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Abstract 

Information of the genome is not only encoded to its sequence or epigenetic 

modifications but also found in its folding in 3D space. Recent developments in 

Chromosome Conformation Capture techniques enabled us to unveil spatial 

positioning of the genome at different scales. The formation of self-interacting 

genomic regions, named Topologically Associated Domains (TADs), are discovered 

by Hi-C, as a key feature of genome organization beyond the nucleosomal level. Each 

TAD is an isolated local packing unit in which intra-TAD interactions are favoured 

and inter-TAD interactions are insulated. In animals several architectural proteins are 

shown to contribute the structure and the function of the animal TADs. Unlike those 

in animals, TAD formation, function and proteins that play a role in these processes 

in plants are rather unknown.  

Our Hi-C analyses show that the genome of Marchantia polymorpha, a member of a 

basal land plant lineage, shares an evolutionary conserved 3D landscape with that of 

higher plants. The Marchantia genome is subdivided into hundreds of TADs and their 

borders are associated with TCP1 protein binding. Genome-wide epigenetic analysis 

reveals that a considerable fraction of Marchantia TADs represent interstitial 

heterochromatin and are decorated with repressive epigenetic marks. We also identify 

a novel type of TAD that we name TCP1-rich TAD, in which genomic regions are 

highly accessible and densely bound by TCP1 proteins. TCP1-bound genes residing 

in TCP1-rich TADs exhibit lower gene expression levels compared to the TCP1-

bound genes in other locations.  

In tcp1 mutants, TAD patterns in the Hi-C map do not change, indicating that TCP1 

protein is not essential for TAD formation and structure. However, we find that in 

tcp1 mutants, genes residing in TCP1-rich TADs have a greater extent in expression 

fold change compared to genes not belonging to these TADs. Our results indicate 

that, besides standing as spatial chromatin packing modules, plant TADs function as 

nuclear micro-compartments that correlate transcription factor activities. 
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Zusammenfassung 

Informationen des Genoms werden nicht nur mit der Sequenz oder epigenetischen 

Modifikation codiert, sondern auch in ihrer Faltung im 3D-Raum gefunden. Jüngste 

Entwicklungen bei der Konformationserfassung von Chromosomen ermöglichten es 

uns, die räumliche Positionierung des Genoms in verschiedenen Maßstäben 

aufzudecken. Die Bildung selbstinteragierender Genomregionen, die als 

Topologically Associated Domains (TADs) bezeichnet werden, wird von Hi-C als 

Schlüsselmerkmal der Genomorganisation jenseits der Nukleosomenebene entdeckt. 

Jedes TAD ist eine isolierte lokale Packungseinheit, in der Intra-TAD-

Wechselwirkungen bevorzugt und Inter-TAD-Wechselwirkungen isoliert werden. 

Bei Tieren wird gezeigt, dass mehrere Architekturproteine zur Struktur und Funktion 

der tierischen TADs beitragen. Im Gegensatz zu Tieren sind TAD-Bildung, -

Funktion und -Proteine, die bei diesen Prozessen in Pflanzen eine Rolle spielen, eher 

unbekannt. 

Unsere vorläufige Hi-C-Analyse zeigte, dass das Genom von Marchantia polymorpha, 

einem Mitglied einer basalen Landpflanzenlinie, eine evolutionär konservierte 3D-

Landschaft mit dem höheren Pflanzen teilt. Das Marchantia-Genom ist in Hunderte 

von TADs unterteilt und ihre Grenzen sind mit der TCP1-Proteinbindung 

verbunden. Eine genomweite epigenetische Analyse ergab, dass ein beträchtlicher 

Teil der Marchantia-TADs interstitielles Heterochromatin darstellt und mit 

repressiven epigenetischen Markierungen verziert ist. Wir identifizieren auch einen 

neuartigen TAD-Typ, den wir TCP1-reiches TAD nennen, bei dem genomische 

Regionen gut zugänglich und durch TCP1-Proteine dicht gebunden sind. TCP1-

gebundene Gene, die sich in TCP1-reichen TADs befinden, weisen im Vergleich zu 

TCP1-gebundenen Genen an anderen Stellen niedrigere Genexpressionsniveaus auf. 

In tcp1-Mutanten änderten sich die TAD-Muster in der Hi-C-Karte nicht, was darauf 

hinweist, dass das TCP1-Protein für die TAD-Bildung und -Struktur nicht wesentlich 

ist. Wir stellen jedoch fest, dass in tcp1-Mutanten Gene, die in TCP1-reichen TADs 

leben, eine größere Veränderung der Expressionsfalte aufweisen als Gene, die nicht 
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zu diesen TADs gehören. Unsere Ergebnisse zeigen, dass Pflanzen-TADs nicht nur 

als räumliche Chromatin-Packungsmodule stehen, sondern auch als nukleare 

Mikrokompartimente fungieren, die die Aktivitäten des Transkriptionsfaktors 

korrelieren. 
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1 Introduction 

Genomic DNA in the nucleus is under large constraint. If stretched as a very thin 

thread, the human genome can reach up to 2 meters, however, it has to fit in a 10μm 

diameter nucleus1. Although DNA tightly folds in hierarchical orders to fit in the 

nucleus, it has to remain functional for processes like replication and gene expression. 

Therefore, nowadays we know that, not only its sequence, but also its folding in 3D 

space is essential for nuclear operations. The spatial organization of the genome has 

been studied extensively in recent years and several methods have been developed to 

assess genome-wide chromatin interactions in the nucleus. A considerable fraction of 

these techniques is based on the principle that spatially close DNA fragments ligate 

more efficiently than distal ones. The most far-reaching proximity-ligation based 

method to quantify chromatin interactions is called Hi-C and it combines high 

throughput sequencing with chromosome conformation capture (3C) technique to 

catch higher-order chromatin interactions in high resolution2 (For further information 

regarding chromosome conformation capture techniques, please see Chapter 3, page 

27 in the manuscript), (Figure 1). 

 

Figure 1: Overview of Hi-C technique. In the initial step of Hi-C protocol, cells are fixed 

 with formaldehyde, resulting in crosslink of adjacent chromatin elements. Then, 

 chromatin is digested with restriction enzymes that leave sticky ends (HindIII, 

 DpnII etc.). Sticky ends are filled with biotin labelled nucleotides. Blunt end 
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 ligation is carried out in extremely dilute conditions in order to favour intra-

 fragmental ligation and prevent cross ligation with other fragments. After 

 ligation, DNA is purified and sheared. Next, biotin labelled fragments are pulled 

 down with streptavidin beads followed by paired-end sequencing to identify 

 chimeric interacting fragments. Figure adapted from3 (Berkum et al. 2010).  

1.1 Hierarchical chromatin organization in nucleus 

Chromosome conformation experiments revealed that mammalian genomes are 

hierarchically architectured in the confines of the nucleus. At the highest level of this 

non-random hierarchy, there are chromosome territories, in which each chromosome 

occupies a discrete space in the nucleus (Figure 2A). These chromosome territories, 

which can be seen as well-defined squares in the Hi-C map4, can be also observed with 

image-based methods, like in-situ hybridization5–7. Chromosome territories are 

formed due to the preferred interactions within the same chromosome8 and overlaps 

between two chromosome territories are restricted to their borders9.  

When we further zoom in a Hi-C, chromosome territories can be further divided into 

two clusters named A/B compartments according to Principal Component Analysis 

(PCA) (Figure 2B). Overall, such A/B compartment annotation correlates to 

chromatin state. Compartment A is enriched with euchromatic and associated with 

active histone marks like H3K4me3 and H3K27ac; whereas B compartment is enriched 

with heterochromatic and associated with repressive marks4,10,11. A/B compartments 

can be further subdivided into smaller compartments according to unique histone 

modification patterns12. A/B compartment separation has been shown to be a dynamic 

process. A chromatin region switching from B to A compartment is associated with 

increased gene expression, whereas a switch from A to B is associated with lower 

expression levels13. 

With the development of Hi-C method, self-associating chromosomal domains called 

Topologically Associated Domains (TADs) are discovered (Figure 2C). TADs are 

individual genomic units that restrict chromatin interaction within itself14,15. In other  
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Figure 2: Hierarchical organization of chromatin. Panels at the left side are Hi-C heat 

 maps showing interaction frequencies by colour intensity. Panels on the right-side 
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 show models of different hierarchical structures in the nucleus. (A) Each 

 chromosome occupies a subspace in the nucleus. Interactions occur mostly 

 between two loci on the same chromosome. (B) Segregation of the genome into 

 alternation interaction clusters according to epigenetic landscape shows the 

 compartmentalization of A/B domains. (C) TADs are nested interaction units in 

 3D genome. Due to the enriched intra-TAD interactions TADs appear as high-

 interaction triangles on the Hi-C map. (D) Several different pairwise chromatin 

 loops can be observed in the genome. Figure adapted from8 (Bonev and Cavalli, 

 2016). 

words, intra-TAD interactions are preferred whereas inter-TAD chromatin 

interactions are insulated14.  In Hi-C maps, the contact frequency of two loci within 

one TAD is two or three times higher than that of two loci outside of TAD16. TADs 

act as functional regulatory units by providing specificity and directionality to gene 

expression by favouring internal TAD interactions17,18. 

At the finest scale, advancements in the methodology are also enabled us to detect 

chromatin loops as pairwise interactions (Figure 2D). Chromatin loops are critical 

elements that spatially regulate gene expression by positioning distal regulatory 

elements of gene expression with proximal elements19.  

1.2 Topologically Associated Domains 

In 2012, scientists discovered local chromatin interactions along the map of high-

resolution Hi-C and named them as TADs. To systematically identify TADs, Dixon 

and colleagues used the Directionality Index (DI) which based on the interaction 

direction shift from upstream to downstream to estimate the boundaries of TADs. At 

the border of two TADs, chromatin interaction will suddenly shift from downstream 

to upstream or vice versa. For example, at the right border of a TAD we expect a bias 

in contact frequency towards the regions on the left side14. Afterwards, several other 

methods were applied to approximate the accurate demarcation of TADs. Further 

investigation revealed that TAD borders are enriched with the binding of the insulator 

element CTCF (CCCTC-binding factor), which is a highly conserved zinc finger 
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protein. These boundaries are also associated with accessible chromatin, transcription 

start sites (TSS), SINE (Short Interspersed Nuclear Element) repeats, housekeeping 

genes, DNaseI hypersensitive sites, H3K36me3 and H3K4me3 histone 

modifications14. 

Since its initial discovery, TADs have been broadly studied in a large number of 

species in the animal kingdom. TADs in animals happen to be stable across cell 

lines12,14 and widely conserved in different species20–22. Another conspicuous 

characteristic of animal TADs is that they are genuinely insulated regions and their 

borders are occupied by insulator protein called CTCF8,12,14,16,22,23. The presence of 

CTCF is very critical for the insulation at the border and TAD structure, the 

consequence of the loss of these elements is a disruption of spatial genome architecture 

and misexpression of genes24–27. Cohesin is another important factor that is located at 

the TAD borders. It mainly plays role in TAD formation according to dynamic “loop 

extrusion model” where cohesins load chromatin into the loop until it meets CTCF 

binding sites28–31. The depletion of cohesin perturbs the stability of chromosomal 

domain architecture32 and eradicates loop domains along with long-range chromatin 

interactions33,34. It is also shown that, re-introducing cohesin to the genome recovers 

the loop formation, therefore proving that loop extrusion is an active process33. 

Moreover, further research also showed that TADs are not only formed by 

CTCF/cohesin cooperation but sometimes rather, A/B chromatin state35, 

transcription36–38, gene density38 and phase separation39 contribute to shape the 3D 

chromatin landscape40. In pluripotent cells, retrotransposon activities are also shown 

to demarcate TAD borders41.  

TADs are key components of the genome topology at multiple scales, and thus have a 

central role in gene expression, development, and disease. At higher scales long-range 

TAD-TAD interactions stabilize heterochromatic B-compartment toward nuclear 

periphery by forming cliques42. Moreover, the insulation at the borders of TADs, 

which restricts enhancer-promoter activites43, suggests that disruption of the TAD 

structure might result in ectopic interactions causing mis-expression of genes. 

Consistently, genetic manipulation of specific TAD borders induced ectopic contacts 
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and changes in gene expression. After the deletion of a TAD boundary in mouse 

Embryonic Stem Cells (ESCs), ectopic interactions between adjacent TADs were 

observed and neighbouring genes were upregulated15. More specifically, disruption of 

TAD border insulation in mouse embryo caused an ectopic enhancer-promoter 

interaction, which result in mis-expression of genes during limb development25. 

Furthermore, more studies confirmed these initial findings that the disruption of 

TADs lead to ectopic gene expression in genetic diseases44–47 and cancer48–52. Not only 

inter-TAD interactions but also intra-TAD interactions are critical for productive 

gene regulation. In ESCs, an asymmetric type of TAD is discovered in which only one 

border of the TAD has strong intra-TAD interaction. These regions are formed due 

to the differential enhancer occupancy and are important for cellular identity during 

differentiation by providing permissive gene expression landscape53. The gene 

expression regulation of TADs is not limited to the insulator activity at the borders, 

can also be observed in TAD bodies configurated by transcriptional status35. In 

Drosophila, RNA polymerase II (RNAPII) occupancy and actively transcribed genes 

are the underlying factors of chromatin organization54. However, it is not yet clear 

that whether 3D compartments have an effect on the level of transcription or action 

of transcription factors inside the particular TAD.  

1.3 Topologically Associated Domains in Plants 

In the past few years, several 3C derivatives such as Hi-C are conducted in several 

different plant species, providing us a nice overview of 3D architecture in the kingdom 

Plantae 55–67. However, we still don’t have a profound understanding of TADs, since 

these studies remain superficial and have not been followed by in-depth analysis so 

far. Hence, several important questions remain, such as whether plant TADs have 

regulatory function or how plant architectural proteins are involved in shaping the 

genome. Neither the popular model plant A. thaliana, nor its close relative A. lyrata, 

possess prominent animal-like TAD structure58,68–70. Nonetheless, in the Arabidopsis 

genome, more than 1000 insulator-like and TAD-like regions are identified, 

correlating with epigenetic landscape70. As the name suggests, “insulator-like” regions 

in Arabidopsis are enriched for accessible chromatin and active histone marks. 
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Accordingly, genes found in these regions are highly expressed, resembling animal 

TAD borders70.  

In this aspect, Arabidopsis can be considered as an exception, because unlike 

Arabidopsis, many crop species such as rice, foxtail millet, sorghum, tomato, maize and 

cotton have genome-wide distinct TADs appear on their Hi-C maps55,57,60. It is 

speculated that, this discrepancy among different plant species is due to the differences 

in genome size71,72. Arabidopsis has a small genome with high gene density, on the 

contrary, crop species have larger genome size with low gene density, where the 

silenced regions between active genes and Transposable Element (TE) rich regions 

likely to display TAD structures71,72. Although this hypothesis might explain the 

presence of TADs in larger genomes, it is not sufficient to explain the absence of 

TADs in Arabidopsis and its close relatives, since Drosophila Melanogaster genome is 

180 Mb73 and displays distinct TAD structures74,75. Moreover, recently, it is suggested 

that properties of TADs in Drosophila 3D landscape might give hints regarding the 

absence of TADs in Arabidopsis76. In the Drosophila genome, TAD borders are 

characterized by sudden changes of epigenetic states77. Unlike Drosophila, sudden 

changes in epigenetic landscape is not observed frequently in Arabidopsis70,72. Further 

supporting this, the abrupt changes in epigenetic state in Arabidopsis genome occurs 

at the borders of heterochromatic knob structures which show TAD-like features76,78.  

Hi-C is also performed in several crop species, revealing distinct TAD structures. 

Dong and colleagues performed a broad study in which they compared 5 different crop 

species. TADs in these crops are mostly coincide with heterochromatic B 

compartments and on a global scale, they have borders that are enriched with active 

epigenetic marks and gene expression57,70,79. Recently, plant TAD borders in different 

tissues are shown to be associated with transcription79. The genes that are overlapping 

with tissue-specific TAD borders are found to be upregulated in the particular tissue 

compared to the other tissues79,80. Together, these findings indicate that 

transcriptional activity and epigenetic landscape of the region could be the major 

factors playing roles in TAD demarcation in plants80.  
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In animals, TADs are found to be stable across tissues, developmental stages, and even 

species14. Unlike animal TADs, plant TADs in different species but located in syntenic 

blocks are not found to be conserved55. Recent analysis in different maize tissues 

exhibit a high correlation among TAD borders across tissues of the same plant79. 

Further analysis among non-conserved TAD borders (borders that appear in one 

tissue) also showed that, even though they cannot be called as TAD borders in one of 

the tissue, they exhibit TAD-border-like properties compared to a random region79. 

The same weak border-like feature of non-conserved TAD-borders is also observed in 

rice and foxtail millet, confirming that plant TADs have conserved properties across 

tissues79. 

The function of TADs in the animal field is widely studied and discussed in the past 

decade. As mentioned before, animal TADs are functional regulatory compartments 

that provide close proximity contact between distal enhancer elements with their 

corresponding promoters and prevent mis-expression of genes by hindering ectopic 

interactions with foreign enhancers17,25. On the contrary, long-range inter-TAD 

contacts have been detected in plants, which shows interaction of putative enhancer-

promoter elements can take place across TAD borders55. This is plausible, because 

plants do not have CTCF orthologs, or any other known plant-specific insulator 

protein that might play a role in TAD border insulation81,82. Studies in Arabidopsis 

TAD-border-like regions and rice TAD borders showed that bZIP (Basic Leucine 

Zipper) and TCP binding motifs are enriched at TAD borders57,71. Nevertheless, these 

proteins have not been shown to function as insulator binding factors. It is still not 

known if they contribute to the TAD structure in plants. 

1.4 Marchantia Polymorpha as an emerging model organism 

The liverwort Marchantia Polymorpha is a haploid basal land plant, which has been 

used for basic research for almost 200 years83. However, compared to Arabidopsis 

thaliana, genomic tools for Marchantia fall behind in the last two decades. Nonetheless, 

due to ease of cultivation and the development of several experimental techniques for 

Marchantia, such as agrobacterium-mediated transformation and CRISPR-CAS9, 
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researches still worked on it84–87. Recently, its whole genome sequencing is published 

at 201788,89 and revived Marchantia as a modern model organism for high throughput 

analysis.  

Compared to the other land plants, another unique feature of Marchantia that makes 

it a very popular model, is the lack of redundancy in most regulatory transcription 

factor families. On one hand, this indicates that Marchantia polymorpha exhibits 

genome composition that is predicted for the ancestral land plant, which is a desired 

characteristic for phylogenetic and evolutionary studies. On the other hand, exhibiting 

low gene redundancy is advantageous while it provides scientists smooth functional 

studies to uncover the role of regulatory genes88.  

Marchantia is a haploid model organism that each individual has only one of the sex 

chromosomes. In male and female plants, sex-specific V and U chromosomes are 

present, respectively. The life cycle of Marchantia includes both sexual and asexual 

reproduction. Asexual production takes place through the structures called ‘Gemma 

Cups’. Each gemmae produced in Gemma cup is emerged from a one single cell and it 

is a genetically identical copy of the mother plant. In sexual production, male and 

female plants grow specific umbrella-shaped sexual organs called ‘antheridium’ and 

‘archegonium’, respectively. In antheridium, multiple male gametes (sperm cells) are 

produced and carried to the female archegonium by raindrops. After fertilization, the 

zygote grows and develops into a sporophyte. Each sporophyte includes numerous 

spores which can develop into an individual plant (Reviewed in 83). Continuous sexual 

and asexual reproduction cycles of Marchantia and its haploid genome provide an 

adventitious ground for several popular biological approaches such as CRISPR-

CAS990.  

In recent years, research related to life cycle91, epigenome89,92, 3D genome93, signalling 

pathways94,95 and evolution96 of Marchantia have found a wide audience.  
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1.5 Objectives of this work 

TADs are a prominent characteristic of both animal and plant genomes. In the animal 

field, it is known that CTCF insulator proteins are enriched at the borders of TADs 

and together with the cohesins they are responsible for the formation and proper 

functioning of animal TADs. However, the main factors related to plant TADs 

structure are still waiting to be discovered. The major aim of this work was to get 

further insights into the general 3D organization of chromatin in plants, to discover 

the structural components that contribute to chromatin organization, and to 

understand how these spatial features regulate genome function. 

Prior to this work, Hi-C analysis on Oryza sativa and Arabidopsis thaliana have revealed 

a consensus DNA binding motif at the borders of TADs and TAD-like-regions, 

respectively. This consensus motif is recognized by the family of conserved 

transcription factors called TCPs. Therefore, TCP proteins show up as an exciting 

candidate to contribute TAD structure and function in plants. For higher plants, 

individual species contain more than 20 members of the TCP protein family with 

redundant functions. In order to unravel the role of TCP protein in plant genome 

topology, we exploited the Marchantia genome that had low gene-redundancy 

The first aim of this study was to identify and characterize functional chromatin 

domains in Marchantia polymorpha, and to investigate their properties in comparison 

to the higher plants.  

The second aim of this study was to gain further insights into the function of 

Marchantia TCP protein in the context of TADs in Marchantia, and to examine its 

potential role in functioning as candidate regulatory protein in chromatin packing.  

The results of our experiments shed light on the 3D genome structure of Marchantia 

and fill some blanks with the in-depth functional characterization of plant 

transcription factor TCP in the framework of spatial genome organization.  
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2 Three-dimensional chromatin packing and 

positioning of plant genomes 

 

Preamble 

 

This chapter is published in the journal of Nature Plants: 

 

Ezgi Süheyla Dogan and Chang Liu. Chromatin packing and positioning of plant 

genomes in 3D. Nature Plants (2018). DOI: 10.1038/s41477-018-0199-5 

 

Ezgi Süheyla Dogan and Chang Liu wrote the manuscript. 
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Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany. *e-mail: chang.liu@zmbp.uni-tuebingen.de

As the largest molecule in a living cell, the genomic DNA is 
packed with histones to form chromatin. Chromatin con-
formation is a critical factor for many regulatory elements 

to execute biological activity1. On perceiving environmental and 
developmental cues, both global and local chromatin rearrange-
ments may occur, along with changes in gene transcription2,3. Early 
cytological studies have well demonstrated chromatin structure at 
a global level, showing how chromosomes occupy the nuclear space 
and how chromosomes interact with each other non-randomly4,5. 
Newly invented molecular and computational tools enable scien-
tists to unveil chromatin structure at an unprecedented resolution 
to address a fundamental question in genome biology: how does 
spatial chromatin organization regulate genome functionality? 
Three-dimensional (3D) genome organization displays a hierar-
chical pattern, in which individual chromosomes can be dissected 
into structural and functional domains at multiple levels6. In both 
the animal and plant fields, many of such chromatin domains have 
been identified and characterized recently, and range from hun-
dreds of thousands of kb to small chromatin loops with sizes of 
several kb1,7,8. With recent efforts in unveiling plant genome pack-
ing and chromatin positioning patterns in nuclei, we have acceler-
ated our journey to gain a better understanding of plant genomes 
beyond the DNA sequences. With a focus on chromatin structures 
above the nucleosomal level, here we compile the results of recent 
studies of plant 3D genomes and discuss trends in this rapidly 
expanding area.

State-of-the-art methods to interrogate 3D genomes
Our ever-expanding toolkit enables us to address diverse questions 
concerning how chromatin structures are formed and regulated, 
and how the interplay between chromatin structure and proteins 
(such as transcription and chromatin remodelling factors) contrib-
utes to gene expression. From the whole chromosome to a single 
gene body, newly developed chromosome conformation capture 
and microscopic techniques allow scientists to interrogate chroma-
tin organization at multiple resolutions. These techniques would be 
beneficial, particularly in plant sciences, to investigate how multiple 
sets of genomes interact after species hybridization, which is a com-
mon strategy for crop improvement.

Hi-C and its derivatives: a brief history and their applications.  
To analyse 3D chromatin interactions in nuclei, Dekker and  
colleagues developed an approach called chromosome conforma-
tion capture (3C), which measures how frequent two genomic loci 
interact9. This method has soon become a standard way to study 
local chromosome organization. For example, 3C has been widely 
used to examine juxtaposition between specific transcription units 
and remote enhancer elements. A limitation of 3C is that it only 
allows identification of the interaction between two chosen loci. 
The 3C method was later developed into 4C (circular chromosome 
conformation capture), which enabled genome-wide detection 
of chromatin interactions associated with one locus of interest10. 
Another powerful 3C derivative is 5C (3C-carbon copy), in which 
interactions among thousands of selected genomic loci can be stud-
ied in a single run11,12. Finally, the Hi-C approach, a 3C-derived 
method with the most far-reaching impact, allows us to detect 
interactions at a whole-genome scale13. This all-to-all detection is 
achieved by incorporating a biotin-labelled nucleotide at the liga-
tion junction, thus enabling enrichment of ligation products by 
affinity purification. The recovered ligation products are subjected 
to high-throughput sequencing, providing a whole-genome pic-
ture of both short- and long-range chromatin interactions13. These 
chromosome conformation capture methods have been adapted for 
plant research (reviewed in refs 14,15). The approach of identifying 
the chromatin interaction network can be tailored for different pur-
poses. For instance, through combining it with chromatin immu-
noprecipitation (named ChIA–PET and HiChIP) or hybridization 
capture (named Capture-C) approaches, one can obtain compre-
hensive chromatin interaction networks of genomic regions bound 
by a protein (for example, transcription factors) or genomic regions 
belonging to a certain annotation category (for example, promoters),  
respectively16–20. Additionally, the Hi-C method has been scaled 
down to a single-cell level to study cell-to-cell variability in chroma-
tin structures21,22, as well as dynamic chromatin organization dur-
ing cell differentiation23,24 and cell-cycle progression25. Still, there 
are many Hi-C-related cutting-edge techniques under development 
(summarized in ref. 26), such as the newly developed genome archi-
tecture mapping method, which does not require any chromatin 
digestion or ligation steps27. Such an array of powerful methods 
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Information and function of a genome are not only decorated with epigenetic marks in the linear DNA sequence but also in 
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discusses future directions.
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4 Discussion 

Our knowledge regarding the non-random organization of interphase chromatin is 

significantly enhanced in the last two decades, thanks to the development in the 

imaging-based tools and chromosome conformation capture techniques97. Interaction 

maps revealed hierarchical organization of the chromatin which ensures precise 

regulation of the gene expression in the nucleus97.  The initial findings regarding 

systematic folding of the genome have led to many fundamental questions of how the 

spatial positioning of the chromatin is established and how this domain organization 

contributes to the function of the genome.  

Although imaging-based techniques provide us a colorful overview of how chromatin 

is spatially segregated in the nucleus, computational analysis of chromosome 

conformation techniques enabled us to study the detailed properties of 3D genome 

associated with DNA sequence. These high-throughput data empower us to analyze 

the dynamics of epigenetic landscape, TF activities, and gene expression in a 3D 

context.  

4.1 TAD borders in plants  

A notable feature of most mammalian TAD borders is the CTCF occupancy together 

with Cohesin complex12,14,22,98. In plants, the absence of an insulator protein like CTCF 

suggests a divergent mechanism of TAD establishment in plants81,82.  

In our previous studies, we demonstrated that DNA binding motifs of TCP and bZIP 

family proteins are enriched at the borders of plant TADs57,71. In this thesis, I showed 

TCP1 protein binding at Marchantia TAD borders by ChIP-seq93. In order to analyze 

TCP1 function at TAD borders, we created Marchantia tcp1 mutant. Hi-C analysis of 

this mutant demonstrated that the absence of TCP protein did not change the overall 

chromatin contact landscape, it rather induced a slight decrease in the insulation score 

of TCP1-bound TAD borders93. Hence, these results suggest that missing TCP1 

protein alone is not enough to alter the Marchantia TAD landscape.  
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Animal TAD borders are not only defined by CTCF binding. CTCF-independent 

TAD boundaries are found to be associated with transcription14,36 or the demarcation 

of A/B chromatin compartments12,35. Moreover, TAD boundary region displays 

mainly euchromatic properties and host mainly active genes14. Our study confirm that 

Marchantia TAD borders are also enriched with euchromatic histone marks and TSSs 

of the genes93. Consistently, in rice, active histone marks that are typically found at 

TSSs of the genes are also enriched at TAD borders57. In other crops, TSS occupancy 

at TAD borders or compartmental domains has not been studied so far. This 

knowledge gap in plant chromatin topology should be filled urgently, because in a 

recent study in animals, it has been shown that the insertion of contact domain 

boundary regions can alter the genome topology99. In animals, scientist inserted a 2kb 

DNA sequence containing CTCF binding site and/or TSS into the several parts of the 

genome, such as TAD bodies and TAD borders. These ectopic boundary insertions 

into the genome, demarcated new domains or strengthened the pre-existing 

boundaries. Inserting a fragment that solely contains TSS, to a region of interest, 

formed a new domain with A-compartment features99. As plant compartmental 

domain borders are mainly associated with euchromatic landscape and lack insulator 

proteins, it is critical to unravel whether insertion of ectopic boundary sequences 

containing TSS induces changes in plant chromatin topology.   

4.2 Intrinsic features of plant TADs 

In their study, Dong and colleagues classify TADs into 4 categories according to their 

distinct epigenetic features: active (accessible chromatin), repressive (DNA 

methylation), polycomb silenced (enriched in the H3K27me3 mark) and intermediate 

type which lacks specific features55. In the same study, a tight association between all 

these categories of TADs and A/B compartmental domains is found55. These TAD 

domains mainly follow the epigenetic landscape of the higher hierarchical level in the 

nucleus.  

Overall, Marchantia TAD bodies exhibit a heterochromatic landscape with 

heterochromatic histone marks and considerable DNA methylation. Nonetheless, 
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Marchantia TADs can be divide into 3 subgroups according to their DNA methylation 

status with arbitrarily set cut-offs. The first group of TADs (“mCG-rich”) have high 

CG, CHG and CHH methylation at their body. The second group (“mCG-poor”), 

consists of methylation-poor TADs, which has very low mCG at their TAD body. The 

last group with the fewest member is the intermediate group that exhibits 

intermediate methylation levels. Although mCG-poor TADs do not bear DNA 

methylation at their bodies, they are also depleted of active histone marks. This 

diversity of Marchantia TADs signifies that there exist distinct structure and 

regulatory regimes of plant TADs. 

We also discovered a novel kind of TADs that belonged to the mCG-poor group. They 

are highly bound by TCP1 proteins and named as “TCP1-rich” TADs. Although 

TCP1-rich TADs are not decorated with repressive histone marks, the overlapping 

genes still display lower expression levels. TCP1-rich TADs provide a repressive 

environment for genes reside in them. Moreover, in the absence of TCP1 proteins, not 

only genes directly targeted by this TF, but also genes that are not directly targeted 

but found in TCP1-rich TADs are more differentially expressed, suggesting a 3D 

localization dependent expression control.  

By inserting reporter genes to distinct places in the mouse genome, a study revealed 

that a reporter gene's expression correlates with the TAD landscape43. Similarly, in 

order to identify effect of the intrinsic properties of plant TADs on gene expression, 

we can design reporter genes and observe their expression patterns across distinct 

type of TADs in Marchantia and other crops. It is plausible to estimate when the 

characteristic of the TAD is determined by the methylation status, newly introduced 

fragment might also acquire similar methylation patterns with the TAD of residence, 

therefore, an expression pattern parallel with innate features of TADs might be 

observed. In TCP1-rich TADs, this approach might be greatly enlightening to 

observe how the expression of a foreign fragment is regulated and changed.  

Moreover, in Arabidopsis, Grob and Grossniklaus show that 3D chromatin interactions 

are linked to transgene silencing76,100. In Arabidopsis, KNOT is a chromatin interaction 
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hub comprising 10 KNOT ENGAGED ELEMENTs (KEEs) and is mainly enriched 

with transposable elements69. In this recent study, it is demonstrated that transgenes 

had ectopic contacts with specific KNOT regions in the genome, which promoted 

transgene silencing. High KNOT interaction frequency of transgenes  correlated with 

their silencing and KNOT-linked silencing does not require DNA methylation100. As 

TCP1-rich TADs display repressive properties without high levels of DNA 

methylation, these specific TADs in Marchantia might also acquire a non-canonical 

silencing pathway. To illustrate such function of the 3D chromatin compartments, it 

is important to initiate further functional analysis. Initially, it is critical to explore 

whether post-transcriptional silencing induced by small RNA (sRNA) is associated 

with TCP1-rich TAD dependent gene repression. To identify possible roles of sRNAs 

in gene repression in TCP1-rich TADs, we can conduct sRNA sequencing. We then 

should compare the abundance of sRNAs associated with genes found in TCP1-rich 

TADs with sRNAs associated with other genes. Moreover, to reveal the mechanisms 

of gene repression within the TCP1-rich TADs, it is important to find interaction 

partners of TCP1. Therefore, identifying interaction partners of TCP1 by mass 

spectrometry analysis might give us hints regarding possible pathways.  

4.3 Co-expression of genes in TADs 

Clusters of co-expressed genes in many different tissues and conditions in higher 

eukaryotes are observed prior to our expanding knowledge regarding the importance 

of spatial chromatin organization101. It was observed that co-expressed genes span a 

limited genomic distance, and the driving force behind gene co-expression is 

speculated to be uncharacterized cis-acting elements101. Nowadays, we appreciate 

mammalian TADs contributes to the regulation of gene expression by insulating the 

interaction between proximal enhancer-promoter elements. Detailed analysis of each 

TAD revealed that, genes in the same TAD are particularly co-expressed15. TAD 

landscape is associated with gene co-expression as genes found in the same TADs tend 

to share same cis-regulatory elements.  
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In maize, analysis by Dong and colleagues detected no significant co-regulation 

activity among genes residing in the same genomic compartments compared to 

random control gene pairs, which was not the case in mammalian TADs79. On the 

contrary, our co-expression analysis based on different tissues in Marchantia revealed 

that, there are more co-expressed genes found in TADs than expected. Our results 

suggest that TADs across the Marchantia genome contributes to the co-regulation of 

the genes that are spatially adjacent.  

Such a disparity between maize and Marchantia might be explained by high frequency 

of cis- and trans-interactions within the maize genome. Besides interaction along the 

diagonal of the maize Hi-C map, there are increased interactions between different 

chromosome arms which can be seen as dots at the end of chromosome (Figure 3A- 

upper circle). Moreover, in maize there are also recurrent trans interaction among 

centromeric regions of different chromosomes, which can be observed as a dot in the 

middle of the X shaped pattern (Figure 3A- lower circle). These results indicate that 

other than compartmental domains, there are frequent trans-interactions in the large  

 

Figure 3: Hi-C contact maps of Maize and Marchantia. Genome wide contact matrix 

 of maize (A) and Marchantia (B). Maize figure is adapted from55 (Dong et al. 

 2017), and Marchantia map is adapted from89 (Montgomery et al. 2020).   
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maize genome. Therefore, not only the genes found in intra-domain regions but also 

those found in inter-domain regions might also display comparable co-expression 

patterns due to the frequent interactions, resulting no detection of significance. In 

Marchantia, main chromatin interactions take place along the diagonal of Hi-C map 

(Figure 3B) suggesting inter-domains have less interaction compared to the maize. 

Therefore, in order to have more detailed overview regarding co-expression events in 

plant TADs, we need to analyse different plant species. 

4.4 Potential role of TCP in nuclear Liquid-Liquid Phase Separation  

Liquid-liquid phase separation (LLPS) can be described as assembly of dense droplet-

like bodies separated from dilute phased environment, according to their biochemical 

properties102. Phase separation is not a new concept for nuclear organization as the 

membraneless compartment nucleolus is delineated in 1830s103. Recently, it has been 

proposed  that, biomolecular attractions between heterochromatin in nucleus that 

result in LLPS is a major driver of compartmentalization in genome 

organization39,102,104.  

Intrinsically disordered regions (IDR) are protein domains that grant flexibility to the 

3D structure of the protein, promoting the coalescence of the proteins. TCP1 protein 

has an IDR domain close to its N-terminal region (Figure 4). Moreover, our cellular 

localization experiments of TCP protein confirmed that it forms speckles. Therefore, 

it is intriguing to show whether TCP containing speckles are phase separated liquid 

condensates. Moreover, it will be also interesting if the IDR domain of TCP 

contributes to bring repressed regions (e.g. TCP1-rich TADs) to close proximity to 

facilitate compartmental domain formation. Not only Marchantia TADs, but also A/B 

compartments in higher plants phase separation model might explain 

euchromatin/heterochromatin separation. Further supporting this hypothesis, 

temperature has been shown to be an important factor for interaction potential of 

proteins due to the temperature-dependent solvent-mediated interactions of each type 

of amino acid105 and heat has been shown to weaken chromatin compartmentation106.  
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Figure 4: IDR Domain of Marchantia TCP1 protein. Upper panel shows the IDR 

 domain annotation according to the PLAAC (Prion-Like Amino Acid 

 Composition) server, black line indicates the background and red line prion-like 

 domain107. In the middle, there is a colour key for one letter codes of amino acids. 

 Bottom panel is the protein sequence of MpTCP1, red letters indicate amino acids 

 in prion-like domain. 

4.5 Other candidate proteins in Marchantia 3D genome  

Among mCG-poor TADs in Marchantia, less than half of them can be categorized as 

TCP1-rich TADs. Therefore, the remaining mCG-poor TADs might be associated 

with other transcription factors. In order to unravel this fact, we performed further 

motif analysis at Marchantia TAD bodies and borders. Our motif analysis showed that 

not only TCP binding sites, but also GAGA-binding motif is enriched at TAD 

boundary regions and the bodies of mCG-poor TADs93. GAGA binding motif is 

recognized by BBR/BPC family transcription factors in plants108. In the Marchantia 

genome, there are two BBR/BPC protein ortholog, each resides in one sex 

chromosome. Therefore, per Marchantia individual there is only one BPC gene 

present.  
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Our phylogenetic analysis showed that Marchantia BPC has a very conserved DNA 

binding domain (Figure5), strengthening our assumption that Marchantia BBR/BPC 

will recognize a similar GAGA-binding motif and is, therefore, enriched at Marchantia 

TAD borders. Of course, in order to confirm this hypothesis, it is required to show the 

sites of BPC protein binding with ChIP experiments. If BBR/BPC protein is indeed 

enriched at the border of the TADs and at the body of mCG poor TADs, this could 

indicate an interplay of multiple transcription factors in the TAD establishment in 

Marchantia. Double mutant of TCP/BPC will be also further needed to examine 

potential contact map changes in the Marchantia genome.  

 

Figure 5. Marchantia BBR/BPC family protein. (A) Phylogenetic tree of Marchantia 

 BPC2 (BBR/BPC member in TAK1 genotype) with Arabidopsis and rice family 

 proteins. (B) Conserved DNA binding domain of BPC2. Cyan block indicates DNA 

 binding domain at the Marchantia BPC2 gene locus. Dark grey bars indicate exons, 

 straight lines indicate introns and light grey bars indicate UTRs. Red boxes 

 indicate the important amino acids for GAGA-binding motif recognition108.  
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