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I propose to consider the question, 
‘Can machines think?’

Alan M. Turing, 1950
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Abstract

During the Anthropocene and especially in the past decades earth’s environment has un-
dergone major changes. The planetary boundaries are increasingly under pressure. Since soil 
affects climate as compartment of the carbon and nitrogen cycles, it is an important resource 
in approaching these environmental problems. Consequently, knowledge about soil, soil pro-
cesses and soil functions plays an essential role in research on and solutions for these severe 
environmental and socio-economic challenges. The mapping and modelling of soil provides 
spatial knowledge of soil status and changes over time, which allows to assess and evalu-
ate soil management practices and attempts to solve to environmental problems. Machine 
learning methods have proven to be suitable for spatial mapping and modelling of soil, but 
often are black boxes and the model decisions and prediction results remain unexplained. 
However, explainable soil models based on machine learning would facilitate detection of en-
vironmental changes, contribute to decision making for environmental protection and foster 
acceptance in science, politics, and society. Therefore, latest efforts in machine learning were 
to expand the conventional machine learning framework to explainable machine learning 
to 1) justify decisions, 2) control, and 3) improve models and 4) to discover new knowledge. 
The core elements for explainable machine learning are transparency, interpretability and 
explainability. Additionally, domain knowledge and scientific consistency are crucial. How-
ever, to date the concepts of explainable machine learning played a marginal role in soil 
modelling and mapping. Objective of this thesis was to explore and describe how transpar-
ency, interpretability and explainability can be achieved in the soil mapping framework. The 
example studies showed how scientific consistency can be evaluated with model compari-
son and domain knowledge was and incorporated in DSM models. The studies showed how 
transparency can be accomplished with reproducible sample and covariate selection, and 
how interpretation of the models can be linked with domain knowledge about soil formation 
and processes to explain the model results. 
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Zusammenfassung

Während des Anthropozäns und insbesondere in den letzten Jahrzehnten hat sich die 
Umwelt der Erde stark verändert. Die planetarischen Grenzen stehen zunehmend unter 
Druck. Da der Boden als wichtiger Teil der Kohlenstoff- und Stickstoffkreisläufe das Kli-
ma beeinflusst, ist er eine wichtige Ressource bei der Bewältigung dieser Umweltproble-
me. Folglich spielt das Wissen über den Boden, Bodenprozesse und Bodenfunktionen eine 
wesentliche Rolle bei der Erforschung und Lösung dieser schwerwiegenden ökologischen 
und sozioökonomischen Herausforderungen. Die Kartierung und Modellierung des Bodens 
liefert räumliche Kenntnis über den Zustand des Bodens und seine Veränderungen im Laufe 
der Zeit. Dies ermöglicht es, Methoden der Bodenbewirtschaftung und Lösungsansätze für 
Umweltprobleme zu beurteilen und zu bewerten. Methoden des maschinellen Lernens haben 
sich für die räumliche Kartierung und Modellierung des Bodens als geeignet erwiesen. Oft 
handelt es sich dabei aber um Black Boxes und die Modellentscheidungen und -ergebnisse 
werden nicht erklärt. Allerdings würden erklärbare Bodenmodelle auf der Grundlage des 
maschinellen Lernens die Erkennung von Umweltveränderungen erleichtern, zur Entschei-
dungsfindung für den Umweltschutz beitragen und die Akzeptanz von Wissenschaft, Politik 
in Gesellschaft fördern. Daher sind die jüngsten Bemühungen im Bereich des maschinellen 
Lernens darauf ausgerichtet, den konventionellen Rahmen des maschinellen Lernens auf er-
klärbares maschinelles Lernen zu erweitern, um 1) Entscheidungen zu begründen, 2) die 
Modelle besser zu steuern und 3) zu verbessern und 4) neues Wissen zu generieren. Die Ker-
nelemente für erklärbares maschinelles Lernen sind Transparenz, Interpretierbarkeit und Er-
klärbarkeit. Darüber hinaus sind domain knowledge und wissenschaftliche Konsistenz ent-
scheidend. Bei der Bodenmodellierung spielten die Konzepte des erklärbaren maschinellen 
Lernens jedoch bisher eine geringe Rolle. Ziel dieser Arbeit war es, zu untersuchen und zu 
beschreiben, wie Transparenz, Interpretierbarkeit und Erklärbarkeit im Rahmen der Boden-
modellierung erreicht werden können. Die Fallbeispiele zeigten, wie Konsistenz mit Modell-
vergleichen bewertet werden kann und domain knowledge in die Modelle einfließt. Ebenso 
zeigten die Studien, wie Transparenz mit reproduzierbarer Proben- und Variablenauswahl er-
reicht werden kann und wie die Interpretation der Modelle mit domain knowledge verknüpft 
werden kann, um die Modellergebnisse besser zu erklären und in Bezug zu bodenkundlichem 
Wissen zu setzen sind.
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1. Introduction

During the Anthropocene and especially in the past decades earth’s environment has un-
dergone major changes (Crutzen, 2002; Rockström et al., 2009). Rockström et al. (2009) dis-
tinguish between nine environmental systems and propose safe operating spaces for each of 
them. Among these environmental systems are climate change and human inference with the 
biochemical flow (mainly including the nitrogen cycle; Gruber and Galloway, 2008) where 
the boundaries are already exceeded. Climate change induced by increasing greenhouse gas 
emissions as well as the interference of the nitrogen cycle through increasing use of nitroge-
nous fertilizer in agriculture (Foley et al., 2011; Gruber and Galloway, 2008) are closely linked 
to soil, soil processes and soil functions (Bouma and McBratney, 2013). Soil affects climate 
as compartment of the carbon and nitrogen cycles and environmental problems such as eu-
trophication (Gruber and Galloway, 2008; Lal, 2010). Further, ongoing population and con-
sumption growth will increase pressure on these boundaries and the need for changes in land 
use and food production (Foley et al., 2011; Godfray et al., 2010). Consequently, knowledge 
about soil, soil processes and soil functions plays an essential role in research on and solu-
tions for these severe environmental and socio-economic challenges (Bouma, 2014; Bouma 
and McBratney, 2013). 

1.1	 Soil formation

Soil formation and development depends on the interplay between decomposition, con-
versation, and relocation of organic and inorganic material. The concurrence of soil forming 
factors induce and pursue soil forming processes. These principles where first identified by 
Dokuchaev (1883). The soil forming factors were formalised and assembled in the soil form-
ing equation proposed by Jenny (1941):

where S is a soil property or class at a certain location that develops as a function f of the 
environmental conditions of climate (cl), organisms (o), relief (r), parent material (p), time (t), 
and potential other factors (⋯). E.g. climate influences soil formation through temperature, 
precipitation, and wind. Organisms contribute with bioturbation, material input and 
decomposition as well as protection against erosion. Relief, i.e. terrain, effects erosion, 
transport and reallocation with water and wind. Parent material determines the grain size 
distribution, the mineralogy and soil chemistry. Time represents the duration of the period 
in which the other factors are taking effect. 

S = f(cl, o, r, p, t, · · ·)
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Besides this deterministic part, which represents the contextual dependency, the stochastic 
part, i.e. the spatial dependence which is not incorporated in the soil forming equation, needs 
to be considered (Behrens et al., 2019a). Combining the first law of geography (“everything is 
related to everything else, but near things are more related than distant things.” Tobler, 1970) as 
stochastic part with the clorpt-model as deterministic part results in the universal model of 
spatial variation proposed by Matheron (1971):

where Z(s) is a soil property or class, Z*(s) is the deterministic part, i.e. the soil forming 
equation (clorpt), ε’(s) is the stochastic part of (apparently) random variation, and ε’ is 
random noise which a soil model cannot account for. The stochastic part of the universal 
model of spatial variation can be described as contextual spatial information (Behrens et al., 
2010a) because the soil forming factors are relevant on different scales besides the local site 
characteristics in the clorpt-model. This concept is used to describe potential soil variation 
conventionally as the concept map (and the mental map) of a soil mapper comprises the 
landscape and it’s evolution where the soil profile that is used for mapping is located (Fig. 
1; Ad-hoc-AG Boden, 2005). This extends from local slopes with e.g. erosive patterns over 
regional geologic formations to interregional climatic relations and teleconnections. 

clorpt
(deterministic)

spatial context
(stochastic)

Fig. 1. Illustration of the deterministic and stochastic parts of the universal model of spatial variation. 
The clorpt-model reflects local processes such as weathering and autochthon material accumulation 
of e.g. SOC or clay minerals and catenary processes such as degradation, transport, and allochthon 
accumulation. The spatial context reflects large-scale processes such as climatic teleconnections and 
geomorphic signature.

Z(s) = Z*(s) + ε′(s) + ε′
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Besides the spatial variation of soil, the vertical variation of soils, the soil profile, is de-
termined by the soil forming factors (Jenny, 1941). This is because of various soil formation 
processes, such as erosion, transport, and reallocation that alter the soil thickness as well as 
physical and chemical soil properties with removal and burying of sediments in dependence 
to terrain (Milne, 1936). Further, climate and vegetation induce different vertical trends in 
soil organic carbon (SOC) through varying accumulation and turnover-times depending on 
activity of organisms temperature, and water supply (Jobbágy and Jackson, 2000). Parent 
material with potential stratification and varying grain sizes influence soil water percolation 
(Abdu et al., 2008). 

1.2	 Digital soil mapping with machine learning

The holistic clorpt-model and the universal model of spatial variation provide the theory 
for soil mapping – conventional as well as digital soil mapping (DSM). Soil mapping and spa-
tial pedologic modelling have been important sources for soil knowledge and the spatial di-
mension of soil (Brevik et al., 2016). The spatial dimension of soil is crucial for land valuation 
and taxation, agricultural and regional decision making (Brevik et al., 2016) as well as soil 
assessment and monitoring (Carré et al., 2007). Therefore, spatial knowledge of soil and soil 
mapping can contribute to major insights in the environmental change and to solutions for 
environmental problems. To address environmental challenges, soil mapping is suitable to 
generate spatial information and data of soil, soil properties and soil functions for third-par-
ty environmental models in response to global change (Sanchez et al., 2009). Sanchez et al. 
(2009) identified three main steps for DSM: first the data input is assembled. The second step 
is model building or training by deriving quantitative relationships between the dependent 
target variable and the environmental covariates with the model prediction to the unsampled 
covariate space. In step three pedotransfer functions are used to calculate or estimate soil 
properties or functions that are difficult to measure (Wösten et al., 2001). Following steps 
comprise the development of soil management practises based on the results of the soil map-
ping workflow to provide the obtained information and knowledge for decision making. 

Machine learning (ML) methods are able capture the deterministic and stochastic relations 
between soil properties and environmental properties. ML models incorporate the knowledge 
about soil formation processes in statistical and mathematical functions. Thus, ML methods 
are highly suitable to identify the relationships between soil data and environmental covar-
iates and to predict the target variable to the unsampled covariate space. ML methods that 
are used for DSM are artificial neural networks (ANN; Behrens et al., 2005; McCulloch and 
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Pitts, 1943), random forests (RF; Breiman, 2001; Grimm et al., 2008), support vector machines 
(SVM; Kovačević et al., 2010; Smola and Schölkopf, 2004), Cubist (Lacoste et al., 2014; Quin-
lan, 1993), and deep learning (Behrens et al., 2018b; LeCun et al., 2015) amongst others. 

Many DSM approaches focus on two-dimensional (2D) models. However, it is necessary 
to model soil as three-dimensional (3D) continuum to represent the whole solum with its 
vertical trends of soil properties and soil processes (Jenny, 1941; Sanchez et al., 2009). This is 
important to e.g. account for longer turnover times of subsoil SOC compared to topsoil SOC 
in respect to mitigate climate change (Meersmans et al., 2009; Trumbore, 2000) or transport 
processes in the vadose zone (Abdu et al., 2008; Binley et al., 2015) regarding the biochemical 
cycles. This can be accomplished with multi-layered 2D models. Grimm et al. (2008), Lacoste 
et al. (2014), Malone et al. (2009), and Mulder et al. (2016) used this approach to map SOC 
content and/or stocks from regional to national scale. Adhikari et al. (2013) modelled soil tex-
ture for Denmark, Gasch et al. (2015) modelled soil water content and temperature on field 
scale, and Hengl et al. (2014) and Viscarra Rossel et al. (2015) modelled various soil properties 
on continental and global scale. However, multi-layered 2D modelling has the drawback of 
limited vertical resolution and does not provide full 3D soil information. Soil information 
between the modelled layers is derived on an interpretative and subjective basis. Liu et al. 
(2016) denote this as pseudo-3D or 2.5D mapping, which is valuable due to computational 
constraints on national, continental or global scale. To model soil as 3D continuum Kemp-
en et al. (2011) and Meersmans et al. (2009) applied soil type and land use type specific soil 
depth functions (Minasny et al., 2016) to estimate the vertical trends of SOC content related 
to categorial covariates. To enable more precise evaluations of the vertical trends on contin-
uous spatial basis the soil depth functions can be treated as dependent soil property of the 
clorpt-model to predict SOC content and stocks (Aldana Jague et al., 2016; Liu et al., 2013; Liu 
et al., 2016; Minasny et al., 2006; Veronesi et al., 2014), soil compaction (Veronesi et al., 2012), 
and other soil properties. 

1.3	 Explainable machine learning

Many studies in DSM are target-oriented and, thus, have focused on spatial predictions 
with high mapping accuracy and low model error. While this is an effective approach for de-
cision making based on spatial predictions, this approach disregards inference of new knowl-
edge about the model itself and underlying soil processes. To extract new knowledge from 
DSM models it is necessary to improve model interpretability and explainability (Murdoch et 
al., 2019; Wadoux et al., 2020a). There are four important reasons to research on model inter-
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pretability and explainability: 1) to justify decisions, 2) to control and 3) to improve models 
and 4) to discover new knowledge (Adadi and Berrada, 2018; Roscher et al., 2020). Further, 
confirmation of existing knowledge can be achieved and robustness and reliability can be 
evaluated better (Lipton, 2016). Roscher et al. (2020) identified three core of explainable ML:

–– transparency,

–– interpretability, and

–– explainability.

Besides these core elements, domain knowledge and scientific consistency are relevant to
achieve new scientific insights. Model transparency is given if the process to extract model 
parameters and make predictions can be described and motivated by the researcher. E.g. 
kernel-based methods such as support vector machines are transparent through the kernel 
functions and the convex optimization problem which is reproducible mathematically. In 
contrast deep neural networks are not fully transparent since the data relationships are ex-
pressed mathematically and the network architecture may be justified, but the hyper-param-
eters used for model training are chosen heuristically due to multiple possible local minima. 
Further, the plethora of hyper-parameters may be non-transparent for direct interpretation 
by humans. It is rather unrealistic to achieve full model transparency (Murdoch et al., 2019). 
According to Lipton (2016) transparent models are the opposite of black boxes. 

Model interpretability is based on the presentation of the model, model properties, and 
model results in understandable terms to humans, i.e. “the mapping of an abstract concept (e.g. 
a predicted class) into a domain that the human can make sense of” (Montavon et al., 2018). 
This can be achieved through feature importance in decision tree models, saliency masks and 
heatmaps in computer vision, sensitivity analysis or relevance scores to interpret model de-
cisions. Analysing large numbers of individual interpretations may be very time consuming 
and, therefore, possibly restricted (Murdoch et al., 2019). 

Model explainability comprises the assemblage of interpretations made from a model to-
gether with further contextual information derived from domain knowledge related to the 
problem. Explainability cannot be achieved by the algorithm on its own but requires inter-
pretation by experts. Yet, there is no joint understanding of this concept (Roscher et al., 2020). 
The term theory-guided data science (Karpatne et al., 2017) is closely related and includes the 
interconnection between domain knowledge and explainability. 

For domain knowledge the type of knowledge, the representation and transformation of 
knowledge, and the integration into the ML approach are relevant. In each of the ML com-
partments, training data, hypothesis and training algorithm, domain knowledge can be in-
corporated. Domain knowledge may be given as mathematic equation (analytical expression, 
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differential equation, or relation between dependent and independent variable). With choos-
ing a certain model architecture and restricting the model structure to existing real-world 
relations between the variables domain knowledge can be integrated into the hypothesis 
(Roscher et al., 2020). Domain knowledge in ML driven DSM is knowledge of the determin-
istic soil forming factors and soil formation as well as the stochastic landscape context that 
are used for conventional soil mapping. The soil forming factors of the clorpt-model account 
for the deterministic part, local environmental properties, and processes that determine soil 
formation. Local factors and processes comprise parent material, land cover and climate with 
grain size distribution, weathering, and autochthon material input and accumulation, e.g. of 
SOC or clay minerals. Catenary factors and processes are slope, curvature, and contribut-
ing area with soil erosion, transport, and allochthon accumulation, e.g. of colluvial depos-
its. Catenary processes can be depicted by terrain analysis as cause and effect are adjacent. 
Regional and interregional teleconnected factors and processes are climate and large-scale 
geomorphic signature with e.g. leeward accumulation of aeolian sediments. The contextual 
spatial information needs to be described with the surrounding landscape to account for the 
stochastic part of the universal model of spatial variation of the soil model. Additional con-
textual spatial information such as the teleconnections can be derived via feature engineer-
ing from other environmental covariates to cover regional and continental environmental 
processes (Murdoch et al., 2019; Roscher et al., 2020). Consequently, many aspects of domain 
knowledge regarding the clorpt-model were used for DSM approaches in the past (Behrens 
et al., 2005; Grimm et al., 2008) and DSM without soil specific domain knowledge is not sci-
entifically consistent and appropriate (compare Wadoux et al., 2020b). However, research on 
contextual spatial information is rare (Behrens et al., 2010a; Behrens et al., 2018b; Behrens et 
al., 2019a; Behrens et al., 2019b). 

By comparing the final model with existing models and domain knowledge, e.g. theories, 
paradigms or other models, the model can be checked for plausibility and consistency with 
scientific principles and other scientific studies (Reichstein et al., 2019; Roscher et al., 2020). 
Along with model interpretability and explainability scientific consistency with existing sci-
entific knowledge is essential for model reliability and performance besides training accura-
cy (Karpatne et al., 2017). 

Based on the additional elements of ML described above, Roscher et al. (2020) extended the 
three-step-approach of DSM (Sanchez et al., 2009) with model transparency, interpretability 
and explainability as well as domain knowledge and scientific consistency for “Peeking Inside 
the Black Box” (Fig. 2; Adadi and Berrada, 2018). Thus, ML in DSM is not replacing pedology 
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or pedologic knowledge, “but is instead augmenting it for the twenty-first century, resulting in 
more of a renaissance than a revolution” (Brunton and Kutz, 2019). This perspective highlights 
the use of ML as a toolbox for solving scientific questions. 

1.4	 Explainable machine learning for DSM

The extended ML framework implies for DSM that only credible covariates related to pe-
dogenesis (clorpt-model) should be used. Also, model restrictions, such as unrealistic sums of 
grain size fractions, can improve model plausibility which may facilitate ML acceptance in 
soil sciences. Model interpretations are related to and limited by scientific knowledge from 
various disciplines (including chemistry, physics, and geosciences) in specific aspects of the 
model, such as distribution of silt and leeward slope positions. Further, new conclusions and 
hypothesis can be drawn from individual interpretations (Behrens et al., 2019a; Wadoux et 
al., 2020a). Behrens et al. (2019a) interpret and explain the spatial distribution of topsoil silt 
based on contextual spatial mapping (Behrens et al., 2010a), extracting the location of the 
most important feature by variable importance per soil sample, and the direction and dis-
tance of the location. This approach allows to identify locations influenced by aeolian trans-
port of silt from the Rhine floodplain where many loess deposits in Southwest Germany have 
their origin. However, this is a rare example of explainable ML in DSM and research should 
focus on this problem to solve major problems in soil science (Behrens and Viscarra Rossel, 
2020) and environmental change. 

While accurate ML based soil maps are crucial for decision and policy making, researchers 
of DSM need to amplify the standard of producing more accurate maps by using more and 
more environmental data, data derivatives and the most sophisticated ML methods. ML based 
DSM needs to investigate why a prediction is made and how it is made to gain insights in 
the model structure and prediction. This can be achieved with transparency, interpretability, 
and explainability and helps to improve model accuracy but also helps to validate soil science 
theories, spatial environmental knowledge and provides solutions for urgent environmental 
problems. Further, transparency, interpretability and explainability may foster acceptance 
and trustworthiness of ML in science, politics and society (European Commission, 2020). In 
regard to environmental change, there is hardly need for more diagnostic studies, alarming 
declarations and action plans, but need for efficient framing of the environmental problems 
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and the implications by soil sciences and DSM (Bouma and McBratney, 2013). On the one 
hand, this may be achieved with conceptional frameworks to promote the perception of soil 
as a finite resource and link to many other environmental compartments and an important 
basis for human well-being (Bouma, 2014; Teuber and Schweizer, 2020). On the other hand, 
explainable ML in DSM, soil sciences and geosciences and corresponding visualisation tech-
niques (mapping of feature importance and (tele-)connections, Behrens et al., 2019a; saliency 
masks and heatmaps, Roscher et al., 2020) can contribute to the framing via explaining and 
highlighting the relations between soil and environmental change. 

Fig. 2. The extended machine learning (ML) framework as described by Roscher et al. (2020) to gain 
new scientific insights to a certain problem. The light grey box depicts the conventional ML approach 
often used in DSM. Domain knowledge can generate new scientific knowledge along with transpar-
ency, interpretability and explainability of the model and model outcome. Further, domain knowledge 
fosters scientific consistency of the model and model results.
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2. Objectives

As described above it is crucial to develop 3D soil models for various soil properties to
provide data input for other environmental models, soil assessment and monitoring as well 
as decision and policy making. Most 2D and 3D DSM approaches focused on producing accu-
rate maps and limited the domain knowledge incorporated in the model to the clorpt-model 
without explicitly discussing domain knowledge. Interpretation of the underlying soil pro-
cesses and connections to environmental characteristics is an important aspect of most 3D 
studies but disregarded as well. According to Behrens and Viscarra Rossel (2020) model inter-
pretability and explainability should be integrated in the DSM framework. The extended ML 
framework provides a starting point to achieve insights in model structure, model decisions, 
and potentially new scientific outcome.

Based on this, the objective of this thesis was to expand the three-step ML workflow com-
monly used for 3D DSM approaches with model transparency, interpretability and explain-
ability as well as domain knowledge and scientific consistency for better understanding of 
soils. This was accomplished by 

–– incorporating domain knowledge of the clorpt-model in 3D soil modelling (manuscript
1, 2, 3 and 4),

–– comparison between 3D and 2.5D models trained with 2D environmental covariates to
evaluate the scientific consistency of 3D models (manuscript 1),

–– using 3D environmental covariates as domain knowledge for 3D soil models (manu-
script 2),

–– using (semi-)reproducible sampling designs covering the covariate space comprehen-
sively to increase model transparency (manuscript 2, 3 and 4),

–– interpreting the variable importance of environmental covariates (manuscript 3),

–– comparing 2.5D models with increasing spatial context from feature engineering (man-
uscript 4), and

–– interpretation and explanation of the models in respect to domain knowledge (manu-
script 1, 2, 3 and 4).

Manuscript 5 deals with feature engineering and is related to the temporal aspects of soil 
formation (t). It will be discussed briefly in the conclusion sections as outlook. 
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3. Material and methods
3.1	 Machine learning methods

ML provides a wide toolbox for data analysis, model calibration and predictions. There are 
three main categories of ML: unsupervised machine learning, supervised machine learning, 
and reinforcement learning. While models for unsupervised learning are trained without 
example inputs, but with the whole dataset and the desired target variable, supervised learn-
ing models are trained with prelabelled example data. Reinforcement learning is based on 
dynamic datasets in which the algorithm performs a specific task and earns rewards which 
are tried to maximize. In soil sciences and DSM, supervised learning is used in most cases. 
With supervised learning a linear or non-linear function is derived from labelled training 
data. The data labels can be categorial such as soil type or continuous such soil texture, SOC, 
SM, and pH. In soil sciences the function between the target variable and related soil forming 
processes is usually non-linear. Examples for non-linear models used in DSM are artificial 
neural networks (ANN; Behrens et al., 2005; McCulloch and Pitts, 1943) and deep learning 
(Behrens et al., 2018b; LeCun et al., 2015), decision trees such as classification and regression 
trees (CART; Breiman et al., 1984) and random forests (RF; Breiman, 2001; Grimm et al., 
2008), rule-based models as Cubist (Lacoste et al., 2014; Quinlan, 1993), multivariate adaptive 
regression splines (MARS; Friedman, 1991) and support vector machines (SVM; Kovačević et 
al., 2010; Smola and Schölkopf, 2004). For details on the methods used in this thesis see the 
respective chapter of the manuscript in the appendix. 

Supervised ML models learn the holistic universal model of spatial variation (clorpt-model 
and spatial context) to make the dependent soil variables representable with environmental 
measurements. The increasing amount of publicly available soil data sets (e.g. LUCAS topsoil 
survey, Jones et al., 2020) and environmental data measured by remote sensing systems (e.g. 
SRTM, Farr et al., 2007; Landsat, Masek et al., 2020; Roy et al., 2014; Sentinel-2, Drusch et 
al., 2012) and proximal soil sensing (Viscarra Rossel et al., 2010; Viscarra Rossel et al., 2011), 
derived from measured data (e.g. terrain analysis of digital elevation models, [Amatulli et al., 
2018, Jasiewicz and Stepinski, 2013] and vegetation indices [Bannari et al., 1995]) and mod-
elled environmental data (e.g. climate data and models Brown et al., 2018; Fick and Hijmans, 
2017; Kaufman et al., 2020) provides a comprehensive basis for DSM. 

3.2	 Domain knowledge and scientific consistency (manuscript 1)

The BEF-China Project was a biodiversity experiment on land leased and managed by the 
Institute of Botany of the Chinese Academy of Sciences (Bruelheide et al., 2014). The study site 
is a small catchment located near Xingangshan, Jiangxi Province, PR China (UTM/WGS84: 
50R 588000 3222000), about 400 km south-west of Shanghai in the highly species-rich subtrop-
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ics with summer monsoon, mean temperature of 17 °C and mean precipitation of 1800 mm. 
The catchment of 26.7 ha has an elevation ranging from 105 to 275 m a.s.l., typically convex 
slopes of 29° in average and 45° at maximum. The bedrock consists of non-calcareous slates 
with varying sand and silt content and grey-green sandstone. The soil types in the catchment 
are Endoleptic Cambisols with Anthrosols at the hillsides and Gleysols at the valley bottom 
and the mean soil depth is 0.6 m with underlaying saprolite (isomorphic weathered slate). 
The soil texture is silt loam to silty clay loam (Goebes et al., 2015; Scholten et al., 2017). 

The soil data sets used in this study are part of the legacy database of BEF-China. The soil 
sampling design was based on the design of the biodiversity experiment with 271 experi-
mental plots in total covering 18 ha of the catchment. The squared plots had a size of ≈665 m2 
(traditional Chinese unit of 1 mu) and were planted with trees in monocultures and mixtures 
of 2, 4, 8, 16 and 24 species. For soil sampling and other studies, 67 very intensively studied 
plots (VIPs) were chosen representing all diversity richness levels (Bruelheide et al., 2014). 
Samples for SOC (n=67) were taken with nine soil cores (3 cm in diameter) at a regular grid 
at each VIP and bulked for the depth increments of 0–5 cm, 5–10 cm, 10–20 cm, 20–30 cm 
and 30–50 cm. SOC content was determined with dry combustion CNS-analysis (Vario EL 
III; Elementar). SOC content ranged from 0.35 % in subsoil to 5.06 % in topsoil. Bulk density 
samples (n=55) were taken with soil sample rings (100 cm3) in fife replicates for each depth 
increment. Bulk density (BD) was determined gravimetrically and ranged from 0.75 g cm-3 in 
topsoil to 1.84 g cm-3 in subsoil. The digital elevation model (DEM) of the study site was gen-
erated by ordinary kriging based on 1956 points measured with a differential GPS and had a 
resolution of 5 m (Krige, 1951). 

We calculated slope, aspect and subsequently eastness and northness, plan, profile, lon-
gitudinal, tangential and flowline curvature, vertical distance to channel network, sky visi-
bility, sky view factor, direct and diffusive insolation, catchment area, topographic wetness 
index and slope length and the steepness factor. Most terrain attributes can be derived with 
different methods and equations Since it is unknown which method is most suitable for mod-
elling SOC and BD, we used several well-established methods for terrain analysis if avail-
able. Further, the most relevant scale of the derived terrain attributes is unknown due to 
the non-representative and fixed DEM resolution (Behrens et al., 2018a). Consequently, we 
applied simple smoothing with low-pass filters to incorporate spatial contextual knowledge. 
The used filters had circular neighbourhood sizes with radii of 1, 2, 4, 6 and 8 pixels. The 
maximum radius of 8 pixels represents the local catena scale of 90 m. There were 290 envi-
ronmental covariates based on terrain analysis in total. 
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For modelling of the soil properties, we used MARS, RF and SVM. These methods are ro-
bust against multi-collinearity of the environmental covariates, that are likely to be highly 
correlated, since all covariates are derived from the same DEM and some terrain attributes 
describe the same feature calculated with various methods. 

All 290 environmental covariates were used for model training according to the conven-
tional and basic ML workflow as independent variables of the models. SOC content and BD 
were the dependant variables. For the multi-layered 2.5D predictions the models were trained 
for each sampled depth increment individually, were the central point of the depth increment 
was assigned as depth of the layer, which results in 15 cm vertical resolution (Hengl et al., 
2014). The models were trained with exhaustive grid search (Schmidt et al., 2008) for optimal 
parameter selection while preserving the models ability to generalise to new data. The model 
performance was evaluated with 10-fold cross-validation. For the 3D modelling of SOC con-
tent and BD, we modelled soil depth functions spatially to predict the vertical trend of the soil 
properties in space. The vertical trend was represented by 3rd degree polynomial, logarithmic, 
and exponential functions (Aldana Jague et al., 2016; Liu et al., 2016; Veronesi et al., 2012). 
The dimensionless coefficients of these functions were treated as abstract soil property, the 
models were trained with the function coefficients as dependent variable and the coefficients 
were predicted in space. Subsequently, for each grid location the vertical trends of SOC con-
tent and BD were calculated from the soil depth functions with the predicted coefficients 
with 5 cm resolution. From this 3D array the SOC stocks were calculated with SOC content 
and BD. 

3.3	 Domain knowledge and model transparency (manuscript 2)

The site of this case study is an agricultural field of 58 ha at the Elbe floodplain ≈70 km north 
of Leipzig, Saxony, Germany. The field is bordered by the creeks Altes Fliet and Fließgraben 
and has no visible terrain variation. The present soil types are Gleysols and Gleyic Cambisols 
developing from alluvial loam over Holocene sediments of fluvial sands (LAGB, 2014). 

The geophysical measurements were recorded with the electromagnetic induction (EMI) 
sensors CMD-Explorer and CMD-Mini-Explorer (GF Instruments). EMI sensors measure the 
apparent electrical conductivity (ECa in mS m-1). The penetration depth of the signal is con-
trolled by the sensor settings (intercoil spacing, orientation of the magnetic dipoles, and sig-
nal frequency). The penetration depth of the signal increases with intercoil spacing. Further, 
the signal of vertically oriented magnetic dipoles (VDP) has double penetration depths of 
horizontally oriented dipoles (HDP; Martini et al., 2017; McNeill, 1980a, 1980b; von Hebel et 
al., 2019). Both CMD-Explorer and CMD-Mini-Explorer had one transmitter and three receiv-
er coils with intercoil spacings of 1.48 m, 2.82 m, and 4.49 m and 0.32 m, 0.71 m, and 1.18 m, 
respectively. Thus, the CMD-Explorer had effective penetration depths of 2.2 m, 4.2 m, and 
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6.7 m and the CMD-Mini-Explorer had 0.5 m, 1 m, and 1.8 m for VDP and half of the pene-
tration depths of VDP for HDP. Together, both sensors enabled multi-depth exploration of 
ECa with one survey for each dipole orientation. This sensor setup enabled to detect spatial 
variations of ECa in the subsurface sediments of the floodplain with high spatial resolution. 
ECa is an important proxy for soil properties such as soil texture, horizonation, bulk density, 
SOC and soil moisture (SM; Doolittle and Brevik, 2014). Additionally, gamma-ray spectros-
copy with measurement of 40K, 238U and 232Th content and the derivation of dose rate (Gy h-1; 
IAEA, 2003) was applied for description of spatial variation of soil texture and SOC in high 
resolution of the most upper 30 cm of soil. The point measurements of the geophysical sen-
sors were interpolated with ordinary kriging (Krige, 1951) to a cell size of 5 m to obtain 
spatial information about the variation of ECa in the projected depth as well as 40K, 238U, 232Th 
content and dose rate. 

Spatial modelling of soil requires specific sampling schemes for model training and vali-
dation (Brus et al., 2011; Schmidt et al., 2014). Besides for model training the environmental 
covariates also served as basis for the sampling design to cover the full range of environmen-
tal variability and potential drivers of soil formation while reducing sampling and analysis 
costs. In this case study, we calculated the locations of 25 soil profiles with weighted extreme 
conditioned Latin Hypercube Sampling (wecLHS; Schmidt et al., 2014). wecLHS is a stratified 
random sampling design that covers the full range of existing environmental variation and 
weights the data input with the model performance (R2) of the kriging models to account for 
noise in the spatial prediction. Additionally, 10 randomly localised profiles were taken for in-
dependent validation which requires a sampling scheme independent from the training data 
sampling scheme (Schmidt et al., 2014; Steyerberg and Harrell, 2016). 

At each soil profile four samples of 15 cm intervals from 0-60 cm were taken. In the upper 
60 cm of soil more than 80 % of many crop roots can be found (Fan et al., 2016). In total 100 
samples were taken for model training and 40 samples were taken for independent valida-
tion. SOC content was measured with an ELTRA CHS-580A Helios (ELTRA) and calculated 
as difference of total carbon and inorganic carbon. SM was determined gravimetrically after 
drying at 90 °C for 24 h. 

The soil profile data was used to calculate 2nd degree polynomial and exponential soil depth 
functions (Aldana Jague et al., 2016; Rentschler et al., 2019). The function coefficients were 
modelled spatially with the environmental covariates as independent variables with RF and 
Cubist. Subsequently, for each grid location the vertical trends of SOC and SM were calculat-
ed from the soil depth functions with the predicted function coefficients with 5 cm resolution. 
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The 3D model predictions were validated independently with the data of the 10 randomly 
selected soil profiles with Person’s R2, Lin’s concordance correlation coefficient (CCC; Lin, 
1989), and the RMSE. 

3.4	 Model interpretability (manuscript 3)

The study sites were in Yazd Province, Central Iran, and Gilan Province, Northern Iran. 
Yazd in Central Iran has an arid climate with precipitation of 75 mm a-1 and Gilan at the Cas-
pian Sea a sub-humid climate with 1200 mm a-1. The study sites were 720 km2 and 3000 km2 
in size. Dominant soil types are Solonchaks, Gypsisols, and Regosols in Yazd and Cambisols 
and Chernozems in Gilan (Taghizadeh-Mehrjardi et al., 2014). The soil sampling locations 
were selected with conditioned Latin Hypercube Sampling (Minasny and McBratney, 2006) 
to provide a representative sample distribution covering the covariate space. For the site in 
Yazd 154 soil profiles and for Gilan 99 soil profiles were sampled. At each profile the genetic 
horizons were sampled to a depth of 2 m and analysed for SOC content with wet oxidation 
(Nelson and Sommers, 1983). We used equal-area splines to harmonize the soil data from 
different soil depths and estimated the SOC content for six consistent depth intervals of 0–5, 
5–15, 15–30, 30–60, 60–100, and 100–200 cm (Arrouays et al., 2014; Bishop et al., 1999). 

The environmental covariates comprised elevation, wetness index, catchment area, catch-
ment slope, multi-resolution valley bottom flatness index, valley depth, plane curvature, pro-
file curvature, general curvature, and total insolation derived from the DEM of the SRTM 
with 30 m resolution (Farr et al., 2007). Further, we used six spectral bands of Landsat 8 (B2, 
B3, B4, B5, B6, and B7; Roy et al., 2014), ten spectral bands of Sentinel-2 (B2, B3, B4, B5, B6, 
B7, B8, B8a, B11, and B12; Drusch et al., 2012) and calculated the normalised difference vege-
tation index (NDVI) for both remote sensing platforms. 

The main focus of this publication in respect to this thesis was the investigation of covar-
iate selection and variable importance. RF (Breiman, 2001) with its random permutation was 
combined with the Boruta algorithm (Kursa and Rudnicki, 2010) to rank the environmental 
covariates by importance for the model. This procedure is summarised as follows: 

i) The covariate space is extended by adding randomly permuted existing covariates
(pC) to remove their correlation with SOC content,

ii) SOC content is predicted at six standard depths with RF using the extended covari-
ate space (i.e., covariates and permuted covariates),

iii) The Z-score, which is an indicator of the importance of all covariates, is computed,

iv) The maximum Z-score (MZSA) among the pC’s is defined,

v) A hit is assigned to all covariates that scored better than MZSA,
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vi) A two-test of equality is performed for undetermined important covariates,

vii) The original covariates are respectively flagged as “unimportant” or “important” if
they have significant lower or higher scores than MZSA,

viii) All permuted covariates are removed.

The Z-score is the indicator for the ability of an environmental covariate to explain the 
variability of SOC content. The Z-score was grouped in four classes from weakly relevant 
(Z<5), slightly relevant (5≤Z<10), moderately relevant (10≤Z<15) to relevant (Z>15). 

3.5	 Model interpretability and explainability (manuscript 4)

The study area with 1.000 km2 was located 50 km North-East of Seville in the middle Gua-
dalquivir basin, Andalusia, Spain. The area is divided in three subareas with the Sierra More-
na mountain range with Paleozoic granite, gneiss, and slate in the North, the Guadalquivir 
flood plain with Pleistocene marl, calcarenite, and coarse sand and Holocene sands and loams 
in the centre running from ENE to WSW, and tertiary terraces in the South (Civis et al., 2004; 
Wolf and Faust, 2015). The most frequent soil types are Alfisols, Entisols, Inceptisols, and 
Vertisols (Gómez-Miguel, 2005). The study area is a heterogenous intensely used agricultural 
landscape of cropland, orange and olive plantations, pastures and the Dehesa, an agrosylvo-
pastoral system. 

Soil samples were taken according to a stratified random sampling design based on four 
geomorphic positions (geomorphons: Iwahashi and Pike, 2007; Jasiewicz and Stepinski, 2013; 
namely footslope, slope, shoulder, and flat areas) and the predominant land-cover classes “ar-
able land”, “permanent crops”, “pastures”, “forest”, and “shrub and/or herbaceous vegetation 
associations” of the CORINE Land Cover level 2 classes (Büttner and Kosztra, 2010). The point 
density was proportional to the area of the strata with a minimum of three points for the 
smallest stratum. In total 130 soil profiles with five depth increments of 0-10, 10-20, 20-30, 40-
60, and 70-100 cm (or less for shallow soils) were sampled with three replicates. The 506 sam-
ples in total were analysed with NIR and MIR spectroscopy (833–2500 nm, Tensor II, Bruker 
Optics; 2500–25.000 nm, GladiATR, Pike Technlogies). A subset of 97 samples was analysed 
for SOC and total nitrogen content (Nt; Vario EL III), pH in KCl solution (pHKCl), and the 
grain size fractions clay (<2 µm), silt (2-50 µm), and sand (50-2000 µm) with a SediGraph III 
(Micromeritics). This subset was used to train a partial least squares regression (PLSR) model 
with the NMIR spectra to predict the measured soil properties for the samples not analysed 
with wet chemistry. PLSR is a common predictive model in chemometrics (Viscarra Rossel 
and Behrens, 2010; Wold et al., 2001). The RMSE of the PLSR models was 0.5 % SOC, 0.02 % Nt, 
0.4 pHKCl, 4 % clay, 5 % silt and 5 % sand content. Subsequently, we calculated water content 
at field capacity (θFC in cm3 cm-3) and cation exchange capacity (CEC in cmol kg-1) with pe-
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do-transfer functions according to Tóth et al. (2015) and Khaledian et al. (2017) as suggested 
for soil properties that are difficult to measure (Sanchez et al., 2009). With pHKCl, θFC, and CEC 
a simple weighted soil quality index was calculated (Pulido et al., 2017). 

A DEM of 5 m resolution was the basis for terrain analysis (CNIG, 2018). For contextual 
spatial modelling, gaussian mixed scaling was used to derive the environmental covariates 
(Behrens et al., 2019b). The Gaussian pyramid is a multi-scale processing method to decom-
pose the scales of environmental covariates (Behrens et al., 2018a) with down-scaling (re-
moving every second row and column of the DEM) and Gaussian filtering to remove artifacts 
of the down-scaling process. The outputs of the repeated procedure are called octave, which 
are up-sampled after deriving the terrain attributes to the original resolution with interpola-
tion so that all environmental covariates are given on the same resolution. The terrain attrib-
utes in this study were slope, sine and cosine transformed aspect, mean, profile and planform 
curvature, flow accumulation, and topographic wetness index. 

Based on Behrens et al. (2019b) we used additive and subtractive multi-scale RF models 
based on mixed scaling of the DEM. Model performance was evaluated with 10 times re-
peated 10-fold cross-validation. With additive and subtractive multi-scale modelling series of 
models are trained by sequentially adding or removing sets of covariates of the same octave. 
Additive multi-scale modelling starts with the original scale and sequentially adds the coars-
er scales. Subtractive multi-scale modelling starts with the full set of covariates and removes 
the respective coarsest scale. With this approach it was possible to identify the relevant range 
of scales and if there was an upper and a lower limit of spatial range, which helped to inter-
pret the spatial context of a landscape and its relation to soil (Behrens and Viscarra Rossel, 
2020). Sequential model training is computational exhausting. Final analysis for this study 
was completed at the time of submission of this thesis, but visualisation and discussion of the 
results were pending. 
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4. Results and discussion
4.1	 Domain knowledge and scientific consistency (manuscript 1)

The cross-validation results of the 2.5D predictions showed mean R2 of 0.34 for MARS, 
0.41 for RF and 0.39 for SVM for SOC over all depth increments. The mean R2 for BD was 
0.43, 0.39 and 0.39 for BD. This means that the environmental covariates used for model 
training explain the spatial distribution of SOC and BD in the investigated depth increments 
of 0–5 cm, 5–10 cm, 10–20 cm, 20–30 cm and 30–50 cm in the study area to up to 40 %. This 
was because the terrain attributes derived on different scales represent the terrain charac-
teristics that induce and control erosion, sediment transport, and reallocation. Consequently, 
the domain knowledge of erosion processes and their influence on soil profile development 
presented by Milne (1936) was incorporated in the model via representative environmental 
covariates. The unexplained variation in the model may be attributed to the local processes of 
SOC input through vegetation and weathering of the underlying slates of the bedrock. Some 
studies suggested that multi-scale terrain covariates may be a proxy for other environmental 
covariates such as microclimate, solar insulation, and subsequently primary production of 
vegetation as well as parent material through strike and dip of geologic layers (Behrens et al., 
2010b; Behrens et al., 2018a). However, this may be not the case in a small catchment with 
little variation in vegetation of the biodiversity experiment with semi-random tree species 
composition and the previous fir plantation. To account for small-scale spatial variation in 
vegetation optical remote sensing systems and vegetation indices may be more suitable. For 
variation in parent material, proximal sensing systems as applied in hydrogeophysics may be 
better (Binley et al., 2015). Among many other studies (e.g. Aldana Jague et al., 2016; Grimm 
et al., 2008; Veronesi et al., 2014), this example shows that pedological domain knowledge 
often was used for covariate selection and that the model output is assessed and discussed 
in respect to soil properties, processes and pedological knowledge. However, few studies 
addressed pedological domain knowledge in respect to explainable ML (e.g. Behrens and 
Viscarra Rossel, 2020). 

Besides the consideration of pedologic domain knowledge for a ML model, the scientific 
consistency is important for explainable ML and new scientific outcomes. Scientific consist-
ency also requires the incorporation of domain knowledge. New model approaches, such 
as the spatial modelling of soil depth functions, require comparison to well-established ML 
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approaches adopted by DSM researchers to evaluate the scientific consistency of the new 
methods. Further, different ML methods should be tested and compared to provide scientific 
consistent results. The direct comparison of the 3D prediction to the well-established 2.5D 
predictions showed very weak correlation of MARS models for SOC and BD with all tested 
depth functions in all depth increments (R2≤0.06; Fig. 3). The 3D predictions of MARS were 
not consistent with the 2.5D predictions. For the polynomial depth function RF and SVM 
models had high correlation for the upper two and three depth increments (0-5 and 5-10 cm) 
with R2≈0.7 to 0.9 and low to intermediate correlation with R2≈0.1 to 0.4 for the lower three 
and two depth increments for RF and SVM, respectively. For the exponential depth function 
for SOC content R2 ranged from 0.84 to 0.96 for RF and from 0.67 to 0.93 for SVM. The R2 
values of models with exponential function were distributed more homogeneous over the 
depth increments than of the models with the polynomial function. The correlation of the 
models with logarithmic function for BD was similar to the models with exponential depth 
functions for SOC content. Therefore, the consistency of 3D models based on multi-scale ter-
rain covariates and spatially predicted soil depth functions in this study was high for depth 
functions modelled with exponential and logarithmic functions. The consistency of spatially 
predicted polynomial soil depth functions with the well-established 2.5D predictions is high 
for topsoil (0-20 cm) and low for subsoil (>20 cm). Topsoil SOC content was modelled with 
its relation to the terrain covariates. However, subsoil SOC content is less related to erosion, 
transport, and accumulation processes controlled by terrain, but by bioturbation and vertical 
transport in the liquid phase or others. The high flexibility of the polynomial depth functions 
was able to model these vertical trends, which could not be reproduced in spatial modelling 
in subsoil with high correlation like with exponential and logarithmic depth functions. For 
3D soil mapping with polynomial depth functions terrain covariates may not be sufficient. 
3D models may also require covariates representing the vertical characteristics of soil to be 
consistent with the more common 2.5D predictions. 
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Fig. 3. Consistency evaluated as correlation (R2) of the 3D model predictions (y-axis) with the well-es-
tablished 2.5D model predictions (x-axis). 

4.2	 Domain knowledge and model transparency (manuscript 2)

The results of the independent validation of the 3D mapping approach with polynomial 
soil depth functions with multi-sensor hydrogeophysical covariates showed high correlation 
for both SOC and SM content. Both, Cubist and RF showed comparable validation results in 
R2 and RMSE. The R2 for Cubist models of SOC and SM ranged from 0.86 to 0.88 and the R2 

of the RF models ranged from 0.84 to 0.89. The RMSE was about 0.55-0.6 % SOC content and 
2 % SM for both Cubist and RF. The high model consistency with the independent measure-
ments showed that the hydrogeophysical covariates represent the soil and subsoil sediment 
characteristics adequately and enabled models with low error. The validation results of the 
model for each sampled depth increment were similar. The normalised RMSE which is nec-
essary because of the different ranges of SOC content in the depth increments showed that 
the more flexible polynomial depth function was modelled spatially more accurate than the 
exponential function. The model error of Cubist and RF for the most upper depth increment 
(0-15 cm) was similar (SOC: 0.15-0.17; SM: 0.14-0.16), but the nRMSE for the depth increment 
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(15-30 cm) with the exponential function was higher (>0.3) as with polynomial function (0.23 
and 0.25) for SOC content. This pattern is similar for the third increment with similar error 
and fourth depth increment with lower error of the polynomial function. This was because 
the more flexible polynomial depth function was able to model the vertical trend of SOC 
content with lower error. This may be related to the plough horizon, that causes an abrupt 
decrease in SOC content in the second depth increment. For SM there was hardly any differ-
ence between the polynomial and exponential functions and between Cubist and RF. The low 
model error was due to the high correlation of EMI with soil moisture, soil texture, salinity, 
pH amongst others, and gamma-ray spectroscopy with soil texture and mineralogy. Subse-
quently, corresponding soil processes such as weathering, mineralogy, and percolating water 
could be modelled spatially with multi-depth ECa and 40K, 238U, 232Th content, and dose rate. 
Thus, incorporating multi-sensor hydrogeophysical covariates makes use of domain knowl-
edge and underlying processes which enabled high-resolution 3D models with low error. The 
final prediction is shown in Fig. 4.

Fig. 4. 3D predictions of SOC content and SM.

Further, this study showed that hydrogeophysical covariates are highly suitable to prepare 
a comprehensive and representative sampling design. As suggested by Schmidt et al. (2014) 
weighted extreme conditioned Latin Hypercube Sampling is suitable to achieve a represent-
ative sampling design that covers the covariate space with all relevant characteristics com-
prehensively and sparsely. In respect to the extended ML framework (Roscher et al., 2020) 
this sampling design is based on domain knowledge and the model input of environmental 
and soil data. Consequently, an adaption of the extended ML framework by linking domain 
knowledge with the input data is appropriate for DSM (Fig. 5). Sampling design methods 
such as the stratification of LHS and expert-based stratification in respect to the soil form-
ing factors are (semi-)reproducible whereas randomly or grid-based located soil profiles and 
from legacy datasets randomly selected subsets for model training and validation are not. 
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Reproducible sampling designs justify why a specific sample is relevant for the model and, 
thus, reproducible calculated sampling locations contribute to transparency of the ML frame-
work (Fig. 5). 

Fig. 5. Adaption of the extended ML workflow to account for model transparency introduced with 
reproducible sampling schemes and domain knowledge-based covariate selection.

4.3	 Model interpretability (manuscript 3)

The environmental covariates of the two study sites showed a varying variable impor-
tance (Z-score; Fig. 6). At the arid site, the covariates were weakly to moderately relevant 
(0.4<Z<10.6). The terrain covariates were weakly (catchment area, valley depth, curvature, 
total insulation) to moderately (elevation, wetness index, catchment slope, valley bottom flat-
ness index) relevant. There was hardly any difference in variable importance across the depth 
increments. Only general curvature and total insulation showed that they were less relevant 
in topsoil and tended to be more relevant in subsoil. Conversely, the bands of Landsat 8 and 
Sentinel-2 as well as the NDVI were slightly relevant in topsoil (<30 cm) and weakly relevant 
in subsoil (60-200 cm). There was a transition zone from 30-60 cm were the bands of the red 
edge and short-wave infrared of Sentinel-2 (B7, B8, B8a and B12; 783 nm-865 nm and around 
2190 nm) and vegetation indices were slightly and moderately relevant and most Landsat 
8 bands and Sentinel-2 bands 2-6 are weakly relevant (Fig. 6). At the sub-humid site most 
terrain covariates were weakly relevant. Valley depth and total insulation were weakly to 
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slightly relevant in topsoil (<30 cm) and weakly relevant in subsoil (>30 cm). Catchment area 
showed an increasing trend from weakly relevant in topsoil (<30 cm) over slightly relevant 
(30-100 cm) to moderately relevant (100-200 cm). The bands of Landsat 8 and Sentinal-2 were 
slightly relevant to relevant in topsoil (>30 cm) except for B5. Optical remote sensing covar-
iates were more relevant for topsoil than for of models of subsoil SOC. 

The calculation of variable importance enabled the interpretation of the contribution of 
each covariate to the model and increases the interpretability of a model. The model trans-
parency is increased since the interpretation is based on objective and reproducible values. 
The distinction of optical remote sensing covariates between topsoil and subsoil was because 
they are proxies for SOC input to the soil as they reflect primary production. Especially red 
edge and near infrared bands as well as vegetation indices were highly suitable as vegetation 
proxy. Therefore, the spatial distribution of SOC at the sub-humid site was well characterised 
by vegetation proxies. Terrain covariates that reflect erosion processes were less relevant 
since ground covering vegetation prevents soil erosion mostly. Low erosion was not reflected 
by most of the terrain covariates except for catchment area in buried subsoil. In topsoil this 
effect was less visible due to the higher relevance of vegetation. In the arid study site erosion 
processes and reallocation of SOC are reflected by elevation, wetness index, catchment slope, 
and valley bottom flatness index. These covariates represented important geomorphological 
units that control erosion at unvegetated slopes and deposition at footslopes and the valley 
bottom. Further, the soil colour of unvegetated areas was slightly relevant for SOC content. 
Red edge and B12 (short-wave infrared) bands and NDVI of Sentinel-2 were slightly to mod-
erately relevant to distinguish between cultivated areas in the centre of the study area and 
unvegetated bare soil. 

This example showed, that domain knowledge and its interpretation related to organisms 
of the clorpt-model is important to distinguish between climatic regions with different vege-
tation patterns. Further, the relative effect of the covariates on topsoil and subsoil SOC con-
tent varied with depth and allows conclusions on the different soil processes involved in SOC 
cycling in the whole soil profile. 
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Fig. 6. Z-Scores for each environmental covariate calculated with the Boruta algorithm (figure by R. 
Taghizadeh-Mehrjardi). 

4.4	 Model interpretability and explainability (manuscript 4)

The results of the repeated cross-validation with sequentially adding of larger scales of 
the terrain covariates showed a general increase R2 and a decrease of RMSE for all depth 
increments (Fig. 7). R2 was double with all scales incorporated compared to the original res-
olution. The RMSE decreased by roughly 0.1 of the dimensionless soil quality index (SQI). 
However, the increase of R2 and the decrease of RMSE showed different patterns for the depth 
increments. The R2 of the models for the first depth increment was similar with the first 5 
octaves (scale 5-160 m) and increased from around 0.08 to 0.18 from octaves 5 to 11 (scale 160-
10240 m). The models of the second depth increment had an R2 increasing from 0.8 to 0.15 at 
octave 4 (80 m) and increasing from 0.15 to 0.26 from octaves 7-11 (scale 240-10240 m). The 
R2 of the models for the third depth increment were around 0.15 for the octaves 1-9 (scale 
5-1280 m) and increased with subsequent octaves (scale 1920-10240 m) to 0.27. R2 of the mod-
els for the fourth depth increment increased constantly from 0.13 to 0.28. R2 of the models for
the fifth depth increment increased from 0.13 to 0.28 (octave1-3, scale 5-40 m), were similar
but very noisy with adding octaves 5-8 (scale 80-1280 m) and increased with octaves 9-11
(scale 2560-10240 m). The RMSE for all depth increments decreased with similar patterns but
noisier, which makes interpretation difficult.

The constant R2 values for topsoil (0-30 cm) for small scales showed that the scales 10-
160 m and 10-1280 m were weakly relevant for the models, since model performance did not 
improve. This may be because of the agricultural use of most of the soils and homogenisation 



Results and discussion

33

of the soil quality through decades or even centuries of cultivation through ploughing, fer-
tilization, and soil erosion. Larger scales (>160 and >1280 m) may be relevant to distinguish 
between the three main areas (Sierra Morena mountain range, Guadalquivir flood plain, and 
tertiary terraces), with the individual dominant type of land cover (Dehesa, forest/shrub; 
olive plantations; orange plantations and cotton; cereals). The individual land cover and use 
may influence CEC as part of the soil quality index used in this study. Further, the parent ma-
terial of the three regions is shale and gneiss in the Sierra Morena and fluvial sediments at the 
floodplain and tertiary terraces, which may influence soil texture and, thus, water holding 
capacity (θFC) and pHKCl as parts of the soil quality index. The models of subsoil (40-100 cm) 
showed a more constant increase in model performance. This contrast may be related to the 
small impact of agricultural practises that homogenise soil quality through ploughing, ferti-
lization, and soil erosion. This differences in model performance with the different relevance 
of the spatial context of the landscape may refer to the decoupling of natural soil processes 
and human-influenced development of topsoil. 

Thus, the domain knowledge about the landscape (local, catenary, and large-scale spatial 
context), environmental data, and soil management practices was crucial to interpret the 
model performance and explain effects of the soil forming factors. Explaining the effects 
of the soil forming factors on current soil status may help to maintain soil quality and soil 
functions. 

(This study was work in progress at the time of printing of this thesis.)

Fig. 7. Results of the repeated 10-fold cross-validation of the additive model training with sequential-
ly adding scales (octaves in this figure are half octaves). 



Conclusions

34

5. Conclusions

The objectives of this thesis were to develop 3D soil models and expand the three-step ML
framework based on these models. All models of the individual studies had in common that 
they used domain knowledge of the clorpt-model. With manuscript 1 it was shown that mul-
ti-scale terrain data derived from a DEM can represent soil erosion, transport, and realloca-
tion processes adequately for topsoil SOC. Subsoil SOC, however, was modelled less accurate 
and, therefore, other processes of SOC input and redistribution, such as vegetation and ver-
tical SOC transport with bioturbation and the liquid phase, should be considered. The latter 
was shown with manuscript 2. For that, an agricultural field without visible terrain variation 
was chosen to investigate the relations of multi-sensor EMI and gamma-ray spectroscopy to 
SOC and soil moisture. The 3D models had constant low error throughout the investigated 
soil depth. Manuscript 3 contrasted the use of terrain covariates and optical remote sensing 
covariates that were used as proxy for photosynthetic activity and biomass. In the different 
climatic regions both soil forming factors, terrain and organisms, had different variable im-
portance and relevance for the soil forming processes of SOC. Manuscript 4 showed the im-
portance of the spatial context for local soil information. Due to agricultural practices topsoil 
soil quality was homogenised by ploughing, fertilization, and soil erosion in relation to the 
natural conditions of the cultivated landscape. Subsoil models showed constant increase in 
model performance, indicating that the spatial relation of soil quality is closer to the natural 
environmental characteristics. Many studies in DSM used domain knowledge regarding the 
clorpt-model, but without discussing it explicitly. This should be considered and discussed in 
more detailed in DSM studies in respect to explainable ML. 

Model transparency and scientific consistency were discussed regarding sampling designs 
(manuscripts 2, 3, and 4) and comparison of new modelling approaches to well-established 
DSM approaches. Transparency of the approaches was increased with (semi-)reproducible 
sampling methods, i.e. conditioned Latin Hypercube Sampling (manuscript 3) and extensions 
of that (manuscript 2) or stratification of the covariate space based on domain knowledge 
(manuscript 4). Both methods justify why a sample is relevant for the model and why it was 
taken. Hence, the extended ML approach was adapted as domain knowledge and transpar-
ency are linked and should be included in ML based DSM. The scientific consistency of the 
3D models based on spatial modelling of soil depth functions with 2.5D multi-layered mod-
els showed that the 3D models are partly consistent when the soil forming processes of the 
whole modelled solum are related environmental covariates used for the model, i.e. terrain 
covariates mainly effect topsoil properties, whereas hydrogeophysical covariates can repre-
sent subsoil as well. 
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The interpretability and explainability of the models were always related to domain knowl-
edge. Domain knowledge was incorporated in the model through the selection of environ-
mental covariates as well as through expert knowledge about underlying soil forming pro-
cesses. The calculation of the variable importance (manuscript 3) could clearly show which 
covariate is relevant in which area and under which environmental conditions that were not 
represented by environmental covariates, i.e. climatic conditions of the contrasting regions. 
Consequently, knowledge about the study area that was not or could not be represented by 
environmental covariates is important for explanations. Manuscript 4 used environmental 
covariates created with feature engineering to incorporate the spatial context of the study 
area in the model and to evaluate the relevant range of the spatial context. For homogenised 
topsoil, the small and partly also intermediate scales were less relevant than the large scales, 
whereas for subsoil the model performance increased constantly with adding scales. Thus, 
one important outcome is that for topsoil and subsoil modelling different environmental co-
variates and proxies for environmental covariates are necessary, and, consequently, different 
soil forming factors and spatial contexts are relevant. 

The soil forming factor time (t) was hardly considered in DSM to date as it is difficult to 
measure and translate into environmental covariates. However, time may potentially ex-
plain some remaining questions regarding spatial variation since measurements of actual 
soil properties always are a result of past soil forming processes and their spatial and vertical 
variation. Manuscript 5 describes, how time can be introduced to soil models with feature 
engineering of time series. 

We can only see a short distance ahead, 
but we can see plenty there that needs to be done. 

Alan M. Turing, 1950
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Abstract

As limited resources, soils are the largest terrestrial sinks of organic carbon. In this re-
spect, 3D modelling of soil organic carbon (SOC) offers substantial improvements in the 
understanding and assessment of the spatial distribution of SOC stocks. Previous three-di-
mensional SOC modelling approaches usually averaged each depth increment for multi-layer 
two-dimensional predictions. Therefore, these models are limited in their vertical resolution 
and thus in the interpretability of the soil as a volume as well as in the accuracy of the SOC 
stock predictions. So far, only few approaches used spatially modelled depth functions for 
SOC predictions. This study implemented and evaluated an approach that compared pol-
ynomial, logarithmic and exponential depth functions using non-linear machine learning 
techniques, i.e. multivariate adaptive regression splines, random forests and support vector 
machines to quantify SOC stocks spatially and depth-related in the context of biodiversity 
and ecosystem functioning research. The legacy datasets used for modelling include profile 
data for SOC and bulk density (BD), sampled at five depth increments (0-5, 5-10, 10-20, 20-30, 
30-50 cm). The samples were taken in an experimental forest in the Chinese subtropics as part
of the biodiversity and ecosystem functioning (BEF) China experiment. Here we compared
the depth functions by means of the results of the different machine learning approaches
obtained based on multi-layer 2D models as well as 3D models. The main findings were (i)
that 3rd degree polynomials provided the best results for SOC and BD (R2=0.99 and R2=0.98;
RMSE=0.36 % and 0.07 g cm3). However, they did not adequately describe the general asymp-
totic trend of SOC and BD. In this respect the exponential (SOC: R2=0.94; RMSE=0.56 %) and
logarithmic (BD: R2=84; RMSE=0.21 g cm-3) functions provided more reliable estimates. (ii)
random forests with the exponential function for SOC correlated better with the correspond-
ing 2.5D predictions (R2: 0.96 to 0.75), compared to the 3rd degree polynomials (R2: 0.89 to 0.15)
which support vector machines fitted best. We recommend not to use polynomial functions
with sparsely sampled profiles, as they have many turning points and tend to overfit the data
on a given profile. This may limit the spatial prediction capacities. Instead, less adaptive func-
tions with a higher degree of generalisation such as exponential and logarithmic functions
should be used to spatially map sparse vertical soil profile datasets. We conclude that spatial
prediction of SOC using exponential depth functions, in conjunction with random forests is
well suited for 3D SOC stock modelling, and provides much finer vertical resolutions com-
pared to 2.5D approaches.
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Introduction

Soils are a fundamental part of ecosystem functioning and services [1]. As finite resources, 
soils contribute to food production, nutrient cycling, biodiversity and freshwater quality [2]. 
Furthermore, they are interconnected with other ecosystem functions and services, such as 
local and global climate alteration; and therefore, contribute indirectly to human well-being 
[3]. Among soil properties, soil organic carbon (SOC) plays an important role in this con-
text. SOC increases the water-holding capacity (e.g. important for agriculture, forest and 
flood management), improves the physical properties of soils, such as nutrient availability for 
plants in agriculture and forestry, and accounts for carbon sequestration to mitigate climate 
change [4–6]. In forestry, there is strong interest in the effects of tree species and tree diver-
sity on soil carbon input and mineralization as well as the net effects of these processes [7]. 
Knowledge about the interconnection between SOC, forests and the diversity of tree species 
as well as SOC stock degradation by soil erosion [8,9] and land cover change [10,11] can 
also help to implement countermeasures to reduce global warming [7]. Consequently, the 
implementation of a credible soil carbon auditing and monitoring to verify changes in SOC 
is crucial regarding soil security and carbon sequestration [7,12].

To preserve the functions and services provided by soils, a good quantitative understand-
ing of the SOC stocks is required – both in the vertical domain of a soil profile as well as in 
the spatial domain over landscapes [13,14]. However, conventional soil maps use soil classes 
in horizontal dimension and soil horizons in vertical dimension. This categorical setup is 
often not precise enough and not well suited for interpreting soil functions and processes as 
well as for decision-making, since soil properties mostly vary continuous in space and time 
[15,16].

For the spatial prediction of continuous soil properties, such as SOC, methods of digital 
soil mapping (DSM) are suitable [17–19]. DSM is based on the soil forming factor concept 
[20] and the scorpan model introduced by McBratney et al. [21]. Both approaches illustrate
soil information as a function of environmental covariates, influencing the process of soil
formation. Terrain parameters, describing the shape of the land surface, are used widely as
an environmental covariate in DSM. Terrain is an essential factor of soil formation and con-
trols the effects of gravity, climate, lithology, water and biota [22–24]. Hence, models that
are based on terrain parameters reproduce displacement and reallocation of soil (i.e. mass
movements and soil erosion) and are of particular interest when modelling SOC at catchment
scale [25]. Furthermore, terrain can not only be used to estimate or model soil displacement
and reallocation, but also as a proxy for environmental covariates, which are not used as
predictors, or inaccessible scorpan-factors. For instance, slope and aspect can serve as proxy
for microclimate through its influence on local solar insulation [24]. The catchment area can



Appendix

48

serve as a proxy for soil fertility because of terrain driven water and SOC accumulation [19] 
and elevation, slope and aspect can act as proxy for parent material, tectonics and perigla-
cial climate through strike and dip of the geological sediments and down-cutting processes 
[22,23,26].

For spatially modelling soil properties, different approaches have been established to 
derive relationships between soil properties and environmental covariates. However, for a 
reliable estimation of SOC stocks, the vertical dimension is crucial [13]. A common way of 
three-dimensional mapping is to consider the vertical dimension as multiple two-dimensional 
predictions, which can be interpreted in a three-dimensional way [17,27–29]. Because, multi-
layered predictions do not provide full 3D soil information, since they are limited to the 
mapped depth increments. Information of the space between the mapped depth increments 
has to be derived on an interpretative and subjective basis. One approach is to vertically 
interpolate the single layers to construct a volumetric model, which is computationally 
intensive [30,31].

Therefore, multi-layered models are referred to as pseudo-3D mapping or 2.5D mapping 
[32]. To overcome these drawbacks, it is favourable to map soil properties as continuous 
depth function in the spatial domain [13,18], where the vertical distribution of soil properties 
is represented by depth functions, that are predicted spatially. These predictions allow the 
calculation of SOC stocks over the integral of the functions [33] as well as the calculation of 
fully three-dimensional maps at any vertical resolution [32,34–37].

Besides geostatistical frameworks [38,39], different depth functions have been applied for 
3D modelling: power, logarithmic [32,40], exponential decay [32,33], polynomial [34,36] and 
equal-area spline functions [31,41].

While with 2.5D mapping soil properties are directly predicted at specific depth levels 
using the environmental covariates [17,29], 3D approaches use environmental covariates to 
predict parameters of the depth functions [34], which are abstract soil properties. According 
to the scorpan model, soil properties can be spatially mapped with neighbourhood relations 
solely [21], which also have been used for 3D modelling [36,40,42,43]. Over the past years, 
machine learning techniques have become a standard technique in DSM due to several 
advantages like dealing with non-linearity or the handling of large datasets. Aldana Jague et 
al. [33] used multiple linear regression (MLR) to model SOC incorporating terrain covariates, 
while Gasch et al. [43] compared spatial and terrain covariates using random forests (RF) 
and regression kriging for mapping SOC at different depth layers. Piikki et al. [27] used 
multivariate adaptive regression splines (MARS) to model clay and sand fractions as well 
as organic matter based on proximal soil sensing data. Several other studies also suggest 
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that machine learning techniques, such as artificial neural networks (ANN; [41,44]), random 
forests (RF; [17]) and support vector machines (SVM; [45]), can be applied successfully in 
DSM.

The objectives of this study were to test the spatial prediction of four soil profile depth 
functions for modelling SOC content and bulk density with different machine learning 
methods based on multi-scale terrain covariates. The tested soil profile depth functions 
are polynomials of 2nd and 3rd degree, natural logarithmic and exponential functions. The 
machine learning methods used to model the depth functions spatially were multivariate 
adaptive regression splines (MARS), random forests (RF) and support vector machines (SVM) 
with radial basis functions. We validated the machine learning models with 10-fold cross-
validation and evaluated the results of the 3D mapping approach by comparing it with the 
predictions of the more common multi-layered 2.5D modelling approach based on five layers.

Material and methods

Study area and sampling design

The BEF-China study sites are artificial biodiversity experiments on property leased 
and managed by the project partner Institute of Botany, Chinese Academy of Sciences, 20 
Nanxincun, Xiangshan, Bejing, 100093, PR China. Field studies did not involve endangered or 
protected species and no specific permissions for field research were required.

The biodiversity and ecosystem functioning (BEF) China project [46] is located near 
Xingangshan, Jiangxi Province, PR China (UTM/WGS84: 50R 588000 3222000), about 400 km 
south-west of Shanghai (Fig 1). The study site is a topographically heterogeneous environment 
in a small catchment of 26.7 ha leased by the Institute of Botany of the Chinese Academy of 
Sciences (CAS). It features an elevation ranging from 105 to 275 m a.s.l., slopes inclined 29° 
in average and a maximum slope inclination of 45°, which are typically convex [19]. Non-
calcareous slates with varying sand and silt content and grey-green sandstone constitute the 
bedrock. Predominant soil types are Endoleptic Cambisols with Anthrosols at the hillsides 
and Gleysols at the valley bottom. The mean soil depth is 0.6 m with underlaying isomorphic 
weathered slate (saprolite; [19]). Soil texture ranges from silt loam to silty clay loam [47]. 
The climate is typically subtropical with monsoons in summer, a mean annual temperature 
of about 17 °C and long-term average annual rainfall of about 1800 mm [48] but with a drier 
period from 2009 to 2012 [49].

About 18 ha were covered with 271 experimental plots. In total 8.7 ha at the valley bottom 
were not part of the experimental design due to paths and rivulets. Plots had a size of 25.8 m × 
25.8 m (traditional Chinese unit of 1 mu, 1/15 ha) and were replanted in 2008 after clear-cut of 
a commercial Chinese fir plantation. One plot comprised 400 (20 × 20) trees in monocultures 
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and mixtures of 2, 4, 8, 16 and 24 species. Species composition of the plots was based on 
random as well as non-random (plant trait-oriented) extinction scenarios, where all species 
were represented equally (broken-stick design). The datasets used in this study comprised 
soil samples from random subsets of all species and species richness levels referred to as VIPs 
(Very Intensively Studied Plots). For details on the experimental design, see Bruelheide et al. 
[46] and Trogisch et al. [50].

Fig. 1.  Study area in mainland China with BEF-China plot scheme and indication of sampled plots. 
Upper right panel with permission by R. Hijmans; https://gadm.org/.

Datasets

All described datasets are part of the legacy database of BEF-China. Soil sampling was 
conducted in 2014. Nine cores on a regular grid basis (3 cm in diameter) were taken at each 
of the 67 VIPs according to the BEF-China experimental design (Fig 1; [46]). The samples 
were bulked for each depth increment (0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm and 30-50 cm) 
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and were referred to as dataset SOC (n=67; Fig 2). Fine roots and charcoal were sorted out 
manually. For dry combustion CNS-analysis, a Vario EL III (Elementar, Hanau, Germany) was 
used. Due to acidic soil conditions there was no detectable carbonate fraction, and thus total 
carbon represented SOC [19]. SOC content ranged from 5.06 to 0.35 % decreasing with depth.

Bulk density samples (n=55) were taken in April 2015 with soil sample rings (100 cm3) 
and five replicates for each depth increment at the VIPs. Bulk density was determined 
gravimetrically and was referred to as dataset BD (Fig 2). Bulk density ranged from 0.75 to 
1.84 g cm-3 increasing with depth.

Fig. 2. Datasets for SOC and BD used in this study summarized in boxplots.

The boxplots show the variation of the SOC and BD values for each depth increment. SOC and BD samples were 
taken in five depth increments and 9 cores per plot were bulked (Note that depth increments do not increase 
linearly). The grey lines show model depth functions (3rd degree polynomial for SOC and natural logarithmic 
function for BD; see subsection “3D mapping with soil depth functions”).

Fig. 3. Empirical cumulative distribution functions (ECDF) for SOC and BD datasets.

The ECDFs show the locations of the sampling sites in the state space of the elevation (DEM) in metres above 
sea level (m a.s.l.). The aim is to show the coverage of the DEM feature space by the samples. It can be seen 
that most samples are located in the mid-range of the elevation values. Therefore, predictions at grid locations 
which are only sparsely covered by the samples (i.e. locations close to the minimum and maximum values of the 
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DEM) may be less accurate. The minimum, median and maximum values of both datasets (DEM and sampling 
locations) are shown with vertical lines (dashed grey: DEM, dashed black: sampling locations) to compare the 
full range of the respective feature spaces.

Since some plots with SOC samples did not have BD data (Fig 1), both soil properties 
were modelled individually instead of calculating and modelling the SOC stocks directly. 
This ‘model-then-calculate’ approach is a useful alternative to the ‘calculate-then-model’ 
approach. Both were compared by Orton et al. [51]. 

The digital elevation model (DEM) had a resolution of 5 m and was generated by ordinary 
kriging [52] based on differential global positioning system data (DGPS) with 1956 points (73 
points per ha; [19]). The distribution of datasets SOC and BD over the DEM is shown in Fig 3. 
Dataset SOC covered the elevation data more comprehensively compared to the dataset BD.

Digital terrain analysis

Environmental covariates that describe the morphometry of a landscape are grouped in 
four major classes of terrain attributes: local, regional, combined (i.e. combinations of local 
and regional) and solar morphometric variables. Given that many terrain attributes can be 
calculated based on different equations or modelling approaches and because it is unknown 
which version would be most suitable for modelling SOC and BD within the study area, we 
used multiple established methods to derive single terrain attributes, if available. Given the 
circular nature of aspect, we used sine and cosine transformations to derive eastness and 
northness. Overall, we calculated 58 terrain attributes (Table 1) with SAGA GIS 2.3.1 [53].

Table 1. Terrain attributes used for SOC and bulk density modelling.

Covariates Method Author(s)

Local

Slope and aspect

Fitted 2nd degree polynomial [54]

Fitted 3rd degree polynomial [55]

Least squares fitted plane [56]

Maximum triangle slope [57]

Fitted 2nd degree polynomial [58]

Plan, profile, longitudinal, tangential and flowline 
curvature

Fitted 2nd degree polynomial [54]

Fitted 3rd degree polynomial [55]

Fitted 2nd degree polynomial [58]

Vertical distance to channel network [53]

Sky visibility, sky view factor, direct and diffusive 
insolation [59]

Regional Catchment area
Top-down

[60]
Recursive

Combined
Topographic Wetness Index (TWI) Any combination of slope and 

catchment area [61]

Slope length and steepness factor (LS-Factor) Any combination of slope and 
catchment area [61,62]
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Terrain attributes derived from a DEM with a given resolution may not be suitable for 
landscape characterization and for digital soil mapping due to a non-representative DEM 
resolution [63], since the terrain attributes are not derived on the most relevant scale [64,65]. 
To examine the influence of scale, [65] applied simple smoothing (mean) filters with different 
neighbourhood sizes. This approach was applied on every terrain attribute used in this study 
with five circular neighbourhoods (radii of 1, 2, 4, 6 and 8 pixels), resulting in 290 terrain 
attributes in total. The maximum radius was set to 8 pixels to represent the local catena scale 
of 90 m.

Machine learning techniques

We compared three data mining methods to test the 3D prediction of soil profile depth 
functions for SOC and BD based on terrain covariates. Given the large number of 290 
covariates (instances) and sample sizes of n=67 and n=55, not all available techniques could 
be applied. For example, the interpretable multiple linear regression (MLR) analysis used for 
spatial modelling of polynomial depth functions by Aldana Jague [34] requires more samples 
(n) than instances (p; [66]). Furthermore, we have to account for multi-collinearity. Many
terrain covariates in this study are calculated by different algorithms for the same terrain
attribute and on different spatial scales with the same algorithm, which is often seen as a
constraint in machine learning [66]. To reduce the covariate space to either enable MLR or
handle the ‘curse of dimensionality’, principal component analysis (PCA) is often applied.
However, feature reduction with PCA can have negative effects on model accuracy with
multi-scale terrain data and models with the full set of covariates have higher accuracies
[65]. Other feature reduction methods increase accuracy only marginally [65]. In this study,
we applied multivariate adaptive regression splines (MARS), random forests (RF) and support
vector machine (SVM). These machine learning methods are robust against multi-collinearity,
can handle n<p [66] and select the most informative covariates without expert knowledge.
Further, we omitted feature reduction.

For modelling, R version 3.3.1 was used [67]. For accessing the machine learning packages, 
the uniform interface caret [68] was used, which also offers data handling and model validation 
methods. 

Multivariate adaptive regression splines (MARS)

MARS was introduced by Friedman [69] and is a generalisation of recursive partitioning 
regression approaches using piecewise linear models. With its linear basis functions, 
it overcomes the discontinuous response of other recursive partitioning models like 
Classification and Regression Trees (CART; [70]) and can generate continuous surfaces. 
Therefore, prediction accuracy of MARS is expected to be higher [69]. MARS is a partial linear 
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function, where each new part is added with an exhaustive search for best fit and models a 
finite quantity of the regression. Thus, the model measures variable importance by its nature 
and is insensitive to non-informative instances. MARS require very little pre-processing and 
are non-affected by collinearity, since the predictor selection is random during iteration and 
redundant features are used equally [66]. This may affect measurement of variable importance 
and interpretation, which, however, is out of scope in this study. For modelling using MARS, 
the earth package version 4.4.6 [71] was used.

Random forests (RF)

RF is a widely used machine learning technique in digital soil mapping [17,22,64,72]. It 
was introduced by Breiman [73] and is an ensemble technique with CART [70] as a base 
learner. The single decision tree uses binary splits to create more homogenous groups in 
respect to the response. To grow an ensemble of trees, different random subsets of covariates 
(bootstrap sampling) and features (random set of features for every split) are used to build a 
single tree. The final prediction is created by averaging all individual tree outputs. Breiman 
[73] has proven that random forests with a large number of trees is robust against overfitting.
Moreover, it is robust against noise, non-informative and correlated features. RF also returns
feature importance measures (affected by correlation as MARS; [66]) and there is little need
for fine-tuning [74]. The randomForest package version 4.6-12 [75] was used for modelling
with RF.

Support vector machine (SVM)

Originally, SVM has been developed for classification problems [76]. It is a kernel method 
and uses hyperplanes to linearly separate classes of objects. For regression problems, Drucker 
et al. [77] developed support vector regression machines (SVR), which are an extension 
of SVM. Therefore, the term SVM is often used in both cases. The kernel function defines 
a transformation of the input data into a high dimensional feature space. In this feature 
space, it is possible to derive a linear regression hyperplane for non-linear relationships. 
Afterwards, it is back-transformed to non-linear space. Smola and Schölköpf [78] provide a 
comprehensive and detailed insight into SVR. The kernel used in this study is a radial basis 
function, where the scaling parameter σ is estimated by caret after a method by Caputo et 
al. [79]. In contrast to MARS, Drucker et al. [77] suggest that SVM should be used when the 
number of features is larger than the number of instances, since its optimisation does not 
depend on the dimensionality of feature space. Furthermore, SVM is partially insensitive to 
outliers (depending on cost factor) and does not require feature reduction to reduce multi-
collinearity [66]. The kernlab package version 0.9-25 [80] was used for radial support vector 
regression modelling.
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Data pre-processing

Some algorithms are sensitive to the scale and the range of the covariate space (e.g. SVM). 
To reduce effects of small values and little variance, SVM needs centred and scaled covariates 
[66], which was computed using the scale and centre-option in caret. To make all models 
comparable, this was also done for MARS and RF.

Spatial 2.5D and 3D models

Differences between 2.5D models and spatial prediction of depth functions

The environmental covariates were used to train regression models (MARS, RF and SVM) 
to predict SOC and BD. For 2.5D predictions this was done for each sampled depth increment 
individually, were we assigned the mid-depth of the sampled increments as depth of the 
respective layer. This method to obtain volumetric soil information has several advantages. For 
modelling of each standard depth individually, there are no further requirements to abstract 
soil information in terms of vertical variability, i.e. a soil profile function. Furthermore, there 
is no error propagation through secondary models that describe depth functions. On the other 
hand, in contrast to 3D modelling, 2.5D modelling has the disadvantage that the individual 
model outcomes are purely two-dimensional. Soil properties of the depth increments between 
the standard depths are not used in the model and have to be derived on an interpretative 
basis [15] or through further processing [30] after spatial prediction. However, this is a well-
established and well-documented approach. Therefore, we compare the results of the 3D 
approach described below directly with the 2.5D results.

3D mapping with soil depth functions

For the spatial modelling of depth functions, which we handled similar to the soil properties 
in terms of modelling, we applied 3rd degree polynomial functions proposed by Aldana Jague 
[34] and less flexible 2nd degree polynomials as well as logarithmic and exponential functions
[32]. The workflow of the 3D mapping (Fig 4) of this study involved five main steps:

–– Mathematical approximation of depth functions to the five depth increments with a
linear least squares approach. These were

–– [34]	 (1)

–– (2)

–– [32]	 (3)

–– cf. [32]	 (4)

f2(x) = c0 + c1x+ c2x
2 + c3x

3

f2(x) = c0 + c1x+ x2x
2

f3(x) = c1 × ln(c2x)

f4(x) = expc1+c2x



Appendix

56

–– where f1,2,3,4(x) is SOC and BD at a specific depth x (depth of the lower corner of a voxel
in cm), c0 is the intercept that equals SOC and BD at depth 0 (cm) and the function coef-
ficients c1, c2 and c3 are dimensionless. This altogether described the vertical distribution
of SOC in respect to depth x at a certain location.

–– Evaluation of model error for all equations in (i).

–– Spatial modelling of the function coefficients c1, c2, c3 and c0 (analogous to twodimen-
sional modelling of SOC and BD) of the depth function with the lowest error (ii) with
MARS, RF and SVM. The depth function parameters were treated and evaluated similar
to a soil property.

–– Evaluation of the cross-validation results for MARS, RF and SVM models of the depth
function coefficients.

–– Solving the depth functions with spatially modelled coefficients (iii) at each grid loca-
tion to generate a three-dimensional model.

The depth functions were solved for depths from 0 cm to 50 cm in 5 cm increments. The 
resulting 11 depth layers (matrices) were stacked to two three-dimensional models (one 
for SOC and BD each), where individual values are represented by voxels, which are the 
volumetric 3D analogue of 2D pixels. Due to the nature of the polynomial depth functions, 
negative SOC predictions in the profiles are possible. Consequently, the values of these voxels 
had to be set to zero. This is not required for logarithmic and exponential functions.

Compared to the standard depth method, the main advantages of spatially modelled depth 
functions are a higher vertical resolution and the fact that the result can be interpreted as 
volumetric structure. Instead of pixels with SOC and BD information in multiple layers, 
volumetric elements – so called voxels – in a three-dimensionally georeferenced stack of 
matrices with user-defined vertical resolution are obtained. Since the depth functions are 
secondary models, the error which is propagated by the depth function model to the spatial 
model depends on the chosen function. Due to the limited number of samples per profile, 
cross-validation of the depth functions was omitted.

The final models for SOC and BD were validated internally against the measured values of 
the input datasets.
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Fig. 4. Flow chart summarizing the methodology steps of the 3D mapping and the used datasets at 
each step.

Validation and evaluation

The evaluation consists of two independent steps for the 2.5D multi-layered model 
predictions and the volumetric 3D model predictions of SOC and BD, where we treat the 
depth function parameters as soil properties.

In a first step, we evaluated each model of the soil properties SOC and BD as well as the 
spatial models of the depth function parameters, by using a 10-fold cross-validation with the 
coefficient of determination (R²) and the root mean square error (RMSE) as quality criterion. 
In this step, the models were tuned over the default grid- or hyper-learning sequence of 
parameters [81] using the tune grid function of caret to identify the most suitable combination 
of tuning parameters with the lowest RMSE and to reduce the model error, while preserving 
the models ability to generalise. The tuning parameters are degree and nprune for MARS, 
mtry for RF and cost for SVM. For RF ntree was set to the default value and σ for SVM was 
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calculated by a method after Caputo et al. [79]. All models used the same set of folds to make 
cross-validation results comparable. The final models were selected from this sequence by 
the lowest RMSE. 

To estimate the effect of overfitting of the depth function models based on grid learning, 
we evaluated the 3D model results with the datasets SOC and BD by R² and RMSE (observed-
predicted-evaluation). Overfitting is indicated by large differences in the prediction error 
between the training and the validation sets [81].

Further, we compared the 3D models against the 2.5D predictions of the same datasets 
to evaluate the performance of the 3D models. We chose this approach, because the legacy 
datasets are too small to hold out a larger subset for independent validation. The model results 
should be similar, if the spatial prediction of depth function parameters is reproducing the 
spatial distribution of the soil properties. This means that independently from the modelling 
framework (modelling of SOC and BD or modelling depth function as soil property) the 
results of the 3D model are reasonable, if both models are similar.

We see this comparison as a valid method for the evaluation of the 3D models, since Brus 
et al. [38] report strong correspondence between 2.5D and 3D geostatistical models and 
MARS, RF and SVM are well established for 2D and 2.5D soil mapping and in data science 
[17,27,66]. Therefore, we use the 2.5D layered predictions at the specific mid-depth of the 
increments as reference predictions. For the comparison between the 2.5D models and the 
corresponding depths of the 3D models, we used the coefficient of determination R2, Lin’s 
concordance correlation coefficient (ρc; [82]), which validates the models against the 1:1 line, 
and the RMSE.

Estimation of SOC stocks

The three-dimensional array of SOC stocks was calculated by
							    (5)

where SOCstocks (g voxel-1) is the soil organic carbon storage, SOC is SOC content (%), BD is 
bulk density (g cm-3), 5002 is the base area of a voxel (cm2) related to the DEM resolution of 
500 cm and 5 is the vertical resolution in cm. Consequently, 1 voxel represented 1.25 m3 of 
soil. Adjustment with the fraction of coarse material (> 2 mm) was omitted, since the coarse 
fraction was negligible low (< 5 vol.-%) at the VIPs and cannot be determined precisely by 
coring. According to Orton et al. [51] calculating the SOC stocks from two models of SOC 
and BD is an useful alternative when the samples are not taken at the same locations. 

SOCstocks =
SOC

100
×BD × 5002 × 5
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Results

2.5D predictions of standard depths as reference

For the models of SOC, the mean cross-validation R2 of MARS was 0.33 with a root mean 
square error of 0.39%, compared to RF with an R2 of 0.41 (RMSE 0.34%) and SVM with an 
R2 of 0.39 (RMSE 0.35%; cf. Table 2). Models for BD showed a mean R2 of 0.43 (MARS), 0.39 
(RF) and 0.39 (SVM) and mean RMSE values of 0.09  g  cm-3 (MARS), 0.08  g  cm-3 (RF) and 
0.08 g cm3 (SVM). In addition to the mean values, Table 2 shows the prediction accuracies 
and the RMSE’s for each depth increment and all three machine learning techniques of both 
SOC and BD.

Table 2. Performance of 10-fold cross-validation for MARS, RF and SVM applied on the sampled 
standard depths of SOC and BD.

depth R² RMSE

(cm) MARS RF SVM MARS RF SVM

SO
C 

(%
)

0 - 5 0.28 0.41 0.37 0.59 0.48 0.51

0 - 10 0.25 0.41 0.42 0.46 0.4 0.4

10 - 20 0.31 0.31 0.26 0.37 0.32 0.34

20 - 30 0.46 0.47 0.46 0.3 0.28 0.29

30 - 50 0.38 0.45 0.43 0.24 0.2 0.21

x̅ 0.34 0.41 0.39 0.39 0.34 0.35

BD
 (g

 c
m

-³)

0 - 5 0.51 0.53 0.61 0.07 0.06 0.06

0 - 10 0.5 0.52 0.49 0.07 0.06 0.06

10 - 20 0.31 0.26 0.24 0.11 0.11 0.11

20 - 30 0.41 0.35 0.33 0.1 0.1 0.1

30 - 50 0.42 0.31 0.3 0.09 0.09 0.09

x̅ 0.43 0.39 0.39 0.09 0.08 0.08

Soil depth functions

For SOC, all equations showed R2 values higher than 0.9 (0.99 for f1, 0.96 for f2, 0.96 for f3 
and 0.94 for f4) with a RMSE ranging from 0.36 (f1) to 0.7 % (f2). For BD, the performance in 
terms of R2 was similar (RMSE = 0.07 g cm-3), except for f3 with R2 = 0.84 (RMSE = 0.22 g cm‑3), 
which is the natural logarithmic function. The 3rd degree polynomial (f1) resulted in the best 
fits for SOC and BD. However, the general trend of SOC in the profiles was exponential (Fig 
2). Hence, both the 3rd degree polynomial and the exponential functions were chosen for 
further spatial modelling and comparison in this study. With higher errors and without being 
able to reproduce the general trend in the profiles profile the 2nd order polynomial (f2) was 
omitted in the following steps.
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Spatial modelling of soil depth functions

The cross-validation results for the machine learning methods applied on the depth 
functions (c.f. Table 3) showed, that the polynomial depth functions for MARS, RF and SVM 
for SOC were comparable in their goodness of fit with marginal differences (mean R2 from 
0.3 to 0.32). R2 of the exponential depth functions ranged from 0.3 for MARS to 0.44 for RF.

The models of the function coefficients could not be compared directly because c0 

represented the SOC in % and BD in g cm-3, whereas c1, c2 and c3 were dimensionless. Hence, 
we compared these models by the normalised RMSE (nRMSE), which is the RMSE divided 
by the coefficients range (Table 3). The nRMSE showed little variation of around 0.18 for all 
coefficient predictions of the 3rd polynomial depth function of SOC. RF had the lowest mean 
of nRMSE over all coefficients (0.17). The lowest nRMSE (0.09) for SOC was achieved by the 
exponential depth functions (RF and SVM).

The models based on the 3rd degree polynomial depth functions of BD had a mean R2 

of about 0.23-0.4, while the mean nRMSE was about 3×104, due to the low performance of 
models with c3. Given such high errors, none of the models could reasonably predict the 3rd 
degree polynomial depth function for bulk density. The exponential function was not able to 
reproduce the vertical trend of BD. Thus, we used the logarithmic depth function, although it 
fitted the five depth increments least. However, these spatial depth function models performed 
better (mean R2 from 0.36 to 0.45; nRMSE of about 0.16 for SVM).

Table 3. Performance of a 10-fold cross-validation for MARS, RF and SVM applied on function coef-
ficients of a 3rd degree polynomial (f1 for SOC and BD with four coefficients) and natural logarithmic 
function (f3 for BD with two coefficients).

R2 RMSE nRMSE

MARS RF SVM MARS RF SVM MARS RF SVM

SO
C 

(f 1)

c0 0.29 0.28 0.26 0.83 0.75 0.79 0.20 0.18 0.19

c1 0.36 0.43 0.46 0.15 0.13 0.14 0.22 0.19 0.20

c2 0.29 0.28 0.24 0.008 0.007 0.007 0.2 0.18 0.18

c3 0.3 0.21 0.31 0.0001 0.0001 0.0001 0.14 0.14 0.14

x̅ 0.31 0.3 0.32 - - - 0.19 0.17 0.18

BD
 (f

1)

c0 0.56 0.45 0.38 0.09 0.09 0.09 0.23 0.2 0.20

c1 0.38 0.34 0.218 0.02 0.02 0.02 0.14 0.14 0.14

c2 0.38 0.17 0.26 0.001 0.001 0.001 0.2 0.2 0.2

c3 0.25 0.27 0.31 0.00002 0.00002 0.00002 1.3×105 1.2×105 1.2×105

x̅ 0.39 0.31 0.28 - - - 3.2×104 3×104 3×104

BD
 (f

3) c1 0.56 0.48 0.53 0.09 0.09 0.09 0.2 0.18 0.18

c2 0.34 0.24 0.2 0.03 0.04 0.04 0.14 0.19 0.14

x̅ 0.45 0.36 0.36 - - - 0.17 0.19 0.16

Note that coefficients dimensions are different and specifying a mean of the RMSE is not reasonable.
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Evaluation of 3D predictions

For the comparison of 3D models against the 2.5D reference predictions, we used the 
coefficient of determination R2, Lin’s concordance correlation coefficient ρc and the RMSE in 
corresponding depths (Table 4). 

The three-dimensional MARS prediction for SOC with the 3rd degree polynomial depth 
function showed the largest difference to its counterpart. The prediction at 2.5 cm ranged 
from close to zero to 15 % SOC compared to 1.5 to 4 % SOC in the two-dimensional prediction 
(Fig 5). The other depth increments showed a similar pattern with values down to 15 % SOC. 
For the 2.5 cm increment the performance of RF was slightly better than that of SVM, but 
subsequently dropped with increasing depth. Especially at 40 cm, but also at 25 cm and 15 cm, 
the three-dimensional prediction of RF differed more from the two-dimensional predictions 
than the three-dimensional predictions of SVM differed from their counterparts. There was 
no distinct over- or underestimation of RF, but random scattering between -4 and 4 % SOC 
for 40 cm (Fig 5). SVM showed lower deviation at 15 cm, 25 cm and even 40 cm. There were 
less predictions with negative values and less scattering. The predicted depth intersections of 
spatially modelled depth functions corresponded to the two-dimensional predictions by SVM 
largely by R2 and ρc, while RMSE is low (Table 4).

In contrast, the 3D predictions of RF and SVM based on the exponential function showed 
good correspondence for all five depth increments (Table 4). The 3D predictions overestimated 
SOC for the 0-5 and 5-10 cm increments and underestimated it for 20-30 and 30-50 cm slightly 
due to the exponential nature of the equation, but there was no wide scattering as it was the 
case with the polynomial prediction for RF. 

The results of the internal validation showed high correspondence between the chosen 
models (RF with exponential function for SOC and RF with logarithmic function for BD) and 
respective input data at all five sampled depth increments (Table 5). The R2 and RMSE values 
of the internal validation were similar to the validation results of the model comparison, 
indicating that model overfitting of both models is similar (Table 4). This partly accounts to 
the propagation error of the profile depth function. The spatial prediction of the exponential 
function for SOC had an average R2 of 0.79 with an average RMSE of 0.33 % and the prediction 
of the logarithmic function used for BD had a R2 of 0.77 with an average RMSE of 0.14 g cm-3.
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Fig. 5. 3D predictions of sampled depth increments plotted against corresponding 2.5D predictions.

3D prediction of SOC was calculated with 3rd degree polynomials (upper row) and exponential function (middle 
row). The 3D prediction for BD with logarithmic function (lower row).

SOC stocks

The 2.5D models showed SOC stocks of 61.9 Mg ha-1 from 0 to 40 cm, with 19, 14.7, 12, 8.9 
and 7.3 Mg ha-1 in the individual depth increments (from surface downwards).

The 3D model predicted 78.3 Mg ha-1 over the whole interval. The upper 20  cm of soil 
contained about 46.4 Mg ha-1. This depth is often designated as topsoil [83,84] and is also a 
critical soil depth for modelling plant productivity and community assembly [85]. 31.9 Mg ha-1 
SOC are stored in the subsoil from 20 to 40 cm. Considering that the rooting depth varies, 
depending on the species and individual age, a static discrimination between topsoil and 
subsoil may be not appropriate. The model showed that plants with shallow roots down to 
5 cm mainly interacted with a carbon pool of 10.9 Mg ha-1, whereas plants with roots in 25 cm 
depth interacted with a pool of 54.5 Mg ha-1. Fig 6 shows the 3D prediction of SOC stocks as 
vertical intersections of the solum. The highest stocks in the upper 5 cm were predicted in the 
central upper slopes and at the western slopes. Predictions for this depth at the valley bottom 
were around 20  % lower. However, at the valley bottom the predictions for intermediate 
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depth increments (around 30 cm) were higher than predictions at the upslope positions. The 
depth function for SOC stocks was much steeper and the SOC stock decline with depth was 
more pronounced at upslope positions compared to downslope and valley positions.

Table 4. Internal validation results of the final 3D models with the exponential function for SOC and 
the logarithmic function for BD.

R² ρc RMSE

MARS RF SVM MARS RF SVM MARS RF SVM

SO
C 

(%
; f

1)

2.5 cm 0.02 0.92 0.89 -0.03 0.95 0.79 4.13 0.09 0.12

7.5 cm 0 0.69 0.89 -0.01 0.81 0.85 3.84 0.16 0.1

15 cm 0.02 0.41 0.72 -0.03 0.43 0.47 2.42 0.37 0.22

25 cm 0 0.17 0.45 0 0.17 0.66 9.09 0.68 0.15

40 cm 0 0.07 0.15 0 0.04 0.31 46.96 1.73 0.33

x̅ 0.01 0.45 0.62 -0.01 0.48 0.62 13.29 0.61 0.18

SO
C 

(%
; f

4)

2.5 cm 0 0.96 0.93 0 0.93 0.79 19.22 0.11 0.14

7.5 cm 0.1 0.84 0.67 0 0.39 0.29 26.25 0.38 0.35

15 cm 0 0.89 0.88 0 0.94 0.93 29.42 0.06 0.05

25 cm 0.06 0.85 0.93 0 0.55 0.79 31.28 0.21 0.1

40 cm 0.02 0.88 0.75 0 0.31 0.26 32.71 0.31 0.3

x̅ 0.04 0.88 0.83 0 0.62 0.61 27.78 0.21 0.19

BD
 (g

 c
m

-3
; f

3)

2.5 cm 0.02 0.94 0.87 -0.05 0.39 0.53 0.48 0.09 0.07

7.5 cm 0 0.8 0.71 0 0.29 0.24 0.44 0.09 0.1

15 cm 0.01 0.66 0.5 -0.05 0.48 0.31 0.46 0.05 0.07

25 cm 0.01 0.44 0.57 0.02 0.59 0.53 0.43 0.04 0.04

40 cm 0.02 0.76 0.43 -0.12 0.17 0.08 0.64 0.1 0.11

x̅ 0.01 0.72 0.62 -0.04 0.38 0.34 0.49 0.07 0.08

Table 5. Coefficient of correlation (R2), Lin’s concordance correlation coefficient (ρc) and RMSE of 
2.5D reference predictions and correspondent depths of 3D predictions with polynomial (f1), logarith-
mic (f3) and exponential (f4) depth function.

SOC (%) BD (g cm-3)

R2 RMSE R2 RMSE

2.5 cm 0.88 0.32 0.87 0.29

7.5 cm 0.74 0.47 0.85 0.07

15 cm 0.77 0.24 0.72 0.12

25 cm 0.76 0.29 0.74 0.08

40 cm 0.8 0.31 0.66 0.12

x̅ 0.79 0.33 0.77 0.14
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Fig. 6. Three-dimensional prediction of SOC stocks for the whole catchment.

The final 3D SOC stock model is shown in vertical slices 150 m apart to display the vertical variability, which 
is larger than the spatial variability.

Discussion

2.5D predictions of standard depths as reference

As RF returned the lowest error for the 2.5D models, this was the best choice for modelling 
SOC. SVM ranked slightly below. Compared to the results presented by Lacoste et al. [30], 
who used Cubist for 2.5D SOC stock mapping, the accuracy of our results was similar and 
reasonable. 

However, the sampled VIPs do not represent the terrain of the study site adequately, since 
they were chosen based on species richness levels, which were distributed randomly, and 
not representative for the study site. For example, a representative sampling design could be 
achieved with Conditioned Latin Hypercube Sampling (cLHS) [72,86].

For bulk density SVM and RF performed equal by means of R2 and RMSE and showed a 
similar pattern, especially at 15 cm and 40 cm. MARS performed least for BD. In general, RF 
resulted in the most stable predictions and is therefore recommended over SVM.

Evaluation of 3D predictions

The negative values in the prediction results and the pronounced difference between the 
3D models, with predictions up to 15 % SOC, and the 2.5D models indicated that MARS is not 
capable of adequately predicting the depth functions in space, although the cross-validation 
showed similar results as for RF and SVM models. The latter showed better correspondence 
between the 3D and the 2.5D models (Fig 5, Table 4). According to the results of the direct 
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comparison between the multi-layered prediction and the corresponding depths in the 3D 
model, RF with exponential functions was most suitable for SOC modelling. RF and SVM 
with polynomials performed well at upper depth increments and less in lower increments. 
MARS models were not suitable of reproducing the 2.5D predictions. Lower performance 
of all techniques with polynomials in the lower depth increments may be referred to lower 
influence of the terrain as a driving factor to explain SOC accumulation and redistribution 
(e.g. by erosion). Other factors accounting for SOC redistribution in deeper soil horizons may 
be bioturbation or vertical transport in the liquid soil phase. Additionally, it is possible, that 
accumulation layers in the solum, that would reflect the lateral distribution, were not fully 
covered by the legacy dataset and, therefore, the interpretation remains difficult. All these 
processes and others relevant for SOC concentration as well as SOC stocks cannot be fully 
covered by a distinct set of terrain parameter and lead to a dilution effect by predicting the 
deeper horizons. Lower accordance of the models also may be referred to uncertain models of 
function coefficients (c3) and (c2), which have significant influence at greater depths (cubic and 
squared) and exponentiate up this error. Based on the results, we chose RF with exponential 
depth functions for three-dimensional mapping of SOC and the logarithmic depth function 
for BD.

SOC stocks

Compared to other studies in this area, the estimated SOC stocks were well in line. Scholten 
et al. [19] calculated mean SOC stocks of 70 Mg ha-1 for the upper 50 cm with the same data 
but a different approach. Chen et al. [83] compared five plantations with different species 
in five age groups and calculated SOC stocks for the upper 20 cm. Especially the age of the 
trees and shrubs and their biomass have a strong impact on SOC stocks. Very young forest 
communities showed SOC stocks ranging from 20 to 25 Mg ha-1 and plantations with older 
trees of 7 to 10 years 30-40 Mg ha-1. The latter were slightly older than the trees of BEF-
China, where 42 Mg ha-1 were predicted. Diverse species pools in these studies may explain 
differences. Tang et al. [87] found SOC stocks in the top 60 cm in bamboo forests ranging 
from 60 to 200 Mg ha-1.

The introduced approach is capable of summing SOC stocks at any depth interval. Since 
topsoil depth varies spatially, conventional static assumptions of topsoil thickness can result 
in inaccurate SOC stock calculations for individual horizons. Incorporating spatial models of 
topsoil depth into 3D SOC stock mapping can overcome this drawback and help to improve 
ecological and biodiversity models as conducted in the BEFChina experiment. In particular, 
consideration of biotic predictors like forest biomass, tree species richness and functional 
plant diversity might further improve model fit and accuracy of estimated SOC stocks [14]. 
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This would allow one to quantify terrain-specific effects of changes in forest cover and 
composition on SOC stocks. The developed models could also help to identify areas that are 
especially prone to loss of SOC stocks (e.g. by soil erosion or land cover change).

Furthermore, continuous three-dimensional SOC mapping can support models of a national 
SOC inventory. Yang et al. [37] applied depth functions to categorical soil types and estimated 
SOC stocks for mainland China. Combining models with high vertical resolution by Yang et 
al. [37] and continuous spatial modelling like in this study can improve accuracy of SOC 
mapping compared to the categorical mapping approach. This combination can also help to 
estimate and understand carbon fluxes between topsoil and subsoil [88] as well as between 
soil and the atmosphere [5]. Both objectives play major roles in inventory estimation, SOC 
auditing and decision making in respect to ecosystem services and carbon sequestration 
[1,5,7,12,89].

Conclusion

This study comprises the spatial prediction of soil depth functions for three-dimensional 
modelling of SOC and bulk density. The spatial prediction of the function coefficients enabled 
the calculation of two three-dimensional arrays by solving the depth functions for depths 
from 0 to 50 cm by 5 cm increments. This was used to estimate the SOC stocks in high spatial 
(5 m) and vertical (5 cm) resolution. The main conclusions of this study are:

–– The general trend of SOC as visualised by the boxplots (Fig 2) was exponential. Howev-
er, polynomial depth functions described the soil profiles for SOC with higher accuracy
and the logarithmic functions for BD showed better results in spatial modelling. There-
fore, we conclude that functions resulting in high accuracies based on the soil profile
data may not be the most suitable for spatial modelling, as they may overfit the vertical
trend of SOC content.

–– The 3D RF models correspond best with the 2.5D counterparts (R2 up to 0.96). Thus, RF
is recommended to predict SOC based on exponential depth functions and bulk density
with logarithmic depth functions in high vertical resolution. The 2.5D and 3D predic-
tions of SOC with RF correlated much better, especially when using exponential func-
tions, and lacked accuracy in deeper layers for SOC when modelled based on polyno-
mial functions.

–– Comparisons between conventional 2D and 2.5D predictions at the sampled depth and
the corresponding depth of the three-dimensional predictions showed that MARS is not
suitable for modelling corresponding 2.5D and 3D models, although cross-validation of
the individual models showed similar performance in R2.
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Minor conclusions are: polynomial functions may be an option, when the problem of 
propagated errors and the ability to generalise in the horizontal domain is investigated 
further, however, polynomials of any degree have to be used carefully. To overcome these 
shortcomings, a higher sampling density in the vertical and horizontal domain and in 
combination with other depth functions, such as equal-area splines [90], should be considered, 
since exponential functions are not suitable for soil properties that do not increase or decrease 
continuously.

The 3D approach presented in this study is promising for SOC auditing in various disciplines 
and especially for decision making regarding climate and land use policies. Future work 
should focus on sampling design to cover valley positions outside the established plots at site 
A of BEF-China project. Given the dynamics of SOC stocks, we recommend the analyses of 
time series data and the expansion of the current database for four-dimensional models. 
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Core ideas

–– Multi-depth ECa and gamma-ray spectrometry describe vertical trends of SOC and SM

–– Machine learning models can predict vertical trends of SOC and SM spatially

–– Cubist models of polynomial depth functions provide accurate 3D maps at field scale

Abstract

Soil organic carbon (SOC) and soil moisture (SM) affect the agricultural productivity of soils. 
For sustainable food production, knowledge of the horizontal as well as vertical variability 
of SOC and SM at field scale is crucial. Machine learning models using depth-related data 
from multiple electromagnetic induction (EMI) sensors and a gamma-ray spectrometer can 
provide insights into this variability of SOC and SM. In this work, we applied weighted 
conditioned Latin Hypercube Sampling to calculate 25 soil representative profile locations 
based on geophysical measurements on the surveyed agricultural field, for sampling and 
modelling. Ten additional random profiles were used for independent model validation. 
Soil samples were taken from four equal depth increments of 15 cm each. These were used 
to approximate polynomial and exponential functions to reproduce the vertical trends of 
SOC and SM as soil depth functions. We modelled the function coefficients of the soil depth 
functions spatially with Cubist and random forests with the geophysical measurements as 
environmental covariates. The spatial prediction of the depth functions provides 3D maps 
of the field scale. The main findings are: i) the 3D models of SOC and SM had low errors; 
ii) the polynomial function provided better results than the exponential function, as the
vertical trends of SOC and SM did not decrease uniformly; and iii) the spatial prediction of
SOC and SM with Cubist provided slightly lower error than with random forests. Hence, we
recommend modelling the second-degree polynomial with Cubist for 3D prediction of SOC
and SM at field scale.

Abbreviations

cLHS, conditioned Latin Hypercube Sampling; DSM, digital soil mapping; ECa, apparent 
electrical conductivity; EMI, electromagnetic induction; HDP, horizontally oriented magnetic 
dipole; K, potassium; nRMSE, normalized root mean squared error; RMSE, root mean squared 
error; SOC, soil organic carbon; SM, soil moisture; Th, Thorium; U, uranium; VDP, vertically 
oriented magnetic dipole; wecLHS, weighted conditioned Latin Hypercube Sampling with 
extremes
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Introduction

The lack of knowledge about the resource soil is a major gap in agriculture (Godfray et al., 
2010). Soils play a key role in sustainable agriculture (Bouma, 2014; Bouma and McBratney, 
2013) and, thus, food production. Soil management practices are directly linked to the spatial 
knowledge about soil properties and conditions that are relevant indicators for more efficient 
and effective agriculture. As one of the key soil properties soil organic carbon content (SOC) 
is relevant for soil quality and fertility, as it influences the soil’s nutrient availability and 
structural stability (Dexter et al., 2008). In combination with soil texture, SOC affects the 
soil water holding capacity, plant available water, and soil moisture (SM; Rawls et al., 2003). 
Understanding the spatial as well as vertical variability of SOC and SM is essential for plant 
cultivation, which requires fertile soils and sufficient water. Digital soil mapping (DSM) can 
provide high resolution information for sustainable agricultural management to facilitate food 
production on the field and farm scale through the spatial prediction of physical and chemical 
soil properties (Govers et al., 2017), such as SOC and SM. This facilitates an improvement in 
the decision-making processes for fertilization, irrigation, and liming amongst others, and 
subsequently higher productivity of food and biofuels (McBratney et al., 2005). 

However, soil properties vary in the horizontal as well as in the vertical domain. Hengl 
et al. (2014) and Viscarra Rossel et al. (2015) mapped soil properties in multiple depths, 
which can be interpreted three-dimensionally, but do not actually provide continuous 
3D information (Liu et al., 2016). To fully grasp the continuous character of soil, the third 
dimension should be included into the analysis as continuous entity, e.g. by incorporating 
mathematical functions that represent the vertical distribution of soil properties, so-called 
soil depth functions (Aldana Jague et al., 2016; Minasny et al., 2006; Rentschler et al., 2019; 
Veronesi et al., 2014). The spatial distribution of soil depth functions is related to the spatial 
distribution of environmental covariates given by the soil forming equation (Jenny, 1941; 
McBratney et al., 2003): 

where S is the soil or any soil information we would like to explain, s stands for other 
available soil properties at a location, c is climate, o is organisms, the factor r is the terrain, 
p is the parent material, a is age and n is the spatial position. The function coefficients of 
the soil depth functions can be treated as abstract soil property and, therefore, modelled 
and predicted spatially based on comprehensive sets of environmental covariates delineated 
from digital elevation models representing terrain (Aldana Jague et al., 2016; Minasny et al., 
2006; Rentschler et al., 2019; Veronesi et al., 2014), provided by land cover maps representing 
organisms (Minasny et al., 2006; Veronesi et al., 2014) and gamma-ray sensing data as 

S = f(s, c, o, r, p, a, n)
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indicator for soil-forming minerals (Aldana Jague et al., 2016; Cook et al., 1996; Minasny et al., 
2006). Besides gamma-ray spectrometry, hydrogeophysical methods, such as electromagnetic 
induction (EMI) sensors, provide a widely used base in DSM in general (Binley et al., 2015; 
Cassiani et al., 2012; Martini et al., 2017) as well as in 3D soil mapping specifically (Moghadas 
et al., 2016), complementing field sampling by generating high-resolution spatial geophysical 
covariates. Especially geophysical sensing technologies and measurements are urgently 
needed at the field scale, as the distribution of soil properties (S) in the vertical domain are 
decreasingly linked to terrain (r) and climate (c) variability but more prone to variations in 
weathering, mineralogy (as parts of s and p), biological activities as well as past anthropogenic 
influences (o and a; Jobbágy and Jackson, 2000; Rentschler et al., 2019). 

Apparent electrical conductivity (ECa) from EMI sensors and dose rate, 40K, 238U and 232Th 
contents from gamma-ray spectrometers are covariates that are closely linked to numerous 
soil properties, such as texture, horizonation, bulk density, SOC and SM in case of EMI 
(Cho et al., 2016; Doolittle and Brevik, 2014; Martini et al., 2017) and in case of gamma-
ray spectrometry texture and SOC. Thus, gamma-ray spectrometry and EMI are used either 
individually or combined (Castrignanò et al., 2012) as a proxy to the mineralogy of the parent 
material and other soil properties developed or inherited from the parent material (Cook et 
al., 1996; Jenny, 1941; McBratney et al., 2003). The geophysical measurements are interpolated 
with geostatistical methods like kriging (Krige, 1951) to obtain spatial information of ECa, 

40K, 
238U and 232Th covering the whole field with high spatial resolution (Abdu et al., 2008; Schmidt 
et al., 2014). The interpolations of the geophysical measurements constitute the covariate 
space of the agricultural field, which is utilised in crucial modules of DSM: 

–– The spatial data of 40K, 238U and 232Th and multi-depth ECa are used to calculate the lo-
cations of a representative sampling scheme for soil sampling. The aim is to fully cover
potential soil variability that influences the modelled soil property and that is found on
the field at the time of measurement. For that, many approaches use conditioned Latin
Hypercube Sampling (cLHS) or extensions like weighted extreme cLHS (Minasny and
McBratney, 2006; Schmidt et al., 2014). The cLHS is a stratified random sampling design
that provides an optimal stratification of a covariate space with a reduced number of
spatially distinct sample sites (Minasny and McBratney, 2006).

–– The sampled point wise soil data, i.e. SOC and SM in this work, is linked to the geophys-
ical measurements at the soil profile locations with linear or non-linear machine learn-
ing models (Aldana Jague et al., 2016; Rentschler et al., 2019; Schmidt et al., 2014). The
dependent variable of the models are the samples measured at the locations introduced
above and the independent variables are the interpolated geophysical measurements at
these locations.
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–– The model trained with sampled soil data and geophysical measurements is used to
make predictions to the locations of the covariate space where no soil samples were
taken.

–– The model predictions are validated with additional soil samples. Ideally, the sampling
scheme used for validation is independent from the scheme used for model training,
which can be achieved with randomly distributed samples (Brus et al., 2011; Steyerberg
and Harrell, 2016).

Based on the modules of DSM described above and the potential to measure 3D soil 
properties provided by geophysical measurements (other available soil properties s in the 
soil forming equation), we assume that EMI and gamma-ray spectroscopy are highly suitable 
for the spatial prediction of soil depth functions, as the combination of multi-coil EMI and 
gamma-ray spectrometry provides multiple penetration depths and a different sensitivity to 
soil parameters (Dierke and Werban, 2013; McNeill, 1980a, 1980b). To our knowledge, there 
are no studies on spatial prediction of soil depth functions with EMI and gamma-ray sensing 
data as environmental covariates. 

The major objective of this study was the prediction of SOC and SM in 3D using soil depth 
functions based on EMI data from sensors with 12 different penetration depths and gamma-
ray spectrometry by capturing the response of the parent material and overlaying soil. For 
model training, we used Cubist and random forests, two machine learning methods often 
used in DSM. The hypothesis is that for 3D modelling of SOC and SM, data from EMI and 
gamma-ray spectrometry will achieve low errors throughout the sampled depth increments, 
due to the different depth penetration of the sensors. 

Material and methods

Study site

The study site is an agricultural field of 58 ha about 70 km north of Leipzig, Saxony, Germany 
(Fig. 1). The field is located on the Elbe flood plain and bordered by the creeks Altes Flieth and 
Fließgraben. There is no visible terrain variation in the field. Present soil types are Gleysols 
and Gleyic Cambisols consisting of alluvial loam (loam and clay) over Holocene sediments of 
fluvial sand (LAGB, 2014). At the time of sampling in August 2017, the cultivated wheat had 
been harvested, and the field was bare. 

Methodological overview 

The workflow consisted of seven individual steps (Fig. 2). First, the geophysical measurements 
were taken with EMI and gamma-ray spectrometry and, subsequently, interpolated 
geostatistically with ordinary kriging (Krige, 1951) to receive spatial predictions of the 
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environmental covariates. These covariates were used to calculate representative sampling 
locations with an extension of conditioned Latin Hypercube Sampling (cLHS; Minasny and 
McBratney, 2006) and served as independent variables for the soil depth function modelling. 
In the next step these models were applied for spatial prediction of the soil depth functions 
with the independent variables and validated independently in the final step. The following 
subsections describe this workflow in detail. 

Fig. 1. Location of the field Wesen near Selbitz, Saxony-Anhalt, Germany, sampling scheme of the 
geophysical measurements with EMI and gamma-ray spectrometry, and sampled soil profiles (circle 
– wecLHS samples for calibration, cross – random samples for validation). The signal of the CMD-Ex-
plorer with 4.49 m intercoil spacing and vertical dipole orientation (VDP) was noisy due to a grid gas
pipe and, therefore, measurements of all sensors were omitted in the marked area.

Geophysical measurements and interpolation

The geophysical measurements were recorded with two electromagnetic induction (EMI) 
sensors (CMD-Explorer and CMD-Mini-Explorer, both GF Instruments, CZ) and a gamma-
ray spectrometer (GMS CAR, GF Instruments, CZ) in August 2016. EMI sensors measure the 
apparent electric conductivity (ECa in mS m-1). The penetration depth of the magnetic field 
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is mainly controlled by the intercoil spacing and the orientation of the dipoles as well as the 
applied frequency. The penetration depth and footprint of the sensor data increases with 
increasing intercoil spacing. Vertically oriented magnetic dipoles (VDP/coil axis horizontal 
coplanar - HCP) provide a higher depth penetration than horizontally oriented magnetic 
dipoles (HDP/coil axis vertical coplanar – VCP) while taking into account the different 
cumulative sensitivity functions of both orientations (Callegary et al., 2012; Martini et al., 
2017; McNeill, 1980b; von Hebel et al., 2019). The CMD-Explorer and the CMD-Mini-Explorer 
enable simultaneous multi depth-exploration of ECa with either VDP or HDP. The instruments 
have one transmitter and three receiver coils with different intercoil spacings covering six 
effective penetration depths, which is defined by the manufacturer (GF Instruments) as the 
depth above which 70 % of the signal comes from (Table 1).This multi-sensor setup measuring 
ECa and penetration depths of up to 6.7 m enables to detect textural patterns of the spatially 
variable subsurface sediments of the Elbe floodplain indirectly (Doolittle and Brevik, 2014). 
This is important for SM modelling to account for subsurface sediment structures, as gravel 
lenses with high permeability can drain and clay lenses can retain percolate water or facilitate 
capillary water rise (Abdu et al., 2008). 

The sledge-mounted devices (height of CMD-Explorer 80  cm, height of CMD-Mini-
Explorer 10 cm) were towed by a four-wheel vehicle at less than 10 km h-1, crossing the field 
in multiple parallel (track distance 27 m) and a few crossed transects. By using overlapping 
measurements collected at different time from crossing the field in the end, drifts in the data 
were assessed and a linear drift function was applied to correct the data (Martini et al., 2017). 
Before interpolation these quality control lines as well as outliers related to a gas pipe line 
were removed (Fig. 1). Within the data set negative values of ECa occurred due to the custom 
calibration of the instrument (von Hebel et al., 2019). We corrected the measurements with an 
offset of 3.44 mS m-1 (CMD-Mini-Explorer VDP 0.32 m), 4.86 mS m-1 (CMD-Mini-Explorer HDP 
0.32 m) and 0.21 mS m-1 (CMD-Mini-Explorer HDP 0.71 cm) to avoid confusion with these 
values and to make use of the containing information on spatial variability. Smoothing of 
the data wasn’t necessary due to low noise conditions. All EMI sensors captured 5 records s-1 

in any dipole orientation. We refrained from inverting EMI data, since the reliability of the 
required calibration procedure is limited due to a number of fundamental issues which are 
not solved yet (Martini et al., 2017). 

The bulk (~90 %) of aboveground measured gamma radiation is emitted in the top 30 to 
50 cm of soil (Cook et al., 1996). We used a gamma-ray spectrometer with a 4 l NaI(Tl)-crystal 
and automatic peak-stabilization to measure the concentration of potassium (40K), uranium 
(238U) and thorium (232Th). The device has 512 channels with an energy range from 100 keV 
to 3 MeV. Measurements were captured every 5 seconds. 40K, 238U and 232Th were measured 
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as counts per second. The concentration of 40K (in %) and 238U and 232Th (both in ppm) was 
calculated corresponding to the decay rate at specific energy levels. The concentration of 40K, 
238U and 232Th was used to calculate the dose rate (Gy h-1; IAEA, 2003). 

The geophysical measurements served as a basis for the sampling design (Fig. 1) and were 
interpolated to a grid cell size of 5 m with ordinary kriging (Krige, 1951) using individual 
exponential semi-variogram functions for each data set in the gstat package version 1.1‑5 
(Pebesma, 2004) in R version  3.4.3 (R Development Core Team, 2017). Beforehand, 
measurements within 1 m range were averaged. Noisy measurements along a straight line 
were detected for the CMD-Explorer with the higher depth penetrations, caused by an 
underground grid gas pipe (Fig. 1). For reasons of continuity, all measurements from the EMI-
sensors and the gamma-ray spectrometer in this area were excluded from further processing. 
This crucial step is to be evaluated carefully since all consecutive steps strongly depend on 
accurate environmental covariates. Therefore, error of the kriging predictions was assessed 
with a 10-fold cross-validation, which is an out-of-sample testing method to assess the ability 
of the model to generalize to independent data subsets. For that the dataset is partitioned in 
10 folds of nearly equal size, where 9 folds are used to train a model and tested with the 10th 
fold. This is done 10 times to test all folds and the quality measure is the average of all models. 
For the final model, all folds are used.

Soil sampling

For the estimation of the number of soil profiles to sample, the areas under curve for the 
empirical cumulative distribution functions were calculated for the proposed sampling set 
sizes of n=10, 20, 25, 30, 35 and 40 and the geophysical measurements with the MESS package 
version 0.5.0 (Ekstrøm, 2018) in R. The mean of the differences between the areas under curve 
indicated the error for each sample set size and the sample set size with the lowest error is 
chosen (Ramirez-Lopez et al., 2014; Schmidt et al., 2014). In this case, the optimal sample 
set size with the lowest error was 35. However, due to costs and feasibility constraints we 
agreed on a sample set size of 25 for the representative sampling design as trade-off between 
feasibility and a slight increase in model error. 

Spatial soil modelling requires specific sampling schemes or designs for sampling and 
validation (Brus et al., 2011; Schmidt et al., 2014). Aim of a sampling design is to cover the 
full range of potential driving factors that influence the modelled soil property and that 
are found on the field at the time of measurement while reducing soil sampling effort and 
analytical costs. Therefore, we calculated the locations of the soil profiles to sample for 
model training with a weighted conditioned Latin Hypercube Sampling with extreme values 
(wecLHS; Schmidt et al., 2014) based on the geophysical covariates with the lowest error in 
cross-validation of each sensor, to obtain representative sampling locations. The wecLHS 
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extends the cLHS (Minasny and McBratney, 2006) by including samples from the extrema 
of the used covariate space to cover the full range of data. Further, a weighting scheme 
according to the explained variation (R2) of the kriging predictions is implemented to account 
for noise in the interpolation (Schmidt et al., 2014). The wecLHS design was calculated with 
150,000 iterations. The settings were a temperature decrease of 0.95, an initial temperature of 
1, optimization every 10 steps and an initial Metropolis value of 1. 

Additionally, we sampled 10 fully randomly distributed profile locations for independent 
model validation. We chose a fully random sampling design for validation, since wecLHS is a 
stratified random sampling design and for independent validation a non-stratified sampling 
strategy is recommended. Further, no assumptions regarding the standard error of the 
estimated quality measures are required (Brus et al., 2011; Steyerberg and Harrell, 2016). The 
locations of the sampled profiles are displayed in Fig 1. 

The soil profiles were sampled from four equal depth increments to 60 cm depth (0‑15, 
15‑30, 30‑45, 45‑60 cm) with a hand auger on two days with the same weather conditions in 
August 2017 again after harvest under similar field conditions as during sensing. 60 cm is the 
depth above which about 80 % of the roots of many agricultural crops are found (Fan et al., 
2016). Samples were taken for each depth increment as mixed subsamples from two corners 
and the centre of 1 m2 (Schmidt et al., 2014), resulting in 100 samples for the training set and 
40 samples for the validation set. The positions of the profiles were located with a differential 
GPS (Leica TPS1200+, Leica Geosystems, CH). 

Laboratory analysis

For SOC determination, the samples were dried at 40 °C for 24 h, sieved (<2 mm), ground and 
root fragments were removed. Total carbon was determined with dry combustion using an 
ELTRA CHS-580A Helios analyser (ELTRA GmbH, GER). Although LAGB LSA (2014) states 
that soils in the flood plains of the Elbe river are mostly free of carbonates, pH of the samples 
ranged from 5.2 to 7.2. Consequently, inorganic carbon was determined gravimetrically 
with 10 % HCl solution. Then, SOC was determined as difference between total carbon and 
inorganic carbon. 

SM was measured gravimetrically with drying at 90 °C for 24 h. A summary of the training 
and validation sets for SOC and SM is shown in Fig. 3. Both, training and validation sets were 
similar. The rather small differences are due to the small sampling set size of the validation 
set and its sensitivity to extreme values because of its random and non-stratifying nature. 
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Model training, prediction and validation

Soil depth functions and 3D predictions

For the 3D modelling of SOC and SM we tested a 2nd degree polynomial (equation [1]; 
Aldana Jague et al., 2016) and an exponential function (equation [2]; Rentschler et al., 2019). 

										   [1]
										  [2]

where c0 is the intercept with the y-axis, thus the SOC and SM at the surface, and c1 and c2 
are dimensionless coefficients. 

The functions coefficients c0, c1 and c2 were modelled and predicted for the whole study 
site based on the geophysical data of the EMI sensor and gamma-ray spectrometer with 
Cubist and random forests. After modelling and spatial prediction of the coefficients of the 
soil depth functions, the respective function can be solved at every grid location of the study 
site and SOC and SM can be calculated with any vertical resolution (Aldana Jague et al., 2016; 
Liu et al., 2016; Veronesi et al., 2014). However, vertical resolution is limited by the vertical 
sampling of each profile that reflects the vertical variation within each profile. In this work, 
the soil depth functions were solved from 0 to 60 cm with a vertical resolution of 5 cm. The 
main advantage of this approach is that solving the soil depth functions provides data points 
that represent a three-dimensional entity (voxels) of the response variables instead of two-
dimensional pixels. The voxels were stored in an array with the dimensions of the study area 
in the horizontal domain (Rentschler et al., 2019). A workflow diagram is given in Fig. 2. 

Fig. 2. Workflow diagram illustrating the individual working steps of this study.

f(x) = c0 + c1x+ c2x
2

f(x) = expc1+c2x
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Supervised machine learning

In many applications in DSM supervised machine learning is used to train regression 
models with numeric values, such as the coefficients of soil depth functions. In such models, 
the function coefficients at each sampling location are the dependent variable (soil property S 
in the soil forming equation) and the geophysical measurements compose the covariate space 
of independent variables, i.e. ECa in the measured depth intervals, 40K, 238U and 232Th, at the 
location of each sample for regression:

Subsequently, the model can predict the dependent variable for each grid location at the 
field, since the independent variables were measured and interpolated onto the whole study 
area. Common supervised machine learning methods in DSM are Cubist and random forests.

Cubist uses a robust system called M5 model tree, which was established by Quinlan (1992). 
It applies a recursive partitioning of data to build a piecewise linear model as a decision tree, 
where the terminal nodes are linear models. When growing the tree, intra-subset variation 
is minimized at each split. A leaf of such a tree applied on continuous data contains a linear 
model connecting the values of the training cases to their attribute values. The procedure 
is based on building and applying rules. The rules generate subsets of the data according 
to similar characteristics of predictor and response variables. The rules are structured as: 
if [condition is true], then [regress], else [apply next rule], comprising single or multiple 
predictor variables. With the rules that fulfil the conditions, soil properties are predicted by 
ordinary least-squares regression. If the rule does not apply, a new rule is processed for the 
next node of the tree within an iterative process. These rulesets are appropriate for model 
interpretation (Quinlan, 1992, 1993). 

Random forests were developed by Breiman (2001) as an ensemble of classification and 
regression trees (Breiman et al., 1984). Binary splits are used for a single decision tree to 
homogenize the predictor variables according to the dependent variable, thus minimizing the 
node impurity. Random forests use a bootstrap approach, where random predictor variables 
are chosen at each split of a tree. The final regression model results from averaging all decision 
tree outputs (Breiman, 2001). Random forests are robust against overfitting and interpretable 
with the feature importance calculated from its randomly permutated trees (Breiman, 2001). 
However, this is beyond the scope of this study as it requires more detailed analysis of the 
depth functions as dependent variables.

The tuning parameters for the machine learning methods used were the number of 
subsequently adjusted trees committing to the final decision tree (committees) and the number 
of neighbouring samples from the training set to adjust the model prediction (neighbours) for 
Cubist. The number of randomly selected covariates at each split (mtry) was used for tuning 

S = f(ECa,
40K, 238U, 232Th)
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of random forests. The number of trees (ntree) and the node size of random forests were set 
to default as this is not necessary when a large number of trees is computational manageable 
(Probst and Boulesteix, 2018). To find the best tuning parameters for the models, a grid search 
(Schmidt et al., 2008) with a 10 times repeated 10-fold cross validation was applied. The final 
models were calibrated with the tuning parameters of the models with the lowest RMSE. 

Fig. 3. Summary of the training and validation sets for soil organic C (SOC) and soil moisture (SM) as 
boxplots and the respective polynomial soil depth functions. The boxplots show the variation of the 
samples within the sampled depth increments. Training and validation sets have a similar range at 
each sampled depth increment and the validation set is suitable for model evaluation. The polynomial 
soil depth functions show the vertical distribution at the 25 profiles of the training set

Model validation

The 3D predictions are validated independently with the coefficient of determination (R2; 
equation  [3]) as measure of correlation between the observed and predicted values, Lin’s 
concordance correlation coefficient (CCC; equation [4]), the root mean squared error (RMSE; 
equation [5]) and the normalized root mean squared error (nRMSE; equation [6]) as measures 
of error with the 10 random profiles of 4 samples each taken at 0‑15, 15‑30, 30‑45, 45‑60 cm. 
The CCC is a measure of concordance of the model predictions and the measured values 
on the 1:1 line from the origin. The RMSE is a measure of error, which allows to compare 
models with observed values of the same magnitude. Since the response of SOC and SM has 
observed values of different range, the nRMSE is required to compare the models for each 
depth increment. 
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The equations for R2, the CCC, the RMSE and nRMSE are:

										  [3]

										 [4]

[5]

										    [6]

where y and ŷ are the observed and predicted values and µy and µŷ denote the means for the 
observed and predicted values, respectively; ρ is the correlation coefficient (Pearson’s r), σy 
and σŷ are the corresponding variances; ymax is the maximum of the observed values and ymin 
is the minimum of the observed values. 

Results and Discussion

Geophysical measurements and interpolation

The results of the 10-fold cross-validation for the geostatistical interpolation showed a 
high coefficient of determination (R2) between the observed and the predicted values for 
all EMI sensors (R2>0.96) and low errors (nRMSE≤0.08). The predictions for the CMD-Mini-
Explorer with intercoil spacings of 0.71 and 1.18 m and vertically oriented magnetic dipoles 
had the highest coefficient of determination (R2=0.99 and nRMSE=0.01) and the predictions 
for the CMD-Explorer with an intercoil spacing of 4.49 m and horizontally oriented dipole 
had the lowest coefficient of determination (R2=0.96 and nRMSE=0.04). 

The cross-validation results of the gamma-ray spectrometer showed coefficients of 
determination ranging from 0.75 (238U) up to 0.92 (dose rate). The lower R2 compared to EMI 
sensor interpolation is to be expected due to the noise prone passive nature of statistical 
counting gamma decays. The errors of the interpolation range from 0.05 (dose rate) to 0.07 
(238U). All results of the 10-fold cross-validation are shown in Table 2. 

The spatial variation of the measured ECa varies between the sensors and sensor orientation. 
The highest values were measured with the CMD-Mini-Explorer VDP (0.71m; Table 2, Fig. 4b) 
and the lowest values were measured with the CMD-Mini-Explorer HDP (0.32m; Fig. 4d). 
The measures with the CMD-Mini-Explorer in the same orientation (VDP and HDP) showed 
considerable changes in ECa (Fig. 4a-c and d-f) with increasing intercoil spacing, while the 
measurements with CMD-Explorer were more alike (Fig. 4g-l). However, we used all EMI 
measures as independent variables, since the similar depths of investigation may contain 
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RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2
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varying information while using different coil orientation resulting in different shapes of 
their sensitivity functions. The interpolations of 40K, 232Th, 238U and dose rate (Fig. 5) showed 
different spatial trends with some shared local minima in the centre and the South-East and a 
shared local maximum in the West of the field. All results of the interpolations are visualised 
in Figs. 4 and 5. 

Given the low error (nRMSE≤8 %) of the interpolation for the EMI data and for gamma-ray 
measurements, the environmental covariates interpolated with ordinary kriging represented 
the spatial distribution of ECa at multiple depths, 232Th, 238U and dose rate adequately. Thus, 
they were suitable to calculate a wecLHS sampling design as well as for modelling and 
mapping of SOC and SM in the horizontal and vertical domain. The covariates with low 
cross-validation error and high coverage of the covariate space used for wecLHS were dose 
rate for the gamma-ray spectrometer and CMD-Mini-Explorer with VDP (0.32 m intercoil 
spacing), CMD-Mini-Explorer with HDP (0.32 m) and CMD-Explorer with VDP (4.49 m) for 
the EMI sensors. 

Soil depth functions

The fitted soil depth functions showed the vertical trend of SOC and SM at the profile 
locations (Fig. 3). For both polynomial and exponential functions at each profile, the R2 and 
RMSE values of the soil depth functions were calculated. The soil depth function with the 
highest R2 for SOC and SM was the polynomial function (eq. 1) with a mean R2 of 0.98 for SOC 
and 0.92 for SM (RMSE=0.14 and 0.00). The exponential soil depth function had lower mean 
R2 and a higher error for both SOC and SM. A summary of the evaluation of the soil depth 
functions is shown in Table 3. 

The minimum values in R2 and the high standard deviation of the soil depth functions 
for SM showed that the soil depth functions could not depict the vertical trend in some soil 
profiles (Table 3). This is the case for the profiles 2 and 10, where the SM was 0.22, 0.20, 0.23 
and 0.21 and 0.25, 0.21, 0.22 and 0.24, respectively. These profiles had a local maximum or 
minimum between 15 and 45 cm that could not be modelled with the exponential function, 
which cannot be explained with the geophysical measurements or additional knowledge 
about the field. In both cases, the polynomial function of second degree had a lower error 
than for all other profiles. To solve this, other functions are required that can reproduce 
vertical distributions with local minima and maxima (minimax; Minasny et al., 2016). 
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Fig. 4. Results of the interpolation with ordinary kriging for ECa measured with CMD-Mini-Explorer 
VDP (a-c), CMD-Mini-Explorer HDP (d-f), CMD-Explorer VDP (g-i) and CMD-Explorer HDP (j-l) in 
order of increasing effective depth range. 
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Fig. 5. Results of the interpolation with ordinary kriging for 40K (a), 232Th (b), 238U (c) and dose rate (d). 

Fig. 6. 3D predictions of SOC and SM with polynomial depth function and Cubist (see supplements 1 
to 4 for detailed animated cross sections).

3D predictions

The independent validation with the validation set of 10 randomly located profiles with the 
same sampled depth increments showed a high overall explained variation and low errors 
for both polynomial and exponential functions and for both Cubist and random forests. The 
R2 of Cubist models for SOC and for SM was 0.86 and 0.88 with the polynomial function and 
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0.86 and 0.87 with the exponential function (Table 4). Random forest models showed a similar 
R2 except for SM with the polynomial function (R2=0.84). The CCC of all Cubist models was 
slightly higher than the CCC of the random forests models. Cubist models had a CCC of 
0.91 for SOC and 0.91 for SM with polynomial function. The CCC for SM with exponential 
function was slightly higher (CCC=0.93). The error of all four models for SM was identical 
(RMSE=0.02). For SOC, the error of the Cubist and random forests models with polynomial 
function was about 0.02-0.03 % lower than the error of models with exponential function. The 
difference in RMSE between Cubist and random forests was less than 4 % (Table 4). 

Because of the higher R2 and CCC and the lower error of the random forest model with 
the polynomial function this was chosen for SOC modelling. Cubist in combination with the 
polynomial function was chosen for the final SM predictions. However, it is worth noting 
that the differences in error as well as R2 and CCC of all models were rather small. 

Comparing the model coefficient of determination, CCC and RMSE by individual depth 
increment showed a similar pattern. Cubist models with polynomial function for SOC had 
a higher R2 and CCC and a lower RMSE than Cubist with exponential function and random 
forests with both polynomial and exponential functions. For SM, the differentiation by R2 was 
not clear as the R2 varied between the used machine learning methods. However, the Cubist 
models with polynomial functions also showed the lowest RMSE for soil depth functions and 
modelled depth of the soil (Table 5). 

More important is that the nRMSE of Cubist and random forests models with the 
polynomial function did vary least with depth in absolute values. This showed that the model 
could predict SOC and SM with low error throughout the sampled interval of the soil profile 
(Table 5). Both Cubist and random forests with the exponential function for SOC and SM had 
high errors (nRMSE) in the depth increment ranging from 15 to 30 cm. Therefore, we conclude 
that the exponential function could not depict the vertical trend of SOC and to a lesser extent 
of SM within the sampled profile. We ascribe this to the 30 cm deep plough horizon, which 
needs to be accounted for with a less uniformly decreasing soil depth function. The flexibility 
of polynomial functions with third degree or higher is potentially capable of depicting local 
variations in the soil better than exponential functions. We recommend to be investigated in 
more detail. 

Further, the R2 of the SOC models decreased from around 0.80 to 0.50 on average with 
increasing depth and increased from 0.76 to 0.88 with increasing depth for SM. Lin’s CCC 
showed a similar pattern. These differences in explained variability indicate differences in 
explanatory power of the geophysical measurements for SOC and SM modelling for the 
depth intervals used in this study. On the one hand geophysical measurements and especially 
EMI measurements are influenced by SM, whereas SOC content is related indirectly through 
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SM content and influenced by other soil and environmental processes. This may not be 
covered by EMI and gamma-ray sensors, where covariates of the latter have little influence 
on depths >30 cm. On the other hand, this may refer to the decreasing range of SOC content 
and the increasing range of SM (Fig. 3). The lower SOC content variability in depth may not 
be represented by the covariates. Therefore, these complex interactions need be investigated 
in more detail to make more precise conclusions about the use of geophysical measurements 
as covariates for 3D modelling with soil depth functions. The final predictions are sketched 
in Fig. 6 and shown in detail in the supplements 1 to 4. 

Analysing the interaction of spatial prediction of SOC and SM and the geophysical 
covariates, one can see that the highest SOC values were located in areas with high ECa 

values (compare Fig. 1). Figure 5 shows topsoil SOC contents of up to 6% in the western and 
central part of the site (lower left side) and ~3 % in the south (lower right side). This range 
of SOC content at this particular agricultural field is similar to the range of SOC in most 
agricultural fields in central Europe (Tóth et al., 2013). A similar pattern can be seen in the 
SM prediction. In the western part SM is distributed uniformly with 20 to 25 % in the whole 
profile and in the South, there is much less SM in the deeper subsoil (5 %) than in the topsoil 
(15 to 20 %). These patterns can also be found in the sampled soil profiles (Fig. 3). 

In the central part of the field, pillar-like patterns of higher SOC content values were visible. 
These pillars are well described and linked to old meanders of the rivulet Fließgraben or the 
river Elbe. In these areas, a farmer can expect better growing conditions for field crops, as SOC 
affects nutrient availability and soil moisture retention. Thus, these areas need less additional 
fertilizer than the areas with less SOC and lower ECa. Employing the proposed framework 
can therefore contribute to a sustainable agricultural approach, e.g. precision agriculture that 
applies fertilizer according to soil requirements. 3D mapping is highly suitable for informing 
farmers as sampling based on wecLHS is fast (only few profiles are required) and the model 
development based on the geophysical measurements is computationally efficient, relatively 
fast compared to conventional soil mapping as well as potentially extendable to other soil 
properties such as pH, cation exchange capacity and texture (Cassiani et al., 2012; Doolittle 
and Brevik, 2014). 

Conclusion

In this case study, we predicted SOC and SM in the vertical as well as horizontal domain, i.e. 
in 3D using geophysical covariates derived from EMI and gamma-ray sensors with different 
intercoil spacings and, thus, different penetration depths and footprints of the signal. A 
weighted conditioned Latin Hypercube Sampling design was applied for calculation of the 
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locations of the calibration samples. We hypothesized that the used sensor setup will lead to 
predictions of SOC and SM with high an explained variation throughout the soil profile as 
well as in the spatial domain. 

We showed that coefficient of determination and model error of the polynomial and 
exponential functions modelled and predicted with Cubist and random forests were stable 
over all depth increments. Thus, the data from two EMI sensors with depth dependent 
sensitivity and gamma-ray spectrometry are well suited for the 3D prediction of SOC and SM 
despite the reduced number of samples. In general, the differences between the models’ error 
were rather small. The differences between the used machine learning methods are smaller 
compared to the differences between the used soil depth functions. This demonstrates the 
suitability of the sampling design approach for modelling with Cubist and random forests. 
Therefore, we conclude that the choice between soil depth functions is more important than 
the choice of the machine learning method for spatial prediction, if both methods are well 
established in DSM. The flexible polynomial function is capable of depicting local variation, 
which is not limited to plough horizons, but also comprises clay enriched horizons, pH drops 
with decreases in CaCO3 content and others. We recommend the combination of second-
degree polynomial soil depth function with Cubist for 3D mapping of SOC and SM with 
two EMI sensors and gamma-ray spectrometry covering a wide range of environmental 
covariates representing the horizontal and vertical domain of SOC and SM variation on 
the field scale. Within the scope of precision agriculture, this approach is suitable for SOC 
and SM estimation in similar environmental conditions as it offers a spatial evaluation that 
incorporates the whole soil continuum. Thus, the 3D mapping of SOC and SM with high 
spatial and vertical resolution can help to optimise sustainable management strategies on the 
field scale in respect to fertilization, irrigation, and liming and subsequently to increase food 
and biofuel productivity. 

For future investigation and to simplify the approach for field application, the contribution 
and importance of the individual sensors and sensor settings are of great interest. Since both 
orientations of the CMD-Explorer showed similar interpolation results, these measurements 
may be strongly cross-correlated and redundant. This can be evaluated and solved with the 
feature importance calculated within random forests, but requires comprehensive and complex 
analysis of the interaction of the modelled depth function coefficients and the geophysical 
measurements, e.g. by using different slices of the target variable related to a specific depth 
increment compared to the depth sensitivity of the sensors. Further, the extension of the 
modelled depth may be of interest, since plants can uptake water from greater depth. This 
depends on the crop and also extends to forestry. For that purpose other soil properties, 
such as texture, water holding capacity, permeability, horizontation, or the extension of 
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the modelled depth to the depth of bedrock may be of interest. More complex soil depth 
functions such as polynomials of higher degree may be beneficial, when a trade-off between 
soil sampling costs and model benefits is found. In our study we successfully integrated depth 
dependent ECa data, however, we refrained from inversion of the data because we did not 
want to introduce additional uncertainties and ambiguities into the data analysis. As recently 
shown by von Hebel et al. (2019) an enhanced processing chain can provide accurate and 
quantitative EMI data. This opens interesting possibilities to extend the presented approach 
by depth-true EC values. 

Supplemental Material

The supplemental material includes animations of the 3D mapping of SOC and SM in 
vertical cross sections. The cross sections are provided in both north and east dimension to 
show the vertical variation within cross sections 10 m apart. 

Data Availability

Data sets from this study are available through the PANGAEA open access repository 
under https://doi.org/10.1594/PANGAEA.910272 (Pohle and Werban, 2019). 
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Table 1. Intercoil spacings and effective penetration depth for vertical and horizontal coil orientation 
for the used EMI sensors CMD-Mini-Explorer and CMD-Explorer.

EMI sensor intercoil spacing (m) effective penetration depth (m)

VDP† HDP†

0.32 0.50 0.25

CMD-Mini-Explorer 0.71 1.00 0.50

1.18 1.80 0.90

1.48 2.20 1.10

CMD-Explorer 2.82 4.20 2.10

4.49 6.70 3.30

†VDP: vertically oriented dipole; HDP: horizontally oriented dipole
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Table 2. Results of the 10-fold cross-validation of the interpolation with ordinary kriging (RMSE units 
are mS m-1 for EMI sensors, % for 40K, ppm for 232Th and 238U concentrations and Gy h‑1 for dose rate). 
The sensors and sensor setups we used for the wecLHS sampling design are highlighted in bold. 

Sensor setting (coil distance) effective depth 
range (m) Min Max R2 RMSE nRMSE

CMD-Mini-Explorer VDP (0.32m) 0.5 0.00 45.63 0.98 1.07 0.02

CMD-Mini-Explorer VDP (0.71m) 1.0 13.47 68.83 0.99 0.69 0.01

CMD-Mini-Explorer VDP (1.18m) 1.8 5.92 62.75 0.99 0.82 0.01

CMD-Mini-Explorer HDP (0.32m) 0.25 0.00 27,65 0.98 1.05 0.03

CMD-Mini-Explorer HDP (0.71m) 0.5 0.00 40.25 0.98 1.03 0.02

CMD-Mini-Explorer HDP (1.18m) 0.9 3.69 50.69 0.98 0.79 0.02

CMD-Explorer VDP (1.48m) 2.2 5.89 41.95 0.97 1.65 0.04

CMD-Explorer VDP (2.82m) 4.2 7.26 47.33 0.98 2.00 0.05

CMD-Explorer VDP (4.49m) 6.7 8.50 48.13 0.98 1.79 0.04

CMD-Explorer HDP (1.48m) 1.1 5.31 26.10 0.97 1.91 0.08

CMD-Explorer HDP (2.82m) 2.1 4.94 34.91 0.97 1.72 0.05

CMD-Explorer HDP (4.49m) 3.3 6.61 39.80 0.96 1.29 0.04
40K - 0.60 1.20 0.75 0.05 0.08
232Th - 2.36 9.66 0.80 0.48 0.06
238U - 0.91 3.52 0.75 0.24 0.07

Dose rate - 19.24 51.87 0.92 1.50 0.05

†VDP: vertically oriented dipole; HDP: horizontally oriented dipole

Table 3. Summary of the model validation results with the coefficient of determination (R2) and root 
mean squared error (RMSE in %) of the polynomial and exponential depth functions for SOC and SM.

Function Min Median Mean Max SD

SOC

R²
polynomial 0.93 0.98 0.98 1.00 0.02

exponential 0.83 0.95 0.94 1.00 0.04

RMSE
polynomial 0.02 0.15 0.14 0.29 0.08

exponential 0.08 0.27 0.27 0.51 0.11

SM

R²
polynomial 0.13 0.99 0.92 1.00 0.18

exponential 0.00 0.88 0.77 0.99 0.26

RMSE
polynomial 0.00 0.00 0.00 0.01 0.00

exponential 0.00 0.01 0.01 0.02 0.01

†Min: minimum value; Max: maximum value; SD: standard deviation
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Table 4. Results of the independent model validation with the explained variation as coefficient of de-
termination (R2), Lin’s concordance correlation coefficient (CCC) and root mean squared error (RMSE 
in %) of the polynomial and exponential soil depth functions for SOC and SM.

Cubist Random forests

Function R² CCC RMSE R² CCC RMSE

SOC
polynomial 0.86 0.91 0.56 0.89 0.92 0.54

exponential 0.87 0.91 0.58 0.86 0.90 0.61

SM
polynomial 0.88 0.91 0.02 0.84 0.90 0.02

exponential 0.87 0.93 0.02 0.86 0.92 0.02

Table 5. Results of the independent model validation for each individual sampled depth (as mid-point 
of the depth increment) with the coefficient of determination (R2), Lin’s concordance correlation coef-
ficient (CCC), root mean squared error (RMSE) and the normalised root mean squared error (nRMSE) 
for SOC and SM. For SOC, Cubist with polynomial functions had the lowest error as well as for SM.

SOC SM
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7.5cm 0.76 0.76 0.83 0.82 0.77 0.83 0.70 0.75

22.5cm 0.64 0.80 0.76 0.77 0.84 0.92 0.87 0.89

37.5cm 0.49 0.76 0.63 0.64 0.89 0.90 0.83 0.87

52.5cm 0.27 0.65 0.55 0.51 0.89 0.86 0.85 0.90

CCC

7.5cm 0.84 0.83 0.86 0.88 0.85 0.83 0.85 0.83

22.5cm 0.64 0.55 0.65 0.52 0.89 0.92 0.90 0.86

37.5cm 0.53 0.62 0.60 0.55 0.89 0.94 0.89 0.92

52.5cm 0.47 0.72 0.65 0.62 0.92 0.93 0.90 0.94

RMSE (%)

7.5cm 0.38 0.39 0.38 0.35 0.02 0.02 0.02 0.02

22.5cm 0.58 0.77 0.61 0.81 0.01 0.02 0.01 0.02

37.5cm 0.71 0.67 0.67 0.73 0.02 0.02 0.02 0.02

52.5cm 0.54 0.38 0.47 0.43 0.03 0.03 0.03 0.03

nRMSE

7.5cm 0.17 0.17 0.16 0.15 0.14 0.14 0.16 0.15

22.5cm 0.23 0.31 0.25 0.33 0.15 0.15 0.14 0.21

37.5cm 0.22 0.21 0.21 0.23 0.12 0.10 0.12 0.12

52.5cm 0.14 0.19 0.12 0.22 0.06 0.06 0.06 0.05
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Abstract 

Understanding the spatial distribution of soil organic carbon (SOC) content over different 
climatic regions will enhance our knowledge of carbon gains and losses due to climatic 
change. However, little is known about the SOC content in the contrasting arid and sub-
humid regions of Iran whose complex SOC-landscape relationships pose a challenge to spatial 
analysis. Machine learning (ML) models with a digital soil-mapping framework can solve such 
complex relationships. Current research focusses on ensemble ML models to increase the 
accuracy of prediction. The usual ensemble method is boosting or weighted averaging. This 
study proposes a novel ensemble technique: the stacking of multiple ML models through a 
meta-learning model. In addition, we tested the ensemble through rescanning the input space 
to maximize the prediction accuracy. We first applied six state-of-the-art ML models (i.e., 
Cubist, Random Forests (RF), extreme gradient boosting (XGBoost), classical artificial neural 
network models (ANN), neural network ensemble based on model averaging (AvNNet), and 
deep learning neural networks (DNN)) to predict and map the spatial distribution of SOC 
content at six soil depth intervals for both regions. In addition, the stacking of multiple ML 
models through a meta-learning model with/without rescanning the input space were tested 
and applied to maximize the prediction accuracy. Out of six ML models, the DNN resulted 
in the best modelling accuracies, followed by RF, XGBoost, AvNNet, ANN, and Cubist. 
Importantly, the stacking of models indicated a significant improvement in the prediction 
of SOC content, especially when combined with rescanning the input space. For instance, 
the RMSEs for SOC content prediction of the upper 0-5 cm of the soil profiles of the arid 
site and the sub-humid site by the proposed stacking of the approaches were 17% and 9%, 
respectively; less than that obtained by the DNN models - the best individual model. This 
indicates that rescanning the original input space by a meta-learning model can extract more 
information and improve the SOC content prediction accuracy. Overall, our results suggest 
that the stacking of diverse sets of models could be used to accurately estimate the spatial 
distribution of SOC content in different climatic regions. 

Keywords

Digital soil mapping; machine learning models; stacking of models; spatial block cross-
validation; deep learning 

Introduction

Soil organic carbon (SOC) is a key function of soils, influencing soil physicochemical 
properties [1,2], e.g. soil water storage capacity, nutrient holding capacity and infiltration 
rate. As the world’s soils contain more organic carbon than the atmosphere and the biosphere 
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together, soils are considered to be a crucial pool in the global carbon cycle [3]. Thus, accurate 
information on the spatial distribution of SOC is vital to estimate and predict greenhouse gas 
emission and physicochemical functions of soils [4,5]. Such information is most important in 
arid and semi-arid areas where soils tend to have low levels of organic carbon [6,7] compared 
to the humid region. These sensitive and fragile ecosystems are less resilient against climate 
change and, therefore, more vulnerable to desertification [8,9].

Legacy soil maps based on traditional soil mapping approaches are the most common 
sources for acquiring data and information on soils in Iran [9]. The qualitative nature and 
coarse scales of the available maps make these maps impractical for quantitative studies and 
a detailed understanding of the spatial variations of soil properties [10-12]. Furthermore, 
traditional soil mapping approaches are time-consuming and expensive [13]. Digital soil 
mapping (DSM) approaches based on the scorpan concept [14] have become a standard 
approach to generate new soil data to overcome the limitations arising from the legacy soil 
maps. DSM provides a quantitative-empirical framework for predicting soil properties and 
classes from spatially referenced covariates using appropriate machine learning (ML) models 
[5]. 

Several ML models have successfully linked SOC to environmental covariates to extrapolate 
SOC to unknown locations [15-29]. Some of the most popular models are multivariate 
regression, classical artificial neural networks [13], support vector regression [20], regression 
trees [17,20] and random forests [15,20,30]. Recently, deep neural networks (DNN) based 
on deep learning approaches were used to solve highly complex soil-landscape problems 
[31-34]. Padarian et al. [33] and Wadoux et al. [34] predicted and mapped SOC in Chile and 
France, respectively, using deep learning methods. 

One commonly applied technique to improve the predictive capacity and to decrease the 
variance of the individual ML model is the ensemble model-bagging, boosting and stacking 
approach [35]. Bagging is a simple and very powerful ensemble method. It generates m 
new training sets and then m models are fitted to the data sets. Their prediction results 
are combined by averaging the output or voting. Boosting refers to a group of algorithms 
that utilize weighted averages to turn weak learners into stronger learners. Other ensemble 
techniques include model averaging [36,37].

The stacking approaches combine different types of models (lower level) through a meta-
learning model (higher level) to maximize the generalization accuracy [38]. Unlike bagging, 
boosting and averaging methods, stacking ensemble modelling is rarely explored in digital soil 
mapping. Nevertheless, stacking often performs better than all individual models, especially 
when combined with rescanning the original input data [39]. For instance, Tajik et al. [40], 
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Zhou et al. [41] and Chen et al. [42] recently evaluated the efficacy of the ensemble models 
– by averaging of the model predictions – to predict the spatial variation of soil properties in
Iran, China, and France, respectively.

Although different ML models were implemented in order to predict and map SOC [5], 
their performances are inconsistent in various SOC studies. To the best of our knowledge, 
there is no study to conduct digital mapping of SOC content using stacking approaches in 
different climatic conditions. Thus, the authors suggest combining the ML models with the 
rescanning of the original input training data to explore if it works better than the standard 
stacking of individual models. Furthermore, so far only a few studies have used deep learning 
models for DSM, with the notable exceptions of [31,33,34], and a comparison with other 
models is still needed. Finally, there is a lack of understanding concerning the prediction of 
SOC content under different climatic regimes in Iran, which has a vast territory and diverse 
climates. Most studies conducted on SOC content in Iran, only consider a single climatic 
influence [7,22,30]. 

Figure 1. Study areas in Iran (a), the corresponding ombrothermic graphs (b) and the geographic co-
ordinates of the extents of the study areas and the spatial distribution of soil observation locations on 
a false color composite of Sentinel-2 (c).
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Hence, the main objective of this study is to evaluate and compare stacking ensemble 
approaches with six ML models in order to predict and map the spatial distribution of SOC 
content for two areas with contrasting climate (i.e., arid and sub-humid) in Iran. The models 
include Cubist, RF, XGBoost, ANN, AvNNet as well as DNN. We further tried to identify 
the controlling factors of the spatial distribution patterns of SOC content in the contrasting 
climatic conditions, which has rarely been reported in Iran. 

Materials and Methods

Study sites

This study was conducted at two sites located in central (Ardakan site) and northern (Rasht 
site) Iran (Figure 1a). The study sites comprise two diverse climatic regions (Figure 1b), which 
are arid in Ardakan and sub-humid in Rasht [43]. The general climate conditions of selected 
sites are presented in Table 1. 

Table 1. Study sites and data collection details.

Site Area (km2) Soil types Climate condi-
tions

Precipitation 
(mm/year) Elevation (m) Samples 

(no.)

Ardakan 720 Solonchaks, Gyp-
sisols and Regosols Arid 75 944–1944 154

Rasht 3000
Kastanozems, Cam-
bisols and Cherno-

zems
Sub-Humid 1200 -26–700 99

The Ardakan study site is located in the Yazd province in central Iran and covers 720 km2. 
The average annual precipitation, temperature and annual potential evaporation are 75 mm, 
18.5 °C and 3483 mm, respectively. The soil moisture and temperature regimes are aridic and 
thermic [43,44]. The elevation ranges from 944 to 1944 m above sea level. The main land use 
types consist of cropland (pistachio nuts and wheat) and grassland. The major physiographic 
units from East to West are alluvial fans, coalescing alluvial fans (bajadas), salt plains and 
gypsiferous hills. The predominant soils in the study area [43,44] are Solonchaks with ~40%, 
Gypsisols with ~40% and Regosols with ~20% of the area [43,44].

The Rasht study site is located in the Guilan province in northern Iran and covers 3000 
km2. The climate is sub-humid and the average annual precipitation, temperature and annual 
potential evaporation are 1200 mm, 15.6 °C and 796 mm, respectively. The soil moisture and 
temperature regimes are udic and thermic [43]. The elevation ranges from -26 m to 700 m 
above sea level. The main land use types consist of cropland (rice) and forest (oak, beech, 
lime and elm). Except for the southern parts of the study area, where piedmonts and hills 
dominate, the topography of the area is mainly flat. Predominant soils of the study area [43] 
are Kastanozems with ~70%, Cambisols with ~25% and Chernozems with ~5% of the area.
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To make the two areas readable, this paper marks the regions as arid site and sub-humid 
site, respectively, instead of using acronyms.

Data collection and soil sample analysis

For the purpose of DSM a well-distributed sample set is needed. We used the conditioned 
Latin Hypercube Sampling (cLHS), which provides an optimal stratification of the covariate 
space [45,46], to select representative sample locations based on the covariates [47-52]. 
We selected a total of 154 and 99 soil profiles for the arid and sub-humid (Figure 1c) sites, 
respectively. Soil samples were collected from the genetic horizons of each profile down to a 
depth of 2 m. Air-dried soil samples were ground and sieved (< 0.5 mm), and the SOC content 
(%) was determined using wet oxidation [53].

Sampling by genetic horizons means that samples do not come from consistent depth 
intervals in all locations. Therefore, we used an equal-area spline function (ESF) [54] to 
harmonize SOC data and estimate the vertical variation of SOC content. The ESF was fitted 
to each profile. Then, the values of SOC content were obtained by the integration of the 
splines to the defined depth intervals. We estimated the SOC at six depth intervals of 0–5, 
5–15, 15–30, 30–60, 60–100 and 100–200 cm in accordance with the standard depths specified 
by the GlobalSoilMap project [55].

Covariates used for the development of ML models

We used a set of 28 covariates (Table 2) as predictors [5,14] representing potential 
environmental drivers of the spatial and vertical distribution of SOC content. Based on the 
understanding of the factors affecting the SOC content distribution in the two study areas 
[7,22,50] and literature reviews [5,56], the covariates were obtained and derived from a digital 
elevation model (DEM) and remotely sensed satellite data.

The Shuttle Radar Topography Mission (SRTM) DEM with a resolution of 30 × 30 m was 
used for the terrain analysis [57]. The DEM was preprocessed to fill the sinks and pits before 
ten terrain attributes were calculated (Table 2) using SAGA GIS [58]. These are elevation, 
wetness index, catchment area, catchment slope, multi-resolution valley bottom flatness 
index, valley depth, plane curvature, profile curvature, general curvature and total insolation.

The remote sensing (RS) based covariates were derived and calculated based on the median 
values of 127 cloud-free Landsat-8 [59] and Sentinel-2 [60] images taken during 2016 under 
clear and dry weather conditions during the spring/summer season using the Google Earth 
Engine environment [61]. In general, we used six spectral bands of Landsat-8 (B2, B3, B4, B5, 
B6 and B7) and ten spectral bands of Sentinel-2 (B2, B3, B4, B5, B6, B7, B8, B8a, B11 and B12), 
respectively [47,48]. Additionally, we calculated the NDVI (normalized difference vegetation 
index) using spectral bands of both Landsat-8 and Sentinel-2 [62-64].
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All covariates were rescaled using z score standardization and resampled in order to have 
similar scale and the same cell size of 30 × 30 m.

Table 2. Covariates used for the development of ML models.

No. Definition Abr.

Terrain-based covariates

1 Elevation Elev

2 Wetness Index WI

3 Catchments area Ca.Area

4 Catchment Slope Ca.Slop

5 Multi-resolution Valley Bottom Flatness Index MrVBF

6 Valley Depth Vally.D

7 Plane Curvature Pl.Cur

8 Profile Curvature Pr.Cur

9 General Curvature Ge.Cur

10 Total Insolation To.In

RS-based covariates

11 Blue band of Landsat-8 [0.482 µm] B2.L

12 Green band of Landsat-8 [0.561 µm] B3.L

13 Red band of Landsat-8 [0.654 µm] B4.L

14 Near infrared band of Landsat-8 [0.864 µm] B5.L

15 Shortwave IR-1 band of Landsat-8 [1.608 µm] B6.L

16 Shortwave IR-2 band of Landsat-8 [2.200 µm] B7.L

17 Blue band of Sentinel-2 [0.490 µm] B2.S

18 Green band of Sentinel-2 [0.560 µm] B3.S

19 Red band of Sentinel-2 [0.665 µm] B4.S

20 Vegetation Red Edge of Sentinel-2 [0.705 µm] B5.S

21 Vegetation Red Edge of Sentinel-2 [0.740 µm] B6.S

22 Vegetation Red Edge of Sentinel-2 [0.783 µm] B7.S

23 Near infrared band of Sentinel-2 [0.842 µm] B8.S

24 Vegetation Red Edge of Sentinel-2 [0.865 µm] B8a.S

25 Shortwave IR-1 band of Sentinel-2 [1.610 µm] B11.S

26 Shortwave IR-2 band of Sentinel-2 [2.190 µm] B12.S

27 Normalized difference vegetation index (Landsat-8 based) NDVI.L

28 Normalized difference vegetation index (Sentinel-2 based) NDVI.S
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Covariate selection

In this study, the Boruta algorithm [65] was implemented with the random forest (RF) 
classifier in the R statistical package [66] to rank the most important covariates for predicting 
SOC content at six depths. It helps interpret and understand the soil-landscape relationships 
of the two sites. The algorithm consists of the following steps:

i) the covariate space is extended by adding randomly permuted existing covariates
(pC) in order to remove their correlation with SOC content,

ii) a RF prediction using the extended covariate space (i.e. covariates and permuted
covariates) is performed to predict SOC content at six standard depths,

iii) the z-score which is an indicator of the importance of all covariates is computed,

iv) the maximum Z-score (MZSA) among the pC’s is defined,

v) a hit is assigned to every covariates that scored better than MZSA,

vi) a two-test of equality is performed for undetermined important covariates,

vii) the original covariates are respectively flagged as “unimportant” or “important” if
they have significant lower or higher scores than MZSA,

viii) all permuted covariates are removed

ix) repeating the procedure.

In this study, based on Z-score values [67], we grouped the ability of covariates to explain 
SOC content variability into 4 classes: weakly relevant (Z<5), slightly relevant (5<Z<10), 
moderately relevant (10<Z<15) and relevant (Z>15).

Stacked generalization

Stacked generalization or simply stacking is an ensemble approach that combines the 
outcomes of different ML models in a single model to maximize the generalization accuracy 
[35,37]. Usually, as illustrated in Figure 2, there are two levels in a stacking framework: level 
0 and level 1, consisting of several base models and one meta-learning model. Meta-learning 
models in level 1 use the prediction of the response variables that are estimated by several 
base models in level 0 in order to generate a final prediction. In other words, the model in 
level 1 learns with the predictions of the models of level 0. 
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Figure 2. General framework of stacking approaches used in this study. (a) Cubist/RF/XGBoost/ANN/
AvNNet/DNN + LASSO; Stack1; (b) Cubist/RF/XGBoost/ ANN/AvNNet/DNN + SVR; Stack2; (c) Cub-
ist/RF/XGBoost/ANN/AvNNet/DNN + LASSO + rescan mode; Stack3; (d) Cubist/RF/XGBoost/ANN/
AvNNet/DNN + SVR + rescan mode; Stack4 

In this study, we used six ML models (Cubist, RF, XGBoost, ANN, AvNNet, and DNN) in 
level 0. Conventionally the meta-learning model in level 1 is based on a weighted average 
method or a linear regression model [36,37]. In this study, we applied two new meta-learning 
models (least absolute shrinkage and selection operator (LASSO); support vector regression 
(SVR)) in level 1.

Furthermore, we introduced two modes of stacking: the standard mode (Stack1 and Stack2) 
and the rescan mode (Stack3 and Stack4), as shown in Figure 2 [68]. Special attention should 
be given to the fact that in the rescan mode, we allow the model in level 1 (LASSO and SVR) 
to learn again from the original input data in order to extract some missing information. 
Practically, in the standard mode, we used the predicted SOC contents of individual models 
(Level 0: such as RF and ANN) as the predictor variables for meta-learning models (Level 1: 
such as LASSO and SVR). In the rescan mode, we used both the primary covariates (such as 
NDVI and MrVBF) and predicted SOC contents of individual models (Level 0: such as RF and 
ANN) as the predictor variables for meta-learning models (Level 1: such as LASSO and SVR). 
In summary, we tested four stacking approaches. A more detailed account of models used in 
level 0 and level 1 is given in the following sections.
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The individual ML models in level 0

Cubist [69] is an extension of the M5 algorithm. It is similar to common regression trees, 
but the terminal nodes contain linear least square models of covariates used in the previous 
intermediate node [70] rather than discrete values. Also, there are intermediate linear least 
squares models at each step of the tree, which are used to adjust the final prediction. Cubist 
uses “if–then” rules to partition the training data [71]. Whenever the conditions of a rule are 
satisfied, the associated linear least square model is used to predict the response [72]. 

RF [73] is an ensemble technique based on the well-known classification and regression 
tree approach (CART). The ensemble is generated by averaging several trees based on 
different bootstrap sample sets selected from the training data. Further, only a random 
subset of covariates is evaluated at each node. RF with a large number of trees is robust 
against overfitting, noise, as well as non-informative and correlated features. RF has been 
used in various DSM studies over the past decade [74-76] and for many other environmental 
problems [77]. Extreme gradient boosting (XGBoost) [78] is also a tree-based ensemble 
method. However, instead of independent trees and averaging the individual predictions, the 
XGBoost creates a number of decision trees sequentially. The trees are generated by using the 
residuals or prediction errors of the previous tree model, thus, the algorithm focuses more on 
samples with higher uncertainty. Finally, all generated models are added together to calculate 
the outcome [79]. 

The most common ANNs also known as multi-layer perceptron (MLP) consist of three 
layers, i.e. an input layer, a hidden layer and an output layer. Each hidden unit combines all 
input units of the input layer, where all connections are associated with a weight. Further, 
an activation function is applied to the sum of weighted unit inputs. The output layer is 
calculated the same way as the hidden units, but with input from the hidden units. For the 
MLP with one hidden layer we used the sigmoid function as the activation function in nnet 
package [80,81]. The network was trained through back-propagation using the Levenberg-
marquardt algorithm with 150 iterations [82]. 

AvNNet is similar to MLP, but multiple neural network models with the same topology 
are used to predict the response. The models can be different either due to different random 
number seeds to initialize the network or by fitting the models on bootstrap samples of the 
original training set (i.e. bagging the neural network). All the resulting models are used for 
prediction [81]. For regression, the outputs from each network are averaged [83]. The idea 
behind AvNNet is that we usually train different ANN models for the same problem in order 
to figure out the best model that produces the best validation statistics. However, instead 
of choosing the best model, it is possible to combine all models in order to improve the 
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generalisation power of a single neural network [84]. In this study, we used AvNNet model 
[80,81] in the Caret package [85]. We note that the tuning parameters used for MLP were 
kept the same for AvNNet. 

Deep Learning Neural Networks (DNN) use the MLP structure, but have more hidden layers 
and a more hierarchical structure [86]. DNNs with multiple hidden layers have a huge number 
of hyper-parameters [e.g. optimization algorithm, learning rate, network weight initialization, 
hidden layers activation function, output activation function, L2 regularization, dropout 
regularization, and the number of nodes in the hidden layers] [87]. The hyper-parameters 
potentially allow DNNs to perform better in solving the complex problems compared to 
the other ML models [88]. Sometimes, however, a lack of control over the learning process 
of the DNNs may lead to overfitting [32]. One approach, which is also used in this study to 
avoid or reduce overfitting, is to use a technique called Dropout [89]. Dropout randomly 
mutes neurons of the hidden layers. This dropout is applied to each of the n training steps, 
resulting in n different networks that are finally averaged for prediction [90]. For predictions, 
the ensemble of sparse networks resulting from the dropout process is averaged using the 
geometric mean of the input weights of the neurons. In this study, for DNNs we used the H2O 
package [91] with the rectifier function as a non-linear transformation and the Stochastic 
Gradient Descent (SGD) as optimization algorithm. Furthermore, in order to save training 
time, an early stopping was used if no changes in the loss were observed after 150 epochs.

Meta-learning models in level 1

The Least absolute shrinkage and selection operator (Lasso) is a regularized linear model. 
It adds a regularization term as a cost function to a linear model, to reduce its degrees of 
freedom. To achieve this, the lasso regression performs feature selection by eliminating the 
weights of the least important predictors. For the Lasso modelling we use the glmnet package 
[95].

Support vector machines are a kernel method for classification [92] and regression problems 
[93]. The input data is transformed into a high dimensional feature space with a predefined 
kernel function. In the high dimensional feature space, a linear regression hyperplane is 
derived for non-linear relationships. Then, the hyperplane is back-transformed to non-linear 
space. The kernel used in this study is a radial basis function. The e1071 package [94] was 
used for radial SVR modelling. 

Optimizing the Hyper-parameters of machine learning models

We applied a grid-learning method to estimate the best model-parameter by testing different 
ranges of model parameters listed in Table 3. Importantly, these hyper-parameters are the 
most likely parameters to have the largest effect on the performance of the ML models. All 
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other hyper-parameters were set to their defaults [96]. Based on the most relevant parameters, 
we tuned each model individually and evaluated the prediction performance. Additionally, 
we combined the grid-learning method with a spatial block cross-validation strategy with the 
aim to reduce the spatial autocorrelation effect of close neighbors and to choose the optimal 
model parameter. In this study, we constructed 10 folds for our block cross-validation using 
R package blockCV [97] in which several spatial blocks can be assigned to a fold (Figure 
3). The block-to-fold assignment in this package was done by a repeated random approach 
that tries to find the most evenly distributed number of observations in each fold. Thus, the 
observations are separated spatially and in each fold as close as possible to the typical 10-fold 
cross validation approach.

Table 3. Hyper-parameters of ML models tuned in this study.

ML models Hyper-parameters Definition Defined parameters

Cubist committees
neighbors

the number of model trees
the number of nearest neighbors

1–100
0–9

XGboost

booster
max_depth 
min_child_weight 
colsample_bytree 
subsample 
eta 

the type of model
the depth of tree
the minimum sum of weights of all observations 
the number of variables supplied to a tree
the number of samples supplied to a tree 
learning rate

gbtree
3–10
0–5
0.5–1
0.5–1
0.01–0.5

RF Mtry 
Ntree

the number of input variables 
the number of trees

1–30
100–3000

ANN decay
size

learning rate
the number of neurons in hidden layer

0.001–0.05
1–10

AvNNet Repeats the number of MLP with different random number 
seeds 3–20

DNN

hidden
size
network weight initialization
learning rate
dropout regularization

the number of hidden layers
the number of neurons in hidden layer
the initialized weight of networks
that controls adjusting the weights of the network
the amount of the neurons that are randomly 
dropped

2–10
15–200
uniform/he_normal
0.001–0.05
0.2–0.8

SVM
Kernel type
C 
 

the kernel function
the penalty parameter
the bandwidth parameter

RBF
0.01–100
0.01–100

Lasso lambda the shrinkage parameter 1–150
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Figure 3. Illustration of the spatial blocking strategy in two regions. The numbers in the blocks are 
fold numbers, showing allocation of blocks to folds.

Statistical evaluation

In this study, four common performance metrics [98], namely root mean squared error 
(RMSE), normalized root mean squared error (nRMSE), coefficient of determination (R2) 
and Ratio of Performance to InterQuartile distance (RPIQ) were used. RMSE indicates the 
accuracy of the model prediction. nRMSE is without unit and the standardized form of RMSE 
and well suited for inter-model comparisons. The coefficient of determination (R2) varies 
between 0 and 1, and indicates the closeness of the observed values to the fitted regression 
line or the proportion of variance explained by the independent predictors. RPIQ compares 
the interquartile range to the RMSE [99]. The greater the RPIQ indicates, the better the 
model’s predictive capacity. 
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where Pi and Oi are the predicted and observed SOC values at the ith location; n is the number 
of data points; P and O denote the means for the predicted and observed SOC; Q1 and Q3 are 
the first and third quartiles, respectively.
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Results and discussion

Summary statistics of SOC content

The descriptive statistics of the SOC content at six depth intervals across the two study 
areas are presented in Table 4. For the arid site, the mean SOC content varied from 0.18 to 
0.33%, whereas in the sub-humid site it ranged from 1.46 to 4.09% (Table 4). The lower and 
upper limits of the mean at 95% varied from 0.16 to 0.39 for the arid site, whereas in the 
sub-humid site it ranged from 1.24 to 4.38%. This indicates a high variability of SOC content 
across the two sites. The highest variability in SOC content was found at the arid site with a 
coefficient of variation from 60.39% for the 60 to 100 cm depth to 128.59% for the first depth 
increment (0-5 cm). Similarly, the sub-humid site showed a high variability of SOC content 
with a coefficient of variation from 37.15% for the 0 to 5 cm depth to 78.66% for the deepest 
depth increment (100-200 cm). The arid site, in contrast to the sub-humid site, tended to have 
higher variability in SOC content at the upmost depth increments.

Furthermore, results revealed that at the sub-humid site, minimum and maximum of 
SOC content are about ~8 and ~12 times higher than at the arid site. Regardless of other 
soil forming factors, the sub-humid climate in the study area contributes to the higher SOC 
content of soils [6]. Whereas, the low SOC content at the arid site is mainly attributed to 
the scarcity of precipitation (75 mm) as well as a higher mean annual temperature (18.5 
°C), which both contribute to less SOC accumulation [100]. This points out that the climatic 
conditions in terms of moisture and temperature affect both carbon input into the soil and 
SOC decomposition [52] and, thus, are key factors in controlling SOC storage in the two 
study areas. 

The results of the mean SOC content comparisons for arid and sub-humid sites are shown 
in Figure 4. At the sub-humid site, the upper three layers (0-30 cm) are significantly different 
in terms of mean SOC content, whereas the lower depth intervals show no significant 
differences in SOC content. This result indicates more variation in the vertical distribution 
of SOC content at the topsoil compared to the subsoil. The mean SOC contents in arid site 
show a relatively different trend compared to the sub-humid site. Contrary to the sub-humid 
site, the upper three depth intervals were not significantly different, while as for sub-humid 
site, the three subsoil layers were not significantly different in terms of SOC content. This 
indicated that for the top three layers (0-30 cm), depths intervals had no significant effect on 
SOC content. 
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Table 4. Descriptive statistics of SOC content at six standard depths in two regions.

Soil Depth SOC (%)

Min Max Mean Lower Upper SD CV

Arid site

0–5 cm 0.03 2.34 0.33 0.26 0.39 0.42 128.59

5–15 cm 0.04 2.21 0.31 0.25 0.37 0.39 124.56

15–30 cm 0.06 1.69 0.27 0.23 0.32 0.30 110.24

30–60 cm 0.02 1.11 0.21 0.19 0.24 0.17 77.28

60–100 cm 0.01 0.75 0.18 0.16 0.19 0.11 60.39

100–200 cm 0.01 1.00 0.18 0.16 0.20 0.14 78.20

Sub-Humid site

0–5 cm 1.36 9.93 4.09 3.79 4.38 1.52 37.15

5–15 cm 1.28 9.51 3.68 3.41 3.95 1.39 37.89

15–30 cm 0.68 8.01 2.59 2.34 2.85 1.30 50.27

30–60 cm 0.41 5.65 1.55 1.35 1.75 1.03 66.26

60–100 cm 0.07 5.65 1.46 1.24 1.69 1.15 78.21

100–200 cm 0.07 5.65 1.47 1.24 1.69 1.15 78.66

Min: minimum; Max: maximum; SD: standard deviation; CV: coefficient of variation; Lower and Upper: the lower and 
upper limits of the mean at 95%. 

Figure 4. The mean SOC content comparisons at six standard depths in two regions. Different letters 
(a:d) indicate a significant difference at the 0.05 level.

A decreasing trend in SOC content with increasing depth was found on both sites. This is 
much more evident at the sub-humid site (Figure 5). The SOC content in both, arid and sub-
humid areas at the surface layer (0-5 cm) were about 1.8 and 2.8 times higher than the SOC 
content in the depth of 100 to 200 cm (Table 4). Several studies reported that SOC content in 
the topsoil was more abundant than in the subsoil [7,22,51,54,101].
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Importance of covariates

The selected covariates for prediction of the SOC concentration at the two sites at all 
specific depths are presented in Figure 6. The numbers indicate Z-scores and the intensity of 
colors from light to dark represents the values of Z-scores from low to high, respectively. The 
covariates used to predict SOC content showed a varying level of importance in the models. 
Results indicated the covariates in the arid site were weakly to moderately relevant to SOC 
content. The Z-score varied from 0.40 to 10.60 for valley depth (SOC 100-200 cm) and NIR 
band of Sentinel-2 (SOC 5-15 cm), respectively. In the sub-humid site it varied from 0.20 to 
23.80 for the variables of total insolation (SOC 100-200 cm) and Green band of Sentinel-2 
(SOC 0-5 cm), respectively. 

Figure 5. Optimal covariate selection using Boruta algorithm for SOC content at six standard depths 
in two regions.

The plot of selected covariates, Figure 5, shows for the arid site that all covariates were 
slightly relevant [e.g. Elevation and wetness index] or moderately relevant [e.g. NIR band 
of Sentinel-2] in predicting SOC content at least at one soil depth interval except for nine 
covariates [e.g. Catchments area] . Four covariates [e.g. MrVBF] were identified as slightly 
relevant at all six soil depths (Figure 5). In the sub-humid site, however, only one covariate 
(vegetation red edge of Sentinel-2) was important at all six depth intervals and six covariates 
[e.g. Elevation] out of 28 were weakly relevant in predicting SOC at any depth interval 
(Figure 5). It should be highlighted that all other covariates were classified as slightly relevant 
[e.g Catchment slope], moderately relevant [e.g. NDVI] and relevant [e.g. Green band of 
Sentinel-2] variables in predicting SOC content at all six depth intervals.



Appendix

116

For the arid site, according to Figure 5, one can further conclude that both terrain- and 
RS-based covariates play an important role in the prediction of SOC content at six depth 
intervals, which is in line with the study of Wang et al. [19,102]. Importantly, the RS-based 
covariates [e.g. NIR band of Sentinel-2] were more important in predicting organic carbon 
of surface soils in comparison with the terrain-based covariates [e.g. MrVBF]. This can be 
because most of the area was bare except the center of the area and, thus, the remotely sensed 
data could represent the spectral behavior of soil at the surface [21,22]. However, terrain-
based covariates were more relevant for the SOC content prediction at the depth of 60 to 
200 cm, compared to the RS-based covariates. This is particularly true for elevation (Elev), 
wetness index (WI), catchment slope (Ca.Slop) and multi-resolution valley bottom flatness 
index (MrVBF). In line with our results, several studies [7,22,54] reported the importance of 
terrain-based covariates such as WI, MrVBF, slope and elevation for the prediction of SOC at 
different soil depths. 

Whereas for the sub-humid site, the terrain-based covariates are not controlling factors 
on SOC content variability, with a notable exception of catchments area in the lower depth 
intervals (30-200 cm). These results were to be expected because the study area in the northern 
parts of Iran has almost flat terrain [83]. However, the finding revealed the importance 
of RS-based covariates on SOC content variability in the sub-humid site. For instance, we 
found NDVI as an important predictor for SOC content at surface layers of soils [47,48]. 
Furthermore, spectral bands of Sentinel-2 had a substantial influence on the estimation of 
SOC concentrations at the 0 to 30 cm soil depth in the sub-humid site, as shown in Figure 6. 
Several studies [47,48,103] also reported a great contribution of Sentinel-2 images to predict 
SOC contents of soils in the Czech Republic and France.

As discussed above, both terrain- and RS-based covariates can potentially explain the 
variation of SOC content at the two study sites. Nevertheless, the relative influence of 
covariates is distinct in arid and sub-humid regions. Our results, as seen in Figure 6, revealed 
that RS-based covariates could better explain the variation of SOC content in the sub-
humid region compared to the arid region. This is expected because vegetation cover by 
affecting land reflectance in visible and infrared [21], makes RS-based covariates promising 
explanatory variables to explain SOC contents and variations in the sub-humid regions [22]. 
However, terrain-based covariates by controlling erosional and depositional processes were 
more successful in the arid site compared to the sub-humid site to explain SOC content 
variations. This is also expected because flatness in the sub-humid site minimizes the effect 
of topography and elevation on the soils [104].
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Performances of the individual ML models 

For both sites, the performance of six individual ML models used in level 0 in terms of R2, 
RMSE and RPIQ at six depth intervals followed as DNN > RF > XGBoost > AvNNet > ANN 
> Cubist (Tables 5 and 6). Our results indicated the RF models can well predict SOC content 
in the two study areas. In agreement with our findings, Keskin et al., [67] reported that RF 
resulted in the lowest RMSE for SOC prediction compared to the other ML models except 
DNN. Nabiollahi et al., [30] successfully used RF to map SOC stocks at two depth intervals 
(0‑30 and 30-60 cm) using RS- and terrain- based covariates and found it performed fairly 
good to predict SOC at two soil depths (R2=0.70 and 0.67 respectively). However, Were et 
al. [20] showed that ANN had lower RMSE and ME values, as well as higher R2 values in 
predicting SOC in comparison to RF models. 

Table 5. Performances of the ML models for SOC content at six standard depths in the arid site.

Models R2 RMSE RPIQ R2 RMSE RPIQ R2 RMSE RPIQ

0–5 cm 5–15 cm 15–30 cm

Cubist 0.76 0.25 0.84 0.63 0.24 0.75 0.63 0.20 0.67

XGBoost 0.79 0.20 1.12 0.71 0.19 1.02 0.69 0.17 0.85

RF 0.80 0.19 1.18 0.80 0.19 1.02 0.72 0.17 0.85

ANN 0.75 0.19 1.05 0.67 0.19 0.89 0.65 0.16 0.78

AvNNet 0.78 0.20 1.06 0.69 0.18 1.01 0.66 0.17 0.79

DNN 0.83 0.17 1.25 0.80 0.18 1.07 0.75 0.16 0.90

Stack1 0.83 0.17 1.25 0.78 0.18 1.07 0.74 0.15 0.92

Stack2 0.83 0.17 1.25 0.81 0.17 1.09 0.75 0.14 0.94

Stack3 0.86 0.14 1.30 0.82 0.13 1.18 0.77 0.11 1.07

Stack4 0.90 0.14 1.37 0.85 0.13 1.20 0.78 0.10 1.11

30–60 cm 60–100 cm 100–200 cm

Cubist 0.49 0.14 0.92 0.29 0.13 0.90 0.17 0.16 0.78

XGBoost 0.56 0.14 1.00 0.33 0.13 0.99 0.26 0.16 0.84

RF 0.57 0.14 1.00 0.35 0.13 0.99 0.29 0.16 0.84

ANN 0.50 0.13 0.91 0.29 0.11 0.97 0.22 0.15 0.77

AvNNet 0.53 0.14 0.92 0.31 0.12 0.98 0.24 0.15 0.83

DNN 0.64 0.13 1.08 0.40 0.13 0.99 0.39 0.14 0.90

Stack1 0.63 0.11 1.13 0.41 0.12 0.99 0.40 0.13 0.94

Stack2 0.62 0.11 1.12 0.38 0.11 1.02 0.39 0.13 0.94

Stack3 0.67 0.10 1.20 0.43 0.09 1.15 0.42 0.11 0.98

Stack4 0.72 0.09 1.29 0.46 0.08 1.19 0.44 0.10 1.06

R2: coefficient of determination; RMSE: root mean square error; RPIQ: Ratio of Performance to InterQuartile distance; 
Stack: refers to the figure 2. 
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Table 6. Performances of the ML models for SOC content at six standard depths in the sub-humid site.

Models R2 RMSE RPIQ R2 RMSE RPIQ R2 RMSE RPIQ

0–5 cm 5–15 cm 15–30 cm

Cubist 0.78 1.35 2.00 0.76 1.26 1.90 0.66 1.17 1.62

XGBoost 0.78 1.28 2.08 0.76 1.23 1.92 0.66 1.10 1.69

RF 0.78 1.25 2.11 0.76 1.18 1.98 0.66 1.06 1.73

ANN 0.78 1.31 2.04 0.76 1.25 1.89 0.65 1.13 1.65

AvNNet 0.79 1.30 2.08 0.77 1.24 1.93 0.67 1.12 1.69

DNN 0.81 1.26 2.12 0.79 1.17 2.02 0.69 1.05 1.78

Stack1 0.83 1.21 2.16 0.82 1.17 2.05 0.73 1.06 1.78

Stack2 0.83 1.20 2.19 0.82 1.16 2.04 0.74 1.03 1.79

Stack3 0.84 1.16 2.25 0.85 1.13 2.06 0.74 1.01 1.81

Stack4 0.87 1.15 2.29 0.86 1.12 2.10 0.78 1.01 1.83

30–60 cm 60–100 cm 100–200 cm

Cubist 0.52 0.99 1.46 0.32 1.19 1.07 0.23 1.22 1.11

XGBoost 0.61 0.95 1.49 0.36 1.12 1.12 0.27 1.15 1.16

RF 0.61 0.92 1.51 0.38 1.08 1.14 0.26 1.14 1.15

ANN 0.57 0.97 1.46 0.33 1.16 1.08 0.24 1.18 1.13

AvNNet 0.62 0.96 1.50 0.36 1.15 1.11 0.28 1.16 1.17

DNN 0.66 0.93 1.52 0.54 1.09 1.15 0.44 1.08 1.24

Stack1 0.72 0.91 1.57 0.55 1.06 1.20 0.47 1.04 1.29

Stack2 0.70 0.89 1.58 0.54 1.06 1.18 0.49 1.02 1.29

Stack3 0.71 0.86 1.59 0.60 1.00 1.22 0.51 0.97 1.34

Stack4 0.74 0.85 1.61 0.60 0.97 1.27 0.54 0.97 1.36

R2: coefficient of determination; RMSE: root mean square error; RPIQ: Ratio of Performance to InterQuartile distance; 
Stack: refers to the figure 2. 

The performance of XGBoost at both sites and six depth intervals closely followed the 
performance of RF (Tables 5 and 6). In terms of R2, RMSE and RPIQ it outperformed Cubist. 
In agreement with our findings, Tziachris et al. [104] reported the reasonable accuracy of 
XGBoost in comparison with RF models to predict SOC in Greece. There are several other 
examples of DSM experts who applied XGBoost and RF models successfully to predict soil 
nutrient in Sub-Saharan Africa [105], soil properties in United States [106], soil pH in China 
[107], soil properties at the global scale [108] and the depth to bedrock at the global scale 
[109].

Although Cubist resulted in relatively good predictions of SOC content at the two study 
sites, especially at the surface layers (Tables 5 and 6), they were outperformed by RF and 
XGBoost. In line with our results, Zeraatpisheh et al. [21] revealed that, in terms of R2 and 
RMSE, Cubist was outperformed by RF. Despite, the usefulness of Cubist in explaining the 
relationships between soil properties and covariates and in modeling SOC content, which 
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has been reported in several studies [93], our findings showed that the model was not very 
competitive with the other ML models. Nevertheless, we noted that the differences in the ML 
models’ performance at both sites and at all depth intervals were rather small.

For the two areas, the performance of classical ANN at all depth intervals closely followed 
the performance of AvNNet (Tables 5 and 6). The higher performance of AvNNet, compared 
to ANN was also reported by Baker and Ellison [84], who evaluated and compared the 
performance of AvNNet and ANN in order to predict water retention data. They indicated that 
combining ANNs improves the ability to generalize individual component ANNs. Similarly, 
Meyer et al. [83] reported the higher performance of AvNNet by comparing it with three ML 
models —RF, ANN, and SVM— for rainfall area detection and rainfall rate assignment over 
Germany. Our result, however, is different from that of Taghizadeh-Mehrjardi et al. [7] who 
found superior performance for ANNs compare to RF for the three-dimensional mapping of 
SOC content in the western parts of Iran.

In the arid site, the DNN was able to account for 39 to 83% of the total variation of SOC content 
from the lower depth interval (100 to 200 cm) to the surface layer (0-5 cm), respectively (Table 
5). For the sub-humid site (Table 6), the DNN showed the best performance to described SOC 
patterns. The DNN was able to account 44 to 81% of total SOC content variation at the depths 
of 100-200 cm and 0-5 cm, respectively. Our results are in line with other studies in the ML 
literature that reported the capability of the DNN model to reveal and learn the non-linear 
and complex patterns underlain datasets [32]. In soil science literature, however, the superior 
performance of DNN in predicting soil properties is only reported in a few studies [32]. For 
instance, Behrens et al. [31] found the most accurate results for DSM analysis using deep 
learning, indicating an improvement of 4–7% compared to RF. Additionally to this example, 
Padarian et al. [33] and Wadoux et al. [34] successfully applied a CNN model (a well-known 
DNN model) to predict different soil properties (e.g. SOC) from large spectroscopic databases. 
Similar to our results, they also specified the CNN models performed better than other ML 
models.

Performances of the stacking ensemble models 

The performances of two major groups of stacking ensemble models, namely the standard 
mode (Stack1 and Stack2) and the rescan mode (Stack3 and Stack4), for prediction of SOC 
content at six depth intervals of arid and sub-humid areas are presented in Tables 5 and 
6, followed as Stack4 > Stack3 > Stack2 > Stack1. At the two sites, in terms of R2, RMSE 
and RPIQ, the Stack4 model followed closely by Stack3 yielded the most satisfactory results, 
whereas Stack1 showed the worst performance at six depth intervals. Stack4 had the lowest 
RMSE as well as the highest R2 and RPIQ values; hence, it was the best stacking method 
in comparison to the other three stacking ensemble methods. For instance, the RMSEs for 
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SOC content prediction in 0-5 cm of soil profiles of arid site and sub-humid site by Stack4 
models were 17 and 5%, respectively, less than that obtained by the Stack1 (Tables 5 and 6). 
Similarly, Stack4 reduced the RMSEs (23 and 6%) for SOC content prediction in 100-200 cm 
of soil profiles of the arid site and sub-humid site, compared to the Stack1 models. Generally, 
stacking ensemble models in rescan mode had higher accuracy than the one in the standard 
mode [68]. This indicated that meta-learning models (LASSO and SVR) used in level 1 can 
recapture and extract some missing information from the original datasets. 

As an additional visual analysis, we illustrated the performances of the stacking and 
individual models in Figure 6. The graph shows that, apart from a bit discordance, the stacking 
ensemble modeling in both modes (standard mode and rescan mode) indicated the higher 
performance in comparison to the individual models. Here, we compare the performances of 
the best individual model (DNN) and the best stacking model (Stack4), in brief in terms of R2 

and RMSE. What can be clearly seen in Figure 6 is that the Stack4 ensemble models increased 
R2 values and decreased the RMSE values in comparison to the DNN models. For instance, the 
RMSEs for SOC content prediction in 0-5 cm of soil profiles of the arid site and sub-humid site 
by Stack4 models were 17 and 9%, respectively, less than that obtained by the DNN models. 
Similarly, Stack4 reduced the RMSEs (28 and 10%) for SOC content prediction in 100-200 cm 
of soil profiles of the arid site and sub-humid site, compared to the DNN models.

Generally, Stack4 ensemble models exhibited the best competence for capturing the spatial 
variation of SOC content and reducing prediction uncertainty as well. This indicated the 
stacking ensemble models in level 1 were successful to keep the advantages and to discard 
the inaccurate aspect of the individual ML models in level 0. This is justified by the fact 
that the information lost by the models in level 0 is successfully captured by the level 1 
models. In fact, the stacking methods used multiple learning algorithms strengths to obtain 
better predictive performance and make the predictive model more robust than it is from the 
individual models. Similarly, several studies have revealed that ensemble models exhibited the 
best performances for predicting soil properties in the DSM community [38,68]. For example, 
Zhou et al. [39] and Chen et al. [40] recently evaluate the efficacy of the ensemble models 
to predict the spatial variation of soil properties. Similarly, Tajik et al. [38] found that stack 
modeling showed better performance to predict SOC content in comparison to the individual 
models including RF and SVM.

Performances of ML models in two different climatic regions

Vertical distribution of R2, nRMSE and RPIQ values to a depth of 200 cm are depicted in 
Figures 7. Generally, the two sites showed a decreasing trend in R2 and RPIQ values with 
increasing depth. Otherwise, the percentage of variation in SOC content, which is described 
by the models, decreased with increasing depth. A reverse trend for nRMSE was also revealed 
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(Figure 7). Results indicate that models’ performance decreased by each depth increment 
down the soil profile, and confirmed that models had much better prediction efficiency for 
surface layers than subsurface layers. Increasing uncertainty of SOC content with depth 
has been reported in numerous studies [24]. For instance, Laub et al. [110] found that the 
efficiency of the ML models used for SOC prediction in China decreased from about 0.8 in the 
topsoil to 0.2 at 0.8 to 1 m subsoil depth. A similar pattern of uncertainty variation with depth 
was reported in several other studies [22]. This decreasing trend in performances could be 
explained by the fact that most of terrain- and RS-based covariates that are used as predictors 
of SOC content (listed in Table 2) explain soil surface features [9].

Figure 6. R2 and RMSE values of the individual models (Level 0) and stacking models (Level 1) for SOC 
content at six standard depths in two regions.
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Figure 7. Comparison of prediction power of ML models for SOC content at six standard depths in 
two regions.

According to Figure 7, overall, in terms of R2, nRMSE and RPIQ, all tested ML models (The 
individual models and stacking models) performed better for the six soil depths at the sub-
humid site than for those of the arid site. Here, we compare the performances of the best 
(Stack4), the worst (Cubist) and AvNNet as a model with intermediate performance, in terms 
of R2, nRMSE, and RPIQ.

Stack4 resulted in R2 values on average of 0.73 and 0.69 for the sub-humid site and arid 
site, respectively. R2 values for Cubist were 0.55 and 0.50 and for AvNNet 0.58 and 0.54 for the 
same areas as for Stack4. Our results, furthermore, indicated the Stack4, Cubist and AvNNet 
resulted in R2 values for the sub-humid site that were ~9%, ~8% and ~5% higher than the values 
of arid site. The difference in the performance of ML models is much more evident when we 
consider nRMSE values, in which nRMSE values obtained by Stack4, Cubist and AvNNet for 
the arid site were ~25%, ~17% and ~2% more than those values for the sub-humid site (Figure 
7). These results indicated that the ML models performed better at six depth intervals in the 
sub-humid site in comparison to those obtained in the arid site. These results could be partly 
attributed to large differences between areas in terms of soil forming factors, which results in 
complex relationships between SOC content and covariates.

The ML models resulted in a decreasing and increasing trend in R2, nRMSE, and RPIQ, 
respectively, with depth in the two areas (Figure 7). As can be seen, at the top layers (0-60 
cm), the arid site tended to have the highest values of nRMSE, but with increasing depth the 
accuracy of models in terms of nRMSE tended to be almost the same at both sites. This further 
shows that ML models, such as Stack4 based on the covariates used in this study, cannot 
capture SOC content variability at the bottom of soil profiles [7,54]. This is consistent with 
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the results of other researchers [7,17,22,54] who all reported the accuracy of DSM decreased 
with soil depth. This indicates that the biggest uncertainty is driven by covariate space not 
by the selection of ML algorithm. It should be added that the typical covariates used in DSM 
studies are RS- and terrain-based covariates [10], which can only characterize soil properties 
at the land surface. 

Spatial distribution of SOC

The spatial distribution of mean, upper and lower limits of SOC contents at the arid site 
at six interval depths is depicted in Figure 8. A decreasing trend in SOC content down the 
soil profile was observed. Central parts of the area tended to have the largest amounts of 
SOC content, which correspond to the cultivated areas mainly under pistachio orchards and 
wheat. Moreover, the topography of this area is mainly flat and located downslope, which 
results in more accumulation of fine textured materials and water. In the arid Ardakan site 
(arid region), because of rainfall scarcity, irrigation is necessary to provide soil moisture 
for crop production. Thus, irrigated farming and topographic attributes in the central parts 
promote more vegetation and consequently more organic matter is accumulated in the soil. 
Lower SOC content in the other parts of the area can be attributed to the higher slope degree, 
which makes these areas prone to erosion and to higher water discharge. Further, water 
scarcity in these areas is not compensated by irrigation. In line with our results, Wiesmeier 
et al. [52] suggested that at the small scales with similar climatic conditions, vegetation, 
land use and land management have a significant influence on the level of SOC stocks. At 
the regional scale, climatic effects may be counterbalanced by agricultural practices (e.g., 
fertilization, irrigation) [49].

The spatial distribution of mean, upper and lower limits of SOC contents at the sub-humid 
site at six interval depths is depicted in Figure 9. Again, a decreasing trend in SOC content 
with depth is shown in the sub-humid Rasht site. The map of the spatial distribution of 
SOC content in the upper layer revealed more SOC accumulation in the northern parts than 
the other sections. The low slope degrees of the northern parts make these areas favorable 
for more water accumulation and, thus, result in poorly drained soils. SOC content is more 
accumulated and less decomposed in poorly drained soils. Mishra et al. [111] reported that 
high SOC stocks were found in areas characterized by low slope gradient and poorly drained 
soils. Wiesmeier et al. [52] indicated that areas with low slope degree and concave surface 
favor water accumulation. Soil moisture, which is largely controlled by terrain attributes, 
affects the spatial distribution of SOC content [112].
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Figure 8. The spatial distribution of mean, upper and lower limits of SOC contents at six standard 
depths in two regions. The upper and lower limits were calculated using Mean ± (1.5 × SD) of the 
prediction values of SOC contents using the spatial block cross-validation.

Conclusions

In this study, we introduced stacking ML models in two modes (standard mode and rescan 
mode) in order to improve the spatial prediction of SOC content at two contrasting climatic 
regions (arid and sub-humid) of Iran. The main conclusions are:

–– Though the differences in the ML models’ performance at both sites and at all depth
intervals were rather small, DNN was identified as the most suitable individual model.

–– The stacking ensemble modeling in both modes (standard mode and rescan mode) indi-
cated the higher performance in comparison to the individual models.

–– Although, both terrain- and RS-based covariates were important to explain SOC con-
tents at both sites, their explanatory power was different at both sites and at the soil
depth intervals.

–– The stacking models are able to explain the effect of contrasting climate on SOC content
distribution. Higher content of SOC in the sub-humid site and lower content of SOC in
the arid site, however local variation is controlled by moisture, terrain, and land use.
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Abstract

Soils and soil functions are recognized as a key resource for human well-being throughout 
time. In an agricultural and forestry perspective, soil functions contribute to food and timber 
production. Other soil functions are related to freshwater security and energy provisioning. 
In general, the capacity of a soil to function within specific boundaries is summarised as soil 
quality. Knowledge about the spatial distribution of soil quality is crucial for sustainable land 
use and the protection of soils and their functions. This spatial knowledge can be obtained 
with accurate and efficient machine-learning-based soil mapping approaches, which allow 
the estimation of the soil quality at distinct locations. However, the vertical distribution 
of soil properties is usually neglected when assessing soil quality at distinct locations. To 
overcome such limitations, the depth function of soil properties needs to be incorporated 
in the modelling. This is not only important to get a better estimation of the overall soil 
quality throughout the rooting zone, but also to identify factors that limit plant growth, such 
as strong acidity or alkalinity, and the water holding capacity. Thus, the objective of this 
study was to model and map the soil quality indicators pH, soil organic carbon, sand, silt 
and clay content as a volumetric entity. The study area is located in southern Spain in the 
Province of Seville at the Guadalquivir river. It covers 1,000 km2 of farmland, citrus and olive 
plantations, pastures and wood pasture (Dehesa) in the Sierra Morena mountain range, at the 
Guadalquivir flood plain and tertiary terraces. Soil samples were taken at 130 soil profiles in 
five depths (or less at shallow soils). The profiles were randomly stratified depending on slope 
position and land cover. We used a subset of 99 samples from representative soil profiles to 
assess the overall 513 samples with FT-IR spectroscopy and machine learning methods to 
model equal-area spline, polynomial and exponential depth functions for each soil quality 
indicator at each of the 130 profiles. These depth functions were modelled and predicted 
spatially with a comprehensive set of environmental covariates from remote sensing data, 
multi-scale terrain analysis and geological maps. By solving the spatially predicted depth 
functions with a vertical resolution of 5 cm, we obtained a volumetric, i.e. three-dimensional, 
map of pH, soil organic carbon content and soil texture. Preliminary results are promising 
for volumetric soil mapping and the estimation of soil quality and limiting factors in three-
dimensional space.

Introduction

Soils are important for agriculture, timber, biofuels1. Growing world population requires 
changes in food production towards sustainability through policies and management 
practices1,2. According to Godfray et al.1 one part of this is closing the so-called yield gap, 
which is the difference between realised productivity and the potentially best productivity. 
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Spatial knowledge of soil conditions can support management practices to increase the 
realised productivity towards the potential productivity of soils which depends, amongst 
others, on water, nutrients, and knowledge to use and preserve the soil1. This knowledge can 
be achieved with sophisticated soil models for spatial prediction of soil properties based on 
machine learning. 

Soil quality is used to assess the status and use potential of soil for specific types of land use, 
e.g. agriculture, plantations, pastures or forest. To estimate or calculate soil quality different
soil quality indicators have been identified. Soil quality indicators are physical, chemical or
biological soil properties. Widely used soil quality indicators are water storage or content
(θFC), soil organic carbon (SOC), pH and cation exchange capacity (CEC), amongst others3.
For relatively simple soil quality indices these indicators are rated4, summed up and divided
by the number of indicators5. This soil quality rating can be modelled spatially with machine
learning techniques such as random forests6.

However, soil is a three-dimensional continuum that requires sophisticated 3D models. In 
fact, climate, land cover and terrain have influence of varying strength on topsoil and subsoil 
properties7,8. But knowledge about the relevance of independent variables for soil models at 
different depths, e.g. topsoil, subsurface soil and subsoil is sparce. 

Results

Figure 1. Results of the repeated 10-fold cross-validation of the additive model training with sequen-
tially adding scales (octaves). 
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Discussion

Methods

Study area

The study area of 1,000 km2 is located in the middle Guadalquivir basin, Andalusia, Spain, 
50 km NE of Seville. The geology separates the area in three main parts: the Sierra Morena 
mountain range in the North with Paleozoic granite, gneiss and slate; the Guadalquivir flood 
plain with Pleistocene marl, calcarenite and coarse sand and Holocene sands and loams; and 
tertiary terraces in the South9,10. The study area is a heterogenous agricultural landscape with 
arable land, citrus and olive plantations, pastures and Dehesa, an agrosylvopastoral system. 
Occurring soil types according to USDA Soil Taxonomy are Alfisols, Entisols, Inceptisols and 
Vertisols11.

Soil data and environmental covariates

Soil samples were taken at 130 stratified random locations in October 2018. The strata 
are combinations of four geomorphic positions (geomorphons; namely footslope, slope and 
shoulder)12 and for the CORINE Land Cover level 2 classes “arable land”, “permanent crops”, 
“pastures”, “forest” and “shrub and/or herbaceous vegetation associations”13, which are most 
common in the area. The point density of the sampled locations is proportional to the stratum 
area with a minimum of 3 samples for the smallest stratum. At each location up to fife samples 
bulked from 3 replicates were taken depending on the soil thickness. The sampled increments 
were 0-10, 10-20, 20-30, 40-60 and 70-100 cm. 

For lab analysis the samples were dried at 40 °C for 24 h, root fragments were removed, 
sieved (<2 mm) and ground. The soil spectra of all 506 samples were measured with a Tensor II 
(Bruker Optics, Ettlingen, Germany) for NIR (833–2500 nm) and a GladiATR (Pike Technlogies, 
Madison, WI, USA) for MIR (2500–25.000  nm). A subset of 97 samples representative for 
the strata was analysed for soil organic carbon (SOC) and total Nitrogen (Ntot) content (%) 
with a Vario EL III (Elementar, Hanau, Germany), for pH with a pH meter in KCl solution 
(pHKCl) and for grain size fractions clay (<2 µm), silt (2-50 µm) and sand (50-2000 µm) with a 
SediGraph III (Micromeritics, Norcross, GA, USA). The 97 samples were used as dependent 
variables to train PLS models14 (see below) and make predictions to the remaining samples 
according to Hobley and Prater15. The root mean squared errors of these models were 0.5 % 
SOC, 0.02 %Ntot, 0.4 pHKCl, 4 % clay, 5 % silt and 5 % sand content. 
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Water content at field capacity (θFC in cm3 cm-3) was calculated with a pedo-transfer function 
developed for Europe according to Tóth et al.16 and the cation exchange capacity (CEC in 
cmol kg-1) was calculated after an equation by Khaledian et al.17 developed for spain. Errors 
(RMSE) of these pedo-transfer functions were reported to be 0.06 cm3 cm-3 and 0.73 cmol kg-1, 
respectively. 

Random forests

Random forests were developed by Breiman18 as an ensemble of classification and regression 
trees19. Binary splits are used for a single decision tree to homogenize the predictor variables 
according to the dependent variable, thus minimizing the node impurity. Random forests use 
a bootstrap approach, where random predictor variables are chosen at each split of a tree. The 
final regression model results from averaging all decision tree outputs18. Random forests are 
robust against overfitting and interpretable18. 

Modelling

Data Availability

Terrain data is published under the CC-BY 4.0 license by Centro Nacional de information 
Geográfica (CNIG) of the Spanish government; last accessed March, 31st 2020 http://
centrodedescargas.cnig.es/CentroDescargas/locale?request_locale=en#. Landsat images 
were accessed and pre-reprocessed via the Google Earth Engine 20,21. The soil data is published 
at PANGAEA.
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Abstract

Spatial monitoring of grassland management is crucial for ecosystem assessment and 
the establishment of sustainable agriculture. Switzerland is covered by large areas of 
small structured grassland parcels differing in management practices and use intensities, 
making the mapping of grassland management challenging. We present a monitoring tool 
to map grassland management, distinguishing between mowing- and grazing practice, and 
between different use intensities for Swiss agroecosystems. By analyzing pixelwise spectral 
time series of 2015, derived from satellite imagery of the Landsat archive, we estimated 
the number of management events and biomass productivity. Both estimates were used to 
map classes of dominant management practices and use intensities following a stepwise 
clustering approach. The grassland management (GM) classes were evaluated relative to 
established spectral and topographical patterns of grassland use intensity, and in terms of 
spatial conformity with available regional land use data. The GM classes were also analyzed 
with respect to management related vegetation plot data on species diversity, as well as 
on indicator values for nutrient supply and management tolerance. The stepwise clustering 
gave three use intensity classes for each dominant management practice of grazing (pasture) 
and mowing (meadow). Use intensity was higher for meadows than pastures with a distinct 
intensity gradient for each grassland practice. The GM classes reproduced established spectral 
and topographical patterns of grassland use intensity, indicated by increased standard 
deviations (SD) of spectral time series profiles (e.g. mean SD of 0.048 for pastures and 0.054 
for meadows) and lower slopes (e.g. mean slopes of 10° for pastures and 7° for meadows). 
The averaged spatial conformity of the GM classes with a cantonal land use map was 82% 
for meadows and 97% for pastures. The GM classes spatially matched with land use patterns 
of three subregions, e.g. with an areal proportion of 73% pasture classes for a subregion 
dominated by grazing. Moreover, the GM classes reproduced established vegetation patterns 
of grassland use intensity along the GM intensity gradient, showing a mean decrease in 
species richness (33%), as well as a mean increase in indicator values for nutrient supply (5%), 
grazing tolerance (4%), and mowing tolerance (6%).

Keywords

Grassland management, Spatial monitoring, Spectral time series, Management practice, 
Mowing, Grazing, Use intensity 
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Introduction

More than a third of the agricultural area in Europe is covered by grasslands, widely being 
subject to land use intensification (O`Mara, 2012; Smit et al., 2008). Grassland agroecosystems, 
as grazed pastures or mown meadows, provide most of the fodder required by ruminant 
livestock to meet the growing demand for animal-derived food (Allen et al., 2011; Oenema 
et al., 2014; Orr et al., 2016). Grasslands also provide key ecosystem services related to soil 
quality, hydrological balance, and climate change (Askari and Holden, 2014; Isselstein and 
Kayser, 2014; Soussana and Lemaire, 2014). Moreover, temperate grasslands in Europe are rich 
in biodiversity, which is recognized as the foundation for ecosystem functioning (Cardinale 
et al., 2012; Kleijn et al., 2011; Wilson et al., 2012). For example, ~18% of the endemic vascular 
plant species in Europe are bound to grassland habitats (Habel et al., 2013).

Grassland management (GM) largely determines the capacity of the agroecosystem 
to provide ecosystem services (Power, 2010; Rodríguez et al., 2006). GM mainly involves 
practices such as grazing and mowing in various combinations and use intensities (Giménez 
et al., 2017; Peeters et al., 2014). The term ‘use intensity’ often refers to the frequency of 
management practices and alongside, to the amounts of mineral or organic fertilizer inputs, 
which determines biomass productivity (Hudewenz et al., 2012; Rose and Leuschner, 2012). 
Use intensity depends on the environmental setting related to terrain conditions, growth 
period, water supply, soil nutrient levels, and plant species compositions (Kizeková et al., 
2018; Mottet et al., 2006; Tasser and Tappeiner, 2002), and often adversely affects ecosystem 
services (Foley et al., 2011; Porqueddu et al. 2016; Soussana and Lemaire, 2014). Rose et al. 
(2012) found that higher mowing intensity decreased groundwater recharge. Zhou et al. 
(2017) demonstrated that higher grazing intensity significantly increased the loss of carbon 
and nitrogen in the soil. Moreover, higher use intensity is associated with biodiversity 
declines, often accompanied by landscape homogenization (Allan et al., 2014; Foley et al., 
2011; Gossner et al., 2016). 

The large extents of agricultural grasslands, combined with the adverse effects of land use 
intensification on ecosystem services and biodiversity, outline the need for sustainable GM 
systems (Huyghe et al., 2014; Simons and Weisser, 2017; Tälle et al., 2016). This is in line with 
European agricultural policies, such as the Common Agricultural Policy of the European 
Union (CAP) and the Swiss Agricultural Policy (SAP; EC, 2018; FOAG, 2018). A key measure 
of these policies comprises payments linked to management practices and use intensities 
that promote ecosystem services and the conservation of biodiversity (Henle et al., 2008; 
Kleijn and Sutherland, 2003). However, ecological benefits in terms of reduced greenhouse 
gas emissions and biodiversity conservation seem to be limited in Switzerland (Kleijn et al., 
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2006; Knop et al., 2006; Leifeld and Fuhrer, 2005). Moreover, it has recently been claimed that 
CAP measures, intended to preserve ecosystem services and halt biodiversity declines in the 
European Union, are inefficient (Kleijn et al., 2011; Pe’er et al., 2014; Pywell et al., 2012). 

Current efforts to establish sustainable grassland management systems include the 
development of monitoring tools to derive detailed spatial and temporal information on 
management practices and use intensities (Nagendra et al., 2013; Zaks and Kucharik, 2011). 
Spectral time series from space-borne imagery allow progressing phenological stages to be 
detected, which in turn allows vegetation trends and GM to be mapped (Ali et al., 2016; 
Kennedy et al., 2014; Svoray et al., 2013). However, spatial and temporal resolutions of 
spectral imagery are often inadequate to capture small-structured landscapes with diverse 
GM (Giménez et al., 2017; Li et al., 2017; Zhu et al. 2012). Moreover, the spatio-temporal 
availability of spectral data is often constrained by sparse data records and high monetary 
expenses (Asam et al., 2015; Kolecka et al., 2018; Sakowska et al., 2016).

With this study we contribute to the establishment of a sustainable GM system for 
Switzerland at a national scale. The objective is the development of a monitoring tool for 
annually mapping the management practice (mowing vs. grazing) and use intensity of small-
structured grassland systems. Exemplarily, the tool is applied and evaluated for the year 2015.

The methodological framework is based on a spatial estimation of the management 
frequency and biomass productivity using pixelwise time series from multi-temporal satellite 
imagery. Both variables are used for a stepwise classification and clustering approach to 
derive GM classes, which describe the use intensity for areas dominated by grazing and 
mowing, respectively. The GM classes are evaluated by a statistical comparison with 
established spectral and topographical patterns of grassland use intensity. The GM classes 
are also evaluated by analyzing their spatial conformity with regional land use data, available 
for the entire canton of Berne and for three subregions with characteristic GM. In addition, 
the GM classes were analyzed with respect to management related vegetation plot data on 
species diversity, as well as bioindicators for nutrient supply and management tolerance.

Materials and Methods

Study area

Switzerland covers an area of 41,000 km2. The altitude varies between 196 m and 4,634 m 
(a.s.l.). Total annual precipitation is ~500-2000 mm and the monthly mean temperature ranges 
from 1°C in January to 17°C in July (MeteoSwiss, 2018a, b). The Swiss agroecosystem covers 
10,000 km2 and is small-structured with a mean farm size of about 20 ha. Approximately 
70% of the agricultural land is managed grassland, of which 12% is temporary grassland 
in rotation with other crops that is typically managed intensively. The majority of the 
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managed grasslands are permanent pastures and meadows (SFSO, 2018; Stumpf et al., 2018). 
Most intensive grassland farming in Switzerland occurs in a band of moderate climate and 
suitable topography, running from southwest to the northeast of the northern half of the 
country (Leifeld et al., 2005; Price et al., 2015). With increasing elevations towards the alpine 
foothills in the south and the Jura uplands in the north, extensive grassland farming becomes 
dominant (SFSO, 2018). The study area demarcates the agricultural grassland area < 1,400 m 
(a.s.l.) in 2015, which covered ~5,400 km2 (Figure 1; Stumpf et al., 2018).

Fig. 1. Territory of Switzerland (a) with managed grasslands < 1,400 m a.s.l. (red + yellow) and the ter-
ritory of the canton of Berne (b) with official data on grassland use (‘NDVI’: Normalized Differenced 
Vegetation Index; ‘BPA’: Biodiversity Promotion Area, see Section 2.2.3).

Fig. 2. Available Landsat scenes (sensors: ETM+ and OLI) for the Swiss grassland area in 2015 (black 
dots), aggregated to a time series of composite images (red bars), and the areal coverage of the com-
posite images relative to the total grassland area.
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Data base

Spectral time series data

Spectral time series for the study area were acquired from all available scenes of the optical 
satellite sensors Landsat ETM+ and Landsat OLI in 2015.

Both sensors record a blue, a green, a red (RED), a near-infrared band (NIR), as well as two 
shortwave-infrared bands at a spatial resolution of 30 m x 30 m. Each scene was corrected 
to surface reflectance according to the Landsat Ecosystem Disturbance Adaptive Processing 
System (Schmidt et al., 2013). All pixels covered by clouds, cloud shadows, water, and snow 
were masked according to the CFmask algorithm (Zhu et al., 2015). Corrupted pixels, defined 
by at least one ‘NoData’ score in the spectral bands, were also removed (Stumpf et al., 2018). 
The Normalized Difference Vegetation Index (NDVI; Eq. 1; Rouse et al., 1974) was calculated 
for each scene, serving as a proxy for plant biomass (Liu et al., 2017; Schweiger et al., 2015; 
Weber et al., 2018).

									   (Eq. 1)

The NDVI data were aggregated to a stack of median composite images, which establish 
pixelwise and spatially harmonized time series. The time series aggregation was optimized 
to cover as much of the growth period and study area as possible, and to provide an accurate 
temporal match between the composite periods and vegetation status. Accordingly, the most 
adequate time series stack was selected from a pool of iteratively aggregated time series 
stacks following the optimization criteria i) temporal extent and resolution, ii) balanced 
time step intervals and composite periods, and iii) spatial coverage. Moreover, time series 
with more than three missing values or with at least two consecutive missing values were 
excluded from the analysis. Missing values for the remaining time series were imputed using 
cubic spline interpolation (Wolberg, 1999). The final NDVI time series ran from 16 March 
to 24 September of 2015 in 14 time steps, with composite periods between 3 to 9 days, time 
step intervals between 5 and 13 days, and a grassland area coverage of 89% (Figures 1 and 2). 
The scenes were selected and processed using the computing platform Google Earth Engine 
API (Gorelick et al., 2017). Data aggregation for the final NDVI time series and imputation of 
missing values was processed using the R-packages “zoo” and “raster” (Hijmans, 2017; Zeileis 
et al., 2018). 

NDV I =
NIR−Red

NIR +Red
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Terrain data

We acquired a digital elevation model (Elev) and derived the slope (Slope) with a spatial 
resolution of 25 m x 25 m. The elevation model is based on interpolating digitized terrain 
elements and contains mean errors of 1.5-3 m (SwissTopo, 2018). The slope was calculated 
according to the algorithm by Horn (1981), which applies 3 x 3 pixel window and is particularly 
suitable for rough surfaces. The terrain grids were resampled based on bilinear interpolation 
to a raster cell size of 30 m x 30 m to fit the spatial resolution and extent of the spectral time 
series data. Terrain data were processed using the R-packages “raster” and “base” (Hijmans et 
al., 2016; R Core Team, 2016; Table 1).

Table 1. Summary statistics for the terrain variables elevation and slope (Min: Minimum; Q1: 
25%-quartile; Q3: 75%-quartile; Max: Maximum; SD: Standard deviation).

Min Q1 Median Mean Q3 Max SD

Elevation (Elev) [m] 388 556 693 712 840 1400 191

Slope[°] 0 4.1 8.2 9.6 13.6 33.5 6.9

Cantonal grassland use data

We obtained georeferenced grassland use data, which determine the payment of agricultural 
subsidies for the canton of Berne for 2015 (Figure 1; LANAT, 2018). The data include two 
classes of conventional grassland use (‘Meadow’ and ‘Pasture’; see Figure 1) and two classes of 
biodiversity promotion areas (‘Meadow BPA’ and ‘Pasture BPA’; see Figure 1). These land use 
classes are defined in terms of management practices related to grazing and mowing, as well 
as related to the application of farmyard manure and plant protection agents. The Meadow 
class represents land subject to at least one mowing event without further restrictions. 
The Meadow BPA class contains land subject to at least one mowing event after 15 June, 
1 July, or 15 July, depending on elevation and associated growth period. While grazing is 
permitted after 1 September, the application of farmyard manure and plant protection agents 
is prohibited. The Pasture class is confined to grazing as dominant management practice 
without further restrictions. The Pasture BPA class represents land dominated by grazing, 
while the application of manure and plant protection agents is prohibited. All land use units 
< 1 ha were excluded for the analysis to ensure a match with the spatial resolution of the 
spectral and terrain data (Table 2; AGRIDEA, 2018, SFA, 2018).
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Table 2. Summary area statistics for the grassland use units of the canton of Berne according to grass-
land management classes in 2015 (Min: Minimum; Q1: 25%-quartile; Q3: 75%-quartile; Max: Maxi-
mum; SD: Standard deviation; BPA: Biodiversity promotion area).

Min Q1 Median Mean Q3 Max SD Total

Meadow [ha] 1 1.3 1.8 2.3 2.7 33.1 1.7 40,702

Meadow BPA [ha] 1 1.1 1.4 1.6 1.8 21.9 1 3,933

Pasture [ha] 1 1.3 1.7 2.4 2.6 40.5 2.1 20,659

Pasture BPA [ha] 1 1.3 1.7 2.4 2.6 22.5 1.9 5,723

Subregional grassland use data

We also compiled semi-quantitative management information for three contrasting 
grassland-dominated subregions in the cantons of Lucerne, Zurich, and Jura based on the 
Swiss National Farm Census and other published data. Each subregion was randomly selected 
within the cantons of interest, covering a total area of 2.3 km x 2.3 km of which at least 
50% are managed grasslands. The Swiss National Farm Census is the main instrument for 
administering direct payment schemes from the Swiss Federal Agency for Agriculture and 
includes annual data on livestock units (LSU) at farm level (AGIS, 2015; FOAG, 2018; Gärtner 
et al., 2013). In the Swiss context, LSU indicates use intensity of animal farming systems, since 
it is related to management practices such as grazing and mowing frequencies and organic 
fertilizer inputs (FOAG, 2018; Giménez et al., 2017). The livestock density index, defined as the 
ratio of livestock units to grassland area, was calculated using the livestock data for the farms 
in each subregion and served as indicator for use intensity. The mean mowing frequency and 
dominant management practice for each subregion were determined from published data. The 
grassland of the subregion in Lucerne (LU) is predominantly managed by intensive mowing 
and high application rates of farmyard manure (Liebisch, 2011). Grassland management of 
the subregion in Zurich (ZU) is characterized by mowing and grazing in varying intensities, 
and by different manure application rates (Giménez et al., 2017). Grasslands in the subregion 
of Jura (JU) are predominantly managed by grazing in low to moderate intensities (Table 3; 
Figure 1; Chételat et al., 2013; Masé, 2005).

Table 3. Grassland management characterization of subregions in the cantons Lucerne (LU), Zurich 
(ZU), and Jura (JU) in terms of the dominant practice, mowing frequency in 2014, and the livestock 
density index in 2015 (LSU: livestock unit).

Dominant practice [-] Mowing frequency [-] Livestock density index
 [LSU*ha-1]

LU Mowing > 5 1.87

ZU Mowing/Grazing 2 - 5 1.36

JU Grazing - 0.94
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Vegetation data 

We acquired vegetation plot data on species occurrence from the Swiss Biodiversity 
Monitoring Network (BDM), which spans a 6 km x 4 km sampling grid across Switzerland 
(BDM, 2014, 2017). Data were obtained at circular plots of 10 m2 around the grid intersections 
(±5 cm) between 20 July and 20 September in 2012 to 2015. We identified a total of 120 sample 
plots that intersected spatially with the study area (Figure 1). 

The vegetation data is based on recording each identifiable vascular plant species within 
the sample plot. The data set includes species richness (SR) and the Landolt N indicator, 
which is similar to Ellenberg’s nutrient indicator but adapted for the Swiss biogeography 
(Ellenberg, 1974; Landolt, 2010). Landolt N values are an ordinally scaled quantification of the 
species` nutrient preferences, ranging from 1 to 5 with a higher value indicating an increased 
nutrient supply (Diekmann, 2003; Landolt, 2010; Pauler et al., 2019). The plotwise unweighted 
mean of the Landolt values (NLandolt) indicates the site specific nutrient availability or soil 
fertility (Bartelheimer and Poschlod, 2016; Duprè et al., 2009; Klaus et al., 2012). Based on 
the species record, we also calculated the unweighted mean indicator values for grassland 
utilization according to Briemle et al. (2002), indicating tolerance for mowing (MTBrie.) and 
grazing (GTBrie.). Values of MTBrie. and GTBrie. range between 1 and 9, corresponding to 
the range from least to most tolerant for mowing and grazing, respectively (Briemle et al., 
2002; Moog et al., 2002). 

Table 4. Summary statistics for the vegetation data (SR, NLandolt, MTBrie., GTBrie.: see Section 2.2.5; 
Min: Minimum; Q1: 25%-quartile; Q3: 75%-quartile; Max: Maximum; SD: Standard deviation).

Min Q1 Median Mean Q3 Max SD

SR [-] 12 21 26 26 30 44 7

NLandolt 3.1 3.5 3.7 3.6 3.8 4 0.2

GTBrie. 4.5 5.3 5.7 5.7 6.1 6.8 0.5

MTBrie. 5.6 6.8 7.1 7.0 7.3 7.7 0.4

Spatial monitoring of grassland management

Mapping management practice and use intensity

Grassland use intensity was spatially quantified from the pixelwise NDVI time series (see 
Section 2.2.1), described by the management frequency (Mfreq) and biomass productivity 
(BP). NDVI changes of a specific time series were used as local proxy for fluctuations in 
biomass (Flynn et al., 2008; Gao et al., 2013; Jiang et al., 2014). A loss of biomass greater 
than a threshold value q was deemed to be land use induced, and therefore identified as a 
management event (Kennedy et al., 2010; Sulla-Menashe, 2014). Based on the probability 
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density function of all NDVI changes across the time series, q was specified for the probability 
p = 0.01 using the quantile-function of the R-package “stats” (Hyndman and Fan, 1996; R 
Core Team, 2016). Subsequently, Mfreq was defined as the count of management events for 
each time series, while BP was defined as the accumulated absolute NDVI changes in the 
management events (Eq. 2 and 3).

(Eq. 2)

(Eq. 3)

where K is the time series (i = 1,2,…,13), NDVI is the NDVI value (Eq. 1), and q is the threshold 
to ensure human interference for a biomass loss (q = 0.02). The variables Mfreq and BP were 
calculated using the R-package “base” and “stats” (R Core Team, 2016).

We mapped GM classes as a combination of dominant management practice (grazing vs. 
mowing) and use intensity, applying a stepwise classification and clustering approach based 
on Mfreq and BP. First, the study area was sub-divided into three initial grassland classes 
using the categorization of use intensity for Swiss grassland, Mfreq <= 2, 3 <= Mfreq <= 
4, and Mfreq >= 5 (PRIF, 2017). Second, unsupervised Kmeans clustering for each initial 
grassland class was performed using BP to identify areas dominated by grazing and mowing. 
Grazing areas are characterized by low BP values and gradually changing NDVI profiles, 
while mowing areas show higher BP values and abrupt changes in the NDVI profile (Dusseux 
et al., 2014a, b; Fang et al., 2015; Taugourdeau et al., 2013; Weber et al., 2018). Therefore, the six 
GM classes were intended to describe gradual changes in use intensity for areas dominated 
by grazing (“Pasturelow”, “Pasturemoderate”, “Pasturehigh”), and for areas dominated by 
mowing (“Meadowlow”, “Meadowmoderate”, “Meadowhigh”). The Kmeans clustering was 
performed using the Hartigan-Wong implementation of the R-package “stats” (Hartigan and 
Wong, 1979; R Core Team, 2016).

Evaluation of grassland management classes

The adequacy of the estimated GM classes was assessed using different approaches and 
independent datasets.

First, we evaluated the GM classes by considering the statistical conformity with established 
change patterns of NDVI profiles for grassland. Meadows are predominantly characterized by 
bimodal NDVI profiles and increased BP values compared to pastures with mainly unimodal 
profiles. High intensity grasslands have bimodal NDVI profiles with increased variability, 
Mfreq, and BP compared to lower intensity grasslands with flattened or unimodal NDVI 
profiles (Dusseux et al., 2014b; Estel et al., 2015; Taugourdeau et al., 2013; Weber et al., 2018). 
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We compared the GM classes based on the mean NDVI profile changes for each class, and 
based on the absolute NDVI profile changes from a randomly selected location within each 
class. Descriptive statistics, Mfreq, and BP were used as comparative measures.

Second, we evaluated the GM classes in relation to topographical conditions, which 
largely determine use intensity of grasslands. Increasing elevation is related to decreasing 
mean temperature, and therefore to a shorter growth period, which involves a decrease 
in use intensity (Lamarque et al., 2011; Weber et al., 2018; Zeeman et al., 2010). Similarly, 
increasing slope is related to decreasing use intensity, because of constraints on access for 
mowing machinery and livestock to a lesser extent (Peter et al., 2008; Tasser and Tappeiner, 
2002; Weber et al., 2018). We analyzed these relationships between GM and topography by 
comparing the GM classes based on the classwise distributions of elevation and slope (see 
Section 2.2.2; Table 1).

Third, we evaluated the GM classes using the georeferenced grassland use data for the 
canton of Berne in 2015 (see Section 2.2.3; Table 2). The conventional cantonal grassland use 
classes (“Meadow”, “Pasture”) are characterized by higher variability and use intensity in 
terms of Mfreq and fertilizer inputs compared to the biodiversity promotion classes (“Meadow 
BPA”, “Pasture BPA”; AGRIDEA, 2018; SFA, 2018). We assessed the representativeness of the 
GM classes according to the cantonal grassland classes by identifying the areal proportions 
of the GM classes within each cantonal grassland class.

Fourth, we evaluated the GM classes based on semi-quantitative GM information from 
the three subregions LU, ZH, and JU (see Section 2.2.4; Table 3). Use intensity decreased and 
the dominance of grazing increased in the order LU, ZH, JU. We assessed how well the GM 
classes match GM in the three subregions. Thus, we determined the areal proportion of each 
GM class within each subregion.

Fifth, we evaluated the GM classes by a comparison to established management related 
change patterns of SR, NLandolt, MTBrie., and GTBrie. (see Section 2.2.5; Table 4). In this 
context, SR decreases with higher grassland use intensity (Allan et al., 2015; Gossner et al., 
2016; Socher et al. 2013). Moreover, NLandolt, MTBrie., and GTBrie. increases with higher 
use intensity (Blüthgen et al., 2012; Peter et al., 2008; Weber et al., 2018). We investigated the 
relationships between GM and grassland vegetation by comparing the GM classes based on 
the classwise distributions of SR, NLandolt, MTBrie, GTBrie.

Classwise outliers of the respective evaluation data, defined by a distance of two standard 
deviations from the mean, were removed for the analyses. Tukey`s HSD tests were used to 
analyze the difference of classwise distributions with respect to BP and topography. Statistical 
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calculations were performed using the R-package “base” and “stats”, while the R-packages 
“raster” and “rgdal” were applied for geospatial processing (Hijmans et al., 2016; Bivand et 
al., 2016; R Core Team, 2016). 

Results

Grassland management classes and NDVI patterns

The NDVI profiles of the GM classes show statistical conformity with established change 
patterns for grassland (Figure 3a, d; see Section 2.2.1 and 2.3.2). The mean NDVI profile changes 
for all GM classes show bimodal temporal distributions, while use intensities are higher for 
meadows than for pastures with an increase across the classwise intensity graduation (“low”, 
“moderate”, “high”). The standard deviations (SDs) of the pasture classes increase in the 
order “Pasturelow” (SD = 0.046), Pasturemoderate (SD = 0.049), Pasturehigh (SD = 0.50). The 
profiles of the meadow classes are consistently more variable, but SDs increase in the same 
order, Meadowlow (SD = 0.056), Meadowmoderate (SD = 0.062), “Meadowhigh” (SD = 0.065). 
The median NDVI of the classwise profiles (Mmed) varies in the same way as the variability 
increases, with Mmed being 0.04 for Pasturelow, 0.056 for Pasturemoderate, 0.067 for 
Pasturehigh, 0.078 for Meadowlow, 0.103 for Meadowmoderate, and 0.113 for Meadowhigh. 
For all the GM classes, management was more frequent in May, July, and less pronounced 
in September (Figure 3a; Appendix A-B). The classwise profiles of the absolute changes in 
NDVI for the randomly selected sites show similar but less distinct patterns compared with 
the mean NDVI profile changes (Figure 3b-c; Appendix B-C). The median BP of the GM 
classes indicates higher use intensity for meadows than for pastures and an increase from 
low to high intensity grades. The median BP values are 0.13 to 0.253 and 0.366 for Pasturelow, 
Pasturemoderate, and Pasturehigh, respectively, and 0.34, 0.501, and 0.619 for Meadowlow, 
Meadowmoderate, and Meadowhigh (Figure 3d; Appendix C).

Grassland management classes and topography

The topography of the GM classes corresponds to established patterns of grassland use 
intensity (Figure 4a; Table 1; see Section 2.2.2 and 2.3.2). Slopes are lower for meadows than 
pastures, and decrease as use intensity increases. The median slopes are 12° for Pasturelow, 10° 
for Pasturemoderate, 9° for Pasturehigh, 8° for Meadowlow, 7° for Meadowmoderate, and 6° 
for Meadowhigh. Elevations decrease as the use intensity increases and are slightly lower for 
meadows than pastures (Figure 4b). The median elevations are 748 m for Pasturelow, 720 m for 
Pasturemoderate, 667 m for Pasturehigh, 712 m for Meadowlow, 687 m for Meadowmoderate, 
and 649 m for Meadowhigh (Appendix D).
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Fig. 3. The grassland management classes described by temporal profiles of mean NDVI changes (a), 
by temporal profiles of NDVI changes from randomly selected locations (in situ; b-c), and related 
to the underlying biomass productivity (BP) and management frequency (Mfreq, d). Significant dif-
ferences between the classwise distributions (Tukey HSD, P < 0.05) are indicated by different letters 
above the boxplots.
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Fig. 4. (Left panel) Grassland management classes compared to slope as proxy for land use constraints 
(a), and to elevation as proxy for the length of the growth period (b). Significant differences between 
the classwise distributions (Tukey HSD, P < 0.05) are indicated by different letters above the boxplots.

Fig. 5. (Right panel) The areal proportions of the grassland management classes within the cantonal 
land use classes of Berne (Meadow, Meadow BPA, Pasture, Pasture BPA; BPA: Biodiversity promotion 
area).

Grassland management classes and cantonal grassland use

The GM classes spatially match the main patterns of the grassland use data for the canton 
of Berne (Figure 5; Table 2; see Section 2.2.3 and 2.3.2). For example, 85% and 79% of the 
cantonal meadow classes Meadow and Meadow BPA, respectively, are covered by the GM 
meadow classes (Meadowlow, Meadowmoderate, Meadowhigh). The high intensity GM 
meadow class (Meadowhigh) covers 11% less of the biodiversity promoting meadow class 
(Meadow BPA) than the conventional meadow class (Meadow). The cantonal pasture classes 
Pasture and Pasture BPA are covered by 93% and 100%, respectively, by the GM pasture 
classes (Pasturelow, Pasturemoderate, Pasturehigh). The GM class Pasturelow covers 10% 
more of the biodiversity promoting pasture class (Pasture BPA) than the conventional pasture 
class (Pasture; Appendix E).
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Grassland management classes and subregional grassland use

The GM classes capture the main GM patterns of the subregions LU, ZH, and JU (Figure 
6; Table 3; see Section 2.2.4 and 2.3.2). With an increase of mowing frequency and livestock 
density in the order JU, ZH, LU, the areal proportions of GM meadow classes increase, 
while the areal proportions of GM pasture classes show a contrary trend. For example, JU 
is dominated by low intensity grazing (livestock density index: 0.94 LSU*ha-1), which is 
reproduced by the GM pasture classes with an areal proportion of 73% and prevailing low to 
moderate intensities (Pasturelow: 13%, Pasturemoderate: 49%, Pasturehigh: 11%). The mixture 
of mowing and grazing at different intensities in ZH (mowing frequency: 2-5; livestock density 
index: 1.36 LSU*ha-1) is reproduced by the GM classes with high areal proportions of moderate 
to high intensity GM pasture and meadow classes (Pasturemoderate: 31%, Pasturehigh: 13%, 
Meadowmoderate: 29%, Meadowhigh: 15%). The LU subregion is dominated by high intensity 
mowing (mowing frequency: >5; livestock density index: 1.87 LSU*ha-1), which is reproduced 
by GM meadow classes of moderate to high use intensity with an areal proportion of 74% 
(Meadowmoderate: 37%, Meadowhigh: 37%; Appendix A).

Fig. 6. Mapped grassland management classes and their areal proportions within three subregions of 
characteristic grassland management in Switzerland (JU: Jura, LU: Lucerne, ZH: Zurich).
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Grassland management classes and vegetation patterns

Changes of plotdata-SR, -NLandolt, -GTBrie., and -MTBrie. across the GM classes 
correspond to established patterns related to grassland use intensity (Figure 7; Table 4; see 
Section 2.2.5 and 2.3.2). SR is higher for pastures than meadows, and decreases as use intensity 
increases. The classwise median SR values are 33 for Pasturelow, 28 for Pasturemoderate, 26 for 
Pasturehigh, 27 for Meadowlow, 23 for Meadowmoderate, and 21 for Meadowhigh. NLandolt 
is lower for pastures than meadows, and increases with higher use intensity, confirming the 
well-known negative correlation with SR (Appendix F, G). The classwise increase of NLandolt 
is more pronounced for meadows. The median NLandolt values are 3.53 for Pasturelow, 3.53 
for Pasturemoderate, 3.56 for Pasturehigh, 3.61 for Meadowlow, 3.67 for Meadowmoderate, 
and 3.74 for Meadowhigh. Similar trends are observed for GTBrie. and MTBrie.. The 
classwise median GTBrie. values are 5.34 for Pasturelow, 5.7 for Pasturemoderate, and 5.86 
for Pasturehigh, while the median MTBrie. values range from 6.79 for Meadowlow, 7.14 for 
Meadowmoderate to 7.15 for Meadowhigh (Appendix F, G).

Fig. 7. Grassland management classes compared to species richness (SR), to Landolt N (NLandolt), to 
grazing tolerance (GTBrie.), and to mowing tolerance (MTBrie.). Significant differences between the 
classwise distributions (Tukey HSD, P < 0.05) are indicated by different letters above the boxplots.
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Discussion

Mapping grassland management

Mapping GM from multi-temporal satellite imagery is often confined to a spatial 
representation of use intensity, disregarding the heterogeneity of GM practices (Green et 
al., 2016; Kolecka et al., 2018; Li et al., 2017). However, GM practices alternate spatially and 
often involve combinations of grazing and mowing at different intensities (Asam et al., 2015; 
Jeangros and Thomet, 2004). Integrating GM practices and use intensity is therefore highly 
relevant when monitoring spatial patterns of GM (Erb et al., 2013; Kuemmerle et al., 2013). In 
this study, we mapped the dominance of mowing and grazing, combined with associated use 
intensities exemplarily for Swiss grasslands in 2015. Pixelwise spectral time series were used 
to estimate Mfreq and BP in order to subsequently define GM according to six classes using a 
stepwise classification and clustering approach (Figure 3; see Section 2.3.1). A similar method 
was previously applied for the Swiss case by Giménez et al. (2017), who mapped mowing 
frequencies and grazing intensities for an area of 67 km2 based on RapidEye data. However, 
their approach was limited to spectral time series of only five time steps and a fragmentary 
coverage of the growth period. The pixel resolution of 5 m x 5 m allowed to capture small 
structured land use patterns, but the commercial nature and a relatively low spatial coverage 
of RapidEye data qualifies particularly for mapping small areas. Other studies used MODIS 
imagery (Moderate Resolution Imaging Spectroradiometer), which are available at a daily 
basis and a spatial resolution of 250 m x 250 m since 2002, and therefore mainly qualify to 
map large areas with homogenous spatio-temporal landscape structures (Estel et al., 2018; 
Green et al., 2016; Li et al., 2017). Monitoring exercises targeting current and future GM 
benefit from the use of Sentinel imagery, which are characterized by a revisit of 3 to 10 days 
and a spatial resolution of 10 m x 10 m, available since 2017 (Claverie et al., 2018; Griffiths et 
al., 2019; Kolecka et al., 2018). We used spectral data from the Landsat archive, available since 
1984 and allowing to annually cover large areas with dense time series for timely capturing 
land use activities at national scale and for most of the growth period. Our Landsat time 
series for 2015 covers the growth period in 14 time steps and the grassland area by 89% at a 
spatial resolution of 30 m x 30 m (Figure 1, 2). 

GM classes were determined by identifying management related patterns in the temporal 
profiles of spectral time series (Ali et al., 2016). The profiles describe dynamics of biophysical 
vegetation properties based on NDVI as indicator for plant biomass (Dusseux et al., 2014b; 
Psomas et al., 2011). The strength of the NDVI-biomass relationship varies spatially, 
determined by local site characteristics with respect to plant species composition, vegetation 
growth stage, topography, soil exposure, and dense biomass (Garroutte et al., 2016; Metzger 
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et al., 2016; Porter et al., 2014). However, NDVI has been approved to be a stable and robust 
biomass proxy in various landscapes (Ali et al., 2016; Nestola et al., 2016; Zhang et al., 2003). 
In the present study, we used the NDVI because it is resistant to spectral noise, caused by 
topography and cloud shadows, particularly for rugged terrain (Huete et al., 2002). Moreover, 
remote sensing based NDVI profiles have been approved to be a reliable data source to 
describe grassland management in the Swiss context. Kolecka et al. (2018) successfully mapped 
mowing frequencies in the northern Swiss canton Aargau (1403 km2) based on NDVI profiles 
from Sentinel imagery. Weber et al. (2018) showed the adequacy of Landsat NDVI profiles to 
discriminate grassland management practice and use intensity at 3000 sites distributed across 
Switzerland and covering ~240 km2.

Validity of the grassland management classes

The GM classes were evaluated with respect to typical NDVI profiles for GM, topographical 
site conditions related to GM, cantonal grassland use data, and semi-quantitative grassland 
use data from three subregions. Moreover, the GM classes were evaluated using established 
management related change patterns of species richness (SR), and vegetation based indicator 
values for nutrient supply (NLandolt) and management tolerance (MTBrie., GTBrie.; see 
Section 2.3.2).

Temporal NDVI profiles of the proposed GM classes are statistically distinct, while showing 
higher variabilities, BPs, and Mfreq, as well as enhanced bimodal distributions for meadows 
than for pastures and from low to high use intensity. Thus, the GM classes match typical 
management related NDVI patterns for grassland systems (Figure 3; Appendix B-C; Dusseux 
et al., 2014a, b; Fang et al., 2015; Taugourdeau et al., 2013; Weber et al., 2018).

Elevations and slopes of the GM classes are lower for meadows than pastures and decrease 
as the use intensity increases. These patterns indicate the validity of the GM classes, because 
with increasing elevation BP is incrementally limited due to a lower mean temperature 
and shorter growth period (Figure 4b; Schermer et al., 2016; Weber et al., 2018; Zeeman 
et al., 2010). In addition, increasing slopes hamper the use of machinery for GM, which is 
associated with decreased use intensity (Figure 4a; Appendix D; Lamarque et al., 2011; Peter 
et al., 2008; Tasser and Tappeiner, 2002). The large overlapping ranges in the elevation and 
slopes of the GM classes for the entire Swiss grassland < 1,400 m (a.s.l.) could be attributed to 
typical spatial variability in BP, caused by numerous interrelated factors, such as topography, 
climate, soil quality, and species composition (Porqueddu et al., 2016).

The GM classes are consistent in terms of spatial and contextual detail with georeferenced 
data on grassland use for the canton of Berne. The conformity is very high for pastures, but 
lower for meadows, which could be explained by grazing events that are possible according 
to the class definition of the cantonal land use data (Figure 5; Appendix E; AGRIDEA, 2018, 
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SFA, 2018). This discrepancy in class definitions also explains the relatively small deviations 
between the GM classes and the cantonal data comparing conventional and BPA meadows 
and pastures, respectively.

Regional differences in GM of the subregions in the cantons Lucerne (LU), Zurich (ZH), 
and Jura (JU) are realistically reflected in the GM classes. For instance, LU with a long growth 
period, high livestock densities, and mowing frequencies is largely characterized by moderate 
to high intensity GM meadow classes. In contrast, ZH and JU with shorter growth periods, 
lower livestock densities, but predominantly managed by grazing are characterized by larger 
proportions of low to moderate GM pasture classes (Figure 6; Appendix A; Chételat et al., 
2013; Giménez et al., 2017; Masé, 2005). 

Our results reveal trends of decreasing SR, as well as increasing NLandolt, MTBrie., and 
GTBrie. along the increase of use intensity. These trends reproduce established change 
patterns of species diversity, nutrient availability, and management tolerance on agricultural 
grasslands (Blüthgen et al., 2012; Peter et al., 2008; Weber et al., 2018). Some of the difference 
between pasture and meadow GM classes may also stem from the geographical distribution 
of the two classes, e.g. more pastures at steeper slopes and higher elevations. The large 
overlapping ranges in species based variables (SR, NLandolt, MTBrie., GTBrie.) of the GM 
classes could be associated to relatively low SR ranges for pastures of the used data, as well 
as to the limited and imbalanced number observations n across the GM classes (Figure 7; 
Appendix F-G; SRPastures: 17-44; SRMeadows: 12-39; nPastures: 6-29; nMeadows: 4-38). 
Previous studies found SR ranges of 24-64 for pastures and 10-36 for meadows with different 
grazing and mowing frequencies (Kleijn and Müller-Schärer, 2006; Liebisch et al., 2013, Pauler 
et al., 2019). However, observed differences between meadows and pastures, and vegetation 
trends along the GM intensity gradient, approve the GM classification to be robust. The 
generally large variability of SR observed in the GM classes is likely an effect of additional 
factors such as nutrient management or regional differences in species abundance among 
others.

Conclusion

The developed spatial monitoring tool for detecting grassland management systems 
discriminates mowing and grazing practices, as well as associated use intensities for Swiss 
grasslands. The tool is based on high resolution spectral time series derived from freely 
available satellite images with adequate spatial resolution. This data source allows small 
structured agroecosystems and frequent management activities to be captured at the national 
scale and on an annual basis for future and retrospective studies. We applied the grassland 
monitoring tool exemplarily for the growth period of the year 2015. The plausibility of the 
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tool was approved by an evaluation scheme that includes regional land use data, as well as 
established management related patterns of NDVI phenology, topography and vegetation. 
The land use information provided by the grassland monitoring tool may help to establish a 
balance between agricultural production and the maintenance of ecosystem functioning at 
the landscape scale.
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