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Abstract

Cancer immunotherapy is a treatment option that involves or uses components of a patient’s
immune system. Today, it is heading towards becoming an integral part of treatment plans
together with chemotherapy, surgery, and radiotherapy. Personalized epitope-based vaccines
(EVs) serve as one strategy that is truly personalized. Each patient possesses a distinct immune
system, and each tumor is unique, rendering the design of a potent vaccine challenging and
dependent on the patient and the tumor. The potency of a vaccine is reliant on the ability
of its constituent epitopes — short, immunogenic antigen fragments — to trigger an immune
response. To assess this ability, one has to take into account the individuality of the immune
system, among others conditioned by the variability of the human leukocyte antigen (HLA)
gene cluster. Determining the HLA genotype with traditional experimental techniques can be
time- and cost-intensive. We proposed a novel HLA genotyping algorithm based on integer
linear programming that is independent of dedicated data generation for the sole purpose of
HLA typing. On publicly available next-generation sequencing (NGS) data, our method outper-
formed previously published approaches. HLA binding is a prerequisite for T-cell recognition,
and precise prediction algorithms exist. However, this information is not sufficient to assess
the immunogenic potential of a peptide. To induce an immune response, reactive T-cell clones
with receptors specific for a peptide-HLA complex have to be present. We suggested a method
for the prediction of immunogenicity that includes peripheral tolerance models, based on gut
microbiome data, in addition to central tolerance, previously shown to increase performance.
The comparison to a previously published method suggests that the incorporation of gut mi-
crobiome data and HLA-binding stability estimates do not enhance prediction performance.
High-throughput sequencing provides the basis for the design of personalized EVs. Through
genome and transcriptome sequencing of tumor and matched non-malignant tissue samples,
cancer-specific mutations can be identified, which can be further validated using other tech-
nologies such as mass spectrometry (MS). Multi-omics approaches can result in the acquisition
of several hundreds of gigabytes of data. Handling and analysis of such data usually require
data management solutions and high-performance computing (HPC) infrastructures. We de-
veloped the web-based platform gPortal for data-driven biomedical research that allows users

to manage and analyze quantitative biological data intuitively. To emphasize the advantages
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of our data-driven approach with an integrated workflow system, we conducted a comparison
to Galaxy. Building on qPortal, we implemented the web-based platform iVacPortal for the
design of personalized EVs to facilitate data management and data analysis in such projects.
Further, we applied the implemented methods through iVacPortal in two studies of two distinct
cancer entities, indicating the added value of our platform for the assessment of personalized

EV candidates and alternative targets for cancer immunotherapy.
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Zusammenfassung

Immuntherapie gegen Krebs, eine Therapieform, die Bestandteile des Immunsystems eines
Patienten einbezieht oder verwendet, ist auf dem Weg, ein integraler Bestandteil von Behand-
lungspldanen zusammen mit Chemotherapie, Chirurgie und Strahlentherapie zu werden. Perso-
nalisierte epitopbasierte Impfstoffe stellen dabei eine Strategie dar, die wahrlich personalisiert
ist. Die Tatsache, dass jeder Patient {iber ein individuelles Immunsystem verfiigt und dariiber-
hinaus jeder Tumor einzigartig ist, machen den Entwurf wirksamer Impfstoffe anspruchsvoll
und sowohl abhéngig von dem Patienten als auch von dem vorhandenen Tumor. Die Wirksam-
keit eines Impfstoffes ist dabei bedingt durch die Fihigkeit der enthaltenen Epitope, kurzer
immunogener Antigen-Fragmente, eine Immunantwort auszulésen. Um diese Fiahigkeit ab-
schétzen zu konnen, ist es notwendig, die Individualitdt des Immunsystem zu beriicksichtigen,
die unter anderem durch die Variabilitdt des humanen Leukozyten-Antigen-System (HLA) be-
dingt ist. Die Bestimmung des HLA-Genotypes durch herkommliche experimentelle Methoden
kann zeit- und kostenintensiv sein. Um dieses Problem zu l6sen, stellen wir einen neuen Algo-
rithmus vor, basierend auf ganzzahliger linearer Optimierung, der nicht abhéngig von einer
speziell fiir die HLA-Typisierung vorgesehenen Datengenerierung ist. Wir zeigen basierend
auf offentlich zugénglichen Next-Generation-Sequencing (NGS) Daten, dass unsere Metho-
de bereits veroffentlichte Ansitze libertrifft. Die Bindung eines Peptids an ein HLA-Molekiil
ist eine Voraussetzung fiir die Erkennung durch T-Zellen. Hierfiir existieren genaue Vorher-
sagealgorithmen. Diese Information ist allerdings nicht ausreichend, um die Immunogenitat
eines Peptides abschitzen zu konnen, da fiir das Hervorrufen einer Immunantwort reaktive
T-Zellen mit einem spezifischen Rezeptor fiir den Peptid-HLA-Komplex vorhanden sein miis-
sen. In dieser Arbeit stellen wir daher eine Methode zur Vorhersage der Immunogenitét vor,
welche die Modellierung der peripheren Toleranz, basierend auf Darmmikrobiom-Daten in
Ergianzung zu der zentralen Toleranz beinhaltet, fiir die bereits eine Steigerung der Vorhersage-
qualitdt gezeigt wurde. Der Vergleich mit einer bereits publizierten Methode ldsst den Schluss
zu, dass die Verwendung von Darmmikrobiom-Daten und HLA-Bindungsstabilitdtsdaten zu
keiner Verbesserung der Vorhersagegenauigkeit fiihrt.

Hochdurchsatzsequenzierung ist die Grundlage fiir die Entwicklung von personalisierten

epitop-basierten Impfstoffen. Durch die Sequenzierung von Genomen und Transkriptomen von
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Tumorproben und nicht-malignen Gewebeproben konnen tumorspezifische Varianten identifi-
ziert und durch weitere Technologien wie Massenspektrometrie (MS) validiert werden. Multi-
Omik Ansétze konnen dabei zur Generierung von hunderten Gigabyte an Daten fiihren. Die
Handhabung und Analyse dieser Daten ist hdufig nur mit Datenmanagement-Lésungen und
High-Performance-Computing (HPC)-Infrastrukturen moéglich. Wir prasentieren die Webplatt-
form qPortal fiir datenfokussierte biomedizinische Forschung; diese stellt den Benutzern leicht
nutzbare Moglichkeiten fiir das Management und die Analyse von Daten aus dem Bereich
der quantitativen Biologie zur Verfiigung. Die Vorteile unseres datenfokussierten Ansatzes
in Verbindung mit einem integrierten Workflowsystem werden dabei in einem Vergleich zu
Galaxy deutlich. Um Datenmanagement und Analysen in Projekten zur Entwicklung von per-
sonalisierten epitop-basierten Impfstoffen zu erleichtern, haben wir basierend auf qPortal die
webbasierte Plattform iVacPortal entwickelt. Die dabei implementierten Methoden haben wir
des Weiteren durch iVacPortal in zwei Studien zu zwei verschiedenen Tumorentititen ange-
wendet und zeigen dabei den Mehrwert unserer Plattform im Hinblick auf die Beurteilung von
Impfstoffkandidaten und alternativen Therapiezielen fiir die Krebsimmuntherapie.
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Chapter 1

Introduction

Cancer is one of the leading causes of death worldwide. In 2018, an estimated 18.1 million
new cases of cancer and 9.6 million cancer deaths were reported™. The complexity with respect
to development and progression is one of the major challenges in cancer research. Loss of
growth control is only one characteristic of malignant tumors. In 2000, Hanahan & Weinberg
proposed six common traits, defined as hallmarks, that drive the transformation from normal to
cancer cells?. Those alterations in cell physiology are supposed to be shared by all cancer types
and responsible for the development of the corresponding genotype. However, as pointed
out by Lazebnik in 2010, these alterations are not unique for malignant tumors but might
also be present in benign tumors. The unique trait is the invasion of surrounding healthy
tissue and metastasis, which is one of the distinct characteristic features of cancer?. Processes
that are beneficial for disease progression are mainly driven by the tendency of tumors to
acquire thousands of somatic mutations, as well as clonal heterogeneity. Unfortunately, these
fundamental properties of cancer cause natural progression and therapeutic resistance due to
clonal evolution and outgrowth of subclones®2. Despite the advances in cancer diagnostics,
there is still a lack of in-depth knowledge of most of the underlying mechanisms attributed to
the complexity of the disease. In spite of the incomplete understanding, since the last decades
of the 20 century, new treatments were established. While the commencements of oncology
were solely based on surgery, radiotherapy and chemotherapy opened up new frontiers in
the treatment of cancer, and combination therapies are used efficiently Modern oncology
includes three main sub-areas, which are surgical oncology, radiation oncology, and medical
oncology. Besides chemotherapy, medical oncology makes use of therapeutic approaches, such
as hormonal therapy and immunotherapy. Notably, cancer immunotherapy has been recently
recognized as one of the most promising approaches in cancer treatment. The beginnings of
cancer immunotherapy go back to the 1990s. The development of therapeutic monoclonal
antibodies (mAbs) such as trastuzumab and rituximab and the approval of the latter by the

Food and Drug Administration (FDA) in 1997 was one of the milestones in the beginnings
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of immune-based approaches. The specificity of these drugs with respect to the targeted
cancer entities is indicative of a shift in cancer treatment approaches. Trastuzumab has been
developed for the treatment of HER2-positive breast cancer, while rituximab was developed
for chronic lymphocytic leukaemia (CLL) and non-Hodgkin lymphoma, targeting the protein
CD20. Until the end of the 20™ century, most of the anti-cancer drugs merely killed cancer
cells. Such cells were most of the time detected as rapidly dividing cells. Still, most of these
chemotherapeutic drugs kill not only cancer but also healthy cells. Such systemic therapies have
remained the foundation of modern cancer treatments resulting in severe side effects. However,
the overall conception in the field has changed from non-specific cytotoxic agents to highly
selective drugs targeting specific molecules and mechanisms. These targeted approaches show
lower toxicities and tend to be less prone to the development of resistance. Targeted therapies
act on molecular structures and pathways with essential importance for the development
and retention of tumors and therefore exploit vulnerabilities of the malignancy. Therapies
employ drugs as angiogenesis inhibitors, growth signal inhibitors, and apoptosis-inducing
agents. In contrast, immunotherapies intend to induce or enhance immune system modulated
mechanisms against the tumor. Today, immunotherapy complements conventional therapies,
such as surgery, chemotherapy, and radiotherapy.

Currently, cancer immunotherapy comprises several different treatment approaches. Non-
specific immunotherapies encompass agents, such as interferons and interleukins, which are
utilized to globally enhance immune effector functions. Another approach is the use of mAbs,
designed to specifically bind to a cancer-specific target. mAbs directly guided to operate on can-
cer cells can be either unmodified ('naked’), linked to chemotherapeutic drugs, or conjugated
with radioactive particles. Immune checkpoint inhibitors constitute another class of cancer im-
munotherapy drugs. The immune system regulates T cell-mediated immune responses through
specific proteins, so-called immune checkpoint molecules. Checkpoint inhibitors, mainly mAbs,
inhibit proteins used by cancer cells to escape immune-mediated destruction. Deactivating
signals on T cells are switched off, facilitating the killing of cancer cells. Concerning cancer vac-
cines — another cancer immunotherapy approach — one has to distinguish between prophylactic
and therapeutic vaccines. The latter is so far primarily of scientific interest in the targeted
treatment of cancer. Vaccines in a traditional sense, prophylactic vaccines are, in contrast,
administered to healthy individuals to induce immunity against certain bacteria and viruses to
protect them from infections.

In the last decades, the success of prophylactic vaccines has become even more critical
since infections by certain viruses were identified as a potential cause for the development
of cancer®. Several studies suggest that carcinogenic infections cause around 15 to 20% of
the global cancer burden”Z, Hepatitis B Virus (HBV) and Human Papillomavirus (HPV) were
identified to cause human cancer. Today, there are vaccines available against HPV4Y and HBV*H

which are highly effective in inducing protective immunity. Further, different strategies exist



for the treatment of cancer employing therapeutic vaccines. One approach uses ex vivo matured
T cells or dendritic cells (DCs) which are primed using tumor antigens and then administered
back to patients. Antigens can arise from different sources. Besides cellular therapies!412
proteins or peptides can be used as agents to induce or enhance anti-tumor immunity. Usually,
these vaccines are administered together with an adjuvant or an immune modulator and in-
clude either intact protein subunits or corresponding DNA or RNA encoding tumor-associated
antigens (TAAs). However, especially the identification of TAAs capable of inducing a potent
immune response has been proven difficult. Besides the fact, that antigens are highly variable
in their ability to leverage immunogenicity and immune modulatory mechanisms in tumor
environments, these agents are not universal. Possible antigens do not only differ between
cancer entities but also vary widely across patients even with the same tumor type?%. Due
to the heterogeneity of the somatic mutational landscape, tumor-associated agents should be
identified on a patient-specific level. Personalized epitope-based vaccines (EVs) are one example
of actively personalized immunotherapies. Here, one tries to identify patient-specific epitopes,
short, immunogenic antigen fragments. Epitopes are presented on major histocompatibility com-
plex (MHC) proteins and are capable of inducing T cell-mediated immunity. In humans, MHC
proteins are encoded by the highly polymorphic genes of the polygenic human leukocyte antigen
(HLA) region, located on chromosome six. In the context of cancer, epitopes can originate from
altered protein expression or non-synonymous mutations resulting in new protein sequences
and thus new epitopes, also referred to as neoepitopes'®. As T cell-mediated immunogenicity is
dependent on MHC binding, responses to epitope-based vaccines critically depend on the num-
ber of peptides presented by MHC molecules. Additionally, patient survival has been shown
to strongly correlate with the number of peptides triggering an immune response®1”, Since
the number of peptides that can be included in a vaccine is limited, the selection of epitopes
with the highest likelihood of success is critical. In the context of cancer immunotherapy, suc-
cess can be defined as a potent, broad and sustained peptide-specific immune response with a
minimal risk of autoimmunity. Therefore, epitopes derived from neoantigens, presumably not
present in non-malignant tissues, were recognized as an optimal choice in this respect. Further,
the number of neoepitopes are strong correlators of clinical response to immune checkpoint
inhibition!®, Due to the importance of identifying suitable vaccine targets, recent develop-
ments in instrumentation, sample processing, and bioinformatics have been used to leverage
target identification and characterization'?. In general, high-throughput technologies play an
ever-increasing role in cancer genomics, mainly driven by new technologies reducing costs and
turnaround times. State-of-the-art experimental techniques such as next-generation sequencing
(NGS) and proteomics are used to identify tumor markers, to assess the genetic background
of a patient or to determine somatic, tumor-specific variants of a tumor and therefore ulti-
mately lay the groundwork for the identification of patient-specific neoepitopes. The latter

usually consists of three main steps: Sequencing and identification of genetic alterations, HLA
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genotyping, and identification of potential neoepitopes employing HLA binding predictions
of mutation-carrying peptides followed by prioritization and selection of identified targets.
The first step typically includes sequencing of matched tumor and non-malignant tissue from
patients using exome or whole genome sequencing. Detection of somatic mutations is done
using somatic variant calling algorithms. At this time, various publicly available software pack-
ages exist?%"23, However, the concordance of the results among different approaches is rather
low?* due to events such as the admixture of tumor cells in the non-malignant sample and
vice versa, subclonal variants, copy number variations, or ploidy changes. Still, these methods
are essential for the identification of neoepitopes. Variants are usually annotated with gene
and transcript associations and incorporated into the respective transcript sequences. Those
sequences are then translated into the corresponding protein sequences. Immunoinformatic
framework solutions exist to solve these tasks efficiently?>2®. As the binding of epitopes to HLA
molecules is the most specific step in the antigen presenting pathway of the human immune
system, the design of personalized therapeutic vaccines highly depends on the availability
of a patient’s HLA genotype. In general, high-resolution HLA typing is essential for various
clinical applications. Today, most of the experimental protocols used for HLA genotyping are
sequence-based typing (SBT) protocols, including Sanger SBT, and more recently based on
NGS273L Hence, in silico HLA genotyping methods based on NGS data have been noticed
as an economical and efficient alternative and obtained acceptance in recent years. In silico
HLA typing methods are therefore an active area of research. Several methods®4*¢ differing in
used data types (exome, RNA, and whole-genome) and the resolution of predicted genotypes
exist. However, many approaches are based on data solely produced for HLA genotyping, or
do not provide sufficient accuracy for clinical application.

Therefore, we developed OptiType, a novel HLA genotyping algorithm based on integer
linear programming. OptiType does not depend on data specifically enriched for the HLA
gene cluster and can be applied to whole-genome sequencing (WGS), whole-exome sequencing
(WES), and whole-transcriptome sequencing (WTS) data. We show that OptiType generates
high-precision results at clinically relevant resolution (four digits), outperforming existing
computational approaches for HLA class I genes.

As outlined, immunogenicity is one of the primary factors to be considered for the selection
of neoepitope vaccine candidates. Traditionally, predicted HLA binding affinities are used
as immunogenicity estimates since immunogenicity prediction methods do not yet provide
acceptable precision for clinical application. Suggested methods incorporate metrics along the

antigen processing pathway in addition to HLA binding=/"*°

or use physicochemical properties
of target peptides®**2, We developed a machine learning approach that incorporates HLA
binding estimates in addition to a model for immunological tolerance as suggested earlier.
We extended this approach by integrating gut microbiome data to model peripheral tolerance,

shown to be affected by commensal microorganisms444>,



Although publicly available methods exist for the identification of suitable candidates
for personalized cancer vaccines, various hurdles impede their application within biomedical
projects. One problem is the vast amount of data generated by high-throughput experiments.
NGS data produced by state-of-the-art instruments are often in the range of terabytes per
patient. This trend is continuing with even more affordable and faster sequencing technolo-
gies. Additionally, more and more biomedical projects make use of multi-omics approaches
to assess hypotheses on multiple biological layers. Therefore, it is increasingly challenging
to manage the amounts of various data types, numerous patients, extracted tissues, and at
the same time record experimental variables and meta data. Despite the problems concern-
ing project and data management, the installation and application of computational methods
typically require at least some degree of expert knowledge. Besides, high-performance com-
puting (HPC) infrastructures are usually needed to analyze typical projects efficiently. Existing
approaches are trying to solve the mentioned problems by providing compute power, storage
resources, and easy-to-use graphical interfaces and therefore hide the complexity from the user.
Platforms, such as Galaxy4® and GenePattern®Z, offer users access to computational pipelines
and HPC resources through web interfaces. However, existing approaches often neglect the
project and data management aspects. To overcome the described hurdles within biomedical
projects, we developed gPortal, a web-based platform for biomedical applications. qPortal
provides resources for project management and data management and empowers users to con-
duct their experiments through our web-based platform. In comparison to existing solutions,
our platform implements a data-driven approach that comes with an added value. Using the
implemented functionality, we developed a workbench for the design of personalized (also
referred to as individualized) vaccines (iVacPortal). The portal offers computational meth-
ods required to generate mandatory information, such as the HLA genotype or neoepitope
candidates. We utilized iVacPortal in two projects, comprising multiple patients of two differ-
ent cancer entities, and assessed neoepitope candidates for personalized cancer vaccines on
multiple omics layers. While we identified potential vaccine candidates in almost all patients,
we could not identify neoepitopes in the patient-specific ligandomes. However, we provide
potential explanations for this, such as the influence of the sensitivity of employed devices and
in silico identification pipelines. Additionally, we validated our approach by reconfirming the

identification of neoepitopes using our pipeline in a previously published dataset on melanoma.

This thesis is structured in seven chapters. Following this introduction, the biological back-
ground introduces the immune system (Section [2.I), in particular, the adaptive immune re-
sponse (Section , cancer (Section , and epitope-based vaccines (Section . The
experimental background of NGS and bioinformatic applications are outlined in Section
We discuss state-of-the-art computational methods for computational immunomics as well as
workflow management systems in Section [2.6] The following chapters entail the results of this
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thesis. In Chapter[3] details on OptiType, our suggested method for HLA genotyping from NGS
data, are given. We present our efforts on the modeling of immunological tolerance to improve
the performance of predicting T-cell reactivity (Chapter [4) and evaluate the performance in
comparison to a previously published approach on an experimentally tested data set. Design
and implementation details of qPortal and iVacPortal are given in Chapter[5| Chapter []focuses
on the utilization of our developed methods and infrastructure. We used presented solutions
within two studies on the development of personalized cancer vaccines. A conclusion and

outlook are given in Chapter



Chapter 2

Background

This chapter outlines the biological background of this thesis. The first part (Section [2.1))
provides a general overview of the immune system, followed by a more detailed description of
the adaptive immune response (Section[2.2)). Section provides a general view on cancer

and treatment options, whereas Section |2.4| addresses epitope-based vaccines.

2.1 The Immune System

This section introduces the immunological background and is mostly based on Janeway et
al.*® to which we refer to for a more comprehensive introduction.

The human body is continuously exposed to microorganisms and viruses, that are often
pathogenic. However, this exposure will lead to diseases only rarely. Cells, tissues, and
molecules of the immune system, interacting in a dynamic network, combat most pathogens
before a disease develops. Through the different players, the immune system recognizes
pathogens and defends the organism against these infectious agents and their toxins. The im-
mune system has to detect pathogenic agents and aberrant host cells and distinguish them from
(healthy) cells of the body. It can be classified into the adaptive and innate immune system
(Figure [2.1)). Both of the two interacting and entangled subsystems depend on the activity of
leukocytes (white blood cells) which reside within peripheral tissues, the bloodstream, and the
lymphatic system. The first line of defense is provided by innate immunity which involves cells
as well as anatomic and physiological barriers. Adaptive immunity provides a pathogen-specific
response that develops during the lifetime of an individual. Principles of innate immunity are
outlined in the following section, whereas a detailed description of adaptive immunity is given
in Section

Organisms have to protect themselves against a variety of pathogens such as viruses, bac-
teria, fungi, protozoa, and helminths. These pathogens vary widely in their size, their mech-

anisms of pathogenesis, and their ability to harm the host organism. The innate immunity
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Figure 2.1: Overview of the immune system. The components of the immune system
can be classified into innate and adaptive immunity. Innate immunity includes physical,
chemical, and biological barriers. Additionally, it comprises the complement system and
specific leukocytes, including natural killer cells, macrophages, and dendritic cells, as
cellular components. The adaptive immune system involves the cell-mediated immunity
(T lymphocytes) and the humoral immunity (B lymphocytes, antibodies).

possesses multiple levels of defense, whereby physical and chemical barriers constitute the first
one. Epithelia impose a physical barrier and defend body surfaces against pathogens. The skin,
gut, lungs, and facial cavities possess different mechanical, chemical, and microbiological pre-
vention mechanisms to prevent pathogens from reaching internal tissues. Mechanical barriers
include the longitudinal flow of air and fluid, movement of mucus, and tears. The arsenal of
chemical barriers comprises fatty acids, a- and f3-defensins, acidity, cathelicidin, and lysozymes.
In addition to that, epithelial surfaces are associated with nonpathogenic bacteria, known as
microbiota. The microbiota serves as the third barrier to infection by the production of an-
timicrobial substances or stimulation of epithelial cells. Additionally, a variety of antimicrobial
enzymes and peptides are present in extracellular fluids, the blood, and epithelial secretions.
Another component of innate immunity is the complement, which comes into play if the first
barriers are crossed by pathogens. Complement is a group of more than 30 soluble plasma
proteins. These proteins circulate in an inactive form through blood and other body fluids.
Upon the presence of pathogens, complement pathways are triggered by pattern-recognizing
receptors.

The innate immune cells, macrophages, granulocytes, mast cells, dendritic cells (DCs),
and innate lymphoid cells (ILCs), such as natural killer (NK), ensure the cellular defense of
innate immunity. Macrophages and neutrophils are the main cell types seen in the initial
phase of innate immune responses. These cell types are capable of recognizing, ingesting, and
destroying many pathogens without an adaptive immune response. The group of ILCs includes

NK cells which are known to kill individual tumor cells or infected cells by releasing their
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cytotoxic granules which contain granzymes and the pore-forming protein perforin. Due to
the expression of various activating and inhibitory receptors, NK cells can distinguish between
healthy and infected or abnormal cells. Thereby, the balance of signals determines if a cell will
be killed or not. One example of surface proteins which are recognized by inhibitory receptors
is MHC class I proteins. If MHC class I molecules are downregulated due to infection with
viruses or other intracellular pathogens, NK cells are triggered by the signals from activating
receptors and the absence of a signal from inhibitory receptors. Additionally, NK cells express Fc
receptors. Upon binding of antibodies to these receptors, NK cells get activated and release their
cytotoxic granules. This process is called antibody-dependent cellular cytotoxicity (ADCC).

DCs, macrophages, and neutrophils express pattern recognition receptors (PRRs) which
recognize pathogen-associated molecular patterns (PAMPs). PAMPs are not part of the organ-
ism’s host cells and include oligosaccharides, lipopolysaccharides, or unmethylated Cytosine-
phosphatidyl-Guanine (CpG) DNA. The class of PRRs includes transmembrane proteins such as
Toll-like receptors (TLRs) and cytoplasmic proteins, including nucleotide-binding oligomeriza-
tion domain-like (NOD-like) receptors (NLRs). TLRs detect PAMPs of extracellular bacteria or
phagocytized bacteria and activate different host defense signaling pathways like the nuclear
factor kappa-light-chain-enhancer of activated B cells (NFxB) and the interferon-regulatory
factor (IRF) pathway. PRRs activate pathways which induce pro-inflammatory cytokines such
as tumor necrosis factor-a (TNF-a), interleukin-13 (IL-1), and type I interferons (IFNs). Cy-
tokines can act on the cell that releases the cytokines (autocrine), on adjacent cells (paracrine)
or distant cells (endocrine). During inflammation, cells which reside in the blood migrate to
the site of infection by cytokines and chemokines. Cytokines induce local effects, such as acti-
vation of lymphocytes, activation of vascular endothelium, increased antibody production, and
activation of NK cells. Chemokines are small proteins belonging to the class of chemoattractant
cytokines, inducing directed chemotaxis in adjacent cells.

Due to the combination of multiple layers of defense and different types of cells, the
innate immune system is capable of detecting and destroying invaders within minutes to
hours. The immediate (innate) immune response does not rely on the recruitment of antigen-
specific lymphocytes. If pathogens cannot be eliminated by innate immunity, different effector

mechanisms keep them in check until an adaptive immune response can be established.

2.2 The Adaptive Immune Response

The adaptive immune system provides effective responses against a wide range of pathogens
through antigen-specific lymphocytes, namely B lymphocytes (B cells) and T lymphocytes (T
cells). In the case of the adaptive immune response, high degrees of sensitivity and specificity
are achieved by highly variable antigen receptors on the surface of cells and an extensive reper-

toire of highly variable binding sites of these receptors. Additionally, the adaptive immune
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system provides immunological memory. If the body has been exposed to a pathogen once,
there will be an immediate response to this pathogen at the time of next contact. There are
two types of immune responses involving adaptive immunity. Humoral immunity is mediated
by antibodies present in blood plasma and extracellular fluids. Antibodies, also called im-
munoglobulins (Igs), are highly specialized antigen-recognition glycoproteins. B cells possess
a membrane-bound form of Ig, termed B-cell receptor (BCR). Upon antigen binding to the
BCR, the B cell gets activated and differentiates into plasma cells, which secrete antibodies.
Antibodies have two functions: they bind and neutralize pathogens and their toxins, mark them
for destruction by phagocytes, and recruit other cells and molecules. There are five distinct
isotypes of immunoglobulins, namely IgM, IgD, IgG, IgA, and IgE, which differ in structure and
functionality. The second pillar of adaptive immunity is the cell-mediated immune response
through T cells. Cellular immunity provides defense against infection or transformation of cells.
T cells possess antigen-recognition molecules. T-cell receptors (TCRs) resemble the structure of
BCRs; however, there is no soluble equivalent. TCRs induce intracellular signaling cascades
resulting in the activation of the corresponding T cell. Another difference between BCR and
TCR concerns the recognition of antigens, as TCRs do not recognize antigens itself. The recog-
nition of an antigen by TCRs is only possible if peptides (antigen fragments) are bound to MHC
molecules. The MHC is a large gene cluster encoding for these molecules. MHC molecules
are cell surface glycoproteins that are highly polymorphic. As TCRs are peptide-specific, the
formation of this complex adds another dimension to the complexity of antigen recognition

and the specificity of the adaptive immune response.

2.2.1 The Major Histocompatibility Complex

The MHC is located on chromosome 6 in humans and on chromosome 17 in mice. In humans,
the MHC genes are called human leukocyte antigen (HLA) genes, whereas in mice they are
referred to as H-2 genes. The human gene cluster comprises more than 200 genes and spans
more than 4 million base pairs (bp) (Figure [2.2)).

The gene cluster is divided into three regions, namely class I, class II, and class III. There
are three classical class I genes (HLA-A, HLA-B, and HLA-C) that encode the a chain of the
respective HLA class I proteins. HLA-E, E and G referred to as 'non-classical’ HLA genes, encode
HLA class Ib molecules. The class II region contains genes encoding the a and f chains of
HLA class II molecules. These genes make up different pairs of class II a@ and 8 chain genes,
called HLA-DR, HLA-DB and HLA-DQ. There are four pairs of genes since the HLA-DR cluster
contains two f3 chain genes and therefore makes up for two gene products paired with the DRa
chain. Due to the polygeny of HLA, resulting in different HLA class I and class II genes, every
individual carries a combination of at least three different HLA class I and three HLA class II

molecules. The number of different HLA molecules is further increased since the HLA is highly
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Figure 2.2: Simplified illustration of the genetic organization of the major histocompati-
bility complex (MHC). In humans, MHC is referred to as human leukocyte antigen (HLA)
and located on chromosome 6. HLA class I genes (yellow), HLA class II genes (orange),
and class III genes (not shown) are organized in separate clusters. The HLA class I cluster
includes the classical class I genes (HLA-A, -B, and -C) and minor genes (HLA-E, -E and -G).
The genes encoding for HLA class II molecules (HLA-DR, -DB and -DQ), as well as genes
for the TAP1:TAP2 transporter (blue), and LMP genes (green) encoding for proteasome
subunits, which are components of the antigen processing pathway make up the HLA class
I cluster. Figure based on Janeway et al. 4%,

polymorphic. Different HLA alleles encode for proteins that differ by up to 20 amino acids
(AA). The substantial variation in the genes of HLA occurs due to point mutations and gene
conversions. Consequently, there is a considerable variation in corresponding proteins as well.
In fact, there are more than 20,000 alleles in humans for several HLA class I and II genes. In
most cases, individuals are heterozygous for the MHC class I and II genes, meaning that the gene
loci on both homologous chromosomes carry different alleles. The HLA haplotype describes
the combination of HLA alleles on a single chromosome. HLA alleles are named according to
a specific nomenclature*?, The four-digit HLA type includes the gene name, followed by an
asterisk, the allele group number, and the specific HLA protein number. Since the expression
of HLA alleles is codominant, the products of both alleles at a locus are expressed similarly in
a cell. Both HLA gene products, i.e., HLA class I and class II molecules, are closely related in
structure but do differ in their subunit composition (Figure [2.3). HLA class I molecules are
heterodimers built from four domains, whereas three of these domains are formed by the a
chain. The other domain is formed by f3,-microglobulin which is encoded on chromosome
15. The membrane-spanning a chain is non-covalently associated with 2-microglobulin. The
peptide-binding cleft of HLA class I molecules is formed by the folded a; and a, domains. The
closed cleft consists of two a-helices and eight f-sheets. Significant differences across HLA

class I molecules are located here, resulting in different specificities concerning peptide binding.
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Figure 2.3: HLA class I and II molecules. (A) Simplified schematic structure of HLA class
I (left) and class II (right) molecules. Both molecules consist of four domains, whereas
class I molecules have three domains formed by a chains and one by 3,-microglobulin.
HLA class II molecules are composed of a;, a,, 1, and 3, domains. Based on Janeway
et al.“®, (B) Differences in peptide-binding by HLA class I and class II molecules. Due to
the structural differences, HLA class II molecules have an open peptide-binding cleft and
allow peptides to protrude on either side. The closed structure of the cleft in HLA class
I molecules restricts the length of peptides and forces all residues, including the anchor
residues (blue), to fit into the pocket. Adapted from Toussaint et al. 50

The same applies to HLA class IT molecules which are composed of the two transmembrane
glycoprotein chains a and 3. Each of the two chains forms two domains resulting in a four-
domain structure as with HLA class I molecules. Both chains of the noncovalent complex span
the membrane and contribute to the formation of the peptide-binding cleft. Therefore, in
contrast to HLA class I molecules, the peptide-binding cleft is formed by two domains of two
different non-covalently bound chains. Due to the structure of the peptide-binding cleft, both
ends of the cleft are open, allowing peptides to bind without tightly bound ends at either end
of the cleft. Both classes of HLA molecules get stabilized upon peptide binding. HLA class I
and class II molecules possess different specificities regarding peptide length resulting from
differences in the structure of the binding cleft. HLA class I molecules bind peptides of eight
to eleven AA in length. Longer peptides bind through kinking in the backbone. The backbone
of peptides interacts with the HLA class I molecule through hydrogen bonds. Thereby, one

cluster of tyrosine residues forms hydrogen bonds with the amino terminus, whereas a second
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cluster forms hydrogen bonds with the C-terminal peptide backbone and itself. HLA class I
molecules favor specific amino acid side chains, called anchor residues, at specific positions in
the bound peptides. A sequence motif describes the set of anchor residues which are subject
to peptide binding for a specific HLA allele. Anchor residues of peptides that bind to HLA
class IT molecules are located at various distances to the peptide end. In general, peptides
binding to HLA class II molecules are at least 13 AA long, in most cases between 13-17 AA.
Since the peptide-binding cleft of the molecules is not closed, a peptide can be longer and vary
considerably in length. HLA class I and class II molecules do not only differ in the mode of
peptide binding but also in their expression patterns. HLA class I molecules are expressed on
all nucleated cells and especially highly expressed in hematopoietic cells. By contrast, HLA
class IT molecules are only present on professional antigen-presenting cells (APCs) including B
cells, macrophages, and DCs, and epithelial cells of the thymus.

2.2.2 T Cell-Mediated Immunity

B and T cells both express antigen-specific receptors. In contrast to BCRs, TCRs only have
one antigen-binding site and are strictly membrane-bound. TCRs are heterodimers, consisting
of an a and a 3 polypeptide chain, which are linked by disulfide bonds and span the T-cell
membrane. Each of the two chains comprises a variable amino-terminus and a constant region,
whereas the antigen-binding site is formed by the variable regions. Binding specificity is given
by the variable region of TCRs, which are clonally expressed. Since the genome cannot directly
encode for a sufficient number of genes to generate the needed diversity of antigen receptors,
different parts of the variable regions are encoded by gene segments. During the development
of lymphocytes, a rearrangement of these gene segments occurs through a process called so-
matic DNA recombination. As a result, unique coding sequences are generated. In the case of T
cells, the locus encoding the a chain contains V and J segments, while the TCRf locus contains
additional D gene segments. These gene segments rearrange to variable domain exons during
the development of T cells. The diversity is further increased by the addition of nucleotides
between V and J gene segments of rearranged TCRa chains. The loci encoding a and 8 chain
additionally contain one and two gene segments for the constant region respectively. Through
the combination of the different a and 8 gene segments and junctional diversity, an estimated
total diversity of 108 is reached. Most of the diversity is located in the CDR3 loops, encoded
by D and J segments, which form the center of TCR binding sites. This region is mainly in
contact with bound unique peptide fragments of peptide-HLA (pHLA) complexes. In contrast
to Igs, T cells only recognize antigens if presented on the hosts’ cells HLA molecules. Anti-
gens can be inter alia of pathogenic origin or originate from tumors. There are two major
classes of naive T cells which differ in the expression of cell surface molecules involved in

the recognition of pHLA complexes. Cytotoxic T cells express the cell surface protein cluster
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of differentiation 8 (CD8), while helper T cells express the protein CD4. Both co-receptors
are in direct contact with HLA molecules and contribute to the overall effectiveness of the
response. CD4 and CDS8 are both associated with the TCR during antigen recognition and
bind to the invariant sites of the pHLA complex simultaneously. CD8 recognizes HLA class I
molecules, whereas it is HLA class II for CD4. The co-receptors have a distinct structure. CD4
is a single-chain protein of four Ig-like domains, whereas CD8 consists of two distinct Ig-like
domains linked by a disulfide bond. CD4" T cells can be further categorized into subgroups
according to their differentiation. There are five main subtypes of CD4" effector T cells: Th,
cells activate macrophages through IFN-y, Th, cells produce cytokines to activate eosinophils
and mast cells, Thy; cells secrete cytokines to activate epithelial and stromal cells, Ty, cells

activate B cells, and T,,, cells suppress T cell and innate immune cell activity. Some of the

reg
T cells (and B cells) become memory cells to provide long-lasting immunity after disease or
vaccination. Memory cells can differentiate into effector cells after a subsequent encounter of
the corresponding antigens. The differentiation of naive CD4" T cells into distinct subclasses
is a difference to CD8" T cells which all differentiate into CD8 cytotoxic T lymphocytes (CTLs).
Both types of naive T cells differentiate upon recognition of peptides presented on HLA class
I or class IT molecules respectively. HLA class I presents peptides from intracellular antigens,
which can be recognized by CD8" T cells. Upon recognition of foreign peptides, CTLs can kill
the corresponding infected or transformed cell. The killing mechanism involves the release
of the cytotoxic proteins granzymes, perforin, and granulysin. Granzymes induce apoptosis
in cells, perforin forms pores to deliver granzymes into the target cell, and granulysin has
antimicrobial activity. Besides, the membrane-bound Fas ligand can induce apoptosis by bind-
ing to Fas receptor. Additionally, CTLs release the cytokines IFN-y, TNF-a, and LT-a to inhibit
viral replication, increase HLA expression, and activate macrophages. Peptides of extracellular
antigens are presented on HLA class II molecules, recognized by CD4" T cells. The genera-
tion of peptides from native proteins (antigen processing) and the presentation of peptides
on the cell surface on HLA molecules (antigen presentation) differs for the two HLA classes
(Figure [2.4). Peptides presented to T cells can either originate from antigens derived from the
cytosol or vesicular compartments. Peptides originating from the cytosol are transported into
the endoplasmatic reticulum (ER) and ultimately loaded on HLA class I molecules. Proteins
in cells which are tagged by the ubiquitin-proteasome system (UPS) get continually degraded
by the proteasome. The proteasome is a protease complex consisting of a 20S catalytic core
and two 19S regulatory caps at each end. The 19S component of the proteasome recognizes
ubiquitin molecules which are attached to proteins by the UPS through a process called ubig-
uitination. Further, trimming of peptides might occur by the enzyme endoplasmic reticulum
aminopeptidase associated with antigen processing (ERAAP). The proteasome can exist as
constitutive proteasome and as immunoproteasome. The constitutive proteasome is present in
all cells, whereas the immunoproteasome is present in cells which have been stimulated with
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Figure 2.4: Endogenous pathway (top): Endogenous antigens get degraded by the pro-
teasome and transported via TAP into the rough endoplasmic reticulum. First, HLA class I
molecules bind to calnexin. After dissociation of calnexin, #2-microglobulin, calreticulin,
and tapasin bind. Peptide-loaded HLA class I molecules are transported to the cell mem-
brane through the Golgi complex. Exogenous pathway (bottom): HLA class I molecules
are bound to invariant chain (li). During the transfer through the Golgi apparatus, li is
degraded, whereby the CLIP fragment remains. Exogenous antigens are taken up and
degraded in endosomes. Exchange of CLIP for peptides is mediated by HLA-DM. The
complex is then transported to the cell membrane. HLA class I- and II-peptide complexes
are presented to CD8' and CD4" T cells, respectively. Figure based on Janeway et al.“%,

interferons. Interferons trigger the replacement of the three proteolytic subunits 1, 2, and
B35 in the catalytic chamber. As a consequence, the enzymatic specificity of the immunoprotea-
some changes. The cleavage rate after hydrophobic residues increases, while the cleavage rate
after acidic residues decreases. The presence of a free terminal a-carboxyl group is a preferred
anchor residue for binding to HLA class I molecules and beneficial for the transport of peptides
from the cytosol to the lumen of the ER. Two ATP-binding cassette (ABC) proteins, namely
transporter associated with antigen processing-1 and -2 (TAP1 and TAP2) form a heterodimer
and are associated with the ER membrane. The TAP1:TAP2 complex is an ATP-dependent
peptide transporter which carries cytosolic peptides into the ER. Only peptides of 8-16 AA in
length with hydrophobic or basic residues at the carboxy terminus are transported by the TAP
complex. Therefore, the specificity of TAP matches the features of peptides binding to HLA
class I molecules. HLA class I molecules reside in a partially folded state in the ER. During this
unbound state, the a chain is associated with the chaperone protein calnexin. Upon binding

of 5-microglobulin, calnexin dissociates from the a:f,m complex. The a:B,m complex binds
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a complex of calreticulin and ERp57 and to TAP through the TAP-associated protein tapasin.
Binding of peptides releases the partially folded HLA class I molecule from the peptide-loading
complex, consisting of calreticulin, ERp57, and tapasin. The completely folded pHLA complex
leaves the ER and is transported to the cell surface through the Golgi apparatus. DCs can
present peptides which have not been generated within the own cytosol through this exoge-
nous pathway of HLA class I molecule loading. This process is referred to as cross-presentation.
Antigens originating from intravesicular pathogens such as certain bacteria which replicate
inside intracellular vesicles or extracellular pathogens and toxins are presented through the
HLA class II antigen processing pathway. Thereby, exogenous proteins are taken up by APCs via
endocytic vesicles. Peptides of these agents are ultimately bound to HLA class II molecules and
presented to CD4* T cells. Extracellular pathogens and proteins are internalized into endocytic
vesicles either through receptor-mediated endocytosis by Igs on B cells, through phagocytosis
by macrophages and DCs, or autophagy. The proteins taken up by endocytosis are transported
through endosomes with decreasing pH. Additionally, the fusion with lysosomes containing
proteases leads to antigen degradation. HLA class II molecules are first translocated into the
ER. To prevent premature binding to peptides and misfolded proteins molecules are bound
with a type II membrane glycoprotein called MHC class II-associated invariant chain (li, CD74).
A subsequence of li, referred to as class II-associated invariant chain peptide (CLIP) is bound
along the peptide-binding groove. Through the association with li, HLA class II molecules are
targeted for delivery to a low-pH endosomal compartment. When the HLA class II:li complex
enters the endosomal pathway, proteases cleave li, leaving CLIP bound to the molecule. To
enable endocytosed antigens, degraded to peptides through acidified endosomes in the cytosol,
to bind to the HLA class II molecules, the MHC class II-like molecule HLA-DM binds to the
HLA-II:CLIP complex. HLA-DM catalyzes the release of CLIP and binding of antigenic peptides.

pHLA-II complexes are then presented on the cell surface.

2.2.3 Immunological Tolerance and Autoimmunity

The adaptive immune system possesses a variety of effector mechanisms to provide defense
against pathogens. Cells have to be able to distinguish between self and non-self to prevent
the immune system from directing these mechanisms against self-antigens, causing tissue dam-
age. The response to self-antigens is referred to as autoimmunity. Loss of self-tolerance can
lead to a variety of autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, and
Crohn’s disease. The induction of tolerance to self can be classified into central and peripheral
tolerance. Central tolerance induces self-tolerance in lymphocytes during the development
in the thymus (T cells) and bone marrow (B cells). During the development of T cells in the
thymus, cells express low TCR, CD4, and CD8 levels. These double-positive cells interact with
self-peptides presented on HLA molecules in the thymic stroma during further development.
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If double-positive lymphocytes can recognize self-peptide-self-HLA complexes presented by
thymic cortical epithelial cells, they are positively selected. Consequently, the cells mature
into CD4" or CD8™ T cells. The repertoire of T cells is further modulated by the deletion of
cells which react too strongly to self-antigens. This process, referred to as negative selection,
is facilitated by the autoimmune regulator (AIRE) protein. AIRE promotes the thymic expres-
sion of tissue-specific antigens from other organs, enabling negative selection. The negative
selection of double-positive thymocytes having strong reactivity to pHLA complexes takes place
in the thymic cortex. Immature CD4 or CD8 single-positive thymocytes that receive strong
TCR signaling through recognition of pHLA complexes are negatively selected in the thymic
medulla. The process in the medulla is mediated by medullary epithelial cells, bone marrow-
derived macrophages, or DCs and leads to the deletion of strongly autoreactive lymphocytes. A
corresponding process exists for immature B cells which takes place in the bone marrow. After
positive and negative selection, the repertoire of T cells includes HLA-restricted but self-tolerant
cells. The processes of central tolerance are complemented by mechanisms of peripheral tol-
erance after lymphocytes left the central or primary lymphoid organs. Therefore, peripheral
tolerance ensures tolerance against antigens which are not expressed in the thymus or bone
marrow. Mature autoreactive lymphocytes that migrate to the periphery are either deleted by
activation-induced cell death or set in a permanent state of unresponsiveness (anergy) if they
react to self-antigens. The deletion or inactivation occurs due to missing co-stimulatory signals,
such as inflammatory cytokines (IL-6 and IL12) and co-stimulatory molecules (B7.1), which
are not present without infection or inflammation. Autoreactive lymphocytes in the periphery
can also be inhibited by regulatory T cells (Tyeg). Treq cells can either be programmed in the
thymus (nT,e,) or in the periphery (iT,.g). Both types express the transcription factor FoxP3 in
response to self-antigen recognition. In the periphery, the induction occurs in the presence of
TGF-f3 and absence of pro-inflammatory cytokines. If these cells get in contact with the same
antigen in the periphery, they inhibit other self-reactive T cells, recognizing antigens in the
same tissue, to prevent their differentiation. The inhibition is mediated through production of
the cytokines IL-10 and TGF-f3. Furthermore, T cells can undergo functional deviation. In this

case, Tye,-cell development is induced instead of effector T-cell development.

2.3 Cancer

This section introduces the biological background of cancer and gives an overview of the history
of cancer treatment and state-of-the-art therapeutic options. For a comprehensive introduction,
the reader is kindly referred to Robert A. Weinberg>Y and Mendelsohn et al.”2.
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2.3.1 Introduction

The term cancer describes a group of diseases that can affect different sites of the body char-
acterized by abnormal cell growth. Cell proliferation is essential for growth and survival of
eukaryotic organisms. It is the process which ultimately leads to an increase in the number
of cells through cell division. In the growth phases, the processes undergo checkpoints to
prevent cells containing damaged DNA from advancing to the synthesis phase. DNA damage
might occur because of irradiation or chemical modifications. Further, checkpoints prevent
cells showing signs of damaged DNA or erroneous replication from entering mitosis. Typically,
cells are responsive to internal and external modulatory signals. Therefore, cells replicate upon
specific growth signals and stop replication accordingly and die due to programmed cell death
(apoptosis). Due to mutations in genes associated with the regulation of the cell cycle and
cell proliferation, cells proceed through the cell cycle in an unregulated manner. In addition
to inherited germline mutations, DNA damage can be acquired that might drive the transfor-
mation of normal cells into tumor cells. Three groups of external agents are associated with
the risk of acquiring mutations®2: physical carcinogens (ionizing radiation), chemical carcino-
gens (asbestos and tobacco smoke), and biological carcinogens (infections from oncogenic
viruses, bacteria, or parasites). The transformation leads to abnormal growth, also referred to
as neoplasm, that ultimately forms an abnormal mass of tissue, defined as a tumor. Tumors
may be benign or malignant. Malignant or cancerous tumors do not reside at the tissue of
origin. They can invade neighboring healthy tissue or even spread to distant sites in the body
through blood vessels or lymph systems. The latter process is defined as metastasizing and
causes the formation of tumor mass in other organs (metastasis). Metastasis is the primary
cause of cancer-associated mortality. In 2015, 8.8 million people died of cancer which makes it
the second leading cause of death worldwide after cardiovascular diseases®®. There are more
than 100 distinct types of cancer that are defined by the location of occurrence of the primary
tumor. Additionally, subtypes of tumors can be found in specific organs depending on the
specific cell type of origin. Lung, liver, colorectal, stomach, and breast cancer are among the
most common causes of cancer-associated fatalities. Besides the tremendous health burden,
cancer has a significant and increasing economic impact. The estimated total annual financial

cost of cancer was estimated at approximately US$ 1.16 trillion in 2010°%,

2.3.2 Genetics of Cancer

The development of cancer presupposes the transformation of normal cells into tumor cells.
This multistage process occurs mainly as a result of acquired genetic variations in addition to
the genetic predisposition of an individual. Cancer-associated genetic variations affect three
classes of genes: proto-oncogenes, tumor suppressor genes, and genes that are responsible for

DNA damage repair.
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Proto-oncogenes, such as RAS, encode for proteins appropriately driving progression through
the cell cycle, which are therefore responsible for the regulation of cell growth and proliferation.
Consequently, mutations in these genes might lead to cells proceeding through the cell cycle
in an unregulated manner. Oncogenes encode constitutively active and overexpressed versions
of normal cellular proteins that are involved in cell growth and proliferation. In general, retro-
viruses or somatic mutations can turn proto-oncogenes into oncogenes. These mutations can
be either base substitutions, gene copy number amplifications, or chromosomal translocations.
Oncogenes also possess the ability to drive oncogenic transformation due to overexpression.

The second class of affected genes, tumor suppressor genes, are scattered throughout the
genome and provide different mechanisms to control proliferation®2. The encoded proteins
prevent unscheduled proliferation, stimulate cell death, and trigger the initiation of permanent
cell cycle arrest®®. They act as negative regulators of proto-oncogenes and ensure regular cell
division under normal and stress-induced conditions leveraging cell cycle checkpoints®Z. In
tumors, tumor suppressor gene function is frequently diminished. Genes that are maintaining
genome stability are affected during tumor progression. Genomic stability is supported through
the recognition of acute genomic damage and the subsequent recruitment of enzymatic DNA
damage repair complexes®®. Inactivation of these processes leads to an increased probability of
mutations, also affecting oncogenes and tumor suppressor genes>?. Defects in repair genes, as
well as tumor suppressor genes, can occur due to somatic mutations. Besides somatic mutations,
epigenetic mechanisms such as DNA methylation can also — and even more frequently — lead
to defects in tumor suppressor or DNA damage repair genes®?.

Genetic alterations drive and expedite the progressive transformation of healthy into ma-
lignant cells. During this multistep process of cancer cell and tumor development, respective
cells acquire a set of biological capabilities. Hanahan and Weinberg defined this set of essential
alterations in cell physiology that induce malignancy and drive malignant growth as hallmarks
of cancer?®?, Multistep tumor pathogenesis involves genomic instability and tumor-promoting
inflammation, whereby cancer cells do typically evade growth suppressors, sustain prolifera-
tive signaling, avoid cell death, induce angiogenesis, enable replicative immortality, activate
invasion and metastasis, avoid immune destruction, and deregulate cellular energetics.

Cancer cells possess the ability to sustain chronic proliferation through the production of
growth factor ligands, the expression of cognate receptors, up-regulation of growth-factor recep-
tors, or ligand-independent activation of receptors due to structural alterations. Alternatively,
cancer cells can stimulate supply with growth factors through cells in their surrounding®.

The insensitivity to growth-inhibitory signals does mainly rely on lost functions of tumor
suppressor gene proteins such as the retinoblastoma protein (RB) and the tumor protein p53
(encoded by TP53)°2. Another essential alteration is the ability of cancer cells to evade pro-
grammed cell death (apoptosis). This control mechanism normally represents a barrier to

cancer development since it triggers apoptosis of cells affected by oncogenic mutations®3.
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Besides mutations, multiple non-genetic mechanisms such as angiogenesis accelerate the
tumor progression. Tumor cells can recruit blood vessels under the involvement of differ-
ent heterotypic interactions between cancer cells, their mesenchymal microenvironment, and
mechanisms like the modulation of vascular endothelial growth factor®%.

Another emerging hallmark of cancer is the ability of tumor cells to evade the immune
system®”. The interactions and underlying mechanisms between the immune system and neo-
plasms are still not fully understood. However, the immune system accounts for three primary
roles in the prevention of tumors®. The most obvious mechanism is the protection of the
immune system against virus-induced cancers due to its capability to eliminate and suppress
viral infections. Immunocompromised individuals as a result of immunosuppression after or-
gan transplantation or immunodeficiency syndromes show increased rates of virus-induced
malignancies. In general, by eliminating pathogens, the immune system avoids chronic inflam-
mation and therefore prevents the establishment of an inflammatory environment which is
promotive of tumorigenesis®®. The third primary mechanism is the identification and elimina-
tion of tumor cells based on expressed tumor-specific antigens (TSAs). Therefore, immune cells
are capable of identifying transformed cells that escaped the cell-intrinsic tumor suppressor
mechanisms®. This direct interplay of immune cells and tumor cells is a dynamic process
that is composed of three distinct phases: elimination, equilibrium, and escape®”®®, In the
elimination phase, also referred to as immunosurveillance, both the innate and adaptive cellu-
lar part of the immune system contribute significantly to immune monitoring and thus tumor
cell elimination®®. These processes are mainly mediated by CTLs, Th1 helper cells, NK cells,
and through the secretion of inflammatory cytokines such as IL-12 and IFN-y. In general, the
outcome of the disease seems to correlate with the immune cell infiltration in tumors®®, what
has been shown, inter alia, for ovarian and colon carcinoma”?. During the elimination phase,
cancer cells which are highly immunogenic are routinely eliminated. Tumor cells that escape
the elimination stage enter an equilibrium phase, where the immune system controls tumor
cell growth. Due to an active immunoediting process in the tumor cell population or changes
in the host immune system such as immunosuppression, cells can progress into the escape
phase and grow in an immunologically unrestricted manner®. During this process, various
mechanisms are active within the tumor microenvironment to escape immune surveillance
and elimination. APCs and T cells are suppressed within the tumor microenvironment due
to the production of cytokines such as TGF-f3 or chemokines, including IL-8 and IFN-y or the
colony-stimulating factor 17*/%, Additionally, T, are recruited, restricting the proliferation
and activity of immune cells”®. Cancer cells also employ modulated expression mechanisms to
evade recognition through immune cells. The overexpression of CD47 prevents the recognition
by circulating macrophages’#, whereas a downregulated expression of HLA class I molecules

precludes the recognition by T cells”>. At the endpoint of tumor progression, cancer cells ac-
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quire the ability to invade and metastasize to distant sites in the body through blood circulation

and the lymphatic system”®.

2.3.3 Cancer Treatment

Cancer treatment regimens depend on multiple factors such as the type of cancer, the progres-
sion status of the disease, and the genetic constitution of the patient. Traditional strategies
of cancer treatment include surgery, radiotherapy, and chemotherapy. Surgery aims at local
removal of solid tumors. Depending on the risk of damaging nearby organs, tumors might be
resected completely or debulked. Besides the traditional surgery, more recent techniques such
as cryosurgery or lasers are applied.

In radiotherapy, high doses of ionizing radiation (X-rays, gamma rays, and charged parti-
cles) directly or indirectly (via water molecules) ionize the atoms of DNA molecules, resulting
in DNA damage and cell death. Surgery and radiotherapy are often followed up by adjuvant
chemotherapy. Since the 1940s, cytotoxic drugs have been used to treat cancer. Most of the
early drugs interfered with DNA replication and cell division. One of the first drugs used for
chemotherapy was the so-called nitrogen mustard, a DNA-alkylating agent’Z. Another early
target for chemotherapeutics was the enzyme dihydrofolate reductase (DHFR), part of the folic
acid metabolism and required for DNA synthesis. Targets of conventional chemotherapeutics
include enzymes of DNA synthesis, microtubules, and growth factor receptors which have pri-
marily cytotoxic effects that also affect healthy cells of the patients. Due to gained knowledge
about oncogenes and tumor suppressor genes, as well as new technologies, there was a shift
towards aberrantly functioning gene products as targets. These targets have been identified
to contribute to the malignant phenotype of cancer cells. The application of such drugs is also
referred to as targeted therapy.

Targeted therapies include monoclonal antibodies (mAbs) such as Cetuximab, approved for

/8 and kinase inhibitors such as Vemurafenib, approved for the treatment

colorectal cancer
of patients with advanced melanoma expressing a mutated BRAF gene (V600E)”?. However,
Vemurafenib is not effective for patients suffering from colon cancers with the same genetic
aberrations®’, In contrast, the mAbs Cetuximab and Panitumumab, targeting the epidermal
growth factor receptor, are not effective in colon cancers with a mutation in K-RAS®Y. These
two examples show that some mutations are beneficial or even necessary for specific therapies
to be effective, whereas other mutations prevent therapies from being effective. Therefore,
standard treatments already include the screening for genetic and molecular biomarkers. The
identification of new genetic aberrations which are cancer drivers and potential targets for
new therapeutics is of clinical importance. Cancer driver genes, classified as tumor suppressor
genes and oncogenes, are known to be critical for cancer progression due to their function in

cell proliferation, differentiation, senescence, and apoptosis®2. Therefore, targeted therapies
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mainly aim at blocking cell proliferation, promotion of cell cycle regulation, and induction
of apoptosis. Druggable targets include tyrosine kinases which can be targeted by antibodies
against associated cell surface receptors or through intracellularly acting kinase inhibitors of
low molecular weight. Imatinib (Gleevec), a prominent tyrosine kinase inhibitor, targets the
product of the BCR-ABL gene translocation in patients with chronic myelocytic leukemia and
gastrointestinal stromal tumors®>:4,

Another group of therapeutic options, immunotherapy, exploits the host’s immune system
to treat cancer. Immunotherapy is generally based on the fact that the immune system can
eliminate neoplasia during the initial growth phase through a process referred to as immune
surveillance®”. Due to the expression of non-self antigens (neoantigens), cells of the immune
system can detect neoplastic cells. However, cancer cells possess multiple immune escape mech-
anisms, referred to as cancer immunoediting. As the consequence of immune selection pressure,
cancer cells may become less immunogenic, insensitive to immune effector mechanisms, and
establish an immunosuppressive state within the tumor microenvironment&°.

Still, multiple immunotherapeutic approaches exist to modulate the immune response
against cancer cells. An overview of existing cancer immunotherapies is shown in Figure
Cancer immunotherapy approaches can be broadly classified as passive and active®”. The
classification is dependent on the therapy’s ability to activate the host immune system.

Passive therapies include the adoptive transfer of lymphocytes activated ex vivo and the
administration of mAbs directed against cancer cells. Approaches to reduce cancer-induced
immunosuppression and vaccine approaches directed against tumor antigens, inducing specific
immune responses are considered active. Vaccine approaches will be discussed in Section

The adoptive transfer of T and NK cells is also referred to as adoptive cell therapy (ACT)®°.
It utilizes the ability of lymphocytes to destroy primary and metastatic tumor cells. In one
approach, autologous peripheral or tumor-infiltrating lymphocytes are expanded ex vivo and
reinfused®?. Approaches using mixtures of CD8" and CD4" T cells grown from resected
metastasis (TILs) showed good response rates and tumor regression for melanoma patients
in clinical trials®!. Besides TILs, genetically engineered tumor-reactive lymphocytes are a
treatment option. These can be equipped with chimeric antigen receptors (CARs) that are built
from variable Ig domains and the constant domain of TCRs?%. Therefore, lymphocytes possess
the non-HLA-restricted antigen-recognition property of antibodies>.

Immunostimulatory mAbs represent another class of agents. These antibodies target dif-
ferent surface molecules and eliminate tumor cells through CDC, ADCC, and the induction of
apoptosis. Several antibodies for different kinds of cancer are currently being tested in clinical
trials or are already on the market. Rituximab is one antibody directed against CD20 expressed
on leukemia and lymphoma cells“4+°2,

Another approach referred to as immune checkpoint blockade, targets molecular and cellu-

lar mediators of cancer-induced immunosuppression. Targets of checkpoint inhibitors include
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Figure 2.5: Cancer immunotherapy approaches. Therapeutic options include tumor-
targeting or immunomodulatory mAbs, indoleamine (IDO) inhibitors, inhibiting the im-
munosuppressive metabolism, and pattern recognition receptor (PRR) agonists, such as
NOD-like receptor agonists or TLR agonists. Anticancer vaccines can be DC-, peptide-,
whole-tumor cell, tumor lysate, DNA-/RNA-based. Human body silhouette icon obtained
from Reactome Icon Library®® and adapted. Figure based on Galluzzi et al.®?

the CTL-associated protein 4 (CTLA-4) 98 an inhibitory receptor downregulating T-cell activa-
tion, and the programmed cell death protein 1 (PD-1), which influences T-cell proliferation,
cytokine release, and cytotoxicity®Z.

In many cases, monotherapeutic approaches have shown to be relatively ineffective. There-
fore the combination of different therapies is assessed at high rate®®. Here, combinations do not
solely contain immunotherapeutic approaches but combinations with conventional treatments
such as chemotherapy. The combination can enhance antitumor effects of immunotherapy,

further improved through tumor cell death and release of tumor (neo)antigens. In combi-
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nation with targeted therapies, the same beneficial effects with less severe side effects can be

achieved!%?,

2.4 Epitope-based Vaccines

This section includes a brief history of vaccination and introduces the more recent development
of epitope-based vaccines. Further, applications in cancer therapy and personalized medicine

are discussed.

2.4.1 Introduction

Vaccination is used to generate long-lasting and protective immunity. The effect of prior infec-
tions on the subsequent predisposition to acquire disease has already been perceived 2000 years
ago. Back then, the Greek historian Thucydides noticed during the Peloponnesian War that
people who survived an infection during the first outbreak of the plague were not affected by
the second outbreak. In the 18" century, it was common practice in China and the Middle East
to use small amounts of smallpox pustules to protect people from infections. The procedure
caused mild infections but long-lasting protection against the disease. This procedure is today
referred to as variolation. In 1798, Edward Jenner discovered that the infection with cowpox
provided protection against smallpox and gave experimental proof by successfully testing his
hypothesis on several subjects. The immunization procedure was referred to as vaccination due
to the Latin translation of cow (vacca) and cowpox (vaccinia). Later, Louis Pasteur described
the concept that vaccination could be applied to achieve immunization against any pathogen.
He extended Jenner’s approach to other infectious agents like chicken cholera, rabies, and
anthrax.

Vaccines are one of the most important contributions of public health in the past 100 years.
Due to the early findings by Edward Jenner and Louis Pasteur, deaths from infectious disease
could be decreased, and others, including smallpox, could even be eradicated. Many different
approaches to the development of vaccines exist. Whole-organism vaccines either consist of
killed, inactivated, or (living) attenuated organisms. Other vaccines make use of purified anti-
gens like inactivated exotoxins or capsular polysaccharides (subunit vaccines), bacterial toxins
(toxoid vaccines), microbial DNA introduced by viruses or bacteria (recombinant vector vac-
cines), mRNA-encoded antigens (RNA vaccines), and DNA-encoded antigens (DNA vaccines).
Effector mechanisms include the activation of CD4" and CD8* T cells, which establishes direct
protection by cytotoxic T cells and shaped antibody responses through CD4" T cells. Protective
immunity caused by vaccines is mostly acquired through the induction of antibodies. Therefore,
subsequent infections of cells can be prevented through neutralization. Protection against some

pathogens requires additional cell-mediated responses through CD8" T cells or the presence
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of preexisting antibodies, as in the case of the poliovirus. Different vaccine approaches have
in common that ultimately an epitope is being presented to the immune system. However, the
mechanisms leading to the epitope generation before presentation differ due to the difference
in administered vaccine components.

A rather new rational design and optimization strategy of vaccines, which does not re-
quire the whole organisms in a killed or attenuated form uses T-cell epitopes directly+017103,
Epitope-based vaccines can be either used as prophylactic vaccines in a traditional sense to pro-
tect individuals from an infective agent or as therapeutic vaccines to reduce or arrest disease
progression. Both approaches aim at the stimulation of T cells and the generation of immuno-
logical memory. Due to the absence of infectious material, there is, in contrast to attenuated
vaccines, no risk of reversion and thus no risk of pathogenicity.

However, epitope-based or synthetic antigen-based vaccines are often less immunogenic
than whole organism vaccines. To maximize the potency of epitope-based vaccines, different
adjuvants and modes of delivery are employed*%# to boost or modify the immune response.
One approach is the covalent or non-covalent attachment of peptides to biological macro-
molecules. These include proteins, such as heat-shock proteins which interact with the innate

10

immune system and thus are capable of modulating the immune response’® and proteins

which are ligands of receptors on APCs such as TLRs1%?. Self-adjuvanting vaccines make use
of lipopeptides which interact with APCs expressing TLRs and induce DC proliferation:%Z,
Another approach utilizes recombinant cytokines, such as granulocyte-macrophage-colony-
stimulating factor (GM-CSF)1% and IL-121%? as adjuvants. The class of oil-emulsion type
adjuvants is mostly used for therapeutic cancer vaccines. Montanide is one example of oil-based
adjuvants which have shown to have beneficial effects on immunogenicity and has been ap-
proved for therapeutic vaccines?!’., One of the most widely used and accepted adjuvants in
humans is Alum (aluminum hydroxide)*!. Alum showed to induce potent antibody responses.
However, it has proved to be ineffective for some antigens and to have limited capacity to
augment cell-mediated immune responses®'2. In other approaches, antigen delivery systems

13 include

with additional immunostimulating activity are used. Particulate delivery systems
immunostimulatory complexes (ISCOMs)4%, hollow spherical constructs of phospholipid bi-
layers (liposomes)!!>, membrane vesicles secreted from epithelial and hematopoietic cells

)48 and spherical unilamellar lipid membrane vesicles embedded with viral mem-

(exosomes
brane proteins (virosomes)Z. Particulate delivery systems have shown to increase effective
uptake by APCs in comparison to antigens in solution**. Cell-based vaccine delivery systems
are mainly based on DCs, that are ex vivo generated, activated, and loaded with antigens or
peptides on their surface*!?.

In order to maximize diversity and potential immunogenicity, peptide-based vaccines are
designed to contain multiple epitopes in the case of prophylactic vaccines?2?, Therapeutic

cancer vaccines usually contain multiple epitopes of different tumor antigens to increase the
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probability that one of the components is present on the tumor and prevent escape mechanisms.
The peptides can thereby be administered as a mixture or concatenated into a polypeptide™4L.
Polypeptide vaccine constructs are referred to as string-of-beads vaccines which can contain
spacer sequences between each pair of epitopes to maximize the desired processing and thus

recovery of T-cell epitopes.

2.4.2 Cancer Vaccines

In the last decades, the development and application of cancer immunotherapies have been
mainly driven by the characterization of genes encoding tumor-associated antigens:24*124, 1m-
munotherapy options include cancer vaccines which can be based on DCs, recombinant viruses,
RNA/DNA, whole-tumor cells or lysate, and peptides. The general idea of using therapeutic can-
cer vaccines is based on the discovery of existing CD8* and CD4™ T cells in patients, able to rec-
ognize TAAs12%, Peptide-based vaccines aim to trigger T cell-associated immune responses?2°,
Studies have shown, that the presence of CD4* or CD8* cytotoxic T cells in tumors and an IFN-
y gene signature has a strong association with prolonged patient survivalt27128, Additionally,
this type of vaccine has several advantages, including feasible synthesis, chemical stability, the
absence of oncogenic potential, easy administration, and low frequency of side effects?22130,
Peptide-based cancer vaccines are either designed from TAAs or TSAs. TAAs can be grouped
into four categories: differentiation antigens, cancer/testis (CT) antigens, overexpressed anti-
gens, and universal tumor antigens'*". Differentiation antigens are specifically expressed by
a type of tissue and the associated tumor. Most of the genes encoding for these antigens are
known in the context of melanoma, including Melan-A/MART-1 and gp100/pMel174314432]
CTAs are expressed in human germ cells within the testis and trophoblasts but not in other
normal tissues. Due to their expression in different types of human cancers and the absence
of HLA class I expression in testis cells, these antigens serve as tumor-specific T cell targets.
Characterized genes encoding for this type of antigens include the melanoma antigen-encoding
(MAGE) gene family#%13%_ The class of overexpressed antigens corresponds to antigens which
show low expression profiles in normal tissues and overexpression in different tumor types.
The HER-2 protein is one example which has shown induced T-cell immunity upon peptide vac-
cination**>, Many reported TAAs have restricted expression concerning different tumor types.

136 and telomerase®Z, defined as universal tumor antigens show

Antigens, such as survivin
expression across a broad variety of cancers. A variety of peptide-based vaccines derived from
antigenic TAA epitopes have been investigated in clinical trials. The results indicate that these
vaccines were able to induce antigen-specific T-cell responses but showed limited evidence of
clinical effectiveness'®. Most of these vaccines were based on CT antigens, differentiation
antigens, or overexpressed antigens'®?. As suggested by Rosenberg et al., one explanation for

the lack of clinical effectiveness might be the elimination of respective T cells due to central
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tolerance of the immune system2%. Early on, the “Tiibingen approach” presented the strategy
to identify, select, and validate HLA-presented peptides derived from TAAs, or TSAs if available,
for the development of multi-peptide cancer vaccines?4’. Today, therapeutic cancer vaccines
are more and more based on TSAs, including epitopes derived from viral gene products or
neoepitopes. Neoepitopes originate from non-synonymous tumor-specific (somatic) mutations.
Therefore, the selection of these antigens as immunotherapeutic targets should be more effec-
tive and safe. Such mutations are highly distinct across different cancer entities and individuals.
Thus, the design of cancer vaccines based on such peptides has to be personalized. Earlier
studies in mice indicated that vaccination against neoepitopes is effective for small tumor bur-
dens!417143 Neoepitope encoding mutations have been discovered through WES on matched
tumor and non-malignant samples. The selection of validated mutations was guided by RNA
expression and the presence of HLA-presented peptides. Further studies gave evidence for the
presence of tumor-specific neoantigen-reactive T cells in patients who received TILs as part
of an adoptive immunotherapy'4414°. Initially, studies on exploiting cancer exome data to
analyze therapy-induced T-cell reactivity against personal neoantigens were mainly based on
animal models?*47, However, more recent case reports show increasing evidence for the
efficiency of cancer exome-guided analysis and its application for T-cell reactive neoepitopes
in humans. Van Rooij et al. showed the presence of T-cell reactivity against two neoantigens
for a melanoma patient based on cancer exome data’4®, Two recent studies demonstrated the
safe and effective exploitation of individual (cancer) mutations for personalized vaccination
in human melanoma patients?4?1>Y, Both studies were based on a vaccine design pipeline
comprising the identification of individual mutations, in silico prediction of neoepitopes, as
well as the design and synthesis of personalized peptide-encoding vaccines. Sahin et al. vac-
cinated 13 patients with RNA vaccines encoding neoepitopes and reported that all patients
showed T-cell responses against multiple neoepitopes'*’. Additionally, the vaccine-induced
tumor infiltration by neoepitope-specific T cells and killing of autologous tumor cells could be
shown for two patients#?. In 2017, Ott et al. published results on six patients who received
a vaccination, and showed the induction of de novo T-cell clones which were reactive against

multiple neoantigens*°Y.

2.5 Next-Generation Sequencing

The majority of data, including patient-specific derived genomic sequences and variations, used
in this thesis has been generated using NGS. In the following subsections, the history of DNA
sequencing in the last decades is outlined, and major technologies, including their applications,
are described. Further, we specify bioinformatics approaches for the processing of NGS data
in various applications.
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2.5.1 The History of DNA Sequencing

The beginnings of DNA sequencing go back to the 1970s with the simultaneous developments
of Sanger on the determination of DNA sequences by primed synthesis with DNA polymeraset>!
and efforts on chemical sequencing methods by Maxam and Gilbert'>2. Sanger’s efforts re-
sulted in the also referred to as first-generation of sequencing methods using the dideoxy
method that applies the concept of chain-terminating nucleotide analogs’>®. Due to its lower
technical complexity and easier scalability in comparison to Maxam-Gilbert sequencing, Sanger
sequencing was the preferred method. In 1995, the first eukaryotic genome of Saccharomyces

154 and the first multicellular eukaryote Caenorhabditis elegans*>> were successfully

cerevisiae
determined. In 2001, the most significant milestone in sequencing history was achieved with
the first completed draft of the human genome sequence*®157, followed by the first release
of the finished-grade human genome three years later’>®, The human genome sequence has
been determined using a whole-genome shotgun approach coupled with automated Sanger
sequencing. Due to the small amounts of DNA processed per unit time of sequencers at that
time, in addition to high costs, it took ten years and three billion dollars to sequence the
first human genome. Despite the establishment of automated Sanger sequencing and many
technical improvements resulting in modern capillary electrophoresis (CE)-based Sanger se-
quencers>?, limitations of the technique were obvious and called for the development of new
approaches for DNA sequencing. The shift away from automated Sanger sequencing since
the last decade has also been catalyzed by the DNA sequencing technology initiative of the
National Human Genome Research Institute (NHGRI). The targeted objective was to reduce
the costs through new technologies by four orders of magnitude to about $1000 per human
genome in ten years'®?, Subsequent developments resulted in a variety of NGS technologies,
also referred to as high-throughput sequencing. The rapid evolution of next-generation DNA
sequencing technologies and their application led to a significant drop in cost per genome since
2008. In general, NGS requires less DNA than Sanger sequencing and takes less time due to
the possible combination of chemical reaction and signal detection as well as parallelization
of read generation. In 2017, the cost per genome was on the brink of breaching the $1,000
boundary (July 2017: $1,121) whereas, the cost of determining one megabase (Mb; a million
bases) dropped to $0.01218L (Figure .

2.5.2 Sequencing Technologies

Different sequencing technologies are defined by the unique combination of methods which

82 Tem-

can be grouped as template preparation, sequencing, imaging, and data analysis*
plate preparation includes either the clonal amplification of single DNA molecules or single
DNA molecule templates. Usually, clonally amplified templates are created by emulsion PCR

(emPCR)13 or solid phase amplification'®®. Subsequently, fragment templates or mate pair
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Figure 2.6: Development of the cost per genome and raw megabase of DNA sequence
from September 2001 to July 2017. The cost per genome (blue) and cost per raw Mb
(green) decreased significantly, especially after the introduction of NGS technologies in
2008 (red line). Data taken from Wetterstrand10Y,

templates, created from genomic DNA by randomly breaking it into smaller sizes, are immobi-
lized or attached to a solid surface or support. Forms of sequencing approaches involve cycle
reversible termination (CRT), single-nucleotide addition (SNA), real-time sequencing, and se-
quencing by ligation (SBL) where DNA polymerase is replaced by DNA ligase'®2. In the process
of read generation, individual bases in each fragment are identified through imaging methods
based on the measurement of bioluminescent signals or four-color imaging of single-molecular
events1®2, Data analysis methods vary depending on the used sequencing platform and ap-
plications. Established (commercial) NGS platforms include Illumina (Solexa) sequencing by
synthesis (SBS)1%, Roche 454 pyrophosphate sequencing (discontinued in 2013)1°® AB Se-
quencing by Oligo Ligation Detection (SOLiD)“%Z, and Ion Torrent Personal Genome Machine
(PGM) sequencing°®, More recent methods, also considered as third-generation sequencing,
include Oxford Nanopore Technologies sequencing®? and Pacific Biosciences single-molecule
real-time (SMRT) sequencing’”?. These new real-time sequencing technologies enable single-
molecule sequencing. Moreover, even higher throughput, faster turnaround time and especially
longer reads can be accomplished in comparison to second-generation sequencing technolo-
gies. Technical details and a comparison of established NGS platforms are covered by several

162171

reviews and will not be discussed here as it is beyond the scope of this thesis.
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Since the majority of data analyzed in this thesis has been generated using Illumina HiSeq
systems, this technology will be discussed in more detail. Illumina HiSeq systems employ
sequencing by synthesis chemistry. During sequential cycles of DNA synthesis, fluorescently la-
beled deoxyribonucleotide triphosphates (ANTPs) are incorporated into a DNA template strand.
This process is catalyzed by DNA polymerase. Upon incorporation, due to the fluorophore ex-
citation nucleotides can be identified. In the library preparation step, DNA or complementary
DNA (cDNA) samples are randomly fragmented and ligated with 5 and 3’ adapters. The
resulting adapter-ligated fragments are then amplified by PCR and gel purified. Afterwards,
clusters are generated by loading the library into a flow cell. The fragments with complemen-
tary library adapters are hybridized to the flow cell surface with surface-bound oligos and
amplified into distinct, clonal clusters using bridge amplification. Subsequently, sequencing
by the Illumina SBS technology involves a proprietary reversible terminator-based method°.
During each sequencing cycle, all four reversible terminator-bound dNTPs are present. Single
bases are detected as they are included into DNA template strands. Bases are identified by
emission wavelength and intensity captured by flow cell imaging and emission recording from
each cluster. The number of sequencing cycles determines the length of reads. Produced read
lengths of the HiSeq 2500 system range from 36 to 250 bp depending on the run mode. Higher
throughput compared to CE-based sequencing instruments is achieved due to the massively
parallel sequencing of millions of fragments instead of single DNA fragments. The HiSeq 2500
platform has a throughput of ten gigabases (Gb) per day to one terabase (Tb) per run, render-
ing the processing of eight human genomes at 30x coverage or 150 human exomes per run
possible. Multisample sequencing studies can be performed in a short amount of time through
the simultaneous pooling and sequencing of libraries (multiplexing) in a single run. Further
improvements were achieved by the development of paired-end sequencing, the sequencing
of both ends of DNA fragments in a library and the alignment of forward and reverse reads as
read pairs. This enables the production of twice the amount of reads at the same time, as well

as more accurate read alignment.

2.5.3 Applications

The expanding availability of NGS technologies in labs, the increasing throughput and accuracy,
as well as the reduction of costs facilitate the ever-expanding set of NGS applications, espe-
cially in the area of biomedical applications. The study of genomes is not limited by their size
anymore, nor bound to the characterization of single genes associated with genetic disorders in-
cluding cancer and rare diseases’”L. Instead, high-throughput sequencing of organisms makes
large amounts of genetic data available, enabling a variety of studies in genomics, metage-
nomics, epigenomics, and transcriptomics. Available standard protocols involve whole-genome

sequencing (WGS), RNA sequencing (RNA-Seq), targeted sequencing, including exome and
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16S sequencing, as well as chromatin immunoprecipitation sequencing (ChIP-seq), methylation
sequencing (Methyl-seq). Initially, NGS technologies have been successfully applied for de novo
sequencing of genomes for different species. Further developments led to the application of
these methods for resequencing of human genomes and exomes. Thereby, the identification of
single nucleotide variants (SNVs) could be accomplished by comparison of the sequenced reads
and available reference genomes. Furthermore, sequencing can be applied for the global char-
acterization of structural variation (SV), characterized as large (>1 kb) segments which have
been duplicated, deleted, or rearranged. However, due to short read lengths of NGS platforms,
this task is more challenging in comparison to the determination of SNVs72 but might get more
feasible using more recent technologies including SMRT*%3, International research projects,
such as 1000 Genomes Project”#17% try to catalog the human genetic variation for many indi-
viduals in diverse populations. Through the application of RNA-Seq, in-depth characterization
of the transcriptome of various cells, tissues, and organisms became practicable!7®. Specific
applications include the quantitation of transcript abundance, the characterization of differ-
ent present gene isoforms, the identification of actively translated messenger RNA (mRNA)
transcripts ratios, RNA-editing, as well as cellular roles of RNA and allele-specific expression
estimation. Applications are not solely based on the analysis of single organisms but are also
applied for species classification and gene discovery of metagenomic samples. Metagenomic
studies of microbiomes include diverse sources as the ocean, soil, and human body. Shotgun
sequencing approaches are usually used for the detailed characterization of species and gene
composition, whereas 16S ribosomal RNA (rRNA) gene sequencing is applied for the char-
acterization of phylogenetic relationships. Recently, efforts have been made to characterize
the human microbiome and its role in human health and disease’””. Concerning medical
applications, WGS, WES, and WTS help to acquire a deeper understanding of the genetics of
diseases, especially for rare Mendelian disorders and cancer. Large consortia for cancer genome
sequencing such as The Cancer Genome Atlas (TCGA) as part of the National Cancer Institute’s
(NCI) Genomic Data Commons (GDC)"7® and the International Cancer Genome Consortium
(ICGC)1”? characterize and collect tumor and matched normal samples. The comparison of the
cancer genome to the matched unaffected genome enables the comprehensive characterization

of somatic genome alterations and therefore the detection of somatic variants.

2.5.4 Bioinformatics for Next-Generation Sequencing

The choice of bioinformatics tools for the analysis of NGS generated data highly depends on
the application. As the focus of this thesis is the analysis of personal human genomes and
transcriptomes, as well as (somatic) variant detection, involved processes are explained in
detail. The analysis pipeline for genetic variant analysis typically includes: quality-control, pre-

processing, read alignment, post-alignment processing, and variant calling and annotation8Y,
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Large-scale transcriptome analysis usually involves different read alignment strategies, as well

as the quantification of expression in RNA-Seq data.

Quality Control of Raw NGS Data

The initial step in most of the NGS-based applications is quality control (QC) of raw reads to
assess quality issues including low base quality, contamination with adapter sequences, and
biases in the base composition. Usually, depending on the used NGS technology, raw reads are
given in FASTQ format'®!, The file format is an extended version of the FASTA file format, which
includes, in addition to the sequence identifiers and text-based representation of sequences,
a Phred-scaled base quality score. The Phred quality score (Q score) has been originally
developed for Phred base-calling, an algorithm for the identification of bases from fluorescence
signals 82183 The quality score, given in ASCII space, is related to the probability P of a base to
be incorrectly called by the sequencer and is defined as follows: Q =—10log;, P. Tools, such
as FastQC1®% can be used for the assessment of raw read quality to determine the necessity
of preprocessing steps such as base trimming, read filtering, and adapter clipping. Quality
measurements include the distribution of (PHRED) quality scores across bases of reads, the
guanine-cytosine (GC)-content distribution, read length distribution, and sequence duplication
level.

Preprocessing

Preprocessing of NGS data usually involves trimming of low-quality bases, adapter removal in
reads, and the removal of redundant reads or undesired sequences involving contamination
from primers or other species1®’. Existing solutions employ different approaches such as semi-
global sequence alignments (Cutadapt*®>), hash-based search followed by a simple score-based
search (Trimmomatic8®), bit-masked k-difference matching using a dynamic programming
algorithm (Skewer!8®), and probabilistic approaches to detect the overlap between forward

and reverse reads (SeqPurge!®7).

Read Alignment

An essential step in the resequencing of DNA is to gain insights in the genetic difference to
an available reference genome. Therefore, preprocessed reads are usually mapped against a
reference genome assembly. In the case of unknown genomic sequences, genome assemblies
can be determined de novo using assembly algorithms. Concerning resequencing of the human
genome, the two primary sources of reference genomes are the University of Santa Cruz
(UCSC) and the Genome Reference Consortium (GRC). Both sources released (sub-)versions
of the human genome namely the UCSC versions hg18, hg19, and hg38, as well as the GRC
versions GRCh37 and GRCh38. The goal of read alignment is to determine the location within
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a reference genome sequence that matches the observed DNA sequencing read and therefore,
ultimately identify the original site of the read. A certain amount of mismatches has to be
tolerated since sequencing errors in the read sequence as well as actual variations between the
reference genome and the sequenced genome exist.

Implementations for read sequence alignment usually carry out a multistep procedure. In
the first step, heuristics are used to identify a smaller set of locations within the reference where
the read could be placed. Afterwards, more accurate (semi-) global or local alignment algo-
rithms, including derivatives of the Needleman-Wunsch algorithm“®® or gapped and ungapped
versions of the Smith-Waterman algorithm®?, are used to identify the exact location®?., Fun-
damental techniques for the first step of this multistep process include hash-based alignment
methods and Burrows-Wheeler transform (BWT)-based methodst?Y, Hash-based alignment
methods create a hash-table data structure for indexing and scanning the sequence data. De-

pending on the implementation, hash tables are either build on the set of input reads!?21°%

or the reference genome!2#192

Read mapping implementations based on BWT, including
BWAL20197 Bowtiell?8 and Bowtie 2192, create an index of the reference genome to facilitate
rapid search and low-memory consumption. Due to the reordering of the reference genome
sequence using BWT, multiple occurring sequences are placed together and therefore allow
efficient index creation. The final index creation is based on suffix arrays, such as the FM-

index4%

, that are created from the derived BWT sequence to facilitate efficient subsequence
search. Additionally, existing read alignment implementations handle mismatches, gaps, and
paired reads using scoring schemes, which are based on base quality values or the edit dis-
tance. Current read alignment solutions can be broadly classified in tools striving to find the
best mapping location of a read according to an assigned score (best-mappers 20199201y op
tools enumerating a comprehensive set of locations (all-mappers<¥22%3)  Other approaches,

such as Masai<%#

, combine the enumeration of all read locations with the option to perform
best mapping.

In the case of read alignment of RNA-Seq data, two basic strategies exist, given that a
reference genome or transcriptome is available. Reads are mapped to the reference genome
using gapped mappers or to the reference transcriptome using ungapped mappers. Read
alignment implementations have to address the problem of aligning spliced reads across introns,
as well as the determination of exon-intron boundaries. The discovery of exon junctions is either
guided by initial read alignments or existing gene annotations<*>. The final alignment is based

206,207, and

on identified junctions. Available implementations of both strategies include TopHat
STAR“Y®. Internally, TopHat uses Bowtie or Bowtie 2 to map the reads to the reference genome.
The identification of possible exon-exon splice junctions, without reference annotation, is
based on the initial mapping step. The generated database of possible splice junctions is
then used to map reads against junction candidates to confirm their location. STAR uses a

multistep alignment procedure to align non-contiguous sequences directly to the reference
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genome. In the seed finding phase, a suffix-array algorithm is used for the sequential search
for a Maximal Mappable Prefix (MMP), followed by cluster generation of aligned seeds around
a set of anchor seeds. Full alignments are then generated by joining the seeds within defined
genomic windows.

Most of the recent read alignment implementations generate alignments in Sequence Align-
ment Map (SAM) file format or its binary representation (BAM)“%?, which include fields for
reference sequence name, mapping position, mapping quality, and base quality.

Variant Calling

Variant calling is the process of identifying genomic variations of a sample by the comparison
of aligned reads to the reference genome. Variants include SNVs, (short) insertions/deletions
(InDels), CNVs, and large SVs. These variants might be inherited and present in germ cells
(germline variants) or only present in somatic cells (somatic variants). The process of distin-
guishing somatic mutations from germline mutations, based on somatic and matched germline
samples, is defined as somatic variant calling. In cancer research, one important application of
somatic variant calling is to identify somatic mutations which are present in tumor cells and
are distinct from germline polymorphisms. Germline variant calling methods employ different
approaches for variant detection. Existing algorithms include the Genome Analysis Toolkit
(GATK) HaplotypeCaller?%2ll FreeBayes?}2, and SAMtools2%?. All of these methods rely on
Bayesian approaches. HaplotypeCaller uses a Bayesian model to estimate the likelihood of the
genotype based on observed sequence reads covering a specified locus. SNV, InDel, and SV call-
ing accuracy is further improved by local assembly of aligned reads. SAMtools uses a two-step
process for variant calling. First, mpileup is used to compute possible genotypes and their
likelihood from aligned reads along the genome. Then, beftools calls SNVs and InDels based
on the estimated genotype likelihoods. FreeBayes implements a generalized version of the
Bayesian statistical method by Marth et al.%!® to allow multiallelic loci and non-uniform copy
number across samples?!2. SNVs, InDels, multi-base mismatches, and CNVs can be detected
simultaneously.

Somatic variant calling methods can be broadly grouped into two categories. GATK and
SAMtools can be used to detect somatic variants, where variant calling is performed subse-
quently on the tumor and the normal sample. Afterwards, genotype-based subtraction methods
are used to distinguish between variants present in all samples (germline) and variants which
are only present in the tumor sample (somatic). Other methods perform variant calling simulta-
neously on both samples using different Bayesian approaches (Strelka?, SomaticSniper4!‘¢14,
MuTect?!>) or Fisher’s exact statistics (VarScan“® 2). The detection of variants is either based

on joint diploid genotype likelihoods or shared allele frequency between the samples. Reviews
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with a comprehensive assessment of variant detection accuracy and comparisons of available

(somatic) variant calling methods are available elsewhere#12218

Variant Annotation

Detected variants are usually stored in Variant Call Format (VCF) 219 files, which can be an-
notated with the affected gene, transcripts, transcript-relative coordinates, and amino acid
changes. Further annotations include the type of the variant with respect to the location
(exonic, intronic, or intergenic) and its functional role (synonymous, non-synonymous, or
frameshift)?2?. These annotations are necessary to understand the functional effects and to
perform prioritization analysis of detected variants. Common variant annotation methods
include ANNOVAR22Y, SnpEff22l] and Ensemble VEP222, Additionally, genomic variation data
can be linked to existing databases. Thus, variants can be annotated with additional informa-
tion including minor allele frequency (MAF) using dbSNP“23 evidence in pathogenesis from
disease variant databases (ClinVar#%*), and cancer association (COSMIC222).

Gene and Transcript Quantification

The most common goal of RNA-Seq analysis is to retrieve estimates of gene and transcript
expression. Therefore, RNA-Seq reads can be mapped to a genome or transcriptome reference.
Estimates of gene and transcript expression are then calculated based on the number of ag-
gregated raw reads mapping to each transcript?2®. Methods such as HTSeq?%” are used to
quantify expression on gene-level by counting the overlap of reads with genes. Gene transfer
format (GTF) files provide essential genomic coordinate information of exons and genes. Other
approaches as implemented in Kallisto?2® do not rely on mapped RNA-Seq reads, but rather
give expression estimates based on a reference transcriptome and raw reads from RNA-Seq
experiments. Kallisto constructs pseudoalignments of reads using hashing of read-derived
k-mers and a de Bruijn graph representation of the transcriptome, identifying the transcripts
from which the reads could have originated4<®, Most common applications need comparisons
of expression levels among samples. Hence, different measures are used to normalize counts
and account for factors such as feature-length and library-size. One of the proposed measures,

reads per kilobase per million mapped reads (RPKM)22? is derived as follows:

10°-C

RPKM = ——,
N-L

where C is the number of mapped reads that fell onto the feature, N is the total number of
mapped reads in a given sample, and L is the length of the feature in bp. Other measures include
fragments per kilobase per million mapped reads (FPKM), which is used in paired-end RNA-Seq

experiments since two reads can correspond to a single fragment and therefore should not be
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counted twice. The measure transcripts per million does not account for the total number of
mapped reads, but takes the read length into account. It has been proposed as an alternative to
RPKM430, Still, for the comparison across samples, especially regarding differential expression
analysis, some methods work on mapped read counts rather than normalized data. Most com-
mon are comparisons across different biological samples to estimate effects on RNA expression
levels in the presence of drug treatment or to compare cells in a healthy and diseased state. Dif-
ferential expression analysis usually involves three steps: normalization, statistical modeling of
gene expression and testing for differential expression. To perform multi-sample comparisons,
DESeq2%°L] and edgeR“*? use normalization approaches (median-of-ratios, trimmed mean
of M values (TMM)“>%) based on negative binomial distributions, to allow a higher variance,

especially for biological replicates, than the Poisson distribution.

2.6 Towards High-Throughput Computational Immunomics

Developments concerning sequencing technologies lead to ever-increasing numbers of se-
quenced genomes accompanied by large amounts of data. Combined with clinical and epi-
demiologic data, NGS data is of high relevance in immunology research but at the same time
presents new challenges, including data handling and data processing. Immunomics is defined
as the interdisciplinary field of immunology, immunoinformatics, genomics, proteomics, and
bioinformatics. Challenges, as mentioned above, gave rise to the field of computational immu-
nomics including computational methods and resources to make sense of immunological data,
mechanisms of immune function and disease pathogenesis. Moreover, there is an increasing
demand for easily accessible, unified access points of integrated data resources with means
of standardized data analysis on powerful computing resources. This chapter introduces the

central concepts of computational immunomics, web-based portals, and workflow systems.

2.6.1 Computational Immunomics

A key challenge in computational immunomics is the rational design of EVs for the prevention
of infectious disease and the treatment of cancer using (personalized) immunotherapies. Since
one requirement of the induction of a T cell-mediated immune response is MHC binding,
computational approaches aim to predict the outcome of the MHC processing pathway which
includes proteasomal cleavage, TAP transport, and MHC binding. Methods for the prediction of
proteasomal cleavage sites utilize a variety of machine learning algorithms which can be either

234235 yses an algorithm based on neural networks

trained on in vitro or in vivo data. NetChop
which have been trained on in vitro degradation data (NetChop 20S) and MHC ligand data
(NetChop C-term) to account for different specificities of the constitutive proteasome and the

immunoproteasome. Proteasomal cleavage matrices (PCMs), derived from observed cleavage
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probabilities, can be used to predict cleavage using probability-based models as suggested by
Donnes et al.*® TAP transport prediction methods try to estimate TAP affinity and therefore
assess the likelihood of peptides being transported to the ER. The method SVMTAP=® uses
support vector regression (SVR) and sparse binary encoding for peptides. The algorithm was
trained on peptides with experimentally derived IC50 values as used in other methods2°.
Peters et al.%*” suggested a stabilized matrix-based approach.

HLA ligand binding is necessary, although not sufficient, for the induction of T cell responses.
Due to its importance, various approaches have been suggested in the last two decades. Meth-
ods for MHC class I and II binding prediction are available. However, MHC class II binding
algorithms (SYFPEITHI*®) NetMHCII“3*24Y NetMHCIIpan4*Y) are less performant due to the
different binding mode of pMHCII complexes and unknown positions of the binding core. In
MHC class I prediction, allele-specific predictors give estimates for MHC binding affinity for a
subset of MHC alleles trained on experimental data. Available approaches use position-specific
scoring matrices (PSSMs) 228242 and modern non-linear machine learning methods like support
vector machines (SVMs)#*%, and artificial neural networks (ANNs)44424% pan-specific methods
such as NetMHCpan24%247 yse training data from quantitative binding essays of related alle-
les to provide predictions for alleles with insufficient data points. NetMHCpan 4.0, the most
recent pan-specific method, has been trained on binding affinity and eluted ligand data?%®.
The integration of presented peptides identified by mass spectrometry (MS) in the training

242 is a consensus method for

data led to increased predictive performance?4®. NetMHCcons
MHC class I prediction which integrates NetMHC, NetMHCpan, and the matrix-based method
PickPocket?*? to increase prediction accuracy. Since the availability of immunomic data and
the demand for training data sets is increasing, immunomic databases have been established.

)22 provides curated epitope data, as well as analysis

The Immune Epitope Database (IEDB
tools and prediction algorithms for T-cell and B-cell epitope prediction. Another source for
naturally processed MHC ligands and T-cell epitopes is the SYFPEITHI database?*®, Although
various prediction methods along the MHC processing pathway exist, the prediction of T-cell
reactivity remains challenging. Methods as NetCTLpan try to combine predictions of the dif-
ferent steps of the MHC processing pathway to estimate T-cell reactivity?. POPISK# uses
an SVM with a weighted degree string kernel. Toussaint et al. incorporated immunological
tolerance estimates to improve predictions*®. Even though the presentation on MHC does not
guarantee recognition by TCRs and T-cell reactivity, MHC binding predictions are often used
as T-cell reactivity estimates due to the lack of high-accuracy prediction methods.

Assuming that T-cell reactivity estimates are given, algorithms for the selection and assem-
bly of epitopes exist. The problem of selecting the best set of epitopes as vaccine components
can be solved using heuristics2>2 or global optimization?>*2>%, To optimally assemble selected
epitopes and therefore improve vaccine efficiency by an increased epitope recovery rate, two

methods formulated and solved the problem as a derivative of the traveling salesman problem
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(TSP) without spacers?>> and optionally with spacers#>®. Since the importance of accessibility
and efficient use for a broad user group are increasing, web-based solutions for epitope selec-
tion?>” and vaccine design?°%2>? have been suggested. The need for new complex data analysis

260 providing the

pipelines has been addressed by software packages such as ImmunoNodes
graphical development of computational immunology workflows or the Python frameworks

FRED?? and FRED22¢,

2.6.2 Workflow Systems and Web-based Portals

With the growing amount of data, its availability, and the relevant issue of reproducibility201:262

there is an increasing need for the execution of structured chained analysis steps, especially for
large-scale data analysis in bioinformatics. Workflow engines help to define pipelines consist-
ing of a combination of parametrized steps and to automate the execution of these pipelines.
Workflow management systems (WMSs) usually provide (graphical) means of workflow cre-

4612631264! i5 3 free software system which comes with

ation, execution, and monitoring. Galaxy
a workflow engine. It is distributed as a public web service (http://usegalaxy.org) and
a software package for local instances that can be deployed on Unix systems. The public web
service provides a broad range of pre-installed tools which can be executed on the connected
infrastructure through a graphical user interface (GUI). The Galaxy software offers integra-
tion of computing environments such as clusters and clouds?®®. Through the Galaxy Tool
Shed?%® tool configurations and ‘recipes’ can be obtained and installed from a central loca-

tion. A similar feature is provided by Taverna267268

, which enables sharing of workflows via
myExperiment2®?, Taverna is a domain-independent WMS that provides an open-source tool
suite for the design and execution of scientific workflows. The tool suite includes a graphical
workbench to create and execute workflows, as well as a server application for remote execu-
tion of workflows. To increase portability and scalability across different workflow engines and
hardware environments, the Common Workflow Language (CWL)“%Y specification has been
suggested. The CWL standard uses task-based workflow definitions with explicit input and out-
put statements. Workflow engines like Galaxy and Taverna will provide implementations of the
CWL specification in the future. The Konstanz Information Miner (KNIME) analytics platform
is an open-source platform for the development and execution of workflows2%L, It provides a
user-friendly GUI that enables users to build workflows from existing KNIME nodes or custom
user-build nodes. Execution on distributed high-performance computing (HPC) resources or
cloud-based execution is possible via the fee-based suites KNIME Server and KNIME Cloud
Server. The grid and cloud User Support Environment (gUSE) is an open-source WMS that comes
with a set of high-level grid services“’2. The customizable service stack enables users to create,
execute, and monitor workflows. Through the generic Distributed Computing Infrastructure

(DCI) framework, multi-DCI and -cloud workflow execution is possible on services such as
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clusters, grids, supercomputers, desktop grids, and clouds. All services can be accessed via the
Web Services Parallel Grid Runtime and Developer Environment (WS-PGRADE) component,
which serves as a web-based GUI. Besides, given services can be accessed without the graphical
WS-PGRADE component via the remote API. Snakemake?’? is a Python-based workflow engine
inspired by the build system GNU Make?”#, Workflows are inferred from a set of rules which
are used to create a directed acyclic graph (DAG). The graph represents the sequence of rule
executions where rules specify input files, output files, and a shell command or Python code.
The Snakemake execution environment allows the execution on single-core machines, as well
as on compute clusters#’>,

To further ensure reproducibility, bioinformatic tools can be containerized. Containers are
isolated systems that provide virtualization of an execution environment and share the same
operating system (OS) kernel as the host. Therefore, containers are more lightweight and
efficient than virtual machines (VM) which need a guest OS and thus create more overhead.

Container engines like Docker2/> 276

and Singularity=~ allow users to define recipes to build the
container image. The workflow engine Nextflow?”” combines the two concepts of workflows
and containerization. It is a reactive workflow framework and a domain-specific language
that defines and executes pipelines made of different processes, which can be written in any
scripting language. Due to the container integration, processes can be executed in a Docker or
Singularity container.

As there is a growing demand for easily accessible GUI-based solutions for reproducible
research, highly tailored web-based portals are used to bring resources to scientific communities.
Such resources can be a combination of information from diverse sources with unified access,
presented in a uniform way as in the BioMart Central Portal2’®. Other portals, such as the
ICGC Data Portal?’”?, GDC Data Portal'”®, and cBioPortal®?, additionally provide essential
resources for data analysis and visualization. Access to bioinformatics pipelines and computing

resources like HPC systems is provided by portal solutions like the public Galaxy Server#® or

GenePattern*’.

Existing web-based portal solutions are based on different technologies such as web applica-
tion servers, containers, and frameworks. In a Java-based setting, web application servers like
Apache Tomcat8L] GlassFish?®2, and WildFly (former JBoss) %% implement different aspects of
the Java EE specification including the Servlet specification, the JavaServer Pages specification,

1284 and Gateln Portal“® (former JBoss Por-

and protocol specifications like HTTP. Liferay Porta
tal) are open-source Java-based portal solutions which can be deployed on application servers
as mentioned above. In general, portals act as a software platform for building websites and

web pages which can consist of pluggable software components, called portlets.
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Chapter 3

HLA Genotyping from
Next-Generation Sequencing Data

The content of this chapter is to the most extent part of the manuscript:

OptiType: precision HLA typing from next-generation sequencing data
Szolek, A.*, Schubert, B.*, Mohr, C.*, Sturm, M., Feldhahn, M., and Kohlbacher, O.
Bioinformatics, 30(23), 3310-3316 (2014)

* Joint first authors

3.1 Introduction

As described in the background on MHC (Section|2.2.1)), the HLA cluster is one of the most poly-
morphic regions in humans which plays a crucial role in adaptive immunity. Therefore, HLA
molecules are relevant to many biomedical applications and medical areas, such as vaccinol-

0gy 2861287 2881289 and autoimmune diseases2?%2°1,

, regenerative and transplantation medicine

In particular, with the recent advances in precision medicine, there is an increasing need for
fast and accurate techniques for HLA genotyping. This is even more important for personalized
medicine approaches in (cancer) immunotherapy, where the activation of the patient’s immune
system is used to fight the disease. Consequently, the individual HLA genotype has implications
for immune recognition and therefore the effectiveness of treatments due to the HLA-mediated
restricted recognition by T cells. Personalized cancer vaccines are already designed from the

particular genetics and biology of the patient. Therefore, this development is dependent on
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the availability of an individual’s HLA alleles. HLA genotype information can be available with
different degrees of resolution, whereas one can distinguish between HLA allele families (two-
digit) or distinct HLA protein sequences (four-digit). However, the determination of present
HLA alleles is challenging for several reasons, such as the vast allelic diversity.

To this day, 12,800 different HLA-I and 4,800 HLA-II alleles have been identified (IPD-
IMGT/HLA%°2 Release 3.31, April 2018). As shown in Figure the number of HLA alleles,
and the availability of genomic sequences is steadily growing.
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Figure 3.1: Database growth of the IPD-IMGT/HLA database. The number of HLA class
I and 1II alleles has been steadily increasing since the first release in December 1998.
Today, in January 2018, the database contains 17,874 HLA sequences (data derived from
http://www.ebi.ac.uk/ipd/imgt/hla/stats.html).

Additionally, HLA alleles share significant sequence similarity which renders the unique
identification of a genotype based on short-read sequencing techniques highly complex. High
degrees of sequence similarity is even present across different loci, which often leads to am-
biguous genotyping results of HLA typing approaches??®. Established approaches are based
on sequence-specific oligonucleotide probe hybridization, PCR amplification with sequence-
specific primers, or serotyping techniques. Such probing techniques are usually labor-intensive
and time-consuming, which promoted the development of HLA enrichment and sequencing
techniques for the sole purpose of HLA typing. The use of targeted NGS has been demonstrated
by Gabriel et al.2% and Bentley et al.2?>, Other new established protocols®%226-298 \vhich
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still require elaborate preparations, are based on NGS technologies as well. In 2013, Danzer
et al. proposed a protocol using GS 454 Junior sequencing®?. Even though their approach
enables high-resolution typing within two days, computational approaches were needed to
reduce time and money consumption further. One hybrid approach, where the computation of
the posterior probability of HLA allele pairs has been combined with a 454 GS FLX Titanium
sequencing pipeline, was established by Erlich et al.®%. Still, this approach relies on specific
sequencing and PCR amplification techniques.

To overcome these limitations and avoid additional costs and turnaround time, routinely
generated data could be used. Cheaper personal genome sequencing and routine sequencing
of patient exomes or whole genomes, established in many larger clinical centers, open up new
possibilities for HLA typing. Still, there is an unmet need for fast and precise computational
HLA typing approaches from short-read sequencing data. One reason for that is the above-
mentioned high variability of the HLA loci which renders established read mapping and variant
calling-based analysis of NGS data not suitable for HLA genotyping.

Related Work

Several methods based on various techniques have been proposed in the last couple of years.
In 2012, Warren et al. proposed an algorithm (HLAminer<?) based on allele-specific scoring for
whole genome, exome, and transcriptome sequencing. Based on properties of contigs aligned
against an HLA reference database, derived through de novo assembly, scores for HLA alleles
are calculated. For each locus, the highest-scoring alleles are reported. Other approaches for
RNA-Seq data include seq2HLA®?, a greedy algorithm based on read count maximization, and
HLAforest">, a tree-based top-down greedy algorithm. The tree is constructed for each read
based on the mapping results against the HLA references.

Liu et al. published an approach (ATHLATES“?®) which determines the most probable HLA
allele pairs for each locus based on the minimal Hamming distance to the variable positions
of each exon. For each exon of the HLA reference sequences, the best mapping contig is
determined. The Hamming distance for each allele is then calculated to all aligned exons,
followed by the application of different filtering criteria.

In 2013, Major et al. proposed an approach which selects allele pairs based on the optimal
coverage depth and sequence coverage of their alignment=®. Subsequently, applied filtering
steps enforce certain sequence coverage of exons 2 and 3, number of mismatches, and align-
ment orientation of paired reads.

The aforementioned methods do not provide sufficiently accurate predictions, especially
concerning clinical applications. Kim et al. and Warren et al. reported four-digit HLA geno-
typing accuracies of 85-90% on RNA-Seq data®4*>, For WGS and short-read RNA-Seq data,

the reported accuracy was even lower. Other limitations include the reported HLA genotype
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resolution and incomplete typings for specific samples. The proposed approach by Boegel et
al. (seq2HLA) is only capable of reporting two-digit HLA genotypes=>. Major et al. reported
an accuracy of 94% on exome sequencing samples=®. However, due to the applied stringent
filtering criteria, their method only yielded full typings for 161 out of 217 samples.

One reason for limitations concerning typing accuracies might be the independent consid-
eration of each HLA locus. As mentioned above, HLA alleles share high sequence similarity
across loci. Reads might, therefore, map to alleles of different loci with equally good alignment
scores. Common to the above approaches is also the disregard of intron sequences in exome
and WGS data. This results from the unavailability of complete sequence data. 94.6% of HLA
sequences contained in the IPD-IMGT/HLA database“’? (Release 3.14.0, July 2013) lack parts

of their exonic or intronic sequences.

Project Outline

We implemented a new HLA genotyping algorithm (OptiType) based on integer linear program-
ming. The above-described issues are tackled by the simultaneous consideration of all major
and minor HLA-I loci and the inclusion of intronic information. Our approach is based on the
assumption that the actual present genotype explains more reads than any other genotype. An
allele explains a read if the corresponding read is aligned to it with fewer mismatches than to
any other allele. By maximizing the number of explained reads, we find the optimal combina-
tion of HLA alleles and therefore the most probable present HLA genotype. OptiType is capable
of producing accurate predictions from NGS data that has not been specifically enriched for
the HLA cluster. The pipeline comprises three key steps (Figure [3.2)).
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Figure 3.2: Key steps of the HLA typing pipeline of OptiType. (A) First, NGS reads are
mapped against a constructed HLA allele reference. The libraries (genomic/ coding DNA
sequence (CDS)) are constructed from exon 2 and exon 3 of known HLA-I alleles and
flanking intronic regions in the case of genomic sequences. (B) From the mapping results,
a binary hit matrix C?*! is constructed for all reads r € R mapping to at least one allele
a € L. A successful mapping of read r to allele a is denoted by C, , = 1. For each HLA-I
locus, up to two alleles are selected by the formulated ILP based on the hit matrix. The
solution is optimized for the number of explained reads. Figure adapted from Szolek et
al.®%l Human body silhouette icon obtained from Reactome Icon Library®® and adapted.
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Materials and Methods

For the initial alignment step, only exon 2 and 3 are taken into account due to the availability
of these subsequences for all alleles. Consideration of other sequences would thus favor alleles
with complete sequence information. We constructed an HLA allele reference set which further
includes flanking intronic regions for WES and WGS data. Since the intronic information is not
available for most of the alleles, we impute the missing information from other alleles based
on the phylogenetic information. Based on the read alignment results, we generate a binary
hit matrix CR* for all reads r € R mapping to at least one allele a € L. To find the optimal
set of HLA alleles, we formulated a particular case of the set cover problem®%? as an integer
linear program (ILP). The ILP solution is optimized for the number of mapped explained reads,
whereas up to two alleles are selected simultaneously for each locus. Additionally, minor HLA
loci G, H, and J are considered during optimization to account for ambiguous read alignments,

as long subsequences of these minor loci present a high similarity to major loci.

3.2 Materials and Methods

This section describes implementation details of our algorithm for HLA typing based on NGS
data, including the formulated ILP. Further, we give detailed information on employed software,
data sets, and carried out simulation studies. The pipeline was implemented in Python 2.7 using
the module Pandas 0.12 (http://pandas.pydata.org) with HDF5 1.8.11 (https://www.
hdfgroup.org/HDF5) data persistence support. The source code is available at https://
github.com/FRED-2/0ptiType under a three-clause BSD license. Performed comparisons
of results to experimental typings are based on the percentage of correctly predicted alleles.
In the case of the evaluation of zygosity predictions, the correctness of the predicted zygosity
in comparison to experimental results without considering the typed alleles is reported. The
statistical analysis was conducted using R 3.0.2. The 95% confidence intervals were calculated

by bootstrapping with 100,000 repetitions.

3.2.1 Reference Construction

The initial read mapping step of the OptiType pipeline is based on a constructed reference
library for coding DNA sequences (CDS) and genomic nucleotide sequences. Corresponding
information for all HLA-I alleles was obtained from the IPD-IMGT/HLA database®?® (Release
3.14.0, July 2013). Concatenated exon 2 and 3 coding sequences build the reference library for
RNA-Seq data. For the DNA sequence reference library, we further include the intron sequences
flanking exon 2 and 3. OptiType uses reconstructed intron sequences for alleles where intron
sequences are not available. In case of missing sequence data, the data is completed by infor-
mation from the closest phylogenetic neighbor from the set of complete HLA allele sequences

1 304

based on sequence similarity. As shown by Blasczk et a , the ancestral lineage of the alleles
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3. HLA Genotyping from Next-Generation Sequencing Data

is reflected by highly systematic mutations and characterize the intronic variability in HLA. The
reconstruction step resulted in 10,779 reconstructed sequences for 6,489 partial alleles. The
sequence similarity calculation was based on distance matrices computed using Clustal Omega
1.2.0°% Distance matrices were computed for the set of all alleles with complete sequence
information and alleles with the same exon sequence availability based on concatenated exon
sequences. All nearest neighbors for each partial allele were used for the reconstruction of
sequences. A leave-one-out validation of the sequence reconstruction quality was performed
based on the reconstructed intron sequences in comparison to the original sequences. For each
allele with full sequence information, introns 1, 2, and 3 were removed and reconstructed using
nearest neighbors that are identified on the basis of exon 2 and 3 sequences. This resulted in a
similarity of 99.89% (£ 0.43%), which corresponds to an edit distance error of 1.2 on average
over the combination of three introns. For alleles of the same loci, the sequence similarity
between introns amounts to 97.36% (£ 2.15%).

3.2.2 Read Alignment

Read alignment was performed with RazerS3 3.1, released as part of the open source C+ li-
brary project SeqAn20239¢ RNA-Seq reads were mapped against the constructed nucleotide
CDS reference library. Reads of WES and WGS were mapped against the constructed ge-
nomic nucleotide reference library. The applied parameter settings (--percent-identity
97 --distance-range 0) result in all best alignments for every read and a sequence iden-
tity of at least 97%. The maximum number of reported best matches (--max-hits) was set

2199

to infinity. Further, we performed read alignment with Bowtie on one data set.

3.2.3 Hit Matrix Construction

Based on the read alignment results, a binary matrix C?*! was constructed for all reads r € R
mapping to at least one allele a € L of the reference. In the case of paired-end data, the matrix
was constructed for each read pair individually. A successful alignment of read r to allele a is
denoted by C, , = 1, unsuccessful alignment with C, , = 0 respectively. Matrix rows of reads
from paired-end data were combined with a point-wise AND with their matching pair. Reads
without mapping mate reads were discarded. The matrices were filtered for alleles whose
four-digit subtype is not available in the allele frequency database®%” or dbMHC®%, Further,
reads with identical rows, mapping to the same alleles, were combined and represented by a
row weight vector o,. Completely covered alleles were removed from the matrix by dropping
corresponding columns. An allele b is defined to cover allele a if (C :,Ta C.p = C.INC. 4| <IC.p))
with a, b € L. Allele b therefore covers all reads which map to a but additionally explains other

reads. The resulting matrix was used for model construction.
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3.2.4 Optimization Problem

The main assumption of our algorithm is that the true HLA genotype explains more mapped
reads than any other combination of HLA alleles. Therefore, we want to determine the combi-
nation of up to six major and six minor HLA-I alleles which maximizes the number of explained
reads. We formulated the underlying optimization problem as an ILE which guarantees an
optimal solution for a linear objective function subject to linear constraints and integrality

requirements on the variables®??, The ILP is defined as:

(01) rgggzor-(yr—ﬁ-gr)— Z Y Xg

~ rer a€LR

s.t.
(C1) VXE€{AB,C,GHJ} D y,<7m™
aeX

(C2) VX€{AB,C,GHJ} Y y,>tmn
aeX

3.1
(C3) VreR Z%a'cr,azyr
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(C4) VreR g, <7tl%t.y,
(C5) VreR g <> g,—nl

ael
(C6)  VreR g2 xa—n*H-n""-(1-7,)
ael

A binary variable y, was introduced with y, = 1 if a is part of the solution set S C L for
each allele a € L. For each read r € R, a binary variable y, denotes if read r is explained
by one of the selected alleles a € S. The diploid nature of the human genome is reflected by
constraints C1 and C2 which enforce the selection of at least one (t™" = 1) and at most two
alleles (7™ = 2) per locus. Alleles from the major (HLA-A, -B, -C) and minor loci (HLA-G, -H,
-J) are given by A,B,C,G,H,J. Constraint C3 is used to enforce y, = 1 if the corresponding
read r can be explained by the current solution set based on the binary matrix CR*L. To
account for the preference of heterozygous allele combination because of spurious hits, the

regularization term g, for each read r € R was introduced, defined as follows:

loci

- , ify.=1
()= { ZostFe T 1 (3.2)

0, otherwise
where n!°¢! describes the number of loci (here n'°¢ = 6).

The objective function includes the regularization term and a weighting constant 3. This

constant represents the portion of reads which have to be explained additionally to choose
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a heterozygous solution over a homozygous solution. Depending on y,, the constraint C6
enforces g, to take on one of the limit values given by C4 (g, is limited to O if read r cannot
be explained by the solution) and C5 (g, is limited to the number of heterozygous loci). The
constant 3 was set to 0.009 based on the result of an evaluation carried out by performing
nested five-fold cross-validation for different values in the range from 0.00 to 0.05 with a step
size of 0.001. The evaluation was performed on a data set consisting of 253 runs of the 1000
Genomes Project/#17> and evaluated in terms of percentage of correctly typed alleles. The
data set was stratified for evenly distributed heterozygous and homozygous cases.

The ILP was formulated with the Python module Pyomo, which is part of Cooplﬂ 3.3, and
solved with ILOG CPLEX12.5.

3.2.5 NGS Data Sets used for Evaluation

We conducted a comparison with previously published methods on publicly available NGS
data sets with PCR-verified HLA genotyping information. The full list of the used samples and
their accession IDs is given in Appendix Table Two data sets of 2 x 100 to 2 x 102bp
long Illumina HiSeq 2000 reads, previously used by Warren et al. and Kim et al., including
16 samples of a colorectal RNA-Seq study (SRP010181°2), and 20 low coverage WGS data

10 were obtained from the NCBI Sequence Read Archive®%,

samples of the HapMap Projec

An RNA-seq data set (ERA002336°*L, 37 nt long paired-end reads, Illumina Genome An-
alyzer II) derived from 50 lymphoblastic cell line samples of CEU HapMap individuals was
used for the comparison with Boegel et al. and Kim et al. Data sets were obtained from the

European Nucleotide Archive®12,

1.8% was carried out based on two data sets of 41 WGS

A comparison with Major et a
HapMap samples and 182 WES samples (1000 Genomes Project) respectively. The comparison
was only based on samples with fully predicted genotypes by Major et al. (12 HapMap WGS
and 161 1000 Genomes Project samples). Additionally, we included 253 Illumina HiSeq 2000
and Genome Analyzer II exome sequencing runs from the 1000 Genomes Project/#172 to this
benchmark set.

Moreover, OptiType was validated on two data sets, which have been used by Major et
al. They benchmarked their method on a HapMap WGS data set consisting of 41 runs, partly
overlapping with those used by Warren et al., and an exome sequencing data set consisting
of 182 runs of 1000 Genomes Project samples. Only samples for which Major et al. pre-
dicted full genotypes were considered, resulting in 12 HapMap WGS and 161 (1000 Genomes
Project) data sets. We expanded this benchmark set by including additional data from the 1000

175

Genomes Project~ consisting of all 253 Illumina HiSeq 2000 and Genome Analyzer II exome

sequencing runs.

thttps://pypi.org/project/coopr.pyomo
fhttps://www.ibm.com/products/ilog-cplex-optimization-studio
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Results

Further, we compared OptiType with ATHLATES based on their publicly available bench-
mark data set, including 11 samples from the 1000 Genomes Project2°3,

To evaluate the influence of HLA enrichment, two samples derived from the same patient
were sequenced on an Illumina HiSeq 2500 with 101 bp long reads. Additionally, one of the
samples was enriched with a SureSelectXT Human All Exon V5 kit (Agilent Technologies;
Boblingen, Germany), the other with a custom SureSelect HLA kit provided by Michael Wittig
(Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Germany) and
Agilent Technologies.

3.3 Results

In this section, we first show the overall performance of our NGS-based HLA typing method in
comparison to state-of-the-art tools on RNA-Seq, WES, and WGS data. We then evaluate the
influence of intronic reconstruction, HLA enrichment, and coverage depth.

3.3.1 Overall Performance

We evaluated OptiType’s performance in comparison to HLAminer, ATHLATES, seq2HLA, HLAfor-
est, previously published computational methods, and the method by Major et al. on publicly
available data sets. Overall, OptiType achieved an accuracy of 97.1% (Clgs5: 96.1-97.80%) on
four-digit level and 99.3% (Clys: 98.7-99.7%) on two-digit level on the 361 benchmark sam-
ples. This corresponds to 939 of 950 correct heterozygous and 127 of 133 correct homozygous
loci predictions.

As depicted in Figure OptiType outperforms the above-mentioned methods on all
data sets. The increase in accuracy ranges from 4 to 15% which corresponds to a 65 to 83%
lower rate of incorrect allele predictions. On a small subset of 11 samples, ATHLATES showed
comparable performance. The data set was initially used for benchmarking their algorithm.

OptiType achieved an average accuracy of 97.6% (Clys: 96.7-98.4%) when applied on all
253 paired-end Illumina exome sequencing runs of the 1000 Genomes Project, where 667 of
676 (98.7%) heterozygous and 80 of 83 (96.4%) homozygous loci were typed correctly.

3.3.2 Influence of Intronic Reconstruction

To assess the influence of intron sequence reconstruction, which is used for WES and WGS
data, we evaluated the performance on data from the 1000 Genomes Project. The reference
database was therefore constructed by taking only exon 2 and 3 sequences into account. In
order to avoid the loss of reads located at the exon boundaries, we performed read alignment
with Bowtie 2 in local alignment mode and the same mismatch tolerance as in the default

mapping procedure using RazerS3.
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Figure 3.3: Performance in comparison to state-of-the-art HLA typing algorithms. Opti-
Type’s performance was evaluated in comparison to four other published algorithms on
publicly available data sets including RNA-Seq, WES, and WGS data. The performance is
measured in terms of four-digit typing accuracy of the major HLA-I loci. Figure adapted
from Szolek et al.®%%,

The mapping of the paired-end reads was not successful in a significant amount of cases due
to the length of exons 2 and 3 which is ~270 bp, respectively. Thus, the hit matrix generation
was done in two distinct ways: (1) considering only mapped reads (2) allowing mapped reads
without corresponding mates. For (1) OptiType achieved an accuracy of 93.5% (CIg5: 91.8—
95.1%) and 90.6% (Clgs5: 89.0-92.3%) for setting (2). In comparison to the default OptiType

pipeline, including intronic information, this corresponds to a 2.7- to 3.9-fold increase in error.

3.3.3 Influence of HLA Enrichment and Coverage Depth

To analyze the effects of HLA enrichment on OptiType’s prediction accuracy, we examined
a sample with an average coverage depth of ~4,100x on HLA-I loci. Therefore, the HLA
genotype was predicted for subsets of reads by randomly extracting a decreasing number of
reads from the complete sample as a simulation of scenarios with different coverage depths.
With a coverage of ~12x, which corresponds to ~0.3% of the total amount of reads, OptiType
still correctly predicted the genotype. This amount of reads corresponds to as little as ~15%
of the exome sample of the same subject without specific HLA enrichment.

Further, we conducted a simulation study using all 1000 Genomes Project exome samples.
In total, resampling (>4,000x) with a restricted number of reads was applied to 253 individual
samples. An average coverage depth of 10x on HLA-I loci showed to be sufficient to achieve

an accuracy of 95%. The results of this experiment as well as the investigation of the effects of
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shorter read lengths (2 x 37 bp), which showed little impact on the prediction accuracy, are
shown in Figure

— 1000 Genomes exome, 2x76 to 2x101 bp
— 1000 Genomes exome trimmed to 2x37 bp
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Figure 3.4: Influence of read length and coverage on the prediction accuracy. To simulate
different coverage depth conditions, reads of 253 exome sequencing runs (1000 Genomes
Project) were subsampled (>4,000x). The same subsampling procedure was applied after
trimming the original reads to 37 bp to assess the impact of read length. Results were
evaluated with respect to four-digit typing accuracy and showed a minor effect of read
length. An average coverage depth greater than 10x over the HLA-I loci yields maximal
accuracy=%L,

3.4 Discussion

HLA genotyping is of vital importance for medical areas like regenerative and transplantation
medicine. With the increasing relevance of new therapeutic approaches like precision medicine
and personalized medicine and their clinical applications such as the design of personalized
vaccines, the development of HLA genotyping methods with short turnaround times, cost
efficiency, and high four-digit level accuracy becomes even more important. State-of-the-art
experimental HLA typing methods usually involve labor-intensive techniques which require
the generation of data with the sole purpose of HLA typing. However, decreasing costs for NGS
and its’ broader availability in clinical settings provide the foundation of in silico approaches
based on NGS data.

Previously published in silico HLA typing approaches did not show sufficiently accurate pre-
diction results, especially concerning clinical applications. This was mainly due to assumptions

made by these methods, including the isolated inference of HLA genotypes for each locus.
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Therefore, we implemented OptiType which does not include these limiting assumptions
and includes further information to yield correct HLA typing results on four-digit resolution.
Our benchmark on data sets from RNA-Seq, WES, and WGS technologies with read lengths
ranging from 2 x 37 bp to 2 x 101 bp showed an accuracy of 99.3% (Clys: 98.7-99.7%)
on two-digit-level and of 97.1% (Clg5: 96.1-97.80%) on four-digit-level typing. On 361
runs, OptiType correctly predicted the zygosity for 939 of 950 heterozygous and 127 of 133
homozygous loci, corresponding to an accuracy of 98.4% (Clgs: 97.5-99.1%). Due to it’s
applicability to data from different NGS techniques, the improved accuracy with respect to two-
and four-digit HLA typing, and short run times, OptiType presents an excellent alternative to
previously published in silico approaches.

Improved accuracy could be mainly achieved due to the simultaneous consideration of
all major and minor HLA-I loci, the adherence of an equal a priori chance for every allele to
be identified, and the inclusion of intronic information. We considered only exon 2, exon 3,
and flanking intron sequences to minimize the disadvantage of alleles with partial sequence
information. The unavailability of intronic information for incomplete alleles was thereby
tackled by the phylogeny-based reconstruction of intron sequences. This approach of a tailored
construction of a reference sequence database could even be extended to other regions with
an increasing number of full HLA allele sequences available. However, the prediction will still
be restricted to the used reference and, therefore, can only predict known alleles.

As shown by the conducted simulation study, the coverage depth of samples above a certain
level, as well as the read length, do not have a strong influence on the prediction accuracy.
This is in line with the reported observation that the number of covered bases has a stronger
influence than coverage depth2,

Problematic cases in terms of ascertaining the correct genotype usually result from the
absence of any reads for sequence segments, the constitution of a heterozygous locus by alleles
with high sequence similarity, and low coverage on distinguishing segments. Further, unre-
solved ambiguities arise for specific genotypes with reads mapping to minor and major loci.
Additionally, one limiting factor concerning achievable accuracy on data sets is the presence of
inaccurate experimental typings as previously observed®?. In general, a confidence measure
would be desirable for reported HLA genotypes. However, attempts to calculate a confidence
measure on the basis of enumerated solutions and their objective values were not successful.

3413131318 3191320 on in silico HLA

Since OptiType’s publication, new approaches and reviews
typing methods have been published. Reported accuracy values suggest that OptiType is still
among the most accurate HLA-I genotyping methods (Figure [3.5). For WES and RNA-Seq
data, OptiType achieved the highest accuracy values in all direct comparisons. On the WGS

318 ysed by Xie et al. to evaluate the performance of their method xHLA, Op-

benchmark data se
tiType achieved a slightly lower accuracy (97%) than xHLA (99.7%) and HLA*PRG®19 (98.5%)

for 488 samples. However, HLA*PRG has the drawback of very high computational demands
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Figure 3.5: Published HLA typing benchmarks including OptiType. (A) Performed bench-
marks of in silico HLA typing methods based on WES data sets. (B) Reported four-digit
HLA typing accuracies on WGS and RNA-Seq data sets. The reported accuracies originate
from reviews by Kiyotani et al.*® and Bauer et al.*2% on available in silico typing methods

and publications on new proposed HLA typing algorithms by Shukla et al.*1#, Kawaguchi
et al.3¥7 and Xie et al.B18,

and requires ~30-250 CPU hours per sample as reported®18, As with OptiType, XHLA uses
an ILP-based approach initially based on information from exon 2 and 3 only. Integration
of information based on protein-level alignment, multiple sequence alignment-based align-
ment expansion, and subsequent refinement iterations seem to increase performance. Similar

features could be integrated into OptiType as well to improve its performance.
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One advantage of xHLA and other approaches are undoubtedly their ability to perform
HLA typing for class II. Still, this feature could be included in an updated version of OptiType.
Run times, which are typical in the range of minutes to a few hours per sample (including
read mapping) depending on the number of reads and read lengths, and memory consumption
could still be improved. Possible changes include the replacement of RazerS3 with a different

read mapper like Yara“®® or alternative alignment strategies in the initial mapping step.
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Chapter 4

T-Cell Immunogenicity: Modeling
Immunological Tolerance

4.1 Introduction

Immunogenicity is the ability of an antigen to induce a humoral or cell-mediated immune re-
sponse. However, only a small portion of peptides encoded by a foreign antigen usually induces
strong responses. This phenomenon is referred to as immunodominance®2Y, The potential of
antigen fragments (epitopes) to generate an immune response is thereby dependent on proper-
ties of the peptide itself and systemic features, such as central and peripheral tolerance. Some
amino acids have shown to be associated with immunogenicity, as well as specific positions
in the peptide influence immunogenicity to a more considerable extent than others®22, The
premise for T cell-mediated immunogenicity is the presentation of peptides on HLA class-I and
-Il molecules. This process is dependent on the antigen processing (Chapter|[2.2.2) within APCs
and nucleated cells, as well as the binding to HLA molecules. Still, the potential to induce a
T-cell response is dependent on the presence of a suitable T-cell clone for the corresponding
PHLA complex in the T-cell repertoire. Further, pHLA complexes are formed with self and non-
self peptides, demanding T cells to be able to discriminate between them. The T-cell repertoire
is initially shaped through negative and positive selection processes in the thymus (central tol-
erance). T cells with moderate affinity to self-pHLA complexes are positively selected. Negative
selection ensures self-tolerance by depletion of naive T cell progenitors with high affinity for
self-antigens bound to HLA. Another mechanism ensures differentiation of self-reactive cells
into Foxp3™ Treg cells®2®, In addition to the induction of tolerance to peptides conserved in

324 there is evidence for similar mechanisms for T cells reactive against peptides

the proteome
of commensal microorganisms, such as bacteria in the gut microbiome >, T cells remain
tolerant to non-self peptides which exhibit high sequence similarity to self-peptides®>. Assess-

ment of immunogenicity is of high importance to guarantee the efficacy of therapies, such as
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326 or to minimize the risk of adverse reactions for agents like biotherapeu-

cancer vaccines
tics®27. Immunogenicity estimates could especially guide the selection of epitopes in the field
of neoantigen-based vaccines which is a crucial aspect of their development=2%, Traditionally,
predicted pHLA affinities are used as immunogenicity estimates. Many approaches for the pre-
diction of HLA class-I and class-II binding affinities are available and have been reviewed=2?.
However, even though binding to HLA molecules is a prerequisite for immunogenicity, pHLA
affinity does not correlate with the strength of induced immune responses°2%331, Therefore, it

is not enough to assess HLA binding to ensure HLA-restricted immunogenicity=22.

Related Work

To improve the prediction of immunogenicity estimates, methods°”**Y have been developed
that include further metrics of the antigen processing pathway, such as proteasomal cleavage
and TAP transport, in addition to HLA binding. However, the performance improvements were
rather weak. Calis et al.®?? developed a linear regression model to weight epitope position
based on their influence on TCR recognition. Data was derived from previous studies on the
analysis of peptide recognition by T cell clones and the structure of pHLA-TCR complexes 2237336/
In 2007, Tung et al. proposed a machine learning approach using an SVM on physicochemi-
cal properties encoded peptides®. Although this approach was later extended to advanced
string kernels“2, it did not exceed an accuracy of 68% for HLA-A2. Toussaint et al. further
increased the prediction performance by combining sequence properties with self-tolerance
information encoded as the distance of the peptide in question to the 100 closest peptides in
the proteome, defined as distance-to-self*>. Recently, Rasmussen et al. developed an artificial
neural network approach combining HLA binding prediction methods and pHLA stability es-
timates®37°38 The combined approach showed an increased prediction performance of CTL
epitopes in comparison to the methods alone 3%, This observation is in line with the conjecture
that the stability of pHLA complexes correlates better with immunogenicity than the binding
affinity®3?"34!' which has been confirmed for an HLA-A*02:01-restricted T cell epitope set in

vaccinia virus infections242,

Project Outline

In this work, we propose a method for the prediction of immunogenicity which is based on
distance-to-self*® measures. We extended this approach by modeling peripheral tolerance. A

d43343 memory-efficient tree-like data structure (trie) is used to store large

previously describe
sets of peptides and compute pairwise distances efficiently. Through consideration of gut micro-
biome data for the distance calculation, we extend the set of considered peptides and account
for potential peripheral tolerance selection mechanisms. Every query peptide is encoded by

three feature vectors that are used for the employed machine learning approach (Figure 4.1)).
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Figure 4.1: Simplified scheme of our immunogenicity prediction approach. We construct
memory-efficient tree-like data structures (tries) that contain peptides from proteome and
gut microbiome data. Peptides are filtered for cleavage and HLA binding. For every target
peptide p*, we compute the distance to the k closest peptides of the self-peptide set using
a BLOSUM-derived distance matrix. For the feature vector construction, we add HLA-
binding affinities and peptide-HLA (pHLA) complex stability estimates for every of the k
closest peptides. Further, we compute properties of the target peptide such as HLA-binding
affinities, cleavage scores, and pHLA complex estimates and construct a five-dimensional
feature vector. Additionally, we encode the peptide sequence itself. The feature vectors
are then used in an implemented multiple-kernel support vector regression approach.

We use a feature encoding based on the BLOSUM50-encoded peptide sequence, distance-
to-self, binding affinity, and stability of the k closest peptides, and antigen processing measures

of the target peptide.

4.2 Materials and Methods

In this section, we give information on the data sets used for modeling central and peripheral
tolerance. Further, we describe the calculation of distance-to-self measures and the feature
encoding. We evaluated our implemented prediction method on an experimentally derived data
set described here. Additionally, we provide a detailed description of the employed machine

learning approach.

4.2.1 Modeling Central and Peripheral Tolerance

To account for self-tolerance of T cells, we include a representative set of self-peptides pre-
sented to T cells. We consider human proteome data to model central tolerance, as previously
published*®. Additionally, we include data derived from the human gut microbiome to model
peripheral tolerance. Not every peptide contributes to tolerance since the antigen has to be
processed, and the corresponding peptides have to be presented on HLA. Therefore, we predict

cleavage sites using NetChop?>> 3.1 with a threshold of 0.5 (default value) and consider only
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the respective resulting peptides. As the binding of peptides to HLA is a prerequisite for the
T-cell recognition, we further use NetMHCpan4” 3.0 to predict HLA binding for the respective
allele and only consider binders, i.e., peptides predicted to bind with affinities (predicted IC50)
of < 500nM (score > 0.425).

Proteome Data

The human proteome data was retrieved from the UniProtKB/TrEMBL database** (accessed
2016-07-04).

Thymus Proteome Data

As a presentative thymus proteome data set, we used the maximum thymus proteome (thymus-
max)4334> The selection of proteins was made based on whole genome microarray data. The
thymus-max data set contains all proteins that are present and marginally expressed in the

thymus=2,

Gut Microbiome Data

Human gut microbiome data was derived from the NIH Human Microbiome Project177:346
database (accessed 2014-10-20) as protein FASTA file. The complete data set contained
2,019,324 sequences in total from 382 distinct organisms. Since the data set comprises organ-
isms that have been isolated in different individuals and samples, we created three data sets of
representative gut microbiomes. Arumugam et al. reported the identification of three clusters
(referred to as enterotypes) with respect to overrepresented genera in the human gut micro-
biome®*Z, According to this classification we created subsets of the complete gut microbiome

Table 4.1: Representative human gut microbiome data sets. We split the full human gut
microbiome reference into three subsets representing the three enterotypes as previously

defined®%Z,
Identifier Genera Number of
Sequences

gut-etl Acidaminococcus, Bacteroides, Roseburia, Faecalibacterium, 413,052
Anaerostipes, Parabacteroides, Clostridiales

gut-et2 Prevotella, Streptococcus, Enterococcus, Desulfovibrio, 216,760
Lachnospiraceae

gut-et3 Akkermansia, Alistipes, Klebsiella, Ruminococcus, 225,809

Escherichia/Shigella, Dialister, Mitsuokella,
Methanobrevibacter, Eggerthella, Ruminococcaceae,
Subdoligranulum, Coprococcus, Collinsella, Blautia,
Eubacterium, Dorea
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reference (Table[4.1) in the following referred to as gut-et1, gut-et2, and gut-et3. The resulting

protein FASTA files contain all protein sequences of organisms of the overrepresented genera.

Distance-to-self Measure

To calculate the distance between two peptides, we employed the distance definition by Tous-
saint et al.*>. The distance between a peptide and a set of peptides is defined as the smallest
pairwise distance to one peptide of the set. We used a distance measure derived from the
BLOSUM4S5 substitution matrix>#®, The symmetric 20x20-matrix D is generated as previously
published“3: each entry a;; of the substitution matrix A is replaced by #, resulting in a
symmetric matrix A’. The non-negative matrix A” is generated by shifting all entries by the
absolute minimum value of A’. Further, all entries are divided by the maximum entry of A”,
resulting in a normalized matrix A”’. The distance matrix D is computed by subtracting each
entry of A” from 1: m;; = 1— a;/]f. Efficient computation of distances, based on the distance
matrix, was realized by a memory-efficient trie-based approach*>*43, Tries, where each pep-
tide is represented by a leaf, were generated from the sets of peptides. All peptides represented

by a path from the same node have a common prefix.

4.2.2 Feature Encoding

Each target peptide p* is encoded by three feature vectors. The first vector ®,(p=) is constructed
from the target peptide sequence using a 20-dimensional amino acid encoding derived from
the BLOSUMS5O0 substitution matrix. Furthermore, we calculate the HLA binding affinity for the
respective allele a(p+) with NetMHCpan#4” 3.0, pHLA-complex stability estimates s(p*) using
NetMHCstabpan=*® 1.0, TAP transport efficiency estimates t(p*) using SMMTAP437 1.0, the
cleavage score c(p*) using NetChop?3 3.1, and the the immunogenicity propensity score22

i(p*). The generated 5-dimensional feature vector is defined as follows:

®,(p*) =[a(p*),s(p™), t(p*), c(p*),i(p™)].

For the construction of the tolerance feature vector, we calculate the distance of the target
peptide p* to the k closest peptides of the proteome, the binding affinity of the k closest
peptides, and the pHLA-stability estimates, resulting in the following feature vector ¢,(p*):

®4(p*) = [d(p1), alp1),s(p1), .- -, d(pi), alpk), s(pi)) ]

In the following, we will use k = 100, resulting in a 300-dimensional feature vector. We

implemented the feature vector generation using FRED22°,
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4.2.3 Immunogenicity Prediction

For the prediction of immunogenicity for a given target peptide, we employed multiple kernel
learning with support vector classification and one kernel on each feature vector. We used a
local alignment string kernel on the encoded peptide sequences and a Gaussian radial basis
function (RBF) kernel on the feature vectors encoding immunological properties ($;(p*)) and
self-tolerance (®4(p*)), respectively. The prediction functionality was implemented using the

349

machine learning toolbox Shogun*** and accessed via the Python interface.

4.2.4 Evaluation Data Set

For the evaluation of our approach, we used the same data set as previously described by
Toussaint et al.*®. Originally, the data set was provided by the Department of Immunology
(Tibingen, Germany). The data set comprises nonameric peptides derived from Epstein-Barr
virus. Peptides predicted to bind to HLA-B*35:01 using SYFPEITHI?*® and manually selected
ones were tested for T-cell reactivity using the enzyme-linked immunosorbent spot (ELISPOT)
assay. In total, the data set comprised 151 peptides, including 49 immunogenic and 102 non-
immunogenic peptides. The number was reduced to 45 positive and 45 negative data points by
Toussaint et al. to adapt the binding affinity distributions for both cases and therefore preclude

the learning of HLA binding instead of immunogenicity*4>.

4.3 Results

In our benchmark, we assessed if the incorporation of gut microbiome data to model peripheral
tolerance improves the prediction performance for T-cell reactivity. Further, we incorporated
features with respect to processes of the antigen processing pathway and evaluated the different

models on one experimentally validated data set.

4.3.1 Self-tolerance Data

From the initial sets of proteins thymus-max, gut-etl, gut-et2, and gut-et3, we generated all
9-mer peptides with a netChop score greater than 0.5. Initially, the thymus-max set included
9,584,195, gut-et1 33,621,547, gut-et2 18,835,603, and gut-et3 29,238,321 unique peptides
of length nine. On average, we observed 30.0% = 4.7% of the initial amount of peptides in
the resulting sets after filtering based on the proteasomal cleavage predictions. The number
of peptides predicted to bind to HLA-B*35:01 averaged at 510,369. This corresponds on
average to 2.3 £0.3% of the whole peptide set and 7.5 +0.4% of the filtered set. Hence,
the following number of peptides for the four data sets were considered for trie generation:
218,780 (thymus-max), 836,449 (gut-etl) , 471,199 (gut-et2), and 515,049 (gut-et3).
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4.3.2 Prediction Performance

We evaluated different models to assess the benefit of incorporating stability estimates and
gut microbiome data to model peripheral tolerance. The performance was evaluated based
on the mean area under the Receiver Operating Characteristic (auROC) using stratified nested
five-fold cross-validation. We used the approach suggested by Toussaint et al. as baseline (au-
ROC=0.78) which included a Gaussian RBF kernel on BLOSUM50-encoded peptide sequences
and a Gaussian RBF kernel on 201-dimensional features vectors encoding self-tolerance based
on thymus-max.

All tested models included the Gaussian RBF kernel on BLOSUMS50-encoded peptide se-
quences. We did not observe a performance increase in comparison to Toussaint et al. when
incorporating gut microbiome data. The combination with the three gut microbiome data
sets gut-etl (auROC=0.73), gut-et2 (auROC=0.73), and gut-et3 (auROC=0.72) resulted in
a decreased performance in terms of the mean auROC. Similar performances were observed
when including stability estimates to the thymus-max model for the target peptide only (au-
ROC=0.71) and additionally for all closest 100 peptides (auROC=0.74) without gut micro-
biome data. We observed the best performance when we used gut-et1 with stability estimates
for the target peptide and the closest 100 peptides (auROC=0.79). This was not the case
for gut-et2 (auROC=0.72) and gut-et3 (auROC=0.73). Incorporation of TAP cleavage, and
immunogenicity propensity scores to the previously mentioned models yielded a mean auROC
of 0.78 when using gut-et1 in addition to thymus-max. We observed worse auROC values when
using gut-et2 and gut-et3 which resulted in a mean auROC of 0.73 in both cases. The perfor-

mances of selected models in comparison to the baseline model are depicted in Figure [4.2

4.3.3 Integration in ImmunoNodes

To improve the availability of our approach for calculating the distance of given peptides to a
set of peptides, we integrated the functionality in the immunoinformatics toolbox ImmunoN-
odes?%Y, The toolbox is fully integrated into the visual workflow environment KNIME27 and
can be easily used within workflows. We provide one node (Distance2SelfGeneration)
to generate custom reference tries for a given protein FASTA file. The length of the included
peptides can be specified by the user. Additionally, the node Distance2SelfCalculation
empowers users to calculate the BLOSUM-derived distance of the k closest peptides in a pre-
calculated or custom build reference trie for a list of peptides. Further, ImmunoNodes includes
pre-calculated tries for the human reference proteome, generated from all peptides of length
8-11 AA.
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Figure 4.2: Performances of different implemented models for T-cell epitope prediction.
Given are the mean ROC curves over stratified nested five-fold cross-validation. The ap-
proach by Toussaint et al. (red) includes a Gaussian RBF kernel with BLOSUMS50 encoding
for the target peptide and a self-tolerance model based on thymus-max. The other models
also include a Gaussian RBF kernel with BLOSUM50 encoding, a self-tolerance model
based on thymus-max and gut microbiome data (gut-et1), stability estimates for the target
peptide (StabilityTP), additionally stability estimates for all 100 closest peptides (Stability),
and further TAB cleavage, and immunogenicity propensity scores (Combined).

4.4 Discussion

The selection of peptide candidates for epitope-based vaccines, such as cancer vaccines, is
based on the immunogenic potential of the corresponding peptide to maximize the capability
of inducing an immune response. Thus, there is a need for the accurate assessment of T-cell
epitopes. To reduce costs and turn around times, in silico methods are desirable. However,
current in silico prediction methods are not reliable enough to be used in biomedical applica-
tions. The two major prerequisites for a T-cell response are the presentation of a peptide in a
stable pHLA complex and its recognition by a reactive T-cell clone with a suitable TCR. The
repertoire of reactive T-cell clones is mainly shaped by thymic selection which ensures tolerance
against self-peptides (central tolerance). Toussaint et al. suggested a prediction method 334>,

which models central tolerance by incorporating distances of the target peptide to a set of
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self-peptides. The approach is based on the assumption that antigenic peptides that are very
similar to self-peptides are highly unlikely to induce a T-cell response. Therefore, the method
incorporated system-wide properties to the prediction model and thereby distinguished itself
from existing purely sequence-based methods. We suggested a method that additionally mod-
els peripheral tolerance that ensures the protection of the host against self-reactive T cells in
the periphery. Since peripheral tolerance includes exposure to antigens of the gut microbiome,
we included human gut microbiome data in the generation of representative self-peptide sets.
Incorporation of stability estimates for the target peptide and the 100 closest peptides, as
well as gut microbiome data (gut-et1), led to a slight increase in prediction performance (au-
ROC=0.79) in comparison to the method by Toussaint et al. (auROC=0.78). Other applied
models yielded similar or reduced prediction performance. The results suggest that the incor-
poration of stability estimates and gut microbiome data do not have enhancing effects on the
prediction performance. As reported by Toussaint et al.*?| the generation of tries from the
whole proteome did not increase the performance. Similarly, it might be necessary to apply
even more rigid filters for the gut microbiome based on information of the commensal micro-
biota. To render this possible, more sequencing data and studies on the gut microbiome are
needed. Recently, Carrasco Pro et al. presented indications that microbial sequence similarity is
relevant when assessing immunogenicity“>". They investigated BLOSUM62-derived distances
of HLA class II non-epitopes and epitopes to the human microbiome. The microbiome similarity
was found to be associated with a decreased or increased likelihood of immunogenicity®>". As
stated, they did not detect significant effects for HLA class I epitopes>Y. Recently, a similar
distance-to-self measure was employed in a study on neoepitopes. Bjerregaard et al. reported
that the distance of neoepitopes to self-peptides is a predictor of immunogenicity under cer-
tain conditions®>, This only seems to be the case if the neopeptide and the corresponding
wild-type peptide have comparable HLA-binding affinities. The similarity was calculated by
the kernel similarity measure®>2 published by Wen-Jun Shen et al., which calculates similar-
ity based on k-mer matching using a BLOSUM similarity measure. Based on this, the tool
MuPeXi=>? identifies tumor-specific peptides and assesses their immunogenic potential based
on HLA-binding estimates of the mutant and wild-type peptide, expression levels, mutant
allele frequency, and a penalization term based on the self-similarity. Still, the reported per-

formance (auROC=0.63) was rather weak for three tumors with available T-cell reactivity data.

We suggested an approach based on the incorporation of gut microbiome data. It has been
shown that the immune system is in contact with intestinal microbiota and shaped by com-
mensal bacteria such as bacteria in the gut microbiome*4>, Further, it was discovered that
the intestinal microbiota has an impact on the effectiveness of cancer immunotherapy*>4525|
However, the exact mechanisms are still not known. One important question to ask is if im-

mune cells, especially T cells, are in contact with all bacteria that reside in the gut lumen
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or if we should only consider a specific subset of organisms for the modulation of peripheral
tolerance. Moreover, it is not just the gut microbiome which contributes to the human micro-
biota. Potential interactions between microbes of the human skin microbiome and the immune

1220 1n the last decade, the number of in silico HLA-I

system should be considered as wel
binding prediction methods has grown significantly. Besides that, methods were suggested
for the prediction of other mechanisms involved in antigen processing, such as proteasomal
cleavage and TAP transport. Still, the performance of T-cell epitope prediction algorithms,
which often combine HLA binding prediction and other antigen processing prediction methods
suggest, that it requires more than binding motifs. In addition to the polymorphic nature
of HLA molecules and their interaction with the peptide, one has to consider the interaction
of TCRs with pHLA complexes. Therefore, the study of T-cell repertoires and the diversity
among TCRs, especially with respect to complementary determining regions (CDRs) might
contribute to the understanding of immunogenicity-determining factors. In 2017, two studies
reported the identification of CDR sequence motif-based clusters within epitope-specific T-cell
repertoires®>22>8 Glanville et al. developed the algorithm GLIPH®*® (Grouping of Lympho-
cyte Interactions by Paratope Hotspots) for the identification of TCR clusters, while Dash et
al. suggested the similarity measure TCRdist®>” for T-cell receptors. Efforts in decoding the
antigen specificity based on T-cell receptor sequences are critical for improving our under-
standing of the mechanisms of T cell-mediated immune responses. Recent developments in
high-throughput sequencing methods, such as immune repertoire sequencing®>® (Rep-Seq),
and single-cell RNA-Seq technologies increase the feasibility of obtaining TCR sequences. Data

resources, such as the database VDJdb=%Y

, a thorough and curated storage of TCR sequences
together with T-cell specificity assays, might help to decipher T-cell specificities and further
increase immunogenicity prediction accuracies to an acceptable level for clinical applications.

By integrating our approach for the calculation of the distance-to-self measure in the im-
munoinformatics toolbox ImmunoNodes2%”, we facilitated future developments of T-cell epi-

tope prediction methods incorporating self-tolerance models.
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Chapter 5

iVacPortal — A Web-based Portal for
Personalized Vaccine Design

Parts of this chapter were published in:

gPortal: A platform for data-driven biomedical research
Mohr, C.*, Friedrich, A.*, Wojnar, D., Kenar, E., Polatkan, A. C., Codrea, M. C., Czemmel, S., Kohlbacher, O., and
Nahnsen, S.
PLoS ONE, 13(1), e0191603 (2018)

* Joint first authors

5.1 Introduction

As outlined in Chapter [2.5.1] more accurate, affordable, and faster genome sequencing tech-
nologies such as Illumina NovaSeq=®! drive the explosion in data generated by high-throughput
experiments. In the case of NGS data, the daily production is in the range of terabytes by only
one state-of-the-art instrument=®2, In addition to the large amount of data generated solely by
omics technologies such as NGS, multi-omics approaches aim at concluding information of mul-
tiple layers, for instance by the integration of data from genome and proteome level. Further,
experiments in such studies, especially in biomedical research, are based on several replicates to
increase statistical power. Therefore, it is of great importance to record experimental variables,
biological properties and to grasp the connection between patients, extracted tissue, as well
as generated raw data. Collaborations with several project partners across different labs, and
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the integration of large-scale databases, such as the 1000 Genomes Project, further increase the
complexity and demand stringent mapping procedures of multiple sample identifiers*”>, Thus,
digital management platforms that support the entire project and data lifecycle continuously
gain importance within multi-omics projects. Support mechanisms include sophisticated ex-
perimental design procedures and data integration strategies. Research consortia, such as the
International Cancer Genome Consortium (ICGC), try to employ centralized means of coordi-
nation and publicly available data access points to large-scale collections of biomedical data for
researchers on a global scale®3364, Critical requirements for such efforts, which promote big

data in biomedicine=%>

, are elaborated approaches for data standardization and experimental
metadata storage. The fundamental demand for annotating new experimental data presented
through centralized portals comes with several advantages. Most importantly, it can drastically
improve the opportunities for sharing data with a broader scientific community. As a conse-
quence thereof, new options for data mining and new big data approaches that benefit from the
more correlative power of leveraged data are provided®°®. However, such centralized solutions
also introduce new hurdles on the infrastructure and computational side. Further challenges
include the preservation of data access and availability of analysis pipelines for different data
types of various data sources. In the case of clinical data, data security and possibilities to check
for data integrity are especially important. Despite the complexity of these tasks, elaborated
backend systems have to ensure fast and efficient access to resources. Web-based solutions are
an established approach to provide collaborators access to data, metadata, and analysis tools
through a centralized interface. In order to provide analysis capabilities for high-throughput
biomedical data, web-based solutions require connections to large-scale computing resources,
such as HPC clusters, grids, or compute clouds. Here, workflow systems can provide inter-
faces for the implementation and scheduling of established and standardized analysis pipelines.

E272

The portal interfaces and workflow management systems such as gUS also provide new

solutions to scientists with different proficiency levels related to computational skills.

5.1.1 Related Work

Since biomedical research fields usually entail particular requirements to centralized interfaces,
in recent years, portal-based solutions have been mainly developed for domain-specific appli-
cations. A web-based solution for proteomics research, including identification and quantifica-
tion, is offered by the Swiss Grid Proteomics Portal (iPortal) 07308l g functionality is based
on the Swiss Protein Identification Toolbox swissPIT=®?. One of the most prevalent solutions

in genomic research is Galaxy2%%

which combines an open web-based platform and workflow
system, initially developed for the analysis of genomic data. In 2006, GenePattern*’ 2.0 was
initially published. The web-based platform provides tools for gene expression, sequence vari-

ation, copy number variation, flow cytometry, and network analysis. Due to the recognized
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importance of capturing additional data and metadata, efforts on augmenting such platforms
with additional means of metadata management are made. Various Laboratory Information

Management System (LIMS) 370 solutions or even larger automated systems 371

have been pro-
posed. Other platforms have a specific focus on big data, such as the cBio Cancer Genomics
Portal?®?, cBioPortal was developed for cancer research and in particular the visualization
of large-scale genomics data. As cancer research projects and biomedical projects in general
often include sensitive data when it comes to data privacy, solutions such as mediGRID have
been implemented“’2. In medical research, such solutions additionally have to deal with the
integration of heterogeneous data. The collection of web-based platforms covers a variety of
solutions for areas of research other than proteomics and genomics. The Molecular Simulation
Grid (MoSGrid) offers users access to computational pipelines in the context of computer-aided
drug design®”®. Common tasks include docking and virtual screening. Other solutions include
the neuroscience gateway e-Biolnfra=/%

CIPRES®2Z2,

and the web-based portal for phylogenetic analyses

5.1.2 Project Outline

The presented solutions encompass a wide range of purposes, ranging from data management
of different omics technologies and bioinformatics workflow management to specialized visual-
ization applications. We implemented qPortal in order to provide a web-based platform which
serves various purposes for quantitative biological data. qPortal provides users with intuitive
ways for the management and analysis of large-scale data. Implemented backend solutions
employ a variety of established concepts and technologies, including relational databases, data
stores, data models, and data transfer capabilities. The backend builds the foundation of imple-
mented front-end solutions empowering users to conduct data management and data analysis.
The implemented data models guarantee efficient and standardized ways of annotating data
and querying metadata through the integrated data management system open Biological Infor-
mation System (openBIS)=7®. Efficient data query mechanisms allow for the computation of
statistics and future re-analysis via coupled workflow management systems on HPC systems.
This integration of project and data management, as well as workflow management systems,
tackles the issues of decentralized data generation, storage of experimental metadata, and
the need for easy-to-use means of data analysis. Although qPortal shares features of some
previously published platforms, the integration in one place presents clear advantages over
existing solutions. Our portal serves similar purposes as Galaxy, yet both implement different
concepts. Throughout the complete project cycle, qPortal empowers users to conduct experi-
ments by offering options from experimental design to visualization of results. These features
for all-digital project management especially differentiate the data-driven approach (qPortal)

from a workflow-driven approach (Galaxy).
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As domain-specific applications might still need tailored implementations of user interfaces,
data management, and analysis pipelines, we implemented our system in a modular manner to
allow for easy extension. One example of such a domain-specific application is the development
of personalized/individualized (cancer) vaccines in immunotherapy. Such projects typically
include multiple data sources, data types, collaboration partners, and a variety of analysis
pipelines. In order to implement a one-stop solution for these projects, we implemented
iVacPortal. Our central integration platform for all these efforts — and central point of access
for the clinical researchers — qPortal builds the foundation for iVacPortal. iVacPortal serves as
the central web-based workbench for data management and analysis in personalized cancer

vaccine studies as illustrated in Figure[5.1] Necessary data processing and analysis steps during
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Figure 5.1: Schematic flow diagram of iVacPortal. Principal investigators add patients,
the experimental setup, and metadata through qPortal. Automated means of data transfer
from laboratories enables efficient registration of measured data. Subsequently, data
management is done via gNavigator. Implemented workflows are applied on registered
data sets to compute possible peptide candidates which are then selected for the final
vaccine.

this kind of study, such as variant calling, HLA typing, and epitope prediction were implemented
as workflows. Means of data transfer and defined data processing steps enable entry points for
clinical researchers at any stage of the defined personalized (cancer) vaccine design pipeline.
Simplified user interfaces for the setup and management of these projects further increase the
usability of iVacPortal for users with different computer knowledge. Thus, iVacPortal provides
an end-to-end solution from the analysis of somatic mutations to the selection of peptide

candidates for cancer vaccines.
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5.2 Materials and Methods

All bioinformatics methods which were used for the implementation of workflows are described
in the following section. Further, we provide details on the data sets employed in the case study.
Software components, which are part of the infrastructure and implementation of qPortal, as

well as implementations for iVacPortal, are described in Section [5.3

5.2.1 NeoOptiTope

NeoOptiTope is a Python-based software package for RNA-Seq based neoepitope selectiorﬂ
The selection is implemented based on three different models which are used dependent on
available input data. The main immunogenicity function O1 incorporates expression data, HLA

alleles, and immunogenicity or HLA binding predictions for each specified HLA allele:
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Here, E denotes the set of all epitopes, Ery4 the set of TAA epitopes, H the set of HLA alleles,
I(h) the set of epitopes which bind to HLA h, E(g) the set of epitopes from gene, protein, or
allele g, G(e) the set of genes or proteins from which epitope e could originate from, O the
set of epitope pairs that share a sequence of defined length, and H the set of all given HLA
alleles. The abundance of gene g (ag), the abundance of allele a (a;), and the predicted

immunogenicity i, , of epitope e bound to HLA allele h have to be available. C1 ensures that

thttps://github.com/APERIM-EU/WP3-EpitopeSelector
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exactly k epitopes are selected with up to k;44 TAA epitopes, whereas two epitopes may not
share a substring of a predefined length (C3). C4 determines if allele h is covered by at least

HLA

one of the selected epitopes e. At least T"'** alleles have to be covered (C5). C6 determines if a

gene or protein g is covered by at least one of the selected epitopes e. C7 ensures coverage {,

of at least 79t

genes and proteins. If distance-to-self measures d, j,, which can be calculated
as described in Chapter [4 for epitope e based on HLA allele a are available, the objective
function is optimized with constraint C8. The third model expects uncertainty measures of the
immunogenicity predictions to give an estimate for the risk of the vaccine not being effective.

In addition to objective function O1, the decision is based on the second objective function O2:

(02)  min) x> 00

T e€E heH

where o, denotes the uncertainty estimate of the immunogenicity prediction of epitope e
for allele h.

5.2.2 Data Sets for Case Study

The data sets used during the case study are publicly available through the 1000 Genomes
Project data portal®’Z. A detailed list of used data sets is given in Appendix Table All data

analyzed during this study was included in a previous publication®7®,

5.3 Design and Implementation

qPortal serves as the frontend and, therefore, central point of access for users (Figure [5.2).
The portal is connected to a workflow engine to enable users to submit workflows to an HPC
cluster and perform analysis on uploaded data sets via the portlet qNavigator. The transferred
data is automatically registered in the database through defined Extract Transform Load (ETL)
processes served by the backend system openBIS and staged to the computing infrastructure
via the workflow system. Data and project management tasks can be performed through
gNavigator. Moreover, we implemented resources for personalized vaccine design as part of
the data managing resources of qPortal and the workflow system to provide the complete
analysis pipeline from raw data generation to possible vaccine compositions. qPortal is built
on top of a Liferay“®* 6.2 instance. The portal includes a collection of portlets, which are web
applications written in Java. The portlets are implemented using the open-source framework
Vaadin®®Y, that is based on Ajax and Google Web Toolkit. The main portlets, qNavigator (Project
Browser), qFlow, and qWizard (Project Wizard), are written in Java 1.7 using Vaadin 7. Users
have access to these portlets after successful authentication in qPortal using their credentials

through the Liferay?®# UL The Liferay instance is running on a Tomcat?®!' 7 server instance.
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Figure 5.2: Within our setup, qPortal serves as the frontend. It is linked to openBIS and the
workflow engine. The workflow engine is connected to a high-performance computing
(HPC) cluster. Users may create projects, upload their data (Datamover), analyze it,
and monitor workflows through qPortal (qNavigator, qWizard, and qFlow). Results are
automatically written back to the database and presented on the portal through qNavigator.
Figure adapted from Mohr et al.*7%.

gPortal is licensed under GNU General Public License, either version 3 of the License, or any

later version, as published by the Free Software Foundation8L. The source code is available

at https://github.com/gbicsoftware. A running qPortal instance can be accessed on
http://qbic.life. Documentation on qPortal is availabld’|and includes a manual on how
to set up qPortal at other sites and direct links to the corresponding GitHub repositories. The

main components of qPortal are shown in Figure

In the following sections, design and implementation details of the components and the two
portlets, gFlow (Section[5.3.4) and qNavigator (Section|[5.3.5)), as well as the iVacPortal imple-
mentations (Section|5.3.6) are given. qWizard has been described previously in detail82,

"https://portal.qgbic.uni-tuebingen.de/portal/software
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L Portal
User Interface Authentication

qNavigator
Tomcat
Adapter

Figure 5.3: Simplified overview of the qPortal architecture. qPortal is built on top of a
Liferay instance, which runs on a Tomcat server. The portal contains multiple portlets,
such as gNavigator, that are deployed through the Liferay framework. Users authenticate
through the user interface of Liferay.

5.3.1 Backend and Data Model

The implemented backend of qPortal uses openBIS. The software package offers mecha-
nisms for storage and management of raw data in a data store and annotation with metadata,
managed via a PostgreSQL database instance. An Application server enables browsing and the
management of data and metadata83. Management of access rights to data is implemented
through a data model concept consisting of five distinct hierarchically ordered levels. On the
top level, called space, user access roles are defined. Spaces can contain multiple projects,
samples, and data sets. By definition of specific types of experiments, samples, and data sets,
the openBIS data model can be customized. Common biomedical experiment types are already
availablel8%, Figure illustrates the hierarchal structure of our openBIS data model imple-
mentation. Every openBIS sample has to be associated with a space. Optionally, samples can
be connected to an experiment and data sets. Additionally, samples might be connected to
other samples using a child or parent relationship. We implemented a data model where the
biological entity of a project is connected to an experimental design experiment. Tissues that
have been analyzed within the project are stored as biological samples with respective sample
extraction experiments. The measured entities, including DNA, RNA, and proteins, derived

from these biological samples, are stored as test samples and attached as children. Details about
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n
n
Q_BIOLOGICAL_ENTITY n:1 Q_EXPERIMENTAL_DESIGN
1:n
Q_BIOLOGICAL_SAMPLE n:1 Q_SAMPLE_EXTRACTION
1:n
Q_TEST_SAMPLE n:1 Q_SAMPLE_PREPARATION
1:n
Q_{OMICS}_RUN n:1 Q_{OMICS}_MEASUREMENT

INCRR

n:m Q_{OMICS}_DATA

Q_{WORKFLOW}_RUN 11 Q_{WORKFLOW}

\1:1 1:1/

Q_{WORKFLOW}_DATA

Figure 5.4: Data model as implemented in openBIS for qPortal. Spaces might contain
multiple projects which usually have the depicted structure. The hierarchical data model
includes different sample types (green), experiment types (orange) and data set types
(red). Depending on the omics technology, different sample, experiment, and data set
types are used. Each workflow has an implemented sample, experiment, and data set
type.

the measurements, such as NGS, of the entities, are stored as experiments and samples which
are connected to the corresponding test samples. Generated data sets are connected to those
NGS measurement samples. For every available workflow, corresponding openBIS entity types,
including the sample, experiment, and data set, have been implemented. Instances of these
entities are connected to the openBIS entities (samples) that were used as input. The hierar-
chical depth is not limited to five, as illustrated in Figure as other experiments like variant
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calling might be conducted and attached to NGS samples. Results of workflow runs might also
be used as input of other workflow runs. Therefore, the depth of the project structure is not
limited and might increase within a project life cycle.

Sample, experiment, and data set types can be associated with multiple user-defined prop-
erties. The structured storage of metadata is an essential component of the system; metadata is
attached to the representations of both the respective samples and their intangible experiments.
Metadata in this context comprise information about the used protocol or similar content. The
type of a test sample is stored as property connected to a vocabulary that contains terms such
as DNA, RNA, proteins, and peptides, amongst others. Further examples include the organism
specification of biological entities which is limited to values of the NCBI taxonomy. The use of
unstructured data formats or spreadsheets is common for many scientists in the biomedical
field. Since this kind of data is inherently hard to model but can contain additional metadata
and is intuitive to understand, we additionally offer options to upload, display, and download
unstructured data.

We implemented the connection of qPortal to the openBIS instance using the available
openBIS Java API. To render queries to the openBIS datastore and the metadata database more
efficient, we implemented the Java library OpenBisClien The library provides wrapper
functions for common data and metadata retrieval tasks, such as the retrieval of all samples

for a specific project.

5.3.2 User Management

The backend (openBIS) and the Liferay instance are connected to an in-house Lightweight
Directory Access Protocol (LDAP) server which stores registered users. The current setup
uses the advantages of a single sign-on (SSO)*®° based solution that is already employed
by other Grid web applications and portals®®®, Other protocols, such as Crowd87 that are
compatible with openBIS and Liferay, can be used to replace the user information containing
resource. As described before, data and metadata access in openBIS is regulated on space level.
Therefore, users have to be added to the openBIS instance by their user ID once. Through
the connected user information resource, user details are added automatically. Within the
associated spaces, which might include several projects and the corresponding data, roles have
to be created for the users. Users or defined user groups can be assigned multiple roles. The
primary login to qPortal is done on the Liferay landing page. A delegation mechanism to
the backend database ensures data access. This implementation can be further extended to
make use of concepts such as two-factor authentication. The information about users that are
logged in to qPortal via Liferay is queried by the portlets through the implemented Java Library

Lif erayAndVaadinHelper This process ensures that users are only able to access the

lihttps://github.com/qbicsoftware/openbisclient
Yhttps://github.com/qbicsoftware/liferayandvaadinhelpers
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data of projects they have been granted access to. Details on the user-based data retrieval in

the case of gNavigator are given in Section[5.3.5

5.3.3 Data Transfer and Integration

To render data transfer from different sources to the central data store possible, we employ
the rsync implementation of the openBIS Datamover=7%388, During the syncing process from
different locations, such as from a sequencing facility to the remote storage, checksums ensure
data integrity. The data registration process is accomplished via openBIS dropboxes, which are
directories on the file system, monitored for incoming files or directories and configured by
property files. These property files include the incoming directory, the associated API instance,
the path to an associated ETL script, as well as the data completeness condition. In our setup,
marker files tag incoming data upon completed transfer. Incoming files, are forwarded to
an openBIS dropbox according to their type or their origin. Every dropbox implements a
Jython-based ETL routine. Depending on the implementation, ETL processes handle raw data,
connected metadata, and conversions based on external tools. As outlined, our approach
includes the registration of the experimental design before actual measurements take place.
ETL scripts handle then the information which is collected upon sample preparation and data
acquisition. This process of finalizing the experimental model usually includes the creation of
additional entities, such as experiments, samples, and data sets. Besides, metadata is extracted
from incoming files and stored as defined sample or experiment properties. Incoming data is
then connected to data sets and moved to the data store. Listing [I|shows a simple ETL routine
for the registration of files containing peptide sequences.

The association of arriving data to openBIS entities in the database is done through (sam-
ple) identifiers contained in the file or folder names. Thus, created experiments, samples, and
data sets will get connected to the already existing instances by the ETL routine. We imple-
mented ETL routines’| for the most common file types in genomics (FASTA, FASTQ, BAM, VCF),
proteomics (mzML, RAW), and others. Additionally, we developed lab-specific ETL routines to
handle more complex use cases. In one case, folders including multiple FASTQ and VCF files, as
well as JSON-based metadata files, are transferred at once. Therefore, the ETL routine has to
include multiple processes. In this case, provided metadata such as lab-specific identifiers, the
processing system, the used reference genome, and the tissue origin are stored in the database.

Furthermore, we implemented Jython-based pluginﬂ (ingestion services) for the creation
of openBIS entities outside of the context of ETL routines. Ingestion services use an openBIS
transaction and parameters as java.util.Map, with String keys and generic Object values.
The transaction interface is the same as the one available in the context of dropboxes. Therefore,

the same functionality as in ETL scripts can be used.

Vhttps://github.com/qgbicsoftware/etl-scripts
Yihttps://github.com/qbicsoftware/etl-scripts/tree/master/reporting-plugins
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# expected code: *Q[Project Code]~4[Sample No.]~3[Sample Typel] [Checksum]*.*
pattern = re.compile("Q\w{4}[0-9]1{3}[a-zA-Z]\u")

# Check barcode for integrity
def isExpected(identifier):

try:

id = identifier[0:9]

return checksum.checksum(id) == identifier[9]
except:

return False

# Main function which will be triggered upon registration
def process(transaction):
context = transaction.getRegistrationContext().getPersistentMap()

# Get the incoming path of the transaction
incomingPath = transaction.getIncoming().getAbsolutePath()

# Get the name of the incoming file
name = transaction.getIncoming().getName()

# Parse experiment, project and sample code
identifier = pattern.findall(name) [0]
if isExpected(identifier):
parentCode = identifier[:10]
else:
print "The identifier "+identifier+" did not match the pattern Q[A-Z]
{4X\a{3H\w{2} or checksum"

# Initialize search service and search for sample using the provided code

search_service = transaction.getSearchService()

sc = SearchCriteria()

sc.addMatchClause (SearchCriteria.MatchClause.createAttributeMatch
(SearchCriteria.MatchClauseAttribute.CODE, parentCode))

foundSamples = search_service.searchForSamples(sc)

# Get sample ID and retrieve the sample for update
parentSampleIdentifier = foundSamples[0].getSampleIdentifier()
parentSample = transaction.getSampleForUpdate(parentSampleIdentifier)

# Create new peptide dataset and attach it to the found sample
dataSet = transaction.createNewDataSet ("Q_PEPTIDE_DATA")
dataSet.setMeasuredData(False)

dataSet.setSample(parentSample)

# Move the file(s) to the new dataset
transaction.moveFile(incomingPath, dataSet)

Listing 1: ETL routine for the registration of files containing peptide sequences. When a
new file arrives, the ETL routine will get the already registered sample by the identifier
contained in the filename and will attach a new data set of type Q_PEPTIDE_DATA to it.

5.3.4 Workflow System

The connection of qPortal to the workflow management system gUSEELZI enables the portal
users to perform computations on cluster infrastructures, automating common bioinformatics

workflows and data analysis steps. gUSE enables access to distributed computing infrastruc-
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tures (DCIs) and a GUI through WS-PGRADE for the configuration, management, and creation
of new workflows. Users might, therefore, use a local WS-PGRADE instance to create new
workflows and port them to qPortal.

After submission, gUSE workflows are scheduled on the cluster and workflow jobs are
managed by the workload manager of the cluster. The gUSE jobs of corresponding workflow
nodes are then submitted by the cluster engine. Utilizing the workflow management system
adds flexibility with respect to the underlying compute infrastructure, which can be adapted
to a diverse collection of computing resources. The gPortal instance in Tiibingen has been
extensively used for various biomedical applications with the currently connected hardware
setup. These compute resources have shown to be sufficient in around 600 conducted projects.

In order to create an interface between qPortal and the workflow system, and therefore
enable the configuration and submission of workflows, we implemented the Java library
Workf lowAPI@ The structure of the Workf1owAPI is shown in Figure We created a gUSE-
specific implementation extending abstract classes and implementing the interface Submitter.
gUSE workflows are submitted through the RemoteAPI. Other workflow systems can be used if
classes implementing the interface Submitter and extending the abstract classes Workflow
and Node exist. Therefore, through further extensions of the Workf1owAPI, the gUSE work-
flow system can be replaced by other workflow systems such as Snakemake272 or Nextflow27Z,

(o] Workflows

WFConfigWriter GuseRemoteAPI
-~
= < S mitter
reentaesder “ m Suees °
. O

\/
m - e
Q

|
FileListParameter |< > StringParameter GuseWorkflowFileSystem
s} A

A » )
ReferenceDB ‘ FileParameter FloatParameter IntParameter BooleanParameter

Figure 5.5: Simplified UML diagram of the Workf1owAPI. The classes and functionality
can be broadly grouped in four packages. Implementations for new workflow engines have
to extend the abstract class Workflow and the corresponding submitter has to implement
the submitter interface.

Parameters

Definition of workflow parameters is done with Common Tool Descriptors (CTDs), which are

Extensible Markup Language (XML) files storing information about the execution of software

“inttps://github.com/qbicsof tware/workflow_api

77


https://github.com/qbicsoftware/workflow_api

5. iVacPortal — A Web-based Portal for Personalized Vaccine Design

tools. This information typically contains specifications of parameters, input, and output files.
Applications in the context of workflow conversion have previously shown the usability of
CTDs®8%3%0 Corresponding implementations of parameters and existing parameter types are
part of the WorkflowAPI. Since common analysis tasks often rely on versioned reference
libraries and databases, such as genome assemblies or proteomes, we implemented function-
ality to handle those references as part of the WorkflowAPI. References are defined and
stored as JSON files (Listing [2). During runtime, the folder defined in the configuration file
of gPortal, holding the reference configuration files, is scanned, and the JSON files are parsed
(ReferenceConfigReader). The references are then stored as ReferenceBean objects and
provided through the ReferenceDB class. Since the references have a defined type, such as

NGS, references can displayed based on the chosen workflow. Implemented workflows are de-

{"reference":
{
"name": "Ensembl GRCh37 homo sapiens",
"description": "Human Ensembl GRCh37 genome reference",
"path": "/path/to/genome.fa",
"species": "Homo sapiens",
"version": "GRCh37",
"type": "NGS",
"date": "03/21/2012",
"detailedType": "WholeGenomeFasta"
}

Listing 2: Reference configuration file for the genome assembly GRCh37. The reference
JSON files define the metadata of references and contain the path to the corresponding
file on the file system.

fined by JSON files as well (see Appendix|G)). The workflow configuration files contain metadata
such as the version, the description, the folder location of the corresponding gUSE workflows,
and connected openBIS types. Additionally, the file contains the workflow structure with its’
nodes, input ports, parameters, and input data types. The available workflow configuration
files are parsed by WFConfigReader and corresponding GuseWorkflowRepresentation
objects are created. In order to ease handling of workflows, we implemented the portlet collec-
tion qFlo based on the functionality provided by the WorkflowAPI. To enhance workflow
tracking, the status of submitted workflows can be monitored through gFlow (Figure [5.6)A).
The status of a workflow is defined by the gUSE workflow status and the according openBIS
experiment status, which is updated when a workflow has been submitted, or results have
been registered. Additionally, the preparation of workflow configuration files, which has to

Vithttps://github.com/qgbicsoftware/qflow
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be carried out once for each workflow, can be done in qFlow. Available workflows can be
imported and configured in the admin panel in qFlow, shown in Figure [5.6B. In this view,
workflow properties, including the name, version, description, and visible parameters, can be
configured. The latter specifies which parameters will be shown to the end user during the
workflow submission in qNavigator. By using the information about required input data types,
only workflows suitable for the types of data at hand are presented to the user. Implemented

(B) Workflows
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RNA-Seq data and
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progress | startedht satus version | vorklon B reads within each
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2018020517:3415+0100  FANISHED 2.0

2018.02.05 17335640100 ANSHED 20
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20180205 17320340100 ANSHED 20

Node Name Defaut  IsAdvanced

““““ 2018.02.051527:46 40100 ANSHED 20 inital.. | Th INTCTDinitversion 200 true
Preview
20180205 11:1340+0100  FINISHED 2.0 Initial, Th INIT-CTDnit1.winame rnam. true

2018.01:31 12051740100 ANSHED 20

inital.. | Th WORKFLOW-CTDRNAseqversion  1.00 true

RNAseq. 1 order name v

qeada01 20180126 07522340100 ANSHED 20
RNAseq1 gff atribute | gene_id v

qbeiz01 201711-1619:3213+0100  FNISHED 2.0

qoeiz0 20171116 19243540100 ANSHED 20 RNASeq.1 stranded yes v

qeaba01 2017.09.26 15375640200 ANSHED 20
RNAseq.1 feature_type | CDS v

qeada01 2017-09-26 12135040200 ANSHED | 20

2017.092117:4413 40200 ANSHED 20 RNAseq.1.overlap.mode | union v

inital.. | Th INIT-CTDinit1.duration s true
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Figure 5.6: Sub-portlets of qFlow. (A) The workflow monitor shows information about
workflows that belong to a user’s project. Associated experiments provide a direct link
to the corresponding entities in gNavigator. (B) The workflow admin panel is used to
configure workflows for their usage through qNavigator. After the selection of a workflow,
the name, version, and description can be set. Additionally, openBIS experiment and
sample types have to be associated with this workflow. The selected workflow parameters
will be shown to the user in qNavigator, as shown in the preview on the right.

gUSE workflows are composed of three workflow nodes. The data staging of selected input
files occurs in the first node of these workflows. Therefore, we implemented a Python-based
initialization script which parses the CTD-based input data files using CTDopts™| Afterwards,
input files, CTD-based parameter files, and additional files, such as experimental design files
containing sample annotation of input files, are transferred to the newly created workspace on
the cluster instance. The corresponding workflow analysis scripts are then fetched from the
local GitHub repository. The actual analysis step takes place in the central node and is done
through bash scripts, Python scripts, or Snakemake workflows, depending on the workflow im-
plementation. Due to the modularity of available workflows and configuration options through
parameters, many common analysis tasks can be performed by subsequent workflow runs. Ap-
pendix [F provides a comprehensive list of implemented workflows with detailed descriptions.
The last workflow node commits the result files to the corresponding openBIS dropbox using
qProject’} Workflow-associated openBIS dropboxes are defined in a JSON-based configuration

Xhttps://github.com/WorkflowConversion/CTDopts
*https://github.com/gbicsoftware/qproject
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file, and folder locations are set as node input values upon submission. The registration of
results and log files is performed by workflow-specific ETL scripts, which create connected

openBIS instances and update the status of the workflow.

5.3.5 Project Browser

The portlet for project management and workflow submission, gNavigator (Project Browser),
is implemented using Vaadin 7. A simplified version of the Unified Modeling Language (UML)
diagram of gNavigator is shown in Figure All the described design and implementation

details are based on release 1.6.2 (revision da6891a). The first component in the UI hierarchy

LiferayAndVaadinHelpers Components

gpichanPortett evetcomponent -
e —— —
Views 1 BiologicalSamples
I, I Component
|
O L] >
WorkflowComponent

e,
StandardWorkflow
Component

SampleBean - ProjectBean
O
) ).

WorkflowAPI

O A ¥,
ErperimentBen : : OpenBisClient

Model OpenBisClient

WorkflowParameter
Component

Figure 5.7: Simplified UML diagram of gNavigator. ~ All component classes
(yellow) extend the Vaadin class CustomComponent. The view classes (purple) ex-
tend the Vaadin class VerticalLayout and implement the Vaadin interface View.
QBicMainPortletUI as main Ul (blue) extends the abstract Vaadin class UI as the top-
most component in the component hierarchy. Controller classes (green) enable navigation,
data loading, and workflow submission. The openBIS entities are stored as JavaBeans
(orange). Classes from external Java libraries are visualized with a grey background.

(QBiCMainPortletUI) initializes the main layout, the views, and the controllers. The main
layout is a Vaadin 3x3 GridLayout where the vertical central component changes depend-
ing on the current user request. The different views are added to a Vaadin Navigator to
enable the navigation between them. The navigation between different views is controlled
by the State which extends the Java class Observable. Initial data retrieval is done in the
QBiCMainPortletUI using the central data controller DataHandler which uses functional-
ity provided by the OpenBisClient. In the beginning, users will be forwarded to the home
screen (HomeView). Here, all projects on behalf of the currently logged-in user are shown.

User identifiers are queried from openBIS; full names are given by the Liferay instance and
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retrieved through LiferayAndVaadinHelpers. The table provides the project code, the
space, the investigator, and a description, which can be filled in when the project is registered
and edited later (Figure|5.8). By clicking on the corresponding project, users are forwarded

# Home + Add Patient ¢> Total number of projects: 918
Whole DB O Q
B8 Sub-Projects

Sub-Project Project Short Name Investigator Summary
QA001 IVAC_ALL Individualized vaccine case of the project IVAC ALL [Pat1] Prof. Oliver Kohlbacher show
QA002 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat2] Prof. Oliver Kohlbacher show
QA003 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat3] Prof. Oliver Kohlbacher show
QA004 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat4] Prof. Oliver Kohlbacher show
QA005 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat5] Prof. Oliver Kohlbacher show
QA006 IVACALL Individualized Vaccine Case of the project IVAC ALL [Pat6] Prof. Oliver Kohlbacher show
QA007 IVAC ALL Individualized Vaccine Case of the project IVAC ALL [Pat7] Prof. Oliver Kohlbacher show
QA008 IVACALL Individualized Vaccine Case of the project IVAC ALL [Pat8] Prof. Oliver Kohlbacher show
QA009 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat9] Prof. Oliver Kohlbacher show
QA010 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat... Prof. Oliver Kohlbacher show
QAO011 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat.. Prof. Oliver Kohlbacher show
QA012 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat. Prof. Oliver Kohlbacher show
QA013 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat.. Prof. Oliver Kohlbacher show
QA014 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat... Prof. Oliver Kohlbacher show
QA015 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat... Prof. Oliver Kohlbacher show
QA016 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat... Prof. Oliver Kohlbacher show
QA017 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat. Prof. Oliver Kohlbacher show
QA018 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat... Prof. Oliver Kohlbacher show
QA019 IVACALL Individualized Vaccine Case of the project IVAC ALL [Pat. Prof. Oliver Kohlbacher show
QA020 IVAC_ALL Individualized Vaccine Case of the project IVAC ALL [Pat... Prof. Oliver Kohlbacher show

& Exportas TSV

Figure 5.8: Home screen of qNavigator. The projects (sub-project) on behalf of the
currently logged-in user are shown with the corresponding space (project), short name,
and investigator. Users can filter their projects as shown in this case for projects starting
with "IVAC_". The table content can be exported as a TSV file.

to the project view via the State and its implementation of the notifyObservers function
which will call the Vaadin Navigator to navigate to the ProjectView. The view shows all
information about the specific project in a horizontal view with different tabs (Figure [5.9)).
The first tab (ProjInformationComponent) contains general information about the project,
such as the principal investigator and the status of defined experimental steps. Principal inves-
tigators and persons responsible for experiments are stored in an external MySQL database.
Spreadsheets containing information about the sample sources, sample extracts, and sample
preparations can be downloaded. A graph representation (Figure of the first four layers
of the corresponding project as registered in the database is shown in the second tab. The
graph is generated using a Java graph library and describes the relationships between sam-
ples in the distinct layers (biological entities, biological samples, test samples, and measured
samples). Further, the number of registered sample entities can be seen at a glance. All exper-
imental steps and data sets are shown in the tabs "Exp. Steps" (ExperimentComponent) and

"Datasets" (DatasetComponent). Every table includes the functionality to download datasets.
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# Home + Add Patient ¢ Total number of projects: 918

Whole DB 2 Q

) & Project Graph A Exp. Steps £ Datasets 8 Biological Samp... .l Raw Data 22 Results o5 Workflows 2. Upload Files

CONFERENCE_DEMO-QTGPR: qPortal Demo based on 1000 Genomes Project data 2 Edit

Demo comparison between individuals of the HapMap project
Investigator

Mr. Andreas Friedrich
Quantitative Biology Center (QBIC)

+49 7071 29 70447
andreas.friedrich@informatik uni-tuebingen.de

Contact Person

Project Manager

Detailed Description

Double click to add description.

Project includes 73 experimental step(s)

[ v Project planned

I v Experimental design registered

[ v Raw data registered

[ v Results registered

Spreadsheets

& Sample Sources

Figure 5.9: Project view of qNavigator. The view provides general information about the
selected project such as the title, the investigator, and a detailed description if available.
Moreover the status of the project is indicated based on the four defined steps (project
planned, experimental design registered, raw data registered, and results registered).

If multiple datasets are selected, a TAR file will be generated. Files, such as HTML files and
NGS or MS quality reports are directly visualized in the portlet upon selection.

In the "Biological Samples" tab, registered samples, such as organisms and their derived
biological samples, are shown. Measured samples and the connected raw data are displayed in
the "Raw Data" tab. OpenBIS entities are represented by corresponding JavaBeans, which are
stored in Vaadin BeanItemContainer instances. These containers are set as data sources of
tables and grids. By clicking on rows of tables that display experiments and samples, users will
be navigated to the corresponding views. The ExperimentView and SampleView contains
detailed information about the corresponding entities, such as registration date and property
values. Additionally, it provides all data sets which are contained underneath this instance in
the hierarchical project tree. Results derived from analysis runs of this project are shown in
the "Results” tab. Most of those results originate from workflow runs directly triggered from
the portlet and provide a direct trace to the parameter settings used to generate these results.

Workflows can be submitted from the workflows tab (WorkflowComponent). Depending
on the available data sets in the current project, all workflows for which the mandatory input
file requirements are fulfilled are presented for selection. These requirements, as well as the vi-

sualized description and version, are derived from the workflow configuration files through the
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Figure 5.10: Project graph of gNavigator. The graph visualizes the first four hierarchical
levels of the corresponding project. Therefore, the connection between measured samples
and the biological entity can be traced back.

WorkflowViewController. Depending on the workflow, a specialized component, such as
the MaxQuantComponent, or the default component (StandardWorkflowComponent) is ini-
tialized. The selection of a workflow will load the corresponding input file form
(InputFilesComponent) and the parameter form (ParameterComponent). Upon submis-
sion of the workflow, a new openBIS sample and experiment instance of the corresponding
type will be created, and the workflow will be submitted by the WorkflowViewController.
OpenBIS entity types connected to corresponding workflows are defined in the workflow con-
figuration files as described. Experiments and samples are registered by implemented openBIS
ingestion serviceﬂ Respective services are called by the OpenBisClient, and the informa-
tion, such as the parameter values, are transferred. The openBIS experiment holds information
about the workflow run, such as the specified parameter values and the execution time. Sam-
ples reflect the connection of the workflow run within the project and enables users to trace
back the input of the corresponding run. Users are informed about the submission status of
the workflow (Figure [5.11)).

The "Upload Files" tab offers functionality to upload small unstructured data, that is directly
attached to the project. Such data typically contain information from the planning stages of a

project or results which have not been generated via the portal.

¥https://github.com/qgbicsoftware/etl-scripts/tree/master/reporting-plugins
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Figure 5.11: Workflow selection and submission. All available workflows for the cor-
responding project can be seen in the workflow tab. After selecting the workflow, users
select input files and specify the parameter values. Users are notified about the submission
status.

5.3.6 Resources for Personalized Vaccine Design

To facilitate the design of personalized (cancer) vaccines based on different types of omics
data through a readily accessible system, we implemented functionality for data management,
data analysis, as well as new user interfaces as part of qPortal. iVacPortal provides easy-to-use
functionality and therefore enables users with different grades of computer literacy to identify
potential peptide candidates for vaccines through a web-based system.

User Interface Adaptions

New user interfaces of iVacPortal include an adapted project overview page and a specialized
status component. For all projects dealing with the personalized vaccine development, the
project overview page contains the available HLA typing of patients and provided metadata
such as the data of the initial diagnosis (Appendix Figure[D.1]). The status component visualizes
the current overall progress, the single steps within the computational vaccine design pipeline,
and offers direct links to available analysis workflows (Appendix Figure [D.2]).

Further, we implemented a new interface to add patients through gNavigator rapidly. The
corresponding user interface can be accessed from every state in qNavigator (Add Patient).
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The registration process is shown in Appendix Figure Underlying implementations include
an openBIS ingestion servic The new project, experiment, and sample identifiers are created
within gNavigator. Subsequently, the ingestion service is executed with the information entered
by the user and the generated identifiers. Thereby, openBIS entities of the first four layers
(from patient to NGS sequencing and optionally HLA typing as the fifth level), their connections,
and the new project are registered. Additionally, provided metadata is set as property values.
Users may provide information about the type of the sequenced tissues, secondary identifiers,
detailed tissue information, and information about the applied sequencing technique and
machine. After registration, corresponding sample identifiers can then be downloaded from

gNavigator as spreadsheets and used for data registration.

Pipeline for the Design of Personalized Vaccines

The main component of the iVacPortal is the collection of computational analysis workflows
which are accessible through the portal (Figure [5.12). Typically, collected patient samples
originate from tumor tissue, non-malignant tissue, and blood. Data are generated by WES,
RNA-Seq, and various proteomics and ligandomics measurement techniques. The core of
the pipeline is the Python-based Epitope Prediction and Annotation (EPAA) workflow, which
performs the epitope predictions and integrates results of other pipelines. These results come
from different layers of the pipeline and different omics sources. The functionality of EPAA has

220 Annotated somatic variants and a set of HLA alleles are the

been implemented using FRED
mandatory input of EPAA. Somatic variants might have been provided directly or called by the
somatic variant calling workflow using mapped reads. Optionally, annotated germline variants
can be used as an additional input of the EPAA workflow. A suitable variant calling workflow has
been implemented. Variants in VCF format can be annotated using corresponding workflows
employing SnpEff%2! or ANNOVAR%2Y, The mandatory HLA types can be determined using the
implemented HLA typing workflow using OptiType (Chapter[3)). Version 1.1 of the workflow
includes an additional pre-processing step where reads are mapped against chromosome six of
the human genome using the read mapper Yara“%*. Therefore, a pre-processing step, performed
by the user to overcome memory issues, which might occur during the initial mapping step in
the OptiType pipeline, becomes obsolete. Detailed descriptions of workflows are provided in
Appendix

The EPAA workflow processes peptides and annotated variants in VCF format (read_vcf)
or in a tab-separated file format with a set of mandatory columns, including chromosome, ge-
nomic position, and observed nucleotides. By parsing the variants, corresponding
FRED2.Core.Variant objects are generated based on the provided information and an-
notated with further metadata such as the observed tumor depth or the tumor allele fre-

Xihttps://github.com/gbicsoftware/etl-scripts/tree/master/reporting-plugins/
register-ivac-1vl/
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Figure 5.12: Overview of the implemented computational personalized vaccine design
pipeline. The pipeline includes data processing of raw data, analysis workflows, and
result generation. Raw data including WES or WGS, WTS (Tx), proteomics (Px), and
ligandomics (Lx) data are used as input of available workflows for data processing. Typical
tasks include read mapping and HLA typing. EPAA as the main workflow of the pipeline
can be performed with additional workflow results like gene expression values (RNA-
Seq Analysis) and the relative amount of proteins, using label-free quantification (LFQ).
Subsequently (annotated) epitope prediction results can be used for manual selection or
computational selection through the Interactive Vaccine Designer.
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quency if available. Chromosome-grouped Variant objects are then integrated into the anno-
tated transcripts using respective FRED2 functions. Transcript sequences will be fetched from
BioMart>?! based on the user-defined (--reference) Ensembl®?? version using the FRED2
MartsAdapter. Resulting variant-containing transcript sequences are translated to respective
protein sequences and sliced to peptides for a defined length interval. The generated lengths
thereby depend on the user choice of HLA class I (8-11 AA) or class I (15-16 AA). If the corre-
sponding parameter has been set (--filter_self), generated peptides are filtered to remove
peptide sequences which exist in the human proteome and therefore are not suitable as vaccine
candidates. In order to check for these peptides, a FASTA file containing protein sequences of
the human proteome is parsed, and a corresponding FRED2 UniProtAdapter.UniProtDB
object is generated. Users may also directly use peptide sequences provided in a tab-separated
input file instead of annotated variants.

The remaining peptide sequences are then used as input for the epitope prediction using the
FRED2 EpitopePredictorFactory functionality. Since the resulting pandas.DataFrame
only contains prediction scores for every peptide and every provided HLA allele (if a correspond-
ing model exists), it is extended by affinity values and classified into binder and non-binder.
Further, peptides are annotated with information of the contained mutation (chromosome,
genome position, gene, transcript, variant type) and the wild-type protein identifier. This in-
formation is fetched from BioMart using the transcript identifiers as query inputs. If specified,
mutated peptides are annotated with the corresponding wild-type peptide sequence, which is
generated based on the variant information.

As the choice of peptide-based vaccine candidates heavily depends on the detection of
underlying mutations on multiple omics levels, the annotation with other workflow results
has been implemented (Figure[5.12). In the case of results of the RNA-Seq analysis workflow,
peptides are annotated with RPKM values calculated from gene feature counts for the corre-
sponding gene. Alternatively, peptides may be annotated with results of the differential gene
expression analysis workflow as log,-transformed fold changes. Results of the ligandomics
identification workflows are used as intensity and score annotations if peptide sequences are
present in the epitope prediction results. The identification of ligands may be performed
against a customized database generated by the individualized proteome generator workflow.
This workflow reads a set of annotated variants and produces the mutation-containing protein
sequences (as in EPAA), which are then attached to a specified human reference proteome.
Therefore, ligands can be searched against a personalized version of the proteome. Protein
quantification values derived from the label-free quantification (LFQ) workflow are added as
log,-transformed intensities of the peptide-originating proteins.

The pandas.DataFrame with all peptide sequences, predictions, and annotations is writ-

ten out as a tab-separated file. Additionally, a report is generated containing general informa-
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tion, such as the provided HLA alleles, used prediction methods, and statistics, including the

number of provided variants and unique binding peptides.

Interactive Vaccine Designer

Since the number of HLA-binding peptides is usually significantly larger than the number of
peptides used as vaccine components, the prediction of epitopes is commonly followed by
the selection of peptides. The selection can thereby be done manually or by computational
selection tools such as NeoOptiTope (Section [5.2.1I). To make the computational selection
available as part of our vaccine design pipeline, we implemented a GUI for NeoOptiTope. The
user interface has been implemented as Vaadin 7 portle and was deployed as part of qPortal.
NeoOptiTope has been extended to allow users to include and exclude specific peptides from
the final solution explicitly. Additionally, we implemented functionality to handle given rank-
based immunogenicity estimates. Concerning the execution of NeoOptiTope from the frontend,
we implemented a Singularity?’® container, based on the available Docker2”> containe
which is automatically started upon submission of the selection request.

The frontend is implemented as a Vaadin accordion component where tabs are arranged
vertically. The vertical tabs guide users through the steps of the peptide selection process. In the
beginning, users may choose between the upload of required files or the selection of data from
the connected openBIS instance (Appendix Figure [D.4A). The selection process requires an
epitope prediction result file and corresponding HLA alleles with expression values. Since the
epitope prediction result files differ between different versions of epitope prediction workflows,
users have to select between two basic file structures (Appendix Figure [D.4B). During the
next steps of the data preparation stage, users may specify the column names of the epitope
prediction results since these might differ from default values (Appendix Figure [D.5). The
provided HLA alleles and corresponding expression values as FPKM values can be specified
manually (Appendix Figure or loaded from the openBIS instance. In the epitope pre-
selection step, all peptide sequences from the used epitope predictions are displayed and can
be explicitly included or excluded (Appendix Figure[D.7). The parameter adjustment, as shown
in Figure[5.13] enables users to adjust the parameters of NeoOptiTope. This option allows users
to change parameter values quickly, rerun the selection process, and therefore interactively
design vaccine solutions.

The result view (Figure [5.14)) includes the parameter values, objective values, a table
with the selected peptides contained in the generated solution, charts visualizing statistics, and
properties of the solution. Multiple runs with different parameter settings will be organized in a
horizontal tab-sheet component. All results can be downloaded and automatically registered in

the database through an implemented ETL-based registration process. Therefore, the epitope

Xithttps://github. com/qbicsoftware/vaccine-designer-portlet
Whttps://hub.docker.com/r/aperim/epitopeselector/
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Figure 5.13: Parameter adjustment in the Interactive Vaccine Designer portlet. Users
may adjust the number of epitopes, the number of TAAs, the allele constraint, antigen
constraint, and overlap constraint. Epitope and distance thresholds can be specified. The
rank parameter specifies if given immunogenicity estimates are rank-based.

selection results will be added as a data set to the chosen project, whereas the connected
sample will be added as child instance of the corresponding HLA typing and epitope prediction

workflow runs.

5.4 Results

To demonstrate the feature-rich implementation of qPortal, we conducted a case study based
on publicly available data. As other web-based platforms exist in the area of data-intensive
biomedical research, we performed a comparison with Galaxy instances and elaborated on the
differences between its’ features. We demonstrate qPortal’s strength in supporting the entire

project life cycle.

5.4.1 Case Study

As project management usually starts with the entry of biological entities under investigation,
we registered samples of 20 individuals of the 1000 Genomes Project®’®. Based on the an-
notation provided by the 1000 Genomes Project, we selected a subset of male and female
individuals of ten different populations (Appendix Table [E.2)). The new project was registered
with the Project Wizard portlet. Afterward, metadata about the sex and population of the
individuals, as well as the extracted blood and DNA samples, were registered. To demonstrate
the features for automated registration of incoming data sets, we selected one WES run for
19 of the individuals and two runs for one individual. Automatically created identifiers in our
system were mapped to the identifiers of the 1000 Genomes Project. Typically, these barcodes
would be used in the lab at the time of data creation to identify processed samples uniquely.
The data sets were processed by the dropbox system for raw genomic data and moved to our

storage. Next, raw data and metadata were associated using the implemented ETL process.
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Processing of technical replicates of runs above resulted in the registration of 21 NGS samples
using FastQC84 on all samples through gNavigator. gNavigator enables direct visualization

and download of the resulting quality control reports in HTML format. All workflow results can
be directly visualized (Figure[5.15]). Since one typically has to deal with way more complex

90

Data Preperation
N Epitope Pre-Selection
== Parameter Adjustment

@ Results Overview

© Here are the results of your current session. You have now the following options:
« Reset all settings and upload new files
« Save the current results locally on your computer
o Register the current results in our database

« Change parameters and re-run the epitope selection (adds another tab to your results)

Result 1

Epitopes  TAAs  Epitope Threshold Distance Threshold  Antigen Constraint

10 0 0.99 0 9

Covered Antigens  Immunogenicity ~ Risk

12% 13817 0

Type

Filter by Type

o

Neoepitope Type Genes Mutations
LTFFFQAREV TSA COL11A1 chr1_103573655
‘QLRAARNVMK TSA WDR27 chr6_170058376
IFYPFPLHDK TSA THAPS chr7_108209942
MIFFYSLELK TSA XPR1 chr1_180804118
FITEVDNVGPV TSA PSKH1 ¢chr16_67942782
LTDFWLTNALK TSA EYA4 chr6_133836527
KLLHICSIY TSA LASIL chrX_64738288

VLQRHTTCK TSA ACBD6 chr1_180257508
EACGAIVFV TSA DCAF8 ¢hr1_160209679
RTLKRKSSNRK TSA SUN2 chr22 39147351

Alleles

A%03:01

C08:02

B¥07:02

C*04:01

05 1 15 2 25 3

I log2(tumor_expression)

35

A*0301

0.996
0.994

0.998

0.997

0.991

0.996

0.998

2

WDR27
SUN2
ACBD6
THAPS
LASIL
COL11AT
EVA4
DCAF8
XPR1
PSKH1

0 0 0

Genes
Filter by Gene

PSKH1 ~ woRz7
XPR1 { ™ Aceos
DCAFS suN2
EvA4 THAPS.

A*68:02 B*07:02 B*07:02 C*08:02

0993
0.994

0997

Genes

S : i

Allele Constraint ~ Overlap Constraint ~ Distance2Self ~ Uncertainty ~ Covered HLAs

40 %

C*0401

I : ¢
1 ¢
——
e
[

1 .14

I : 5

0o o5 1 5 2 25 3 35 4

Il log2(tumor_expression)

a5

5

55

Figure 5.14: Result presentation in the Interactive Vaccine Designer portlet. Used param-
eter settings and objective values are shown. The type (TSA/TAA) distribution and the
gene distribution are visualized as pie charts. Peptides of the final solution are presented
in a table with their sequence, type, gene, mutation, and corresponding allele scores. The
log,-transformed expression values of HLA alleles and genes are presented as horizontal
bar plots. Multiple runs on the same input data are presented in a tab-sheet component.

with meta information within the project. Further, we applied the quality control workflow
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Figure 5.15: Workflow result presentation. Results of workflow runs will be directly
visualized in a pop-up window when users select corresponding files: (A) HTML report of
one FastQC run. (B) Coverage plot, stored in PDF format, of one OptiType run.

analysis tasks than quality control, we further performed NGS read alignment using BWA-
MEM=3%3 and HLA typing using OptiType=C! (Chapter. Both analysis pipelines are available
as workflows from qNavigator. Read mapping against the human reference genome (GRCh37;

hg19 Feb. 2009 assembly) was performed for two individuals. Resulting aligned reads were

used as input for the OptiType workflow to determine the HLA type of these two patients. For

the remaining 19 individuals, the OptiType workflow was directly applied on available FASTQ

files.
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5.4.2 Advantages of a Data-driven Research Portal

To further assess qPortal’s usability, we draw a comparison with Galaxy instances (Table [5.1)).
Our implementation focuses on the specification and annotation of experimental steps in an
early project phase in order to leverage this information throughout the whole project cycle
and therefore facilitate data analysis. The added value of this data-driven approach is outlined
below.

Table 5.1: Comparison between qPortal (data-driven) and Galaxy (workflow-driven)
based on functionality criteria.

Criteria qPortal Galaxy
Project Management gWizard, qNavigator Not possible
Metadata Management At every experiment level Focus on workflow parameters
Experimental Design Focus on experimental meta- No similar functions
data
Data Import Datamover upload Upload, download link
Workflow System Available Available
Workflow Creator Indirectly (WS-PGRADE) Combination of workflows
Results Visualization, download Visualization, download
Data Security Data transfer (ssh), permission Browser upload, user based
based

One main feature of qPortal, which is essential for the definition of the data-driven approach,
is project management. This includes the functionality to register and store projects. Further,
customized experimental designs can be used and maintained. The web applications qWizard
and gNavigator provide the functionality to enable the annotation throughout the entire life
cycle of experiments and projects, which is of prime importance. Experimental designs are
built on the basis of experiment and sample instances, which ensure the automated registration
of incoming data sets. In the case of the workflow-driven approach of Galaxy, implicit project
management is used. This concept has a focus on file-based analysis and visualization.

Both systems offer means of data annotation with different emphasis. gPortal provides
functionality for entering metadata, general project information, and experimental designs
at the project registration stage. Furthermore, information that has been entered upon reg-
istration can be changed or extended through gqNavigator. This information might include
individual characteristics and an explanation of experimental steps. Two similar concepts are
employed by Galaxy. Users may add notes and tags to items to make them searchable2®%,
This concept focuses on the annotation of workflow runs, wheres qPortal stores metadata for
each step of experiments. Extensive metadata collection throughout the whole project cycle,
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even before experiments are performed, is essential for reproducibility and benchmarking of
different workflows and parameter settings. Moreover, time and money can be saved by the
evaluation of the statistical power of a study design before it’s implementation. During a
study, contingent mistakes in the design or sample handling can be traced back with higher
confidence.

Since biomedical applications usually entail different data types coming from different
sources, data import is an important criterium regarding usability. As described (Chap-
ter[5.3.3)), data import to qPortal is possible using the Datamover. We implemented automated
data registration procedures based on ETL processes. These processes enable the experimental
design and incorporated barcode generation, and include ID mapping and file format recog-
nition functionality. ETL scripts can be file-type or lab-specific and include the registration of
additional metadata annotations. In addition to that, small unstructured data can be uploaded
through qNavigator. Similarly, Galaxy offers direct data upload through the web browser. The
implemented rules and governance depend thereby on the Galaxy instance provider. Upload
of larger files is possible through direct transfer from provided URLs and via encrypted FTP
Concerning auto-detection of file types, Galaxy offers similar features as qPortal, whereas more
complex file operations on input data have to be implemented as workflow nodes.

The connected workflow management system gives qPortal users direct access to work-
flows. Used data sets can be directly selected within the projects and parameters can be easily
adjusted in the GUI. The same holds true for Galaxy, whereas details depend on the imple-
mentation of the respective workflows. Due to our data-driven approach, the selection list
of workflows is limited by the availability of required input data. Currently, qPortal does not
include a feature for web-based workflow creation. However, custom workflows can be created
in WS-PGRADE and ported. The most important difference results from the registration of
experimental design information and the collection of metadata. Workflows can make use of
this information and visualize results according to study variable values.

After the submission of workflows, users can monitor them and directly navigate to the
results which are automatically registered by ETL processes in the corresponding project. As
in Galaxy, all workflow results can be either downloaded or directly visualized in the portal.

Data security, access, and confidentiality are of prime importance, especially if biomedical
data is included. This kind of data is usually bound to strictly regulated terms. The access to
data from qPortal is regulated through the rule-based permission scheme of openBIS. Assigned
project roles ensure that users will only be able to see their projects and corresponding data. The
Datamover implementation guarantees data transfer security using Secure Shell connections.
Galaxy uses a workspace concept, where users can upload data to it and optionally share it

with others.
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5.5 Discussion

Modern research projects commonly entail distributed data generation and many stakeholders,
coordinated within larger consortia. Hence, means of efficient data sharing, central project
management, and remote communication are getting more and more important. Also, fast,
reliable, and easily accessible data processing and analysis tools are needed. With the continu-
ously growing number and throughput of omics technologies, as well as an increasing number
of multi-omics-based biomedical projects, the need for full automation in these tasks and data
management is obvious. Web-based portals, in combination with an efficient backend system
and a connection to distributed computing infrastructures, can provide such solutions. There
have been big efforts towards web-based platforms in biomedical research and other domains.
However, existing solutions are often limited to domain-specific applications. One established
approach in the field of biomedical research that facilitates data analysis for scientists without
expertise in programming is Galaxy. The workflow-driven approach of Galaxy eliminates the
need for users to install programs or use the command line. Frequently, Galaxy instances ad-
ditionally provide free storage and compute resources and offer easy-to-use means of sharing
analysis results. Due to its improvements and large community, the integration level for many
tools and different infrastructures in Galaxy is well established.

We implemented gPortal, a web-based portal that provides similar features as Galaxy con-
cerning means of workflow submission. qPortal’s workflow-based analysis module enables
users to execute bioinformatics pipelines on powerful compute resources through intuitive
interfaces. By hiding the complexity of distributed computing infrastructures, data analysis
becomes feasible for scientists without prior scripting or command line experience. Currently,
qPortal provides an interface to gUSE/WS-PGRADE. However, the interface to workflow sys-
tems is generic by design and therefore allows for the extension with other workflow systems,

273 and Nextflow?ZZ. This enables users to create Snakemake or Nextflow

such as Snakemake
workflow instances and use them through qPortal, given that respective tools are available on
the cluster. Extensions of the workflow interface still can make use of existing implementations
for data staging which have to be incorporated into the workflow itself.

To not only guarantee flexibility with respect to workflow interfaces, we developed qPortal
using the web-framework Vaadin, which is based on the Google Web Toolkit providing a wide
range of browser support. Because of the active developer community, useful tools and add-
ons are frequently provided. The same holds true for the free and open source enterprise
portal solution Liferay“®*. Besides, Liferay implements the Java Portlet Specification (Java
Specification Request (JSR) 168°°%) standardizing the interaction between portlets and portlet
containers, as well as ensuring compatibility across portal products. Consequently, given JSR
168 compliance, gPortal components can run on other portal systems such as JBoss Portal®>

with manageable effort.
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The main difference of our data-driven approach to existing solutions, such as the workflow-
driven approach of Galaxy, is its focus. qPortal provides features for experimental design,
metadata handling, project management, and collaboration. Galaxy’s focus on workflow anno-
tation and collection of parameter settings aims primarily at reproducibility of computational
analyses. In recent years, numerous studies support the importance of this approach to solve
the reproducibility issue?023%03%7  Wwith gPortal, we take the notion of reproducibility one
step further. Our comprehensive data-driven approach includes the extensive collection of
metadata before experiments are conducted. As a consequence, time and money can be saved
since the study design allows for the estimation of statistical power before experiments are
performed. Further, shortcomings in study design and sample handling can be traced back
more easily and with higher confidence. The comprehensive annotation of experimental data
moreover increases the likelihood that this data is reused in future research. As noted by Leek
and Peng®”®| even computationally reproducible results have to be used with caution if no
sound experimental design exists. The confidence in a scientific hypothesis is highly dependent
on the replicability of studies, including data generation, given the same experimental setup.
Main reasons that hinder the replicability include missing statistical considerations, missing
protocol information, and poor experimental design?*%, Therefore, qPortal facilitates data
annotation that is equally important for reproducible research, in addition to thorough logging
of processing, parameters, and pipelines. Hence, qPortal follows the Findable, Accessible, Inter-

operable and Reusable (FAIR) Guiding Principles for scientific data management4°L,

To summarize, we developed qPortal, a platform that enables data management and empow-
ers scientists to analyze and navigate through large-scale biological data integratively. Its
web-based nature facilitates the implementation of gqPortal as a central platform in modern
data-driven biomedical research. The scalable nature of the setup allows the integration of
large in-house and public data sets and thereby builds an ideal ecosystem for big data anal-
ysis in biomedicine. Implemented data models and ETL processes build the backbone of the
integrated data management system, enabling fully automated registration of experiments,
data, and metadata. Intuitive graphical user interfaces provide the functionality to register
factor-based experimental designs (QWizard). gNavigator enables users to perform project
management and to run analysis pipelines. Because of its generic design and the flexible open-
source components, qPortal can easily be adapted and extended as shown for iVacPortlal, a
web-based portal for the management and analysis in personalized vaccine studies. Other solu-

tions, such as pVACtools402

provide similar functionality for identification and prioritization of
neoantigens but lack metadata collection options and do not provide user interfaces. iVacPortal
is implemented as part of qPortal, making use of its modularity on multiple layers. On the
portal layer, modularity allows for the extension by portlets, as in the case of the Interactive

Vaccine Designer. Modularity on the portlet layer made it possible to implement additional

95



5. iVacPortal — A Web-based Portal for Personalized Vaccine Design

components and features in gNavigator. Further, we extended the workflow functionality by
implementing data processing and analysis pipelines commonly used within the personalized
vaccine design pipeline. Implemented data transfer mechanisms, ETL processes, and data
model extensions complete the integration of this pipeline, enabling researchers to generate

lists of possible vaccine candidates through an easy-to-use frontend.
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Chapter 6

Assessment of Personalized Vaccine
Options through iVacPortal

Parts of this chapter were published in:
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J., Zinser, R., Miihlenbruch, L., Kowalewski, D. J., Schuster, H., Sturm, M., Matthes, J., Riess, O., Czemmel, S.,
Nahnsen, S., Konigsrainer, 1., Thiel, K., Nadalin, S., Beckert, S., Bosmiiller, H., Fend, E, Velic, A., Macek, B., Haen,
S. P, Buonaguro, L., Kohlbacher, O., Stevanovic, S., Kénigsrainer, A., HEPAVAC Consortium, and Rammensee, H.-G.
Genome medicine, 11(1), 1-16 (2019)

* Joint first authors

6.1 Introduction

Over the last decades, the discovery that tumors in cancer patients can elicit a host immune
response, along with multiple other findings, has driven the progression in cancer immunother-
apy“%?. To date, many approaches have been developed to exploit the immune system’s ability
to target cancer cells (Section[2.3.3). For an increasing number of cancer entities, immunother-
apy has become a therapeutic option and is implemented in the clinics. Emerging clinical
evidence for its effectiveness was mainly based on the treatment with immune checkpoint
inhibitors and their demonstrated potency as reported for metastatic melanoma“#4%> For

the majority of malignancies, immune checkpoint inhibitors, and other immunotherapeutic
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options, such as cancer vaccines, results remained mostly disappointing. One reason for the
limited therapeutic success of cancer vaccines might be the use of TAAs, such as aberrantly
expressed antigens that are often shared across cancers, and their limited anti-tumor potential
due to central T-cell tolerance'’. As previously described, non-synonymous somatic mutations
give rise to tumor-specific neoantigens4°®4%7, Dye to their tumor-specificity accompanied by
missing expression elsewhere in the body, these antigens do not possess the potential to cause
toxicity. Additionally, the corresponding T cell pool is not affected by central tolerance, increas-
ing the potential immunogenicity of these TSAs. As postulated, TSAs are of particular relevance
for the therapeutic efficacy of cancer immunotherapies and have been shown to elicit tumor-
specific T-cell reactivity*4#4%8 Thus, corresponding neoepitopes, as targets of tumor-specific T
cells, also make strong candidates for therapeutic cancer vaccines (Section [2.4), overcoming
the limited efficacy of shared tumor antigens in vaccination. Earlier studies demonstrated the
induction of anti-tumor immunity against a neoantigen based on a mutation that is present
in a subset of gliomas4’?. However, as described4?©407410 tymor cells possess a vast genetic
heterogeneity, which is not only present between individuals with the same cancer type but
even within individual tumors. Considering the diversity of HLA molecules across individuals
and the associated restriction with respect to the pool of presented peptides suggest the design
of therapeutic cancer vaccines in a personalized fashion. Furthermore, clonal evolution and
immune escape mechanisms require cancer vaccines to target multiple neoantigens'4?. Due
to the developments in genomic sequencing, the rapid identification of individual tumor muta-
tions, i.e., the mutanome, became feasible. Further, more recent advances in computational
approaches allow the identification of private neoepitopes from the mutational spectrum of a tu-

mor, derived from cancer exome data as shown for mouse models 44147 148

and single patients
The prediction of T-cell neoepitopes is usually based on HLA-binding affinities predicted by
established in silico methods23%:242248 Therefore, it is possible to identify candidate tumor
neoantigens on a per-patient basis. Since HLA binding is a prerequisite of T-cell reactivity and
HLA binding algorithms are reliable, predicted binding affinity serves as a reasonable estimate.
Still, the confirmation of their presence on tumor tissue and efficacy of predicted neoepitopes

remains challenging.

Related Work

Recently, studies have shown the feasibility of neoepitope identification and the analysis of their
actual presence on tumor tissue within the framework of personalized cancer-specific vaccines

143 and murine tumor models using MS for confirmation*!Y, Kalaora et al. showed

for mouse
the combination of WES analysis and in silico prediction methods with MS-based HLA ligan-
domics to identify neoantigens in one melanoma patient*!4, According to their findings, two

mutated peptides could be confirmed, with one eliciting a T-cell response. In 2015, Rosenberg
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et al. published the results of a next-generation sequencing approach combined with high-
throughput immunological screening to demonstrate the recognition of neoepitopes by T cells
in ten patients with metastatic gastrointestinal cancers*!®. Bassani-Sternberg et al. reported
the identification of neoepitopes by MS*4, They performed exome sequencing of 25 tumors
from melanoma patients, following somatic SNV calling — furthermore, Bassani-Sternberg et
al. performed MS analysis of purified HLA-binding peptides from 25 melanoma patients. For
a subset of these patients, they compared the results with in silico derived HLA-binding affini-
ties of respective neoepitopes. The generation of vaccines targeting private neoantigens has
been shown by Ott et al.2>? They performed WES of matched tumor and normal DNA for ten
melanoma patients, followed by somatic variant calling, prediction of neoepitopes, and the
assessment of RNA expression. Further, they monitored the expansion of neoantigen-specific
T cell repertoires. Sahin et al.!*? reported an RNA-based poly-neoepitope approach and its
application in melanoma patients. Their approach combines comparative exome and RNA
sequencing of tumor tissue and blood cells. The selection of neoepitopes is further based on
binding affinity to HLA class II molecules and expression of mutation-encoding RNA. In 2017,
Chang et al. presented an analytical workflow for the identification of neoepitopes using WES
data of pediatric cancers**>, Additionally, they incorporated transcriptome sequencing data to
analyze expression levels of potential neoepitopes. Lately, Rubinsteyn et al. published the com-
putational pipeline for the PGV-001 neoantigen vaccine trial*'®. Their computational pipeline
combines somatic variant calling based on WES of matched tumor and normal samples, HLA
typing, and epitope prediction. Peptides are then selected based on HLA binding and tumor-
derived RNA expression. Most of the published studies on in silico-based identification of
neoepitopes do not include multiple omics layers to confirm predicted neoepitopes. Addition-
ally, a central solution to perform bioinformatics analysis for the development of personalized

vaccines does not exist.

Project Outline

We performed an in-depth analysis of WES and WTS in combination with proteomics and HLA
ligandome data. Based on this multi-omics data set, we assessed potential patient-specific multi-
peptide vaccine candidates while investigating the evidence for the presentation of mutated
naturally presented HLA ligands. To this end, we applied in silico approaches for the devel-
opment of personalized vaccines (Chapter [5.3.6), including HLA typing (Chapter [3), through
one central web-based interface (Chapter [5). Thereby, we made use of gPortal’s data man-
agement and workflow-based analysis resources. The corresponding study design is shown in
Figure[6.1] The composition of our two investigated cohorts, including hepatocellular carcinoma
(HCC) patients and acute lymphoblastic leukemia (ALL) patients, renders it highly relevant in

today’s cancer research. HCC is one of the most common malignant tumors and among the
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Figure 6.1: Outline of the conducted study. Malignant, non-malignant, and blood sam-
ples were extracted from patients. WES, WTS, and liquid chromatography coupled with
tandem mass spectrometry (LC-MS/MS) data were analyzed using established workflows
for read alignment, variant calling, RNA-Seq analysis, label-free quantification, and lig-
andomics identification. Resulting somatic variants and HLA genotypes were used to
perform epitope predictions using EPAA. Epitope predictions were further annotated with
results of gene expression, protein abundance, and ligandomics identification analysis if
available. Based on the resulting integrated data set, we investigated the existence of
potential neoepitopes on multiple omics layers. Human body silhouette icon obtained
from Reactome Icon Library®® and adapted.

most common cancer-related death causes®”. Furthermore, ALL is the most common ma-
lignancy affecting children caused by genetic alterations. Although effective treatments, like
chemotherapy and stem cell transplantation, exist, patients who relapse have a poor prognosis.
Additionally, further chemotherapeutic treatments are often limited by toxicity. Therefore, the
use of patient-specific immunogenic peptides in a multi-peptide vaccination approach might
represent a viable alternative. Our analysis is based on tumor-specific somatic variants derived
from sequencing of tumor and non-malignant tissue samples. Using our implemented pipeline
EPAA, we generate mutation-derived peptides based on these mutations and predict poten-
tial neoepitopes for determined HLA genotypes leveraging state-of-the-art in silico prediction
methods. Further, we annotate predicted binding neoepitopes with gene expression, protein
quantification and HLA ligandomics identification data. By analyzing the obtained results, we
computed statistics about potential neoepitopes and their presence on available omics layers

across all patients of the investigated cohorts.

6.2 Materials and Methods

This section provides an overview of the two cohorts that were included in this study and details
of the experimental data generation steps. Further, details on the employed analysis pipelines,
such as parameter settings, are given. Data management, including project registration, data
transfer, and collection of metadata was conducted through iVacPortal (Chapter[5)). The analysis

was performed using workflows as available in iVacPortal unless otherwise stated.
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6.2.1 Experimental Data

We analyzed data from 24 patients with diagnosed ALL and 16 patients suffering from HCC. The
complete list of patients with IDs, diagnosis, and HLA typing is given in Appendix Table[E.3] The
experimental data for these 40 patients have been generated using different protocols, which
will be described here. An overview of the available experimentally derived transcriptomics,

proteomics, and ligandomics data is shown in Table

Table 6.1: Data availability on different omics’ levels for the ALL and HCC cohort. WES
data for non-malignant (nm) and tumor (tu) samples was available (denoted by x) for
all patients. Transcriptomics (Tx), proteomics (Px), and ligandomics (Lx) data have been
analyzed for all patients enclosed in the HCC cohort if available. Shotgun proteome (n=7)
and HLA ligandome (n=16) data were available for tumor and non-malignant tissue in
the HCC cohort. In the case of the ALL cohort, only malignant samples were available for

RNA-Seq.
ALL HCC
ID Tx Px Lx ID Tx Px Lx
nm tu nm tu

QA001 - X - - HCCO023 X X X X
QA002 - X - - HCC024 X X X X
QA003 - X - - HCCO025 X X X X
QA004 - X - - HCC026 X X X X
QA005 - X - - HCC027 X X X X
QA006 - X - - HCC028 X X - X
QA007 = X - - HCCO030 X X - b:
QAO008 - X - - HCC034 X X X X
QA009 = X - - HCCO035 X X - b
QAO010 - X - - HCCO036 - X X X
QA011 - X - - HCC038 X X - X
QA012 - X - - HCC040 X X - X
QA013 - X - - HCC041 X X - X
QA014 - X - - HCCO042 X X - X
QAO015 - X - - HCC043 X X - X
QA016 - X - - HCC045 X X - X
QAO017 - - - -
QA018 - X - -
QA019 - X - -
QA020 - X - -
QD003 - X - -
QD004 - X - -
QD005 - X - -
QD007 - X - -
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6.2.2 Ethics and Clinical Specimens

This research was conducted in accordance with the Declaration of Helsinki and approved by
the local institutional review board of the University Hospital Tiibingen (Tiibingen, Germany).
All participants provided written informed consent before study inclusion. The ALL study
was approved by the local ethical board under registration number 233/2010/BO1. Studies,
including the HCC patients, were approved by the local ethical board under the registration
numbers 364/2014/B0O2 and 222/2015/B0O2. For the HCC cohort, samples were obtained
from malignant liver tissue, non-malignant liver tissue, and peripheral blood. In the case of
ALL, expanded fibroblasts serve as reference tissue to avoid the usage of blood samples which

might be contaminated with leukemic cells.

Experimental HLA Typing

Experimental HLA typing was performed by single specific primer-polymerase chain reaction

at the Department of Transfusion Medicine (Tiibingen, Germany), following clinical routines.

Next-Generation Sequencing

WES and WTS for QA001-QA020 (no WTS for QA017), QD003-QD005, QD007, HCC023—
HCCO027, HCCO034, and HCC036 were conducted. Sample preparation for WES was performed
using the SeqCap EZ v2 (Roche, Pleasanton, USA) or the SureSelectXT Human All Exon v5
kit (Agilent, Waldbronn, Germany) and the TruSeq Stranded mRNA kit (Illumina, Eindhoven,
Netherlands) for WTS, respectively. Samples were sequenced on the HiSeq 2500 System
(Illumina, Eindhoven, Netherlands) in paired-end mode. For HCC028, HCC030, HCC035, and
HCCO038 to HCC045, WES and WTS were performed by CeGaT GmbH (Tiibingen, Germany).
DNA and RNA were extracted from fresh frozen tissue and peripheral blood mononuclear
cells (PBMCs) using the AllPrep DNA/RNA Kit (Qiagen). DNA libraries were prepared with
the SureSelectXT Human All Exon v6 kit (Agilent, Waldbronn, Germany). Sequencing was
performed on a HiSeq 4000 System (Illumina, Eindhoven, Netherlands) in paired-end mode,
yielding 2 x 100 bp reads. In the case of RNA, library preparation was performed with the
SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Clontech, Saint-Germain-en-
Laye, France) and sequenced with the HiSeq 4000 System (Illumina, Eindhoven, Netherlands)
in paired-end mode with a read length of 100 bp.

Analysis of HLA Ligands by Liquid Chromatography Tandem Mass Spectrometry

Isolation of HLA class I ligands from HCC and corresponding non-malignant liver tissue was
performed by the Department of Immunology (Tiibingen, Germany) as previously described+18.

Immunoaffinity purification was performed based on the pan-HLA class I-specific monoclonal
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antibody W6/324!%, Elution was done using 0.2% trifluoroacetic acid, separated by nanoflow
uHPLC (UltiMate 3000 RSLCnano System, ThermoFisher) using a 50 um x 25 cm column
(PepMap RSLC, Thermo Fisher). A linear gradient ranging from 3 to 40% acetonitrile over the
course of 90 minutes was used. An online coupled Linear Trap Quadropole (LTQ) Orbitrap XL
mass spectrometer (Thermo Fisher) in automated data-dependent acquisition mode was used
for measuring eluting peptides. The five most abundant precursor ions (top5) for collision-
induced dissociation fragmentation were selected. Samples were analyzed using up to five
technical replicates.

Shotgun Protein Tandem Mass Spectrometry

Mass spectrometry experiments were conducted by the Proteome Center Tiibingen (Tiibingen,
Germany). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used for the purifi-
cation of eluted protein samples. Coomassie-stained gel pieces were digested using trypsin.
Afterwards, LC-MS/MS analysis was performed using an EasyL.C nano-HPLC (Proxeon Biosys-
tems, Roskilde, Denmark) coupled to an LTQ Orbitrap Elite (ThermoFisher). The LTQ Orbitrap
Elite was operated in positive ion mode. Fragmented masses were excluded for 60 seconds
after MS/MS.

6.2.3 Computational Analysis

Computational analysis of all samples was performed through gPortal if not stated otherwise.
Detailed descriptions of all applied workflows are given in Appendix [F} For raw WES and

RNA-Seq data, files of different lanes were merged using the corresponding workflow.

HLA Typing

HLA class I alleles with four-digit resolution were predicted with the OptiType workflow 1.1
with default settings (8 = 0.009) using WES data of blood samples. Appendix Table [E.3|shows
the resulting HLA genotypes for all patients.

Variant Calling

Somatic variant calling for patients QA001-QA020, QD003-QD005, QD007, HCC023-HCC027,
HCCO034, and HCC036 was performed by the Department of Medical Genetics and Applied
Genomics (Tibingen, Germany). Bioinformatic data analysis was done using the megSAP
pipeline (https://github.com/imgag/megSAP) in combination with the ngs-bits package
(https://github.com/imgag/ngs-bits). Briefly, the pipeline included adapter trimming
using SeqPurge®”, DNA-read mapping to the Genome Reference Consortium Human Build 37
(GRCh37) using BWA-mem''®®, and duplicate annotation by Samblaster®2?, Further trimming
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of overlapping reads was done with an in-house tool to reduce false-positive variants having
very low allele-frequencies. Somatic variants were called using Strelka“?. Resulting variants
were annotated with SnpEff/SnpSift22X¥42L vcflib (https://github.com/ekg/vcflib),
and dbNFSP422, Further, custom filter criteria were applied to obtain high-confidence variants.
STAR““® was used to map the trimmed RNA reads. DNA variants were annotated with in-house
variant frequencies and (tumor) RNA depth and allele frequencies. In the case of HCC028,
HCCO030, HCCO035, and HCCO038 to HCC045, CeGaT GmbH (Tiibingen, Germany) performed
demultiplexing of sequenced reads with Illumina bcl2fastq 2.19 and adapter trimming with
Skewer#23 0.2.2. Read mapping was performed with an in-house version of BWA-mem'%°
0.72 against an in-house version of hg19 and ABRA*2% for local realignment of reads in tar-
get regions. Duplicate reads were discarded using samtools?%? 0.1.18. Variant detection was
performed with proprietary software. Somatic variants were filtered for minimal coverage of
30 for the corresponding variant position in tumor and matched normal tissue and an allele
frequency greater than 0.05 in the tumor tissue with a three times smaller allele frequency
in normal tissue. In general, somatic variants were determined on the basis of tumor and

matched blood samples.

Variant Annotation

For non-annotated somatic variants (HCC028, HCC030, HCC035, and HCC038 to HCC045),
we applied the variant annotation workflow 2.0. The reference genome GRCh37.75 was used

for the annotation with SnpEff42Y,

Tumor Mutational Burden

The tumor mutational burden (TMB) was calculated based on coding somatic variants, in-
cluding synonymous and non-synonymous variants, as previously suggested4?>. To calculate
the number of somatic mutations per megabase of genome examined, the number of coding
variants was divided by the number of megabases covered by the applied exon enrichment kit.

Gene Expression Analysis

Feature counts were calculated with the RNA-Seq Analysis workflow 1.1. Mapping of RNA

2207 t185

reads was done using TopHat , after removal of adapter sequences with CutAdap

(--discard-trimmed) based on FastQC184

results. Counts for the mapped RNA reads were
calculated using HTSeq?4”. The sort mode of given alignments was set to alignment position
(--order pos). For the identification of counts on gene basis, the attribute parameter was
specified (--gff_attribute gene_id). The option for strand-specific assays was disabled
(--stranded no) and only exons were considered as feature type (--feature_type exon).

Handling of reads that overlap more than one feature was set as well (--overlap_mode
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union). As a reference, a hgl9-derived bowtie2 index has been used to directly map re-
sulting counts for given gene symbols to variant-annotated genes in later analysis steps. We
further applied differential expression analysis for corresponding RNA-Seq analysis results of
non-malignant and tumor samples for the HCC cohort. The differential expression analysis

workflow was used with default parameters.

Protein Quantification

t42° work-

Label-free protein quantification was performed using version 1.0 of the MaxQuan
flow. For non-malignant- and tumor-derived raw files, parameter groups were created, re-
spectively. The fraction of each group was set to one. Within the group-specific parameters,
the label-free quantification option was enabled. The type was set to standard and the mul-
tiplicity to one (label-free quantification). Acetyl (Protein N-term) and Oxidation (M) were
selected as variable modifications. The digestion mode was set to specific and TrypsinP was
selected as the enzyme. MaxMissedCleavages was set to 2 and the match type was specified as
MatchFromAndTo. As global parameter settings, we specified the human version of the Swiss-
Prot reviewed UniProt proteome as reference (version UP000005640, derived: 16/02/2016).
Carbamidomethyl (C) was chosen as fixed modification and the options Requantifiy and Match-

BetweenRuns were enabled.

HLA Ligandome Analysis

The analysis of HLA ligandome data was performed with the ligandomics identification work-
flow 2.1. In the case of available technical replicates, the workflow with co-processing function-
ality of replicates was used. In both workflows, identification and post-scoring are performed
using the OpenMS*2” 2.3 adapters to Comet*2% 2016.01 rev. 3 and Percolator**?43Y 3.1.1 to
identify peptides. Identical parameter settings were used for both workflows and all of the sam-
ples. The precursor mass tolerance was set to 5ppm, and the precursor charge was fixed to 2:3.
Neutral losses were included for the PSM. Filtering was done with a false discovery rate (FDR)
of 5%. FDR calculation was based on merged identifications of all available replicates using
Percolator. Identifications of replicates were treated as internal IDs, and the median intensity
of consensus features was used as the final quantification value. Since, the input data was not
centroided, we specified the corresponding parameter (--centroided false) to centroid
on MS1 (--ms_levels 1). We further selected a digest mass range of 800-2500, a fragment
bin tolerance of 1 Da, and a fragment bin offset of 0.4 Da. As protein reference, we used the
personalized protein sequence databases generated by the Individualized Proteome Generator
workflow (Appendix[F). The resulting database contains all protein sequences of the Swiss-Prot
reviewed UniProt proteome (UP000005640, derived: 02/16/2016) and all protein isoforms
with altered amino acid sequence due to mutations. The latter is generated by the integration
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of somatic variants in the corresponding transcript sequences and subsequent translation using
FRED2 functionality. The resulting FASTA files are then used as reference database respectively.
The database search was performed without enzymatic restriction. Oxidation of methionine

residues was set as modification (maximal number of modifications: 3).

Epitope Prediction

The epitope prediction was performed using the EPAA 1.0 and EPAA 1.1 workflow for all ALL
and HCC cases respectively. Both workflows were configured to predict epitopes for MHC
class I (--mhcclass I) for the given somatic mutations and HLA alleles. For the retrieval of
transcript information via BioMart, the stable database version based on GRCh37 (http://
feb2014.archive.ensembl.org) was set as reference (--reference GRCh37). From derived
mutation carrying protein sequences, all peptides with a length of 8-11 AA were generated.
These peptide sequences were filtered against a human proteome database (-filter_self),
including the reviewed Swiss-Prot proteome (UP000005640 , 02/29/16) and the Ensembl pro-
teome reference (release 84, 04/27/2016). Remaining peptide sequences were predicted for
HLA binding using SYFPEITHI?*®| NetMHC44%2%>/ 4,0, and NetMHCpan#*” 3.0. HLA-binding
affinities are computed as half-max scores for SYFPEITHI, i.e., the percentage share of the
given score of the maximum possible value for a given allele and peptide length. For NetMHC
and NetMHCpan, affinities are calculated as 50,0000 for a given score s. If available, gene
expression analysis results were used for the annotation of resulting peptides, gene expression

values were annotated as FPKM values, calculated as follows for gene g:

10° x C
NXL

flg)=

J

where L is the length of exons in base pairs for the corresponding gene g, C is the number
of reads that mapped to gene g, and N is the total number of unique mapped reads in the
sample. In addition, in the case of EPAA 1.1, additional annotation options are given, which
were used if ligandomics identification results and protein quantification results were available.
The flag --wild_type was used to activate the generation of wild-type peptide sequences for

the mutation-carrying peptides.

Utilized Databases

Mutation numbers of TCGA HCC (TCGA-LIHC) and melanoma cases (TCGA-SKCM) were re-
trieved from Genomics Data Commons Data Portal (https://portal.gdc.cancer.gov/,
accessed 2018-09-14). Variants were filtered for missense, frameshift, inframe deletion, in-

frame insertion, and coding sequence variants. Variants that were called by Mutect2 were
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considered. Additionally, we screened our HCC HLA class I ligandome and proteome data set
against CT antigens derived from CTDatabase**! (http://www.cta.lncc.br, 20/02/2018).

6.3 Results

Downstream analysis of the workflow results was performed with Python*32, Peptides, assessed
with an SYFPEITHI score exceeding half-max, or in the case of NetMHC and NetMHCpan with
a predicted affinity less or equal to 500 nM were considered epitopes for the given HLA allele.
We excluded one patient with T-ALL (QA017) from the downstream analysis since no WTS
data was available. If not stated otherwise, we refer to a potential neoepitope when we use the
term neoepitope since neoepitopes would have to be ultimately experimentally validated for

their presentation to and recognition by T cells. Besides, we will use the following notations:
e Var: Somatic variant (SNVs, InDels, frameshift variant)
* Var™: Non-synonymous somatic variant
* Var®: Non-synonymous variants without nonsense variants
* Var®?: Expressed non-synonymous somatic variant
* PNE: Predicted binding neoepitope

* PNE*P: PNE with evidence on transcript level of tumor tissue according to the RNA
depth (> 5) or in case of unavailability inferred from corresponding gene expression
values given in FPKM (> 1)

e PNEP™!: PNE originating from proteins found to be abundant in the corresponding tumor

tissue
 PNE'¢: PNE with evidence on HLA class I ligandome level

» WT!8: Wild-type peptide, originating from a PNE, with evidence on HLA class I ligandome

level

6.3.1 HLA Typing

The predicted HLA genotypes were consistent with all available experimentally determined
HLA alleles except for patient QA004, where one experimentally typed allele was different on
four-digit level. Instead of the experimental result (A*30:01), OptiType predicted A*30:09.
However, the other five alleles matched on four-digit level. The three most frequent HLA
alleles among HCC patients were A*02:01 (n=8, 50%), C*07:01 (n=6, 37%), A*01:01, and
A*03:01 (n=5, 31%). Among the ALL cohort, the most frequent HLA alleles were A*02:01
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(n=7, 30%), A*01:01, A*24:02, C*07:01, C*12:03 (n=6, 26%), B*07:02, and C*07:02 (n=5,
22%). We did not find evidence for downregulation of HLA class I expression in both cohorts

based on gene expression analysis. All of the determined HLA genotypes are given in Appendix
Table

6.3.2 Analysis of Somatic Variants

We analyzed the number of somatic variants and their properties across all patients of the HCC
and ALL cohort (Figure |6.2)). After filtering, 149.7 £+ 38.7 somatic variants (Vars) remained
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Figure 6.2: Number of observed somatic variants of different categories in the HCC (A)
and ALL (B) cohort. Categories include all variants which passed initial filtering (Var),
non-synonymous variants (Var™), non-synonymous variants without nonsense variants
(Var™), and expressed Var™® (Var®*?). Means are shown as green triangles.

on average per patient in the HCC cohort. The number of non-synonymous variants (Var™),
averaged at 68.7 £19.1. Without nonsense mutations (Var®*®), we observed an average of
64.6 +18.1 somatic variants. RNA-based filtering resulted in 29 £+ 11.1 variants (Var®*?) on
average. We observed lower numbers of somatic variants for the ALL cohort. On average 27.8
+22.3 Vars, 16.9 £ 14.9 Vars™, and 16.0 £ 14.3 Vars™. Of the latter, 6.1 £ 7.1 variants were
expressed on tumor. In total, we observed 1039 unique Vars™ in the HCC cohort (n=16), and
364 unique Vars™ in the ALL cohort (n=24). These Vars™ affected 864 and 327 unique genes
respectively. 463 of these Vars™ had additional evidence on RNA level (Var®®) in the HCC
cohort and 137 in the ALL cohort. This translates to an average TMB of 1.89 +0.49 per Mb
among the HCC patients and 1.12 £ 3.06 per Mb among the ALL patients. The patient-specific
numbers are given in Appendix Table and

Further, we observed a low number of Var®*® that are shared across patients for both cohorts.
Across the 16 HCC patients, 24 genes carried a Var®® in two or more patients. This corresponds
to 6.1% of all genes (n=392) carrying a Var®*? (Appendix Figure [D.8/A). When investigating
genes that carry a Var®? in three or more patients, we identified six genes (Figure[6.3). The
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Figure 6.3: Shared genes across the HCC cohort which carry a Var®®. Genes carrying
expressed mutations were analyzed with respect to presence (depicted by a grey square)
in multiple patients. The included six genes were affected by a Var®*® in > three patients.
The identical mutation was shared by three patients (red square).

genes CTNNBI1 and NBPF1 were affected most often by an expressed mutation within our HCC
cohort. Expressed mutations were observed in eight patients for CTNNB1 (50%) and in six
patients for NBPF1 (38%). With respect to identical expressed mutations, only nine out of 463
(1.9%) expressed mutations were shared by two or more patients (Appendix Figure B).
The mutation (16891365G>T) on NBPF1 was observed in three patients (HCC030, HCC042,
HCC043), which was the maximum with respect to patients sharing identical mutations. Other
genes include two HLA class II genes, namely HLA-DQA1 (13%) and HLA-DRB5 (19%), and
genes typically expressed in the liver, including ALB (19%), APOB (13%), ABCA1 (13%), and
GGT1 (19%).

In the ALL cohort, seven genes were found to be affected by a Var®™*P in more than one patient
(Figure [6.4). This corresponds to 5.8% of unique genes affected by a cnsTXV (n=121). The
genes CDC27 and PTPN11 are affected in three patients respectively. In QA005 and QA008 the
mutation on CDC27 was found to be identical (45235635A>C), whereas, in QA011, CDC27
is affected by a different missense mutation (45214572G>A). In case of PTPN11, different
positions are affected across the three patients (QA018, QA006, and QA009). Four identical
Var®*P are shared across two patients each, corresponding to 2.9% of all (n=137) unique Var®*P,
The affected genes include the aforementioned CDC27, NCOR1, RPL19, and PRELID3B. We
identified ten genes (DHX8, DLG1, DOTIL, EIF3B, HLA-DRB1, NCOR1, NOTCHI, RPL22, TP53,
ZSWIMS) that are affected by Var®™*P across both cohorts.
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Figure 6.4: Shared genes across ALL cohort which are affected by a Var®*P. Genes affected
by expressed mutations were analyzed with respect to presence (depicted by a grey square)
in multiple patients. The included seven genes were affected by a Var®*® in > two ALL
patients. Identical mutations (red square), shared by two patients each, were observed in
four cases.

6.3.3 Assessment of Neoepitopes

The evaluation of predicted neoepitopes was performed based on the annotated epitope pre-
diction results of EPAA. On average, the peptide generation based on the somatic mutations
resulted in a peptide search space (PSS) of 5,188 £ 2,140 peptides for the HCC cohort. 3,643
+ 1,196 peptides remained after filtering against the human proteome. Out of the resulting
peptides, an average of 7.1 £ 2.4% were PNEs (5.2 & 1.9% out of all peptides). The number
of PNE®*?P per patient averaged at 118 £40. Thus, on average 49 + 8% of all PNEs (average:
244 £77) had additional evidence on transcriptome level (Figure ). In case of the ALL
cohort, EPAA generated on average a PSS of 675 £ 569 peptides. Filtering against the human
proteome resulted in an average of 584 £511 peptides. This corresponds to 86.8 £11.1%
remaining peptides on average. The number of PNEs averaged at 35.8 + 35.6 peptides. Thus,
5.4 £2.3% of all generated peptides (PSS) were predicted as PNEs. For 38.4 +22.5% of the
PNEs, evidence on transcriptome level was given. Out of all peptides 2 % 1.4% were PNE*P on
average, corresponding to an average of 13.2 & 13.5 PNE®*? (Figure[6.5B). Hence, we observed
on average about nine times more PNE®*P in the HCC cohort than in the ALL cohort.

With respect to the number of PNE®P, we observed a moderate correlation (r = 0.5,
p = 0.049) to the number of Var®*®? for the HCC cases (Figure [6.6). In the ALL cohort, the
results indicate a positive linear relation between the number of PNE®*? to the number of
Var® (r = 0.88, p = 3.5-107%). Every Var®™® generated on average 4.1+ 2.5 PNE®*® among
the HCC patients and 2.4 1.7 PNE®® in the ALL cohort. For the HCC cohort, we further
investigated evidence of PNEs on proteome and ligandome level if available. In order to assess
the evidence of PNEs on tumor proteome level, we annotated all PNEs with log,-transformed
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Figure 6.5: Number of peptides along the different omics layers. (A) We analyzed the
HCC cohort with respect to evidence for neoepitopes on transcriptome, proteome and
ligandome level. (B) In case of the ALL cohort, only transcriptome data was available. The
number of potential neoepitope candidates decreases as we demand tumor expression of
the corresponding mutation (PNE®*P) and tumor abundance of the corresponding protein
(PNEP™Y), We did not find evidence for neoepitopes on ligandome level. The number of
PNEs per patient is given on the right of each plot.
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Figure 6.6: Relationship between the number of Var®™® and PNE®® for the patients of the

HCC cohort (A) and the ALL cohort (B). Data points are visualized as scatterplot with
marginal histograms, as well as the linear regression model fit and kernel density fits.

intensities from shotgun proteome data, which was available for seven patients. In total, 159
PNEs were annotated as PNEP™', This corresponds to 22.7 +21.1 PNEP™" and 17 +14% of
PNE®*P on average. The 159 PNEP™" originate from 33 unique source proteins. For HCC023,
three proteins were measured with an average log,-transformed intensity of 24.5 £0.1. Two
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proteins each were measured for HCC024 and HCC036 (average log, intensity: 26.0 +0.2
and 22.2 £ 3.1). Out of nine proteins measured for HCC025, eight were exclusively measured
on tumor tissue. In the case of HCC026 and HCC027, five out of ten and three out of eight
proteins were measured exclusively on tumor tissue. No PNE-associated proteins could be
measured on tumor tissue for HCC034. On average, 9.8 + 8.6% of PNEs were PNEP™",

Further, we used HLA ligandome data in order to obtain evidence for naturally presented
mutated HLA ligands. HLA ligandome data was available for all patients in the HCC cohort for
non-malignant liver tissue and HCC. In total, we identified 22,443 peptide sequences (unique
15,054) of length 8-11 AA with an FDR of 5% on tumor tissue and 18,547 peptides (unique
11,775) on benign liver tissue. On average, we observed 1,403 + 621 immunoprecipitated
peptides on tumor and 1,159 +525 on non-malignant liver tissue. In total, 6,738 of the
identified unique ligands are shared between matched tumor and non-malignant liver tissue.
On a per-patient base, 568 + 317 identified ligands were shared between tumor and non-
malignant liver tissue on average, corresponding to 51 + 11% of the unique peptides. We did
not find evidence for any PNE!S, However, we identified three WT for HCC027, HCC028,
and HCCO041 on HCC. Manual inspection of the corresponding spectra revealed that only the
identified WT'® of HCC027 and HCC028 were real matches. In HCC027, the wild-type peptide
(TERIIAVSF), as well as the mutated peptide, were predicted as a strong binder (NetMHC 4.0,
affinity: 12.93 nM) for HLA-B*18:01, one of the patient’s HLA alleles. The WrThg (LPAHIPYQEL)
identified in HCC028 was predicted as a weak binder for two alleles of the patient (HLA-
B*07:02 and HLA-B*35:03). Both peptides were found to be known epitope contained in
the IEDB?>L, A condensed graphical representation of the observed numbers of neoepitopes
and their evidence on multiple omics levels within the HCC cohort is given in Figure
Absolute numbers of variants and peptides per patient are given in Appendix Table and

To calculate an estimate of the probability of observing neoepitopes, we calculated the size
of the theoretically presentable HLA class I ligandome as an upper estimate of the underlying
search space. Therefore, we predicted the HLA-binding peptides of length 8-11 AA for all
patients based on their personalized proteome, i.e., the human proteome including mutated
proteins. The set of considered proteins was filtered for tumor expression according to the gene
expression analysis results. The predictions results averaged at 1,219,745 unique predicted
HLA-binding peptides. In addition to the number of unique peptide identifications (FDR 5%)
from each HCC, we used the number of PNE®® of each patient to estimate the probability of
observing a neoepitope and utilized the hypergeometric distribution given by:

n\(N—n
P(X =k) = (k)(ﬂ,

()

thttp://www.iedb.org/epitope/441029
http://www.iedb.org/epitope/521537
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where M is the number of predicted binding neoepitopes, N is the number of the estimated
personalized tumor ligandome, n is the number of HLA class I immunoprecipitated peptides,
and k is the number of observed neoepitopes. Using the above-mentioned measures resulted
in an average probability of 0.15 +0.10 for observing at least one neoepitope in one run
(1 —P(0)). On average, we could, therefore, expect to find one neoepitope on average every

12th run per patient (calculated by ﬁ(o))'
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Figure 6.7: Numbers of potential neoepitopes within the HCC cohort along the analysis
pipeline. Starting with non-synonymous mutations, a large number of predicted mutated
peptides existed. This number decreased clearly after filtering for predicted neoepitopes
and requiring evidence for their existence on transcriptome, proteome, and ligandome.
We did not find evidence for neoepitopes on the ligandome level of tumor tissues.

Somatic variants (Var) —

6.3.4 Evaluation of the Neoepitope Identification Pipeline

In order to evaluate the sensitivity of our neoepitope identification pipeline, we further pro-
cessed a publicly available data set of five melanoma patients, previously analyzed by Bassani-
Sternberg et al.*# (Figure . Starting with somatic variants and HLA ligandome data, we
performed variant annotation, ligandomics identification, and neoepitope identification using
EPAA. As expected, the average number of Var™ was substantially higher than in our HCC
and ALL cohort. The number of Var™ averaged at 531 +£419. Consequently, the number of
PNE showed remarkable differences as well. On average, peptide predictions resulted in an
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average of 1,550 £1,457 PNEs. Bassani-Sternberg et al. reported the identification of neoepi-
topes (PNE'®) on human melanoma tissue*1%, We were able to reconfirm all PNE! of length
8-11 AA except one for Mel5 (ETSKQVTRW) and one for Mell5 (RIKQTARK). Both peptides
were not predicted to be HLA-binding peptides. However, we discovered two additional PNE!8

for Mel15 that could be confirmed by manual inspection of corresponding MS spectra.
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Figure 6.8: Numbers of potential neoepitopes for the publicly available melanoma data
set. The data (n=>5) was previously analyzed by Bassani-Sternberg et al.*1%, Starting
with non-synonymous mutations, a large number of predicted mutated peptides existed.
We used EPAA to predict PNE and annotated resulting peptides with HLA ligandomics
identification results. Numbers are given as mean and standard deviation.

6.3.5 Assessment of Alternative Targets

Since we did not find evidence for neoepitopes on ligandome level for the HCC cohort, we ana-
lyzed the available data with respect to evidence for cancer/testis (CT) antigens in HCC. A list
of known CT antigens was derived from CTDatabase**!' (accessed 2018-02-20). On proteome
level, we quantified multiple members of the POTE gene family across the seven patients with
available proteomics data: POTEE (multiple patients), POTEH, POTEG (HCC023, HCC026),
POTEC, and POTEB (HCC023). Besides, LDHC was quantified in all patients and TEX15 in
four patients. RBM46 was quantified in HCC023, HCC025, and HCC026. On ligandome level,
we identified multiple HLA class I ligands mapping to CT antigens. We detected HLA ligands
mapping to the following CT antigens: ARMC3 (HCC045), ATAD2 (HCC023, HCC045), PRAME
(HCCO041), and TFDP3 (HCCO045). Ligands mapping to SSX1 were identified in HCC035 and
HCCO041. Besides, ligands mapping to six other members of the SSX gene family were identified
in HCCO041. A list of all CT antigens with evidence on proteome or ligandome level on tumor

tissue and their corresponding UniProt ID is given in Appendix Table
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6.3.6 Runtime Evaluation

Across all patients, the runtime of all performed workflow runs during this study was evaluated
(Figure[6.9). In total, 444 workflow runs were submitted with an average runtime of 4.3 + 8.9h.
Runtimes include the data staging steps and potential idle time due to the unavailability of free
cluster nodes. The 99th percentile of all workflow runtimes is 37.46h. The highest runtimes
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Figure 6.9: Runtime of performed workflow runs. For every workflow type (x-axis), the
runtimes across all runs are plotted in hours. The maximum workflow runtime (77.4 h) of
one RNA-Seq analysis workflow is not included in the plot. Average runtimes per workflow
type are given within the plot.

were observed for the RNA-Seq analysis workflow. All RNA-Seq runs had an average runtime
of 17.5 £13.6h and a maximum runtime of 77.4h, which was the maximum across all runs
and caused by the unavailability of free cluster nodes. This was also the reason for outliers in
terms of runtime for other analysis workflows. Variant annotation runs had an average runtime
of 0.2 £ 0.1h with a minimum runtime of 1.38min, corresponding to the minimum runtime
overall.

In summary, starting from somatic variants, the average runtime of the complete computa-
tional pipeline, including all omics layers, for the assessment of potential targets for person-
alized cancer vaccines can be estimated at 33 hours. This number is an upper estimate since
some of the workflows could be submitted in parallel. In a typical setting, which includes WES

and WTS data, the runtime for the complete pipeline can be estimated at 20 hours.
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6.4 Discussion

Cancer vaccines are one option in targeted immunotherapy that traditionally focuses on TSAs.
Recent advances in genome sequencing and in-depth analysis of cancers’ mutanome revealed
the existence of non-synonymous somatic mutations causing tumor-specific antigens. Due to
their exclusive expression on tumors, their potency as immune targets should not be adversely
affected by immune tolerance, and the risk of autoimmune side effects should be minimized.
Thus, their potential to induce T cell-mediated immune responses makes them strong candi-
dates for cancer vaccines. The availability of algorithms to identify cancer neoantigens renders
their identification on a personal basis feasible in contrast to labor-intensive screening ap-
proaches**3, Therefore, it is possible to exploit the mutational neoepitope repertoire of tumors
on a full scale. In contrast to established generic therapeutic approaches, based on screen-
ing for the presence or absence of mutations and the use of off-the-shelf drugs, personalized
epitope-based vaccines are based on a patients’ tumor mutanome. Previous studies have shown
the feasibility of in silico-assisted processes to derive patient-specific neoantigen candidates
and their potential in human cancer treatment 2421159,

Here, we demonstrated the application of iVacPortal in the context of personalized epitope-
based vaccines for two cohorts of different cancer entities. We utilized the portal’s features for
data management and the generation of peptides based on patient-specific private somatic mu-
tations as poly-peptide cancer vaccine targets. Further, we addressed the problem of filtering
and prioritizing these candidates, as well as finding evidence of neoepitopes on multiple omics
layers by performing an in-depth analysis of the generated results. We applied implemented
workflows for HLA typing, variant annotation, gene expression analysis, LFQ, HLA class-I lig-
and identification, and epitope prediction on the data of 40 patients. As a central component,
the implemented neoantigen identification pipeline EPAA, with annotation functionality of pre-
viously derived results, facilitates the investigation of neoepitope evidence based on genomics,
transcriptomics, proteomics, and ligandomics. Based on the available somatic variant calls, we
observed quantities of non-synonymous mutations for both cancer entities, which are in the
range of previously published numbers?743# on mutational burden (Figure[6.10). A study™*3*
on 27 HCC patients reported an average number of 68 somatic non-synonymous mutations.
HCC cases from TCGA (TCGA-LIHC) possessed a higher average number of Vars™ (90 £ 100,
n=363) than our HCC cohort. Still, the average numbers are substantially lower than for
melanoma (461 + 761, n=467). As expected, the observed number of somatic variants of the

433 the application of neoantigen-based

ALL cohort was lower than in HCC. As reported earlier
vaccines for cancer entities with lower mutational burden than in entities such as melanoma
might be challenging. Nevertheless, Tran et al. proved the existence of tumor-infiltrating CD4 "
and CD8™ cells that recognized neoepitopes in tumors with low mutation load*!®. Still, in

the case of the absence of identified neoepitopes, our framework could be used to determine
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Figure 6.10: Average number of somatic mutations of different cancer entities. The
numbers for ALL and melanoma (MM), were taken from Vogelstein et al.4%Z, A study*>4
reported 68 non-synonymous somatic mutations on average for HCC (n=27, black) which
is slightly higher than in our study (n=16, 66 Vars™, red). The number of Vars™ for HCC
cases from TCGA averaged at 90 Vars™ (HCC (TCGA), n=363). The average number of
non-synonymous somatic mutations of our ALL cohort (n=23, 16 Vars™, red) is in line
with reported numbers (black, 14 Vars™). Cancer entities such as MM (203 Vars™) usually
possess a much higher mutational burden, corroborated by TCGA cases (MM (TCGA),
n=467, 461 Vars™).

alternative targets for treatments, as shown. Such targets could include expressed CT antigens,
differentiation antigens, immune checkpoint modulation targets, and identified HLA ligands,
known to be immunogenic. As presented, we found evidence for multiple known CT anti-
gens across patients. CT antigens are promising targets for immunotherapy since they are
immunogenic, cancer-specific, and frequently expressed43®. Their application includes cancer
vaccination and adoptive T-cell transfer. Concerning potential neoepitope candidates, we iden-
tified at least one PNE®*P in all patients except one across both cohorts. Out of all predicted
neoepitopes, 49% (HCC) and 38% (ALL) were found to correspond to an expressed transcript
on tumor tissue. Further, we quantified 33 proteins of neoepitopes on tumor tissue. For two of
these proteins, encoded by ALB (HCC025) and RECQL (HCCO026), mutated proteins could be
validated via shotgun proteomics**”. Nevertheless, we were not able to identify neoepitopes
in the corresponding patient-specific HLA class I ligandome. We detected one WT'# for two pa-
tients each. Since both of them were predicted to be binders for the patients’ HLA alleles, they
could still serve as alternative targets. Especially in the case of HCC027, where the respective
protein could only be measured on tumor and not on the non-malignant liver tissue. Bassani-
Sternberg et al. showed that the direct identification of immunogenic mutated peptides by MS
on tumor is possible®1%. We proved the sensitivity of our neoepitope identification pipeline by
reconfirming their identified neoepitopes using the same data. Two reported neoepitopes*4
were excluded from the result by our pipeline since they were not predicted as binders for
the HLA alleles. As shown, the number of present somatic mutations is much higher in the
melanoma data set than in our investigated cohorts, affirmed by the investigation of TCGA
data for both cancer entities. The resulting substantially lower amount of mutated neoepitopes
might, therefore, be one reason for the absence of successfully identified naturally processed
HLA-I ligands.

We reinforced this argument by calculating an estimate of the theoretically present tumor
ligandome and the comparison to observed ligand identification rates for our HCC cohort.

The consideration of the complete set of binding peptides (8-11AA) as ligandome search
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space is presumably an overestimation of the actual present ligandome. However, since we do
not know which peptides are present and bind to the HLA molecules, it still provides a rough
estimate of the odds to measure a ligand. Additionally, the resulting numbers for the probability
of observing neoepitopes are in line with our past experiences. Further, the identification
rate of truly-immunogenic neoepitopes might be negatively influenced by several factors. In
general, the computational assessment of immunogenicity is still mostly based on HLA binding
predictions. Although prediction algorithms did improve, the rate of predicted high-affinity
binders that can be recognized by patient’s T cells in a tumor environment seems to be low+4
and might involve inaccuracies, especially for rare alleles. Furthermore, the identification via
MS on the HLA ligandome is strongly dependent on the sensitivity of the employed devices and
in silico identification pipelines. Concerning MS, several reasons might introduce biases in HLA
ligandomics data, such as the very low frequency of cysteine, the loss of too hydrophobic or too

438 Another factor that prevents

hydrophilic peptides, and poor ionizability or fragmentation
the discovery of neoepitopes might be immunoediting®®. Mechanisms such as the selection
of clones with downregulated antigen processing and presentation on HLA or with silenced
genes of antigens targeted by the immune system presumably limit the potential identification
rate of immunogenic neoepitopes as well.

To extend the pool of potential immunogenic HLA ligands, one might consider other sources

4391440 and post-translational protein splicing*4L,

of neoepitopes such as alternative splicing
T-cell epitopes associated with peptide processing (TEIPP)#42 tumor-specific phosphopep-
tides*43, and cryptic peptides®4*. Furthermore, Kreiter et al. showed that CD4" T cells rec-
ognize neoepitopes2. Recently, Marty et al. emphasized the importance of CD4™ T cells in
anti-tumor immunity and HLA-II presentation in tumor evolution*4>. Therefore, HLA class
IT epitopes could be considered as well. Corresponding functionality is already available in
iVacPortal. However, the results of in silico prediction algorithms are not as reliable as HLA
class I algorithms#4°,

Another important factor for the assessment of potential neoepitopes and therefore find-
ing potential constituents for targeted immunotherapy are turnaround times. The presented
runtimes suggest that the computational analyses are not the main factor influencing the
turnaround time since experimental steps usually take time in the range of days. However,
since these processes cannot be sped up easily in most cases, it is of great importance that the
computational pipeline runs as reliable and fast as possible. There are different aspects that can
be addressed in order to speed up processing. As presented, the highest runtimes were observed
for the RNA-Seq analysis workflow with 17.5 & 13.6h on average. This process could be sped

R2%8] which has been shown to outperform

228

up by using a different RNA-Seq aligner, such as STA

could
298

TopHat22%7, Alternatively, alignment-free methods, such as Salmon**” and Kallisto

be used for transcriptome quantification to reduce runtime. Bray et al. showed that Kallisto

2207

outperforms other methods, including TopHat , with respect to runtime, and the authors

118



Discussion

of Salmon stated that their method is comparable to Kallisto in terms of speed**”. Even higher
reduction of runtimes could be achieved by using GPU accelerated sequence alignment libraries,
such as the recently published GASAL244®. In general, different parts of the computational
pipeline could benefit in terms of runtime from parallelization. One option would be to process
chromosomes or even transcripts in parallel for the peptide generation and prediction in the
epitope prediction step. The parallelization by chromosome has already been implemented in

449 version of this pipeline (https://nf-co.re/epitopeprediction). Besides,

the nf-core
steps of the pipeline that usually do not require any user input, such as merging sequencing
reads from different lanes, could be automated and triggered directly upon data arrival to

further reduce turnaround times.

To summarize, we analyzed data from 40 patients of two cancer entities with respect to the
identification of potential neoepitopes. We thereby demonstrated the usefulness of iVacPortal’s
data management functionality and the effectiveness of implemented and integrated computa-
tional pipelines for the identification of neoepitopes based on somatic mutations. Despite the
complexity of this multi-omics project and associated large amounts of data, we could provide
short turnaround times by using our web-based platform, the integrated workflow system, and
connected HPC resources. For multiple patients, we found evidence for neoepitope-generating
mutations on transcriptome and proteome level. Still, we did not find evidence for any neoepi-
tope in the HLA-I ligandome. Besides the presented project, iVacPortal has been utilized in the
context of personalized cancer vaccines in more than 300 cases and is currently utilized in a
prospective phase I/II study on ALL (Eudra-CT-Nr. 2015-005281-29).
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Chapter 7

Conclusion and Outlook

The ultimate goal of personalized medicine is to provide the right treatment for the right
patient at the right time. To achieve this goal, a comprehensive analysis of the patients and
their diseases is necessary, though often hard to bring to clinical practice. Notably, in cancer
treatment, generic therapy approaches are prone to be inefficient due to differences in genetic
predisposition, a considerable heterogeneity across cancer types, and individual tumor muta-
tional burdens. Here, patients can benefit from personalized therapy approaches. Personalized
epitope-based vaccines (EVs) for tumor therapy try to account for these wide variations across
tumors and patients by guiding the selection of treatment on tumor specimens and the pa-
tient’s immune system. In the past years, NGS platforms, as well as the associated decreasing
costs and turnaround times, were critical for the emergence of such therapeutic options in
personalized medicine and will continue to advance its development.

The ever-increasing availability of patient and cancer genomes opens up unique possibilities
but also presents new challenges, especially with respect to data analysis. In the context of EVs
for tumor therapy, one challenge is to gain insights into the individuality of the immune system,
that is among others shaped by the variability of the human leukocyte antigen (HLA) gene cluster.
At the time of this thesis, HLA genotyping was either done using labor-intensive experimental
methods or in silico approaches that relied on NGS data generated for the sole purpose of HLA
typing. Emerging in silico approaches based on readily-available WGS, WES, and WTS data did
not yet achieve the precision necessary for clinical diagnosis. By the development of OptiType,
we provided a computational method to perform fully automated HLA genotyping on NGS data
on a large scale with high precision. We successfully applied OptiType on data sets of state-
of-the-art sequencing technologies and proved its accuracy on four-digit resolution, crucial in
clinical applications such as personalized vaccine design. Since its publication, OptiType has
been applied in several studies on cancer genomics#%426 Marty et al. successfully performed
HILA typing for the majority of 9,839 cancer patients derived from TCGA, showing OptiType’s
applicability in large-scale cancer genomics projects and the demand in studies on immune-
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regulatory mechanisms, especially in the context of cancer. Although multiple HLA genotyping
methods were suggested, OptiType is still among the most accurate methods. xHLA®!® which
achieved slightly higher accuracy than OptiType in a benchmark performed by Xie et al., uses a
similar ILP-based approach. Future HLA genotyping methods will benefit from the increasing
number of available HLA allele sequences. Further, third-generation sequencing technologies,
such as Pacific Biosciences’ SMRT, capable of producing sequences that span entire HLA genes,
might be beneficial if acceptable error rates can be achieved in the future. The same applies
to developments on HLA class II typing, that might be of even higher interest with increasing
precision of HLA class II binding prediction methods and further evidence of CD4% T-cell
responses caused by EVs.

Our second contribution is the development and evaluation of a new model for T-cell
immunogenicity prediction. By implementing the underlying distance-to-self functionally in
ImmunoNodes, we facilitate future efforts on similar approaches. Immunogenicity is of vital
importance when it comes to EVs and other biological drugs since it affects efficacy and safety.
Immunological responses, evaluated by the occurrence of peptide-specific CD4" and CD8* T
cells, can be experimentally determined using flow cytometry on peripheral blood or the re-
cently developed cytometry by time-of-flight (CyTOF). Single-cell assays include MHC-peptide
tetramer staining, ELISPOT assays, and intracellular cytokine assays for IFN-y, TNE and IL-2.
However, there is a high demand for in silico methods to reliably predict immunogenicity be-
fore therapy for a large number of peptide candidates. We proposed a method that models
peripheral tolerance based on gut microbiome data in addition to central tolerance to improve
the assessment of the T-cell repertoire. The approach is based on the assumption that peptides,
which have a lower similarity (higher distance) to self-peptides, are more likely to induce im-
munological responses due to negative selection mechanisms. As shown, the incorporation of
other immunological measures did not improve prediction performance, which might be due to
the inaccurate modeling of peripheral tolerance because of insufficient information on the com-
mensal microbiota. Certainly, the amount of data on the human gut microbiome will increase
since its recognized involvement in human health and disease. Presumably, standard diagnosis
and treatment evaluation will soon include the collection and analysis of gut microbiome data
and thus provide new insights with respect to its role and composition. On the other hand, the
proposed models still only indirectly account for the T-cell and TCR repertoire. Recent advances
in TCR sequencing might close this gap and provide the basis for future developments of T-cell
immunogenicity prediction to ultimately reach the precision required for clinical applications.
High-throughput sequencing methods on pooled immune cell populations, and even more
importantly, on a single-cell level can be used to identify TCR chains accurately, and in the
latter case, even in a paired form. Together with gut microbiome analysis on a personalized
level, these developments can provide the basis for personalized in silico approaches for the

prediction of T-cell immunogenicity.
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Although new methods and advances in high-throughput technologies open up new op-
portunities, they also present new challenges concerning data management and analysis. In
the second part of this thesis (Chapter [5), we presented qPortal a web-based platform for
data-driven biomedical research. Our portal solution combines easy-to-use user interfaces with
a workflow system and provides data management functionaliy using a backend that utilizes
a variety of concepts and technologies, such as relational databases, data stores, data models,
and data transfer. As depicted, multi-omics projects present challenges due to multiple in-
volved laboratories and heterogeneous data types. We tackled these challenges by providing a
system for exhaustive metadata collection, central storage, and (meta)data management. The
collected data is usually bound to strictly regulated terms regarding data security, access, and
confidentiality. Data security is of prime importance, especially with respect to clinical data.
Therefore, we implemented a two-step security process. To empower users to run analysis
pipelines on HPC infrastructures, we implemented a workflow system interface. Employing
this generic system, we developed a workbench for the design of personalized EVs, which facil-
itates common tasks in these projects from planning to analysis. Regarding data analysis, we
developed a pipeline for the prediction of neoepitopes and their assessment as cancer vaccine
candidates. To determine the presence of these candidates, our pipeline integrates genome,
transcriptome, proteome, and ligandome data. More than ever, there is a need for solutions
to standardize analysis pipelines and to provide reproducibility, especially with the increasing
relevance of in silico approaches in clinical practice. With extensive metadata collection and
our workflow system, we already made efforts in this direction. To take it one step further, the
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utilization of container solutions, such as Singularity=~> in combination with workflow systems

such as Nextflow2Z

should be pursued and promoted. Additionally, joint community efforts
such as nf-core**? (https://nf-co.re/) for the collection and curation of state-of-the-art
analysis pipelines will enhance standardization and reproducibility. Ultimately, these efforts
will also drive the development of cloud-based solutions to deliver software components to the
data.

In the last part of this thesis (Chapter [6)), we applied our contributions in two research
projects on personalized EVs for cancer therapy, which demonstrated the feasibility of such
efforts through iVacPortal. Our analysis resulted in the identification of neoepitope vaccine
candidates based on patient- and tumor-specific mutations for both cancer entities. Additionally,
we provided possibilities for the assessment of alternative targets. We did not find evidence for
neoepitopes on ligandome level but indicated possible reasons for this, such as the insufficient
sensitivity of employed devices and biases in HLA ligandomics data. Still, Bassani-Sternberg
et al. 1% proved the feasibility of identifying neoepitopes on ligandome using more sensitive
instrumentation. However, there are also fundamental differences between cancer entities,
such as the tumor mutational burden, accompanied by differences in the number of potential

neoepitopes and immunotherapy success#>Z.,
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7. Conclusion and Outlook

To gain new insights into cancer immunotherapy and the effector mechanisms, it is even
more critical to not only record suggested therapeutic options and composed vaccines but also
the immune state of a patient, using immune monitoring and clinical outcomes. Efficient,
standardized methods for the analysis of immune monitoring and immunogenicity assays are
still missing. Furthermore, scalable and high-performance big data storage solutions, such as
the ones used by ICGC®%% and TCGA=®% will be needed to efficiently store and query cancer
genome data and provide the basis for further developments in the assessment of therapy
efficacy and clinical outcome. Such systems will also be beneficial for the transition of in silico
approaches for personalized medicine to clinical practice, especially with the emergence of
molecular tumor boards. Moreover, global initiatives such as the Global Alliance for Genomics
and Health (GA4GH)*>8 will be required to define technical standards for genomic data sharing,
ethics, and data security.

To summarize, the presented developments constitute a contribution to the pipeline for person-
alized peptide-based cancer vaccine design. With OptiType, we enable the prediction of HLA
genotypes, a prerequisite for the design of personalized cancer vaccines. Our efforts on T-cell
reactivity prediction assessed the potential of modeling peripheral tolerance and build the foun-
dation for future works. The development of iVacPortal, as a web-based workbench, enables
users to access and apply our developments in clinical research projects. The added value of
iVacPortal was demonstrated by its application in two projects concerning the assessment of
cancer vaccine targets. We anticipate that platforms, such as qPortal, will be indispensable cor-
nerstones for state-of-the-art biomedical research infrastructures and promote the translation

of in silico approaches into clinical practice.
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ABC
ALL
ANN
APC

auROC

BCR
BWT
CDS
CNV
CRT
CTA
CTD
CTL
DCI
dNTP
emPCR
ER
ETL
EV
FDA

Amino acids

ATP-binding cassette

Acute lymphoblastic leukaemia
Artificial neural network
Antigen-presenting cell

area under the Receiver Operating Characteristic
base pair

B-cell receptor

Burrows-Wheeler transform
Coding DNA sequence

Copy number variation

Cycle reversible termination
Cancer /testis antigen

Common tool descriptor
Cytotoxic lymphocyte

Distributed Computing Infrastructure
Deoxyribonucleotide triphosphate
emulsion PCR

Endoplasmatic reticulum

Extract, transform, load
Epitope-based vaccine

Food and Drug Administration
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FDR
FPKM
GRC
GUI
GTF
HBV
HCC
HLA
HPC
HPV
ICGC
IEDB
Ig
ILP
InDel
LDAP
LFQ

LIMS

MAF
MS
MHC
NCI
NGS
openBIS
PBMC
PCM

PSSM
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False discovery rate

Fragments per kilobase per million mapped reads
Genome Reference Consortium
Graphical user interface

Gene transfer format

Hepatitis B virus

Hepatocellular carcinoma

Human leukocyte antigen
High-performance computing

Human Papillomavirus

International cancer genome consortium
Immune Epitope Database
Immunoglobulin

Integer linear program

Insertion /deletion

Lightweight directory access Protocol
Label-free quantification

Laboratory information management system
Monoclonal antibody

Minor allele frequency

Mass spectrometry

Major histocompatibility complex
National Cancer Institute
Next-generation sequencing

Open biological information system
Peripheral blood mononuclear cell
Proteasomal cleavage matrix

Position-specific scoring matrix
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QC
RPKM
RNA-Seq
SAM
SBL
SBS
SNV
SSO
TAA
TCR
TMB
TPM
TSA
TSP
ucCscC
VCF
VM
WES
WGS
WTS

WS-PGRADE

Quality control

Reads per kilobase per million mapped reads
RNA sequencing

Sequence Alignment Map
Sequencing by ligation

Sequencing by synthesis

Single nucleotide variant

Single sign-on

Tumor-associated antigen

T-cell receptor

Tumor mutational burden
Transcript per million
Tumor-specific antigen

Travelling Salesman Problem
University of California, Santa Cruz
Variant Call Format

Virtual machine

Whole-exome sequencing
Whole-genome sequencing

Whole-transcriptome sequencing

Web Services Parallel Grid Runtime and Developer Environment
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Appendix D: Supporting Figures

# Home + Add Patient > Total number of projects: 918 search DB
Whole DB + Q
] @ Status & Project Graph A Exp. Steps £ Datasets 4 Biological Sa... il Raw Data 22 Results o Workflows & Upload Files
IVAC_ALL-QAOO1 £

Individualized vaccine case of the praject IVAC ALL [Pat1]

Investigator
Contact Person
Project Manager

nia

Detailed Description

Double click to add description.

Project includes 18 experimental step(s)

| v Project planned

| v Raw data registered

| v Experimental design registered |

| v Results registered

Initial Diggnosis: 2009-01-04
Stem Cell Transplantation: 2009-11-23
Blasts: 81,5%

MHC Class II
Patient: DRB1*03:01, DRB1*15:01

Donor: DRB1*03:01, DRB1*15:01,0Q81*02:01, DQB1*06:02

MHC Class |
Patient: A*01:01, A¥25:01,B*08:01, B*18:01,C*07:01, C¥12:03

Donor: A*D1:01, A*25:01,5*08:01, B+ B01,C07:01, C*12:03
Computational Typing (OptiType)

A-0T:01 A*25:01 B*08:01 B*18:01 C*07:01 C*12:03
Spreadsheets

& Sample Sources & Sample Extracts & Sample Preparations

Send question regarding project QAQ01 (VAC_ALL)

Figure D.1: Project view for projects in iVacPortal. The view additionally contains infor-
mation about the HLA genotype of a patient and further metadata annotations such as
the initial diagnosis date.

165



Supporting Figures

# Home + Add Patient & Total number of projects: 918 search DB
Whole DB +
(i) © Status & Project Graph A Exp.Steps £ Datasets 8 Biological Sa... .l Raw Data 22 Results % Workflows & Upload Files

Overall Progress

Started Code Description Status Workflow
v QAO01E16 NGS Sequencing [————— ﬁ
v QA001E17 NGS Sequencing —_— Run

v QA001E18 NGS Sequencing > Run

v QAO01ES NGS Sequencing —_— Run

v Barcode Generation — Run

x QAO01E15 Variant Calling [ Run

v QAO01E19 HLA Typing —_— Run

x Variant Annotation ° Run

v QA001E24 Epitope Prediction —_— Run

Figure D.2: Status view for projects in iVacPortal. For personalized vaccine projects, an
additional status component summarizes the overall state of the project and its distinct
steps.
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Select Project

IVAC_TEST

?
SPACE v [l

Number of Patients

1

21

Identifiers
Patient? 6]
Description
Test patient &
[z
Type Secondary Name Tissue Amount Dna Seq Rna Seq Deep Seq Seq Device
Normal Benign LIVER 1 true true false UNSPECIFIED_ILLUMINA_HISEQ_2500
Tumor Tumor 1 HEPATOCELLULAR_.... 1 true true false UNSPECIFIED_ILLUMINA_HISEQ_2500

Turmor 2

Add Sample

Type

Tumor

Secondary Name Amount Tissue Sequencing Device

Tumor 2 1 TUMOR_TISSUE_UNSPI v UNSPECIFIED_ILLUMIN

+ DNASeq RNA Seq Deep Seq

Save

HLA Typing

Cancel

04

Typing Method

550

¥ MHC Class | MHC Class Il

A*02:01
A%24:02|

Register Patients

Figure D.3: iVacPortal view for the registration of new patients. The view is accessible
from gNavigator and can be used to add one or multiple new patients (projects). Users
may add several samples per patient and specify details such as the type of tissue, the
tissue origin, the sequencing device which will be used, and the sequencing technique
performed. If available, users may add HLA typing information as well. Patients will be
registered upon submission through implemented services.
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(A)

L. Data Preperation

@ Welcome to the Interactive Vaccine Designer. The functionality is based on EpitopeSelector, a software package for RNA-Seq based neo-epitope selection. You can either upload your epitope
prediction results from your computer or select one from our database.

(4 Directory € Database

k Epitope Pre-Selection
2= Parameter Adjustment

@ Results Overview

(B)

& Data Preperation

I @ Your epitope prediction file has to be in one of the following structures. Choose the fitting structure.

Each allele in a row Alleles as columns
HLA A*01:01 A*02:02 B*01:01 B*02:02 C*01:01 C*02:02
ADEDSAGD | ... .. A0101 ADEDSAGD
ADEDSAGD | ... . A0202 .. AGDLSDSE
ADEDSAGD | ... .. B'O1:01 ALSRTSQS
ADEDSAGD | ... .. BO202 .. DSAGDLSD
ADEDSAGD | ... .. C01:01 GEWTVAPT
ADEDSAGD | ... .. Cl02202 .. GKKVKGAQ
® ®

& Epitope Pre-Selection
3= Parameter Adjustment

€ Results Overview

Figure D.4: Data preparation in the Interactive Vaccine Designer. (A) Users may choose
between file upload and the selection of files stored in the openBIS datastore server. The
downloadable how-to describes all the steps in detail. (B) Users have the option to select
between two file structures for the provided epitope predictions.

2. Data Preperation

I @ Specify the column names of your epitope prediction file. If the columns do not exist leave them empty.

Immunogenicity Column*  Method Column Transcript Expression Column  TAA Column Distance Column Uncertainty Column

HLA_class1_binding predict transcript_expression

R Epitope Pre-Selection
3= Parameter Adjustment

@€ Results Overview

o e

Figure D.5: Data preparation in the Interactive Vaccine Designer. Users may specify the
column names as given in the provided epitope prediction results.
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L Data Preperation

I @ Specify the corresponding HLA alleles and the allele expressions as FPKM values.

HLA-A alleles HLA-B alleles HLA-C alleles
HLA-A*03:01 * HLA-B*07:02 * HLA-C*08:02
HLA-A*68:02 * HLA-B*07:02 * HLA-C*04:01
HLA-A expression * HLA-B expression * HLA-C expression *

1221 313 334

R Epitope Pre-Selection
= Parameter Adjustment

€ Results Overview

Figure D.6: Data preparation of HLA alleles in the Interactive Vaccine Designer. If users
choose to specify HLA alleles manually, the alleles and the corresponding HLA loci expres-
sion values (as FPKM) have to be specified.

© Data Preperation

R Epitope Pre-Selection
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ECYQYSAEFPL n chr1_237777765 RYR2 uc001hyl.1 0.013 1
ITFQLPMCANK 1" chr7_143632832 OR2F2 uc011ktv.2 0 03
7 VPRKAGHHQ 9 chr3_142215309 ATR uc003eux.4 5.948
SDKFCYEN 8 chr2_207454165 ADAM23 uc002vbq.3 BI593
LLTDSTSV 8 chr1_34049391 CSMD2 uc001bxn.1 0.021
KLYATVCLL 9 chr6_29574747 GABBR1 uc003nms.4 0.775 2
| RPRNLCRGRC 10 chr1_.201915246 LMOD1 uc010ppu.2 0
3= Parameter Adjustment

@ Results Overview

Figure D.7: Peptide preselection in the Interactive Vaccine Designer. Users may explicitly
include (green) or exclude (red) specific peptide sequences for the final solution.
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Figure D.8: Shared Vars®® across the investigated HCC cohort.
were analyzed with respect to presence (depicted by a grey square) in multiple patients.
(A) 24 genes carried a Var®? in > two patients. (B) Nine Vars®™P were shared by > two
patients. The mutation in gene NBPF1 on position 16891364 was found to be shared by
three patients. The genomic positions are zero-based.
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Appendix E: Supporting Tables

Table E.1: Sample identifiers and run accession identifiers used for the evaluation of

OptiType.
CRC 1000 Genomes Project (exome)
Sample ID Run ID Sample ID Run ID Sample ID Run ID Sample ID Run ID Sample ID Run ID

17 SRR396926 NA06985 SRR709972 NA18537 ERR032033 NA18971 SRR078842 NA19207 SRR081256
SRR396998 NA06994 SRR070528 NA18537 ERR032034 NA18972 SRRO77490 NA19209 SRRO77489
SRR397070 NA06994 SRR070819 NA18542 ERR031855 NA18972 SRR081255 NA19209 SRR077859
SRR397142 NA07000 SRR766039 NA18545 ERR031856 NA18973 SRR077861 NA19210 SRR078845
NA07048 SRR099452 NA18547 ERR031957 NA18973 SRR078846 NA19210 SRR081222
20 SRR396928 NA07056 SRR764718 NA18550 ERR031958 NA18974 SRR077456 NA19222 SRR748214
SRR397000 NA07357 SRR764689 NA18552 ERR031959 NA18974 SRR081248 NA19223 SRR071186
SRR397072 NAO07357 SRR764690 NA18555 ERR031857 NA18975 SRR078849 NA19223 SRR071193
SRR397144 NA10847 SRR070531 NA18558 ERR031960 NA18975 SRR081225 NA19238 SRR071173
NA10847 SRR070823 NA18561 ERR031858 NA18976 SRR077451 NA19238 SRR071195
42 SRR396942 NA10851 SRR766044 NA18562 ERR031859 NA18976 SRR077757 NA19238 SRR792121
SRR397014 NA11829 SRR710128 NA18563 ERR031860 NA18978 SRR716650 NA19238 SRR792165
SRR397086 NA11830 SRR766026 NA18564 ERR031861 NA18980 SRR716652 NA19239 SRR792097
SRR397158 NA11831 SRR709975 NA18566 ERR031862 NA18980 SRR716653 NA19239 SRR792159
NA11832 SRR766003 NA18570 ERR031863 NA18981 SRR077477 NA19240 SRR792091
49 SRR396946 NA11840 SRR070532 NA18571 ERR031868 NA18981 SRR077751 NA19240 SRR792767
SRR397018 NA11840 SRR070809 NA18572 ERR031869 NA18987 SRR077491 NA20313 SRR359098
SRR397090 NA11881 SRR766021 NA18573 ERR031870 NA18987 SRR077853  NA20313R SRR359108
SRR397162 NA11992 SRR701474 NA18576 ERR031871 NA18990 SRR077454 HG01756 SRR359102
NA11994 SRR701475 NA18577 ERR032035 NA18990 SRR077486 HG01757 SRR359103
58 SRR396949 NA11995 SRR766010 NA18577 ERR032036 NA18991 SRR077450 HG01872 SRR359298
SRR397021 NA12003 SRR766061 NA18579 ERR032037 NA18991 SRR077855 HG01873 SRR359295
SRR397093 NA12004 SRR766059 NA18579 ERR032038 NA18992 SRR716428 HG01886 SRR360655
SRR397165 NA12005 SRR718067 NA18582 ERR031961 NA18994 SRR716431 HG01953 SRR360288
NA12006 SRR716422 NA18592 ERR031962 NA18995 SRR764775 HG01968 SRR360391
65 SRR396959 NA12043 SRR716423 NA18593 ERR034531 NA18997 SRR702078 HG02014 SRR360148
SRR397031 NA12043 SRR716424 NA18603 ERR031872 NA18998 SRR766013 HG02057 SRR359301

SRR397103 NA12044 SRR766060 NA18605 ERR031873 NA18999 SRR112297

SRR397175 NA12144 SRR766058 NA18608 ERR031874 NA19000 SRR099528

NA12154 SRR702067 NA18609 ERR031875 NA19003 SRR099532
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66

70

75

81

83

88

90

95

97
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SRR397206

SRR397266

SRR397326

SRR397386

SRR397210

SRR397270

SRR397330

SRR397390

SRR397214

SRR397274

SRR397334

SRR397394

SRR397217

SRR397277

SRR397337

SRR397397

SRR397218

SRR397278

SRR397338

SRR397398

SRR397222

SRR397282

SRR397342

SRR397402

SRR397224

SRR397284

SRR397344

SRR397404

SRR397229

SRR397289

SRR397349

SRR397409

SRR397231

SRR397291

SRR397351

SRR397411

NA12155

NA12156

NA12234

NA12249

NA12249

NA12716

NA12716

NA12717

NA12717

NA12750

NA12750

NA12750

NA12750

NA12751

NA12751

NA12760

NA12760

NA12761

NA12761

NA12762

NA12763

NA12763

NA12812

NA12813

NA12813

NA12814

NA12815

NA12872

NA12873

NA12874

NA12878

NA12891

NA12892

NA18501

NA18502

NA18502

NA18504

NA18505

NA18505

NA18507

NA18507

NA18508

NA18508

NA18516

SRR702068

SRR764691

SRR716435

SRR070525

SRR070798

SRR081269

SRR081274

SRR071172

SRRO71177

SRRO77449

SRR081238

SRR794547

SRR794550

SRR071136

SRRO71139

SRR081223

SRR081251

SRRO77753

SRR081267

SRR718076

SRRO77752

SRR081230

SRR715913

SRR718077

SRR718078

SRR715914

SRR716646

SRR716647

SRR702070

SRR764692

SRR098401

SRR098359

ERR034529

SRR100022

SRR764722

SRR764723

SRR100028

SRR716648

SRR716649

SRR764745

SRR764746

SRR716637

SRR716638

SRR100026

NA18611

NA18612

NA18620

NA18621

NA18622

NA18622

NA18623

NA18624

NA18632

NA18633

NA18635

NA18636

NA18637

NA18853

NA18856

NA18858

NA18861

NA18870

NA18871

NA18912

NA18940

NA18942

NA18943

NA18944

NA18945

NA18947

NA18948

NA18949

NA18951

NA18952

NA18953

NA18956

NA18959

NA18960

NA18961

NA18964

NA18965

NA18965

NA18966

NA18966

NA18967

NA18967

NA18968

NA18968

ERR031876

ERR034593

ERR031877

ERR034595

ERR032027

ERR032028

ERR032008

ERR031928

ERR031929

ERR031878

ERR031879

ERR031930

ERR031931

SRR100011

SRR098533

ERR034553

ERR034554

SRR100031

SRR100029

SRR111960

ERR034596

ERR034597

ERR034598

ERR034599

ERR034600

ERR034601

ERR034602

ERR034603

ERR034604

ERR034605

SRR099546

SRR766028

SRR099545

SRR099533

SRR099544

SRR099539

SRR764771

SRR764772

SRRO71175

SRR071180

SRR071192

SRR071196

SRR077480

SRR081231

NA19005

NA19007

NA19012

NA19092

NA19093

NA19098

NA19098

NA19099

NA19099

NA19102

NA19116

NA19119

NA19119

NA19129

NA19130

NA19131

NA19131

NA19137

NA19137

NA19137

NA19137

NA19138

NA19138

NA19141

NA19141

NA19143

NA19143

NA19144

NA19144

NA19152

NA19152

NA19153

NA19153

NA19159

NA19159

NA19160

NA19160

NA19171

NA19171

NA19172

NA19200

NA19200

NA19201

NA19201

SRR715906

SRR099549

SRR112294

SRR100012

SRR100033

SRRO77453

SRR077460

SRR748771

SRR748772

SRR100034

SRR100021

SRRO77471

SRR081271

ERR034558

SRR107026

SRR070494

SRR070783

SRR081226

SRR081237

SRR792542

SRR792560

SRR070472

SRR070776

SRRO77433

SRRO77464

SRRO77445

SRR081272

SRR077392

SRRO77468

SRRO71135

SRR071167

SRR0O70660

SRR070846

SRR070478

SRR070786

SRR077482

SRR081250

SRR077492

SRR077493

SRR111962

SRRO77432

SRRO78847

SRRO77439

SRRO77462
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NA18517 ERR034551 NA18969 SRR081266 NA19204 SRR077857
99 SRR397233 NA18522 SRR107025 NA18969 SRR081273 NA19204 SRR081263
SRR397293 NA18523 ERR034552 NA18970 SRR071116 NA19206 SRR070491
SRR397353 NA18526 ERR031854 NA18970 SRR071127 NA19206 SRR070781
SRR397413 NA18532 ERR031956 NA18971 SRR077447 NA19207 SRR081254
Low coverage HapMap WGS CEU
Sample ID Run ID Sample ID Run ID Sample ID Run ID Sample ID Run ID
NA06985 SRR400039 NA06985 ERR009159 NA12003 ERR009121 NA12812 ERR009104
NA11832 SRR385763 NA06994 ERR009168 NA12004 ERR009139 NA12813 ERR009114
NA12005 SRR385767 NA07000 ERR009154 NA12005 ERR009155 NA12814 ERR009134
NA12044 SRR393991 NA07051 ERR009147 NA12006 ERR009123 NA12815 ERR009151
NA12760 SRR385773 NA07346 ERR009133 NA12043 ERR009163 NA12872 ERR009099
NA18912 SRR350153 NA07347 ERR009146 NA12044 ERR009157 NA12873 ERR009111
NA18960 SRR442016 NA07357 ERR009167 NA12045 ERR009113 NA12874 ERR009145
NA18968 SRR359062 NA10847 ERR009097 NA12144 ERR009117 NA12891 ERR009105
NA18971 SRR359095 NA10851 ERR009124 NA12154 ERR009129
NA18974 SRR360136 NA11829 ERR009122 NA12155 ERR009115
NA18975 SRR359070 NA11830 ERR009140 NA12156 ERR009136
NA18976 SRR359110 NA11831 ERR009096 NA12234 ERR009144
NA18981 SRR359083 NA11832 ERR009109 NA12249 ERR009107
NA18991 ERR052929 NA11840 ERR009142 NA12716 ERR009118
NA19092 SRR189830 NA11881 ERR009135 NA12717 ERR009164
NA19119 SRR359106 NA11918 ERR009166 NA12750 ERR009137
NA19131 SRR359096 NA11920 ERR009149 NA12751 ERR009132
NA19152 SRR359097 NA11992 ERR009119 NA12760 ERR009130
NA19171 SRR359061 NA11993 ERR009103 NA12761 ERR009106
NA19204 SRR359064 NA11994 ERR009141 NA12762 ERR009156
NA12006 SRR385760 NA11995 ERR009108 NA12763 ERR009152
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Table E.2: 1000 Genomes Project samples that have been used for the qPortal case study.
The experimental variables ethnicity, sex, and information about technical replicates were
used as metadata.

Sample ID Ethnicity Sex Replicates
NA19000 Japanese male -
NA19240 Yoruba female 1
NA18942 Japanese male -
NA18853 Yoruba male

NA19774  Mexican-American male -
NA19779  Mexican-American female
HGO01840  Kinh Vietnamese male -
HG01600  Kinh Vietnamese female

NA18635 Han Chinese male -
NA18550 Han Chinese female
HGO00119 British male -
HG00121 British female

NA12144 Utah/Mormon male -
NA12044 Utah/Mormon female

HG01148 Colombian male -
HGO01131 Colombian female
NA20524 Tuscan male -
NA20517 Tuscan female
HG00640 Puerto Rican male -
HG00638 Puerto Rican female
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Table E.3: Patients of the ALL and HCC cohort included in the project on the assessment
of personalized vaccine options. Given HLA genotypes were predicted with OptiType.

D

ALL cohort

Cancer entity

HLA alleles

D

HCC cohort

Cancer entity

HLA alleles

QA001
QA002
QA003
QA004
QA005
QA006
QA007
QA008
QA009
QA010
QA011
QA012
QA013
QA014
QA015
QA016
QA017
QA018
QA019
QA020
QD003
QD004
QD005

QD007

c-ALL

c-ALL

c-ALL

c-ALL

c-ALL

c-ALL

c-ALL

c-ALL

c-ALL

c-ALL

c-ALL

c-ALL

c-ALL

c-ALL

Cortical

T-ALL

Pro-B-ALL

T-ALL

c-ALL

c-ALL

c-ALL

c-ALL

c-ALL

Pre B-ALL

c-ALL

A*01:01 A*25:01 B*08:01
B*18:01 C*07:01 C*12:03
A*24:02 A*25:01 B*18:01
B*15:01 C*03:03 C*12:03
A*02:01 A*02:01 B*39:01
B*56:01 C*01:02 C*02:02
A*32:01 A*30:09 B*35:02
B*78:01 C*16:01 C*04:01
A*02:01 A*02:01 B*07:02
B*15:01 C*07:02 C*03:04
A*24:02 A*02:01 B*35:01
B*51:01 C*12:03 C*14:02
A*02:17 A*31:01 B*44:02
B*18:01 C*07:01 C*05:01
A*31:01 A*03:01 B*49:01
B*44:02 C*07:01 C*05:01
A*26:01 A*25:01 B*51:01
B*38:01 C*12:03 C*15:02
A*01:01 A*30:01 B*57:01
B*13:02 C*06:02 C*06:02
A*31:01 A*25:01 B*07:02
B*44:02 C*07:02 C*07:04
A*01:01 A*68:01 B*57:01
B*51:01 C*01:02 C*06:02
A*30:01 A*24:02 B*13:02
B*07:02 C*07:02 C*06:02
A*01:01 A*24:02 B*14:02
B*07:02 C*07:02 C*08:02
A*03:01 A*24:02 B*14:02
B*55:01 C*03:03 C*08:02
A*24:02 A*03:01 B*08:01
B*08:01 C*07:01 C*07:01
A*24:02 A*32:01 B*35:03
B*08:01 C*07:01 C*04:01
A*30:01 A*02:01 B*13:02
B*38:01 C*06:02 C*12:03
A*32:01 A*24:03 B*07:05
B*35:01 C*04:01 C*15:05
A*02:01 A*68:01 B*40:01
B*38:01 C*03:04 C*12:03
A*01:01 A*32:01 B*41:02
B*15:17 C*17:01 C*07:01
A*01:01 A*23:01 B*18:01
B*40:02 C*07:01 C*02:02
A*02:01 A*23:01 B*44:03
B*07:02 C*07:02 C*04:01
A*02:01 A*11:01 B*14:02
B*35:01 C*04:01 C*08:02

HCCO023

HCC024

HCCO025

HCC026

HCC027

HCCO028

HCCO030

HCCO034

HCCO035

HCC036

HCCO038

HCCO040

HCC041

HCCO042

HCCO043

HCC045

HCC

HHC

HCC

HCC

HCC

HCC

HCC

HCC

HCC

HCC

HCC

HCC

HCC

HCC

HCC

HCC

A*29:02 A*24:02 B*44:03
B*37:01 C*06:02 C*16:01
A*03:01 A*68:01 B*40:01
B*15:01 C*03:04 C*03:81
A*02:01 A*11:01 B*44:02
B*37:01 C*07:04 C*06:02
A*02:01 A*01:01 B*51:01
B*08:01 C*07:01 C*01:02
A*24:02 A*03:01 B*18:01
B*27:05 C*07:01 C*02:02
A*02:01 A*24:02 B*07:02
B*35:03 C*07:02 C*04:01
A*02:01 A*03:01 B*14:01
B*27:05 C*01:02 C*08:02
A*11:01 A*23:01 B*44:03
B*18:01 C*07:01 C*04:01
A*68:01 A*02:01 B*27:05
B*35:03 C*02:02 C*04:01
A*02:01 A*68:01 B*44:02
B*27:05 C*07:04 C*01:02
A*02:01 A*02:01 B*07:02
B*07:02 C*07:02 C*07:02
A*68:01 A*03:01 B*44:02
B*51:01 C*07:04 C*15:02
A*01:01 A*01:01 B*08:01
B*08:01 C*07:01 C*07:01
A*01:01 A*03:01 B*08:01
B*55:01 C*03:03 C*07:01
A*02:01 A*01:01 B*08:01
B*40:01 C*03:04 C*07:01
A*01:01 A*26:01 B*44:03
B*47:01 C*06:02 C*04:01
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Table E.4: Statistics for the HCC cohort. The category Var®” does not include nonsense
mutations. Variants with evidence on RNA level are denoted by Var®?. After filtering of
the complete peptide search space (PSS), remaining peptides (fPSS) were used as input
for the HLA binding prediction. Resulting PNEs were checked for evidence on multiple

omics levels (transcriptome, proteome, ligandome).

ID Unf. Var Var® Var™ Vvar™ TMB PSS fPSS  PNE  PNE®P PNEP™" Wrls PpNE!S
Var
HCC023 295 120 53 47 15 1.40 3,392 3,063 123 67 6 0 0
HCC024 228 116 48 45 18 1.40 2,634 2,207 191 73 6 0 0
HCC025 375 152 58 55 26 1.84 3,315 2,807 273 163 46 0 0
HCC026 338 147 73 68 45 1.96 4,010 3,246 253 140 47 0 0
HCC027 387 151 61 60 30 2.04 3,793 3,134 210 126 48 1 0
HCC028 194 146 69 68 35 1.85 8,385 6,258 356 141 0 1 0
HCCO030 281 219 108 103 52 290 7,938 4,792 382 210 0 0 0
HCCO034 258 122 54 51 20 1.50 2,992 2,705 157 72 0 0 0
HCCO035 138 109 58 54 25 1.40 4,022 2355 258 117 0 0 0
HCCO036 203 136 52 50 10 1.72 2,984 2,605 258 156 6 0 0
HCC038 175 132 79 73 28 1.82 5452 3672 319 98 0 0 0
HCC040 198 156 73 68 34 1.82 5975 3,760 266 124 0 0 0
HCC041 346 272 117 108 41 3.15 10,077 6,356 215 98 0 1 0
HCC042 168 128 66 64 23 1.48 5317 3,668 188 86 0 0 0
HCC043 191 152 76 71 39 1.80 5,856 3,543 338 155 0 0 0
HCC045 215 164 80 76 33 220 6,874 4120 111 63 0 0 0
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Table E.5: Statistics for the ALL cohort. The category Var® does not include nonsense
mutations. Variants with evidence on RNA level are denoted by Var®*®. After filtering
of the complete peptide search space (PSS), remaining peptides (fPSS) were used as
input for the HLA binding prediction. Resulting PNEs were checked for evidence on
transcriptome level. For QA017 no WTS data was available.

D Unf. Var Var Var™ Var®" Var®*P TMB PSS PSS PNE PNE®*P
QA001 47 26 20 19 7 0.44 760 682 28 10
QA002 71 21 9 8 4 0.34 436 397 17 5
QA003 48 20 13 12 4 0.34 494 493 31 11
QA004 27 9 5 5 2 0.42 234 230 11 3
QA005 35 15 6 6 5) 0.3 262 262 24 14
QA006 89 47 27 26 5 0.82 1,250 1,169 73 21
QA007 31 13 8 8 1 0.26 380 292 26 5}
QAO008 48 11 9 8 3 0.2 342 228 5 1
QA009 42 18 11 10 4 0.3 604 472 14 12
QAO010 31 11 9 9 4 0.22 380 341 14 10
QAO011 110 41 25 24 13 0.76 867 638 41 25
QAO012 55 25 14 13 1 0.4 456 418 30 0
QA013 47 22 12 11 5 0.38 418 382 22 13
QA014 52 31 17 15 4 0.48 684 539 27 6
QAO015 275 98 68 67 35 1.66 2,586 2,302 94 54
QAO16 46 8 5 5 2 0.14 190 190 8 5
QAO017 112 55 32 29 0 0.88 1,434 1,297 47 0
QA018 41 18 12 12 5 0.34 388 388 34 21
QAO019 64 34 17 16 8 0.54 598 509 31 10
QA020 22 11 7 7 1 0.18 304 228 30 8
QD003 82 43 27 24 11 0.8 1084 800 39 20
QD004 52 23 12 11 2 0.42 418 266 15 1
QD005 142 83 51 47 14 1.42 2,011 1,840 176 48
QD007 47 12 5 5 1 0.2 380 380 34 1
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Table E.6: List of cancer/testis (CT) antigens identified in HCC cohort. HLA class I
ligands and quantified proteins were queried against a list of known CT antigens derived
from CTDatabase**! (accessed 2018-02-20). Proteome data was only available for seven

patients.
Identifier Identified on

Gene UniprotID Proteome Ligandome
ARMC3 Q5W041 HCC045
ATAD2 Q6PL18 HCC025 HCC023, HCC045
LDHC P07864 HCC023, HCC024, HCCO025,

HCC026, HCC027, HCC034,

HCC036
MAEL Q96JY0 HCC045
NR6A1 Q15406 HCC027
POTEE Q6S8J3 HCCO034, HCC026, HCC027,

HCCO024, HCC025, HCCO023,

HCC036
POTEB, POTEC AOAOA6YYL3, B2RU33 HCC023
POTEG, POTEH Q6S5H5, Q65545 HCC023, HCC026
PRAME P78395 HCC041
RBM46 Q8TBYO HCC024, HCCO025, HCC026
SSX1 Q16384 HCCO035, HCC041
SSX2, SSX3, SSX4, SSX6, Q16385, Q99909, 060224, HCC041
SSX7, SSX9 Q7RTT6, Q7RTTS5, Q7RTT3
TEX15 Q9BXT5 HCC023, HCC024, HCC026,

HCC027
TFDP3 Q5H9I0 HCC045
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Appendix F: Workflows

16S Taxonomic Profiling

Version: 1.0
Author: Christopher Mohr, Alexander Seitz

Description
Performs taxonomic profiling for 16S metagenomic samples using MALT#>?,

Input
* FASTQ/FASTQ.gz(s) with 16S ribosomal RNA reads

Output
¢ FastQC output
* CSV with feature counts per sample
* TXT with merged feature counts (in case of replicates)

Additional software/data
* Snakemake

* ClipAndMerge 1.7.5

* MALT 0.3.8

* MALT reference index

Source code & report issues

github.com/qbicsoftware/16Smetagenomics-taxonomic-profiling

Differential Expression Analysis

Version: 1.0
Author: Christopher Mohr, Stefan Czemmel, Marius Codrea
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Workflows

Description
Performs differential expression Analysis using DESeq2%*!' for a comparison of two groups, e.g.

tumor vs. normal. Analysis is based on count data coming from an RNA-Seq analysis.

Input
* TXT(s) with count data (one file per group)

Output
* PDF/PNG(s) with plots

* TSV(s) with statistics like log-transformed read counts and primary DESeq2 output

Additional software/data
* R package DESeq 2.4

Source code & report issues

github.com/qbicsoftware/differentialexpression-analysis-workflow

EPAA - Epitope Prediction and Annotation

Version: 1.0
Author: Christopher Mohr

Description

Performs prediction of MHC class I and II epitopes for a list of annotated variants or peptides
in the context of specified MHC alleles. Additionally predicted peptides can be annotated with
protein quantification values for the corresponding proteins and differential expression values

for the corresponding transcripts.

Input
* TXT(.alleles) with MHC alleles (one per line)
» TSV/GSvar/VCF with annotated variants of somatic and/or germline origin or peptide
sequences
* TSV with MaxQuant results
* FASTA with protein sequences
» TXT with count data of RNA-Seq analysis
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Output

* TSV with generated peptides annotated with MHC binding prediction values, corresponding

genomic information and annotated information (optional)

TXT with basic statistics

Parameters
Parameter Value Type Description Required Restrictions
mhcclass I string MHC class true I 1I
identifier string Predictions will be written false -
with this name prefix
filter self true boolean Filter peptides against human false true, false
proteome
reference GRCh38 boolean Reference, retrieved informa- false GRCh37/38

tion will be based on this En-
sembl version

Additional software/data

Python package FRED 2.0
Syfpeithi

NetMHC 4.0

NetMHCpan 3.0
NetMHCII 2.2
NetMHClIIpan 3.1

FASTA(s) with human reference protein sequences

TSV with list of human coding genes and their length in base pairs

Source code & report issues

https://github.com/qbicsoftware/epaa-workflow

EPAA - Epitope Prediction and Annotation

Version: 1.1
Author: Christopher Mohr

Description

Performs prediction of MHC class I and II epitopes for a list of annotated variants or peptides

in the context of specified MHC alleles. Additionally predicted peptides can be annotated with

protein quantification values for the corresponding proteins, differential expression values for

181


https://github.com/qbicsoftware/epaa-workflow

Workflows

the corresponding transcripts or MHC ligands of a ligandomics identification run. This version
includes the functionality to generate the wild-type sequences of corresponding mutated pep-
tides.

Input
* TXT (.alleles) with MHC alleles (one per line)
» TSV/GSvar/VCF with annotated variants of somatic and/or germline origin or peptide
sequences
* TSV with MaxQuant results
* FASTA with protein sequences
* TXT with count data of RNA-Seq analysis
* CSV with identified ligands

Output
* TSV with generated peptides annotated with MHC binding prediction values, corresponding
genomic information and annotated information (optional)
* TXT with basic statistics

Parameters

Parameter Value Type Description Required Restrictions

mhceclass 1 string MHC class true I 11

identifier string Predictions will be written false
with this name prefix

filter self true boolean Filter peptides against human false true, false
proteome

wild type true boolean Add wild-type sequences of false true, false
mutated peptides to output

reference GRCh38 boolean Reference, retrieved informa- false GRCh37/38

tion will be based on this en-
sembl version

Additional software/data

* Python package FRED 2.0
* Syfpeithi

* NetMHC 4.0

* NetMHCpan 3.0

* NetMHCII 2.2

* NetMHClIIpan 3.1
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* FASTA(s) with human reference protein sequences

* TSV with list of human coding genes and their length in base pairs

Source code & report issues
https://github.com/qbicsoftware/epaa-workflow

OptiType 1.0

Version: 1.0
Author: Christopher Mohr

Description

Performs HLA genotyping from NGS data using OptiType®!, a HLA genotyping algorithm
based on integer linear programming. OptiType is capable of producing accurate four-digit
HLA genotyping predictions from NGS data by simultaneously selecting all minor and major
HLA-I alleles.

Input
* FASTQ/FASTQ.gz(s) with DNA or RNA reads

Output
* SAM(s) with mapped reads
* PDF with coverage plots of predicted solution
* TXT(.alleles) with HLA alleles of predicted solution

* TSV with best n solutions and corresponding objective function values

Parameters
Parameter Value Type Description Required Restrictions
1 int Number of enumerations false -
b 0.009 double Value for beta false 0:0.1
r false  boolean Map against RNA reference false true, false
d true  boolean Map against DNA reference false true, false

Additional software/data
* RazerS 3.4.0
* CBC2.9.5

183


https://github.com/qbicsoftware/epaa-workflow

Workflows

Source code & report issues

https://github.com/qbicsoftware/optitype-workflow

OptiType 1.1

Version: 1.1
Author: Christopher Mohr

Description

Performs HLA genotyping from NGS data using OptiType®%!, a HLA genotyping algorithm

based on integer linear programming. OptiType is capable of producing accurate four-digit

HLA genotyping predictions from NGS data by simultaneously selecting all minor and major

HLA-I alleles.

Input

* FASTQ/FASTQ.gz(s) with DNA or RNA reads
e BAM(s) with DNA or RNA reads

Output

* PDF with coverage plots of predicted solution
* TXT(.alleles) with HLA alleles of predicted solution
* TSV with best n solutions and corresponding objective function values

Parameters
Parameter Value Type Description Required Restrictions
1 int Number of enumerations false -
b 0.009 double Value for beta false 0:0.1
r false  boolean Map against RNA reference false true, false
d true  boolean Map against DNA reference false true, false

Additional software/data
* Yara 0.9.6

e CPLEX 12.6.2

* SeqAn 2.0.1

184


https://github.com/qbicsoftware/optitype-workflow

Workflows

Source code & report issues
https://github.com/gbicsoftware/optitype-workflow

Individualized Proteome Generator

Version: 1.0
Author: Christopher Mohr

Description

Generates the individualized protein fasta containing protein sequences with integrated muta-

tions based on a list of annotated variants.

Input
» TSV/GSvar with annotated variants of somatic and/or germline origin

Output
* FASTA with mutation-containing protein sequences

Parameters
Parameter Value Type Description Required Restrictions
g false boolean Include germline mutations false true, false
d string Sample ID of processed sample true -

Additional software/data
* Python package FRED
* FASTA(s) with human reference protein sequences

Source code & report issues
https://github.com/qbicsoftware/gbic-workflow-indproteome

Individualized Proteome Generator

Version: 2.0
Author: Christopher Mohr
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Description
Generates the individualized protein fasta containing protein sequences with integrated muta-

tions based on a list of annotated variants and attaches it to a chosen proteome reference.

Input
* TSV/GSvar/VCF with annotated variants of somatic and/or germline origin

* FASTA with human reference proteome

Output

* FASTA with human reference proteome and mutation-containing protein sequences

Parameters
Parameter Value Type  Description Required Restrictions
identifier string Predictions will be written with false -
this name prefix
reference GRCh38 string Reference, retrieved information false GRCh37/38
will be based on this ensembl ver-
sion

Additional software/data
* Python package FRED 2.0

Source code & report issues

https://github.com/qbicsoftware/qbic-workflow-indproteome

IRMA - Epitope Prediction

Version: 1.0
Author: Christopher Mohr, Mathias Walzer

Description
Performs prediction of MHC-binding peptides for a list of annotated variants and specified
MHC class I or II alleles.

Input

* TXT(.alleles) with MHC alleles (one per line)

* TSV(.GSvar) with annotated variants of somatic and/or germline origin
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Output

* TSV with generated peptides annotated with MHC binding prediction values, corresponding

genomic information

e TXT with basic statistics

Parameters
Parameter Value Type Description Required Restrictions
g false boolean Include germline mutations false true, false
m I string MHC class true L 1I
d string Sample ID of processed sample true -
u true  boolean Include prediction for wild-type false true, false

peptides

Additional software/data

Python package FRED
Syfpeithi

NetMHC 3.0
NetMHCpan 2.4
NetMHCII 2.2
NetMHClIIpan 2.0

FASTA with human protein sequences (RefSeq)

Source code & report issues

https://github.com/qbicsoftware/qbic-workflow-epitopeprediction

Ligandomics Identification

Version: 1.0
Author: Mathias Walzer, Christopher Mohr

Description

Performs MHC ligandomics data processing. The output will be filtered according to the given
FDR value.

Input

* mzML/mzML.gz(s) with mass spectrometer output data

* FASTA with human reference proteome

187


https://github.com/qbicsoftware/qbic-workflow-epitopeprediction

Workflows

Output
e idXML(s) with identifications
* CSV(s) with identified peptides

Parameters

Parameter Value Type Description Required Restrictions

pmt 5.0 double  Precursor Mass Tolerance false 0.0:100.0
[ppm]

fmt 0.02 double Fragment Mass Tolerance true 0.0:100.0
[Da]

fdr 0.05 double False Discovery Rate [%] true 0.0:1.0

variableMode true boolean Variable Modification: M(ox) false true, false

centroided true  boolean Centroided input data false true, false

Additional software/data
* OpenMS 2.0-44ed56b
e Comet 2015024

Source code & report issues
https://github.com/qgbicsoftware/ligandomics-ID-workflow

Ligandomics Identification

Version: 2.0

Author: Leon Bichmann, Christopher Mohr

Description

t428 4291430

Performs MHC ligandomics data processing. The workflow uses Come and Percolator
in order to identify peptides. The FDR is calculated using Percolator, based on a competitive
target decoy approach using reversed decoy sequences and merged identifications of all repli-

0

cate runs if available. MapAlignerldentification and FeatureFinderIdentification*®? are used

for peptide identification.
Input

* mzML/mzML.gz(s) with mass spectrometer output data

* FASTA with human reference proteome or individualized proteome
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Output
* featureXML with extracted features
* idXML with identifications
* CSV(s) with identified peptides

Parameters

Parameter Value Type Description Required Restrictions

pmt 5.0 double  Precursor Mass Tolerance true 0.0:100.0
[ppm]

fmt 0.02 double  Fragment Mass Tolerance true 0.0:1.0
[Da]

fbo 0.0 double  Fragment Bin Offset true 0.0:1.0

dmr 800:5000 string Digest Mass Range true -

fdr 0.05 double  False Discovery Rate [%] true 0.0:1.0

noh 1 int Number of ranks true 0:100

centroided true boolean Centroided input data false true, false

ms_levels 1 int MS Levels false 1:2

Additional software/data
* OpenMS 2.2
* Percolator 3.1.1

Source code & report issues
https://github.com/gbicsoftware/ligandomics-ID-workflow

Ligandomics Identification

Version: 2.1

Author: Leon Bichmann, Christopher Mohr

Description

t428 4291430

Performs MHC ligandomics data processing. The workflow uses Come and Percolator
in order to identify peptides. The FDR is calculated using Percolator, based on a competitive
target decoy approach using reversed decoy sequences and merged identifications of all repli-

60

cate runs if available. MapAlignerIdentification and FeatureFinderIdentification®® are used

for peptide identification.
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Input
* mzML/mzML.gz(s) with mass spectrometer output data

* FASTA with human reference proteome or individualized proteome

Output
* featureXML with extracted features
* idXML with identifications
* CSV(s) with identified peptides

Parameters

Parameter Value Type Description Required Restrictions

pmt 5.0 double  Precursor Mass Toler- true 0.0:100.0
ance [ppm]

fmt 0.02 double  Fragment Mass Toler- true 0.0:1.0
ance [Da]

fbo 0.0 double  Fragment Bin Offset true 0.0:1.0

dmr 800:5000 string Digest Mass Range true -

fdr 0.05 double  False Discovery Rate [%] true 0.0:1.0

noh 1 int Number of ranks true 0:100

centroided true boolean Centroided input data false true, false

ms_levels 1 int MS Levels false 1:2

maxmod 5 int Maximum number of false 0:10
modifications

fixed mod1 false string Carbamidomethyl (C) false true,false
(Fixed)

variable_ mod1l true string Oxidation (M) (Variable) false true,false

variable mod2 true string Phospho (S) (Variable) false true,false

variable mod3 true string Phospho (T) (Variable) false true,false

variable mod4 true string Phospho (Y) (Variable) false true,false

pred_charge 2:3 string Precursor charge false

activ._method  HCD string Activation Method false HCD:CID

Additional software/data
* OpenMS 2.3
e Percolator 3.1.1
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Source code & report issues
https://github.com/gbicsoftware/ligandomics-ID-workflow-2_1

Ligandomics Identification Co-Processing

Version: 1.0

Author: Leon Bichmann, Christopher Mohr

Description
Performs MHC ligandomics data processing. The workflow handles co-processing of biologi-

428 and Percolator22:430

cal/technical replicates and uses Come in order to identify peptides.
The FDR is calculated using Percolator, based on a competitive target decoy approach using
reversed decoy sequences and merged identifications of all replicate runs if available.

0

MapAlignerIdentification and FeatureFinderIdentification®? are used for peptide identifica-

tion.

Input
* mzML/mzML.gz(s) with mass spectrometer output data
* FASTA with human reference proteome or individualized proteome

Parameters

Parameter Value Type Description Required Restrictions

pmt 5.0 double  Precursor Mass Tolerance true 0.0:100.0
[ppm]

fmt 0.02 double  Fragment Mass Tolerance true 0.0:1.0
[Da]

fbo 0.0 double  Fragment Bin Offset true 0.0:1.0

dmr 800:5000 string Digest Mass Range true -

fdr 0.05 double  False Discovery Rate [%] true 0.0:1.0

noh 1 int Number of ranks true 0:100

centroided true boolean Centroided input data false true, false

ms_levels 1 int MS Levels false 1:2

191


https://github.com/qbicsoftware/ligandomics-ID-workflow-2_1

Workflows

Output
* featureXML with extracted features
* idXML with identifications
* CSV(s) with identified peptides

Additional software/data
* OpenMS 2.2
* Percolator 3.1.1
Source code & report issues

https://github.com/qbicsoftware/ligandomics-ID-workflow-copro

Ligandomics Identification Co-Processing

Version: 2.1
Author: Leon Bichmann, Christopher Mohr

Description
Performs MHC ligandomics data processing. The workflow handles co-processing of biologi-

429430 in order to identify peptides.

cal/technical replicates and uses Comet42® and Percolator
The FDR is calculated using Percolator, based on a competitive target decoy approach using
reversed decoy sequences and merged identifications of all replicate runs if available.

60

MapAlignerIdentification and FeatureFinderIdentification4®® are used for peptide identifica-

tion.

Input
* mzML/mzML.gz(s) with mass spectrometer output data

* FASTA with human reference proteome or individualized proteome

Output
» featureXML with extracted features
* idXML with identifications
* CSV(s) with identified peptides

Additional software/data

* OpenMS 2.3

e Percolator 3.1.1
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Parameters

Parameter Value Type Description Required Restrictions

pmt 5.0 double  Precursor Mass Toler- true 0.0:100.0
ance [ppm]

fmt 0.02 double  Fragment Mass Toler- true 0.0:1.0
ance [Da]

fbo 0.0 double  Fragment Bin Offset true 0.0:1.0

dmr 800:5000  string Digest Mass Range true -

fdr 0.05 double  False Discovery Rate [%] true 0.0:1.0

noh 1 int Number of ranks true 0:100

centroided true boolean Centroided input data false true, false

ms_levels 1 int MS Levels false 1:2

maxmod 5 int Maximum number of false 0:10
modifications

fixed mod1 false string Carbamidomethyl (C) false true,false
(Fixed)

variable modl true string Oxidation (M) (Variable) false true,false

variable mod2 true string Phospho (S) (Variable) false true,false

variable mod3 true string Phospho (T) (Variable) false true,false

variable mod4 true string Phospho (Y) (Variable) false true,false

pred_charge 2:3 string Precursor charge false

activ. method  HCD string Activation Method false HCD:CID

Source code & report issues

github.com/gbicsoftware/ligandomics-ID-workflow-copro_2_1

Ligandomics Quality Control

Version: 1.0

Author: Mathias Walzer, Christopher Mohr

Description

Performs quality control for MHC ligandomics data, which will be reported as a qcML file.
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Input
* mzML/mzML.gz(s) with mass spectrometer output data
* TXT (.alleles) with MHC alleles (one per line)

Output
* qcML(s) with quality measures and plots

Parameters
Parameter Value Type Description Required Restrictions
MHC class 1 string Predictions for MHC class false LI
centroided true  boolean Centroided input data false true,false

Additional software/data
* OpenMS 2.0-44ed56b
* NetMHCpan 3.0
* NetMHClIIpan 3.1
e Comet 2015024
e R3.2.2
* R scripts to generate figures

* FASTA with human protein sequences and decoys

Source code & report issues

https://github.com/qbicsoftware/ligandomics-QC-workflow

Merge NGS data

Version: 1.0
Author: Christopher Mohr

Description

Merges forward/reverse reads of NGS data in fastq format (e.g. of different lanes or replicates).

Input
* FASTQ/FASTQ.GZ(s) with forward and reverse reads respectively

Output
* FASTQ(s) with merged forward and reverse reads respectively
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Source code & report issues
https://github.com/gbicsoftware/merge-NGSdata-workflow

NGS Quality Control

Version: 1.0
Author: Adrian Seyboldt, David Wojnar, Christopher Mohr

Description

Performs quality control for fastq files using FastQC.

Input
* FASTQ/FASTQ.gz with NGS reads

Output
* ZIP with FastQC output
* HTML with FastQC quality report

Additional software/data
* Snakemake
e FastQC0.11.4

Source code & report issues

https://github.com/qbicsoftware/ngsqc

NGS Read Alignment

Version: 1.0
Author: Marc Sturm, Adrian Seyboldt, Stefan Czemmel, Christopher Mohr

Description
Performs NGS read alignment against a specified genome reference using BWA.

Input
* FASTQ/FASTQ.gz(s) with NGS reads

* BWA indexed reference genome

Output
* FastQC output
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* BAM(s) with mapped and unmapped reads
e BAI(s) with BAM index

Additional software/data
* Snakemake

* SAMtools 1.2

* BWA0.7.10

e FastQC0.11.4

* Picard 1.140

* NGS-bits 0.1

Source code & report issues

https://github.com/qbicsoftware/mapping

Protein Quantification

Version: 1.0
Author: David Wojnar, Adrian Seyboldt, Christopher Mohr

Description

Performs protein quantification using MaxQuant42®, which is a quantitative proteomics soft-
ware package designed for analyzing large-scale mass-spectrometric data sets. It supports all
main labeling techniques like SILAC, Di-methyl, TMT and iTRAQ as well as label-free quantifi-

cation.

Input
* RAW(s) with raw mass spectrometry data

Output
* MaxQuant output

Parameters

MaxQuant Parameters
Additional software/data

¢ MaxQuant 1.5.0.0

* mgqrun
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Source code & report issues
https://github.com/gbicsoftware/mqrun

RNA-Seq Data Analysis

Version: 1.1
Author: Marc Sturm, Adrian Seyboldt, Stefan Czemmel, Christopher Mohr

Description
Performs RNA-Seq data analysis using TopHat24%Z, for gapped-read mapping and HTSeq*%” to

generate feature counts.

Input
* FASTQ/FASTQ.gz(s) with RNA reads
* BOWTIE indexed reference genome

Output
* FastQC output
* CSV with per sample feature counts

* TXT with merged feature counts (in case of replicates)

Parameters
Parameter Value Type  Description Required Restrictions
stranded yes string Whether the data is from a false yes, no, re-
strand-specific assay verse
overlap_ mode union string Mode to handle reads over- false union,
lapping more than one fea- intersection-
ture strict,
intersection—
nonempty
gff attribute gene id string GFF attribute to be used as false gene _id, tran-
feature ID script_id
feature type  CDS string Feature type (3rd columnin false exon, CDS
GFF file) to be used
order name string The alignments have to be false name, pos

sorted either by read name
or by alignment position
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Additional software/data

* Snakemake

* FastQC 0.10

e TopHat 2.1.1

* HTSseq 0.6.1p2
* SAMtools 1.2

Source code & report issues

https://github.com/qbicsoftware/rnamapping

shRNA Counting

Version: 1.0

Author: Adrian Seyboldt , Christopher Mohr

Description

Performs counting of short hairpin (sh) RNA expression. Given a set of reads from shRNA se-

quencing, we count how often each reference shRNA sequence occurs at the expected position

in the reads. Each read should contain a barcode at a specified position.

Parameters

Parameter Value Type Description Required Restrictions

loop sequence string Loop sequence which true
should be in every read

adapter string A list of possible adapters. true

oligo offset -20 int Offset for the oligo true
sequences relative to the
loop location

oligo length 19 int Oligo length false

barcode offset 19 int Offset for the barcode true
sequences relative to the
loop location

barcode length 3 int Length of the barcode false
sequences

adapter offsets string Offsets for the adapter true
sequences relative to the
loop location.

expected loop index 20 int Expected loop index true
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Input
* FASTQ/FASTQ.gz with RNA-Seq reads
* TSV with shRNA library sequences (and identifiers)
* TSV with barcode sequences (and identifiers)

Output
* idXML(s) with identified peptides
* xlsx with sequence counts (sorted and unsorted)
* HTML with a report including statistics and plots
* JSON with stats

Source code & report issues

https://github.com/qgbicsoftware/rnacount

Somatic Variant Calling

Version: 1.0
Author: Christopher Mohr

Description
Performs somatic variant calling for tumor and normal tissue samples using Strelka“". Strelka
is an analysis package designed to detect somatic SNVs and small indels from the aligned

sequencing reads of matched tumor-normal samples.

Input
¢ BAM(s) with DNA reads

* FASTA with reference genome

Output
* VCF(s) with all somatic inDels/SNVs
» VCF(s) with filtered somatic inDels/SNVs

Parameters
Parameter Value Type  Description Required Restrictions
read mapper bwa  string Read mapper used to gen- true bwa, eland, isaac

erate bam files
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Additional software/data
* Strelka 1.0.14

* VCFlib 0.1

* SAMtools 1.3

Source code & report issues
https://github.com/qbicsoftware/somatic-variantcalling-workflow

Variant Annotation

Version: 1.0
Author: Christopher Mohr

Description
Performs annotation of genetic variants in VCF format using ANNOVAR %20,

Input
* VCF(s) with genomic variants

Output
* VCF(s) with annotated genomic variants

Parameters
Parameter Value Type Description Required Restrictions
v other string Variants called by true other, Strelka

Additional software/data
* ANNOVAR 2014-11-12

Source code & report issues
https://github.com/qbicsoftware/variant-annotation-workflow

Variant Annotation

Version: 2.0
Author: Christopher Mohr
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Description

Performs annotation of genetic variants in VCF using SnpEff%2L,

Input
* VCF/VCEgz(s) with genomic variants

Output
* VCF(s) with filterd and unfiltered list of annotated genomic variants
* TSV(s) with filterd and unfiltered list of annotated genomic variants
* TXT with gene-based statistics
* HTML with SnpEff summary

Parameters
Parameter Value Type  Description Required Restrictions
reference  hgl9 string Reference true GRCh37.75, GRCh38.81, hgl9,

genome hg38, GRCm38.79, mm10

Additional software/data
* SnpEff 4.1k

Source code & report issues
https://github.com/gbicsoftware/variant-annotation-workflow

Variant Detection

Version: 1.0
Author: Marc Sturm, Adrian Seyboldt, Stefan Czemmel, Christopher Mohr

Description

Performs variant detection using FreeBayes2!2, a bayesian genetic variant detector.

Input
* BAMC(s) with DNA reads
* BAI(s) with index of BAM files
* BWA indexed reference genome
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Output
e VCF(s) with detected variants

Additional software/data
* Snakemake

* SAMtools 1.3

* NGS-bits 0.1

* BWA0.7.10

e Stampy 1.0.27
* Picard 1.140

* GATK 3.3

* FreeBayes 0.9

* VCFlib 0.1

* BCFtools 1.2

* VCFtools 0.1.13

Source code & report issues
https://github.com/qbicsoftware/variantcalling
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Appendix G: Supporting Listings

{"workflow": {
"description": "Description of workflow",
"experimenttype": "Q_WF_NGS_HLATYPING"
"filedirectory": "/path/to/workflow/optitype_vi_1_2016",
"id": "optitype_v1i_1_2016",
"name": "OptiType",
"nodes": [
{

"cmdparams": [

"WORKFLOW-CTD"
1,

"inputports": [
{

"description": "a ctd parameter file that contains ctd enabled tools of the workflow.",
"name": "WORKFLOW-CTD",
"parameters": [

"default": 0.009,

"description": "Value for beta",
"name": "OptiType.1.b",

"range": [0, 0.1],

"required": true,

"type": "Float"

i
1,
"portnumber": 6,
"type": "CTD"
=
{
"description": "CTD containing files to stage",
"name": "IN-FILESTOSTAGE",
"parameters": [
{
"default": "",
"description": "Bam file containing (mapped) DNA/RNA reads.",
"name": "InputFiles.1.bam",
"range": ["Q_NGS_MAPPING_DATA"],
"required": false,
"type": "File"
1,
1,
"portnumber": O,
"type": "FILESTOSTAGE"
}
£

}
1,
"sampletype": "Q_WF_NGS_HLATYPING",
"version": "1.1"

1}

Listing 3: Simplified workflow configuration file. The JSON-based configuration file con-
tains general information, such as a description, the name, and the identifier. For each
workflow node, information about every parameter is given as defined in the correspond-
ing CTD file.
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