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Abstract

Standard geostatistical methods in hydrogeology assume a multi-Gaussian distribution
of the log-hydraulic conductivity (K), implying that intermediate values are well con-
nected, embedding isolated zones of high and low values. In this thesis, two datasets
of hydraulic conductivity K from the MAcroDispersion Experiment (MADE) site in
Columbus, Mississippi, are analyzed, one measured by direct-push injection-logging
(DPIL) at 31,123 observation points in 58 vertical profiles and the other by flowmeter
profiling at 2611 observation points in 67 wells. The analysis is performed using copula
techniques that do not rely on the assumption of multivariate Gaussianity and provide
a means to characterize differing degrees of spatial dependence in different quantiles
of the K distribution. This characterization provides better insights into the similarities
and differences between the two datasets. In addition to the marginal distributions and
two-point geostatistical measures, copula-based bivariate rank correlation and asymmetry
measures are analyzed and compared. Furthermore, the parameter estimates obtained
by likelihood estimation using n-point theoretical models are analyzed. This analysis
confirms the similarity of the spatial dependence of K between the two datasets in terms
of their marginal distributions and bivariate measures, particularly in the vertical direction.
Clear indications of non-multi-Gaussian spatial dependence structures of K are found at
this site. The estimation of the K distribution can be improved by taking into account
either non-Gaussianity or a censoring threshold, which are expected to lead to a more
realistic description of processes that depend on K.

A framework to generate K-field is used that allows non-multi-Gaussian dependence
using the multi-objective phase-annealing (PA) method. One objective is to mimic the
“asymmetry” of the measured K that indicates the degree of non-Gaussianity. The K-field
at the MADE site is mimicked using both DPIL and flowmeter datasets for conditioning.
The differences in data quality between the datasets are considered. As the mean and
variance of the two datasets differ, the K fields are conditioned on the measured values
of the flowmeter dataset and the order within the DPIL dataset. The degree of non-
Gaussianity is quantified by the asymmetry of the copula, which is accounted for in the
three-dimensional conditioning procedure using the spectral phase-annealing method.
The impacts of including as much information as possible in the conditioning procedure
on key solute-transport characteristics are analyzed using the comparison between the
non-multi-Gaussian method with multi-Gaussian geostatistical approaches. As a transport



Abstract

metric, the one- and two-particle spatial moments of solute plumes and the associated
dispersivities resulting from particle-tracking random-walk simulations are considered.
The non-multi-Gaussian models generate preferential flow paths that lead to a stronger
correlation of velocity at large separation distances and consequently larger dispersivities
in comparison to the (quasi) multi-Gaussian models. A better match between modeled
and measured solute transport behavior is obtained when asymmetry is included in the
geostatistical model for K.
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Kurzfassung

In den herkdmmlichen, geostatistischen Methoden der Hydrogeologie wird die hydrauli-
sche Leitfihigkeit (K) als log-normalverteilte Zufallsvariable angenommen. Dabei wird
implizit vorausgesetzt, dass Zonen mit niedrigen und hohen Werten isolierte Einschliisse
darstellen, wohingegen mittlere Werte gut verbunden sind. In dieser Dissertation werden
zwei K Datensitze des MAcroDispersion Experiment (MADE) Feldstandortes analysiert.
Der erste stammt von Direct-Push Injection-Logging (DPIL) an 31.123 Beobachtungs-
punkten in 58 vertikalen Profilen, der zweite von Durchflussmessern (Flowmeter) an 2611
Beobachtungspunkten in 67 Beobachtungsbrunnen. Die hier angewandte Analyse basiert
auf der Copula-Methode. Diese beruht nicht auf der Annahme einer multivariaten Normal-
verteilung. Die Copula-Methode ermdglicht eine differenzierte Analyse der raumlichen
Abhiingigkeit in unterschiedlichen Quantilen der K-Verteilung. Ahnlichkeiten und Unter-
schiede der beiden Datensitze werden tiefgehend analysiert. Neben den Randverteilungen
und den Variogramm-basierten, bivariaten, geostatistischen Kennwerten werden biva-
riate Copula-Rangkorrelationen und Asymmetrie analysiert und verglichen. Dartliber
hinaus werden die Parameterschitzungen von theoretischen n-Punkt Copula-Modellen
analysiert. Diese Analyse bestitigt die Ahnlichkeit der rdumlichen Abhingigkeit von K
zwischen den beiden Daten hinsichtlich ihrer Randverteilungen und der bivariaten Mal3e,
insbesondere in vertikaler Richtung. Die Analyse zeigt das Vorhandensein multivariater,
nicht normalverteilter riumlicher Abhéngigkeitsstrukturen fiir K. Indem man entwe-
der eine nichtgauf3férmige Abhingigkeit oder eine Zensurschwelle beriicksichtigt, kann
die Abschitzung der K-Verteilung verbessert werden. Dadurch wird eine realistischere
Beschreibung der von K abhingigen Prozesse erreicht.

In dieser Arbeit wird ein methodischer Ansatz verwendet, der K-Felder mit multivari-
ter, nicht normalverteilten Abhédngigkeiten auf der Basis von multikriteriellen Temper-
phasen (Phase Annealing, PA) simuliert. Ziel ist es die Copula Asymmetrie, die von
K-Messungen berechnet wird, als ein Mal} der nichtgauf3férmigen Abhédngigkeit als Kri-
terium in PA einzuschlieBen. Das K-Feld am MADE-Feldstandort wird nachgeahmt,
indem sowohl der DPIL als auch der Durchflussmesser Datensatz fiir die konditiona-
le Simulation verwendet werden. Die Unterschiede in der Datenqualitit zwischen den
Datensitze werden beriicksichtigt. Weil sich der Mittelwert und die Varianz der beiden
Datensitzen unterscheiden, werden die Messwerte des Durchflussmesser-Datensatzes und
die Reihenfolge innerhalb des DPIL-Datensatzes im Simulationsverfahren verwendet. Der
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Kurzfassung

Grad der nichtgauBBformigen Abhédngigkeit wird durch die Copula-Asymmetrie quantifi-
ziert, die in der dreidimensionalen Konditionierung unter Verwendung der spektralen PA
beriicksichtigt wird. Weiter wird analysiert, welchen Einfluss das Einbeziehen moglichst
vieler Informationen in der konditionalen Simulation auf die wichtigsten Eigenschaften
der Tracer-Ausbreitung hat. Dies wird in Bezug auf multivariate, nichtgau3formige bzw.
multivariate gau3formige geostatistische Ansétze analysiert. Als Transportmetrik werden
die rdumlichen Ein- und Zweiteilchen-Momente der Tracer-Ausbreitung und der damit
verbundenen Dispersivititen beriicksichtigt, die sich aus Random-Walk Simulationen zur
Partikelverfolgung ergeben. Multivariate, nichgau3formige Modelle erzeugen bevorzugte
Stromungswege, die stiarker mit den Geschwindigkeiten bei grolen Trennungsabstidnden
korrelieren und folglich zu groBeren Dispersivitidten im Vergleich zu (quasi) mutlivariaten
normalverteilten Modellen fiihren. Dadurch erreicht man eine bessere Ubereinstimmung
zwischen dem modellierten und gemessenen Ausbreitungsverhalten des Tracers, wenn
tiefenabhédngige Asymmetrie im geostatistischen Modell fiir K vorliegt, erreicht.
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Chapter 1

Introduction and Motivation

Figure 1.1: Cloud distributions with a different spatial variability. Photos were taken in
the Tiibingen area, Germany, by the author.

1.1 Background and Motivation

The understanding of the temporal and/or spatial distributions of key parameters of
a system on different scales is an important goal for a wide range of scientific and
engineering problems. This understanding is not only helpful for the analysis of the
system itself but also meaningful for prediction and decision making. Examples of
spatiotemporal variables are the distribution of precipitation (Haberlandt, 2007), the
distribution of disease cases (Giorgi et al., 2018), the distribution of active regions in
the human brain (Ye et al., 2011), etc. The understanding of spatial distributions of
important variables is also an urgent task in environmental research. As an example,
Figures 1.1A and B show cloud distributions in Tiibingen area, Germany, with different
spatial variabilities. More observations or a detailed mathematical/physical model are



Chapter 1 Introduction and Motivation

required to model the variability of a heterogeneous system than to model the variability
of a homogeneous system.

The most important parameter in hydrogeology is the hydraulic conductivity (K). The
spatial arrangement of K determines the groundwater velocity (Darcy, 1856), and thus
advective-dispersive solute transport, for given hydraulic boundary conditions. It is well
known that the hydraulic parameters of aquifers vary over orders of magnitude in space.
If the structure of K was perfectly known, estimates of solute concentrations over time
would be much improved. However, information about the structure of K is sparse because
measuring hydraulic conductivity is costly. Different investigation techniques for the
estimation of hydraulic conductivity exist, from large-scale multi-well pumping tests,
yielding spatially averaged conductivity values, to indirect point estimates inferred from
grain-size analyses. K estimations using different methods yield inconsistent results
concerning absolute values, are based on different support volumes, and exhibit different
data quality. This implies that merging these data in a data-fusion framework needs to
address the inconsistencies between the local estimates derived by different investigation
methods.

The K-field is inherently uncertain because observations are sparsely distributed and
details of the K-field in between remain unresolved. As a consequence, stochastic methods
have been widely used for the characterization and interpolation of hydraulic aquifer
properties (Gelhar, 1977; Delhomme, 1979). In most standard applications of stochastic
subsurface hydrology, the K-field is considered a second-order stationary random space
variable that can be described by a stationary log-normal marginal distribution and a
stationary variogram (). If not stated otherwise, stochastic hydrogeologists assume that
the log-conductivity field is multi-Gaussian (Freeze, 1975; Gomez-Hernandez and Wen,
1998).

For a solute transport in second-order stationary multi-Gaussian log-conductivity fields
with simple mean-flow setups (e.g., uniform-in-the-mean hydraulic gradient), (semi-)
analytical solutions have been developed to predict the spatial moments of solute plumes
and their uncertainty from geostatistical characteristics of the log-conductivity field (e.g.,
Gelhar and Axness, 1983; Gelhar, 1986; Rubin, 1990; Dagan et al., 1992; Dentz et al.,
2000; Cirpka and Kitanidis, 2000; Renard, 2007; Le Borgne et al., 2008; Rajaram, 2016).
Most of these solutions are based on a small-perturbation analysis and are thus restricted
to mild heterogeneity. Conditioning on measurements deems the log-conductivity field
to become non-stationary, hampering the derivation of closed-form solutions (Dagan,
1982b,a; Graham and McLaughlin, 1989; Zhang and Neuman, 1995). Monte-Carlo (MC)
simulations of flow and solute transport are less restrictive concerning the underlying
assumptions about the statistical dependence of hydraulic conductivity values at different
points, the degree of heterogeneity, or hydraulic boundary conditions. In unconditional
simulations, many K fields are generated that are exclusively restricted by the statistical
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assumptions but do not honor individual measurements. These unconditional K fields
can be conditioned on measurements, which is comparably easy under the assumption of
multi-Gaussianity but considerably more complicated when the restriction of Gaussian
dependence is relaxed.

A variety of data-driven geostatistical simulation methods are available for the gen-
eration of spatially distributed K fields used as input for MC analysis. They use the
information from the observations of the primary variable K or additional secondary
information for a joint simulation, such as the sequential (Gaussian) simulation (Journel,
1989; Gémez-Herndndez et al., 1993), the covariance matrix decomposition using the
Cholesky decomposition (Davis, 1987), turning bands method (Matheron, 1973), continu-
ous/discrete spectral method (Mejia and Rodriguez-Iturbe, 1974; Dietrich and Newsam,
1993, 1997) and simulated annealing method (Deutsch and Cockerham, 1994).

The importance of the non-multi-Gaussian spatial dependence structure has been discussed
in a series of works since the 1990s (Gémez-Herndndez and Wen, 1998; Zinn and Harvey,
2003; Renard, 2007; Kerrou et al., 2008; Meerschaert et al., 2013). Inadequate usage of
a multi-Gaussian model can over or underestimate the connectivity of the K-field and
further influence the prediction of solute transport behavior. Since then, approaches have
been taken to include more information into geostatistic models and move away from the
strict limitations of multi-Gaussianity.

Geologic information from lithological characterization has been used in geostatisti-
cal approaches using Indicator Kriging and transition probabilities (Fogg, 1996; Carle,
1999). These methods simulate the distributions of the geological units according to
the hydrofacies and lithofacies information which is less constrained on the marginal
distribution (Fogg et al., 1998; Bianchi et al., 2011; Bianchi and Zheng, 2016; Bianchi and
Pedretti, 2017). Another simulation methodology that uses geological expert knowledge
is multi-point geostatistics (MPS; (e.g., Strebelle, 2002; Mariethoz et al., 2010; Mariethoz
and Caers, 2014; Linde et al., 2015; Pirot et al., 2015; Tahmasebi and Sahimi, 2016b,a;
Hansen et al., 2018)), in which geological features of a training image (TI) are associated
with the probability that certain multi-point patterns of facies distributions occur. With
the help of the development of the neural network and deep learning, Laloy et al. (2018)
introduced a TI-based spatial generative adversarial neural network method.

The disadvantages of TI-based methods are a) The construction of a TI is difficult,
especially when a three-dimensional TI is needed but only one-dimensional line data
from boreholes is available. b) Expert knowledge is included in T1. So MPS is not a fully
stochastic model. The choice of a good training image is not trivial, as one would want
to avoid repetition too much of the typical structures of the TI. It should be possible to
simulate features that are outside the observations. Recently, Al-based methods have
surfaced in geostatistics (Zhang et al., 2021), that are, like TI-based approaches, difficult
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to implement in three dimensions.

In this thesis, datasets from the MAcroDispersion Experiment (MADE) site at the Colum-
bus Air Force Base in Mississippi are used, which has been studied intensively in the past
decades. A large number of K measurements and solute concentration measurements offer
a unique opportunity for the understanding of the solute transport behavior in a large-scale
heterogeneous field site. Compared with other frequently analyzed field sites, such as the
Borden (Sudicky, 1986), the Cap Cod (LeBlanc ef al., 1991, and others) or the North Bay
(Sudicky et al., 2010) sites, the MADE site exhibits large heterogeneity (Mackay et al.,
1986, and others). The specific datasets in the present study are inferred from flowmeter
tests (Rehfeldt er al., 1992; Boggs et al., 1992) and that derived from high-resolution
direct-push injection-logging (DPIL) (Liu et al., 2012; Bohling et al., 2012), in which
water is injected over a very short screen, which is advanced by a direct-push rig, and the
conductivity is estimated from the ratio of the injection rate over the pressure applied.

Bohling et al. (2016) presented a revised calibration of the DPIL data accounting for the
insensitivity of DPIL responses to K variations above a certain threshold. When high-K
values are encountered, injection-induced pressure changes approach the lower detection
limit of the pressure transducer, weakening the quality of the signal. In contrast, the
flowmeter measurements are particularly subject to uncertainty in low-K zones due to the
low-flow threshold of the impeller flowmeter (Rehfeldt ez al., 1992). Measurements above
(“on the right side of some threshold”, DLR) or below a threshold (“on the left side of the
detection limit”, DLL), or generally within an interval (“‘censored measurements’”) are
more uncertain than those that are not censored. Despite this uncertainty, they still provide
useful information, namely, that they reside in an interval. How to use this information is
a long-standing issue in surface and subsurface hydrology (Gilliom and Helsel, 1986; Liu
et al., 1997; Cohn, 2005). The approaches of Bardossy (2011) and Haslauer et al. (2017b)
allow the integration of censored measurements into copula-based estimation.

Tracer tests (MADE-1 and MADE-2) performed at the MADE site showed anomalous
behavior, indicating that a macroscopic description by the advection-(macro)dispersion
equation yields unsatisfactory results because the tracer plumes are skewed (Zheng et al.,
2011; Gomez-Hernéandez et al., 2017). This has fostered the development of alternative
effective transport models, such as Rate-Limited Mass Transfer (RLMT) methods (Harvey
and Gorelick, 2000), Dual-Domain Mass-Transfer (DDMT) models (Feehley et al., 2000),
Continuous-Time Random-Walk (CTRW) methods (Berkowitz and Scher, 1998), Multi-
Rate Mass-Transfer (MRMT) models (Guan et al., 2008), time-domain random-walk
(TDRW) (Cvetkovic et al., 1996; Fiori et al., 2007) and fractional advection-dispersion
equation (FADE) models (Zhang and Benson, 2008). These effective transport models
contain additional macroscopic parameters that, unlike macrodispersivities derived by lin-
ear theory, are difficult to relate to characteristics of the underlying hydraulic conductivity
field and are thus often determined by fitting simulated breakthrough curves to measured



1.1 Background and Motivation

tracer data.

Many studies have been performed at the MADE site to model the anomalous behavior of
the field tracer test result. Harvey and Gorelick (2000) used the RLMT model to describe
the interaction between the solute with the aquifer material as a linear rate-limited mass
transfer. Feehley ef al. (2000) used the DDMT to model the heterogeneous aquifer as
a mobile domain, in which the transport is dominated by advection, and an immobile
domain, in which the transport is dominated by diffusion, that are connected by a mass
transfer. Julian et al. (2001) combined the DDMT model on a multiscale K-field to catch
the large and small scale heterogeneity and modeled the MADE-3 (NAT) result. Bowling
et al. (2006) used the DDMT model on a K-field derived from the direct-current resistivity
data. Liu et al. (2008) used the DDMT model with parameter assimilation using the
ensemble Kalman filter (EnKF). Liu et al. (2010) used DDMT with a three-zone K-field
based on the DPIL observations to model the MADE-4 tracer test result. Guan et al.
(2008) used a dual-porosity transport model with an assumption that the injected tracer
was trapped hydraulically near the injection site.

Berkowitz and Scher (1998) and Berkowitz et al. (2006) used CTRW to model the plume
distribution at the MADE site. Salamon et al. (2007) showed that the modeling of the
K-field can be improved using a hole-effect geostatistical model. Li et al. (2011) used
a Laplacian-based upscaling technique coupled to a non-uniform coarsening scheme to
upscale the K-field, which is simulated using a hole-effect geostatistical model (Salamon
et al., 2007). Edery et al. (2014) combined CTRW with a particle-visitation weighted
histogram to describe the preferential pathways across each domain. Cvetkovic et al.
(2014) used a TDRW-model combining the self-consistent approximation (SCA) with K
fields that are simulated by the multi-indicator method (MIM) and showed that the travel
time distribution can not be modeled using the common distributions, e.g., log-normal
distribution or the inverse-Gaussian distribution, used for modeling hydrogeological
transport. Dentz et al. (2020) used a TDRW-model with an upscaled Lagrangian approach
to model the mass distribution of the tracer test.

Linde et al. (2015) showed the importance of the TI while using MPS to mimic the K
structure at the MADE site. Ronayne et al. (2010) used an ADE model on a hybrid K
model combining three-dimensional lithofacies on a background correlated multivariate
Gaussian matrix. Bianchi ef al. (2011) investigated the connectivity of the K-field us-
ing the transition probabilities. Bianchi and Zheng (2016) used an ADE-based model
with K fields, which are derived from the lithofacies distribution based-on a transition
probabilities model.

Benson et al. (2001) used the fADE to model the non-Fickian behavior at the MADE
site by matching the order of differentiation of the dispersive derivative to the exponent
of the plume growth process. Schumer ez al. (2003) used a fractal mobile/immobile
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model and assumed power-law waiting times in the immobile zone. Zhang and Benson
(2008) extended the fADE model in a Lagrangian framework to prevent the explicit
definition of the local-scale heterogeneity. Dogan et al. (2014) used an ADE-model with
a multiscale fractal log-normal K-field generator conditioned on the flowmeter value and
using autocorrelation functions of the DPIL observations.

Jankovic et al. (2017) and Fiori et al. (2017) used an ADE with First Order Approximation
(ADE-FOA) and showed that other sources of uncertainty, e.g., the mean velocity, are
more important than the K structure. Fiori et al. (2019) further confirmed that the non-
ergodic effects and uncertainty of parameters, especially the uncertainty of the mean
velocity, contribute to a large extent to the bias in solute transport modeling.

Barlebo et al. (2004) suggested using the inverse model to match the hydraulic head and
concentration measurements instead of the hydraulic conductivity observations. (Fiori
et al., 2013) used a local-ADE (LADE) model combining the SCA with K fields that
are simulated using MIM and showed the importance of the spatial variability of local
advection and conductivity. Diinser and Meyer (2016) used a polar Markovian velocity
process (PMVP) to reduce the computational cost of the Monte-Carlo simulation.

The local variability (Salamon et al., 2007; Fiori et al., 2013) and the heterogeneous
domain (Julian et al., 2001; Liu et al., 2010) structure are considered as key points for
the modeling of the solute transport at the MADE site. To include these two points
in the geostatistical simulation, realistic, highly resolved non-Gaussian conductivity
fields are simulated and used in spatially resolved transport simulations to improve the
understanding of the observed solute transport behavior at this site.

Previous comparisons (Bohling et al., 2012, 2016) concluded that the flowmeter and DPIL
K data display similar large-scale patterns and remarkably similar variograms, despite dif-
ferences between the marginal distributions of the two datasets. These similarities provide
compelling evidence that both datasets accurately reflect the two-point autocorrelation
structure of the K-field at the MADE site. Given the differences between observed and
simulated solute transport at the site (Harvey and Gorelick, 2000; Feehley et al., 2000),
the question naturally arises if some important aspect of the spatial arrangement of K is
missed if the analysis is constrained to the first two statistical moments and a multivariate
normal spatial dependence is assumed.

A certain aspect of the potentially missed or not described spatial structure can be captured
by the multivariate copula. Copulas were introduced by Sklar (1959), and have been
developed in insurance and financial mathematics (Embrechts et al., 2003). Copulas can
describe the properties of real-world data without imposing an assumption of multivariate
Gaussianity. Recently, they have been used to analyze hydrological and hydrogeolog-
ical problems, both in terms of spatial data (Bardossy, 2006; Bardossy and Li, 2008;
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Marcotte and Gloaguen, 2008; Kazianka and Pilz, 2010, 2011; Gréler, 2014) and time
series (De Michele and Salvadori, 2003; Favre et al., 2004; Salvadori and De Michele,
2004; Erhardt et al., 2015a,b).

Spatial copulas offer a way to describe non-multi-Gaussian spatial dependence in which
the degree of statistical dependence differs in various quantiles and varies with separation
distances (Bardossy, 2006; Bardossy and Li, 2008; Guthke and Bardossy, 2017). By using
copula-based correlograms and asymmetry functions (A), the spatial fields of interest (here
the conductivity field K(x)) can be simulated more realistically than with multi-Gaussian
geostatistical methods. In particular, multi-Gaussian fields show strong connectivity of
intermediate values that embed inclusions of high and low values due to their maximum
entropic character, whereas copula-based approaches accounting for asymmetry allow
the description and modeling of spatial fields in which low and/or high values show
better connectivity. For example, the homogeneous Borden site has been modeled using
non-multi-Gaussian copula models and it was shown that with only ten times increased
variance of the dataset, solute transport model results significantly differ between non-
multi-Gaussian and multi-Gaussian cases that otherwise (mean and covariance function)
are statistically identical (Haslauer et al., 2012). For the simulation of non-multi-Gaussian

fields, random mixing has proven to be an effective method (Bardossy and Horning,
2016).

1.2 Structure of This Thesis

The goal of this thesis is to analyze and simulate the spatial dependence structure of K at
the MADE site using copula-based methods without assuming multivariate Gaussianity.
The copula-based bivariate and multivariate geostatistical theory and methodology are
reviewed in Chapter 2. Chapter 3 presents how to simulate non-multi-Gaussian K fields
by including copula-based measures and Chapter 4 introduces the evaluation of the
longitudinal dispersivity using a particle-tracking random-walk simulation. In Chapter 5
the flowmeter and DPIL datasets at the MADE site are compared between each other
considering their univariate measures, their empirical copula-based bivariate measures,
the estimated parameters of Gaussian and v-copula models fitted to both datasets in high
dimensional spaces, including model fits accounting for data censoring. Simulated K-field
with different multi-Gaussian and non-multi-Gaussian conditional geostatistical models
and the influence of the included information on the solute transport are presented in
Chapter 6. Conclusions and an outlook are presented in Chapter 7.






Chapter 2

Copula-Based Geostatistical Theory
and Methodology

The content in this chapter contains materials published in “Xiao, B., Haslauer, C., and
Bohling, G. (2019). Comparison of multivariate spatial dependence structures of DPIL
and flowmeter hydraulic conductivity data sets at the MADE site. Water (MDPI), 11(7),
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Comparison of multivariate spatial dependence structures of DPIL and
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Status in
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In the world of geostatistics, the variable under investigation (in this thesis: the hydraulic
conductivity K) is modeled as a regionalized variable, whose distribution is assumed
as one realization of a random variable. A random variable is also named a random
field (RF) when it is distributed in Euclidean space. The properties of a random field are
described by statistical (ensemble) measures. In this chapter, basic statistical measures and
geostatistical measures are introduced in Sections 2.1 and 2.2. Then the multi-Gaussian
assumption of variogram-based geostatistics is discussed in Section 2.3. In Section 2.4, the
concepts of copula-based geostatistical measures and parameter estimation are presented.



Chapter 2 Copula-Based Geostatistical Theory and Methodology

2.1 Basic Statistical Measures

A random field Z can be described using statistical measures, e.g., the distribution function
Fz, the density function fz, etc., in the probability space P. The discrete form of the
(cumulative) distribution function Fz (CDF) of a random field Z is defined as

Fz(z) = PIZ <7, (2.1)
in which the probability P of Z in the interval between (a,b| can be calculated as
Pla < Z <Db| = Fz(b) — Fz(a). (2.2)

The continuous form of Fz(z) (Equation 2.1) and the (probability) density function f7(z)
(PDF) is written as

Fz(z) = /_Z fz(t)dt (2.3)
and i
fz(z) = d—ZFZ(Z). (2.4)

Both CDF and PDF can be estimated empirically, using a parametric distribution or using
nonparametric kernel density estimation (Chen, 2017).

The m-th moment E[Z"] and the m-th central moment E[(Z — E[Z])™]

+o0
E[Z" = / " fy(1)dt, (2.5)

—o0

~+oo

E(Z-EZ)" = [ (~E2)" f20d1 (2.6)

—o0

of the marginal distribution of a random field describe the shape of the PDF, in which
E|[] is the expected value. The first moment denoted mean value u, the second central
moment denoted variance 62, the third- and the fourth- central moments known as
skewness skew(Z) and kurtosis kurt(Z) are widely used to describe the shape of a marginal
distribution. There are various parametric distribution functions used in statistics, e.g.,
the normal (Gaussian) distribution (), the uniform distribution, etc., which can be fully
characterized by their statistical moments. For examplle, the uniform distribution in the
2

range [0, 1] has the mean y = 0.5 and variance 6~ = 5.

The multivariate joint distribution function of n random fields Zy, ..., Z, is defined as:

Fo(z1,52n) = Fz,.. 2,(215 - 20) = PlZ1 S 21 N . N Zy < 2. (2.7)

10



2.2 Variogram Based Geostatistics

P(A|B) is defined as the conditional probability of event A under the condition that event
B is true. The multivariate conditional probability is defined as:

P[Zl =z1N..NZ, :Zn]
PlZi=21 N . N Zp1 =2n1]

PZ,,(Zn :Zn|Z1 =z1N..NZ :Zn—l) = (2.8)

2.2 Variogram Based Geostatistics

The basic assumption of geostatistics is that spatially close measurements of a random
space variable are more correlated than measurements separated by a larger distance. This
spatial dependence can be described using the (semi-)variogram y(h) under the intrinsic
hypothesis assumption (Webster and Oliver, 2008), which relates the average variance of
measurements at two locations versus their separation vector h:

y(h) = Cov(0)— Cov(h); 2.9)
- %E[(Z(x—f—h)—Z(x))z]; 2.10)
~ %(h)xi—;jzh(Z(Xi)_Z(xj)){ @D

in which Cov(h) is the covariance function for a certain separation vector h and N(h) is
the number of data pairs with coordinate vectors x; and X;.

Various theoretical variogram functions are defined to model the spatial dependence
structure of a random field based on the observations, for example, the exponential
variogram (Exp(h))

||

y(h) = Cov(0)- (1 —e @), (2.12)
the spherical variogram (Sph(h))

(2.13)

y(h) = {COV(O)' [%'aﬂ - %(laﬂ)ﬂ , forlh|<a

Cov(0), for|h| >a,

and the Matérn variogram (Mat (h))

y(h) = Cov(0)- {1 - 2’<+1“(1<) ('2-') KBK <|a£|>} : (2.14)

in which a is the range, x is the smoothness parameter, I'(-) is the gamma function and
By (+) is the x-order modified Bessel function.

11
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Interpolation and simulation are two main geostatistical applications to estimate the
distribution of a random field in space. A geostatistical interpolation estimates the spatial
distribution of the conditional mean of a spatial variable based on observations and an
(assumed) variogram. Kriging (Delhomme, 1978) is one of the widely used geostatistical
interpolation methods, in which the variogram-based estimation variance is minimized
while guaranteeing unbiasedness. While the estimated mean is mainly influenced by
the measurement values of the closest observations, the estimation variance depends
only on the distance to the observation points. However, the Kriged values represent
the interpolated random field as a conditional mean based on the observations. The
variabilities corresponding to different scales are normally underestimated. Therefore,
when the Kriged field is used for a further modeling investigation, the unresolved fine-
scale variability can affect the macroscopic properties of the modeling process. So a
Monte-Carlo (MC) geostatistical simulation method is preferred to perform a stochastic
analysis to include the data uncertainty in the model (Deutsch and Cockerham, 1994).
Each simulated field describes one possible realization of the investigated random field.
The probability of the spatial distribution of the unknown “Truth” is described using the
ensemble properties of the realizations.

Unconditional and conditional simulations are two groups of geostatistical simulation
methods according to the included information. An unconditional simulation reproduces
the marginal distribution and the spatial dependence structure using the variogram. A
conditional simulation meets also the data of the primary or secondary variable at certain
locations (Chiles and Delfiner, 2012), which comes at additional computational costs.

Figure 2.1 shows a comparison between the unconditional and the conditional simulation
to model the reference “truth” with mean value u = 0 (Figure 2.1A). The unconditional
simulation generates realizations with an equal pixel (point) probability (Figure 2.1B).
Each point has the same distribution function and ensemble point statistical measures,
e.g., mean, variance, and so on, which equal the univariate measures of the observations.
So, the mean value (black dashed line) of all realizations is a straight line centered at
zero. This property is changed in the conditional simulation. The simulated values are
strongly influenced by the nearby conditional points upon conditioning (Figure 2.1C and
D), which means that the point-based probability space of the simulated realizations is
drifted and varies in space. Local features based on the corresponding conditional points
are generated, although the marginal distribution is not changed. Under these conditions,
the ensemble mean values (black dashed line) at the locations close to a conditional point
can present the reference “truth” better than at the locations far away from a conditional
point. This is important when a physical process, which depends on the distribution of the
investigated variable, is dominated by local features of this variable, e.g., the preferential
paths in the solute transport modeling. In this case, the important local features of the key
parameters are eliminated in a stochastic analysis using an unconditional simulation due
to the over-averaging effect.

12



2.3 Gaussianity, Heterogeneity, and Variability

This thesis focuses mainly on the data-driven geostatistical conditional simulations of
K fields based on the K observations. Other methods, like training images (T1) based
multiple-point geostatistics (MPS), are not discussed in this thesis.

254 A

0.0 \/\’JW
2.5

2.5

0.0
-2.5

0 20 40 60 80 100
x1[m]

Figure 2.1: A comparison between unconditional and conditional simulations. A) The
reference “truth” of a one-dimensional random field. B) Realizations of the unconditional
simulation. C) Realizations of the conditional simulation using one conditional point (the
red point). D) Realizations of the conditional simulation using three conditional points
(red points). The black dashed lines represented the average values of all realizations at
every location.

2.3 Gaussianity, Heterogeneity, and Variability

In classical stochastic subsurface hydrology, the distribution of a long-tailed K-field
is often assumed to be log-normal. That is, the K-field has a multivariate Gaussian
distribution after performing a logarithm transformation. This multi-Gaussian assumption
is implicitly included in standard variogram-based geostatistical simulations. The degree

13



Chapter 2 Copula-Based Geostatistical Theory and Methodology

of variability of a K-field is usually described by the variance ¢ of In(K). The variability,
which is caused by the departure from multi-Gaussianity, are normally neglected. For
given first- and second-central moments, a multi-Gaussian random field has the maximal
entropy and the largest disorder in the system (Journel and Deutsch, 1993). G6émez-
Hernandez and Wen (1998) showed that this multi-Gaussian assumption underestimates
the spatial connectivity of extreme high and/or low values, which is important in the
modeling of solute transport in heterogeneous systems exhibiting preferential flow paths.
In the following parts of this section, some details of the multi-Gaussian assumption are
discussed.

2.3.1 Univariate Marginal Distributions

150 -
- A 064 B
3 100 —
< - 0.4 1
-] Y
(o
o 50 -
e 0.2 -
0 T T T T 0.0 I T T T
0.0000 0.0001 0.0002 0.0003 -14 -12 -10 -8
K [m/s] In(K[m/s])
0.4 - 1.00 A
C D
0.3 - 0.75 -
~ 0.2 1 - 0.50 -
0.1 4 0.25 +
4 |
0.0 T T T T T 0.00 T T T
—4 -2 0 2 4 0.0 0.5 1.0
Foo(KIm/s]) Fz(KIm/s])

Figure 2.2: Influence of different transformations on the marginal distribution. A) His-
togram; B) PDF after the log-transformation C) PDF after the QQ-transformation and D)
PDF of the dataset in F(K) space.
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Typically, the K-field has a long tail univariate distribution function in a natural aquifer.
A convenient way to account for that is to assume that the log-conductivity field is
(multi)-Gaussian (Freeze, 1975).

There are, however, also other approaches available to transform the data of a long-tailed
distribution to a quasi-Gaussian distribution. The quantile-quantile (QQ) transformation

Fop = F; ! (Fi2(z(x))). (2.15)

varies the data of a marginal distribution F} ; to a new marginal distribution F, ;. When
F, ; is a normal distribution, it is also called the normal-score transformation or Gaussian
anamorphosis. Zhou et al. (2012) and Schniger et al. (2012) use the normal-score
transformation to enhance the performance of the ensemble Kalman filter method.

Figure 2.2 shows how the shape of the marginal distribution of a homogeneous dataset
(Figure 2.2A with 62(In(K[m/s]) = 0.39, (Sudicky, 1986)) is changed after the log-
transformation (Figure 2.2B), the QQ-transformation (Figure 2.2C), and transformed in
the rank space (Fz) with Equation 2.4 (Figure 2.2D).

2.3.2 Bivariate Spatial Dependence

The transformed marginal distributions in Section 2.3.1 change how a random field looks
like in space. Figure 2.3 shows the pseudocolor plots (A1-D1) and bivariate scatter
plots (A2-D2) of the corresponding marginal distribution in Figure 2.2. The transformed
marginal distributions determine the empirical variogram model (Equation 2.9) and
further influence the fitted theoretical variogram model (Chapter 2.2). However, all
transformations in Figure 2.3 are monotonic, which means that the relationship between
two values in the rank space is not changed after the transformation. Therefore, the
statistical properties are changed only in the value space but are constants in the rank
space. The spatial dependence of a random field in the rank space is defined as the
underlying spatial dependence structure. The underlying spatial dependence structure of
the random fields in Figure 2.3A1-D1 would be identical. In the same way, random fields
with an identical variogram can have different underlying spatial dependence structures,
1.e., multi-Gaussian or non-multi-Gaussian, which are reflected in a different spatial
arrangement of the K values in the rank space.
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Figure 2.3: Pseudocolor plots of random fields with different marginal distributions (A1-
D1), and bivariate plots of same data pairs with different marginal distributions (A2-D2).
The corresponding margins from left to right are A) in the original value space, B) in a
log-transformed space, C) in a QQ-transformed space D) in distribution function (Fz)
space.
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Figure 2.4: Contour plots of random fields with an identical variogram and marginal
distribution and A) a multi-Gaussian; B) a non-multi-Gaussian spatial dependence struc-
ture C) a non-multi-Gaussian spatial dependence structure with a local feature on the
middle of the domain. The white cross signs are the locations with conditional points.
The corresponding indicator plots of D) the multi-Gaussian; E) the non-multi-Gaussian
random field F) the non-multi-Gaussian spatial dependence structure with a local feature
on the middle of the domain (black box).
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A useful tool to show the difference between the underlying spatial dependence is the
indicator plot. The values are sorted and categorized according to one or more thresholds.
The points in the same category are assigned to the same value. Figure 2.4 shows the
pseudocolor plots (Figure 2.4A and C) and the indicator plots (Figure 2.4B and D) of
two random fields with an identical variogram and marginal distribution but different
underlying spatial dependence. The thresholds used to generate the indicator plot are

0<F;,<0.1 NI(Fz)
0.1<F;,<09 N](Fz)
09 < F;< 1.0N1(Fz)

0;
0.5; (2.16)
I;

and are used as the default thresholds in the following parts of this thesis. It is obvious
that in Figure 2.4E the large values (“orange blobs”) are more likely to be arranged
together than in Figure 2.4D. The solute transport characteristics based on these two K
fields would be expected to have different behaviors, which are caused by the degree of
non-Gaussianity of the K fields.

It is even more complex when a local feature of a K-field exists (Figures 2.4C and F).
For example, two blobs of large values are connected by this high K-values pathway
in the black box. The hypothesis is that the solute behavior in this K-field would be
strongly influenced by the degree of Gaussianity and this local feature, especially when
the injection point is located in this area, which means that an unconditional simulation
with a given mean and variogram is not enough to describe the difference between the
random fields in Figure 2.4. To model such a K-field, more information must be extracted
from the observations and included in a conditional simulation as discussed in Figure 2.1.

2.3.3 Multivariate Gaussianity

N-point Gaussianity of a random field can be tested using n-point correlations in the
rank space. Observations are sampled by triangles and squares (Bardossy and Pegram,
2009). The combination of n-point around the vertex of triangles and squares are classified
according to the defined threshold in the rank space between (0, 1). Figure 2.5 shows
a conceptual plot of this methodology with a threshold of 0.5, in which z(x)" = 0 when
z(x) < 0.5 and z(x)’ = 1 when z(x) > 0.5. For an n-point correlation with the number of
thresholds 7y, there are nj, - different combinations. For example, triangles have 3-
point combinations of (0,0,0), (1,1,1), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), and
(1,1,0). Figure 2.6 presents the ratio of the number of each 3- and 4-point combination
on the random fields in Figure 2.4A (left column) and B (right column). A different
composition can be found on a multi-Gaussian (left column) and on a non-multi-Gaussian
(right column) random field. The compositions in Figure 2.6 can be further evaluated
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using measures like entropy.
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Figure 2.5: Conceptualization of the evaluation of n-point spatial dependence structure.
3-point: red triangles; 4-point: red squares; tolerant range for the point selection: green
cycles.
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Figure 2.6: Ratio of the number of each n-point combination of 3-point (first row) and
4-point correlations (second row) of the random fields in Figure 2.4A (left column) and B
(right column). Each color presents the ratio of one possible 3- or 4-point combination.

2.3.4 Variability

As discussed in the above sections, the variability of a random field is influenced by
various control parameters, e.g., the variogram of the marginal distribution, the kind of
multivariate distribution, the degree of non-Gaussianity, and important local features. In
practice, the variability of a K-field and its influence on solute transport is controlled by
several of these parameters. Therefore, the “variability” is defined in this thesis as a K-field
with long-tail marginal distribution, non-multi-Gaussian underlying spatial dependence
structure, and important local features. To model such K fields, copula-based geostatistical
methods (see Section 2.4) are used to quantify the deviation from Gaussianity of a random
field. In Chapter 3, a copula-based conditional simulation method is introduced that
includes various types of information from K measurements in one simulation to simulate
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realizations of K-field.

2.4 Copula Based Geostatistics

A copula C is a multivariate distribution function on the n-dimensional unit cube with
uniform marginal distributions (Joe, 1997). It is inherent to any n-dimensional joint
distribution function Fz, . 7, by replacing the values of the individual variables with their
marginal cumulative probabilities Fz,(z;)

C: [0, l]n — [0,1]
Fz,..7,(21,..,20) = C(Fz,(21), ..., Fz,(2n)) (2.17)
=C(uy,...,un),

in which u; = Fz/(z;) is the value in the copula space. Then the density function of a
copula c(uy, ..., u,) can be calculated from the copula C

_ IC(uy, ... uy)

c(uy,...,up) .o (2.18)

A copula describes the multivariate dependence structure independent of the margins
(Equation 2.17). It is invariant to monotonic transformations of the marginal distribution
(Sklar’s theorem). Therefore, a copula is not influenced by all transformations discussed
in Section 2.3.1, including the log-transformation.

The spatial dependence structure of random space functions can be evaluated using a
spatial copula C;

Cs(uy,...up) = C(F;(z(x1)), ..., Fx(z(Xn))), (2.19)

which describe the n-point dependence structure in space as the variogram in Equation 2.9.
A bivariate spatial copula can be written as (Bardossy, 2006):

Cs(h,u1,uz) = PIF;(2(x)) <, Fo(z(x +h)) <ug] = C(F(2(x)), Fz(2(x+h))), (2.20)

in which h is the separation vector between two points, u; = Fz(z(X;)) is the value of the
cumulative distribution function F;(z(x;)) of the data value z(x) at location x in copula
space.

Details of copula theory can be found in (Joe, 1997; Nelsen, 2000; Joe, 2014) and
will be not be repeated in this thesis. In Section 2.4.1, the empirical bivariate copula
measures are presented, which are used to describe the bivariate spatial dependence in
this thesis. Theoretical spatial copula models for the high-dimensional spatial dependence
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are introduced in Section 2.4.2. In Section 2.4.3, the copula parameter estimation with a
censoring threshold is presented.

2.4.1 Bivariate Measures of the Spatial Dependence Based on the
Copula

Data-based descriptive summary measures of the copulas can be evaluated to compare
different measures. Examples of such measures are the empirical bivariate copula density
cs, the copula-based rank correlation ps, and the copula asymmetry A, which indicates
the degree of the deviation from symmetric Gaussian dependence, all of which evaluated
for different lag distances. These empirical measures are based on data and are used to
explore certain characteristics of two-point spatial dependence structures in rank space,
which means that the influences of extreme values are removed. The kind of dependence
can be inferred and the similarity of the spatial dependencies between datasets can be
quantified using these measures.

Empirical Bivariate Copula Density

The empirical bivariate copula density ¢; of n observations z(xy),...,z(Xn), with coor-
dinate vectors Xy, ...,Xp 1s defined as the bivariate probability density of the set of data
pairs S(h) with separation vector (lag distance) h (Bardossy, 2006):

S(h) = {(F(z(x:)), Fx(2(x:)))[xi —=x; = hoor x; —x; ~ h}. (2.21)

As with the variogram computation, a lag tolerance can be introduced and data pairs with
separation distances falling within the same bin (nominal lag plus or minus the tolerance)
are used to represent that nominal lag. Equation 2.21 can also be applied in the anisotropic
case when the spatial structure varies significantly with direction. In this case, the data
pairs are grouped according to both the magnitude and the direction of h.
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Figure 2.7: Pseudocolor plots of the empirical copula density of A) a multi-Gaussian and
B) a non-multi-Gaussian random field.

A copula density ¢ can be visualized using a color plot (Figure 2.7) to evaluate the
information of dependence structures provided by the distribution of the data pairs u; =
u(x;) = F;(z(x3)) and u; = u(x;) = F;(z(xj)) for a certain lag distance h and has the
following properties:

1. The data pair (u;,u;) and the data pair (u;,u;) belong to a same S(h). So, it is
symmetric about #; = u; in a non-directional spatial dependence structure.

2. ¢, presents more information of data pairs regarding the relationships among data
pairs than a summary measure such as the variogram, which is an average measure
of variability between all data pairs with a separation distance of approximately h.
When pu(Fz) = 0.5 is defined as a threshold of large and small values. Besides the
data pairs with both u; = 0.5 and u; = 0.5, S(h) can be classified in four groups
S(h); according to their values in the copula space:

S(h); :u; <0.5&u; < 0.5 (2.22)
S(th)y:u; >0.5&u; > 0.5 (2.23)
S(h)z :u; <0.5&u; > 0.5 (2.24)
S(h)g:u; >0.5&u; <0.5. (2.25)

S(h); are plotted near the origin (0,0) and S(h), are plotted near the upper right
corner (1,1) of the unit square. S(h); and S(h)4 are plotted near the upper left
corner and the lower right corners.
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3. In the case of no dependence, c, has a flat structure. If there is a strong dependence
structure. Areas with a high density and areas with a low density can be found in
the plot.

4. A multi-Gaussian dependence (Figure 2.7A) has the same proportion of S(h); and
S(h);. In contrast, a non-multi-Gaussian dependence (Figure 2.7B) has asymmetric
densities on the lower left and on the upper right side.

5. A sequence of copula density plots for different lags provides a representation of
the spatial dependence structure along the separation distance.

More details of the bivariate copula density can be found in Guthke (2013).

Rank Correlation
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Figure 2.8: Contribution of variogram Y (blue square) and copula rank correlation ps (red
rectangle) of data pairs (blue dots) A) S (h); and S (h), B) S (h)3 and S (h)4.

The copula-based second-order central moment rank correlation ps (Haslauer et al., 2012)

ps(h) = ]%Xigj%h(u(xi) —0.5) (u(xj) —0.5) (2.26)

can summarize the empirical copula density ¢y quantitatively, in which N (h) is the number
of data pairs for the lag distance h.
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The behavior of py is similar to the behavior of a normalized covariogram Cov(h) =

1-— % For very short lag distances, ps is unity, and it decreases until it reaches zero,
indicating a lack of correlation between data pairs separated by a sufficiently large distance.
However, since p; is in the copula space, it is less influenced by extreme values. Figure 2.8
shows the corresponding values of the variogram (blue square; Equation 2.9) and the rank
correlation (red rectangle) of different types of data pairs in the copula space. A data pair
always contributes a positive term in the variogram, which only depends on the difference
of these two points. Data pairs S(h); and S(h), (Figure 2.8A) contribute a positive term
in p, and data pairs S(h)3 and S(h), (Figure 2.8B) contribute a negative term in ps. A
data pair away from the center point (0.5,0.5) has a larger positive or smaller negative
weight than a data pair close to the middle point (Figure 2.8).

The rank correlations of some well-known K datasets have been calculated, including
those from Borden, Canada (Sudicky, 1986), Cape Cod, USA (LeBlanc et al., 1991),
North Bay (NB), Canada (Sudicky et al., 2010), and the MADE site, USA (Boggs et al.,
1992; Bohling et al., 2016). All these datasets exhibit similar second-order dependence
with different ranges (Figure 2.9)
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Figure 2.9: Correlograms versus separation distance for common datasets in stochastic
hydrogeology.
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Asymmetry
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Figure 2.10: Pseudocolor plots of the contributions of different data pairs in A) Asymmetry
in Equation 2.28; B) Asymmetry in Equation 2.29 C) variogram in Equation 2.9, and D)
rank correlation in Equation 2.26

The copula density of a multi-Gaussian spatial dependence structure is symmetric for all
separation distances. So the “degree of Gaussianity” of a spatially distributed variable
can be quantified by the deviation of the copula density of a dataset from a symmetric
(standard normal) copula density. This measure is defined as the third-order spatial
measure asymmetry (A) in copula space, which is either based on data or a theoretical
model (Haslauer et al., 2012):

A(h) = N(h) Alu(x;),u(x;)), (2.27)

xj—x;j~h

in which N(h) is the number of data pairs within a certain range centered about the
separation vector h and A (u(x;),u(x;)) is the contribution of an individual data pair to
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the asymmetry A. The empirical asymmetry A used in this thesis is defined as (Haslauer
etal., 2012):

A (), (7)) = ((u(x0) —0.5)? (u(x5) —0.5)) +
2

(2.28)
((u(xi) —0.5) (u(x;) — 0.5) ) .

A(S(h)3) +A(S(h)4) = 0. So, the asymmetry in Equation 2.28 shows the difference
between the densities of data pairs A(S(h);) and A(S(h),) , i.e., data pairs with both small
values and both large values, on the two sides of the line u, = 1 —uy, the line from the
upper left corner to the lower right corner of the bivariate density plot. This property
can be used to reduce the computational cost of the empirical asymmetry by calculating
A(S(h);) and A(S(h),) and drop A(S(h)3) and A(S(h)4). As an example, for a four-point
combination with the corresponding values z = (0.1,0.2,0.8,0.9), the required number
of data pairs to calculate is reduced from 6 to 2.

Depending on the properties of the dataset, an asymmetry can be defined in different ways.
Another type of asymmetry is the directional asymmetry (Bardossy and Horning, 2017):

A (u(x3),u(x))) = (u(xs) —u(x))’, (2.29)
in which A(S(h)) = —A(S(—h)).

For a conceptual visualization of the represented information, Figure 2.10 shows the color
plots of the values of different bivariate measures in the copula space and presents the cor-
responding values of different data pairs from the data. The asymmetry in Equation 2.28
(Figure 2.10A) calculate mainly the difference between A(S(h);) and A(S(h),) and the
asymmetry in Equation 2.29 (Figure 2.10B) calculate mainly the difference between
A(S(h)3) and A(S(h),). The variogram in Equation 2.9 has nonnegative values in the
whole space, in which the data pairs A(S(h)3) and A(S(h)4) close to the corners have
large values. In contrast, the rank correlation in Equation 2.26 presents the difference
between A(S(h);), A(S(h),) and A(S(h)3), A(S(h),). Different measures extract different
information from the data. The selection of the bivariate measure in practice depends on
the properties of the dataset and the properties of the process relying on the dataset.

The asymmetry can be calculated for various separation distances. A positive asymmetry
indicates stronger dependence among larger quantiles than smaller quantiles and negative
asymmetry indicates the opposite. Depending on the correlation, a typical value of A in
Equation 2.28 is between —0.03 and 0.03. As a special case, a perfectly multi-Gaussian
dependence has equal dependence in both high and low quantiles and is symmetric about
the line up = 1 —u;. The value of A in this case is zero along the lag distance. Thus,
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a value of A that is consistently different from zero is evidence for the existence of a
non-Gaussian dependence structure.
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Figure 2.11: Asymmetry (A) of the hydraulic-conductivity copula as a function of the
normalized lag-distance at the Borden site (Sudicky, 1986), the North-Bay site (Sudicky
et al., 2010), the MADE site (Boggs et al., 1992; Bohling et al., 2016), and in the study
of Boisvert and Deutsch (2011). The lag distance is normalized by the range of the
variogram.

Asymmetry is typically occurring as a consequence of diffusive processes (Guthke and
Bardossy, 2017). In practice, a spatially distributed dataset can exhibit both positive
and negative asymmetry depending on the separation distance, and the zero-line may be
crossed. This has been observed in many hydrogeological datasets. Figure 2.11 shows the
asymmetry function of hydraulic conductivity at some of the best-studied sites worldwide.
Varying values of asymmetry describe a varying dependence structure, indicated by a
varying degree of dependence in varying quantiles. For example, large and small values
could be connected differently, indicating different types of non-Gaussianity. For more
background on copulas and their asymmetry, please refer to Bardossy and Pegram (2009);
Sugimoto et al. (2016); Guthke and Bardossy (2017); Horning and Bardossy (2018).
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2.4.2 Theoretical Spatial Copulas

This section presents a summary of theoretical spatial copula models: the Gaussian copula
and the v-copula and shows how to estimate the parameters from a dataset. A spatial
copula model must satisfy certain conditions beyond those required in a non-spatial
multivariate context. As defined by Haslauer et al. (2012), these additional conditions are:

1. The bivariate spatial copula depends only on the lag vector h between observations
and is independent of the location of the observations (assumption of stationary).

2. An n-dimensional spatial copula can be built using any n-point subset of the obser-
vations and describes the spatial dependence among these observations.

3. An arbitrarily strong dependence has to be modeled.

A spatial Gaussian copula Cy ¢ and the corresponding Gaussian copula density ¢ ¢ can
be constructed from the n-dimensional multivariate Gaussian distribution ®,, with a
covariance matrix I', and its margins ®(u;) (Haslauer, 2011):

Cs7<1><u17 7un) = (I)n<q)_l (ul)a qu)_l (”n)) (2.30)

and

Csp(Uly ey lly) = (—E(Q;I)T(r,;l -Dd, ). (2.31)

Different copula models for non-multi-Gaussian spatial dependence have been developed,
including the v-copula and the maximum Gauss copula (Haslauer et al., 2012), among
others. The v-copula model is used in this thesis, which is based on a non-monotonic
v-transformation f, (Y, m, k.) of a standard normal variable Y:

kc(Yj - mc), iij Z me

me—Y; otherwise,

Xj= fi(Yj,meke) = { (2.32)

in which m,., k. € R are the two model parameters of the v-transformation and X is the
v-transform of an n-dimensional normal random variable Y : ©(0,I") with mean vector
0 and covariance matrix I'. When m, > 3, the v-copula approximates a multi-Gaussian
model. The reverse form of the v-transformation can be calculated using ®~!(1 — Fz(z))
as the input value to simulate a higher correlation within small values. Figure 2.12 shows
how a multi-Gaussian random field is changed by a v-transformation with m. = 1.0
and k. = 2.0. The order of the data in the rank space is not consistent anymore after
the v-transformation (Figure 2.12B). This non-monotonic v-transformation transforms
not only the marginal distribution from a symmetric distribution to a nonsymmetric
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distribution but also how the random field looks like in space (Figure 2.12C-F). Before the
v-transformation, large values (orange blobs) and small values (blue blobs) have a similar
character in the random field (Figure 2.12E, orange and blue blobs with equal size). The
large values in the v-transformed random field are more close to each other than the small
values (Figure 2.12F, orange blobs are larger than blue blobs). This v-transformed field
can be used to model a non-mullti-Gaussian K-field with different behavior between large
and small K-values.

— Y (Z)
0.4 1A —
N
% 0.2 1
0.0 1— JI !
-3 0 3
z
B

Figure 2.12: A) A normal density function before (Y(z)) and after (X(z)) the v-
transformation with m. = 1.0 and k. = 2.0; B) The scatter plot between Y(z) and X(z);
C) Spatial distribution of F;(Y(z)) and D) spatial distribution of F,(X(z)); E) Indicator
plot of F;(Y(z)) and F) F,(X(z)).

The v-transformed marginal distribution function Fz(x) and marginal density function
fz(x) can be calculated using (Haslauer, 2011):

Fz(x) = q:(kﬁ Fmg) — D(—x—me) (2.33)
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and

fz(x) = klc¢(k£c)+¢(—x—mc). (2.34)

The v-transformed multivariate distribution function F;, and f,, can be calculated us-
ing (Haslauer, 2011)

2;171

F(xt, ) = Y (= 1) E00@ (g + m) (2.35)
i=0
and
Falx1, .. xn) :;znf [;ﬁxp(—l((:,-—km)Tl"_l(Ci—km))} (2.36)
VR [T 5 Tt 2 !
in which . .
&= (b((=1)") - x1,000,b((—1)") - x0), (2.37)
n—1
i=Y 2, (2.38)
j=0
—1 if(-1)i=-1
b= . 2.39
{% if(—1) =+1. (239

Then the v-copula density cy, can be calculated from the joint multivariate density
function f,(x) and the marginal density function f(x) using (Haslauer, 2011):

Con (U1, tty) = Sn(x1, -+ Xn) (2.40)

B H?:lfi(xi) .

The maximum likelihood (ML) based approach described in Bardossy and Li (2008) is
used in this thesis to estimate the Gauss- and v-copula model parameters. The dataset S is
separated into w small subsets S,,, each with n(S,,) data points and n(S,,) > 2, because of
the complexity of the computation. Then the correlation matrix I's, for each subset is

calculated as —
s, = ((st,.,swj ) ) : (2.41)

in which RSWWSWJ is the correlation function, which depends only on the vector h =

Xs, — Xs,, .. This correlation function can be calculated by superposition of one or more
i J

w

correlation functions as

Rs,.s,,(h) = Y ioDerk(h,ar) with Y & oD =1, (2.42)
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in which r¢(h, ay) is the correlation function related to the k-th theoretical variogram, Dy
is the weight of the correlation function and a; is the range of the correlation function.
The likelihood for each subset can be calculated from the corresponding copula density
with parameter vector 8 (Equation 2.43)

cs(Sy, 0) = cs(Fn(Z(xSW1 ), ...,Fn(Z(xSWn ), 0) (2.43)

(Sw)

and

w
L(6|Z(x1),....Z(xn)) = [ ] c(Sw, @) — max. (2.44)
w=1

The likelihood L(0|Z(xy),...,Z(x,)) in Equation 2.44 is maximized by varying 6. This
process is repeated several times to reduce the influence of the choice of the subset.
Finally, the average value of all estimation results is calculated, yielding the estimated
copula parameters m, and k..

2.4.3 Theoretical Spatial Gaussian Copula with Censored
Measurements

To take censored data into account, censoring thresholds between 0 and 100 percentage in
CDF space are defined as input parameters. The probability space is split into two parts
for a one-side censoring threshold or three parts for a two-side censoring threshold. If
the threshold represents an upper limit, data values below the threshold are considered
crisp and those above it to be censored, and vice versa if it represents a lower limit. Then
a two-step maximum likelihood parameter estimation is performed.

The first step is the calculation of the cumulative distribution function using the kernel
density estimation method. While calculating the likelihood function, the values of the
probability density function for the censored data are replaced by the area of the part below
the lower threshold Fz(DLL) — Fz(0) or the area of the part above the upper threshold
1 — Fz(DLR) (Haslauer et al., 2017b).

The second step is the copula parameter estimation. The values of the censored data are
replaced by the conditional copula density based on the crisp data (Bardossy, 2011). Then,
the likelihood function can be written as

Wi %)
L(8|Z(x1),...,Z(x,)) = (H cs(swl,e)> : (H cS(SW2,9)> , (2.45)

W1:1 W2:1

in which w is the subset with only crisp data, and w, is the subset with both crisp and
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censored data.

32



Chapter 3

Copula-Based Geostatistical
Conditional Simulation

The goal of the copula-based geostatistical simulation methodology in this thesis is to
incorporate different types of univariate point measures, and second-order two-point
spatial measures, namely the variogram and the asymmetry of the two-point copula, all
derived from the available K observations, in a unifying stochastic model. A key point to
achieve this goal is to include the measure of Gaussianity in a three-dimensional simulation
by an efficient computational algorithm. When a copula-based parameter interface is
available, (Gaussian copula, v-copula (Chapter 2.4) or maximum Gauss copula (Haslauer
et al., 2012)) parameter estimation can be performed on the observations to get the
required parameters for the simulation. Bardossy and Horning (2016) include the v-
copula in the random mixing algorithm by using the v-transformation (Equation 2.32) for
inverse modeling of groundwater flow. Li (2010) used the sequential Gaussian simulation
to calculate the conditional copula with the corresponding parameterized copula model
for a conditional simulation. One disadvantage of this group of methods is that there is
a limited number of theoretical copula models that cannot describe all possible kinds of
non-multi-Gaussian dependence structures that might exist in the real world. Data-based
empirical measures can describe certain properties in data with the disadvantage that they
are not a full model and are computationally more intensive. Hérning and Bardossy (2018)
use the phase-annealing (PA=Phase randomization + Simulated Annealing) algorithm
to simulate realizations that exhibit the prescribed empirical measures (asymmetry in
Section 2.4.1). Lauzon and Marcotte (2019) include the asymmetry in the Fast Fourier
Transform Moving Average-simulated annealing (FFTMA-SA) for the calibration of a
random field. The theoretical background of the phase-annealing method is introduced in
this chapter and it is applied to the K-field simulation at the MADE site in Chapter 6. A
brief introduction of the Simulated Annealing (SA) method is presented in Section 3.1.
Then PA is introduced in Section 3.2. Section 3.3 and Section 3.4 show how to include the
Gaussianity in phase-annealing with v-transformation and the FFT-based method. At the
end of this chapter, some related computational aspects of PA are discussed in Section 3.5.
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3.1 Simulated-Annealing with Asymmetry

The simulated-annealing method was first used in statistical mechanics to model the
interaction of a many-body system. Later it has been widely used as a tool for global
stochastic optimization of large combinatorial problems (Kirkpatrick et al., 1983) and
extended to model a spatial image (Geman and Geman, 1984).

A SA implementation for the simulation of a spatially distributed random field typically
consists of the following steps:

1. setup an initial status of the random field as the start point of the annealing iterations,
2. a perturbation mechanism to update the current status (RF perturbation),

3. an objective function (obj) to calculate the distance between the current status and
the required status,

4. acceptance or rejection of the current perturbation.

SA is flexible to solve various problems and can include a variety of objective functions.
One disadvantage of SA is the high computational cost when many iterations are needed
or the perturbation/updating mechanism of the objective function requires large com-
putational resources. In geostatistical simulations, the updating of the variogram and
asymmetry cost much computational time, especially for a three-dimensional simulation.
Deutsch and Cockerham (1994) showed a method that reduces the computational cost of
variogram updating by swapping pairs of point values as the perturbation mechanism. The
variogram %, (h) after the point swapping is not calculated fully in each step 3 but up-
dated from ¥,;,(h) by treating the variogram contributions of the swapped points (Deutsch
and Cockerham, 1994):

Trew() = Yora (h) — [2(x+h) —z(x)]* + [z(x +h) —Z' (X)), (3.1)

in which z(x) is the value before swapping and 7' (x) is the value after the swapping. In the
case of asymmetry, the distribution function F7(x) is constant during the point swapping.
So the perturbation mechanism can be extended to update the asymmetry A,,,, from the
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Aola:

) (3.2)
1
2

in which F;(x) and F/(x) are the distribution function values before and after the swapping.
A non-multi-Gaussian random field can be simulated with asymmetry using SA as in
Algorithm 1.

3.2 Phase-Annealing

Phase-annealing (Horning and Bérdossy, 2018) is a modified variant of SA and uses phase
randomization as the perturbation mechanism.

3.2.1 Phase Randomization

The advantage of the SA method is its flexibility to combine different types of the
objective function and disparate sources of data in one optimization process (Deutsch
and Cockerham, 1994). The direct observations of the random field at observation
points, in SA are set as fixed points during a conditional simulation to obtain realizations
matching the observations. This could lead to a non-harmonic structure between the
conditional point and its neighboring points. Horning and Béardossy (2018) discussed the
effect of these singularities and suggested replacing the original point-swap perturbation
mechanism with the phase randomization (PR) method in the Fourier space.

The Wiener-Khinchin theorem connects the covariance function Cov of a random process
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Algorithm 1: Simulated-annealing with asymmetry.

Result: RF,,; with the required properties
initialization;
the initial status of the RF is a white noise random field ®(0, 1) ;
while Ni < Nyay iter1 and obj > 0bj,, do
T Ty- T,
while Ny < Nyay iter2 and obj > 0bj, do
RF perturbation by point swapping;
Y(h)new(Z(x),Z(x+h)) < update variogram ;
A(h)yen (Fz(x), Fz(x+h)) < update asymmetry ;
0b jnew <— update objective function;
if 0D jyevy < 0D jpes then
‘ 0bj70bjbest «— Objnew;
else if random(0,1) < Puccepi (0D ], 00 jnew, T) then
| 0bj < 0b jnew;
else
‘ reject current perturbation;
end
Ny +— Ny +1;
end
N < N1+ 1;
end
RF,,; < transform to the required F ;

update annealing temperature with the cooling ratio T4 ;

36



3.2 Phase-Annealing

and its power-spectral density S in the Fourier space:

(o)

Covxx(T) = / Sxx (f)e? df. (3.3)

The discrete Fourier Transform (TF) and its inverse (TF~!) of a one-dimensional spatial
variable Y with N values are defined as:

N-1 2Ti
Fy = TF(Y)= r;)yn exp | =5 kn ), (3.4)
1 Nl 27
—1
Vo = TF (FY> = N kZOFY’k exXp (Wkn> 5 (35)

in which Fy  is the k-th term of the Fourier coefficient in the Fourier space, yj, is the n-th
term of Y and i is the imaginary unit. The power-spectral density Sy ; and phase angle v
of one Fourier coefficient Fy ; can be defined as:

1 _
Sk = ]WFY,kFY,k (3.6)
v, = arctan(Im(Fy),Re(Fy)) (3.7

in which (-), Im(-), and Re(-) are the complex conjugate, imaginary component, and real
component of a complex argument, respectively; S is the spectral power (or squared
amplitude), and y; is the phase angle. The spectral power Sy, after shifting a phase angle
Vi to v is identical to the spectral power before shifting the phase angle:
(S0)* =Re (S -exp(—i-y))* +Im (8¢ -exp(—i-yg))’
= (S~ cos(—y;))* + (S - sin(—yg))? (3.8)
=S5

The contribution of a spectral power Sj in the spatial domain is:

AY (y) =2- ]%]Re (Sk(w) -exp (%kn)) . 3.9

The updated value Y* can be calculated as (Horning and Bardossy, 2018):
Y*=Y—-AY(y)+AY (y"), (3.10)
in which AY(y) is the current contribution of the selected phase and AY (y*) is the

contribution of the selected phase after randomly shifting the phase angle. When the
phase angle y; is shifted uniformly between [0,27], Y can be updated by keeping Sy as a
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constant, which means that the two-point covariance function is not changed. This method
is called phase randomization (PR) and can be extended to n dimensions.

3.2.2 Objective Function in Phase-Annealing

Phase randomization brings two changes in the simulation process:

1. The power spectrum of a random field remains untouched when the phase spectrum
is updated. So, the two-point covariance is not changed during the annealing
iterations (Equation 3.8). When a random field with the required variogram is used
as the initial status, the variogram term can be removed from the objective function.
In this thesis, a multi-Gaussian random field is simulated first as the input field of
PA because it is computationally efficient, but this is not compulsive.

2. PR is a global update method, which means the values of the entire domain are
changed during each annealing iteration. So the conditional points can not be set as
fixed points and need to be included in the objective function. And the asymmetry
can not be updated directly using Equation 3.2.

Different types of information can be included in the simulation simultaneously: the
measurement values at a set of measurement locations (“point or pixel values”), the order
within a set of measurements at another non-colocated measurement locations (“orders of
the point or pixel values”), and some measures for the spatial dependence structure, that
might be different from second-order measures, e.g., asymmetry A as metric of non-multi-
Gaussianity. The simulation problem can be treated as a multi-objective optimization. The
goal of multi-objective optimization is to determine the Pareto-Front of multiple objective
functions. The details of this part are not discussed in this thesis.

The required measures are combined in a single final objective function ob j by a weighted-
sum approach (Jahn et al., 1992):

N
obj =Y w,0bj, (3.11)

n=1

in which N is the number of criteria included in the overall objective function and 0bj,
is the n-th individual objective function with weight @,. The selection of the weight ,
depends on the problem itself. In this thesis, equalized weights @ = @, = ... = w, are
used.

As explained above, the objective function is minimized by the phase-annealing method
and consists of a weighted sum of individual objective functions, which are:
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1. the point-value criterion obj:

MSE (y.(xi),y*(xi))
0b 1\ init

obji = : (3.12)

in which MSE = ¥V | (y; —y})? is the mean squared error operator, y. is the
measured value at a point and 0bj ;; is the initial value of this type of objective
function.

2. the point-order-value criterion o0b j;:

Y MO (i), 5" (%)) - 2 (xi — Xj)

objr = . ; (3.13)
0b 2 init
in which M is a logical matrix with:
M; — 0 %f order %s .correct (3.14)
1 if order is incorrect,

in which @, (x; —X;) is a weighting function based on the distance of two values
and ob > ;s 1s the initial value of this type of objective function. Furthermore, a
detection limit can be integrated into the optimization by defining a second type of
objective function to present the rank behavior between the simulated values and
the detection limit.

3. the asymmetry-related criterion ob j3:

MSE(Ac(h),A*(h), w3(h))
0b 3 init

objz = : (3.15)

in which A, (h) is the target asymmetry, A*(h) is the simulated asymmetry, w3 (h)
is a weight function by lag distances and 0b j3 ;,;; is the initial value of this type of
objective function.

Besides the asymmetry A, other types of spatial measures could be included in the
optimization, e.g., cross-covariance, variogram on a different scale, measures of the
connectivity, etc.

Depending on the knowledge about the given problem, e.g., the field site and the required
properties of the simulated fields, the possible types of the objective function are not
limited to those listed above; for example, the mean values and variances of certain
locations can be used as a part of the objective function.
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The objection functions in PA quantify the likelihood between the simulated values and
the prior understanding of the system. Therefore it is possible to include the uncertainty
in the MC simulation using a fuzzy membership function for a certain type of objective
function (Abebe et al., 2000).

3.2.3 Point Values and Order of Point Values as Conditional Points

A straightforward method to merge two datasets of the same parameter that have a different
distribution function is the QQ-transformation (Equation 2.15), in which two datasets are
connected by the CDF. The QQ-transformation assumes that both datasets sample the
whole distribution function of the same random variable, which is very hard to be fulfilled
for a large-scale heterogeneous space. Otherwise, the transformed values are shifted in
the CDF space and a deviation is included in the system by the QQ-transformation.

As an example, Figure 3.1A shows the PDFs of
1. z1: as a reference dataset with z; = ©(0,1);
2. zp: a subset of zj, in which the values between (1,2] are not sampled;
3. z3: observations of zp with z3 = 2z, + 2.

A small peak can be found on the right side of fz(z2) and fz(z3) because of the unsampled
area in 2.

A QQ-transformation can be performed on z3 to transform z3 to z;. Because z3 is generated
from zp. Therefore, the transformed z3 should be the same as z;. However, a deviation
can be found in the scatter plot of z, and the transformed z3 (Figure 3.1B). To reduce
this deviation, which is included by using direct observations, i.e., the point values, the
order of the point values can be used as additional information in PA. Because z, and the
transformed z3 are consistent in the rank space (Figure 3.1C).
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Figure 3.1: A) PDFs of z;: as a reference dataset with z; = ®(0,1); z5: a subset of zj, in
which the values between (1,2] are not sampled; z3: an observation of z, with z3 = 2z, 4 2.
B) The scatter plot between z, and the QQ-transformed z3. C) The scatter plot between z,
and the QQ-transformed z3 in rank space.

Figure 3.2 shows simulations of PA using point values and/or order of point values to
mimic the reference random field Figure 3.2A). The ensemble mean and variance of 100
realization are drifted by the included information: 1) 50 point values (white cross sign)
as direct observations (Figure 3.2B and C) 2) order of 50 point values (white plus sign)
as order information (Figure 3.2E and F) 3) 50 point values and the order of 50 different
point values (Figure 3.2 H and I). The light and dark areas, e.g., high-K and low-K, in the
plots of 1 (Fz) represent the simulated local features, which are generated based on the
conditional points. These local features are shown as the dark areas, e.g., low variance
and low uncertainty, in the plots of 62(Fz). The models with both point values and the
order of point values (Figure 3.2H and I) have the largest light and dark area in the plot
of 1 (Fz) and the largest dark area in the plots of 62(Fz) than the other two models with
only a part of the information, which means a better result can be obtained using more
information, although one is direct observation and another one is an observation of the
order.
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Figure 3.2: Conditional simulations of 100 realizations with point values (white cross
sigh) and/or order of point values (white plus sigh). A) the reference random field. B)
the ensemble mean and C) ensemble variance with 50 points values (case 1). E) the
ensemble mean and F) ensemble variance with 50 order of point values (case 2). H) the
ensemble mean and I) ensemble variance with 50 points values and 50 order of points
values (case 3). D) The distribution function of the ensemble mean (green line: w(Fz))
and G) variance (green line: 6%(Fz)) of each case.

Figure 3.2D and E present the density functions of the ensemble mean and ensemble
variance. Both types of information have a part of the reference “truth”. Therefore, the
realizations containing both information can better represent the reference random field
than the realizations with only one information, and the uncertainty of the simulated
realizations is reduced. The realizations with both information have a flatter density
function of mean values and a density function of variance with a large portion of the
small variance.
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3.3 Asymmetry Simulation Using V-transformation

A non-multi-Gaussian random field can be simulated using a non-monotonic transforma-
tion of a multi-Gaussian random field (Zinn and Harvey, 2003), e.g., the v-transformation
in this thesis (Equation 2.32). The required parameters of the v-transformation and
the underlying correlation function pj j»;; of the multi-Gaussian random field before the
v-transformation can be estimated from the observations using the maximal likelihood
method (Section 2.4.2). When m, and k. are known, an unconditional v-transformed
non-multi-Gaussian random field can be simulated using the v-transformation f, (Equa-
tion 2.32) as in Algorithm 2 (Li, 2010).

Algorithm 2: Unconditional simulation using v-transformation.
Result: RF,,; with the required properties
initialization;
RF, with the required Py jp; 1s simulated ;
RF, <+ f,(RFy) ;
RE,,; +— FZ_l (Fz(RF,)) transform to the required Fz;

The relationship between m,, k. and the spatial correlation before (py,inir) and after the
v-transformation (p;) is non-injective, which means different combinations can generate
random fields with the same spatial correlation (Gong et al., 2013). Figure 3.3 shows
the indicator plots of a different combination of the covariance and the v-transformation
with an identical v-transformed spatial dependence structure. Different patterns of small
values and large values can be found in the plot of multi-Gaussian field fields (g and
v:m. = 55.0;k. = 5.0) and non-multi-Gaussian random fields.

Algorithm 2 is computationally efficient because the v-transformation is performed
directly on a multi-Gaussian random field RF, with the required py ;ni;, which can be
simulated using the spectral simulation method. One method to use the v-transformation
for a conditional simulation is including the calculation of the conditional copula density
in a sequential simulation (Li, 2010). This requires a multivariate integration on each
point and is computationally costly.

Another method to extent Algorithm 2 to a conditional simulation is integrating an
interpolation function into the phase-annealing algorithm. The updated random field with
the required underlying covariance structure after the phase randomization (Equation 3.10)
has a normal margin (Nur et al., 2005). So, an additional transformation & — f, — F, —
@’ is needed to calculate the objective function Equation 3.12:

MSE (yc(xi), fy (V" (%i)))
0D J1 init

obji = : (3.16)
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and
HO6Hx) =@ (FAG"(x:)))). (3.17)

Then a conditional random field can be simulated using Algorithm 3.

v:im.=0.5:k.=0.5

E
2
1
E
<
0
E
2 -1

0 100 2000 100 2000 100 200

x1[m] x1[m] x1[m]

Figure 3.3: Indicator plots of unconditional simulation using the v-transformation with
different m. and k.. All the random fields have an identical covariance structure.

Figure 3.4 shows the plots of conditional multi-Gaussian and v-transformed random
fields using Algorithm 3. After including the 50 conditional points (white cross sigh),
more similarities can be found between different plots than the unconditional results in
Figure 3.3
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Algorithm 3: Conditional simulation using V-transformation.

Result: RF,,; with the required properties
initialization;
F00 () — DU ELO ()
RF with the required underlying py ;»;; as the initial status;
while N| < Nyay iter1 and obj > 0bj,, do
T < T (To,N1,Npax,irer1) update annealing temperature;
while N> < Ny, iter2 and obj > ob j;,; do
y* < random(0,27) ;
y*(z(x)) < update point values;
¥i(a(x)) £ (7 ((x)))
M*((y}(xi),y5(x;))) < update the order matrix ;
obj* < update objective function;
if Objnew < Objbest then
‘ 0bj70bjbest — Obj*;
else if random(0,1) < Pyccepi(0bj,0bj*,T) then
‘ obj <+ obj*,
else
‘ reject current perturbation;
end
Ny — Nr+1;
end
Ny < N1+ 1;
end
RF,u <+ fv(RFout) ;
RE,,; + FZ_1 (Fz(RF,,)) transform to the required F7 ;
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Figure 3.4: Indicator plots of conditional simulations using the v-transformation with
different m. and k.. 50 conditional points (white cross sigh) are included in the simulation.
All the random fields have an identical covariance structure.

3.4 FFT-Asymmetry

The requirement of the degree of Gaussianity can also be included in PA using the empir-
ical asymmetry (Equation 2.27). Because the number of data pairs in Equation 2.27 is
proportional to the square of the number of simulated points 7, the updating of the asym-
metry in PA iterations is computationally expensive, especially for a three-dimensional
simulation. Possible methods to reduce the computational cost are sampling a small subset
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3.4 FFT-Asymmetry

of the dataset to calculate the asymmetry or storing the indices of the data pairs in memory
and load them while updating the asymmetry. However, neither of these two approaches
is efficient for a complex three-dimensional simulation, which requires a large number
of iterations. Therefore, a Fast Fourier Transform (FFT) based algorithm on a regular
grid (Marcotte, 1996) is used to reduce the complexity required to update the asymmetry
from n? to nln(n). The asymmetry (Equation 2.27 and Equation 2.28) of a set of values
z(x) in the copula space can be calculated by:

TF1{E.Fl—O.S_EE—ZE'FWFI'FL — }
TF*l{FpFI}

in which F| = TF(Fz(x)), F, = TF(Fz(x)?), F is the Fourier transform of a logical
matrix, in which 1 and 0 indicate a location with or without an observation and (-) is the
complex conjugate.

Equation 3.18 can be simplified as

_ TF_I(Fz-Fl —I—FTl-Fz)

G (3.19)

in which F; = TF(Fz(x —0.5)), F; = TF((Fz(x) —0.5)?). So, the asymmetry in Equa-
tion 2.27 and Equation 2.28 describes the cross-correlation between FT(Fz(x)) and
FT(F;(x)?) and it is zero for a multi-Gaussian random field.

Equation 3.19 can be rewritten as

_ TF ' (2 < F,Rue(F1) >)

in which < -,- > is the inner product operator and R, is the auto-correlation function.
Equation 3.20 connects the spatial structure A(Fz(x)) in the spatial coordinates and the
spatial structure R, (FT(Fz(x) —0.5)) in the frequency space. In the case of a multi-
Gaussian random field, there is < Fj,R(F) >= 0. This means F| is orthogonal to
RXX(F’ 1)- A detailed derivation and simplification of Equation 3.18-3.20 can be found in
Appendix A.

A conditional non-multi-Gaussian random field can be simulated using Algorithm 4
with Equation 3.19. Figure 3.5 shows the ensemble measures of 50 realizations of one
simulation with 50 point values and 50 order-of-point values used in conditioning.
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Figure 3.5: Ensemble properties of 50 realizations of PA simulations with 50 point values,
50 order of point values, and FFT-asymmetry as constraints. A) The ensemble mean value
of the asymmetry map. B) The ensemble mean value and C) ensemble variance.

Algorithm 4: Phase-annealing with FFT-asymmetry.
Result: RF,,; with the required properties
initialization;
RF with the required variogram as the initial status;
while N1 < N4y iter1 and obj > 0bj,,; do
T < T(Ty,N1,Npax,iter1) update annealing temperature;
while N> < Ny iter2 and obj > ob j;,; do
y* < random(0,27) ;
y*(z(x)) < update point values;
M*((y*(xi),y*(x;))) < update the order matrix ;
A(h) e (Fz(X),Fz(x+h)) < update asymmetry ;
obj* < update objective function;
if 0b jpery < 0D jpes; then
‘ ObjaObjbest A Obj*;
else if random(0,1) < Pyccepi(0bj,0bj*,T) then
‘ obj <+ obj*,
else
\ reject current perturbation;
end
Ny — N>+ 1;
end
Ny < N1+ 1;
end
RF,,; < backward transformation ;

RE,,; + FZ_1 (Fz(RF,,)) transform to the requried Fy ;
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3.5 Computational Aspects of Phase-Annealing

Calculation of Fj(x) and F>(x) There are two different options to reduce the com-
putational cost of the calculation of Fj(x) and F>(x). Because Fz(x) is defined in the
real space R", a real number FFT can be used to replace the normal FFT. Due to the
symmetry of the Fourier coefficients of real data, only half of the Fourier coefficients are
needed to be calculated. This means only half of the points are needed to be calculated in
Equation 3.19.

Another option is that two real numbers (F;(x) = FT(f;) and F>(x = FT(f,)) FFT can
be calculated using one complex number FFT on f5(x) = f1(X) +i- f2(x). Then the k-th
term of the FT for a random field with » points are

Fi4(x) = 5 [RE(Fin(x) + RE(Fi2,,_(x))] + -3 [Im(Fiz,(x)) ~ Tm(Fp2,4(x)],

(3.21)
1 1
Foi(x) = E[Im(Flz,k(X)) +Im(Fip k(X)) —i- E[Re(Flz,k(X)) —Re(Fio,-k(x))].
(3.22)
— fftl
2.5 rfft
— fft2
2.0 1
“ 1.5
v
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=
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Figure 3.6: Computational cost of normal FFT (fftl), real value FFT (rfft) and combine
two FFT in one (fft2) on three-dimensional fields with a domain size L = (L;L;L).
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The computational costs of these two methods are briefly tested and compared with the
normal FFT in Figure 3.6. Both methods can improve the performance significantly.

Update of the Distribution Function For a random field with a large number of points,
Fz(x) can be approximated by Fy ' (y(x), 1, 02), where Fy ' is the percent point function
(ppf) or inverse function of a normal distribution with mean u and variance 62.

Selection of the Range of the Random Phases The intensity of the perturbation in PA
iterations depends on the selection of the phase to be randomized, which can be classified
as high frequency and low frequency. Figure 3.7 shows how a random field changes after
shifting a low frequency and a high frequency with the same degree. Low frequencies
contain the information of the global structure of the RF and lead to a large variation after
shifting. High frequencies contain local detail information and lead to a small variation
after shifting.

0 20 40 60 80 100
Frequency

1.0

0.5

NNANVANNANVANS &
MA\VAEL\VALVAELVALY

_1.0 T T T T
0 20 40 60 80 100

X1

Ay

Figure 3.7: A low-frequency and a high-frequency A) on the frequency domain and B)
their influences on the RF after a random phase shift.
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Figure 3.8 shows the averaged rejection ratio and the objective function of 10 simulations
versus the annealing temperature 7'. The best selection of the phase range to be randomized
rn depends on the required domain size L to be simulated. A large rn has a small rejection
ratio but also an objective function with a small descend gradient. In this case, a dynamic
phase range can be used (Figure 3.8 L = 1000%). A small phase range (rn = 40?) is used
when the annealing temperature is high to get a large gradient of the objective function.
Then a large phase range (rn = 120?) is used when the annealing temperature is low to
get a smaller objective function.

L=[200;200] L=[500;500] L=[1000;1000]
1.0 == =
_0.81
°
© 0.6 1
— m:40
0.4 - — m:80
—— m:200
— m:400
2.0 A 7 7 — m:40~120
1.5 1 Il A4 i
5
© 1.0+ . .
_——’/
0.5 4 i -
~20 10 ~20 10 ~20 10
In(TT-1) In(TT-1) In(TT-1)

Figure 3.8: Average ratio of rejection of a perturbation (first row) and objective function
(second row) of 10 simulations versus annealing temperature with different domain size
L = 200%:500%; 1000? of RF with a correlation structure 1.0Exp(10) and different fixed
phase range rn = 40?; 80%;200%;400° and dynamic phase range rn = (40 ~ 120)? for the
phase randomization.

Selection of the Input Domain Size Figure 3.9 shows different levels of the domain
size to calculate in PA. To simulate a RF with a domain size L = (L;j;Ly;...;L,) (the
red box in Figure 3.9A), a large input RF with the required correlation structure and the
domains size Ly, =2-L — 1 (blue box in Figure 3.9A) is simulated at first to reduce the
boundary effect. This input domain is transformed to the Fourier space as in Figure 3.9B
and the range of the phases to be randomized is selected (black box in Figure 3.9B), which
means only the phase and amplitude in this range are needed during PA. For a large-scale
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three-dimensional simulation, it can be taken out during PA to reduce the memory usage
and the CPU time for indexing. In the case with asymmetry, only the point in the red
box but not the whole input RF is updated. An additional zero-padding is performed to
calculate Equation 3.18. RF is normally extended to Lex¢ = 2 - L, which is the smallest
even number large than 2-L — 1.

400
150
200 100
50
0 TP tw-all 0
0 200 400 O 100 0 100

Figure 3.9: A) Input RF in the blue box as the initial status of the annealing iterations and
required domain size in the red box; B) Range for the phase randomization in the Fourier
space (black box); C) Domain size with a zero padding to update the asymmetry in the
annealing iterations.

A specific issue in the three-dimensional K simulation is that the borehole observations
normally have a high resolution in the vertical direction. For a conditional simulation
using these observations, a random field with a shorter length and finer resolution in the
vertical direction than in the horizontal direction is simulated. Figure 3.10 shows the
influence of the spatial distribution of the conditional points on the objective function.
The test case 2 has conditional points with a dense spatial distribution. After several
PA iterations, its objective function has a smaller chance to reach a small value. In this
case, the input random fields with the domain size L;, = 2 - L — 1 cannot successfully be
conditioned on the observations due to the lack of the variability in Fourier space. To
solve this issue, a larger input random field or a zero-padding on the input random field is
needed.
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Figure 3.10: A) Conditional points with a dispersed spatial distribution (1) and a dense
spatial distribution (2). B) The corresponding plot of the objective function versus the
number of iteration of 50 simulations in PA.

Dimensionality reduction of the inverse FFT In Equation 3.19, one inverse FFT is
needed to obtain the current value of asymmetry. Normally, only the asymmetries in
the axis directions are used in the objective function, which means only a part of the
asymmetry map is needed. According to the projection slice theorem (Deans, 1983),
the output of the Radon Transform of a two-dimensional random field corresponds to
a line in the Fourier space. This is equalized to the inverse Fourier Transform of the
time-reversed relationship between the forward Fourier Transform and the inverse Fourier
Transform. Therefore, a two-dimensional inverse Fourier Transform is transferred to the
Radon Transform plus some one-dimensional inverse Fourier Transform. This method
can be used as an extension in the future.

Additional benefits from computational libraries All geostatistical algorithms in this
thesis are implemented in Python. Due to the high computational cost after including
asymmetry in the objective function, a comparison between the performance of differ-
ent computational libraries for the FFT calculation and matrix operations is shown in
Appendix B. This analysis was necessary to detect the best combination based on the
available computational resources.
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Patterns in the Fourier Space Phase Annealing is a combinatorial optimization to sim-
ulate the distribution of the phase angles in the Fourier space according to the conditional
constraints. Therefore, an investigation into the structure of the phase angle is a possible
way to reduce the computational cost of the simulations with asymmetry in the future.

Figure 3.11 shows the ensemble mean u and variance 6> of the phase angle y of
simulations without (A and B) and with (C and D) asymmetry. A stronger pattern can be
found in the simulation without asymmetry than in the simulation with asymmetry. This
proves that more variability is enforced in the simulated K-field after including asymmetry
in the simulation by driving the output K-field away from being multi-Gaussian. Even so,
patterns can be found in both simulations. Therefore, a further study on these patterns of
the phase angle is interesting in the future.

o?(V) without A

0.2 3.0
o WA
0.1 . L BN 2.8
oo | Tk
:f-:.a._‘ {F.' &) > 2.4
S o1 o S
s e ye ‘ 2.2
-0.2 Lol 2.0
o?(V¥) with A
0.2 T 3.0
D
0.1 2.8
) 2.6
0.0
2.4
—-0.1 29
A ok ‘f“.:':.!“ .’. _0.2 ; 'I 2.0
0 64 128 0 64 128

Figure 3.11: Ensemble mean p and variance 62 of the phase angle W of simulations
without (A and B) and with asymmetry (C and D).
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3.6 Summary of Chapter 3

In this chapter, phase-annealing-based methods have been introduced (Section 3.2) as
a flexible tool for conditional non-multi-Gaussian geostatistical simulations. Various
types of information, including, but not limited to, the point value, the order-of-the-point
value, the two-point spatial dependence variogram, and the third-order spatial dependence
asymmetry, were integrated into the simulation to include as much information as possible
from the observations (Section 3.2.2).

There are two alternative ways to include the copula-based non-Gaussianity in PA. When
the v-copula introduced in Chapter 2 is assumed as a theoretical copula model, the non-
Gaussianity can be described using a non-monotonic v-transformation (Algorithm 3).
The non-Gaussianity can be also described directly using the copula asymmetry (Algo-
rithm 4). To reduce the computational complexity, a Fourier Transform based description
of asymmetry (section 3.4) and further methods (Section 3.5) have been introduced.

Normally the estimation of the empirical asymmetry extracts additional information from
the existing observations. Therefore, it does not require more observations than the
standard second-order stationary geostatistics. A possible extension in the future could be
to use more readily available geophysical measurements for the estimation of asymmetry
on the field scale.

One disadvantage of the method is the high computational cost to recompute the asymme-
try in the phase-annealing method. In standard multi-Gaussian conditional simulations,
efficient techniques such as the sequential Gaussian simulation or the method of smallest
modification (Deutsch and Cockerham, 1994) can be used. Unfortunately, these methods
cannot be conditioned on asymmetry information in PA. Conversely, the phase-annealing
method does not simply allow fixing point values as the method of smallest modifica-
tion. The phase spectrum is randomized and an iterative search algorithm seeks for the
best phase minimizing the overall objective function, including the point values. The
phase-annealing approach is accelerated by FFT techniques and runs the Monte Carlo
simulations in parallel on a high-performance cluster (HPC), but the reduction of the
computational costs for three-dimensional simulations is still interesting future work.
Further improvements might be achievable by using a wavelet-based local update method
to replace the FFT-based global update phase randomization method in phase-annealing.
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Chapter 4

Travel-Time Based Evaluation of
Macrodispersion

To evaluate the effects of including non-multi-Gaussian spatial dependence in the K
simulation on the solute transport, a cell-centered Finite Volume method is used to simulate
groundwater flow and particle-tracking random-walk simulations of solute transport are
performed using the simulated K fields. In Section 4.1 the theoretical background of the
particle-tracking random-walk simulation method is introduced. Preliminary simulation
results of the test scenarios are analyzed in Section 4.2.

4.1 Particle-Tracking Random-Walk Simulation

The velocity field meets Darcy’s law and the continuity equation without sources and
sinks:

nv = —KVh, 4.1)
V.(v) = 0 (4.2)

in which v is the linear velocity, n denotes porosity, and h,,(X) is the hydraulic-head
field. In the application of this thesis, fixed hydraulic heads at the in- and outlet faces
of a rectangular domain are assumed, and no-flow conditions at all other boundaries.
Then the semi-analytical method of Pollock (1988) with graphics processing unit (GPU)
acceleration for particle tracking to address advective transport is used, amended by
a random walk to account for local dispersion (Tompson and Gelhar, 1990) using the
standard Scheidegger parameterization (Scheidegger, 1961):

VRV

(o — ) 4.3)
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in which D, is the pore-diffusion coefficient, oy and o, are the local longitudinal and
transverse dispersivities, respectively, I is the identity matrix, and & is the matrix product.
In the simulations of this thesis, the local dispersion in the xy-direction of mean flow is
neglected and the breakthrough of particles at observation planes perpendicular to xy is
analyzed.

A standard approach of characterizing solute transport in heterogeneous domains is by
analyzing the temporal development of the spatial moments of solute plumes, in which
the rate of change of the vector of first moments yields the plume-effective velocity, and
half the rate of change of the matrix of second-central moments yields an operational
definition of the macrodispersion tensor (e.g. Freyberg, 1986; Gelhar and Axness, 1983,
among others). An alternative approach is to consider the travel-time (7) distribution of
solute particles from one observation plane to the next in the direction of the mean flow.
The Lagrangian velocity Uy of a single particle in the main flow direction between two
observation planes can be calculated from the pathway travel-time 7 by:

ot !
U€:<8_w> . 4.4)

Within the travel-time framework, the macroscopic longitudinal dispersion coefficient
Dy can be evaluated by matching the statistical properties of the travel-time distribution
(Dagan et al., 1992).

In this thesis, two different types of the dispersion coefficient differing in the order
of taking moments and ensemble averages (Kitanidis, 1988; Dentz et al., 2000) are
distinguished: The effective (eff) dispersion coefficient samples the travel-time variability
of many particles introduced at the same location in a single realization and subsequently
averages over all realizations within the ensemble:

1 do?
Dyefr = (Dpi) = <5- ax: -U2i>> (4.5)

whereas the ensemble (ens) dispersion coefficient is derived from first merging the travel
times of all N realizations (7,,; = U?L] 7;) and then evaluating the statistical moments:

(4.6)

That is, the effective longitudinal dispersion measures the average longitudinal spread of
solute plumes originating from a point injection as observed in single realizations, which is
important for solute mixing (Cirpka and Kitanidis, 2000), whereas the ensemble dispersion
includes the uncertainty in the mean arrival time among the different realizations.
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In analogy to the longitudinal dispersion coefficient, an effective and an ensemble La-
grangian velocity are defined, depending on the order of taking the inverse of the derivative
of travel time with x; and the ensemble average:

o\ !
Urerr = <U£,i>:<(a_;;> >, 4.7)

~1
Upens = <a <T””>) 4.8)

The variability of the travel-time increments At; causes the effective Lagrangian velocity
Uy rr to be considerably larger than the ensemble Lagrangian velocity Uy ;.

4.2 Evaluation of the Solute Transport Characteristics

To show the influence of the degree of non-Gaussianity of K on the particle-tracking
random-walk simulations, test scenarios with K fields of various geostatistical models
(Table 4.1) are simulated and their effects on solute transport are modeled (Table 4.2).

2 x 10% particles are injected at Xipj = (40 [m]; 10 [m]; 20 [m]) as a conservative tracer at
the beginning of the simulation. Two control parameters are used here for comparison,
i.e., the marginal distribution and the degree of non-Gaussianity expressed in the measure
of asymmetry. The marginal distribution M; (homogeneous models g1, vi; and v3) has
a geometric mean g = 9.54 x 107> [m/s] and a small variance o(In(K[m/s]) = 0.39.
The marginal distribution M, (heterogeneous models g;, v2; and vy,) has a geometric
mean i = 4.29 x 107> [m/s] and a large variance 6 (In(K[m/s]) = 4.41. Besides the
marginal distribution, three different types of asymmetry are used. Models g and g
are two multi-Gaussian models and models v{1-v2, are non-multi-Gaussian models with
positive asymmetry (vy; and vy2) or negative asymmetry (v; and vy3). The non-multi-
Gaussian models are simulated using a v-transformation with parameters m, = 0.2 and
k. = 3.0 (Section 3.3). These parameters are selected to show the influence of the degree
of Gaussianity on the solute transport characteristics. In practice, parameters of the
v-transformation can be estimated from the data using a theoretical v-copula model
(Section 2.4.2). For each model, 200 realizations are generated.
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Table 4.1: Geostatistical models of the test scenarios of the partial-tracking random-walk
method.

81 g2 Vi1 Vi V21 V22
Marginal Distribution M1 M2 M1l Ml M2 M2
Multi-Gaussian v v

Asymmetry [-] o 0 + - + -

Table 4.2: Configurations of the test scenarios of K simulation and particle-tracking
simulation.

Simulation of K-Field

Vertical correlation length [, [m] 1.0

Horizontal correlation length I, [m] 10.0

Domain size L [m] (80; 150; 40)
Grid Spacing Ax  [m] (1.0;1.0; 0.10)

Particle-Tracking Random-Walk Simulation

Mean hydraulic gradient i [-] 8x 1073
Porosity n [-] 0.35
Transverse dispersion coefficient Dy [m? /s] 1x 10-8
Number of particle N, [-] 2% 103
Injection location Xinj [m] (405 10; 20)

Figure 4.1 shows indicator plots (Section 2.3.2) of the cross sections of one realization
from model g; and g, (Figure 4.1A), v{; and v (Figure 4.1B), and v, and v,; (Fig-
ure 4.1C). Different degrees of Gaussianity are presented as a different arrangement of
large (Fz(x) > 0.9), middle (0.1 < Fz(x) < 0.9), and small (0 < Fz(x) < 0.1) quantiles
of K values in the plots. The multi-Gaussian field (Figure 4.1A) has a similar shape for
large values and small values. In contrast, the non-multi-Gaussian random field with a
positive asymmetry (Figure 4.1B) has large blobs of large values and small blobs of small
values and the one with a negative asymmetry A (Figure 4.1C) has large blobs of small
values and small blobs of large values.
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0 50 100 150

X2 [m]

Figure 4.1: Indicator plots of cross sections of one realization of the simulated K fields at
x1 =40[m]. A) One multi-Gaussian and B) non-multi-Gaussian (m. = 0.2, k. = 3.0) K
fields with same parameters but positive asymmetry and C) negative asymmetry.

Numerical tracer tests are simulated on K-field by particle-tracking random-walk and
analyzed by the particle travel time 7. The density functions of the log-travel time In(z[s])
of different models are presented in Figure 4.2. The homogeneous models (marginal
distribution type M) have distributions with a small range than the heterogeneous models
(marginal distribution type M>). The influence of the included asymmetry is represented
as an offset of the density function fz(In(7[s])). The peaks of the density functions of
multi-Gaussian models (g and g;) are in between the peaks of the density functions of
non-multi-Gaussian models and have a more symmetric shape. More slowest particles
can be found in the non-multi-Gaussian models with a positive asymmetry (v{; and v,;)
than in the multi-Gaussian models because the particles have a low probability to reach a
blob with large-K. In a random field with a positive Asymmetry, the neighboring point
of a large-K value has a higher probability of being a large-K value than a low-K value.
Therefore, when particles travel in a blob with large-K, they can travel fast over a certain
distance. So, a density of fast particles (small travel time) on the left side of the density
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Chapter 4 Travel-Time Based Evaluation of Macrodispersion

function can be found. In contrast, more fast particles can be found in the models with
negative asymmetry (vi> and v,7) than the multi-Gaussian models because the particles
have a low probability to touch a small value blob. However, when a particle is injected or
travels into a low-K blob, it is “trapped” in the low-K zone, which leads to a large value
of travel time.

2.5 4

2.0

1.5 A

PDF [-]

1.0 ~

0.5 A

0.0 T T
15 16 17 18 19 20

In(t[s])

Figure 4.2: Distribution functions of the log-travel time 7[s] of multi-Gaussian (g;-g>)
and non-multi-Gaussian (positive asymmetry: vi; and v1, negative asymmetry: v, and
v22), fields with a mild 62(In(K)) (g1, vi1 and v2) and a large 62(In(K)) (g2, v21 and
Vo) at xp = 150 [m]

Other ensemble measures, e.g., the longitudinal dispersivity and velocity, are influenced
by the variation in the particle travel time. Figure 4.3 shows the longitudinal ensemble
dispersivity 2—25 and velocity Uy of various models. The influence of the included types
of asymmetry does exist in all models. Although the absolute variation between a multi-
Gaussian and non-multi-Gaussian model with a small 6%(In(K)) (g1, vi and vy2) is less
than the models with a large 6%(In(K)) (g2, v21 and vy;). When the difference between
the multi-Gaussian and the non-multi-Gaussian model is large enough, if a multi-Gaussian
model is used to describe a non-multi-Gaussian K-field, the uncertainty, which is caused
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4.2 Evaluation of the Solute Transport Characteristics

by the incorrect selection of the model, can not be neglected for a dataset with a large
o?(In(K)).

101 o%(In(K)) = 0.39 o%(In(K)) = 4.41
E A 102 E B
£
3 10°;
q 101 3
:I ]
] | _ 0
10_1 T 1 1 I —_— 82
—_ —_ _— V21
58 le—6 5 le—6 —_nr
C D —_— V22
2.6 4-
- 2.4 3-
E
2.2 1 2 -
2.0 ~ 1 A
1.8 T T T T
50 100 150 50 100 150
x2[m] Xx2[m]

Figure 4.3: The ensemble longitudinal dispersivity of A) models with the marginal
distribution M (g1, v11 and vy2); B) models with the marginal distribution M, (g2, v21
and v77); and the longitudinal velocity of C) models with the marginal distribution M
(g1, vi1 and v12); D) models with the marginal distribution M, (g2, v21 and v2)).

63



Chapter 4 Travel-Time Based Evaluation of Macrodispersion

Ah

9 g1 92 Vi1 V21 V12 V22
N ! . ! - .
-1
-17
-9
N - . ! . ! .
-13
-17
-9
N - . ! . - .
-1
-17
-9
o H . ! . ! .
-1
-17
-9
N n . ! . n .
-1
-17
-9
N - . ! . - .
-13
-17

- -9-17 - -9-17 - -9-17 - -9-17 - -9-17 -

w

o

45

0.40

o

35

w
o

30

0.25

0.20

©

15

w
o

10

0.05

0.00

w

Figure 4.4: Joint probability density functions of the logarithm of the longitudinal par-
ticle velocity of multi-Gaussian (g1-g2) and non-multi-Gaussian (positive asymmetry:
vi1 and vo1; negative asymmetry: vi, and vo5;) models with a mild ¢?(In(K)) = 0.39
(g1, v11 and vp;) and a large 62(In(K)) = 4.41 (g2, vo1 and vy,) at different separation
distances(1 [m] ~ 6 [m] from top row to the bottom row).
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Figure 4.5: Bivariate copula densities of the longitudinal particle velocity of multi-
Gaussian (g1-g2) and non-multi-Gaussian (positive asymmetry: vi; and v1; negative
asymmetry: vi, and v5;) models with a mild ¢?(In(K)) = 0.39 (g1, vi; and vo))
and a large 6(In(K)) = 4.41 (g2, v21 and vy,) in copula space at different separation
distances(1 [m] ~ 6 [m] from top row to the bottom row).
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The distribution of the longitudinal particle velocity plays the most important role in the
particle-tracking simulation. Therefore, understanding the correlation of the longitudinal
particle velocity on two observation planes with a certain separation distance can support
a detailed understanding of the influence of the geostatistical models of the K-field and
further modeling of the particle velocity. To analyze the correlation of the longitudinal
particle velocity, the ensemble joint PDFs in the logarithm space and bivariate copula
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Chapter 4 Travel-Time Based Evaluation of Macrodispersion

densities with different separation distances (1 [m] ~ 6 [m]) are plotted in Figure 4.4 and
Figure 4.5. A more spread-out bivariate distribution and copula density can be found
for large separation distances than small separation distances, which indicates a stronger
correlation between the longitudinal velocity of neighboring particles than the particles
far away from each other.

In Figure 4.4, the joint density function is mainly influenced by the marginal distribution.
Therefore, the models with the same marginal distribution (Table 4.1) have similar
bivariate densities between each other. This influence from the marginal distribution is
reduced after transformation into the copula space (Figure 4.5), in which the difference
between different models is mainly driven by the underlying degree of Gaussianity of
K. The multi-Gaussian models (g; and g») have a similar symmetric bivariate pattern
between the top right corner (large-large velocities) and the bottom left corner (small-
small velocities). In contrast, the large-large velocities have a stronger correlation in the
models with a positive asymmetry (v;; and g»;) and the small-small velocities have a
stronger correlation in the models with a negative asymmetry (vi; and g7). Therefore,
in case the correlation structure of the longitudinal particle velocity is mainly controlled
by the degree of Gaussianity, i.e., an asymmetry away from zero and a large 62(In(K)),
the copula density of the longitudinal particle velocity is a better choice to model the
correlation structure of longitudinal particle velocity than the bivariate density, even in
the logarithm space.

The potential use of copula densities such as Figure 4.5 is to simulate the particle velocity
on the next observation plane when the particle velocity on the current observation plane
is known. The transition of the longitudinal particle velocity between observation planes
can be assumed as an n-step spatial Markov process (Le Borgne et al., 2008). Then
the longitudinal particle velocity on the following observation plane can be simulated
according to the bivariate copula density and the corresponding particle velocity on the
current observation plane.

Algorithm 5 shows an example method of a one-step Markov Chain simulation. The
one-step empirical copula density (first row in Figure 4.5) is used as the prior information.
The particle velocity of the current location Uy is calculated from the conditional inverse
copula C; ! (uz|u; = u(Uy; 1)) of the previous velocity Uy ;|

C; N ua) = C; Nua|uy = u(Upj-1 )

B 4.9)
UE,i,j = Cs 1(142 == I/t*)

in which u* is a uniformly distributed random number between 0 and 1.

Figure 4.6 shows the preliminary results of the copula densities based on the simulated
particle velocities of different K models. The correlation structures of the large-large
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4.2 Evaluation of the Solute Transport Characteristics

Algorithm 5: One-step simulation of particle velocity using copula density.
Input: Empirical bivariate copula density ¢ (u,us) according to the particle
tracking simulation

Result: Simulated particle velocities Uy in copula space u(Uy)
u(Up 1) < Rand|0, 1] initial velocities as a uniform distribution between 0 and 1;
loop along the main flow direction ;
for i in [2,x;] do

loop along each particle ;

for j in [1,N)] do

| u(Up, ;) < Rand|0, 1] with weights ¢ (ua|us = u(Up;—1)) ;

end

end

velocity and small-small velocity of different models can be caught in the simulated copula
density. For further comparison, the x? test is performed on the simulated copula density
and the empirical copula density. The results in Figure 4.7 show that the test statistical
values In(y?) of all models are under the critical line, which means the correlation
structure of the longitudinal particle velocity at a large separation distance can be simulated
using the one-step copula density.
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Figure 4.6: Bivariate copula densities of the longitudinal particle velocity of multi-
Gaussian (g1-g»>) and non-multi-Gaussian (positive asymmetry: vi; and v;1; negative
asymmetry: vis and vy,;) models with a mild 62 (In(K)) = 0.39 (g1, vi1 and v;) and a
large 62(In(K)) = 4.41 (g2, v21 and voy) with the one-step model at different separation
distances(1 [m] ~ 6 [m] from top row to the bottom row).
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Figure 4.8 shows the deviations between the simulated copula densities (Figure 4.6) and
the reference copula densities (Figure 4.5). Most of the non-multi-Gaussian models (v;1,
v12 and v1) have a larger deviation than the multi-Gaussian models (g and g»). Possible
sources of this deviation are: 1) the initial particle velocity is assumed as a uniform
distribution between 0 and 1. 2) The empirical histograms with 20 bins are employed as
the approximation of the copula density. A theoretical copula model could be used in
the future to improve the estimation of the conditional copula density. 3) the directional
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copula density could be used in the future work, which means u; — u; # u; — u;.
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Figure 4.7: x>-test with a significance level 0.05 of the empirical bivariate copula densities
and the simulated bivariate copula density with the one-step model of the longitudinal
particle velocity.
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Figure 4.8: Deviations between the simulated bivariate copula densities with one-step
simulation and the reference empirical bivariate copula densities of the longitudinal
particle velocity of multi-Gaussian (g1-g2) and non-multi-Gaussian (positive asymmetry:
vi1 and vy ; negative asymmetry: vi5 and vy;;) models with a mild 62(In(K)) = 0.39 (g1,
v11 and vp,) and a large 62(In(K)) = 4.41 (g2, v21 and vy,) with the one-step model at
different separation distances(1 [m] ~ 6 [m] from top row to the bottom row).
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4.3 Summary of this Chapter

In this chapter, the theoretical background of the particle-tracking random-walk method,
which is used to evaluate the solute transport in this thesis, has been presented in Sec-

70



4.3 Summary of this Chapter

tion 4.1. The results of the test scenarios in Section 4.2 show that this method can catch
the ensemble properties of the particles, which are influenced by geostatistical models
of the K-field with different marginal distributions and degree of Gaussianity. The non-
multi-Gaussian spatial dependence leads to a deviation of the ensemble measures of the
multi-Gaussian models. This deviation is proportional to the 6%(In(K)). Therefore, for
the models with a large 62(In(K)), the deviation caused by a non-multi-Gaussian spatial
dependence can not be neglected.

Furthermore, the bivariate copula density of the longitudinal particle velocities provides
information to model the behavior of particle velocities under different K models. A
theoretical model between the Gaussianity and the corresponding bivariate copula density
could be further developed in future work.
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Chapter 5

Application to the MADE Site:
Data Description and (Geo-) Statistical
Evaluation

The content in this chapter contains materials published in “Xiao, B., Haslauer, C., and
Bohling, G. (2019). Comparison of multivariate spatial dependence structures of DPIL
and flowmeter hydraulic conductivity data sets at the MADE site. Water (MDPI), 11(7),
1420”.

Author Author Scientific Data Analysis & Paper
position ideas %  generation % interpretation % writing %
Bo Xiao 1 70 80 60 75
Claus Haslauer 2 20 20 30 20
Geoffrey Bohling 3 10 0 10 5
Titel of paper: Comparison of multivariate spatial dependence structures of DPIL and
papet: flowmeter hydraulic conductivity data sets at the MADE site.
Status in

. Published.
publication process:

In this chapter, two non-colocated K datasets of flowmeter measurements and direct-push
injection-logging (DPIL) at the MADE site are compared using various (geo-) statistical
measures. After a short introduction of the two datasets at the MADE site in Section 5.1,
the univariate statistical measures of the two datasets and their distributions in the vertical
and horizontal directions are compared in Section 5.2. In Section 5.3, the copula-based
geostatistical measures of the two datasets are compared. Then in Section 5.3.2 the
results of the copula-based parameter estimation using the maximum likelihood method
in Sections 2.4.2 and 2.4.3 are presented. A short conclusion and summary is given in
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Section 5.4 .

5.1 The MAcroDispersion Experimental Data Set
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Figure 5.1: Locations of the DPIL (blue cross sign) and flowmeter (brown plus sign)
boreholes at the MADE site.
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Two K datasets are available at the MADE site. One dataset was measured using a
borehole flowmeter (Boggs et al., 1992) at 2611 observation points in 67 wells with
a vertical spacing of 15 [cm], the layer hydraulic conductivity is calculated from the
discharge from each horizontal layer entering the well. Another dataset was obtained
using the high-resolution direct-push injection-logger (DPIL) at 31,123 observation points
in 58 vertical profiles with a vertical spacing of 1.5 [cm]. The DPIL ratio (injection
rate/pressure ratio) is taken as a measure of the relative hydraulic conductivity. This DPIL
ratio has been calibrated using the colocated direct push permeameter (Liu ef al., 2009;
Bohling et al., 2012) and later reassessed after considering the measured noise and the
upper limit of the DPIL ratio (Bohling et al., 2016). Figure 5.1 shows the measurement
locations of the flowmeter and the DPIL dataset using a modified MADE-2 coordinate
system (following Boggs et al., 1993). The DPIL dataset has many measurements in the
vertical direction and the flowmeter profiles provide better lateral coverage of the site than
the DPIL profiles (Figure 5.1).

5.2 Statistical Evaluation of the MADE Data Sets

In this Section, univariate statistical measures (Section 5.2.1) of the DPIL and flowmeter
datasets and their distributions in space (Section 5.2.2) are presented and compared.

5.2.1 Marginal Distribution and Basic Statistics

Table 5.1: Univariate statistical measures of the flowmeter, DPIL dataset at the MADE
site, and the Borden dataset.

MADE flowmeter MADE DPIL Borden

Geometric mean [m/s] 4.29%x107> 6.73x107%  9.54x107
Arithmetic mean [In(K[m/s])] -9.26 -10.06 -11.91
Min [m/s] 1.83x1077 1.46x107°  5.67x1077
Max [m/s] 1.45%x1072 1.96x1072  3.29x10~*
Variance [In(K[m/s])]? 4.41 591 0.39
Skewness [m/s] 6.28 15.98 0.80
Kurtosis [m/s] 58.74 322.66 0.47
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Table 5.1 lists the univariate statistical measures of the flowmeter and the DPIL datasets
at the MADE site together with the Borden dataset (Sudicky, 1986) as a reference. Both
the flowmeter and DPIL dataset show that the MADE site is more heterogeneous than the
Borden site, e.g., a wide range of the K values (large maximal K and small minimal K), a
large 62(In(K)), skewness and kurtosis. Within the two datasets at the MADE site, the
DPIL dataset has a larger 6%(In(K)) and one order of magnitude smaller geometric mean
than the flowmeter dataset, although both datasets measure the same variable at the same
site.
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0.175 0.4 - —— flowmeter
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7 0.100 - \
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0.075 - \
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Figure 5.2: Probability density function of In(K) of DPIL and flowmeter dataset. A) PDF
of In(K) and B) PDF of In(K) after the standard transformation.

This difference between the two datasets is also visible in the plots of the probability
density function of log-K (Figure 5.2A). Both datasets have probability density functions
with similar shapes despite a shifted mean value. The DPIL dataset has a larger portion of
lower K values, a smaller portion of larger K values, and a larger spread than the flowmeter
dataset. This finding is in congruence with Bohling et al. (2016). Even after performing a

standard normal transformation (Fp = Z(X)T_“) on both datasets, a difference of the density

function can be found between 0.0 [—] and 2.0 [—| (Figure 5.2B). An obvious question due
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to this difference is whether the two datasets measure the same K-field or not. Therefore,
the key point in the following sections is about defining the differences and similarities
between two datasets using different (geo-)statistical measures.

5.2.2 Spatial Distribution of K Observations

A) Flowmeter B) DPIL

12

8
S
x 6 ‘
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.
0.000 0.005 0.010 0.015

Figure 5.3: Bivariate density functions of elevation x3 vs. In(K) for the A) flowmeter
dataset B) DPIL dataset. Elevation given in meters above datum; Datum is 14.1 m below
reference.
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The shifted mean value found in the marginal distributions (Figure 5.2) can be also seen on
the plot of two-dimensional histograms of In(K) versus vertical elevation x3 (Figure 5.3).
The DPIL dataset has smaller K values in general than the flowmeter dataset. Both plots
of the two-dimensional histogram show a fairly distinct shift at about 8 [m] above the
reference elevation (see Bohling et al. (2016) for a definition of the coordinate system),
with generally large K values above this elevation and generally small K values below.
Below 8 [m] elevation, the flowmeter data seem to indicate a slightly increasing trend of
K with increasing depth, a trend which might also be reflected in the DPIL data if one
considers the higher density region of the data, discounting the relatively small proportion
of very low DPIL K values at elevations x3 < 5 [m].
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Figure 5.4: Comparison between the DPIL and flowmeter datasets from the nearest bore-
holes: A) flowmeter:x; = 44.82 [m],x; = 87.82 [m]; DPIL:x| = 44.66 [m],x, = 88.27 [m];
h = 0.47[m]; B) flowmeter:x; = 48.76 [m],x; = 90.47 [m]; DPIL:x|; = 48.46[m]|,x; =
90.76 [m]; h = 0.41 [m].
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To reduce the influence of the marginal distribution, the two datasets are compared using
the distribution function Fz(K) and accounting for the horizontal separation distance
h. If both datasets measure the same K-field, a similarity would be found between the
vertical K profiles of the two datasets when measured close to each other, although the
flowmeter dataset measured a shorter interval in the vertical direction than the DPIL
dataset, Figure 5.4 shows two comparisons between the K profiles with a horizontal
separation distance less than 0.5 [m] (Figure 5.4A: h = 0.47 [m]; B: h = 0.41 [m]). A high
similarity between the two datasets can be found in both plots, although a difference
between the two datasets can be found in Figure 5.4A around 5 ~ 6 [m)].
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Figure 5.5: Vertical averaging of the distribution functions of A) flowmeter and B) DPIL
datasets in the horizontal space. The red box indicates the locations of outliers.
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Figure 5.5 shows the vertical averaging of the distribution function of the two datasets.
In general, small values can be found on the bottom of both plots (x, < 60[m]) and large
values can be found on the middle of both plots (60 [m] < x2 < 200 [m]). Some outlier
points can be found at the locations in the red boxes. Figure 5.6 shows the vertical profiles
of these outliers. Observations of the DPIL dataset have larger values of Fz(K) than the
flowmeter dataset, especially at the top and at the bottom. The reason for this difference
is unknown but could be an interesting point for future fieldwork.

10
-+ flowmeter + &m
" % DPIL -
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x3[m]

0.0 0.2 0.4 0.6 0.8 1.0
Fz(K)

Figure 5.6: Vertical profile of two datasets on the locations with outliers in Figurer 5.5.
The red boxes are the area with a larger DPIL profile than the flowmeter profile.

5.3 Geostatistical Evaluation of the MADE Data Set

5.3.1 Empirical Spatial Dependence

In this section, three empirical measures of spatial dependence, standardized variogram
y(h), rank correlation ps(h), and asymmetry A(h) (Figure 5.7), are analyzed and compared
between the flowmeter and DPIL datasets. Additionally, empirical bivariate copula
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densities are compared.

The spatial dependence structures have been analyzed in the vertical and horizontal
directions and in an equivalent isotropic coordinate system obtained by geometrically
stretching the vertical axis. The directional analysis assumes azimuthal isotropy (same
range for all horizontal directions), with an elliptical representation of anisotropy in
the vertical plane (shortest range in the vertical direction, longest in the horizontal).
Our computations of the empirical measures of spatial dependence (either variogram or
copula-based measures) have used the same data pair selection criteria as Rehfeldt ez al.
(1992). In the vertical direction, the tolerance angle is 0.1° and the tolerance bandwidth is
0.1[m] so that only within-borehole data pairs (no cross-borehole pairs) contribute to the
vertical measure. For the horizontal measure, a vertical tolerance angle of 5° and a vertical
bandwidth of 0.16 [m] are used to limit the vertical separation between selected data pairs.
After calculating the empirical rank correlation in the vertical and horizontal directions,
the vertical to horizontal anisotropy ratio was estimated from the ranges. The data were
then cast into an equivalent isotropic coordinate system by stretching the vertical axis by
the estimated anisotropy ratio. In addition to the previously observed similarities (Bohling
et al., 2012), a systematic deviation of the asymmetry from zero was detected, indicating
quantifiable deviance from Gaussian dependence. This will be discussed in the following
part.

Pairwise Spatial Dependence The vertical normalized variogram 7, rank correlation
ps and asymmetry A for the two datasets are very similar (Figure 5.7, left column) and
the equivalent isotropic versions of the variograms and rank correlations are also similar
(Figure 5.7, right column). The DPIL dataset exhibits smoother results than the flowmeter
dataset, as it is influenced by the finer vertical sample spacing of the DPIL dataset. A
larger difference can be found in the horizontal direction (Figure 5.7, central panel).
This difference in the horizontal direction may be caused by the difference between the
lateral distributions of the flowmeter and DPIL profiles, which can be expressed as the
difference in the number of data pairs (bottom row on Figure 5.7) or as the difference in
the properties of the sampled area (Figure 5.5). The rank correlations between horizontal
lags of 2.5 [m] and 17.5 [m] are closer to each other than the normalized variograms, most
likely because of the smaller impact of outliers in rank space.
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Figure 5.7: Bivariate measures in the vertical direction (panel A), the horizontal direction
(panel B) direction, and the isotropic case (panel C). From top to bottom are: normalized
variogram, copula-based rank correlation py, asymmetry A, number of data pairs N.

Asymmetry The copula asymmetry A (third row in Figure 5.7) differs consistently from
zero for both datasets. A bootstrap analysis, involving a random selection of 70% of
the data in each realization, indicates that the deviation from zero is consistent for each
dataset (Figure 5.8), providing compelling evidence that the MADE site K-field exhibits
non-multi-Gaussian spatial dependence. The narrower uncertainty envelope for the DPIL
results is due to the larger number of DPIL data.

In the vertical direction, the values of asymmetry for the two datasets are essentially
identical up to a lag of 3 [m]. For larger separation distances, the value of asymmetry of
the DPIL data decreases, reaches zero at 4 [m], and becomes negative beyond 4 [m]. By
contrast, the asymmetry remains positive for the flowmeter data. The observed behavior
of asymmetry indicates a stronger dependence among lower K values for the DPIL dataset
and among larger K values for the flowmeter dataset at large lag distances. This difference
might be caused by the underestimation of high K values by the DPIL and overestimation
of low K values by the flowmeter (Bohling et al., 2012). Another possible reason is
the difference in the distribution of the observations in the vertical direction, although
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the DPIL data have been trimmed to match the vertical extent of the flowmeter data
sitewide (Bohling et al., 2012), the vertical extents of the flowmeter and DPIL profiles
still differ locally. This may lead to a difference in the density of higher and lower K
values (Figure 5.3) in the two datasets, contributing to the differences in the values of
asymmetry.
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Figure 5.8: Value areas of the copula-based asymmetry (A) of bootstrapping tests with
random selections of the 70% of the whole data set.

The bootstrap analysis (Figure 5.8) shows that the asymmetry A differs significantly from
zero at most lags for both datasets, indicating that the MADE site K-field exhibits a
nonsymmetric, and thus non-multi-Gaussian, spatial dependence structure.

Bivariate Empirical Copula Density To compare the bivariate spatial dependencies
of the two datasets in more detail, the empirical bivariate copula densities of the first
few lag distances have been plotted (Figure 5.9) and a x? test with a significance level
a = 0.05 has been performed. The null hypothesis for this test is that the structure of
the empirical bivariate copula densities of the two datasets for a certain lag distance are
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the same. This hypothesis is rejected if the x2 statistic, representing the sum of squared
differences between the two densities, is sufficiently large. In this case, the flowmeter
and DPIL copula densities are deemed to be significantly different (the null hypothesis
is rejected) only for the relatively large horizontal lag distances of 27.5 [m], 32.5 [m],
and 37.5 [m] (Figure 5.10), where data availability is an issue (fourth row in Figure 5.7)
and that have a lesser impact on solute transport than shorter lags. For all other lags, the
copula densities are not deemed to be meaningfully different between the flowmeter and
DPIL K datasets. This is further evidence that the flowmeter and DPIL datasets exhibit
similar spatial dependency structures.
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Figure 5.9: Empirical copula densities in the vertical direction (DPIL: 1st panel, flowmeter:
2nd panel), in the horizontal direction (DPIL: 3rd panel, flowmeter: 4th panel) and the
isotropic case (DPIL: 5th panel, flowmeter: 6th panel). Distances from top to bottom are
0.15, 0.375, 0.525, 0.675 [m] in the vertical direction and 2.5, 7.5, 12.5, 17.5 [m] in the
horizontal direction and the isotropic case.
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Figure 5.10: y% — test with a significance level 0.05 in the vertical direction (top), the hor-
izontal direction (middle), and the isotropic case (bottom). Distances with values larger
than the x? criterion (dash line) indicate dissimilar copula densities between two datasets
(red points).

Isotropic measures of dependence were calculated based on geometrically transformed
coordinates. After calculation of the directional measures, the anisotropy ratio of the
two datasets can be calculated according to the results of ranges of the rank correlation
in vertical (ay,,) and in horizontal directions (ag,,) (Table 5.2). The two datasets have
similar values of ay,, but different values of ay,,, which leads to different values of
the anisotropy ratio (agor/aver), 8.18 [-] for DPIL and 14.7 [-] for flowmeter. Then,
vertical coordinates were stretched by using the anisotropy ratio to generate an isotropic
dataset, such that the dataset after the transformation has identical vertical and horizontal
ranges. The statistics for each isotropic case are calculated after that. In general, the two
datasets exhibit similar behaviors of the normalized variogram, the rank correlation, and
the asymmetry for the isotropic case.

85



Chapter 5 Application to the MADE Site: Data Description and (Geo-) Statistical Evaluation

Table 5.2: Distances where the rank correlation is zero (range) in the vertical (ay,,) and
horizontal (ag,,) direction and the anisotropy ratio (agor/aver)-

AHor [m] AVer [m] aHor/aVer [_]
DPIL 48.3 5.91 8.18
Flowmeter 554 3.77 14.7

The foregoing analysis of bivariate measures has demonstrated a strong similarity between
the two datasets for short separation distances, especially in the vertical direction, along
with providing compelling evidence that both datasets exhibit significantly non-multi-
Gaussian spatial dependence structures.

5.3.2 Results of the Copula Parameter Estimation

Results of the parameter estimation of DPIL and flowmeter dataset for spatial dependence
using Gauss- and v-copula models are presented in this section. The analysis in this
section is based on models with an optimized parameter vector 8 of n-point subsets of
the data, providing a richer representation of the spatial dependence structure than the
bivariate (two-point) measure (5.3.1).

As mentioned in Chapter 2, a maximal likelihood method was used to fit the theoretical
copula models on randomly selected subsets. Further details of the fitting process follow:

Sample Spacing The vertical sample spacing of the DPIL measurements is one-tenth of
the flowmeter measurements. To reduce the influence of this difference on the estimated
parameters, the DPIL data were averaged with the same vertical spacing as the flowmeter
data before fitting the copula models.

Dimension Parameter estimation was performed with varying numbers of data points
included in each subset to provide an assessment of the effect of the subset size. The
tested subset sizes were n(S,,) € (10,12,15). The estimated parameter values were found
to be independent of n(S,,) if n(S,,) > 10, a finding in accordance with Bardossy and Li
(2008). Consequently, results for the smallest sub-set size, n(S,,) = 10, are presented.
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Parameter Vector @ A covariance function of the Matérn type (Equation 2.14) with
the range a and the smoothness parameterk was used. For the case with a v-copula model,
there were two additional parameters: m, and k. (Equation 2.32).

The estimated copula model parameters are shown in Tables 5.3 and 5.4 and the model-
based rank correlations computed are compared with the empirical rank correlations in
Figure 5.11. For the v-copula estimates, the parameter m. is much smaller than 3.0 in all
cases, indicating a non-multi-Gaussian type of dependence. To evaluate the performance
of Gauss-copula and v-copula models, the Akaike information criterion (AIC = —2log L+
2npara (Bozdogan, 1987), where L is the likelihood, and n, is the number of free
parameters in the model.) is used. The estimations with a v-copula model have smaller
AIC values than the estimations with a Gauss-copula model in all cases, indicating that
the v-copula models provide a better fit. Compared with the rank correlations from
the Gauss-copula model, the rank correlations of the v-copula model are closer to the
empirical rank correlations (Figure 5.11). These results demonstrate the existence of
non-multi-Gaussian spatial dependence at the MADE site in high dimensions (where
dimensionality here refers to the size of the data subsets). Compared with the bivariate
measures in Section 5.3.1, these model fits show that the two datasets exhibit notable
differences in higher dimensions (Table 5.3 and 5.4), with the following observations: a)
the flowmeter dataset exhibits a more Gaussian type of dependence than the DPIL dataset,
which is indicated by the larger value of m,. for the flowmeter data and is also apparent
in Figure 5.11; b) the flowmeter dataset has a smaller range in the vertical direction
and larger ranges in the horizontal direction than the equivalent isotropic case; c) the
Gauss-copula model estimates resulted in smaller ranges than the v-copula fits. The ratios
of the horizontal range and the vertical range of v-copula fits (8.36 for DPIL and 14.27
for flowmeter) are closer to the empirical anisotropy ratio (Table 5.2) than the ratios of
Gauss-copula fits (10.47 for DPIL and 18.65 for flowmeter); (d) The value of m, for the
flowmeter data in the isotropic case is significantly different from the values estimated in
the vertical and horizontal cases; (e) The diversity of the results show the uncertainty of
two datasets in different directions.
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Table 5.3: Representative parameter estimates for the v-copula model based on 200
randomly sampled data subsets of size 10, with the related Akaike information criterion
(AIC).

DPIL DPIL DPIL Flowmeter Flowmeter Flowmeter

Parameter (Ver.) (Hor.) (Iso.) (Ver.) (Hor.) (Iso.)
V-copula m, [-] 1.33 1.29 1.50 1.91 1.95 1.41
V-copula k. [-] 2.75 2.65 2.74 3.09 3.51 243
Matern range [m] 3.88 34.57 17.09 3.12 44.53 40.92
Matern K [-] 0.71 0.34 0.79 0.43 0.20 0.45

AIC [-] —5562.87 —3166.46 —4901.32 —2969.11 —1598.68 —2805.82

Table 5.4: Representative parameter estimates for the Gauss-copula model based on 200

randomly sampled data subsets of size 10, with the related Akaike information criterion
(AIC).

DPIL DPIL DPIL Flowmeter Flowmeter Flowmeter

Parameter (Ver)  (Hor)  (Iso.) (Ver)  (Hor)  (Iso.)
Matern range [m] 1.51 15.81 8.95 2.31 43.08 20.78
Matern K [-] 0.79 0.29 0.94 0.42 0.18 0.50

AIC [-] —5183.33 —2951.80 —4697.32 —2929.49 —1558.70 —2762.78
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Figure 5.11: Comparison between empirical rank correlation (black dots) and the theoreti-
cal bivariate copula rank correlations of model fitting results by Gauss- (blue line) and
v-copula (red line) model of DPIL (left) and flowmeter dataset (right).

&9



Chapter 5 Application to the MADE Site: Data Description and (Geo-) Statistical Evaluation

Possible reasons for the observed differences in parameter estimates include: (1) The
behavior of the selected n-points subsets is influenced by varying uncertainty in the
measurements of both methods and the different patterns of measurement errors of the
two datasets. (2) The distribution of the measurement locations is different between
the two datasets. Most notably, the lateral distribution of the flowmeter profiles is more
extensive and uniform than that of the DPIL profiles.

5.3.3 Parameter Estimation with Censored Data

Generally, it 1s expected that any measurement technique performs optimally in a central
range of measurement values and suboptimally when the measured values are extremes.
Particularly, it has been observed (Bohling et al., 2016) that the DPIL data cannot resolve
relatively large K values, as above a certain K value of the formation, the injection-induced
pressures are too small to be measured accurately. By contrast, the flowmeter does not
resolve hydraulic conductivity below a lower limit because the estimated conductivity
is proportional to the gradient of the total flow rate within the borehole (Rehfeldt et al.,
1992). However, such relatively large and small K values should not be discarded,
because they do carry information, namely, that the unknown true value is somewhere
in the interval between a threshold and the largest possible value or the lowest possible
value. Such intervals can be included in the estimation by the maximum likelihood
method (Section 2.4.3).

Two applications demonstrating the impact of accounting for censored data in the copula
analysis are presented, one with a simulated log-normal Gaussian field to prove the
concept, and one with real MADE datasets.

In the simulation study, a two-dimensional grid (100 x 100 cells) was simulated with a
known covariance structure (“truth”, In(K) marginal, mean = 10.0, standard deviation
= 6.0, variogram model: 1.0Mat(5.0)*4). A sample of size 2500 was generated and an
independent measurement error & (©(0.0,2.0%)) was added.

Based on this sample, parameter estimation was performed with the following scenarios:
(1) the sample (with €) as fully certain, (2) the smallest 4%, 8%, 10% and 14% of the
samples as being censored and parameter estimation was performed using Equation 2.45.
Scenario (2) was established because € disturbs the rank of smaller samples more than the
ranks of larger samples. Treating the smallest 10 percentage of points as censored provided
rank correlation estimates that were closest to the virtual truth; this case is compared
to scenario (1) (no censoring, (0, 100)) in Figure 5.12. This test shows that the virtual
truth and the sampled data (True and True_sample) can be better estimated by including
some censorship (i.e., some values below the detection limit) in the copula parameter
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estimation when the true value is perturbed by a Gaussian error (True_sample+Err).
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Figure 5.12: Comparison between the Gaussian copula parameter estimation with a 10%
left-side detection limit (orange dash-dotted lines with label “(10,100)”), without the
detection limit (black dot line with label “(0,100)’) and the rank correlations of true
domain with 10,000 points (red solid line with label “True”), a sample of the true domain
with 2500 points (black inverted triangles with label “True_sample”) and the sample
with Gaussian noise (black dots with label “True_sample+Err”) by using a simulated
log-normal Gaussian field.

Unlike in the synthetic test case, the true value of the rank correlation is unknown when
using the field data of the MADE site. Therefore, the empirical rank correlation is
used as the next best comparable benchmark. According to Figure 5.13, the empirical
rank correlation can be better reproduced using the right-side censoring threshold with a
censoring threshold of (0,96), which means that the largest four percentage observations
are marked as observations with low reliability. For the flowmeter dataset, the empirical
rank correlation can be better reproduced by adding a two percentage left-side threshold
(Figure 5.14). The estimated rank correlations are calculated by a Monte-Carlo simulation
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based on the thresholds from the parameter estimation. Only very small changes were
found when the thresholds were small. In summary, the results of parameter estimation
can be improved meaningfully when at least some measurements are censored, for the
flowmeter data when some small K values were treated as censored and for the DPIL data
when some large K values were treated as censored.
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Figure 5.13: Comparison between the Gaussian copula parameter estimation with 4%
right side detection limits (dash-dotted green linewith label (0, 96)), without detection
limit (solid blue line with label g_avg), v-copula parameter estimation without censored
threshold (solid red line with label v_avg) and empirical rank correlation of the DPIL
dataset in vertical direction (black dots with label emp_DPIL).
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Figure 5.14: Comparison between the Gaussian copula parameter estimation with 2%
left side detection limits (dash-dotted brown line with label (2, 100)), without detection
limit (solid blue line with label g_avg), v-copula parameter estimation without censored
threshold (solid red line with label v_avg) and empirical rank correlation of the flowmeter
dataset in vertical direction (black dots with label emp_FLOWMETER).

5.4 Summary and Conclusion of this Chapter

This chapter focuses on the analysis and characterization of the spatial dependence
structures of K observations of DPIL and flowmeter dataset at the MADE site using
copula-based measures.

The similarity of the two datasets in the marginal distribution (Figure 5.2) and second-order
dependence measures are confirmed (Figure 5.7 and (Bohling et al., 2012)). Although in
certain separation distances, this similarity is influenced by the lateral coverage of the two
datasets (Figures 5.7 and 5.10).
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A deviation of both datasets from multi-Gaussian dependence is found, both in empirical
measures and mathematical models. The empirical asymmetry (A) systematically and
within meaningful confidence intervals deviates from zero indicating that both datasets
exhibit non-multi-Gaussian dependence (Figures 5.7 and 5.8). Even more, the strongest
dependence can exist in the small K values (A < 0) for some lag distances and in large
K values (A > 0) for other lag distances (Figures 5.8 and 2.11). Such behavior has been
found at the MADE site and other relevant hydrogeologic study sites such as Borden, Cape
Cod, and North Bay. Together with anisotropy, such a varying degree of dependence in
different lag distances will lead to a meaningfully improved description of solute transport
as it describes loosely speaking barriers to flow and connected high-K channels.

The rank correlations of the two datasets between horizontal lags of 2.5 [m] and 17.5 [m]
are more similar to each other than are the variogram values for these lags (Figure 5.7),
possibly due to the reduced influence of extreme values on the rank correlation. The
datasets also have similar bivariate copula densities (Figure 5.9). For most lags, particu-
larly for the short separation distances that are important when analyzing solute transport,
the DPIL and flowmeter bivariate copula densities are not deemed to be significantly
different, based on a x? test with a significance level of a = 0.05 (Figure 5.10).

The parameters of two different theoretical copula models were estimated for both datasets.
The multi-Gaussian model and a non-multi-Gaussian model (v-copula) were used. The
v-copula model provided a better fit to both datasets (Figure 5.11) than the Gauss-copula,
indicating meaningful non-multi-Gaussian spatial dependence.

When the uncertainty of censored measurements is incorporated into the multi-Gaussian
model, the resulting parameter estimates are closer to reality than when they are not
included and are also similar to the estimates obtained with the v-copula model without
censored measurements (Figures 5.13 and 5.14).

This indicates that some of the censorship properties might be mimicked by the shape of
the v-copula. The ability to obtain improved Gauss-copula model fits after accounting for
censoring does not conflict with the conclusion that the spatial dependence is non-multi-
Gaussian, which is indicated not only by the rank correlation but also the asymmetry.

This research identified two criteria that a realistic geostatistical model for spatially
distributed K fields should fulfill: (1) it should be able to express a varying uncertainty
of measurements, and (2) it should more adequately resemble the processes that lead to
the empirical and the theoretical measures from the observations. One important feature
of an improved resemblance was identified to be a model that leads to both positive and
negative values of the copula asymmetry for varying lag distances.
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Chapter 6

Hydraulic Conductivity Simulation and
Evaluation of Macrodispersion

In this chapter, the phase-annealing and the particle-tracking random-walk method are
applied to the conditions at the MADE site in order to model solute transport using K
fields based on different geostatistical models. The setup of the simulations is presented
in Section 6.1 and the simulation results are analyzed in Section 6.2. A summary of this
chapter can be found in Section 6.3.

6.1 Application to the MADE Site

A shifted MADE-2 coordinate system (see Boggs et al., 1992, and Figure 6.1) is used
in the simulations, in which x; is the coordinate along the direction of predominant flow
(longitudinal direction) and x3 is the vertical direction. To harmonize the vertical resolution
of the DPIL (0.015 [m]) and flowmeter (0.15 [m]) datasets, ten DPIL observations in
the vertical direction are averaged before using it in the conditional simulations. In the
following, the details of the asymmetry accounted for in the simulation (Section 6.1.1), the
choice of primary and secondary datasets in the conditioning procedure (Section 6.1.2),
as well as the configurations of the phase-annealing simulations and the particle-tracking
random-walk simulations (Section 6.1.3) are presented.
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Figure 6.1: Plan view of the domain. Orange triangles: locations of flowmeter tests,
blue circles: locations of direct-push injection-logging (DPIL) observations, red cross:
injection point of the tracer test. Mean flow is oriented in the x; direction.
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6.1.1 Assessment of Global and Depth-Dependent Asymmetry

The copula-based asymmetry A in Equations 2.27 and 2.28 provides third-order spa-
tial information of the spatial non-Gaussianity of the MADE dataset going beyond the
second-order variogram-based geostatistics. Guthke and Bardossy (2017) determined the
asymmetry for the whole domain, either as an isotropic or anisotropic property. This is
denoted as “global asymmetry A”.

At the MADE site, the horizontal asymmetry varies significantly with depth (Figure 6.2A).
Data pairs on the top (close to the ground surface) show more positive asymmetries and
data pairs at the bottom exhibit more negative asymmetry, which is somewhat averaged
out when assessing the “global” asymmetry A.
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Figure 6.2: Analysis of the copula asymmetry (A) of the flowmeter data. A) Contributions
of pairwise horizontal asymmetry as a function of depth. Colors indicate an association
with three distinct zones; pink: top, green: middle, blue: bottom. The boundaries between
the layers are located at x3 ~ 6.67 [m] and x3 ~ 9.0 [m]. B) Horizontal empirical asymmetry
of the flowmeter dataset in the top, middle, and bottom layers, and averaged over the
entire depth. C) Vertical profile of the weighting function sig(x3).

This observation is accounted for in two alternative ways within our simulations: In
one approach, three distinct layers (with boundaries x3 = 6.67 [m] and x3 = 9.0 [m]) with
meaningfully different asymmetry A (Hard A) are defined by maximizing the difference of
the Asymmetries between the top and the bottom layer, whereas in the other a continuous
function A(x3) of the asymmetry A (Smooth A) as a function of the vertical coordinate x3
is developed.

Figure 6.2B shows the empirical global asymmetry and asymmetries for the three distinct
layers. The global horizontal asymmetry is mild, whereas the empirical horizontal
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asymmetry of the top layer is positive for all separation distances and that of the thicker
bottom layer is slightly negative. The middle layer has an asymmetry function similar
to the global estimate. If the layer-dependent asymmetries are accounted for in the
conditional simulations, the resulting K fields reproduce the structure of the flowmeter
dataset better. In this case, the phase-annealing iteration searches in a more compact space
than when using the global asymmetry function. The latter also reduces the required
number of iterations in the Monte-Carlo simulation.

In the alternative approach of accounting for the depth dependence of the asymmetry, a
smooth function A(x3) is defined that gradually varies between the top (4;,,) and bottom
(Aporrom) asymmetry using a sigmoid weighting function sig(x3) plotted in Figure 6.2C:

Alx3) = sig(x3)Arop + (1 —sig(x3))Aporrom; 6.1)
with

. 1

sig(x3) = (6.2)

I +exp(—(a-x3+b))’
in which a = 1.89[1/m| and b = —8.08 are two fitted parameters.

The asymmetry function A(h) in Equations 2.27 and 2.28 is point-symmetric with respect
to the separation vector h, i.e. A(h) = A(—h). This implies that the effects of the distinct
layers disappear in the vertical asymmetry when points belonging to two different layers
are considered. Only the horizontal asymmetry is considered in the objective function
obj3 to push large values on top, A possible equivalent approach would be to use a
directional vertical asymmetry A(—h) # A(h) (Bardossy and Horning, 2017). Another
reason for using the horizontal depth-dependent asymmetry A lies in the unbalanced
distribution of the observation points in the main flow direction (Figure 6.1). The vertical
resolution of the flowmeter and DPIL logs are so high that the K profiles are strongly
conditioned in the vertical direction in the direct vicinity of the measurement profiles, no
matter which statistical metrics are included in the simulation. Between the measured
profiles, by contrast, the uncertainty of the simulated fields can significantly be reduced by
accounting for an accurate description of statistical dependence in the horizontal direction.

6.1.2 Choice of Primary and Secondary Information

While both the flowmeter and DPIL dataset yield estimates of local hydraulic conductivity
values at the MADE site, they are based on different measurement principles that are
limited in their accuracy in different ranges of K. This leads to different marginal distribu-
tions but similar spatial dependence structures (Bohling et al., 2012; Xiao et al., 2019,
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and Chapter 2). Rather than trying to transform the measurements of one investigation
technique, e.g., the Q-Q transformation, to match the marginal distribution of the other,
one dataset is used as the “primary” and the other as the “secondary” dataset to include
both datasets in one geostatistical model. The flowmeter dataset is chosen as a primary
variable because the flowmeter observations cover a larger area and are more spread out
in space than the DPIL observations (Figure 6.1). The DPIL dataset (averaged to the
same vertical resolution as the flowmeter data) is used as a secondary variable. From the
primary dataset, the geometric mean (4.29x 10> [m/s]) and variogram of the K-field are
taken (exponential with correlation lengths of 12.3m in the horizontal and 1.5m in the
vertical direction, variance of log(K) = 4.41), and the realizations are conditioned on the
point values of this dataset.

While the two datasets differ in their marginal distributions (Figure 5.2), they show high
similarity in their rank correlation functions (second row in Figure 5.7). Therefore, the
K fields are conditioned not on the actual values of the DPIL dataset but the rank (order
of point values) within the measured values. This semi-quantitative information (large
versus small K value within the set) is independent of the measurement tools applied.
In this thesis, a zonation of the mean or variogram in the simulation is not considered,
even though geostatistical tools exist to identify the boundaries of zones with different
properties (Haslauer e? al., 2017a).

6.1.3 Tested Types of Simulation

Several geostatistical models that differ in the information included in the simulations are
tested. All models use the same marginal distribution and variogram. Table 6.1 gives an
overview of all models, in which each row represents a different geostatistical model. The
set of the model includes:
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The base case included for reference is an unconditional multi-Gaussian simula-
tion.

The simplest conditional model is a multi-Gaussian simulation honoring the
point values of the flowmeter measurements.

The next model is a multi-Gaussian model honoring the point-values of the
flowmeter data and the ranks of the DPIL data.

This non-multi-Gaussian model is conditioned on the point-values of the flowme-
ter measurements, but not on the DPIL data, and assumes the asymmetry func-
tions determined by the three distinct layers discussed above.

This non-multi-Gaussian model is identical to vy but is additionally conditioned
on the ranks of the DPIL. measurements.

This non-multi-Gaussian model assumes the smooth transition of asymmetry
from the top to the bottom, is conditioned on the point-values of the flowmeter-
derived K values, but neglects the DPIL. measurements.

may be seen as the most complex model, accounting for the smooth trend in the
asymmetry function, honoring the point values of the flowmeter measurements
and the ranks of the DPIL measurements.

Table 6.1: Information included in the different simulation models. Hard A: depth-
dependent asymmetry function in three distinct layers; smooth A: asymmetry function
that smoothly varies with depth.

Geostat. Model Variogram Flowmeter Value DPIL Rank Hard A Smooth A

g0 — v

81

82 —

Vilt —

Vi2 —

V21

NIENENENENEN
NIENENENENEN
Q\
\

Vo) —

For each model, N = 100 realizations of the three-dimensional K fields are simulated.
The properties of the simulated K fields are analyzed and compared between different
simulations in the following sections.
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6.1.4 Set-Up of Flow and Transport Simulations

Table 6.2 lists the configurations of the K simulations and the flow-and-transport calcula-
tions. The domain has a dimension of L = 100 [m] x 250 [m] x 15[m] and is discretized
by Ax = 1.0[m] x 1.0[m] x 0.15 [m]. Each grid cell has a different conductivity value. In
the flow simulations, a mean hydraulic gradient of 3 x 1073 is applied by constant-head
boundary conditions on the boundary faces of the domain perpendicular to the x; direction.
A uniform porosity of 0.35 is assumed (Adams and Gelhar, 1992). In each realization,
10,000 particles are released at the point Xiju; = (50 [m]; 20 [m]; 7.5 [m]). A uniform trans-
verse dispersion coefficient of D, = 1 x 1078 m? /s is applied avoiding issues related to
the gradient of the dispersion coefficient in the random-walk simulations. The chosen
transverse dispersion coefficient is about ten times larger than the typical values of the
pore diffusion coefficient D,.

Table 6.2: Configurations of K fields simulation and particle tracking simulation.

Simulation of K-Field

Vertical correlation length L, [m] 1.5 (Rehfeldt et al., 1992)
Horizontal correlation length I, [m] 12.3 (Rehfeldt et al., 1992)
Domain size L [m] (100; 2505 15)

Grid Spacing Ax [m] (1.0; 1.0; 0.15)

Particle-Tracking Random-Walk Simulation

Mean hydraulic gradient i [-] 3x 1073 (Boggs et al., 1992)
Porosity n [-] 0.35 (Adams and Gelhar, 1992)
Transverse Dispersion Coefficient Dy [m? /sl 1x 108

Number of particle N, [-] 1 x10*

Injection location Xinj [m] (50; 20;7.5)

6.2 Results and Discussions

The statistical properties of the simulated K fields of different geostatistical models in
Table 6.1 are analyzed in Section 6.2.1 and the statistical analysis of the particle tracking
results is presented in Section 6.2.2.
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6.2.1 Statistical Analysis of Simulated K Fields

To give a visual impression of the K fields simulated by the different models, Fig-
ure 6.3 presents horizontal cross-sections (“plan view”’) through a single example field of
each method at three different depths (top: x3 = 13.5 [m], middle: x3 = 8.4 [m], bottom:
x3 = 3.0[m]). Rather than showing values of the conductivity, Figure 6.3 presents the
corresponding cumulative probability values F(K).

Top Middle Bottom

x1 [m]
Ul
o

x1 [m]
ul
o

Vi1

x1 [m]
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o

V12

-0.2

V21
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V22
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Figure 6.3: Plan views of example realizations for each simulation model of the simulated
K-field in empirical distribution function space (F;(K)); Top: horizontal cross-section at
x3 = 13.5|m], middle: cross-section at x3 = 8.4 [m], bottom: cross-section at x3 = 3.0 [m].

The fields of the two conditional multi-Gaussian models, g and g» are structurally similar
and don’t show any systematic differences in the F,(K)-patterns with depth. When the
depth-dependent asymmetry is accounted for in the conditional simulations (vy1-v27), a
systematic local structure is introduced. There are larger isolated patches (“blobs”) of
high-K values in the top cross-section than in the bottom cross-section. This pattern is
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clear in the plot of the top column of the simulation v;{-v,, (Figure 6.3).

In the following, the cumulative distributions of K at individual points x are compared
to the marginal distribution F;(K) that went into the conditional simulations as a global
property. All K values are expressed in terms of their F,(K) values, making the analysis
independent of the marginal distribution. The probability that the local value exceeds a
given value z at location x is denoted P.,5(z(x)). The corresponding empirical distribution
functions at individual points can be characterized by their ensemble mean and variance,
yielding point measures of the distribution function simulated by different methods.

With a sufficiently larger ensemble size, an ensemble of unconditional multi-Gaussian
realizations yield an empirical distribution that is identical to the marginal distribution
P.ys5(z) = F, with the ensemble point mean (z) = 0.5 and ensemble point variance 62(z) =
1—12 at all locations x. Conditioning leads to deviations between P,,(z) and F, which may
be expressed as:

Pens = F; +Po(2(xi)) + P{(2(xi),7) + Pa(2(xi),7) + P3(2(xi), 7, A), (6.3)

in which P} is a perturbation already occurring in the unconditional simulation (due to
an insufficiently large ensemble size), Pj is a perturbation introduced by conditioning to
point values of the primary variable, P; is a perturbation introduced by conditioning to
the orders of the point values of the secondary variable, and P is a perturbation caused by
honoring the asymmetry of the copula.

Conditioning to point values and orders of the point values fixes the simulated values at
the conditioning points within the measurement error of the observations. In the direct
vicinity of these observation points, the variability is reduced, which is expressed in
Equation 6.3 by the dependence of P and P} on the variogram function ¥, and of course
on the distance to the observation points.

The perturbation caused by the asymmetry term P; depends on the asymmetry A. Ac-
cording to Equations 2.27 and 2.28, a positive asymmetry leads to a larger P,,; on large
values and a negative asymmetry leads to a larger P,,; on small values. Accounting for
the asymmetry A in the conditional simulations may lead to a reduction or increase of
the variance in comparison to the original dataset, unlike in multi-Gaussian conditional
simulations, the effect on the variance depends not only on the distance to the observation
points but also on the actual values observed.
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Figure 6.4: Horizontal cross-sections of the ensemble point mean and variance of F;(K)
at x3 = 7.5[m] for the different simulation models. A: ensemble point mean of F,(K); B:
ensemble point variance of F;(K).

Figures 6.4A and 6.4B present the horizontal cross-sections of the ensemble point mean
and variance, respectively, of F,(K) at x3 = 7.5 [m] for the different conditional simulations
(g1-v22) to show the influence of the different information included. Like in Kriging, the
variances are significantly reduced at observation points and their direct vicinity. This
holds for both the point-value observations of the primary flowmeter data and the point-
order observations of the DPIL measurements (see additional spots of reduced variance in
models g2, vi2, and v in comparison to models g1, vy, and v1 in Figure 6.4B). This
implies that the order information is similarly effective as direct measurement values in
reducing the conditional uncertainty of the simulated K fields.

The same pattern can be found in the plots of mean values in Figure 6.4A. Bright and
dark points mark the locations of observations with high and low values, respectively.
These points generate local features of the spatial K-field. Note that Figure 6.4A shows a

104



6.2 Results and Discussions

low-K zone at 30 [m] < x; < 70 [m] and 20 [m] < xp < 60 [m] which is downstream of the
injection point X;,; in the MADE-2 experiment. This is a possible reason for the observed
small tracer velocity in the source zone (a well-known property of the MADE site, see
Zheng et al. (2011)).
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Figure 6.5: Vertical cross-sections of the ensemble point mean and variance of F;(K) in
the direction of mean flow at x; = 7.5 [m] for the different simulation models. A: ensemble
point mean of F,(K); B: ensemble point variance of F;(K).

Figures 6.5A and 6.5B show vertical cross-sections of the ensemble point mean and
variance, respectively, at x; = 50[m]. These vertical cross-sections show the above-
mentioned low conductivity zone at 20 [m] < x < 60 [m] much clearer than the horizontal
cross-sections of Figure 6.4. An additional low-K zone can be found at x, ~ 60 [m]| when
the DPIL information is included in the conditional simulations (models g>, vi2, and v2>).
The additional features detected by the DPIL measurements may influence the results of
flow-and-transport simulations.

Figure 6.5 also clearly shows that accounting for the asymmetry in the conditional
simulations (models vy, vi2, V21, v22) causes different patterns of the mean and variance
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in the top and bottom parts of the domain. The strong deviation of the asymmetry from
zero leads to a large change in P, in Equation 6.3. The models accounting for depth-
dependent asymmetry show a larger mean and variance at the top in comparison to the
bottom. Note that the top layer exhibited a particularly large positive asymmetry causing
an extended influence of large values. The multi-Gaussian conditional simulations also
show several spots of high K values in the top; their spatial influence on the mean, however,
is limited, and the reduction of the variance is independent of the vertical position and
measured value.
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Figure 6.6: Vertical profiles of normalized log-hydraulic conductivity. A: mean, B:
variance of In(K). Markers: flowmeter data; lines: horizontal averages of the various
simulation models.

Figure 6.6 shows vertical profiles of the mean and variance of the flowmeter-derived
normalized conductivity values in comparison to the corresponding profiles according
to the different geostatistical simulations. The unconditional Gaussian model (gg) has
a vertically uniform mean and variance, both of which are close to the corresponding
global metrics of the flowmeter data. Conditioning on the point values and orders within
the multi-Gaussian framework (g; and g;), leads to a slight shift of the mean values
towards the depth-dependent mean values of the flowmeter data, but the effect is limited
to points in the direct horizontal vicinity of the observation profiles so that the depth
profile averaged over the horizontal directions shown in Figure 6.6A hardly differs from
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the uniform prior. Within the multi-Gaussian framework, the estimation variances are
shifted towards smaller values because conditioning points reduce the uncertainty close to
those points, creating hot spots of small estimation variance contrasting to a background
of high variances close to the original global variance in Figure 6.4B. The vertical profile
of the estimation variance thus directly depends on the number of observation profiles.

Accounting for the depth-dependent asymmetry in the non-multi-Gaussian conditional
simulations (model v{1-v72) yields vertical profiles of the mean and variance close to the
corresponding depth-dependent profiles of the flowmeter data. Especially the models
with a smooth depth dependence of the asymmetry A show a gradually varying profile
of the mean conductivity, which resembles the depth profile of the horizontally averaged
flowmeter data. The asymmetry also causes a distinct vertical trend in the variance,
which does not resemble the variance of the flowmeter data too much. The increase in the
variance in the top zone caused by the asymmetry is smaller when the DPIL measurements
are included in the conditioning, which is an effect of variance reduction by conditioning
to observations.

All conditioning methods introduce non-stationarity, as they result in spatial patterns of
the mean and variance. Moreover, all methods simulate local features if these were hit
by the observation profiles. The non-multi-Gaussian methods, however, lead to fields
with horizontally more persistent patterns. It is to be expected that this has a more
profound effect on flow and transport than the locally constrained conditioning of the
multi-Gaussian approach, which is discussed in the next section.

6.2.2 Analysis of Particle-Tracking Results

How the differences in the simulation models of hydraulic conductivity affect the macro-
scopic characteristics of solute transport is analyzed in this section. The analysis is mainly
based on particle travel times observed at the control planes.
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Figure 6.7: Ensemble log-travel time distributions observed in different observation planes
perpendicular to the mean direction of flow for the different geostatistical simulation
models employed. A: PDF of the ensemble log-travel time; B: PDF of the skewness of
log-travel times distributions of individual realizations.

Figure 6.7 shows the logarithmic travel time distributions at four different travel distances
for all simulation models employed. While Figure 6.7A shows the distributions of all par-
ticles in all realizations belonging to a particular geostatistical model, Figure 6.7B shows
the distribution of the skewness of log-travel time within the corresponding ensembles.
If macroscopic transport was Fickian, the travel-time distribution would be the inverse
Gaussian distribution, which is almost indistinguishable from the log-normal distribution
at sufficient travel distance. This implies that the skewness of the log-travel time would
be zero. Strong deviations from zero are indicative of anomalous transport.

As listed in Table 6.2, all particles are introduced at Xx;,,; = (50; 20; 7.5) [m]. Figure 6.5
has shown that all conditional simulations infer a low-K zone shortly downstream of
the injection point. This leads to a significant shift towards large travel times from
unconditional to the conditional simulations at x; ~ 40 [m] (Figure 6.7A). At larger travel
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distances, the effects of conditioning on the overall log-travel time distribution vanishes
as the particles now pass through a part of the domain with fewer observations, in which
their behaviors are less influenced by conditioning and the global geostatistical properties
of the simulated field dominate.

The simulations that account for the copula-based depth-dependent asymmetry A of the
K-field (v11 - v22) show a slightly wider distribution of log-travel time than the multi-
Gaussian simulations. However, the only clearly distinguishable model is vy that assumes
layers of distinct asymmetry and neglects the DPIL data.

All simulations cause predominantly positive skewness of the log-travel time distribution,
which is equivalent to enhanced tailings. This results from the variance of log-hydraulic
conductivity.
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Figure 6.8: Density of the ensemble particle locations in the vertical direction in each
observation plane.

Figure 6.8 shows the density of the particle locations in the vertical direction in each
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observation plane, exemplifying the introduction of non-stationarity upon conditioning.
All particles are released at the same location on the left side. In the unconditional case
(g0), the particles spread symmetrically in the vertical direction, whereas there is a clear
upward drift shortly downstream of the injection point in all conditional simulations.
Already conditioning on the flowmeter data (gq, v, v21) causes the introduction of a
low-K zone downstream of the injection point (see Figure 6.5A) that the particles largely
try to bypass. Additional conditioning on the DPIL data (g3, v12, v22) enhances the effect.

In the conditional multi-Gaussian case (g; and g7), the effect of channelizing transport in
a preferential flow path in the upper half of the domain vanishes at x, ~ 110 [m] because
the density of observation points in this zone is small so that the conductivity and velocity
statistics relax to the unconditional case. This is different in the simulations that account
for depth-dependent asymmetry (v{1-v22). Already the mean conductivity ranks shown in
Figure 6.5A and the vertical profiles of mean log-conductivity in Figure 6.6 indicate that
these simulations lead to a stronger persistence of high-conductivity values in the top half
which affects that most particle trajectories remain in there until the end of the domain.

The existence of a high-conductive layer on top of a less conductive layer controls the
overall transport behavior at the MADE site. The particles get stuck in the low-K zone,
and as soon as they get out and reach the high-K zone, they stay there and move quickly
downstream.

Figure 6.9 shows length profiles of the travel-time derived longitudinal macroscopic
velocity (Uy, left column) and dispersivities (D;/Uy,right column). Solid lines are the
effective velocity and dispersivities, in which the transport coefficients are computed for
each realization first and averaged over the ensemble afterwards, whereas dashed lines
are the ensemble velocity and dispersivities, in which the travel times of all realizations
are merged first and the transport coefficients are computed afterwards. The ensemble
coefficients thus do not describe how individual plumes behave as they include the
variability between the different realizations, which is a metric of uncertainty (Attinger
et al., 1999; Dentz et al., 2000). Cirpka (2002) could show that the effective dispersion
coefficient for a point injection is a measure of solute mixing, relevant for mixing-
controlled reactive transport. In general, the effective dispersion is expected to lag behind
the ensemble dispersion (Dentz et al., 2000). This is also what has been observed in our
simulations. In contrast to the analytical derivation of Dentz et al. (2000), however, the
evolution of the dispersion coefficients is affected by the non-stationarity of the conditional
conductivity fields.
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Figure 6.9: Macroscopic transport parameters derived from the travel-time distributions in
observation planes perpendicular to the mean direction of flow. A: Effective (solid lines)
and ensemble (dash lines) velocity; B: Effective (solid lines), and ensemble (dash lines)
longitudinal dispersivity, Dy/Uj.
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Figure 6.9 presents a comparison of the individual transport parameters among the differ-
ent simulation models. All conditional models show the effect of the low-conductivity
zone downstream of the injection point illustrated in Figure 6.5. As indicated by Fig-
ure 6.9A, the effective velocities remain low in the first ~ 10 meters travel distance
downstream of the injection point in the conditional simulations, whereas the uncondi-
tional simulations don’t show this behavior. After conditioning the K-field to the DPIL
data, the conductivity along the plume trajectory has increased at x; ~ 40[m], causing
higher effective velocities Uy . in this region in the models g2, vi2, and vy, (see Fig-
ures 6.10A), with the strongest effects being seen in model v, which is consistent with
the high probability mass of smaller log-travel times for vy, at x, = 40 [m] in Figure 6.7A.

Conditioning also affects solute dispersion. Directly downstream of the injection point,
a strong deviation between the ensemble and effective dispersivities is observed in the
unconditional simulations (g¢). In some unconditional realizations, this zone exhibits high
K values and in others low ones, which causes a high uncertainty in the mean travel time
of plumes in individual realizations. This uncertainty is manifested in a rapid increase of
the ensemble dispersivity Dy ons/Up ens. Since all conditional simulations agree on this
zone exhibiting low K values (see Figure 6.10A), the early longitudinal displacement is
fairly uniform among the different conditional realizations, causing smaller ensemble
dispersivities.

As seen in Figure 6.9B, the non-multi-Gaussian models (v{1-v7) yield a strong difference
between the ensemble and effective dispersivities that persists at least until x; ~ 150[m],
whereas these two dispersivities differ less in the conditional multi-Gaussian models
(g1, g2)- Figure 6.10C highlights the differences in the ensemble dispersivity among the
different models between x; = 150 [m] and x, = 250 [m]. Quite clearly, the non-multi-
Gaussian model results in higher ensemble dispersivities, indicating a larger uncertainty
in the mean transport of the plume. The effects are higher in the models that only account
for the flowmeter data (v; and v;). This is related to the vertical structure of the mean
velocity (see Figure 6.5A) and the higher variance of log-conductivity in the top layer
of the domain (see Figure 6.5B). In some realizations, the tracer particles exclusively
move through the high-velocity top layer, whereas in others they also experience lower
velocities. As the multi-Gaussian fields don’t show persistent shear-flow, there can also be
no uncertainty about the position of the trajectories concerning the vertical mean velocity
profile.

6.2.3 Simulations of the MADE Tracer Test

The tritium distribution of four discrete points in time at 27 days, 132 days, 224 days,
and 328 days since injection in the longitudinal (x;) direction are compared between the
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observations during the MADE?2 tracer test (Boggs et al., 1993) and the simulation results
of the presented various geostatistical models.

Particles are injected at 20 points representing the five injection locations and 500 particles
are injected at each point mimicking the field conditions. An alternative approach to
simulate the gravity-feed injection did not yield better results, but instead the spurious
movement of the injected mass in the upstream direction. The measured tritium con-
centrations are integrated in the vertical direction (x3), classified into 25 bins with a
constant class width of 10 [m] and normalized using the total recovered tritium mass. This
approximated normalized mass distribution is compared with the simulated normalized
mass distribution (Figure 6.11). The dense K observation network directly downstream
of the injection locations determines the K-field in this zone also indicated by a small
uncertainty in this zone (right column of Figure 6.5). This well-defined K-field leads to
small differences in the simulated tritium mass distribution between various conditional
geostatistical models (Figure 6.11A-D up to x; ~ 100[m|. The numerical tracer tests
based on all geostatistical models can reproduce the first peak after the injection location
and the shape of the early-time tritium distribution better than the unconditional model

(g0)-

The solute transport behavior at medium to large travel distances (Figure 6.11B and C),
starting at xp ~ 100 [m], might include a second peak at x, = 200 [m], is more challenging
to be reproduced. However, geostatistical models that do include asymmetry (vy1, vi2, V21,
and v,,) match the observations at 132 days and at 224 days and associated large distances
as well. Model v, matches the long tail up to x, = 250 [m] (including the second peak)
best at 224 days. The underestimation of the second peak in the numerical tracer tests
might be attributed to a lack of important local features in the K-field due to the smaller
number of K observations at x; ~ 180 [m] or to the steady hydraulic conditions in the
numerical models whereas transient conditions might have occurred in the field (Llopis-
Albert and Capilla, 2009).

The Cramér-von Mises criterion @2 (Anderson, 1962)

0 = / B — FOOPAF (x) (6.4)
is used to compare the observed (F(x)) and simulated (Fy(x)) tritium distribution in the
longitudinal direction at two scales (the concentration-space and the log-concentration
space). The smaller w?, the larger the similarity between two distributions. In the
concentration-space (Figure 6.11E), ®? is mainly influenced by the high tritium mass
density directly downstream of the injection location which dominates the global shape
of the mass distribution. Hence, the conditional models (g; — v2>) match better the
observations in that zone than the unconditional model go.
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In the log-concentration space (Figures 6.11 A, B, C, D, F), small values can be compared
better between observation and simulations. This focuses on the transport behavior at
the zone farther away from the injection location. In that zone, the geostatistical models
that include the measure of asymmetry A performed best. In this zone, the K observation
network density is sparse, but the copula asymmetry provides at least some information
globally, even when no observations are available. In this zone, the model with only
flowmeter values (g;) and/or the order of the DPIL values, exhibits the worst results. Even
more, not only the asymmetry but also the order information from the DPIL. measurements
are meaningful to understand the solute transport behavior at the MADE site: an improved
result including the order of the DPIL values can be found (Figure 6.11F) starting at day
132. Similarly, the velocity peaks at x, ~ 50 [m] (Figure 6.9) occurred when the DPIL
values were included.
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Figure 6.11: Observed (bar plot) and simulated normalized mass distributions of different
geostatistical models of A) 27 days; B) 132 days; C) 224 days; D) 328 days since the
injection and E) the Cramér-von Mises criterion of different models and F) the rank of the
Cramér-von Mises criterion of different models in log scale.

115



Chapter 6 Hydraulic Conductivity Simulation and Evaluation of Macrodispersion

6.3 Summary and Conclusion of this Chapter

In this chapter, the phase-annealing method (Chapter 3) is applied to the MADE site,
where local hydraulic-conductivity estimates by the vertical flowmeter and direct-push
injection-logging (DPIL) profiles exist, which are inconsistent in their absolute values
but consistent in their rank-correlation function (Chapter 5). The data also show a strong
depth dependence of the asymmetry function, indicating better connected high-K values
at the top, indifferent asymmetry in the middle, and slightly better connected low-K
values at the bottom. The effects of including the information from the flowmeter data
only versus the flowmeter and DPIL datasets jointly, as well as accounting for the depth-
dependent asymmetry of the K copulas are systematically tested. All models shared the
same variogram and marginal distribution of K, but they differed in local features of
the K-field and the transport characteristics revealed by particle-tracking random-walk
simulations (Chapter 4) of a point-injection experiment.

Conditioning on point data alone has a significant effect on the resolved hydraulic-
conductivity fields if the observation points are close-by to each other. At the MADE site,
this is the case directly downstream of the injection location of the MADE-2 experiment.
With a sufficiently dense observation network, the impact of the exact geostatistical model
vanishes, because the conductivity field is largely controlled by the measured values at the
conditioning points. In all conditional models tested, a low-K zone directly downstream
of the injection exerts a major control on the short-distance plume behavior is confirmed.
The DPIL data revealed an additional high-K zone shortly downstream of the low-K zone
already detected by Rehfeldt e al. (1992). These features are particularly important for
the interpretation of the MADE-2 experiment as they are close to the injection point.

Accounting for non-Gaussian spatial dependence becomes more important when the
density of observation points is smaller as is the case over the largest part of the MADE site.
In multi-Gaussian geostatistical methods, the impact of high- and low-K measurements on
interpolated values between observation points decreases identically with the correlation
function. At the MADE site, this implies conductivity fields that are hardly affected by
conditioning in the areas between the clusters of observation points when multi-Gaussian
conditioning methods are applied. The high positive asymmetry in the top layer of the
MADE site, however, triggers a persistent high-K zone at the top upon depth-dependent
non-multi-Gaussian conditioning. This layer causes a preferential flow layer at the top:
Once the tracer plume has passed through the initial low-K zone, it is diverted into the
top layer and stays therein. The multi-Gaussian model predicted neither this layer nor
its effect on macroscopic solute transport. The pseudo-stratification in the non-multi-
Gaussian models also caused larger ensemble dispersion coefficients and more persistent
differences between ensemble and effective dispersion.
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6.3 Summary and Conclusion of this Chapter

This chapter has shown that large-scale, three-dimensional conditional, non-multi-Gaussian
simulations are feasible and can be applied to the benchmark of the highly heterogeneous
MADE site, revealing persistent features in the K-field and transport characteristics that
would remain unresolved with common geostatistical methods. third-order measures of
non-Gaussianity (such as depth-dependent asymmetry) can improve the understanding of
the spatial structure of K and its effects on flow and transport.
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Chapter 7

Conclusions and Outlook

In this thesis, the copula-based three-dimensional non-multi-Gaussian conditional simula-
tion shows the ability to build a field-scale data-driven stochastic model of the hydraulic
conductivity for the study of solute transport at a real-world heterogeneous field site,
namely the MAcroDispersion Experiment site. Three modeling and simulation techniques
are combined, i.e., Copula-based geostatistical methods (Chapter 2) for the data analysis
and modeling; Phase-annealing method with FFT-Asymmetry for non-multi-Gaussian K
fields simulation (Chapter 3); GPU-accelerated particle-tracking random-walk method to
evaluate the solute transport behavior on the simulated K fields (Chapter 4).

Copula-based geostatistical methods (Chapter 2) are capable to model a spatial dependence
structure of K fields independent on the marginal distribution and are not influenced by a
monotonic transformation. After removing the influences from the marginal distribution
and the data transformation, e.g., the widely used log-transformation in hydrogeology,
the underlying spatial dependence structure of DPIL and flowmeter dataset at the MADE
site is discussed in detail in the copula space. The similarity between the copula-based
univariate and bivariate measures further confirms that the flowmeter and the DPIL dataset
present the same spatial dependence structure at the MADE site (Section 5.3). Although
differences can be found between their marginal distributions. However, a difference
between the two datasets has been found at certain locations (Figures 5.5 and 5.6). This
could be a possible start point for future fieldwork to understand the K distribution at the
MADE site and the relationship between the two datasets.

A non-multi-Gaussian spatial dependence structure with a different arrangement of two-
point and n-point spatial dependence is found at the MADE site using the empirical
bivariate copula asymmetry (Section 5.3) and the theoretical Gauss- and v-copula model
(Section 5.3.2). The modeling of the spatial dependence structures of the DPIL and the
flowmeter dataset has been improved by including the censorship threshold in the copula
parameter estimation (Section 5.3.3). Further investigations like the definition of new
theoretical copula models or a two-side censorship threshold and its inclusion in the
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Chapter 7 Conclusions and Outlook

geostatistical simulation would be interesting topics for future work.

The influence of the degree of non-Gaussianity on solute transport has been studied
using two types of marginal distribution and three different types of degrees of Gaus-
sianity (Section 4.2). The empirical bivariate copula density of the longitudinal particle
velocity proves the influence of the underlying spatial dependence structure. However,
the corresponding influence on the macrodispersivities between a multi-Gaussian and
non-multi-Gaussian scenario is small in the test scenarios with a small 62(In(K)). In
contrast, a significant large influence can be found in the scenarios with a large 62 (In(K)).
This proves that the degree of the non-Gaussianity can not be neglected for a system with
a large 6 (In(K)). When this degree of non-Gaussianity coincides with the preferential
flow paths, more complex behavior can be found.

A potential extension of copula-based geostatistics in the future is to model the bivariate
copula density of the longitudinal particle velocity. The transition of the longitudinal
velocity of the injected particles can be assumed as a n-step spatial Markov process and
simulated using the bivariate copula density. Critical points of this method are how to
model the particle behavior after the injection point and how to model a non-stationary
process.

The influence of the underlying degree of non-Gaussianity and local features on solute
transport is studied for the MADE site (Chapter 6). The variogram, point values of
the flowmeter dataset, the order of the point values of the DPIL dataset, and the depth-
dependent asymmetry are combined in a single PA simulation to extract more information
from the K observations. The local feature after the injection point generates an uplifting
path and pushes the particles to an over-averaging high-K zone. These together cause a
long tail particle distribution and additional macrodispersivity.

The copula asymmetry estimates additional information from the existing observations
and provides information on the relative location of the K values of different quantiles
in rank space and the relative location between the injection point and the important K-
zones away from Gaussian. When the investigated process is strongly influenced by these
heterogeneous structures, the included asymmetry can help to improve the model accuracy.
An interesting extension in the future is estimating the three-dimensional asymmetry from
the geophysical data.

The updating of the asymmetry in annealing iteration occupies most of the computational
time, although it is simplified in this thesis. Possible improvements to address this issue
are:

1. the development of a wavelet-based phase-annealing method. Therefore in this
method, the values are updated locally during the annealing iterations. The asym-
metry can be updated using Equation 3.2;
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2. investigating the relationship between asymmetry in the space domain and the phase
angle distributions in the Fourier domain to determine the most important wave
number or the pattern of phase distributions.

Phase-annealing (Chapter 6) has been shown as a powerful tool for the three-dimensional
conditional stochastic simulation of random fields with variogram. One PA-simulation can
combine different types of information and uncertainty. It can be further used to simulate
high-resolution porous media for the application to environmental, material science, or
industrial problems. A particularly interesting question for further studies is the numerical
properties of PA-simulation while including different terms in the objective function or a
combination of the existing multi-objective optimization techniques in PA-simulation.
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Appendix A

FFT Representation of the Asymmetry

The cross-covariance between two random filed f(x) and g(x) is

Covlh) = [ f(x)g(x+h). (A1)

Equation A.1 can be described using the Fourier transform:
Cov(h) =TF ™' (TF(f(u))TF(g(u))), (A.2)

in which TF is the Fourier transform, TF~! is the inverse Fourier transform, and U
is the complex conjugate. Let f = F.(z(x)), g = F.(z(x+h)), and indicator matrices
Iy =1(z(x)), I; = I(z(x+h)), then the asymmetry A in Equations2.27 and 2.28 can be
rewritten as:

A(f.8)

83 —fg+ f)

g8 )

1
2, L 2
gf 2g+

Bl= A=

2

2

:(g2f+f2g——g2—1f2—2gf+—g+§f—1)

3 1
gf+f g——gzlf——le —2g¢f+ gI,z—I— fI Ifl)
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and

A(f.8))
¥ (&2 + % — 38%r — 3/° L — 28/ + 3aly + 3 1 — §Irk)
Y I, (A4)
_TF ' (GoFy + GiF> — 5GaFyy — 3 F1,F> — 2G 1 Fy + 3G iy + 3F1 L — 3 FLFr,)
TF ' (F,F7,)

Y

in which F{ = TF(f), F» = TF(f?), G| = TF(g), G, = TF(g*), F;, = TF(Iy) and F}, =
TF(I,).

The asymmetry in Equations 2.27 and 2.28 is a auto-asymmetry in this thesis. Therefore
F]f =k, F = G1, F, = G,. So, Equation A.4 can be rewritten as:

A
TF ' (BRF + AR - ABF - sFFR - 2F R + 3RF+3RR - \RF) - (AS)
TF ' (FF)

Equation A.5 can be further simplified to reduce the computational cost. Let Fj; =
ay +byi, F = ap + byi and Fp . = ag + boi are the k—th term in the Fourier space. The
numerator part of the inverse FT of Equation A.5 can be rewritten as:

B = (apa; +axbii — byaji+ byby)
+ (a1a2+a1b2i—b1a2i+b1b2)

1
— E(azao + ayboi — brapi + baby)

1
—5 (apay + agbai — boazi + boby)

— (2af +2b})
3 (A.6)
+ Z(alao + a1boi — byapi + b by)
3
+ Z(aoal + apb1i — boayi+ boby)
- Z(a(z) +bp)

1
2 2 3 1 2 2
= 2(a1a2 +b1b2) — (a()az —|—b0b2) — 2(611 +b1) -+ E(Cloal +b0b1) — Z(ao +b0).
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The first term 2(ajas + b1by) in Equation A.6 is the same as the FFT representation of

A (F(z(x0), Fo(2(x))) = Fe(2(xi)*(Fo(2(x))) + Fa(z(xi)) (Fe(2(x5) ), (A7)

so the additional terms are introduced by the central part —0.5. The asymmetry A can be
calculated by
A=
TF ! (2((11(12 + b]bz) — (a()az -+ b()bz) — 2((1% + b%) + %(aoal + b()b]) — L—lt(a(z) + b(z)))(A.S)
TF (a3 +b3) ’

in which ag, bg are constants and can be calculated outside of the annealing iterations.

A further simplification can be archived using f = f —0.5, § = g — 0.5, F; = TF(f),
G| =TF(g), > = TF(f?) and G, = TF(g?), Equation A.3, A.4 and A.8 can be rewritten
as

A(f.8)=Fg+f & (A.9)
and
- Y(Pf+7Fs
A(F.8) = (gz,f,g d

TF! (Gofi +GiF)
- TFY(F,F,)
_TF*I (2(d1d> +b1b))

TF ! (a3 + b3)

(A.10)

Y

inwhich F; = G, =a, +bjiand F, = G, = @ + byi. The asymmetry A is equivalent to the
cross-covariance of F,(z(x)) —0.5 and (F,(z(x+h)) —0.5)2. A = 0fora perfect Gaussian

dependence, in this case (djds +b1b>) = 0 and the cross-covariance of F,(z(x)) —0.5 and
(F,(z(x+h)) —0.5)2 is zero.
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Equation A.10 can be written as:
A(7.2))

_TF ! (2(d1d2+b1b2))

 TF Y&} +h})
TF ' (2<F,F >)

T TF @+ 1) (A.11)

CTF ' (2< F,Fi«F >)

- TF Y&+ b))
TF~! (2 < Fi,Ru(Fy) >)

T IR @+ R)

)

in which < -;- > is the inner product, * is the convolution operator and Ry, is the auto-
correlation function. Equation A.11 connects the structure of asymmetry and the structure
of the Fourier coefficients. According to Equation A.11, asymmetry is a function of
Fi = FT(Fz(z(x)) —0.5) and Ry (F1) = Ry (FT (Fz(z(x)) —0.5)). In phase-annealing,
F} is changed only on the locations with a phase randomization and Ry, can be updated.
In the case of a Gaussian random field, there is < F|, Ry, (Fl) >= 0. From the geometric
point, this means Fj is orthogonal to R (F}).

In the annealing iteration, there are 2 x FT(-), 2 x FT~1(.) and 1 x FTShift(-). Because
FTshift function is not implemented in pyFFTW, there are two different methods to reduce
its computational cost. a) The asymmetry values are taken directly from the asymmetry
map from Equation A.8 without doing the FTshift. 2) A FTshift function swaps values
between blocks in 2D and cubes in 3D. A thread-safe Algorithm 6 (Abdellah, 2014) is
implemented by Cython to perform a multithread FTshift.
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Algorithm 6: Thread-safe FTshift for a three-dimensional even size random
field.

Input: RF g before FT shift with a domain size d = [2-N},2-N;,2 - N3]

Result: Shifted RF

initialization;

dy + d/2 ;

for i in [0,d,[0]) do

for j in [0,d;[1]) do

for k in [0,d;[2]) do

g[i7j7k]7g[i+d2[0]7j+d2[1]7k+d2[2“ <
g[i+dZ[O],j+d2[1]7k+d2[2]]7g[i7j>k] 5

gli+d2[0], j, k], g[i,j +d2[1],k+ d2[2]] <>
g[ivj+d2[1]7k+d2[2]]7g[i+d2[0]7jak] ;
gli+do[0], j,k+d2[2]], g7, j + da[1], 4] 5
g[i7j7k+d2[2”7g[i+d2[0]7j+d2[1]7k] A4

end
end
end
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Appendix B

Performance of Python Scientific

Libraries

The main performance bottleneck of the PA with asymmetry is the updating of the
asymmetry in each PA iteration, which contains a forward/inverse Fourier Transformation
and matrix operation. The computational costs of different Python libraries are compared
and the most efficient one could be selected according to the available computational
resources to get the best computational performance.

B.1 Configuration of the Test Machine

Table B.1: Configurations of the Test Machine.

™1 ™2
CPU Intel 17-4790 Intel Xeon E5-2660 v3
Frequency 3.60 GHz 2.60 Ghz
Threads 8 threads 20 threads
Memory 16 GB 256 GB
GPU Nvidia GTX970
GPU Memory 4GB
oS Windows 7 Professional CentOS Linux 7
OS Architecture x86 64-bit x86 64-bit
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Appendix B Performance of Python Scientific Libraries

Test machines with two different configurations are used. One is local PC (TM1) and one
is on a high-performance cluster (TM2) (Table B.1).

B.2 Fourier Transformation

The performance of the FFT operation (forward FFT and inverse FFT) depends on the
implementation of the library and the hardware: numpy, scipy, and pyFFTw on CPU:;
cupy on GPU, number of the thread: single thread or multithread, the data type: 32- or
64-bit float number. According to these controlling parameters, the following scenarios
are tested:

1.

2.

10.

11.

12.

130

npl: using numpy to generate the 64-bit input random matrixes and FFT operation;

np2: using numpy to generate the 32-bit input random matrixes and FFT operation;

. np3: using numpy to generate the 32-bit input random matrixes and real value FFT

operation;

scipyl: using numpy to generate the 64-bit input random matrixes and scipy to
perform the FFT operation;

scipy2: using numpy to generate the 32-bit input random matrixes and scipy to
perform the FFT operation;

scipy3: using numpy to generate the 32-bit input random matrixes and scipy to
perform the real value FFT operation;

. cpl: using cupy to generate the 64-bit input random matrixes and FFT operation;
. cp2: using cupy to generate the 32-bit input random matrixes and FFT operation;

. ¢p3: using cupy to generate the 32-bit input random matrixes and real value FFT

operation;

cp4: using numpy to generate the 64-bit input random matrixes and cupy to perform
the FFT operation;

cpS: using numpy to generate the 32-bit input random matrixes and cupy to perform
the FFT operation;

cp6: using numpy to generate the 32-bit input random matrixes and cupy to perform



B.2 Fourier Transformation

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

the real value FFT operation;

fftw1: using numpy to generate the 64-bit input random matrixes and pyfftw to
perform the FFT operation with 8-thread;

fftw2: using numpy to generate the 64-bit input random matrixes and pyfftw to
perform the FFT operation with 6-thread;

fftw3: using numpy to generate the 64-bit input random matrixes and pyfftw to
perform the FFT operation with 4-thread;

fftw4: using numpy to generate the 32-bit input random matrixes and pyfftw to
perform the FFT operation with 8-thread;

fftw5: using numpy to generate the 32-bit input random matrixes and pyfftw to
perform the FFT operation with 6-thread;

fftw6: using numpy to generate the 32-bit input random matrixes and pyfftw to
perform the FFT operation with 4-thread;

fftw7: using numpy to generate the 64-bit input random matrixes and pyfftw to
perform the real value FFT operation with 8-thread;

fftw8: using numpy to generate the 64-bit input random matrixes and pyfftw to
perform the real value FFT operation with 6-thread;

fftw9: using numpy to generate the 64-bit input random matrixes and pyfftw to
perform the real value FFT operation with 4-thread;

fftw10: using numpy to generate the 32-bit input random matrixes and pyfftw to
perform the real value FFT operation with 8-thread;

fftw11: using numpy to generate the 32-bit input random matrixes and pyfftw to
perform the real value FFT operation with 6-thread;

fftw12: using numpy to generate the 32-bit input random matrixes and pyfftw to
perform the real value FFT operation with 4-thread.

Tables B.2 and B.3 show the performance test results on the local PC (TM1) and on the
cluster (TM2). The first scenario npl on TM1 is used as the baseline scenario. So, a value
larger than one means better performance than the baseline scenario npl.

The scenarios of cupy (cpl-cp3) show that the FFT operation on GPU is faster than on
CPU, especially for 32-bit data (cp2 and cp3). Scenario with PyFFTW (fftw1-fftw12)
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provides good performance of real value FFT on 32-bit data with 8-thread (fftw10-fftw12).
Additionally, the performance of PyFFTW on the cluster (Table B.3) is better than on the
local PC (Table B.2).

Table B.2: Performance test of FFT Transformation on TM2.

d 1003 1283 2000  250°  256°
npl 100 100 100 1.00 1.00
np2 100 102 100 1.0l  1.00
np3 154 164 153 156  1.83
scipyl  1.40 133 140 142  1.10
scipy2  1.69 137 171  1.64 140
scipy3 230 238 226 230  2.84
cpl 19.56 630 25671 622 13.76
cp2 32.25 84.55 28231 125.44 75320
cp3 12.51 3131 104.64 222.19 288.87
cp4 588 817 839 929 11.09
cps 692 954 993 1072 12.79
cpb 687 950 989  10.67 12.79
fitwl  4.01 3.08 3.82 390  2.78
fitw2  3.00 242 3.4 373 242
fitw3 401 285 351  3.62 235
fitwd 454 370 456 447 346
fitw5S 398 298 3.09 3.11  3.16
fitw6  4.64 343 424 405  2.87
fitw7 543 576 535 562  6.50
fitw8 475 525 500 502  6.14
fitw9 546 578 510 531  6.06
fitwl0 631 7.07 641 652  7.97
fitwll 578 642 575 593  7.16
fitwl2 6.44 7.3 595 606  7.48
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B.3 Matrix Operation

Table B.3: Performance test of FFT Transformation on the cluster.

d 1003 128> 200° 250° 256°
npl 0.80 0.71 0.65 065 0.74
np2 0.72 069 0.64 0.64 0.75
np3 136 139 1.08 1.08 1.30
fitwl 474 5.14 4.63 481 517
fitw2  3.14 342 442 461 3.67
fitw3  4.27 444 4.04 4.17 445
fitwd 578 6.50 5.56 5.73 6.25
fitw5  2.53 631 258 552 5.90
fitw6 535 595 506 5.14 524
fitw7 579 6.67 5.62 5.85 7.01
fitw8 521 6.42 506 5.32 6.40
fitw9 531 6.04 500 522 628
fitwl0 6.76 791 7.01 6.80 8.16
fitwll 6.64 7.48 395 641 8.01
fitwl2 6.41 751 6.51 630 7.66

B.3 Matrix Operation

The performance of the matrix operation (+, -, *, and /) is compared between numpy,
Cython, cupy on three-dimensional matrixes of different sizes:

1. npl: using numpy to generate random matrixes and perform the matrix operation;

2.

3.

cpl: using cupy to generate random matrixes and perform the matrix operation;

cp2: using numpy to generate random matrixes and cupy to perform the matrix

operation;

cythonl: using numpy to generate random matrixes and cython to perform the

matrix operation with 6-thread;
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5. cython2: using numpy to generate random matrixes and cython to perform the
matrix operation with 8-thread.

Table B.4 shows the performance test results on the local PC (TM1) and on the cluster
(TM2). The first scenario npl on TM1 is used as the baseline scenario. So, a value larger

than one means better performance than the baseline scenario npl.

The scenarios of cupy (cpl and cp2) show that the matrix operation on GPU is faster
than on CPU. This computational benefit is reduced when a large matrix is exchanged
between GPU and CPU (cp2). Scenario with Cython (cythonl and cython2) provides

good performance with 8-thread on the cluster (cython2).

Table B.4: Performance test of matrix operation.

d 50 100° 150° 200° 250°
On TM1

npl 100 1.00 1.00 1.00 1.00
cpl 467 25.13 2531 25.02 2481
cp2 027 326 298 3.07 3.1
cythonl 074 1.75 165 1.67 1.68
cython2 074 175 164 1.67 1.68
On TM2

npl 073 258 1.74 101 1.02
cythonl 043 3.03 350 374 6.72
cython2 045 3.12 366 379 5.89
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