Qualitatively, the shape
of the phase diagrams is similar to the case of three–dimensional
hard–sphere mixtures. For the nonadditive case, a broadening of
the fluid–crystal coexistence region is found for small q, whereas
for large q a vapor–fluid transition intervenes. In the additive
case, we find a sequence of spindle , azeotropic, and eutectic
phase diagrams upon lowering q from 1 to 0.6. The transition
from azeotropic to eutectic is different from the three–dimensional
case. Surface tensions in general become smaller (up to a factor 2)
upon the addition of a second species and they are rather small.
The minimization of the functionals proceeds without restrictions
and optimized graphics card routines are used.

Statement of the author : Motivated by the successful results for one–component
hard–sphere systems, we systematically investigated crystal–fluid interfaces
and phase diagrams in binary hard–disk systems.

i



ii

A classical density functional from machine learning and a convo-
lutional neural network
Shang-Chun Lin and Martin Oettel, SciPost Phys. 6, 025 (2019),
DOI: 10.21468/SciPostPhys.6.2.025

Abstract: We use machine learning methods to approximate a
classical density functional. As a study case, we choose the model
problem of a Lennard Jones fluid in one dimension where there
is no exact solution available and training data sets must be ob-
tained from simulations. After separating the excess free energy
functional into a ”repulsive” and an ”attractive” part, machine
learning finds a functional in weighted density form for the attrac-
tive part. The density profile at a hard wall shows good agreement
for thermodynamic conditions beyond the training set conditions.
This also holds for the equation of state if it is evaluated near the
training temperature. We discuss the applicability to problems in
higher dimensions.

Statement of the author : I used a convolutional network to learn the explicit
excess free energy functional. The idea was completely new and I have had
built it from the ground up. Since I was lack of knowledge of machine learn-
ing at the time, the functionals are limited to simple polynomial ansätze and
the training process was written purely by Numpy, which is incredibly slow
comparing to the later work. However, the results are better than we ex-
pected and thus prove the point that it is possible to approximate unknown
functionals explicitly by machine learning.



iii

Analytical classical density functionals from an equation learning
network
Shang-Chun Lin, Georg Martius and Martin Oettel, J. Chem. Phys. 152,
021102 (2020),
DOI: 10.1063/1.5135919

Abstract: We explore the feasibility of using machine learning
methods to obtain an analytic form of the classical free energy
functional for two model fluids, hard rods and Lennard–Jones,
in one dimension . The Equation Learning Network proposed
in Ref. [1] is suitably modified to construct free energy densities
which are functions of a set of weighted densities and which are
built from a small number of basis functions with flexible com-
bination rules. This setup considerably enlarges the functional
space used in the machine learning optimization as compared to
previous work [2] where the functional is limited to a simple poly-
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work. Even though there is still a lot of room to improve, I believe it could
be the future for approximating unknown functionals.





Abstract

The theoretical studies reported in this thesis are mainly concerned with two
topics in classical density functional theory (DFT). First, we investigate the
crystal–fluid interface and phase transitions in hard–disk systems. Second,
we propose a novel machine learning architecture, the Functional Equation
Learner, to obtain an explicit free energy functional directly from equilibrium
density distributions in the presence of different external potentials.

For this purpose, we briefly introduce DFT and Fundamental Measure
Theory (FMT). DFT is an approach for evaluating the free energy based on
particle density distributions, and FMT is a particular instance of DFT for
hard spheres in three, two and one dimensions, which gives highly accurate
(in two and three dimensions) or exact (in one dimension) descriptions of ho-
mogeneous and inhomogeneous systems. For two–dimensional hard spheres
(hard disks), we use the free energy functional based on FMT proposed by
Roth et al. [3], which has been previously reported to show accurate ther-
modynamic properties for a triangular crystalline structure and crystal–fluid
coexistence densities compared to Monte–Carlo simulations.

For one–component hard–disk systems, our result for the surface tension
of a crystal–liquid interface is in good agreement with experiments, and the
melting transition is investigated. As has been confirmed in past years, the
melting transition for hard disks proceeds via the formation of a “hexatic”
phase. In our numerical experiment, the characteristics of a hexatic phase,
i.e. dislocations, are found. Furthermore, we model genuine hard–disk mix-
tures and mixtures of hard disks with non–additive polymers to obtain phase
diagrams and surface tensions. For genuine hard–disk mixtures, the phase
diagrams are qualitatively very similar to those of three–dimensional hard
spheres, where the sequence of types of phase diagrams spindle→ azeotropic
→ eutectic is observed upon lowering the small size ratio from 1 to 0.6. For
non–additive mixtures, the free energy functional is linearized with respect
to the polymer density, which is analogous to a known DFT approach to the
three–dimensional Asakura–Oosawa model. In this case, the typical continu-
ous widening of the coexistence gap between fluid and solid is observed upon
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the addition of the smaller species. For the surface tension, it shows that the
addition of a second component leads in general to a substantial decrease for
both genuine and non–additive hard–disk mixtures.

Furthermore, despite that FMT provides highly accurate free energy func-
tionals for hard particles, a FMT like treatment for a non–vanishing inter-
action outside the hard core is missing. In general, in such a case, the an-
alytical form of the free energy functional is unknown; therefore we adopt
the recently introduced equation learning network [1] and propose the Func-
tional Equation Learner (FEQL) for this task. With flexible combination
rules, composite functions from the FEQL are built from a number of ba-
sis functions and a set of weighted densities. The training, i.e. tuning the
parameters in functions, is automatically done by minimizing the Euclidean
distance between predicted and exact/simulated density distributions. As a
result, we find well approximated free energy functionals for the hard–rod
fluid (exact functional is known) and the Lennard–Jones fluid (exact func-
tional is unknown). In both cases, the density profiles, equation of states,
and the direct correlation functions delivered by the learned functionals are
in good agreement with exact/simulated results, even outside the training
regions.



Zusammenfassung

Die theoretischen Studien, über die in dieser Arbeit berichtet wird, befassen
sich hauptsächlich mit zwei Themen der klassischen Dichtefunktionaltheorie
(DFT). Zunächst untersuchen wir die Kristall-Fluid-Grenzfläche und Phasen-
übergänge in Harte–Scheiben–Systemen. Zweitens, stellen wir eine neuar-
tige maschinelle Lernarchitektur vor, den Functional Equation Learner , um
explizit Funktionale der freien Energie zu erhalten, welche direkt aus Gle-
ichgewichtsdichteverteilungen unter dem Einfluss verschiedener externer Po-
tentiale berechnet werden.

Zu diesem Zweck stellen wir die DFT und die Fundamental Measure The-
ory (FMT) kurz vor. Die DFT ist ein Ansatz zur Berechnung der freien
Energie auf der Grundlage von Partikeldichteverteilungen, und die FMT ist
eine besondere Ausprägung der DFT für harte Kugelnn in drei, zwei und
einer Dimension(en), die eine hochgenaue (in zwei und drei Dimensionen)
oder exakte (in einer Dimension) Beschreibung von homogenen und inhomo-
genen Systemen liefert. Für zweidimensionale harte Kugeln (harte Scheiben)
verwenden wir das von Roth et al. [3] vorgeschlagene Funktional der freien
Energie auf der Grundlage der FMT, wovon bereits früher berichtet wurde,
dass es im Vergleich zu Monte–Carlo–Simulationen genaue thermodynamis-
che Eigenschaften für eine dreieckige kristalline Struktur und Kristall–Fluid–
Koexistenzdichten vorhersagt.

Für einkomponentige Harte–Scheiben–Systeme ist unser Ergebnis für die
Oberflächenspannung einer Kristall–Flüssigkeits-Grenzfläche in guter Über-
einstimmung mit Experimenten, ausserdem wird der Schmelzübergang un-
tersucht. Wie in den vergangenen Jahren bestätigt wurde, verläuft der
Schmelzübergang bei Harten–Scheiben über die Bildung einer “hexatischen”
Phase. In unserem numerischen Experiment werden die Eigenschaften einer
hexatischen Phase, z.B. Dislokationen, gefunden. Darüber hinaus model-
lieren wir Harte–Scheiben–Mischungen und Mischungen von Harte–Scheiben
mit nicht–additiven Polymeren, um Phasendiagramme und Oberflächenspan-
nungen zu erhalten. Für additive Harte–Scheiben–Mischungen sind die Phasen-
diagramme qualitativ sehr ähnlich denen von dreidimensionalen Harte–Kugeln–

vii



viii

Systemen, wobei die Abfolge von Phasendiagrammen des Types spindelförmig
→ azeotropen → eutektischen beim Absenken des Größenverhältnisses der
kleinen Spezies von 1 auf 0.6 beobachtet wird. Für nicht–additive Mischun-
gen wird das Freie–Energie–Funktional in Bezug auf die Polymerdichte lin-
earisiert, was analog zu einem bekannten DFT–Ansatz des drei–dimensionalen
Asakura–Oosawa–Modells geschieht. In diesem Fall wird die typische kon-
tinuierliche Vergrößerung der Koexistenzlücke zwischen Flüssigkeit und Fest-
körper bei der Zugabe der kleineren Spezies beobachtet. Für die Oberflächen-
spannung zeigt sich, dass die Zugabe einer zweiten Komponente im All-
gemeinen zu einer erheblichen Abnahme sowohl bei additiven als auch bei
nicht–additiven Harte–Scheiben–Mischungen führt.

Obwohl die FMT hochpräzise Funktionale der freien Energie für harte
Teilchen liefert, fehlt eine FMT–ähnliche Methode für die Wechselwirkung
außerhalb des harten Kerns. Im Allgemeinen ist in einem solchen Fall die an-
alytische Form des Freie–Energie–Funktionals unbekannt; daher übernehmen
wir das kürzlich eingeführte Gleichungslern–Netzwerk [1] und stellen den
Functional Equation Learner (FEQL) für diese Aufgabe vor. Mit flexiblen
Kombinationsregeln werden zusammengesetzte Funktionen aus dem FEQL
aus einer Reihe von Basisfunktionen und einem Satz gewichteter Dichten
gebildet. Das Training, d.h. die Abstimmung der Parameter in Funktionen,
erfolgt automatisch durch Minimierung des euklidischen Abstands zwischen
vorhergesagten und exakten/simulierten Dichteverteilungen. Als Ergebnis
finden wir gut approximierte Funktionale der freien Energie für das Harte–
Stäbchen–Fluid (das genaue Funktional ist bekannt) und das Lennard-Jones-
Fluid (das genaue Funktional ist unbekannt). In beiden Fällen stimmen die
Dichteprofile, die Zustandsgleichungen und die direkten Korrelationsfunk-
tionen, die von den gelernten Funktionalen geliefert werden, mit den exak-
ten/simulierten Ergebnissen überein, auch außerhalb der Trainingsregionen.
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Chapter 1

Introduction

God made the bulk; the surface was invented by the devil.
– Wolfgang Pauli

If we would like to make something that runs rapidly over the ground, then
we could watch a cheetah running, and we could try to make a machine that

runs like a cheetah. But, it’s easier to make a machine with wheels.
– Richard Feynman

Surfaces or interfaces are the locations for many phenomena between the
material and its environment, where all physical and chemical interactions
and exchanges take place. To observe interfaces, colloidal systems serve as
important tools and model systems. The length scale of colloidal systems is
micrometers; thus, single–particle resolution can be achieved, for example,
by confocal microscopy. More importantly, the pairwise interaction between
the particles makes it possible to study the system by methods of classical
statistical mechanics, e.g. Monte–Carlo simulation or density functional the-
ory (DFT). As a result, the one–to–one comparison between experiments and
classical statistical mechanics is possible.

In colloidal systems, the interaction is usually composed of a the short–
ranged harsh repulsion and long–ranged smooth attraction. The short–range
repulsion plays a crucial role as it determines the main structure of the liquid
and crystal phase. Therefore, hard spheres (HS), where the harsh short–range
repulsion forbids overlaps, serves as an important reference system. As there
is no attraction between HS particles, the crystal–fluid transition is purely
induced by entropy.

For a theoretical understanding of HS, density functional theory (DFT)
is a very important tool which gives a description of both microsopic and
macrosopic (bulk) properties in equilibrium. The challenge of DFT is to
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2 CHAPTER 1. INTRODUCTION

approximate the free energy as precisely as possible. In 1989, Rosenfeld in-
troduced fundamental measure theory (FMT) as a DFT treatment for HS
mixtures in three, two and one dimension [4, 5]. During the next two decades,
the FMT has been further developed and gives almost exact results in com-
parison with simulations [3, 6, 7, 8].

Unfortunately, such success is missing with respect to the long–ranged
smooth attraction. In DFT, the attractions are usually treated as a per-
turbation; however, for low enough temperatures, attractions can dominate
over repulsions and thus perturbative treatments, such as the mean–field
approximation, are able to deliver a qualitative description but usually are
quantitatively inaccurate, or require more effort [9]. Recently, with the great
improvement of computational hardware, machine learning methods have
been developed and used to give computers the ability to analyze patterns
within a given data set without programming explicitly. For DFT, this im-
plies the possibility to learn the free energy functionals by inputs, for in-
stance, one–body density distributions and external potentials, without the
explicit knowledge of many–body correlations.

In this thesis, after a brief introduction of thermodynamics and statistical
physics in Chapter 2, the DFT approaches to the excess free energy relevant
to this thesis are introduced in Chapter 3. The main results are split into
two parts: fluid–crystal transitions and interfaces of two–dimensional hard–
disk mixtures (Chapter 4 and 5), and machine learning functionals of one–
dimensional fluids (Chapter 6 and 7).

Two–dimensional hard–disk mixtures

In two–dimensional (2D) systems, the fluid–crystal transition of hard–disk
mixtures has been of fundamental interest over the past years. Only recently,
it has been established in the one–component system by simulations [10] and
experiments [11] that the transition happens via a first–order transition from
the fluid to the hexatic phase and a continuous transition from the hexatic
to the crystal phase. Although the crystal phase is not strictly periodic (it
does not have infinitely long–ranged positional order), in simulations and
experiments it has practically the appearance of a conventional, periodic
crystal.

By using the density functional from fundamental measure theory pro-
posed in Ref. [3], which gives a very accurate description of fluid structure in
one– and two–component systems[12], the phase diagrams and crystal–fluid
surface tensions in two–dimensional hard–disk binary mixtures are deter-
mined. The minimization of the functionals proceeds without restrictions.

For one–component hard disks, the thermodynamic properties at coex-



3

istence and crystal–fluid surface tensions are close to simulations [10] and
experiments [11]. Also, the anisotropy of surface tensions are determined
which, however, is about one magnitude smaller than in experiments [11].
Furthermore, we investigate the hexatic phase by measuring the pair cor-
relation function in large systems, here, the results are not conclusive with
regard to a connect DFT description of the hexatic phase.

For mixtures, we consider a simple binary mixture of large (l) and small
(s) disks, with diameter σl and σs, respectively, and q = σs

σl
denoting the size

ratio. In the case of an additive system (denoted as HD mixture), one may
define an interaction diameter dij = σi/2 + σj/2 with i, j = {l, s}. The pair
potential Φij(r) between two particles with center-center distance r is ∞ for
r < dij and 0 for r > dij. In addition, we consider a non additive mixture
in which the interaction between two small disks is zero, i.e. they behave as
an ideal gas and the other interactions (large–large and large–small) remain
unchanged. This mixture is the 2D variant [13] of the well–known Asakura–
Oosawa (AO) model [14, 15]. For the nonadditive case, a broadening of the
fluid–crystal coexistence region is found for small q whereas for higher q a
vapor–fluid transition intervenes. In the additive case, we find a sequence of
spindle type, azeotropic and eutectic phase diagrams upon lowering q from 1
to 0.6. The transition from azeotropic to eutectic is different from the three–
dimensional case. Surface tensions in general are rather small and become
smaller (up to a factor 2) upon addition of a second species.

Machine learning functionals

The art of DFT is the construction of free energy functionals. The density
distributions are computed by self–consistent equations involving functional
derivatives of these free energy functionals, and these equations are solv-
able with much less numerical effort than obtaining density distributions in
simulations. Furthermore, all equilibrium and even some non–equilibrium
properties are based on the free energy functionals. Despite the great prin-
ciple power of the approach, the exact free energy functionals are not known
in general, therefore considerable effort has gone into the theoretical develop-
ment of functionals. As mentioned, the functionals derived from FMT have
a high degree of accuracy for hard particles, but for the interactions outside
the hard core, a qualitatively new and successful ansatz is missing.

In recent years, some effort has gone into approximating (“learning”)
functionals by machine learning (ML) techniques. In quantum DFT, e.g., in-
terpolating functionals generated by kernel ridge regression have been tested
for model 1D systems [16, 17] and also have been extended to 3D systems [18].
Numerically interpolated functionals do not contain sufficient information
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about functional gradients, therefore both the energy–density map and the
external potential–density maps had to be learned by interpolation [17]. For
the 1D Hubbard model, a convolutional network functional has been learned
whose numerical functional derivative appears to be more robust [19]. How-
ever, these approaches hide the energy functional inside an “ML black box”
which does not permit much insight from a theory perspective. For the
classical case, a 1D LJ–like fluid was studied by us with a convolutional net-
work [2], utilizing an established approach from liquid state theory of splitting
the excess free energy functional into a “repulsion” part and an “attraction”
part F att [2]. The convolutional network naturally leads to an approxima-
tion of F att in terms of weighted densities ni, which are the essential building
blocks in modern classical DFT; however, the free energy density fex

att(ni) as a
function of ni had to be prescribed as simple polynomials. An interpretable
results obtained in [2] was the accurate splitting of the interaction potential
in the Weeks–Chandler–Andersen (WCA) spirit [20].

In this context, the question naturally arises whether ML techniques can
be used to learn analytic forms of (free) energy functionals instead of “black
boxes” or presumed forms. This question is important also in a more general
context: can ML algorithms contribute to theory building in physics? In
the ML community, efforts in that direction have utilized genetic algorithms
to search a space of simple basis function with multiplication and addition
rules [21]. More recent work by us proposes an equation learning network em-
ploying gradient-based optimization with simple basis functions and division
besides multiplication/addition as combination rules [1, 22]. An empirical
principle for the “right” formula (choose the simplest one that still predicts
well, i.e. Occam’s razor) can be built into the loss function. This princi-
ple was also successful in the history of physics in finding analytical models
with high predictive power even outside the training/observed regime. For
the DFT problem, the extrapolation power to other external potentials is an
important aspect, as well as the analytic differentiability of the free energy
functional since structural information about the fluid (pair correlations) is
obtained via the direct correlation function (two functional derivatives of the
excess free energy functional).

These aspects are explored for the model cases of a hard–rod (HR) and a
Lennard–Jones (LJ) fluid in 1D. As a result, we find a good approximation
for the exact hard–rod functional and its direct correlation function. For the
Lennard–Jones fluid, we let the network learn (i) the full excess free energy
functional and (ii) the excess free energy functional related to interparticle
attractions. Both functionals show a good agreement with simulated density
profiles for thermodynamic parameters inside and outside the training region.



Chapter 2

Thermodynamics and
statistical physics

In this chapter, only essential ingredients are introduced. We refer to the
book Theory of simple liquids [23] for readers who have a deeper interest.

A D–dimensional system with N particles has 2 × D × N coordinates
in phase space, i.e. the positions rN = (r1, r2...rN) and momenta pN =
(p1,p2...pN) with ri and pi the location and momentum of particle i. Let
Γ = (r1...rN ,p1, ...,pN ;N) denote a point in phase space; more precisely, Γ
is called ‘microstate’ or ‘configuration’ of the system. The average value 〈O〉
of an observable O(Γ) is defined by

〈O〉 =
∑

Γ

O(Γ)f(Γ) ≡ trclO(Γ)f(Γ) (2.1)

with f(Γ) the probability in phase space and trcl the classical trace (the
summation over all possible configurations), as defined in Eqs. (2.9) and
(2.14) below for different ensembles.

In equilibrium, the explicit expression for the phase space probability feq

can be obtained from the Gibbs principle of maximum (Shannon) entropy S,
which is defined as

S = max (−kB 〈ln (feq)〉) = −kBtrclfeq ln(feq). (2.2)

The HamiltonianH of a system is a sum of the kinetic energy T , interparticle
potential energy U , and the external potential V ext; i.e.,

H(rN ,pN) = T (pN) + U(rN) + V ext(rN), (2.3)

where

T (pN) =
N∑

i=1

p2
i

2mi

, (2.4)

5
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U(rN) =
∑

i<j

ψ(ri, rj), (2.5)

and
V ext(rN) =

∑

i

V ext(ri) (2.6)

with mass mi for particle i and ψ(ri, rj) the particle–particle potential
and V ext the external potential. While describing a system with a few par-
ticles by the Hamiltonian is possible, it is impractical for a classical system
with N ' 1023. It is necessary and sufficient to introduce macroscopic vari-
ables to describe the system. In thermodynamics, the common variables are
the entropy S, temperature T , pressure P , volume V , number of particles N ,
and chemical potential µ. The choice of macroscopic variables depends on
the situation of the actual system. In the following sections, two important
ensembles are introduced: canonical and grand canonical.

2.1 Canonical ensemble

The canonical ensemble (c) considers a system exchanging heat with the en-
vironment (e.g., a heat reservoir) at constant temperature T , particle number
N and external potential V ext. The phase space probability distribution fc
is given by the Boltzmann factor of its Hamiltonian:

fc =
exp(−βH)

Z(V ext;N, T )
, (2.7)

where Z(V ext;N, T ) is a normalization constant to ensure trclfc = 1, which
reads

Z(V ext;N, T ) = trcl exp(−βH)

=
1

hDNN !

∫
dr1...

∫
drN

∫
dp1...

∫
dpN exp(−βH)

=
1

λDNN !

∫
dr1...

∫
drN exp

[
−β
(
U
(
rN
)

+ V ext
(
rN
))]

,

(2.8)

and

trcl =
1

hDNN !

∫
dr1...

∫
drN

∫
dp1...

∫
dpN , (2.9)

where λ = h√
2πmkBT

is the thermal wavelength, h is the Planck constant and
the kinetic degrees of freedoms have been integrated out in the last line of
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Eq. (2.8). To connect Eq. (2.8) and the free energy F , we rewrite Eq. (2.7)
as

−kBT lnZ = −kBT ln

(
exp(−βH)

fc

)

= H + kBT ln (fc) , (2.10)

and then take thermal average 〈〉 on both sides, such as

−kBT lnZ = trclfc (H + kBT ln (fc))

= 〈H〉 − TS
= F (2.11)

where S is defined in Eq. (2.2), 〈H〉 is the internal energy with fluctuations
proportional to 1√

N
and Z is a constant so 〈〉 has no effect on it. This is the

famous relation between macroscopic Helmholtz free energy and the partition
function Z.

2.2 Grand canonical ensemble

The grand canonical ensemble (gc) considers a system that exchanges heat
and particles with the environment, so the system is at constant tempera-
ture T , chemical potential µ and external potential V ext. The phase space
probability distribution fgc for finding N particles in a particular microstate
Γ is:

fgc =
exp (β (Nµ−H))

Ξ(V ext;µ, T )
, (2.12)

where Ξ is the grand canonical partition sum , which reads

Ξ(V ext;µ, T ) = trgc,cl exp (β (Nµ−H))

=
∞∑

N=0

exp (βµN)

λDNN !

∫
dr1...

∫
drN exp

[
−β
(
U
(
rN
)

+ V ext
(
rN
))]

,

=
∞∑

N=0

exp (βµN)Z. (2.13)

and

trgc,cl =
∞∑

N=0

1

hDNN !

∫
dr1...

∫
drN

∫
dp1...

∫
dpN , (2.14)
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Similar to Eqs. (2.10) and (2.11), the grand potential Ω and Ξ are linked by

−kBT ln Ξ = trgc,clfc (H− µN + kBT ln (fc))

= 〈H〉 − µ 〈N〉 − TS
= F − µ 〈N〉
= Ω. (2.15)

Note that the fluctuations of 〈N〉 vanishes as 1√
N

, so the difference between

N and 〈N〉 is usually negligible in macroscopic systems.

2.3 Ideal gas and density distribution func-

tions

Here we consider the one–body density distribution (density profile) ρ(r) in
the grand canonical ensemble. The quantity ρ(r)dr is the probability to find
a particle within dr at r. 〈N〉 naturally satisfies

〈N〉 =

∫
ρ(r)dr. (2.16)

In the grand canonical ensemble, ρ(r) is defined as

ρ(r) =

〈
N∑

i=0

δ(r− ri)

〉
. (2.17)

For the non-interacting ideal gas, ρid(r) can be calculated explicitly from
Eqs. (2.12), (2.13) and (2.17):

ρid(r) =

∑∞
N=1

exp(βµN)
λDNN !

N exp (−βV ext (r))
(∫

dr exp (−βV ext (r))
)N−1

∑∞
N=0

exp(βµ)
λDNN !

(∫
dr exp (−βV ext (r))

)N

=
exp (β (µ− V ext (r)))

λD

∑∞
N=1

exp(βµ(N−1))

λD(N−1)(N−1)!

(∫
dr exp (−βV ext (r))

)N−1

∑∞
N=0

exp(βµN)
λDNN !

(∫
dr exp (−βV ext (r))

)N

=
exp (β(µ− V ext(r)))

λD
. (2.18)
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Furthermore, Eq. (2.15) for the ideal gas gives

Ξid(V ext;µ, T ) =
∞∑

N=0

exp (βµN)

λDNN !

∫
dr1...

∫
drN exp

(
−βV ext

(
rN
))

=
∞∑

N=0

exp (βµN)

λDNN !

(∫
exp (−βV ext (r))

)N

=
∞∑

N=0

1

N !

(
exp (βµ)

λD

∫
exp (−βV ext (r))

)N

= exp

(
exp (βµ)

λD

∫
exp (−βV ext (r))

)
. (2.19)

Thus we obtain

Ωid = −kBT ln Ξid = −kBT
exp (βµ)

λD

∫
exp (−βV ext (r)) . (2.20)

By comparing Ωid and ρid, we have

βΩid = −kBT

∫
drρid(r). (2.21)

Finally, the ideal gas free energy in terms of ρid is:

F id = Ωid + µN

=

∫
dr (µ− kBT )ρid(r)

= kBT

∫
dr ρid(r)

(
ln
(
λDρid(r)

)
− 1
)

+

∫
drV ext(r)ρid(r), (2.22)

with µ = kBT ln(λDρid)+V ext from Eq. (2.18). The term
∫
drV ext(r)ρid(r) is

usually absorbed into the external free energy F ext, and ρid(r)
(
ln
(
λDρid(r)

)
− 1
)

is usually referred to the ‘intrinsic’ free energy density for the ideal gas.

2.4 Classical density functional theory

In Sec. 2.3, Eq. (2.22), the ideal gas free energy is a functional of the density
distribution, i.e., F id[ρid(r)]. This property also holds for other systems and
is the starting point for density functional theory (DFT). The key strength of
DFT is that it accounts for the structure and thermodynamics of an inhomo-
geneous fluid, such as a fluid subject to an external potential or crystal-fluid
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interfaces. Historically, DFT was invented by Hohenberg and Kohn in 1964
for electron gas systems at zero temperature [24], where the internal energy
functional was found to depend only on the density of the electron gas. In
1965, Mermin generalized the theory to finite temperatures and proved that
there is a unique functional Ω[ρ(r)] which depends only on the one–body
density [25]. In 1979, Evans outlined a reformulation for classical systems
and built the theoretical framework for (classical) DFT [26]. Below we follow
his arguments.

We consider the intrinsic free energy F as a functional of the grand canon-
ical probability distribution fgc such that

F [fgc] = trclfgc[T (pN) + U(rN) + kBT ln(fgc)]

= trclfgc[T (pN) + kBT ln(fgc)] + trclfgc[U(rN)]

= F id[fgc] + F ex[fgc], (2.23)

where F is split into an ideal gas term F id and an excess (over ideal gas)
term F ex. The key idea of DFT is that there exists a one–to–one mapping
between the probability distribution fgc and ρ(r); thus F is also a unique
functional of ρ(r). Using this idea, we can rewrite Eq. (2.15) in terms of
ρ(r):

Ω[ρ] = F [ρ]−
∫

dr ρ(r)(µ− V ext(r)). (2.24)

The equilibrium density ρeq(r) minimizes this grand potential functional Ω[ρ]
with Ω0 = Ω[ρeq] = Ω[fgc] being the equilibrium grand free energy of the
system. To prove that, we consider a probability distribution f which is not
the equilibrium one, f 6= fgc:

Ω[f 6= fgc] = trclf(H− µN + kBT ln f)

= trclf(−kBT ln fgc + Ω[fgc] + kBT ln f) (see Eq. (2.12))

= Ω[fgc] + kBT trclfgc
f

fgc
ln

f

fgc

= Ω[fgc] + kBT 〈x lnx〉 with x =
f

fgc
> Ω[fgc] + kBT 〈x− 1〉 since x lnx > x− 1 for x > 0

> Ω[fgc] since 〈x〉 = trclf = 1.

(2.25)

Therefore, Ω[fgc] is minimal and this implies that

δΩ[ρ]

δρ

∣∣∣∣
ρ=ρeq

= 0. (2.26)
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By inserting Eq. (2.24) into Eq. (2.26), and decomposing F into the ideal gas
part F id (Eq. (2.22)) and the excess free energy F ex, we obtain the important
result:

λDρeq = exp

(
βµ− βδF ex

δρ

∣∣∣∣
ρ=ρeq

− βV ext

)
. (2.27)

The remaining crucial problem is how to obtain or to approximate F ex? In
Chapter 3, starting from the low density limit, we introduce the Ramakrishnan-
Yussouff approximation, the mean–field approximation and the fundamental
measure theory. Further, in Chapter 6, a novel machine–learning method
is introduced. The new machine–learning architecture, an adoption of the
equation learner of Ref. [1], is capable of generating a functional by using
density distributions from simulations/experiments.





Chapter 3

Approximating the excess free
energy

3.1 Density expansion and direct correlation

function

The excess free energy F ex is a generating functional for a hierarchy of direct
correlation functions (dcf):

C(n)(r1, r2, ..., rn) = −β δnF ex[ρ]

δρ(r1) δρ(r2)...δρ(rn)
. (3.1)

Usually, the first–order dcf

C(1)(r1) = −β δF
ex[ρ]

δρ(r1)
, (3.2)

as already used in Eq. (2.27), and the second–order dcf

C(2)(r1, r2) =
δC(1)(r1)

δρ(r2)
= −β δ2F ex[ρ]

δρ(r1) δρ(r2)
(3.3)

are more useful than the other higher order dcf, and thus we refer to C(2) as
‘the dcf’ for short. The connection between the direct correlation function
and the Ornstein–Zernike relation is introduced in the next section. Expand-
ing F ex around a homogeneous reference state with ρ(r) = ρ0 gives

F ex[ρ] = F ex[ρ0] +

∫
dr1

δF ex[ρ]

δρ(r)

∣∣∣∣
ρ=ρ0

∆ρ(r1)

+
1

2

∫ ∫
dr1dr2

δ2F ex[ρ]

δρ(r1) δρ(r2)

∣∣∣∣
ρ=ρ0

∆ρ(r1)∆ρ(r2) + ... (3.4)

13
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with ∆ρ(r) = ρ(r) − ρ0. Further, since the reference state is homogeneous,

− 1
β
C(1)(r) = δFex[ρ]

δρ(r)

∣∣∣∣
ρ=ρ0

is a constant and thus

F ex[ρ] 'F ex[ρ0]− 1

β
C(1)

∫
dr ∆ρ(r)

− 1

2β

∫ ∫
dr1dr2C

(2)(|r1 − r2|; ρ0)∆ρ(r1)∆ρ(r2). (3.5)

Eq. (3.5) is known as the Ramakrishnan-Yussouff approximation [27] and
C(2)(|r1 − r2|; ρ0) could be determined through the pair correlation function
via the Ornstein–Zernike relation, where the pair correlation function can be
determined in simulations or experiments (see the next section or Ref. [23] for
details). Furthermore, it can be shown that −1

β
C(2) behaves asymptotically

as the pair potential when r → ∞ [23], if the potential has a long–ranged
part. Therefore, by further approximating C(2)(|r1−r2|; ρ0) with the effective
pair potential ψ(|r1 − r2|), Eq. (3.5) gives

F ex[ρ] ' 1

2

∫ ∫
dr1dr2 ψ(|r1 − r2|)ρ(r1)ρ(r2), (3.6)

which is the well–known mean–field or random–phase approximation. While
Eqs. (3.5) and (3.6) are applicable for low densities and weak interactions,
the approximation fails in many interesting cases. To improve that, one can
split ψ into a short–ranged part and a tail part: ψ = ψsr + ψtail. The excess
free energy related to ψtail is approximated by Eq. (3.6) and the excess free
energy related to ψsr is a functional F ex

ref[ρ] of a new reference system, which
requires further investigations.

Since the reference part comes from the short–ranged interaction, in the
most case it is a harsh repulsive interaction. The simplest approximation for
such interaction is hard–sphere (HS) interaction, where overlap is forbidden,
i.e. for HS,

ψHR(r) =

{
∞ if |r| < σ

0 otherwise

with σ the (effective) particle diameter. In Sec 3.3, the most accurate func-
tional for hard spheres, fundamental measure theory (FMT), is briefly intro-
duced.

3.2 Ornstein–Zernike relation

The Ornstein–Zernike (OZ) relation basically describes the relation between
the pair correlation function and the dcf. To see this, we first define the



3.2. ORNSTEIN–ZERNIKE RELATION 15

density–density correlation function

H(2)(r1, r2) =
〈

[ρ (r1)− 〈ρ (r1)〉] [ρ (r2)− 〈ρ (r2)〉]
〉

= ρ(2) (r1, r2) + ρ (r1) δ (r1 − r2)− ρ(r1)ρ(r2)

= ρ(r1)ρ(r2)h(2)(r1, r2) + ρ (r1) δ (r1 − r2) , (3.7)

where ρ(2)(r1, r2) =
〈∑

ij,i6=j δ (ri − r1) δ (rj − r2)
〉

and h(2) is the total cor-

relation function (the pair correlation g(2) = h(2) + 1). One can prove [23]
that

−βH(2)(r1, r2) =
δ2Ω

δφ (r1) δφ (r2)
(3.8)

where φ(r) = µ− V ext(r). From Eq. (3.2), we have

βφ(r) = β
δF [ρ]

δρ(r)
= ln

(
λDρ(r)

)
− C(1)(r), and

β
δφ(r1)

δρ(r2)
=

1

ρ(r1)
δ(r1 − r2)− C(2)(r1, r2). (3.9)

Combining Eqs. (2.24) and (3.8) we obtain an algebraic

ρ(r) = − δΩ

δφ(r)
, and βH(2)(r1, r2) =

δρ(r1)

δφ(r2)
. (3.10)

Through the relation:

δ(r1 − r2) =
δρ(r1)

δρ(r2)
=

∫
dr3

δρ(r1)

δφ(r3)

δφ(r3)

δρ(r2)
(3.11)

and substituting δρ
δφ

by Eq. (3.7) and δφ
δρ

by Eq. (3.10), we obtain the OZ
relation:

h(2)(r1, r2) = C(2)(r1, r2) +

∫
dr3C

(2)(r1, r3)ρ(r3)h(2)(r3, r2)

= C(2)(r1, r2) +

∫
dr3C

(2)(r1, r3)ρ(r3)C(2)(r3, r2)

+

∫ ∫
dr3dr4C

(2)(r1, r3)ρ(r3)C(2)(r3, r4)ρ(r4)C(2)(r4, r2) + ...

(3.12)

Eq (3.12) has a clear physical interpretation: the total correlation h(2) be-
tween particles 1 and 2 is due to the direct correlation C(2)(r1, r2) and the
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‘indirect’ correlation propagated via intermediate particles. For a homoge-
neous fluid, Eq. (3.12) can be reduced to

h(2)(r) = C(2)(r) + ρ

∫
dr′C(2)(|r− r′|)h(2)(|r′|) (3.13)

where r = |r|. On taking the Fourier transform on both sides, we obtain an
algebraic relation between h(2) and C(2):

h̃(2)(k) = C̃(2)(k) + ρC̃(2)(k)h̃(2)(k)⇒ h̃(2)(k) =
C̃(2)(k)

1− ρC̃(2)(k)
. (3.14)

In experiments or simulations, one could directly determine h(2) or h̃(2) [23]
and thus calculate C(2) for the homogeneous fluid and insert it into the
Ramakrishnan-Yussouff approximation (Eq. (3.5)).

3.3 Fundamental measure theory

Fundamental measure theory is a special DFT treatment for hard–body flu-
ids, using weighted densities. In contrast to approximations by expanding
C(2), the free energy density is taken to be a function of several different
weighted densities, defined by geometrical characteristics of the particles.

It can be shown [23] that C(2)(r) in a low-density expansion is given by

C(2)(r) = f(r) + ρf(r)

∫
dr′f(|r− r′|)f(|r′|) + ..., (3.15)

where f(r) = e−βψ(r) − 1 is known as the Mayer–f function with ψ the
particle–particle interaction. Thus the excess free energy (F ex) in the low
density limit is:

βF ex ' −1

2

∫ ∫
d r d r′ρ(r)ρ(r′)f(r− r′). (3.16)

3.3.1 Three–dimensional hard spheres

For hard spheres, f(|r − r′|) = −Θ(2R − |r − r′|) with Θ the Heaviside
step function and R the (effective) radius. By the ingenious insight from
Rosenfeld [5], fij can be deconvoluted into a set of weight functions ω 1, such
as

−f(r) = 2 (ω3 ⊗ ω0 + ω2 ⊗ ω1 +ωωω1 ⊗ωωω2) , (3.17)

1For the sake of simplicity, we consider only the one–component case.
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where

ω3(r) = Θ(R− |r|),
ω2(r) = δ(R− |r|),

ω1(r) =
ω2(r)

4πR
,

ω0(r) =
ω2(r)

4πR2
,

ωωω2(r) =
r

|r|δ(R− |r|), and

ωωω1(r) =
ωωω2(r)

4πR
, (3.18)

with δ the Dirac delta function. Integrating over the scalar weight functions
gives the ‘fundamental geometric measures” of a sphere,

∫
drω3(r) =

3

4
πR3 Volumn

∫
drω2(r) = 4πR2 Surface

∫
drω1(r) = R Mean radius of curvature

∫
drω0(r) = 1 Euler characteristic (3.19)

and ωωω2 = Oω3, hence the name “fundamental measure theory”.
Eq. (3.16) in the low density limit becomes

βF ex[ρ] =

∫
dr Φ([nα]) '

∫
dr (n1 n2 − n1 · n2 + n0 n3) (3.20)

with the weighted densities nα(r) = ρ ⊗ ωα =
∫
dr′ ρ(r′)ωα(r − r′). In

the homogeneous limit, n0 = ρ, n1 = Rρ, n2 = 4πR2ρ, n3 = 4
3
πR3ρ and

n1 = n2 = 0.
To approximate the excess free energy density Φ, one possibility, in the

spirit of Eq. (3.20) is to write Φ as a sum of product of weighted densities.
One may use a dimensional argument: since βF ex is dimensionless, Φ must
have the dimension of 1/volume, [Φ] = 1

L3 . Thus Φ can only be a sum of
terms consisting of factors n0, n1n2, n1 · n2, n3

2 and n2(n2 · n2), and each
term can be multiplied with a scalar function fi(n3) . Note [nl] = 1

L3−l . Thus
Rosenfeld proposed the ansatz:

Φ(nα) = f1(n3)n0 + f2(n3)n1 n2 + f3(n3)n1 ·n2 + f4(n3)n3
2 + f5(n3)n2(n2 ·n2).

(3.21)
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Using the definition of the chemical potential µex = δFex

δρ

∣∣∣∣
ρ=const.

, we obtain

βµex =
∂Φ

∂ρ
=
∑

α

∂Φ

∂nα

∂nα
∂ρ

. (3.22)

We adopt the view of scaled particle (SP) theory, and consider a single
solute particle of radius Rν in a uniform hard–sphere fluid with radius R. It
can be shown that [23]

lim
Rν→∞

µex

ν = PspVν (3.23)

with Psp the bulk pressure and Vν the volume of the solute particle, which
leads to

Psp =
∂Φ

∂n3

. (3.24)

On the other hand, we have the thermodynamic (TD) relation,

βPTD =
−βΩbulk

V
= −Φ− βfid + βµρ (3.25)

with fid ideal gas free energy density (Eq (2.22)). Thus we obtain

βPTD = n0 − Φ +
∑

α

∂Φ

∂nα
nα. (3.26)

By equating PTD and Psp and substituting Eq. (3.21), we obtain

f ′1 = 1 + n3f
′
1 ⇒ f1 = − ln(1− n3) + C1,

f ′2 = f2 + n3f
′
2 ⇒ f2 =

C2

1− n3

,

f3 =
C3

1− n3

,

f4 =
C4

(1− n3)2
, and

f5 =
C5

(1− n3)2
.

(3.27)

In the low density limit, Φ = n1 n2 − n1 · n2 + n0 n3 (Eq. (3.20)) and it
leads to C1 = 0, C2 = 1, C3 = −1. Furthermore, considering the dcf for the
one–component HS fluid, Eq (3.3) gives

−C(2)(r1, r2) =
δ2Φ[n]

δρ (r1) δρ (r2)
=
∑

α,β

∫
dr

∂2Φ

∂nα∂nβ
wα(r− r1)wβ(r− r2).

(3.28)
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In the low–density and the homogeneous limit (n2 → 0),

∑

α,β

∫
dr

∂2Φ

∂nα∂nβ
wα(r− r1)wβ(r− r2) =

∑

α,β

∂2Φ

∂nα∂nβ
wα ⊕ wβ

= Θ(2R− r) + 6C4n2(w2 ⊕ w2) + 2C5n2 (ωωω2 ⊕ωωω2) , (3.29)

where ⊕ denotes the cross–correlation (wα⊕wβ =
∫
drwα(r−r1)wβ(r−r2))

and

6C4n2(w2 ⊕ w2) + 2C5n2(ωωω2 ⊕ωωω2)

= 2n2(3C4w2 ⊕ w2 + C5ωωω2 ⊕ωωω2)

= 2n2

(
4π3 (−C5r

2 − 2 (−3C4 − C5)R2)

r

)
. (3.30)

To eliminate the divergence at r → 0, we choose C5 = −3C4. To determine
the remaining constant C4, we consider the low–density limit for Φ for a
homogeneous fluid,

Φ =
4πR3ρ2

1− 4
3
πR3ρ

+
64C4π

3R6ρ3

(
1 + 4

3
πR3ρ

)2 − ρ ln

[
1− 4

3
πR3ρ

]

' 16

3
πR3ρ2 +

(
56π2R6

9
+ 64C4π

3R6

)
ρ3 +O[ρ4], (3.31)

which gives the equation of state

βPTD

ρ
=

1

ρ

(
−Φ− βfid +

∂(Φ + fid)

∂ρ
ρ

)

' 1 +
16

3
πR3ρ+

(
112π2R6

9
+ 128C4π

3R6

)
ρ2 +O[ρ3]. (3.32)

We use the knowledge of the virial expansion with the exactly known first
three terms,

βP

ρ
= 1 + 4η + 10η2 +O[η3], (3.33)

where η = 4
3
πR3ρ is the packing fraction. Putting Eqs. (3.31) and (3.32)

together, we can determine that C4 = 1
24π

. Finally, we obtain Rosenfeld’s
free energy functional:

Φ = −n0 ln(1− n3) +
n1 n2 − n1 · n2

1− n3

+
n3

2 − 3n2(n2 · n2)

24π(1− n3)2
. (3.34)
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It is worth to note that in the homogeneous limit, Eq. (3.34) gives the Percus–
Yevick–Frisch equation of state [28],

βP

ρ
=

1 + η + η2

(1− η)3
. (3.35)

Furthermore, we consider an external potential such that the system is
held between two close walls in the x–y–plane, and the local density profile
is given by ρ(r) = ρ2D(x, y)δ(z). In this way a homogeneous density pro-
file in 2D can be treated as highly confined 3D system, and the free energy
F3D[ρ(x, y)δ(z)] = F2D[ρ(x, y)]. Such a narrowing procedure is referred as ‘di-
mensional crossover’. By further confinement of the system along the x–axis
and all three axes, the local density profile turns into ρ(r) = ρ1D(x)δ(y)δ(z)
and ρ(r) = ρ0Dδ(x)δ(y)δ(z). The importance of the cavity–like 0D situa-
tion of the latter case is that the crystalline state can be interpreted as a
highly confined inhomogeneous system as each particle confined by its near-
est neighborhoods, and thus to capture the crystalline phase the functional
must have the correct behavior in the 0D limit.

Starting from the exactly known F1D and F0D, Tarazona et al. [6, 7]
introduced the tensorial weight function:

ωωωT(r) =

(
r · rt
|r|2 −

I
3

)
δ(R− |r|), (3.36)

and the tensor functional:

Φ =− n0 ln(1− n3) +
n1 n2 − n1 · n2

1− n3

+
n3

2 − 3n2n2 · n2 + 9
2
(nt2 · nT · n2 − Tr(n3

T))

24π(1− n3)2
, (3.37)

where I is the unit matrix in R3×3, superscript t represents the transpose,
and Tr(·) denotes the trace of a matrix. The tensorial modification gives
decent descriptions of the hard–sphere crystal. However, due to the underly-
ing Percus–Yevick–Frisch equation of state, the obtained phase coexistence
densities are lower than the ones from MC simulation results.

White Bear II

In 2006, Hansen–Goos and Roth [29, 8] improved the FMT by considering a
modified Carnahan-Starling (CS) equation of state [30] given by

βPCS =
n0

1− n3

+
n1n2

(
1 +

n2
3

3

)

(1− n3)2
+
n3

2

(
1− 2n3

3
+

n2
3

3

)

12(1− n3)3π
. (3.38)
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In the homogeneous limit for a one–component hard–sphere fluid, Eq. (3.38)
is equivalent to the original CS equation of state

βP

ρ
=

1 + η + η2 − η3

(1− η)3 , (3.39)

which is more precise than the Percus–Yevick–Frisch equation of state.
Equating PCS with PTD and proceeding as before (see Eqs. (3.26) and

(3.27)), we obtain

f2 + n3f
′
2 =

1 + 1
3
n2

3

(1− n3)2
(3.40)

2f4 + n3f
′
4 =

1− 2
3
n3 + 1

3
n2

3

12π(1− n3)3
, (3.41)

which gives

f2 =
C2

n3

+
− 4
−1+n3

+ n3 + 2 ln(1− n3)

3n3

(3.42)

f4 =
C4

n2
3

−
1−2n3

(−1+n3)2 + n3 + ln(1− n3)

36n2
3π

. (3.43)

To eliminate the potential divergence in the low–density limit, we choose
C2 = −4

3
and C4 = 1

36π
; thus, we obtain the White Bear II free energy

functional :

ΦWBIIT

ex,HS (nα) =− n0 ln(1− n3) + g2 (n3)
n1 n2 − n1 · n2

1− n3

+ g3 (n3)
n3

2 − 3n2n2 · n2

24π(1− n3)2
(3.44)

with

g2 (n3) = −(−5 + n3)n3 + 2(−1 + n3) ln(1− n3)

3n3

and

g3 (n3) = −2 (n3(1 + (−3 + n3)n3) + (−1 + n3)2 ln(1− n3))

3n2
3

. (3.45)

Furthermore, on combining the tensorial modification (Eqs. (3.37)) and
White Bear II functional (Eq. (3.44)), we obtain the White Bear II tensorial
functional:

ΦWBII,tensor

ex,HS (nα) = −n0 ln(1− n3) + g2 (n3)
n1 n2 − n1 · n2

1− n3

+ g3 (n3)
n3

2 − 3n2n2 · n2 + 9
2
(nt2 · nT · n2 − Tr(n3

T))

24π(1− n3)2
, (3.46)

which is by far the most accurate functional for HS systems [31, 32].
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3.3.2 Two–dimensional hard disks

One may expect that FMT for HS systems is capable of describing two–
dimensional (2D) hard–disk (HD) systems by a slab–like confinement; how-
ever, such confinement gives βP

ρ
∼ (1 − η)−5/2 for high packing fractions η,

while the scaled particle theory gives βP
ρ
∼ (1− η)−2 [33]. Alternatively, one

may try to construct F ex by a deconvolution, similarly to Sec.3.3.1 for HD
systems. Then a difficulty arises: the deconvolution of the Mayer function
like Eq. (3.17) requires an infinite number of weight functions. Following
Ref. [3], the deconvolution for HD is:

−fij(r) = ωi2 ⊗ ωj0 + ωj2 ⊗ ωi0 +
∞∑

m=0

Cm
2π

ωωωi(m) ⊗ωωωj(m), (3.47)

with weight functions

ωi0(r) =
δ(Ri − r)

2πRi

, ωi2(r) = Θ(Ri − r), (3.48)

and
ωωωi(m)(r) = r̂...r̂︸︷︷︸

m times

δ(Ri − r). (3.49)

Using similar arguments as in Sec.3.3.1, one can obtain the excess free energy
density

ΦHD(nα) = −n0 ln(1− n2) +
∞∑

m=0

1

4π(1− n2)
Cm nm · nm, (3.50)

where the first three coefficients are C0 = π
2
, C1 = −1 and C2 = −π

4
. The

virial expansion of the equation of state for the HD fluid reads βP
ρ

= 1+2η+

O[ρ2] with packing fraction η = πR2ρ. Unfortunately, the truncation up to
C2 gives βP

ρ
= 1 + (1 +C0 +C2/2)η+O[ρ2] = 1 + (1 + 3π

8
)η+O[ρ2] and thus

fails to deliver the correct second virial coefficient.
To cure this deficiency, Roth et al. [3] reconsidered C0..C2 as free parameters.
The correct second virial coefficient requires C0 + C2/2 = 1 and the correct
free energy in the 0D confinement for sharp density peak requires C0 +C1 +
C2 = 0 (see Sec.3.3.1). Thus the final form of the free energy functional is:

ΦHD(nα) = −n0 ln(1− n2) +
(C0n

2
0 + C1n

2
1 + C2 Tr[n2

2])

4π(1− n2)
, (3.51)

with

C0 =
a+ 2

3
, C1 =

a− 4

3
and C2 =

2− 2a

3
. (3.52)
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For the one–component HD system, a best fit to the Mayer f–bond gives a =
11/4 whereas a fit to crystal pressures obtained by simulations gives a = 3 [3].
For binary systems in the fluid phase, the functional delivers an excellent
description of pair correlation functions when compared to experiments [12].

3.3.3 One–dimensional hard rods

The deconvolution of the Mayer f function for hard rods (HR) in one dimen-
sion (1D) reads

−fij(r) = ωi1 ⊗ ωj0 + ωj1 ⊗ ωi0, (3.53)

where ω1(x) = Θ(σ/2− |x|) and ω0(x) = 1
2
δ(σ/2− |x|). The F ex in the low

density limit is given by

βF ex =

∫
n0n1 dx. (3.54)

With the dimensional argument similar to 3D hard-spheres, the ansatz is
Φ[n] = n0f(n1). Considering the exact HR equation of state P = ρ

1−ρσ
and scaled particle theory (Eq. (3.24)), one obtains f ′(n1) = 1

1−n1
and thus

f(n1) = − ln(1− n1). The final form of FHR is

βFHR =

∫
Φ[n] dx =

∫
−n0 ln(1− n1) dx, (3.55)

which is equivalent to the exact HR functional derived by Percus with dif-
ferent means in Ref. [34].





Chapter 4

Bulk fluid and crystal phase for
one–component hard disks

Here we focus on the one–component two–dimensional (2D) systems of hard
disks (HD). The fluid–crystal transition in 2D systems of HD has been of
fundamental interest over years. Only recently, it has been established in
the one–component system by simulations [10] and experiments [11] that the
transition happens via a first–order transition from the fluid to the hexatic
phase and a continuous transition from the hexatic to the crystal phase. Al-
though the crystal phase is not strictly periodic (it does not have infinitely
long–ranged translational order), in simulations and experiments it has prac-
tically the appearance of a conventional, periodic crystal. Therefore, 2D hard
disks have a similar status as a model system for crystallization in films and
monolayers as 3D hard spheres have for crystallization in the bulk. Besides
simulations, classical density functional theory (DFT) for hard particle sys-
tems has reached a maturity and accuracy owing to the development of fun-
damental measure theory (FMT), starting with the work of Rosenfeld [4]. For
2D hard disks, a functional has been proposed in Ref. [3] (see also Sec. 3.3.2),
which gives a very accurate description of fluid structure [12], as well as val-
ues for the fluid and crystal coexistence densities which are rather close to the
ones of the first–order fluid–hexatic transition [3]. In these FMT calculations,
strict periodicity of the crystal phase was assumed.

25
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4.1 Bulk phase and coexistence

4.1.1 Bulk phase

In DFT, the bulk fluid phase is characterized by a homogeneous density field
and the bulk crystal phase is a fluid with spontaneous symmetry breaking,
resulting in a strongly peaked density at lattice sites. To study the bulk crys-
tal phase and coexistence, we assume periodicity and consider a rectangular
unit cell with side lengths L and

√
3L for a triangular lattice (see Fig.4.1).

The free parameters in this free energy minimization problem are the density
profiles ρ(r) in the unit cell as well as the length L. We parametrize the latter
via an effective vacancy concentration nvac:

∫

cell

dr ρ(r) =: 2(1− nvac) = ρ̄
√

3L2. (4.1)

In the one–component case, an ideal crystal has 2 particles in the unit cell,
therefore nvac > 0 indeed corresponds to the vacancy concentration in the
equilibrium crystal.

ρσ2

L

√
3L

1

2

3

4

5

6

7

Figure 4.1: Density distribution ρ(r) of a one–component perfect crystal
(ρ̄σ2 = 0.932, nvac = 0.0122, a = 11/4 and σ the hard–disk diameter). The
solid white line indicates the computational box (rectangular unit cell of the
triangular lattice which contains two particles)

The full minimization of free energy F for given average densities ρ̄ pro-
ceeds via

F(ρ̄) = min
nvac

min
{ρ(r)}

F [nα], (4.2)
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i.e. in two steps [31]. The first minimization step is achieved by an iterative
solution of the Euler–Lagrange equation (for fixed nvac, L)

ρ = exp

(
−β δF

ex [nα]

δρ
+ βµ

)
= K[ρ], (4.3)

where

β
δF ex [nα]

δρ(r)
=

∫
dr′
∑

α

∂Φ[nα]

∂nα
(r′)wα(r′ − r) (4.4)

with Φ in Eq. (3.51). The chemical potential µ is adapted in each iteration
step to keep the average particle density ρ̄ constant. Iteration is done by using
a combination of Picard steps and discrete inversion in iterative subspace
(DIIS) [35, 31] (see also Appendix B for more details). The Picard steps are
performed according to

ρj+1 = ξ K[ρj] + (1− ξ)ρj, (4.5)

where j labels the iteration step and ξ is a Picard mixing parameter which
we chose in the range from 10−3 to 10−2 for bulk crystal and also interface
minimizations. The DIIS steps are performed using between 5 and 9 forward
profiles. The second minimization step, the minimization with respect to nvac

(and thus L), amounts to doing the first minimization for a few values of nvac

within an interval of starting width ∼ 10−3 and subsequently determining the
minimum via a quadratic fit. The procedure is iterated with smaller interval
widths until we have reached 3 digits of confidence or the interval width is
less than 10−5 (see Fig. 4.2(a)).

4.1.2 Coexistence

From Table 4.1 we see that coexisting packing fractions and the surface
tension are described very well by FMT, even though in FMT the strict
periodicity assumption for the crystal differs from the character of the hexatic
and crystal phase in experiments/simulations. This good correspondence is
in line with the quantitative description of fluid structure found in earlier
works [3, 12].

Phase coexistence requires Pcr = Pfl and µcr = µfl. Fully minimizing F/N
with respect to nvac delivers Pcr and µcr. Through µcr = µfl and the fluid
equation of state we can find Pfl and ρfl in the fluid. In general, Pfl 6= Pcr and
thus we change ρcr iteratively until βσ2

l |Pcr−Pfl| < 5×10−6 (see Fig. 4.2(b)).
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Figure 4.2: (a) Minimization with respect to nvac with ηcr = 0.73 and
a = 11/4 (see Eq. 3.52). The procedure is iterated four times. (b)Finding
coexistence pressure by determining ∆P = |Pcr − Pfl| for different ηcr, and
the nvac of each ηcr is determined as in (a).

Table 4.1: Thermodynamic properties of the one–component crystal. σ is the
HD diameter, P pressure, µ chemical potential, η = (π/4)σ2ρ packing frac-
tion, and the subscript (co) denotes coexistence of the crystal (cr) and fluid
(fl), respectively. Note that for Exp and MC, two values for ηcr correspond to
the packing fraction of the hexatic phase at fluid-hexatic coexistence and the
packing fraction at the hexatic–crystal continuous transition, respectively.
The FMT coexistence values differ slightly from those in Ref. [3] which suffer
from a small numerical error.

FMT
Exp

[11]∗
MC

[10]
a = 11/4 a = 3

βσ2Pco 10.84 9.234 9.185

βµco 14.576 12.778

ηcr 0.732 0.7165 0.7/0.73 0.716/0.72

ηfl 0.711 0.6913 0.68 0.700

nvac 0.0122 0.0194 0.001

(∗ see Supplementary Material in Ref. [11])
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4.2 Planar interface and surface tension

A surface tension in 2D is a line tension defined as Ω+PA
L

, where P is the
pressure, A is the area of the system and L is the length of the interface.
Here we are interested in the planar surface tension γ. In general, γ depends
on the angle θ between the crystal and the interface normal. To determine
γ(θ), we need to model a stress–free solid [36], but extension of a rectangular
piece of solids subjected to periodic boundary conditions is non-trivial due to
lattice symmetry. Here we describe how to determine the stress–free periodic
boundary condition for a 2D triangular lattice.

As shown in Fig 4.3a, there are two primitive vectors ~a = (a, 0) and
~b = (0,

√
3a) in a unit cell, where a is the lattice constant.

These vectors in a rotated unit cell with rotation angle θ are

~a′ = a cos(θ)x̂+ a sin(θ)ŷ. (4.6)

and
~b′ = −

√
3a sin(θ)x̂+

√
3a cos(θ)ŷ. (4.7)

~a

~b

(a)

~a′
~a′

~a′

~b′
−~b′

θ

Lx

~b′

~b′

~b′

~b′

~b′

~b′

~b′

~b′

~a′

Ly

(b)

Figure 4.3: (a) Non–rotated lattice, and (b) rotated lattice. The black dots
are lattice sites. In (b), the blue rectangle indicates one periodic unit cell for
θ = arctan( 1

3
√

3
) with (M,N) = (3, 1), (I, J) = (1, 9).
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In order to exactly fit a periodic structure into the numerical box, the
dimension of the numerical box must accommodate multiples of these two
basis vectors (an example is shown in Fig. 4.3b). Thus we have M~a′−N~b′ =
Lxx̂ + 0ŷ and I~a′ + J~b′ = 0x̂ + Lyŷ where M , N , I and J are integers.
From the components of the above vector equations that have a zero on the
right–hand side, we obtain two conditions for the θ,

tan(θ) =
N√
3M

=

√
3I

J
(4.8)

Having four integers fulfilling N
M

= 3I
J

, the dimensions of the numerical box
and angle of rotations are given,

Lx =
(
M~a′ −N~b′

)
· x̂,

Ly =
(
I~b′ + J~a′

)
· ŷ. (4.9)

In Fig. 4.4, we show the free–energy minimized density profiles of interface
with θ = 0 and θ = arctan( 1

3
√

3
).
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Figure 4.4: Example of (a part of) a planar interface with periodic condition
in the y–direction. The full density profiles are periodic in both the x and
y directions. (a) θ = 0, and (b) θ = arctan( 1

3
√

3
)
(
N
M

= 1
3
, I
J

= 1
9

)
. In these

density profiles, the parameters are ηcr = 0.732, ηfl = 0.711 and lattice
constant a = 1.11σ
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4.2.1 Planar surface tension

For a planar interface in a rectangular numerical box (see Fig. 4.4 showing
part of it), the free energy F can be decomposed into the contribution from
bulk phases and interfaces:

F = fliquidLx,liquidLy + fcrystalLx,crystalLy + 2γLy, (4.10)

where Lx,liquid/crystal is the length of the liquid/crystal in the direction of the
interface normal, Ly is the length of the interface, f is the free energy density,
and the factor 2 is from the periodic boundary condition.

After dividing both sides of Eq. (4.10) by the area of the simulation box
A = LxLy, the surface tension γ is determined as the slope of the free energy
density versus the inverse length of the numerical box in the direction of the
interface normal Lx with fixed average particle density [37],i.e.,

F
A

= fliquid

Lx,liquid

Lx
+ fcrystal

Lx,crystal

Lx
+ 2γ

1

Lx
. (4.11)

Since the average particle density is fixed, we assume that
Lx,crystal/liquid

Lx
is a

constant for different Lx. Thus the advantage of Eq. (4.11) over Eq. (4.10)
is that the precise coexisting free energy densities are not required and γ is
directly determined by varying Lx.

The density profiles are initialized similar to Ref. [35]. In the iterations
we chose a Picard mixing parameter constant in space and fix the average
densities ρ = ρcr+ρfl

2
by adapting µ in the iterations, where ρcr/fl is the bulk

average density in the crystal/fluid phase at coexistence, and then finally
perform the free minimization.

The result of γ(θ) by FMT is shown in Fig. 4.5. For a small anisotropy
ε, γ can be fitted by γ(θ) = γ0(1 + 6ε cos(θ)), and the comparison of the
results by FMT and experiments are shown in Table 4.2. While the surface
tension γ is in a good agreement with experiments, the anisotropy is 20 times
smaller. The deviation most likely stems from long–ranged fluctuations in
the interface which are averaged out in the framework of DFT. In the 3D HS
systems, anisotropies also differ from simulations [32].
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Figure 4.5: γ(θ)− γ0 for a = 11/4. The black dots are FMT results and blue
dashed line is γ(θ)− γ0 = γ0(6ε sin(θ)) with γ0 = 0.09925 and ε = −0.0007.

Table 4.2: Thermodynamic properties of the one–component crystal–fluid
transition. γ(θ) the surface tension, γ0 denotes the averaged planar surface
tension, and ε the anisotropy.

FMT
Exp

[11]∗

a = 11/4 a = 3

βσγ(0) 0.09921 0.08143
βσγ(π

6
) 0.09930 0.08155

βσγ0 0.09925 0.08150 0.1
ε -0.0007 -0.0007 -0.015

(∗ see Supplementary Material in Ref. [11])
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4.3 Phase transition and crystal nuclei

In the thermodynamic limit (N →∞ and V →∞), the intensive variables,
such as the chemical potential µ, must show a horizontal plateau throughout
the fluid–crystal coexistence region.

However, for a finite size system, the fluid and solid part of the system
arrange such that the interface between the two phases is minimal. This
behavior gives rise to topologically different configurations, depending on
the average density ρ. In Fig. 4.6, a schematic sketch of µ(ρ) as a function
of ρ is shown.

The following configurations can be distinguished:

• ρ < ρfl: The stable phase is an undersaturated fluid at these densities.

• ρfl < ρ < ρ1: In a finite system, the fluid is stable, up to a density ρ1,
where it becomes metastable. The chemical potential is larger than the
coexistence value, µ > µco.

• ρ1 < ρ < ρ2: A stable nucleus coexists with surrounding fluid. With the
density increasing, the chemical potential decreases.

• ρ2 < ρ < ρ3: With the density increasing, the nucleus grows and eventually
connects to itself over the periodic boundary. A slab configuration forms
with two planar interfaces.

• ρ3 < ρ < ρ4: A fluid droplet in a surrounding crystal is formed.

• ρ4 < ρ: For high enough densities, the stable phase is the crystalline phase.
In the thermodynamic limit, crystallization starts at a density of ρcr.

Surface tension of crystal nuclei

The surface tension γ plays a crucial role in the free energy barrier for nucle-
ation in classical nucleation theory. With the crystal nuclei stabilized in the
finite numerical boxes, we could determine γ versus the size of nuclei. Since
the anisotropy is small (see Tab. 4.2), we approximate a nucleus as a perfect
spherical disk with radius R. The difference of grand potential ∆Ω between
a nucleus and a homogeneous fluid reads

∆Ω = −πR2∆P + γ(R)2πR. (4.12)

Minimizing ∆Ω with respect to R gives

γ(R) = R∆P, (4.13)
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µ

ρ

µco

ρfl ρ1 ρ2 ρ3 ρ4 ρcr

homogenous
fluid fluid + nucleus

fluid+crystal
slab crystal+fluid

droplet

crystalline

Figure 4.6: A schematic description of the chemical potential µ(ρ) as a func-
tion of ρ. The solid line is a fluid to crystal transition in the thermodynamic
limit. The dashed line and dots are results from FMT equilibrium states
in a finite but large numerical box (64σ × 64σ here). The finite system is
initialized with a disk–shaped nucleus in the center, and the average density
(fixed during free energy minimization) is tuned by varying the size of initial
the nucleus and the density of surrounding fluid. The free energy minimiza-
tion is performed by using dynamic DFT (see Appendix B for details). The
density profiles in the insets are examples of corresponding configurations.

with ∆P = Pcr − Pfl and Pcr/fl the pressure in the nucleus/fluid far from
interface. It is worth to note that Eq. (4.13) is the definition of the Laplace
pressure. Thus, the nucleus radius (R) is determined by

∆Ω = πR2∆P. (4.14)

Numerically, ∆Ω = Ωsystem − Ωfl(µeq), where µeq is equilibrium chemical po-
tential (not µco). Ωsystem is directly evaluated by the equilibrium density
profile, and Ωfl(µeq) and Pfl(µeq) are from the equation of state. Pcr is ap-
proximated by a unit cell in the middle of the nucleus, since it gives a more
consistent result than the equation of state.

Using Eqs. (4.13) and (4.14) with ∆P and ∆Ω, we determine R and
γ(R) for a nucleus. Furthermore, by varying size and average density of the
system, we obtain nuclei with different radii. In Fig. 4.7, we show both γ0

γ
−1
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as a function of 1/R and γ
γ0

as a function of R, and the standard fit with the

Tolman correction [38, 39]:

γ(R)

γ0

' 1

1− δ
R

⇒ γ0

γ(R)
− 1 ' − δ

R
(4.15)

with δ the Tolman length.
In Fig. 4.7, γ(R) first increases and then decreases as R increases, and

the fit gives δ = 0.9σ. The δ falls in the possible regime (±1σ) from the 3D
hard–sphere DFT studies [40] and the magnitude is close to that determined
from the (pseudo) hard–sphere simulations while the sign is different [41, 42].
It is difficult to judge the relevance of δ from this work since the sign and the
magnitude have been subjest of a longstanding controversy [43, 44, 45, 46, 47]
and studies on 2D systems are rare [48].
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Figure 4.7: (a) γ0/γ(R) − 1 versus 1/R, and (b) γ(R)/γ0 versus R. Same
color dots are same system size (L2). The blue dashed line is a fitting by
using the Tolman correction, which gives δ = 0.9.

4.4 Hexatic phase

The melting transition in 2D, unlike 3D, is proposed to proceed via an addi-
tional ‘hexatic’ phase between the fluid and crystalline phase. The hexatic
phase is strongly related to the appearance of topological defects. There
are three main types of defect in 2D HD systems: dislocations, dislocation
pairs and disclinations. The dislocation is a pair of five– and seven– fold
coordinated particles (five and seven nearest neighbors), a dislocation pair is
composed by two dislocations, and a disclination is a single five– or seven–
fold coordinated particle.
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The existence of the hexatic phase is proposed by the KTHNY theory with
the name derived from Kosterlitz, Thouless, Halperin, Nelson, and Young [49,
50, 51, 52, 53]; for hard disks, simulations and experiments have proved it in
2011 [10] and 2017 [11] respectively. However, to our knowledge, there is no
functional in DFT so far able to capture the hexatic phase.

Here we briefly describe the melting scenario of 2D melting proposed by
the KTHNY theory. Rigorously speaking, no true crystal exists in 2D due to
long wavelength fluctuations [54], but practically the crystal phase in simula-
tions and experiments has the appearance of a conventional periodic crystal.
For high packing fractions, 2D HD form a crystalline phase, where the trans-
lational order is quasi–long–ranged and the bond–orientational order is long–
ranged, and the only type of defect are dislocation pairs. As packing fraction
decreases, dislocation pairs start unbinding and thus destroy the quasi–long–
ranged translational order while the long–ranged bond–orientational becomes
quasi–long–ranged. This phase is called ‘hexatic phase’. As the packing frac-
tion further decreases, dislocations unbind into individual disclinations and
both translational order and bond–orientational order are short–ranged and
the system becomes fluid. In 3D, the unbinding free energy of dislocation
pairs is too high thus there is no hexatic phase.

To determine whether the translational order is long or short–ranged, in
simulation the vector pair correlation function g(∆r) is used, which is defined
as

g(∆r) =
V

N2

〈∑

ij,i6=j
δ(∆r− rj + ri)

〉
. (4.16)

To connect with DFT, we consider the two particle density introduced in
Sec. 3.2,

ρ(2)(r, r′) =

〈∑

ij,i6=j
δ(r− ri)δ(r

′ − rj)

〉
, (4.17)

and rewrite with r′ = r + ∆r,

ρ(2)(r, r + ∆r) =

〈∑

ij,i6=j
δ(r− ri)δ(r + ∆r− rj)

〉

= ρ(r)ρ(r + ∆r)g(r, r + ∆r). (4.18)

Further, by using the delta function property

∫
dr

〈∑

ij,i6=j
δ(r− ri)δ(r + ∆r− rj)

〉
=

〈∑

ij,i6=j
δ (∆r− rj + ri)

〉
, (4.19)
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we obtain

g(∆r) =
V

N2

∫
dr ρ(2)(r, r + ∆r) =

V

N2

∫
dr ρ(r)ρ(r + ∆r)g(r, r + ∆r).

(4.20)

In the homogeneous system, ρ(2) is independent of r and thus

g(∆r) =
V 2

N2
ρ2g(∆r) = g(∆r). (4.21)

On the other hand, in an inhomogeneous system, g(r, r + ∆r) depends on r
and is unknown in general. Therefore, we assume that g(r, r+∆r) ' 1 when
|∆r| � 1, and then g(∆r) is the autocorrelation of ρ(r), i.e.

g(∆r) ' V

N2

∫
drρ(r)ρ(r + ∆r). (4.22)

The KTHNY theory proposes that g(∆r)− 1 decays algebraically in the
crystalline phase, i.e. proportional to |∆r|−ξ with 1

4
< ξ < 1

3
, and expo-

nentially in the hexatic phase. To exam that in FMT, we choose a large
numerical box and initialized a homogeneous fluid with random density fluc-
tuation, and then perform dynamic DFT until it reaches the equilibrium
state. In the end, we find that dislocations survive as shown in Fig. 4.8. As
shown in Fig. 4.9, g(∆r)−1 decays faster than |∆r|−1/3 for a packing fraction
η = 0.732.
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Figure 4.8: A dislocation survives in the equilibrium density profile.
(a)Burgers vector ~b. (b)Red dots are a 5–7 dislocation and white dots are
particles with 6 neighbors. The average packing fraction η̄ = 0.732 and the
simulation box is 280σ × 280σ.
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Figure 4.9: Log–log plot for g(∆r)− 1 as a function of |∆r|. The red dashed
line is the stable limit purposed by KTHNY theory. The average packing
fraction η̄ = 0.732 and the numerical box is 280σ × 280σ.

However, there are several issues. First, we can not rule out that the
dislocations result from mechanical stress. As the numeric box is square in
this case (280σ × 280σ), it can not fit a perfect equilibrium crystal and the
stress must result in a distorted crystal or in dislocations, and both cases
are possible local minimums. In simulations, the simulation boxes go up to
∼ 1000σ × 1000σ to eliminate the influence of stress. Second, for higher
packing fractions, we are not sure whether g(∆r) − 1 decays algebraically
and dislocation pairs exist or not. Third, in DFT, a density profile should
be an ensemble average and can be viewed as an average of snapshots in
simulations/experiments. With dislocations fluctuating (moving around) in
simulations, the corresponding density profile should be crystal–like with
high vacancy concentration; thus, the ‘explicit’ dislocation shown in Fig. 4.8
means it is trapped locally, which differs from the simulation picture. Fourth,
we are unsure how dislocations contribute to the free energy. That is to say,
if dislocations or interaction among dislocations can contribute negative free
energy in a large system, a crystal with intrinsic dislocations could be favored
over a pure crystalline phase, i.e. Fdislocation + crystal < Fstressed crystal.

Last but not least, the existence of the hexatic phase stems from the ‘in-
trinsic’ long–ranged fluctuations [54], but in FMT, as pointed out in Ref. [32],
the long–ranged fluctuations in the interface are averaged out; thus it is un-
likely to have intrinsic long–ranged fluctuations in 2D FMT. However, to
resolve the above mentioned issues, we need even bigger systems, more den-
sity profiles with higher/lower density and different initial condition to verify
the existence of the hexatic phase or whether dislocations can survive in a
large system or not; unfortunately this is beyond the limitation of our current
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computational resources. Fig. 4.9 took more than one month using a NVIDA
K40 GPU.

4.5 Conclusion

In this chapter we have shown the FMT free energy functional for the 2D HD
successfully delivers an accurate mean surface tension and thermodynamic
properties in comparison with simulations and experiments. However the
anisotropy of the surface tension differs up to a factor of 20 comparing to
that from experiments. A possible reason is that DFT smears out the long–
ranged fluctuations. Furthermore, we investigate the surface tension of disk–
shaped nuclei, γ(R), with R the nucleus radius. The γ(R) first increases
then decreases as R increases. The Tolman length by the fitting with the
Tolman correction falls in the possible regime (±1σ) from the 3D hard–
sphere DFT studies [40] and the magnitude is close to that determined from
the hard–sphere simulations while the sign is different [41, 42]. Finally, we
have investigated the existence of the hexatic phase. For η = 0.732, we
find that g(∆r)− 1 decays faster than algebraically while the density profile
still maintains the crystalline structure with dislocations, which is evidence
of the existence of the hexatic phase. However, we are unsure whether the
dislocations result from stress, and whether intrinsic long–ranged fluctuations
exist in DFT or not. Thus, further investigations are needed.





Chapter 5

Hard–disk binary mixtures

Partial results of this chapter have been published in: Physical
Review E 98.1.012608 (2018) with the title “Phase diagrams and
crystal–fluid surface tensions in additive and nonadditive two–
dimensional binary hard–disk mixtures”[55]

In this chapter, we employ the FMT functional of Ref. [3] (see also
Sec. 3.3.2) to study phase diagrams and crystal–fluid surface tensions for
additive and nonadditive binary hard–disk mixtures. We consider a mixture
of large (l) and small (s) disks, with diameter σl and σs, respectively, and
q = σs

σl
denoting the size ratio. In the case of an additive system (denoted as

HD mixture), one may define an interaction diameter dij = σi/2 + σj/2 with
i, j = {l, s}. The pair potential Φij(r) between two particles with center-
center distance r is ∞ for r < dij and 0 for r > dij.

On the other hand, we consider a mixture in which the interaction be-
tween two small disks is zero, i.e. they behave as an ideal gas and the other
interactions (large–large and large–small) remain unchanged. This mixture is
the 2D variant [13] of the well–known Asakura–Oosawa (AO) model [14, 15],
and we denote this kind of mixtures as AO mixture.

As shown in Fig. 5.1, if the distance of two large disks is less than σl +σs,
there will be a overlap of excluded area for small disks; i.e. the small disks
will act as a depletant and induce an effective two–body attractive potential
between the large disks. This effect is an example of an entropic force. In
the case of an AO mixture, the effective potential among large disks can be

41
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analytically determined (in the low density limit) [14, 13] as:

βΦAO(r) =





∞ if r < σl

−η′
[
cos−1

(
r

σl(1+q)

)
− r

σl(1+q)

√
1− ( r

σl(1+q)
)2
]

if σl < r < σl + σs

0 otherwise,

(5.1)

where η′ = σ2
s

2
ρs

(
1+q
q

)2

determines the magnitude of the depletion potential

(ρs is the bulk number density of small disks). Furthermore, β = 1
kBT

, with
kB denoting Boltzmann’s constant, and T temperature. For small size ratios
q = σs

σl
≤ 2−

√
3√

3
' 0.155, the AO mixture can be mapped exactly onto a

single component model with an effective two–body potential given by the
depletion potential above. For larger q, the effective potential should include
n–body overlaps of excluded area (n ≥ 3). Furthermore, in the dilute limit
of the (additive) HD mixture (with the number density ρl of large disks being
small), the effective potential between large disks is identical to Eq. (5.1) [13].

Figure 5.1: A schematic plot of entropic force. A dark blue disk is a large
HD with a diameter σl and a red disk is a small disk with a diameter σs. The
light blue region with dashed circle surrounding every HD is excluded area
for the centers of the small disks. When the HD get close enough, as shown
in the center of the plot, the excluded area surrounding the HD intersect.
The overlap results in a reduced excluded area, which increases the total
available area for small disks and thus the entropy.
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5.1 Free energy functional

Here we adapt the 2D FMT (see Sec. 3.3.2) for the free energy functional. In
the HD case, the only difference is that the weighted densities nα are sums
over convolutions of the HD species density profiles with weight functions,

nα(r) =
∑

i={s,l}

∫
dr′ ρi(r

′)wiα(r− r′) (5.2)

=: ns
α + nl

α

where α indicates the type of weight function and i the species (l=large and
s=small).

The functional for the AO mixture can be obtained by the ‘linearization
recipe’: The direct correlation function between two small particles should
vanish in order to be consistent with the small species behaving as an ideal
gas, i.e.,

C(2)
ss (r, r′) = −β δ2F ex

δρs(r)δρs(r′)
!

= 0. (5.3)

In 3D, such a functional (derived from the original Rosenfeld functional [4])
describes structural properties and wetting transitions in the fluid phase very
well [56]. According to the linearization recipe, the AO mixture excess free
energy density is given by

ΦAO
({
nl
α, n

s
α

})
= ΦHD

(
nl
α

)
+
∑
α

ns
α

∂ΦHD(nl
α)

∂nl
α

. (5.4)

Furthermore, the small species density profile is computed by the grand–
canonical equilibrium condition which can be solved explicitly:

δΩ[ρl, ρs]

δρs

!
= 0⇒ ρs(r) = exp

(
βµs −

∫
dr′
∑

α

∂ΦHD
ex

[
nlα
]

∂nl
α

ws
α(r′ − r)

)
,(5.5)

and the remaining free energy minimization with respect to ρl(r) is similar
as in Sec. 4.1.1.
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5.2 Crystal density profiles

When the radii of the disks are comparable (large q . 1), we observe a clear
substitutional disorder. Density peaks for both species are centered on the
triangular lattice points and their magnitude is essentially determined by the
composition of the crystal. An example can be seen in the crystal part of
the crystal–fluid density profile shown in Fig. 5.8e below.

For small size ratios q � 1, we observe interstitial disorder, i.e. the small
disks almost exclusively occupy the interstitial space between the large disks
which in turn occupy the triangular lattice points. An example can be seen
in the crystal part of the crystal–fluid density profile shown in Fig. 5.8a. The
HD and AO case are very similar, and qualitatively the AO crystal density
profiles in 3D show the same behavior [57].

For intermediate q and the HD case, we observe a superposition of sub-
stitutional and interstitial disorder, and the interstitial disorder may show a
transition to different alloy configurations upon changing the composition.
We exemplify this for q = 0.45. Large disks density peaks are again centered
on the triangular lattice positions (not shown). For low small disk concentra-
tions (see Fig. 5.2a), we observe interstitial disorder superficially compatible
with an AB2 structure. From the large and small disks drawn in Fig. 5.2a one
sees however that the small disks are too big for the formation of a true AB2

phase. For higher small disk concentrations (see Fig. 5.2b) the lattice con-
stant becomes smaller (large spheres on the triangular lattice points almost
touch) and the interstitial density peaks of the small spheres are compatible
with an AB3 structure. Here, remarkably, the large disks drawn around the
triangular lattice points and the small disks drawn around the interstitial
peak positions reveal two packed AB3 configurations. In the AO case, we
only observed small disk density distributions of the type shown in Fig. 5.2a.

Here, we have not investigated whether the minimized crystal structures
with disorder are stable or not with respect to phase separation into different
alloy phases. This requires more extensive investigations beyond the scope
of this work. However, our results illustrate that a free minimization of the
FMT functional is capable of generating alloy structures without the need
to explicitly parameterize the density profiles (e.g. by suitably chosen Gauss
peaks, as it is often done), see for example the AB3 structure in Fig. 5.2 and
the AB6 structure in Fig. 5.3 with the appropriate size ratio [58].
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Figure 5.2: Density profiles for small disks in a HD mixture crystal with
q = 0.45 at crystal–fluid coexistence for small disk concentration cs = 0.03(a)
and cs = 0.39(b), with cs = ρs/(ρs + ρl) . The solid blue circles indicate the
extension of large disks, solid and dashed white circles indicate the extension
of small disks. In both cases, the density profile is a superposition of substi-
tutional and interstitial disorder. In (b), interstitial disorder dominates and
is compatible with an AB3 alloy structure where one large disk is replaced
by three small disks (white solid or dashed circles) .
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5.3 Phase diagrams

For two–component systems, equilibrium states are on a surface in a three–
dimensional space, spanned by e.g. the packing fractions ηl, ηs and the
pressure P . Consequently, binodals are lines in this three–dimensional space
and they are often displayed by their two–dimensional projections, e.g. lines
in the ηl–P or cs/l–P plane where cs/l = ρs/l/(ρl + ρs) is the relative concen-
tration of small/large spheres. In the AO model, customarily the ηl–µs plane
is chosen but the topology of phase diagrams is very similar to the one in the
ηl–P plane.

For a size ratio q = 0.15, the phase diagram is shown in Fig. 5.4 in two dif-
ferent projections. For both HD and AO mixtures, the addition of the small
species leads to an increased coexistence pressure for the fluid–crystal tran-
sition, i.e. the fluid phase is stabilized. The AO mixture shows the typical
widening of the coexistence gap (ηl,cr− ηl,fl) with increasing concentration of
the small species (see Fig. 5.4a), smoothly leading to a sublimation line. For
ηs . 0.01, the HD mixture binodal follows the AO binodal, i.e. also shows
an initial widening of the coexistence gap. This could be expected since for
these small concentrations the small disks only act as depletants and their
mutual interaction is irrelevant. For higher ηs, the binodals separate. The
choice of the parameter a in the functional has a significant influence on the
location of the binodal. This is similar to the observation in Ref. [57] that also
in the 3D case, the binodal differs considerably between the White Bear II
(tensorial) and the Rosenfeld (tensorial) functional, although the differences
in the one–component case are not that significant.

5.3.1 Small size ratios q

For the size ratios q = 0.3 and q = 0.45, the phase diagrams are shown
in Fig. 5.5 in the ηl–P plane. For the AO mixture, the liquid (rich in large
disks)–vapor (poor in large disks) transition has become stable which leads to
the appearance of a triple point above which sublimation (the vapor–crystal
transition) is stable. The triple point pressure decreases with increasing q.
The difference in the location of the liquid–vapor transition between the FMT
results for the two different values of a is only a consequence of normalizing
the pressure axis by P 1c

co (for the two a values, it differs by ∼ 15%, see Table
4.1). For the HD mixtures, there is no fluid–fluid transition and there is
hardly any widening of the coexistence gap of the fluid–crystal transition
visible.

The results for the AO mixture are very similar to the 3D case [57]. Exper-
imentally, it is possible to realize such 2D systems by sedimented monolayers
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of colloidal spheres (as in Refs. [12, 11]) to which nonadsorbing polymers can
be added. For small size ratios q . 0.15 it would be interesting to study
experimentally or by simulations the fate of the established melting scenario
for hard disks as the polymer concentration is increased. As we have seen,
the coexistence gap continuously widens in this case, and we expect that
towards the sublimation regime only the first–order transition survives.

(a) (b)

Figure 5.4: Phase diagram for the size ratio q = 0.15 in (a) the ηl–P plane and
in (b) the ηs–P plane. In (a), pressure and packing fraction are normalized
by the coexistence values of the 1–component HD system P 1c

co and η1c
cr .

(a) q = 0.3 (b) q = 0.45

Figure 5.5: Binary mixture phase diagrams for q = 0.3 (a) and q = 0.45
(b) in the ηl–P plane. Pressure and packing fraction are normalized by the
coexistence values of the 1–component HD system P 1c

co and η1c
cr . The triple

point pressures are indicated by horizontal dotted lines.
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5.3.2 Intermediate size ratios q

Here we will only discuss HD mixtures. The phase diagram for q = 0.6 is
shown in Fig. 5.6(a) and for q = 0.7 in Fig. 5.6(b),(c). For q = 0.6, we observe
a phase diagram of the eutectic type. It is actually very similar to the phase
diagram found in simulations for q = 1/1.4 (see Ref. [59] Supplementary
Material). The crossover to the azeotropic phase diagram (in which two
crystal lines meet, as seen for q = 0.75 in Fig. 5.7(c)) is surprising according
to the FMT results.

For q = 0.7, a three–dimensional phase diagram in ηl–ηs–P space is shown
in Fig. 5.6(c). The coexistence surface with a majority of large disks (black
surface) is close to the one of small disks (blue surface), but does not cross
it. By increasing q, the two surfaces touch and form a phase diagram of an
azeotropic type. Back to the ηl–P plane, the branch with a majority of large
disks distorts to form an azeotropic point (see the black lines in Fig. 5.6(b))
whereas the branch with a majority of small disks remains approximately un-
changed when compared with q = 0.6 (blue lines in Fig. 5.6(b)). Thus, above
the azeotropic point pressure there is a stable and a metastable coexistence
between a crystal with a majority of small disks and a mixed fluid.

(a) q = 0.6 (b) q = 0.7
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Figure 5.6: Binary mixture phase diagrams for q = 0.6 (a) and q = 0.7 (b),
(c). Only the results for a = 3 are shown in (b), (c).

5.3.3 Size ratios q close to 1

For size ratios q in the vicinity of 1, we again only focus on the HD mix-
ture (in the AO mixture, the phase diagram becomes rather uninteresting
with regard to crystal phases. There, upon the addition of the smaller, poly-
meric component the one–component crystal does not change very much:
the polymers fill up the vacancies until the triple point is reached and the
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fluid–crystal transition becomes unstable with respect to sublimation. This
is very similar to the 3D case, and a detailed discussion can be found in
Ref. [57]). For HD mixtures, phase diagrams are shown in Fig. 5.7. For q
very close to 1, the phase diagram is of a type commonly denoted as spin-
dle type (which would be directly visible in the cl-P plane or in the cs-P
plane): The coexistence pressure continuously increasing upon the addition
of smaller disks and reaches its maximum for the pure small-disk system
(see Fig. 5.7(a)) Upon lowering q, the type of phase diagram crosses over
to azeotropic (see Fig. 5.7(b) and (c)): there, a maximum pressure for a
stable fluid is found for a certain finite composition, i.e. for a truly mixed
system. At this point of maximum pressure, the coexisting fluid and crystal
have the same composition (azeotropic point). The precise value for q where
this transition happens depends on the parameter a in the functional; it is
around 0.91 for a = 3 and around 0.93 for a = 11/4. The transition from
spindle–type to azeotropic phase diagrams has also been observed in simula-
tions of hard–sphere mixtures in 3D [60]. There, the transition happens at
around q = 0.94. Furthermore, in 3D the azeotropic phase diagram changes
to a eutectic phase diagram already at around q = 0.88. From our results,
this happens in 2D at much lower q (see the discussion in Sec. 5.3.2).

(a) q = 0.95 (b) q = 0.9 (c) q = 0.75

Figure 5.7: Binary mixture phase diagrams for q = 0.95 (a), q = 0.9 (b) and
q = 0.75 (c) in the ηl–P plane. Pressure and packing fraction are normalized
by the coexistence values of the 1–component HD system P 1c

co and η1c
cr .
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5.4 Interface density profiles

Fiq. 5.8 shows representative density profiles of the crystal–fluid interface
for hard–disk mixtures with q = 0.15, 0.45 and 0.75. For all size ratios q,
the density of large disks is always peaked on the triangular lattice sites
(see Fig. 5.8a) while the density of small disks changes from interstitial to
substitutional disorder by increasing q (see also the discussion in Sec. 5.2).
For the AO mixture, we found similar density profiles for q < 0.5, except
Fig. 5.8d. From the profiles one infers a rather broad interface.

We analyze the interface structure further by employing the methods of
Ref. [61]. Smooth average density and crystallinity modes can be extracted
from the Fourier transform of the full density profiles by picking a lateral
reciprocal lattice vector (Ky) and cutting out a window around a reciprocal
lattice vector Kx parallel to the interface normal. The average modes are
the inverse Fourier transforms of the cut–out window. The average density
mode M0 is obtained by choosing Kx = Ky = 0 and the leading crystallinity
mode M1 is obtained by choosing Ky = 0,Kx = 4π/

(√
3L
)

where L is the
length of the rectangular unit cell side which is parallel to the interface, see
Fig. 5.8. M1 is complex in general, in figures we show its absolute value only.

In Fig. 5.9 we compare laterally averaged density profiles with the ex-
tracted density and crystallinity modes for the four interfaces of Fig. 5.8.
Several observations can be made. First, looking at the density and crys-
tallinity mode of large disks (middle column in Fig. 5.9) we note that coming
from the fluid side, crystallinity sets in earlier than densification (except for
the case q = 0.45, cs = 0.39). This has also been noted before in the 3D
case of one–component hard spheres [61]. Second, looking at the density
and crystallinity mode of small disks (right column in Fig. 5.9) we observe
that for small q = 0.15 (interstitial disorder) and large q = 0.75 (substi-
tutional disorder) the small disk crystallinity is essentially proportional to
the large disk crystallinity. Since the crystal has a smaller concentration of
small disks than in the fluid, the density mode increases from left to right
but stays monotonic. For the intermediate size ratio q = 0.45 we note that
the crystallinity of small disks is peaked at the interface, and for cs = 0.39
this also applies to the density mode. Thus we see an interfacial enrichment
of ordered, small spheres. This interfacial enrichment can be also seen in the
laterally averaged density profiles (left column in Fig. 5.9) which exhibit an
increase in the oscillation amplitude of the small sphere density (red lines)
in the interfacial region. However, the quantification of this effect is easier
using the crystallinity and density modes.
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Figure 5.8: HD mixture density profiles ρ cross crystal(left)-fluid(right) in-
terface for q = 0.15, 0.45 and 0.75. Since all large disks density profiles looks
similar, here we only show (a) as a representative one.
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(a) q = 0.15, cs = 0.50

(b) q = 0.45, cs = 0.03

(c) q = 0.45, cs = 0.39

(d) q = 0.75, cs = 0.52

Figure 5.9: Laterally averaged density profiles (left column), density and
leading crystallinity modes of large disks (middle column) and small disks
(right column) for the four interfaces of Fig. 5.8. Black lines refer to large
disks, red lines to small disks. In the middle and right column, full lines are
density modes M0 and dashed lines crystallinity modes M1.
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5.5 Crystal–fluid surface tensions

5.5.1 Size ratio q ≤ 0.6

(a) q = 0.15 (b) q = 0.3

(c) q = 0.45 (d) q = 0.6

Figure 5.10: The crystal–fluid surface tension γ2c
0 for both the AO and the

HD case and for two values of a. Note that cs is in log scale. (a) Size ratio
q = 0.15, (b) q = 0.3, (c) q = 0.45 and (d) q = 0.6.

For small to moderate size ratios of up to 0.6, we may view the small disks
as depletants, at least for small concentrations cs. In Fig. 5.10, we show the
associated crystal-fluid planar surface tension γ2c

0 versus cs for both AO and
HD mixtures.
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For q = 0.15 (Fig. 5.10a), we have computed the surface tension for cs

up to 1. We remind the reader of the associated phase diagrams (Fig. 5.4)
which in the AO case shows the typical widening of the coexistence gap.
In the HD case, the widening of the coexistence gap follows the AO case
only for small cs. It is a bit surprising that the surface tension decreases
upon the addition of small disks, with the results for the HD mixture are
close to those for the AO mixture until cs ∼ 0.4. In the depletion picture,
the addition of small disks leads to an increasing attraction between large
disks. In mean–field approximation, the increasing attraction together with
an increasing coexistence gap should lead to a higher surface tension. Such
an increase is seen both for the AO model and the HD case only for rather
large cs, after a minimum has been reached around cs ≈ 0.6 (Fig.5.10a). In
the HD case, for cs → 1 we reach the monocomponent case for small disks,
thus the surface tension should reach γ2c

0 (cs = 1) = σl

σs
γ2c

0 (cs = 0) = γ1c
0 /q.

The peculiar behavior of an initially decreasing surface tension is also
seen for q = 0.3 (Fig. 5.10b), q = 0.45 (Fig. 5.10c) and q = 0.6 (Fig. 5.10d),
although the decrease becomes smaller with increasing q. With increasing
size ratio, also the HD and the AO results differ more and more already for
small cs and we also note that the choice of the parameter a in the FMT
functional influences the results considerably. Overall, the surface tensions
are rather small on the thermal energy scale. For the monocomponent case
this leads to strong interface fluctuations, as observed in Ref. [11]. Owing to
the decrease in γ2c

0 upon the addition of small disks, we would expect that
these fluctuations also become stronger.

5.5.2 Size ratio q ≥ 0.75: HD mixtures

For q ≥ 0.75, the phase diagram in the HD mixture is of azeotropic or
spindle type (see Fig. 5.7), thus we can determine γ2c

0 in the whole range
of concentrations from cs = 0 up to 1. In Fig. 5.11, the surface tension γ2c

0

versus cs is shown for four aspect rations q ≥ 0.75 and the two values of the
parameter a. Qualitatively, there is no significant dependence on a for these
size ratios. As before (for small q) the initial decrease of γ2c

0 for small cs is
present. There is a minimum in the surface tension around cs = 0.5 and it
reaches the correct monocomponent value γ2c

0 (cs = 1) = γ1c
0 /q.

The surface tensions can actually be well described with the following
function involving one fit parameter κ:

γ2c
0 ([ηcr] , q) =

γ1c
0

(η1c
cr )2

(
(ηl,cr)

2 +
(ηs,cr)

2

q
+ κηl,cr ηs,cr

)
, (5.6)

where γ1c
0 and η1c

cr on the right hand side of Eq. (5.6) are the monocomponent
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surface tension and the coexistence crystal packing fraction (see Table 4.1)
and ηl/s,cr are the coexistence crystal packing fractions of large/small HD. For
the fit parameter κ we note that limq→1 κ(q) = 2. For q < 0.75, Eq. (5.6) is
not valid, which may be due to the complicated transition from an azeotropic
to an eutectic phase diagram (as discussed before).

(a) a = 3 (b) a = 11/4

−1

−0.5

 0

 0.5

 1

 1.5

 2

 0.7  0.8  0.9  1
κ

q

a=3
a=11/4

(c) κ

Figure 5.11: The crystal–fluid surface tension γ2c
0 for the HD case and for

size ratios q ≥ 0.75. The value of the parameter in the functional a = 3 (a)
and a = 11/4 (b). Symbols are the numerical results and the lines are best
fits to Eq. (5.6). The fit values κ(q) are shown in (c), lines are functions
κ = κ1(q − 1)2 + 2 with κ1 = −34.86 and −43.32 for a = 3 and 11/4,
respectively.

5.6 Liquid–vapor surface tension

For completeness, we present also results for the liquid–vapor surface tension
γlv in the AO model for size ratios q = 0.3, 0.5, 0.7, see Fig. 5.12(a). Similar to
the crystal–fluid surface tension, the numerical values for γlv are much smaller
than 1 in thermal units 1/(βσl), even far away from the critical point. In
Fig. 5.12(b) we show the extracted exponent α for the assumed power–law
relation γlv ∝ ∆ηαl , where ∆ηl = ηl,liq − ηl,vap is the difference between the
coexistence packing fractions of large disks in the liquid and vapor phase.
For mean–field models, α = 3 close to the critical point, and this behavior is
found to hold not only in the immediate vicinity of the critical point. This
is similar to results from density functional studies of the 3D AO model [62].
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Figure 5.12: Double logarithmic plot of γlv versus ∆ηl. The dashed red line
shows the mean–field proportionality γlv ∝ (∆ηl)

3. The fitting by γlv =
b(∆ηl)

α gives α = (3.01, 3.03, 3.05) for q = (0.3, 0.5, 0.7).

5.7 Summary and conclusion

Using density functional theory (fundamental measure theory), we have per-
formed an extensive study of the phase diagram and crystal–fluid surface
tensions in binary hard–disk systems, both for the additive case and the
non–additive (Asakura–Oosawa like) case. Since we assumed a periodic crys-
tal, we find first–order transitions only. These correspond to the first–order
fluid–hexatic transition for the one–component case and presumably to first–
order fluid–crystal transitions (which become stable upon admixing a second
component, see e.g. Ref. [59]). Overall, the phase diagrams are qualitatively
very similar to 3D. In the AO case and for small size ratios q, the typical
continuous widening of the coexistence gap is observed upon the addition of
the smaller species, and for intermediate q a vapor–liquid transition becomes
stable. In the additive case, the phase diagrams show the sequence spin-
dle → azeotropic → eutectic upon lowering q from 1 to 0.6 (similar to 3D).
However, the transition from azeotropic to eutectic is different from what is
known in 3D hard–sphere systems (see the phase diagram in Fig. 5.6(b),(c)
for q = 0.7).

The results for the crystal-fluid surface tensions reveal two things. Over-
all, their values are much smaller than 1 in thermal units 1/(βσl). For the
one–component case, the resulting large thermal fluctuations of the interface
have been observed experimentally [11]. Secondly, the addition of a second
component leads in general to a substantial decrease in the surface tension.
This holds for the AO case (for q . 0.6) and also for the additive case (here
for the whole range of q). Complementary, dedicated simulation or exper-
imental results on this are clearly desirable, also in view of the relevance
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of the surface tension for nucleation processes, see Ref. [63] for a review on
more qualitative results on 2D crystal and defect formation. The observed
decrease in surface tension should lead to a considerable decrease in the time
scales of crystal nucleation.

In contrast to phase diagrams, results on crystal–fluid surface tensions in
binary 3D systems are scarce. For binary hard spheres with a size ratio of
q = 0.9, results are reported in Ref. [64]. For that q, the phase diagram is
azeotropic. The surface tension is found to increase monotonically with the
addition of small spheres. These findings are similar to those for a 3D binary
Lennard–Jones system with zero size mismatch, but a ratio of interaction
strengths of 0.75 (leading to a spindle–type phase diagram) [65], but they
are different from the non-monotonic behavior found here in the 2D system
(see Fig. 5.11(a),(b)).

The full minimization of the FMT functionals show interesting effects
for the density distributions in the crystal unit cells and of the crystal–fluid
interfaces. For intermediate size ratios (examples shown for q = 0.45) su-
perpositions of substitutional and alloy structures are found, and enhanced
crystallinity and density of small disks is observed right at interface between
crystal and fluid. Clearly, an extension of the present studies to the global
stability of alloy phases and their interfaces is desirable but requires consid-
erable more efforts.





Chapter 6

Machine learning functional

Partial results of this chapter have been published in: SciPost
Phys. 6, 025 (2019) with the title “A classical density functional
from machine learning and a convolutional neural network” [2]

With the steep increase of available computing power over the past years,
methods of machine learning (ML) have come into the focus of research also
in physics. ML is designed for finding patterns in high–dimensional data. Al-
gorithms of ML still rely on insight and intuition how to represent and process
data, but a detailed model–building (specific for the problem at hand) is not
required. The optimization of data representation/processing can be viewed
as a numerically intensive data fitting task which is very familiar to physicists.
Therefore it appears also natural to apply ML to the problem of functional
construction in DFT. In the past years, such ideas have been driven by the
quantum DFT community. Refs. [16, 17] address the construction of a ML
functional for the kinetic energy functional T [n] in one dimension (1D). Al-
though successful in obtaining energy values, certain limitations when going
to three dimensions (3D) have led the authors of Ref. [18] to apply ML di-
rectly to the functional map between the external potential and the electron
density. Although the approach appears to be quite promising in terms of
possible accuracy, it amounts to hiding the energy functional in a “ML black
box”, which might appear less appealing to theorists.

Certainly, in the case of a “ML black box” functional one must be care-
ful in choosing training data sets in relation to the applications one has in
mind. For classical DFT, training data sets would be created most naturally
by Monte Carlo (MC) or Molecular Dynamics (MD) simulations. To keep
numerical efforts down, training sets should be created using small sets of
parameters (chemical potential, temperature, external potentials) with good

59
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statistics. For a classical “ML black box” functional, the highly nonlinear
packing effects would probably necessitate to train the ML functional with
densities at least as high as in the application cases. On the other hand,
packing is well described by the existing hard–body functionals and one may
doubt whether the currently existing ML schemes can improve those. There-
fore, for a fluid with repulsive cores it makes sense to maintain the splitting of
the excess free energy functional into a hard–core part and a part describing
the soft parts of the potential.

In this chapter, we consider a Lennard–Jones (–like) (LJ) pair potential
in one dimension:

ULJ(x) =





∞ if x < σ

4ε
[(

σ
x

)12 −
(
σ
x

)6
]

if σ < x < 16σ

0 otherwise

with x the distance between particle centers, σ the diameter of the particles
and ε the strength of interaction. In the following we set σ = 1.

The exact functional of LJ model in 1D is unknown [66]. Therefore,
training data sets have to be obtained by simulations (similar to desired
extensions to 3D). The ML functional will be constructed using weighted
densities which are convolutions of the density with weight functions to be
determined by ML fitting. Our ML fitting is similar to a basic generative
convolutional neural network which is used in image processing.

6.1 Basic ideas and improved mean–field func-

tionals

Here we consider a simple mean–field based machine learning functional and
apply it on the LJ fluid. In the following we set β = λ = 1 for simplicity. In
equilibrium, as described in Sec.2.4, the density profile satisfies

ρeq = exp

(
µ− δF ex

δρ

∣∣∣∣
ρ=ρeq

− V ext

)
. (6.1)

To justify the quality of a certain F ex, we solve Eq. (6.1) by different sets of
µ, V ext and ε (inverse temperature), and then compare ρeq with ρMC (grand
canonical simulation data for the the density profile).

However, as one may ask, is it possible to directly learn F ex by ρMC? To
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facilitate such an idea, we define a ML output density as

ρML(x) = exp

(
µ− δF ex,ML

δρ

∣∣∣∣
ρ=ρMC

− V ext

)
, (6.2)

with ρMC the simulation result of equilibrium density profiles. To measure
the difference between ρMC and ρML, we define the loss function

L =
M∑

k

∫
(ρMC

k (x)− ρML

k (x))2 dx, (6.3)

where ρMC
k is the k–th training sample (density distribution from simulation),

ρML
k is the corresponding ML output by Eq.(6.2), and M is number of training

sample. If we could give F ex,ML a certain ansatz, we should be able to find an
approximation of F ex,ML by minimizing L. The idea is actually very similar
to a generative network, such as an autoencoder [67]. The ρMC/ρML is the
input/output, F ex,ML is an encoder, and Eq. (6.1) is a decoder.

But what form of F ex,ML should be used? In most cases, the excess free
energy functional F ex of LJ is split into FHR and F att, such as F ex = FHR+F att

with FHR/F att denoting excess free energy functional from HR/attractive
potential, where F att is approximated by the mean–field (MF) approximation,

FMF =
1

2

∫
dx ρ(x)

∫
dx′ ρ(x′)Uatt(|x− x′|). (6.4)

with

Uatt(x) =

{
0 if x < σ

ULJ(x) otherwise.

Analogously, we consider F ex,ML[ρ] = FHR + F ex,ML
att with

F ex,ML

att [ρ] = ε

∫
dx ρ(x)n(x), (6.5)

and the weighted density n(x) =
∫
dx′ ρ(x′)ω(x− x′). The ω is the convolu-

tion kernel/weight function that needs to be trained. This is the weighted–
density form of the RPA mean–field approximation in Eq. (6.4). Thus, the
kernel ω should somehow correspond to Uatt/(2ε). To minimize L, we use
the gradient decent [68], where ω is updated by 1

ωnew(x) = ωold(x)− α∂L
∂ω

∣∣∣∣
ω=ωold

(6.6)

1rigorously speaking, since L is a functional of ω, it should be δL
δω .
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with α the learning rate. The gradient descent is based on Taylor expansion
as L(ω+ ε) ' L(ω) + ε∂L

∂ω
for small ε. If one sets ε = −α∂L

∂ω
, then L(ω+ ε) '

L(ω)−α
(
∂L
∂ω

)2
< L(ω) for a small and positive α. As one can see, the gradient

descent stops when ∂L
∂ω

= 0, so it will find a local minimum. Furthermore,
the term ∂L

∂ω
with the symmetry assumption ω(x) = ω(−x) can be written as

∂L

∂ω (x′)
= −4

{∑

k

∫
dx (ρMC

k (x)− ρML

k (x)) ρML

k (x) εkρ
MC

k (x+ x′)

}
. (6.7)

For a more complex ansatz (see next section), this term will be too cumber-
some to determine by hand. Fortunately in the modern ML programming
tools, such as Tensorflow[69] and PyTorch[70], it is automatically handled
by back–propagation. For the details of machine learning, we refer to Ref [68]
as an overview, for interested readers.

6.2 Result and conclusion

To train ω, we prepare 1115 density profiles by grand canonical simulation.
The V ext is a hard–wall slit of width 32 σ with 3 additional Gaussian poten-
tials of random strength/width and location inside the slit (see Fig. 6.1a); ε
and µ are randomly in the range of 0.5...1.5 and ln 0.5... ln 2.0.

In Fig. 6.1, we shows the final result of the kernel ω after training and
the loss functional (Eq. (6.3)) versus iterations. The tail of ω is close to
Uatt/(2ε) as expected, and it extends somewhat into the hard–core region.
Furthermore we show the pressure versus the bulk density (equation of state,
eos), and the density profile on a hard wall in Fig. 6.2.

As shown in Fig. 6.2, the results by F ex,ML is better then the naive mean–
field approximation. The contribution to F ex[ρ] from attractive interactions
outside the hard core is treated by mean–field concepts in various guises [27,
71, 72, 73, 74]. With the F ex,ML introduced in this section, we obtain ω and
thus F ex directly from ρMC. However, even with the improvement, it is still
a mean–field type functional. Due to the simple ansatz, the improvement is
unsatisfactory; moreover, not all particle–particle potentials may allow for
the splitting into a well–understood reference part and a remainder to be
learned by ML, such as FHR in this case. In the next chapter, we introduce
a more flexible ML architecture, which is capable of giving F ex,ML beyond
mean–field type functional and even forego FHR.
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Figure 6.1: (a) An example of V ext and ρMC with µ = ln(1.40) and ε = 1.24,
(b) loss versus iterations, and (c) RPA–like mean–field approximation. In
(a), the black solid line is ρMC corresponding to the left y–axis and blue
dashed line is V ext corresponding to the right y–axis. In (c), the black solid
line is the ML–optimized ω(x), and for comparison Uatt(x)/(2ε) is shown by
the blue dashed line.
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Figure 6.2: (a) equation of sate, and (b) ρ(x) on a hard–wall potential for
ε = 1.5 and µ = ln 1.5. The ML and MF density profiles are obtained by
iteratively solving Eq. (6.1) with the density profiles initialized by a constant
value.





Chapter 7

Functional equation learner

Partial results of this chapter have been published in: J. Chem.
Phys. 152, 021102 (2020) with the title “Analytical classical den-
sity functionals from an equation learning network”[75]

In Chapter 6, we introduce a mean–field–like machine learning (ML) func-
tional. Despite the improvement comparing to the naive mean–field approx-
imation, the form of the functional is limited.

From a thoery point of view, the excess functionals derived from Funda-
mental Measure Theory (FMT) [8] have a high degree of accuracy [3, 8, 34]
for hard spheres and hard anisotropic particles [76, 77, 78]. However, the
contribution to F ex[ρ] from attractive interactions outside the hard core is
treated by mean–field concepts in various guises (random phase approxima-
tion (RPA) [71], functional expansions [27, 72], Wertheim theory for patchy
attractions [73, 74] etc.) but a qualitatively new and successful ansatz, such
as FMT hard–body–treatment, is missing.

Thus, to extend the flexibility of the ML functional and success of FMT,
the network we propose, Functional Equation Learner (FEQL), is an L–
layered feed–forward network with computational units specifically designed
for constructing the free energy functional (see Fig. 7.1).

The first layer consists of convolution kernels which compute the weighted
densities ni with the convolution kernel ωi (i = 1...nw) by

ni(x) = ρ⊗ ωi =

∫
dx′ ρ(x′)ωi(x− x′) , (7.1)

and some of the weighted densities are multiplied by ε in the case of the LJ
fluid. Using weighted densities instead of the particle density is inspired by
the exact HR functional [34] and fundamental measure theory [4, 8]. The
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layer 2 is a linear, all–to–all mapping of the vector (of functions) n = {ni(x)}
to the vector

z(l=1) = W (1)n (7.2)

at level l = 1. The layers 3...L − 4 are a sequence of nonlinear and linear
transformations.

The non-linear transformation at level l contains u unary units fI and v
binary units gJ and maps z(l)(x) (u + 2v–dimensional) to the layer output
y(l) (u+ v–dimensional) as:

y(l) :=
(
f1

(
z

(l)
1

)
, f2

(
z

(l)
2

)
...fu

(
z(l)
u

)
,

g1

(
z

(l)
u+1, z

(l)
u+2

)
...gv

(
z

(l)
u+2v−1, z

(l)
u+2v

))
. (7.3)

The unary units, f1, ..., fu receive the respective component, z1, ..., zu as
inputs, and each unit is one of the following base functions indexed by
I ∈ 0, 1, 2:

fI(zi) :=





zi if I = 0

exp(zi)− 1 if I = 1

ln(zi + 1) if I = 2

The binary units, g1, ..., gv receive the remaining component, zu+1, ..., zu+2v,
as input in pairs of two, and each unit may be multiplication or division
indexed by J ∈ 0, 1:

gJ(zi, zi+1) :=

{
zi × zi+1 if J = 0

zi ÷ (zi+1 + 1) if J = 1

Note that fI(0) = gJ(0, z) = 0. One may worry about divergences in division
and logarithm when z → −1. In the beginning of the training procedure,
all parameters and convolution kernel are initialized by small numbers and
thus z, fI and gJ are close to zero. If z is too close to -1, the loss will change
drastically; thus the network will intrinsically handle this issue. As mentioned
in Ref. [22], one could use modified division and logarithm functions and add
extra penalties. However, it turns out not to be required here.

The linear transformation from level l to l+1 maps the (u+v)–dimensional
input y(l) to the (u+2v)–dimensional intermediate representation z(l+1) given
by

z(l+1) = W (l+1)y(l). (7.4)

Thus, the nw convolution kernels ω(x) in the first layer and the matrices W (l)

are free parameters that are learned during training.
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The machine-learned free energy density fex,ML is a summation of the
output of layer L − 4 (see layer 5 in Fig. 7.1), the functional derivative
δFex,ML

δρ
=
∑

i
∂fex,ML

∂ni
⊕ ωi (with F ex,ML =

∫
dx fex,ML(n) and ⊕ denoting cross–

correlation) is used in the final, generative step:

ρML

i (x) = exp

(
µML

i −
δF ex,ML

δρ

∣∣∣∣
ρ=ρeq

i

− V ext
i

)
, (7.5)

where µML
i is to facilitate convergence (see Sec. 7.3.4 for more details), sub-

script i is i–th input data, and we set β = λ = 1 for simplicity (see Eq.(2.27)).
Be aware of the difference between convolution and cross-correlation in the
FEQL (see Appendix B for details).

Figure 7.1: Network architecture of the proposed FEQL for 10 layers (L = 9)
and one neuron per type (u = 3, v = 2) and 6 convolution (weighting) kernels
(nw = 6). ε is the coupling strength (equivalent to inverse temperature) in
the LJ potential.
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7.1 Physical constraints

Since F ex,ML approximates F ex, we must consider two physical constraints:

(i) F ex,ML(ρ = 0) = 0 and (ii) δFex,ML

δρ

∣∣∣
ρ=0

= 0. To enforce (i), we choose

the linear mapping without bias and f(0) = g(0, z) = 0 in the non–linear
mapping. Condition (ii) can be enforced by setting appropriate parameters
in the matrix W (l) of the final level to zero. This requires to determine the

analytic form of ∂fex,ML

∂ni

∣∣∣
ρ=0

to identity those parameters. For example, for a

FEQL with nw = 2, 2 levels and (1,0,0,1,0) node for (identity, exponential,
logarithm, multiplication and division),

fex,ML =a2L0(a1L0n0 + a1L1n1) + a2L1(a1L2n0 + a1L3n1)(a1L4n0 + a1L5n1)+

(a2L2(a1L0n0 + a1L1n1) + a2L3(a1L2n0 + a1L3n1)(a1L4n0 + a1L5n1))

(a2L4(a1L0n0 + a1L1n1) + a2L5(a1L2n0 + a1L3n1)(a1L4n0 + a1L5n1))
(7.6)

with axLy the y–th parameter in W (x). Then we calculate ∂fex,ML

∂ni

∣∣∣
ρ=0

, such

as ∂fex,ML

∂n0

∣∣∣∣
ρ=0

= a1L0 a2L0, and ∂fex,ML

∂n1

∣∣∣∣
ρ=0

= a1L1 a2L0. Thus we set a2L0 = 0

in order to keep δFex,ML

δρ

∣∣∣
ρ=0

= 0; this is the reason in Fig. 7.1 the W (2) is

labeled as sparse.

7.2 Network training

To obtain training data for ρeq, grand canonical simulations are used in the
case of LJ fluid; for the HR fluid, Eq. (2.27) is directly solved, since the exact
functional is known.

FEQL is fully differentiable in its free parameters θ = [W,ω] and can thus
be trained using back–propagation. We adopt the following loss function

L =
1

N

N∑

i=1

(
α1

∫
|ρeq

i − ρML

i | d x+ α2|µeq

i − µML

i |
)

+λ1

∑

i

∫
dx |ωi|+ λ2

∑

l,βγ

|W (l)
βγ |, (7.7)

with α1 = 0.9 and α2 = 0.1. These values have been determined empirically
and the exact choice is not critical. For training we choose Adam [79] with
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mini-batches:

θt+1 = θt + Adam

(
∂L (D (t))

∂θ
, α

)
(7.8)

with α the stepsize parameter (learning rate) and D(t) the data in the cur-
rent mini-batch. The choice of Adam is not critical and standard stochastic
gradient descent also accomplished the task.

Following Sahoo et al. [22], we adopt a three–step training procedure. At
the beginning, we use no regularization (λ1 = λ2 = 0), such that parameters
can vary freely and reach reasonable starting points. In step 2, we switch on
the regularization by setting λ1 and λ2 to positive finite values to sparsify
the network for obtaining a simpler functional. In step 3, we clamp small
parameters with |W (l)

βγ | < wth to zero. In this way we keep the sparsity intro-
duced by the lasso [80] training in step 2, but make sure unbiased parameter
values are attained. In this paper we choose α = 10−2 or 10−3, λ1 = 10−7

and wth = 0.05.

7.3 Results

To exam the ability of FEQL, we investigate the HR pair potential:

UHR(x) =

{
∞ if x < σ

0 otherwise

as well as the LJ(–like) potential:

ULJ(x) =





∞ if x < σ

4ε
[(

σ
x

)12 −
(
σ
x

)6
]

if σ < x < 16σ

0 otherwise

in one dimension with x the distance between particle centers, σ the diameter
of the particles and ε the strength of interaction. In the following we set
σ = 1.

7.3.1 Hard rods

The hard–rod (HR) fluid is one of a few systems that F ex is exactly known.
The exact equation of state (eos) is given by the pressure P (ρ) = ρ

1−ρ and

the exact analytic form of FHR (Percus functional) is described in Sec. 3.3.3.
The parameter of F ex,ML are trained using 1024 density profiles in a hard

wall slit of width 32 σ with 3 additional Gaussian potentials of random
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Figure 7.2: FEQL results for hard rods. Dark solid lines are exact solutions
from FHR and blue dashed lines are ML results. (a) P (ρ). (b) density profile
for ρ0 = 0.49 inside the training region but V ext not in the training data. (c)
density profile at hard wall for ρ0 = 0.80 outside the training region. Insets
in (b) and (c) show ∆ρ = ρexact − ρML.

strength/width (see Fig. 6.1a for an example) and location inside the slit and
with a range of training reservoir densities ρ0 = 0.2...0.55. We choose nw = 3
and (1,1,1,3,1) nodes for (identity, exponential, logarithm, multiplication and
division) with L = 9 (10 layers, see Fig. 7.1) and λ2 = 8 · 10−5 in Eq. (7.7)
(results for different λ2 and arguments for an optimal choice are discussed
below). The explicit functional and kernels are shown in Sec. 7.3.3 below.

F ex,ML is not of the form of the Percus functional, since the convolution
kernels of the latter are Dirac delta and Heaviside step functions, which are
are hard to be captured by our network.

In Fig.7.2, we show the eos, a density profile inside the thermodynamic
training region but not in the training data (ρ0 = 0.49) and a density profile
outside the training region (ρ0 = 0.80). The FEQL recovers the almost exact
result inside the training region and also performs quite well even outside the
training region. The ML density profiles are initialized by ρ = 0.5 and then
iteratively solved using Eq. (2.27) with F ex = F ex,ML.
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The virial expansion

PML(ρ) ' ρ+ 1.03ρ2 + 0.71ρ3 +O
(
ρ4
)

(7.9)

of the ML eos shows moderate deviations compared to the exact one ( ρ
1−ρ =

ρ+ ρ2 + ρ3...).
One sees that inaccuracies in these coefficients do not necessarily lead

to a poor eos. Despite inaccurate coefficients, the higher order terms in
the learned eos combine appropriately to give a good representation of the
exact eos. This is understandable since no explicit information about virial
coefficients is incorporated into the loss function, thus the learning procedure
has little incentive to find the correct coefficients.

Optimization for hard rod

0 1000 2000 3000 4000 5000 6000 7000

number of iterations

10−3

10−2

10−1

L

step 1 step 2 step 3
λ2 = 10−2

λ2 = 10−3

λ2 = 10−4

λ2 = 10−5

Figure 7.3: Loss as a function of number of iterations for 4 different values
of λ2. Dashed lines are validation loss and solid circles are training loss.

In Eq. (7.7), the third term with coefficient λ2 is used as a substitute for
the number of nonzero entries in the matrices W (l), which is not differentiable
directly. Nevertheless, minimizing the absolute norm tends to produce sparse
solutions, see also Lasso regression [80], and thus favors simpler functionals.
Before training, we prepared 1024 density profiles with a range of reservoir
densities ρ0 = 0.2...0.55, and randomly divided them into 921 density profiles
as the training set and 103 as the validating set. The training procedure only
uses the training set for updating trainable parameters and evaluates the
value of the loss on the training set and on the validating set (called training
loss and validation loss) at the end of each iteration [68]. Additionally, we also
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prepare 256 density profiles with a range of reservoir densities ρ0 = 0.6...0.8,
outside the training region, as a measurement for extrapolative capabilities.

Then, as described in before (Sec. 7.2), we have used a three–step training
procedure. In Fig. 7.3 we show the evolution of the training and validation
loss throughout the training for 4 different values of λ2. For the higher values
of λ2 (10−2 and 10−3) there is a marked increase of L at the beginning of
step 2. For λ = 10−4 the beginning of step 2 is not marked with an increase
of L and then L further decreases.
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(a) Final loss versus λ2.
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(c) complexity versus loss.

Figure 7.4: The interdependence of loss, complexity and λ2.

This is further confirmed in Fig. 7.4a, which shows the final value of L
from the training, validating, and extrapolating set as a function of λ2. The
loss shows underfitting for λ2 > 10−3 and overfitting for λ2 < 10−7. Near–
optimal choices are 10−6 < λ2 < 10−4. The complexities (the number of
nonzero entries in W ) increase with decreasing of λ2 (Fig. 7.4b). For a broad
range of complexities, the loss is almost constant (Fig. 7.4c).

7.3.2 Lennard–Jones

Here, 1115 training distributions are generated with random ε and µ in the
range of 0.5...1.5 and ln 0.5... ln 2, respectively, with V ext prescribed as in the
hard–rod case (see Fig. 6.1a for an example). The training data are obtained
by grand canonical Monte Carlo (GCMC) simulation.

Splitting between repulsions and attractions

Following liquid state theory [2] and similar in spirit to Chap. 6, we split F ex

into a contribution from repulsions and one from attractions as follows:

F ex,ML([ρ]; ε) = FHR([ρ]) + εF ex,ML

att ([ρ]; ε), (7.10)

where the factor ε in front of the F ex,ML
att makes sure F ex,ML(ε→ 0) = FHR, and

F ex,ML
att is to be learned by the network. In Fig. 7.1, the output from the layer
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6 is F ex,ML
att ; we multiply the output from the layer 8 by ε, add contribution

from FHR, and then feed it to layer 9. In the first layer, we choose nw = 4, 1
kernel multiplied by ε and another 3 without this factor (see Fig. 7.1), and
(1,1,1,2,1) nodes for (identity, exponential, logarithm, multiplication and di-
vision). The training parameter λ2 = 5 ·10−5 in Eq. (7.7). Results are shown
below in Fig. 7.5. The explicit functional and kernels are shown in Sec. 7.3.3.
The findings are similar to the HR case with a very good match to simulation
data for the eos and test distributions inside and outside the thermodynamic
training region. For a 1D system with hard–core repulsive and finite–ranged
attractive pair potential, the pressure must be monotonically increasing for
arbitrary low temperature (high ε), and thus there is no gas–liquid transi-
tion [81]. The corresponding ML pressure shows no van der Waals (vdW)
loop for attractions strengths up to ε = 4.1.
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Figure 7.5: FEQL results for LJ fluid with functional splitting. (a) eos P (ρ).
(b) density profile for ε = 1.30, µ = ln(1.27) inside the training region but
V ext not in the training data. (c) density profile at a hard wall for ε = 1.7,
µ = ln(1.7), outside the training region. Dark solid lines are simulation
profiles and blue dashed lines are ML results. Insets in (b) and (c) show
∆ρ = ρMC − ρML.
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No splitting

0.0 0.2 0.4 0.6 0.8
ρσ

0

2

4

6

P
σ

MC, ǫ =0.0
ML
MC, ǫ =1.0
ML
MC, ǫ =2.5
ML
MC, ǫ =4.0
ML

−2
2

V
ex

t

∞

2 4 6 8 10 12 14
x/σ

0.0

0.5

1.0

ρ
σ

MC
ML

0 5 10 15

-0.05

0.0

∆
ρ
σ

2 4 6 8 10
x/σ

0

1

2

3

ρ
σ 0 5 10

-0.4

-0.2

0.0

0.2

∆
ρ
σ

1 2 3 4 5 6 7 8
x/σ

0

1

2
ρ
σ

exact
ML

0 4 8

-0.1

0

0.1

∆
ρ
σ

Figure 7.6: FEQL results for LJ fluid (no splitting). (a) eos P (ρ). (b) density
profile for ε = 1.25, µ = ln(1.15) inside the training region but V ext not in
the training data. (c,d) density profile at a hard wall for ε = 1.9, µ = ln(1.9)
(c) and ε = 0, ρ0 = 0.7 (HR limit, (d)). Dark solid lines are simulation
profiles and blue dashed lines are ML results. Insets in (b) and (c) show
∆ρ = ρMC − ρML and in (d) ∆ρ = ρexact − ρML.

As a further test of the capability of FEQL, we forego the splitting of the
functional such that F ex = F ex,ML. In the first layer, we choose nw = 6,
3 kernels multiplied with ε and another 3 without this factor (see Fig. 7.1),
and (1,1,1,3,1) nodes for (identity, exponential, logarithm, multiplication and
division). The training parameter λ2 is set to 5·10−5 in Eq. (7.7). The explicit
functional and kernels are shown in Sec. 7.3.3. For the training data we also
include density profiles from the HR case. In Fig. 7.6, we show the results.
Test distributions match well to simulation data both in the HR limit and
the regime of higher attractions. The eos shows an unphysical van der Waals
loop for attractions strengths ε > 3.7, much higher than the upper limit of
the training data.
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7.3.3 Explicit functional and convolution kernels

Here we show the full functional of F ex,ML[n], with

ni(x) =

∫
dx′ ρ(x′)ωi(x− x′). (7.11)

The coefficients in F ex,ML are single precision; for displaying purposes, all
coefficients are rounded to the one decimal place and then rationalized.

F ex,ML for hard rod

The FEQL result for hard rod in Sec. 7.3.1 is

Fex,ML =

∫
dx

n2
0

5
+ n0

10
y0 − n2

2
10

−n
2
0
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+ ey1
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+ y2

(
−n
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0

5
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10
y0 −

3

10
ey1 +

3

10

)
+ ey3 − 1 (7.12)

with y0 = 2n0

5
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5
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10
, y3 =

n2
0

10
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kernels ωi shown in Fig.7.7a.

F ex,ML for LJ with splitting

In Sec. 7.3.2 with splitting, F ex = FHR + εF ex,ML
att , where

Fex,ML
att =

∫
dx
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with
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F ex,ML for LJ without splitting

The result of F ex given by FEQL in Sec. 7.3.2 without splitting is

Fex,ML =

∫
dx
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Figure 7.7: ω for all cases. (a)HR. The ωexact
i are the exact weight kernels

in Eqs. (3.55). (b)LJ, splitting (c)LJ, no splitting. The maximum allowed
range for the kernels is [−4σ, 4σ] in the HR case and [−8σ, 8σ] in the LJ case.
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7.3.4 Consistency of µ

In Eq. (7.5), µML
i is determined by demanding that

∫
(ρML
i − ρeq

i )2 is mini-
mal, which entails that µML

i varies during the iterations. This choice of µML
i

stabilizes the training process, and µML
i is directly determined by

∂

∂µML
i

∫
(ρML

i − ρeq

i )2 = 0⇒ µML

i = ln

(∫
ρeq

i ρ
′ML
i∫

(ρ′ML
i )2

)
, (7.15)

where ρ′ML
i = exp

(
− δFex,ML

δρ

∣∣∣∣
ρ=ρeq

i

− V ext
i

)
. If the training converges, µML

will converge to µeq. In Fig.7.8 we show ∆µ = µeq−µML versus µeq at the end
of training for the three cases in Sec. 7.3.1 and 7.3.2. µML is indeed close to
µeq.
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Figure 7.8: ∆µ = µeq − µML versus µeq. (a) HR (b) LJ with splitting (c) LJ,
no splitting.
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Furthermore, we also check µ(ρ) = ∂f
∂ρ

(i.e. from the equation of state),

where ρ here refers to the density of the bulk fluid. In Fig. 7.9 we show µ(ρ)
from the exact functional, ML, and MC simulations for the three cases as in
the Sec. 7.3.1 and 7.3.2. Deviations only occur for the LJ case well outside
the training region.

In principle, one could also fix µML
i = µeq

i (the chemical potential of the
data set) and then choose α1 = 1 and α2 = 0 in Eq. (7.7), but this requires
smaller learning rates and results in much longer training processes. For
example, the HR case with parameters as in the main paper can be done
with learning rate = 10−3 and the number of training iterations doubled.
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Figure 7.9: µ(ρ) versus ρ. (a) HR (b) LJ with splitting (c) LJ, no splitting.
In (b) and (c), the circles are ML and dashed lines are MC simulations.
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7.3.5 Direct correlation function

The direct correlation function (dcf) is a central object in DFT which through
iterations yields the pair corelation function (Ornstein–Zernike relation, see
Chapter 3 and also Ref. [23]). It is given by the second functional derivative
of F ex:

C(2)(x1, x2; ρ0) = − βδ2F ex

δρ(x1)δρ(x2)
, (7.16)

and it depends only on x = |x1−x2| in the case of a homogeneous fluid with
density ρ0.

As the network is only trained on the level of the first functional deriva-
tive (see Eq. 6.2), it is a challenge for FEQL to capture the dcf. In Fig. 7.10,
we show exemplary dcf’s at moderate to high density for the exact HR func-
tional, LJ from simulation and the corresponding ML results. The direct
correlations inside the hard core are captured very well by ML in the HR
and LJ cases. Outside the hard core, in the HR case, the C(2) from the ML
shows insignificant correlation. In the case of LJ, the contribution to C(2)

from attraction is semi–quantitatively correct, with a better result in the
splitting case.
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Figure 7.10: C(2)(x, ρ0) with ρ0 = 0.7 (HR) and 0.703 (LJ, ε = 1.85 and
µ = ln(1.85)).



80 CHAPTER 7. FUNCTIONAL EQUATION LEARNER

7.3.6 Learning the exact HR functional

Figure 7.11: Simplified FEQL for hard–rod functional

As shown in Sec. 7.3.1, even though the learned functional for hard–rod fluids
behaves well inside and outside the training region, it is not in the form of the
Percus functional (Eq. (3.55)). This is understandable, since the convolution
kernels of the latter are Dirac delta and Heaviside step functions, which are
hard to be captured by our network. Also, the possible configuration of
trained functionals, i.e, local minima, are too many such that the chance for
FEQL to find the global minimum (the Percus functional) is scarce. To show
that the FEQL is capable of delivering the “correct” functional, we limit
nw = 2 and keep only the necessary nodes as shown in Fig. 7.11; thus the
the untrained functional is

F ex,ML =

∫
dx (a2L0 (a1L0n0 + a1L1n1) + a2L1 ln (a1L2n0 + a1L3n1 + 1))×

(a2L3 (a1L0n0 + a1L1n1) + a2L4 ln (a1L2n0 + a1L3n1 + 1))
(7.17)

with axLy the y–th trainable parameter in W (x).
We use 2048 density profiles as mentioned in Sec. 7.3.1 with a range

of training reservoir densities ρ0 = 0.2...0.8 for training, and add an extra
penalty term

∑

i

∫ L

0

∣∣∣∣
(

tanh

(
x− d
w

)
− tanh

(
x− L+ d

w

))
ωi(x)

∣∣∣∣dx (7.18)

with d = 1σ, w = 0.1σ and L system size (32σ), into the cost function
(Eq. (7.7)). Fig. 7.12 shows the tanh term in Eq. (7.18); this extra regular-
ization strongly localizes ω’s within ±1σ (with periodic boundary condition).
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Figure 7.12: The tanh term in Eq. (7.18) with d = 1σ, w = 0.1σ and L = 32σ
(system size).

The training procedure follows the three–steps method as mentioned in
Sec. 7.2 and ω’s are trained in Fourier space, since Dirac delta and Heavi-
side step functions are smooth functions in Fourier space (see Fig. 7.13 and
Appendix A for details). After training with 50 different random seeds, we
obtain only one result with the exact form of the Percus functional:

F ex,ML =

∫
dx (−1.0003n0 ln (1− 1.0002n1)) , (7.19)

and almost exact weight functions as shown in Fig. 7.13 with ω’s normalized
by
∫
dxωi = 1.
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Figure 7.13: The weight functions in Eq. (7.19) and the Percus functional
(exact) in (a) real space and (b) Fourier space.

In short, FEQL in principle is able to deliver the exact functional in this
case. However, it requires a much smaller network compared to Sec. 7.3.1
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and an extra regularization. Also the result is sensitive to the initial guesses
of axLy’s in Eq. (7.17), which is probably due the size of the network. Its
restricted form is in contradiction to having a “flexible” network as used in
the previous sections. Nevertheless, here we only attempt to demonstrate
that it is possible to obtain the exact functional from FEQL.

7.4 Conclusion

The adaptation of EQL [22] to the classical DFT problem of finding F ex has
shown satisfactory results for the exemplary cases of the 1D HR and LJ fluid.
The new network FEQL is very flexible and goes significantly beyond the
polynomial ansatz used in Ref. [2]. The analytic form allows for more easily
transferable output and further calculations to obtain, e.g., direct correlation
functions. Also, for the HR case, it is possible to deliver the exact functional
while it requires a limited network with an extra regularization based on the
prior knowledge of the exact HR functional.

An application to more realistic systems in 3D and perhaps also complex
fluids, such as water, appears to be promising [82, 83, 84]. From the results
of this work we conclude that the incorporation of results from liquid state
theory is not essential here; however, it increases the reliability and trainabil-
ity of the ML functional. Future work should include information on virial
or high density expansions as well as correlation functions (via test particles)
and should develop more quantitative measures for extrapolative capabilities
of ML functionals.
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Appendix A

Convolution and Fourier
transformation

A.1 Convolution

In order to obtain the excess free energy density of the density profile ρ(r)
in FMT or machine learning, one needs to calculate the weighted densities
ni, which are the convolution of the weight functions ωi with ρ(r):

ni(r) = ρ⊗ ωi =

∫
dr′ ρ(r′)ωi(r− r′). (A.1)

In FMT, it is more convenient to use the convolution theorem. For two
arbitrary well–defined functions f and g, the convolution theorem states that
the Fourier transform of their convolution f⊗g is equal to the product of their
Fourier transforms. Defining the forward and backward Fourier transform of
the function f as

FT[f(r)] = f̃(k) =

∫
dr e−ik·rf(r) (A.2)

FT−1[f̃(k)] = f(r) =
1

(2π)D

∫
dk eik·rf̃(k) (A.3)

87
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with D the dimension. The short proof of convolution theorem is as follows.

FT[f ⊗ g] =

∫ ∫
drdr′e−ik·rf(r′)g(r− r′)

=

∫ ∫
drdr′e−ik·r

′
f(r′)e−ik·(r−r

′)g(r− r′)

=

∫ ∫
d (r− r′) dr′e−ik·r

′
f(r′)e−ik·(r−r

′)g(r− r′)

= f̃(k)g̃(k). (A.4)

A.2 Fourier transformation in FMT

A.2.1 3D

In 3D FMT, the weight functions in real space are:

ω3(r) = Θ(R− |r|),
ω2(r) = δ(R− |r|),

ω1(r) =
ωi2(r)

4πR
,

ω0(r) =
ωi2(r)

4πR2
,

ωωω2(r) =
r

|r|δ(R− |r|),

ωωω1(r) =
ωωω2(r)

4πR
, and

ωωωT(r) =

(
r · rt
|r|2 −

I
3

)
δ(R− |r|). (A.5)

where I is the unit matrix in R3×3, superscript t represents the transpose,
and R is the radius of hard spheres. The necessary Fourier transformation
of the weight functions are:

ω̃3(k) =
4π

|k|3 (sin (|k|R)− |k|R cos (|k|R)) ,

ω̃2(k) =
4π

|k|R sin(|k|R),

ω̃ωω2(k) = −ikω̃3(k), and

ω̃ωωT(k) =

(
ω̃2(k)− 3

R
ω̃3(k)

)(
k · kt
|k|2 −

I
3

)
(A.6)
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where k is the reciprocal lattice vector, and kt denotes the transpose of k.
The explicit calculations of Fourier transformations of weight functions can
be found in Ref. [85, 86]. In the limit |k| → 0,

lim
|k|→0

ω̃3(k) =
4π

3
R3,

lim
|k|→0

ω̃2(k) = 4πR2,

lim
|k|→0

ω̃ωω2(k) = 0, and

lim
|k|→0

ω̃ωωT(k) = 0. (A.7)

A.2.2 2D

In 2D FMT, the weight functions appearing in Eq. (3.51) in real space are:

ω0(r) =
δ(R− |r|)

2πR
,

ω2(r) = Θ(R− |r|),
ωωω0(r) = δ(R− |r|),
ωωω1(r) =

r

|r|δ(R− |r|), and

ωωω2(r) =
r · rt
|r|2 δ(R− |r|). (A.8)

The necessary Fourier transformation of the weight functions are:

ω̃2(k) = 2πR
J1(|k|R)

|k| ,

ω̃ωω0(k) = 2πRJ0(|k|R),

ω̃ωω1(k) = −ikω̃2(k), and

(ω̃ωω2(k))ij = −2π

R

∂

∂ki

∂

∂kj
J0(
√
k2
x + k2

yR). (A.9)

with Ji the i–th order of the Bessel function of the first kind.
In the limit |k| → 0,

lim
|k|→0

ω̃2(k) = πR2,

lim
|k|→0

ω̃ωω0(k) = 2πR,

lim
|k|→0

ω̃ωω1(k) = 0, and

lim
|k|→0

ω̃ωω2(k) = πR I. (A.10)
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Explicit Fourier transformations

In order to obtain the Fourier transformation of the weight functions, we
assume that the wave vector k is parallel to the x component of the real–
space coordinate system. Therefore, in terms of the 2D polar coordinates
(r, θ) in Eq. (A.2) reads: k · r = kr cos θ with k = |k|.
Thus, the Fourier transformation of ω2 is given by

ω̃2(k) =

∫ 2π

0

∫ ∞

0

Θ(R− |r|)e−ikr cos θrdrdθ

=

∫ 2π

0

∫ R

0

e−ikr cos θrdrdθ

=
2πRJ1(kR)

k
. (A.11)

The Fourier transformation of ωωω0 is given by

ω̃ωω0(k) =

∫ 2π

0

∫ ∞

0

δ(R− |r|)e−ikr cos θrdrdθ

=

∫ 2π

0

e−ikR cos θRdθ

= 2πRJ0(kR). (A.12)

The Fourier transformation of ωωω1 is given by

ω̃ωω1(k) =

∫ 2π

0

∫ ∞

0

δ(R− |r|)e−ikr cos θ

(
cos θ

sin θ

)
rdrdθ

=

(−2πiRJ1(kR)

0

)
. (A.13)

This implies that the resulting Fourier transformation is in the direction of
x–axis in the real space, which is equivalent to the unit vector in reciprocal
space k/k. As a result,

ω̃ωω1(k) = −2πiRJ1(kR)
k

k
= −ikω̃2(k). (A.14)

Similarly, the Fourier transformation of the tensor weight ωωω2 is given by

ω̃ωω2(k) =

∫ 2π

0

∫ ∞

0

δ(R− |r|)e−ikr cos θ

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]
rdrdθ

=

[
2π(J1(kR)−kRJ2(kR))

k
0

0 2πJ1(kR)
k

]

=
2πJ1(kR)

k
I− 2πRJ2(kR)

[
1 0
0 0

]
. (A.15)
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With the similar argument of ω̃ωω1(k), we obtain

ω̃ωω2(k) =
2πJ1(kR)

k
I− 2πRJ2(kR)

[
k2
x kxky

kxky k2
y

]
, (A.16)

which is equivalent to the representation in Eq. (A.9).

A.2.3 1D

In 1D FMT, the weight functions in real space are:

ω1(x) = Θ(R− |x|), and

ω0(x) =
1

2
δ(R− |x|). (A.17)

The Fourier transformation of the weight functions are:

ω̃1(k) = 2
sin(|k|R)

|k| , and

ω̃0(k) = cos(|k|R). (A.18)

In the limit |k| → 0,

lim
|k|→0

ω̃1(k) = 2R, and

lim
|k|→0

ω̃0(k) = 1. (A.19)

A.3 Numerics

In order to determine the convolution and cross-correlation in Eqs.(5.2), (A.1)
and (B.3), the Fourier transforms of the density profile are computed using
the fast Fourier library, which performs discrete Fourier transform of a given
complex array. To provide an example, in 2D the components of the wave
vector k = (kx, ky) are determined by

kx[nx] = nx 2π/lx if 0 ≤ n < Nx/2

kx[nx] = (nx −Nx) 2π/lx if Nx/2 ≤ n < Nx

ky[ny] = ny 2π/ly if 0 ≤ ny ≤ Ny/2. (A.20)

with nx/y the n–th point in the array, lx/y the length and Nx/y grid points
in the x/y direction and ny only runs from 0 to Ny/2. For details please
check the section “What FFTW Really Computes” in the manuel of Fastest
Fourier Transform in the West [87].
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Since the FMT kernels ωi are unchanged throughout the code, it is rea-
sonable to calculate FT[ω] first and store them to be used for the numerical
implementations. The convolution for example in python by the library
Numpy is simply as n=numpy.fft.irfft2(numpy.fft.rfft2(rho)*wk) with
rho the density distribution and wk the analytic expression of FT[ω]. For a
GPU implementation, we refer Ref. [88] for reads who have a deeper interest.

Furthermore, one should set (numpy.fft.rfft2(rho)*wk)[ni][nj] to
zero if ni==Nx/2 or nj==Ny/2 before performing the back Fourier trans-
form [87, 89].



Appendix B

Free energy minimization

To obtain the equilibrium density profiles, for example crystal and crystal–
fluid interfaces in Chap. 4 and 5, and inhomogeneous fluids under external
potentials in Chap. 6 and 7, one need to minimize the free energy, which is
to solve (Eq. (2.27))

ρeq = exp

(
µ− δF ex

δρ

∣∣∣∣
ρ=ρeq

− V ext

)
, (B.1)

where

δFex [nα]

δρ(r)
=

∫
dr′
∑

α

∂Φ[nα]

∂nα
(r′)ωα(r′ − r) (B.2)

is a cross–correlation and weighted density nα(x) =
∫
dx′ ρ(x′)ωα(x − x′) is

convolution. The reason for the appearance of cross–correlations lies in the
definition of the weighted density (n) and its functional derivative:

δni(x)

δρ(y)
=

∫
dx′

δρ(x′)

δρ(y)
ωi(x− x′)

=

∫
dx′ δ(x′ − y)ωi(x− x′)

= ωi(x− y). (B.3)

Thus, the functional derivative of the free energy,

δF [ρ]

δρ(x)
=

∑

i

∫
∂Φ

∂ni
(x′)

δni(x
′)

δρ(x)
dx′

=
∑

i

∫
∂Φ

∂ni
(x′)ωi(x

′ − x)dx′ (B.4)

(B.5)
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Similar to the convolution theorem, the cross–correlation theorem is

FT[f ⊕ g] =

∫ ∫
drdr′e−ik·rf(r′)g(r′ − r)

=

∫ ∫
drdr′e−ik·r

′
f(r′)eik·(r

′−r)g(r′ − r)

=

∫ ∫
d (r′ − r) dr′e−ik·r

′
f(r′)eik·(r

′−r)g(r′ − r)

= f̃(k)g̃(−k), (B.6)

where⊕ is cross–correlation. Here we provide three methods to solve Eq. (2.27)
in the following sections.

B.1 Picard method

The Picard iteration schema is named after Charles Émile Picard (1856-
1941). With a given density profile ρ, the j–th step iteration is

exp

(
−β δFex [nα]

δρ

∣∣∣∣
ρ=ρj

+ βµ

)
= K[ρj]. (B.7)

The chemical potential µ is constant or adapted in each iteration step to keep
ρ̄ constant. Picard steps are performed according to

ρj+1 = ξ K[ρj] + (1− ξ)ρj, (B.8)

where ξ is a Picard mixing parameter. For 2D crystal–fluid interfaces, ξ =
10−2 for one–component and 10−3 for the binary systems. For 3D crystal
around the crystal–fluid coexistence, ξ = 10−5 ∼ 10−6.

B.2 Direct inversion in iterative subspace

In this section, only crucial ingredients for the calculation are mentioned,
and for details we refer readers to Ref [90]. The direct inversion in iterative
subspace (DIIS) is a numerical method which speeds up the convergence [91].
DIIS approximates the final solution by a linear combination of a finite num-
ber n of (Picard) iteration outputs, i.e.

ρDIIS =
n∑

i=1

ciρ
i, (B.9)
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with
∑
ci = 1 (particle number conservation). To minimize the norm of the

residual vector d = ρDIIS−ρeq with constrain
∑
ci = 1, we define a Lagrangian

L = 〈d|d〉 − 2λ

(∑

i

ci − 1

)
(B.10)

where λ is a Lagrange multiplier and 〈d|d〉 is inner product of d. By substi-
tuting d =

∑
cidi =

∑
ci(ρi − ρeq) into L, we obtain

L =
∑

ij

cicj 〈di|dj〉 − 2λ

(∑

i

ci − 1

)
. (B.11)

With ∂L
∂ci

= 0 and ∂L
∂λ

= 0, we obtain a matrix equation



〈d1|d1〉 〈d1|d2〉 · · · 〈d1|dn〉 −1
〈d2|d1〉 〈d2|d2〉 · · · 〈d2|dn〉 −1

...
...

. . .
...

...
〈dn|d1〉 〈dn|d2〉 · · · 〈dn|dn〉 −1
−1 −1 · · · −1 0







c1

c2
...
cn
λ




=




0
0
...
0
−1



,

where 〈di|dj〉 is inner product of di and dj.
In practice, since ρeq is unknown, we approximate di by di ' ρi −K[ρi],

where K[ρi] is defined in Eq. (B.7), and we perform m times Picard iterations,
and use the output of the final n steps (n < m) to determine the residuum
vector di and matrix and thus determine ρDIIS. Empirically, n = 5 ∼ 15 is
a reasonable choose. It is worth to note that DIIS may result in divergence
(packing fraction larger than 1 or negative ρ), and thus one should check
whether F ex[ρDIIS] is finite or not, before taking ρDIIS.

B.3 Dynamic density functional theory

Starting from overdamped dynamics, a particle current j(r, t) due to the
spatial gradient of the chemical potential µ is assumed as

j(r, t) = −ρ(r, t)∇Γµ(r, t) (B.12)

with Γ mobility. In a combination with the continuity equation ∂ρ
∂t

= −∇ · j,
µ = δF

δρ
, and ideal gas limit, this yields the basis of dynamic density functional

theory (DDFT):

∂ρ (r, t)

∂t
= βD0∇ ·

(
1

β
∇ρ (r, t) + ρ (r, t)∇δF

ex[ρ (r, t)]

δρ (r, t)
+ ρ (r, t)∇Vext (r)

)

(B.13)
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where F ex is the excess free energy and D0 is ideal gas diffusion constant
(D(r) = kBTΓ(r), and in ideal gas approximation, D(r) = D0). Eq. (B.13)
can be written as

∂ρ

∂τ
= ∇2ρ+∇ ·G (B.14)

with τ = D0 t and G = β
(
ρ∇
(
δFex

δρ
+ Vext

))
. While it is possible to perform

Eq. (B.14) in real space, it is more convenient in Fourier space. With the
Fourier transform on the both sides of Eq. (B.14), it becomes

∂ρ̃

∂τ
= −k2ρ̃− ik · G̃. (B.15)

An efficient way for Eq. (B.15) is the pseudo spectrum method [92]. In this
case, we rewrite Eq. (B.15) as

∂

∂τ
ρ̃ek

2τ = f̃ ek
2τ (B.16)

where f̃ = −ik · G̃. Integrating on the both sides,

∫ τ+∆τ

τ

dτ ′
∂

∂τ ′
ρ̃(τ ′) exp(k2τ ′) =

∫ τ+∆τ

τ

dτ ′ f̃(τ ′) exp
(
k2τ ′

)
, (B.17)

gives

ρ̃(τ + ∆τ) =ρ̃(τ) exp(−k2∆τ)

+ exp
(
−k2 (τ + ∆τ)

) ∫ τ+∆τ

τ

dτ ′ f̃(τ ′) exp
(
k2τ ′

)
(B.18)

and approximating

f̃(τ ′) ' f̃(τ) +
f̃(τ)− f̃(τ −∆τ)

∆τ
(τ ′ − τ) (B.19)

gives
ρ̃(τ + ∆τ) = ρ̃(τ) exp(−k2∆τ) + I1 + I2, (B.20)

where

I1 = − f̃

k2

(
exp

(
−k2∆τ

)
− 1
)

(B.21)

and

I2 =
f̃(τ)− f̃(τ −∆τ)

∆τ

(
∆τ

k2
− 1

k4

(
1− exp

(
−k2∆τ

)))
. (B.22)
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Note that ρ̃(k = 0) is unchanged through iterations due to the particle
number conservation.

Even though this algorithm is more memory intensive and complex than
the Euler scheme, the overall performance is superior. For example, ∆τ can
be set ∼ 10−3 for HD crystal–fluid systems in 2D with this method, while
∼ 10−5 with the Euler scheme. However, even with setting ∆τ < 10−6, it is
still is not enough for stabilizing the crystal–fluid interface in 3D HS systems.
Empirically, for 2D HD systems, DDFT is more efficient than Picard–DIIS if
the system is far from the equilibrium state. Thus for crystal–fluid interface,
it may be worth to perform some (thousands) DDFT steps and then switch
to the Picard–DIIS method.

B.4 Convergence

To check convergence, one can calculate the residuum ε = 1
V

∫
(ρ − K[ρ])2

with K in Eq. (B.7) and V the size of the simulation box. If ε is smaller than
a certain threshold, then the iteration stops. Empirically, the threshold is
chosen as 10−9 for determining coexistence properties and 10−7 for crystal-
fluid interface. It is worth to note that one should also check the maximum of
(ρ−K[ρ])2 for interface problems, since the main contribution of residuum
localizes around interfaces.





Appendix C

Direct correlation function by
FMT

In Chapter 3, we introduced the direct correlation function C(2). In density
functional theory (DFT) with the weighted density approaches,

C(2)(r1, r2) = −β δ
2F ex[n(ρ)]

δρ(r1)δρ(r2)
= −β

∫ ∑

ij

Φij(r
′)ωi(r

′ − r1)ωj(r
′ − r2)d r′

(C.1)
with Φ the free energy density , Φij = ∂2

∂ni∂nj
Φ, n the set of weighted densities,

ω the weight functions and β = 1
kBT

. We set β = 1 for simplicity. In
the following we choose the FMT free energy functional (Chapter 3, 3D :
Eq. (3.46), 2D : Eq. (3.51) and 1D : Eq. (3.55)). Solving Eq. (C.1) in real
space is difficult due to ω being either the Dirac delta function or Heaviside
step function, but they have analytic forms in Fourier space; thus, we perform
Fourier transform on both sides of Eq. (C.1):

C̃(2)(k1,k2)

= −
∫ ∫ ∫ ∑

ij

Φij(r
′)ωi(r

′ − r1)ωj(r
′ − r2) exp(−ik1r1) exp(−ik2 · r2)d r′d r1d r2

= −
∫ ∫ ∫ ∑

ij

Φij(r
′) exp(−i(k1 + k2)r′)ωi(r

′ − r1) exp(ik1(r′ − r1))×

ωj(r
′ − r2) exp(ik2(r′ − r2))d r′d r1d r2

= −
∑

ij

Φ̃ij(k1 + k2)ω̃i(−k1)ω̃j(−k2). (C.2)
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The inverse transform is given by

C(2)(r1, r2)

= −
∫ ∫ ∑

ij

Φ̃ij(k1 + k2)ω̃i(−k1)ω̂j(−k2) exp(ik1r1) exp(ik2 · r2)dk1dk2

(C.3)

C.1 Homogeneous cases

In the homogeneous fluid, Φ̃ij(k1 +k2) in Eq. (C.3) is zero unless k1 +k2 = 0
and C(2)(r1, r2) only depends on r = |r1 − r2|, such that

C(2)(r1, r2) = C(2)(r) = −
∑

ij

Φ̃ij(0)

∫
ω̃i(−k)ω̃j(k) exp(−ik · r)dk, (C.4)

which is analytically solvable.
In 1D,

C(2)(r) =

(
− 1− rη

(1− η)2

)
Θ (σ − r) (C.5)

In 2D with the FMT free energy functional as Eq. (3.51),

C(2)(r) =


−

(
1 + 2η

1−η

)
dA(r)

1− η −
η
(

1 + 2η
1−η

)
dV (r)

(1− η)2

−C0 + C1y1(r) + C2y1(r)2

π(1− η)y2(r)

)
Θ (σ − r) , (C.6)

where

dA(r) =
2 arccos(r)

π
, (C.7)

dV (r) =
2

π

(
arccos (r)− r

(
1− r2

))
, (C.8)

y1(r) = 1− 2r2, (C.9)

y2(r) =
√

1− y1(r)2, (C.10)

and C0, C1, C2 as in Eq. (3.52).

Finally, in 3D

C(2)(r) =
(
a1 + a2r + a3r

3
)

Θ (σ − r) (C.11)
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where the coefficients ai for tensorial White Bear II functional (Eq. (3.46))
read

a1 = −1 + 4η + 4η2 − 4η3 + η4

(1− η)4
, (C.12)

a2 =
−2 + 25η + 12η2 − 10η3 + 2η4

3(1− η)4
− 2

ln 1− η
3η

, (C.13)

and

a3 =
1− 4η + 2η2 − 3η3 + η4

(1− η)4
+

ln 1− η
η

, (C.14)
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Figure C.1: C(2)(r) with η = 0.45. In the case of 2D, a = 11
4

. Solid lines are
analytical results and circles are numerically obtained by Eq. (C.4).

C.2 Inhomogeneous

For an inhomogeneous fluid, for example, a crystal or fluid under external
potential, Eq. (C.3) is already the simplest form. Eq. (C.3) is very challenging
in numerical calculation since it is a six–dimensional calculation for 3D HS
systems and four–dimensional for a 2D HD systems.

For numerical purpose, Eq. (C.3) is rewritten as

C(2)(r1, r2) =

∫
J(r1,k2) exp(ik2 · r2)dk2 (C.15)

with

J(r1,k2) =

∫ ∑

ij

Φ̃ij(k1 + k2)ω̃i(−k1)ω̃j(−k2) exp(ik1 · r1)dk1. (C.16)

The advantage is that J(r1,k2) does not depend on r2; thus, one needs to
compute all J(r1,k2) only once and uses it for all r2.
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C.2.1 Crystal

The phase transition is absent in the 1D system; thus we add an external
field and then perform the the free energy minimization. Fig.C.2 shows the
equilibrium density profile ρeq and the external potential V ext.
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Figure C.2: ρeq(x) in 1D under V ext

For 1D HR, computation is rather easy; thus we determine full C(2)(r1, r2)
and show in Fig.C.3.
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Figure C.3: C(2)(r1, r2)

Moreover, in 1D, one could also directly determine C(2) by the OZ relation
(Chapter 3) with the Percus conditions: h(2)(r1, r2) = −1 and C(2)(r1, r2) = 0
if |r1 − r2| < 2R. The comparison are shown in Fig.C.4.

For 2D and 3D crystal, we obtain the crystal density profiles close to
fluid–crystal coexistence and determine C(2) by using Eq. (C.15).The results
are shown in Fig. C.5 and C.6.
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Figure C.4: C(2) obtained by solving the OZ equation and the Fourier
method, Eq. (C.3).
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Figure C.5: 2D HD crystal with a = 11/4 and η = 0.732 (a) density profile.
(b)C(2) with r1 = 0. (c) Same as (b) with r1 = (ax/4, ay/4) with ax/y in the
length of a unit cell in the x/y direction.
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Figure C.6: C(2) in fcc structure with η = 0.545 and nvac = 2.18× 10−5. (a)
density profile in xy–plane. (b) C(2) in three directions with r1 = 0

C.3 Conclusion

We have successfully obtained the C(2) for homogeneous and inhomogeneous
fluid by FMT. However, for the 3D crystal, the requirement for computational
resources is still very high, for example the Fig C.6(b) takes one week with
64 GPUs, and the further investigations for the relation between C(2) and
macroscopic crystal properties are required.
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[48] A. Tröster and K. Binder, “Positive Tolman length in a lattice gas with
three–body interactions,” Phys. Rev., vol. 107, no. 26, p. 265701, 2011.

[49] J. M. Kosterlitz and D. Thouless, “Long range order and metastability
in two dimensional solids and superfluids. (Application of dislocation
theory),” J Phys C: Solid State Phys, vol. 5, no. 11, p. L124, 1972.

[50] J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase
transitions in two–dimensional systems,” J Phys C: Solid State Phys,
vol. 6, no. 7, p. 1181, 1973.

[51] B. Halperin and D. R. Nelson, “Theory of two–dimensional melting,”
Phys. Rev. Lett., vol. 41, no. 2, p. 121, 1978.

[52] D. R. Nelson and B. Halperin, “Dislocation–mediated melting in two
dimensions,” Physical Review B, vol. 19, no. 5, p. 2457, 1979.

[53] A. Young, “Melting and the vector Coulomb gas in two dimensions,”
Physical Review B, vol. 19, no. 4, p. 1855, 1979.

[54] K. J. Strandburg, “Two–dimensional melting,” Rev. Mod. Phys., vol. 60,
no. 1, p. 161, 1988.

[55] S.-C. Lin and M. Oettel, “Phase diagrams and crystal–fluid surface
tensions in additive and nonadditive two–dimensional binary hard–disk
mixtures,” Phys. Rev. E, vol. 98, no. 1, p. 012608, 2018.



110 BIBLIOGRAPHY

[56] J. M. Brader, R. Evans, and M. Schmidt, “Statistical mechanics of in-
homogeneous model colloid–polymer mixtures,” Mol. Phys., vol. 101,
p. 3349, 2003.

[57] M. Mortazavifar and M. Oettel, “A fundamental measure density func-
tional for fluid and crystal phases of the Asakura–Oosawa model,” J.
Phys.:Condens. Matter, vol. 28, no. 24, p. 244018, 2016.

[58] C. N. Likos and C. L. Henley, “Complex alloy phases for binary hard–
disc mixtures,” Philos. Mag. B, vol. 68, p. 85, 1993.

[59] J. Russo and N. B. Wilding, “Disappearance of the hexatic phase in a bi-
nary mixture of hard disks,” Phys. Rev. Lett., vol. 119, no. 11, p. 115702,
2017.

[60] W. G. T. Kranendonk and D. Frenkel, “Computer simulation of solid–
liquid coexistence in binary hard sphere mixtures,” Mol. Phys., vol. 72,
p. 679, 1991.

[61] M. Oettel, “Mode expansion for the density profiles of crystal–fluid in-
terfaces: hard spheres as a test case,” J. Phys.:Condens. Matter, vol. 24,
no. 46, p. 464124, 2012.

[62] R. L. Vink, T. Neuhaus, and H. Löwen, “Fluid phase separation in-
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