
Placing problems from phylogenetics and

(quanti�ed) propositional logic in the

polynomial hierarchy

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Janosch Otto Döcker

aus Tübingen

Tübingen

2021

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.

Tag der mündlichen Quali�kation: 23.06.2021

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter: Apl. Prof. Dr. Britta Dorn

2. Berichterstatter: Prof. Dr. Peter Hauck

3. Berichterstatter: Prof. Dr. Uwe Schöning

Contents

Summary v

German . v

English . vii

List of Publications ix

Personal Contribution xi

1 Introduction 1

2 Objectives 13

3 Discussion of Results 15

3.1 Preliminaries on the polynomial hierarchy 15

3.2 Phylogenetics . 18

3.2.1 Preliminaries . 20

3.2.2 Deciding the existence of a cherry-picking sequence 24

3.2.3 Displaying trees across two phylogenetic networks 32

3.3 Satis�ability . 39

3.3.1 Formal framework . 41

3.3.2 Related work and a brief historical overview 44

3.3.3 Monotone 3-SAT with bounded variable appearances 46

3.3.4 On a simple hard variant of Not-All-Equal 3-SAT 50

3.3.5 Quanti�ed variants of the satis�ability problem 51

3.3.6 Using restricted SAT variants in hardness proofs 54

3.4 Concluding remarks . 60

Appendix 75

1 Accepted Manuscripts . 75

1.1 On the existence of a cherry-picking sequence 75

i

Contents

1.2 Deciding the existence of a cherry-picking sequence is hard on two

trees . 91

1.3 Displaying trees across two phylogenetic networks 105

1.4 Display sets of normal and tree-child networks 124

1.5 The monotone satis�ability problem with bounded variable ap-

pearances . 146

1.6 On simpli�ed NP-complete variants of Monotone 3-SAT 162

1.7 On a simple hard variant of Not-All-Equal 3-SAT 177

1.8 Placing quanti�ed variants of 3-SAT and Not-All-Equal 3-SAT in

the polynomial hierarchy . 184

2 Additional Manuscripts . 205

2.1 Monotone 3-SAT-(2,2) is NP-complete 205

ii

Acknowledgments

I feel great gratitude to everyone who supported me on my PhD journey. Huge thanks

go to the supervisors of my dissertation: Britta Dorn and Peter Hauck. Britta Dorn

inspired me to pursue a PhD after completing my master's degree and was tremendously

supportive during the whole process. She also got me into contact with Simone Linz

(University of Auckland) which resulted in two research stays in New Zealand and inspir-

ing collaborations with several researchers from the phylogenetics community. Moreover,

I would like to thank Britta Dorn for not only allowing me to fully pursue my research

interests but also being incredibly supportive of it�Thank you Britta! I am very grate-

ful to Peter Hauck for assessing my dissertation even though the submission of my thesis

eventually fell within his retirement and for being really helpful in the process of getting

my thesis submitted�Thank you!

Equally, I would like to thank Simone Linz and Charles Semple for their incredible

hospitality during my two research stays in New Zealand.

In my time as a student I was fortunate to meet several great people who helped me

grow scienti�cally and personally. Special thanks go to Britta Dorn, Simone Linz and

Elke Wilkeit who I consider to be my mentors and my main academic in�uences.

Big thanks go to the co-authors of my papers: Britta Dorn, Simone Linz, Andreas

Darmann, Charles Semple, Steven Kelk, Leo van Iersel, Ulle Endriss, Jérôme Lang,

Ronald de Haan, Sebastian Schneckenburger and Dominikus Krüger. I learnt a lot from

you guys and I enjoyed every collaboration!

Another huge �Thank you!� goes to Britta Dorn, Simone Linz and my partner Leonie

for taking time out of their busy schedules and providing valuable feedback and helpful

discussions on draft versions of my dissertation which bene�ted my thesis signi�cantly.

iii

Contents

Further, I'm grateful for the support of the secretary Renate Hallmayer who was

always kind, patient and helpful when I had questions related to my studies or my em-

ployment at the university. Thank you Renate!

Last but not least, I'm in�nitely grateful for the love and support of my family, friends

and my beloved partner Leonie.

iv

Summary

German

In der vorliegenden Arbeit betrachten wir die Komplexität von Entscheidungsproblemen

aus zwei Themenbereichen und ordnen diese in der Polynomialzeithierarchie ein.

Zum einen befassen wir uns mit Problemen, die im Zusammenhang mit phylogeneti-

schen Netzwerken auftreten. Ein phylogenetisches Netzwerk ist im Forschungsbereich der

Phylogenetik ein etabliertes Modell, um die evolutionäre Beziehung zwischen verschiede-

nen Arten darzustellen. Es wurde als Verallgemeinerung von phylogenetischen Bäumen

eingeführt, da letztere keine von einer Baumstruktur abweichenden biologischen Pro-

zesse wie etwa Hybridisierung oder horizontalen Gentransfer abbilden können. Richtet

man allerdings den Fokus auf einzelne Bereiche des Genoms der Arten, so lässt sich

die evolutionäre Geschichte häu�g durch einen einzigen Baum modellieren. Ein phylo-

genetisches Netzwerk kann daher auch als Zusammenfassung mehrerer solcher Bäume

aufgefasst werden, es ist dann somit ein Modell, das gleichzeitig alle gegebenen baumar-

tigen Entwicklungen von Teilen des Genoms erklärt (d.h. die zugehörigen Bäume ein-

bettet). In diesem Zusammenhang betrachten wir die Frage, ob ein derartiges Netzwerk

für eine gegebene Menge von phylogenetischen Bäumen existiert, wenn der Suchraum

auf eine bestimmte Teilklasse von phylogenetischen Netzwerken (den sogenannten tem-

poralen Netzwerken [MNW+04]) beschränkt ist. Aufbauend auf einer von Humphries et

al. [HLS13a] entwickelte Charakterisierung dieser Teilklasse zeigen wir, dass die Exis-

tenz eines solchen Netzwerks für jede nicht-triviale Anzahl (d.h. mindestens zwei) von

gegebenen Bäumen schwierig zu entscheiden ist: das Entscheidungsproblem stellt sich

als NP-vollständig heraus. Andererseits entwickeln wir unter Verwendung von Automa-

tentheorie einen Algorithmus, der für eine beliebige, aber konstante Anzahl an Bäumen,

die zusätzlich eine bestimmte topologische Eigenschaft erfüllen, die Existenzfrage in

Polynomzeit löst. Anschlieÿend untersuchen wir die Beziehungen von zwei gegebenen

phylogenetischen Netzwerken im Hinblick auf die eingebetteten phylogenetischen Bäu-

me. Zum Beispiel analysieren wir die folgenden Fragen hinsichtlich ihrer Komplexität:

v

Summary

Sind in beiden Netzwerken exakt die gleichen phylogenetischen Bäume eingebettet? Sind

alle phylogenetischen Bäume, die im ersten Netzwerk eingebettet sind, auch im zweiten

Netzwerk eingebettet? Für die beiden genannten Fragestellungen zeigen wir, dass diese

ΠP
2 -vollständig sind, also auf der zweiten Ebene der Polynomialzeithierarchie liegen. Im

Kontrast zu diesen negativen Komplexitätsresultaten geben wir einen Algorithmus an,

der das erste Entscheidungsproblem � d.h. den Test auf Gleichheit � in Polynomzeit

löst, wenn die beiden Netzwerke jeweils zu einer bestimmten Klasse gehören.

Zum anderen beschäftigen wir uns mit Varianten des Erfüllbarkeitsproblems für (quan-

ti�zierte) Boolesche Formeln. Unsere Forschung zu diesem Thema ist inspiriert durch

eine Vermutung für Monotone 3-SAT mit beschränkten Variablenvorkommen, die in

der Mitschrift [DKY14] einer Vorlesung des Massachusetts Institute of Technology auf-

gestellt wurde: Die Vermutung war, dass Monotone 3-SAT NP-schwer ist, wenn jede

Variable höchstens fünf mal vorkommt. Wir bestätigen die Vermutung und zeigen, dass

das Problem sogar NP-schwer ist, wenn jede Variable genau zweimal nicht-negiert und

zweimal negiert, insgesamt also exakt vier mal in der Formel vorkommt. Darüber hinaus

erhalten wir ein allgemeineres Resultat für solche Formeln, wenn jede Variable exakt p

mal nicht-negiert und q mal negiert vorkommt, wobei p und q beliebige, aber konstante

natürliche Zahlen sind. Das Problem ist NP-vollständig, wenn p ≥ 2 und q ≥ 2 oder

p + q ≥ 6 gilt (oder beides). Abgesehen von den symmetrischen Fällen, sind die beiden

einzigen verbleibenden o�enen Fälle von der Form p ∈ {3, 4} und q = 1. Wir befas-

sen uns auÿerdem mit monotonen Formeln, deren Inzidenzgraph eine planare Darstel-

lung besitzt. Der Fokus liegt hierbei wiederum auf beschränkten Variablenvorkommen.

Zudem zeigen wir, dass eine besonders eingeschränkte Variante von Not-All-Equal

3-SAT (NAE-3-SAT) NP-vollständig ist. Schlieÿlich betrachten wir die quanti�zierten

Varianten ∀∃ 3-SAT und ∀∃ NAE-3-SAT für Instanzen mit beschränkten Variablenvor-

kommen und ordnen diese in der Polynomialzeithierarchie ein. Am Schluss dieser Arbeit

zeigen wir exemplarisch, wie diese eingeschränkten Varianten des Erfüllbarkeitsproblems

Anwendung �nden können, um Reduktionen zu vereinfachen oder stärkere Resultate für

andere Entscheidungsprobleme abzuleiten.

vi

English

In this thesis, we consider the complexity of decision problems from two di�erent areas

of research and place them in the polynomial hierarchy.

On the one hand, we are concerned with problems that arise in the context of phyloge-

netic networks. A phylogenetic network is a well-established model used in evolutionary

biology to represent the evolutionary relationships between di�erent species. In graph-

theoretic terms, a phylogenetic network is a leaf-labeled rooted DAG1. It was introduced

as a generalization of phylogenetic trees as the latter is not suitable to represent bio-

logical processes that cannot be represented in a tree-like fashion such as hybridization

or lateral gene transfer. However, if the focus is laid on speci�c parts of the genome of

the considered species, the evolutionary history can often be modeled by a single tree.

Hence, a phylogenetic network can also be viewed as an amalgamation of several such

trees in which case the network embeds the corresponding trees. In that regard, we con-

sider the question whether such a network exists for a given set of phylogenetic trees if

the search space is restricted to a certain subclass of phylogenetic networks, the so-called

temporal networks [MNW+04]. Using a characterization of this subclass introduced by

Humphries et al. [HLS13a], we show that deciding the existence of such a network is NP-

complete for each non-trivial number (i.e., at least two) of given trees. On the positive

side, by using automata theory, we present an algorithm solving the problem in polyno-

mial time if the number of trees in the input is bounded by some constant and each tree

satis�es a certain topological constraint. Subsequently, we investigate the relationship

of two given phylogenetic networks with respect to the phylogenetic trees embedded by

the networks. For instance, we consider the following questions regarding their compu-

tational complexity: Do both networks embed precisely the same phylogenetic trees?

Is each phylogenetic tree that is embedded in the �rst network also embedded in the

second network? We show that both decision problems are ΠP
2 -complete and, thus, can

be placed on the second level of the polynomial hierarchy. In contrast to these negative

complexity results, we present an algorithm solving the former decision problem�i.e.,

checking for equality�in polynomial time if each network belongs to a particular class

(i.e., the networks have to satisfy certain structural properties).

On the other hand, we consider variants of the satis�ability problem for (quanti�ed)

Boolean formulas. Our research on this topic is inspired by a conjecture forMonotone

3-SAT with bounded variable appearances stated in the scribe notes [DKY14] of a lecture

1directed acyclic graph

vii

Summary

held at the Massachusetts Institute of Technology: The conjecture was thatMonotone

3-SAT is NP-hard if each variable appears at most �ve times. We con�rm the conjecture

and show that the problem remains NP-hard even if each variable appears exactly twice

unnegated and exactly twice negated (thus, each variable has a total number of four

appearances in the formula). Further, we obtain a more general result for such formulas,

if each variable appears exactly p time unnegated and q times negated, where p and q

are arbitrary but constant positive integers. The problem is NP-complete if p ≥ 2

and q ≥ 2 or p + q ≥ 6 holds (or both). Apart from the symmetric cases, the only

two remaining open cases have the form p ∈ {3, 4} and q = 1. We also consider

monotone formulas, where the incidence graph is planar. The focus is again laid on

bounded variable appearances. In addition, we show that a particularly restricted variant

of Not-All-Equal 3-SAT (NAE-3-SAT) is NP-complete. Finally, we consider the

quanti�ed variants ∀∃ 3-SAT and ∀∃ NAE-3-SAT for instances with bounded variable

appearances and place them in the polynomial hierarchy. We close this thesis by showing

in an exemplary way how these restricted variants of the satis�ability problem can be

applied to simplify reductions or to infer stronger results for other decision problems.

viii

List of Publications

Accepted Manuscripts

1. Janosch Döcker and Simone Linz. On the existence of a cherry-picking se-

quence [DL18]. Theoretical Computer Science, 714:36�50, 2018. The published

version of this article can be found in Appendix 1.1 and the paper is also available

online at the following URL: https://doi.org/10.1016/j.tcs.2017.12.005.

2. Janosch Döcker, Leo van Iersel, Steven Kelk, and Simone Linz. Deciding the

existence of a cherry-picking sequence is hard on two trees [DvIKL19].

Discrete Applied Mathematics, 260:131�143, 2019. The published version of this

article can be found in Appendix 1.2 and the paper is also available online at the

following URL: https://doi.org/10.1016/j.dam.2019.01.031.

3. Janosch Döcker, Simone Linz, and Charles Semple. Displaying trees across two

phylogenetic networks [DLS19]. Theoretical Computer Science, 796:129�146,

2019. The published version of this article can be found in Appendix 1.3 and the

paper is also available online at the following URL: https://doi.org/10.1016/

j.tcs.2019.09.003.

4. Janosch Döcker, Simone Linz, and Charles Semple. The display sets of normal

and tree-child networks [DLS21]. The Electronic Journal of Combinatorics,

28(1):P1.8 (21 pages), 2021. The published version of this article can be found in

Appendix 1.4 and the paper is also available online at the following URL: https:

//doi.org/10.37236/9128.

5. Andreas Darmann, Janosch Döcker, and Britta Dorn. The Monotone Satis-

�ability Problem with Bounded Variable Appearances [DDD18a]. Inter-

national Journal of Foundations of Computer Science, 29(6):979�993, 2018. The

author created version of this article that was accepted for publication can be

ix

https://doi.org/10.1016/j.tcs.2017.12.005
https://doi.org/10.1016/j.dam.2019.01.031
https://doi.org/10.1016/j.tcs.2019.09.003
https://doi.org/10.1016/j.tcs.2019.09.003
https://doi.org/10.37236/9128
https://doi.org/10.37236/9128

List of Publications

found in Appendix 1.5. The published version of this article is available online at

the following URL: https://doi.org/10.1142/S0129054118500168.

6. Andreas Darmann and Janosch Döcker. On simpli�ed NP-complete variants

of Monotone 3-Sat [DD21]. Discrete Applied Mathematics, 292:45�58, 2021.

The published version of this article can be found in Appendix 1.6 and the paper

is also available online at the following URL: https://doi.org/10.1016/j.dam.

2020.12.010.

7. Andreas Darmann and Janosch Döcker. On a simple hard variant of Not-

All-Equal 3-Sat [DD20]. Theoretical Computer Science, 815:147�152, 2020. The

published version of this article can be found in Appendix 1.7 and the paper is also

available online at the following URL: https://doi.org/10.1016/j.tcs.2020.

02.010.

8. Janosch Döcker, Britta Dorn, Simone Linz, and Charles Semple. Placing quanti-

�ed variants of 3-SAT and Not-All-Equal 3-SAT in the polynomial hier-

archy [DDLS20]. Theoretical Computer Science, 822:72�91, 2020. The published

version of this article can be found in Appendix 1.8 and the paper is also available

online at the following URL: https://doi.org/10.1016/j.tcs.2020.04.003.

Additional Manuscripts

We added the main result of the following article to the 6th accepted manuscript [DD21]

during peer review (i.e., it was not part of the initial submission but included in the

version accepted for publication). Since not all of the results of the former article�in

particular the results for the quanti�ed variants of the satis�ability problem�appear in

the accepted manuscript, we decided to include both.

9. Janosch Döcker. Monotone 3-SAT-(2,2) is NP-complete [Döc19]. arXiv:

1912.08032 [cs.CC], 2019. This manuscript can be found in Appendix 2.1 and it is

also available online at the following URL: https://arxiv.org/abs/1912.08032.

x

https://doi.org/10.1142/S0129054118500168
https://doi.org/10.1016/j.dam.2020.12.010
https://doi.org/10.1016/j.dam.2020.12.010
https://doi.org/10.1016/j.tcs.2020.02.010
https://doi.org/10.1016/j.tcs.2020.02.010
https://doi.org/10.1016/j.tcs.2020.04.003
https://arxiv.org/abs/1912.08032

Personal Contribution

Accepted Manuscripts

1. On the existence of a cherry-picking sequence [DL18]: In 2017, I was a

visiting student at the University of Auckland. The project was initiated by Simone

Linz who worked with me on problems from phylogenetics during my stay. She

introduced me to the then open question concerning the existence of a cherry-

picking sequence given a set of phylogenetic trees. The main proof ideas leading

to the results in the above manuscript were contributed by me. However, working

out the �ner details and writing up the paper was a shared e�ort by Simone Linz

and myself.

2. Deciding the existence of a cherry-picking sequence is hard on two

trees [DvIKL19]: Steven Kelk initiated this collaboration on the existence of a

cherry-picking sequence on two trees and he provided the main proof ideas (i.e.,

a sketch of the reduction). I signi�cantly contributed to the second direction of

the proof of the main result by working out the �ner details required to obtain a

rigorous proof. Writing up the paper was a shared e�ort by all four authors, where

Simone Linz and�to a slightly lesser extent�myself had a leading role.

3. Displaying trees across two phylogenetic networks [DLS19]: This manu-

script is the result of a collaboration with Simone Linz and Charles Semple (in

2018, I was, for the second time, a visiting student at the University of Auckland

and subsequently at the University of Canterbury, where the three of us worked

together in person). The idea to consider the topic of the manuscript was already

suggested in 2017 by Simone Linz when we were looking for possible problems

to work on during my �rst visit. I came up with the idea to consider complex-

ity beyond NP-hardness (speci�cally ΠP
2 -completeness) in order to obtain a �ner

placement of these decision problems in the polynomial hierarchy. Also, I con-

tributed the main ideas for the constructions leading to our ΠP
2 -completeness result

xi

Personal Contribution

for Display-Set-Containment. The proof idea obtaining ΠP
2 -completeness for

Display-Set-Equivalence is shared by Simone Linz and myself (she came up

with a reduction showing NP-hardness and I observed that it can be generalized to

show ΠP
2 -completeness using our result for Display-Set-Containment). Apart

from verifying correctness, I was not involved in obtaining the NP-completeness

result for Common-Tree-Containment. Writing up the paper was a shared

e�ort by all three authors, where Simone Linz and myself had a leading role.

4. The display sets of normal and tree-child networks [DLS21]: These results

were also obtained as a result of the collaboration with Simone Linz and Charles

Semple alluded to above for the preceding manuscript. We developed many of the

involved ideas together while collaborating in person which makes it hard to single

out individual contributions. That being said, most of the crucial observations

were made by Simone Linz and Charles Semple. My most signi�cant contribu-

tions to the collaboration on the display sets of phylogenetic networks are part of

the manuscript containing our hardness results (i.e., in the preceding manuscript

above). Writing up the paper was a shared e�ort by all three authors, where

Charles Semple had a leading role.

5. The Monotone Satis�ability Problem with Bounded Variable Appear-

ances [DDD18a]: This manuscript is a collaboration with Andreas Darmann and

Britta Dorn. The research was initiated by me and most of the scienti�c ideas and

results were contributed by me. A signi�cant contribution by Andreas Darmann

is the collection of clauses used as a gadget in the proof showing that Monotone

3-Sat-4 is NP-complete. Writing up the paper was a shared e�ort by all three

authors, where I had a leading role.

6. On simpli�ed NP-complete variants of Monotone 3-Sat [DD21]: This man-

uscript is joint work with Andreas Darmann. The research was initiated by me and

most of the scienti�c ideas and results were contributed by me. Andreas Darmann

helped me with working out the �ner details of the proofs and �xing minor errors

that were present in the original draft. An anonymous referee provided the tool

for increasing the number of literal appearances which bene�ted the manuscript

signi�cantly (Section 3 of our manuscript is dedicated to this tool). Writing up

the paper was a shared e�ort by Andreas Darmann and myself, where I had the

leading role.

xii

7. On a simple hard variant of Not-All-Equal 3-Sat [DD20]: This manuscript is

joint work with Andreas Darmann. The research was initiated by me and most of

the scienti�c ideas and results were contributed by me. Andreas Darmann helped

me with working out the �ner details of the proofs, �nding subtle inaccuracies,

and improving the presentation of the original draft. Writing up the paper was a

shared e�ort by Andreas Darmann and myself, where I had the leading role.

8. Placing quanti�ed variants of 3-SAT and Not-All-Equal 3-SAT in the

polynomial hierarchy [DDLS20]: This manuscript is joint work with Britta

Dorn, Simone Linz and Charles Semple. The research was initiated by me and

most of the scienti�c ideas and results were contributed by me. Simone Linz and

Charles Semple contributed crucially in working out �ner details of the proofs,

thus making the proofs signi�cantly more rigorous, as well as improving the overall

presentation of the manuscript. Writing up the paper was a shared e�ort by all

four authors, where I had a leading role.

Additional Manuscripts

9. Monotone 3-SAT-(2,2) is NP-complete [Döc19]: This manuscript is in its

entirety my own work (with respect to both the scienti�c ideas and the writing).

xiii

1 Introduction

One important task in theoretical computer science is to classify decision problems re-

garding the computational e�ort1 necessary to solve them. If we �nd an e�cient algo-

rithm for some decision problem, the bene�t of such an analysis is immediately obvious�

we can �nd an answer to the corresponding question in a reasonable amount of time.

Here, we call an algorithm e�cient if it returns the result within polynomial time (mea-

sured in the length of the input). The complexity class P contains all decision problems

that can be solved by an e�cient algorithm. However, there are many problems that

arise in practical applications that sound simple at �rst glance�or at least are easy to

understand�but withstood all e�orts to �nd an e�cient algorithm for them so far. A

well-known example of such a decision problem is the Traveling Salesperson prob-

lem which asks whether a salesperson can make a round trip visiting a number of cities

such that the traveled distance stays within a given limit. The latter problem belongs

to the class NP which contains all decision problems for which a solution can be veri�ed

e�ciently. Moreover, Traveling Salesperson is NP-hard which means that, in a

certain sense, it is at least as hard to solve as any other problem in NP (see, e.g., Garey

and Johnson [GJ79] for more details). Further, an NP-hard problem that is also in

NP is called NP-complete. As indicated above, there are no polynomial-time algorithms

available for any decision problem that is NP-hard. Intuitively, an NP-complete decision

problem can be viewed as a representative of the class NP in the following sense: if a

single NP-complete decision problem turns out to be in P it follows that P = NP. The

question whether P = NP or P 6= NP is perhaps the most famous open problem in theo-

retical computer science and it is also one of the Millennium Prize Problems2 established

by the Clay Mathematics Institute which awards $1 million for the �rst correct solution

to each of the problems. Now, what are the implications of showing that a decision prob-

lem is NP-complete? An important consequence is that there is no e�cient algorithm

for an NP-hard problem unless P = NP. In other words: An e�cient algorithm for

1We assume the reader to be familiar with the basic concepts of computational complexity and refer
to the book by Garey and Johnson [GJ79] for an introduction to this topic.

2See http://www.claymath.org/millennium-problems (last accessed: 19.12.2020)

1

1 Introduction

an NP-complete problem would provide an answer to the P vs. NP question alluded to

above. Hence, for an NP-complete problem, it is crucial to shift the attention to other

algorithmic techniques. Thus, classifying decision problems regarding their computa-

tional complexity provides valuable information even if the problem cannot be placed

in P. In fact, there are many complexity classes beyond NP. For instance, the polyno-

mial hierarchy [Sto76] is a system of complexity classes that contains P and NP, but

also classes with potentially harder problems (the use of the word �potentially� already

indicates that there are open problems concerning the relationships of the classes in the

polynomial hierarchy). We will come back to the polynomial hierarchy in Section 3.1,

where we give the formal de�nition and provide the main ideas that are relevant to this

thesis.

The goal of this thesis is to place decision problems in their respective complexity

class. To this end, we use the classical technique of polynomial-time reductions to ob-

tain hardness results for classes on the �rst and the second level of the polynomial

hierarchy. If a decision problem�or a variant thereof�turns out to be in P, we present

an e�cient way to �nd the answer to a given instance of the problem, e.g., by designing

an algorithm that solves the problem within polynomial time or by reducing the prob-

lem to another decision problem that is already known to be in P (e.g., we make use of

known results from automata theory in order to obtain an e�cient problem for a prob-

lem related to phylogenetics). In the following, we provide a brief introduction to the

considered problems from phylogenetics and satis�ability. First, we turn our attention

to phylogenetics.

Phylogenetics

Phylogenetics is a research area which studies questions related to the evolutionary re-

lationships between extant species. A common way to represent these evolutionary rela-

tionships are phylogenetic trees and phylogenetic networks (for an extensive introduction

to these topics see, e.g., Semple and Steel [SS03], Huson et al. [HRS10], and Steel [Ste16]).

Phylogenetic trees and networks

Phylogenetic trees are a tool to study the evolution of species and are used as such at

least since 1837 when Charles Darwin considered this concept to understand the evolu-

tionary relationships between species. More recently, phylogenetic trees and networks

2

are not only used in evolutionary biology but also to represent relationships between

other entities such as languages, viruses, and cancer cells (cf. Bordewich et al. [BDLN20,

p. 134f] and see, e.g., Willems et al. [WLL+16], Lam et al. [LHT10] and Schwartz and

Schä�er [SS17], respectively).

In graph-theoretic terms, a phylogenetic tree is a rooted binary tree, where the leaves

are bijectively labeled with species. The internal3 vertices of a phylogenetic tree corre-

spond to speciation events. A speciation event can be driven, e.g., by spatial separation

of a species into two parts. However, phylogenetic trees are not su�cient to represent all

processes that drive the evolution of species. In particular, processes like hybridization

and lateral gene transfer cannot be represented in a tree-like fashion. A well-known

example of hybridization is the evolutionary history of bread wheat which is the result

of di�erent species producing a common o�spring (see, e.g., Petersen et al. [PSYB06]

and Marcussen et al. [MSH+14]). An example of lateral gene transfer is the transmission

of genes related to antibiotic resistance between di�erent species of bacteria. The term

�reticulation event� is used as an umbrella term for non-tree-like processes such as the

two examples that we just alluded to. A phylogenetic network generalizes the concept

of a phylogenetic tree, such that reticulation events can be represented. The latter is

achieved by introducing vertices, referred to as reticulations, with in-degree at least 2

and out-degree 1. In this thesis, we focus on the binary case, where each reticulation has

in-degree 2. Now, given a set X = {x1, . . . , xn} of extant species, a binary phylogenetic

network on X is a rooted directed acyclic graph with the following properties:

� the root has in-degree 0 and out-degree 2,

� each non-root internal vertex has either in-degree 1 and out-degree 2 (tree vertex)

or in-degree 2 and out-degree 1 (reticulation),

� each leaf has in-degree 1 and out-degree 0,

� the leaves are labeled bijectively with elements from X.

Each reticulation in a phylogenetic network corresponds to a reticulation event and

each tree vertex corresponds to a speciation event. Moreover, a phylogenetic tree is

a phylogenetic network with no reticulation. Figure 1.1 depicts an example of both

a phylogenetic tree and a phylogenetic network. This �gure and all following �gures

were created for this thesis, unless it is stated otherwise and a reference is provided.

Throughout this work, we use the common convention that arcs are directed downwards

3An internal vertex is any vertex that is not a leaf.

3

1 Introduction

a b c d

N

a b c d

T

Figure 1.1: A phylogenetic tree T (left-hand side) and a phylogenetic network N (right-hand
side) on the leaf set X = {a, b, c, d}.

and omit the corresponding arrowheads in the visual representation. Further, we omit

the term �binary� in the following since all considered networks are binary. The same

applies to all trees throughout the thesis.

Now, even though the evolution of species may contain non-tree-like events as alluded

to above, the ancestral history of di�erent parts of a species' genome can often be

represented by a single tree. Hence, the relationship between a phylogenetic network and

its embedded phylogenetic trees is of interest in the study of certain biological questions.

To further discuss this relationship, we need a de�nition. Let N be a phylogenetic

network on a set X and let T be a phylogenetic tree on the same set. We say that

N embeds (or displays) T if T can be obtained from N by deleting arcs and non-root

vertices and then suppressing all resulting vertices of degree 2 (i.e., vertices of in-degree

1 and out-degree 1). Suppressing a vertex v of degree 2 means to delete v and both its

incident arcs, and to create an arc from the parent of v to the child of v. An example

of a tree displayed by a phylogenetic network is depicted in Figure 1.2 (suppressing

vertices is done in the second step which is depicted by an accordingly labeled arc

going from the middle to the right-hand side of the �gure). The question whether,

given a phylogenetic tree T and a phylogenetic network N on a set X, it is possible

to embed T in the network N was shown to be NP-complete by Kanj et al. [KNTX08,

Thm. 3.1]. On the positive side, the latter question is solvable in polynomial time for

some classes of phylogenetic networks (see Section 3.2 for more details and references).

Since reticulation events occur comparatively rarely (cf. Bordewich and Semple [BS07,

p. 915]), another natural question related to the relationship between phylogenetic trees

and networks is the following: Given a set of phylogenetic trees on a set X, what is

the least amount of reticulation events required to construct a phylogenetic network

that simultaneously embeds every tree in the input? Bordewich and Semple [BS07,

Thm. 2.1] showed that this problem is APX-hard4 and, consequently, NP-hard. The

4The class APX contains the optimization versions of decision problems in NP that admit an e�cient
algorithm computing an approximate solution which is bounded by a multiple of the optimum (in

4

a b c d a b c d

N

a b c d

Delete arcs and vertices Suppress vertices of degree 2
T

Figure 1.2: The network N displays the phylogenetic tree T on the right-hand side. This can
be shown as follows: First, in N , delete the vertex which is grayed out in the middle
of the �gure, and its incident arcs (depicted by dashed lines). Then, suppressing
each resulting non-root vertex of degree 2 yields T . In fact, the embedding of T in
N is not unique (cf. Cordue et al. [CLS14]).

class of temporal networks5 contains all phylogenetic networks of a particular class that

additionally satisfy two temporal constraints which can be brie�y summarized as follows:

reticulation events occur instantaneously and speciation events occur successively (cf.,

e.g., [LSS10, Mor12, HLS13a]). Humphries et al. [HLS13a] characterized the existence

of a temporal network that embeds a given collection P of phylogenetic trees on a set

X by establishing a connection to the existence of a particular sequence on X. They

called this sequence a cherry-picking sequence and showed that, in case of existence,

a cherry-picking sequence also provides the minimum number of reticulations that are

su�cient to construct a temporal network that displays each phylogenetic tree in P .

Cherry-picking sequences

Let T be a phylogenetic tree on a set X. A cherry is a subset {x, y} ⊆ X containing

two distinct elements from X such that x and y have the same parent in T (e.g.,

{a, b} and {c, d} are cherries of the phylogenetic tree depicted in Figure 1.1). Now, let

P = {T1, . . . , Tm} be a collection of phylogenetic trees on the same set X = {x1, . . . , xn}.
Then, a cherry-picking sequence is a permutation (or ordering)

(xi1 , xi2 , . . . , xin)

of the elements of X which satis�es certain properties. We introduce these properties

using the example shown in Figure 1.3 where P consists of two phylogenetic trees T1 and

T2 on the set X = {a, b, . . . , h} (for the formal de�nition and an example with m > 2

other words, the found solution is bounded by the optimum multiplied with some constant factor).
Hardness for this class is de�ned by reductions that preserve certain approximation properties (see,
e.g., Alimonti and Kann [AK00, p. 124f] for more details regarding these reductions).

5We formally de�ne temporal networks [MNW+04] and other network classes in Section 3.2

5

1 Introduction

a d e b h c f g a b c de hf g

T1 T2

Figure 1.3: Two phylogenetic trees T1 and T2 on X = {a, b, c, d, e, f, g, h} for which a cherry-
picking sequence exists (e.g., the ordering a < e < b < c < f < d < g < h). These
two trees were constructed in Döcker and Linz [DL18, Fig. 2] as a gadget enforcing
that a never occurs between b and c in any cherry-picking sequence.

phylogenetic trees see Section 3.2). Let us consider the ordering

O = (a, e, b, c, f, d, g, h)

of the elements in X. First, observe that the �rst element, i.e., a, is in a cherry of both T1

and T2. By deleting the leaf labeled with a and its incident arc in both phylogenetic

trees and subsequently suppressing the two resulting vertices�one in each phylogenetic

tree�of in-degree 1 and out-degree 1, we obtain two phylogenetic trees T ′1 and T ′2 on

X ′ = X \ {a} (this reduction step is illustrated in Figure 1.4). Now, the second element

in O, i.e., e, is in a cherry of both T ′1 and T ′2 . Again, we reduce both networks in

the same way as in the previous reduction step (delete e instead of a) to obtain two

phylogenetic trees T ′′1 and T ′′2 , where the third element b is in a cherry of both T ′′1 and

T ′′2 . If we can continue in this way until both phylogenetic trees are reduced to a cherry,

then O is a cherry-picking sequence. It is now straightforward to verify that O is indeed

a cherry-picking sequence for T1 and T2.

Comparing display sets

Let N and N ′ be two phylogenetic networks on the same set X. The set consisting of

all phylogenetic trees that are displayed by N (resp. N ′) is called the display set6 of

N (resp. N ′) and we write T (N) (resp. T (N ′)) to denote this set. An open question

stated in Gunawan et al. [GDZ17] concerns the computational complexity of deciding

whether T (N) = T (N ′) for a restricted class of phylogenetic networks�we provide

more details on this in Section 3.2. Now, Figure 1.5 illustrates how the display set

6We introduced the term �display set� in Döcker et al. [DLS19, DLS21].

6

a d e b h c f g a b c de hf g

d e b h c f g b c de hf g

d e b h c f g b c de hf g

Delete the leaf a and its incident arc

Suppress the resulting vertex of degree 2

The leaf a is in a cherry of both trees

Figure 1.4: Reducing phylogenetic trees with respect to a cherry-picking sequence.

7

1 Introduction

of the phylogenetic network depicted in Figure 1.2 can be obtained. Intuitively, each

reticulation in a phylogenetic network introduces a choice, since, in order to obtain a

phylogenetic tree, we must delete at least one of the incoming arcs of each reticulation.

In Section 3.2.3 we present our algorithmic and complexity results for several ways to

compare the display sets of two phylogenetic networks N and N ′ on X. Speci�cally, we

analyze the computational complexity of deciding the following:

� T (N) ∩ T (N ′) 6= ∅ (Is there a phylogenetic tree displayed by both N and N ′?)

� T (N) ⊆ T (N ′) (Is each phylogenetic tree displayed by N also displayed by N ′?)

� T (N) = T (N ′) (Do N and N ′ display the same phylogenetic trees?)

Figure 1.6 shows an example of two phylogenetic networksN andN ′ onX = {x1, x2, x3}
for which the answer to all three of the above questions is �yes�. Note that a positive

answer to the latter question implies a positive answer to the former two questions.

Satis�ability

The Boolean satis�ability problem concerns particular logical expressions�which are

called Boolean formulas�that can be formed over a set of variables V = {x1, x2, . . . , xn}
taking values in {True,False} using logical connectives (including the unary negation

operator) and parentheses. For instance, the expression

ϕ = x1 ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

is a Boolean formula, where �∨� is the �logical or� connective, �∧� is the �logical and�

connective, and xi denotes the negation of xi. The elements in L = {xi, xi | xi ∈ V } are
called literals ; and a clause is a disjunction of literals (e.g., x1 ∨ x2 ∨ x3). A Boolean

formula which is a conjunction of clauses is in conjunctive normal form (CNF). Observe

that the Boolean formula ϕ above is in CNF. For Boolean formulas in CNF, it is also

common to use set notation, where a clause is a subset of L and a Boolean formula is

then written as a set of clauses. For instance, ϕ in set notation reads

ϕ = {{x1}, {x2, x3}, {x1, x2, x3}, {x1, x2, x3}}.

Noting that all Boolean formulas considered in this thesis are in CNF, we omit stating

this each time (i.e., if not mentioned otherwise, a Boolean formula is always assumed

8

a b c d

a b c d a b c d a b c d a b c d

N

a b c da b c d b c a d

T (N)

Figure 1.5: The display set T (N) of the phylogenetic network N on X = {a, b, c, d} that was
used in Figure 1.2 to illustrate the embedding of a phylogenetic tree in a phylogenetic
network. First, we obtain the 22 = 4 graphs depicted in the second row of the above
�gure by deleting precisely one incoming arc of each reticulation (the deleted arc
is indicated by a dashed line). Then, deleting the vertex with two dashed outgoing
arcs along with its incident arc and subsequently suppressing vertices of in-degree 1
and out-degree 1 yields T (N).

x1 x2 x3

x1 x2 x3

x1 x2 x3

N

x1 x2 x3

N ′

T (N) = T (N ′) = {T1, T2}

T1

T2

Figure 1.6: Two phylogenetic networks N and N ′ that have the same display set {T1, T2}.

9

1 Introduction

to be in CNF). Now, a Boolean formula is satis�able if there is a truth assignment

β : V → {True,False} such that in each clause, at least one literal evaluates to True

(a literal xi evaluates to True if and only if β(xi) = False). The satis�ability problem

(Satisfiability) for Boolean formulas can now be stated as follow: Given a Boolean

formula ϕ over a set of variables V , is there a truth assignment β : V → {True,False} that
satis�es ϕ? This question turns out to be very hard to solve in general as Cook [Coo71]

showed completeness of Satisfiability for the complexity class NP. Further, this hard-

ness result turned out to be particularly useful since NP-hardness results for many other

decision problems were later derived either directly or indirectly from the established

NP-completeness of Satisfiability by means of polynomial-time reductions (see, e.g.,

Karp [Kar72] for many classical results using this transformation technique). For more

details on the theory of NP-completeness see the book by Garey and Johnson [GJ79];

we also provide a brief historical overview of the satis�ability problem in Section 3.3.2.

A lot of research was done on the computational complexity of variants of Satisfi-

ability (see Filho [Fil19] for an extensive collection of related results). For instance,

Satisfiability remains NP-complete [GJ79, p. 48f] if each clause contains precisely

three distinct literals formed over pairwise distinct variables�this popular variant of

Satisfiability is called 3-Sat�but it can be solved in linear time if each clause con-

tains at most two literals [EIS76, p. 696f]. Several natural restrictions for 3-Sat were

considered in the literature that further re�ned this complexity analysis, e.g.,

� monotone clauses, i.e., a clause has the form {xi, xj, xk} or {xi, xj, xk} (the corre-
sponding variant Monotone 3-SAT is known to be NP-complete [Gol78, Li97]),

� bounded variable appearances (see, e.g., Tovey [Tov84] and Berman et al. [BKS03]),

� planar incidence graph, i.e., a certain graph�such as the one shown in Figure 1.7�

associated with a Boolean formula is required to admit a planar drawing (the cor-

responding variant Planar 3-SAT is known to be NP-complete [Lic82, Man83]).

Note that for the complexity result for Monotone 3-SAT and Planar 3-SAT, re-

spectively, we included two di�erent references. This is due to the fact that Gold [Gol78]

and Lichtenstein [Lic82] obtained the �rst results for these restrictions, but for a slightly

less strict de�nition of 3-SAT where clauses contain at most three distinct literals. An-

other possibility to obtain variants of Satisfiability is to rede�ne which properties of

a truth assignment are desirable, e.g., asking whether there is a truth assignment such

that at least one but not all literals contained in each clause evaluate to True. The

10

x1 x2 x3x1

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3

x2 ∨ x3

Figure 1.7: A planar drawing of the incidence graph for the Boolean formula ϕ = x1∧(x2∨x3)∧
(x1∨x2∨x3)∧(x1∨x2∨x3). In the incidence graph, each variable xi (resp. clause cj)
is depicted as a circular (resp. rectangular) vertex, and there is an edge connecting
xi and cj if and only if xi appears in cj . It is also common to consider the additional
requirement that vertices representing the variables are connected by a cycle (e.g.,
the graph associated with a Boolean formula in the �rst publication [Lic82] on the
planar variants has this property).

latter variant goes by the name Not-All-Equal Satisfiability and was shown by

Schaefer [Sch78] to be NP-complete even if each clause contains at most three literals

(we provide more known results for this variant in Section 3.3).

Generalizations of Satisfiability�speci�cally, quanti�ed variants of the Boolean

satis�ability problem�turned out to be useful to obtain canonical complete problems

for complexity classes beyond NP, i.e., for classes that contain NP but may also contain

further decision problems (see, e.g., Meyer and Stockmeyer [MS72], Stockmeyer [Sto76],

Wrathall [Wra76] and Garey and Johnson [GJ79, Sec. 7.2]). We illustrate a quanti�ed

Boolean formula and the corresponding decision problem using the following example:

Φ = ∀x1∃x2∃x3[(x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)].

The quanti�ed Boolean formula Φ is considered to be true if for both possibilities to

assign a truth value to x1, there are truth values for x2 and x3 such that the unquanti�ed

part between the brackets evaluates to True; the task is then to decide whether Φ is true.

Now, consider the example Φ above. First, observe that setting all variables to False

satis�es each clause. Second, for β(x1) = True, we can satisfy all clauses by setting

β(x2) = True and β(x3) = False. Hence, the quanti�ed Boolean formula Φ is true. In

contrast, the quanti�ed Boolean formula

Φ′ = ∀x1∀x2∃x3[(x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)]

is false since, for β(x1) = True and β(x2) = False, there is no assignment of a truth value

to x3 that satis�es the �rst and the third clause simultaneously. The computational com-

11

1 Introduction

plexity class in which solving such quanti�ed Boolean formulas can be placed depends

on the type of the �rst (i.e., leftmost) quanti�er and the number of allowed alternations

between an existential and a universal quanti�er (for more details on the corresponding

system of complexity classes, i.e., the polynomial hierarchy, see Section 3.1).

Structure of the thesis

The remainder of this thesis is structured as follows: Chapter 2 is dedicated to the

objectives of the conducted research and also provides some of the background story

regarding the development of the thesis over time. Chapter 3 consists of four parts: First,

we provide necessary preliminaries on the polynomial hierarchy in Section 3.1. Second,

in Section 3.2, we present our complexity results for the considered decision problems

from phylogenetics which either concern the existence of a cherry-picking sequence for a

collection of phylogenetic trees or the comparison of the display sets of two phylogenetic

networks. Third, in Section 3.3, we present our classi�cation results for several restricted

variants of the (quanti�ed) satis�ability problem where bounded variable appearances

are a common theme. In this section, and also in Section 3.2, we provide preliminaries

on the respective topics including formal de�nitions of some concepts that we already

introduced in an intuitive manner in the introduction. Fourth, in Section 3.4, we close

the thesis with concluding remarks including comments on possible directions for future

research. Finally, the appendix contains the manuscripts that are part of this thesis.

12

2 Objectives

Initially, this thesis was planned as a continuation and broadening of the research I con-

ducted in my master's thesis [Dö14] on combinatorial auctions (here, broadening means

the additional consideration of other problems arising in the context of computational

social choice). While I contributed to several articles on this topic (speci�cally, on com-

binatorial auctions [DDEK16], tool auctions [DDE+18] and the simpli�ed group activity

selection problem [DDD+17, DDD+18b, DDDS21]) during my PhD studies, these papers

are not included in my dissertation as the focus of my thesis changed quite early on in

the process and it did not seem feasible to combine all papers in a natural way.

My research was pushed in a new direction when my PhD advisor Britta Dorn got me

in touch with Simone Linz (University of Auckland) which sparked a fruitful collabora-

tion resulting in �ve of the nine manuscripts included in this thesis. We set out to tackle

the problem of deciding whether two tree-child networks display precisely the same phy-

logenetic trees which was my �rst exposure to the fascinating world of phylogenetics

(the computational complexity of deciding this question also appears as an open prob-

lem for reticulation-visible networks in Gunawan et al. [GDZ17]). In 2017, I followed the

invitation from Simone Linz to come to Auckland, New Zealand, and jointly work with

her on this problem. Despite signi�cant e�orts, the problem withstood all our attempts

to approach it. Fortunately, Simone Linz had the idea to consider another problem

from phylogenetics�related to the reconstruction of phylogenetic networks�which asks

whether a cherry-picking sequence exists for two phylogenetic trees (the computational

complexity of this problem was stated as an open problem in Humphries et al. [HLS13a]).

Our �rst goal was to consider this question for a constant number of phylogenetic trees as

we conjectured that this problem would turn out to be NP-complete for some constant.

In the following year, following another kind invitation from Simone Linz, I came to

New Zealand for a second time as a visiting student, where we�together with Charles

Semple (University of Canterbury)�revisited the former problem on the display sets

of two phylogenetic networks. In summary, the objective was to classify the compu-

tational complexity of the problems related to the display sets and the existence of a

13

2 Objectives

cherry-picking sequence in a precise way by placing them in their respective level on the

polynomial hierarchy (speci�cally, we considered the classes P, NP, co-NP and ΠP
2).

The second part of my thesis was inspired by a conjecture [DKY14] on the computa-

tional complexity of Monotone 3-SAT with at most �ve appearances of each variable.

After con�rming this conjecture (joint work with Andreas Darmann and my PhD advisor

Britta Dorn), we extended the focus on other restrictions for variants of the satis�ability

problem while keeping the bounded variable appearances a common theme. We also

considered restricted variants of the ΠP
2 -complete quanti�ed counterparts of 3-Sat and

Not-All-Equal 3-Sat. The goal was again to place all these decision problems in the

polynomial hierarchy (as for the problems from phylogenetics, the relevant complexity

classes for the problems we considered turned out to be P, NP, co-NP and ΠP
2).

14

3 Discussion of Results

In this chapter, we present and discuss our results that place problems from phylogenetics

and satis�ability in the polynomial hierarchy. First, we provide relevant preliminaries

on the polynomial hierarchy. Second, we turn our attention to decision problems from

phylogenetics, speci�cally to the problem of deciding the existence of a cherry-picking

sequence and questions related to the display sets of phylogenetic networks. Third, we

present our complexity results for several variants of the Boolean satis�ability problem.

Finally, we make concluding remarks including possible directions for future research.

3.1 Preliminaries on the polynomial hierarchy

The polynomial hierarchy [Sto76] consists of a hierarchy of complexity classes which are

de�ned recursively as follows:

ΣP
0 = ΠP

0 = P,

and, for all k ≥ 0,

ΣP
k+1 = NPΣPk and ΠP

k+1 = co-NPΣPk ,

where a problem is in ΣP
k+1 (resp. ΠP

k+1) if the problem is in NP (resp. co-NP) when

we are given access to an oracle for ΣP
k that outputs the answer to any problem in

ΣP
k in constant time. By de�nition, we have ΣP

1 = NP and ΠP
1 = co-NP. Recall that

NP (resp. co-NP) is the class of decision problems where an appropriate certi�cate of

a yes-instance (resp. no-instance) can be veri�ed in polynomial time and P is the class

of decisions problems that have polynomial-time decision procedures (i.e., we can �nd

the answer in polynomial-time with respect to the input size). ΣP
k+1- and ΠP

k+1-hardness

are de�ned with respect to polynomial-time many-one reductions, which are also called

Karp reductions, and there are canonical complete problems�quanti�ed variants of the

satis�ability problem [Wra76]�for each of the classes ΣP
k (resp. ΠP

k), k ≥ 1. There are

several interesting and important open problems related to the polynomial hierarchy. In

particular, it is unknown whether ΣP
k+1 6= ΣP

k or ΠP
k+1 6= ΠP

k for any k ≥ 0. Note that,

15

3 Discussion of Results

for k = 0, the question whether ΣP
k+1 6= ΣP

k is the fundamental P versus NP problem.

The results in this work concern the classes P, NP, co-NP and ΠP
2 . For an in-depth

introduction into the theoretical foundations of the polynomial hierarchy we refer to

Stockmeyer [Sto76], Wrathall [Wra76], Garey and Johnson [GJ79], and de Haan [dH19].

Canonical ΠP
2 -complete problems

In the following, we use notation related to the Boolean satis�ability problem that is

formally introduced in Section 3.3 (e.g., a truth assignment β nae-satis�es a clause if

the clause has both a true and a false literal under β). The following problems are

canonical problems for the complexity class ΠP
2 . They are quanti�ed variants of 3-

SAT and Not-All-Equal 3-SAT and have both been shown to be ΠP
2 -complete (see

Stockmeyer [Sto76] and Eiter and Gottlob [EG95], respectively).

∀∃ 3-Sat [DDLS20, p. 74]

Instance. A quanti�ed Boolean formula

∀x1 · · · ∀xp∃xp+1 · · · ∃xn
m∧

j=1

cj

over a set V = {x1, x2, . . . , xn} of variables, where each clause cj is a disjunction of

at most three literals.

Question. For every truth assignment for {x1, x2, . . . , xp}, does there exist a truth

assignment for {xp+1, xp+2, . . . , xn} such that each clause of the formula is satis�ed?

∀∃ Not-All-Equal 3-SAT (∀∃ NAE-3-SAT) [DDLS20, p. 75]
Instance. A quanti�ed Boolean formula

∀x1 · · · ∀xp∃xp+1 · · · ∃xn
m∧

j=1

cj

over a set V = {x1, x2, . . . , xn} of variables, where each clause cj is a disjunction of

at most three literals.

Question. For every truth assignment for {x1, x2, . . . , xp}, does there exist a truth

assignment for {xp+1, xp+2, . . . , xn} such that each clause of the formula is nae-

satis�ed?

An important characteristic of these two problems is that there are two types of vari-

ables, namely universal variables and existential variables. Further, there is precisely

16

3.1 Preliminaries on the polynomial hierarchy

one alternation between universal and existential variables. In particular, the �rst p

variables in the list of quanti�ers are universal, which are followed by n − p existential

variables. As already mentioned in the �rst paragraph of Section 3.1, for all k ≥ 0,

canonical complete problems exist for ΣP
k+1 and ΠP

k+1, respectively. Speci�cally, the

quanti�ed variant of 3-SAT with k alternations between universal and existential quan-

ti�ers and where the list of quanti�ers starts with a universal variable (resp. existential

variable) is ΠP
k+1-complete (resp. ΣP

k+1-complete) [Wra76]. Note that, for k = 0, this

states that the quanti�ed variant of 3-SAT is co-NP-complete if all variables are uni-

versal variables and NP-complete if all variables are existential variables. Indeed, this is

just another way to de�ne the classical 3-SAT problem and its co-NP counterpart (in

the �rst problem, a certi�cate of a yes-instance is a truth assignment that satis�es the

corresponding formula and in the latter problem, a satisfying truth assignment certi�es

a no-instance).

17

3 Discussion of Results

3.2 Phylogenetics

In this section, we give an overview of our results concerning di�erent problems arising

in phylogenetics. As alluded to in the introduction, a phylogenetic network is a common

formalism to represent ancestral relationships between di�erent taxa (e.g., species). Now,

each phylogenetic network N embeds a collection of phylogenetic trees T (N) which we

call the display set of N . A natural and well-studied problem is the following one:

Tree Containment [DLS19, p. 131]

Instance. A phylogenetic tree T and a phylogenetic network N on X.

Question. Is T ∈ T (N)?

(In words: Is T contained in the display set of N ?)

In other words, given a phylogenetic tree T and a phylogenetic network N on X, the

question is whether T is embedded in N . Tree Containment was shown to be

NP-complete by Kanji et al. [KNTX08]. While this problem is known to remain NP-

complete in restricted settings (i.e., certain classes of phylogenetic networks) [vISS10],

it can be solved in polynomial time on some popular classes of phylogenetic networks

such as tree-child networks and reticulation-visible networks [vISS10, BS16, GDZ17]. In

two of our articles [DLS19, DLS21] (which we discuss in Section 3.2.3), we analyze the

computational complexity of problems related to Tree Containment. Speci�cally,

we compare the display sets of two phylogenetic networks N , N ′ with respect to the

following questions:

� T (N) ∩ T (N ′) 6= ∅? (Common-Tree-Containment)

� T (N) ⊆ T (N ′)? (Display-Set-Containment)

� T (N) = T (N ′)? (Display-Set-Equivalence)

We note that Common-Tree-Containment (resp. Display-Set-Containment) is

a generalization of Tree Containment. Further, Gunawan et al. [GDZ17] previously

asked the question whether T (N) = T (N ′) can be tested in polynomial time for two

reticulation visible networks. While this problem is�to the best of our knowledge�still

open as of writing this thesis, we were able to show that the question is ΠP
2 -complete

for two general networks and can be decided in polynomial time if the input consists of

a normal network and a tree-child network [DLS19, DLS21]. It is worthwhile to go the

extra mile and prove ΠP
2 -completeness instead of stopping at NP-hardness because the

former result has negative implications for the usefulness of encoding such a problem as

18

3.2 Phylogenetics

an NP-complete problem for which powerful solvers exist (e.g., Sat) since there is no

polynomial transformation from a ΠP
2 -complete problem to a problem in NP unless the

polynomial hierarchy collapses (cf., e.g., de Haan and Szeider [dHS19, Sec. 2.3]). It is

also worth pointing out that Tree Containment being in P for some restricted class of

phylogenetic networks does not necessarily imply that any of the comparisons described

above can be done in polynomial time for two networks of this class (e.g., we show that

Common-Tree-Containment is NP-complete [DLS19, Thm. 3.2] for a class that has

a known polynomial-time algorithm for Tree Containment).

Further, we present several complexity results for a problem related to the reconstruc-

tion of phylogenetic networks given a set of phylogenetic trees. In the reconstruction

problem, the task is to construct a phylogenetic network N (possibly of a certain class)

such that the display set T (N) contains all phylogenetic trees of the input. While such

a network always exists if we do not restrict the search space to a particular class of

phylogenetic networks (in fact, for any given set X of taxa with |X| ≥ 2, there exists

a phylogenetic network that displays all rooted binary phylogenetic trees on X [FS15,

Prop. 4]), this is not necessarily the case otherwise. For instance, for temporal net-

works [MNW+04] where some natural assumptions with respect to the �ow of time�

such as the co-existence of two species that generate a hybrid o�spring�are represented,

such a network may or may not exist depending on the input (see, e.g., Humphries et

al. [HLS13b, Fig. 2] for an example of two phylogenetic trees that cannot both be dis-

played by the same temporal network). Hence, for such classes the natural decision

problem arises that asks whether a network of the considered class exists for a given

set of phylogenetic trees. Speci�cally, for temporal networks, Humphries et al. [HLS13a]

established a characterization1 based on the existence of a cherry-picking sequence which

is a certain elimination order on the taxa constrained by the given phylogenetic trees.

In particular, they show that a cherry-picking sequence exists for a set of phylogenetic

trees P if and only if there is a temporal network N with P ⊆ T (N) [HLS13a, Thm. 1].

Furthermore, the authors left the computational complexity of deciding the existence

of a cherry-picking sequence�we call this decision problem CPS-Existence�as an

interesting open question to investigate for the case |P| = 2.

As a �rst step, we showed that CPS-Existence is NP-complete [DL18] if |P| = m

for each �xed m ≥ 8. In the same article, we presented a polynomial-time algorithm

for CPS-Existence if the number of phylogenetic trees (i.e., m) and the number of

1To be precise, the characterization established by Humphries et al. [HLS13a] is concerned with the
computation of a solution with a minimum number of reticulation events.

19

3 Discussion of Results

cherries, a certain structure that we will de�ne later, in each tree of the input are

bounded by a constant. In order to obtain the latter result, we explored connections to

automata theory, an approach which has rarely been used so far to solve problems from

phylogenetics (for instance, in Hall and Klein [HK10]). In a subsequent paper [DvIKL19],

we were able to answer the open question of Humphries et al. [HLS13a] alluded to in the

preceding paragraph by showing that CPS-Existence is NP-complete even if |P| = 2.

Hence, even for two phylogenetic trees it is NP-complete to decide whether there exists

a temporal network that embeds both trees.

3.2.1 Preliminaries

In the following, we provide preliminaries and notation for the subsequent discussion

of our results for several decision problems from phylogenetics. Here, we focus on the

aspects that are crucial to the discussion of our results. For an extensive introduction

to phylogenetics see, e.g., the book by Semple and Steel [SS03] and the book by Huson

et al. [HRS10]. Moreover, we assume the reader to be familiar with basic concepts from

graph theory and refer to Bondy and Murty [BM08] for an introduction to this topic.

Phylogenetic trees and networks

A rooted binary phylogenetic X-tree on a setX is a rooted directed tree with the following

properties:

(1) there is a unique vertex (the root) with in-degree 0 and out-degree 2,

(2) each non-root internal2 vertex has in-degree 1 and out-degree 2,

(3) all other vertices (called leaves) have in-degree 1 and out-degree 0, and

(4) the leaves are labeled with the elements from X (the labeling can be represented

by a bijective mapping from the leaf-set, i.e., the set containing all leaves, to X).

A phylogenetic network is an acyclic digraph (a digraph is a directed graph), which has

properties (1), (3) and (4) of a rooted binary phylogenetic X-tree and, additionally, each

non-root internal vertex has in-degree 1 and out-degree 2 or in-degree 2 and out-degree

1 (vertices with the latter property are called reticulations). Note that a phylogenetic

network without reticulations satis�es all properties of a rooted binary phylogenetic X-

tree. Thus, phylogenetic networks generalize the latter concept. To improve readability,

2Recall that an internal vertex is any vertex that is not a leaf.

20

3.2 Phylogenetics

we will sometimes write phylogenetic tree instead of rooted binary phylogenetic X-tree

as all trees considered in this thesis are rooted and binary (the set X is omitted if it is

clear from the context or not relevant).

Network classes

Let N be a phylogenetic network. A vertex of N is called a tree vertex if it has in-

degree 1 and out-degree 2. We say that N is a tree-child network if each non-leaf

vertex has a child that is a tree vertex (hence the name tree-child) or a leaf. Tree-

child networks were introduced by Cardona et al. [CRV09]. An arc (u, v) of N is a

shortcut if there is a directed path from u to v that does not contain (u, v). The class of

normal networks which was introduced by Willson [Wil10] consists of tree-child networks

without shortcuts. Moret et al. [MNW+04] introduced the class of temporal networks :

An arc (u, v) of a phylogenetic network N is a reticulation arc if v is a reticulation,

otherwise we say that (u, v) is a tree arc. Then, N is a temporal network if N is a

tree-child network and there is a mapping t that assigns time-stamps (i.e., positive real

numbers) to the vertices of N such that the following conditions are satis�ed:

(i) t(u) = t(v) if (u, v) is a reticulation arc and

(ii) t(u) < t(v) if (u, v) is a tree arc.

A mapping t with these properties is called a temporal labeling.

Display sets

A phylogenetic X-tree T is displayed by a phylogenetic network N (we also say N
embeds T) if T can be obtained from N by deleting vertices and arcs and repeatedly

suppressing vertices with in-degree 1 and out-degree 1. Here, suppressing a vertex v with

a single parent pv and a single child cv means to replace v and its two incident arcs with

the arc (pv, cv). The display set T (N) of a phylogenetic network N is the set containing

all phylogenetic trees that are displayed by N . Speci�cally, a tree T is displayed by N
if T ∈ T (N).

21

3 Discussion of Results

x3 x5 x2 x1 x4 x3 x4 x1 x2 x5 x1 x4 x3 x5 x2

P1

x5 x2 x1 x4 x1 x4 x5 x2

P2

x1 x4 x2 x5

x5 x4x2

P3

x2 x4 x5 x4 x5 x2

P4
x5x2 x5x2 x5x2

Figure 3.1: The permutation (x3, x1, x4, x5, x2) ofX = {x1, . . . , x5} is a cherry-picking sequence
for the three phylogenetic trees depicted in the �rst row. The rows below are
obtained by successively reducing the trees according to the de�nition of a cherry-
picking sequence. Note that, for each phylogenetic tree in P1, the leaf x3 is in a
cherry (marked by a dashed box in the �rst row of the �gure above). Analogously,
x1 (resp. x4) is in a cherry for each phylogenetic tree in P2 (resp. P3).

Cherry-picking sequences

A cherry of a tree T on X is a set containing two leaves of X that have the same

parent. Let P = {T1, T2, . . . , Tm} be a collection of phylogenetic X-trees. Note that

each phylogenetic tree in P is formed over the same set of taxa X. A cherry-picking

sequence for P is a permutation (x1, x2, . . . , x|X|) of X with the following properties:

(i) x1 is contained in a cherry of each phylogenetic tree in P1 = P and,

(ii) for 2 ≤ j ≤ |X| − 1, xj is in a cherry of each phylogenetic tree in Pj where

Pj is obtained from Pj−1 by deleting xj−1 in each phylogenetic tree in Pj−1 and

suppressing the resulting vertex with in-degree 1 and out-degree 1.

For an example of a cherry-picking sequence for three phylogenetic trees see Figure 3.1.

22

3.2 Phylogenetics

Automata and formal languages

An alphabet is a �nite set Σ and a word is a �nite string that can be formed by con-

catenating symbols of Σ (repetitions of symbols within a word are allowed). The set Σ∗

containing all possible words that can be formed over Σ is expressed using the Kleene

star operator ∗. Now, a language is a subset of Σ∗ (i.e., a language is a subset of the

words that can be formed over an alphabet). A deterministic �nite automaton (abbre-

viated DFA) is an abstract model used to recognize languages of a certain class (regular

languages). Formally, a DFA is a tuple A = (Q,Σ, δ, qini, F), where

(i) Q is a �nite set of states,

(ii) Σ is a �nite alphabet,

(iii) δ : Q× Σ→ Q is a transition relation,

(iv) qini is the initial state, and

(v) F ⊆ Q are �nal states.

Given a word w ∈ Σ∗, a DFA A reads the symbols of w from left to right and changes

its state according to the transition relation δ. If A is in a �nal state after processing all

symbols of w, we say that A accepts w. The language consisting of all words accepted

by A is denoted with L(A) and we say that A recognizes the language L(A). For more

details on automata theory and languages we refer to Hopcroft and Ullman [HU79].

Problem statements

In the following paragraph, we de�ne the main decision problems that we discuss in the

remainder of this section (speci�cally, in Section 3.2.2 and Section 3.2.3, respectively).

First, we state the decision problem related to cherry-picking sequences.

CPS-Existence [DL18, p. 38]

Instance. A collection P of rooted binary phylogenetic X-trees.

Question. Does there exist a cherry-picking sequence for P?

Furthermore, we are interested in the following three decision problems related to the

display sets of two phylogenetic networks N and N ′.

23

3 Discussion of Results

Common-Tree-Containment [DLS19, p. 132]

Instance. Two phylogenetic networks N and N ′ on X.

Question. Is T (N) ∩ T (N ′) 6= ∅?
(In words: Is there a phylogenetic X-tree displayed by both N and N ′?)

Display-Set-Containment [DLS19, p. 132]

Instance. Two phylogenetic networks N and N ′ on X.

Question. Is T (N) ⊆ T (N ′)?
(In words: Is each phylogenetic X-tree displayed by N also displayed by N ′?)

Display-Set-Equivalence [DLS19, p. 132]

Instance. Two phylogenetic networks N and N ′ on X.

Question. Is T (N) = T (N ′)?
(In words: Do N and N ′ display the same set of phylogenetic X-trees?)

As already brie�y mentioned in the beginning of Section 3.2, the decision problems

Common-Tree-Containment and Display-Set-Containment are generalizations

of Tree Containment. To this end, consider Common-Tree-Containment ifN ′ =
T where T is a phylogenetic X-tree (resp. N = T for Display-Set-Containment).

3.2.2 Deciding the existence of a cherry-picking sequence

Let P be a collection of rooted binary phylogenetic X-trees. In this section, we present

our results [DL18, DvIKL19] regarding the computational complexity of CPS-Existence.

First, we sketch a proof of hardness if the number of phylogenetic trees in P is not

bounded as this proof already contains some of the key ingredients used in establishing

our result [DL18, Thm. 4.2] for |P| = 8 trees while being less technical. To this end, we

obtain NP-hardness of CPS-Existence by a reduction3 from the following problem.

Betweenness

Instance. A �nite set A and a collection C of triples of distinct elements in A.

Question. Does there exist a total linear ordering on the elements in A such that

ai < aj < ak or ak < aj < ai for each (ai, aj, ak) ∈ C?

3This reduction was not previously published as we were quickly able to show hardness if the number
of phylogenetic trees is constant.

24

3.2 Phylogenetics

ak aj ai1 ain−3d1 dn−3d0ai ak aj ai1 ain−3d1 dn−3d0ai

Figure 3.2: The two phylogenetic trees constructed for each triple (ai, aj , ak) of an instance of
the Betweenness problem. The two subtrees that are enforcing the betweenness
constraint are marked with dashed rectangles. The elements with indices ij , 1 ≤
j ≤ n− 3, are the elements not appearing in the triple.

Betweenness was shown to be NP-complete by Opatrny [Opa79]. Intuitively speaking,

we are looking for an ordering of the elements in A such that a number of constraints,

each given by a triple, are satis�ed. For each triple (ai, aj, ak), a solution, i.e., an ordering

of the elements in A, must place aj between ai and ak. Now, let us consider an instance

of this problem with A = {a1, . . . , an} and a collection C ⊆ A×A×A of triples. Then,

we construct the two phylogenetic trees shown in Figure 3.2 for each (ai, aj, ak) ∈ C

(except for the part in the dashed rectangle all constructed trees are identical), where

D = {d0, . . . , dn−3} are dummy variables. Thus, we construct 2 · |C| phylogenetic trees
in total. Let us consider the two phylogenetic trees�in particular the parts shown in the

dashed rectangle�constructed for a triple (ai, aj, ak). Observe that {ai, ak} is a cherry

in both trees, but aj is not in a cherry in the right tree in Figure 3.2. Hence, either ai

or ak precedes aj in any cherry-picking sequence for these phylogenetic trees. Moreover,

the right phylogenetic tree enforces that at least two of ai, aj, ak must be placed before d0

and, by the left phylogenetic tree, the second element in this subsequence must be aj.

Therefore, a cherry-picking sequence for all constructed trees yields a solution to the

instance of Betweenness (by ignoring the dummy variables or, more precisely, taking

the subsequence of the elements in A). Since the two phylogenetic trees constructed

for a triple (ai, aj, ak) do not restrict the placement of the elements in A \ {ai, aj, ak}
(these elements are each in a cherry with some dummy variable), it is straightforward to

construct a cherry-picking sequence given a solution to the instance of Betweenness.

Noting that the described transformation is polynomial and a cherry-picking sequence

can be veri�ed in polynomial time, we conclude that CPS-Existence is NP-complete.

Let us now come back to the results established in our papers [DL18, DvIKL19] that

show hardness even if the number of phylogenetics trees is bounded by a constant.

25

3 Discussion of Results

Hardness for eight trees

Knowing that CPS-Existence is NP-complete in general, the next obvious question is

whether or not the problem remains hard for a constant number of phylogenetic trees.

We started with the idea that we may be able to represent multiple triples in the same

two phylogenetic trees if the triples are pairwise disjoint (i.e., each of the two phyloge-

netic trees would have additional subtrees as the ones shown in the dashed rectangle

in Figure 3.2). Hence, to consider this approach, we need an NP-complete decision

problem similar to Betweenness such that the set of constraints (e.g., represented

by triples) can be partitioned into a constant number of subsets such that elements of

each subset are pairwise disjoint. To this end, we introduced the following restricted

variant of the Intermezzo problem (the general version was introduced and shown to

be NP-complete by Guttmann and Maucher [GM06]).

N-Disjoint-Intermezzo [DL18, p. 39]

Instance. A �nite set A, collections B1, B2, . . . , BN of pairs consisting of distinct

elements from A, and collections C1, C2, . . . , CN of triples consisting of distinct el-

ements from A such that, for each ` ∈ {1, 2, . . . , N}, the elements in B` ∪ C` are

pairwise disjoint.

Question. Does there exist a total linear ordering on the elements in A such that

ai < aj for each (ai, aj) ∈
⋃

1≤`≤N
B`,

and

ai < aj < ak or aj < ak < ai for each (ai, aj, ak) ∈
⋃

1≤`≤N
C`?

The proof of Guttmann and Maucher [GM06, Lem. 1] yields the following result if a

restricted variant of 3-SAT is used in the reduction.

Theorem 1 ([DL18, Thm. 3.1]). 4-Disjoint-Intermezzo is NP-complete.

Reducing from 4-Disjoint-Intermezzo, we obtained the following result. The main

idea is to enforce the constraints similar to the approach taken for the proof of the

general case�the subtrees are a bit more involved for the Intermezzo constraints�

and to represent all elements in B` ∪ C` (as de�ned in the above problem de�nition)

within the same pair of phylogenetic trees.

26

3.2 Phylogenetics

Theorem 2 ([DL18, Thm. 4.2]). Let P = {T1, T2, . . . , Tm} be a collection of rooted

binary phylogenetic X-trees. CPS-Existence is NP-complete for m = 8.

In an instance of 4-Disjoint-Intermezzo, we can split sets of constraints which

contain at least two elements (i.e., B` ∪ C` for all ` with |B` ∪ C`| ≥ 2) into multiple

non-empty subsets. Using this, it is straightforward to show NP-completeness of N-

Disjoint-Intermezzo for each �xed N ≥ 4. Moreover, we can increase the number of

phylogenetic trees in the reduction from N-Disjoint-Intermezzo to CPS-Existence

by one if we introduce a phylogenetic tree corresponding to an empty set of constraints,

say BN+1 ∪CN+1 = ∅ (in this case the two phylogenetic trees constructed similar to the

ones shown in Figure 3.2 are identical), and obtain the following corollary.

Corollary 1 ([DL18, Cor. 4.3]). Let P = {T1, T2, . . . , Tm} be a collection of rooted binary

phylogenetic X-trees. CPS-Existence is NP-complete for any �xed m with m ≥ 8.

Hardness for two trees

In the above presented results, we established that CPS-Existence is hard for a con-

stant number of trees. Using the strategy described for m = 8 phylogenetic trees, the

question of Humphries et al. [HLS13a] regarding the complexity for m = 2 seemed out

of reach since a straightforward adaption of the reduction would have required NP-

hardness of 1-Disjoint-Intermezzo (this variant can be solved in polynomial time

though, since all constraints are disjoint and, thus, can always be simultaneously satis-

�ed). However, by a rather complex reduction from 3-SAT, we obtained the following

theorem.

Theorem 3 ([DvIKL19, Thm. 1]). Let P = {T1, T2, . . . , Tm} be a collection of rooted

binary phylogenetic X-trees. CPS-Existence is NP-complete for m = 2.

The reduction and the involved gadgets used in the proof of Theorem 3 are more

complex compared to the sketched reduction from Betweenness for the general case

(for an unbounded number of phylogenetic trees). The following two lemmas concern

structural properties of cherry-picking sequences that turned out to be very useful in

the proof of Theorem 3. The �rst lemma makes it possible to consider cherry-picking

sequences for a collection P of phylogenetic trees which are de�ned on di�erent sets Xi,

1 ≤ i ≤ |P|, instead of requiring that they are all phylogenetic X-trees on the same set

X. Intuitively, we want that a phylogenetic Xi-tree Ti does not constrain the ordering

of any element xj 6∈ Xi. To this end, we simply de�ne xj to be in a cherry of each

27

3 Discussion of Results

x y

Tj Tk

Tj,k

Figure 3.3: The compound tree Tj,k of Tj and Tk on disjoint sets Xj and Xk, respectively. We
omitted some details from the original �gure in Döcker et al. [DvIKL19, Fig. 3].
The two leaves x and y are introduced to ensure that the last appearance of an
element from Xj (resp. Xk) ends up in a cherry of the tree obtained by reducing
the compound tree according to the preceding elements.

phylogenetic Ti. Thus, we obtain a straightforward generalization of a cherry-picking

sequence to phylogenetic trees which are not necessarily on the same set.

Lemma 1 ([DvIKL19, Lem. 1]). Let P = {T1, T2, . . . , Tm} be a collection of rooted binary

phylogenetic trees such that, for each i ∈ {1, . . . ,m}, Ti is a Xi-tree (i.e., the trees in P
are not necessarily on the same set of taxa). Then we can construct in polynomial time

a collection P ′ of m rooted binary phylogenetic trees all on the same set of taxa, such

that P has a cherry-picking sequence if and only if P ′ does.

Note that Lemma 1 could also be used to simplify our reduction from Betweenness

as the two phylogenetic trees shown in Figure 3.2 can be replaced by the two subtrees

shown in the dashed rectangles. Hence, the lemma improves readability since it enables

us to focus on the crucial parts of the constructions. Now, the following lemma formalizes

the idea that two phylogenetic trees Tj and Tk on disjoint sets can be represented in a

single phylogenetic tree called the compound tree of Tj and Tk (see Figure 3.3). For a

formal de�nition of the compound tree, we refer to Döcker et al. [DvIKL19]. Intuitively,

we merge several phylogenetic trees on disjoint sets into one larger phylogenetic tree

while preserving the existence and non-existence of a cherry-picking sequence. A similar

idea was also used in our previous approach for m = 8 phylogenetic trees.

Lemma 2 ([DvIKL19, Lem. 2]). Let P = {T1, T2, . . . , Tm} be a collection of rooted binary

phylogenetic trees such that, for each i ∈ {1, . . . ,m}, Ti is a Xi-tree, and let Tj and Tk be
two trees in P such that Xj ∩Xk = ∅. Let Tj,k be the compound tree of Tj and Tk. Then
P has a cherry-picking sequence if and only if (P \{Tj, Tk})∪{Tj,k} has a cherry-picking

sequence.

28

3.2 Phylogenetics

An interesting application of Lemma 1 that is not mentioned in Döcker et al. [DvIKL19]

is the following: Given a collection P of m phylogenetic X-trees, we can add any phy-

logenetic X ′-tree with X ∩ X ′ = ∅ to P and apply Lemma 1 to construct a set P ′ of
m+1 phylogenetic X ′′-trees that has a cherry-picking sequence if and only if the original

set P of m phylogenetic X-trees has a cherry-picking sequence. Hence, we obtain the

following corollary which closes the gap between Theorem 3 and Corollary 1.

Corollary 2. Let P = {T1, T2, . . . , Tm} be a collection of rooted binary phylogenetic

X-trees. CPS-Existence is NP-complete for any �xed m with m ≥ 2.

Bounding the number of cherries

Faced with the hardness of CPS-Existence for a constant number of phylogenetic

trees�as we just alluded to, it is NP-complete even for two phylogenetic trees�a natural

follow-up question is whether there are topological properties of the input trees that

alleviate the computational complexity of the problem. Since cherries play an important

role in the problem, bounding the number of cherries in each phylogenetic tree seems

like the obvious approach. Indeed, the main result [DL18, Thm. 5.1] presented in this

section states that CPS-Existence is solvable in polynomial time if both the number

of phylogenetic trees in the input P and the number of cherries in each phylogenetic tree

T ∈ P are bounded by, not necessarily the same, constants.

We need some more notation: A cherry-picked tree of a phylogenetic X-tree T is a

phylogeneticX ′-tree T ′ withX ′ ⊂ X that can be obtained from T by repeatedly deleting

a leaf in a cherry and suppressing vertices of in-degree 1 and out-degree 1 (intuitively, T ′
is a phylogenetic tree that can occur as an intermediate step when reducing T according

to a cherry-picking sequence). Now, C(T) is de�ned as the set containing all cherry-

picked trees of T (including T itself and the completely reduced tree with no vertices).

For instance, each phylogenetic tree in the �rst column of Figure 3.1 is a cherry-picked

tree of the phylogenetic tree shown in the top left corner of the �gure. For the rigorous

de�nition of C(T), see our paper [DL18, Sec. 5] in the appendix. Furthermore, we denote

the number of cherries in a phylogenetic tree T by cT . For a phylogenetic X-tree, we

consider the language

LX(T) = {x1x2 . . . x|X| | (x1, x2, . . . , x|X|) is a cherry-picking sequence for T }.

Note that LX(T) is not empty since each phylogenetic X-tree T has a cherry-picking

sequence (in particular, T has a cherry if |X| ≥ 2). Further, unless P = NP, it follows

29

3 Discussion of Results

that it is not possible to construct a deterministic �nite automaton (DFA) in time

bounded by a polynomial in |X| that recognizes LX(T) in general (i.e., if cT is not

constant). Suppose that we can construct such a DFA in polynomial time. Then, a

cherry-picking sequence for two phylogenetic X-trees T1, T2 exist if and only if

LX(T1) ∩ LX(T2) 6= ∅.

LetA1, A2 be two DFAs that recognize LX(T1) and LX(T2), respectively. Then, checking

for non-emptiness of LX(T1) ∩ LX(T2) can be done in polynomial time using the well-

known construction of a product automaton [Koz97] which also works for more than two

automata (see Döcker and Linz [DL18] for more details).

In order to make use of the presented ideas, we need a way to construct an automaton

that recognizes LX(T) for a phylogenetic X-tree T . A useful result [DL18, Lem. 5.5]

which we obtained with the help of a perhaps surprisingly complex representation of T
is that |C(T)| ≤ (|X| + 1)4cT −2. In particular, if cT is constant, the number of cherry-

picked trees of T is polynomial in the number of leaves |X|. Hence, in this case, it

is computationally feasible to represent T and each cherry-picked tree of T by a state

in a DFA AT . Then, we introduce a transition δ(q, a) = q′ if a is a leaf in a cherry

of the phylogenetic tree, say Tq, represented by the state q and the phylogenetic tree

represented by q′ can be obtained from Tq by deleting the leaf a (and suppressing the

resulting vertex of in-degree 1 and out-degree 1 if Tq contains at least three leaves).

Otherwise, if a is not in a cherry of Tq, the automaton AT transitions into a special

state qe where AT stays forever (i.e., δ(q, a) = qe and δ(qe, a
′) = qe for all a

′ ∈ X). The

initial state of AT is the one corresponding to T and we mark the state corresponding

to the empty phylogenetic tree (i.e., without any vertices) as the �nal state. For the

technical details and a proof of the following lemma, we refer to our paper [DL18].

Lemma 3 ([DL18, Lem. 5.6]). Let T be a rooted binary phylogenetic X-tree. There is a

deterministic �nite automaton AT with O(|X|4cT −2) states that recognizes the language

LX(T) = {x1x2 . . . x|X| | (x1, x2, . . . , x|X|) is a cherry-picking sequence for T }.

Moreover, the automaton AT can be constructed in time f(|X|, cT) ∈ |X|O(cT).

By observing the equivalence of solving CPS-Existence for phylogenetic X-trees

T1, T2, . . . , Tm and deciding whether
⋂

1≤i≤m LX(Ti) 6= ∅, and using the product automa-

ton construction for the DFAs ATi , 1 ≤ i ≤ m, we obtained the following theorem.

30

3.2 Phylogenetics

Theorem 4 ([DL18, Thm. 5.1]). Let P = {T1, T2, . . . , Tm} be a collection of rooted

binary phylogenetic X-trees. Let c be a maximum element in {cT1 , cT2 , . . . , cTm}. Then

solving CPS-Existence for P takes time

O

(
|X|m(4c−2)+1 +

m∑

i=1

fi(|X|, cTi)
)
,

where fi(|X|, cTi) ∈ |X|O(cTi). In particular, the running time is polynomial in |X| if c
and m are constant.

It would be interesting to know whether solving CPS-Existence for phylogenetic

X-trees T1, T2, . . . , Tm can be done in polynomial time if the maximum element c ∈
{cT1 , cT2 , . . . , cTm} is constant but the number m of phylogenetic trees in the input is not

constant (e.g., if m is allowed to depend on |X|). We leave the analysis of this case as

an open question for future work. Note that, by Theorem 3, the reverse case�i.e., m is

constant and c is unbounded�is NP-complete even for m = 2.

31

3 Discussion of Results

3.2.3 Displaying trees across two phylogenetic networks

Let N and N ′ be phylogenetic networks on a set X. In this section, we present our

results for several questions related to the display sets of N and N ′. First, we consider
Common-Tree-Containment where the task is to check whether the two networks

display a common tree (i.e., we need to decide whether T (N) ∩ T (N ′) 6= ∅).

Hardness of Common-Tree-Containment

We obtained the following theorem by a reduction from 3-SAT.

Theorem 5 ([DLS19, Thm. 3.2]). Common-Tree-Containment is NP-complete when

the input consists of two temporal normal networks.

The following corollary is an immediate consequence of Theorem 5.

Corollary 3 ([DLS19, Cor. 3.3]). Let N and N ′ be two temporal normal networks on

X. It is co-NP-complete to decide if T (N) ∩ T (N ′) = ∅.

Recall that a normal network is a tree-child network without shortcuts. Hence,

Common-Tree-Containment remains NP-hard for a strict subclass of phylogenetic

networks for which we can decide Tree Containment in polynomial time. In the

proof of Theorem 5, we showed that the problem is in NP using the polynomial algo-

rithm of van Iersel et al. [vISS10] solving Tree Containment for tree-child networks

(i.e., guess a phylogenetic tree and verify in polynomial time whether it is contained in

both display sets). Now, since Tree Containment is NP-hard in general [KNTX08],

we cannot automatically place Common-Tree-Containment in NP for general net-

works (indeed, the other problems we consider later with respect to the display set turn

out to be complete for ΠP
2 and, thus, are unlikely to be contained in NP). By using

a di�erent certi�cate, we obtained the following proposition showing that Common-

Tree-Containment remains in NP for two unrestricted phylogenetic networks.

Proposition 1 ([DLS19, Cor. 5.3]). Common-Tree-Containment is NP-complete

for two arbitrary phylogenetic networks.

32

3.2 Phylogenetics

Computational complexity of Display-Set-Equivalence

The main result in this section is that it is ΠP
2 -complete to decide whether T (N) = T (N ′)

for two phylogenetic networks N and N ′. We obtained this result by a polynomial re-

duction from Display-Set-Containment (i.e., the question whether T (N) ⊆ T (N ′)).
For this sake, we �rst needed to show ΠP

2 -completeness of Display-Set-Containment.

Since this problem is a generalized variant of Tree Containment, we already knew

that it is NP-hard at the least. Kanj et al. [KNTX08, Thm. 3.1] showed NP-hardness of

Tree Containment by a reduction from the problem of �nding vertex-disjoint paths

between given pairs of vertices of an acyclic digraph (this problem is called the Node-

disjoint Paths problem in their article). Another name used for the latter problem�

where the graph is not necessarily directed and acyclic�is Disjoint Connecting

Paths (see Garey and Johnson [GJ79, p. 217]). Hence, starting the chain of reduc-

tions leading to ΠP
2 -completeness of Display-Set-Containment and �nally Display-

Set-Equivalence with a ΠP
2 variant of Disjoint Connecting Paths seemed like a

promising approach. To this end, we introduced the following decision problem where

πi denotes a directed path from si to ti for a pair of vertices (si, ti) in an acyclic digraph.

∀∃ Directed-Disjoint-Connecting-Paths [DLS19, p. 136]
Instance. A directed graph G and two collections

P ∀ = {(s1, t1), (s2, t2), . . . , (sp, tp)},
P ∃ = {(sp+1, tp+1), (sp+2, tp+2), . . . , (sk, tk)}

of disjoint pairs of vertices in G such that 1 ≤ p < k and, for each (si, ti) ∈ P ∀,

there exists a directed path from si to ti in G.

Question. For each set Π∀ = {π1, π2, . . . , πp} of directed paths, does there exist a

set Π∀ ∪ {πp+1, πp+2, . . . , πk} of mutually vertex-disjoint directed paths in G?

By a reduction from ∀∃ 3-SAT, we obtained the following result regarding a restricted

variant of the above problem, where the input graph is a particular phylogenetic network

(the structure of an instance of this restricted variant is shown in Figure 3.4).

Theorem 6 ([DLS19, Thm. 4.1]). The decision problem ∀∃ Phylo-Directed-Disjoint-
Connecting-Paths is ΠP

2 -complete.

As a consequence of Theorem 6, we obtained the following corollary.

33

3 Discussion of Results

sp+1 sk

tp+1 tk

s1

t1

sp

tp

t0

Figure 3.4: Structure of an instance of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths.
Each squiggly line is a directed path. For each i ∈ {1, . . . , p}, there are precisely two
paths from si to ti which only have the �rst vertex (i.e., si) and the last two vertices
(ti and its unique parent) in common (moreover, for j, k ∈ {1, . . . , p} with j 6= k,
no path from sj to tj intersects with a path from sk to tk). We called this property
the two-path property relative to p in Döcker et al. [DLS19, Sec. 4.1]. Depending on
the given instance, these paths may intersect otherwise (e.g., a path from s1 to t1
and a path from sp+1 to tp+1) and for i > p, there may be more than two paths
from si to ti.

Corollary 4 ([DLS19, Cor. 4.2]). The decision problem ∀∃ Directed-Disjoint-Connect-
ing-Paths is ΠP

2 -complete.

By a reduction from ∀∃ Phylo-Directed-Disjoint-Connecting-Paths toDisplay-
Set-Containment, we obtained the following theorem.

Theorem 7 ([DLS19, Thm. 4.3]). Display-Set-Containment is ΠP
2 -complete.

In the proof of Theorem 7, we constructed two networks N1 and N2 (depicted in Fig-

ure 3.5) for which T (N1) ⊆ T (N2) if and only if the given instance, say I, of ∀∃ Phylo-
Directed-Disjoint-Connecting-Paths is a yes-instance. Let G be the graph cor-

responding to the instance I. Then, the network N2 is obtained from G by, for each

i ∈ {1, . . . , p}, subdividing both of the two outgoing arcs of si with two new vertices and

attaching a new leaf (t′i and t
′′
i , respectively) to each of the introduced vertices (compare

the generic instance shown in Figure 3.4 and the network N2 in Figure 3.5). Now, each

phylogenetic tree in the display set of N1 encodes a selection of paths connecting the

pairs in P ∀ = {(s1, t2), . . . , (sp, tp)}. By the two-path property (alluded to in the cap-

tion of Figure 3.4) there are precisely two paths from si to ti for each (si, ti) ∈ P ∀. Let
(si, ti) ∈ P ∀ be a pair of vertices and let πi, π

′
i be the two directed paths from si to ti.

34

3.2 Phylogenetics

sp tp+1 tk

tpt′p t′′p

sp+1 sk

tp+1 tk

s1

t1

t′1t
′′
1

sp

tp

t′pt
′′
p

N1 N2

s1

t1t′1 t′′1

t0
t0

Figure 3.5: Networks constructed in the reduction from ∀∃ Phylo-Directed-Disjoint-Con-
necting-Paths to Display-Set-Containment (some details of our original �g-
ure [DLS19, Fig. 6] were omitted or revised to keep the presentation consistent with
the rest of this thesis, respectively). Each squiggly line is a directed path. Depend-
ing on the given instance, these paths may intersect and for i > p, there may be
more than two paths from si to ti.

Intuitively, for i ∈ {1, . . . , p}, a phylogenetic tree T ∈ T (N1) encodes the selection of πi

if {ti, t′1} is a cherry of T and the selection of π′i if {ti, t′′1} is a cherry of T , respectively.
Shifting the attention back to N2, we can embed T in N2 if and only if there is a se-

lection of mutually vertex-disjoint paths in G connecting all pairs (si, ti) of the instance

and using the paths encoded by T for i ≤ p. In Figures 3.6 and 3.7, we illustrate the

direction for which the path problem is a yes-instance (see Döcker et al. [DLS19] for a

detailed proof of both directions).

By a reduction fromDisplay-Set-Containment, we obtained the following theorem

(for the proof involving rather complex constructions, we refer to our article [DLS19,

Thm. 4.5]).

Theorem 8 ([DLS19, Thm. 4.5]). Display-Set-Equivalence is ΠP
2 -complete.

In contrast, if an instance of Display-Set-Equivalence consists of a normal and a

tree-child network, we obtained the following result by comparing local structures and

successively reducing the two networks in a way that preserves the answer to the decision

problem.

Theorem 9 ([DLS21, Thm. 1.1]). Let N and N ′ be normal and tree-child networks on

X, respectively. Then deciding if T (N) = T (N ′) can be done in time quadratic in the

size of X.

35

3 Discussion of Results

t0
s1 s2 s3

t1 t2 t3

t0
s1 s2 s3

t1 t2 t3

s1

t1t′1 t′′1

t0 t2 t3

N1

N2

G

t′1

t′′1

Figure 3.6: Example showing the transformation of the instance of ∀∃ Phylo-Directed-

Disjoint-Connecting-Paths de�ned by the graph G depicted on the left,
P ∀ = {(s1, t1)} and P ∃ = {(s2, t2), (s3, t3)} into the instance of Display-Set-
Containment depicted on the right.

36

3.2 Phylogenetics

t0
s1 s2 s3

t1 t2 t3

s1

t1t′1 t′′1

t0 t2 t3

T1

N2

t′1

t′′1

s1

t1t′1 t′′1

t0 t2 t3

T2

t0
s1 s2 s3

t1 t2 t3

N2

t′1

t′′1

Figure 3.7: Continuation of the example shown in Figure 3.6. The display set of N1 contains
precisely the two phylogenetic trees T1 and T2 depicted above. In the lower part of
the �gure, we illustrated how these trees can be embedded into N2 using a selection
of mutually vertex-disjoint paths connecting each pair in {(s1, t1), (s2, t2), (s3, t3)}
(the selection is indicated by bold arcs). Note that deleting the dashed arcs and
suppressing vertices of in-degree 1 and out-degree 1 yields T1 and T2, respectively.

37

3 Discussion of Results

Observe that there is a gap between the results obtained in Theorem 8 and Theorem 9

leaving plenty of room for future research regarding the computational complexity of

Display-Set-Equivalence. In particular, the question of Gunawan et al. [GDZ17] for

two reticulation-visible networks�which we alluded to in the beginning of Section 3.2�

remains open. Our results make progress towards an answer to their question as follows.

First, Theorem 9 shows thatDisplay-Set-Equivalence can be solved in polynomial

time if one network is normal and the other one is tree-child, respectively. Since both

of these classes are well-known to be properly contained in the class of reticulation-

visible networks, we provided a polynomial-time algorithm for a more restricted setting.

An obvious follow-up question is whether the computational complexity of the problem

changes if both networks are only required to be tree-child (cf. Döcker et al. [DLS21]).

Second, we showed that Display-Set-Equivalence is very hard, i.e., ΠP
2 -complete,

for the more general setting where the phylogenetic networks in the input are not required

to be of a certain class. As noted in the conclusion in Döcker et al. [DLS19], it is unlikely4

that Display-Set-Equivalence is ΠP
2 -complete for two phylogenetic networks N and

N ′ for which we can decide Tree Containment in polynomial time (deciding whether

T (N) = T (N ′) is in co-NP in this case). Hence, it would be interesting to know

whether there are relevant network classes (e.g., reticulation-visible networks) for which

Display-Set-Equivalence is co-NP-complete.

4The word unlikely is used a bit loosely here. To be precise, the result would lead to a collapse of
the polynomial hierarchy to the �rst level. While this possibility cannot be completely discarded, it
would be surprising in a similar way to P being equal to NP (though the latter has even stronger
consequences, i.e., a complete collapse of the polynomial hierarchy).

38

3.3 Satis�ability

3.3 Satis�ability

In this section, we give an overview of the main results we obtained for several variants

of the satis�ability problem for Boolean formulas�most of these results are sharp with

respect to the chosen problem parameters. In particular, our results place these variants

in one of the complexity classes P, NP, co-NP or ΠP
2 of the polynomial hierarchy (see

Section 3.1 for a brief introduction into the polynomial hierarchy). Our results were

already used to analyze the computational complexity of decision problems from di�erent

areas such as computational social choice (speci�cally, group activity selection [Dar18,

Thm. 5]), graph theory (see, e.g., Chudnovsky et al. [CHR+20, Thm. 16] or Krysta et

al. [KMZ20, p. 39]) and graph drawing (see Alam et al. [AKM17, Sec. 4]).

First, we considerMonotone 3-SAT for which hardness was shown by Gold [Gol78].

In this variant, each clause is required to be monotone (a clause is monotone if either

all of the contained variables are negated or none of them are). Further, Monotone

3-SAT is also known to be NP-complete if each clause contains exactly three distinct

literals [Li97] (if not explicitly mentioned otherwise, we consider this variant in the fol-

lowing). Our research interest for restricted variants of this problem was sparked by the

conjecture that Monotone 3-SAT remains NP-hard if each variable appears at most

�ve times which was stated, and attributed to Eisenstat, in the scribe notes [DKY14]

of lecture held by Demaine at the Massachusetts Institute of Technology (Eisenstat was

one of the teaching assistants for the corresponding course with the title �Algorithmic

Lower Bounds: Fun with Hardness Proofs�). In fact, a stronger version of this conjec-

ture is true: In a working paper (see Darmann and Döcker [DD16]), we proved that

Monotone 3-SAT is NP-complete if each variable appears at most four times. For the

published journal version [DDD18a], we combined these results with another working

paper [DDD16], in which we obtained NP-hardness results for bounded (with respect to

variable appearances) variants of Planar Monotone (2, 3)-SAT, where each clause

contains either two or three distinct literals and the associated bipartite incidence graph5

is planar. We note that the unbounded version was already known to be NP-complete

by a result from de Berg and Khosravi [dBK12]. In subsequent articles [DD21, Döc19],

we re�ned our previous results for Monotone 3-SAT. For example, we showed that

Monotone 3-SAT remains NP-complete if each variable appears exactly twice un-

negated and exactly twice negated.

Second, we present our hardness result [DD20] for Not-All-Equal 3-SAT (NAE-3-

5Each variable and each clause is represented by a vertex and there is an edge between a variable
vertex, say v, and a clause vertex, say c, if v appears in c (unnegated or negated).

39

3 Discussion of Results

SAT), where a satisfying truth assignment sets at least one literal in each clause to True

and at least one to False, respectively. Speci�cally, we showed that the problem remains

NP-hard if there are no negations present in the formula, each clause consists of exactly

three distinct variables, each variable appears in exactly four clauses and each pair of

distinct clauses shares at most one variable (Boolean formulas with the latter property

are called linear). The novelty of our contribution in relation to a previous result from

Porschen et al. [PSSW14, Thm. 3] for linear instances of NAE-3-SAT is the bound on

the variable appearances.

Finally, we outline our results [DDLS20] for the ΠP
2 -complete decision problems ∀∃

3-SAT and ∀∃ NAE-3-SAT (see Section 3.1 for a formal description of these problems).

Both of these problems are canonical problems for the complexity class ΠP
2 and they are

frequently used to obtain hardness results for this class (similar to the role of the unquan-

ti�ed counterparts for obtaining NP-hardness results). Hence, showing ΠP
2 -completeness

of ∀∃ 3-SAT and ∀∃ NAE-3-SAT in restricted settings is important as it helps to

� simplify the design of polynomial transformations that reduce from these problems,

� obtain stronger results since restrictions may carry over in some way (cf. Döcker

et al. [DDLS20, p. 72]).

Note that showing NP-completeness of restricted variants of 3-SAT and NAE-3-SAT

is helpful in the same way (in obtaining NP-hardness results). Furthermore, obtaining

sharp results also leads to a better understanding of ΠP
2 as we gain insights under which

restrictions the canonical problems remain ΠP
2 -hard and at what point the problem

becomes easier (i.e., we obtain membership in P, NP or co-NP).

In this thesis, a result is considered sharp with respect to a restriction if a minimal

deviation allows the problem to be placed on a lower level of the polynomial hierarchy.

For instance, we showed thatMonotone 3-SAT is NP-complete if each variable appears

k times unnegated and k times negated for each �xed k ≥ 2 (see Theorem 11). The

restriction k = 2 is sharp, since all instances of Monotone 3-SAT where k = 1 are

satis�able by a well-known result from Tovey [Tov84, Thm. 2.4]. We say that a hardness

result R is stronger than some other result R′ if one the following conditions holds:

(1) both results are obtained for the same decision problem and R shows hardness

of the problem for a complexity class that is on a higher level of the polynomial

hierarchy, or

40

3.3 Satis�ability

(2) both results obtain hardness for the same complexity class and the decision problem

considered by R is a special case of the decision problem considered by R′ (i.e.,

the instances of the former problem satisfy additional properties).

Throughout the thesis, we have the second condition in mind when speaking of �stronger

results� unless it is explicitly mentioned otherwise. For instance, showing NP-hardness

of Monotone 3-SAT if each variable appears at most four times is a stronger result

than establishing this classi�cation result if each variable appears at most �ve times.

3.3.1 Formal framework

Let V = {x1, x2, . . . , xn} be a set of variables. A literal is an element of the set L =

{xi, xi | 1 ≤ i ≤ n}, where xi denotes the negation of the variable xi. A clause cj is

a disjunction of literals, which we describe as a subset of L. Another common way to

describe clauses uses the symbol ∨ (read �or�). For instance, the clause {x1, x2, x3} is
written as x1 ∨ x2 ∨ x3 in this notation. Further, a k-clause contains exactly k distinct

literals. We say that a clause is positive (resp. negative) if the clause is a subset of V (resp.

a subset of L \ V); otherwise we say that the clause is mixed. A Boolean formula ϕ =⋃m
j=1{cj} in conjunctive normal form (CNF) is a conjunction of clauses c1, . . . , cm. If

clauses are described using the symbol ∨, then we use the symbol ∧ (read �and�) to

express a conjunction of clauses, i.e., a formula is written as ϕ =
∧m

j=1 cj. We say that a

formula ϕ is monotone6 if it does not contain a mixed clause, and linear if each pair of

distinct clauses in ϕ shares at most one variable (e.g., the two clauses {x1, x2, x3} and
{x2, x4, x5} share the variable x2). We are also interested in planar formulas, where the

following associated bipartite graph (incidence graph) is required to be planar: Each

variable and each clause is represented by a vertex which has the same label as its

corresponding variable (e.g., the vertex introduced for variable x1 has the label x1) or

clause, respectively, and we have an edge {xi, cj} if and only if xi or its negation is

contained in cj. A truth assignment β : V → {T, F} assigns a truth value to each

variable, where T and F represent the truth values True and False, respectively. A

truth assignment β satis�es a clause if at least one contained literal evaluates to T (e.g.,

a literal xi evaluates to T if β(xi) = F). Further, a truth assignment β nae-satis�es a

clause if at least one contained literal evaluates to T and at least one evaluates to F

(i.e., the truth values of the contained literals are �not all equal�). Now, a Boolean

6However, in the context of Not-All-Equal 3-SAT, a formula is called monotone if each clause is
positive.

41

3 Discussion of Results

formula ϕ =
⋃m

j=1{cj} over a set of variables V is satis�able (resp. nae-satis�able) if

there is a truth assignment β : V → {T, F} such that β satis�es (resp. nae-satis�es)

each clause cj, 1 ≤ j ≤ m.

Problem statements

In the following, we formally state the considered variants of the Boolean satis�ability

problem and provide notation to describe restrictions of these problems (similar to the

notation used in Darmann et al. [DDD18a]). First, we present the de�nition of Sat

which was the �rst problem shown to be NP-complete by Cook [Coo71].

Sat

Instance. A Boolean formula ϕ =
⋃m

j=1{cj} over a set V of variables, where

cj = {`j,1, `j,2, . . . , `j,ij} is a disjunction of literals formed over variables in V .

Question. Is there a truth assignment for V such that ϕ is satis�ed?

The problem Sat is also well-known to be NP-complete if each clause contains ex-

actly three distinct literals (see Garey and Johnson [GJ79, p. 48f] for a proof). The

corresponding decision problem can be formally stated as follows.

3-Sat

Instance. A Boolean formula ϕ =
⋃m

j=1{cj} over a set V of variables, such that

each clause cj ∈ ϕ contains |cj| = 3 distinct literals formed over pairwise distinct

variables.

Question. Is there a truth assignment for V such that ϕ is satis�ed?

We also obtained some results for formulas where we allow variables and literals to

appear multiple times in the same clause. Whenever a clause is not required to consist

of distinct literals, we use multisets to represent clauses and denote the corresponding

decision problems by Sat* or 3-Sat*. The variants of SAT considered in this work can

be described by a pre�x belonging to the set

{Planar, λ} × {Monotone, λ} × {(2, 3), 3},

where λ denotes the empty word, and a su�x belonging to the set

{∗, λ} × {k,Ek | k ≥ 1} ∪ {(≤ p,≤ q), (p, q) | p ≥ 1 and q ≥ 1}}.

Here, Planar andMonotone refer to the incidence graph being planar and each clause

being monotone, respectively. Further, if (2, 3) is part of the pre�x, each clause contains

42

3.3 Satis�ability

exactly two or exactly three literals (otherwise 3 is part of the pre�x which means that

each clause contains exactly three literals). The su�x k (resp. Ek) indicates that each

variable appears at most (resp. exactly) k times. Finally, (≤ p,≤ q) (resp. (p, q)) re�ne

the just mentioned su�xes: Speci�cally, each variable appears at most (resp. exactly) p

times unnegated and at most (resp. exactly) q times negated. For example, the decision

problem Planar Monotone (2, 3)-SAT-E3 concerns monotone formulas, where the

incidence graph is planar, each clause contains exactly two or exactly three distinct

literals and each variable appears exactly three times (if we use 3 instead of E3 as the

su�x, then each variable appears at most three times). As another example consider

Monotone 3-SAT-(≤ 2,≤ 2), where the formula is monotone, each clause contains

exactly three distinct literals formed over pairwise distinct variables and each variable

appears at most twice unnegated and at most twice negated (for the su�x (2, 2), each

variable appears exactly twice unnegated and exactly twice negated).

We now turn to the variant of 3-Sat that asks whether a given formula is nae-

satis�able.

Not-All-Equal 3-Sat (NAE-3-Sat)

Instance. A Boolean formula ϕ =
⋃m

j=1{cj} over a set V of variables, such that

each clause cj ∈ ϕ contains |cj| = 3 distinct literals formed over pairwise distinct

variables.

Question. Is there a truth assignment for V such that ϕ is nae-satis�ed?

Schaefer [Sch78] established NP-completeness of NAE-3-SAT*. Recall that the ∗
symbol refers to Boolean formulas where literals may appear more than once within the

same clause. To be precise, Schaefer considered the restriction of NAE-SAT, where

a clause contains at most three distinct literals (but simply duplicating literals within

clauses having less than three literals yields an instance of NAE-3-SAT*). Moreover,

NAE-3-SAT* remains NP-hard if the literals in each clause are distinct (see, e.g., the

proof of Porschen et al. [PSSW14, Thm. 3] showing that NAE-3-SAT is NP-complete

if the input formula is linear and all variable appearances are unnegated).

We consider variants of NAE-3-Sat that can be described by a pre�x belonging to

the set

{Linear, λ} × {Monotone, λ},

and a su�x belonging to the set

{k,Ek | k ≥ 1}.

43

3 Discussion of Results

Here, Linear and Monotone refer to the formula being linear and each clause being

positive7, respectively. Further, the su�x k (resp. Ek) indicates that each variable

appears at most (resp. exactly) k times. In particular, the decision problem Linear

Monotone NAE-3-Sat-E4 concerns linear formulas, where negations are completely

absent, each clause contains exactly three distinct variables and each variable appears

in exactly four clauses.

3.3.2 Related work and a brief historical overview

As alluded to above, the Boolean satis�ability problem SAT was the �rst decision prob-

lem shown to be NP-complete (Cook [Coo71] established this result in 1971). Karp [Kar72]

demonstrated in the following year how powerful the tool of polynomial-time reductions

is by using this technique to show that many classical problems are NP-complete (among

these problems are Integer Programming, Clique, Chromatic Number, Exact

Cover, 3-Dimensional Matching and Hamiltonian Circuit8, just to name a

few). Moreover, Karp introduced the notion of reducibility for such problems as it is

used to this day in the theory of NP-completeness. For this reason, polynomial-time

reductions are sometimes called Karp reductions. For other ways to de�ne NP-hardness,

e.g. by using Turing reductions, we refer the interested reader to the book by Garey and

Johnson [GJ79].

Another milestone in the history of the Boolean satis�ability problem is the Dichotomy

Theorem obtained by Schaefer [Sch78] in 1978 which considers generalizations of this

problem described by �nite sets of logical relations and places these problems in the

complexity classes P or NP (i.e., in the latter case the problem is classi�ed as NP-

complete). As a consequence, many variants of SAT (e.g., NAE-3-SAT*) turn out to be

NP-complete. Since the Dichotomy Theorem cannot be used to infer the computational

complexity of SAT for certain types of constraints (e.g. bounded variable appearances),

proving hardness by traditional means�speci�cally, polynomial-time reductions from

known NP-complete problems�remains a necessity for such variants.

It is well-known that 3-SAT is NP-complete (a proof can be found in Garey and

Johnson [GJ79, p. 48f]). Recall that each clause in a 3-SAT formula contains exactly

three distinct literals. Adding to that, Tovey [Tov84, Thm. 2.3] showed that 3-SAT-4,

7Note that the pre�x Monotone has a di�erent meaning for 3-Sat and NAE-3-Sat, respectively.
8Hamiltonian Circuit is closely related to the Traveling Salesperson problem mentioned in
the introduction. NP-completeness of the latter problem can be obtained by a reduction from the
former problem [GJ79, p. 211].

44

3.3 Satis�ability

where each variable appears in at most four clauses, remains NP-complete. Further, he

also provided a proof that this bound is optimal in the sense that each 3-SAT-3 formula

is satis�able [Tov84, Thm. 2.4]. Berman et al. [BKS03, Thm. 1] further re�ned the

hardness result from Tovey by establishing NP-completeness of 3-SAT if each variable

appears exactly twice unnegated and exactly twice negated. As alluded to in the second

paragraph of Section 3.3, the decision problem 3-SAT is also known to be NP-complete

if each clause is monotone [Gol78, Li97].

An interesting and useful variant of the Boolean satis�ability problem is concerned

with formulas with a planar incidence graph. Lichtenstein [Lic82] showed that Planar

3-SAT* is NP-complete9 and Mans�eld [Man83] added to this result by establishing

NP-completeness of Planar 3-SAT. Using the latter result as a starting point for

a reduction, Kratochvíl [Kra94] proved that Planar 3-SAT-4, where each variable

appears at most four times, is NP-complete even if the incidence graph is vertex 3-

connected. De Berg and Khosravi [dBK12] showed that Planar Monotone 3-SAT*

is NP-complete10 as well. In contrast, Pilz [Pil19] proved that all instances of Planar

Monotone 3-SAT are satis�able, thereby answering our open question in Darmann et

al. [DDD18a]. For a detailed survey of satis�ability problems with a planar incidence

graph we refer to the master's thesis of Tippenhauer [Tip16].

We already mentioned NAE-3-SAT* in the context of the Dichotomy Theorem. In

fact, this problem is also known to be NP-complete if the number of appearances per

variable is bounded by 4 (a proof can be found in the extended arXiv version [KP17] of

an article by Karpi«ski and Piecuch [KP18]). Furthermore, Porschen et al. [PSSW14,

Thm. 3] showed that Linear Monotone NAE-3-SAT�the variant of NAE-3-SAT

where each variable appearance is unnegated and each pair of distinct clauses shares

at most one variable�is NP-complete. Interestingly, planarity of the incidence graph

alleviates the complexity of NAE-3-SAT* as Moret [Mor88] proved that this variant is

in P.

As alluded to in Section 3.1, each of the complexity classes ΣP
k (resp. ΠP

k) of the

polynomial hierarchy contain quanti�ed variants of the Boolean satis�ability problem

that are ΣP
k -complete (resp. ΠP

k -complete). Schaefer and Umans [SU02] compiled a

useful list containing many problems that are known to be complete for some class in

9In fact, Lichtenstein [Lic82] proved a stronger result where the variables are additionally linked by
edges in the incidence graph (such that they form a cycle).

10Actually, de Berg and Khosravi [dBK12] obtained a stronger result where the variables are linked (as
mentioned in the footnote regarding the result of Lichtenstein [Lic82]) and the corresponding graph
admits a particular rectilinear drawing.

45

3 Discussion of Results

the polynomial hierarchy (with a focus on k ∈ {2, 3}).
As mentioned in Section 3.1, the decision problems ∀∃ 3-SAT and ∀∃ NAE-3-SAT

are both ΠP
2 -complete by results from Stockmeyer [Sto76] and Eiter and Gottlob [EG95],

respectively. Gutner [Gut96] showed that the variant of ∀∃ 3-SAT where each clause

contains exactly three distinct variables and the incidence graph is planar, remains ΠP
2 -

complete. Furthermore, Haviv et al. [HRTS07] showed hardness of approximation for

∀∃ 3-SAT with bounded variable appearances (even if each universal variable appears

at most twice and each existential variable appears at most three times).

For an extensive survey of di�erent variants of the Boolean satis�ability problem and

a detailed list of the known complexity results, we refer to Filho [Fil19]. Further, we

refer to the book by Schöning and Torán [ST13] for an introduction into algorithms that

can be used to decide whether a given Boolean formula is satis�able.

3.3.3 Monotone 3-SAT with bounded variable appearances

We now turn to our research inspired by a conjecture for Monotone 3-SAT with

bounded variable appearances which was stated in an MIT lecture (see the beginning

of Section 3.3 for more details). As already mentioned earlier, we not only con�rmed

that the conjecture is true, but also provided results for a family of related problems

including stronger versions of the conjecture that sparked this research. To this end,

we consider the computational complexity of Monotone 3-SAT if each variable has

only a bounded number of appearances. More speci�cally, we consider bounds on the

number of unnegated and on the number of negated appearances per variable which are

not necessarily equal. An anonymous referee provided the following result (including a

proof) which signi�cantly improved the presentation in Darmann and Döcker [DD21]. In

particular, the provided general method to increase the number of literal appearances,

which the proof of the following theorem is based on, resulted in more concise and easier

to read constructions.

Theorem 10 ([DD21, Thm. 1]). Let p, q be �xed integers with p ≥ 1 and q ≥ 1. Then,

Monotone 3-Sat-(≤ p,≤ q) is NP-complete if and only if Monotone 3-Sat-(p, q)

is NP-complete.

Observe that Theorem 10 implies the following corollary.

Corollary 5 ([DD21, Cor. 1]). Let r, s be �xed positive integers such that Monotone

3-Sat-(≤ r,≤ s) is NP-complete. Then, Monotone 3-Sat-(p, q) is NP-complete for

all pairs of �xed integers p, q with p ≥ r and q ≥ s.

46

3.3 Satis�ability

The following theorem summarizes two results from Darmann and Döcker [DD21,

Cor. 5 and Cor. 7] (here, we explicitly include the case (1, t) which is symmetric to (t, 1)).

Theorem 11. Monotone 3-Sat-(p, q) is NP-complete for each pair of �xed integers

(p, q) ∈ {(r, s) | r ≥ 2, s ≥ 2} ∪ {(1, t), (t, 1) | t ≥ 5}.

Noting thatMonotone 3-Sat-(p, q) is trivial if p+q ≤ 3 by a result from Tovey [Tov84],

the only remaining cases with unknown status are (p, q) ∈ {(1, t), (t, 1) | 3 ≤ t ≤ 4}.
By symmetry, it is su�cient to determine the computational complexity of (p, q) ∈
{(3, 1), (4, 1)} in order to close the gap towards a complete dichotomy. Using a prob-

abilistic argument, one can show that each Monotone 3-Sat-(p, q) formula with less

than 21 variables (resp. 27 variables) is satis�able if (p, q) = (4, 1) (resp. (p, q) =

(3, 1)) [DD21]. Moreover, we were able to prove the following theorem which relaxes

the constraint on the variables, i.e., we only require that each variable either satis�es

the (3, 1) or the (1, 3) constraint (in other words, the variables can be partitioned into

two sets V ′, V ′′ such that each variable in V ′ appears exactly three times unnegated and

once negated and each variable in V ′′ appears exactly once unnegated and three times

negated).

Theorem 12 ([DD21, Thm. 6]). Monotone 3-Sat-E4 is NP-complete even if each

variable appears three times unnegated and once negated or three times negated and once

unnegated.

We note that both Theorem 11 (speci�cally NP-completeness of Monotone 3-Sat-

(2,2)) and Theorem 12 improve upon the result from Darman et al. [DDD18a, Cor. 4]

that established NP-completeness of Monotone 3-Sat-E4. Furthermore, Theorem 12

implies NP-completeness of 3-Sat-(3,1) and, by symmetry, of 3-Sat-(1,3) which com-

plements a result from Berman et al. [BKS03, Thm. 1] showing NP-completeness of

3-Sat-(2,2) (cf. Darmann and Döcker [DD21, p. 57]).

Towards settling the two remaining cases

In this section, we discuss a possible approach to tackle the question whether Mono-

tone 3-Sat-(p, q) is NP-complete for (p, q) ∈ {(3, 1), (4, 1)} (we presented this question

as a challenge for future research in Darmann and Döcker [DD21]). By Theorem 10,

we may consider the relaxed version Monotone 3-Sat-(≤ p,≤ q) instead. For the

47

3 Discussion of Results

relaxed version, the existence of an unsatis�able formula implies the existence of a min-

imal formula Umin with this property (minimal in the sense that removing any clause

yields a satis�able formula). Hence, given a minimal unsatis�able formula Umin, we can

do the following: By removing any positive clause, say c = {xi, xj, xk}, from Umin, we

obtain three variables that have the forced truth value F if the clauses Umin \ {c} are
present (variations of this approach belong to the established techniques used to force

truth values; see, e.g., Darmann and Döcker [DD21, Lem. 4] for one such example).

Analogously, we can obtain three variables which have the forced truth value T by re-

moving any negative clause from Umin. Then, we can use the reduction in Darmann and

Döcker [DD21, e.g., Thm. 2] to show NP-completeness of Monotone 3-Sat-(≤ p,≤ q)

for (p, q) ∈ {(3, 1), (4, 1)}. Hence, all we need to do to settle the two remaining cases is,

for each case, to either �nd an unsatis�able instance (to be precise, showing existence

of an unsatis�able instance would be su�cient) or to show that all such formulas are

satis�able. While we did not �nd an unsatis�able instance of either case so far, we will

shed light on some necessary conditions for unsatis�ability of such formulas. To this

end, consider a formula

ϕ = {{x1, x2, x3}, {x4, x5, x6}, . . . , {xn−2, xn−1, xn}} ∪ ϕ+,

over a set of variables V = {x1, . . . , xn}, where ϕ+ contains only positive clauses and ϕ

is an instance of Monotone 3-Sat-(≤ p, 1) with p ∈ {3, 4}. Note that we can always

rename the variables in a Monotone 3-Sat-(≤ p, 1) formula such that the negative

clauses have the structure shown above. Without loss of generality, we can restrict our

focus on truth assignments that set exactly one variable in each negative clause to F

(setting multiple variables to F in a negative clause is never necessary since each variable

appears in precisely one negative clause).

In order to continue, we need a de�nition: We say that the formula ϕ+ covers the set

K = {x1, x2, x3} × {x4, x5, x6} × . . .× {xn−2, xn−1, xn}

if for each (y1, y2, . . . , yn/3) ∈ K there is a clause c ∈ ϕ+ with c ⊆ {y1, y2, . . . , yn/3}.
Note that each element (y1, y2, . . . , yn/3) ∈ K represents a truth assignment that sets

exactly one variable to F in each negative clause (set a variable xi to F if xi = yj

for some j ∈ {1, 2, . . . , n/3} and to T otherwise). Moreover, each truth assignment of

this kind is represented by a tuple in K. Now, if we have c ⊆ {y1, y2, . . . , yn/3} for

some clause c ∈ ϕ+, then c evaluates to F under the truth assignment represented by

48

3.3 Satis�ability

(y1, y2, . . . , yn/3). It follows that ϕ+ covers K if and only if ϕ is unsatis�able.

Hence, if we �nd a set of positive 3-clauses, where each variable appears in at most

p clauses, that covers K, then we obtain an unsatis�able instance of Monotone 3-

Sat-(≤ p, 1). Finally, by a construction in Darmann and Döcker [DD21], we can even

allow up to four (resp. �ve) 2-clauses for the case p = 3 (resp. p = 4) to be used in the

cover since several copies of the resulting formula, say ψ, can be used to construct an

unsatis�able instance of Monotone 3-Sat-(≤ p, 1). Speci�cally for the case p = 3, if

ψ(z1, z2, z3, z4) denotes the formula where we add zk to the k-th 2-clause of ψ, we can

force the truth value of a variable y to be true in any satisfying truth assignment using

F(y) = ψ(y, u1, u1, u1) ∪ ψ′(y, u2, u2, u2) ∪ ψ′′(y, u3, u3, u3) ∪ {{u1, u2, u3}}

where u1, u2, u3 are new variables and the formulas ψ′ and ψ′′ are obtained from ψ by

replacing each variable xi that appears in ψ by x′i and x′′i , respectively. Now, it is

straightforward to obtain an unsatis�able instance of Monotone 3-Sat-(≤ 3, 1). The

construction can be adapted for the case p = 4 with �ve 2-clauses using ψ(z1, z2, z3, z4, z5)

and setting z5 = ui, i ∈ {1, 2, 3}, in the de�nition of F(y) (e.g., ψ(y, u1, u1, u1, u1)).

Note that the 2-clauses make it easier to �nd a �good� cover, since a 2-clause covers

more elements of K than a 3-clause does (to be precise, three times as much). However,

our e�orts to �nd such a cover with the help of a computer were not successful so

far. We repeatedly generated a random monotone Boolean formula that satis�es the

required bounds on the variable appearances and then traversed the search space by

swapping literals between clauses with the goal to minimize the number of satisfying

truth assignments for the formula (similar to the approach described in Döcker [Döc19]).

Planar variants

In this section, we consider variants of Monotone (2, 3)-SAT where the incidence graph

is planar. The following theorem shows that this problem remains computationally hard

in a very restricted setting.

Theorem 13 ([DDD18a, Cor. 2]). Planar Monotone (2, 3)-SAT-E3 is NP-complete

even if all 3-clauses are positive and each variable appears negated exactly once.

The result is tight (resp. sharp) with respect to the bound on the number of variable

appearances, since satis�ability of any Boolean formula in CNF with at most two appear-

ances per variable can be decided in polynomial time using a result from Tovey [Tov84,

49

3 Discussion of Results

Sec. 3]. By Tovey [Tov84, Thm. 2.4], the problem is in P if we do not allow 2-clauses,

i.e., Planar Monotone 3-SAT-E3 is in P. In Darmann et al. [DDD18a], we presented

the following natural follow-up question as a research challenge:

If we require every clause to contain exactly three distinct literals, is there a

number s ∈ N such that Planar Monotone 3-SAT-s is NP-hard and if

so, what is the smallest number with this property (clearly, s ≥ 4)?

In the meantime, this question has been answered by Pilz [Pil19] who showed that all

such instances are satis�able. In order to prove this result, he used a planarity-preserving

transformation of the incidence graph and then obtained a satisfying truth assignment

via a 4-coloring (which exists by the Four Color Theorem [AH89]).

In contrast, if we allow variables to appear multiple times in the same clause, we

obtain the following theorem.

Theorem 14 ([DDD18a, Thm. 5]). Planar Monotone 3-SAT*-E4 is NP-complete.

A useful property of the NP-complete decision problems considered in Theorem 13

and 14, respectively, is that a planar and orthogonal (edges have only horizontal and

vertical segments, i.e., they always bend at a right angle) drawing of the corresponding

graphs can be computed in polynomial time by a result from Biedl and Kant [BK98].

Actually, a planar orthogonal drawing was already used along the way to obtain Theo-

rem 13 (to be precise, in the proof [DDD18a, Thm. 1] that Planar Monotone (2, 3)-

SAT-3 is NP-complete). Another example of this approach can be found in Alam et

al. [AKM17, Sec. 4] where one of our results (a slightly weaker version of Theorem 13

that we established in our working paper [DDD16, Thm. 2] on planar variants of the

monotone satis�ability problem) was used along with a planar orthogonal drawing of

the corresponding incidence graph as a starting point for a reduction showing that a

particular decision problem related to orthogonal graph drawing is NP-complete.

3.3.4 On a simple hard variant of Not-All-Equal 3-SAT

In this section, we present the main result from our paper [DD20] in which we estab-

lished NP-completeness of NAE-3-SAT in a very restricted setting. It is well-known

that there is a strong connection between Monotone NAE-3-SAT, Set Splitting

and Hypergraph 2-Colorability (cf. Porschen et al. [PSSW14, p. 3] and Garey

and Johnson [GJ79, p. 221]). In particular, Monotone NAE-3-SAT, Set Split-

ting where each subset of the input has size 3 and Hypergraph 2-Colorability

50

3.3 Satis�ability

where each hyperedge has size 3 are simply di�erent views of the same problem. Hence,

the following theorem implies NP-completeness of restricted variants of all three prob-

lems. For instance, as mentioned in our paper [DD20], it follows that Hypergraph

2-Colorability for linear, 3-uniform, 4-regular hypergraphs is NP-complete.

Theorem 15 ([DD20, Thm. 2]). Linear Monotone NAE-3-SAT-E4 is NP-complete.

3.3.5 Quanti�ed variants of the satis�ability problem

In the following, we consider variants of ∀∃ 3-Sat that can be described by a pre�x

belonging to the set

{Balanced, λ} × {Monotone, λ},

where λ is the empty word, and a su�x belonging to the set

{(s1, s2, t1, t2) | s1, s2, t1, t2 ∈ N}.

Here, Balanced means that the number of universal variables is equal to the number

of existential variables and Monotone refers to each clause being monotone. The

su�x (s1, s2, t1, t2), for some �xed values s1, s2, t1, t2 ∈ N, indicates that each universal

(resp. existential) variable appears exactly s1 (resp. t1) times unnegated and exactly s2

(resp. t2) times negated. For instance, the decision problem Balanced Monotone

∀∃ 3-SAT-(1, 1, 2, 2) concerns ∀∃ 3-SAT formulas, where the number of universal and

existential variables is balanced (i.e., there is an equal number of universal and existential

variables), each clause is positive or negative (i.e., there is no mixed clause) and each

universal variable (resp. existential variable) appears exactly once unnegated and exactly

once negated (resp. exactly twice unnegated and exactly twice negated).

Regarding ∀∃ NAE-3-SAT, we consider variants that can be described by a pre�x

belonging to the set

{Linear, λ} × {Monotone, λ},

and a su�x belonging to the set {(s, t) | s, t ∈ N}. Analogously to the notation for

NAE-3-SAT, Linear andMonotone refer to the formula being linear and each clause

being positive11, respectively. Further, the su�x (s, t), for some �xed values s, t ∈ N,
indicates that each universal (resp. existential) variable appears exactly s (resp. t) times.

For example, Linear Monotone ∀∃ NAE-3-SAT-(1, 3) concerns ∀∃ NAE-3-SAT

11Analogously to the unquanti�ed setting, the pre�xMonotone has a di�erent meaning for ∀∃ 3-SAT
and ∀∃ NAE-3-SAT, respectively.

51

3 Discussion of Results

formulas, where each pair of distinct clauses shares at most one variable, each clause

is positive, and each universal variable (resp. existential variable) appears exactly once

(resp. exactly three times).

Restrictions of ∀∃∀∃∀∃ 3-SAT

For the variant of ∀∃ 3-SAT where the number of universal variables is equal to the

number of existential variables, we have the following theorem which summarizes two of

our results established in Döcker et al. [DDLS20, Thm. 3.4 and Thm. 3.5].

Theorem 16. Balanced ∀∃ 3-SAT-(s1, s2, t1, t2) is ΠP
2 -complete if

(s1, s2, t1, t2) ∈ {(2, 2, 2, 2), (1, 1, 2, 2)}.

In Döcker [Döc19], we further improved upon this result by showing that it also holds

if each clause is monotone. Thus, we can state the following theorem.

Theorem 17. Balanced Monotone ∀∃ 3-SAT-(s1, s2, t1, t2) is ΠP
2 -complete if

(s1, s2, t1, t2) ∈ {(2, 2, 2, 2), (1, 1, 2, 2)}.

In order to provide some insight into the gadget constructions used to obtain the hard-

ness results presented in Section 3.3, we now discuss one crucial gadget used in the proof

of Theorem 17 (additionally, the following comments complement the rather technical

proof sketch in Döcker [Döc19] by focusing on the main construction idea). The latter

result was obtained with the help of a gadget that we originally designed for the con-

struction of an unsatis�able instance of Monotone 3-SAT-(2,2) (see Döcker [Döc19]

and Darmann and Döcker [DD21]). This gadget has the form

M = {{u1, u2}, {u2, u3}, {u2, u4}} ∪ U

and consists of three 2-clauses and the set U that contains 39 monotone 3-clauses. The

set of clausesM satis�es four important properties:

� M is unsatis�able,

� M\ {C} is satis�able for each C ∈ {{u1, u2}, {u2, u3}, {u2, u4}},

� each clauses is monotone, and

� each variable appears at most twice unnegated and at most twice negated.

52

3.3 Satis�ability

The di�cult part was �nding the set U such thatM has these properties (for details

on the construction of U , we refer to our two above mentioned papers). Now, consider

a mixed clause of the form {xi, xj, xk}. UsingM, we can replace such a clause with

{{u1, u2, xi}, {u2, u3, xj}, {u2, u4, xk}} ∪ U .

Observe that now each clause is monotone and each satisfying truth assignment for the

above set of clauses sets at least one literal in {xi, xj, xk} to T . By negating each literal

inM, we obtain a gadget that can be used to transform mixed 3-clauses containing only

one negated variable. Now, the results in Theorem 17 can be obtained by a reduction

from the corresponding non-monotone variant (which is ΠP
2 -complete by Theorem 16).

Here, we omitted the technical parts of these reductions (see Döcker [Döc19]), e.g., on

the construction of a formula with an equal number of universal and existential variables.

If we are only interested in �nding the strongest bound with respect to the total

number of appearances per variable (i.e., if we do not require the number of unnegated

and negated appearances to be balanced for the universal and existential variables), we

obtain the following result.

Theorem 18 ([DDLS20, Thm. 3.7]). ∀∃ 3-SAT-(1, 1, t1, t2) is ΠP
2 -complete if

(t1, t2) ∈ {(1, 2), (2, 1)}.

Noting that ∀∃ 3-SAT-(s1, s2, t1, t2) is in NP if s1 + s2 = 1 and in co-NP if t1 + t2 ≤ 2

(see Haviv et al. [HRTS07, p. 55]), our results mentioned above are in a sense the

best possible ones. In particular, the decision problem ∀∃ 3-SAT-(1, 1, 1, 1) is not ΠP
2 -

complete unless the polynomial hierarchy collapses (cf. Döcker et al. [DDLS20, p. 81]).

Now, for the case s1 + s2 = 1 the following theorem shows that ∀∃ 3-SAT-(s1, s2, t1, t2)

is, in fact, NP-complete in a restricted setting.

Theorem 19 ([DDLS20, Thm. 3.6]). ∀∃ 3-SAT-(s1, s2, t1, t2) is NP-complete if s1 + s2 = 1

and

(t1, t2) ∈ {(1, 2), (2, 1)}.

Again, this result is sharp since ∀∃ 3-SAT-(s1, s2, t1, t2) is in P for

� s1 = s2 = 0 (i.e., there are no universal variables) and (t1, t2) ∈ {(1, 2), (2, 1)} since
such formulas are always satis�able by a result from Tovey [Tov84, Thm. 2.4], and

53

3 Discussion of Results

� s1 + s2 = 1 and t1 + t2 ≤ 2 since the universal variables can be omitted in this

case (as noted by Haviv et al. [HRTS07, p. 55]), such that each existential variable

appears at most twice in the resulting formula. Hence, we can use the algorithm

of Tovey [Tov84, Sec. 3] to decide satis�ability in polynomial time (cf. Döcker et

al. [DDLS20, p. 82]).

Restrictions of ∀∃∀∃∀∃ NAE-3-SAT

In this section, we consider variants of ∀∃ NAE-3-SAT. The following theorem shows

that this problem remains ΠP
2 -complete if each pair of distinct clauses shares at most one

variable, there are no negations in the formula, each universal variable appears exactly

once, each existential variable appears exactly three times and each clause contains at

most one universal variable.

Theorem 20 ([DDLS20, Thm. 4.7]). Linear Monotone ∀∃ NAE-3-SAT-(1, 3) is

ΠP
2 -complete if each clause contains at most one universal variable.

Interestingly, as mentioned in our paper [DDLS20, p. 73], only one appearance of

each universal variable is su�cient to make the problem ΠP
2 -hard (recall that ∀∃ 3-SAT

becomes easier, i.e., can be shown to be in NP, in this setting). We remark that the

bounds given for the universal and existential variable appearances stated in Theorem 20

are the best possible ones, since:

� ∀∃ NAE-3-SAT-(0, t) is equivalent to NAE-3-SAT-Et and, thus, in NP (cf. Döcker

et al. [DDLS20, p. 89]). Moreover, for t = 3 the problem can be solved in linear

time by a result from Porschen et al. [PRS04, Thm. 4].

� Monotone ∀∃ NAE-3-SAT-(s, 2) is in co-NP for each �xed s ≥ 1 [DDLS20,

Cor. 4.9] and turns out to be in P for s = 1 [DDLS20, Cor. 4.11]. Furthermore,

the decision problem Monotone ∀∃ NAE-3-SAT-(s, 2), for each s ≥ 1, becomes

trivial if each clause contains at most one universal variable�all such formulas are

satis�able [DDLS20, Cor. 4.10].

3.3.6 Using restricted SAT variants in hardness proofs

In this section, we consider for two of our hardness results presented in Section 3.2 how

a restricted SAT variant can help to simplify the corresponding proof or to obtain a

stronger result, respectively. First, we show how the gadget simulating a truth assign-

ment to a variable in the proof of Theorem 3 could be simpli�ed by reducing from a

54

3.3 Satis�ability

variant of the Boolean satis�ability problem with bounded variable appearances. Then,

we explain in a less problem-speci�c manner the bene�ts of using one of our strongest

results regarding restrictions of Monotone 3-SAT as a starting point for a reduction in

an NP-hardness proof. Finally, we sketch for the path problem ∀∃ Directed-Disjoint-
Connecting-Paths that using a restricted quanti�ed SAT variant�speci�cally, a re-

stricted variant of ∀∃ 3-SAT�can additionally lead to stronger hardness results.

As alluded to above, we �rst consider the gadget [DvIKL19, Fig. 4] simulating a truth

assignment to a variable in the proof of Theorem 3. Recall that Theorem 3 concerns NP-

completeness of deciding the existence of a cherry-picking sequence for two phylogenetic

trees (for the corresponding de�nitions see Section 3.2) and it is obtained by a reduction

from 3-Sat. Now, given a conjunction of clauses c1, . . . , cm over a set of variables V ,

the gadget simulating a truth assignment to a variable vk ∈ V is depicted in Figure 3.8

(i.e., such a gadget is introduced for each variable in V). The gadget consists of three

phylogenetic trees, where the leaf labels have the following intuitive meaning:

� v
(k)
T , v

(k)
F : the variable vk is set to T (resp. to F),

� v
(k)
p1 , . . . , v

(k)
p|φk|

: the unnegated appearances (i.e., positive literals) of vk,

� ¬v(k)
q1 , . . . ,¬v(k)

q|νk|
: the negated appearances (i.e., negative literals) of vk, and

� b2k−1, b2k, b2(n+k)−1, b2(n+k): elements (�blocking taxa�) that are not in a cherry of

the formula gadget [DvIKL19, Fig. 6] (which is omitted here) until a satisfying

truth assignment for the given instance has been simulated.

Without going into the technical details of our proof [DvIKL19, Thm. 1], the two ele-

ments v
(k)
T , v

(k)
F are part of precisely the cherries depicted in Figure 3.8 (the three phy-

logenetic trees are embedded in one of two larger phylogenetic trees at a later stage of

the construction which is indicated by the solid and dashed frame; note that the two

phylogenetic trees in the dashed frame are de�ned on disjoint sets). By deleting v
(k)
T

(resp. v
(k)
F) and suppressing the resulting vertex of in-degree 1 and out-degree 1, the leaf

representing the �rst unnegated (resp. negated) appearance of vk ends up in a cherry

in the middle (resp. right) phylogenetic tree of the gadget. Intuitively, either the left or

the right phylogenetic tree in the dashed frame can be unlocked. For instance, if v
(k)
T is

deleted, the former phylogenetic tree is consistent with a cherry-picking sequence having

the following subsequence (where b is the �rst appearance of a blocking taxa):

v(k)
p1

< v(k)
p2

< . . . < v(k)
p|φk|

< b < ¬v(k)
qr , ∀r ∈ {1, . . . , |νk|}.

55

3 Discussion of Results

v
(k)
T v

(k)
F b2k−1 b2k v

(k)
T b2(n+k)−1 v

(k)
p1 v

(k)
p|φk| v

(k)
F b2(n+k) ¬v(k)q1 ¬v(k)q|νk|

v
(k)
T v

(k)
F b2k−1 b2k v

(k)
T b2(n+k)−1 v

(k)
p1 v

(k)
F b2(n+k) ¬v(k)q1 ¬v(k)q2v

(k)
p2

Figure 3.8: Simpli�cation of the gadget [DvIKL19, Fig. 4] consisting of the three phylogenetic
trees depicted above which simulates a truth assignment to a variable vk in the proof
of Theorem 3. Recall that the latter result establishes NP-completeness of deciding
whether a cherry-picking sequence exists for two phylogenetic trees. To this end,
instead of 3-Sat, we may use the still NP-complete [BKS03, Thm. 1] variant 3-
Sat-(2,2), where each variable appears exactly twice unnegated and twice negated,
respectively. The resulting simpli�ed gadget is depicted below.

56

3.3 Satis�ability

Moreover, none of the elements v
(k)
F ,¬v(k)

q1 , . . . ,¬v(k)
q|νk|

precedes b in any cherry-picking

sequence where v
(k)
T precedes v

(k)
F . Further, the clause gadget (see Döcker et al. [DvIKL19,

Fig. 5]) for a clause cj requires that at least one of the elements representing a literal

in cj precedes b such that it is consistent with the existence of a cherry-picking sequence.

Now, if we reduce from 3-Sat-(2,2), where each variable appears exactly twice un-

negated and exactly twice negated, the variable gadget has constant size (see Figure 3.8).

In fact, each phylogenetic tree that is part of a variable gadget has precisely four leaves.

Further, since |φk| = |νk| = 2, we can omit the explicit references to these index sets in

the �gure. Thus, the resulting simpli�ed version of the variable gadget removes some

of the formalism which was originally present and, thereby, improves readability (i.e.,

the construction idea becomes more obvious). While the constant size of the variable

gadgets does not seem to imply any further meaningful hardness results here, such a

bound may very well be useful in obtaining results for other problems even if it does

not translate to interesting restrictions of the considered problem (e.g., computer search

may be a viable option if we are looking for constructions that have constant size).

To further elaborate on properties of restricted SAT variants that have the potential to

simplify reductions or lead to stronger results, let us consider Monotone 3-SAT-(2,2)

for which NP-completeness follows by Theorem 11 (resp. Döcker [Döc19, Thm. 1]). Say

we want to reduce from SAT in order to show NP-hardness of some decision problem by

designing gadgets for variables and clauses, respectively, that in a certain sense simulate

truth assignments and check whether clauses are satis�ed (this approach is called compo-

nent design in the book by Garey and Johnson [GJ79, Sec. 3.2.3]). Then, by our result

alluded to above, we can assume all of the following properties to be simultaneously

satis�ed by the given Boolean formula over variables V = {x1, . . . , xn}:

� each clause is formed over exactly three distinct variables,

� each clause is monotone,

� there are exactly 2n
3
negative (resp. positive) clauses, and

� each variable appears exactly twice unnegated and exactly twice negated.

Figure 3.9 shows the structure of an instance of Monotone 3-SAT-(2,2). Note that it

is su�cient to design a gadget for a variable with exactly two unnegated and two negated

appearances, respectively. Therefore, we do not have to pay attention whether or not

such a gadget works, e.g., if a variable has only unnegated appearances or whether the

construction idea scales to an arbitrary number of variable appearances (as alluded to

57

3 Discussion of Results

x1

...

c+2

c+1

c+2n/3

...

...

c−2

c−1

c−2n/3

x2

x3

xn

.

Figure 3.9: Structure of the incidence graph of an instance of Monotone 3-SAT-(2,2). The
variables (resp. clauses) are depicted as circular (resp. rectangular) vertices. Fur-
ther, the positive (resp. negative) clauses are drawn on the left-hand side (resp.
right-hand side) of the variables. We note that one can assume that all edges are
straight lines if the vertices are positioned as depicted above. However, since all pla-
nar instances of this problem are satis�able [Pil19], this variant cannot be used as a
starting point in reductions for obtaining NP-hardness results (assuming P 6= NP).

above, the constant size also opens the door for a search for such a gadget that is aided

or completely done by a computer program). Moreover, when designing the gadget for a

clause, it may be convenient to assume that either all or none of the contained variables

are negated, and that the literals are formed over distinct variables. Noting that gad-

gets for variables and clauses are usually interconnected (either directly or by another

type of gadget), we do not have to worry about potential side e�ects of having several

connections between a variable gadget and a clause gadget (this can happen in general,

i.e., if a variable appears more than once in some clause).

We end this section by presenting an example showing how a restricted variant of ∀∃
3-Sat can be used to obtain stronger hardness results. To this end, we consider the

decision problem ∀∃ Directed-Disjoint-Connecting-Paths that we introduced in

Section 3.2.3 (recall that we used a variant of this problem in a chain of reductions

�nally leading to the ΠP
2 -completeness result for Display-Set-Equivalence). For

convenience, we restate the de�nition here (πi denotes a directed path from si to ti):

58

3.3 Satis�ability

∀∃ Directed-Disjoint-Connecting-Paths [DLS19, p. 136]
Instance. A directed graph G and two collections

P ∀ = {(s1, t1), (s2, t2), . . . , (sp, tp)},
P ∃ = {(sp+1, tp+1), (sp+2, tp+2), . . . , (sk, tk)}

of disjoint pairs of vertices in G such that 1 ≤ p < k and, for each (si, ti) ∈ P ∀,

there exists a directed path from si to ti in G.

Question. For each set Π∀ = {π1, π2, . . . , πp} of directed paths, does there exist a

set Π∀ ∪ {πp+1, πp+2, . . . , πk} of mutually vertex-disjoint directed paths in G?

By reducing from Balanced ∀∃ 3-SAT-(2,2,2,2)�which is ΠP
2 -complete by The-

orem 17� and using the same variable gadget and clause gadget as in the proof of

Theorem 6 (see Döcker et al. [DLS19, Fig. 5] for these gadgets), it can be shown that

∀∃ Directed-Disjoint-Connecting-Paths remains ΠP
2 -complete if each vertex in G

has degree bounded by 3, where both the in-degree and the out-degree are bounded by 2,

and the longest directed path that connects a pair of vertices (si, ti) ∈ P ∀ ∪P ∃ contains
six arcs (the longest directed path in the construction contains seven arcs12). The lat-

ter property is a consequence of the bounds on variable appearances satis�ed by the

quanti�ed Boolean formula. We note that transforming the graph G into a phylogenetic

network using the approach taken in Döcker et al. [DLS19, Thm. 4.1] does not preserve

a constant bound on path lengths. Ending on a positive note, if we do not require that

the constructed phylogenetic network is binary, it is straightforward to adapt the proof

such that the longest directed path in the construction is bounded by a constant (simply

introduce a root vertex and connect it to the vertex with in-degree 0 in each gadget).

12Consider the gadgets in Döcker et al. [DLS19, Fig. 5]. A path starting at a vertex si corresponding
to a variable gadget and ending at a vertex tj corresponding to a clause gadget can contain seven
arcs (4 arcs of one of the two paths in the variable gadget and then 3 arcs in the clause gadget).

59

3 Discussion of Results

CPS-Existence for 8 trees

CPS-Existence for 2 trees

CPS-Existence

Satisfiability

3-Sat

3-Sat-(2, 2)

4-Disjoint-Intermezzo

Monotone 3-Sat-(2, 2)
Monotone 3-Sat-(1, 5)

Betweeness

Common-Tree-Containment
for two temporal normal networks

Linear Monotone NAE-3-SAT-E4

Planar Monotone (2, 3)-SAT-E3

Planar Monotone 3-SAT*-E4

NAE-3-SAT

Monotone NAE-3-Sat-E4

Set Splitting

3-Sat-(1, 3)Monotone 3-Sat-(3, 3)

Planar (2, 3)-SAT-E3

Planar 3-SAT*

Figure 3.10: A selection of NP-completeness results derived from Satisfiability by a chain
of polynomial-time reductions. Each depicted edge is directed downwards and
represents a known polynomial-time reduction from the starting point to the end
point of this edge (e.g., there is a polynomial-time reduction from 4-Disjoint-

Intermezzo to CPS-Existence for 8 trees). Our contributions are indicated
by bold edges (for the other edges see the references given in Section 3.3 and the
book by Garey and Johnson [GJ79]).

3.4 Concluding remarks

We placed several problems from phylogenetics and (quanti�ed) propositional logic in

the polynomial hierarchy. In Figures 3.10 and 3.11, we provide an overview of a selection

of hardness results collected in this thesis.

First, we showed that CPS-Existence is NP-complete in restricted settings and that

Display-Set-Containment andDisplay-Set-Equivalence are even harder as they

turned out to be ΠP
2 -complete. For CPS-Existence, we presented a polynomial-time

algorithm using automata theory for the case that (1) the number of trees in the input

is bounded by a constant and, additionally, (2) each tree has a number of cherries that is

bounded by a constant (these constants may be any �xed positive integers). Recall that,

unless P = NP, restriction (1) is not su�cient to obtain a polynomial-time algorithm

60

3.4 Concluding remarks

∀∃ 3-Sat ∀∃ NAE-3-Sat

∀∃ Phylo-Directed-
Disjoint-Connecting-Paths

Display-Set-Containment

Display-Set-Equivalence

Balanced ∀∃ 3-SAT-(2, 2, 2, 2)

Balanced Monotone
∀∃ 3-SAT-(1, 1, 2, 2)

Balanced Monotone
∀∃ 3-SAT-(2, 2, 2, 2)

Linear Monotone
∀∃ NAE-3-SAT-(1, 3)

Monotone ∀∃
NAE-3-SAT-(1, 4)

Balanced
∀∃ 3-SAT-(1, 1, 2, 2)

Balanced
∀∃ 3-SAT-(1, 1, 1, 2)

Figure 3.11: Our main ΠP
2 -completeness results derived from ∀∃ 3-Sat and ∀∃ NAE-3-Sat by

chains of polynomial-time reductions (references regarding the ΠP
2 -completeness

of the two base problems are given in Section 3.3). As in Figure 3.10, edges are
directed downwards and represent polynomial-time reductions from the starting
point to the end point of a directed edge.

as we established NP-hardness of CPS-Existence if the input consists of m ≥ 2 trees.

As alluded to in Section 3.2.2, it would be interesting to know whether restriction (2)

is su�cient to alleviate the computational complexity. It may also be worth to look at

restriction (2) through the lens of parameterized complexity13. Speci�cally, we leave the

following questions for future research:

Let P = {T1, T2, . . . , Tm} be a collection of phylogenetic X-trees. Recalling that cTi
denotes the number of cherries in Ti, is CPS-Existence �xed-parameter tractable with

respect to the maximum element c ∈ {cT1 , cT2 , . . . , cTm}? Perhaps it makes sense to �rst

consider the case that m is a constant. In this case, we would like to know whether

CPS-Existence can be solved in time |X|O(1) · f(c), where f is a computable function.

It is worth noting that �xed-parameter algorithms exist for the closely related problem

of deciding whether there is a temporal network with at most k reticulations that embeds

a given collection of phylogenetic trees when the problem is parameterized by k (this

was established by Humphries et al. [HLS13a] for two trees and very recently by Borst

et al. [BvIJK20] for an arbitrary number of trees).

It would also be interesting to analyze Display-Set-Containment and Display-

Set-Equivalence in the spirit of de Haan [dH19] who developed new parameterized

complexity classes that lie between the �rst and the second level of the polynomial

hierarchy.

Regarding Display-Set-Containment and Display-Set-Equivalence, we es-

13We refer to the books by Downey and Fellows [DF99] and Niedermeier [Nie06] for an introduction to
parameterized complexity.

61

3 Discussion of Results

tablished ΠP
2 -completeness of both of these decision problems. As mentioned in Sec-

tion 3.2, our results have negative implications for a popular approach to tackle NP-

hard problems that need to be solved regardless of their inherent computational com-

plexity. Speci�cally, it means that powerful solvers for problems like SAT are limited

in their usefulness with respect to solving Display-Set-Containment and Display-

Set-Equivalence as these problems cannot be transformed into any problem in NP

within polynomial time unless the polynomial hierarchy collapses (cf. de Haan and Szei-

der [dHS19]). On the positive side, we showed that Display-Set-Equivalence can

be solved in polynomial time if the input consists of a normal network and a tree-child

network. However, both problems remain open for some popular classes of phyloge-

netic networks. In particular, it would be interesting to know whether Display-Set-

Equivalence can still be solved in polynomial time if both networks in the input are

tree-child networks. Recall that Gunawan et al. [GDZ17] previously asked this question

for two reticulation visible networks�which is also still open as of writing this thesis.

Since the class of tree-child networks is contained in the class of reticulation visible

networks (which follows from the equivalence established by Cardona et al. [CRV09,

Lem. 2]), the former class may be better suited when attempting to �nd a polynomial-

time algorithm and the latter one when attempting to show co-NP-hardness (recall

that Display-Set-Equivalence is in co-NP for these network classes). Of course,

Display-Set-Equivalence could turn out to be in the same complexity class for both

network classes.

Second, we obtained hardness results for several restrictions of the satis�ability prob-

lem for (quanti�ed) Boolean formulas (see Figure 3.10 for the main NP-completeness

results and Figure 3.11 for the main ΠP
2 -completeness results). A notable open problem

concerns the challenge we presented in Darmann and Döcker [DD21]:

Is Monotone 3-Sat-(k, 1) NP-hard for k ∈ {3, 4}?

In Section 3.3, we hinted at possible ways to approach this problem and deduced that

each of these problems is NP-hard if there is an unsatis�able instance of the respective

problem. Hence, we modify the question for future research accordingly and ask the

following: Are there unsatis�able instances of Monotone 3-Sat-(k, 1) for k ∈ {3, 4}?
Further, we indicated in Section 3.3.6 how restricted SAT variants are useful in deriv-

ing results for other decision problems by the means of polynomial-time reductions�for

instance, since the restrictions of a SAT variant re�ect in certain properties of the in-

stance generated by the transformation. We also discussed another bene�t of having

62

3.4 Concluding remarks

NP-complete variants of SAT that satisfy strong properties: It makes it easier to de-

sign gadgets for a reduction, sometimes even to the point that a computer search for

gadgets is a viable option. As a matter of fact, we found the unsatis�able instance of

Monotone 3-SAT-(2, 2) using a similar approach: An initial computer search for such

an instance was not successful (both trying to enumerate instances of increasing size

and generating random instances of di�erent sizes). Hence, we suspected that in case

unsatis�able instances exist, they must have more variables than a desktop computer

can �nd within reasonable time and the search algorithms we used (i.e., brute force and

an approach based on the concept of an evolutionary algorithm14). We then decomposed

the problem of �nding an unsatis�able instance into several smaller problems consisting

of �nding formulas (or gadgets) that seemed to be better suited for a computer search.

Indeed, by the approach based on an evolutionary algorithm, we found the required

gadgets and, consequently, we were able to complete our construction of an unsatis�-

able instance of Monotone 3-SAT-(2, 2) which was a key ingredient in establishing

NP-completeness [Döc19, DD21] of the latter problem.

Noting that most NP-completeness results are derived by a chain of polynomial-time

reductions from SAT, it would be exciting to see which results can be obtained by con-

sidering existing reductions from SAT (or 3-SAT) and to see what happens if, e.g.,

Monotone 3-SAT-(2, 2) is used instead (i.e., in what way the generated instance re-

�ects the variable bounds and the monotonicity requirement). A similar path for future

research could analogously be taken for polynomial-time reductions from ∀∃ 3-Sat or

∀∃ NAE-3-Sat with respect to obtaining ΠP
2 -completeness results for restricted variants

of decision problems. It is hard to say whether this approach leads to meaningful NP-

or ΠP
2 -completeness results, but if so, the derived results would be low hanging fruits.

14See, e.g., the book by Kramer [Kra09, Chap. 2] for an introduction to evolutionary algorithms.

63

Bibliography

[AH89] K. Appel and W. Haken. Every planar map is four colorable, volume 98 of

Contemporary Mathematics. American Mathematical Soc., 1989.

[AK00] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs.

Theoretical Computer Science, 237:123�134, 2000.

[AKM17] M. J. Alam, S. G. Kobourov, and D. Mondal. Orthogonal layout with

optimal face complexity. Computational Geometry, 63:40�52, 2017.

[BDLN20] M. Bordewich, B. Dorn, S. Linz, and R. Niedermeier. Algorithms and

Complexity in Phylogenetics (Dagstuhl Seminar 19443). Dagstuhl Reports,

9(10):134�151, 2020.

[BK98] T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings.

Computational Geometry, 9(3):159�180, 1998.

[BKS03] P. Berman, M. Karpinski, and A. D. Scott. Approximation hardness of

short symmetric instances of MAX-3SAT. Electronic Colloquium on Com-

putational Complexity, 2003. Report No. 49.

[BM08] J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate

Texts in Mathematics. Springer, 2008.

[BS07] M. Bordewich and C. Semple. Computing the minimum number of hy-

bridization events for a consistent evolutionary history. Discrete Applied

Mathematics, 155(8):914�928, 2007.

[BS16] M. Bordewich and C. Semple. Reticulation-visible networks. Advances in

Applied Mathematics, 76:114�141, 2016.

[BvIJK20] S. Borst, L. van Iersel, M. Jones, and S. Kelk. New FPT algorithms for

�nding the temporal hybridization number for sets of phylogenetic trees.

arXiv:2007.13615 [cs.DS], 2020.

65

Bibliography

[CHR+20] M. Chudnovsky, S. Huang, P. Rz¡»ewski, S. Spirkl, and M. Zhong. Com-

plexity of Ck-coloring in hereditary classes of graphs. arXiv:2005.01824

[cs.DS], 2020.

[CLS14] P. Cordue, S. Linz, and C. Semple. Phylogenetic networks that display a

tree twice. Bulletin of Mathematical Biology, 76:2664�2679, 2014.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings

of the 3rd Annual ACM Symposium on Theory of Computing, pages 151�

158. ACM, 1971.

[CRV09] G. Cardona, F. Rosselló, and G. Valiente. Comparison of tree-child phylo-

genetic networks. IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 6:552�569, 2009.

[Dar18] A. Darmann. A social choice approach to ordinal group activity selection.

Mathematical Social Sciences, 93:57�66, 2018.

[dBK12] M. de Berg and A. Khosravi. Optimal binary space partitions for segments

in the plane. International Journal of Computational Geometry & Applica-

tions, 22(03):187�205, 2012.

[DD16] A. Darmann and J. Döcker. Monotone 3-Sat-4 is NP-complete.

arXiv:1603.07881 [cs.CC], 2016.

[DD20] A. Darmann and J. Döcker. On a simple hard variant of Not-All-Equal

3-SAT. Theoretical Computer Science, 815:147�152, 2020.

[DD21] A. Darmann and J. Döcker. On simpli�ed NP-complete variants of Mono-

tone 3-Sat. Discrete Applied Mathematics, 292:45�58, 2021.

[DDD16] A. Darmann, J. Döcker, and B. Dorn. On planar variants of the monotone

satis�ability problem with bounded variable appearances. arXiv:1604.05588

[cs.CC], 2016.

[DDD+17] A. Darmann, J. Döcker, B. Dorn, J. Lang, and S. Schneckenburger. On

simpli�ed group activity selection. In Proceedings of the 5th International

Conference on Algorithmic Decision Theory (ADT 2017), 2017.

66

Bibliography

[DDD18a] A. Darmann, J. Döcker, and B. Dorn. The monotone satis�ability problem

with bounded variable appearances. International Journal of Foundations

of Computer Science, 29(06):979�993, 2018.

[DDD+18b] A. Darmann, J. Döcker, B. Dorn, J. Lang, and S. Schneckenburger. Sim-

pli�ed group activity selection. In Proceedings of the Seventh International

Workshop on Computational Social Choice (COMSOC-2018), 2018.

[DDDS21] A. Darmann, J. Döcker, B. Dorn, and S. Schneckenburger. Simpli�ed group

activity selection with group size constraints. Accepted for publication in

International Journal of Game Theory, 2021.

[DDE+18] J. Döcker, B. Dorn, U. Endriss, R. de Haan, and S. Schneckenburger. Tool

auctions. In Proceedings of the 32nd AAAI Conference on Arti�cial Intel-

ligence (AAAI-2018), 2018.

[DDEK16] J. Döcker, B. Dorn, U. Endriss, and D. Krüger. Complexity and tractability

islands for combinatorial auctions on discrete intervals with gaps. In Pro-

ceedings of the 22nd European Conference on Arti�cial Intelligence (ECAI-

2016), 2016.

[DDLS20] J. Döcker, B. Dorn, S. Linz, and C. Semple. Placing quanti�ed variants of

3-SAT and Not-All-Equal 3-SAT in the polynomial hierarchy. Theoretical

Computer Science, 822:72�91, 2020.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,

1999.

[dH19] R. de Haan. Parameterized Complexity in the Polynomial Hierarchy - Ex-

tending Parameterized Complexity Theory to Higher Levels of the Hierarchy.

Lecture Notes in Computer Science 11880. Springer-Verlag Berlin Heidel-

berg, 2019.

[dHS19] R. de Haan and S. Szeider. A compendium of parameterized problems at

higher levels of the polynomial hierarchy. Algorithms, 12(9), 2019.

[DKY14] E. Demaine, J. Ku, and Y. W. Yu. Class 4 scribe notes.

http://courses.csail.mit.edu/6.890/fall14/scribe/lec4.pdf; Instructor: E.

Demaine; Notetakers: J. Ku, Y. W. Yu, 2014.

67

Bibliography

[DL18] J. Döcker and S. Linz. On the existence of a cherry-picking sequence. The-

oretical Computer Science, 714:36�50, 2018.

[DLS19] J. Döcker, S. Linz, and C. Semple. Displaying trees across two phylogenetic

networks. Theoretical Computer Science, 796:129�146, 2019.

[DLS21] J. Döcker, S. Linz, and C. Semple. Display sets of normal and tree-child

networks. The Electronic Journal of Combinatorics, 28(1):P1.8 (21 pages),

2021.

[Döc19] J. Döcker. Monotone 3-SAT-(2,2) is NP-complete. arXiv:1912.08032

[cs.CC], 2019.

[DvIKL19] J. Döcker, L. van Iersel, S. Kelk, and S. Linz. Deciding the existence of a

cherry-picking sequence is hard on two trees. Discrete Applied Mathematics,

260:131�143, 2019.

[Dö14] J. Döcker. Komplexitätsanalyse von kombinatorischen Auktionen. Master's

thesis, University of Tübingen, 2014.

[EG95] T. Eiter and G. Gottlob. Note on the complexity of some eigenvector prob-

lems. Technical Report CD-TR 95/89, Christian Doppler Laboratory for

Expert Systems, TU Vienna, 1995.

[EIS76] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and

multicommodity �ow problems. SIAM Journal on Computing, 5(4):691�

703, 1976.

[Fil19] I. Filho. Characterizing boolean satis�ability variants. Master's thesis,

Massachusetts Institute of Technology, Department of Electrical Engineer-

ing and Computer Science, 2019.

[FS15] R. Francis and M. Steel. Which phylogenetic networks are merely trees with

additional arcs? Systematic Biology, 64:768�777, 2015.

[GDZ17] A. D. M. Gunawan, B. DasGupta, and L. Zhang. A decomposition theo-

rem and two algorithms for reticulation-visible networks. Information and

Computation, 252:161�175, 2017.

68

Bibliography

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman and Company, New York,

1979.

[GM06] W. Guttmann and M. Maucher. Variations on an ordering theme with con-

straints. In Fourth IFIP International Conference on Theoretical Computer

Science, pages 77�90. Springer, 2006.

[Gol78] M. E. Gold. Complexity of automaton identi�cation from given data. In-

formation and Control, 37(3):302�320, 1978.

[Gut96] S. Gutner. The complexity of planar graph choosability. Discrete Mathe-

matics, 159(1�3):119�130, 1996.

[HK10] D. Hall and D. Klein. Finding cognate groups using phylogenies. In Pro-

ceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, pages 1030�1039, 2010.

[HLS13a] P. J. Humphries, S. Linz, and C. Semple. Cherry picking: a characterization

of the temporal hybridization number for a set of phylogenies. Bulletin of

Mathematical Biology, 75:1879�1890, 2013.

[HLS13b] P. J. Humphries, S. Linz, and C. Semple:. On the complexity of computing

the temporal hybridization number for two phylogenies. Discrete Applied

Mathematics, 161:871�880, 2013.

[HRS10] D. H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks: Con-

cepts, Algorithms and Applications. Cambridge University Press, 2010.

[HRTS07] I. Haviv, O. Regev, and A. Ta-Shma. On the hardness of satis�ability with

bounded occurrences in the polynomial-time hierarchy. Theory of Comput-

ing, 3:45�60, 2007.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, 1979.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller,

J. W. Thatcher, and J. D. Bohlinger, editors, Complexity of Computer

Computations, The IBM Research Symposia Series, pages 85�103. Springer,

Boston, MA, 1972.

69

Bibliography

[KMZ20] P. Krysta, M. Mari, and N. Zhi. Ultimate greedy approximation of inde-

pendent sets in subcubic graphs. arXiv:2001.11997 [cs.DS], 2020.

[KNTX08] I. A. Kanj, L. Nakhleh, C. Than, and G. Xia. Seeing the trees and their

branches in the network is hard. Theoretical Computer Science, 401:153�

164, 2008.

[Koz97] D. C. Kozen. Automata and Computability. Undergraduate Texts in Com-

puter Science. Springer, 1997.

[KP17] M. Karpi«ski and K. Piecuch. On vertex coloring without monochromatic

triangles. arXiv:1710.07132 [cs.DS], 2017.

[KP18] M. Karpi«ski and K. Piecuch. On vertex coloring without monochromatic

triangles. In F. Fomin and V. Podolskii, editors, Computer Science � Theory

and Applications, CSR 2018, volume 10846 of Lecture Notes in Computer

Science, pages 220�231. Springer, 2018.

[Kra94] J. Kratochvíl. A special planar satis�ability problem and a consequence of

its NP-completeness. Discrete Applied Mathematics, 52(3):233�252, 1994.

[Kra09] O. Kramer. Computational Intelligence. Informatik im Fokus. Springer,

2009.

[LHT10] T. T.-Y. Lam, C.-C. Hon, and J. W. Tang. Use of phylogenetics in the

molecular epidemiology and evolutionary studies of viral infections. Critical

Reviews in Clinical Laboratory Sciences, 47(1):5�49, 2010.

[Li97] W. N. Li. Two-segmented channel routing is strong NP-complete. Discrete

Applied Mathematics, 78(1�3):291�298, 1997.

[Lic82] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Com-

puting, 11(2):329�343, 1982.

[LSS10] S. Linz, C. Semple, and T. Stadler. Analyzing and reconstructing reticula-

tion networks under timing constraints. Journal of Mathematical Biology,

61:715�735, 2010.

[Man83] A. Mans�eld. Determining the thickness of graphs is NP-hard. In Math-

ematical Proceedings of the Cambridge Philosophical Society, volume 93,

pages 9�23. Cambridge University Press, 1983.

70

Bibliography

[MNW+04] B. M. E. Moret, L. Nakhleh, T. Warnow, C. R. Linder, A. Tholse,

A. Padolina, J. Sun, and R. Timme. Phylogenetic networks: modeling, re-

constructibility, and accuracy. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 1(1):13�23, 2004.

[Mor88] B. Moret. Planar NAE3SAT is in P. ACM SIGACT News, 19(2):51�54,

1988.

[Mor12] D. Morrison. Time inconsistency in evolutionary networks.

http://phylonetworks.blogspot.com/2012/07/time-inconsistency-in-

evolutionary.html, 2012. Blog post. Accessed: 03.01.2021.

[MS72] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular

expressions with squaring requires exponential space. In Proceedings of the

13th Annual Symposium on Switching & Automata Theory, pages 125�129,

1972.

[MSH+14] T. Marcussen, S. R. Sandve, L. Heier, M. Spannagl, M. Pfeifer, I. W. G. S.

Consortium, K. S. Jakobsen, B. B. H. Wul�, B. Steuernagel, K. F. X. Mayer,

and O.-A. Olsen. Ancient hybridizations among the ancestral genomes of

bread wheat. Science, 345(6194), 2014.

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-

sity Press, 2006.

[Opa79] J. Opatrny. Total ordering problem. SIAM Journal on Computing,

8(1):111�114, 1979.

[Pil19] A. Pilz. Planar 3-SAT with a clause/variable cycle. Discrete Mathematics

& Theoretical Computer Science, 21(3), 2019.

[PRS04] S. Porschen, B. Randerath, and E. Speckenmeyer. Linear time algo-

rithms for some not-all-equal satis�ability problems. In E. Giunchiglia and

A. Tacchella, editors, Theory and Applications of Satis�ability Testing (SAT

2003), pages 172�187. Springer, 2004.

[PSSW14] S. Porschen, T. Schmidt, E. Speckenmeyer, and A. Wotzlaw. XSAT and

NAE-SAT of linear CNF classes. Discrete Applied Mathematics, 167:1�14,

2014.

71

Bibliography

[PSYB06] G. Petersen, O. Seberg, M. Yde, and K. Berthelsen. Phylogenetic relation-

ships of triticum and aegilops and evidence for the origin of the A, B, and

D genomes of common wheat (triticum aestivum). Molecular Phylogenetics

and Evolution, 39(1), 2006.

[Sch78] T. J. Schaefer. The complexity of satis�ability problems. In Proceedings of

the Tenth Annual ACM Symposium on Theory of Computing, pages 216�

226, 1978.

[SS03] C. Semple and M. Steel. Phylogenetics. Oxford University Press, 2003.

[SS17] R. Schwartz and A. A. Schä�er. The evolution of tumour phylogenetics:

principles and practice. Nature Reviews Genetics, 18(4):213�229, 2017.

[ST13] U. Schöning and J. Torán. The Satis�ability Problem: Algorithms and

Analyses, volume 3 of Mathematik für Anwendungen. Lehmanns Media,

2013.

[Ste16] M. Steel. Phylogeny: Discrete and random processes in evolution. CBMS-

NSF Regional conference series in Applied Mathematics. SIAM, 2016.

[Sto76] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer

Science, 3:1�22, 1976.

[SU02] M. Schaefer and C. Umans. Completeness in the polynomial-time hierarchy:

A compendium. SIGACT News, 33(3):32�49, 2002.

[Tip16] S. Tippenhauer. On planar 3-SAT and its variants. Master's thesis, Freie

Universität Berlin, 2016.

[Tov84] C. A. Tovey. A simpli�ed NP-complete satis�ability problem. Discrete

Applied Mathematics, 8(1):85�89, 1984.

[vISS10] L. van Iersel, C. Semple, and M. Steel. Locating a tree in a phylogenetic

network. Information Processing Letters, 110:1037�1043, 2010.

[Wil10] S. J. Willson. Properties of normal phylogenetic networks. Bulletin of

Mathematical Biology, 72:340�358, 2010.

[WLL+16] M. Willems, E. Lord, L. Laforest, G. Labelle, F.-J. Lapointe, A. M. Di Sci-

ullo, and V. Makarenkov. Using hybridization networks to retrace the evo-

lution of indo-european languages. BMC Evolutionary Biology, 16, 2016.

72

Bibliography

[Wra76] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical

Computer Science, 3(1):23�33, 1976.

73

Appendix

1 Accepted Manuscripts

1.1 On the existence of a cherry-picking sequence

The following paper [DL18] is also available online at the following URL: https://doi.

org/10.1016/j.tcs.2017.12.005.

75

https://doi.org/10.1016/j.tcs.2017.12.005
https://doi.org/10.1016/j.tcs.2017.12.005

Theoretical Computer Science 714 (2018) 36–50

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the existence of a cherry-picking sequence

Janosch Döcker a, Simone Linz b,∗
a Department of Computer Science, University of Tübingen, Germany
b Department of Computer Science, University of Auckland, New Zealand

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 August 2017
Received in revised form 30 November 2017
Accepted 5 December 2017
Available online 8 December 2017
Communicated by T. Calamoneri

Keywords:
2P2N-3-SAT
Cherry
Cherry-picking sequence
Intermezzo
Phylogenetic tree
Temporal phylogenetic network

Recently, the minimum number of reticulation events that is required to simultaneously
embed a collection P of rooted binary phylogenetic trees into a so-called temporal net-
work has been characterized in terms of cherry-picking sequences. Such a sequence is a
particular ordering on the leaves of the trees in P . However, it is well-known that not all
collections of phylogenetic trees have a cherry-picking sequence. In this paper, we show
that the problem of deciding whether or not P has a cherry-picking sequence is NP-
complete for when P contains at least eight rooted binary phylogenetic trees. Moreover,
we use automata theory to show that the problem can be solved in polynomial time if
the number of trees in P and the number of cherries in each such tree are bounded by a
constant.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

To represent evolutionary relationships among species, phylogenetic trees have long been a powerful tool. However, as
we now not only acknowledge speciation but also non-tree-like processes such as hybridization and lateral gene transfer
to be driving forces in the evolution of certain groups of organisms (e.g. bacteria, plants, and fish) [16,20], phylogenetic
networks become more widely used to represent ancestral histories. A phylogenetic network is a generalization of a rooted
phylogenetic tree. More precisely, such a network is a rooted directed acyclic graph whose leaves are labeled [14].

The following optimization problem, which is biologically relevant and mathematically challenging, motivates much of
the theoretical work that has been done in reconstructing phylogenetic networks from phylogenetic trees. Given a collection
P of rooted binary phylogenetic trees on a set of species such that P correctly represents the tree-like evolution of different
parts of the species’ genomes, what is the smallest number of reticulation events that is required to simultaneously embed
the trees in P into a phylogenetic network? Here, reticulation events are collectively referring to all non-tree-like events
and they are represented by vertices in a phylogenetic network whose in-degree is at least two. Without any structural
constraints on a phylogenetic network, it is well-known that P can always be embedded into such a network [2,19] and,
hence, the optimization problem is well-defined. Moreover, despite the problem being NP-hard [4], even for when |P| = 2,
several exact algorithms have been developed that, given two rooted phylogenetic trees, construct a phylogenetic network
whose number of reticulation events is minimized over the space of all networks that embed both trees [1,7,18,22].

Motivated by the introduction of temporal networks [3,17], which are phylogenetic networks that satisfy several time
constraints, Humphries et al. [12,13] recently investigated the special case of the aforementioned optimization problem for

* Corresponding author.
E-mail addresses: janosch.doecker@uni-tuebingen.de (J. Döcker), s.linz@auckland.ac.nz (S. Linz).

https://doi.org/10.1016/j.tcs.2017.12.005
0304-3975/© 2017 Elsevier B.V. All rights reserved.

J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50 37

when one is interested in minimizing the number of reticulation events over the smaller space of all temporal networks
that embed a given collection of rooted binary phylogenetic trees. More precisely, in the context of their two papers, the
authors considered temporal networks to be phylogenetic networks that satisfy the following three constraints:

(1) speciation events occur successively,
(2) reticulation events occur instantaneously, and
(3) each non-leaf vertex has a child whose in-degree is one.

The second constraint implies that the three species that are involved in a reticulation event, i.e. the new species resulting
from this event and its two distinct parents, must coexist in time. Moreover, a phylogenetic network that satisfies the third
constraint (but not necessarily the first two constraints) is referred to as a tree-child network in the literature [6]. Intuitively,
if a phylogenetic network N is temporal, then one can assign a time stamp to each of its vertices such that the following
holds for each edge (u, v) in N . If v is a reticulation, then the time stamp assigned to u is the same as the time stamp
assigned to v . Otherwise, the time stamp assigned to v is strictly greater than that assigned to u. Baroni et al. [3] showed
that it can be checked in polynomial time whether or not a given phylogenetic network satisfies the first two constraints.

Humphries et al. [12] have established a new characterization to compute the minimum number of reticulation events
that is needed to simultaneously embed an arbitrarily large collection P of rooted binary phylogenetic trees into a temporal
network. This characterization, which is formally defined in Section 2, is in terms of cherries, and the existence of a particular
type of sequence on the leaves of the trees, called a cherry-picking sequence. It was shown that such a sequence for P
exists if and only if the trees in P can simultaneously be embedded into a temporal network [12, Theorem 1]. Moreover,
a cherry-picking sequence for P can be exploited further to compute the minimum number of reticulation events that is
needed over all temporal networks. Importantly, not every collection P is guaranteed to have a solution, i.e. there may be no
cherry-picking sequence for P and, hence no temporal network that embeds all trees in P . It was left as an open problem
by Humphries et al. [12] to analyze the computational complexity of deciding whether or not P has a cherry-picking
sequence for when |P| = 2.

In this paper, we make progress towards this question and show that it is NP-complete to decide if P has a cherry-
picking sequence for when |P| ≥ 8. Translated into the language of phylogenetic networks, this result directly implies that
it is computationally hard to decide if a collection of at least eight rooted binary phylogenetic trees can simultaneously
be embedded into a temporal network. To establish our result, we use a reduction from a variant of the Intermezzo prob-
lem [9]. On a more positive note, we show that deciding if P has a cherry-picking sequence can be done in polynomial time
if the number of trees and the number of cherries in each such tree are bounded by a constant. To this end, we explore
connections between phylogenetic trees and automata theory and show how the problem at hand can be solved by using a
deterministic finite automaton.

The remainder of the paper is organized as follows. The next section contains notation and terminology that is used
throughout the paper. Section 3 establishes NP-completeness of a variant of the Intermezzo problem which is then, in
turn, used in Section 4 to show that it is NP-complete to decide if P has a cherry-picking sequence for when |P| ≥ 8. In
Section 5, we show that deciding if P has a cherry-picking sequence is polynomial-time solvable if the number of cherries
in each tree and the size of P are bounded by a constant. We finish the paper with some concluding remarks in Section 6.

2. Preliminaries

This section provides notation and terminology that is used in the subsequent sections. Throughout this paper, X denotes
a finite set.

Phylogenetic trees. A rooted binary phylogenetic X-tree T is a rooted tree with leaf set X and, apart from the root which
has degree two, all interior vertices have degree three. Furthermore, a pair of leaves {a, b} of T is called a cherry if a and
b are leaves that are adjacent to a common vertex. Note that every rooted binary phylogenetic tree has at least one cherry.
We denote by cT the number of cherries in T . We now turn to a rooted binary phylogenetic tree with exactly one cherry.
More precisely, we call T a caterpillar if |X | = n ≥ 2 and the elements in X can be ordered, say x1, x2, . . . , xn , so that {x1, x2}
is a cherry and, if pi denotes the parent of xi , then, for all i ∈ {3, 4, . . . , n}, we have (pi, pi−1) as an edge in T , in which
case we denote the caterpillar by (x1, x2, . . . , xn). To illustrate, Fig. 1 shows the caterpillar (D1, D2, . . . , D |A′ |) with cherry
{D1, D2}. Two rooted binary phylogenetic X-trees T and T ′ are said to be isomorphic if the identity map on X induces a
graph isomorphism on the underlying trees.

Subtrees. Now, let T be a rooted binary phylogenetic X-tree, and let X ′ = {x1, x2, . . . , xk} be a subset of X . The minimal
rooted subtree of T that connects all vertices in X ′ is denoted by T (X ′). Furthermore, the rooted binary phylogenetic
tree obtained from T (X ′) by contracting all non-root degree-2 vertices is the restriction of T to X ′ and is denoted by
T |X ′ . We also write T [−x1, x2, . . . , xk] or T [−X ′] for short to denote T |(X − X ′). For a set P = {T1, T2, . . . , Tm} of
rooted binary phylogenetic X-trees, we write P|X ′ (resp. P[−X ′]) when referring to the set {T1|X ′, T2|X ′, . . . , Tm|X ′}
(resp. {T1[−X ′], T2[−X ′], . . . , Tm[−X ′]}). Lastly, a rooted binary phylogenetic tree is pendant in T if it can be detached
from T by deleting a single edge.

38 J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50

Cherry-picking sequences. Let P be a set of rooted binary phylogenetic X-trees with |X | = n. We say that an ordering of
the elements in X , say (x1, x2, . . . , xn), is a cherry-picking sequence for P precisely if each xi with i ∈ {1, 2, . . . , n − 1} labels
a leaf of a cherry in each tree that is contained in P[−x1, x2, . . . , xi−1]. Clearly, if |P| = 1, then P has a cherry-picking
sequence. However, if |P| > 1, then P may or may not have a cherry-picking sequence.

We now formally state the decision problem that this paper is centered around.

CPS-Existence

Instance. A collection P of rooted binary phylogenetic X-trees.
Question. Does there exist a cherry-picking sequence for P?

The significance of CPS-Existence is the problem’s equivalence to the question whether or not all trees in P can simulta-
neously be embedded into a rooted phylogenetic network that satisfies the three temporal constraints as alluded to in the
introduction.

Automata and languages. Let � be an alphabet. A language L is a subset of all possible strings (also called words) whose
symbols are in �. More precisely, L is a subset of �∗ , where the operator ∗ is the Kleene star. A deterministic finite automaton
(or short automaton) is a tuple A = (Q , �, δ, qini, F), where

(i) Q is a finite set of states,
(ii) � is a finite alphabet,

(iii) δ : Q × � → Q is a transition relation,
(iv) qini is the initial state, and
(v) F ⊆ Q are final states.

A given automaton A accepts a word w = a1a2 . . .an if and only if A is in a final state after having read all symbols from
left to right, i.e.

δ(. . . δ(δ(qini,a1),a2), . . .an) ∈ F .

The language L(A) ⊆ �∗ that is recognized by A is defined as the set of words that A accepts. For the automata constructed
in this paper, we have |F | = 1 and δ being a total function that maps each pair of a state in Q and a symbol in � to a state
in Q . For a detailed introduction to automata theory and languages, see the book by Hopcroft and Ullman [11].

3. A variant of the INTERMEZZO problem

In this section, we establish NP-completeness of a variant of the ordering problem Intermezzo. Let A be a finite set, and
let O be an ordering on the elements in A. For two elements a and b in A, we write a < b precisely if a precedes b in O.
With this notation in hand, we now formally state Intermezzo which was shown to be NP-complete via reduction from
3-SAT [9, Lemma 1].

Intermezzo

Instance. A finite set A, a collection B of pairs from A, and a collection C of pairwise-disjoint triples of distinct elements
in A.
Question. Does there exist a total linear ordering on the elements in A such that ai < a j for each (ai, a j) in B , and ai <

a j < ak or a j < ak < ai for each (ai, a j, ak) in C?

Example. Consider the following instance of Intermezzo with three pairs and two disjoint triples (when viewed as sets):

A = {a1, a2, a3, a4, a5,a6},
B = {(a1, a6), (a4, a1), (a4, a3)},
C = {(a1, a2, a3), (a4, a5, a6)}.

A total linear ordering on the elements in A that satisfies all constraints defined by B and C is

O = (a2, a4, a3, a1, a5, a6).

While each element ai ∈ A can appear an unbounded number of times in the input of a given Intermezzo instance, this
number is bounded from above by N in the following Intermezzo variant.

J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50 39

N-Disjoint-Intermezzo

Instance. A finite set A, collections B1, B2, . . . , B N of pairs from A, and collections C1, C2, . . . , CN of triples of distinct
elements in A such that, for each � ∈ {1, 2, . . . , N}, the elements in B� ∪ C� are pairwise disjoint.
Question. Does there exist a total linear ordering on the elements in A such that

ai < a j for each (ai,a j) ∈
⋃

1≤�≤N

B�,

and

ai < a j < ak or a j < ak < ai for each (ai,a j,ak) ∈
⋃

1≤�≤N

C�?

Let I be an instance of N-Disjoint-Intermezzo, and let O be an ordering on the elements of A that satisfies the two
ordering constraints for each pair and triple in the statement of N-Disjoint-Intermezzo. We say that O is an N-Disjoint-

Intermezzo ordering for I .
We next show that 4-Disjoint-Intermezzo is NP-complete via reduction from the following restricted version of 3-SAT.

2P2N-3-SAT

Instance. A set U of variables, and a set C of clauses, where each clause is a disjunction of exactly three literals, such that
each variable appears negated exactly twice and unnegated exactly twice in C .
Question. Does there exist a truth assignment for U that satisfies each clause in C?

Berman et al. [5, Theorem 1] established NP-completeness for 2P2N-3-SAT.

Theorem 3.1. 4-Disjoint-Intermezzo is NP-complete.

Proof. We show that the construction by Guttmann and Maucher [9, Lemma 1], that was used to show that Intermezzo is
NP-complete via reduction from 3-SAT, yields an instance of 4-Disjoint-Intermezzo if we reduce from 2P2N-3-SAT.

Using the same notation as Guttmann and Maucher [9, Lemma 1], their construction is as follows. Let I be an instance
of 2P2N-3-SAT that is given by a set of variables U = {u1, . . . , un} and a set of clauses

C = {(c1,1 ∨ c1,2 ∨ c1,3), . . . , (cm,1 ∨ cm,2 ∨ cm,3)},
where each ci, j ∈ {u1, ̄u1, u2, ̄u2, . . . , un, ̄un}. Furthermore, for a, b ∈ N, let a ⊕ b denote the number c ∈ {1, 2, 3} such that
a + b ≡ c (mod 3). We define the following three sets:

A = {uk,l, ūk,l | 1 ≤ k ≤ n ∧ 1 ≤ l ≤ 3} ∪
{cl

i, j | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3 ∧ 1 ≤ l ≤ 3},
B = {(uk,1, ūk,3), (ūk,1, uk,3) | 1 ≤ k ≤ n} ∪

{(ci, j,2, c1
i, j), (c2

i, j, ci, j,1) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3} ∪
{(c1

i, j⊕1, c3
i, j) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3},

C = {(uk,1, uk,2, uk,3), (ūk,1, ūk,2, ūk,3) | 1 ≤ k ≤ n} ∪
{(c1

i, j, c2
i, j, c3

i, j) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3},
where ci, j,l is an abbreviation of uk,l with uk = ci, j . By construction, the elements in C are pairwise-disjoint triples of
distinct elements in A and, so, the three sets A, B , and C form an instance of Intermezzo.

Now, we show how the pairs and triples in B ∪ C can be partitioned into sets B� ∪ C� with B� ⊆ B , C� ⊆ C , and 1 ≤ � ≤ 4
such that the elements in B� ∪ C� are pairwise disjoint. Recalling that C is a set of pairwise-disjoint triples, we start by
setting B1 = ∅ and C1 = C . Furthermore, we set

B2 = {(uk,1, ūk,3), (ūk,1, uk,3) | 1 ≤ k ≤ n} ∪
{(c1

i, j⊕1, c3
i, j) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3}

and C2 = ∅. By construction, it is easy to check that the pairs in B2 are pairwise disjoint. Lastly, consider the remaining
pairs

B \ B2 = {(ci, j,2, c1
i, j), (c2

i, j, ci, j,1) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ 3}

40 J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50

Fig. 1. A caterpillar on |A′| leaves and with cherry {D1, D2}.

and observe that the only possibility for two pairs in B \ B2 to have a non-empty intersection is to have an element ci, j,l

with l ∈ {1, 2} in common. Now, since each ci, j,l is equal to an element in

U ′ = {uk,l, ūk,l | 1 ≤ k ≤ n ∧ 1 ≤ l ≤ 3},
and each element uk appears exactly twice negated and twice unnegated in C , it follows that there is a partition of B \ B2

into B3 and B4 so that all pairs in the resulting two sets are pairwise disjoint. Setting C3 = C4 = ∅ completes the construc-
tion of an instance of 4-Disjoint-Intermezzo. Noting that it is straightforward to compute the partition

B ∪ C =
⋃

1≤�≤4

(B� ∪ C�)

in polynomial time and that we did not modify the construction described by Guttmann and Maucher [9, Lemma 1] itself,
it follows from the same proof that I has a satisfying truth assignment if and only if

⋃
1≤�≤4 (B� ∪ C�) has a 4-Disjoint-

Intermezzo ordering. �
Remark. By the construction of an instance of 4-Disjoint-Intermezzo in the proof of Theorem 3.1, we note that no pair or
triple occurs twice and that, for each � ∈ {1, 2, 3, 4}, we have B� ∪ C� �= ∅. We will freely use these facts throughout the
remainder of the paper.

4. Hardness of CPS-EXISTENCE

In this section, we show that the decision problem CPS-Existence is NP-complete for any collection of rooted binary
phylogenetic trees on the same leaf set that consists of a constant number m of trees with m ≥ 8. To establish the result,
we use a reduction from 4-Disjoint-Intermezzo.

Let I be an instance of 4-Disjoint-Intermezzo. Using the same notation as in the definition of N-Disjoint-Intermezzo,
let

A′ = A ∪
⎧⎨
⎩c1

r , c2
r , c3

r , c4
r | cr ∈

⋃
1≤�≤4

C�

⎫⎬
⎭ ,

and let D = {d1, d2, . . . , d|A′|}. For each � ∈ {1, 2, 3, 4}, we next construct two rooted binary phylogenetic trees. Let A� be the
subset of A′ that precisely contains each element of A′ that is neither contained in an element of B� nor contained in an
element of

C� ∪ {c1
r , c2

r , . . . , c4
r | cr ∈ C�}.

Furthermore, let S� and S ′
� both be the caterpillar shown in Fig. 1. Setting q = 1, let T� and T ′

� be the two rooted binary
phylogenetic trees obtained from S� and S ′

� that result from the following four-step process.

(i) For each (ai, a j) ∈ B� in turn, replace the leaf Dq in S� (resp. S ′
�) with the 3-taxon tree on the top left (resp. bottom

left) in Fig. 2 and increment q by one.
(ii) For each cr ∈ C� with cr = (ai, a j, ak) in turn, replace the leaf Dq in S� (resp. S ′

�) with the 8-taxon tree on the top right
(resp. bottom right) in Fig. 2 and increment q by one.

(iii) For each ai ∈ A� in turn, replace the leaf Dq in S� and S ′
� with the cherry {ai, dq} and increment q by one.

(iv) For each element in {q, q + 1, . . . , |A′|}, replace the leaf label Dq in S� and S ′
� with dq .

We call PI = {T�, T ′
� | 1 ≤ � ≤ 4} the set of intermezzo trees associated with I . The next observation is an immediate conse-

quence from the above construction and the fact that, for each 1 ≤ � ≤ 4, the elements in B� and C� are pairwise disjoint.

J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50 41

Fig. 2. Gadgets for a pair (ai , a j) (left) and gadgets for a triple (ai, a j , ak) (right) that are used in the reduction from 4-Disjoint-Intermezzo to CPS-Existence.

Observation 4.1. For an instance I of 4-Disjoint-Intermezzo, the set of intermezzo trees associated with I consists of eight pairwise
non-isomorphic rooted binary phylogenetic trees whose set of leaves is A′ ∪ D.

We now establish the main result of this section.

Theorem 4.2. Let P = {T1, T2, . . . , Tm} be a collection of rooted binary phylogenetic X-trees. CPS-Existence is NP-complete for
m = 8.

Proof. Clearly, CPS-Existence for m = 8 is in NP because, given an ordering O on the elements in X , we can decide in
polynomial time if O is a cherry-picking sequence for P . Let I be an instance of 4-Disjoint-Intermezzo, and let PI =
{T�, T ′

� | 1 ≤ � ≤ 4} be the set of eight intermezzo trees that are associated with I . Note that each tree in PI can be
constructed in polynomial time and has a size that is polynomial in |A|. The remainder of the proof essentially consists of
establishing the following claim.

Claim. I is a ‘yes’-instance of 4-Disjoint-Intermezzo if and only if PI has a cherry-picking sequence.

First, suppose that PI has a cherry-picking sequence. Let O be a cherry-picking sequence for PI , and let O′ be the
subsequence of O of length |A| that contains each element in A. We next show that O′ is a 4-Disjoint-Intermezzo ordering
for I . Let (ai, a j) be an element of some B� with 1 ≤ � ≤ 4, and let dq , with q ∈ {1, 2, . . . , |A′|}, be the unique leaf label of T�

and T ′
� such that {ai, a j, dq} is the leaf set of a pendant subtree of T� and T ′

� . By construction of T� and T ′
� , it is easily seen

that dq exists and ai < a j in O. Hence, ai < a j in O′ . Turning to the triples, let cr = (ai, a j, ak) be an element of some C�

with 1 ≤ � ≤ 4, and let dq , with q ∈ {1, 2, . . . , |A′|}, be the unique leaf label of T� and T ′
� such that {ai, a j, ak, c1

r , c2
r , c3

r , c4
r , dq}

is the leaf set of a pendant subtree of T� and T ′
� . Again, by construction, dq exists. Let S� = T�|{ai, a j, ak, c1

r , c2
r , c3

r , c4
r , dq}

and, similarly, let S ′
� = T ′

� |{ai, a j, ak, c1
r , c2

r , c3
r , c4

r , dq}. It is straightforward to check that each cherry-picking sequence for S�

and S ′
� satisfies either

ai < a j < ak, or a j < ak < ai .

Hence, as S� and S ′
� are pendant in T� and T ′

� , respectively, we have ai < a j < ak , or a j < ak < ai in O and, consequently,
in O′ . Since the above argument holds for each pair and each triple, it follows that O′ is a 4-Disjoint-Intermezzo ordering
for I and, so, I is a ‘yes’-instance.

Conversely, suppose that I is a ‘yes’-instance of 4-Disjoint-Intermezzo. Let O′ be a 4-Disjoint-Intermezzo ordering on
the elements of A. To ease reading, let

42 J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50

C =
⋃

1≤�≤4

C�.

Modify O′ as follows to obtain an ordering O.

(1) Concatenate O′ with the sequence (d1, d2, . . . , d|A′|).
(2) For each cr = (ai, a j, ak) in C , do one of the following two depending on the order of ai , a j , and ak in O′ . If ai < a j < ak

in O′ , then replace ai with ai , c2
r and replace ak with ak , c3

r , c1
r , c4

r . Otherwise, if a j < ak < ai , then replace ak with ak ,
c3

r and replace ai with ai , c2
r , c1

r , c4
r .

Since O′ is a 4-Disjoint-Intermezzo ordering with ai < a j < ak or a j < ak < ai for each (ai, a j, ak) ∈ C , it follows from the
construction of O from O′ that O is an ordering on the elements in A′ ∪ D . It remains to show that O is a cherry-picking
sequence for PI . First, consider a pendant subtree with leaf set {ai, a j, dq} in T� and T ′

� for some 1 ≤ � ≤ 4. By construction,
(ai, a j) is a pair in B� and, so, we have ai < a j in O′ and ai < a j < dq in O. Second, consider a pendant subtree with leaf
set {ai, a j, ak, c1

r , c2
r , c3

r , c4
r , dq} in T� and T ′

� for some 1 ≤ � ≤ 4. By construction, (ai, a j, ak) is a triple in C� and, so, we have
either ai < a j < ak in O′ and

ai < c2
r < a j < ak < c3

r < c1
r < c4

r < dq

in O, or a j < ak < ai in O′ and

a j < ak < c3
r < ai < c2

r < c1
r < c4

r < dq

in O. Third, consider a pendant subtree with leaf set {ai, dq} in T� and T ′
� for some 1 ≤ � ≤ 4. By construction, we have

ai < dq in O. Fourth, if (ai, a j, ak) ∈ C , then, as I has a 4-Disjoint-Intermezzo ordering, there does not exist a pair (ak, a j)

in B� for some 1 ≤ � ≤ 4. Lastly, observe that (d1, d2, . . . , d|A′|) is a suffix of O and that, for any two trees, say S and S ′
in PI , we have that S|D and S ′|D are isomorphic. Since O′ is a 4-Disjoint-Intermezzo ordering, it is now straightforward
to check that O is a cherry-picking sequence of PI . This establishes the proof of the claim and, thereby, the theorem. �

The next corollary shows that CPS-Existence is not only NP-complete for a collection of eight rooted binary phylogenetic
trees on the same leaf set, but for any such collection with a fixed number m of trees with m ≥ 8.

Corollary 4.3. Let P = {T1, T2, . . . , Tm} be a collection of rooted binary phylogenetic X-trees. CPS-Existence is NP-complete for any
fixed m with m ≥ 8.

Proof. Clearly, CPS-Existence for m = t + 8 with t ≥ 0 is in NP. To establish the corollary, we show how one can modify the
reduction that is described prior to Theorem 4.2 to obtain a set of t + 8 rooted binary phylogenetic trees from an instance
of 4-Disjoint-Intermezzo.

Let I be an instance of 4-Disjoint-Intermezzo. Throughout the remainder of the proof, we assume that there exists an
1 ≤ � ≤ 4 such that |B� ∪ C�| > t . Otherwise, since t = m − 8 and m is fixed, it follows that I has a constant number c of
pairs and triples with c ≤ 4(m − 8) and is solvable in polynomial time.

Now, let Bi and Ci with i ∈ {1, 2, 3, 4} be a collection of pairs and triples, respectively, such that |Bi ∪ Ci | > t . Theo-
rem 4.2 establishes the result for when t = 0. We may therefore assume that t > 0 and consider two cases. First, suppose
that t is even. Replace Bi and Ci in I with a partition of Bi ∪ Ci into t

2 + 1 sets. Each of the resulting new sets can be split
naturally into a collection of pairs and a collection of triples of which at most one is empty. This results in(

t

2
+ 1

)
+ (4 − 1) = t

2
+ 4

collections of pairs and triples, respectively. Now, for each B� and C� with � ∈ {1, 2, . . . , t
2 + 4}, construct two rooted binary

phylogenetic trees as described in the definition of the set of intermezzo trees associated with I . This yields

2

(
t

2
+ 4

)
= t + 8 = m

pairwise non-isomorphic trees. Second, suppose that t is odd. Replace Bi and Ci in I with a partition of Bi ∪ Ci into t−1
2 + 1

sets. Additionally, add B∗ = ∅ and C∗ = ∅. Analogous to the first case, this results in(
t − 1

2
+ 1 + 1

)
+ (4 − 1) = t − 1

2
+ 5

collections of pairs and triples, respectively. Again, for each B� and C� with � ∈ {1, 2, . . . , t−1
2 + 5} construct two rooted

binary phylogenetic trees as described in the definition of the set of intermezzo trees associated with I . Noting that the two
trees for B∗ and C∗ are isomorphic, it follows that the construction yields

J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50 43

2

(
t − 1

2
+ 5

)
− 1 = 2t − 2

2
+ 10 − 1 = t + 8 = m

pairwise non-isomorphic trees. Since the proof of Theorem 4.2 generalizes to a set of m intermezzo trees, the corollary now
follows for both cases. �
5. Bounding the number of cherries

The main result of this section is the following theorem.

Theorem 5.1. Let P = {T1, T2, . . . , Tm} be a collection of rooted binary phylogenetic X-trees. Let c be the maximum element in
{cT1 , cT2 , . . . , cTm }. Then solving CPS-Existence for P takes time

O

(
|X |m(4c−2)+1 +

m∑
i=1

f i(|X |, cTi)

)
,

where f i(|X |, cTi) ∈ |X |O (cTi) . In particular, the running time is polynomial in |X | if c and m are constant.

Let T be a rooted binary phylogenetic X-tree. We denote by C(T) the recursively defined set of trees that contains T
and ∅, and that satisfies the following property.

(P) If a tree T ′ is in C(T) and {a, b} is a cherry in T ′ , then T ′[−a] and T ′[−b] are also contained in C(T).

We refer to C(T) as the set of cherry-picked trees of T . Intuitively, C(T) contains each tree that can be obtained from T by
repeatedly deleting a leaf of a cherry.

To establish Theorem 5.1, we consider the set C(T) of cherry-picked trees of T . First, we develop a new vector repre-
sentation for each tree in C(T) and show that the size of C(T) is at most (|X | + 1)O (cT) . We then construct an automaton
whose number of states is |C(T)| + 1 and that recognizes whether or not a word that contains each element in X pre-
cisely once is a cherry-picking sequence for T . Lastly, we show how to use a product automaton construction to solve
CPS-Existence for a set of rooted binary phylogenetic X-trees in time that is polynomial if the number of cherries and the
number of trees in P is bounded by a constant.

We start with a simple lemma, which shows that deleting a leaf of a cherry never increases the number of cherries.

Lemma 5.2. Let T be a rooted binary phylogenetic X-tree, and let a be an element of a cherry in T . Then,

cT − cT [−a] ∈ {0,1}.

Proof. Let b be the unique element in X such that {a, b} is a cherry in T . Observe that each cherry of T other than {a, b}
is also a cherry of T [−a]. Now, let p be the parent of the parent of a in T , and let c be the child of p that is not the parent
of a. If c is a leaf, then it is easily checked that {b, c} is a cherry in T [−a] and, so cT − cT [−a] = 0. On the other hand, if c
is not a leaf, then b is not part of a cherry in T [−a] and, so, cT − cT [−a] = 1. �

We now define a labeled tree that will play an important role throughout the remainder of this section. Let T be a
rooted binary phylogenetic X-tree with cherries {{a1, b1}, {a2, b2}, . . . , {acT , bcT }}. Obtain a tree TI from T as follows.

Step (1). Set TI to be T .
Step (2). Delete all leaves of TI that are not part of a cherry.
Step (3). Suppress any resulting degree-2 vertex.
Step (4). If the root, say ρ , has degree one, delete ρ .
Step (5). For each cherry {ai, bi} with i ∈ {1, 2, . . . , cT }, label the parent of ai and bi with i, and delete the two leaves ai

and bi .
Step (6). Bijectively label the non-leaf vertices of TI with cT + 1, cT + 2, . . . , 2cT − 1.

We call TI the index tree of T . By construction, TI is a labeled rooted binary tree that is unique up to relabeling the
internal vertices. To illustrate, an example of the construction of an index tree is shown in Fig. 3. The next observation
follows immediately from the construction of an index tree.

Observation 5.3. Let T be a rooted binary phylogenetic tree, and let TI be the index tree associated with T . The size of TI is O (cT).
In particular, if the number of cherries in T is constant, the size of TI is O (1).

44 J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50

Fig. 3. An example of the construction of an index tree. Steps (1) to (6) refer to the corresponding steps in the definition of an index tree. For simplicity, in
Step (1), we have only indicated the leaf labels of leaves that are part of a cherry.

We next define a particular vector relative to a given set. Let S be a finite set, let ε be an element that is not in S , and
let n be a non-negative integer. We call

v = ([ξ1](x1
1, x2

1, . . . , xq1
1 , ε),

[ξ2](x1
2, x2

2, . . . , xq2
2 , ε),

...

[ξn](x1
n, x2

n, . . . , xqn
n , ε))

an S-vector if each element in S appears at most once in v , each ξi is an element in S ∪{ε}, and each x j
i is an element in S .

Now consider the following two S-vectors:

v = ([ξ1](x1
1, x2

1, . . . , xq1
1 , ε),

[ξ2](x1
2, x2

2, . . . , xq2
2 , ε),

...

[ξn](x1
n, x2

n, . . . , xqn
n , ε))

and

v ′ = ([ψ1](y1
1, y2

1, . . . , yr1
1 , ε),

[ψ2](y1
2, y2

2, . . . , yr2
2 , ε),

...

[ψn](y1
n, y2

n, . . . , yrn
n , ε))

We say that v ′ has the suffix-property relative to v if, for each s ∈ {1, 2, . . . , n}, the vector component [ψs](y1
s , y2

s , . . . , y
rs
s , ε)

is equal to [ψs](ε) or satisfies each of the following equations

yrs
s = xqs

s , yrs−1
s = xqs−1

s , . . . , y1
s = xqs−rs+1

s .

Lastly, if v ′ has the property that [ψi](y1
i , y

2
i , . . . , y

ri
i , ε) = ε for each i ∈ {1, 2, . . . , n}, we call v ′ the empty vector. Note

that the empty vector satisfies the suffix-property relative to every S-vector.
Building on the definition of an S-vector, we now describe a vector representation of a rooted binary phylogenetic tree

that can be constructed by using its index tree as a guide. Roughly, the representation associates a caterpillar-type structure

J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50 45

Fig. 4. A rooted binary phylogenetic tree T whose index tree TI is shown in Step (6) of Fig. 3. The vector representation of T relative to TI is
([x1](x2, x3, ε), [x6], (x7, ε), [x9](x10, x8, ε), [ε](x5, x4, ε), [ε](x11, x12, ε)).

to each vertex in the index tree. Let T be a rooted binary phylogenetic X-tree, let X ′ ⊆ X , and let ε /∈ X . For two vertices
u and v in T , we say that u (resp. v) is an ancestor (resp. descendant) of v (resp. u) if there is a directed path from u
to v in T . Throughout this section, we regard a vertex v of T to be an ancestor and a descendant of itself. The most
recent common ancestor of X ′ is the vertex v in T whose set of descendants contains X ′ and no descendant of v , except
v itself, has this property. We denote v by mrcaT (X ′). Now, let {{a1, b1}, {a2, b2}, . . . , {acT , bcT }} be the set of all cherries
in T . First, for each leaf i ∈ {1, 2, . . . , cT } in TI , let (ai, x1

i , x
2
i , . . . , x

q
i) be the maximal pendant caterpillar in T with cherry

{ai, bi}. We denote this by

[ξi](x1
i , x2

i , . . . , xq
i , ε),

where ξi = ai and x1
i = bi . Second, for each non-leaf vertex labeled i in TI with i ∈ {cT + 1, cT + 2, . . . , 2cT − 1}, let vi be

the vertex in T such that

vi = mrcaT ({a j,b j | j is a descendant of i in TI}),
and let Ti be the rooted binary phylogenetic tree obtained from T by replacing the pendant subtree rooted at vi with a leaf
labeled vi . Now, if vi is a leaf of a cherry in Ti , let (vi, x1

i , x
2
i , . . . , x

q
i) be the maximal pendant caterpillar in Ti with cherry

{vi, x1
i }. We denote this by

[ε](x1
i , x2

i , . . . , xq
i , ε).

Otherwise, if vi is not a leaf of a cherry in Ti , we denote this by

ε.

Now, recall that 2cT − 1 is the number of vertices in TI . Setting n = 2cT − 1, we call

vT = ([ξ1](x1
1, x2

1, . . . , xq1
1 , ε),

[ξ2](x1
2, x2

2, . . . , xq2
2 , ε),

...

[ξn](x1
n, x2

n, . . . , xqn
n , ε))

the vector representation of T relative to TI , and note that

ξcT +1 = ξcT +2 = · · · = ξ2cT −2 = ξn = ε.

An example of a tree and its vector representation is shown in Fig. 4.
Let T be a rooted binary phylogenetic X-tree with ε /∈ X , and let TI be the index tree of T . Let vT be the vector

representation relative to TI . Furthermore, let T ′ be an element in C(T), and let

vT ′ = ([ψ1](y1
1, y2

1, . . . , yr1
1 , ε),

[ψ2](y1
2, y2

2, . . . , yr2
2 , ε),

...

[ψn](y1
n, y2

n, . . . , yrn
n , ε))

46 J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50

be an X-vector for T ′ . We say that vT ′ has the cherry-property relative to vT if, for each cherry {a, b} in T ′ , exactly one of
the following conditions holds:

(i) There is an index s ∈ {1, 2, . . . , n} such that {ψs, y1
s } = {a, b}.

(ii) There are two distinct indices s, t ∈ {1, 2, . . . , n} such that {ψs, ψt} = {a, b}, the two corresponding vector components
are [ψs](ε) and [ψt](ε), respectively, there is a vertex labeled u in TI whose two children are labeled s and t , and
ψu = ε .

To establish Theorem 5.1, we next prove three lemmas.

Lemma 5.4. Let T be a rooted binary phylogenetic X-tree, and let vT be the vector representation of T relative to an index tree of T .
Then each tree T ′′ in C(T) can be mapped to an X-vector that satisfies the suffix-property and the cherry-property relative to vT .
Moreover, the mapping is one-to-one.

Proof. Set n = 2cT − 1. We define a mapping f from the elements in C(T) into the set of all X-vectors that satisfy the
suffix-property and the cherry-property relative to vT . First, we map T to vT and note that vT satisfies the suffix-property
and the cherry-property relative to vT . Second, we map the element ∅ in C(T) to the empty vector, say v∅ , with n vector
components. Again, v∅ satisfies the suffix-property and the cherry-property relative to vT . Now, let T ′′ be an element in
C(T) \ {T , ∅}. Recalling the recursive definition of C(T), there exists a tree T ′ in C(T) with cherry {a, b} such that T ′[−a]
is isomorphic to T ′′ . Suppose that f (defined below) has already mapped T ′ to the X-vector

vT ′ = ([ψ1](y1
1, y2

1, . . . , yr1
1 , ε),

[ψ2](y1
2, y2

2, . . . , yr2
2 , ε),

...

[ψn](y1
n, y2

n, . . . , yrn
n , ε)),

that satisfies the suffix-property as well as the cherry-property relative to vT . Then f maps T ′′ to a vector that can be
obtained from vT ′ in one of the following two cases.

(M1) If there is an index s ∈ {1, 2, . . . , n} such that {ψs, y1
s } = {a, b}, then f maps T ′′ to a vector vT ′′ that is obtained from

vT ′ by replacing the vector component

[ψs](y1
s , y2

s , . . . , yrs
s , ε) with [b](y2

s , y3
s . . . , yrs

s , ε).

(M2) Otherwise, there are two indices s, t ∈ {1, 2, . . . , n} with s �= t such that {ψs, ψt} = {a, b}, where the two corresponding
components have the form [ψs](ε) and [ψt](ε), respectively. Furthermore, by construction, there is a vertex labeled
u in TI whose two children are the vertices labeled s and t and ψu = ε . Then, f maps T ′′ to a vector vT ′′ that is
obtained from vT ′ by replacing each of the two vector components

[ψs](ε) and [ψt](ε) with ε,

and replacing the vector component

[ε](y1
u, y2

u, . . . , yru
u , ε) with [b](y1

u, y2
u . . . , yru

u , ε).

For both cases, it is easily checked that vT ′′ is an X-vector that satisfies the suffix-property relative to vT .
We next show that vT ′′ satisfies the cherry-property relative to vT . By Lemma 5.2, we have cT ′ − cT ′′ ∈ {0, 1}. If

cT ′ − 1 = cT ′′ then, by construction, each cherry in T ′′ is a cherry in T ′ . Hence, as vT ′ satisfies the cherry-property relative
to vT , we have that vT ′′ satisfies the cherry-property relative to vT . Otherwise, if cT ′ = cT ′′ , then the cherry {a, b} in
T ′ is replaced with a new cherry that contains b, while all other cherries in T ′ are also cherries in T ′′ . First, suppose
that T ′′ is obtained from T ′ according to mapping (M1). Observe that rs ≥ 1. If rs ≥ 2, then {b, y2

s } is the new cherry and,
thus, vT ′′ satisfies the cherry-property relative to vT . On the other hand, if rs = 1, let [ψt](y1

t , y2
t , . . . , yrt

t , ε) be the vector
component in vT ′ such that the vertices labeled s and t in TI have the same parent. Note that t exists because, otherwise,
s is the root of TI and so the existence of a cherry in T ′′ that is not a cherry in T ′ implies that rs ≥ 2; a contradiction.
If rt ≥ 1, then {ψt, y1

t } is a cherry in T ′ and T ′′ . Thus, the sibling of b in T ′′ is not a leaf, thereby contradicting that b is
a leaf of a cherry in T ′′ . Hence, [ψt](y1

t , y2
t , . . . , yrt

t , ε) = [ψt](ε). Now, as [b](ε) and [ψt](ε) are two vector components of
vT ′′ , it again follows that vT ′′ satisfies the cherry-property relative to vT . Second, suppose that T ′′ is obtained from T ′
according to mapping (M2). Noting that b is an element of the vector component [ψu](y1

u, y2
u, . . . , yru

t , ε) with ψu = b in
vT ′′ , the result can be established by using an argument that is similar to the previous case.

J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50 47

It remains to show that the mapping is one-to-one. Let T ′ and T ′′ be two distinct elements in C(T) \ {∅}. Since each
element in C(T) \ {T , ∅} can be obtained from T by repeatedly deleting a leaf of a cherry and suppressing the resulting
degree-2 vertex, there exists an element � in X that is a leaf in T ′ and not a leaf in T ′′ . Let X ′ and X ′′ be the leaf set
of T ′ and T ′′ , respectively. Noting that vT is an X-vector that contains each element in X exactly once, it follows from
construction of the mapping that vT ′ is an X ′-vector that contains each element in X ′ exactly once and that vT ′′ is an
X ′′-vector that contains each element in X ′′ exactly once. Hence vT ′ �= vT ′′ . Moreover, since no element in C(T) \ {∅} is
mapped to v∅ , the mapping is one-to-one. This completes the proof of the lemma. �
Lemma 5.5. Let T be a rooted binary phylogenetic X-tree. Then

|C(T)| ≤ (|X | + 1)4cT −2.

Proof. Let

vT = ([ξ1](x1
1, x2

1, . . . , xq1
1 , ε),

[ξ2](x1
2, x2

2, . . . , xq2
2 , ε),

...

[ξn](x1
n, x2

n, . . . , xqn
n , ε))

be the vector representation of T relative to an index tree of T , where n = 2cT − 1. We first derive an upper bound on the
number of X-vectors that satisfy the suffix-property relative to vT . For each i ∈ {1, 2, . . . , n}, consider the vector component
[ξi](x1

i , x
2
i , . . . , x

qi
i , ε). Then each X-vector that satisfies the suffix-property relative to T has an ith vector component, say

[ψi](y1
i , y

2
i , . . . , y

ri
i , ε), such that ψi ∈ X ∪ {ε} and (y1

i , y
2
i , . . . , y

ri
i , ε) is a suffix of (x1

i , x
2
i , . . . , x

qi
i , ε). Since there are at most

|X | + 1 such suffixes, it follows that there are at most (|X | + 1)2 variations of [ψi](y1
i , y

2
i , . . . , y

ri
i , ε). Hence, there are at

most

((|X | + 1)2)n = (|X | + 1)4cT −2.

X-vectors that satisfy the suffix-property relative to vT . By Lemma 5.4, each tree in C(T) can be mapped to one such
vector and, as the map is one-to-one, it follows that C(T) contains at most (|X | + 1)4cT −2 trees. �

For a rooted binary phylogenetic X-tree T , the next lemma constructs an automaton that recognizes whether or not a
word that contains each element in X precisely once is a cherry-picking sequence for T .

Lemma 5.6. Let T be a rooted binary phylogenetic X-tree. There is a deterministic finite automaton AT with O (|X |4cT −2) states that
recognizes the language

LX (T) = {x1x2 . . . x|X | | (x1, x2, . . . , x|X |) is a cherry-picking sequence for T }.
Moreover, the automaton AT can be constructed in time f (|X |, cT) ∈ |X |O (cT) .

Proof. Throughout this proof, we denote the tree without a vertex by ∅. Let M and M ′ be two sets. Setting M = {T } and
M ′ = ∅, we construct AT as follows.

(1) Create the states qT , q∅ , and qe . For each a ∈ X , set δ(qe, a) = δ(q∅, a) = qe .
(2) For each T ∈ M and each a ∈ X do the following.

(a) If a is a leaf of a cherry in T or a is the only vertex of T , then
(i) create the state qT [−a] if T [−a] is not isomorphic to a tree in M ′ ,

(ii) set M ′ = M ′ ∪ T [−a], and
(iii) set δ(qT , a) = qT [−a] .

(b) Otherwise, set δ(qT , a) = qe .
(3) Set M = M ′ and, subsequently, set M ′ = ∅. If M �= {∅}, continue with (2).

We set the initial state of AT to be qT and the final state to be q∅ . To illustrate, the construction of AT is shown in Fig. 5
for a phylogenetic tree on four leaves.

By construction, we have AT = (C(T), X, δ, qT , {q∅}). As each cherry-picked tree in C(T) is mapped to a unique state,
it follows from Lemma 5.5 that the number of states of AT is O (|X |4cT −2). Moreover, for each a ∈ X and each pair of two
distinct states T ′, T ′′ ∈ C(T), there is a transition δ(qT ′ , a) = qT ′′ if and only if T ′[−a] = T ′′ and a is either a leaf of a
cherry in T ′ or T ′ consists of the single vertex a. The state qe collects all inputs that do not correspond to the continuation

48 J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50

Fig. 5. Construction of an automaton that recognizes the language LX (T1) as described in the statement of Lemma 5.6 and with T1 shown in the top left of
this figure. Each vertex (resp. edge) represents a state (resp. transition). The vertex qT1 indicates the initial state whereas the final state is q∅ as indicated
by a double circle. To increase readability, most transitions to qe are omitted. In row i, the figure shows M , M ′ , and the automaton after the ith execution
of the for-loop as described in Step (2) in the proof of Lemma 5.6.

J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50 49

of a cherry-picking sequence. More precisely, there is a transition δ(qT ′ , a) = qe if and only if a is not a leaf of a cherry in
T ′ and T ′ does not consist of the single vertex a. It now follows that there is a one-to-one correspondence between the
directed paths from qT to q∅ in AT and the cherry-picking sequences of T and, hence, AT recognizes LX (T).

The time taken to construct AT is dominated by the number of iterations of the for-loop in Step (2). Since |M| <
|C(T)| and |C(T)| ∈ O (|X |4cT −2), the number of iterations in Step (2) is O (|C(T)| · |X |) ⊆ O (|X |4cT −1). Moreover, since
Step (2) is executed |X | times, each operation of the for-loop is executed O (|X |4cT) times in total. While the complexity of
these operations depend on the implementation and data structure, they can clearly be implemented such that AT can be
constructed in time |X |O (cT) . This establishes the lemma. �

Generalizing the language that is described in the statement of Lemma 5.6, the next straightforward observation de-
scribes a language for the decision problem CPS-Existence.

Observation 5.7. Let P = {T1, T2, . . . , Tm} be a collection of rooted binary phylogenetic X-trees. Then, solving CPS-Existence for P
is equivalent to deciding if⋂

1≤i≤m

LX (Ti) �= ∅.

We are now in a position to establish Theorem 5.1.

Proof of Theorem 5.1. By Observation 5.7, it follows that there is a cherry-picking sequence for P if and only if ⋂
Ti∈P LX (Ti) �= ∅, where

LX (T) = {x1x2 . . . x|X | | (x1, x2, . . . , x|X |) is a cherry-picking sequence for T }.
For each Ti ∈ P with 1 ≤ i ≤ m, we follow the notation and construction that is described in the proof of Lemma 5.6

to obtain an automaton ATi with O (|X |4cTi −2) states that recognizes the language LX (Ti). To solve the question whether
or not the intersection of these m languages is empty, we use the well-known construction of a product automaton [15] as
follows.

For each Ti ∈ P , let Q Ti be set of states, and let δTi be the transition relation of ATi . We construct a new automaton AP ,
where the set of states Q P is the Cartesian product Q T1 × Q T2 × . . . × Q Tm . Furthermore, the alphabet of AP is X and the
transition relation δP : Q P × X → Q P is defined as

δP ((q1, . . . ,qm),a) = (δT1(q1,a), . . . , δTm (qm,a)).

Lastly, the initial (resp. final) state of AP is (q1, . . . , qm) where, for all i ∈ {1, 2, . . . , m}, qi is the initial (resp. final) state
of ATi . Intuitively, AP simulates the parallel execution of the automata AT1 , AT2 , . . . , ATm . By construction, an input
sequence is accepted by AP if and only if it is accepted by each automaton ATi . It now follows that there is a cherry-picking
sequence for P if and only if the final state of AP can be reached from the initial state of AP and, hence, L(AP) �= ∅.

It remains to show that the computational complexity is as claimed in the statement of the theorem. Viewing AP as a
directed graph, each directed path from the initial to the final state of AP has length |X |. We can therefore decide whether
the final state from AP is reachable by using breadth-first search [8] in time O (|Q P | + |X | · |Q P |), where |X | · |Q P | is the
number of transitions in AP . By construction and Lemma 5.6, it follows that AP has

O

(
m∏

i=1

|X |4cTi
−2

)
⊆ O (|X |m(4c−2))

states, i.e. |Q P | ∈ O (|X |m(4c−2)). Hence, we can decide in time O (|X |m(4c−2)+1) whether L(AP) �= ∅. By Lemma 5.6, it takes
time f i(|X |, cTi) ∈ |X |O (cTi) to construct each automaton ATi and, thus, it follows that deciding if there is a cherry-picking
sequence for P can be done in time

O

(
|X |m(4c−2)+1 +

m∑
i=1

f i(|X |, cTi)

)
,

which is polynomial in |X | if c and m are constant. �
6. Concluding remarks

In this paper, we have shown that CPS-Existence, a problem of relevance to the construction of phylogenetic networks
from a set of phylogenetic trees, is NP-complete for all sets P of rooted binary phylogenetic trees with |P| ≥ 8. This result

50 J. Döcker, S. Linz / Theoretical Computer Science 714 (2018) 36–50

partially answers a question posed by Humphries et al. [12]. They asked if CPS-Existence is computationally hard for |P| = 2.
To establish our result, we first showed that 4-Disjoint-Intermezzo, which is a variant of the Intermezzo problem that is
new to this paper, is NP-complete. Subsequently, we established a reduction from an instance I of 4-Disjoint-Intermezzo

to an instance I ′ of CPS-Existence with |P| = 8. Since each of the four collections of pairs and triples in I reduces to
two trees in I ′ , a possible approach to obtain a stronger hardness result for CPS-Existence with |P| < 8 is to show that
N-Disjoint-Intermezzo is NP-complete for N < 4. However, it seems likely that such a result can only be achieved by
following a strategy that is different from the one that we used in this paper. In particular, there is no obvious reduction
from 2P2N-3-SAT to 3-Disjoint-Intermezzo. Moreover, 1-Disjoint-Intermezzo is solvable in polynomial time since all pairs
and triples are pairwise disjoint and, so, it cannot be used for a reduction even if CPS-Existence turns out to be NP-complete
for |P| = 2.

In the second part of the paper, we have translated CPS-Existence into an equivalent problem on languages and used
automata theory to show that CPS-Existence can be solved in polynomial time if the number of trees in P and the number
of cherries in each such tree are bounded by a constant. There are currently only a small number of other problems
in phylogenetics that have been solved with the help of automata theory (e.g. [10,21]) and it is to be hoped that the
results presented in this paper will stimulate further research to explore connections between combinatorial problems in
phylogenetics and automata theory.

Acknowledgements

We thank Britta Dorn for insightful comments on a draft version of this paper. The second author was supported by the
New Zealand Marsden Fund.

References

[1] B. Albrecht, C. Scornavacca, A. Cenci, D.H. Huson, Fast computation of minimum hybridization networks, Bioinformatics 28 (2012) 191–197.
[2] M. Baroni, S. Grünewald, V. Moulton, C. Semple, Bounding the number of hybridization events for a consistent evolutionary history, J. Math. Biol. 51

(2005) 171–182.
[3] M. Baroni, C. Semple, M. Steel, Hybrids in real time, Syst. Biol. 55 (2006) 46–56.
[4] M. Bordewich, C. Semple, Computing the minimum number of hybridization events for a consistent evolutionary history, Discrete Appl. Math. 155

(2007) 914–928.
[5] P. Berman, M. Karpinski, A.D. Scott, Approximation Hardness of Short Symmetric Instances of MAX-3SAT, Electronic Colloquium on Computational

Complexity, 2003, Report No. 49.
[6] G. Cardona, F. Rosselló, G. Valiente, Comparison of tree-child phylogenetic networks, IEEE/ACM Trans. Comput. Biol. Bioinform. 6 (2009) 552–569.
[7] Z.Z. Chen, L. Wang, An ultrafast tool for minimum reticulate networks, J. Comput. Biol. 20 (2013) 38–41.
[8] T.H. Cormen, C.E. Leierson, R.L. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, 2009.
[9] W. Guttmann, M. Maucher, Variations on an ordering theme with constraints, in: Fourth IFIP International Conference on Theoretical Computer Science,

Springer, 2006, pp. 77–90.
[10] D. Hall, D. Klein, Finding cognate groups using phylogenies, in: Proceedings of the 48th Annual Meeting of the Association for Computational Linguis-

tics, 2010, pp. 1030–1039.
[11] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison–Wesley, 1979.
[12] P.J. Humphries, S. Linz, C. Semple, Cherry picking: a characterization of the temporal hybridization number for a set of phylogenies, Bull. Math. Biol.

75 (2013) 1879–1890.
[13] P.J. Humphries, S. Linz, C. Semple, On the complexity of computing the temporal hybridization number for two phylogenies, Discrete Appl. Math. 161

(2013) 871–880.
[14] D.H. Huson, R. Rupp, C. Scornavacca, Phylogenetic Networks: Concepts, Algorithms and Applications, Cambridge University Press, 2010.
[15] D.C. Kozen, Automata and Computability, Undergraduate Texts in Computer Science, Springer, 1997.
[16] J. Mallet, N. Besansky, M.W. Hahn, How reticulated are species?, BioEssays 38 (2016) 140–149.
[17] B.M.E. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun, R. Timme, Phylogenetic networks: modeling, reconstructibility, and

accuracy, IEEE/ACM Trans. Comput. Biol. Bioinform. 1 (2004) 13–23.
[18] T. Piovesan, S. Kelk, A simple fixed parameter tractable algorithm for computing the hybridization number of two (not necessarily binary) trees,

IEEE/ACM Trans. Comput. Biol. Bioinform. 10 (2013) 18–25.
[19] C. Semple, Hybridization networks, in: O. Gascuel, M. Steel (Eds.), Reconstructing Evolution: New Mathematical and Computational Advances, Oxford

University Press, 2007, pp. 277–314.
[20] S.M. Soucy, J. Huang, J.P. Gogarten, Horizontal gene transfer: building the web of life, Nat. Rev. Genet. 16 (2015) 472–482.
[21] O. Westesson, G. Lunter, B. Paten, Ian Holmes, Accurate reconstruction of insertion–deletion histories by statistical phylogenetics, PLoS ONE 7 (4) (2012)

e34572.
[22] Y. Wu, J. Wang, Fast computation of the exact hybridization number of two phylogenetic trees, in: International Symposium on Bioinformatics Research

and Applications, Springer, 2010, pp. 203–214.

1 Accepted Manuscripts

1.2 Deciding the existence of a cherry-picking sequence is hard

on two trees

The following paper [DvIKL19] is also available online at the following URL: https:

//doi.org/10.1016/j.dam.2019.01.031.

91

https://doi.org/10.1016/j.dam.2019.01.031
https://doi.org/10.1016/j.dam.2019.01.031

Discrete Applied Mathematics 260 (2019) 131–143

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Deciding the existence of a cherry-picking sequence is hard
on two trees
Janosch Döcker a, Leo van Iersel b, Steven Kelk c,∗, Simone Linz d

a Department of Computer Science, University of Tübingen, Germany
b Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands
c Department of Data Science and Knowledge Engineering (DKE), Maastricht University, The Netherlands
d School of Computer Science, University of Auckland, New Zealand

a r t i c l e i n f o

Article history:
Received 30 November 2017
Received in revised form 20 October 2018
Accepted 22 January 2019
Available online 13 February 2019

Keywords:
Phylogenetics
NP-hardness
Satisfiability
Phylogenetic networks
Elimination orders
Temporal networks

a b s t r a c t

Here we show that deciding whether two rooted binary phylogenetic trees on the same
set of taxa permit a cherry-picking sequence, a special type of elimination order on the
taxa, is NP-complete. This improves on an earlier result which proved hardness for eight
or more trees. Via a known equivalence between cherry-picking sequences and temporal
phylogenetic networks, our result proves that it is NP-complete to determine the existence
of a temporal phylogenetic network that contains topological embeddings of both trees.
The hardness result also greatly strengthens previous inapproximability results for the
minimum temporal-hybridization number problem. This is the optimization version of the
problem where we wish to construct a temporal phylogenetic network that topologically
embeds two given rooted binary phylogenetic trees and that has a minimum number
of indegree-2 nodes, which represent events such as hybridization and horizontal gene
transfer. We end on a positive note, pointing out that fixed parameter tractability results in
this area are likely to ensure the continued relevance of the temporal phylogenetic network
model.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the field of phylogenetics it is common to represent the evolution of a set of species X by a rooted phylogenetic tree;
essentially a rooted, bifurcating tree whose leaves are bijectively labeled by X [21]. Driven by the realization that evolution
is not always treelike there has been growing attention for the construction of phylogenetic networks, which generalize
phylogenetic trees to directed acyclic graphs [1,11,14,22]. One well known optimization problem for phylogenetic networks
is as follows: given a set of rooted phylogenetic trees T on the same set of taxaX , compute a phylogenetic networkN = (V , E)
which displays (i.e. contains topological embeddings of) all the trees in T , such that the reticulation number |E| − (|V | − 1) is
minimized. When N is restricted to being binary this is equivalent to minimizing the number of nodes of N with indegree-2.
This optimization model is known as minimum hybridization and it has been extensively studied in the last decade (see
e.g. [2,6,15,18,24]). More recently variations of minimum hybridization have been proposed which constrain the topology
of N to be more biologically relevant. One such constraint is to demand that N is temporal [19]. Informally, a phylogenetic
network N is temporal if (i) the nodes of N can be labeled with times, such that nodes of indegree-2 have contemporaneous
parents, and timemoves strictly forwards along treelike parts of the network; and (ii) each non-leaf vertex has a child whose

∗ Corresponding author.
E-mail addresses: janosch.doecker@uni-tuebingen.de (J. Döcker), L.J.J.vanIersel@tudelft.nl (L. van Iersel), steven.kelk@maastrichtuniversity.nl

(S. Kelk), s.linz@auckland.ac.nz (S. Linz).

https://doi.org/10.1016/j.dam.2019.01.031
0166-218X/© 2019 Elsevier B.V. All rights reserved.

132 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

indegree is 1. Property (ii) by itself is referred to as tree-child in the literature [5]. It has been shown that when |T | = 2 it is
NP-hard to solve the minimum temporal-hybridization number problem to optimality [13]. To establish the result, the
authors proved that the problem is in fact APX-hard, which implies that for some constant c > 1 it is not possible in
polynomial time to approximate the optimum within a factor of c , unless P = NP [20].

A more fundamental question remained, however, open: is it possible in polynomial time to determine if any temporal
phylogenetic network exists that displays the input trees, regardless of how large |E| − (|V | − 1) is [12,23]? Here we settle
this question by showing that, even for |T | = 2, it is NP-complete to determine whether such a network exists. We prove
this by using the cherry-picking characterization of temporal phylogenetic networks introduced in [12]. There it was shown
that, given an arbitrarily large set T of rooted binary phylogenetic trees on X , there exists a temporal phylogenetic network
that displays each tree in T precisely if T has a so-called cherry-picking sequence. Informally, a cherry-picking sequence on T
is an elimination order on X that deletes one element of X at a time, where at each step only elements can be deleted which
are in a cherry of every tree in T [12]. We show here that the seminal NP-complete problem 3-SAT [17] can be reduced
to the question of whether two trees permit a cherry-picking sequence. This improves upon a recent result by two of the
present authors which shows that, for |T | ≥ 8, it is NP-complete to determine whether T has a cherry-picking sequence [8].
Our hardness result is highly non-trivial and requires extensive gadgetry; to clarify we include an explicit example of the
construction after the main proof.

As we discuss in the final section of the paper, this result has quite significant negative consequences: given that the
decision problem is already hard, the minimum temporal-hybridization number problem is in some sense ‘‘effectively
inapproximable’’, even for two trees. This greatly strengthens the earlier APX-hard inapproximability result. Nevertheless, as
we subsequently point out, positive fixed parameter tractability (FPT) [7] results for the minimum temporal-hybridization
number problem do already exist [12] and our results emphasize the importance of further developing such algorithms,
since fixed parameter tractability forms the most promising remaining avenue towards practical exact methods.

2. Preliminaries

A rooted binary phylogenetic tree on a set of taxa X , where |X | ≥ 2, is a rooted, connected, directed tree with a unique root
(a vertex of indegree-0 and outdegree-2), where the leaves (verticeswith indegree-1 and outdegree-0) are bijectively labeled
by X , and where all interior vertices of the tree are indegree-1 and outdegree-2. If |X | = 1, we consider the single isolated
node labeled by the unique element of X , to also be a rooted binary phylogenetic tree. Since all phylogenetic trees considered
in this paper are rooted and binary, we henceforth write tree for brevity, and draw no distinction between the elements of X
and the leaves they label. Let T be a tree, and let T = {T1, T2, . . . , Tm} be a set of trees. We use X(T) to denote the taxa set of
T and, similarly, we use X(T) to denote the union of taxa sets over all elements in T , i.e. X(T) = X(T1)∪ X(T2)∪ · · · ∪ X(Tm).
Lastly, for two distinct elements x and y in X , we call {x, y} a cherry of T if they have the same parent. A tree with a single
cherry is referred to as a caterpillar.

Now, let T be a tree on X , and let X ′
= {x1, x2, . . . , xk} be an arbitrary set. We write T |X ′ to denote the tree obtained from

T by taking the minimum subtree spanning the elements of X ′ and repeatedly suppressing all vertices with indegree-1 and
outdegree-1. (If v is a vertex with indegree-1 and outdegree-1, with incident edges (u, v) and (v, w), then suppressing v is
achieved as follows: v and its two incident edges are deleted, and an edge (u, w) is added.)

Furthermore, we also write T [−x1, x2, . . . , xk] or T [−X ′
] for short to denote T |(X − X ′). If X ∩ X ′

= ∅, then T |X ′ is the
null tree and T [−X ′

] is T itself. For a set T = {T1, T2, . . . , Tm} of trees on subsets of X , we write T |X ′ (resp. T [−X ′
]) when

referring to the set {T1|X ′, T2|X ′, . . . , Tm|X ′
} (resp. {T1[−X ′

], T2[−X ′
], . . . , Tm[−X ′

]}). Lastly, a rooted binary phylogenetic
tree is pendant in T if it can be detached from T by deleting a single edge.

2.1. Cherry-picking sequence problem on trees with the same set of taxa

We say that a taxon x ∈ X is in a cherry of T if there exists some y ̸= x such that {x, y} is a cherry of T or T consists of
a single leaf x. If x is in a cherry of T , we say that x is picked (or pruned) from T to denote the operation of replacing T with
T [−x]. Given a set of trees T , all on the same set of taxa X , we say that a taxon x ∈ X is available (for picking) in T if x is in a
cherry in each tree in T . When this is the case, we say that x is picked (or pruned) from T to denote the operation of replacing
T with T [−x].

Let T be a set of trees on the same set of taxa X . A cherry-picking sequence is an order on X , say (x1, x2, . . . , x|X |), such
that each xi with i ∈ {1, 2, . . . , |X |} is available in T [−x1, x2, . . . , xi−1]. Such a sequence is not guaranteed to exist; if it
does, we say that T permits a cherry-picking sequence. It was shown in [8] that deciding whether such a sequence exists is
NP-complete if |T | ≥ 8. Note that, if |T | = 1, then T always has a cherry-picking sequence. To illustrate, a cherry-picking
sequence for the two trees that are shown at the top of Fig. 1 is (f , g, d, b, a, c, e).

2.2. A more general cherry-picking sequence problem

Let T be a set of trees, and let X = X(T). Suppose we consider the variant of the problem described in Section 2.1 in
which the trees in T do not necessarily have the same set of taxa. In this case, some taxa may be missing from some trees.
This requires us to generalize the concept of being in a cherry of a tree. We say that a taxon x is in a cherry of a tree T , if
exactly one of the following conditions holds:

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 133

Fig. 1. A cherry-picking sequence for the two trees T and T ′ at the top is (f , g, d, b, a, c, e). The two trees in the middle have been obtained from T and T ′ ,
respectively, by pruning f , and the two trees at the bottom have been obtained from T and T ′ by first pruning f and, subsequently, pruning g . While we can
alternatively prune a and, subsequently, b, from T and T ′ , note that no cherry-picking sequence exists for T and T ′ whose first two elements are a and b.

(1) x ̸∈ X(T) or
(2) x ∈ X(T) and T has a cherry {x, y}, where x and y are distinct elements in X(T).

(Note that, once again, this means that if x is the only taxon in T , then x is vacuously considered to be in a cherry of T .)
It initially seems counter-intuitive to say, when condition 1 applies, that x is ‘‘in’’ a cherry of T . However, the idea behind
this is that such trees do not constrain whether x can be picked; they ‘‘do not care’’. More formally, we say that a taxon x is
available in T if it is in a cherry in each tree in T . Similar to Section 2.1, we say that an order on X , say (x1, x2 . . . , x|X |) is a
cherry-picking sequence of T if each xi with i ∈ {1, 2, . . . , |X |} is available in T [−x1, x2, . . . , xi−1]. If a tree becomes the null
tree due to all its taxa being pruned away then this tree plays no further role. Moreover we note that, if all trees in T have
the same set of taxa, then the more general definition of a cherry-picking sequence given in this subsection and that will be
used throughout the rest of this paper coincides with that given in Section 2.1.

3. Main results

In this section, we establish the main result of this paper. We start with two lemmas.

Lemma 1. Let T be a set of m trees on not necessarily the same set of taxa. Then we can construct in polynomial time a set T ′ of
m trees all on the same set of taxa, such that T has a cherry-picking sequence if and only if T ′ does.

Proof. Let X = X(T), and let Y = {y1, y2, . . .} be the set of taxa that are missing from at least one input tree. Let
Y ′

= {y′

1, y
′

2, . . .} be a disjoint copy of this set. Every modified tree will have taxon set X ∪ Y ′
∪ {ρ}. The idea is as follows.

Let TY ′ be an arbitrary rooted binary tree on Y ′. For each input tree Ti, we start by joining Ti and ρ beneath a root, and then
join this new tree and TY ′ together beneath a root. Next, for each yj ∈ Y that is missing from Ti, we add yj by subdividing
the edge that feeds into y′

j and attaching yj there (so yj and y′

j become siblings). For an example, see Fig. 2. We call the set of
trees constructed in this way T ′. The high-level idea is that if a tree Ti does not contain some taxon x, we attach x just above
x′ and thus ensure that, trivially, x is in a cherry in that tree (i.e. together with x′). So Ti does ‘‘not care’’ about x and will not
obstruct it from being pruned.

First, assume that T has a cherry-picking sequence σ . (We show that T ′ has a cherry-picking sequence.) We start by
applying exactly the same sequence of pruning operations to T ′. These picking operations will always be possible because, if
a taxon y ∈ Y is missing from a tree Ti ∈ T , it will be in a cherry together with y′ in the corresponding tree of T ′. After doing
this, all the trees will be isomorphic and have the same set of taxa: Y ′

∪{ρ}. At this point these remaining taxa can be pruned
in bottom-up fashion (since two isomorphic trees always have a cherry-picking sequence). Hence T ′ has a cherry-picking
sequence. Note that the taxon ρ is included to ensure that if, during σ , a tree Ti has been pruned down to a single taxon, this
taxon can still be pruned in the corresponding tree of T ′ (because it is sibling to ρ).

In the other direction, let σ ′ be a cherry-picking sequence for T ′. Let σ be the sequence obtained by deleting all taxa
from σ ′ that are not in X . Let x be an arbitrary element of X and let i be the position of x in σ ′. Let ℓ′

1, ℓ
′

2, . . . , ℓ
′

i−1 be the
prefix of σ ′ that has been pruned from T ′ prior to x, and let ℓ1, ℓ2, . . . , ℓj (where j ≤ i − 1) be the prefix of σ that has been
pruned prior to x. We claim that, if x is available in T ′

[−ℓ′

1, ℓ
′

2, . . . , ℓ
′

i−1], then it is also available in T [−ℓ1, ℓ2, . . . , ℓj]. To
see this, let T be an arbitrary tree in T [−ℓ1, ℓ2, . . . , ℓj]. If x ̸∈ X(T), then (by definition) x is in a cherry of T . If x is the only

134 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

Fig. 2. The construction described in Lemma 1. Here Y , the set of taxa missing from at least one tree, is {a, c, e, f }. In each modified tree the artificially
added members of Y are circled; note that they are always in cherries. A cherry-picking sequence for the original trees is e, b, c, d, a, f . A corresponding
sequence for the modified trees is e, b, c, d, a, f , f ′, e′, c ′, a′, ρ.

taxon in T , then it is (also by definition) in a cherry. So the only case remaining is that x ∈ X(T) and |X(T)| ≥ 2. Let T ′ be
the tree from T ′

[−ℓ′

1, ℓ
′

2, . . . , ℓ
′

i−1] that corresponds to T . The critical observation here is that, by construction, T occurs as
a pendant subtree of T ′. So if x was not in a cherry of T , then x would not be in a cherry of T ′ which gives a contradiction to
the assumption that T ′ has a cherry-picking sequence. Hence, x is in a cherry of T . Due to the arbitrary choice of x and T , it
follows that σ is a cherry-picking sequence for T .

It remains to show that the reduction is polynomial time. Observe that, depending on the instance, the size of T can be
dominated by |X | or m. Each of the m trees in T ′ contains |X | + |Y | + 1 taxa, where |Y | ≤ |X |, and the transformation itself
involves straightforward operations, so overall the reduction takes poly(|X |, m) time. □

Let T be a set of rooted binary trees, and let Ti and Tj be two trees in T such that X(Ti) ∩ X(Tj) = ∅. Furthermore, let ρi

and ρj be the root vertex of Ti and Tj, respectively. Obtain a new tree from Ti and Tj in the following way.

(1) Create a new vertex ρ and add new edges e = (ρ, ρi) and e′
= (ρ, ρj).

(2) Subdivide e (resp. e′) with a new vertex v (resp. v′) and add a new edge (v, x) (resp. (v′, y)), where x and y are two new
taxa such that {x, y} ∩ X(T) = ∅.

We call the resulting rooted binary tree the compound tree of Ti and Tj. To illustrate, Fig. 3 depicts the compound tree of Ti
and Tj.

The next lemma shows that, for a set T of rooted binary trees, the replacement of two trees in T with their compound
tree preserves the existence and non-existence of a cherry-picking sequences for T .

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 135

Fig. 3. The compound tree of two rooted binary trees Ti and Tj . The taxon x (resp. y) simply ensures that the last taxon pruned away in the Ti (resp. Tj) part
is in a cherry with x (resp. y).

Lemma 2. Let T be a set of rooted binary trees, and let Ti and Tj be two trees in T such that X(Ti) ∩ X(Tj) = ∅. Let Ti,j be the
compound tree of Ti and Tj. Then T has a cherry-picking sequence if and only if (T −{Ti, Tj})∪{Ti,j} has a cherry-picking sequence.

Proof. To ease reading, let T ′
= (T − {Ti, Tj}) ∪ {Ti,j}. Furthermore, let |X(T)| = n, and let x and y be the unique two taxa in

X(Ti,j) that do not label a leaf in Ti or Tj.
Suppose that σ = (ℓ1, ℓ2, . . . , ℓn) is a cherry-picking sequence for T . Let i′ be the maximum index of an element

in σ such that ℓi′ ∈ X(Ti) and, similarly, let j′ be the maximum index of an element in σ such that ℓj′ ∈ X(Tj). Then
T [−ℓ1, ℓ2, . . . ℓi′−1] contains a tree that is a single vertex labeled ℓi′ and T [−ℓ1, ℓ2, . . . ℓj′−1] contains a tree that is a single
vertex labeled ℓj′ . Moreover, by the construction of Ti,j, the set T ′

[−ℓ1, ℓ2, . . . ℓi′−1] contains a treewith cherry {ℓi′ , x} and the
set T ′

[−ℓ1, ℓ2, . . . ℓj′−1] contains a treewith cherry {ℓj′ , y}. Since Ti and Tj are pendant subtrees in Ti,j andσ is a cherry-picking
sequence for T , it now follows that

(ℓ1, ℓ2, . . . , ℓn, x, y)

is a cherry-picking sequence for T ′.
Conversely, suppose that σ ′

= (ℓ1, ℓ2, . . . , ℓn+2) is a cherry-picking sequence for T ′. Let {ℓi′ , ℓj′} = {x, y}. Without loss
of generality, we may assume that i′ < j′. Then, as x and y are only contained in the leaf set of Ti,j, it is straightforward to
check that

(ℓ1, ℓ2, . . . , ℓi′−1, ℓi′+1, ℓi′+2, . . . , ℓj′−1, ℓj′+1, ℓj′+2, . . . , ℓn+2)

is a cherry-picking sequence for T . □

Now we establish the main result of this paper.

Theorem 1. It is NP-complete to decide if two rooted binary phylogenetic trees T and T ′ on X have a cherry-picking sequence.

Proof. Given an order σ = (x1, x2, . . . , x|X |) on X , we can decide in polynomial time if, for each i ∈ {1, 2, . . . , |X |}, xi is in
a cherry in T [−x1, x2, . . . , xi−1] and T ′

[−x1, x2, . . . , xi−1]. Hence, the problem of deciding if T and T ′ have a cherry-picking
sequence is in NP. To establish the theorem, we use a reduction from 3-Sat. This is the variant of Satisfiability where each
clause contains exactly three literals, and the logical expression is in conjunctive normal form, i.e.,

m⋀
i=1

Ci =

m⋀
i=1

(li,1 ∨ li,2 ∨ li,3),

where li,j ∈ {v(k), ¬v(k)
| 1 ≤ k ≤ n}. The corresponding set of variables is denoted with

V := {v(1), v(2), . . . , v(n)
}.

We reduce from the NP-complete version of 3-Sat in which no variable occurs more than once in a given clause. Such
restricted instances can easily be obtained by a standard transformation as described in [10]. In the remainder of this proof,
n and m refer to the number of variables and clauses in a restricted 3-Sat instance, respectively.

Now, given an instance I of 3-Sat, we first construct a set T of 3n + 5m + 2 trees with overlapping taxa sets and show
that I has a satisfying truth assignment if and only if T has a cherry-picking sequence. We then repeatedly apply Lemma 2
in order to replace T with two trees and, finally, apply Lemma 1 to complete the proof of this theorem.

We start by describing the construction of T that makes use of the introduction of a set {b1, b2, . . . , b4n+3m, bX , bY , bZ }
of blocking taxa. As we will see later, each such taxon can only be pruned from T after certain other taxa have been

136 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

Fig. 4. Each variable v(k) , is represented by a single tree in Tv and two trees in T ′
v .

Fig. 5. Each clause Ci is represented by three trees in Tc and two trees in T ′
c .

pruned first and so the main function of the blocking taxa is to be unavailable for pruning which in turn constraints the
number of possibilities to construct a cherry-picking sequence from T . An explicit example of the construction of T is given
subsequently to this proof.

Variable gadget. We construct two sets Tv and T ′
v of trees. Each variable v(k) with k ∈ {1, 2, . . . , n} adds one tree on four

taxa to Tv which is the tree shown in the solid box of Fig. 4. Each such tree has two blocking taxa and, intuitively, encodes
whether v(k) is set to be true or false, depending on whether v

(k)
T or v

(k)
F is pruned first. Moreover, each variable v(k) adds

two caterpillars to T ′
v . Relative to a fixed v(k), the precise construction of these caterpillars is based on the definition of two

particular tuples. Let φk := (p1, p2, . . . , p|φk|) (resp. νk := (q1, q2, . . . , q|νk|)) be the indices, in ascending order, of all the
clauses in which v(k) appears unnegated (resp. negated). Since no clause contains any variable more than once, the elements
in φk (resp. νk) are pairwise distinct.

Now the taxon set of one caterpillar contains v
(k)
T , a new blocking taxon and, for each element pj in φk, a new taxon v

(k)
pj ,

while the taxon set of the other caterpillar contains v
(k)
F , a new blocking taxon and, for each element qj in νk, a new taxon

¬v
(k)
qj . The precise ordering of the leaves in both caterpillars is shown in the dashed box of Fig. 4. It is easily checked that

|X(Tv)| = 4n and, since each clause contains precisely three distinct variables, |X(T ′
v)| = 4n + 3m. Noting that the taxa sets

of the trees in X(Tv) and X(T ′
v) only overlap in v

(k)
T and v

(k)
F , we have

|X(Tv ∪ T ′

v)| = 4n + 4n + 3m − 2n = 6n + 3m (1)

distinct taxa over all trees in Tv and T ′
v .

Clause gadget.We construct two sets Tc and T ′
c of trees. For each i ∈ {1, 2, . . . ,m}, consider the clause Ci = ℓ(p)∨ℓ(q)∨ℓ(r),

where each k ∈ {p, q, r} is an element in {1, 2, . . . , n} with ℓ(k) ∈ {v(k), ¬v(k)
}. Relative to Ci, we add three three-taxon trees

to Tc which are shown in the solid box of Fig. 5. The first such tree has taxon set {ℓ
(p)
i , c i1, ∪

i
a} where ℓ

(p)
i is an element in

{v
(p)
i , ¬v

(p)
i }. Note that ℓ

(p)
i labels a leaf of a tree in T ′

v while the other two taxa do not label a leaf of a tree in Tv or T ′
v . The

other two trees in Tc are constructed in an analogous way. Furthermore, for each Ci, we add two five-taxon trees to T ′
c which

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 137

Fig. 6. The two trees Tf and T ′

f in the construction of T from I .

are shown in the dashed box of Fig. 5. The taxa set of the first tree contains two new blocking taxa and the three previously
encountered elements {c i1, c

i
2, c

i
3}, while the second tree contains one new blocking taxon, the new taxon ∪i, and the three

previously encountered elements {∪
i
a, ∪

i
b, ∪

i
c}. Similar to the variable gadgets, we now count the number of taxa in trees in

Tc and T ′
c . As no two trees in Tc or T ′

c share a taxon, we have |X(Tc)| = 9m and |X(T ′
c)| = 10m. Moreover, since all taxa of

trees in T ′
c , except for the blocking taxa and elements in {∪1, ∪2, . . . ,∪m}, are also taxa of trees in Tc , we have

|X(Tc ∪ T ′

c)| = 9m + 10m − 6m = 13m. (2)

Formula gadget. We complete the construction of T by constructing two caterpillars Tf and T ′

f which are shown in the
solid and dashed box of Fig. 6, and define

T = Tv ∪ T ′

v ∪ Tc ∪ T ′

c ∪ {Tf , T ′

f }.

Summarizing the construction, we have |T | = 3n + 5m + 2. Moreover, by construction and Eqs. (1)–(2), it follows that
|X((Tv ∪ T ′

v) ∩ (Tc ∪ T ′
c))| = 3m. Now, since the three taxa bX , bY , and bZ , which are common to Tf and T ′

f , are the only taxa
of these two trees that are not contained in the taxa set of any other constructed tree, we have

|X(T)| = 6n + 3m + 13m − 3m + 3 = 6n + 13m + 3. (3)

We next prove the following claim:

Claim 1. I is satisfiable if and only if T has a cherry-picking sequence.

First, suppose that I is satisfiable. Let β : V → {T , F} be a truth assignment for V such that each clause is satisfied. We
next describe a sequence of pruning operation. Noting that each taxon in X(T) is contained in the taxa sets of exactly two
trees in T (a fact that we freely use throughout the rest of this proof), it is straightforward to verify that this sequence implies
a cherry-picking sequence for T .

Part 1: variable gadgets. For each variable v(k) with k ∈ {1, 2, . . . , n} do the following. If β(v(k)) = T prune taxon v
(k)
T from

the two trees in Tv ∪ T ′
v whose taxa sets contain v

(k)
T . On the other hand, if β(v(k)) = F prune taxon v

(k)
F from the two trees in

Tv ∪ T ′
v whose taxa sets contain v

(k)
F . Taken together, these pruning steps delete a single leaf of each tree in Tv and a single

leaf of half of the trees in T ′
v .

Part 2: clause gadgets. Consider the set of trees resulting from the pruning described in Part 1. For each Ci = ℓ(p) ∨ ℓ(q) ∨ ℓ(r)

with i ∈ {1, 2, . . . ,m}, let Li be a subset of {p, q, r} such that |Li| = 2 and, if ℓ
(k)
i is not satisfied by β , then k ∈ Li. Setting

i = 1, process the three literals in Ci from left to right in the following way.

(1) If ℓ
(k)
i is satisfied by β , prune ℓ

(k)
i from the tree in Tc whose taxa set contains ℓ

(k)
i and, noting that ℓ

(k)
i ∈ {v

(k)
i , ¬v

(k)
i },

prune ℓ
(k)
i from the tree in T ′

v whose taxa set contains ℓ
(k)
i .

(2) If k ∈ Li, prune c is, where s = 1 if k = p, s = 2 if k = q, and s = 3 if k = r , from the two trees in Tc ∪ T ′
c whose taxa

sets contain c is.
(3) Prune ∪

i
t , where t = a if k = p, t = b if k = q, and t = c if k = r , from the two trees in Tc ∪ T ′

c whose taxa sets contain
∪

i
t .

Now prune ∪i from the tree in T ′
c whose taxa set contains ∪i, and prune ∪i from Tf . If i < m, increment i by one and repeat

this process with the next clause. Intuitively, by definition of Li, the above process prunes exactly two elements in {c i1, c
i
2, c

i
3}.

Since each clause is satisfied by β , this guarantees that we can prune each element in {∪
i
a, ∪

i
b, ∪

i
c} and, subsequently ∪i.

138 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

Part 3: formula gadget and remaining taxa. Consider the set of trees resulting from the pruning described in Part 2. We prune
the remaining taxa as follows.

(1) In order, prune each of

b4n+3m, b4n+3m−1, b4n+3m−2, . . . , b4n+3i, b4n+3i−1, b4n+3i−2, . . . , b4n+3, b4n+2, b4n+1

from a tree T ′
c whose taxa set contains the respective blocking taxa and from Tf . After all taxa have been pruned, each

tree in T ′
c is either the null tree or consists of a single vertex labeled c is for some s ∈ {1, 2, 3}.

(2) For each i ∈ {1, 2, . . . ,m}, prune the unique taxon c is with s ∈ {1, 2, 3} that has not been pruned in Part 2 from two
trees in Tc ∪ T ′

c . Now, each tree in Tc ∪ T ′
c that is not the null tree consists of a single vertex labeled ℓ

(k)
i for some

i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , n}.
(3) For each k ∈ {1, 2, . . . , n}, note that one of {b2(n+k)−1, b2(n+k)} labels a leaf of a cherry in a tree in T ′

v while the other
labels the leaf of a tree in T ′

v that consists of a single vertex. In order, prune each of

b4n, b4n−1, . . . , b2(n+k), b2(n+k)−1, . . . , b2n+2, b2n+1

from the tree in T ′
v whose taxa set contains the respective blocking taxa and from Tf .

(4) In order, prune bX and bY from Tf and T ′

f .
(5) Consider the remaining trees in Tv and observe that each such tree consists of exactly three leaves, two of which are

blocking taxa that form a cherry. In order, prune each of

b2n, b2n−1, . . . , b2k, b2k−1, . . . , b2, b1

from T ′

f and the tree in Tv whose taxa set contains the respective blocking taxon.
(6) For each k ∈ {1, 2, . . . , n}, let v

(k)
X be the unique element in {v

(k)
T , v

(k)
F } that has not been pruned in Part 1. Prune v

(k)
X

from the two trees in Tv ∪ T ′
v whose taxa sets contain v

(k)
X .

(7) For each i ∈ {1, 2, . . . ,m} in increasing order, consider each literal ℓ(k)i in Ci = ℓ(p) ∨ ℓ(q) ∨ ℓ(r) with k ∈ {p, q, r} that
is not satisfied by β . By processing such literals from left to right in Ci, prune ℓ

(k)
i from the two trees in T ′

v ∪ Tc whose
taxa sets contain ℓ

(k)
i . It is easily seen that the corresponding tree in T ′

v either consists of a single vertex or contains a
cherry with a leaf labeled ℓ

(k)
i .

(8) Prune bZ from Tf and T ′

f .

Now, relative to the elements in X(T), we prune 2n elements in Parts 1 and 3.6, all 4m elements in

{∪1, ∪
i
a, ∪

i
b, ∪

i
c, . . . ,∪m, ∪m

a , ∪m
b , ∪m

c }

in Part 2, and all 4n + 3m + 3 blocking taxa in Parts 3.1, 3.3, 3.4, 3.5, and 3.8. Additionally, in Parts 2.1 and 3.7 we prune 3m
taxa, and in Parts 2.2 and 3.2, we prune again 3m taxa. Summing up, we prune

6n + 13m + 3

taxa, which is equal to the number of elements in X(T).
Second, suppose that T has a cherry-picking sequence σ = (x1, x2, . . . , x|σ |). We write xi ≺ xj if and only if i < j and

xi ≻ xj if and only if i > j. Further, let

M := {1, 2, . . . ,m}, N := {1, 2, . . . , n}, B := {b1, b2, . . . , b4n+3m, bX , bY , bZ }.

We define a truth assignment β: V → {T , F} as follows

β
(
v(k))

=

{
T if ∃i ∈ M: v(k)

T ≺ ∪i,

F else.

In order to show that β satisfies each clause of I , we establish four necessary conditions that σ fulfills by construction.

(1) All taxa in {∪1, ∪2, . . . ,∪m} are pruned earlier than any blocking taxon:

∀i ∈ M ∀b ∈ B:∪i ≺ b. (4)

Argument: Observe that the arrangement of bX , bY , bZ in Tf and T ′

f implies that all taxa in {∪1, ∪2, . . . ,∪m} are pruned
prior to any blocking taxon. Furthermore, we cannot prune any taxon in T ′

f until we have pruned all taxa from Tf
except for bX , bY , and bZ . We will freely use Condition 1 throughout the remainder of this proof.

(2) Let Ci = ℓ(p) ∨ ℓ(q) ∨ ℓ(r) be a clause of I . At least one taxon in {ℓ
(p)
i , ℓ

(q)
i , ℓ

(r)
i } is pruned earlier than ∪i. Stated more

formally:

∀i ∈ M ∃ℓ
(si)
i ∈

{
ℓ
(pi)
i , ℓ

(qi)
i , ℓ

(ri)
i

}
: ℓ(si)i ≺ ∪i. (5)

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 139

Argument: Consider the five trees in Tc ∪ T ′
c representing Ci (see Fig. 5). In order to prune ∪i, we have to prune all

taxa in {∪
i
a, ∪

i
b, ∪

i
c} first. Since we can prune at most two taxa in {c i1, c

i
2, c

i
3} prior to an element in {b4n+3i−2, b4n+3i−1},

pruning all taxa in {∪
i
a, ∪

i
b, ∪

i
c} is only possible if at least one taxon in {ℓ

(p)
i , ℓ

(q)
i , ℓ

(r)
i } has been pruned previously.

(3) Let v(k)
∈ V be any variable of I . Recall the definition of the tuples φk and νk that is used in the construction of the

variable gadget. If there exists a v
(k)
i with v

(k)
i ≺ ∪i for some i ∈ φk, then v

(k)
T is also pruned earlier than ∪i. Stated

formally:

∀k ∈ N ∀i ∈ φk:
(
v
(k)
i ≺ ∪i H⇒ v

(k)
T ≺ ∪i

)
. (6)

Argument: Consider a variable v(k)
∈ V such that v

(k)
i ≺ ∪i for some i ∈ φk. Since there is no blocking taxon b ∈ Bwith

b ≺ ∪i, we have ∪i ≺ b2(n+k)−1. Thus, v
(k)
T is pruned from the associated caterpillar in T ′

v that contains v
(k)
i such that

v
(k)
T ≺ v

(k)
i ≺ ∪i (see Fig. 4).

The following can be shown analogously. If there exists a ¬v
(k)
i ≺ ∪i for some i ∈ νk, then v

(k)
F is also pruned earlier

than ∪i. Stated formally:

∀k ∈ N ∀i ∈ νk:
(
¬v

(k)
i ≺ ∪i H⇒ v

(k)
F ≺ ∪i

)
. (7)

(4) Let v(k)
∈ V be any variable of I . If v(k)

T is pruned earlier than some taxon in {∪1, ∪2, . . . ,∪m}, then v
(k)
F is pruned later

than all taxa in {∪1, ∪2, . . . ,∪m}, i.e.,

∀k ∈ N:
((

∃i ∈ M: v(k)
T ≺ ∪i

)
H⇒

(
∀i ∈ M: v(k)

F ≻ ∪i

))
. (8)

Argument: Consider a variable v(k)
∈ V such that v

(k)
T ≺ ∪i for some i ∈ M . Assume towards a contradiction that there

is some j ∈ M such that v
(k)
F ≺ ∪j. Then, one of the two blocking taxa b2k−1 and b2k is pruned prior to v

(k)
F (see Fig. 4).

But this is not possible since there is no blocking taxon b ∈ Bwith b ≺ ∪j.
As an immediate consequence of statement (8), we get the analogous statement for v

(k)
F , i.e.,

∀k ∈ N:
((

∃i ∈ M: v(k)
F ≺ ∪i

)
H⇒

(
∀i ∈ M: v(k)

T ≻ ∪i

))
. (9)

Now, we show that β indeed satisfies each clause of I . For each clause Ci = ℓ(p) ∨ ℓ(q) ∨ ℓ(r), we have ℓ
(s)
i ≺ ∪i for some

ℓ
(s)
i ∈

{
ℓ
(p)
i , ℓ

(q)
i , ℓ

(r)
i

}
(Condition 2). Since ℓ

(si)
i ∈

{
v
(k)
i , ¬v

(k)
i

}
for some k ∈ N , we have v

(k)
T ≺ ∪i if ℓ

(si)
i = v

(k)
i and v

(k)
F ≺ ∪i

if ℓ
(si)
i = ¬v

(k)
i (Condition 3). Hence, by setting β(v(k)) = T if v

(k)
T ≺ ∪i and β(v(k)) = F if v

(k)
F ≺ ∪i, we satisfy at least one

literal of each clause. Note that we can assign arbitrary truth values to variables v(k) with v
(k)
T ≻ ∪i and v

(k)
F ≻ ∪i for all i ∈ M .

Here, we choose to set all these variables to F . The truth assignment β is consistent, since at least one taxon in
{
v
(k)
T , v

(k)
F

}
is

pruned later than all taxa in {∪1, ∪2, . . . ,∪m} (Condition 4). Hence, the truth assignment β is consistent and satisfies each
clause of I .

Folding into two trees on the same set of taxa. The trees in Tv ∪Tc ∪{Tf } and, similarly, the trees in T ′
v ∪T ′

c ∪{T ′

f } (see Fig. 4, 5,
and 6) have mutually disjoint taxa sets. Hence, by n + 3m applications of Lemma 2, we can construct a compound tree S
for all trees in Tv ∪ Tc ∪ {Tf } and, by 2n + 2m applications of Lemma 2, we can construct a compound tree S ′ for all trees
in T ′

v ∪ T ′
c ∪ {T ′

f } such that T has a cherry-picking sequence if and only if S and S ′ have a cherry-picking sequence. Lastly,
by applying Lemma 1, we obtain two trees T and T ′ from S and S ′, respectively, such that X(T) = X(T ′), and S and S ′ have a
cherry-picking sequence if and only if T and T ′ have such a sequence. It now follows that I is satisfiable if and only if T and
T ′ have a cherry-picking sequence.

Number of taxa in the final instance. It remains to show that T and T ′ can be constructed in polynomial time. By Eq. (3), recall
that |X(T)| = 6n + 13m + 3. Now, since we apply Lemma 2 a total of 3n + 5m times and each application introduces two
new taxa, we have

|X({S, S ′
})| = 6n + 13m + 3 + 2(3n + 5m) = 12n + 23m + 3.

Observe that each taxon in X(T) labels a leaf of a unique tree in Tv ∪ Tc ∪ {Tf } and a leaf of a unique tree in T ′
v ∪ T ′

c ∪ {T ′

f }.
It therefore follows that each taxon that is contained in exactly one of X(S) and X(S ′) has been introduced by an application
of Lemma 2. Conversely, each application of this lemma introduces two taxa that are both contained in exactly one of X(S)
and X(S ′). Hence, recalling that in obtaining T and T ′ from S and S ′, respectively, an additional leaf labeled ρ is introduced
(see the third sentence in the proof of Lemma 1), we have

|X(T)| = |X(T ′)| = 12n + 23m + 3 + 2(3n + 5m) + 1 = 18n + 33m + 4.

It now follows, that the size of T and T ′ aswell as the time it takes to construct these two trees are polynomial. This completes
the proof of the theorem. □

140 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

Fig. 7. The variable gadget for (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z).

To illustrate the proof of Theorem 1, we now give an explicit example of a 3-Sat instance and show how it is reduced to
a set of trees by following the construction that is described in the aforementioned proof. Let I be the following instance of
3-Sat

(x ∨ ¬y ∨ z)  
C1

∧ (¬x ∨ y ∨ z)  
C2

∧ (x ∨ ¬y ∨ ¬z)  
C3

.

For the purpose of ordering the blocking taxa in the sameway as described in the proof, we regard variable x as v(1), variable
y as v(2), and variable z as v(3). Let n = 3 (resp. m = 3) be the number of variables (resp. clauses) in I . We construct a set T
of 3n + 5m + 2 = 26 trees. The 9 trees that represent the variable gadget Tv and T ′

v are shown in Fig. 7, the 15 trees that
represent the clause gadget Tc and T ′

c are shown in Fig. 8 and the two trees that represent the formula gadget Tf and T ′

f are
shown in Fig. 9. Note that |X(T)| = 3n + 13m + 3 = 60. Clearly, I is satisfied for the truth assignment β : {x, y, z} → {T , F}

with β(x) = β(z) = T , β(y) = F . To see that T also has a cherry-picking sequence of length 60, we follow the sequence of
pruning operations that is described in Parts 1–3 in the first direction of the proof of Claim 1

(xT , yF , zT ,

x1, c11 , ∪
1
a, ¬y1, c12 , ∪

1
b, z1, ∪

1
c , ∪1, c21 , ∪

2
a, c

2
2 , ∪

2
b, z2, ∪

2
c , ∪2, x3, ∪3

a, ¬y3, c32 , ∪
3
b, c

3
3 , ∪

3
c , ∪3,

b21, b20, . . . , b13, c13 , c
2
3 , c

3
1 , b12, b11, . . . , b7, bX , bY , b6, b5, . . . , b1, xF , yT , zF , ¬x2, y2, ¬z3, bZ),

where line 1 corresponds to Part 1, line 2 corresponds to Part 2, and line 3 corresponds to Part 3.

4. Discussion

Given any set of input trees, there always exists some phylogenetic network displaying them. Roughly speaking, one can
simply merge the input trees at the leaves and at the root. However, what happens when you restrict the network to have
some additional, biologically motivated, properties? Then theremight not always exist a network displaying the input trees.
Moreover, deciding whether or not there exists such a network may be a difficult problem. Indeed, in this paper we have
shown that even if the input consists of only two binary trees, it is already NP-complete to decide whether there exists any
temporal phylogenetic network displaying them.

One could be tempted to look for approximation algorithms for the associated optimization problem: given a set of
phylogenetic trees, find a temporal network that displays them and has smallest possible reticulation number, if such
a network exists. Note, however, that an approximation algorithm is required to always output a valid solution, for any
valid input. The problem formulation above (based on [13]) does not specify what a valid solution is when there does not
exist a temporal network displaying the input trees. Nevertheless, whatever the output in that case is, it can be checked
in polynomial time whether the output of the algorithm is a temporal network displaying the input trees. This is because
temporal networks are tree-child, and checking whether a tree-child network displays a tree can be achieved in polynomial
time [16]. Hence, any approximation algorithm for the problem could be used to decide in polynomial time whether there

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 141

Fig. 8. The clause gadget for (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z).

142 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

Fig. 9. The formula gadget for (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z).

exists a temporal network displaying the input trees, which is not possible, unless P=NP, given the NP-completeness shown
in this paper.

Therefore, amore promising direction is to consider fixed-parameter algorithms for the associated parameterized version
of the problem. Given a set of phylogenetic trees and a parameter k, decide whether there exists a temporal network
that displays the input trees and has reticulation number at most k. One then aims at algorithms solving this problem
in O(|X |

O(1)f (k)) time, with f some function of k, preferably of the form ck with c a small constant. Intuitively, such an
FPT algorithm is only exponential in the reticulation number and not in the number of leaves. Indeed, even though it is
NP-complete to decide whether there exists a temporal network with unlimited reticulation number, for small reticulation
numbers this problemmight bemuch easier. In fact, for instances of two binary trees a fixed-parameter algorithm is already
known [12]. Important open problems include the question whether such algorithms exist for instances of more than two
trees and whether algorithms can be developed that work well in practice.

It would also be interesting to consider other biologically motivated network classes. For example, binary tree-child
(e.g. [5]) or tree-sibling networks (e.g. [3]). Could it be that one of the associateddecisionproblems is nontrivial (formore than
two input trees) but polynomial-time solvable? For other network classes, such as tree-based (e.g. [9]) or time-consistent
(e.g. [4]) networks, it is known that there always exists a solution [25]. For such classes, it would be interesting to study the
optimization version of the problem.

Acknowledgments

We thank Matúš Mihalák for useful discussions. Leo van Iersel was partly supported by the Netherlands Organization for
Scientific Research (NWO), including Vidi grant 639.072.602, and partly by the 4TU Applied Mathematics Institute. Simone
Linz was supported by the New Zealand Marsden Fund.

References

[1] E. Bapteste, L. van Iersel, A. Janke, S. Kelchner, S. Kelk, J. McInerney, D. Morrison, L. Nakhleh, M. Steel, L. Stougie, J. Whitfield, Networks: expanding
evolutionary thinking, Trends Genet. 29 (8) (2013) 439–441.

[2] M. Bordewich, C. Semple, Computing the hybridization number of two phylogenetic trees is fixed-parameter tractable, IEEE/ACM Trans. Comput. Biol.
Bioinform. 4 (3) (2007) 458–466.

[3] G. Cardona, M. Llabrés, F. Rosselló, G. Valiente, A distance metric for a class of tree-sibling phylogenetic networks, Bioinformatics 24 (13) (2008)
1481–1488.

[4] G. Cardona, M. Llabrés, F. Rosselló, G. Valiente, Path lengths in tree-child time consistent hybridization networks, Inform. Sci. 180 (3) (2010) 366–383.
[5] G. Cardona, F. Rosselló, G. Valiente, Comparison of tree-child phylogenetic networks, IEEE/ACM Trans. Comput. Biol. Bioinform. 6 (4) (2009) 552–569.
[6] Z.-Z. Chen, L. Wang, Hybridnet: a tool for constructing hybridization networks, Bioinformatics 26 (22) (2010) 2912–2913.
[7] M. Cygan, F. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, vol. 3., Springer, 2015.
[8] J. Döcker, S. Linz, On the existence of a cherry-picking sequence, Theoret. Comput. Sci. 714 (2018) 36–50.
[9] A. Francis, M. Steel, Which phylogenetic networks are merely trees with additional arcs? Syst. Biol. 64 (5) (2015) 768–777.

[10] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.
[11] D. Gusfield, ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks, The MIT Press, 2014.
[12] P. Humphries, S. Linz, C. Semple, Cherry picking: a characterization of the temporal hybridization number for a set of phylogenies, Bull. Math. Biol.

75 (10) (2013) 1879–1890.
[13] P. Humphries, S. Linz, C. Semple, On the complexity of computing the temporal hybridization number for two phylogenies, Discrete Appl. Math. 161

(7) (2013) 871–880.
[14] D. Huson, R. Rupp, C. Scornavacca, Phylogenetic Networks: Concepts, Algorithms and Applications, Cambridge University Press, 2011.
[15] L. van Iersel, S. Kelk, C. Scornavacca, Kernelizations for the hybridization number problem on multiple nonbinary trees, J. Comput. System Sci. 82 (6)

(2016) 1075–1089.
[16] L. van Iersel, C. Semple, M. Steel, Locating a tree in a phylogenetic network, Inform. Process. Lett. 110 (23) (2010) 1037–1043.

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 143

[17] R. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations (Proc. Sympos. IBM Thomas J. Watson Res. Center,
Yorktown Heights, N.Y., 1972), Plenum, 1972, pp. 85–103.

[18] S. Kelk, L. van Iersel, S. Linz, N. Lekić, C. Scornavacca, Stougie. Cycle killer. L., Qu’est-ce que c’est? On the comparative approximability of hybridization
number and directed feedback vertex set, SIAM J. Discrete Math. 26 (4) (2012) 1635–1656.

[19] B. Moret, L. Nakhleh, T. Warnow, C. Linder, A. Tholse, A. Padolina, J. Sun, R. Timme, Phylogenetic networks: modeling, reconstructibility, and accuracy,
IEEE/ACM Trans. Comput. Biol. Bioinform. 1 (1) (2004) 13–23.

[20] C. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. System Sci. 43 (1991) 425–440.
[21] C. Semple, M. Steel, Phylogenetics, Oxford University Press, 2003.
[22] S. Soucy, J. Huang, J. Gogarten, Horizontal gene transfer: building the web of life, Nature Rev. Genet. 16 (8) (2015) 472–482.
[23] M. Steel, Phylogeny: Discrete and Random Processes in Evolution, SIAM, 2016.
[24] C. Whidden, R. Beiko, N. Zeh, Fixed-parameter algorithms for maximum agreement forests, SIAM J. Comput. 42 (4) (2013) 1431–1466.
[25] L. Zhang, On tree-based phylogenetic networks, J. Comput. Biol. 23 (7) (2016) 553–565.

1 Accepted Manuscripts

1.3 Displaying trees across two phylogenetic networks

The following paper [DLS19] is also available online at the following URL: https://

doi.org/10.1016/j.tcs.2019.09.003.

105

https://doi.org/10.1016/j.tcs.2019.09.003
https://doi.org/10.1016/j.tcs.2019.09.003

Theoretical Computer Science 796 (2019) 129–146

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Displaying trees across two phylogenetic networks

Janosch Döcker a, Simone Linz b,∗, Charles Semple c

a Department of Computer Science, University of Tübingen, Germany
b School of Computer Science, University of Auckland, New Zealand
c School of Mathematics and Statistics, University of Canterbury, New Zealand

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 February 2019
Received in revised form 27 July 2019
Accepted 3 September 2019
Available online 6 September 2019
Communicated by T. Calamoneri

Keywords:
Phylogenetic network
Tree-Containment

Polynomial-time hierarchy
Display set
Temporal network
Normal network

Phylogenetic networks are a generalization of phylogenetic trees to leaf-labeled directed
acyclic graphs that represent ancestral relationships between species whose past includes
non-tree-like events such as hybridization and horizontal gene transfer. Indeed, each
phylogenetic network embeds a collection of phylogenetic trees. Referring to the collection
of trees that a given phylogenetic network N embeds as the display set of N , several
questions in the context of the display set of N have recently been analyzed. For
example, the widely studied Tree-Containment problem asks if a given phylogenetic tree is
contained in the display set of a given network. The focus of this paper are two questions
that naturally arise in comparing the display sets of two phylogenetic networks. First,
we analyze the problem of deciding if the display sets of two phylogenetic networks
have a tree in common. Surprisingly, this problem turns out to be NP-complete even
for two temporal normal networks. Second, we investigate the question of whether or
not the display sets of two phylogenetic networks are equal. While we recently showed
that this problem is polynomial-time solvable for a normal and a tree-child network, it
is computationally hard in the general case. In establishing hardness, we show that the
problem is contained in the second level of the polynomial-time hierarchy. Specifically, it
is �P

2 -complete. Along the way, we show that two other problems are also �P
2 -complete,

one of which being a generalization of Tree-Containment.
© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In trying to disentangle the evolutionary history of species, phylogenetic networks, which are leaf-labeled directed acyclic
graphs, are becoming increasingly important. From a biological as well as from a mathematical viewpoint, phylogenetic net-
works are often regarded as a tool to summarize a collection of conflicting phylogenetic trees. Due to processes such as
hybridization and lateral gene transfer, the evolution at the species-level is not necessarily tree-like. Nevertheless, indi-
vidual genes or parts thereof are usually assumed to evolve in a tree-like way. It is consequently of interest to construct
phylogenetic networks that embed a collection of phylogenetic trees or, conversely, summarize the phylogenetic trees that
are embedded in a given phylogenetic network. These and related types of problems have recently attracted considerable
attention from the mathematical community as they lead to a number of challenging questions. One of the most studied
questions in this context is called Tree-Containment. Given a phylogenetic network N and a phylogenetic tree T , this
problem asks whether or not N embeds T . While Tree-Containment is NP-complete in general [7], it has been shown to
be polynomial-time solvable for several popular classes of phylogenetic networks, e.g. so-called tree-child and reticulation-

* Corresponding author.
E-mail addresses: janosch.doecker@uni-tuebingen.de (J. Döcker), s.linz@auckland.ac.nz (S. Linz), charles.semple@canterbury.ac.nz (C. Semple).

https://doi.org/10.1016/j.tcs.2019.09.003
0304-3975/© 2019 Elsevier B.V. All rights reserved.

130 J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146

visible networks [1,6,14]. Formal definitions of these classes are given in the next section. Currently, the fastest algorithm
that solves Tree-Containment for these latter types of networks has a running time that is linear in the size of N [15].
Since the number of vertices in a tree-child and a reticulation-visible network is linear in the number of leaves [1,2], it
follows that the running time is in fact linear in the number of leaves of N .

Pushing Tree-Containment into a novel direction, Gunawan et al. [6] have recently posed the question of how one
can check if two reticulation-visible networks embed the same set of phylogenetic trees. Since the number of trees that a
phylogenetic network N embeds grows exponentially with the number k of vertices in N whose in-degree is at least two,
there is no immediate check that can be performed in polynomial time. In particular, the number of phylogenetic trees that
N embeds is bounded above by 2k , and it was shown independently in [14, Theorem 1] and [17, Corollary 3.4] that this
upper bound is sharp for the class of normal networks.

Referring to the collection of phylogenetic trees that a given phylogenetic network embeds as its display set (formally
defined in Section 2), we investigate two questions that naturally arise in comparing the display sets of two phylogenetic
networks. The first question asks if the display sets of two phylogenetic networks have a common element. We call this
problem Common-Tree-Containment and show in Section 3 that it is NP-complete even when the two input networks are
both temporal and normal. The class of temporal and normal networks is a strict subclass of the class of tree-child and,
hence, reticulation-visible networks for which Tree-Containment is polynomial-time solvable. The second problem, which
we refer to as Display-Set-Equivalence, is the problem of Gunawan et al. [6] mentioned above that asks, without restricting
to a particular class of phylogenetic networks, if the display sets of two networks are equal. While we recently showed that
this problem has a polynomial-time algorithm for when the input consists of a normal and a tree-child network [3], we
show in Section 4 that the problem is computationally hard for two arbitrary phylogenetic networks. Specifically, we show
that Display-Set-Equivalence is �P

2 -complete or, in other words, complete for the second level of the polynomial-time
hierarchy [13]. In particular, unless there is a collapse in the polynomial hierarchy, such a problem has no polynomial-time
reduction from itself to any NP-complete or co-NP-complete problem. From a practical viewpoint, this means that the
frequently-taken approach of applying SAT and ILP solvers to find solutions to NP-complete problems is going to be of
limited use when applied to a �P

2 -complete problem. In establishing that Display-Set-Equivalence is �P
2 -complete, we also

show that deciding if the display set of one phylogenetic network is contained in the display set of another network is
�P

2 -complete.
The paper is organized as follows. The next section contains preliminaries that are used throughout the paper, formal

statements of the decision problems that are mentioned in the previous paragraph, and some relevant details about the
polynomial-time hierarchy. Section 3 establishes NP-completeness of Common-Tree-Containment and Section 4 establishes
�P

2 -completeness of Display-Set-Equivalence. Lastly, Section 5 contains some concluding remarks and highlights two corol-
laries that follow from the results in Sections 3.

2. Preliminaries

This section provides notation and terminology that is used in the remaining sections. Throughout this paper, X denotes
a non-empty finite set. Let G be a directed acyclic graph. For two distinct vertices u and v in G , we say that u is an ancestor
of v and v is a descendant of u, if there is a directed path from u to v in G . If (u, v) is an edge in G , then u is a parent of
v and v is a child of u. Moreover, a vertex of G with in-degree one and out-degree zero is a leaf of G .

Phylogenetic networks and trees. A rooted binary phylogenetic network N on X is a (simple) rooted acyclic digraph that
satisfies the following properties:

(i) the (unique) root has in-degree zero and out-degree two,
(ii) the set X is the set of vertices of out-degree zero, each of which has in-degree one, and

(iii) all other vertices have either in-degree one and out-degree two, or in-degree two and out-degree one.

The set X is the leaf set of N . Furthermore, the vertices of in-degree one and out-degree two are tree vertices, while the
vertices of in-degree two and out-degree one are reticulations. An edge directed into a reticulation is called a reticulation
edge while each non-reticulation edge is called a tree edge.

Let N be a rooted binary phylogenetic network on X . If N has no reticulations, then N is said to be a rooted binary
phylogenetic X-tree. To ease reading and since all phylogenetic networks considered in this paper are rooted and binary,
we refer to a rooted binary phylogenetic network (resp. a rooted binary phylogenetic tree) simply as a phylogenetic network
(resp. a phylogenetic tree).

Now let T be a phylogenetic X-tree. If Y = {y1, y2, . . . , ym} is a subset of X , then T [−y1, y2, . . . , ym] and, equivalently,
T |(X − Y) denote the phylogenetic tree with leaf set X − Y that is obtained from the minimal rooted subtree of T that
connects all leaves in X − Y by suppressing all vertices of in-degree one and out-degree one.

Remark. Throughout the paper, we frequently detail constructions of phylogenetic networks. To this end, we sometimes
need labels of internal vertices. Their only purpose is to make references. Indeed, they should not be regarded as genuine
labels as those used for the leaves of a phylogenetic network.

J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146 131

Fig. 1. A phylogenetic network N and the display set of N that consists of the five trees shown on the right-hand side.

Classes of phylogenetic networks. Let N be a phylogenetic network on X with vertex set V . An edge e = (u, v) is a shortcut
if there is a directed path from u to v whose set of edges does not contain e. A vertex v of N is called visible if there
exists a leaf � ∈ X such that each directed path from the root of N to � passes through v . Now N is reticulation-visible if
each reticulation in N is visible, and N is tree-child if each non-leaf vertex in N has a child that is a leaf or a tree vertex.
Lastly, N is normal if it is tree-child and does not contain any shortcuts. Clearly, by definition, each normal network is
also tree-child. Furthermore, it follows from the next well-known equivalence result [2] that each tree-child network is also
reticulation-visible.

Lemma 2.1. Let N be a phylogenetic network. Then N is tree-child if and only if each vertex of N is visible.

Thus, the class of normal networks is a subclass of tree-child networks. Furthermore, if there exists a map t : V → R+
that assigns a time stamp to each vertex of N and satisfies the following two properties:

(i) t(u) = t(v) whenever (u, v) is a reticulation edge and
(ii) t(u) < t(v) whenever (u, v) is a tree edge,

then we say that N is temporal, in which case we call t a temporal labeling of N . Note that, although normal networks have
no shortcuts, a normal network need not be temporal. Tree-child, normal, and temporal networks were first introduced by
Cardona et al. [2], Willson [16], and Moret et al. [10], respectively.

Caterpillars. Let C be a phylogenetic tree with leaf set {�1, �2, . . . , �n}. Furthermore, for each i ∈ {1, 2, . . . , n} let pi denote
the parent of �i . Then C is called a caterpillar if n ≥ 2 and the elements in the leaf set of C can be ordered, say �1, �2, . . . , �n ,
so that p1 = p2 and, for all i ∈ {3, 4, . . . , n}, we have (pi, pi−1) as an edge in C . In this case, we denote C by (�1, �2, . . . , �n).
Additionally, we say that a phylogenetic X-tree T contains a caterpillar C = (�1, �2, . . . , �n) if T has a subtree that is a
subdivision of C .

Displaying. Let N be a phylogenetic network on X and let T be a phylogenetic Y -tree such that Y ⊆ X . Then N displays
T if, up to suppressing vertices of in-degree one and out-degree one, T can be obtained from N by deleting edges and
vertices, in which case, the edge set, denoted by ET , of the resulting acyclic directed graph is called an embedding of T in
N . Note that, if N displays T , then the root of an embedding of T in N need not coincide with the root of N . Moreover,
the display set of N , denoted by T (N), consists of all phylogenetic X-trees that are displayed by N . As mentioned in the
introduction, the size of T (N) is bounded above by 2k , where k is the number of reticulations in N . To illustrate, Fig. 1
shows a phylogenetic network N with T (N) = {T1, T2, . . . , T5}, where the five trees in T (N) are shown on the right-hand
side of the same figure. In this as well as in all other figures throughout the paper, edges are directed downwards.

Again, let N be a phylogenetic network on X , and let S be a subset of the edges of N . Then S is a switching of N if,
for each reticulation v of N , S contains precisely one of the two reticulation edges that are directed into v . Now, let S be
a switching of N . If we delete each reticulation edge in N that is not in S and, repeatedly, suppress each resulting vertex
with in-degree one and out-degree one, delete each vertex with in-degree one and out-degree zero that is not in X , and
delete each vertex with in-degree zero and out-degree one, we obtain a phylogenetic X-tree T , in which case, we say that
S yields T . Note that T is displayed by N . Conversely, observe that, if T is a phylogenetic X-tree that is displayed by N ,
then there exists a switching of N that yields T . We summarize this in the following observation.

Observation 2.2. A phylogenetic network N on X displays a phylogenetic X-tree T if and only if there exists a switching of N that
yields T .

Problem statements. Tree-Containment is a well known problem in the study of phylogenetic networks and its computa-
tional complexity has extensively been analyzed for various network classes. In the language of this paper, it can be stated
as follows.

Tree-Containment

Input. A phylogenetic X-tree T and phylogenetic network N on X .
Question. Is T ∈ T (N)?

132 J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146

While Tree-Containment is concerned with a single display set, it is natural to compare display sets across phylogenetic
networks, e.g. in the context of comparing networks. To make a first step in this direction, the focus of this paper are the
following three decision problems that compare the display sets of two phylogenetic networks.

Common-Tree-Containment

Input. Two phylogenetic networks N and N ′ on X .
Question. Is T (N) ∩ T (N ′) 	= ∅?

Display-Set-Containment

Input. Two phylogenetic networks N and N ′ on X .
Question. Is T (N) ⊆ T (N ′)?

Display-Set-Equivalence

Input. Two phylogenetic networks N and N ′ on X .
Question. Is T (N) = T (N ′)?

We note that Tree-Containment is a special case of both Display-Set-Containment and Common-Tree-Containment. Hence,
NP-hardness of the two latter problems follows immediately for when N and N ′ are two arbitrary phylogenetic networks.
Nevertheless, as we will see in Sections 3 and 4, we pinpoint the complexity of Common-Tree-Containment and Display-

Set-Containment exactly. In particular, we will show that (i) Common-Tree-Containment is NP-complete even for when N
and N ′ are both temporal and normal and (ii) Display-Set-Containment is complete for the second level of the polynomial-
time hierarchy. This last result turns out to be a key ingredient in showing that Display-Set-Equivalence is also complete
for the second level of the polynomial-time hierarchy.

The polynomial hierarchy. An oracle for a complexity class A is a black box that, in constant time, outputs the answer to
any given instance of a decision problem contained in A. The polynomial-time hierarchy (or short, polynomial hierarchy) [5,13]
consists of a system of nested complexity classes that are defined recursively and generalize the classes P, NP, and co-NP. In
particular, for any integer k ≥ 0, we have

�P
0 = �P

0 = P,

�P
k+1 = NP�P

k and �P
k+1 = co-NP�P

k ,

where a problem is in NP�P
k (resp. co-NP�P

k) if we can verify an appropriate certificate of a yes-instance (resp. no-instance)
in polynomial-time when given access to an oracle for �P

k . By definition, �P
1 = NP and �P

1 = co-NP, and �P
2 = co-NPNP.

For all k ≥ 0, we say that the classes �P
k and �P

k are on the k-th level of the polynomial hierarchy. Although, �P
k+1 (resp.

�P
k+1) generalizes �P

k (resp. �P
k), it is an open problem whether �P

k = �P
k+1 or �P

k = �P
k+1 for any k ≥ 0. Specifically, for

k = 0, this is the fundamental P versus NP problem. If �P
k = �P

k+1 or �P
k = �P

k+1 for some k ≥ 0, then this would result in
a collapse of the polynomial hierarchy to the k-th level.

In Section 4, we show that Display-Set-Containment and Display-Set-Equivalence are both �P
2 -complete. Intuitively,

problems that are complete for the second level of the polynomial hierarchy are more difficult than problems that are
complete for the first level. Recall that a decision problem is in co-NP if a no-instance can be verified in polynomial
time given an appropriate certificate. Now, similar to showing that a problem is co-NP-complete, a proof that establishes
�P

2 -completeness consists of two steps: (i) show that a problem is in �P
2 , and (ii) establish a polynomial-time reduction

from a problem that is known to be �P
2 -complete to the problem at hand. With regards to (i), a decision problem is in

�P
2 if a no-instance can be verified in polynomial time when one is given an appropriate certificate and has access to an

NP-oracle, that is, an oracle that can solve NP-complete problems in constant time.

3. Hardness of COMMON-TREE-CONTAINMENT

As noted in the introduction, Tree-Containment is NP-complete in general, but polynomial-time solvable for several
popular classes of phylogenetic networks such as tree-child and reticulation-visible networks. In this section, we show that
no such dichotomy holds for Common-Tree-Containment. In particular, we will show that this problem is NP-complete
even if the input consists of two temporal normal networks. To establish the result, we use a reduction from the classical
computational problem 3-SAT.

J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146 133

Fig. 2. For a clause C j = (x1
j ∨ x2

j ∨ x3
j), the clause gadget G A

j (left) and the clause gadget G B
j (right). Leaves are bijectively labeled with the elements in

{C j , C1
j , C2

j , . . . , C6
j , x1

j , x2
j , x3

j }. Furthermore, each gadget has three vertices of in-degree one and out-degree one indicated by small squares labeled r1
j , r2

j ,
and r3

j .

3-SAT

Input. A set V = {v1, v2, . . . , vn} of variables, and a set {C1, C2, . . . , Cm} of clauses such that each clause is a disjunction of
exactly three literals and each literal is an element in {vi, ̄vi : i ∈ {1, 2, . . . , n}}.
Question. Does there exist a truth assignment for V that satisfies each clause C j with j ∈ {1, 2, . . . , m}?

Let I be an instance of 3-SAT, and let C j = (x1
j ∨ x2

j ∨ x3
j) be a clause of I for j ∈ {1, 2, . . . , m}. Then, for some indices k,

k′ , and k′′ in {1, 2, . . . , n}, we have x1
j ∈ {vk, ̄vk}, x2

j ∈ {vk′ , ̄vk′ }, and x3
j ∈ {vk′′ , ̄vk′′ }. Without loss of generality, we impose the

following two restrictions on I:

(R1) for each vi ∈ V with i ∈ {1, 2, . . . , n}, at most one element in {vi, ̄vi} is a literal of C j and
(R2) k < k′ < k′′ .

Now, for each clause C j , we construct the two clause gadgets G A
j and G B

j that are shown in Fig. 2. We next establish a
simple lemma.

Lemma 3.1. Let G A
j and G B

j be the two clause gadgets that are shown in Fig. 2. Obtain two phylogenetic networks G A
j and GB

j from G A
j

and G B
j , respectively, by suppressing the three vertices r1

j , r2
j , and r3

j of in-degree one and out-degree one. Then T (G A
j) ∩ T (GB

j) = ∅.

Proof. To see that T (G A
j) ∩ T (GB

j) = ∅, observe that each tree in T (G A
j) contains the caterpillar (x2

j , x
3
j , x

1
j), whereas each

tree in T (GB
j) contains the caterpillar (x1

j , x
3
j , x

2
j). �

Following on from Lemma 3.1, let L = {x1
j , x

2
j , x

3
j }. Although G A

j and GB
j display no common phylogenetic tree with leaf

set {C j, C1
j , C

2
j , . . . , C

6
j } ∪ L, they do display a common phylogenetic with leaf set {C j, C1

j , C
2
j , . . . , C

6
j } ∪ L′ for each proper

subset L′ of L. In the proof of Theorem 3.2, for some truth assignment β , the latter corresponds to at least one literal in C j
being satisfied by β , while the former corresponds to no literal in C j being satisfied by β .

Let S = (s1, s2, . . . , sn) be an arbitrary tuple, and let r be an element that is not contained in S . We write (r)||S to
denote the tuple (r, s1, s2, . . . , sn) obtained by concatenating r and S . With this definition in hand, we are now in a position
to establish the main result of this section.

Theorem 3.2. Common-Tree-Containment is NP-complete when the input consists of two temporal normal networks.

Proof. For two normal networks, van Iersel et al. [14] showed that the running time of Tree-Containment is polynomial in
the size of this leaf set. Hence, it follows that Common-Tree-Containment is in NP for two normal networks.

Let I be an instance of 3-SAT with n variables and m clauses. Using the same notation as in the formal statement of
3-SAT, we construct two phylogenetic networks N and N ′ on

X = {
C j, C1

j , C2
j , . . . , C6

j , x1
j , x2

j , x3
j : j ∈ {1,2, . . . ,m}} ∪ {

vi : i ∈ {1,2, . . . ,n}}

134 J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146

Fig. 3. Overview of the construction of the two temporal normal networks N and N ′ in the proof of Theorem 3.2. Dangling edges on the clause and
variable side of N and N ′ , respectively, are paired up depending on I . For details, see Step 3 of the construction.

as follows. Let T be the phylogenetic tree obtained by creating a vertex ρ , adding an edge that joins ρ with the root of
the caterpillar (v1, v2, . . . , vn), and adding an edge that joins ρ with the root of the caterpillar (c1, c2, . . . , cm). Now, setting
M = M′ = T , let N and N ′ be the two phylogenetic networks obtained from M and M′ , respectively, by applying the
following four-step process.

1. For all j ∈ {1, 2, . . . , m}, replace c j with G A
j in M and replace c j with G B

j in M′ .
2. For all i ∈ {1, 2, . . . , n}, subdivide the edge directed into vi with a new vertex di in M and M′ .
3. For each j ∈ {1, 2, . . . , m} in increasing order, consider C j = (x1

j ∨ x2
j ∨ x3

j). Let vk�
be the unique element in V such that

x�
j ∈ {vk�

, ̄vk�
} for each � ∈ {1, 2, 3}. If x�

j = vk�
, subdivide the edge directed into vk�

with a new vertex u�
j in M and

subdivide the edge directed into dk�
with a new vertex u�

j in M′ . Otherwise, subdivide the edge directed into dk�
with

a new vertex u�
j in M and subdivide the edge directed into vk�

with a new vertex u�
j in M′ . Add a new edge (u�

j, r
�
j)

in M and M′ .
4. For each i ∈ {1, 2, . . . , n}, suppress the vertex di of in-degree one and out-degree one in M and M′ .

To illustrate, Fig. 3 gives a high-level overview of the construction of N and N ′ . Observe that, for each j ∈ {1, 2, . . . , m}, the
three vertices r1

j , r2
j , and r3

j in N and N ′ are reticulations.
We next show that N and N ′ are both temporal and normal.

3.2.1. Both N and N ′ are temporal and normal.

Proof. We first show that N is temporal and normal. Let

Vr = {r�
j : j ∈ {1,2, . . . ,m} and � ∈ {1,2,3}}.

Furthermore, for each i ∈ {1, 2, . . . , n}, let V i consist of all vertices that lie on the unique directed path from the root of N
to vi , and let

V v =
n⋃

i=1

V i .

We begin by assigning a positive real-valued labeling t to each vertex in V v ∪ Vr as follows. First, under t , each vertex in
V v is assigned a labeling such that the following two properties are satisfied.

(i) If u, v ∈ V v and u is an ancestor of v , then t(u) < t(v).
(ii) For all i ∈ {1, 2, . . . , n − 1}, the temporal labeling of each vertex in V i that is not contained in V i+1 is smaller than the

minimum temporal labeling over all vertices that are contained in V i+1 and not in V i .

By construction of N , note that such a labeling always exists. Second, under t , each vertex in Vr is assigned the same
labeling as its unique parent that is contained in V v . Because of restrictions (R1) and (R2) that we have imposed on I and
the way we have assigned temporal labelings to the vertices in V v , we have

t(r1
j) < t(r2

j) < t(r3
j)

for each j ∈ {1, 2, . . . , m}. A routine check now shows that t can be extended to a temporal labeling of N and, thus, N is
temporal.

Now, since N is temporal, it follows that N has no shortcuts. Hence, to show that N is normal, it suffices to show
that N is tree-child. It is straightforward to check that N has no edge (u, v) such that u and v are both reticulations.

J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146 135

Fig. 4. The seven trees that are used in the proof of Theorem 3.2.

Hence, each reticulation in N has a child that is a tree vertex or a leaf. Furthermore, by construction, each tree vertex of
N that is a vertex of some G A

j with j ∈ {1, 2, . . . , m} has a child that is a tree vertex or a leaf. Lastly, for each non-leaf
vertex v of N that is neither a reticulation nor a vertex of some G A

j , consider a directed path P from v to an element in
{v1, v2, . . . , vn, C1, C2, . . . , Cm}. By construction, P exists. It is now easily seen that the second vertex of P is a child of v
that is either a tree vertex or a leaf. This establishes that N is normal. An analogous argument that uses G B

j instead of G A
j

can be used to show that N ′ is temporal and normal, thereby completing the proof of (3.2.1). �
Since the number of vertices of a normal network is polynomial in the size of X [9] and |X | = 10m + n, it follows that

N and N ′ can be constructed in time polynomial in the size of X .

3.2.2. The instance I is a yes-instance if and only if T (N) ∩ T (N ′) 	= ∅.

Proof. First, suppose that I is a yes-instance. We construct a variable tree Tv and a clause tree Tc that, joined together, result
in a phylogenetic X-tree that is displayed by N and N ′ . Let β : V → {F , T } be a truth assignment that satisfies each clause,
and let

Y = {x�
j : j ∈ {1,2, . . . ,m} and � ∈ {1,2,3}}.

Furthermore, for each i ∈ {1, 2, . . . , n}, let Yi (resp. Ȳ i) be the tuple consisting of the elements in Y that equal vi (resp. v̄ i)
such that, for any two elements x�

j and x�′
j′ in Yi (resp. Ȳ i), x�

j precedes x�′
j′ precisely if j > j′ . By construction, note that the

two caterpillars (vi)||Yi and (vi)||Ȳ i are displayed by N and N ′ . Now, obtain Tv from the caterpillar (v1, v2, . . . , vn) by
doing the following for each i ∈ {1, 2, . . . , n}. If β(vi) = T , replace vi with the caterpillar (vi)||Yi ; otherwise, replace vi with
the caterpillar (vi)||Ȳ i . Again, by construction, it is easily checked that Tv is displayed by N and N ′ . We next construct
Tc . Consider a clause C j = (x1

j ∨ x2
j ∨ x3

j). For each � ∈ {1, 2, 3}, set z� = T if x�
j is satisfied by β and, otherwise, set z� = F .

Depending on which elements in {z1, z2, z3} equal F and T , respectively, and noting that there exists some � for which
z� = T , we define the clause tree T z1 z2 z3

j relative to C j to be one of the seven trees that are listed in Fig. 4. Intuitively, x�
j is a

leaf in T z1 z2 z3
j precisely if z� = F . Now, obtain Tc from the caterpillar (c1, c2, . . . , cm) by replacing, for each j ∈ {1, 2, . . . , m},

the leaf c j with the clause tree relative to C j . As T z1 z2 z3
j is displayed by the two phylogenetic networks obtained from G A

j

and G B
j by suppressing the three vertices r1

j , r2
j , and r3

j of in-degree one and out-degree one, it follows that T z1 z2 z3
j is also

displayed by N and N ′ . In turn, this implies that, by construction, Tc is displayed by N and N ′ . Lastly, we construct a
phylogenetic tree T on X by creating a vertex ρ , adding a new edge that joins ρ with the root of Tv , and a new edge that
joins ρ with the root of Tc . As Tv and Tc are displayed by N and N ′ , it is easily checked that T is displayed by N and
N ′ , and so T (N) ∩ T (N ′) 	= ∅.

Second, suppose that T (N) ∩ T (N ′) 	= ∅. Let T be a phylogenetic X-tree that is displayed by N and N ′ . Furthermore,
let j, j′ ∈ {1, 2, . . . , m}, and let �, �′ ∈ {1, 2, 3}. For each reticulation r�

j in N (resp. N ′), we say that T picks x�
j from the clause

side of N (resp. N ′) if T has a vertex whose set of descendants contains x�
j and C j but does not contain any element in V ;

otherwise, we say that T picks x�
j from the variable side of N (resp. N ′). Intuitively, x�

j is picked from the clause side of N
(resp. N ′) precisely if the embedding of T in N (resp. N ′) contains the reticulation edge directed into r�

j whose two end
vertices are vertices of G A

j (resp. G B
j). Note that, as T is displayed by N and N ′ , we have that T picks x�

j from the variable
side of N if and only if T picks x�

j from the variable side of N ′ . We next make two observations:

(O1) For each clause C j = (x1
j ∨ x2

j ∨ x3
j), it follows from Lemma 3.1 that T picks at most two of x1

j , x2
j , and x3

j from the
clause side of N and N ′ .

136 J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146

(O2) It follows from Step 3 in the construction of N and N ′ , and the fact that T is displayed by N and N ′ that, if T picks
x�

j from the variable side of N and N ′ , and x�
j = vi for some i ∈ {1, 2, . . . , n}, then each x�′

j′ with x�′
j′ = v̄ i is picked

from the clause side of N and N ′ . Similarly, if T picks x�
j from the variable side of N and N ′ , and x�

j = v̄ i for some
i ∈ {1, 2, . . . , n}, then each x�′

j′ with x�′
j′ = vi is picked from the clause side of N and N ′ .

Now, let β be the truth assignment that is defined as follows. For each i ∈ {1, 2, . . . , n}, we set vi = T if there exists an
element x�

j with x�
j = vi that is picked from the variable side of N and N ′ . On the other hand, we set vi = F if either there

exists an element x�
j with x�

j = v̄ i that is picked from the variable side of N and N ′ or there is no x�
j with x�

j ∈ {vi, ̄vi}
that is picked from the variable side of N and N ′ . Because of (O2), β is well defined. Moreover, by (O1) it follows that β
satisfies at least one literal of each clause and, hence, I is a yes-instance. �

This completes the proof of Theorem 3.2. �
The next corollary is an immediate consequence of Theorem 3.2.

Corollary 3.3. Let N and N ′ be two temporal normal networks on X. It is co-NP-complete to decide if T (N) ∩ T (N ′) = ∅.

4. Hardness of DISPLAY-SET-EQUIVALENCE

In this section, we show that Display-Set-Equivalence is �P
2 -complete, that is, the problem is complete for the second

level of the polynomial hierarchy. To establish this result, we use a chain of three polynomial-time reductions that are
described in Subsections 4.1, 4.2, and 4.3. Before detailing the reductions, we introduce two more decision problems that
play an important role in this section.

Recall the (ordinary) 3-SAT problem as introduced in Section 3. The input to an instance of 3-SAT consists of a boolean
formula over a set of variables. Importantly, each variable is existentially quantified since we are asking whether or not
there exists a truth assignment to each variable that satisfies each clause of the formula. In contrast, the following quantified
version of 3-SAT has two different types of variables, i.e. each variable is either existentially or universally quantified.

∀∃ 3-SAT

Input. A quantified boolean formula

� = ∀v1∀v2 · · · ∀v p∃v p+1∃v p+2 · · · ∃vn

m∧

j=1

C j

over a set of variables V = {v1, v2, . . . , vn} such that each clause C j is a disjunction of exactly three literals and each literal
is an element in {vi, ̄vi : i ∈ {1, 2, . . . , n}}.
Question. For each truth assignment β∀ : {v1, v2, . . . , v p} → {F , T }, does there exist a truth assignment β∃ : {v p+1, v p+2, . . . ,
v p} → {F , T } such that, collectively, β∀ and β∃ satisfy each clause in �?

It was shown in [13] that ∀∃ 3-SAT is �P
2 -complete. Let I be an instance of ∀∃ 3-SAT. Note that each clause of I has at

least one literal that is an element in {xi, ̄xi : i ∈ {p + 1, p + 2, . . . , n}} since, otherwise, I is a no-instance. Furthermore,
if all variables are existentially quantified, then I is an instance of the (ordinary) 3-SAT problem. Hence, we may assume
throughout this section that 1 ≤ p < n.

We next formally state a quantified version of the well-known NP-complete decision problem Directed-Disjoint-

Connecting-Paths [5,11]. Let G be a directed graph with vertex set V , and let {(s1, t1), (s2, t2), . . . , (sk, tk)} be a collection of
disjoint pairs of vertices in V . In what follows, we write πi to denote a directed path in G from si to ti with i ∈ {1, 2, . . . , k}.

∀∃ Directed-Disjoint-Connecting-Paths

Input. A directed graph G and two collections

P∀ = {(s1, t1), (s2, t2), . . . , (sp, tp)},
P∃ = {(sp+1, tp+1), (sp+2, tp+2), . . . , (sk, tk)}

of disjoint pairs of vertices in G such that 1 ≤ p < k and, for each (si, ti) ∈ P∀ , there exists a directed path from si to ti in
G .
Question. For each set �∀ = {π1, π2, . . . , πp} of directed paths, does there exist a set �∀ ∪ {πp+1, πp+2, . . . , πk} of mutually
vertex-disjoint directed paths in G?

J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146 137

4.1. ∀∃ Directed-Disjoint-Connecting-Paths is �P
2 -complete

To show that ∀∃ Directed-Disjoint-Connecting-Paths is complete for the second level of the polynomial hierarchy,
we use a polynomial-time reduction from ∀∃ 3-SAT. This reduction constructs a special instance of ∀∃ Directed-Disjoint-

Connecting-Paths for which the input graph is a particular type of phylogenetic network.
Let N be a phylogenetic network on X , let S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} be two disjoint subsets of the

vertices of N such that T = X , and let p ∈ {1, 2, . . . , k}. We call N a caterpillar-inducing network with respect to S if the
network obtained from N by deleting each vertex that lies on a directed path from a child of a vertex in S to a leaf of
N is a caterpillar up to deleting all leaf labels. Moreover, we say that N has the two-path property relative to p if, for each
i ∈ {1, 2, . . . , p}, there are two directed paths, say πi and π ′

i , from si to ti such that the following three properties are
satisfied:

(i) πi and π ′
i are the only directed paths from si to ti in N ,

(ii) πi and π ′
i only have the three vertices si , ti , and the (unique) parent of ti as well as the edge directed into ti in

common, and
(iii) no path in {πi, π ′

i : i ∈ {1, 2, . . . , p}} intersects with any path in {π j, π ′
j : j ∈ {1, 2, . . . , p} − {i}}.

Using the same notation as in the statement of ∀∃ Directed-Disjoint-Connecting-Paths, we now introduce a similar prob-
lem whose input graph is a phylogenetic network.

∀∃ Phylo-Directed-Disjoint-Connecting-Paths

Input. A phylogenetic network N on X , two disjoint sets S = {s1, s2, . . . , sk} and T = X = {t1, t2, . . . , tk} of vertices of N ,
and an integer p with 1 ≤ p < k such that N is caterpillar-inducing with respect to S and has the two-path property
relative to p. Furthermore, the two collections

P∀ = {(s1, t1), (s2, t2), . . . , (sp, tp)},
P∃ = {(sp+1, tp+1), (sp+2, tp+2), . . . , (sk, tk)}

of pairs of elements in S and T .
Question. For each set �∀ = {π1, π2, . . . , πp} of directed paths, does there exist a set �∀ ∪ {πp+1, πp+2, . . . , πk} of mutually
vertex-disjoint directed paths in N ?

The next theorem establishes the �P
2 -completeness of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths. The reduction

that we use for the proof has a flavor that is similar to that in [8, page 86].

Theorem 4.1. The decision problem ∀∃ Phylo-Directed-Disjoint-Connecting-Paths is �P
2 -complete.

Proof. We first show that ∀∃ Phylo-Directed-Disjoint-Connecting-Paths is in �P
2 . Using the same notation as in the formal

statement of this problem, let �∀ = {π1, π2, . . . , πp} be a set of directed paths in N . Since N has the two-path property
relative to p, the paths in �∀ are mutually vertex disjoint. Next obtain the directed graph G from N by deleting all vertices
that lie on a path in �∀ . Lastly, use an NP-oracle for the unquantified version of Directed-Disjoint-Connecting-Paths

to decide if there exists a set �∃ = {πp+1, πp+2, . . . , πk} of mutually vertex-disjoint directed paths in G . Since a given
instance of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths is a no-instance precisely if there exists some set �∀ for which
no choice of �∃ results in a set �∀ ∪ �∃ of mutually vertex-disjoint directed paths in N , it follows that this problem is in
co-NPNP = �P

2 .
We now establish a polynomial-time reduction from the quantified 3-SAT problem. Let I be an instance of ∀∃ 3-SAT with

boolean formula

� = ∀v1∀v2 · · · ∀v p∃v p+1∃v p+2 · · · ∃vn

m∧

j=1

C j

over a set V = {v1, v2, . . . , vn} of variables. Throughout the proof, we use C j = (x3 j−2 ∨ x3 j−1 ∨ x3 j) to refer to the three
literals in C j for each j ∈ {1, 2, . . . , m}. Now, for each i ∈ {1, 2, . . . , n}, let J +

i be the set that consists of the indices of the
literals that are equal to vi and, similarly, let J −

i be the set that consists of the indices of the literals that are equal to v̄ i .
Without loss of generality, we may assume that J +

i 	= ∅ or J −
i 	= ∅ since, otherwise, vi can be deleted from V .

For each variable vi , we construct a variable gadget G v
i as follows:

1. Create three vertices sv
i , tv

i , and yi .
2. Create the (possibly empty) set of vertices

⋃
l∈J +

i
{pin

l , pout
l } and construct the directed path

π+
i = (sv

i , pin
l1

, pout
l1

, pin
l2

, pout
l2

, . . . , pin
lq

, pout
lq

, yi, tv
i)

138 J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146

Fig. 5. Left: Variable gadget for a variable vi . Right: Clause gadget for a clause C j = (x3 j−2 ∨ x3 j−1 ∨ x3 j), where the second literal equals a negated variable
and each of the other two literals equals an unnegated variable. The three thick edges are edges of a variable gadget. The complete construction is detailed
in the proof of Theorem 4.1.

with {l1, l2, . . . , lq} = J +
i .

3. Create the (possibly empty) set of vertices
⋃

k∈J −
i

{nin
k , nout

k } and construct the directed path

π−
i = (sv

i , nin
k1

, nout
k1

, nin
k2

, nout
k2

, . . . , nin
kr

, nout
kr

, yi, tv
i)

with {k1, k2, . . . , kr} = J −
i .

Note that, since we do not allow for parallel edges, the last edge (yi , tv
i) of π+

i and π−
i only appears once in G v

i . Intuitively,
the two paths π+

i and π−
i correspond to the two possible truth assignments for the variable vi . To illustrate, a generic

variable gadget for vi is shown on the left-hand side of Fig. 5. The additional edges in this figure that are directed into
vertices of the variable gadget and directed out of vertices of this gadget will be defined as part of the clause gadget
construction which we describe next.

For a clause C j = (x3 j−2 ∨ x3 j−1 ∨ x3 j), let i j , i′j , and i′′j be the elements in {1, 2, . . . , n} such that x3 j−2 ∈ {vi j , ̄vi j },
x3 j−1 ∈ {vi′j , ̄vi′j }, and x3 j ∈ {vi′′j , ̄vi′′j }. Now, for each j ∈ {1, 2, . . . , m}, add the following vertices and edges to the variable
gadgets.

1. Create the vertices {sc
j, t

c
j, u j, w j, w ′

j}.
2. Add the edges in {(sc

j, u j), (w j, w ′
j), (w ′

j, t
c
j)}.

3. If x3 j−2 = vi j , add the edges (u j, pin
3 j−2) and (pout

3 j−2, w j). Otherwise, add the edges (u j, nin
3 j−2) and (nout

3 j−2, w j).

4. If x3 j−1 = vi′j , add the edges (u j, pin
3 j−1) and (pout

3 j−1, w j). Otherwise, add the edges (u j, nin
3 j−1) and (nout

3 j−1, w j).

5. If x3 j = vi′′j , add the edges (sc
j, p

in
3 j) and (pout

3 j , w ′
j). Otherwise, add the edges (sc

j, n
in
3 j) and (nout

3 j , w ′
j).

In what follows, we refer to the edges and vertices that get added in the aforementioned five-step construction relative to
a given C j as the clause gadget for C j . For each clause C j = (x3 j−2 ∨ x3 j−1 ∨ x3 j), there are three directed paths from sc

j to
tc

j each of which corresponds to one of the three literals in C j . For example, for the first literal x3 j−2, there is a directed
path from sc

j to tc
j that intersects with the edge (pin

3 j−2, p
out
3 j−2) on π+

i j
if x3 j−2 = vi j and that intersects with the edge

(nin
3 j−2, n

out
3 j−2) on π−

i j
if x3 j−2 = v̄ i j . To illustrate, assume that x3 j−2 = vi j , x3 j−1 = v̄ i′j , and x3 j = vi′′j . For this specific case,

the clause gadget for C j is shown on the right-hand side of Fig. 5.
Now, let G be the directed graph that results from the construction of all variable and all clause gadgets. Observe that

G is acyclic. We next set up an instance I ′ of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths. Let T be the caterpillar
(�v

1 , �v
2 , . . . , �v

n , �c
1, �

c
2, . . . , �

c
m). We obtain a directed acyclic graph N from T and G by identifying �v

i with sv
i for each

i ∈ {1, 2, . . . , n} and identifying �c
j with sc

j for each j ∈ {1, 2, . . . , m}. Clearly, N is connected and has no parallel edges.

J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146 139

Moreover, except for the root, since each vertex of G has in-degree one and out-degree two, in-degree two and out-degree
one, or in-degree one and out-degree zero, it follows that N is a phylogenetic network on T = {tv

1 , tv
2 , . . . , tv

n , tc
1, t

c
2, . . . , t

c
m}.

Let S = {sv
1 , sv

2 , . . . , sv
n , sc

1, s
c
2, . . . , s

c
m}. Since every vertex of G that is not contained in S lies on a directed path from a child

of a vertex in S to a leaf in N , it follows that N is caterpillar-inducing with respect to S . Moreover, for each i ∈ {1, 2, . . . , n},
there are exactly two directed paths from sv

i to tv
i in G v

i and, hence, in N that only intersect in the vertices sv
i , tv

i , and yi ,
and the edge (yi, tv

i). Recalling that 1 ≤ p < n, it follows from the construction that N has the two-path property relative
to p, and that both P∀ and P∃ are non-empty. We now set

P∀ = {(sv
1 , tv

1), (sv
2 , tv

2), . . . , (sv
p, tv

p)} and

P∃ = {(sv
p+1, tv

p+1), (sv
p+2, tv

p+2), . . . , (sv
n , tv

n)} ∪ {(sc
1, tc

1), (sc
2, tc

2), . . . , (sc
m, tc

m)}.
This completes the description of I ′ .

Since the number of vertices of G is 3n + 11m, the number of vertices of T is 2(n + m) − 1, and G and T have n + m
vertices in common, it follows that N has size O (n + m) and can be constructed in polynomial time.

We complete the proof by establishing the following sublemma.

4.1.1. The instance I is a yes-instance if and only if the instance I ′ is a yes-instance.

Proof. First, suppose that I is a yes-instance. Let �∀ = {π v
1 , π v

2 , . . . , π v
p } be a set of directed paths in N such that each

π v
i begins at sv

i and ends at tv
i . As p < n, we have π v

i ∈ {π+
i , π−

i }. Moreover, since N has the two-path property relative
to p, the paths in �∀ are mutually vertex disjoint in N . Now, let β : V → {F , T } be a truth assignment that satisfies each
clause of � such that, if π v

i = π+
i , then vi = F and, otherwise, vi = T for each i ∈ {1, 2, . . . , p}. Since I is a yes-instance, β

exists. We next construct a directed path for each pair of vertices in P∃ such that, collectively, these paths together with the
elements in �∀ form a solution to I ′ . For each i ∈ {p + 1, p + 2, . . . , n}, set π v

i = π+
i if vi = F and set π v

i = π−
i if vi = T .

Furthermore, for each j ∈ {1, 2, . . . , m}, let x j′ , with j′ ∈ {3 j − 2, 3 j − 1, 3 j}, be a literal in C j that is satisfied by β , and let i
be the element in {1, 2, . . . , n} such that x j′ ∈ {vi, ̄vi}. By construction of the clause gadget, there is a directed path, say π c

j ,
from sc

j to tc
j in N such that one of the following properties applies.

(i) If x j′ = vi , then π c
j contains the edge (pin

j′ , p
out
j′).

(ii) If x j′ = v̄ i , then π c
j contains the edge (nin

j′ , n
out
j′).

In Case (i), as vi = T , we have π v
i = π−

i , and it follows that π c
j does not intersect π v

i . Similar in Case (ii), as vi = F , we
have π v

i = π+
i , and it again follows that π c

j does not intersect π v
i . By construction of N , it is now straightforward to check

that

�∀ ∪ {π v
p+1,π

v
p+2, . . . ,π

v
n ,π c

1 ,π c
2 , . . . ,π c

m}
is a collection of mutually vertex-disjoint directed-paths in N that connect each pair of vertices in P∀ ∪ P∃ . In particular,
since the argument presented in this paragraph applies to all choices of directed paths in �∀ , we conclude that I ′ is a
yes-instance.

Second, suppose that I ′ is a yes-instance. Let β∀ : {v1, v2, . . . , v p} → {F , T } be a truth assignment. Furthermore, let

� = {π v
1 ,π v

2 , . . . ,π v
p } ∪ {π v

p+1,π
v
p+2, . . . ,π

v
n ,π c

1 ,π c
2 , . . . ,π c

m}
be a collection of mutually vertex-disjoint directed paths in N such that π v

i = π−
i if vi = T and π v

i = π+
i if vi = F for each

i ∈ {1, 2, . . . , p}. Since I ′ is a yes-instance, � exists. Now, let β : V → {F , T } such that

(i) for each i ∈ {1, 2, . . . , p}, we have β(vi) = β∀(vi) and,
(ii) for each i ∈ {p + 1, p + 2, . . . , n}, we have β(vi) = F if π v

i = π+
i and, β(vi) = T if π v

i = π−
i .

We next show that β satisfies each clause of �. Let C j = (x3 j−2 ∨x3 j−1 ∨x3 j) be a clause of � with j ∈ {1, 2, . . . , m}. Consider
the directed path π c

j ∈ � from sc
j to tc

j in N . Let j′ be the unique element in {3 j − 2, 3 j − 1, 3 j} such that π c
j contains

either the edge (pin
j′ , p

out
j′) or the edge (nin

j′ , n
out
j′), and let i be the element in {1, 2, . . . , n} such that x j′ ∈ {vi, ̄vi}. First,

assume that π c
j contains (pin

j′ , p
out
j′). Then, as x j′ = vi and the paths in � are mutually vertex disjoint in N , it follows that

π v
i = π−

i . Hence β(vi) = T . Second, assume that π c
j contains (nin

j′ , n
out
j′). Then, as x j′ = v̄ i and the paths in � are mutually

vertex disjoint, it follows that π v
i = π+

i . Hence β(vi) = F . Under both assumptions, β satisfies C j because β(x j′) = T .
It now follows that β satisfies � and, as the argument applies to all choices of truth assignments for the elements in
{v1, v2, . . . , v p}, we conclude that I is a yes-instance. �

140 J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146

Fig. 6. The two phylogenetic networks N1 and N2 that are constructed in the proof of Theorem 4.3. For reasons of simplicity, not all edges of N2 are
shown. In particular, each squiggly line is a directed path and, depending on the given instance of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths, squiggly
paths may intersect with each other and may be further interconnected by paths that are not shown.

This completes the proof of Theorem 4.1. �
While the next corollary is not needed for the remainder of the paper, it may be of independent interest in the theoretical

computer science community.

Corollary 4.2. The decision problem ∀∃ Directed-Disjoint-Connecting-Paths is �P
2 -complete.

Proof. Since every instance of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths is also an instance of ∀∃ Directed-Disjoint-

Connecting-Paths, it follows from Theorem 4.1 that the latter problem is �P
2 -hard. To establish that ∀∃ Directed-Disjoint-

Connecting-Paths is in �P
2 , we use the same argument as in the first paragraph of the proof of Theorem 4.1 and,

additionally, check in polynomial time if the paths in �∀ are vertex disjoint. �
4.2. Display-Set-Containment is �P

2 -complete

In this section, we show that Display-Set-Containment is complete for the second level of the polynomial hierarchy.
This problem is a generalization of the well-known NP-complete Tree-Containment problem [7].

Theorem 4.3. Display-Set-Containment is �P
2 -complete.

Proof. We first show that Display-Set-Containment is in �P
2 . Let N and N ′ be two phylogenetic networks on X . To decide

if T (N) ⊆ T (N ′), let S be a switching of N , and let T be the phylogenetic X-tree yielded by S . Then use an NP-oracle
for Tree-Containment to decide if T is displayed by N ′ . Since N and N ′ form a no-instance precisely if there exists some
switching for N that yields a phylogenetic tree that is not displayed by N ′ , it follows that Display-Set-Containment is in
co-NPNP = �P

2 .
To complete the proof, we establish a reduction from ∀∃ Phylo-Directed-Disjoint-Connecting-Paths. Using the same

notation as in the formal statement of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths, let I be the following instance of
this problem. Let N be a phylogenetic network on X , let S = {s1, s2, . . . , sk} and T = X = {t1, t2, . . . , tk} be two disjoint sets
of vertices of N , and let p be an integer with 1 ≤ p < k such that N is caterpillar-inducing with respect to S and has the
two-path property relative to p. Furthermore, let

P∀ = {(s1, t1), (s2, t2), . . . , (sp, tp)},
P∃ = {(sp+1, tp+1), (sp+2, tp+2), . . . , (sk, tk)}

be two collections of pairs of elements in S and T . This completes the description of I .
Now, let N1 be the phylogenetic network obtained from the caterpillar (t0, s1, s2, . . . , sp, tp+1, tp+2, . . . , tk) by adding the

following edges and vertices for each i ∈ {1, 2, . . . , p}. Create three vertices u1
i , u2

i , and u3
i and add the set

{(si, u1
i), (si, u2

i), (u1
i , u3

i), (u2
i , u3

i), (u3
i , ti), (u1

i , t′
i), (u2

i , t′′
i)}

of edges. Observe that the leaf set of N1 is

X ′ = {t0, t1, t2, . . . , tk} ∪ {t′
i, t′′

i : i ∈ {1,2, . . . , p}}.

J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146 141

The construction of N1 is shown on the left-hand side of Fig. 6. We complete the reduction to an instance of Display-Set-

Containment by describing a second phylogenetic network N2. For each i ∈ {1, 2, . . . , p}, let w ′
i and w ′′

i be the two children
of si in N . As N has the two-path property relative to p, recall that there are exactly two directed paths from si to ti in N ,
and these two paths only have si , ti , and the parent of ti in common. In the remainder of the proof, we denote the directed
path from si to ti that contains w ′

i with π ′
i and, similarly, we denote the directed path from si to ti that contains w ′′

i with
π ′′

i . Lastly, we denote the parent of s1 with p1. Now, obtain N2 from N in the following way.

(i) Subdivide the edge (p1, s1) with a new vertex u and add the edge (u, t0).
(ii) For each i ∈ {1, 2, . . . , p}, subdivide (si, w ′

i) with a new vertex v ′
i , subdivide (si, w ′′

i) with a new vertex v ′′
i , and add the

two edges (v ′
i, t

′
i) and (v ′′

i , t′′
i).

Clearly, the leaf set of N2 is X ′ . To illustrate, N2 is shown on the right-hand side in Fig. 6.
As the size of X ′ is polynomial in the size of X , it follows that the size of N1 and N2 is polynomial in the size of N .

Furthermore, the construction of N1 and N2 takes polynomial time.

4.3.1. The instance I is a yes-instance if and only if T (N1) ⊆ T (N2).

Proof. First, suppose that I is a yes-instance. Let T ′ be a phylogenetic X ′-tree that is displayed by N1. For each
i ∈ {1, 2, . . . , p}, note that T ′ contains one of the two caterpillars (ti, t′

i, t
′′
i) or (ti, t′′

i , t′
i). Let J ′ be the set that consists of

each element i ∈ {1, 2, . . . , p} for which T ′ contains (ti, t′
i, t

′′
i) and, similarly, let J ′′ be the set that consists of each element

i ∈ {1, 2, . . . , p} for which T ′ contains (ti, t′′
i , t′

i). Furthermore, let �∀ = {π1, π2, . . . , πp} be the set of directed paths in N
such that πi = π ′

i if i ∈ J ′ and πi = π ′′
i if i ∈ J ′′ . Since I is a yes-instance, there exists a set � = �∀ ∪ {πp+1, πp+2, . . . , πk}

of mutually vertex-disjoint directed paths in N , where π j is a directed path from s j to t j for each j ∈ {p + 1, p + 2, . . . , k}.
Moreover, as N is caterpillar-inducing with respect to S , it is straightforward to check that there exists a phylogenetic
X-tree T such that the following three properties are satisfied:

(i) T is displayed by N ,
(ii) T = T ′|X , and

(iii) there exists an embedding of T in N that contains all edges of paths in �.

Let ET be an embedding of T in N that satisfies (iii). By construction of N2 from N , there exists an embedding of T in
N2 whose set of edges is

E ′
T = (ET − ({(p1, s1)} ∪ {(si, w ′

i) : i ∈ J ′} ∪ {(si, w ′′
i) : i ∈ J ′′})) ∪

{(p1, u), (u, s1)} ∪ {(si, v ′
i), (v ′

i, w ′
i) : i ∈ J ′} ∪

{(si, v ′′
i), (v ′′

i , w ′′
i) : i ∈ J ′′}.

For each i ∈ {1, 2, . . . , p}, let E ′
i be the subset {(v ′

i, t
′
i), (v ′′

i , t′′
i), (si, v ′′

i)} of edges in N2 if i ∈ J ′ , and the subset
{(v ′′

i , t′′
i), (v ′

i, t
′
i), (si, v ′

i)} of edges in N2 if i ∈ J ′′ . Since E ′
T is an embedding of T in N2, it now follows that

E ′
T ∪ E ′

1 ∪ E ′
2 ∪ · · · ∪ E ′

p ∪ {(u, t0)}
is an embedding of T ′ in N2. Hence, T (N1) ⊆ T (N2).

Second, suppose that I is a no-instance. Throughout this part of the proof, we use πi to denote a directed path from si

to ti in N for each i ∈ {1, 2, . . . , k}. Then, as N has the two-path property relative to p, there is a set �∀ = {π1, π2, . . . , πp}
of mutually vertex-disjoint directed paths in N for which every set � = �∀ ∪ {πp+1, πp+2, . . . , πk} of directed paths in
N contains two elements that are not vertex disjoint. For each i ∈ {1, 2, . . . , k}, let Ei be the set of edges of πi in N .
Furthermore, for each i ∈ {1, 2, . . . , p}, let E ′

i be the subset

(Ei − {(si, w ′
i)}) ∪ {(si, v ′

i), (v ′
i, w ′

i), (v ′
i, t′

i), (si, v ′′
i), (v ′′

i , t′′
i)}

of edges in N2 if πi = π ′
i , and the subset

(Ei − {(si, w ′′
i)}) ∪ {(si, v ′′

i), (v ′′
i , w ′′

i), (v ′′
i , t′′

i), (si, v ′
i), (v ′

i, t′
i)}

of edges in N2 if πi = π ′′
i , where π ′

i or π ′′
i are as described in the construction of N2 from N . Clearly, there is a phyloge-

netic tree Tp with leaf set {ti, t′
i, t

′′
i : i ∈ {1, 2, . . . , p}} for which there exists an embedding in N2 that contains all edges in

E ′
1 ∪ E ′

2 ∪· · ·∪ E ′
p . Observe that Tp can be obtained from the caterpillar (�1, �2, . . . , �p) by replacing each �i ∈ {�1, �2, . . . , �p}

with the caterpillar (ti, t′
i, t

′′
i) if πi = π ′

i and with the caterpillar (ti, t′′
i , t′

i) if πi = π ′′
i . By construction, it now follows that N1

displays Tp . Let T be the unique phylogenetic X ′-tree that is displayed by N1 such that T |{ti, t′
i, t

′′
i : i ∈ {1, 2, . . . , p}} = Tp .

142 J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146

We complete the argument by showing that T is not displayed by N2. Towards a contradiction, assume that T is dis-
played by N2. Let E ′

T be an embedding of T in N2. Then, since T contains (ti, t′
i, t

′′
i) or (ti, t′′

i , t′
i) for each i ∈ {1, 2, . . . , p}

and N satisfies the two-path property relative to p, it follows from the construction of N2 that E ′
T contains all edges in

E ′
1 ∪ E ′

2 ∪ · · · ∪ E ′
p . Furthermore, observe that there is a unique directed path from the root, say ρ , of N2 to t0, and so the

edges on this path are elements of E ′
T . For each pair i and i′ of distinct elements in {1, 2, . . . , k}, it therefore follows that

the directed path from ρ to ti in E ′
T and the directed path from ρ to ti′ in E ′

T only intersect in vertices that are ancestors
of t0 in N2. Hence, as N2 is caterpillar-inducing with respect to S , there exist directed paths π∗

1 , π∗
2 , . . . , π∗

p , π∗
p+1, . . . , π

∗
k

in E ′
T such that the following three properties are fulfilled.

(i) For each i ∈ {1, 2, . . . , p}, π∗
i is the unique directed path from si to ti in N2 that contains v ′

i if πi = π ′
i and that contains

v ′′
i if πi = π ′′

i .
(ii) For each i ∈ {p + 1, p + 2, . . . , k}, π∗

i is a directed path from si to ti in N2.
(iii) The elements in �∗ = {π∗

1 , π∗
2 , . . . , π∗

k , } are mutually vertex disjoint.

Now, by construction, observe that π∗
i is also a directed path from si to ti in N for each i ∈ {p + 1, p + 2, . . . , k}. As �∗ is

a set of mutually vertex-disjoint directed paths in N2, it now follows that, �∀ ∪ {π∗
p+1, π

∗
p+2, . . . , π

∗
k } is a set of mutually

vertex-disjoint directed paths in N . In turn, this implies that I is a yes-instance; a contradiction. Hence, T /∈ T (N2), and so
T (N1) � T (N2). �

This establishes Theorem 4.3. �
We end this section with a brief discussion of the structural properties of the phylogenetic network N1 that is con-

structed in the proof of Theorem 4.3. These properties will play an important role in the next section when we establish
�P

2 -completeness of Display-Set-Equivalence. Let N be a phylogenetic network on X . We say that N is a caterpillar network
if it can be obtained from a caterpillar (�1, �2, . . . , �k) with 2 ≤ k ≤ |X | by replacing each �i with a phylogenetic network Ni

on Xi such that the elements in {N1, N2, . . . , Nk} are pairwise vertex disjoint and

k⋃

i=1

Xi = X .

By construction, N1 is a caterpillar network. Moreover, it is easily seen that N1 is temporal and tree-child.
The next corollary now immediately follows from Theorem 4.3.

Corollary 4.4. Let N1 be a temporal tree-child caterpillar network on X, and let N2 be a phylogenetic network on X. Then deciding
whether T (N1) ⊆ T (N2) is �P

2 -complete.

4.3. Display-Set-Equivalence is �P
2 -complete

With the result of Corollary 4.4 in hand, we are now in a position to establish the main result of Section 4 which is the
following theorem.

Theorem 4.5. Display-Set-Equivalence is �P
2 -complete.

Proof. Let N and N ′ be two phylogenetic networks on X . By Theorem 4.3, the problem of deciding whether or not T (N) ⊆
T (N ′) is in �P

2 . Similarly, the problem of deciding whether or not T (N ′) ⊆ T (N) is in �P
2 . Hence, Display-Set-Equivalence

is in �P
2 .

We next establish a polynomial-time reduction from Display-Set-Containment to Display-Set-Equivalence. Let N1 and
N2 be two phylogenetic networks on X = {�1, �2, . . . , �n} that form the input to an instance of Display-Set-Containment

that asks if T (N1) ⊆ T (N2). By Corollary 4.4, we may assume that N1 is a caterpillar network. Then there exist two
vertex-disjoint phylogenetic networks M1 and M1′ with leaf sets W1 and W1′ , respectively, such that W1 ∪ W1′ = X , and
N1 can be obtained from the caterpillar {x1, x2} by replacing x1 with M1 and x2 with M1′ . To ease reading, let N ′

1 and
N ′

2 be the two phylogenetic networks on X ′ = {�′
1, �

′
2, . . . , �

′
n} that are obtained from N1 and N2, respectively, by replacing

�i with �′
i in both networks for each i ∈ {1, 2, . . . , n}. Similarly, let M′

1 and M′
1′ be the two phylogenetic networks obtained

from M1 and M1′ , respectively, by replacing �i with �′
i in exactly one of M1 and M1′ for each i ∈ {1, 2, . . . , n}. If W ′

1
(resp. W ′

1′) denotes the leaf set of M′
1 (resp. M′

1′), then W ′
1 ∪ W ′

1′ = X ′ .
Set T as well as T ′ to be the caterpillar (w1, w2, . . . , w2n+3). Furthermore, let u2n+3, u2n+2, . . . , u2 be the directed path

in T (and T ′) such that, for all j ∈ {2, 3, . . . , 2n + 3}, u j is the parent of w j . Now, let G∗
1 and G∗

2 be the two directed acyclic
graphs that are obtained from T and T ′ , respectively, by applying the following six-step process.

J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146 143

Fig. 7. The phylogenetic network N ∗
1 on X ∪ X ′ as constructed in the proof of Theorem 4.5. Each of the squares labeled N2, N1, M′

1, M′
1′ , and N ′

2 refers
to the network obtained from its namesake phylogenetic network by deleting all leaf labels. The dangling edges of each square are paired up with the
edges shown in the bottom part of the figure as described in Step 6 of the construction in the proof of Theorem 4.5.

1. For all j ∈ {1, 2, . . . , n}, replace w j with N2 in T and T ′ by identifying w j with the root of N2.
2. Replace wn+1 with the root of N1 in T by identifying wn+1 with the root of N1, and replace wn+1 with the root of

M1 in T ′ by identifying wn+1 with the root of M1
3. Replace wn+2 with M′

1 in T by identifying wn+2 with the root of M′
1, and replace wn+2 with M1′ in T ′ by identifying

wn+2 with the root of M1′
4. Replace wn+3 with M′

1′ in T by identifying wn+3 with the root of M′
1′ , and replace wn+3 with N ′

1 in T ′ by identifying
wn+3 with the root of N ′

1.
5. For all j ∈ {n + 4, n + 5, . . . , 2n + 3}, replace w j with N ′

2 in T and T ′ by identifying w j with the root of N ′
2.

6. For each i ∈ {1, 2, . . . , n}, identify all leaves labeled �i (resp. �′
i) in T with a new vertex vi (resp. v ′

i), add a new edge
(vi, �i) (resp. (v ′

i, �
′
i)). Do the same for all leaves labeled �i (resp. �′

i) in T ′ .

To complete the construction, let N ∗
1 and N ∗

2 be two phylogenetic networks such that G∗
1 and G∗

2 can be obtained from
N ∗

1 and N ∗
2 , respectively, by contracting edges. Clearly, the leaf set of N ∗

1 and N ∗
2 is X ∪ X ′ . Moreover, the directed path

u2n+3, u2n+2, . . . , u2 of T and T ′ is also a directed path of N ∗
1 and N ∗

2 . We refer to this path as the backbone of N ∗
1 and

N ∗
2 . The phylogenetic networks N ∗

1 and N ∗
2 are shown in Figs. 7 and 8, respectively. Lastly, observe that the size of both

N ∗
1 and N ∗

2 is O (n(|E1| + |E2|)), where E1 and E2 is the edge set of N1 and N2, respectively. Hence, the construction of
N ∗

1 and N ∗
2 takes polynomial time.

4.5.1. T (N1) ⊆ T (N2) if and only if T (N ∗
1) = T (N ∗

2).

Proof. Throughout this proof, let U = {u2, u3, . . . , u2n+3} be the vertex set of the backbone of N ∗
1 and N ∗

2 , and let

EU = {(u2, w1), (u2, w2), (u3, w3), . . . , (u2n+3, w2n+3)}
be the set of edges in N ∗

1 and N ∗
2 that are directed from a vertex in U to a vertex not in U . Furthermore, for a vertex v

and an embedding E , we say that v is in E if there exists an edge in E that is incident with v . If v is in E , then we denote
this by v ∈ E .

First, suppose that T (N1) � T (N2). Let T1 be a phylogenetic X-tree such that T1 ∈ T (N1) and T1 /∈ T (N2). Let T ′
1 be

the phylogenetic X ′-tree obtained from T1 by replacing �i with �′
i for each i ∈ {1, 2, . . . , n}. Furthermore, let T be the

phylogenetic (X ∪ X ′)-tree obtained from T1 and T ′
1 by creating a new vertex ρ , adding an edge that joins ρ with the root

of T1, and adding an edge that joins ρ with the root of T ′
1 . As N1 displays T1 and N ′

1 displays T ′
1 , it is easy to check that

an embedding of T in N ∗
2 can be obtained from adding edges of N ∗

2 to

{(un+3, un+2), (un+2, un+1), (un+1, wn+1), (un+2, wn+2), (un+3, wn+3)}

144 J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146

Fig. 8. The phylogenetic network N ∗
2 on X ∪ X ′ as constructed in the proof of Theorem 4.5. Each of the squares labeled N2, M1, M1′ , N ′

1 and N ′
2 refers

to the network obtained from its namesake phylogenetic network by deleting all leaf labels. The dangling edges of each square are paired up with the
edges shown in the bottom part of the figure as described in Step 6 of the construction in the proof of Theorem 4.5.

such that each element in X is a descendant of un+2, each element in X ′ is a descendant of wn+3. Hence, T is displayed
by N ∗

2 .
We next show that T is not displayed by N ∗

1 . Towards a contradiction, assume that T is displayed by N ∗
1 . Let E1 be an

embedding of T in N ∗
1 . Furthermore, let k be the maximum element in {1, 2, . . . , 2n +3} such that wk ∈ E1. By construction

of T , either each element in X is a descendant of wk in E1 or each element in X ′ is a descendant of wk in E1. Thus, as
N2 does not display T1 and N ′

2 does not display T ′
1 , we have k = n + 1. In particular, each element in X is a descendant

of wk in E1. But no element in X ′ is a descendant of uk in E1; a contradiction. Hence, T is not displayed by N ∗
1 , and so

T (N ∗
1) 	= T (N ∗

2).
Second, suppose that T (N1) ⊆ T (N2). Let T be a phylogenetic (X ∪ X ′)-tree that is displayed by N ∗

1 , and let E1 be an
embedding of T in N ∗

1 . For each j ∈ {1, 2, . . . , 2n + 3} with w j ∈ E1, let Y j be the set that consists of all leaves that are
descendants of w j in E1, and let T j be the phylogenetic tree obtained from the minimal rooted subtree of E1 that connects
all leaves in Y j by suppressing all vertices with in-degree one and out-degree one. If wn+1 ∈ E1, then, by the pigeonhole
principle, there exists an element j ∈ {1, 2, . . . , n} such that w j /∈ E1. Similarly, if wn+3 ∈ E1, then there exists an element
j′ ∈ {n + 4, n + 5, . . . , 2n + 3} such that w j′ /∈ E1. Without loss of generality, we may therefore assume by the construction
of N ∗

1 that E1 satisfies the following property.

(P) If wn+1 ∈ E1, then wn /∈ E1 and, if wn+3 ∈ E1, then wn+4 /∈ E1.

Intuitively, property (P) allows enough ‘play’ so that any embedding of a phylogenetic (X ∪ X ′)-tree in N∗
1 can be replicated

in N∗
2.

Since T (N1) ⊆ T (N2), each tree in T (N1) is displayed by N2, and so each tree in T (M′
1) is displayed by N ′

1, and each
tree in T (M′

1′) is displayed by N ′
2. Hence, there exists an embedding E2 of a phylogenetic (X ∪ X ′)-tree in N ∗

2 such that
the following conditions are satisfied:

(i) For each j ∈ {1, 2, . . . , n, n + 4, n + 5, . . . , 2n + 3}, if w j ∈ E1, then w j is the root of a subtree in E2 that is a subdivision
of T j .

(ii) If wn+1 ∈ E1 and so wn /∈ E1, then wn is the root of a subtree in E2 that is a subdivision of Tn+1.
(iii) If wn+3 ∈ E1 and so wn+4 /∈ E1, then wn+4 is the root of a subtree in E2 that is a subdivision of Tn+3.
(iv) If wn+2 ∈ E1, then wn+3 is the root of a subtree in E2 that is a subdivision of Tn+2.

Since E1 satisfies (P), E2 is well defined. By construction of N ∗
1 and N ∗

2 , it now follows that the edges in E2 are an
embedding of T in N ∗

2 . Thus T (N ∗
1) ⊆ T (N ∗

2).
Now, let T be a phylogenetic (X ∪ X ′)-tree that is displayed by N ∗

2 . To see that T is displayed by N ∗
1 , we can effectively

use the same argument as the one to show that T (N ∗
1) ⊆ T (N ∗

2) even though the assumption that T (N1) ⊆ T (N2) is not

J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146 145

symmetric. In particular, let E2 be an embedding of T in N ∗
2 . For each j ∈ {1, 2, . . . , 2n + 3} with w j ∈ E2, let Z j be the set

that consists of all leaves that are descendants of w j in E2, and let T j be the phylogenetic tree obtained from the minimal
rooted subtree of E2 that connects all the leaves in Z j by suppressing all vertices with in-degree one and out-degree one.
If wn+1 ∈ E2, then, by the pigeonhole principle, there exists an element j ∈ {1, 2, . . . , n} such that w j /∈ E2. Similarly, if
wn+3 ∈ E2, then there exists an element j′ ∈ {n + 4, n + 5, . . . , 2n + 3} such that w j′ /∈ E2. Thus, by construction, we may
assume without loss of generality that

(P)′ if wn+1 ∈ E2, then wn /∈ E2 and, if wn+3 ∈ E2, then wn+4 /∈ E2.

As T (N1) ⊆ T (N2), each tree in T (M1) is displayed by N2, each tree in T (M1′) is displayed by N1, and each tree in
T (N ′

1) is displayed by N ′
2. Thus there exists an embedding E1 of a phylogenetic (X ∪ X ′)-tree in N ∗

1 satisfying the following
conditions:

(i)′ For each j ∈ {1, 2, . . . , n, n + 4, n + 5, . . . , 2n + 3}, if w j ∈ E2, then w j is the root of a subtree in E1 that is a subdivision
of T j .

(ii)′ If wn+1 ∈ E2 and so wn /∈ E2, then wn is the root of a subtree in E1 that is a subdivision of Tn+1.
(iii)′ If wn+3 ∈ E2 and so wn+4 /∈ E2, then wn+4 is the root of a subtree of E1 that is a subdivision of Tn+3.
(iv)′ If wn+2 ∈ E2, then wn+1 is the root of a subtree in E1 that is a subdivision of Tn+2.

It is now easily checked that E1 is well defined and, by construction of N ∗
1 and N ∗

2 , is an embedding of T in N ∗
1 . So

T (N ∗
2) ⊆ T (N ∗

1). Combining both cases establishes that T (N ∗
2) = T (N ∗

1). �
This completes the proof of Theorem 4.5. �
5. Conclusion

We end this paper, with two corollaries that are implied by the results presented in Section 3 and two open problems.
In 2015, Francis and Steel [4] introduced tree-based networks. A phylogenetic network N on X is tree-based if, up to
suppressing vertices of in-degree one and out-degree one, N displays a phylogenetic X-tree T that can be obtained by
only deleting reticulation edges, in which case, T is a base tree of N . If N is tree-based, it is well known that not every
phylogenetic X-tree displayed by N is a base tree. However, noting that each tree-child network is also a tree-based
network, it is shown in [12] that a phylogenetic tree T is displayed by a tree-child network N if and only if T is a base
tree of N . Hence, for two tree-child networks N and N ′ , the problem of deciding whether or not T (N) ∩ T (N ′) 	= ∅ is
equivalent to deciding whether or not N and N ′ have a common base tree.

Corollary 5.1. Let N and N ′ be two tree-based networks on X. Then deciding if N and N ′ have a common base tree is NP-complete.

Proof. Let S be a switching of N , and let T be a phylogenetic X-tree. We say that S is a base-tree switching if, for each
non-leaf vertex u in N that is the parent of only reticulations, there exists an edge (u, v) in S . By the definition of a
tree-based network it follows that T is a base tree of N if and only if there exists a base-tree switching S of N that yields
T . Now, let S be a switching of N , and let S ′ be a switching of N ′ . If S is a base-tree switching of N and S ′ is a base-tree
switching of N ′ , and S and S ′ yield the same tree, then N and N ′ have a common base tree. Since it can be checked in
polynomial time if S (resp. S ′) is a base-tree switching of N (resp. N ′), and if S and S ′ yield the same tree, it follows that
deciding whether or not N and N ′ have a common base tree is in NP. The corollary now follows from Theorem 3.2. �

Using (ordinary) switchings instead of base-tree switching, ideas analogous to the ones described in the proof of Corol-
lary 5.1 can be used to show that Common-Tree-Containment is in NP for two arbitrary phylogenetic networks. The next
corollary is now an immediate consequence of Theorem 3.2.

Corollary 5.2. Common-Tree-Containment is NP-complete for two arbitrary phylogenetic networks.

In possible contrast to the last two corollaries and, in particular, Theorem 3.2, we leave it as an open problem to decide on
the complexity of Common-Tree-Containment for two level-one networks.

Lastly, let C be a class of phylogenetic networks for which Tree-Containment is solvable in polynomial time such as
tree-child or, more generally, reticulation-visible networks [1,6,14]. Furthermore, let N and N ′ be two networks in C . Then
deciding if T (N) = T (N ′) is in co-NP because, given a tree T that is displayed by N or N ′ , it can be checked in polynomial
time, if T is also displayed by the other network. If this is not the case, then N and N ′ form a no-instance of Display-Set-

Equivalence. Whether Display-Set-Equivalence for N and N ′ is co-NP-complete remains an open problem. Nevertheless, it
is unlikely that Display-Set-Equivalence for N and N ′ is �P

2 -complete since a problem that is �P
2 -complete and in co-NP

would imply that co-NP = �P
2 which, in turn, would result in a collapse of the polynomial hierarchy to the first level.

146 J. Döcker et al. / Theoretical Computer Science 796 (2019) 129–146

Acknowledgements

We thank Britta Dorn for insightful discussions as well as the anonymous referees for their careful reading of the paper.
The second and third authors thank the New Zealand Marsden Fund for their financial support.

References

[1] M. Bordewich, C. Semple, Reticulation-visible networks, Adv. Appl. Math. 76 (2016) 114–141.
[2] G. Cardona, F. Rosselló, G. Valiente, Comparison of tree-child phylogenetic networks, IEEE/ACM Trans. Comput. Biol. Bioinform. 6 (2009) 552–569.
[3] J. Döcker, S. Linz, C. Semple, Display sets of normal and tree-child networks, submitted for publication. A preprint is available at arXiv:1901.06725.
[4] A. Francis, M. Steel, Which phylogenetic networks are merely trees with additional arcs?, Syst. Biol. 64 (2015) 768–777.
[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, 1979.
[6] A.D.M. Gunawan, B. DasGupta, L. Zhang, A decomposition theorem and two algorithms for reticulation-visible networks, Inf. Comput. 252 (2017)

161–175.
[7] I.A. Kanj, L. Nakhleh, C. Than, G. Xia, Seeing the trees and their branches in the network is hard, Theor. Comput. Sci. 401 (2008) 153–164.
[8] S. Khuller, Design and analysis of algorithms: course notes, available at https://drum .lib .umd .edu /bitstream /handle /1903 /592 /CS -TR-3113 .ps ?sequence =

1, 1994.
[9] C. McDiarmid, C. Semple, D. Welsh, Counting phylogenetic networks, Ann. Comb. 19 (2015) 205–224.

[10] B.M.E. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun, R. Timme, Phylogenetic networks: modeling, reconstructibility, and
accuracy, IEEE/ACM Trans. Comput. Biol. Bioinform. 1 (2004) 13–23.

[11] Y. Perl, Y. Shiloach, Finding two disjoint paths between two pairs of vertices in a graph, J. Assoc. Comput. Mach. 25 (1978) 1–9.
[12] C. Semple, Phylogenetic networks with every embedded phylogenetic tree a base tree, Bull. Math. Biol. 78 (2016) 132–137.
[13] L.J. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3 (1976) 1–22.
[14] L. van Iersel, C. Semple, M. Steel, Locating a tree in a phylogenetic network, Inf. Process. Lett. 110 (2010) 1037–1043.
[15] M. Weller, Linear-time tree containment in phylogenetic networks, in: M. Blanchette, A. Ouangraoua (Eds.), RECOMB-CG 2018, in: Lecture Notes in

Computer Science, vol. 11183, Springer, Cham, 2018.
[16] S.J. Willson, Properties of normal phylogenetic networks, Bull. Math. Biol. 72 (2010) 340–358.
[17] S.J. Willson, Tree-average distances on certain phylogenetic networks have their weights uniquely determined, Algorithms Mol. Biol. 7 (2012) 13.

Appendix

1.4 Display sets of normal and tree-child networks

The following paper [DLS21] is also available online at the following URL: https://

doi.org/10.37236/9128.

124

https://doi.org/10.37236/9128
https://doi.org/10.37236/9128

Display sets of normal and tree-child networks

Janosch Döcker
Department of Computer Science

University of Tübingen
Tübingen, Germany

janosch.doecker@uni-tuebingen.de

Simone Linz ∗

School of Computer Science
University of Auckland
Auckland, New Zealand

s.linz@auckland.ac.nz

Charles Semple †

School of Mathematics and Statistics
University of Canterbury

Christchurch, New Zealand

charles.semple@canterbury.ac.nz

Submitted: Nov 9, 2019; Accepted: Dec 7, 2020; Published: Jan 15, 2021

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Phylogenetic networks are leaf-labelled directed acyclic graphs that are used in
computational biology to analyse and represent the evolutionary relationships of a
set of species or viruses. In contrast to phylogenetic trees, phylogenetic networks
have vertices of in-degree at least two that represent reticulation events such as
hybridisation, lateral gene transfer, or reassortment. By systematically deleting
various combinations of arcs in a phylogenetic network N , one derives a set of
phylogenetic trees that are embedded in N . We recently showed that the problem
of deciding if two binary phylogenetic networks embed the same set of phylogenetic
trees is computationally hard, in particular, we showed it to be ΠP

2 -complete. In
this paper, we establish a polynomial-time algorithm for this decision problem if the
initial two networks consist of a normal network and a tree-child network; two well-
studied topologically restricted subclasses of phylogenetic networks, with normal
networks being more structurally constrained than tree-child networks. The running
time of the algorithm is quadratic in the size of the leaf sets.

Mathematics Subject Classifications: 05C85, 92D15

∗Supported by the New Zealand Marsden Fund.
†Supported by the New Zealand Marsden Fund.

the electronic journal of combinatorics 28(1) (2021), #P1.8 https://doi.org/10.37236/9128

1 Introduction

Phylogenetic (evolutionary) networks rather than phylogenetic trees provide a more faith-
ful representation of the ancestral history of certain collections of extant species. The
reason for this is the existence of non-treelike (reticulate) evolutionary processes such as
lateral gene transfer and hybridisation. Similar to the study of phylogenetic trees, the
development of tools and algorithms to reconstruct phylogenetic networks from biological
sequence data is an active area of research [14, 17, 22]. However, in this paper, we focus on
the combinatorial properties of phylogenetic networks. A precise understanding of these
properties is indispensable for the analysis and comparison of phylogenetic networks as
well as for the advancement of network reconstruction algorithms.

At the species-level, evolution is not necessarily treelike. But, at the level of genes,
we typically assume treelike evolution. Consequently, as phylogenetic networks are fre-
quently viewed as an amalgamation of the ancestral history of genes, we are interested in
the phylogenetic trees embedded (displayed) in a given phylogenetic network. From this
viewpoint, there has been a variety of studies including the small maximum parsimony
problem for phylogenetic networks [15], deciding if a phylogenetic network is (uniquely)
determined by the phylogenetic trees it embeds [6, 20], counting the number of phyloge-
netic trees displayed by a phylogenetic network [12], and determining if a phylogenetic
network embeds a phylogenetic tree more than once [4]. In this context, one of the most
well-known studied computational problems is Tree-Containment. Here, the problem
is deciding whether or not a given phylogenetic tree is embedded in a given phylogenetic
network. In general, the problem is NP-complete [11], but it has been shown to be decid-
able in polynomial-time for several prominent classes of phylogenetic networks [1, 8, 10].

Recently posed in [8] for reticulation-visible networks, in this paper we study a natural
variation of Tree-Containment. In particular, we consider the problem of deciding
whether or not two given binary phylogenetic networks embed the same set of phylogenetic
trees. Called Display-Set-Equivalence, we recently showed that, in general, this
problem is ΠP

2 -complete [5], that is, complete for the second level of the polynomial
hierarchy. A related problem that is also ΠP

2 -complete and that we investigated in the
same paper asks whether or not the set of trees embedded in a phylogenetic network is
a subset of the set of trees embedded in another network. Problems on the second level
of the polynomial hierarchy are computationally more difficult than problems on the first
level which include all NP- and co-NP-complete problems. For further details, see [18].
In contrast, the main result of this paper shows that there is a polynomial-time algorithm
for Display-Set-Equivalence if one of the two given networks is normal and the other
one is tree-child.

Normal [19] and tree-child networks [3] are two structurally constrained subclasses of
phylogenetic networks. While formal definitions are given below, we informally mention
here that a tree-child network has the property that every non-leaf vertex has a child that
does not represent a reticulation event. Moreover, a normal network is tree-child with an
additional property concerning the arcs directed into a vertex representing a reticulation
event, which we refer to as “no shortcuts”. Both subclasses have actively been studied

the electronic journal of combinatorics 28(1) (2021), #P1.8 2

for the last ten years. Indeed, studying subclasses of phylogenetic networks is particu-
larly appealing from a mathematical perspective because (a) several decision problems
that are computationally hard in general can be solved in polynomial time for certain
subclasses, and (b) algorithms that reconstruct phylogenetic networks from smaller build-
ing blocks, such as networks on three leaves, often only uniquely encode phylogenetic
networks of restricted subclasses [4, 7, 9, 10, 20]. The rest of the introduction formally
defines Display-Set-Equivalence, states the main result, and provides additional de-
tails.

A binary phylogenetic network N on X is a rooted acyclic directed graph with no arcs
in parallel and satisfying the following properties:

(i) the (unique) root has out-degree two;

(ii) a vertex with out-degree zero has in-degree one, and the set of vertices with out-
degree zero is X; and

(iii) all other vertices have either in-degree one and out-degree two, or in-degree two and
out-degree one.

For technical reasons, if |X| = 1, we additionally allow a single vertex labelled by the
element in X to be a binary phylogenetic network. The vertices in N of out-degree zero
are called leaves, and so X is referred to as the leaf set of N . Furthermore, vertices of
in-degree one and out-degree two are tree vertices, while vertices of in-degree two and out-
degree one are reticulations. The arcs directed into a reticulation are reticulation arcs, all
other arcs are tree arcs. A binary phylogenetic X-tree is a binary phylogenetic network on
X with no reticulations. To ease reading and since all phylogenetic networks considered in
this paper are binary, we refer to a binary phylogenetic network (resp. binary phylogenetic
tree) as a phylogenetic network (resp. phylogenetic tree).

Let N be a phylogenetic network. A reticulation arc (u, v) of N is a shortcut if there
is a directed path in N from u to v that does not traverse (u, v). We say that N is
a tree-child network if every non-leaf vertex is the parent of a tree vertex or a leaf. If,
in addition, N has no shortcuts, then N is normal. To illustrate, in Fig. 1(i), N is a
tree-child network but it is not normal as the arc (u, v) is a shortcut. As with all other
figures in the paper, arcs are directed down the page.

Now let N be a phylogenetic network on X and let T be a phylogenetic X-tree. Then
N displays T if T can be obtained from N by deleting arcs and vertices, and suppressing
the resulting vertices of in-degree one and out-degree one. An equivalent and useful way
to view the notion of displaying is as follows. The root extension of T is obtained by
adjoining a new vertex, u say, to the root of T via a new arc directed away from u.
It is easily checked that N displays T precisely if a subdivision of either T or the root
extension of T can be obtained from N by deleting arcs and non-root vertices. We refer
to such a subdivision as an embedding, S say, of T in N . Observe that it follows from
the definition of an embedding that the unique vertex of S with in-degree zero is also
the root vertex of N . Having these two vertices coincide is particularly convenient when
writing arguments, and so we frequently adopt this viewpoint in the proofs of the paper.

the electronic journal of combinatorics 28(1) (2021), #P1.8 3

a b c d

u

v

a b c d e

(i) N

e

(ii) T

Figure 1: (i) A tree-child network N on {a, b, c, d, e} and (ii) a phylogenetic tree T
displayed by N .

To illustrate the notion of display, in Fig. 1, N displays T , where an embedding of T in
N is shown as solid arcs. Note that there is one other distinct embedding of T in N .
Furthermore, the root extension T ′ of a phylogenetic tree T is shown in Fig. 2, where T
is displayed by the tree-child network N ′ in the same figure since an embedding of T in
N ′ can be obtained by deleting the two arcs (u1, v1) and (u2, v2), the two arcs (u1, v1) and
(u′2, v2), or the two arcs (u′1, v1) and (u2, v2) in N ′. Now, suppose that S is an embedding
of T in N . If (u, v) is an arc in N , we say S uses (u, v) if (u, v) is an arc in S. The set
of phylogenetic X-trees displayed by N , called the display set of N , is denoted by T (N).

The problem of interest in this paper is the following decision problem:

Display-Set-Equivalence
Input. Two phylogenetic networks N and N ′ on X.
Output. Is T (N) = T (N ′)?
It is shown in [5] that, in general, Display-Set-Equivalence is ΠP

2 -complete. In con-
trast, the main result of this paper shows that this decision problem is solvable in poly-
nomial time if N is normal and N ′ is tree-child. In particular, we have

Theorem 1. Let N and N ′ be normal and tree-child networks on X, respectively. Then
deciding if T (N) = T (N ′) can be done in time quadratic in the size of X.

Before continuing, we add some remarks. The proof of Theorem 1 turned out to be
much longer than we originally anticipated. If N ′ has no shortcuts, that is, N ′ is normal,
then T (N) = T (N ′) if and only if N is isomorphic to N ′ [20]. However, if N ′ is allowed
to have shortcuts, then it is possible that T (N) = T (N ′), but N is not isomorphic to N ′.
For example, consider the normal and tree-child networks N and N ′, respectively, shown
in Fig. 2. Clearly, N is not isomorphic to N ′, but it is easily checked that T (N) = T (N ′).
While we already knew of instances like that shown in Fig. 2, the allowance of shortcuts
raised many more hurdles than we expected. We next explain briefly what causes at least
some of these hurdles. Let v be a reticulation vertex of a tree-child network N , and let u
and u′ be the two parents of v. Since N is tree-child, it follows from the definition (see
Lemma 2) that there is a directed path from u (resp. u′) to a leaf ` (resp. `′) that does
not contain a reticulation arc. Importantly, if N is also normal, then ` 6= `′ and the local

the electronic journal of combinatorics 28(1) (2021), #P1.8 4

a b c

N

b c

N ′

cba

T ′

T

v1

u1

a

u′
2

u2

v2u′
1

cba

Figure 2: A normal network N and a tree-child network N ′, where T (N) = T (N ′) but
N is not isomorphic to N ′. Furthermore, the root extension T ′ of a phylogenetic tree T .

structure of N around v is quite restricted. On the other hand, if N is not normal and
either (u, v) or (u′, v) is a shortcut, then it is possible for ` and `′ to coincide. In turn, this
implies that the local structure of N around v is much less restrictive. To establish that
Display-Set-Equivalence is solvable in polynomial time for when the input consists
of a normal network N and a tree-child network N ′, we have used a detailed analysis of
the local structures of N and N ′ relative to a reticulation in N under the assumption
that T (N) = T (N ′).

Now, let N be a phylogenetic network, and let u be a vertex of N . We say that u is
visible if there is a leaf, ` say, in N such that every directed path from the root of N to
` traverses u, in which case, ` verifies the visibility of u. Furthermore, N is reticulation-
visible if every reticulation is visible. To summarise, note that normal networks are a
proper subclass of tree-child networks and tree-child networks are a proper subclass of
reticulation-visible networks. In particular, tree-child networks are precisely the class of
networks in which every vertex is visible [3]. As mentioned in the third paragraph of the
introduction, Display-Set-Equivalence was recently posed for when N and N ′ are
both reticulation-visible and the computational complexity of this problem remains open.
Knowing the hurdles that had to be overcome in the proof of Theorem 1, perhaps an
easier problem to consider (depending on its complexity) is Display-Set-Equivalence
for when N and N ′ are both tree-child.

The paper is organised as follows. Section 2 contains some additional concepts as well
as several lemmas concerning tree-child networks. The proof of Theorem 1 is algorithmic
and relies on comparing the structures of N and N ′ local to a common pair of leaves.
Section 3 establishes the necessary structural results to make these comparisons. De-
pending on the outcomes of the comparisons, the algorithm recurses in one of three ways.
The lemmas associated with these recursions are given in Section 4. The algorithm, its
correctness, and its running time, and thus the proof of Theorem 1, are given in the last
section. A more detailed overview of the algorithm underlying the proof of Theorem 1 is
given at the end of the next section.

the electronic journal of combinatorics 28(1) (2021), #P1.8 5

2 Preliminaries

Throughout the paper, X denotes a non-empty finite set and all paths are directed. Fur-
thermore, if D is a set and b is an element, we write D∪b for D∪{b} and D−b for D−{b}.

Cluster and visibility sets. Let N be a phylogenetic network on X with root ρ, and
let u be a vertex of N . A vertex v is reachable from u if there is a path from u to v. The
set of leaves reachable from u, denoted Cu, is the cluster (set) of u. Furthermore, the set
of leaves verifying the visibility of u, denoted Vu, is the visibility set of u. Note that the
visibility set of u is a subset of the cluster set of u.

Let T be a phylogenetic X-tree. A non-empty subset C of X is a cluster of T if
there is a vertex u in T such that C = Cu. For non-empty (disjoint) subsets Y and Z
of X, we say that {Y, Z} is a generalised cherry of T if Y , Z, and Y ∪Z are all clusters of T .

Normal and tree-child networks. Let u be a vertex of a phylogenetic network N on
X. A path P starting at u and ending at a leaf is a tree-path if every non-terminal vertex
is a tree vertex, in which case, u has a tree-path and P is a tree-path for u. Observe
that u may or may not be a reticulation and that every arc in a tree-path is a tree
arc. The next lemma is freely-used throughout the paper. Part (ii) is well-known and
follows immediately from the definition of a tree-child network, and (iii) was noted in the
introduction.

Lemma 2. Let N be a phylogenetic network. Then the following statements are equiva-
lent:

(i) N is tree-child,

(ii) every vertex of N has a tree-path, and

(iii) every vertex of N is visible.

It follows from Lemma 2 that all visibility sets of a tree-child network are non-empty.
Let a and b be distinct leaves of a phylogenetic network N , and let pa and pb denote

the parents of a and b, respectively. Then {a, b} is a cherry if pa = pb. Furthermore,
{a, b} is a reticulated cherry if the parent of one of the leaves, say b, is a reticulation and
(pa, pb) is an arc in N . Note that, if this holds, then pa is a tree vertex. The arc (pa, pb)
is the reticulation arc of the reticulated cherry {a, b}. As with the previous lemma, the
next lemma [2] is freely-used throughout the paper.

Lemma 3. Let N be a tree-child network on X, where |X| > 2. Then N has either a
cherry or a reticulated cherry.

The next lemma is established in [19].

Lemma 4. Let N be a normal network on X, and let t and u be vertices in N . Then
Cu ⊆ Ct if and only if u is reachable from t.

the electronic journal of combinatorics 28(1) (2021), #P1.8 6

Let N be a phylogenetic network on X. Let S be an embedding in N of a phylogenetic
X-tree T and let C be a cluster of T . Analogous to cluster sets of N , each vertex w of
S has a cluster set and this set consists of the elements in X at the end of a path in S
starting at w. Of course, the cluster set of w relative to S is a subset of the cluster set
of w relative to N . The vertex in S corresponding to C is the (unique) vertex u whose
cluster set relative to S is C and with the property that every other vertex with cluster
set C in S is on a path from the root of S to u.

Lemma 5. Let N be a normal network on X and let u be a tree vertex of N . Let T be
a phylogenetic X-tree having cluster Cu. If S is an embedding of T in N , then the vertex
in S corresponding to Cu is u.

Proof. Suppose that S is an embedding of T in N . Let t be the vertex in S corresponding
to Cu, and observe that t is a tree vertex. Clearly, Cu ⊆ Ct and so, by Lemma 4, u is
reachable from t on a path P in N . If t 6= u, then, as N is normal and therefore has
no shortcuts, t is the parent of a vertex, v say, that is not on P . Now, there is a tree-
path from v to a leaf `. By construction, ` 6∈ Cu. In turn, regardless of whether or
not v is a reticulation, this implies that the cluster in S corresponding to t contains `, a
contradiction. Thus t = u, thereby completing the proof of the lemma.

Deleting arcs and leaves. Let N be a phylogenetic network on X, and let (u, v) be
an arc of N . We denote the directed graph obtained from N by deleting (u, v) and
suppressing any resulting vertices with in-degree one and out-degree one by N\(u, v).
Note that N\(u, v) may have arcs in parallel. If u is the root of N , we additionally delete
u (and its incident arc) after deleting (u, v). Extending this notation in the obvious way,
we use N\{(u1, v1), (u2, v2), . . . , (un, vn)} to denote the directed graph obtained from N
by deleting the arcs (u1, v1), (u2, v2), . . . , (un, vn) and suppressing any resulting vertices
with in-degree one and out-degree one. Moreover, if b is a leaf of N , then the directed
graph obtained from N by deleting b (and its incident arc), and suppressing any resulting
vertex of in-degree one and out-degree one is denoted by N\b. Again, if the parent of b
is the root of N , we additionally delete the root (and its incident arc) after deleting b.

Deleting an arc or a leaf of a phylogenetic network does not necessarily result in
another phylogenetic network. The next two lemmas, which are also freely used in the
paper, give some sufficient conditions for when these operations result in a phylogenetic
network. The proof of the first lemma is straightforward and omitted.

Lemma 6. Let N be a tree-child network on X, and suppose that {a, b} is a cherry of
N . Then N\b is a tree-child network on X − b. Moreover, if N is normal, then N\b is
normal.

The next lemma generalises a result in [2]. A shortcut (u, v) in a phylogenetic network
N is trivial if the parent of v that is not u is a child of u.

Lemma 7. Let N be a tree-child network on X, and suppose that (u, v) is a reticulation
arc of N .

the electronic journal of combinatorics 28(1) (2021), #P1.8 7

(i) Then N\(u, v) is a tree-child network on X. Moreover, if N is normal, then
N\(u, v) is normal.

(ii) If (u, v) is trivial, then T (N) = T (N\(u, v)).

Proof. We first prove (i). Since N is tree-child, u is a tree vertex, the child of u that is
not v is either a tree vertex or a leaf, and the unique child of v is either a tree vertex or a
leaf. Therefore, as N has no parallel arcs, N\(u, v) has no parallel arcs, and so N\(u, v)
is a phylogenetic network. Moreover, it also follows that no new shortcut is created in
deleting (u, v) from N . Furthermore, if w is an arbitrary vertex of N , then no tree-path
for w in N traverses (u, v) and so, every vertex in N\(u, v) has a tree-path. Part (i) now
follows.

For (ii), regardless of whether (u, v) is trivial, T (N\(u, v)) ⊆ T (N). So assume that
(u, v) is trivial, in which case (u, u′) is an arc in N , and let T be a phylogenetic tree
displayed by N . Let S be an embedding of T in N . If S does not use (u, v), then it is
clear thatN\(u, v) displays T . On the other hand, if S uses (u, v), then by replacing (u, v)
with (u′, v) we obtain an embedding of T in N that does not use (u, v), and so N\(u, v)
displays T . Note that, as N is tree-child, S uses (u, u′). Hence T (N) ⊆ T (N\(u, v)).
This completes the proof of (ii).

We end this section by briefly outlining the algorithm associated with the proof of
Theorem 1. Called SameDisplaySet, the algorithm takes as its input normal and
tree-child networks N and N ′, respectively, and proceeds by first finding a cherry or
a reticulated cherry, {a, b} say, in N . It then considers the structure of N ′ (and if
necessary N) local to leaves a and b, and decides whether to return T (N) 6= T (N ′) or to
continue. This decision is based on three Propositions 8, 10, and 11. These propositions
give necessary structural properties if T (N) = T (N ′). If the algorithm continues, it
deletes certain arcs and leaves in N and N ′. Lemmas 12–14 show that the resulting
normal and tree-child networks after the deletions, N1 and N ′

1 say, display the same set of
phylogenetic trees, that is T (N1) = T (N ′

1), if and only if T (N) = T (N ′). The algorithm
now recurses on N1 and N ′

1 by finding a cherry or a reticulated cherry of N1. Eventually,
SameDisplaySet either stops and returns T (N) 6= T (N ′) or it reduces N and N ′ to a
phylogenetic network consisting of two leaves, in which case T (N) = T (N ′). The formal
description of SameDisplaySet is given at the start of Section 5. The reader may choose
to refer to that while reading through Sections 3 and 4.

3 Structural Properties

The purpose of this section is to establish three structural results, namely, Propositions 8,
10, and 11. Let N and N ′ be a normal and a tree-child network on X, respectively.
Relative to either a cherry or a reticulated cherry, {a, b} say, of N , these results determine
the structure of N ′ local to a and b if T (N) = T (N ′). The first proposition considers
when {a, b} is a cherry of N , while the second and third propositions consider when {a, b}

the electronic journal of combinatorics 28(1) (2021), #P1.8 8

is a reticulated cherry of N in which the parent of b is a reticulation and the parent of b in
N ′ is either a reticulation or a tree vertex, respectively. Each of the proofs first considers
the parent vertex of b in N ′ and establishes sufficient structure of N ′ close to b under
the assumption that T (N) = T (N ′), so that the iterative algorithm in Section 5 works
correctly.

Throughout the proofs in this section, we repeatedly use the following which immedi-
ately follows from results in [16]. If N is a tree-child network on X, then every embedding
of a phylogenetic X-tree displayed by N uses all of the tree arcs and, for each reticulation
v, exactly one of the reticulation arcs directed into v. In particular, this implies that if S
is an embedding of a phylogenetic X-tree in N and P is a tree-path in N , then S uses
every arc in P . Moreover, if S ′ is a subset of arcs of N consisting of all tree arcs and
precisely one reticulation arc directed into each reticulation, then S ′ is an embedding of
a phylogenetic X-tree that is displayed by N . Hence, in the proofs, when we consider an
embedding of a phylogenetic X-tree, the focus is on stating which of the two reticulation
arcs directed into a reticulation is used.

Proposition 8. Let N and N ′ be normal and tree-child networks on X, respectively, and
suppose N ′ has no trivial shortcuts. Let {a, b} be a cherry of N . Then T (N) = T (N ′)
only if {a, b} is a cherry of N ′.

Proof. Suppose T (N) = T (N ′). Note that {a, b} is a cherry of every phylogenetic X-tree
displayed by N . Let p′a and p′b denote the parents of a and b in N ′, respectively. First
assume that p′b is a tree vertex. Then, as T (N) = T (N ′), it follows that Cp′b

= {a, b};
otherwise, there is a phylogenetic X-tree displayed by N ′ that is not displayed by N .
Thus the child vertex of p′b in N ′ that is not b is either a or p′a. In particular, {a, b} is
either a cherry or a reticulated cherry with reticulation leaf a in N ′. Consider the latter.
If q′ denotes the parent of p′a that is not p′b in N ′, then (q′, p′a) is a shortcut. Otherwise,
there is a tree-path from q′ to a leaf that is not b, and so, using (q′, p′a) and not (p′b, p

′
a) in

an embedding of a phylogenetic X-tree, it follows that N ′ displays a phylogenetic X-tree
in which {a, b} is not a cherry. Now let t′ denote the child vertex of q′ that is not p′a.
Since N ′ is tree-child and (q′, p′a) is a shortcut, t′ is a tree vertex and {a, b} ⊆ Ct′ . If
Ct′−a 6= {b}, then, using (q′, p′a) and not (p′b, p

′
a), it follows thatN ′ displays a phylogenetic

X-tree in which Ct′ − a is a cluster of size at least two containing b, and thus it is not
displayed by N . So Ct′ − a = {b} and, in particular, t′ = p′b. Thus (q′, p′a) is a trivial
shortcut, a contradiction. Therefore if p′b is a tree vertex, then {a, b} is a cherry of N ′. If
p′b is a reticulation in N ′, then a similar argument leads to the conclusion that N ′ has a
trivial shortcut. This completes the proof of the proposition.

We next consider the relative structure local to leaves a and b in N , where {a, b} is a
reticulated cherry of N . For the next three results, we suppose that {a, b} is a reticulated
cherry of N with reticulation leaf b as shown in Fig. 3. Note that, although not shown, if
Cq− (Vq∪ b) is nonempty, then N contains paths from the root ρ to leaves in Cq− (Vq∪ b)
avoiding q. Furthermore, in viewing Fig. 3 as well as the other figures in the remainder of
the paper, the structure of the phylogenetic network within a box is unknown. However,

the electronic journal of combinatorics 28(1) (2021), #P1.8 9

pa

a b

N

Vq

Cq − b

pb

q

ρ

Figure 3: The structure of N local to the reticulated cherry {a, b}. Note that, for each
leaf ` ∈ Cq − (Vq ∪ b), there is a path from ρ to ` avoiding q.

the label of the box indicates the location of the visibility or cluster set of some particular
vertex.

The proof of the next lemma is straightforward and omitted.

Lemma 9. Let N be a normal network on X, and suppose that {a, b} is a reticulated
cherry of N as shown in Fig. 3. If T is a phylogenetic X-tree displayed by N , then either

(i) {a, b} is a cherry of T , or

(ii) {b, C ′
q} is a generalised cherry of T , where Vq ⊆ C ′

q ⊆ Cq − b and a 6∈ Cq.

Moreover, for each {A,B} ∈
{
{a, b}, {b, Vq}, {b, Cq − b}

}
, there is a phylogenetic X-tree

displayed by N in which {A,B} is a generalised cherry.

Proposition 10. Let N and N ′ be normal and tree-child networks on X, respectively,
and suppose that {a, b} is a reticulated cherry of N as shown in Fig. 3. If the parent
of b in N ′ is a reticulation, then T (N) = T (N ′) only if, up to isomorphism, {a, b} is a
reticulated cherry of N ′ as shown in Fig. 4, where Vq′2 = Vq and Cq′2 = Cq.

Proof. Let {a, b} be a reticulated cherry of N as shown in Fig. 3. Thus pa and pb denote
the parents of a and b in N , respectively, where pb is a reticulation, and q denotes the
parent of pb in N that is not pa. Since N is normal, (q, pb) is not a shortcut and a 6∈ Cq.
Suppose T (N) = T (N ′), and consider N ′. Let p′a and p′b denote the parents of a and b in
N ′, respectively, where p′b is a reticulation. Let q′1 and q′2 denote the parents of p′b in N ′.
We will eventually show that one of q′1 and q′2, say q′1, is p′a.

10.1. Neither (q′1, p
′
b) nor (q′2, p

′
b) is a shortcut.

Proof. Assume at least one of (q′1, p
′
b) and (q′2, p

′
b) is a shortcut. Without loss of generality,

we may assume (q′2, p
′
b) is a shortcut, and so (q′1, p

′
b) is not a shortcut. Observe that

the electronic journal of combinatorics 28(1) (2021), #P1.8 10

q′1 = p′a

a b

N ′

Vq′2
Cq′2
− b

q′2

ρ′

p′b

Figure 4: The structure of N ′ local to the leaves a and b as established in Proposition 10
when N is as shown in Fig. 3, the parent of b in N ′ is a reticulation, and T (N) = T (N ′).
It is also shown that Vq′2 = Vq and Cq′2 = Cq. Note that, for each leaf ` ∈ Cq′2 − (Vq′2 ∪ b),
there is a path from ρ′ to ` avoiding q′2.

Cq′1 ⊆ Cq′2 . Since T (N) = T (N ′), it follows by Lemma 9 that N ′ displays a phylogenetic
X-tree with {a, b} as a cherry and a phylogenetic X-tree with {b, Vq} as a generalised
cherry. As q′1 and q′2 each have a tree-path and every embedding of a phylogenetic X-
tree in N ′ uses either (q′1, p

′
b) or (q′2, p

′
b), it follows that Vq ∪ a ⊆ Cq′2 . But then, there

is an embedding of a phylogenetic X-tree in N ′ using (q′2, p
′
b) and not (q′1, p

′
b) which has

a generalised cherry {b, Cq′2 − b}. But, Cq′2 − b contains Vq ∪ a and, by the first part of
Lemma 9, N displays no such tree. Hence neither (q′1, p

′
b) nor (q′2, p

′
b) is a shortcut.

By (10.1), neither (q′1, p
′
b) nor (q′2, p

′
b) is a shortcut. Therefore, for some i ∈ {1, 2}, we

have Cq′i − b = {a} as T (N) = T (N ′). If not, then one of the following two cases applies.

(i) If a 6∈ Cq′1 − b and a 6∈ Cq′2 − b, then, as each of q′1 and q′2 has a tree-path, there is no
phylogenetic X-tree displayed by N ′ with {a, b} as a cherry.

(ii) If, for some i ∈ {1, 2}, we have a ∈ Cq′i − b and |Cq′i − b| > 2, then there is a
phylogenetic X-tree displayed by N ′ in which {b, Cq′i − b} is a generalised cherry.

Both cases contradict Lemma 9. Hence, without loss of generality, we may assume that
Cq′1 − b = {a} and so, as N ′ is tree-child, q′1 = p′a. That is, {a, b} is a reticulated cherry
of N ′. Observe that, as (q′2, p

′
b) is not a shortcut by (10.1), we have a 6∈ Cq′2 − b.

By Lemma 9, N displays a phylogenetic X-tree with generalised cherry {b, Vq} and
so, as T (N) = T (N ′), it follows that Vq ⊆ Cq′2 − b and Vq′2 ⊆ Vq. In turn, as N ′

displays a phylogenetic X-tree with generalised cherry {b, Vq′2} and T (N) = T (N ′), we
have Vq′2 ⊆ Cq − b and Vq ⊆ Vq′2 . Thus Vq = Vq′2 . Similarly, as N displays a phylogenetic
X-tree with generalised cherry {b, Cq − b}, and N ′ displays a phylogenetic X-tree with
generalised cherry {b, Cq′2 − b}, we deduce that Cq − b ⊆ Cq′2 − b and Cq′2 − b ⊆ Cq − b,
so Cq − b = Cq′2 − b. Thus {a, b} is a reticulated cherry of N ′ as shown in Fig. 4 with
Vq′2 = Vq and Cq′2 = Cq, and this completes the proof of the proposition.

the electronic journal of combinatorics 28(1) (2021), #P1.8 11

pa

a b

N

Vq

Cq − b

ρ

pb

q

t

Figure 5: Additional structure of N local to the leaves a and b as shown in Proposition 11
when {a, b} is a reticulated cherry of N as shown in Fig. 3, the parent of b in N ′ is a tree
vertex, and T (N) = T (N ′). Note that, for each leaf ` ∈ Cq − (Vq − b), there is a path
from ρ to ` avoiding q.

v′2

Cv′
1 b

(b)

Vv′
2

Cv′
2

u′
2

ρ′

q′

p′b

v′2

v′1

u′
1

Vv′
1

Cv′
1 b

(a)

Vv′
2

Cv′
2

ρ′

q′

p′b v′1

u′
1

Vv′
1

Figure 6: The two possible structures of N ′ local to the leaves a and b as shown in
Proposition 11 when N is as shown in Fig. 3, the parent of b in N ′ is a tree vertex,
and T (N) = T (N ′). It is also shown that {Vv′1 , Vv′2} = {{a}, Vq} and {Cv′1 , Cv′2} =
{{a}, Cq− b}. Note that, if Cv′i 6= {a} for some i ∈ {1, 2}, then, for each leaf ` ∈ Cv′i−Vv′i ,
there is a path from ρ′ to ` avoiding v′i. Furthermore, in (a), v′2 could be a leaf.

the electronic journal of combinatorics 28(1) (2021), #P1.8 12

Proposition 11. Let N and N ′ be normal and tree-child networks on X, respectively,
and suppose that N ′ has no trivial shortcuts and {a, b} is a reticulated cherry of N as
shown in Fig. 3. If the parent of b in N ′ is a tree vertex, then T (N) = T (N ′) only if,
up to isomorphism, in N , leaves a and b are as shown in Fig. 5 and, in N ′, leaves a
and b are as shown in either Fig. 6(a) or Fig. 6(b), where {Vv′1 , Vv′2} = {{a}, Vq} and
{Cv′1 , Cv′2} = {{a}, Cq − b}.

Proof. Let {a, b} be a reticulated cherry of N as shown in Fig. 3, and suppose that
T (N) = T (N ′). Let p′b denote the parent of b in N ′, and suppose that p′b is a tree vertex.
Let v′1 denote the child of p′b in N ′ that is not b. If v′1 is a tree vertex or a leaf, then
either there is no phylogenetic X-tree displayed by N ′ in which {a, b} is a cherry or there
is no phylogenetic X-tree displayed by N ′ in which {b, Vq} is a generalised cherry. This
contradiction to Lemma 9 implies that we may assume v′1 is a reticulation.

11.1. Either Cv′1 = {a} or Vv′1 = Vq.

Proof. Using the arc (p′b, v
′
1), there are embeddings of phylogenetic X-trees in N ′ in which

{b, Cv′1} and {b, Vv′1} are generalised cherries. Thus, as T (N) = T (N ′), Lemma 9 implies
that if a ∈ Cv′1 , then Cv′1 = {a}. Furthermore, by the same lemma, if a 6∈ Cv′1 , then
Vq ⊆ Vv′1 . But, using (q, pb) and not (pa, pb), there is an embedding of a phylogenetic
X-tree in N in which {b, Vq} is a generalised cherry and so, as T (N) = T (N ′), we also
have Vv′1 ⊆ Vq. Hence if a 6∈ Cv′1 , then Vv′1 = Vq.

Since v′1 is a reticulation, p′b is not the root of N ′. Let q′ denote the parent of p′b in
N ′.

11.2. The vertex q′ is either the root of N ′ or a tree vertex.

Proof. Suppose that q′ is a reticulation, and let u′1 and u′2 denote the parents of q′. First
assume that neither (u′1, q

′) nor (u′2, q
′) is a shortcut. Let `1 and `2 be leaves at the end

of tree-paths for u′1 and u′2, respectively. Note that `1 6= `2 and `1, `2 6∈ Cv′1 .For each
i ∈ {1, 2}, let Ti be a phylogenetic X-tree displayed by N ′ for which an embedding uses
(u′i, q

′) and not (p′b, v
′
1). If Vq = Vv′1 , then by the first part of Lemma 9, either T1 or T2

is not displayed by N . Hence, by (11.1), we may assume that Cv′1 = {a}. Since T1 is
displayed by N , we now deduce by the first part of Lemma 9 again that `1 ∈ Vq. But then
T2 has a generalised cherry {b, C ′

u′
2
}, where Vq 6⊆ C ′

u′
2
⊆ Cu′

2
as `1 6∈ Cu′

2
, contradicting

Lemma 9. Hence, without loss of generality, we may assume that (u′2, q
′) is a shortcut.

Using the arc (u′1, q
′) but not (p′b, v

′
1), there are embeddings of phylogenetic X-trees in

N ′ in which {b, Cu′
1
−b} and {b, Vu′

1
} are generalised cherries. Therefore, as T (N) = T (N ′),

it follows by Lemma 9 that if a ∈ Cu′
1
, then Cu′

1
− b = {a}. Moreover, if a 6∈ Cu′

1
, then,

again by Lemma 9, Vq ⊆ Vu′
1
. But N displays a phylogenetic X-tree in which {b, Vq} is a

generalised cherry and so, as T (N) = T (N ′), we have Vu′
1
⊆ Vq. Hence if a 6∈ Cu′

1
, then

Vu′
1

= Vq.
If (u′2, u

′
1) is an arc of N ′, then (u′2, q

′) is a trivial shortcut. Therefore we may assume
that (u′2, u

′
1) is not an arc. Let P ′ be a path in N ′ from u′2 to u′1. Since (u′2, u

′
1) is not

an arc, P ′ contains at least one vertex, w′ say, in addition to u′2 and u′1. Choose w′ to be

the electronic journal of combinatorics 28(1) (2021), #P1.8 13

the first such vertex on P ′ that has a child that does not lie on P ′. As N ′ is tree-child,
and so each vertex has a tree-path, it is easily checked that w′ exists and w′ 6= u′1. Let x′

denote the child of w′ that does not lie on P ′. Since x′ has a tree-path, there is a leaf in
Cu′

2
that is not in Cu′

1
, that is, Cu′

1
is a proper subset of Cu′

2
.

Using (u′2, q
′) and not (p′b, v

′
1), it is easily seen that there is an embedding of a phyloge-

netic X-tree in N ′ in which {b, Cu′
2
−b} is a generalised cherry. If Cu′

1
= {a}, then a ∈ Cu′

2

but |Cu′
2
− b| > 2. Since T (N) = T (N ′), this contradicts the first part of Lemma 9. Thus,

a 6∈ Cu′
1
, and so, by (11.1), Cv′1 = {a} and Vu′

1
= Vq, in which case, by the first part of

Lemma 9, Cu′
2
− b ⊆ Cq − b. On the other hand, N displays a phylogenetic X-tree T in

which {b, Cq− b} is a generalised cherry. Since Vu′
1

= Vq, it follows that, for N ′ to display
T , we must have Cq − b ⊆ Cu′

2
− b. Thus Cq − b = Cu′

2
− b.

Now using (u′1, q
′), (w′, x′), and the arcs on P ′, but not using (p′b, v

′
1), there is an

embedding of a phylogenetic X-tree T ′ inN ′ that has two distinct clusters b∪Cu′
1

and Cu′
2
.

But, by Lemma 5, if S ′ is an embedding of T ′ in N , then the vertex of S ′ corresponding
to Cu′

2
is q as Cu′

2
= Cq, but then there is no distinct vertex in N that corresponds to

b ∪ Cu′
1
. In particular, N does not display T ′. This completes the proof of (11.2).

By (11.2), q′ is either the root of N ′ or a tree vertex. Let v′2 be the child of q′ that is
not p′b. Note that v′1 6= v′2; otherwise, (q′, v′2) is a trivial shortcut. Using the arc (q′, v′2)
and not (p′b, v

′
1), there are embeddings of phylogenetic X-tree in N ′ in which {b, Cv′2} and

{b, Vv′2} are generalised cherries. Therefore, by the first part of Lemma 9, if a ∈ Cv′2 ,
then Cv′2 = {a}. Furthermore, if a 6∈ Cv′2 , then, by the same Lemma 9, Vq ⊆ Vv′2 . But N
displays a phylogenetic X-tree in which {b, Vq} is a generalised cherry and so, by Lemma 9
again, we have Vv′2 ⊆ Vq. Thus if a 6∈ Cv′2 , then Vv′2 = Vq. In combination with (11.1), we
now have

11.3. {Vv′1 , Vv′2} = {{a}, Vq}. Also, if Vv′i = {a}, then Cv′i = {a} for each i ∈ {1, 2}.
Using arcs (p′b, v

′
1) and (q′, v′2), there is an embedding of a phylogenetic X-tree T ′ in N ′

with generalised cherries {b, Vv′1} and {Vv′1 ∪ b, Vv′2}. Since T (N) = T (N ′), it follows that
N displays T ′ as well. But then, by considering an embedding of T ′ in N together with
(11.3), it is easily seen that N , and therefore N ′, displays a phylogenetic X-tree T with
generalised cherries {b, Vv′2} and {Vv′2 ∪ b, Vv′1}. To see this, observe that an embedding of
T in N can be obtained from an embedding of T ′ in N by either deleting (pa, pb) and
adding (q, pb), or deleting (q, pb) and adding (pa, pb). It follows that q′ is not the root of
N ′. Let u′1 be the parent of v′1 that is not p′b.

11.4. The arc (u′1, v
′
1) is a shortcut in N ′. In particular, (u′1, q

′) is an arc in N ′.

Proof. Consider an embedding S ′ of T in N ′, where T is the phylogenetic X-tree with
generalised cherries {b, Vv′2} and {Vv′2 ∪ b, Vv′1}. Clearly, S ′ uses (u′1, v

′
1) and not (p′b, v

′
1). If

(u′1, v
′
1) is not a shortcut, then N ′ has a tree-path from u′1 to a leaf that is not in Vq ∪ a.

But then S ′ is not an embedding of T in N ′. Thus (u′1, v
′
1) is a shortcut in N ′.

Now, in N ′, there is a tree-path from u′1 to a leaf `. Since S ′ is an embedding of T
in N ′, it is easily checked that either ` = b, or v′2 is a tree vertex and ` is at the end of
a tree-path for v′2. Both possibilities imply that there is a tree-path P ′ in N ′ from u′1 to

the electronic journal of combinatorics 28(1) (2021), #P1.8 14

b. Let t′ denote the parent of q′ and observe that t′ is on P ′. We next show that t′ = u′1.
Towards a contradiction, assume that t′ 6= u′1. Let w′ be the child of t′ that is not q′. If
w′ = v′2, then N ′ has a trivial shortcut, so w′ 6= v′2. It follows by (11.3) that there is a
tree-path from w′ to a leaf `′ such that `′ 6∈ Vq ∪ a. Using (u′1, v

′
1), (q′, v′2), (t′, w′), and

the arcs on P ′, there is an embedding of a phylogenetic X-tree T ′
1 in N ′ with generalised

cherries {b, Vv′2} and {Vv′2 ∪ b, Vw′}. Note that `′ ∈ Vw′ . By considering an embedding of
T ′
1 in N , it is easily seen that N , and therefore N ′ displays a phylogenetic X-tree T1 with

generalised cherries {b, Vv′1} and {Vv′2 , Vw′}. If v′2 is a tree vertex in N ′, then N ′ does not
display T1. Therefore we may assume that v′2 is a reticulation in N ′.

If w′ is not reachable from v′2, then `′ 6∈ Cq ∪ a, in which case, using (u′1, v
′
1), (t′, w′),

the arcs on P ′, but not (q′, v′2), we deduce that there is an embedding of a phylogenetic
X-tree in N ′ with a generalised cherry {b, Cw′}, where `′ ∈ Cw′ . This contradiction to the
first part of Lemma 9 implies w′ is reachable from v′2. But then using (u′1, v

′
1), (t′, w′), the

arcs on P ′, but not (q′, v′2), it follows that there is an embedding of a phylogenetic X-tree
in N ′ such that neither {a, b} nor {b, C ′

q}, where Vq ⊆ C ′
q, is a generalised cherry. But

then, as T (N) = T (N ′), we again obtain a contradiction to the first part of Lemma 9.
Hence t′ = u′1, that is (u′1, q

′) is an arc in N ′.

We next establish the additional structure of N as shown in Fig. 5. Let S be an
embedding of T in N , where T is still the phylogenetic X-tree with generalised cherries
{b, Vv′2} and {Vv′2 ∪ b, Vv′1}. Let t denote the tree vertex in S corresponding to the cluster
Vq ∪ {a, b}, and let Pa and Pq denote the paths in S from t to pa and t to q, respectively.

11.5. In N , the paths Pa and Pq consist of the arcs (t, pa) and (t, q), respectively.

Proof. We begin by observing that, apart from pa and q, there is no vertex on either Pa

or Pq which is the start of a tree-path to a leaf avoiding pa and q. Otherwise, S is not
an embedding of T in N . First consider Pa, and suppose that (t, u) is an arc on Pa,
where u 6= pa. Assume u is a tree vertex. Then u has a child vertex, w say, that is not
on either Pa or Pq. To see this, if u has both of its child vertices on Pa, then one of its
children is a reticulation, and so there is a tree-path from u to a leaf avoiding pa and q,
a contradiction. Furthermore, if u has a child vertex on Pq, then either N has a trivial
shortcut or there is a tree-path from a vertex on Pq to a leaf avoiding pa and q, another
contradiction. Now, there is a tree-path from w to a leaf `w such that `w 6∈ {a, b} ∪ Vq.
By (11.3), either Cv′1 = {a} or Cv′2 = {a}. If Cv′1 = {a}, then, by using (q, pb), the arcs on
Pa and Pq, and (u,w), it is easily checked that there is an embedding of a phylogenetic
X-tree in N that is not displayed by N ′. Moreover, if Cv′2 = {a}, then, by using (pa, pb),
the arcs on Pa and Pq, and (u,w), it is again easily checked that there is an embedding
of a phylogenetic X-tree in N that is not displayed by N ′. These contradictions imply
that u is not a tree vertex.

Now assume that u is a reticulation. Let s denote the parent of u that is not t. Since
N is acyclic, s is not on Pa. Also, s is not on Pq; otherwise, (t, u) is shortcut, contradicting
that N is normal. As N is normal, (s, u) is not a shortcut and so there is a tree-path
from s to a leaf `s, where `s 6∈ {a, b}∪Cq. Note that `s is not reachable from q; otherwise,
s is reachable from q and so (t, u) is a shortcut in the normal network N , contradiction.

the electronic journal of combinatorics 28(1) (2021), #P1.8 15

Applying essentially the same argument to that when u is a tree vertex, we again obtain
a contradiction to T (N) = T (N ′) and conclude that Pa consists of the arc (t, pa).

Now consider Pq and suppose that (t, u) is an arc on Pq. If u is a tree vertex, then
there is a child vertex, w say, of u that is not on Pq, and so there is a tree-path from u to
a leaf `w, where `w 6∈ Vq ∪ {a, b}. If Cv′1 = {a}, then, by using (q, pb), the arcs on Pq, and
(u,w), it is easily seen that there is an embedding of a phylogenetic X-tree in N that is
not displayed by N ′. Moreover, if Cv′2 = {a}, then, by using (pa, pb), the arcs on Pq, and
(u,w), it is again easily seen that there is an embedding of a phylogenetic X-tree in N
that is not displayed by N ′. These contradictions imply that u is not a tree vertex, and
so we may assume that u is a reticulation. Let s denote the parent of u that is not t. As
N is normal, (s, u) is not a shortcut and there is a tree-path from s to a leaf `s, where
`s 6∈ Cq ∪ {a, b}. Note that s is not reachable from q; otherwise, N has a directed cycle.
Applying essentially the same argument to that when u is a tree vertex, we conclude that
Pq consists of the arc (t, q). This completes the proof of (11.5).

We complete the proof of Proposition 11 by considering v′2 in N ′. First assume that
v′2 is a tree vertex or a leaf. Then, as T (N) = T (N ′) and {Vv′1 , Vv′2} = {{a}, Vq}, it follows
that {Cv′1 , Cv′2} = {{a}, Cq − b}. In particular, in combination with (11.3) we have the
outcome shown in Fig. 6(a). Now assume that v′2 is a reticulation. Let u′2 denote the
parent of v′2 that is not q′. If (u′2, v

′
2) is not a shortcut, then there is a tree-path from

u′2 to a leaf not in {a, b} ∪ Cq, in which case, by using (u′2, v
′
2) and not (q′, v′2), it follows

from (11.5) that there is an embedding of a phylogenetic X-tree in N ′ not displayed by
N , a contradiction. So (u′2, v

′
2) is a shortcut. As N ′ is tree-child, u′2 is a tree vertex

and the child vertex of u′2 that is not v′2, say w′, is also a tree vertex. If w′ 6= u′1, then
there is a child vertex y′ of w′ that is the initial vertex of a tree-path to a leaf not in
{a, b}∪Cq. But then, by using (u′2, v

′
2) and (w′, y′), it follows from (11.5) that there is an

embedding of a phylogenetic X-tree in N ′ that is not displayed by N , a contradiction.
Thus w′ = u′1, and so (u′2, u

′
1) is an arc in N ′. Furthermore, as T (N) = T (N ′), it follows

that if Cv′1 = Vv′1 ={a}, then Cv′2 = Cq, while if Cv′2 = Vv′2 ={a}, then Cv′1 = Cq. Thus we
have the outcome shown in Fig. 6(b), thereby completing the proof of the proposition.

4 Recursion Lemmas

With the structural outcomes of Propositions 8, 10, and 11 in hand, we next establish
the three lemmas that will allow the algorithm to recurse correctly. The proof of the first
lemma is straightforward and omitted.

Lemma 12. Let N and N ′ be normal and tree-child networks on X, respectively, and
suppose that {a, b} is a cherry of N and N ′. Then T (N) = T (N ′) if and only if T (N\b) =
T (N ′\b).

Lemma 13. Let N and N ′ be normal and tree-child networks on X, and suppose that
{a, b} is a reticulated cherry of N and N ′ as shown in Figs. 3 and 4, respectively. Then
T (N) = T (N ′) if and only if T (N\(pa, pb)) = T (N ′\(p′a, p′b)).

the electronic journal of combinatorics 28(1) (2021), #P1.8 16

Proof. First observe that T (N)−T (N\(pa, pb)) (resp. T (N ′)−T (N ′\(p′a, p′b))) consists of
precisely the phylogenetic X-trees displayed by N (resp. N ′) in which {a, b} is a cherry.
Thus if T (N) = T (N ′), then T (N\(pa, pb)) = T (N ′\(p′a, p′b)). Suppose T (N\(pa, pb)) =
T (N ′\(p′a, p′b)), and let T be a phylogenetic X-tree displayed byN . If {a, b} is not a cherry
in T , then, by the observation, N\(pa, pb), and therefore N ′\(p′a, p′b), displays T . This
implies that N ′ displays T . So assume {a, b} is a cherry in T . Let S be an embedding
of T in N . Note that S must use the arc (pa, pb). Let S1 be the embedding in N of
a phylogenetic X-tree T1 obtained from S by deleting (pa, pb) and adding (q, pb). Since
{a, b} is not a cherry of T1, it follows that N ′ displays T1, that is, N ′ has an embedding
S ′
1 of T1. Now, by replacing (q′2, p

′
b) with (p′a, p

′
b) in S ′

1, we have an embedding of T in
N ′. Hence N ′ displays T , and so T (N) ⊆ T (N ′). Similarly, T (N ′) ⊆ T (N). Thus
T (N) = T (N ′).

Lemma 14. Let N and N ′ be normal and tree-child networks on X, respectively. Suppose
that {a, b} is a reticulated cherry of N as shown in Fig. 5, while N ′ has the structure
local to leaves a and b as shown in either Fig. 6(a) or Fig. 6(b).

(i) If Cv′1 = {a}, then T (N) = T (N ′) if and only if

T (N\(pa, pb)) =

{
T (N ′\(p′b, v′1)), v′2 a tree vertex or a leaf;

T (N ′\{(p′b, v′1), (u′2, v′2)}), otherwise.

(ii) If Cv′2 = {a}, then T (N) = T (N ′) if and only if

T (N\(pa, pb)) =

{
T (N ′\(u′1, v′1)), v′2 a tree vertex or a leaf;

T (N ′\{(u′1, v′1), (u′2, v′2)}), otherwise.

Proof. We shall prove (i). The proof of (ii) is similar and omitted. Suppose Cv′1 = {a}.
For convenience, let N1 denote N\(pa, pb). Furthermore, let N ′

1 denote N ′\(p′b, v′1) if v′2
is a tree vertex or a leaf; otherwise, let N ′

1 denote N ′\{(p′b, v′1), (u′2, v′2)}. We begin by
observing that T (N)−T (N1) (resp. T (N ′)−T (N ′

1)) consists of precisely the phylogenetic
X-trees displayed by N (resp. N ′) in which {a, b} is a cherry. Therefore if T (N) = T (N ′),
then T (N1) = T (N ′

1).
For the converse, suppose that T (N1) = T (N ′

1). Let T be a phylogenetic X-tree
displayed by N . If {a, b} is not a cherry in T , then, by the observation, N1, and therefore
N ′

1, displays T . It follows that N ′ displays T . So assume {a, b} is a cherry in T . Let S be
an embedding of T in N . Since {a, b} is a cherry in T , the embedding S uses (pa, pb). Let
S1 denote the embedding in N of a phylogenetic X-tree T1 obtained from S by deleting
(pa, pb) and adding (q, pb). Since {a, b} is not a cherry in T1, it follows that N ′ has an
embedding S ′

1 of T1. This embedding S ′
1 must use (u′1, v

′
1). By replacing (u′1, v

′
1) with

(p′b, v
′
1) in S ′

1, it is easily seen that we have an embedding of T in N ′. Hence N ′ displays
T and so T (N) ⊆ T (N ′).

Now let T ′ be a phylogenetic X-tree displayed by N ′. If {a, b} is not a cherry, then,
by the observation, N ′

1, and therefore N1, displays T ′. So N displays T ′. Assume {a, b}

the electronic journal of combinatorics 28(1) (2021), #P1.8 17

is a cherry in T ′. Let S ′ be an embedding of T ′ in N ′. As {a, b} is a cherry in T ′ and
as any embedding of T ′ in N ′ must use (u′1, q

′), (q′, p′b), (p′b, b) and, if it exists, (u′2, u
′
1),

it is easily seen that we may choose S ′ so that it uses (p′b, v
′
1) and (q′, v′2). Let S ′

1 be the
embedding in N ′ of a phylogenetic X-tree T ′

1 obtained from S ′ by deleting (p′b, v
′
1) and

adding (u′1, v
′
1). Since {a, b} is not a cherry in T ′

1 , it follows that N has an embedding
S1 of T ′

1 . This embedding S1 must use (q, pb). By replacing (q, pb) with (pa, pb) in S1, it
is easily checked that we obtain an embedding of T ′ in N . Thus N displays T ′, and so
T (N ′) ⊆ T (N). We conclude that T (N) = T (N ′).

5 The Algorithm

We now give a formal description of the algorithm SameDisplaySet for deciding if
T (N) = T (N ′), where N and N ′ are normal and tree-child networks on X, respectively.
Immediately after the description of the algorithm, we show that SameDisplaySet
works correctly and analyse its running time. We end the section by briefly describing
how to construct a tree displayed by exactly one of N and N ′ if T (N) 6= T (N ′).

SameDisplaySet
Input: Normal and tree-child networks N and N ′ on X, respectively.
Output: No if T (N) 6= T (N ′), and Yes if T (N) = T (N ′).

1. Delete all trivial shortcuts in N ′ and suppress all resulting vertices of in-degree one
and out-degree one, and denote the resulting normal and tree-child networks on X as
N0 and N ′

0, respectively.

2. Set i = 0.

3. If the leaf set of Ni has size two, return yes. Else, find a cherry or a reticulated cherry,
say {a, b}, of Ni.

4. If {a, b} is a cherry, then determine if {a, b} is a cherry of N ′
i .

(a) If no, then return No.

(b) Else, set Ni+1 = Ni\b and set N ′
i+1 = N ′

i\b. Go to Step 6.

5. Else, {a, b} is a reticulated cherry of Ni, where the parent of b is a reticulation.

(a) If the parent of b in N ′
i is a reticulation, then determine if, up to isomorphism, the

structure in N ′
i local to a and b is as shown in Fig. 4.

(i) If no, then return No.

(ii) Else, set Ni+1 = Ni\(pa, pb) and set N ′
i+1 = N ′

i\(p′a, p′b). Go to Step 6.

(b) If the parent of b in N ′
i is the root, then return No.

(c) Else, the parent of b in N ′
i is a tree vertex. Determine if, up to isomorphism, the

structures in Ni and N ′
i local to a and b are as shown in Fig. 5 and Fig. 6(a) or

Fig. 6(b), respectively.

the electronic journal of combinatorics 28(1) (2021), #P1.8 18

(i) If no, then return No.

(ii) Else, set Ni+1 to be the normal network Ni\(pa, pb). Further, if Cv′1 = {a},
set N ′

i+1 to be the tree-child network N ′
i\{(p′b, v′1), (u′2, v′2)}. Otherwise, if

Cv′2 = {a}, set N ′
i+1 to be the tree-child network N ′

i\{(u′1, v′1), (u′2, v′2)}. Go
to Step 6.

6. Increase i by 1 and go back to Step 3.

Theorem 1 immediately follows from the next theorem.

Theorem 15. Let N and N ′ be normal and tree-child networks on X, respectively. Then
SameDisplaySet applied to N and N ′ correctly determines if T (N) = T (N ′). Further-
more, SameDisplaySet runs in time quadratic in the size of X.

Proof. Ignoring the running time, by Lemma 7, we may assume that N ′ has no trivial
shortcuts. Therefore, as there is exactly one phylogenetic tree for when |X| = 2, the fact
that SameDisplaySet correctly determines whether or not T (N) = T (N ′) follows by
combining Propositions 8, 10, and 11 and Lemmas 12, 13, and 14. Thus to complete
the proof of the theorem, it suffices to show that the running time of the algorithm is
quadratic in the size of X.

Let n = |X| and note that the total number of vertices in a tree-child network is linear
in the size of X (see [13]). Thus both N and N ′ have at most O(n) vertices in total. Now
consider SameDisplaySet applied to N and N ′. Step 1 is a preprocessing step that
considers, for each reticulation v in N ′, whether there is an arc joining the parents of v.
Since this takes constant time for each reticulation, this step takes O(n) time to complete.
For iteration i, Step 3 finds a cherry or a reticulated cherry in Ni. Since Ni is normal,
one way to do this is to construct a maximal path that starts at the root of Ni and ends
at a tree vertex. The two leaves below this tree vertex, say a and b, either form a cherry
or a reticulated cherry in Ni. As the total number of vertices in Ni is O(n), this takes
time O(n). If {a, b} is a cherry in Ni, then Step 4 determines whether or not {a, b} is a
cherry in N ′

i and, if so, deletes b in both Ni and N ′
i and suppresses any resulting vertex

of in-degree one and out-degree one. Therefore Step 4 takes constant time. On the other
hand, if {a, b} is a reticulated cherry in Ni, then Step 5 is called. Similar to Step 4, this
step considers the structure in Ni and N ′

i local to a and b, but is less straightforward.
In terms of running time, the longest part of the step to complete is in determining the
cluster and visibility sets of certain vertices. A single postorder transversal of each of
Ni and N ′

i can be used to determine all cluster sets of Ni and N ′
i . Since N and N ′ are

both binary, the number of arcs in each is O(n), so this takes time O(n). Furthermore,
to determine the visibility set of a vertex u of Ni, we delete u and its incident arcs, and
check, for each leaf `, whether the resulting rooted acyclic directed graph, Di say, has a
path from the root to `. That is, loosely speaking, we want to find the ‘cluster set’, X ′

say, of the root in Di. It then follows that the visibility set of u is Xi −X ′, where Xi is
the leaf set of Ni. A single postorder transversal of Di is sufficient to determine X ′, so
this takes time O(n). Similarly, the visibility set of a vertex in N ′

i can be found in this

the electronic journal of combinatorics 28(1) (2021), #P1.8 19

way. As we only need to find the visibility sets of three vertices in Ni and N ′
i , the total

time to determine the necessary visibility sets is O(n). Thus the time to complete Step 5,
including the deletion of certain arcs, is O(n). Hence, each iteration of SameDisplaySet
takes O(n). Since each iteration deletes at least one vertex or arc in each of N and N ′, it
follows that there are O(n) iterations, and so the entire algorithm runs in time O(n2).

Algorithm returns No

Suppose that SameDisplaySet is applied to normal and tree-child networks N and N ′

on X, respectively, and returns No. In this case, it is natural to ask for a phylogenetic X-
tree displayed by exactly one of N and N ′. Without going into detail, it is straightforward
to amend the algorithm so that such a tree is constructed. To illustrate, assume that
SameDisplaySet returns No at Step 5(a)(i). Then, at some iteration i, the normal
network Ni has a reticulated cherry {a, b}, in which the parent of b is a reticulation, and
the parent of b in the tree-child network N ′

i is a reticulation, but the structure of N ′
i local

to a and b is not as that shown in Fig. 4. Comparing this figure with Fig. 3, this implies
that, while the display set of Ni contains a tree with cherry {a, b}, a tree with generalised
cherry {b, Vq}, and a tree with generalised cherry {b, Cq − b}, the display set of N ′

i does
not contain a tree of one of these three types. By choosing an embedding in Ni of such
a tree in the display set of Ni and then reversing the steps in the algorithm that have
been performed up to Step 5(a)(i) in iteration i, we can construct a subdivision of a tree
displayed by N but not displayed by N ′.

If there exists a phylogenetic tree T that is displayed by N and not displayed by
N ′, then it may be possible for practitioners, who compare N and N ′ with a biological
question in mind, to interpret the presence and absence of T in the display set of N and
N ′, respectively, in a biologically meaningful way. For example, if T is know to be a
gene tree that is associated with a DNA segment used to reconstruct N and N ′, then the
fact that T is not displayed by N ′ may indicate that N more faithfully represents the
evolutionary history of the species under consideration than N ′.

Acknowledgments

We thank the two anonymous referees for their constructive comments.

References

[1] M. Bordewich and C. Semple. Reticulation-visible networks. Adv. Appl. Math.,
76:114–141, 2016.

[2] M. Bordewich and C. Semple. Determining phylogenetic networks from inter-taxa
distances. J. Math. Bio., 73:283–303, 2016.

[3] G. Cardona, F. Rosselló, and G. Valiente. Comparison of tree-child phylogenetic
networks. IEEE/ACM Trans. Comput. Biol. Bioinf., 6:552–569, 2009.

[4] P. Cordue, S. Linz, and C. Semple. Phylogenetic networks that display a tree twice.
B. Math. Biol., 76:2664–2679, 2014.

the electronic journal of combinatorics 28(1) (2021), #P1.8 20

[5] J. Döcker, S. Linz, and C. Semple. Displaying trees across two phylogenetic networks.
Theor. Comput. Sci., 796:129–146, 2019.

[6] P. Gambette and K. T. Huber. On encodings of phylogenetic networks of bounded
level. J. Math. Bio., 65:157–180, 2012.

[7] A. D. M. Gunawan. Solving the Tree Containment problem for reticulation-visible
networks in linear time. In Algorithms for Computational Biology, pages 24–36.
Springer, 2018.

[8] A. D. M. Gunawan, B. DasGupta, and L. Zhang. A decomposition theorem and two
algorithms for reticulation-visible networks. Inform. Comput., 252:161–175, 2017.

[9] L. van Iersel and V. Moulton. Trinets encode tree-child and level-2 phylogenetic
networks. J. Math. Bio., 68:1707–1729, 2014.

[10] L. van Iersel, C. Semple, and M. Steel. Locating a tree in a phylogenetic network.
Inform. Process. Lett., 110:1037–1043, 2010.

[11] I. A. Kanj, L. Nakhleh, C. Than, and G. Xia. Seeing the trees and their branches in
the network is hard. Theor. Comput. Sci., 401:153–164, 2008.

[12] S. Linz, K. St John, and C. Semple. Counting trees in a phylogenetic network is
#P-complete. SIAM J. Comput., 42:1768–1776, 2013.

[13] C. McDiarmid, C. Semple, and D. Welsh. Counting phylogenetic networks. Ann.
Comb., 19:205–224, 2015.

[14] N. F. Müller, U. Stolz, G. Dudas, T. Stadler, and T. G. Vaughan. Bayesian inference
of reassortment networks reveals fitness benefits of reassortment in human influenza
viruses. P. Natl. Acad. Sci. USA, 117:17104–17111, 2020.

[15] L. Nakhleh, G. Jin, F. Zhao, and J. Mellon-Crummey. Reconstructing phylogenetic
networks using maximum parsimony. In Proceedings of the 2005 IEEE Computational
Systems Bioinformatics Conference, pages 93–102. IEEE, 2005.

[16] C. Semple. Phylogenetic networks with every embedded phylogenetic tree a base tree.
B. Math. Biol., 78:32–137, 2016.

[17] C. Soĺıs-Lemus, P. Bastide, and C. Ané. PhyloNetworks: a package for phylogenetic
networks. Mol. Biol. Evol., 34:3292–3298, 2017.

[18] L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3:1–22, 1978.

[19] S. J. Willson. Properties of normal phylogenetic networks. B. Math. Biol., 72:340-358,
2010.

[20] S. J. Willson. Regular networks can be uniquely constructed from their trees.
IEEE/ACM Trans. Comput. Biol. Bioinf., 8:785–796, 2011.

[21] S. J. Willson. Tree-average distances on certain phylogenetic networks have their
weights uniquely determined. Algorithm. Mol. Biol., 7:13, 2012.

[22] J. Zhu, D. Wen, Y. Yu, H. M. Meudt, and L. Nakhleh. Bayesian inference of phyloge-
netic networks from bi-allelic genetic markers. PLoS Comput. Biol., 14(1):e1005932,
2018.

the electronic journal of combinatorics 28(1) (2021), #P1.8 21

Appendix

1.5 The monotone satis�ability problem with bounded variable

appearances

The published version [DDD18a] of the following paper is available online at the following

URL: https://doi.org/10.1142/S0129054118500168.

146

https://doi.org/10.1142/S0129054118500168

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

The Monotone Satisfiability Problem with Bounded Variable

Appearances

Andreas Darmann

Institute of Public Economics, University of Graz,

Universitaetsstr. 15, 8010 Graz, Austria
andreas.darmann@uni-graz.at

Janosch Döcker

Department of Computer Science, University of Tuebingen
Sand 12, 72076 Tuebingen, Germany

janosch.doecker@uni-tuebingen.de

Britta Dorn

Department of Computer Science, University of Tuebingen
Sand 12, 72076 Tuebingen, Germany

britta.dorn@uni-tuebingen.de

Received (Day Month Year)

Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

The prominent Boolean formula satisfiability problem SAT is known to be NP-complete

even for very restricted variants such as 3-SAT, Monotone 3-SAT, or Planar 3-SAT,
or instances with bounded variable appearance. We settle the computational complexity

status for two variants with bounded variable appearance: We show that Planar Mono-

tone Sat—the variant of Monotone Sat in which the incidence graph is required to
be planar—is NP-complete even if each clause consists of at most three distinct literals

and each variable appears exactly three times, and that Monotone Sat is NP-complete

even if each clause consists of three distinct literals and each variable appears exactly four
times in the formula. The latter confirms a conjecture stated in scribe notes [DKY14] of

an MIT lecture by Eric Demaine. In addition, we provide hardness results with respect
to bounded variable appearances for two variants of Planar Monotone Sat.

Keywords: (Planar) Monotone Satisfiability; bounded variable appearance; computa-

tional complexity; 3-Satisfiability.

1. Introduction

The satisfiability problem (Sat) for Boolean formulae in conjunctive normal form—

and especially 3-Satisfiability (3-Sat), where each clause contains exactly three

distinct literals—is frequently used to prove NP-hardness of decision problemsa.

aFor an introduction to the theory of NP-completeness we refer to Garey and Johnson [GJ79].

1

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

2 Darmann, A., Döcker, J., and Dorn, B.

However, the complexity status of the satisfiability problem and its many variants

is not only relevant in order to provide a base problem for deriving NP-hardness,

but obviously interesting in its own right. In his seminal paper, Tovey [Tov84] proved

that 3-Sat is NP-complete even if every variable appears in at most four clauses;

in contrast, he showed that any instance of 3-Sat in which each variable appears

at most three times is always satisfiable.

Here, we consider the question whether similar results with respect to bounded

variable appearances also hold for more restricted variants of Sat. In particular, we

consider the monotone satisfiability problem (Monotone Sat), where each clause

is monotone, i.e., the literals of the clause are either all positive or all negative, and

planar variants of this problem in the case of bounded variable appearances. In an

instance of the planar satisfiability problem (Planar Sat), the incidence graph

of the formula—i.e., the undirected bipartite graph whose vertices correspond to

the variables and clauses of the instance and whose edges connect a variable vertex

with a clause vertex whenever the variable appears (positively or negatively) in the

respective clause—is required to be planar. Lichtenstein [Lic82] proved Planar

Sat to be NP-complete even in the case that each clause consists of at most three

literals. Dahlhaus et al. [DJP+94] showed that Planar Sat remains NP-complete

even when restricted to instances in which each clause consists of two or three

distinct literals and every variable appears exactly three times (see also Section 3).

Planar Monotone Sat, the restriction of Planar Sat to monotone in-

stances, remains NP-complete even if each clause contains at most three literals

and a rectilinear representationb is given (de Berg and Khosravi [dBK12]). We

show that Planar Monotone Sat is NP-complete even if each clause contains

two or three literals and each variable appears at most (or exactly) three times; this

hardness result also holds if every 3-clause contains only positive literals and each

variable appears negated exactly once. Since Sat can be solved in polynomial time

when restricted to instances with at most two appearances per variable [Tov84], this

settles the computational complexity status for Planar Monotone Sat with at

most three literals per clause with respect to the number of variable appearances.

Concerning the general variant Monotone Sat, we answer a question stated as

a conjecture attributed to S. Eisenstat in scribe notes [DKY14] of an MIT lecturec:

there, it is conjectured that Monotone 3-Sat is NP-hard even when restricted

to instances in which each variable appears at most five times.

Monotone 3-Sat is known to be NP-complete (see the works by Gold [Gol78]

bA rectilinear representation of an instance of Planar Sat is a crossing-free drawing of the

incidence graph as follows (see de Berg and Khosravi [dBK12] and Knuth and Raghunatan [KR92]):

variables and clauses are represented by rectangles such that all variable-rectangles are drawn along
a horizontal line; the edges linking the variables with the clauses are vertical segments; moreover,

in a monotone rectilinear representation all positive clauses are drawn above the variables while

all negative clauses are drawn below the variables.
cAlgorithmic Lower Bounds: Fun with Hardness Proofs (Fall ’14), Prof. E. Demaine, Teaching

assistants: S. Eisenstat, J. Lynch.

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

The Monotone Satisfiability Problem with Bounded Variable Appearances 3

and Li [Li97]). However, the complexity status of Monotone 3-Sat in the case

of bounded variable appearances has been open. We show that Monotone 3-

Sat remains NP-complete even if the number of appearances of each variable is

bounded by 4 (this result also holds if each variable appears exactly four times).

Therewith, this result not only confirms the above conjecture, but also settles the

computational complexity status of Monotone 3-Sat for a bounded number of

variable appearances, since, as each instance of 3-Sat is satisfiable if the number

of appearances of each variable is bounded by 3 [Tov84], so is any instance of

Monotone 3-Sat.

Moreover, we consider the variant of Planar Monotone Sat in which each

clause consists of three not necessarily distinct literals (duplicates of literals are

allowed within a clause); for that variant, we provide hardness results for each of

the special cases that each variable appears exactly four times, or each variable

appears five times and the incidence graph is biconnected.

The paper is structured as follows. In Section 2 we introduce the formal frame-

work of this paper. Sections 3, 4, and 5 contain computational complexity results

for variants of the monotone satisfiability problem with bounded variable appear-

ances: In Section 3, Planar Monotone Sat is considered, while in Section 4, the

focus is laid on the general (non-planar) problem Monotone Sat; Section 5 deals

with the variation of the planar monotone satisfiability problem where duplicates

of literals are allowed within a clause. Section 6 concludes the paper.

Finally, we refer to Darmann and Döcker [DD16] and Darmann et al. [DDD16] for

preliminary versions of this paper.

2. Preliminaries

Throughout this work, we are concerned with the satisfiability problem (Sat) for

Boolean formulae in conjunctive normal form. An instance I = (V, C) of Sat con-

sists of a finite set V of variables and a set C of clauses over V. A clause is a

disjunction of literals: Each variable x induces a positive literal x and a negative

literal x̄ (the negation of variable x); the set of literals is given by L = {x, x̄ | x ∈ V}.
Unless explicitly stated otherwise, a clause consists of distinct literals, i.e., it can

be written as a subset of L; only in one variation of the problems considered we use

multisets in order to allow for duplicates of literals within a clause. An assignment

of the variables V maps each variable to either true or false. A positive (negative)

literal is true under an assignment if and only if the corresponding variable is as-

signed the value true (false). A clause is satisfied under an assignment β if and only

if at least one contained literal is set true by β.

Now, the satisfiability problem (Sat) is as follows: Given an instance I = (V, C)
made up of a set of variables V and a set C of clauses over V, does there exist an

assignment of the variables satisfying all clauses?

In the positive case, the corresponding formula, i. e., the set of clauses, is satisfiable;

otherwise the formula is unsatisfiable.

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

4 Darmann, A., Döcker, J., and Dorn, B.

We will consider different variants of Sat restricting the structure of the consid-

ered instances. For instance, a clause is called positive (negative) if it contains only

positive (negative) literals. A clause is called monotone if it is either positive or neg-

ative. A mixed clause is a clause which is not monotone, i.e., it contains at least one

positive and at least one negative literal. Monotone Sat refers to the restriction

of Sat to instances with monotone clauses only.

Planar Sat refers to instances of Sat with a planar incidence graph. Formally,

given a set V of variables and a formula, i.e., a set of clauses C over V, the incidence

graph GV,C of the formula is defined by GV,C := (V, E) with V := V ∪ C and

E := {{v, C} | v ∈ C ∨ v̄ ∈ C, where v ∈ V and C ∈ C}.
In what follows, by Sat-s (respectively Sat-Es) we denote the restriction of Sat

to instances in which each variable appears at most s times (respectively exactly s

times), with s ∈ N.

A k-clause consists of exactly k distinct literals, k ∈ N. By (k, k+1)-Sat we denote

the restriction of Sat to instances in which each clause is either a k-clause or a

(k + 1)-clause. Finally, k-Sat∗ denotes the variant of Sat in which each clause

consists of k (not necessarily distinct) literals, i.e., a clause is a multiset of literals

and hence may contain the same literal more than once (duplicates of literals are

allowed within a clause). The variant (k, k + 1)-Sat∗ is defined in an analogous

manner.

With the above definitions, by means of prefixes and suffixes, the variants of

Sat considered in this work can be described as follows. As a prefix of the problem

name Sat, we use an element of

{Planar, λ} × {Monotone, λ} × {(2, 3), 3},

and as a suffix, we use an element of

{∗, λ} × {E, λ} × {k | k ≥ 1},

where λ is the empty word, and where we omit commas in the notation. E.g.,

Planar Monotone (2, 3)-Sat-E3 is the restriction of Sat to instances with planar

incidence graph and monotone clauses, where each clause consists of exactly 2 or

exactly 3 distinct literals and each variable appears exactly three times.

3. Hardness of Planar Monotone Sat with bounded variable

appearances

We start with investigating the planar version of the monotone satisfiability prob-

lem. In the planar variants, the incidence graph of the formula—i.e., the undirected

bipartite graph consisting of variable-vertices, clause-vertices and edges that connect

a variable-vertex with a clause-vertex if and only if the variable appears (positively

or negatively) in the clause—is required to be planar. For an introduction to the

theory of planar graphs we refer to, e.g., Bondy and Murty [BM08, Chapter 10].

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

The Monotone Satisfiability Problem with Bounded Variable Appearances 5

x

x

x

x

x

x

x

x

Figure 1. Local replacement of a variable vertex x. After application of this rule the drawing of

the vertex locally looks as shown in the dashed square.

Our main result is hardness of a restricted variant of Planar Monotone

(2, 3)-Sat-3, both for at most and exactly three appearances of each variable.

Theorem 1. Planar Monotone (2, 3)-Sat-3 is NP-complete even if every

variable appears at least twice, every 3-clause contains only positive literals and

each variable appears negated exactly once.

Proof. We show NP-hardness by a reduction from Planar (2, 3)-Sat-E3: each

clause consists of two or three distinct literals, each variable appears in exactly

three clauses. Dahlhaus et al. [DJP+94] have shown that this restricted version

of Planar Sat remains NP-complete even if for each variable, one of its literals

appears in two clauses and the other literal in one clause. Let I be such an instance

of Planar (2, 3)-Sat-E3. A planar and orthogonal drawing of the incidence graph

on a grid of size n× n can be computed in linear time using the algorithm of Biedl

and Kant [BK98]. To this drawing we apply the local replacements shown in Figure

1, so that for each variable, the outgoing edges of the corresponding vertex are

locally drawn identically (see the dashed squares in Figure 1).

For every variable, we replace the dashed square with the construction shown in

Figure 2 (this gadget is inspired by the one given by Dahlhaus et al. [DJP+94, p.

18] and the one by de Berg and Khosravi [dBK12, p. 6]). For the ith appearance of

a variable x, we create two new variables xi and ai. Observe that the ring structure

forces us to assign the same truth value to all xi, and consequently the opposite

truth value to all ai.

If, in its ith appearance, x appears non-negated in the corresponding clause Cxi
of

the original instance, we replace x with xi and just use the outgoing dashed line

of xi. Otherwise, we replace x̄ with ai in Cxi , and replace the edge {x, Cxi} with

{ai, Cxi
}. The graph remains planar since we only need to reroute the dashed line

to ai by using the corresponding dotted line instead. Now, it is not hard to see that

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

6 Darmann, A., Döcker, J., and Dorn, B.

a1

{x̄1, ā1}

x1 {x1, a2} a2 {x̄2, ā2} x2 {x2, a3} a3

{x̄3, ā3}

x3{x3, a1}

Figure 2. Local replacement of a variable vertex x with three appearances. The gadget introduces

two variables for each appearance, xi and ai, and enforces that either all xi have to be set true

and all ai false or the other way round. Thus, we can replace all negated appearances of x by
the corresponding unnegated ai’s while preserving equisatisfiability. In the visual representation

that means: The dotted line is used if the corresponding appearance of the variable is negated;

otherwise the dashed line is used.

the resulting instance I ′ is equisatisfiable: Let φ be a satisfying truth assignment

in instance I, then define the truth assignment φ′ for instance I ′ by setting, for all

i, φ′(xi) to true and φ′(ai) to false if x is set true under φ, and φ′(xi) to false and

φ′(ai) to true otherwise. As observed above, by the ring structure of the gadget φ′

is a feasible truth assignment. Now, for any clause in I, some literal x (or x̄) in the

clause is set true by φ; by construction of φ′, a literal xi (or ai) in the corresponding

clause in I ′ is set true by φ′ as well. Also, since xi and ai are assigned opposite

truth values, all clauses in the ring structure (Fig. 2) are satisfied.

On the other hand, for any satisfying truth assignment φ′ in I ′ we know that for

any choice of x, by the ring structure of the gadget the same truth value is assigned

to all xi, i ∈ {1, 2, 3}; thus, analogously to above it follows that the assignment φ

for instance I that sets literal x true if and only if, for all i, xi is set true by φ′ is

satisfying for instance I.

Note that in I ′ every clause contains two or three distinct literals since we intro-

duced only monotone 2-clauses. All clauses of the original instance are replaced

with positive clauses containing the same number of literals. Hence, every clause

is monotone and all 3-clauses are positive. We replace every variable with the con-

struction described above, so every variable appears either two or three times; either

ai appears two times and xi three times or the other way round. Moreover, recalling

that only the clauses introduced in the gadget contain negative literals in the final

instance, we can conclude that every variable appears negated exactly once.

We remark that NP-hardness of the general Planar Monotone (2, 3)-Sat-3

problem can also be shown directly by applying Gold’s replacement rule [Gol78, p.

314f] to the restricted variant of Planar (2, 3)-Sat-E3 used in the above reduc-

tion. Gold’s replacement rule replaces a mixed clause with two monotone clauses as

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

The Monotone Satisfiability Problem with Bounded Variable Appearances 7

follows. Consider any mixed clause C = C+ ∪ C−, where C+ contains the positive

literals of C and C− the negative literals, respectively. Then, according to Gold’s

rule for any such mixed clause C we create a new variable u and replace C with the

two clauses C+ ∪ {u} and C− ∪ {ū}, which yields an equisatisfiable instance with

one mixed clause less. Note that either both C+ and C− are made up of exactly

one literal or one of them is made up of one literal and the other one of two literals.

Thus, the introduced clauses are either of size 2 each or one is of size two and the

other one of size 3.

However, note that for any instance I = (V, C) of Planar Monotone (2, 3)-

Sat-3 and any variable x ∈ V which appears at most twice, we can construct an

equisatisfiable instance I ′ = (V ′, C′) of Planar Monotone (2, 3)-Sat-3 in which

the number of appearances of x is increased by exactly one by adding to C the

clauses {x, u, v}, {u, v}, {ū, v̄}, where u, v are newly introduced variables. As a

consequence, from Theorem 1 we obtain the following corollary.

Corollary 2. Planar Monotone (2, 3)-Sat-E3 is NP-complete even if every

3-clause contains only positive literals and each variable appears negated exactly

once.

4. Hardness of Monotone Sat with bounded variable appearances

We now turn to investigating the computational complexity of the (non-planar)

problem Monotone 3-Sat-s, s ≥ 4.

Theorem 3. Monotone 3-Sat-4 is NP-complete.

Proof. We give a reduction from Planar Monotone (2, 3)-Sat-3. Starting with

an instance of Planar Monotone (2, 3)-Sat-3, the goal is to get rid of the clauses

of size 2 while preserving equisatisfiability. We show a way to replace a negative

2-clause by a finite number of monotone 3-clauses, and at the end of the proof we

remark how the case of a positive 2-clause can be dealt with analogously.

In particular, we present a finite set of monotone 3-clauses Cz such that no variable

appears more than four times and a designated variable z appears exactly three

times, and show that this set of clauses is satisfiable if and only if z is set to true.

If there is a negative 2-clause, i.e., a clause of the form {x̄, ȳ} in the instance,

we replace this clause with {x̄, ȳ, z̄} and add Cz to the instance. The result is an

equisatisfiable Monotone (2, 3)-Sat-4 instance with one negative 2-clause less

than in the original instance. Of course, all variables appearing in Cz are newly

created. The set Cz is given by the following 25 clauses.

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

8 Darmann, A., Döcker, J., and Dorn, B.

(1) {u, w, z}
(2) {u, v, z}
(3) {w̄, v̄, ḡ}
(4) {w̄, v̄, h̄}
(5) {w̄, v̄, ī}
(6) {g, h, i}
(7) {m̄, n̄, ḡ}

(8) {m̄, n̄, h̄}
(9) {m̄, n̄, ī}

(10) {m, a, b}
(11) {n, a, b}
(12) {ū, ā, r̄}
(13) {ū, b̄, r̄}

(14) {r, z, f}
(15) {d̄, ē, ā}
(16) {d̄, ē, b̄}
(17) {p, q, d}
(18) {p, q, e}
(19) {f̄ , p̄, c̄}
(20) {f̄ , q̄, c̄}

(21) {r, c, j}
(22) {j̄, p̄, k̄}
(23) {j̄, q̄, k̄}
(24) {k, c, `}
(25) {¯̀, j̄, f̄}

Assume that the above set of clauses is satisfiable by a truth assignment in which

z is set false.

First, we show that this implies that u has to be set true. If u is set false, then

the first two clauses imply that both w and v need to be set true. Clauses 3, 4, 5

thus yield that all three of g, h, i have to be set false, in contradiction with clause

6. Thus, u has to be set true.

By clause 6 at least one of g, h, i has to be set true. Thus, clauses 7, 8, 9 imply that

at least one of m,n has to be set false. As a consequence, clauses 10, 11 yield that

at least one of a, b needs to be set true. In turn, by clauses 12, 13 this means that

r has to be set false (recall that u is set true). Since both r, z are set false, f must

be set true due to clause 14. By the fact that at least one of a, b is true, clauses

15, 16 imply that at least one of d, e is set false. In turn, by the next two clauses

this means that at least one of p, q must be set true. In addition, recalling that f

is set true, clauses 19, 20 imply that c has to be set false. Also recalling that r is

set false, this means that j has to be set true due to clause 21. Now, clauses 22, 23

imply—since at least one of p, q is true—that k has to be set false. Hence, as a

consequence of clause 24 and the fact that both k, c are set false, ` has to be set

true. That is, all of `, j, f are set true, in contradiction with clause 25. Therewith,

there in no satisfying truth assignment for the above formula in which z is set false.

On the other hand, it is not hard to verify that the formula is satisfiable; e.g.,

setting all variables of the set {z, g, a, r, e, p, k} true and the remaining ones false

yields a satisfying truth assignment.

Observe that a positive 2-clause can be replaced by a finite set of monotone

3-clauses analogously: By negating every variable appearance in Cz, we can force z

to be set to false. Therefore, we can get rid of clauses of the form {x, y} analogously.

Finally, note that z appears exactly 3 times, while none of the other variables is

contained in more than four clauses.

Therewith, starting with an instance of Planar Monotone (2, 3)-Sat-3, we can

create an equisatisfiable instance of Monotone 3-Sat-4 in polynomial time by

adding a polynomial number of clauses and variables.

In addition, we can prove that Monotone 3-Sat remains NP-complete even

if each variable appears exactly four times.

Corollary 4. Monotone 3-Sat-E4 is NP-complete.

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

The Monotone Satisfiability Problem with Bounded Variable Appearances 9

Proof. By Theorem 3, Monotone 3-Sat-4 is NP-complete. Given an instance

I = (V, C) of Monotone 3-Sat-4, let x ∈ V appear less than four times. By adding

all clauses of C∗, where

C∗ = {{x, u, v}, {u, a, b}, {u, a, c}, {u, b, c}, {v, a, b}, {v, a, c}, {v, b, c}},

we get an instance I ′ = (V∪{u, v, a, b, c}, C∪C∗) in which the number of appearances

of x is increased by one and the newly introduced variables u, v, a, b, c appear exactly

four times. Clearly, all clauses in C∗ can be satisfied by setting true the newly

introduced variables. Thus, if there is a satisfying truth assignment in instance

I, there must be one in I ′ as well. On the other hand, if all clauses in instance

I ′ are satisfiable, this must also hold for the strict subset C of these clauses that

make up I. Therewith, the instances I and I ′ are equisatisfiable. As a consequence,

given an instance of Monotone 3-Sat-4, we can create an equisatisfiable instance

of Monotone 3-Sat-E4 in polynomial time by adding a polynomial number of

clauses and variables.

Theorem 3 clearly implies NP-hardness of Monotone 3-Sat-5. We remark

that the latter can also be shown by a reduction from Monotone (2, 3)-Sat-4

by the use of suitable replacement rules to replace the monotone 2-clauses with

monotone 3-clauses without increasing the number of appearances of the variables

in the 2-clauses (see [DD16] for details).

5. Hardness of Planar Monotone Sat∗ with bounded variable

appearances

Finally, we consider a variation of the Planar Monotone Sat problem. An inter-

esting question is whether or not we can replace a monotone 2-clause in an instance

of Planar Monotone (2, 3)-Sat with monotone 3-clauses such that the result

is an equisatisfiable instance of this problem, i. e., the corresponding graph remains

planar. Unfortunately, replacement rules in the spirit of the rule used by Li [Li97,

p. 295] do not preserve planarity: Li’s rule replaces a clause {x, y} with clauses

{x, y, u}, {x, y, v}, {x, y, w}, {ū, v̄, w̄},

where u, v, w are new variables; a clause {x̄, ȳ} is handled analogously. The inci-

dence graph of the replaced clause already contains K3,3 as a minor, cf. Figure 3.

Of course, we can achieve the goal described above by allowing duplicates of a

variable in a clause; the clauses are now multisets for this reason. As described in

Section 2, we denote this variation of Sat in which clauses are multisets of variables

by Sat∗. With this relaxation we show that the problem is NP-complete already

for the case that each variable appears exactly 4 times.

Since we use multisets instead of sets for the clauses, we slightly modify the

definition of the incidence graph. Intuitively, we want the vertex degree to reflect

the number of times a variable appears in the formula and the number of literals

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

10 Darmann, A., Döcker, J., and Dorn, B.

x

y

u

v

w

{x, y, u}

{x, y, v}

{x, y, w}

{ū, v̄, w̄}

x

y

u

v

w

{x, y, u}

{x, y, v}

{x, y, w}

x

y

u

v

{x, y, u}

{x, y, v}

{x, y, w}

x

y

u

{x, y, u}

{x, y, v}

{x, y, w}

Figure 3. Replacement rules based on Li’s rule do not preserve planarity, since the incidence graph

of a replaced 2-clause {x, y} has K3,3 as a minor.

in a clause, respectively. Thus, if a variable v appears dCv times in a clause C, there

are dCv edges between the corresponding vertices. Hence, the incidence graph is a

multigraph without loops.

Theorem 5. Planar Monotone 3-Sat∗-E4 is NP-complete.

Proof. We give a reduction from Planar Monotone (2, 3)-Sat-E3 which is

NP-complete by Corollary 2. Given an instance I = (V, C) of Planar Monotone

(2, 3)-Sat-E3, construct instance I ′ = (V ′, C′) of Planar Monotone 3-Sat∗-E4

as follows. Replace each 2-clause {x, y} of C by the two 3-clauses {x, y, z}, {z̄, z̄, z̄},
where z is a new variable. Recall that each variable x ∈ V appears exactly three

times in set C. For each variable x ∈ V, add the clauses {x, u, u}, {u, u, v}, {v, v, v},
where u, v are new variables.

Obviously, I is a “yes”-instance of Planar Monotone (2, 3)-Sat-E3 if and only

if I ′ is a “yes”-instance of Planar Monotone 3-Sat∗-E4. It is also easy to see

that the graph GV′,C′ is planar.

As noted in the work by Biedl and Kant [BK98, p. 172], their algorithm to

produce orthogonal graph drawings also works for graphs with multiple edges. Let

G be the incidence graph associated with an instance of Planar Monotone 3-

Sat∗-E4. Since all vertices of G have degree at most 4 and G has no loops, we can

use the algorithm of Biedl and Kant to compute an orthogonal drawing of G.

Theorem 6. Planar Monotone 3-Sat∗-E5 is NP-complete even if restricted

to instances in which the graph GV,C is biconnected.

Proof. This time we use a reduction from 4-Bounded Planar 3-Connected

3-Sat [Kra94] in order to show NP-hardness. In an instance I := (V, C) of this

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

The Monotone Satisfiability Problem with Bounded Variable Appearances 11

a1

{x1, a1}

{x̄1, ā1}

x1 {x1, a2} a2

{x2, a2}

{x̄2, ā2}

x2 {x2, a3} a3

{x3, a3}

{x̄3, ā3}

x3

{x3, a1}

Figure 4. Gadget for vertices of degree 3.

variant, every variable appears at least three and at most four times and every

clause contains exactly three distinct literals. Further, the incidence graph is planar

and vertex 3-connectedd. As in Theorem 1, we may assume an orthogonal drawing

to be given—otherwise we can compute it in linear time—and replace every variable

vertex locally. In Figure 4 the construction for a vertex of degree 3 is given; this

gadget works in the same way as the one shown in Figure 2 (the additional 2-clause

between ai and xi enforces opposite truth values for ai and xi also locally). The

adaptation of the gadget for a vertex of degree 4 is straightforward (see Figure 5).

Every clause of the original instance I contains exactly three literals, and is mono-

tone after the local replacements. Further, every variable vertex of I is replaced.

Thus, by showing that after using a gadget G for a local replacement, we can du-

plicate literals in the clauses of G so that every clause of G contains exactly three

literals and every variable of G appears exactly 5 times in the final instance, these

properties follow globally for the final instance. Recall that duplication of a literal

within a clause is now possible. Now, the reasoning is identical for both gadgets:

We consider the ring structure of a gadget in the clockwise direction. For ai and xi
recall that depending on the instance either ai or xi has degree 3 and the other one

has degree 4. We always duplicate xi in the clause on the right of the corresponding

variable vertex (on the bottom of Figure 5 this clause is drawn on the left). For the

two clauses drawn between ai and xi we have two cases: If the degree of the vertex

xi is 5 after the just described duplication, we duplicate ai in the upper clause

and āi in the lower clause. Since in this case ai must have had degree 3 before the

duplication, it now has degree 5 as well. Otherwise both xi and ai have degree 4

and we duplicate, e. g., xi in the upper clause and āi in the lower clause. Again

both variable vertices have now degree 5. Doing this for every pair (ai, xi) in the

ring structure yields an equisatisfiable construction with the desired properties.

The resulting graph is biconnected since the graph in the instance I is vertex

3-connected and the gadget used for the local replacement in the construction of

dA connected graph G = (V,E) is called vertex k-connected, if both |V | > k and the graph remains

connected whenever at most (k − 1) vertices are removed.

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

12 Darmann, A., Döcker, J., and Dorn, B.

a1

{x1, a1}

{x̄1, ā1}

x1 {x1, a2} a2

{x2, a2}

{x̄2, ā2}

x2 {x2, a3} a3

{x3, a3}

{x̄3, ā3}

x3

{x4, a4}

{x̄4, ā4}

x4 a4{x4, a1} {x3, a4}

Figure 5. Gadget for vertices of degree 4.

the instance of Planar Monotone 3-Sat∗-E5 is (obviously) biconnected.

Biconnectedness in Planar Monotone Sat

In our NP-completeness results for Planar Monotone Sat given in Section 3,

we may assume the corresponding bipartite graph to be biconnected: Consider an

instance of 4-Bounded Planar 3-Connected 3-Sat [Kra94] as defined in the

proof of Theorem 6. By replacing every variable vertex with the gadget described

by Dahlhaus et al. [DJP+94, p. 18] to reduce variable appearances (the gadget for

the special cases for vertices of degree 3 and 4 is shown in Figure 6), we get a

biconnected version of Planar (2, 3)-Sat-E3, where for each variable, one of its

literals appears in two clauses and the other literal appears in one clause.

Now, we can replace every variable vertex as shown in Figure 7. Note that the

clause depicted in the center is always satisfied, since every variable appears as a

positive and as a negative literal in the original instance. This approach yields a

biconnected version of Corollary 2 and also Theorem 1 (recall that Theorem 1 (and

Corollary 2) are proven by a reduction from Planar (2, 3)-Sat-E3).

6. Conclusion

With respect to bounds on the number of times a variable may appear in the

formula, we have provided NP-completeness results for the monotone satisfiability

problem with clauses containing (at most) three literals and some of its planar

variants.

In particular, we have shown that Planar Monotone Sat is NP-complete

even if restricted to instances in which each clause consists of two or three dis-

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

The Monotone Satisfiability Problem with Bounded Variable Appearances 13

x x

{x4, x̄1} x1 {x1, x̄2}

x2

{x2, x̄3}x3{x3, x̄4}

x4

{x3, x̄1} x1 {x1, x̄2}

x2{x2, x̄3}x3

Figure 6. Reducing variable appearances with the gadget of Dahlhaus et al. [DJP+94, p. 18]
restricted to vertices of degree 3 (left) and 4 (right).

a1

{x̄1, ā1}

x1 {x1, a2} a2 {x̄2, ā2} x2 {x2, a3} a3

{x̄3, ā3}

x3{x3, a1}

{a1, x2, x3}

Figure 7. Local replacement of a variable vertex x with exactly three appearances. Here, the

first appearance of x (corresponding to x1) in the original instance is positive and the other
appearances are negative, respectively. The variable vertices not directly connected to the original

instance appear in an additional clause shown in the center.

tinct literals and each variable appears exactly three times. For Monotone 3-Sat,

we could show that the problem is NP-complete even if restricted to instances in

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

14 REFERENCES

which each variable appears exactly four times, therewith confirming a conjecture

made in scribe notes [DKY14] of an MIT lecture. Therewith, we have settled the

computational complexity status of Planar Monotone Sat with at most three

distinct literals per clause and of Monotone Sat with exactly three distinct liter-

als per clause with respect to the number of variable appearances, since each of the

problems is solvable in polynomial time when the number of variable appearances

is reduced (see [Tov84]).

Concerning the two further variants of Planar Monotone Sat considered

in Section 5, note that in the hardness proof of Theorem 1, the instance has an

incidence graph with vertex degree bounded by four. Further, we have shown that

these variants remain hard even if restricted to instances in which every variable

appears exactly as often in the set of clauses as the upper bound for the variables

allows for. Thus, planar and orthogonal drawings of these graphs exist and can

be computed efficiently (see the work by Biedl and Kant [BK98]), which may be

useful when using these variants as a starting point for a reduction in an NP-

hardness proof. Moreover, the variant proven to be NP-complete in Theorem 5

has the property that each clause contains exactly three, not necessarily distinct,

literals and every variable appears exactly four times in the set of clauses. Finally,

the variant shown to be NP-complete in Theorem 6 differs from the one considered

in Theorem 5 in the way that every variable is required to appear exactly five times

and the corresponding planar graph is biconnected.

An interesting open question remains: If we require every clause to contain

exactly three distinct literals, is there a number s ∈ N such that Planar Mono-

tone 3-Sat-s is NP-hard and if so, what is the smallest number with this property

(clearly, s ≥ 4)?

Acknowledgement. The authors are grateful for the reviewers’ valuable com-

ments that improved the paper.

References

[BK98] T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings.

Computational Geometry, 9(3):159–180, 1998.

[BM08] J.A. Bondy and U.S.R. Murty. Graph Theory. Springer, 2008.

[dBK12] M. de Berg and A. Khosravi. Optimal binary space partitions for seg-

ments in the plane. International Journal of Computational Geometry

and Applications, 22(3):187–206, 2012.

[DD16] A. Darmann and J. Döcker. Monotone 3-Sat-4 is NP-complete. CoRR,

abs/1603.07881, 2016.

[DDD16] A. Darmann, J. Döcker, and B. Dorn. On planar variants of the mono-

tone satisfiability problem with bounded variable appearances. CoRR,

abs/1604.05588, 2016.

[DJP+94] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and

May 30, 2017 10:57 WSPC/INSTRUCTION FILE monSAT-journal-JFCS-
R1˙2017-05-30

REFERENCES 15

M. Yannakakis. The complexity of multiterminal cuts. SIAM Journal

on Computing, 23:864–894, 1994.

[DKY14] E. Demaine, J. Ku, and Y.W. Yu. Class 4 scribe notes.

http://courses.csail.mit.edu/6.890/fall14/scribe/lec4.pdf; Instructor: E.

Demaine; Notetakers: J. Ku, Y.W. Yu, 2014.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[Gol78] E.M. Gold. Complexity of automaton identification from given data.

Information and Control, 37(3):302–320, 1978.

[KR92] D.E. Knuth and A. Raghunathan. The problem of compatible represen-

tatives. SIAM Journal on Discrete Mathematics, 5(3):422–427, 1992.

[Kra94] J. Kratochv́ıl. A special planar satisfiability problem and a consequence

of its NP-completeness. Discrete Applied Mathematics, 52(3):233–252,

1994.

[Li97] W.N. Li. Two-segmented channel routing is strong NP-complete. Dis-

crete Applied Mathematics, 78(1), 1997.

[Lic82] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on

Computing, 11:329–343, 1982.

[Tov84] C.A. Tovey. A simplified NP-complete satisfiability problem. Discrete

Applied Mathematics, 8(1):85–89, 1984.

Appendix

1.6 On simpli�ed NP-complete variants of Monotone 3-SAT

The following paper [DD21] is also available online at the following URL: https://doi.

org/10.1016/j.dam.2020.12.010.

162

https://doi.org/10.1016/j.dam.2020.12.010
https://doi.org/10.1016/j.dam.2020.12.010

Discrete Applied Mathematics 292 (2021) 45–58

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

On simplified NP-complete variants ofMonotone 3-Sat
Andreas Darmann a, Janosch Döcker b,∗

a Department of Operations and Information Systems, University of Graz, Austria
b Department of Computer Science, University of Tübingen, Germany

a r t i c l e i n f o

Article history:
Received 14 August 2019
Received in revised form 15 October 2020
Accepted 4 December 2020
Available online xxxx

a b s t r a c t

We consider simplified versions of 3-Sat, the variant of the famous Satisfiability
Problem where each clause is made up of exactly three distinct literals formed over
pairwise distinct variables. More precisely, the focus of this work is laid on Monotone
3-Sat, the restriction of 3-Sat to formulas with monotone clauses, where a clause is
monotone if it contains only unnegated variables or only negated variables. We prove
several hardness results for Monotone 3-Sat with respect to a variety of restrictions
imposed on the variable appearances.

In particular, we show that for any k ≥ 2, Monotone 3-Sat turns out to be
NP-complete even if each variable appears exactly k times unnegated and exactly k
times negated. Therewith, for Monotone 3-Sat with balanced variable appearances we
establish a sharp boundary between NP-complete and polynomial time solvable cases.

In addition, we prove that for any k ≥ 5, Monotone 3-Sat is NP-complete even
if each variable appears exactly k times unnegated and exactly once negated. Further,
we prove that the problem remains NP-complete when restricted to instances in which
each variable appears either exactly once unnegated and three times negated or the
other way around. Thereby, we improve on a result by Darmann et al. (2018) showing
NP-completeness for four appearances per variable. Our stronger result also implies that
3-Sat remains NP-complete even if each variable appears exactly three times unnegated
and once negated, therewith complementing a result by Berman et al. (2003).

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The famous Boolean satisfiability problem, and in particular 3-Satisfiability, can be considered the classical decision
problem in computer science. 3-Satisfiability has been the first problem shown to be NP-complete decades ago (Cook [3])
and is of undisputed theoretical and practical importance1; it both appears in practical applications of routing, scheduling
and artificial intelligence (see, e.g., Devlin and O’Sullivan [7], Nam et al. [17], Horbach et al. [12], and Kautz and
Selman [13]), and is the most prominent problem, and probably the most frequently used one, for complexity analysis of
decision problems. Therefore, it has continuously attracted researchers through decades focusing on the computational
complexity of variants of the satisfiability problem (for recent work see, e.g., Pilz [19] or Paulusma and Szeider [18]).

∗ Corresponding author.
E-mail addresses: andreas.darmann@uni-graz.at (A. Darmann), janosch.doecker@uni-tuebingen.de (J. Döcker).

1 This is also witnessed by the dedicated series of International Conferences on Theory and Applications of Satisfiability Testing (http://www.
satisfiability.org/), focusing on theoretical and practical research in connection with the satisfiability problem.

https://doi.org/10.1016/j.dam.2020.12.010
0166-218X/© 2020 Elsevier B.V. All rights reserved.

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

In this paper, we add to that branch of literature and investigate the computational complexity2 of restricted variants
of 3-Satisfiability.

In 3-Satisfiability, we are given a set of propositional variables and a collection of clauses, where each clause contains
three literals. The question is whether there is a satisfying truth assignment, i.e., whether we can satisfy all clauses by
assigning truth values to the variables.

In what follows, we will refer to 3-Sat as the variant of 3-Satisfiability in which each clause contains exactly three
distinct literals formed over pairwise distinct variables—which is the setting we focus on in this paper.

The focus of this paper is laid on Monotone 3-Sat, the restriction of 3-Sat to formulas in which each clause is mono-
tone, i.e., contains only unnegated or only negated variables. It is known that Monotone 3-Sat is NP-complete [11,15], and
that intractability holds even if (1) each variable appears exactly four times [6, Corollary 4]. We show that this problem
remains NP-complete even if condition (1) is replaced by either one of the following three conditions:

(1a) each variable appears exactly p times unnegated and q times negated, for every fixed pair (p, q) with p ≥ 2 and
q ≥ 2,

(1b) each variable appears exactly k times unnegated and once negated, for every fixed integer k ≥ 5, or
(1c) each variable appears exactly three times unnegated and once negated or three times negated and once unnegated.

We point out that (1a) includes the case of balanced variable appearances, i.e, the case of each variable appearing
exactly k times unnegated and k times negated, for each k ≥ 2. Further, we remark that the hardness results for conditions
(1a) and (1c) improve upon the result for condition (1) by Darmann et al. [6, Corollary 4]. Also, as a by-product, we
derive the result that the classical 3-Sat problem remains NP-complete even if each variable appears exactly three times
unnegated and once negated (observe that this implies hardness also for the vice versa case where each variable appears
exactly once unnegated and three times negated). Therewith, we complement results of Tovey [21] and Berman et al. [2]:
The former showed that 3-Sat remains NP-complete even if each variable appears in at most four clauses and it is trivial
if the number of variable appearances is bounded by 3 [21, Theorem 2.3 and Theorem 2.4]; Berman et al. [2, Theorem 1]
added to that result by showing that NP-completeness holds even if each variable appears exactly twice unnegated and
twice negated.

Further related literature is concerned with the planar3 variants of (Monotone) 3-Satisfiability. Both Planar
3-Satisfiability and Planar Monotone 3-Satisfiability are known to be NP-complete even in restricted settings
(e.g., see [14,16] respectively [1,6]), while Pilz [19, Theorem 11] shows that all instances of Planar Monotone 3-Sat,
i.e., where each clause contains three distinct literals formed over pairwise distinct variables, are satisfiable.

The paper is structured as follows. In Section 2 we introduce basic notation and formally state the considered decision
problems. In Section 3 we present a tool for increasing the number of literal appearances in an instance of Monotone
3-Sat without affecting satisfiability. In Section 4 we provide hardness results for Monotone 3-Sat in the restricted setting
of balanced variable appearances, where each variable appears unnegated and negated equally often. In fact, we show that
Monotone 3-Sat is NP-complete if each variable appears exactly p times unnegated and q times negated, for every fixed
pair (p, q) with p ≥ 2 and q ≥ 2. In Section 5 Monotone 3-Sat is analyzed restricted to instances in which each variable
appears exactly once negated. Then we consider Monotone 3-Sat restricted to instances in which each variable appears
either three times unnegated and once negated or once unnegated and three times negated in Section 6. Finally, Section 7
concludes the paper with a concise summary of the results and a challenge for future research.

Preliminary versions of the results in this paper are contained in the online preprints [4,8] on arXiv.

2. Preliminaries

Let V = {x1, . . . , xn} be a set of propositional variables. For the remainder of the paper we simply say variable instead of
propositional variable since all variables take on values in {T , F}, where T represents true and F represents false. A literal is
a variable or its negation, i.e., an element of LV = {xi, xi | xi ∈ V }. A clause is a subset of LV , and a k-clause contains exactly k
distinct literals. Further, a clause is monotone if either all contained variables are negated (negative clause) or none of them
is (positive clause). A Boolean formula C in conjunctive normal form (CNF) is a collection of m clauses, i.e., C =

⋃m
j=1{cj}.

We say that a Boolean formula C is in k-CNF if each clause in C is a k-clause. It is also common to use logical connectives,
e.g. ∨ and ∧, to describe a Boolean formula. Then, C is a conjunction of clauses

⋀m
j=1 cj, where cj = (ℓj,1∨ℓj,2∨ . . .∨ℓj,ij) is

a disjunction of pairwise distinct literals; in what follows, we use the set notation cj = {ℓj,1, ℓj,2, . . . , ℓj,ij} for describing
clauses. A Boolean formula is linear if all pairs of distinct clauses share at most one variable. A truth assignment is a
mapping β: V → {T , F} which extends to literals in the obvious way, i.e., for ℓ = xi we have β(ℓ) = β(xi) and for ℓ = xi
we have β(ℓ) ∈ {T , F} \β(xi), i ∈ {1, 2, . . . , n}. A clause cj is satisfied under β if β(ℓ) = T for at least one ℓ ∈ cj. A Boolean
formula C =

⋃m
j=1{cj} in CNF is satisfiable if there exists a truth assignment β: V → {T , F} such that all clauses c1, . . . , cm

2 We assume the reader to be familiar with the basic concepts of the theory of NP-completeness and refer to Garey and Johnson [9] for an
extensive introduction.
3 In that respect, planarity refers to the corresponding graph property of the following associated bipartite graph: there is a vertex for each

variable v and for each clause c , and an edge connects a variable vertex v with a clause vertex c if and only if variable v appears in clause c.

46

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

are satisfied. We say that a truth assignment β ′ for V ′ extends a truth assignment β for V if V ⊆ V ′ and β ′(v) = β(v) for
all v ∈ V . Finally, a Boolean formula C in CNF is nae-satisfiable if there exists a truth assignment for the variables such
that each clause has at least one true and at least one false literal.

2.1. Problem statements

The decision problems considered in this work are variants of the classical decision problem 3-Sat restricted to subsets
of instances, where clauses, variables or both are required to have certain properties (e.g. that each clause is monotone).

3-Sat
Instance. A set V of variables, and a collection C of clauses over V such that each clause c ∈ C contains |c| = 3 distinct
literals formed over pairwise distinct variables.
Question. Is there a truth assignment for V such that each clause in C has at least one true literal?

Now, we present the variants of 3-Sat that we focus on in this article.

3-Sat-E4 is the restriction of 3-Sat to instances in which each variable appears in exactly four clauses.

Monotone 3-Sat-E4 is the restriction of 3-Sat to instances in which each clause is monotone, and every variable appears
in exactly four clauses.

Monotone 3-Sat-(p, q) is the restriction of 3-Sat to instances in which each clause is monotone, and every variable appears
unnegated in exactly p clauses and negated in exactly q clauses.

The following relaxed definition of Monotone 3-Sat-(p, q) is particularly useful in establishing hardness results, since
it is equivalent in terms of NP-completeness (see also Section 3) and allows us to focus on the crucial parts of the
constructions (i.e., we do not have to blow up the formula by adding clauses in order to get the required number of
literal appearances).

Monotone 3-Sat-(≤ p, ≤ q) is the restriction of 3-Sat to instances in which each clause is monotone, and every variable
appears unnegated in at most p clauses and negated in at most q clauses.

Note that all of the above decision problems belong to the class NP. Hence, the NP-completeness proofs in this paper
reduce to showing NP-hardness of the respective problem.

3. Increasing the number of literal appearances in Monotone 3-SAT

We thank an anonymous referee for providing the following two lemmata (along with the below proof and a
description) which are very helpful for improving the presentation of the paper. The lemmata establish a tool for
increasing the number of literal appearances in any instance of Monotone 3-Sat without affecting satisfiability, therefore,
e.g., implying that Monotone 3-Sat-(p, q) and Monotone 3-Sat-(≤ p, ≤ q) are equivalent in terms of NP-completeness.

Lemma 1. For every k ≥ 1, ℓ ≥ 1, and r ≥ 3, such that k ≤ r2 and ℓ ≤ r2, there is a 3-CNF formula Ck,ℓ,r with variables
{y1, y2, y3} ∪ U ∪ V ∪ W where U = {u0, . . . , ur−1}, V = {v0, . . . , vr−1}, and W = {w0, . . . , wr−1}, such that

• each of the clauses is monotone,
• each of the variables y1, y2, y3 has one unnegated and no negated appearance,
• each of the variables in U ∪ V ∪ W has k unnegated and ℓ negated appearances,
• Ck,ℓ,r is satisfied by setting the variables in U to false and the variables in V and W to true independently of the truth

values of the variables y1, y2, y3.

Proof. Let Zr := {0, 1, . . . , r − 1}. For every pair (s, t) ∈ Zr × Zr , let

θs,t (U,V,W) = {{ui, vi+s, wi+t} | i ∈ Zr}

and let

θs,t (U,V,W) = {{ui, vi+s, wi+t} | i ∈ Zr},

where indices are added modulo r , i.e., for r ≤ j ≤ 2r − 2 variables vj and wj correspond to vj−r and wj−r respectively.
Moreover, let θ ′

0,0 be the formula obtained from θ0,0(U,V,W) by replacing the three clauses

{u0, v0, w0}, {u1, v1, w1}, {u2, v2, w2}

with the four clauses

{u0, v0, y1}, {u1, v1, y2}, {u2, v2, y3}, {w0, w1, w2}.

47

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

Let I be an arbitrary subset of Zr ×Zr of size k−1 not containing (0, 0) and let J be an arbitrary subset of Zr ×Zr of size ℓ.
Then, the formula

Ck,ℓ,r = θ ′

0,0 ∪

⋃
(s,t)∈I

θs,t (U,V,W) ∪

⋃
(s,t)∈J

θs,t (U,V,W)

satisfies the requirements of the statement. □

By negating all the variables in Cℓ,k,r , one can obtain also the following.

Lemma 2. There is a formula Ck,ℓ,r with the same properties as Ck,ℓ,r except that the variables y1, y2, y3 have negated
appearances and the guaranteed satisfying assignment sets all variables in U to true and all variables in V and W to false.

In order to increase the number of literal appearances in an instance of Monotone 3-Sat without affecting satisfiability
the above formulas Ck,ℓ,r and Ck,ℓ,r can be used as follows. Consider an instance of Monotone 3-Sat-(≤ p, ≤ q) consisting
of a formula C over variables VC = {x1, . . . , xn} which we would like to translate into an instance ofMonotone 3-Sat-(p, q).
For each variable xi ∈ VC , let pi (resp. qi) denote the number of unnegated (resp. negated) appearances of xi. The goal is,
for each variable xi, to increase the number of unnegated (resp. negated) appearances by ∆+

i := p−pi (resp. ∆−

i := q−qi).
To this end, we construct three copies Cj of C , where variable xi is replaced with xi,j, j = 1, 2, 3. Further, let r ≥ 3, such
that p ≤ r2 and q ≤ r2. Now, for each i = 1, . . . , n, we introduce ∆+

i copies of Cp,q,r , where in the latter yj is replaced
with xi,j, j = 1, 2, 3, and in each copy of Cp,q,r the sets U,V,W consist of newly introduced variables. Analogously, for
each i = 1, . . . , n, we introduce ∆−

i copies of Cp,q,r , where yj is replaced with xi,j, j = 1, 2, 3. We denote the resulting
formula C1 ∪ C2 ∪ C3 together with the introduced copies of Cp,q,r and Cp,q,r by C̃ . In the formula C̃ , each variable xi,j –
as well as each of the newly introduced auxiliary variables – appears exactly p times unnegated and q times negated. By
Lemmas 1 and 2, the formula C̃ is satisfiable if and only if the original formula C is satisfiable. Finally, we have that C̃
contains 3m + ∆(1 + pr + qr) clauses over 3n + ∆ · 3r variables, where m is the number of clauses contained in C and
∆ =

∑n
i=1(∆

+

i + ∆−

i) is the total number of introduced copies of Cp,q,r and Cp,q,r . Since the total number of introduced
copies of Cp,q,r and Cp,q,r is at most p + q per variable, it follows that the number of clauses in C̃ is 3m + O(n), and the
number of variables is O(n). Hence, the size of the constructed instance is polynomial in the size of the original instance
and, thus, the transformation is polynomial.

Hence, we can polynomially transform an instance of Monotone 3-Sat-(≤ p, ≤ q) into an instance of Monotone
3-Sat-(p, q) without affecting satisfiability. Therefore, we can state the following theorem.

Theorem 1. Let p, q be fixed integers with p ≥ 1 and q ≥ 1. Then, Monotone 3-Sat-(≤ p, ≤ q) is NP-complete if and only
if Monotone 3-Sat-(p, q) is NP-complete.

Observe that Theorem 1 implies the following corollary.

Corollary 1. Let r, s be fixed positive integers such that Monotone 3-Sat-(≤ r, ≤ s) is NP-complete. Then, Monotone
3-Sat-(p, q) is NP-complete for all pairs of fixed integers p, q with p ≥ r and q ≥ s.

4. Monotone 3-Sat with balanced variable appearances

In this section we consider the case of balanced variable appearances, where each variable appears unnegated and
negated equally often; the section is structured as follows.

Section 4.1 is dedicated to Monotone 3-Sat-(k, k) for k ≥ 3. There, we begin with a simple corollary stating
NP-completeness of Monotone 3-Sat-(4, 4), even in a restricted setting. Then we turn to Monotone 3-Sat-(3, 3) and, by
the use of several lemmata, show its NP-completeness. Along the way, we in fact show that Monotone 3-Sat-(≤ 3, ≤ 2)
is NP-complete.

Finally, in Section 4.2 we turn our attention to instances in which each variable appears exactly twice unnegated and
exactly twice negated. There, we first construct an unsatisfiable instance of Monotone 3-Sat-(2, 2) and, with the help of
the latter, prove that the problem is NP-complete. Thereby, we in fact establish the more general result that Monotone
3-Sat-(p, q) is NP-complete for each fixed pair (p, q) ∈ {(r, s), (s, r) | r ≥ 2, s ≥ 2}.

4.1. Monotone 3-Sat-(k, k), for k ≥ 3

Corollary 2. Monotone 3-Sat-(4, 4) is NP-complete, even if no pair of clauses has exactly two variables and more than one
literal in common.

Proof. The proof proceeds by a reduction from Monotone Not-All-Equal-3-Sat-E4. In Not-All-Equal 3-Sat we are given
a 3-Sat formula and ask whether the formula is nae-satisfiable. An instance of Not-All-Equal 3-Sat is monotone4 if and

4 We point out that monotonicity has different meanings for 3-Satisfiability and Not-All-Equal 3-Satisfiability, which is certainly not ideal but
appears to be the established notation.

48

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

only if negations are completely absent, i.e., there are no negated variables in the formula. Darmann and Döcker [5] have
shown that Monotone Not-All-Equal 3-Sat-E4 is NP-complete even for linear instances, i.e., instances where each pair
of distinct clauses shares at most one variable.

Now, NP-hardness follows from the simple standard transformation from Not-All-Equal 3-Sat to 3-Sat: Given an
instance of Monotone Not-All-Equal-3-Sat-E4 where the formula is linear, introduce for each clause {ℓ1, ℓ2, ℓ3} a second
clause {ℓ1, ℓ2, ℓ3}. Note that the resulting formula has the desired properties. □

In the next step, we considerMonotone 3-Sat-(3, 3). First, we show that not all instances of this problem are satisfiable.
In particular, we present an unsatisfiable instance of Monotone 3-Sat-(3, 3) with 7 variables in the following proposition.
Since the first 7 clauses, which are adapted from [8], are not nae-satisfiable by a result from Porschen et al. [20, Corollary
4], unsatisfiability follows by construction (note that clauses 8 to 14 are obtained from clauses 1 to 7 by replacing each
variable with its negation).

Proposition 1. The following instance of Monotone 3-Sat-(3, 3) with 7 variables and 14 clauses is unsatisfiable.

1. {a, b, g}

2. {a, c, f }
3. {a, d, e}
4. {b, c, d}
5. {b, e, f }

6. {c, e, g}

7. {d, f , g}

8. {ā, b̄, ḡ}

9. {ā, c̄, f̄ }
10. {ā, d̄, ē}

11. {b̄, c̄, d̄}
12. {b̄, ē, f̄ }
13. {c̄, ē, ḡ}

14. {d̄, f̄ , ḡ}

In fact, it turns out that Monotone 3-Sat-(3, 3) is NP-complete. This is a consequence of the stronger statement
proven below that Monotone 3-Sat-(≤ 3, ≤ 2) is NP-complete (stated in Theorem 2), which implies NP-completeness of
Monotone 3-Sat-(3, 3) by Corollary 1.

To this end, we make use of a construction inspired by the idea of an enforcer for a clause described by Berman
et al. [2, p. 3]. Intuitively speaking, an enforcer – we say gadget instead of enforcer in the following – is a set of clauses,
usually having some desired properties, that imposes certain restrictions on satisfying truth assignments (e.g. simulate
the behavior of a clause). For instance, the gadget introduced in the following lemma allows us to simulate a disjunction
of three appearances of the same variable in the proof of Theorem 2, which is useful since we do not allow duplicates of
a literal in a clause.

Lemma 3. Let G(x, y, z) be the following set of clauses, where Vaux = {a, b, . . . , f } are new variables.

1. {a, b, f }
2. {a, c, d}
3. {b, c, e}
4. {d, e, f }

5. {a, b, f }
6. {a, c, d}
7. {b, c, e}
8. {d, e, f }

9. {a, e, x}
10. {b, d, y}
11. {c, f , z}

Then, a truth assignment β for {x, y, z} can be extended to a truth assignment β ′ for {x, y, z} ∪ Vaux that satisfies G(x, y, z)
if and only if β(v) = T for at least one v ∈ {x, y, z}.

Proof. First, let β(v) = F for each v ∈ {x, y, z}. Then, we can simplify G(x, y, z) by removing the literals which evaluate
to false from clauses 9–11. Assume towards a contradiction that β can be extended to a truth assignment β ′ that satisfies
G(x, y, z). Note that β ′ cannot set both a and e to true since, in this case, clauses 1–4 are equivalent to the following
implications.

1. b ⇒ f̄ 2. d ⇒ c̄ 3. b ⇒ c̄ 4. d ⇒ f̄

Hence, clauses 1–4 in conjunction with clauses 10 and 11 is a contradiction. Analogously, setting both variables in
clause 10 (resp. clause 11) to true yields a contradiction. Hence, we may assume that β ′ sets the variables in {a, e} (resp.
{b, d} and {c, f }) to different truth values. It follows that the following set of clauses obtained from clauses 1–8 in G(x, y, z)
by replacing e with ā, d with b̄ and f with c̄ is satisfiable.

(i) {a, b, c}
(ii) {a, b, c}

(iii) {a, b, c}
(iv) {a, b, c}

(v) {a, b, c}
(vi) {a, b, c}

(vii) {a, b, c}
(viii) {a, b, c}

The above eight clauses are clearly not satisfiable, which is in contradiction with our assumption that β ′ satisfies
G(x, y, z). Thus, β cannot be extended to a truth assignment that satisfies G(x, y, z) if β(v) = F for each v ∈ {x, y, z}.

Second, let β be a truth assignment for {x, y, z} with β(x) = T , β(y) = by and β(z) = bz where by, bz ∈ {T , F}. Then, we
extend β to a truth assignment β ′ that satisfies G(x, y, z) by setting β ′(a) = β ′(e) = F and β ′(v) = T for all v ∈ Vaux\{a, e}.
It is easy to verify that G(x, y, z) is satisfied for this assignment even if by = bz = F . By using the same approach, we can
show that if β(y) = T or β(z) = T , we can assign truth values to the remaining variables such that G(x, y, z) is satisfied. □

49

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

With the help of the gadget introduced in the lemma above we are able to define a gadget that, by Lemma 3, forces
some variable y to true:

H(y) = G(y, y, y).

Now, we can also force some variable z to false by using the following gadget:

H′(z) = {{z, u, v}} ∪ G(u, u, u) ∪ G(v, v, v).

Remark. Each instance of a gadget H(y) (resp. H′(z)) has its own new auxiliary variables (i.e., the variables that are not
in {y, z}). Further, each auxiliary variable introduced by H(y) (resp. H′(z)) appears exactly three times unnegated and
at most twice negated (u, v appear only once negated in H′(z)). The variable y (resp. z) has exactly three unnegated
appearances and no negated appearance (resp. no unnegated appearance and exactly one negated appearance).

We are now in a position to prove NP-completeness of Monotone 3-Sat-(≤ 3, ≤ 2).

Theorem 2. Monotone 3-Sat-(≤ 3, ≤ 2) is NP-complete.

Proof. By reduction from 3-Sat-(2, 2), for which NP-hardness was established by Berman et al. [2, Theorem 1]. Given an
instance of the latter with a set V of variables and a set C of clauses over V , let n := |V |. For each variable xi ∈ V ,
we introduce two new variables xi,1, xi,2 and replace the two negated appearances with xi,1 and the two unnegated
appearances with xi,2, respectively. Then, we remove all negations and introduce the following clauses for i ∈ {1, 2, . . . , n}:

{{xi,1, xi,2, yi}, {xi,1, xi,2, zi}} ∪ H(yi) ∪ H′(zi),

where yi and zi are new variables. Since these clauses can be satisfied if and only if we assign different truth values to xi,1
and xi,2, the resulting formula is satisfiable if and only if the original formula is satisfiable. By construction, all variables
appear at most three times unnegated and twice negated. Hence, the constructed formula is an instance of Monotone
3-Sat-(≤ 3, ≤ 2). We conclude by remarking that the transformation is polynomial. □

Now, by Theorem 1 and Corollary 1, respectively, we get the following two corollaries, the latter of which will be used
for our hardness result in the next section.

Corollary 3. Monotone 3-Sat-(3, 2) is NP-complete.

Corollary 4. Monotone 3-Sat-(3, 3) is NP-complete.

4.2. Monotone 3-Sat-(2, 2)

We now turn our attention to Monotone 3-Sat-(2, 2) and prove its NP-completeness. Therewith, we settle a sharp
boundary in terms of the number of variable appearances between NP-complete and polynomial time solvable cases for
balanced variable appearances, since Monotone 3-Sat-(1, 1) is trivial due to the classic result of Tovey [21] stating that
3-Sat is trivial if the number of variable appearances is bounded by 3.

We prove NP-completeness of Monotone 3-Sat-(2, 2) in two steps. In the first step (Section 4.2.1), we construct an
unsatisfiable instance of Monotone 3-Sat-(2, 2). In the second step (Section 4.2.2), we make use of that instance and of
Corollary 4 to formally prove our hardness result.

4.2.1. Construction of an unsatisfiable instance of Monotone 3-Sat-(2, 2)

In this section, we construct an unsatisfiable instance of Monotone 3-Sat-(2, 2). We start with the Boolean formula

C = {{a, d, f }, {b, d, e}, {e, b}, {d, f , c}, {a, c, e}, {e, c}, {d, a, b}, {a, f }}

for which unsatisfiability is easy to verify. Note that the formula contains non-monotone clauses consisting of two or
three distinct literals. In the following, we transform C into an unsatisfiable instance of Monotone 3-Sat-(2, 2) with the
help of two families of gadgets (resp. enforcers5).

The first family M(i)(u1, u2, u3) deals with clauses of the form {u1, u2, u3}, i.e., clauses consisting of one unnegated
variable and two negated variables. Moreover, this family can also be used to transform non-monotone 2-clauses (e.g., set
u1 = e and u2 = u3 = b for the third clause in C), but this comes at the price of introducing an additional appearance of
the negated variable, so it is not a viable option for the clauses {e, c}, {a, f } as the literals e and a already appear twice
in C (these clauses will be transformed with the help of the second family of gadgets). Both families are based on an
unsatisfiable Boolean formula M—which we construct in the following—containing one positive 2-clause, two negative
2-clauses and 39 monotone 3-clauses. Intuitively, the formula M consists of three collections of clauses Q,R and S (the

5 Recall that we use gadget and enforcer interchangeably to describe the same concept (see Section 4.1).

50

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

two latter were found via computer search6), whereQ is only satisfiable by truth assignments, say β , for the corresponding
variables that can be placed in one of two categories—a truth assignment of the first (resp. second) category cannot be
extended to satisfy Q ∪ R (resp. Q ∪ S). We start the construction of M with Q = Q2 ∪ Q3. First, let Q2 denote the set
consisting of the following 2-clauses:

1. {x1, x2} 2. {x2, x3} 3. {x2, x4}

Second, let Q3 denote the set consisting of the following 3-clauses:

4. {x3, x5, x6}
5. {x4, x5, x6}

6. {x5, x7, x8}
7. {x6, x7, x8}

8. {x7, z1, z2}
9. {x7, z3, z4}

10. {x8, z1, z2}
11. {x8, z3, z4}

Note that the 2-clauses in Q2 are equivalent to the implications

x2 ⇒ x1, x2 ⇒ x3, x2 ⇒ x4.

Next, let R be the set consisting of the following 3-clauses:

12. {x3, y1, y2}
13. {x3, y3, y4}
14. {x4, y5, y6}
15. {x4, y7, y8}

16. {y1, y4, y7}
17. {y2, y5, y9}
18. {y3, y8, y9}
19. {y1, y5, y8}

20. {y1, y6, y9}
21. {y2, y3, y6}
22. {y2, y4, y8}
23. {y3, y5, y7}

24. {y4, y7, y9}

For a truth assignment with β(x3) = β(x4) = F , omitting the appearances of x3 and x4 in R has no effect on the
satisfiability and the resulting instance is unsatisfiable (this can be checked by means of a Sat-solver, see also Lemma 1
in [8]). Now, let us consider both possibilities to assign a truth value to the variable x2:

First, if β(x2) = T , we can infer β(x3) = β(x4) = F by clauses 2 and 3 in Q2 and, thus, no truth assignment that satisfies
Q ∪ R sets x2 to T .

Second, let β(x2) = F . By the first clause in Q2, we have β(x1) = T . Further, we may assume that β(xi) = T for at
least one xi ∈ {x3, x4} (otherwise, β does not satisfy R as alluded to above). Then, by clauses 4 and 5 we have β(xj) = F
for at least one xj ∈ {x5, x6}. Next, clauses 6 and 7 imply β(xk) = T for at least one xk ∈ {x7, x8}. Hence, we can replace
clauses 8, 9, 10 and 11 by the 2-clauses {z1, z2} and {z3, z4} without affecting satisfiability. Recalling that β(x1) = T and
β(x2) = F , the first three clauses in the following set S of 3-clauses evaluate to {z5, z6}, {z7, z8} and {z7, z15}, respectively
(i.e., for the considered truth assignment β , we may omit the unsatisfied literals).

25. {x1, z5, z6}
26. {x1, z7, z8}
27. {x2, z7, z15}
28. {z1, z6, z8}
29. {z1, z11, z12}
30. {z2, z6, z8}

31. {z2, z11, z12}
32. {z3, z5, z9}
33. {z3, z13, z14}
34. {z4, z5, z14}
35. {z4, z9, z10}
36. {z7, z10, z13}

37. {z5, z8, z15}
38. {z6, z7, z9}
39. {z9, z11, z13}
40. {z10, z11, z14}
41. {z10, z12, z14}
42. {z12, z13, z15}

Now, the inferred 2-clauses

{z1, z2}, {z3, z4}, {z5, z6}, {z7, z8} and {z7, z15}

in conjunction with the clauses S \ {{x1, z5, z6}, {x1, z7, z8}, {x2, z7, z15}} are unsatisfiable (again this can be checked by
means of a Sat-solver, see also Lemma 2 in [8]).

Hence, the constructed set of 42 clauses

M = {{x1, x2}, {x2, x3}, {x2, x4}} ∪ Q3 ∪ R ∪ S

over the set of variables

V = {x1, . . . , x8} ∪ {y1, . . . , y9} ∪ {z1, . . . , z15}

is unsatisfiable. We note that each literal appears at most twice in M. The only variables that appear less than 4 times
are x1, x5, x6, y6 and z15, each of which appears once unnegated and twice negated. Now, let

M(i)(u1, u2, u3) = {{xi1, x
i
2, u1}, {xi2, x

i
3, u2}, {xi2, x

i
4, u3}} ∪ Qi

3 ∪ Ri
∪ S i,

6 See Döcker [8] for more details.

51

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

where Qi
3,Ri, S i are obtained from Q3,R, S by replacing each variable, say v, with vi (e.g. z1 is replaced with z i1). Gadgets

in the family M(i)(u1, u2, u3) can now be used to transform the third, fourth and fifth clause in the unsatisfiable formula C .
For instance, the clause {e, b} can be replaced with the clauses in M(1)(e, b, b). Observe that each clause in M(1)(e, b, b) is
a monotone 3-clause. To deal with the clauses in C consisting of two unnegated variables and one negated variable, we
introduce a second gadget M(i)(u1, u2, u3) which is obtained from M(i)(u1, u2, u3) by negating each literal.

Finally, we are in a position to construct an unsatisfiable instance U of Monotone 3-Sat-(2, 2):

U = {{a, d, f }, {b, d, e}} ∪ M(1)(e, b, b) ∪ M(2)(d, f , c) ∪ M(3)(a, c, e)

∪ M(4)(e, c, c) ∪ M(5)(d, a, b) ∪ M(6)(a, f , f)

∪

⋃
i∈{1,5,6}

{{x1i , x
2
i , x

3
i }, {x

4
i , x

5
i , x

6
i }}

∪ {{y16, y
2
6, y

3
6}, {y

4
6, y

5
6, y

6
6}, {z

1
15, z

2
15, z

3
15}, {z

4
15, z

5
15, z

6
15}}

We note that the clauses in

U ′
= {{a, d, f }, {b, d, e}} ∪ M(1)(e, b, b) ∪ M(2)(d, f , c) ∪ M(3)(a, c, e) ∪

M(4)(e, c, c) ∪ M(5)(d, a, b) ∪ M(6)(a, f , f)

form an unsatisfiable instance of Monotone 3-Sat-(≤ 2, ≤ 2); the purpose of the other clauses in U is to obtain the
precise variable bounds on unnegated and negated appearances. Note that it is also possible to obtain an unsatisfiable
instance of Monotone 3-Sat-(2, 2) by increasing the variable appearances in U ′ using the construction in Section 3, but
the resulting instance contains more variables (resp. clauses) than U . Now, since the formula C is unsatisfiable, there is at
least one gadget containing only literals of variables in {a, b, c, d, e, f } that evaluate to F . Hence, this gadget is equivalent
to M or M (the latter is obtained from the former by negating each literal) depending on whether it belongs to the family
M(i)(u1, u2, u3) or to the family M(i)(u1, u2, u3).

By counting the variables in U , we obtain the following proposition.

Proposition 2. There is an unsatisfiable instance of Monotone 3-Sat-(2, 2) with 198 variables and 264 clauses.

4.2.2. NP-completeness of Monotone 3-Sat-(2, 2)

The existence of an unsatisfiable instance of Monotone 3-Sat-(2, 2) (see Proposition 2) allows us to derive
NP-completeness of the problem. For that purpose, we will make use of the following lemma. We note that the union
operator for multisets used in the following lemma refers to what is also called the sum of multisets, where the multiplicity
of an element in the union is obtained by taking the sum of the corresponding multiplicities in the involved sets.

Lemma 4. Given an unsatisfiable instance of Monotone 3-Sat-(2, 2), we can construct a gadget MCSat,L where

• CSat is a set of monotone 3-clauses over a set of variables V ,
• L is a multiset of the literals LV = {xi, xi | xi ∈ V },

such that the following three conditions are met:

(M1) CSat is satisfiable. Moreover, each truth assignment β: V → {T , F} that satisfies CSat does not satisfy any of the literals
contained in L.

(M2) Let L = L+ ∪ L− be the partition of L where L+ contains the positive literals, and L− contains the negative literals.
Then, we have |L+| = |L−| = 3q for some fixed integer q ≥ 1.

(M3) Let LCSat denote the multiset of literals that appear in CSat. Then, for each variable x ∈ V , LCSat ∪ L contains x exactly
twice as a positive literal and exactly twice as a negative literal.

Proof. Given an unsatisfiable instance of Monotone 3-Sat-(2, 2), let C ′ denote the corresponding set of clauses over
variables V ′

= {x′

1, . . . , x
′
n}. Then, there is a strict subset C ′

Sat ⊊ C ′ such that C ′

Sat is satisfiable and C ′

Sat ∪{c} is unsatisfiable
for all c ∈ C ′

\C ′

Sat. Now, each variable that appears in C ′
\C ′

Sat has a forced truth value, i.e., if x′

i appears negated (unnegated)
in C ′

\ C ′

Sat, then any satisfying truth assignments for C ′

Sat sets x′

i true (false). Otherwise, there a satisfying assignment for
C ′

Sat such that a clause in C ′
\ C ′

Sat is satisfied which is a contradiction since, by construction, such a clause does not exist.
Also observe that no variable appears both negated and unnegated in C ′

\ C ′

Sat. Let L′
+

denote the multiset containing
the positive literals appearing in C ′

\ C ′

Sat and L′
−

the multiset containing the negative literals (e.g., if a negative literal ℓ

appears twice in C ′
\ C ′

Sat, then L′
−

contains two copies of ℓ). Since all clauses contain exactly three distinct literals, the
number of literals in L′

−
∪ L′

+
is divisible by 3. Observe that we can only guarantee that L′

+
̸= ∅ or L′

−
̸= ∅. Therefore,

we introduce a copy of C ′ denoted by C ′′ (where the copy of C ′

Sat is denoted by C ′′

Sat) over new variables V ′′
= {x′′

1, . . . , x
′′
n},

52

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

where we negate each literal. Observe that C ′′ is an instance of Monotone 3-Sat-(2, 2). With L′′
+
and L′′

−
defined as above,

the clauses

CSat = C ′

Sat ∪ C ′′

Sat (1)

force all literals in

L = L′

+
∪ L′′

+
∪ L′

−
∪ L′′

−
(2)

to be set to false. By construction, we have

|L′

+
∪ L′′

+
| = |L′

−
∪ L′′

−
| = 3q

with q ≥ 1. It is now straightforward to verify that the gadgetMC,L with C and L as defined in Eqs. (1) and (2), respectively,
has properties (M1), (M2) and (M3). □

Theorem 3. Monotone 3-Sat-(2, 2) is NP-complete.

Proof. We sketch a polynomial reduction from Monotone 3-Sat-(3, 3), for which NP-hardness is stated in Corollary 4,
with clauses over a set of variables V = {x1, x2, . . . , xn}. For each variable xi ∈ V , we replace each appearance with a
separate new variable xi,s, 1 ≤ s ≤ 6, such that the positive literal xi is replaced with xi,1, xi,3 and xi,5, respectively, and
the negative literal xi is replaced with xi,2, xi,4 and xi,6, respectively. We denote the resulting set of clauses by C . Next, for
each i ∈ {1, . . . , n}, we introduce the following clauses

Ci = {{xi,1, xi,2}, {xi,2, xi,3}, {xi,3, xi,4}, {xi,4, xi,5}, {xi,5, xi,6}, {xi,6, xi,1}},

which are equivalent to the following cyclic chain of implications

xi,1 ⇒ xi,2 ⇒ xi,3 ⇒ xi,4 ⇒ xi,5 ⇒ xi,6 ⇒ xi,1.

Hence, a truth assignment β satisfies these clauses if and only if

β(xi,1) = β(xi,3) = β(xi,5) ̸= β(xi,2) = β(xi,4) = β(xi,6)

for all i ∈ {1, 2, . . . , n}. Observe that each variable xi,s appears exactly once unnegated and exactly once negated in Ci
and exactly once unnegated in the remaining clauses. In order to increase the number of negated appearances of each
variable by one, we introduce

C ′

i = {{xi,1, xi,2, xi,6}, {xi,3, xi,4, xi,5}}

for each i ∈ {1, 2, . . . , n}. Recall that a truth assignment that satisfies Ci assigns different truth values to xi,s and xi,t , where
s ∈ {1, 3, 5} and t ∈ {2, 4, 6}. Hence, a truth assignment that satisfies Ci also satisfies C ′

i .
Finally, we deal with the 2-clauses introduced above. Consider an unsatisfiable instance of Monotone 3-Sat-(2, 2), and

apply Lemma 4 and the gadget MCSat,L used in that lemma. Recall that the corresponding set of clauses CSat can be satisfied
only by assignments that do not satisfy any of the literals contained in the multiset L. Further, the multiset L contains
exactly 3q positive and exactly 3q negative literals for some fixed integer q ≥ 1. Note that if we knew that q = 1, then
we could simply use n instances of this gadget to pad all 2-clauses, i.e.,

⋃n
i=1 Ci, since each Ci contains exactly 3 positive

and exactly 3 negative 2-clauses. As we cannot make this assumption, we solve the parity problem as follows. First, we
replace the clauses

C = C ∪

n⋃
i=1

(
Ci ∪ C ′

i

)
with q copies C1, C2, . . . , Cq such that the variables of the kth copy are

Vk = {xki,s | 1 ≤ i ≤ n and 1 ≤ s ≤ 6}.

Now, the set of clauses
⋃q

i=1 Ci contains exactly q · 3n negative 2-clauses and exactly q · 3n positive 2-clauses. Then, we
use n instances of the gadget MCSat,L, where each instance has their own new variables, to pad these 2-clauses. To be
precise, we introduce the set of clauses

⋃n
i=1 C

i
Sat, where C i

Sat is the set of clauses corresponding to the ith instance of the
gadget. The corresponding multiset of literals is

⋃n
i=1 Li and, by Property (M2), contains exactly n ·3q positive literals and

exactly n · 3q negative literals. Hence, we can pair each positive (resp. negative) 2-clause with exactly one positive (resp.
negative) literal that evaluates to false by Property (M1). Note that this is a one-to-one correspondence. Finally, replace
each 2-clause with this union of the 2-clause with the paired literal. By construction and Property (M3) in Lemma 4,
the resulting instance is indeed an instance of Monotone 3-Sat-(2, 2). It is straightforward to verify that the instance of
Monotone 3-Sat-(2, 2) is satisfiable if and only if the given instance of Monotone 3-Sat-(3, 3) is satisfiable. □

Hence, with Theorem 1 and Corollary 1, respectively, we can derive the following two corollaries.

53

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

Corollary 5. Monotone 3-Sat-(p, q) is NP-complete for each fixed pair

(p, q) ∈ {(r, s), (s, r) | r ≥ 2, s ≥ 2}.

Corollary 6. Monotone 3-Sat-(k, k) is NP-complete for all k ≥ 2.

5. Monotone 3-Sat with exactly one negated appearance per variable

In this section Monotone 3-Sat is analyzed restricted to instances in which each variable appears exactly once negated.
We settle the computational complexity status of Monotone 3-Sat-(k, 1) for each fixed k ≥ 5. We do not answer the
question of its computational complexity for k ∈ {3, 4}, which, to the best of our knowledge, is still open. However, for
k ∈ {3, 4} we can show that when restricted to a ‘‘small’’ number of unnegated appearances each instance of Monotone
3-Sat-(k, 1) is satisfiable.

5.1. On Monotone 3-Sat-(k, 1) for k ≥ 5

It will be useful to introduce some additional notation. Let V be a set of variables and C, C ′
⊆ P(V) non-empty sets

of clauses, where P(V) denotes the power set of V . We say that C subsumes C ′ if for each clause c ′
∈ C ′ there is a clause

c ∈ C such that c ⊆ c ′. Consequently, if C is satisfiable and subsumes C ′, then C ′ is satisfiable. On the other hand, if C ′ is
unsatisfiable, then so is C .

We begin with Lemma 5 which will be used for proving the computational complexity result forMonotone 3-Sat-(k, 1)
for k ≥ 5.

Lemma 5. Let D(X) with X = (x1, x2, . . . , x6) be the following set of clauses, where Vaux = {a, b, . . . , i} are new variables.

1. {ā, b̄, c̄}
2. {d̄, ē, f̄ }
3. {ḡ, h̄, ī}
4. {a, f , g}

5. {a, f , h}
6. {a, f , i}

7. {b, d, g}

8. {b, d, h}
9. {b, d, i}

10. {c, e, g}

11. {c, e, h}
12. {c, e, i}

13. {a, d, x1}
14. {a, e, x2}
15. {b, e, x3}
16. {b, f , x4}
17. {c, d, x5}
18. {c, f , x6}

Then, a truth assignment β for X can be extended to a truth assignment β ′ for X ∪ Vaux that satisfies D(X) if and only if
β(xi) = T for at least one xi ∈ X.

Proof. First, let β(xi) = F for each xi ∈ X . Then, D(X) can be simplified by removing the variables x1, . . . , x6 from
clauses 13–18 (consequently, these clauses become 2-clauses). Let D(∅) denote the resulting set of clauses. Since each
variable in Vaux appears only once negated, we can assume that a truth assignment that satisfies D(X) assigns the truth
value false to exactly one variable of each negative clause (the corresponding literal evaluates to true). Hence, clauses 1,
2 and 3 in conjunction with the following set of 33

= 27 clauses

U = {{u, v, w} | (u, v, w) ∈ {a, b, c} × {d, e, f } × {g, h, i}}

are unsatisfiable. Now, we show that D(∅) subsumes U . Observe that the clauses 4–18 in D(∅) subsume pairwise disjoint
subsets of U . Further, each of the clauses 4–12, say cj, subsumes the subset {cj} of U and each of the clauses 13–18
subsumes a subset of size exactly 3 (e.g. clause 13 subsumes {{a, d, g}, {a, d, h}, {a, d, i}}). It follows that clauses 4–18
subsume a subset U ′

⊆ U with 27 distinct clauses. Thus, we have U ′
= U , which means that D(∅) subsumes U . Hence,

D(∅) is unsatisfiable and β cannot be extended to a truth assignment β ′ for X ∪ Vaux that satisfies D(X).
Second, let β(xi) = T for some xi ∈ X . Then, the set Usat of clauses of U that are not subsumed by D(∅) with the

satisfied clause (resp. clauses) removed is non-empty. More precisely, for each variable in X that is true, we have a subset
of size 3 that is not subsumed (recall that clauses 4–18 in D(∅) subsume pairwise disjoint subsets of U). Now, each clause
{u, v, w} ∈ Usat induces a truth assignment β ′ for X ∪ Vaux as follows: Set u, v, w to false and all other variables in Vaux
to true. By construction, each negative clause in D(X) is satisfied by setting the variables contained in an element of U
to false. Further, each remaining positive clause (i.e., after removing clauses satisfied by β) contains at least one variable
z ̸∈ {u, v, w}, and thus is satisfied. Hence, β ′ satisfies D(X). □

Let y be a new variable. By construction, the set of clauses

F(y) = D(X1) ∪ D(X2) ∪ D(X3) ∪ {{u1, u2, u3}},

with new variables u1, u2, u3 and Xi = (y, ui, ui, ui, ui, ui) for i ∈ {1, 2, 3} forces y to true, where D(Xi) refers to the set of
clauses in Lemma 5. Note that each new variable except y appears at most five times unnegated and once negated and

54

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

y appears exactly three times unnegated. We can use the gadget F(y) to obtain a second gadget that forces some new
variable z to false:

F ′(z̄) = {{z̄, v, w}} ∪ F(v) ∪ F(w).

Observe that each variable of F ′(z̄) appears at most five times unnegated and once negated; and z has no unnegated
appearance.

We point out that with the help of the above gadget F(y) we can construct an unsatisfiable instance of Monotone
3-Sat-(≤ 5, 1) as follows:

F(y1) ∪ F(y2) ∪ F(y3) ∪ {{y1, y2, y3}}.

Hence, we get the following proposition.

Proposition 3. There exists an unsatisfiable instance of Monotone 3-Sat-(≤ 5, 1) with 166 clauses and 93 variables.

In fact, we are ready to prove hardness of Monotone 3-Sat-(≤ 5, 1). Consider the reduction from 3-Sat-(2, 2) in the
proof of Theorem 2 and replace the enforcers H and H′ by the enforcers F and F ′ defined above. Then we obtain the
following theorem.

Theorem 4. Monotone 3-Sat-(≤ 5, 1) is NP-complete.

Observe that, for any k, Monotone 3-Sat-(≤ k, 1) and Monotone 3-Sat-(≤ k, ≤ 1) are polynomially equivalent,
since any clause containing a variable that appears only unnegated can be removed from the formula without affecting
satisfiability. Hence, with that observation and the above theorem Corollary 1 implies hardness of Monotone 3-Sat-(k, 1),
for any choice of k ≥ 5.

Corollary 7. Monotone 3-Sat-(k, 1) is NP-complete for all k ≥ 5.

5.2. On Monotone 3-Sat-(3, 1) and Monotone 3-Sat-(4, 1)

We now discuss some properties of Monotone 3-Sat-(k, 1), and conclude the section with two corollaries stating that
for certain ‘‘small’’ numbers of variable appearances each instance of Monotone 3-Sat-(3, 1) and Monotone 3-Sat-(4, 1)
is satisfiable.

Let V = {x1, x2, . . . , xn} be a set of variables. First, the number of variables n = |V | is divisible by 3 since otherwise
there is a negative clause containing less than three variables. Second, we can restrict our attention to truth assignments
that set exactly one literal in each negative clause to true (i.e., the corresponding variable to false), since we can simply
modify any satisfying truth assignment to meet that requirement. Moreover, we can assume that (after relabeling) the
negative clauses are

{x1, x2, x3}, {x4, x5, x6} . . . , {xn−2, xn−1, xn}.

Hence, we can represent any truth assignment of interest by a tuple

(xi1 , . . . , xi n
3
) ∈ {x1, x2, x3} × {x4, x5, x6} × · · · × {xn−2, xn−1, xn},

such that the corresponding truth assignment β: V → {T , F} is defined as β(xj) = F if and only if j ∈ {i1, i2, . . . , i n3 }. It is
convenient to define

Mn = {{xi1 , . . . , xi n
3
} | (xi1 , . . . , xi n

3
) ∈ {x1, x2, x3} × · · · × {xn−2, xn−1, xn}}

which represents the truth assignments that set exactly one literal in each negative clause to true (in an instance of
Monotone 3-Sat-(k, 1) with n variables).

We are now in a position to establish the following theorem. The corresponding proof using a probabilistic argument
(cf. Gebauer et al. [10]) has been brought to our attention by an anonymous referee and provides a more concise way to
obtain this result compared to our original proof (cf. [4]). We remark that the given bound is the best possible since there
is an unsatisfiable instance with 27 positive 3-clauses (presented in the proof of Lemma 5).

Theorem 5. Let V = {x1, x2, . . . , xn} be a set of variables. An instance of Monotone 3-Sat with a collection of clauses

C = {{x1, x2, x3}, {x4, x5, x6} . . . , {xn−2, xn−1, xn}} ∪ C+,

where C+ is a collection of positive 3-clauses and |C+
| < 27 is satisfiable.

55

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

Proof. As alluded to above, it is sufficient to consider truth assignments represented by

Mn = {{xi1 , . . . , xi n
3
} | (xi1 , . . . , xi n

3
) ∈ {x1, x2, x3} × · · · × {xn−2, xn−1, xn}}

that set exactly one variable in each negative clause to false. Now, consider a truth assignment βr : V → {T , F} sampled
from the uniform distribution on Mn. Without loss of generality, we can assume that no clause in C+ contains more than
one variable from each group {x3i−2, x3i−1, x3i}, 1 ≤ i ≤

n
3 (each truth assignment in Mn satisfies any clause with at least

two variables from the same group). Noting that βr (v) = F with probability 1
3 for each v ∈ V , the probability that βr

does not satisfy a clause is then given by
(1
3

)3
=

1
27 . By linearity of expectation, the formula C is not satisfied by βr with

probability∑
c∈C+

1
27

=
|C+

|

27
< 1.

Hence, there is a positive probability that the random truth assignment βr satisfies the formula C . Thus, C is satisfiable. □

Corollary 8. Each instance of Monotone 3-Sat-(4, 1) with less than 21 variables is satisfiable.

Corollary 9. Each instance of Monotone 3-Sat-(3, 1) with less than 27 variables is satisfiable.

6. On a restricted variant of Monotone 3-Sat-E4

Finally, we consider Monotone 3-Sat-E4, i.e., with exactly four appearances of each variable. We begin this short
section with the following lemma.

Lemma 6. Consider the following collection C(x, y) of monotone clauses, where Vaux = {a, b, . . . , h} are new variables.

1. {ā, c̄, ē}
2. {ā, c̄, f̄ }
3. {ā, d̄, ḡ}

4. {b̄, c̄, h̄}

5. {b̄, ē, ḡ}

6. {b̄, f̄ , ḡ}

7. {d̄, ē, h̄}
8. {d̄, f̄ , h̄}

9. {a, b, x}
10. {c, d, x}
11. {e, f , x}
12. {g, h, y}

Then, a truth assignment β for {x, y} can be extended to a truth assignment β ′ for {x, y} ∪ Vaux that satisfies C(x, y) if and
only if β(v) = T for at least one v ∈ {x, y}.

Proof. We show that this collection of clauses is unsatisfiable if x and y are both set to false. By clause 11 at least one of
e, f has to be set to true. As a consequence clauses 1, 2; 5, 6 and 7, 8 imply that the additional clauses i. {ā, c̄}; ii. {b̄, ḡ}

and iii. {d̄, h̄} would have to be satisfied as well. First consider any variable assignment β with β(g) = F :

β(g) = F 12.
⇒ β(h) = T iii.

⇒ β(d) = F 10.
⇒ β(c) = T i.

⇒ β(a) = F 9.
⇒ β(b) = T .

Thus, clause 4 is not satisfied. Now we consider the other case β(g) = T :

β(g) = T ii.
⇒ β(b) = F 9.

⇒ β(a) = T i.
⇒ β(c) = F 10.

⇒ β(d) = T .

Thus, clause 3 is not satisfied. Consequently, the collection of clauses is unsatisfiable if β(x) = β(y) = F . Without clause 12,
there is a satisfying truth assignment: Set all variables in {a, g, h} to false and all variables in {b, c, d, e, f } to true. Hence,
the collection of clauses is satisfiable if β(y) = T . Finally, if β(x) = T , we can satisfy all clauses by setting h to true and
all variables in {a, b, . . . , g} to false. □

Lemma 6 implies the following corollary, where C(·, ·) refers to the respective set of clauses introduced in Lemma 6.

Corollary 10. Consider the collection of clauses B(x, y, z) = C(u, x)∪C(v, y)∪C(w, z)∪{{ū, v̄, w̄}}, and let V be its associated
set of variables. Then, a truth assignment β for {x, y, z} can be extended to a truth assignment β ′ for V that satisfies B(x, y, z)
if and only if β(v) = T for at least one v ∈ {x, y, z}.

Corollary 11. Consider the collection of clauses B̄(x̄, ȳ, z̄) obtained from B(x, y, z) by replacing each literal with its negation,
and let V be its associated set of variables. Then, a truth assignment β for {x, y, z} can be extended to a truth assignment β ′

for V that satisfies B̄(x̄, ȳ, z̄) if and only if β(v) = F for at least one v ∈ {x, y, z}.

Remark. Each collection C(·, ·) of clauses has its own new auxiliary variables; also, each instance of a gadget B(x, y, z)
(resp. B̄(x̄, ȳ, z̄)) has its own new auxiliary variables (i.e., the variables that are not in {x, y, z}).

56

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

The above corollaries will be useful to prove thatMonotone 3-Sat-E4 is NP-complete even when restricted to instances
in which each variable appears either three times unnegated and once negated or three times negated and once unnegated.
The following theorem is based on the same reduction as the proofs of Theorems 2 and 4, respectively. Since we consider
a slightly different type of restriction here, and to make verification of the precise bounds on the variable appearances
easier, we included the complete proof again.

Theorem 6. Monotone 3-Sat-E4 is NP-complete even if each variable appears three times unnegated and once negated or
three times negated and once unnegated.

Proof. We show NP-hardness by reducing from 3-Sat-(2, 2), for which NP-hardness was established by Berman et al. [2,
Theorem 1]. Given an instance I of the latter with a set V of variables and a set C of clauses over V , let n := |V |. For
each variable xi ∈ V , we introduce two new variables xi,1, xi,2 and replace the two negated appearances with xi,1 and the
two unnegated appearances with xi,2, respectively. Then, we remove all negations and introduce the following clauses for
i ∈ {1, 2, . . . , n}, where zi and yi are new variables:

{{xi,1, xi,2, yi}, {xi,1, xi,2, zi}} ∪ B̄(yi, yi, yi) ∪ B(zi, zi, zi).

Let Vi denote the variables appearing in the clauses introduced above. By construction and Corollaries 10 and 11, a truth
assignment βi for {xi,1, xi,2} can be extended to a truth assignment β ′

i for Vi that satisfies these clauses if and only if
βi(xi,1) ̸= βi(xi,2). Now it is straightforward to verify that the constructed set of clauses is satisfiable if and only if the
given instance I is satisfiable.

By construction of B̄(yi, yi, yi) and B(zi, zi, zi), each variable in
⋃n

i=1 Vi appears three times unnegated and once negated
or three times negated and once unnegated. Moreover, each variable in

⋃n
i=1{xi,1, xi,2} appears once unnegated and once

negated in the introduced clauses, and twice unnegated in the original clause set. Also observe that, by construction, all
clauses are monotone. Hence, we constructed an instance of Monotone 3-Sat-E4 where each variable appears three times
negated and once unnegated or three times unnegated and once negated.

We conclude the proof by remarking that the transformation is polynomial. □

Finally, dropping the monotonicity condition we point out that Theorem 6 implies also an interesting hardness result
for 3-Sat-E4. For instance, replacing each variable x that appears negated exactly three times and unnegated exactly
once with a new variable z such that literal z replaces literal x̄ and literal z̄ replaces literal x, it follows that 3-Sat-E4 is
NP-complete even if each variable appears exactly three times unnegated and exactly once negated. An analogous result
follows for the case that each variable appears exactly three times negated and exactly once unnegated. Therewith, we
complement a result by Berman et al. [2] stating that 3-Sat-E4 is NP-complete even if each variable appears exactly
twice unnegated and exactly twice negated. We summarize these findings in terms of the corollary below (for the sake
of completeness, we include also the result by Berman et al. [2, Theorem 1]).

Corollary 12. 3-Sat-E4 is NP-complete even if either

• each variable appears exactly three times unnegated and once negated, or
• each variable appears exactly three times negated and once unnegated, or
• each variable appears exactly twice unnegated and twice negated [2].

7. Conclusion

We have shown that a restricted variant of Monotone 3-Sat-E4 is NP-complete, and that Monotone 3-Sat-(2, 2)
is NP-complete. In addition, our results show that in fact Monotone 3-Sat-(p, q) is NP-complete for each fixed pair
(p, q) ∈ {(r, s), (s, r) | r ≥ 2, s ≥ 2}.

In particular, Monotone 3-Sat-(k, k) is NP-complete for all k ≥ 2. By a result of Tovey [21, Theorem 2.4] the latter
problem is trivial for k = 1, i.e., all such instances are satisfiable. Therewith, for Monotone 3-Sat with balanced variable
appearances our results establish a sharp boundary between NP-complete and polynomial time solvable cases.

Another focus of the paper was laid on Monotone 3-Sat-(k, 1), where each variable appears exactly k times unnegated
and once negated. For this variant, we proved NP-completeness for all k ≥ 5. Again, by Tovey [21, Theorem 2.4] the
problem is trivial for k ≤ 2. The cases k = 3 and k = 4 are, to the best of our knowledge, open; we hence state the
following challenge for future research:

Challenge. Is Monotone 3-Sat-(k, 1) NP-hard for k ∈ {3, 4}?

CRediT authorship contribution statement

Andreas Darmann: Conceptualization, Writing - review & editing, Writing - original draft. Janosch Döcker: Concep-
tualization, Writing - review & editing, Writing - original draft.

57

A. Darmann and J. Döcker Discrete Applied Mathematics 292 (2021) 45–58

Acknowledgments

The authors are grateful for the diligent report and the useful hints – in particular for the findings presented in Section 3
– of an anonymous referee which improved (and shortened) the presentation of the paper significantly. In addition, the
authors would like to thank Britta Dorn for insightful comments on a draft containing the construction of an unsatisfiable
instance of Monotone 3-Sat-(2, 2).

References

[1] M. de Berg, A. Khosravi, Optimal binary space partitions for segments in the plane, Internat. J. Comput. Geom. Appl. 22 (03) (2012) 187–205.
[2] P. Berman, M. Karpinski, A.D. Scott, Approximation hardness of short symmetric instances of MAX-3SAT, in: Electronic Colloquium on

Computational Complexity, Report No. 49, 2003.
[3] S.A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, ACM,

1971, pp. 151–158.
[4] A. Darmann, J. Döcker, On simplified NP-complete variants of Not-All-Equal 3-SAT and 3-SAT, 2019, arXiv:1908.04198 [cs.CC].
[5] A. Darmann, J. Döcker, On a simple hard variant of Not-All-Equal 3-SAT, Theoret. Comput. Sci. 815 (2020) 147–152.
[6] A. Darmann, J. Döcker, B. Dorn, The monotone satisfiability problem with bounded variable appearances, Internat. J. Found Comput. Sci. 29

(06) (2018) 979–993.
[7] D. Devlin, B. O’Sullivan, Satisfiability as a classification problem, in: Proceedings of the 19th Irish Conference on Artificial Intelligence and

Cognitive Science, 2008.
[8] J. Döcker, Monotone 3-SAT-(2, 2) is NP-complete, 2019, arXiv:1912.08032 [cs.CC].
[9] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York,

1979.
[10] H. Gebauer, R.A. Moser, D. Scheder, E. Welzl, The Lovász local lemma and satisfiability, in: S. Albers, H. Alt, S. Näher (Eds.), Efficient Algorithms:

Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, Springer, 2009, pp. 30–54.
[11] M.E. Gold, Complexity of automaton identification from given data, Inf. Control 37 (3) (1978) 302–320.
[12] A. Horbach, T. Bartsch, D. Briskorn, Using a SAT-solver to schedule sports leagues, J. Sched. 15 (1) (2012) 117–125.
[13] H. Kautz, B. Selman, Pushing the envelope: Planning, propositional logic, and stochastic search, in: Proceedings of the 13th National Conference

on Artificial Intelligence (AAAI’96), AAAI Press, 1996, pp. 1194–1201.
[14] J. Kratochvíl, A special planar satisfiability problem and a consequence of its NP-completeness, Discrete Appl. Math. 52 (3) (1994) 233–252.
[15] W.N. Li, Two-segmented channel routing is strong NP-complete, Discrete Appl. Math. 78 (1–3) (1997) 291–298.
[16] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (2) (1982) 329–343.
[17] G. Nam, K.A. Sakallah, R.A. Rutenbar, Satisfiability-based layout revisited: Detailed routing of complex FPGAs via search-based Boolean SAT, in:

Proceedings of the ACM/SIGDA 7th International Symposium on Field Programmable Gate Arrays (FPGA ’99), ACM, 1999, pp. 167–175.
[18] D. Paulusma, S. Szeider, On the parameterized complexity of (k,s)-SAT, Inform. Process. Lett. 143 (2019) 34–36.
[19] A. Pilz, Planar 3-SAT with a clause/variable cycle, Discrete Math. Theor. Comput. Sci. 21 (3) (2019).
[20] S. Porschen, B. Randerath, E. Speckenmeyer, Linear time algorithms for some Not-All-Equal satisfiability problems, in: E. Giunchiglia, A. Tacchella

(Eds.), Theory and Applications of Satisfiability Testing (SAT 2003), Springer, 2004, pp. 172–187.
[21] C.A. Tovey, A simplified NP-complete satisfiability problem, Discrete Appl. Math. 8 (1) (1984) 85–89.

58

1 Accepted Manuscripts

1.7 On a simple hard variant of Not-All-Equal 3-SAT

The following paper [DD20] is also available online at the following URL: https://doi.

org/10.1016/j.tcs.2020.02.010.

177

https://doi.org/10.1016/j.tcs.2020.02.010
https://doi.org/10.1016/j.tcs.2020.02.010

Theoretical Computer Science 815 (2020) 147–152

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note

On a simple hard variant of Not-All-Equal 3-Sat
✩

Andreas Darmann a, Janosch Döcker b,∗
a Institute of Public Economics, University of Graz, Austria
b Department of Computer Science, University of Tübingen, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 August 2019
Received in revised form 5 January 2020
Accepted 8 February 2020
Available online 11 February 2020
Communicated by L.M. Kirousis

Keywords:
Not-All-Equal 3-Satisfiability
Linear formulas
Bounded variable appearances
Computational complexity

We consider a simplified version of Not-All-Equal 3-Sat, a variation of the famous
Satisfiability problem, where each clause is made up of exactly three distinct literals and
the question is whether there exists a truth assignment such that for each clause at least
one literal is set to true and at least one is set to false. We show that Not-All-Equal

3-Sat remains NP-complete if (1) each variable appears exactly four times, (2) there are
no negations in the formula, and (3) the formula is linear, i.e., each pair of distinct clauses
shares at most one variable. Therewith, we improve upon two results in the literature.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We consider a simplified variant of the Satisfiability problem, a classical and fundamental problem in computer science
of significant theoretical and practical relevance, with applications in various fields such as, e.g., artificial intelligence (Kautz
and Selman [5]), routing (Nam et al. [6]), or scheduling (Horbach et al. [3]).

In this work we are concerned with the Not-All-Equal Satisfiability problem, which asks whether there is a truth
assignment such that for each clause at least one literal evaluates to true and at least one to false, respectively. As a
consequence of Schaefer’s dichotomy theorem [9] Not-All-Equal Satisfiability is NP-complete even if each clause is made
up of three literals. In what follows, we refer to Not-All-Equal 3-Sat as the restriction of Not-All-Equal Satisfiability

to formulas in which each clause contains exactly three distinct literals, and to Not-All-Equal 3-Sat* as the restriction to
formulas with three—not necessarily distinct—literals per clause.

The focus of this work is laid on the simplified variant Monotone Not-All-Equal 3-Sat, which restricts Not-All-Equal

3-Sat to monotone1 instances in which negations are completely absent.
Dehghan et al. [2] show that Monotone Not-All-Equal Satisfiability remains NP-complete if each variable appears un-

negated exactly three times, and each clause is a disjunction of either two or three distinct variables. In contrast, Monotone
Not-All-Equal 3-Sat can be solved in polynomial time in case that each variable appears exactly three times (Porschen
et al. [7, Theorem 4]) and the corresponding proof can be adapted to show that the result also holds if each variable ap-
pears at most three times [7, p. 186]. However, Porschen et al. [8] show that Monotone Not-All-Equal 3-Sat is NP-complete
even for linear instances, where each pair of distinct clauses shares at most one variable. In this paper we improve upon

✩ A preliminary version of this paper is contained in the online preprint [1] on arXiv.

* Corresponding author.
E-mail addresses: andreas.darmann@uni-graz.at (A. Darmann), janosch.doecker@uni-tuebingen.de (J. Döcker).

1 We point out that monotonicity has different meanings for 3-Satisfiability and Not-All-Equal 3-Satisfiability.

https://doi.org/10.1016/j.tcs.2020.02.010
0304-3975/© 2020 Elsevier B.V. All rights reserved.

148 A. Darmann, J. Döcker / Theoretical Computer Science 815 (2020) 147–152

the result of Porschen et al. [8] by showing that Monotone Not-All-Equal 3-Sat remains NP-complete even if further sim-
plified to linear instances in which each variable appears exactly four times. Therewith, we also improve upon a result of
Karpinski and Piecuch [4], who show that Not-All-Equal 3-Sat* (possibly with duplicates of literals in the same clause) is
NP-complete even if each variable appears at most 4 times in the formula. We point out that our main result can be used
not only for simplifying NP-hardness proofs of new or well-known problems but also for showing NP-hardness in restricted
settings such as, e.g., proving NP-hardness of Hypergraph 2-Colorability for linear, 3-uniform, 4-regular hypergraphs.2

2. Formal framework

Let V = {x1, . . . , xn} denote a finite set of (propositional) variables. A literal is either a variable x or a negated variable x;
let LV = {x, x | x ∈ V } denote the set of literals. A clause is a set of literals, i.e., a subset of LV . A k-clause contains exactly
k distinct literals. A clause is monotone if all of its contained variables are unnegated. A Boolean formula C in conjunctive
normal form (CNF) is a finite set of m clauses, i.e., C = {c1, . . . , cm}. We denote the total number of appearances of a variable
x ∈ V in a formula C by a(x). A Boolean formula is linear if all pairs of distinct clauses share at most one variable.

A truth assignment β for the set of variables V is a mapping β : V → {T , F }, i.e., assigns to each variable the value
“true” (T) or “false” (F). In order to extend β to a truth assignment on literals, we set β(xi) = T if β(xi) = F and β(xi) = F
otherwise. A truth assignment satisfies a clause c j if β(x) = T for at least one x ∈ c j . A truth assignment nae-satisfies a clause
c j if there are literals x, x′ ∈ c j such that β(x) �= β(x′). A truth assignment satisfies (nae-satisfies) a Boolean formula C in
CNF if it satisfies (nae-satisfies) all clauses in C . We say that a truth assignment β ′ for V ′ extends a truth assignment β for
V if V ⊆ V ′ and β ′(x) = β(x) for all x ∈ V .

Finally, abbreviating Not-All-Equal 3-Sat with NAE-3-Sat, we state the considered decision problem Monotone NAE-
3-Sat-E4: Given a set V of variables and a collection C of monotone 3-clauses over V such that every variable appears in
exactly four clauses, is there a truth assignment for V that nae-satisfies C?

3. A simple hard variant of NOT-ALL-EQUAL 3-SAT

We begin with proving NP-completeness of Monotone NAE-3-Sat-E4 in Section 3.1. This result, in turn, is then used
in Section 3.2 to derive the even stronger result that Monotone NAE-3-Sat-E4 remains NP-complete even when restricted
to linear formulas. Since membership in NP is obvious, the NP-completeness proofs in this paper reduce to showing NP-
hardness.

3.1. Hardness of Monotone NAE-3-Sat-E4

For our first result, NP-completeness of Monotone NAE-3-Sat-E4, we give two different proofs. The reason for doing so
is that the first proof has the advantage of being relatively simple, while featuring the drawback of using an auxiliary gadget
to increase the number of variable appearances; the latter is avoided in the second proof.

Theorem 1. Monotone NAE-3-Sat-E4 is NP-complete.

Proof 1 of Theorem 1. We show NP-hardness of Monotone NAE-3-Sat-E4 by reduction from Monotone NAE-3-Sat (see,
e.g., Porschen et al. [8, Theorem 3] for a proof that the latter problem is NP-complete). Let I = (V , C) be an instance of
Monotone NAE-3-Sat. Let n := |V | denote the number of variables, m := |C | the number of clauses and recall that a(xi)

denotes the number of appearances of a variable xi ∈ V in the formula C . Further, let the set of variables be given as
V := {x1, x2, . . . , xn}.

For each variable xi , we replace the jth appearance with a new variable xi, j and introduce the clauses

EQ(xi,a(xi), xi,1) ∪
a(xi)−1⋃

j=1

EQ(xi, j, xi, j+1),

where EQ(xi,s, xi,t) is an equality gadget (a set of clauses) enforcing that xi,s and xi,t are mapped to the same truth value
by any satisfying assignment. More precisely, a truth assignment β for {xs, xt} can be extended to a truth assignment β ′
for all variables appearing in EQ(xi,s, xi,t) that nae-satisfies EQ(xi,s, xi,t) if and only if β(xi,s) = β(xi,t). We construct this
gadget in two steps. First, we define a non-equality gadget enforcing that two variables are set to different truth values in
any nae-satisfying truth assignment.

Consider the set of clauses

NE(x, y) := {{x, y,a}, {x, y,b}, {a,b, u}, {a,b, v}, {a,b, w}, {u, v, w}},

2 See Porschen et al. [8] for more details on the connection between Monotone Not-All-Equal Satisfiability and Hypergraph 2-Colorability (resp. Set
Splitting) and related hardness results in the linear setting.

A. Darmann, J. Döcker / Theoretical Computer Science 815 (2020) 147–152 149

where a, b, u, v, w are new variables not appearing anywhere else, e.g., the clause sets NE(x, y) and NE(y, z) do not have
any common variables except of y. In order to nae-satisfy the last clause in NE(x, y), at least one of u, v, w is set to true and
at least one of them is set to false. Hence, by construction of the three preceding clauses, a and b are set to different truth
values. Then, due to the first two clauses x and y are set to different truth values in any truth assignment that nae-satisfies
NE(x, y). Now, the equality gadget is defined as

EQ(x, y) := NE(p,q) ∪ NE(p, r) ∪ {{x,q, r}, {y,q, r}},
where p, q and r are new variables not appearing anywhere else. Note that by construction of the two non-equality gadgets,
q and r are set to the same truth value. Hence, due to the two last clauses, x and y are set to the same truth value. By
symmetry of nae-satisfying truth assignments, we can, thus, extend any truth assignment β for {x, y} with β(x) = β(y) to
a truth assignment that nae-satisfies EQ(x, y).

Note that each variable xi, j appears in two equality gadgets, once in each gadget, and in exactly one clause of the original
instance. Moreover, each introduced variable appears in at most four clauses. With the following gadget, we can increase
the appearances of a variable by one, while only introducing variables with exactly four appearances. Let

P1(x) := {{x,a,b}, {a, c,d}, {a,b, e}, {a,d, e}, {b, c,d}, {b, c, e}, {c,d, e}},
where a, b, c, d, e are new variables not appearing anywhere else. Note that these clauses are satisfiable independently of
the truth value of x by setting each variable in {a, c, e} true and each variable in {b, d} false. Now, we can use this gadget
to increase the appearances of each variable until it appears exactly four times. The number of introduced variables and
clauses is clearly polynomial and the verification of the reduction is straightforward. �

We now present a second proof for Theorem 1 which reduces from the more general NAE-3-Sat* problem and does not
require a separate gadget to increase the number of variable appearances. The proof will make use of the two following
lemmata.

Lemma 1. Let NE(x, y) be the following set of clauses, where V aux = {a, b, . . . , f } are new variables.

1. {x, a, b}
2. {y, c, d}
3. {y, e, f }

4. {c, e, f }
5. {b, c, e}
6. {a, c, f }

7. {a, d, e}
8. {a, b, d}
9. {b, d, f }

Then, a truth assignment β for {x, y} can be extended to a truth assignment β ′ for {x, y} ∪ V aux that nae-satisfies NE(x, y) if and
only if β(x) �= β(y).

Proof. First, we can nae-satisfy all clauses in NE(x, y) by setting all variables in {x, c, d, e} true (resp. false) and all variables
in {y, a, b, f } false (resp. true). Second, assume towards a contradiction that there is an nae-satisfying assignment β with
β(x) = β(y) = T . We consider all four possible assignments of the variables a and c to truth values.

Case β(a) = F , β(c) = F : By clause 6 we have β(f) = T . Then, by clause 3 we have β(e) = F . By clauses 5 and 7 we have
β(b) = T and β(d) = T , respectively. Hence, all literals in clause 9 evaluate to true, i.e., β does not nae-satisfy clause 9.

Case β(a) = F , β(c) = T : By clause 2 we have β(d) = F . Then, by clauses 7 and 8 we have β(e) = T and β(b) = T , respec-
tively. By clause 5 we have β(b) = F . Thus, we have β(b) �= β(b), a contradiction.

Case β(a) = T , β(c) = F : By clause 1 we have β(b) = F . Then, by clause 5 we have β(e) = T . By clause 7 we have β(d) = F .
Then, by clause 9 we have β(f) = T . Hence, all literals in clause 3 evaluate to true, i.e., β does not nae-satisfy clause 3.

Case β(a) = T , β(c) = T : By clauses 1, 2 and 6 we have β(b) = F , β(d) = F and β(f) = F , respectively. Hence, all literals in
clause 9 evaluate to false, i.e., β does not nae-satisfy clause 9.

By symmetry of nae-satisfying truth assignments, there is no nae-satisfying assignment β with β(x) = β(y) = F . �

Lemma 2. Let EQ(x, y) be the following set of clauses, where V aux = {a, b, . . . , i} are new variables.

1. {x, a, b}
2. {y, c, d}
3. {y, e, f }

4. {a, c, g}
5. {a, e, d}
6. {a, h, i}

7. {b, e, h}
8. {b, f , h}
9. {b, g, i}

10. {c, e, i}
11. {c, f , g}
12. {d, g, h}

13. {d, f , i}

Then, a truth assignment β for {x, y} can be extended to a truth assignment β ′ for {x, y} ∪ V aux that nae-satisfies EQ(x, y) if and
only if β(x) = β(y).

150 A. Darmann, J. Döcker / Theoretical Computer Science 815 (2020) 147–152

Proof. First, we can nae-satisfy all clauses in EQ(x, y) by setting all variables in {x, y, e, g, h, i} true (resp. false) and all
variables in {a, b, c, d, f } false (resp. true). Hence, we can extend a truth assignment β for {x, y} to a truth assignment β ′
for {x, y} ∪ V aux that nae-satisfies EQ(x, y) if β(x) = β(y).

Second, assume towards a contradiction that β(x) = F and β(y) = T for a truth assignment β that nae-satisfies EQ(x, y).

Case β(a) = F , β(c) = F : By clauses 1 and 4 we have β(b) = T and β(g) = T , respectively. Then, by clause 9 we have
β(i) = F . By clauses 6 and 10 we have β(h) = T and β(e) = T , respectively. But then all literals in clause 7 evaluate to true,
i.e., β does not nae-satisfy clause 7, a contradiction to our assumption.

Case β(a) = F , β(c) = T : By clauses 1 and 2 we have β(b) = T and β(d) = F , respectively. Then, by clause 5 we have
β(e) = T . By clauses 7 and 10 we have β(h) = F and β(i) = F , respectively. Therewith all literals in clause 6 evaluate to
false and hence β does not nae-satisfy clause 6, a contradiction.

Case β(a) = T , β(c) = F :

• Case β(e) = F : By clause 10 we have β(i) = T . Then, by clause 6 we have β(h) = F . By clause 7 we have β(b) = T . Then,
by clause 9 we have β(g) = F . By clause 12 we have β(d) = T . Then, by clause 13 we have β(f) = F . This, however,
implies that β does not nae-satisfy clause 11, a contradiction.

• Case β(e) = T : By clauses 3 and 5 we have β(f) = F and β(d) = F , respectively. Then, by clauses 13 and 11 we have
β(i) = T and β(g) = T , respectively. By clauses 9 and 6 we have β(b) = F and β(h) = F , respectively. Hence, β does
not nae-satisfy clause 8, in contradiction with our assumption.

Case β(a) = T , β(c) = T : By clauses 2 and 4 we have β(d) = F and β(g) = F , respectively. Then, by clause 12 we have
β(h) = T . By clause 6 we have β(i) = F . Then, by clauses 13 and 9 we have β(f) = T and β(b) = T , respectively. Thus, β
does not nae-satisfy clause 8, a contradiction.

Hence, there is no truth assignment β with β(x) = F and β(y) = T that nae-satisfies EQ(x, y). By symmetry of nae-
satisfying truth assignments, there is also no truth assignment β with β(x) = T and β(y) = F that can be extended to a
truth assignment that nae-satisfies EQ(x, y). �

Now, we have the tools we need for our second proof of Theorem 1.

Proof 2 of Theorem 1. We show NP-hardness by reduction from NAE-3-Sat*. NP-completeness of NAE-3-Sat* was estab-
lished by Schaefer [9]. Let I = (V , C) be an instance of NAE-3-Sat*. Let n := |X | denote the number of variables, m := |C |
the number of clauses and recall that a(xi) denotes the number of appearances of a variable xi ∈ V in the formula C .
Further, let the set of variables be given as V := {x1, x2, . . . , xn}.

For each variable xi ∈ V , we replace the jth appearance with a new variable xi, j , such that xi, j is unnegated for j ≤ u(xi)

and negated for j > u(xi), where u(xi) ∈ {0, 1, . . . , a(xi)} is the number of unnegated appearances of xi in C . First, we
make sure that, for each xi ∈ V , all variables in {xi, j | j ≤ u(xi)} are mapped to the same truth value in any nae-satisfying
assignment by introducing the clauses

n⋃

i=1

u(xi)−1⋃

j=1

E Q (xi, j, xi, j+1),

where E Q (xi, j, xi, j+1) is the equality gadget defined in Lemma 2. Second, we do the same for the variables in {xi, j | j >
u(xi)}, i.e., we introduce the clauses

n⋃

i=1

a(xi)−1⋃

j=u(xi)+1

E Q (xi, j, xi, j+1).

Now, we delete all negations and make sure that xi, j and xi, j′ with j ≤ u(xi) and j′ > u(xi) are to be mapped to different
truth values by introducing

⋃

1≤i≤n
u(xi)/∈{0,a(xi)}

N E(xi,u(xi), xi,u(xi)+1),

where N E(xi, j, xi, j′) is the non-equality gadget defined in Lemma 1. Next, in order to get the right number of variable
appearances, we introduce for each xi that appears only negated or only unnegated the clauses E Q (xi,a(xi), xi,1) and for each
variable xi′ that appears both negated and unnegated we introduce the clauses N E(xi′ ,a(xi′), xi′,1). Thus, for each variable xi

we get the ring structure

E Q (xi,1, xi,2) ∪ E Q (xi,2, xi,3) ∪ . . . ∪ E Q (xi,a(xi)−1, xi,a(xi)) ∪ E Q (xi,a(xi), xi,1),

A. Darmann, J. Döcker / Theoretical Computer Science 815 (2020) 147–152 151

if xi appears only negated or only unnegated, and we get the ring structure

u(xi)−1⋃

j=1

E Q (xi, j, xi, j+1) ∪ N E(xi,u(xi), xi,u(xi)+1) ∪
a(xi)−1⋃

j=u(xi)+1

E Q (xi, j, xi, j+1) ∪ N E(xi,a(xi), xi,1),

otherwise. It is straightforward to verify that the resulting instance is nae-satisfiable if and only if I is nae-satisfiable.
Note that for a(xi) > 1 each variable xi, j appears exactly once as the first argument and exactly once as the second

argument of a gadget (it is not important of which gadget) yielding three appearances of xi, j . Observe that in the case
a(xi) = 1 we introduce E Q (xi,a(xi), xi,1) = E Q (xi,1, xi,1) only, hence yielding three appearances of xi,1 by means of that
gadget. Since each xi, j also replaces exactly one appearance of xi in the clause set C , we get exactly four appearances of xi, j
in the constructed instance. All other variables introduced by the gadgets (variables of the gadgets that are not arguments
are always newly created, i.e., these variables are not shared between gadgets) appear exactly four times by construction.
Hence, the resulting instance is indeed an instance of Monotone NAE-3-Sat-E4. �

3.2. Hardness of Monotone NAE-3-Sat-E4 for linear formulas

In this section, we strengthen our result from the previous section by showing that Monotone NAE-3-Sat-E4 remains
NP-complete even when restricted to linear formulas. We begin by stating the following lemma.

Lemma 3. Let EQ(x, y, z, u) be the following set of clauses, where V aux = {a, b, . . . , f } are new variables.

1. {x, a, e}
2. {x, b, d}
3. {x, c, f }

4. {y, a, b}
5. {y, c, e}
6. {y, d, f }

7. {z, a, f }
8. {z, c, d}
9. {z, u, b}

10. {u, a, c}
11. {u, d, e}
12. {b, e, f }

Then, a truth assignment β for {x, y, z, u} can be extended to a truth assignment β ′ for {x, y, z, u} ∪ V aux that nae-satisfies
EQ(x, y, z, u) if and only if β(x) = β(y) = β(z) = β(u). In addition, the above set of clauses is linear if the variables x, y, z, u are
pairwise distinct.

Proof. First, by setting all variables in {x, y, z, u, e} true and all variables in {a, b, c, d, f } false we can nae-satisfy all clauses
in EQ(x, y, z, u). Further, by flipping the truth values for these sets, we obtain a nae-satisfying truth assignment where
x, y, z and u are all set false. Second, we show that β(x) = β(y) = β(z) = β(u) for each assignment β that nae-satisfies
EQ(x, y, z, u). Let β be a nae-satisfying assignment. Assume towards a contradiction that β(x) �= β(y). By symmetry of nae-
satisfying truth assignments, we may assume that β(x) = F and β(y) = T . Then, β nae-satisfies the first six clauses if and
only if β satisfies (not necessarily nae-satisfies) the following set of 2-clauses:

{{a, e}, {b,d}, {c, f }, {ā, b̄}, {c̄, ē}, {d̄, f̄ }}
Now, using resolution we obtain clauses {b̄, e}, {ē, f }, { f̄ , b} which are satisfied if β satisfies the above set of 2-clauses.
Since the inferred clauses form a cyclic implication chain, we have β(b) = β(e) = β(f). Thus, clause 12 is not nae-satisfied
which is a contradiction to the assumption that β nae-satisfies EQ(x, y, z, u). Hence, β(x) = β(y) and, by symmetry of nae-
satisfying truth assignments, we may assume that β(x) = β(y) = F . If β(z) = β(u) = F , we are done. Let us consider the
three remaining cases:

• If β(z) = β(u) = T , then β(b) = F by clause 9. By clauses 2 and 4, we have β(d) = T and β(a) = T , respectively. Then,
by clause 7 and 11, we have β(f) = F and β(e) = F , respectively. Thus, clause 12 is not nae-satisfied. Again, this is a
contradiction to the assumption that β nae-satisfies EQ(x, y, z, u).

• If β(z) = T and β(u) = F , then β nae-satisfies clauses 2, 6, 7, 8, 10 and 11 if and only if β satisfies (again, not necessarily
nae-satisfies) the following set of 2-clauses:

{{b,d}, {d, f }, {ā, f̄ }, {c̄, d̄}, {a, c}, {d, e}}.
Using resolution, we obtain clauses {{ f̄ , c}, {c̄, f }, {c̄, b}, {c̄, e}} which are satisfied by β since β satisfies the above set
of 2-clauses. Now, by the first two inferred clauses and clause 3 (recall that β(x) = F), we have β(c) = β(f) = T . Then,
by the latter two inferred clauses, we have β(b) = β(e) = T . Thus, clause 12 is not nae-satisfied, a contradiction.

• If β(z) = F and β(u) = T , then β nae-satisfies clauses 1, 2, 6, 8, 10 and 11 if and only if β satisfies the following set of
2-clauses:

{{a, e}, {b,d}, {d, f }, {c,d}, {ā, c̄}, {d̄, ē}}.
Using resolution, we obtain clauses {{c̄, e}, {ē, c}, {ē, b}, {ē, f }} which leads to a contradiction in a similar way as in
the previous case (i.e., β does not nae-satisfy clause 12).

152 A. Darmann, J. Döcker / Theoretical Computer Science 815 (2020) 147–152

Hence, we conclude that β(x) = β(y) = β(z) = β(u) for each assignment β that nae-satisfies EQ(x, y, z, u). A truth assign-
ment β for {x, y, z, u} can, thus, be extended to a truth assignment β ′ for {x, y, z, u} ∪ V aux that nae-satisfies EQ(x, y, z, u)

if and only if β(x) = β(y) = β(z) = β(u).
By considering each pair of distinct clauses in EQ(x, y, z, u) it is easy to verify that the set of clauses is linear if the

variables x, y, z, u are pairwise distinct. �

Theorem 2. Monotone NAE-3-Sat-E4 is NP-complete for linear formulas.

Proof. We show NP-hardness by reduction from Monotone NAE-3-Sat-E4, for which NP-hardness was established in The-
orem 1. Let I = (V , C) be an instance of Monotone NAE-3-Sat-E4. Let n := |V | denote the number of variables, m := |C |
the number of clauses and let the set of variables be given as V := {x1, x2, . . . , xn}. For each variable xi ∈ V , we replace the
jth appearance with a new variable xi, j . Then, we make sure that, for each xi ∈ V , all variables in {xi,1, xi,2, xi,3, xi,4} are
mapped to the same truth value in any nae-satisfying truth assignment by introducing the clauses

n⋃

i=1

EQ(xi,1, xi,2, xi,3, xi,4),

where EQ(xi,1, xi,2, xi,3, xi,4) is the equality gadget defined in Lemma 3. The gadgets do not share any variables, i.e., each
instance of the equality gadget has its own newly created auxiliary variables. Note that each variable still appears exactly
four times, once in the original clause set and three times in an equality gadget. Further, since the variables xi,1, xi,2, xi,3, xi,4
are pairwise distinct, the subformulas defined by the equality gadgets are linear (see Lemma 3). Observe that the clauses
of the original instance are pairwise disjoint after the variable replacement and each of these clauses shares at most one
variable with any clause introduced by the gadgets. Note that each clause, except clause 9, in the ith instance of the equality
gadget contains at most one variable that appears in the original clause set, i.e., at most one variable xi, j with 1 ≤ i ≤ n
and 1 ≤ j ≤ 4. Even though clause 9 (see the clause set introduced in Lemma 3) contains two variables xi,3 and xi,4 that
appear outside the gadget, there is no other clause that contains both of them (otherwise some clause of the given instance
of Monotone NAE-3-Sat-E4 contains the variable xi twice, a contradiction). Hence, the constructed formula is linear. By
Lemma 3 it follows that the constructed instance is nae-satisfiable if and only if I is nae-satisfiable. �

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] A. Darmann, J. Döcker, On simplified NP-complete variants of Not-All-Equal 3-SAT and 3-SAT, arXiv:1908 .04198, 2019.
[2] A. Dehghan, M. Sadeghi, A. Ahadi, On the complexity of deciding whether the regular number is at most two, Graphs Comb. 31 (5) (Sep 2015)

1359–1365.
[3] A. Horbach, T. Bartsch, D. Briskorn, Using a SAT-solver to schedule sports leagues, J. Sched. 15 (1) (2012) 117–125.
[4] M. Karpinski, K. Piecuch, On vertex coloring without monochromatic triangles, in: F.V. Fomin, V.V. Podolskii (Eds.), Computer Science - Theory and

Applications - Proceedings of the 13th International Computer Science Symposium in Russia (CSR’18), in: Lecture Notes in Computer Science, vol. 10846,
Springer, 2018, pp. 220–231.

[5] H. Kautz, B. Selman, Pushing the envelope: planning, propositional logic, and stochastic search, in: Proceedings of the 13th National Conference on
Artificial Intelligence (AAAI’96), AAAI Press, 1996, pp. 1194–1201.

[6] G. Nam, K.A. Sakallah, R.A. Rutenbar, Satisfiability-based layout revisited: detailed routing of complex FPGAs via search-based boolean SAT, in: Proceed-
ings of the ACM/SIGDA 7th International Symposium on Field Programmable Gate Arrays (FPGA ’99), ACM, New York, NY, USA, 1999, pp. 167–175.

[7] S. Porschen, B. Randerath, E. Speckenmeyer, Linear time algorithms for some not-all-equal satisfiability problems, in: Theory and Applications of Satisfi-
ability Testing – SAT 2004, Springer, 2004, pp. 256–257.

[8] S. Porschen, T. Schmidt, E. Speckenmeyer, A. Wotzlaw, XSAT and NAE-SAT of linear CNF classes, Discrete Appl. Math. 167 (2014) 1–14.
[9] T.J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, ACM, 1978,

pp. 216–226.

Appendix

1.8 Placing quanti�ed variants of 3-SAT and Not-All-Equal

3-SAT in the polynomial hierarchy

The following paper [DDLS20] is also available online at the following URL: https:

//doi.org/10.1016/j.tcs.2020.04.003.

184

https://doi.org/10.1016/j.tcs.2020.04.003
https://doi.org/10.1016/j.tcs.2020.04.003

Theoretical Computer Science 822 (2020) 72–91

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Placing quantified variants of 3-SAT and Not-All-Equal 3-SAT

in the polynomial hierarchy

Janosch Döcker a,∗, Britta Dorn a, Simone Linz b, Charles Semple c

a Department of Computer Science, University of Tübingen, Tübingen, Germany
b School of Computer Science, University of Auckland, Auckland, New Zealand
c School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 August 2019
Received in revised form 26 December 2019
Accepted 7 April 2020
Available online 16 April 2020
Communicated by V.Th. Paschos

Keywords:
3-Sat
Not-All-Equal 3-Sat
Quantified satisfiability
Polynomial hierarchy
Bounded variable appearances
Computational complexity

The complexity of variants of 3-SAT and Not-All-Equal 3-SAT is well studied. However,
in contrast, very little is known about the complexity of the problems’ quantified
counterparts. In the first part of this paper, we show that ∀∃ 3-SAT is �P

2 -complete
even if (1) each variable appears exactly twice unnegated and exactly twice negated,
(2) each clause is a disjunction of exactly three distinct variables, and (3) the number
of universal variables is equal to the number of existential variables. Furthermore, we
show that the problem remains �P

2 -complete if (1a) each universal variable appears
exactly once unnegated and exactly once negated, (1b) each existential variable appears
exactly twice unnegated and exactly twice negated, and (2) and (3) remain unchanged.
On the other hand, the problem becomes NP-complete for certain variants in which each
universal variable appears exactly once. In the second part of the paper, we establish �P

2 -
completeness for ∀∃ Not-All-Equal 3-SAT even if (1′) the Boolean formula is linear and
monotone, (2′) each universal variable appears exactly once and each existential variable
appears exactly three times, and (3′) each clause is a disjunction of exactly three distinct
variables that contains at most one universal variable. On the positive side, we uncover
variants of ∀∃ Not-All-Equal 3-SAT that are co-NP-complete or solvable in polynomial
time.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The Boolean satisfiability problem SAT plays a major role in the theory of NP-completeness. It was the first problem
shown to be complete for the class NP (Cook’s Theorem [3]) and many NP-hardness results are established by using this
problem, or restricted variants thereof, as a starting point for polynomial-time reductions. Restricted variants of a problem
that remain NP-complete are particularly useful as they allow for the possibility of simpler proofs and stronger results.

The most prominent NP-complete variant of the Boolean satisfiability problem is 3-SAT. Here we are given a conjunction
of clauses such that each clause contains exactly three literals, where a literal is a propositional variable or its negation.
An instance of 3-SAT is a yes-instance if there is a truth assignment to the propositional variables1 such that at least one

* Corresponding author.
E-mail addresses: janosch.doecker@uni-tuebingen.de (J. Döcker), britta.dorn@uni-tuebingen.de (B. Dorn), s.linz@auckland.ac.nz (S. Linz),

charles.semple@canterbury.ac.nz (C. Semple).
1 From now on, we simply say variable instead of propositional variable since all variables used in the paper take only values representing true and false.

https://doi.org/10.1016/j.tcs.2020.04.003
0304-3975/© 2020 Elsevier B.V. All rights reserved.

J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91 73

literal of each clause evaluates to true. Interestingly, even within 3-SAT, we can restrict the problem further. For example, for
instances of 3-SAT in which each clause contains exactly three distinct variables, Tovey [17, Theorem 2.3] proved that 3-SAT

remains NP-complete if each variable appears in at most four clauses. Furthermore, this result also holds if each variable
appears exactly twice unnegated and exactly twice negated [1, Theorem 1]. On the other hand, the problem becomes trivial,
i.e., the answer is always yes, if each variable appears at most three times [17, Theorem 2.4].

A popular NP-complete variant of 3-SAT called Not-All-Equal 3-SAT (NAE-3-SAT) asks whether we can assign truth val-
ues to the variables such that at least one, but not all, of the literals of each clause evaluate to true. Schaefer [15] first
established NP-completeness of NAE-3-SAT in the setting where each clause contains at most three literals. Subsequently,
Karpinski and Piecuch [9,10] showed that NAE-3-SAT is NP-complete if each variable appears at most four times. Further-
more, Porschen et al. [12, Theorem 3] showed that NAE-3-SAT remains NP-complete if (i) each literal appears at most once
in any clause, and (ii) the input formula is linear and monotone, that is, each pair of distinct clauses share at most one
variable and no clause contains a literal that is the negation of some variable. Following on from this last result, Darmann
and Döcker [5] showed recently that NAE-3-SAT remains NP-complete if, in addition to (i) and (ii), each variable appears
exactly four times. By contrast, if a monotone conjunction of clauses has the property that each variable appears at most
three times, NAE-3-SAT can be decided in linear time [11, Theorem 4, p. 186].

In this paper, we consider generalized variants of 3-SAT and NAE-3-SAT, namely ∀∃ 3-SAT and ∀∃ NAE-3-SAT, respectively.
Briefly, ∀∃ 3-SAT is a quantified variant of 3-SAT, where each variable is either universal or existential. The decision problem
∀∃ 3-SAT asks if, for every assignment of truth values to the universal variables, there exists an assignment of truth values
to the existential variables such that at least one literal of each clause evaluates to true. Observe that, if an instance of ∀∃
3-SAT does not contain a universal variable, then this instance reduces to an instance of 3-SAT. Analogously, we can think
of ∀∃ NAE-3-SAT as a generalized variant of NAE-3-SAT. Formal definitions of both problems are given in the next section.

Stockmeyer [16] and Dahlhaus et al. [6] showed, respectively, that ∀∃ 3-SAT and ∀∃ NAE-3-SAT are complete for the
second level of the polynomial hierarchy or, more precisely, complete for the class �P

2 . In this paper, we establish �P
2 -

completeness for restricted variants of these two quantified problems. In particular, we show that ∀∃ 3-SAT is �P
2 -complete

if each universal variable appears exactly once unnegated and exactly once negated, and each existential variable appears
exactly twice unnegated and exactly once negated or each existential variable appears exactly once unnegated and exactly
twice negated. Although we do not consider approximation aspects in this paper, by way of comparison, Haviv et al. [8]
showed that approximating a particular optimization version of ∀∃ 3-SAT is �P

2 -hard even if each universal variable appears
at most twice and each existential variable appears at most three times. Whether optimization versions of the �P

2 -complete
problems presented in this paper are �P

2 -hard to approximate is a question that we leave for future research. Furthermore,
we establish �P

2 -completeness for ∀∃ 3-SAT if each universal variable appears exactly s1 times unnegated and exactly s2
times negated, each existential variable appears exactly t1 times unnegated and exactly t2 times negated, and the following
three properties are satisfied: (i) s1 = s2, (ii) s1 ∈ {1, 2}, and (iii) t1 = t2 = 2. These latter completeness results hold even
if each clause is a disjunction of exactly three distinct variables and the number of universal and existential variables is
balanced, that is, the number of universal and existential variables are the same.

Turning to ∀∃ NAE-3-SAT, we show that the problem remains �P
2 -complete if each universal variable appears exactly

once, each clause contains at most one universal variable, each existential variable appears exactly three times, and the
conjunction of clauses is both linear and monotone. Interestingly, while one appearance of each universal variable is enough
to obtain a �P

2 -hardness result in this setting, the same is not true for ∀∃ 3-SAT unless the polynomial hierarchy collapses [8,
p. 55].

The remainder of the paper is organized as follows. The next section introduces notation and terminology, and formally
states three variants of ∀∃ 3-SAT and ∀∃ Not-All-Equal 3-SAT that are the main focus of this paper. Section 3 (resp. Sec-
tion 4) investigates the computational complexity of ∀∃ 3-SAT (resp. ∀∃ Not-All-Equal 3-SAT). Both sections start with
a subsection on enforcers that are needed for the subsequent hardness proofs and that we expect to be of independent
interest in future work.

2. Preliminaries

This section introduces notation and terminology that is used throughout the paper.
Let V = {x1, x2, . . . , xn} be a set of variables. A literal is a variable or its negation. We denote the set {xi, xi : i ∈

{1, 2, . . . , n}} of all literals that correspond to elements in V by LV . A clause is a disjunction of a subset of LV . If a clause
contains exactly k distinct literals for k ≥ 1, then it is called a k-clause. For example, (x1 ∨ x̄2 ∨ x4) is a 3-clause. A Boolean
formula in conjunctive normal form (CNF) is a conjunction of clauses, i.e., an expression of the form ϕ = ∧m

j=1 C j , where C j is
a clause for all j. In what follows, we refer to a Boolean formula in conjunctive normal form simply as a Boolean formula.
Now, let ϕ be a Boolean formula. We say that ϕ is linear if any pair of distinct clauses share at most one variable and that
it is monotone if no clause contains an element in {x1, x2, . . . , xn}. Furthermore, if each clause contains at most k literals, it
is said to be in k-CNF. For each variable xi ∈ V , we denote the number of appearances of xi in ϕ plus the number of appear-
ances of xi in ϕ by a(xi). A variable assignment or, equivalently, truth assignment for V is a mapping β : V → {T , F }, where T
represents the truth value True and F represents the truth value False. A truth assignment β satisfies ϕ if at least one literal
of each clause evaluates to T under β . If there exists a truth assignment that satisfies ϕ , we say that ϕ is satisfiable. For a

74 J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91

truth assignment β that satisfies ϕ and has the additional property that at least one literal of each clause evaluates to F , we
say that β nae-satisfies ϕ . Lastly, let V and V ′ be two disjoint sets of variables, let β be a truth assignment for V , and let
β ′ be a truth assignment for V ∪ V ′ . We say that β ′ extends β (or, alternatively, that β extends to V ∪ V ′) if β(xi) = β ′(xi)

for each xi ∈ V .
A quantified Boolean formula � over a set V = {x1, x2, . . . , xn} of variables is a formula of the form

∀x1 · · · ∀xp∃xp+1 · · · ∃xn

m∧
j=1

C j.

The variables x1, x2, . . . , xp are universal variables of � and the variables xp+1, xp+2, . . . , xn are existential variables of �.
Furthermore, for variables xi, xi+1, . . . , xi′ with 1 ≤ i < i′ ≤ p and xi′′ , xi′′+1, . . . , xi′′′ with p + 1 ≤ i′′ < i′′′ ≤ n, we define

∀Xi′
i := ∀xi · · · ∀xi′ and ∃Xi′′′

i′′ := ∃xi′′ · · · ∃xi′′′ ,

respectively and, similarly,

Xi′
i := {xi, . . . , xi′ } and Xi′′′

i′′ := {xi′′ , . . . , xi′′′ },
respectively.

We next introduce notation that transforms a Boolean formula ϕ into another such formula. Specifically, we use
ϕ[x �→ y] to denote the Boolean formula obtained from ϕ by replacing each appearance of variable x with variable y
(i.e., replace x with y and replace x with y). For pairwise distinct pairs (x1, y1), (x2, y2), . . . , (xk, yk) of variables, we use
ϕ[x1 �→ y1, . . . , xk �→ yk] to denote the Boolean formula obtained from ϕ by simultaneously replacing each appearance of
variable xi by variable yi for 1 ≤ i ≤ k. Since the variables are pairwise distinct, note that this operation is well-defined.
Lastly, for a constant b ∈ {T , F }, the Boolean formula ϕ[x �→ b] is obtained from ϕ by replacing each appearance of variable
x by b.

The polynomial hierarchy. An oracle for a complexity class A is a black box that, in constant time, outputs the answer to
any given instance of a decision problem contained in A. The polynomial hierarchy is a system of nested complexity classes
that are defined recursively as follows. Set

�P
0 = �P

0 = P,

and define, for all k ≥ 0,

�P
k+1 = NP�P

k and �P
k+1 = co-NP�P

k ,

where a problem is in NP�P
k (resp. co-NP�P

k) if we can verify an appropriate certificate of a yes-instance (resp. no-instance)
in polynomial time when given access to an oracle for �P

k . By definition, �P
1 = NP and �P

1 = co-NP. We say that the classes
�P

k and �P
k are on the k-th level of the polynomial hierarchy.

For all k ≥ 0, there are complete problems under polynomial-time many-one reductions for �P
k and �P

k . However, while,
for example, the complexity class �P

2 generalizes both NP and co-NP, it remains an open question whether �P
k
= �P

k+1
or �P

k
= �P
k+1 for any k ≥ 0. For further details of the polynomial hierarchy, we refer the interested reader to Garey and

Johnson’s book [7], an article by Stockmeyer [16], as well as to the compendium by Schaefer and Umans [14] for a collection
of problems that are complete for the second or higher levels of the polynomial hierarchy.

The following two �P
2 -complete problems are the starting points for the work presented in this paper.

∀∃ 3-SAT

Input. A quantified Boolean formula

∀x1 · · · ∀xp∃xp+1 · · · ∃xn

m∧
j=1

C j

over a set V = {x1, x2, . . . , xn} of variables, where each clause C j is a disjunction of at most three literals.
Question. For every truth assignment for {x1, x2, . . . , xp}, does there exist a truth assignment for {xp+1, xp+2, . . . , xn}
such that each clause of the formula is satisfied?

J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91 75

∀∃ Not-All-Equal 3-SAT (∀∃ NAE-3-SAT)
Input. A quantified Boolean formula

∀x1 · · · ∀xp∃xp+1 · · · ∃xn

m∧
j=1

C j

over a set V = {x1, x2, . . . , xn} of variables, where each clause C j is a disjunction of at most three literals.
Question. For every truth assignment for {x1, x2, . . . , xp}, does there exist a truth assignment for {xp+1, xp+2, . . . , xn}
such that each clause of the formula is nae-satisfied?

Stockmeyer [16], and Eiter and Gottlob [6] established �P
2 -completeness for ∀∃ 3-SAT and ∀∃ NAE-3-SAT, respectively.

The main focus of this paper are the following three restricted variants of ∀∃ 3-SAT and ∀∃ NAE-3-SAT. For the first two
problems, s1, s2, t1, t2 are non-negative integers.

Balanced ∀∃ 3-SAT-(s1, s2, t1, t2)

Input. A quantified Boolean formula

∀x1 · · · ∀xp∃xp+1 · · · ∃xn

m∧
j=1

C j

over a set V = {x1, x2, . . . , xn} of variables such that (i) n = 2p, (ii) each C j is a 3-clause that contains three distinct
variables, and (iii), amongst the clauses, each universal variable appears unnegated exactly s1 times and negated
exactly s2 times, and each existential variable appears unnegated exactly t1 times and negated exactly t2 times.
Question. For every truth assignment for {x1, x2, . . . , xp}, does there exist a truth assignment for {xp+1, xp+2, . . . , xn}
such that each clause of the formula is satisfied?

We also consider the decision problem that is obtained from Balanced ∀∃ 3-SAT-(s1, s2, t1, t2) by omitting property (i) in
the statement of the input. We refer to the resulting problem as ∀∃ 3-SAT-(s1, s2, t1, t2). Lastly, we consider the following
problem, where s and t are non-negative integers.

Monotone ∀∃ NAE-3-SAT-(s, t)
Input. A monotone quantified Boolean formula

∀x1 · · · ∀xp∃xp+1 · · · ∃xn

m∧
j=1

C j

over a set V = {x1, x2, . . . , xn} of variables such that (i) each C j is a 3-clause that contains three distinct variables and
(ii), amongst the clauses, each universal variable appears exactly s times and each existential variable appears exactly
t times.
Question. For every truth assignment for {x1, x2, . . . , xp}, does there exist a truth assignment for {xp+1, xp+2, . . . , xn}
such that each clause of the formula is nae-satisfied?

Enforcers. To establish the results of this paper, we will frequently use the concept of enforcers. An enforcer (sometimes
also called a gadget) [1] is a Boolean formula, where the formula itself and each truth assignment that satisfies it has a
certain structure. Enforcers are used in polynomial-time reductions to add additional restrictions on how yes-instances can
be obtained.

We next detail two unquantified enforcers that were introduced by Berman et al. [1, p. 3] and that lay the foundation
for several other enforcers that are new to this paper and will be introduced in the following sections. First, let �1, �2 and
�3 be three, not necessarily distinct, literals. Without loss of generality, we may assume that �1 ∈ {x1, x1}, �2 ∈ {x2, x2}, and
�3 ∈ {x3, x3}. Now consider the following enforcer to which we refer to as S-enforcer:

S(�1, �2, �3) = (�1 ∨ a ∨ b) ∧ (�2 ∨ b ∨ c) ∧ (�3 ∨ a ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c),

where a, b, and c are new variables such that {x1, x2, x3} ∩ {a, b, c} = ∅. Let β : {x1, x2, x3, a, b, c} → {T , F } be a truth assign-
ment. The next observation is an immediate consequence from the fact that, if β(�1) = β(�2) = β(�3) = F , then, as the first
three clauses form a cyclic implication chain which can only be satisfied by setting β(a) = β(b) = β(c), either the fourth or
fifth clause is not satisfied.

76 J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91

Observation 2.1. Consider the Boolean formula S(�1, �2, �3), where �i ∈ {xi, xi}, and let V be its associated set of variables. A truth
assignment β for the variables {x1, x2, x3} can be extended to a truth assignment β ′ for V that satisfies S(�1, �2, �3) if and only if
β(�i) = T for some i ∈ {1, 2, 3}.

Remark. We denote the gadget obtained from S(�1, �2, �3) by viewing x1 as a universal variable and all other variables
in {x2, x3, a, b, c} as existential variables by Su(�1, �2, �3). Depending on the truth value assigned to the universal variable
x1, the existential variables V − {x1} may take different values in a truth assignment, say β , to satisfy the Boolean for-
mula S(�1, �2, �3). In particular, following Observation 2.1, for every truth assignment for x1 there exist truth assignments
for x2 and x3 such that the resulting truth assignment, say β , for {x1, x2, x3} can be extended to a truth assignment β ′ for V
that satisfies Su(�1, �2, �3) if and only if β(�i) = T for some i ∈ {1, 2, 3}. Note that the variables in {x1, x2, x3} may be shared
between different instances of the gadget. Hence, although each individual instance can be satisfied even if β(�1) = F , it
may be impossible to satisfy them all at once.

In what follows, we will use enforcers that are built of several copies of the S-enforcer. In such a case, for each pair of
S-enforcer copies, the two 3-element sets of new variables are disjoint.

Again following the constructions from Berman et al. [1], consider a second enforcer:

x(2) = S(x, y, y) ∧ S(x, ȳ, ȳ).

Note that x(2) is a Boolean formula over eight variables. Moreover, each clause contains three distinct variables since the
copies of y and ȳ are distributed over different clauses in S(x, y, y) and S(x, ȳ, ȳ), respectively. Lastly, each variable, except
for x, appears exactly twice unnegated and twice negated in x(2) . Now, the next observation follows by construction and
Observation 2.1.

Observation 2.2. Consider the Boolean formula x(2) over a set V of eight variables, where x, y ∈ V . A truth assignment β for {x} can
be extended to a truth assignment β ′ for V that satisfies x(2) if and only if β(x) = T .

We will use the S-enforcer and x(2) as well as extensions thereof in the proofs of several results established in this paper.

3. Hardness of balanced and unbalanced versions of ∀∃ 3-SAT-(s1, s2, t1, t2)

3.1. New enforcers

We start by describing three new enforcers, with the first one building upon the enforcers introduced in the previous
section. Consider the following gadget:

E(x) = S(x, y, y) ∧ S(x, ȳ, ȳ) ∧ S(x̄, z, z̄) ∧ S(z, z̄, u) ∧ S(u, ū, ū)

which is an extended variant of the enforcer x(2) . We call x the enforcer variable of E(x). Note that every variable in {u, y, z}
appears exactly twice unnegated and exactly twice negated in E(x), and that x appears exactly twice unnegated and exactly
once negated in E(x). Moreover, by construction and Observation 2.2, it follows that E(x) is satisfiable by setting x to be T ,
and by setting all remaining 18 variables appropriately.

Observation 3.1. Consider the gadget E(x), and let V be its associated set of variables. A truth assignment β for {x} can be extended
to a truth assignment β ′ for V that satisfies E(x) if and only if β(x) = T .

We now turn to two quantified enforcers whose purpose is to increase the number of universal variables by one and
three, respectively, relative to the number of existential variables. First, let

Q 1 =(u ∨ v ∨ a) ∧ (u ∨ v ∨ b) ∧ (u ∨ v ∨ a) ∧ (u ∨ v ∨ b) ∧ (a ∨ b ∨ r) ∧ (a ∨ b ∨ r) ∧
(c ∨ d ∨ r) ∧ (c ∨ d ∨ r) ∧ (w ∨ q ∨ c) ∧ (w ∨ q ∨ d) ∧ (w ∨ q ∨ c) ∧ (w ∨ q ∨ d),

where u, v, w, q, r are universal variables, and a, b, c, d are existential variables. Observe that each variable of Q 1 appears
exactly twice unnegated and exactly twice negated. Second, let

Q 3 =(u ∨ r ∨ a) ∧ (u ∨ a ∨ b) ∧ (v ∨ q ∨ b) ∧ (v ∨ r ∨ a) ∧ (w ∨ a ∨ b) ∧ (w ∨ q ∨ b),

where u, v, w, q, r are universal variables and a, b are existential variables. Observe that each universal variable of Q 3

appears exactly once unnegated and exactly once negated, and that each existential variable of Q 3 appears exactly twice
unnegated and exactly twice negated.

J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91 77

Lemma 3.2. The quantified Boolean formula

∀u ∀v ∀w ∀q ∀r ∃a ∃b ∃c ∃d Q 1

is a yes-instance of ∀∃ 3-SAT.

Proof. Let U = {u, v, w, q, r}, and let E = {a, b, c, d}. Furthermore, let β : U → {T , F } be a truth assignment for U . We extend
β to β ′ : U ∪ E → {T , F } as follows:

β ′(a) = β ′(b) = β(u), β ′(c) = β ′(d) = β(w).

It is now easy to verify that β ′ satisfies all clauses. Thus, Q 1 is a yes-instance of ∀∃ 3-SAT. �

Lemma 3.3. The quantified Boolean formula

∀u ∀v ∀w ∀q ∀r ∃a ∃b Q 3

is a yes-instance of ∀∃ 3-SAT.

Proof. Let U = {u, v, w, q, r}, and let E = {a, b}. Futhermore, let β : U → {T , F } be a truth assignment for U . We extend β
to a truth assignment β ′ : U ∪ E → {T , F } for Q 3 as follows:

β ′(a) = β(u) ∧ β(r), β ′(b) = β(w) ∨ β(q).

It is now straightforward to check that Q 3 is a yes-instance of ∀∃ 3-SAT. �

3.2. Hardness of Balanced ∀∃ 3-SAT-(s1, s2, t1, t2)

In this section, we show that Balanced ∀∃ 3-SAT-(s1, s2, t1, t2) is �P
2 -complete when

(s1, s2, t1, t2) ∈ {(2,2,2,2), (1,1,2,2)}.
To this end, for a clause C , we use C to denote the clause obtained from C by replacing each literal with its negation and
call C the complement of C . For example, if C = (x1 ∨ x2 ∨ x3), then C = (x1 ∨ x2 ∨ x3).

Theorem 3.4. Balanced ∀∃ 3-SAT-(2, 2, 2, 2) is �P
2 -complete.

Proof. Noting that Balanced ∀∃ 3-SAT-(2, 2, 2, 2) is a special case of ∀∃ 3-SAT, we deduce that the problem is in �P
2 . We

show that the problem is �P
2 -hard by a reduction from ∀∃ NAE-3-SAT. Let

�1 = ∀X p
1 ∃Xn

p+1ϕ

be an instance of ∀∃ NAE-3-SAT, where

ϕ =
m∧

j=1

C j

is a Boolean formula over a set V 1 = {x1, x2, . . . , xn} of variables such that C j is a disjunction of at most three literals for
all j ∈ {1, 2, . . . , m} and no C j contains only a single literal since, otherwise, �1 is a no-instance. Following Schaefer [13,
p. 298] and noting that his reduction translates without changes to ∀∃ NAE-3-SAT, we first modify �1 using the following
transformation that turns every universal variable xi of �1 into an existential variable yi and introduces the set of new
universal variables {z1, z2, . . . , zp}:

�2 = ∀Z p
1 ∃Xn

p+1∃Y p
1 ϕ[x1 �→ y1, . . . , xp �→ yp] ∧

p∧
i=1

((z̄i ∨ yi) ∧ (zi ∨ ȳi)) = ∀Z p
1 ∃Xn

p+1∃Y p
1 ϕ′,

where ϕ′ = ϕ[x1 �→ y1, . . . , xp �→ yp] ∧ ∧p
i=1 ((z̄i ∨ yi) ∧ (zi ∨ ȳi)). Let V 2 be the set of variables of �2.

3.4.1. �1 is a yes-instance of ∀∃ NAE-3-SAT if and only if �2 is a yes-instance of ∀∃ NAE-3-SAT.

Proof. First, suppose that �1 is a yes-instance of ∀∃ NAE-3-SAT. Let β1 be a truth assignment for V 1 that nae-satisfies �1,
and let β2 be the following truth assignment for V 2:

78 J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91

(i) set β2(xi) = β1(xi) for each i ∈ {p + 1, p + 2, . . . , n};
(ii) set β2(yi) = β1(xi) for each i ∈ {1, 2, . . . , p};

(iii) set β2(zi) = β2(yi) for each i ∈ {1, 2, . . . , p}.

By (iii), it is straightforward to check that β2 nae-satisfies �2 and that, for every truth assignment for Z p
1 , there exists a

truth assignment for Xn
p+1 ∪ Y p

1 that nae-satisfies �2. Hence, �2 is a yes-instance of ∀∃ NAE-3-SAT.
Second, suppose that �2 is a yes-instance of ∀∃ NAE-3-SAT. Let β2 be a truth assignment for V 2 that nae-satisfies �2.

By construction of �2, it follows that β2(zi) = β2(yi) for each i ∈ {1, 2, . . . , p}. Hence β1 with β1(xi) = β2(yi) for each
i ∈ {1, 2, . . . , p}, and β1(xi) = β2(xi) for each i ∈ {p + 1, p + 2, . . . , n} is a truth assignment for V 1 that nae-satisfies �2. Thus
�1 is a yes-instance of ∀∃ NAE-3-SAT. �

For each wi ∈ Xn
p+1 ∪ Y p

1 , recall that a(wi) denotes the number of appearances of wi in ϕ′ . Next, we apply, in turn, the
following transformation adapted from Berman et al. [1, p. 4] yielding an instance of ∀∃ 3-SAT.

1. Replace ∃Xn
p+1 in �2 with the following list of existential variables:

∃xp+1,1∃xp+1,2 · · · ∃xp+1,a(xp+1) · · · ∃xn,1∃xn,2 · · · ∃xn,a(xn)

Similarly, replace ∃Y p
1 in �2 with the following list of existential variables:

∃y1,1∃y1,2 · · · ∃y1,a(y1) · · · ∃yp,1∃yp,2 · · · ∃yp,a(yp).

Lastly, for each existential variable wi ∈ Xn
p+1 ∪ Y p

1 and all k ∈ {1, . . . , a(wi)}, replace the k-th appearance of wi in ϕ′
by wi,k .

2. Replace each clause C j with C j ∧ C j .
3. For each wi ∈ Xn

p+1 ∪ Y p
1 , introduce the clauses

(wi,1 ∨ wi,2) ∧ (wi,2 ∨ wi,3) ∧ · · · ∧ (wi,a(wi)−1 ∨ wi,a(wi)) ∧ (wi,a(wi) ∨ wi,1).

4. Replace each 2-clause (�1 ∨ �2) by (�1 ∨ �2 ∨ u) ∧ E(u), where u and all 18 variables introduced by E(u) are new
existential variables. Append all 19 new variables to the list of existential variables.

Let �3 denote the formula constructed by the preceding four-step procedure, and let V 3 be the set of variables of �3. To
illustrate the construction of �3 from �1, we present an example after the proof of this theorem.

3.4.2. �2 is a yes-instance of ∀∃ NAE-3-SAT if and only if �3 is a yes-instance of ∀∃ 3-SAT.

Proof. First, suppose that �2 is a yes-instance of ∀∃ NAE-3-SAT. Let β2 be a truth assignment for V 2 that nae-satisfies �2.
Obtain a truth assignment β3 for V 3 as follows:

(i) set β3(zi) = β2(zi) for each i ∈ {1, 2, . . . , p};
(ii) set β3(xi,k) = β2(xi) for each i ∈ {p + 1, p + 2, . . . , n} and k ∈ {1, 2, . . . , a(xi)};

(iii) set β3(yi,k) = β2(yi) for each i ∈ {1, 2, . . . , p} and k ∈ {1, 2, . . . , a(yi)}.

Additionally, for each 2-clause C = (�1 ∨�2) that is replaced with the S-enforcer (�1 ∨�2 ∨u) ∧ E(u) in Step 4, set β3(u) = T ,
and set all 18 existential variables introduced by E(u) such that the 25 clauses of E(u) are satisfied. By construction of E(u)

and Observation 3.1, this is always possible. If C is a 2-clause of �2, then, as C is nae-satisfied by β2, it follows that β3
satisfies (�1 ∨�2 ∨u) ∧ E(u). If C is initially a 2-clause introduced in Step 3 and then replaced in Step 4, it follows by (ii) and
(iii) that β3 satisfies (�1 ∨ �2 ∨ u) ∧ E(u). Noting that if a truth assignment nae-satisfies a clause, then it also nae-satisfies
its complement, it is now straightforward to check that β3 satisfies �3 and, hence, �3 is a yes-instance of ∀∃ 3-SAT.

Second, suppose that �3 is a yes-instance of ∀∃ 3-SAT. Let β3 be a truth assignment that satisfies �3. Let u be an
enforcer variable such that the 25 clauses associated with E(u) are clauses of �3 but not of �2. By construction of E(u)

and Observation 3.1, we have β3(u) = T . Now let wi ∈ Xn
p+1 ∪ Y p

1 . As β3 satisfies �3 and each enforcer variable that is
contained in V 3 is assigned to T under β3, it follows from the clauses introduced in Step 3 that

β3(wi,1) = β3(wi,2) = · · · = β3(wi,a(wi)).

Let β2 be the truth assignment for �2 that is obtained from β3 as follows:

(i) β2(zi) = β3(zi) for each i ∈ {1, 2, . . . , p},
(ii) β2(xi) = β3(xi,1) for each i ∈ {p + 1, p + 2, . . . , n}, and

(iii) β2(yi) = β3(yi,1) for each i ∈ {1, 2, . . . , p}.

J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91 79

As β3 satisfies �3, it immediately follows that β2 satisfies �2. We complete the proof by showing that β2 nae-satisfies �2.
Assume that there exists a clause C in �2 whose literals all evaluate to T under β2. Let D be the clause obtained from
C by applying Step 1. If C contains exactly three literals, then all three literals of D evaluate to F ; thereby contradicting
that β3 satisfies �3. On the other hand, if C contains exactly two literals, then D is replaced with a 3-clause, say D ′ , and
an enforcer, say E(u′), in Step 4 and, similarly, D is replaced with a 3-clause, say D ′′ , and an enforcer, say E(u′′), in Step 4.
Note that D ′′ is not the complement of D ′ . Furthermore, again by Observation 3.1, we have β3(u′) = β3(u′′) = T . Now, as
each literal of C evaluates to T , each literal of D ′′ evaluates to F under β3; a contradiction. Hence β2 nae-satisfies �2, and
so �2 is a yes-instance of ∀∃ NAE-3-SAT. �

We next obtain a quantified Boolean formula �4 from �3 such that the number of universal variables in �4 is equal
to the number of existential variables in �4. Let pe be the number of existential variables in V 3, and let pu be the num-
ber of universal variables in V 3. By construction, observe that pu = p ≥ 0. Since a new existential variable yi has been
introduced for each universal variable xi in V 1 with i ∈ {1, 2, . . . , p}, we have pe ≥ pu . Let Q 1

k be the enforcer with vari-
ables {ak, bk, ck, dk, qk, rk, uk, vk, wk} as introduced in Section 3.1. Obtain �4 from �3 by adding Q 1

k to the Boolean formula,
appending ∃ak∃bk∃ck∃dk to the list of existential variables, and appending ∀qk∀rk∀uk∀vk∀wk to the list of universal vari-
ables for each k ∈ {1, 2, . . . , pe − pu}. It now follows that �4 contains pe + 4(pe − pu) = 5pe − 4pu existential variables and
pu + 5(pe − pu) = 5pe − 4pu universal variables. Moreover, by Lemma 3.2, we have that �3 is a yes-instance of ∀∃ 3-SAT if
and only if �4 is a yes-instance of ∀∃ 3-SAT.

We complete the proof by showing that �4 is an instance of Balanced ∀∃ 3-SAT-(2, 2, 2, 2). Let V 4 be the set of variables
of �4. By the transformation of �1 into �3 and the construction of Q 1

k , it is easily checked that each universal variable in
V 4 appears exactly twice unnegated and exactly twice negated in �4. Now, consider the following three sets of existential
variables:

(I) S1 = ⋃pe−pu
k=1 {ak, bk, ck, dk},

(II) S2 = ⋃n
i=p+1{xi,1, xi,2, . . . , xi,a(xi)} and

(III) S3 = ⋃p
i=1{yi,1, yi,2, . . . , yi,a(yi)}.

It follows again from the construction of Q 1
k that each variable in S1 appears exactly twice unnegated and exactly twice

negated in �4. Furthermore, by Steps 1–3 in the construction of �3, it follows that each variable in S2 ∪ S3 appears
exactly twice unnegated and exactly twice negated in �4. Lastly, each existential variable in V 4 − (S1 ∪ S2 ∪ S3) has been
introduced by replacing a 2-clause (�1 ∨ �2) with (�1 ∨ �2 ∨ u) ∧ E(u) in Step 4 of the construction of �3. Recall that u
appears unnegated exactly twice and negated exactly once in E(u), and that each of the 18 remaining variables introduced
by E(u) appears exactly twice unnegated and exactly twice negated in E(u). It now follows that �4 is an instance of
Balanced ∀∃ 3-SAT-(2, 2, 2, 2). We complete the proof of this theorem by noting that each clause of �4 is a 3-clause that
contains three distinct variables and that the size of �4 is polynomial in the size of �1. �

Example. We next present a simple example that illustrates the construction of �3 from �1 as described in the proof of
Theorem 3.4. Using the same notation as in this proof, let

�1 = ∀X1
1∃X4

2(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4).

Loosely speaking, we obtain �2 from �1 by turning each universal variable into an existential variable and introduce new
universal variables. Specifically, we have

�2 = ∀Z 1
1∃X4

2∃Y 1
1 (y1 ∨ x2 ∨ x3) ∧ (y1 ∨ x3 ∨ x4) ∧ (z1 ∨ y1) ∧ (z1 ∨ y1).

To obtain �3 from �2, we apply the four-step construction as described immediately after the proof of Statement 3.4.1. It
follows that

�′
2 = ∀Z 1

1∃x2,1∃x3,1∃x3,2∃x4,1∃y1,1∃y1,2∃y1,3∃y1,4

(y1,1 ∨ x2,1 ∨ x3,1) ∧ (y1,2 ∨ x3,2 ∨ x4,1) ∧ (z1 ∨ y1,3) ∧ (z1 ∨ y1,4) ∧
(y1,1 ∨ x2,1 ∨ x3,1) ∧ (y1,2 ∨ x3,2 ∨ x4,1) ∧ (z1 ∨ y1,3) ∧ (z1 ∨ y1,4) ∧
(x2,1 ∨ x2,1) ∧ (x3,1 ∨ x3,2) ∧ (x3,2 ∨ x3,1) ∧ (x4,1 ∨ x4,1) ∧
(y1,1 ∨ y1,2) ∧ (y1,2 ∨ y1,3) ∧ (y1,3 ∨ y1,4) ∧ (y1,4 ∨ y1,1)

is the formula obtained after the first three steps. Recalling that Step 4 introduces a copy of the enforcer E(u) for each of
the twelve 2-clauses in �′

2, we have

80 J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91

�3 = ∀Z 1
1∃x2,1∃x3,1∃x3,2∃x4,1∃y1,1∃y1,2∃y1,3∃y1,4∃U 12

1 ∃H216
1

(y1,1 ∨ x2,1 ∨ x3,1) ∧ (y1,2 ∨ x3,2 ∨ x4,1) ∧ (z1 ∨ y1,3 ∨ u1) ∧ E(u1) ∧ (z1 ∨ y1,4 ∨ u2) ∧ E(u2) ∧
(y1,1 ∨ x2,1 ∨ x3,1) ∧ (y1,2 ∨ x3,2 ∨ x4,1) ∧ (z1 ∨ y1,3 ∨ u3) ∧ E(u3) ∧ (z1 ∨ y1,4 ∨ u4) ∧ E(u4) ∧
(x2,1 ∨ x2,1 ∨ u5) ∧ E(u5) ∧ (x3,1 ∨ x3,2 ∨ u6) ∧ E(u6) ∧
(x3,2 ∨ x3,1 ∨ u7) ∧ E(u7) ∧ (x4,1 ∨ x4,1 ∨ u8) ∧ E(u8) ∧
(y1,1 ∨ y1,2 ∨ u9) ∧ E(u9) ∧ (y1,2 ∨ y1,3 ∨ u10) ∧ E(u10) ∧
(y1,3 ∨ y1,4 ∨ u11) ∧ E(u11) ∧ (y1,4 ∨ y1,1 ∨ u12) ∧ E(u12),

where u1, . . . , u12 are the twelve existential enforcer variables and h1, . . . , h216 are the new existential variables introduced
by E(u1), E(u2), . . . , E(u12).

In Theorem 3.4, we have imposed the same bound on existential and universal variables, i.e. s1 = s2 = t1 = t2. By allowing
separate bounds, i.e. s1 = s2 and t1 = t2, we obtain the following stronger result.

Theorem 3.5. Balanced ∀∃ 3-SAT-(1, 1, 2, 2) is �P
2 -complete.

Proof. Clearly, Balanced ∀∃ 3-SAT-(1, 1, 2, 2) is in �P
2 . We establish �P

2 -hardness via a reduction from Balanced ∀∃ 3-

SAT-(2, 2, 2, 2). Let

�1 = ∀X p
1 ∃X2p

p+1ϕ

be an instance of Balanced ∀∃ 3-SAT-(2, 2, 2, 2). Let m be the number of 3-clauses of ϕ . As 3m = 2p · 4, observe that p
is divisible by 3. Following a similar strategy as in the proof of Theorem 3.4, we apply the following 4-step process to
transform �1 into an instance �4 of Balanced ∀∃ 3-SAT-(1, 1, 2, 2).

1. Obtain

�2 = ∀C p
1 ∃X2p

p+1∃Y p
1 ∃Z 6p

1 ϕ[x1 �→ y1, . . . , xp �→ yp] ∧
p∧

i=1

(
Su(ci, yi, yi) ∧ Su(ci, yi, yi)

)
,

by turning each universal variable in xi ∈ X p
1 into an existential variable yi , adding new universal variables c1, c2, . . . , cp ,

and adding new existential variables z1, z2, . . . , z6p that are introduced as new variables by copies of the S-enforcer. By
construction, each yi ∈ Y p

1 appears exactly four times unnegated and exactly four times negated in �2.
2. For each yi ∈ Y p

1 and k ∈ {1, 2, 3, 4}, replace the k-th negated appearance of yi with yi,k and replace the k-th unnegated
appearance of yi with yi,k . Then replace ∃Y p

1 in �2 with the following list of existential variables

∃y1,1∃y1,2∃y1,3∃y1,4 · · · ∃yp,1∃yp,2∃yp,3∃yp,4.

3. Add the following clauses to the Boolean formula resulting from Step 2:

p∧
i=1

[
(yi,1 ∨ yi,2 ∨ di,1) ∧ (yi,2 ∨ yi,3 ∨ di,1) ∧ d(2)

i,1 ∧ (yi,3 ∨ yi,4 ∨ di,2) ∧ (yi,4 ∨ yi,1 ∨ di,2) ∧ d(2)
i,2

]
,

where di,1 and di,2 are new existential variables with i ∈ {1, 2 . . . , p}, and d(2)
i,1 and d(2)

i,2 are the corresponding enforcers
as introduced in Section 2. Then append

∃d1,1∃d1,2∃d2,1∃d2,2 · · · ∃dp,1∃dp,2∃E14p
1

to the list of existential variables, where E14p
1 is the set of new variables introduced by these enforcers (each of d(2)

i,1

and d(2)
i,2 introduces seven such variables). Let �3 denote the resulting quantified Boolean formula.

4. Note that each universal variable of �3 appears exactly once unnegated and exactly once negated, and that each exis-
tential variable of �3 appears exactly twice unnegated and exactly twice negated. Let pe (resp. pu) be the number of
existential (resp. universal) variables in �3. Then

pe = p + 4p + 6p + 2p + 14p = 27p and pu = p.

Evidently, pe ≥ pu . Furthermore, as p is divisible by 3, it follows that pe and pu are both divisible by 3. Let � =
(pe − pu)/3. Now, for each k ∈ {1, 2, . . . , �}, add the enforcer Q 3

k as introduced in Section 3.1 to �3, append ∃ak∃bk to
the list of existential variables, and append ∀qk∀rk∀uk∀vk∀wk to the list of universal variables.

J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91 81

Let �4 denote the formula resulting from the preceding 4-step process. By construction, each clause in �4 is a 3-clause that
contains three distinct variables. Moreover, since, for each k, the enforcer Q 3

k increases the number of universal variables by
five and the number of existential variables by two, it follows that �4 is an instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2).

Noting that the size of �4 is polynomial in the size of �1, we complete the proof by establishing the following statement.

3.5.1. �1 is a yes-instance of Balanced ∀∃ 3-SAT-(2, 2, 2, 2) if and only if �4 is a yes-instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2).

Proof. Let V 1 be the set of variables of �1, and let V 4 be the set of variables of �4. First, suppose that �1 is a yes-instance
of Balanced ∀∃ 3-SAT-(2, 2, 2, 2). Let β1 be a truth assignment that satisfies �1. We obtain a truth assignment β4 for a
subset of V 4, say V ′

4, from β1 as follows:

(i) for each i ∈ {1, 2, . . . , p}, set β4(ci) = β1(xi);
(ii) for each i ∈ {p + 1, p + 2, . . . , 2p}, set β4(xi) = β1(xi);

(iii) for each i ∈ {1, 2, . . . , p} and k ∈ {1, 2, 3, 4}, set β4(yi,k) = β4(ci);
(iv) for each i ∈ {1, 2, . . . , p} and k ∈ {1, 2}, set β4(di,k) = T .

It is straightforward to check that each clause in �4 that does not contain a variable in

(A�
1 ∪ B�

1 ∪ E14p
1 ∪ Q �

1 ∪ R�
1 ∪ U�

1 ∪ V �
1 ∪ W �

1 ∪ Z 6p
1)

is satisfied by β4. We next extend β4 in three steps. First, by (iv) and Observation 2.2, it follows that β4 extends to V ′
4 ∪ E14p

1

such that, for each i ∈ {1, 2, . . . , p}, the clauses of d(2)
i,1 and d(2)

i,2 are satisfied. Second, by Lemma 3.3, β4 also extends to

V ′
4 ∪ A�

1 ∪ B�
1 ∪ Q �

1 ∪ R�
1 ∪ U�

1 ∪ V �
1 ∪ W �

1

such that each clause in Q 3
1 ∧ Q 3

2 ∧ · · · ∧ Q 3
� is satisfied. Third, by (i), (iii), and Observation 2.1 together with its subsequent

remark, it follows that β4 extends to V ′
4 ∪ Z 6p

1 such that the clauses in

p∧
i=1

(
Su(ci, yi, yi) ∧ Su(ci, yi, yi)

)

are satisfied. We deduce that �4 is satisfiable.
Second, suppose that �4 is a yes-instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2). Let β4 be a truth assignment that satisfies

�4. It follows from Observation 2.2, that β4(di,1) = β4(di,2) = T for each i ∈ {1, 2, . . . , p}. Hence, the clauses introduced in
Step 3 imply that

β4(yi,1) = β4(yi,2) = β4(yi,3) = β4(yi,4).

It is now easy to check that the truth assignment β1 for V 1 obtained from β4 by setting

(i) β1(xi) = β4(yi,1) for each i ∈ {1, 2, . . . , p} and
(ii) β1(xi) = β4(xi) for each i ∈ {p + 1, p + 2, . . . , 2p}

satisfies �1. Thus, Statement 3.5.1 holds. �

This completes the proof of Theorem 3.5. �

We end this section by remarking that Haviv et al. [8, p. 55] showed that ∀∃ 3-SAT-(s1, s2, t1, t2) is in NP if s1 + s2 ≤ 1
and in co-NP if t1 + t2 ≤ 2. The latter result implies that Balanced ∀∃ 3-SAT-(1, 1, 1, 1) is in co-NP. Hence, unless the
polynomial hierarchy collapses, the balanced bounds on the number of appearances of universal and existential variables
established in Theorems 3.4 and 3.5 are the best possible ones (i.e., for smaller values, the problems can be placed on a
lower level of the polynomial hierarchy).

3.3. Hardness of ∀∃ 3-SAT-(s1, s2, t1, t2)

Following on from the results by Haviv et al. [8, p. 55] mentioned in the last paragraph, ∀∃ 3-SAT-(s1, s2, t1, t2) with
s1 + s2 ≤ 1 or t1 + t2 ≤ 2 is not �P

2 -hard unless the polynomial hierarchy collapses. In this section, we show which instances
of ∀∃ 3-SAT-(s1, s2, t1, t2) are NP-complete and which are �P

2 -complete. Specifically, we show that ∀∃ 3-SAT-(s1, s2, t1, t2)

is NP-complete for when s1 + s2 = 1 and (t1, t2) ∈ {(1, 2), (2, 1)}, and �P
2 -complete for when s1 = s2 = 1 and (t1, t2) ∈

{(1, 2), (2, 1)}.

82 J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91

Let � be an instance of ∀∃ 3-SAT-(s1, s2, t1, t2) with s1 + s2 = 1, and let Y p
1 be the set of universal variables of �. As

noted by Haviv et al. [8, p. 55], we can obtain an equivalent unquantified Boolean formula from � by deleting all literals
in {yi, yi : i ∈ {1, 2, . . . , p}} in the clauses of �. Hence, if � has the additional property that t1 + t2 ≤ 2, it follows from
results by Tovey [17, Section 3] that it can be decided in polynomial time whether or not � is a yes-instance. Hence,
∀∃ 3-SAT-(s1, s2, t1, t2) with s1 + s2 = 1 and t1 + t2 ≤ 2 is polynomial-time solvable. The next theorem shows that ∀∃ 3-

SAT-(s1, s2, t1, t2) with s1 + s2 = 1 becomes NP-complete if (t1, t2) ∈ {(1, 2), (2, 1)}. To establish this result, we use a variant
of 3-SAT in which each clause is either a 2-clause or a 3-clause, and each variable appears exactly twice unnegated and
exactly once negated, or exactly once unnegated and exactly twice negated. We refer to this variant as 3-SAT-(3). It was
shown by Dahlhaus et al. [4, p. 877f] that 3-SAT-(3) is NP-complete. To establish the next theorem, we impose the following
two restrictions on an instance ϕ of 3-SAT-(3).

(R1) Each 2-clause (resp. 3-clause) contains 2 (resp. 3) distinct variables.
(R2) Amongst the clauses, each variable appears exactly twice unnegated and exactly once negated.

Indeed, it follows immediately from Dahlhaus et al. [4, p. 877f] construction that ϕ satisfies (R1). Moreover, standard pre-
processing that replaces each literal of a variable that appears exactly once unnegated and exactly twice negated with its
negation can be used to obtain an instance ϕ′ from ϕ that satisfies (R2) and that is equivalent to ϕ . We hence obtain the
following theorem.

Theorem 3.6. ∀∃ 3-SAT-(s1, s2, t1, t2) is NP-complete if s1 + s2 = 1 and (t1, t2) ∈ {(1, 2), (2, 1)}.

Proof. It was shown by Haviv et al. [8, p. 55] that ∀∃ 3-SAT-(s1, s2, t1, t2) with s1 + s2 = 1 is in NP. We first establish
NP-completeness for ∀∃ 3-SAT-(1, 0, 2, 1) via a reduction from 3-SAT-(3).

Let

ϕ =
p∧

j=1

C2
j ∧

m∧
j=p+1

C3
j

be an instance of 3-SAT-(3) over a set Xn
1 of variables and such that each clause Ck

j is a k-clause with k ∈ {2, 3}. As described
prior to the statement of Theorem 3.6, we may assume that ϕ satisfies (R1) and (R2). Construct the following quantified
Boolean formula � from ϕ:

� = ∀Y p
1 ∃Xn

1

⎛
⎝ p∧

j=1

(C2
j ∨ yi) ∧

m∧
j=p+1

C3
j

⎞
⎠ .

Since ϕ satisfies (R2), � is an instance of ∀∃ 3-SAT-(1, 0, 2, 1). First, suppose that ϕ is satisfiable. Then there is a truth
assignment β that satisfies each clause in ϕ . In particular, β satisfies each clause C2

j and, hence, any extension of β to
Y p

1 with i ∈ {1, 2, . . . , p} is a truth assignment that satisfies �. Second, suppose that � is satisfiable. Let β ′ be a truth
assignment for � such that β ′(yi) = F for each i ∈ {1, 2, . . . , p}. By the existence of β ′ , it follows that β(xi) = β ′(xi) for
each i ∈ {1, 2, . . . , n} is a truth assignment that satisfies each clause in ϕ . As the size of � is polynomial in the size of ϕ ,
NP-completeness of ∀∃ 3-SAT-(1, 0, 2, 1) now follows. To see that ∀∃ 3-SAT-(s1, s2, t1, t2) is also NP-complete for when

(I) (s1, s2, t1, t2) = (0, 1, 2, 1),
(II) (s1, s2, t1, t2) = (1, 0, 1, 2), or

(III) (s1, s2, t1, t2) = (0, 1, 1, 2),

observe that an instance of any of (I)-(III) is equivalent to an instance of ∀∃ 3-SAT-(1, 0, 2, 1) by replacing each literal of a
universal or an existential (or both) variable with its negation. �

Theorem 3.7. ∀∃ 3-SAT-(1, 1, t1, t2) with (t1, t2) ∈ {(1, 2), (2, 1)} is �P
2 -complete.

Proof. We first establish the theorem for (t1, t2) = (2, 1). Throughout the proof, we make use of the following quantified
enforcer for an existential variable di,k:

E∀(di,k) = (di,k ∨ ui,k ∨ vi,k) ∧ (di,k ∨ ui,k ∨ vi,k),

where ui,k and vi,k are new universal variables for some i, k ∈Z+ . The following property of E∀(di,k) is easy to verify.

(P1) The Boolean formula ∀ui,k∀vi,k∃di,k E∀(di,k) is a yes-instance of ∀∃ 3-SAT. In particular, if a truth assignment β for
{di,k, ui,k, vi,k} has the property that β(di,k) = T , then β satisfies E∀(di,k). Furthermore, if β satisfies E∀(di,k) and
β(ui,k) = β(vi,k), then this implies that β(di,k) = T .

J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91 83

As ∀∃ 3-SAT-(1, 1, 2, 1) is a special case of ∀∃ 3-SAT, it follows that the former problem is in �P
2 . We show �P

2 -hardness
by a reduction from Balanced ∀∃ 3-SAT-(1, 1, 2, 2), for which �P

2 -completeness was established in Theorem 3.5. Let

�1 = ∀X p
1 ∃Y 2p

p+1ϕ

be an instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2). The reduction has two steps:

1. For each existential variable yi of �1 with i ∈ {p + 1, p + 2, . . . , 2p}, replace the first (resp. second) unnegated appear-
ance of yi with yi,1 (resp. yi,2), replace the first (resp. second) negated appearance of yi with the negation of yi,3

(resp. yi,4), and add the new clauses

(yi,1 ∨ yi,2 ∨ di,1) ∧ E∀(di,1) ∧ (yi,2 ∨ yi,3 ∨ di,2) ∧ E∀(di,2) ∧
(yi,3 ∨ yi,4 ∨ di,3) ∧ E∀(di,3) ∧ (yi,4 ∨ yi,1 ∨ di,4) ∧ E∀(di,4),

to �1, where each di,k with k ∈ {1, 2, 3, 4} is a new existential variable. For all i ∈ {p + 1, p + 2, . . . , 2p} and k ∈
{1, 2, 3, 4}, append yi,k and di,k to the list of existential variables and append ui,k and vi,k to the list of universal
variables.

2. For each existential variable yi,k with k ∈ {3, 4}, replace each literal yi,k with yi,k and each literal yi,k with yi,k .

Let �2 be the resulting quantified Boolean formula, and let V 2 be the set of variables of �2. (An example of this construc-
tion is given after the proof of the theorem.) Note that each existential variable yi,k with k ∈ {3, 4} appears exactly once
unnegated and exactly twice negated in the Boolean formula resulting from Step 1. Hence, due to Step 2, it follows that �2

is an instance of ∀∃ 3-SAT-(1, 1, 2, 1). Furthermore, for each i ∈ {p + 1, p + 2, . . . , 2p}, the clauses introduced in Step 1 are
replaced with the following clauses in Step 2:

(yi,1 ∨ yi,2 ∨ di,1) ∧ E∀(di,1) ∧ (yi,2 ∨ yi,3 ∨ di,2) ∧ E∀(di,2) ∧
(yi,3 ∨ yi,4 ∨ di,3) ∧ E∀(di,3) ∧ (yi,4 ∨ yi,1 ∨ di,4) ∧ E∀(di,4).

We complete the proof for (t1, t2) = (2, 1) by establishing the following statement.

3.7.1. �1 is a yes-instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2) if and only if �2 is a yes-instance of ∀∃ 3-SAT-(1, 1, 2, 1).

Proof. First, suppose that �1 is a yes-instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2). Let β1 be a truth assignment that satisfies
�1. For every truth assignment β ′

2 for the universal variables in

{ui,k, vi,k : i ∈ {p + 1, p + 2, . . . ,2p} and k ∈ {1,2,3,4}},
we extend β ′

2 to a truth assignment β2 for V 2 as follows:

(i) set β2(xi) = β1(xi) for each i ∈ {1, 2, . . . , p};
(ii) set β2(yi,k) = β1(yi) for each i ∈ {p + 1, p + 2, . . . , 2p} and k ∈ {1, 2};

(iii) set β2(yi,k) = β1(yi) for each i ∈ {p + 1, p + 2, . . . , 2p} and k ∈ {3, 4};
(iv) set β2(di,k) = T for each i ∈ {p + 1, p + 2, . . . , 2p} and k ∈ {1, 2, 3, 4}.

Due to (iv) and Property (P1), it is now easily checked that �2 is a yes-instance of ∀∃ 3-SAT-(1, 1, 2, 1).

Second, suppose that �2 is a yes-instance of ∀∃ 3-SAT-(1, 1, 2, 1). Let β2 be a truth assignment that satisfies �2 such
that β2(ui,k) = β2(vi,k) for each i ∈ {p + 1, p + 2, . . . 2p} and k ∈ {1, 2, 3, 4}. Since �2 is a yes-instance, this implies that
β2(di,k) = T by Property (P1). Moreover, by construction, we have

β2(yi,1) = β2(yi,2) and β2(yi,1) = β2(yi,3) = β2(yi,4)

for each i ∈ {p + 1, p + 2, . . . 2p}. It now follows that β1 with

(i) β1(xi) = β2(xi) for each i ∈ {1, 2, . . . , p} and
(ii) β1(yi) = β2(yi,1) for each i ∈ {p + 1, p + 2, . . . , 2p}

is a truth assignment for the set of variables of �1 that satisfies each clause in �1 and, thus, �1 is a yes-instance of
Balanced ∀∃ 3-SAT-(1, 1, 2, 2). �

84 J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91

Noting that the size of �2 is polynomial in the size of �1, the theorem now follows for (t1, t2) = (2, 1). Moreover, by
observing that an instance of ∀∃ 3-SAT-(1, 1, 1, 2) is equivalent to an instance of ∀∃ 3-SAT-(1, 1, 2, 1) by replacing each
literal of an existential variable with its negation, the theorem also follows for (t1, t2) = (1, 2). �

Example. We next present a simple example that illustrates the construction of �2 from �1 as described in the proof of
Theorem 3.7. Using the same notation as in this proof, let

�1 = ∀X2
1∃Y 4

3 (x1 ∨ y3 ∨ y4) ∧ (x2 ∨ y3 ∨ y4) ∧ (x1 ∨ y3 ∨ y4) ∧ (x2 ∨ y3 ∨ y4).

Note that �1 is an instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2). In the first step of the reduction, we reduce the number of
appearances for each existential variable by one and obtain

�′
1 =∀X2

1∀u3,1∀u3,2∀u3,3∀u3,4∀u4,1∀u4,2∀u4,3∀u4,4

∀v3,1∀v3,2∀v3,3∀v3,4∀v4,1∀v4,2∀v4,3∀v4,4

∃y3,1∃y3,2∃y3,3∃y3,4∃y4,1∃y4,2∃y4,3∃y4,4

∃d3,1∃d3,2∃d3,3∃d3,4∃d4,1∃d4,2∃d4,3∃d4,4

(x1 ∨ y3,1 ∨ y4,3) ∧ (x2 ∨ y3,3 ∨ y4,1) ∧ (x1 ∨ y3,4 ∨ y4,4) ∧ (x2 ∨ y3,2 ∨ y4,2) ∧
(y3,1 ∨ y3,2 ∨ d3,1) ∧ E∀(d3,1) ∧ (y3,2 ∨ y3,3 ∨ d3,2) ∧ E∀(d3,2) ∧
(y3,3 ∨ y3,4 ∨ d3,3) ∧ E∀(d3,3) ∧ (y3,4 ∨ y3,1 ∨ d3,4) ∧ E∀(d3,4) ∧
(y4,1 ∨ y4,2 ∨ d4,1) ∧ E∀(d4,1) ∧ (y4,2 ∨ y4,3 ∨ d4,2) ∧ E∀(d4,2) ∧
(y4,3 ∨ y4,4 ∨ d4,3) ∧ E∀(d4,3) ∧ (y4,4 ∨ y4,1 ∨ d4,4) ∧ E∀(d4,4),

where ui,k and vi,k are the universal variables appearing in the quantified enforcer E∀(di,k) for i ∈ {3, 4} and k ∈ {1, 2, 3, 4}.
Now, each existential variable appears either twice unnegated and once negated or once unnegated and twice negated. In
the second step, we negate all appearances of each existential variable that appears twice negated and once negated in �′

1,
which yields the quantified Boolean formula

�2 =∀X2
1∀u3,1∀u3,2∀u3,3∀u3,4∀u4,1∀u4,2∀u4,3∀u4,4

∀v3,1∀v3,2∀v3,3∀v3,4∀v4,1∀v4,2∀v4,3∀v4,4

∃y3,1∃y3,2∃y3,3∃y3,4∃y4,1∃y4,2∃y4,3∃y4,4

∃d3,1∃d3,2∃d3,3∃d3,4∃d4,1∃d4,2∃d4,3∃d4,4

(x1 ∨ y3,1 ∨ y4,3) ∧ (x2 ∨ y3,3 ∨ y4,1) ∧ (x1 ∨ y3,4 ∨ y4,4) ∧ (x2 ∨ y3,2 ∨ y4,2) ∧
(y3,1 ∨ y3,2 ∨ d3,1) ∧ E∀(d3,1) ∧ (y3,2 ∨ y3,3 ∨ d3,2) ∧ E∀(d3,2) ∧
(y3,3 ∨ y3,4 ∨ d3,3) ∧ E∀(d3,3) ∧ (y3,4 ∨ y3,1 ∨ d3,4) ∧ E∀(d3,4) ∧
(y4,1 ∨ y4,2 ∨ d4,1) ∧ E∀(d4,1) ∧ (y4,2 ∨ y4,3 ∨ d4,2) ∧ E∀(d4,2) ∧
(y4,3 ∨ y4,4 ∨ d4,3) ∧ E∀(d4,3) ∧ (y4,4 ∨ y4,1 ∨ d4,4) ∧ E∀(d4,4).

4. Hardness of MONOTONE ∀∃ NAE-3-SAT-(s, t) with bounded variable appearances

4.1. Enforcers

In this section, we describe four monotone enforcers that have recently been introduced in an unquantified context by
Darmann and Döcker [5]. For the purposes of this section, we use their enforcers in a quantified setting. Specifically, for the
first three enforcers, x can be a universally or existentially quantified variable.
Auxiliary non-equality gadget. First, consider the auxiliary non-equality gadget

NEaux(x, y) =(x ∨ y ∨ a) ∧ (x ∨ y ∨ b) ∧ (a ∨ b ∨ u) ∧ (a ∨ b ∨ v) ∧ (a ∨ b ∨ w) ∧ (u ∨ v ∨ w),

where a, b, u, v, w are five new existential variables, y is an existential variable, and x is a universal or existential variable.
To nae-satisfy the last clause, at least one variable in {u, v, w} is set to be T and at least one is set to be F . Then, by the
three preceding clauses, we have that a truth assignment that nae-satisfies NEaux(x, y) assigns different truth values to a
and b. The next observation follows by construction of the first two clauses.

J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91 85

Observation 4.1. Consider the gadget NEaux(x, y), and let V be its associated set of variables. A truth assignment β for {x, y} can be
extended to a truth assignment β ′ for V that nae-satisfies NEaux(x, y) if and only if β(x)
= β(y).

Equality gadget. The second enforcer is the equality gadget

EQ(x, y) = NEaux(p,q) ∧ NEaux(p, r) ∧ (x ∨ q ∨ r) ∧ (y ∨ q ∨ r),

where p, q, r are three new existential variables, y is an existential variable, and x is a universal or existential variable. By
construction and Observation 4.1, a truth assignment that nae-satisfies EQ(x, y) assigns the same truth value to q and r. The
next observation follows by construction of the last two clauses in the equality gadget.

Observation 4.2. Consider the gadget EQ(x, y), and let V be its associated set of variables. A truth assignment β for {x, y} can be
extended to a truth assignment β ′ for V that nae-satisfies EQ(x, y) if and only if β(x) = β(y).

Non-equality gadget. Combining the first and second enforcer, we now obtain another non-equality gadget:

NE(x, y) = EQ(x, p) ∧ EQ(y,q) ∧ NEaux(p,q),

where p and q are two new existential variables, y is an existential variable, and x is a universal or existential variable. The
next observation follows immediately by construction, and Observations 4.1 and 4.2.

Observation 4.3. Consider the gadget NE(x, y), and let V be its associated set of variables. A truth assignment β for {x, y} can be
extended to a truth assignment β ′ for V that nae-satisfies NE(x, y) if and only if β(x)
= β(y).

The next observation follows by construction of the last three enforcers.

Observation 4.4. Let E be an enforcer in {NEaux(x, y), EQ(x, y), NE(x, y)}. Then each variable introduced by E appears at most four
times in E .

Padding gadget. The fourth enforcer is the gadget

P1(x) =(x ∨ a ∨ b) ∧ (a ∨ c ∨ d) ∧ (a ∨ b ∨ e) ∧ (a ∨ d ∨ e) ∧ (b ∨ c ∨ d) ∧ (b ∨ c ∨ e) ∧ (c ∨ d ∨ e),

where x is an existential variable, and a, b, c, d, e are five new existential variables each of which appears exactly four times
in the gadget. For the truth assignment β for {a, b, c, d, e} with β(a) = β(c) = β(e) = T and β(b) = β(d) = F , the next
observation follows immediately by construction.

Observation 4.5. The gadget P1(x) is nae-satisfiable. Moreover, every truth assignment for {x} can be extended to a truth assignment
for {a, b, c, d, e, x} that nae-satisfies P1(x).

Intuitively, P 1(x) is used to increase the number of appearances of existential variables in a Boolean formula until each
variable appears exactly four times.

4.2. Hardness of Monotone ∀∃ NAE-3-SAT-(s, t)

In this section, we establish that a monotone and linear Boolean formula ϕ of ∀∃ NAE-3-SAT is complete for the second
level of the polynomial hierarchy even if each clause in ϕ contains at most one universal variable and, amongst the clauses
in ϕ , each universal variable appears exactly once and each existential variable appears exactly three times. We start by
establishing a slightly weaker result without linearity.

Proposition 4.6. Monotone ∀∃ NAE-3-SAT-(1, 4) is �P
2 -complete if each clause contains at most one universal variable.

Proof. Clearly, the decision problem Monotone ∀∃ NAE-3-SAT-(1, 4) as described in the statement of the proposition is in
�P

2 . We show that it is �P
2 -complete by a reduction from ∀∃ NAE-3-SAT. For the latter problem, �P

2 -completeness was
established by Eiter and Gottlob [6]. Let

�1 = ∀X p
1 ∃Y n

p+1ϕ

be an instance of ∀∃ NAE-3-SAT over a set V 1 = X p
1 ∪ Y n

p+1 of variables. We may assume that each clause contains exactly
three literals and at most one duplicate literal.

86 J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91

In what follows, we construct two quantified Boolean formulas that include copies of the enforcers introduced in Sec-
tion 4.1. Each such enforcer adds several new existential variables. For ease of exposition throughout this proof, we use A
to denote the set of all new existential variables that are introduced by a copy of an enforcer in

{NEaux(x, y),EQ(x, y),NE(x, y),P1(x)}.
In particular, A is initially empty and, each time we use a new enforcer copy, we add the newly introduced variables to A
and append them to the list of existential variables without mentioning it explicitly. We remark that it will always be clear
from the context that the number of elements in A is polynomial in the size of �1.

Now, let

�2 = ∀Z p
1 ∃Y n

1∃Aϕ[x1 �→ y1, . . . , xp �→ yp] ∧
p∧

i=1

EQ(zi, yi)

be the quantified Boolean formula obtained from �1 by first creating a copy zi of each of the universal variables xi , replacing
each universal variable xi of �1 with a new existential variable yi , and then, for all i ∈ {1, 2, . . . , p}, adding the enforcer
EQ(zi, yi), where zi is a new universal variable. Furthermore, let V ′

2 = Z p
1 ∪ Y n

1 , and let V 2 = V ′
2 ∪ A. By construction, each

clause in �2 contains at most one universal variable and each universal variable appears exactly once in �2.

4.6.1. �1 is a yes-instance of ∀∃ NAE-3-SAT if and only if �2 is a yes-instance of ∀∃ NAE-3-SAT.

Proof. First, suppose that �1 is a yes-instance of ∀∃ NAE-3-SAT. Let β1 be a truth assignment for V 1 that nae-satisfies �1,
and let β ′

2 be the following truth assignment for V ′
2:

(i) set β ′
2(yi) = β1(yi) for each i ∈ {p + 1, p + 2, . . . , n};

(ii) set β ′
2(zi) = β1(xi) for each i ∈ {1, 2, . . . , p};

(iii) set β ′
2(yi) = β1(xi) for each i ∈ {1, 2, . . . , p}.

By (iii) and Observation 4.2, it follows that there is a truth assignment β2 for V 2 that extends β ′
2 such that, for each i ∈

{1, 2, . . . , p}, the clauses of EQ(zi, yi) are nae-satisfied. Furthermore, since �1 is nae-satisfiable for every truth assignment
for X p

1 , if follows that �2 is nae-satisfiable for every truth assignment for Z p
1 . Hence, �2 is a yes instance of ∀∃ NAE-3-SAT.

Second, suppose that �2 is a yes-instance of ∀∃ NAE-3-SAT. Let β2 be a truth assignment for V 2 that nae-satisfies
�2. By Observation 4.2, it follows that β2(zi) = β2(yi) for each i ∈ {1, 2, . . . , p}. Hence β1 with β1(xi) = β2(zi) for each
i ∈ {1, 2, . . . , p}, and β1(yi) = β2(yi) for each i ∈ {p + 1, p + 2, . . . , n} is a truth assignment for V 1 that nae-satisfies �1.
Furthermore, since �2 is nae-satisfiable for every truth assignment for Z p

1 , it follows that �1 is a yes-instance of ∀∃ NAE-3-

SAT. �

Next, following Darmann and Döcker [5, Theorem 1], we transform �2 into a new quantified Boolean formula in four
steps:

1. To remove all negated variables, we start by replacing each appearance of an existential variable in Y n
1 with a new

unnegated variable. Specifically, for each existential variable yi ∈ Y n
1 , let u(yi) and n(yi) be the number of unnegated

and negated appearances, respectively, of yi in the Boolean formula of �2. Recall that u(yi) + n(yi) = a(yi). Now,
for each j ∈ {1, 2, . . . , u(yi)}, replace the j-th unnegated appearance of yi in �2 with yi, j . Similarly, for each j ∈
{1, 2, . . . , n(yi)}, replace the j-th negated appearance of yi in �2 with yi,u(yi)+ j . Lastly, for all i ∈ {1, 2, . . . , n}, append

∃yi,1∃yi,2 · · · ∃yi,a(yi)

to the list of existential variables and remove the obsolete variables ∃Y n
1 .

2. If u(yi) > 1, introduce the clauses

n∧
i=1

u(yi)−1∧
j=1

EQ(yi, j, yi, j+1).

Similarly, if n(yi) > 1, introduce the clauses

n∧
i=1

a(yi)−1∧
j=u(yi)+1

EQ(yi, j, yi, j+1).

3. For each i ∈ {1, 2, . . . , n} with u(yi) /∈ {0, a(yi)}, add the gadget

NE(yi,u(yi), yi,u(yi)+1).

J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91 87

4. Let �′
2 be the quantified Boolean formula resulting from the last three steps. For i ∈ {1, 2, . . . , n}, consider an existential

variable yi in �2. If yi appears exactly once in �2, then yi,1 only appears once in �′
2 because Steps 2 and 3 do not

introduce any gadget that adds an additional appearance of yi,1. Otherwise, if yi appears at least twice in �2, then
the enforcers introduced in the previous two steps increase the number of appearances for each variable yi, j with
j ∈ {1, 2, . . . , a(yi)} by at least one and at most two. Hence, each variable yi, j appears at most three times in �′

2.
Moreover, by construction and Observation 4.4, each variable in A appears at most four times in �′

2. Now, for each
existential variable v in �′

2 (this includes all variables in A), add the clauses

4−a(v)∧
k=1

P1(v)

to �′
2, where a(v) denotes the number of appearances of v in �′

2.

Let �3 be the quantified Boolean formula constructed by the preceding four-step procedure. Furthermore, let V 3 be the set
of variables of �3, and let V ′

3 = V 3 − A.

4.6.2. �2 is a yes-instance of ∀∃ NAE-3-SAT if and only if �3 is a yes-instance of ∀∃ NAE-3-SAT.

Proof. First, suppose that �2 is a yes-instance of ∀∃ NAE-3-SAT. Let β2 be a truth assignment for V 2 that nae-satisfies �2.
Obtain a truth assignment β ′

3 for V ′
3 as follows:

(i) set β ′
3(zi) = β2(zi) for each i ∈ {1, 2, . . . , p};

(ii) set β ′
3(yi, j) = β2(yi) for each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , u(yi)};

(iii) set β ′
3(yi, j) = β2(yi) for each i ∈ {1, 2, . . . , n} and j ∈ {u(yi) + 1, u(yi) + 2, . . . , a(yi)}.

By (ii) and (iii) as well as Observations 4.2, 4.3, and 4.5, it follows that there is a truth assignment β3 for V 3 that extends
β ′

3 and nae-satisfies �3. Moreover, it follows by construction that for every truth assignment for Z p
1 , there exists a truth

assignment for V 3 − Z p
1 that nae-satisfies �3. Hence, �3 is a yes-instance of ∀∃ NAE-3-SAT.

Second, suppose that �3 is a yes-instance of ∀∃ NAE-3-SAT. Let β3 be a truth assignment for V 3 that nae-satisfies �3.
By Steps 2 and 3 of the construction, and by Observations 4.2 and 4.3, we have

(I) β3(yi,1) = β3(yi,2) = · · · = β3(yi,u(yi)),
(II) β3(yi,u(yi))
= β3(yi,u(yi)+1), and

(III) β3(yi,u(yi)+1) = β3(yi,u(yi)+2) = · · · = β3(yi,a(yi))

for all i ∈ {1, 2, . . . , n}. Now, obtain a truth assignment β2 for V 2 as follows:

(i) set β2(zi) = β3(zi) for each i ∈ {1, 2, . . . , p};
(ii) set β2(yi) = β3(yi,1) for each i ∈ {1, 2, . . . , n} with u(yi) ≥ 1;

(iii) set β2(yi) = β3(yi,1) for each i ∈ {1, 2, . . . , n} with u(yi) = 0;
(iv) set β2(a) = β3(a) for each a ∈ A with a ∈ V 2.

It is now straightforward to check that β2 nae-satisfies �2 and, hence, �2 is a yes-instance of ∀∃ NAE-3-SAT. �

We complete the proof by showing that �3 has the desired properties. First, since all enforcers introduced in Section 4.1
are monotone, it follows from Step 1 in the construction of �3 from �2 that �3 is monotone. Second, again by Step 1 in
the construction of �3 from �2, it follows that each clause in �3 is a 3-clause that contains three distinct variables. Third,
turning to the universal variables in �3 and as mentioned in the construction of �2, each clause in �2, and hence in �3,
contains at most one universal variable and each universal variable in �2, and hence in �3, appears exactly once. Fourth,
recalling Step 4 in the construction of �3 from �2 and that each new existential variable of P1(v) appears exactly four
times in the seven clauses associated with P1(v), it follows that each existential variable appears exactly four times in �3.
Noting that the size of �3 is polynomial in the size of �, this establishes the proposition. �

We are now in a position to establish the main result of this section.

Theorem 4.7. Monotone ∀∃ NAE-3-SAT-(1, 3) is �P
2 -complete if the Boolean formula is linear and each clause contains at most one

universal variable.

Proof. Clearly, the decision problem Monotone ∀∃ NAE-3-SAT-(1, 3) as described in the statement of the theorem is in �P
2 .

We show �P
2 -completeness by a reduction from Monotone ∀∃ NAE-3-SAT-(1, 4). Let

88 J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91

�1 = ∀Z p
1 ∃Zn

p+1ϕ

be an instance of Monotone ∀∃ NAE-3-SAT-(1, 4). By Proposition 4.6, we may assume that each clause in �1 contains at
most one universal variable.

We start by defining the following four sets of variables which we use to construct an instance �2 of Montone ∀∃
NAE-3-SAT-(1, 3). Let

U = {ui,k : i ∈ {p + 1, p + 2, . . . ,n} and k ∈ {1,2, . . . ,8}} and

V = {vi,k : i ∈ {p + 1, p + 2, . . . ,n} and k ∈ {1,2, . . . ,8}}
be two sets of universal variables, and let

E = {ei,k : i ∈ {p + 1, p + 2, . . . ,n} and k ∈ {1,2, . . . ,8}} and

Z = {zi,k : i ∈ {p + 1, p + 2, . . . ,n} and k ∈ {1,2, . . . ,8}}
be two sets of existential variables. Now, for each i ∈ {p + 1, p + 2, . . . , n}, we replace the j-th appearance of zi with zi, j for
all j ∈ {1, 2, 3, 4} and introduce the clauses

7∧
k=1

(
(zi,k ∨ ei,k ∨ ui,k) ∧ (ei,k ∨ zi,k+1 ∨ vi,k)

) ∧ (zi,8 ∨ ei,8 ∨ ui,8) ∧ (ei,8 ∨ zi,1 ∨ vi,8) ∧

(zi,5 ∨ ei,1 ∨ ei,2) ∧ (zi,6 ∨ ei,7 ∨ ei,8) ∧ (zi,7 ∨ ei,3 ∨ ei,4) ∧ (zi,8 ∨ ei,5 ∨ ei,6).

Furthermore, we append each element in U ∪ V to the list of universal variables, append each element in E ∪ Z to the list
of existential variables, and delete the obsolete variables Zn

p+1. Let �2 denote the resulting formula. By construction, it is
straightforward to check that �2 is an instance of Monotone ∀∃ NAE-3-SAT-(1, 3) with at most one universal variable per
clause and whose set of variables is

U ∪ V ∪ Z p
1 ∪ E ∪ Z .

Moreover, if any pair of clauses in �1 have two variables in common, then both are existential variables and, hence, again
by construction, �2 is linear. Since �2 has all desired properties and the size of �2 is polynomial in the size of �1, it
remains to show that the following statement holds.

4.7.1. �1 is a yes-instance of Monotone ∀∃ NAE-3-SAT-(1, 4) if and only if �2 is a yes-instance of Monotone ∀∃ NAE-3-SAT-(1, 3).

Proof. First, suppose that �1 is a yes-instance of Monotone ∀∃ NAE-3-SAT-(1, 4). Let β1 be a truth assignment for Z p
1 ∪ Zn

p+1

that nae-satisfies �1. Obtain a truth assignment β2 for Z p
1 ∪ E ∪ Z as follows:

(i) set β2(zi) = β1(zi) for each i ∈ {1, 2, . . . , p};
(ii) set β2(zi,k) = β1(zi) for each i ∈ {p + 1, p + 2, . . . , n} and k ∈ {1, 2, . . . , 8};

(iii) set β2(ei,k) = β1(zi) for each i ∈ {p + 1, p + 2, . . . , n} and k ∈ {1, 2, . . . , 8}.

It is easily checked that every truth assignment for U ∪ V ∪ Z p
1 ∪ E ∪ Z that extends β2 nae-satisfies �2, and thus �2 is a

yes-instance of Monotone ∀∃ NAE-3-SAT-(1, 3).
Second, suppose that �2 is a yes-instance Monotone ∀∃ NAE-3-SAT-(1, 3). Let β2 be a truth assignment that nae-satisfies

�2 such that β2(ui,k) = F and β2(vi,k) = T for each i ∈ {p + 1, p + 2, . . . , n} and k ∈ {1, 2, . . . , 8}. Since ui,k and vi,k are
universal variables, β2 exists. We next show that β2 satisfies the property

β2(zi,1) = β2(zi,2) = β2(zi,3) = β2(zi,4)

for each i ∈ {p + 1, p + 2, . . . , n}. To this end, consider the subset of clauses

(zi,8 ∨ ei,8 ∨ F) ∧ (ei,8 ∨ zi,1 ∨ T) ∧
7∧

k=1

(
(zi,k ∨ ei,k ∨ F) ∧ (ei,k ∨ zi,k+1 ∨ T)

)

of �2, where the universal variables are set according to β2. If β2(zi,1) = F , then the clause (zi,1 ∨ ei,1 ∨ F) implies that
β2(ei,1) = T and, hence, by the aforementioned subset of clauses, β2(zi, j) = F for each j ∈ {1, 2, 3, 4}. Otherwise, if β2(zi,1) =
T , then the clause (ei,8 ∨ zi,1 ∨ T) implies that β2(ei,8) = F and, hence, again by the aforementioned subset of clauses,
β2(zi, j) = T for each j ∈ {1, 2, 3, 4}. It now follows that the truth assignment β1 for Z p

1 ∪ Zn
p+1 with

(i) β1(zi) = β2(zi) for each i ∈ {1, 2, . . . , p} and

J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91 89

(ii) β1(zi) = β2(zi,1) for each i ∈ {p + 1, p + 2, . . . , n}

nae-satisfies �1, and so �1 is a yes-instance of Monotone ∀∃ NAE-3-SAT-(1, 4). �

This completes the proof of Theorem 4.7. �

4.3. Restrictions that alleviate the complexity of Monotone ∀∃ NAE-3-SAT-(s, t)

In this section, we discuss variants of Monotone ∀∃ NAE-3-SAT-(s, t) that are in co-NP or solvable in polynomial time.
More precisely, we investigate the complexity of Monotone ∀∃ NAE-3-SAT-(s, 2). First note that Monotone ∀∃ NAE-3-

SAT-(0, t) is a special case of NAE-3-SAT and therefore in NP. Furthermore, Monotone ∀∃ NAE-3-SAT-(s, 1) can be solved in
polynomial time since an instance of this problem is a yes-instance if and only if each clause contains at least one existen-
tial variable. Now, let t be a non-negative integer. Consider the following decision problem that allows for a set of variables
and the set {F , T } of constants.

Monotone-with-Constants-NAE-3-SAT-t (MC-NAE-3-SAT-t)
Input. A set V = {x1, x2, . . . , xn} of variables and a monotone Boolean formula

m∧
j=1

C j

such that each clause contains exactly three distinct elements in V ∪ {F , T } and, amongst the clauses, each element
in V appears exactly t times.
Question. Does there exist a truth assignment β : V → {T , F } such that each clause of the formula is nae-satisfied?

Boolean formulas that include variables and the two constants F and T were, for example, previously considered in the
context of NAE-3-SAT [2, p. 275f]. In particular, let ϕ be an instance of NAE-3-SAT that allows for constants. Bonet et al. [2]
showed that, given a solution to ϕ , it is NP-complete to decide if a second solution to ϕ exists. This result was in turn used
to prove that two problems arising in computational biology are NP-complete. Note that in the special case in which ϕ does
not contain any constant, a second solution can always be obtained from a given truth assignment that nae-satisfies ϕ by
simply interchanging T and F .

We next show that MC-NAE-3-SAT-t is solvable in polynomial time if t = 2.

Proposition 4.8. MC-NAE-3-SAT-2 is in P.

Proof. Let ϕ = ∧m
j=1 C j be an instance of MC-NAE-3-SAT-2 over a set V ∪ {F , T } of variables and constants, where V =

{x1, x2, . . . , xn}. To establish the proposition, we adapt ideas presented by Porschen et al. [11] who developed a linear-time
algorithm to decide if an instance of NAE-SAT, i.e. a Boolean formula in CNF, is nae-satisfiable if each variable appears at
most twice.

Using the notation C j = (� j,1 ∨ � j,2 ∨ � j,3) to denote the j-th clause in ϕ for each j ∈ {1, 2, . . . , m}, we next present an
algorithm to decide whether or not ϕ is a yes-instance of MC-NAE-3-SAT-2. At each step of the algorithm, ϕ is transformed
into a simpler Boolean formula.

1. For each clause C j with � j,k = xi for some i ∈ {1, 2, . . . , n} and � j,k′ , � j,k′′ ∈ {F , T } with {k, k′, k′′} = {1, 2, 3}, do the
following.

(I) If � j,k′
= � j,k′′ , remove C j from ϕ .
(II) If � j,k′ = � j,k′′ = F , remove C j and reset ϕ to be ϕ[xi �→ T].

(III) If � j,k′ = � j,k′′ = T , remove C j and reset ϕ to be ϕ[xi �→ F].
2. For each pair of variables xi, xi′ ∈ V with i
= i′ that both appear in two distinct clauses C j and C j′ , remove C j and C j′

from ϕ .
3. For each variable xi that appears in exactly one clause C j , remove C j from ϕ .
4. For each clause C j such that � j,1, � j,2, � j,3 ∈ {T , F }, do the following.

(I) If {� j,1, � j,2, � j,3} = {T , F }, remove C j from ϕ .
(II) Otherwise, stop and return “ϕ is a no-instance”.

5. Stop and return “ϕ is a yes-instance”.

The algorithm clearly terminates within polynomial time. Moreover, as a variable that appears exactly once in a Boolean
formula can be assigned to either T or F without affecting any other clause, it is straightforward to check that each step in
the algorithm returns a Boolean formula that is equivalent to ϕ . Hence, if a clause contains three equal constants, then the
algorithm correctly returns that ϕ is a no-instance in Step 4. Now, suppose that the algorithm returns “ϕ is a yes-instance”.

90 J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91

Let ϕ′ be the Boolean formula that is obtained at the end of the last iteration of Step 4(I). Then, ϕ′ is an instance of MC-

NAE-3-SAT-2 such that each clause contains at most one constant and each pair of clauses have at most one variable in
common. Hence, ϕ′ is linear. It remains to show that ϕ′ is a yes-instance of MC-NAE-3-SAT-2.

Before continuing with the proof, we pause to give an overview of a result established by Porschen et al. [11]. Let
ψ = ∧m′

j=1 C ′
j be a linear and monotone Boolean formula where each variable appears exactly twice and each clause contains

at least two distinct variables. Furthermore, let Gψ be the clause graph for ψ whose set of vertices is {C ′
1, C

′
2, . . . , C

′
m′ } and,

for each pair j, j′ ∈ {1, 2, . . . , m′} with j
= j′ , there is an edge {C ′
j, C

′
j′ } in Gψ precisely if C ′

j and C ′
j′ have a variable in

common. Then ψ is nae-satisfiable if and only if there exists an edge coloring of Gψ that uses exactly two colors c1 and c2
such that each vertex is incident to an edge that is colored c1 and incident to an edge that is colored c2. Moreover, if ψ
does not have a connected component that is isomorphic to a cycle of odd length, then such an edge coloring exists.

We now continue with the proof of the proposition. Let ϕ′′ be the Boolean formula obtained from ϕ′ by omitting all
constants. By construction, each clause in ϕ′′ contains either two or three distinct variables. It follows that, if ϕ′′ is nae-
satisfiable, then ϕ′ is nae-satisfiable. Let Gϕ′′ be the clause graph for ϕ′′ . First, assume that Gϕ′′ does not have a connected
component that is isomorphic to a cycle of odd length. Then it immediately follows from the result by Porschen et al. [11]
that ϕ′′ is nae-satisfiable and, hence, ϕ′ is also nae-satisfiable. Second, assume that Gϕ′′ has a connected component that is
isomorphic to a cycle of odd length. Then the vertices of this component are of the form

(xi1 ∨ xi2), (xi2 ∨ xi3), . . . , (xip−1 ∨ xip), (xip ∨ xi1),

where p ≥ 3 is an odd integer and xi j ∈ V . In other words,

Cϕ′′ =
p−1∧
j=1

(xi j ∨ xi j+1) ∧ (xip ∨ xi1),

is contained in ϕ′′ . Although Cϕ′′ is not nae-satisfiable, we next show that the corresponding clauses Cϕ′ in ϕ′ are nae-
satisfiable since each such clause contains exactly one constant.

Consider

Cϕ′ =
p−1∧
j=1

(xi j ∨ xi j+1 ∨ b j) ∧ (xip ∨ xi1 ∨ bp),

where b j ∈ {T , F } for each j ∈ {1, 2, . . . , p}. Let β be the following truth assignment for {xi1 , xi2 , . . . , xip }:

(i) set β(xi j) = bp for each j ∈ {1, 2, . . . , p} with j being odd;
(ii) set β(xi j) = bp for each j ∈ {1, 2, . . . , p} with j being even.

It follows that β nae-satisfies Cϕ′ . An analogous argument can be applied to every other connected component in Gϕ′′ that
is isomorphic to a cycle of odd length. Furthermore, it again follows from Porschen et al.’s result [11] that the edge set of
each connected component in Gϕ′′ that is not isomorphic to a cycle of odd length corresponds to a subset of clauses in ϕ′′
that is nae-satisfiable. Altogether, ϕ′′ is nae-satisfiable and, hence, ϕ′ is also nae-satisfiable. This completes the proof of the
proposition. �

We next establish three corollaries that pinpoint the complexity of Monotone ∀∃ NAE-3-SAT-(s, 2).

Corollary 4.9. Monotone ∀∃ NAE-3-SAT-(s, 2) is in co-NP for any fixed positive integer s.

Proof. A no-instance of Monotone ∀∃ NAE-3-SAT-(s, 2) can be identified by taking an assignment of the universal variables
and applying the algorithm presented in Proposition 4.8 to verify in polynomial time whether or not the resulting MC-

NAE-3-SAT-2 Boolean formula (with omitted lists of universal and existential quantifies) is not nae-satisfiable. �

Corollary 4.10. Monotone ∀∃ NAE-3-SAT-(s, 2) is trivially a yes-instance for any fixed positive integer s if each clause contains at
most one universal variable.

Proof. Let � be an instance of Monotone ∀∃ NAE-3-SAT-(s, 2) such that each clause contains at most one universal variable.
We follow ideas that are similar to those presented in the algorithm described in the proof of Proposition 4.8. First, if there
are two existential variables that both appear in two distinct clauses C j and C j′ , obtain a new Boolean formula by removing
C j and C j′ from �. Repeat this step until no such pair of variables remains. Then, if there is an existential variable that
appears in exactly one clause C j , obtain a new Boolean formula by removing C j . Similar to the proof of Proposition 4.8, it
follows that the resulting Boolean formula, say �′ , is an instance of Monotone ∀∃ NAE-3-SAT-(s, 2) such that each clause

J. Döcker et al. / Theoretical Computer Science 822 (2020) 72–91 91

contains at most one universal variable and the formula is linear. Moreover, � is a yes-instance if and only if �′ is a yes-
instance. If �′ is empty, then � is a yes-instance by correctness of the applied transformations. Otherwise, it follows from
the properties of �′ and the proof of Proposition 4.8 that �′ and, hence, � are yes-instances. �

Corollary 4.11. Monotone ∀∃ NAE-3-SAT-(1, 2) is in P.

Proof. Let � be an instance of Monotone ∀∃ NAE-3-SAT-(1, 2). To decide whether or not � is a yes-instance, we apply the
following algorithm to �.

1. If there exists a clause that contains three distinct universal variables, then stop and return “� is a no-instance”.
2. For a clause C j that contains one existential variable, say x, and two distinct universal variables, say u and u′ , let C j′

be the unique clause that contains the second appearance of x. Then remove C j and turn x in C j′ into a new universal
variable.
(I) If C j′ now contains three distinct universal variables, stop and return “� is a no-instance”.
(II) Otherwise, repeat until there are no clauses with two universal variables.

3. Stop and return “� is a yes-instance”.

Since each universal variable appears exactly once in � and each existential variable appears exactly twice in �, it follows
that the Boolean formula obtained after each iteration of Step 2 is an instance of Monotone ∀∃ NAE-3-SAT-(1, 2). Therefore,
if the algorithm eventually produces a Boolean formula, �′ say, then �′ has at most one universal variable in each clause
and, by Corollary 4.10, �′ is a yes-instance. Hence, to see that the algorithm works correctly, it suffices to show that an
iteration of Step 2 preserves yes-instances. Suppose that �1 is the quantified Boolean formula at the start of an iteration
of Step 2 and C j = (x ∨ u ∨ u′) is a clause in �1 as described in Step 2. Let β be a truth assignment that nae-satisfies �.
If β(u) = β(u′) = F , then it follows that β(x) = T . On the other hand, if β(u) = β(u′) = T , then this implies that β(x) = F .
It now follows that the Boolean formula, �2 say, obtained by turning x into a universal variable is also a yes-instance.
Conversely, by reversing this argument, if �2 is a yes-instance, then �1 is a yes-instance. Thus Step 2 preserves yes-
instances. We now establish the corollary by noting that the described algorithm has a running time that is polynomial in
the size of �. �

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We thank Krzysztof Piecuch and the two anonymous referees for their constructive comments. The third and fourth
authors thank the New Zealand Marsden Fund for their financial support.

References

[1] P. Berman, M. Karpinski, A.D. Scott, Approximation hardness of short symmetric instances of MAX-3SAT, Electronic Colloquium on Computational
Complexity. Report No. 49, 2003.

[2] M.L. Bonet, S. Linz, K.St. John, The complexity of finding multiple solutions to betweenness and quartet compatibility, IEEE/ACM Trans. Comput. Biol.
Bioinform. 9 (2012) 273–285.

[3] S.A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the Third Annual ACM Symposium on Theory of Computing, ACM, New
York, 1971, pp. 151–158.

[4] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, M. Yannakakis, The complexity of multiterminal cuts, SIAM J. Comput. 23 (1994) 864–894.
[5] A. Darmann, J. Döcker, On simplified NP-complete variants of Not-All-Equal 3-SAT and 3-SAT, arXiv preprint, arXiv:1908 .04198, 2019.
[6] T. Eiter, G. Gottlob, Note on the complexity of some eigenvector problems, Technical Report CD-TR 95/89, Christian Doppler Laboratory for Expert

Systems, TU Vienna, 1995.
[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979.
[8] I. Haviv, O. Regev, A. Ta-Shma, On the hardness of satisfiability with bounded occurrences in the polynomial-time hierarchy, Theory Comput. 3 (2007)

45–60.
[9] M. Karpinski, K. Piecuch, On vertex coloring without monochromatic triangles, arXiv preprint, arXiv:1710 .07132, 2017.

[10] M. Karpinski, K. Piecuch, On vertex coloring without monochromatic triangles, in: F. Fomin, V. Podolskii (Eds.), Computer Science: Theory and Appli-
cations, CSR 2018, in: Lecture Notes in Computer Science, vol. 10846, Springer, 2018, pp. 220–231.

[11] S. Porschen, B. Randerath, E. Speckenmeyer, Linear time algorithms for some not-all-equal satisfiability problems, in: E. Giunchiglia, A. Tacchella (Eds.),
Theory and Applications of Satisfiability Testing, SAT 2003, in: Lecture Notes in Computer Science, vol. 2919, Springer, 2004, pp. 172–187.

[12] S. Porschen, T. Schmidt, E. Speckenmeyer, A. Wotzlaw, XSAT and NAE-SAT of linear CNF classes, Discrete Appl. Math. 167 (2014) 1–14.
[13] M. Schaefer, Graph Ramsey theory and the polynomial hierarchy, J. Comput. Syst. Sci. 62 (2001) 290–322.
[14] M. Schaefer, C. Umans, Completeness in the polynomial-time hierarchy: a compendium, SIGACT News 33 (2002) 32–49.
[15] T.J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, ACM, New York,

1978, pp. 216–226.
[16] L.J. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3 (1976) 1–22.
[17] C.A. Tovey, A simplified NP-complete satisfiability problem, Discrete Appl. Math. 8 (1984) 85–89.

2 Additional Manuscripts

2 Additional Manuscripts

2.1 Monotone 3-SAT-(2,2) is NP-complete

The following manuscript [Döc19] is also available online at the following URL: https:

//arxiv.org/abs/1912.08032.

205

https://arxiv.org/abs/1912.08032
https://arxiv.org/abs/1912.08032

ar
X

iv
:1

91
2.

08
03

2v
1

 [
cs

.C
C

]
 1

7
D

ec
 2

01
9

Monotone 3-Sat-(2, 2) is NP-complete

Janosch Döcker

December 18, 2019

Abstract

We show that Monotone 3-Sat remains NP-complete if (i) each
clause contains exactly three distinct variables, (ii) each clause is unique,
i.e., there are no duplicates of the same clause, and (iii), amongst the
clauses, each variable appears unnegated exactly twice and negated ex-
actly twice. Darmann and Döcker [6] recently showed that this variant
of Monotone 3-Sat is either trivial or NP-complete. In the first part
of the paper, we construct an unsatisfiable instance which answers one
of their open questions (Challenge 1) and places the problem in the
latter category.

Then, we adapt gadgets used in the construction to (1) sketch
two reductions that establish NP-completeness in a more direct way,
and (2), to show that ∀∃ 3-SAT remains ΠP

2 -complete for quanti-
fied Boolean formulas with the following properties: (a) each clause is
monotone (i.e., no clause contains an unnegated and a negated vari-
able) and contains exactly three distinct variables, (b) each universal
variable appears exactly once unnegated and exactly once negated, (c)
each existential variable appears exactly twice unnegated and exactly
twice negated, and (d) the number of universal and existential variables
is equal. Furthermore, we show that the variant where (b) is replaced
with (b’) each universal variable appears exactly twice unnegated and
exactly twice negated, and where (a), (c) and (d) are unchanged, is
ΠP

2 -complete as well. Thereby, we improve upon two recent results by
Döcker et al. [8] that establish ΠP

2 -completeness of these variants in
the non-monotone setting.

We also discuss a special case of Monotone 3-Sat-(2, 2) that
corresponds to a variant of Not-All-Equal Sat, and we show that
all such instances are satisfiable.

Keywords: Monotone 3-Sat, bounded variable appearances, balanced vari-
able appearances, quantified satisfiability, polynomial hierarchy, computa-
tional complexity.

1 Introduction

The satisfiability problem for Boolean formulas is one of the go-to problems
when choosing a base problem for polynomial reductions. Indeed, it was the

1

first problem shown to be NP-complete [5]. The seminal book by Garey and
Johnson [9] contains a large list of known NP-complete problems and an
extensive introduction into the theoretical foundation of NP-completeness.
A very popular variant of the satisfiability problem is 3-SAT, where each
clause contains exactly three variables. This problem remains NP-complete
even if further restrictions are imposed (see Table 1). In this article, we
consider variants of 3-SAT where each clause contains exactly three distinct
variables. Hence, unless we explicitly say otherwise, the considered instances
have this property (the same goes for references regarding 3-SAT variants).

Clauses Variables Complexity
unique monotone E4 3P1N, 1P3N 3P1N 2P2N

X X NP-c [6, Cor. 11]

X X NP-c [2, Thm. 1]

X X X NP-c [7, Cor. 4]

X X X NP-c [6, Thm. 9]

X X X ?

X X NP-c [6, Thm. 5]

X X X NP-c (Thm. 1)

Table 1: Overview of complexity results for (monotone) 3-SAT. A check-
mark in the “unique” subcolumn means that each clause contains exactly
three distinct variables. The headings of the subcolumns in the “Variables”
column denote the following properties: E4 := each variable appears ex-
actly four times; 3P1N, 1P3N := each variable appears exactly four times
and either exactly once unnegated or exactly once negated; 3P1N := each
variable appears exactly three times unnegated and once negated; 2P2N :=
each variable appears exactly twice unnegated and exactly twice negated. In
the last column we use the abbreviation NP-c for NP-complete. Note that
we only ticked the strongest restrictions, e.g., a checkmark in the 3P1N sub-
column implies a checkmark in the two preceding subcolumns. Moreover,
by symmetry we can omit the 1P3N case (identical to 3P1N).

Recently, Darmann and Döcker [6, Cor. 2] showed that for each fixed
k ≥ 3 Monotone 3-Sat is NP-complete if each variable appears exactly k
times unnegated und exactly k times negated. Further, they were able to
prove that the case k = 2 is either trivial or NP-complete. In other words,
finding a single unsatisfiable instance is enough to prove that the problem
remains NP-complete for k = 2. Hence, by constructing an unsatisfiable
instance for k = 2, we settle this case and thus, one of their open problems
(Challenge 1). As the problem is trivial for k = 1 [6, p. 32] by a result from
Tovey [17, Thm. 2.4], our result closes the last remaining gap for this variant
of Monotone 3-Sat.

The gadgets used in the construction of the unsatisfiable instance can

2

also be used to obtain a more direct way of establishing NP-completeness
for the case k = 2 (we describe two reductions in this article). Then, we use
one of the new gadgets to show that two recent results from Döcker et al. [8,
Thm. 3.1 and Thm. 3.2] hold even in the monotone setting. First, we show
that ∀∃ 3-SAT remains ΠP

2 -complete if (i) each clause is monotone (ii) each
universal variable appears exactly once unnegated and exactly once negated,
(iii) each existential variable appears exactly twice unnegated and exactly
twice negated, and (iv) the number of universal and existential variables is
equal. Second, we show that the variant where (ii) is replaced with (ii’)
each universal variable appears exactly twice unnegated and exactly twice
negated, and where (i), (ii) and (iv) are unchanged, is ΠP

2 -complete, too.
The article is structured as follows: In Section 2, we recall important

definitions and concepts. Then, in Section 3, we construct an unsatisfiable
instance of Monotone 3-Sat-(2, 2). Section 4 contains two reductions that
can be used to obtain the main result in a more direct way and one of the
involved gadgets is subsequently used in Section 5 to show that a restricted
variant of ∀∃ 3-SAT remains ΠP

2 -complete. The appendix contains proofs
of two Lemmas used in Section 3, and a representation of

• a gadget on which several of our results are based, and

• the constructed unsatisfiable instance of Monotone 3-Sat-(2, 2),

which can be used to verify our results with the help of a SAT Solver (e.g.,
using the PySAT Toolkit [11]).

2 Preliminaries

Let V = {x1, x2, . . . , xn} be a set of n variables. We also write Xi
1 to denote

the set {x1, x2, . . . , xi} for i ≥ 1. A positive literal is an element of L+ = V ,
a negative literal is an element of L− = {xi | xi ∈ V }, and the set of literals
is denoted by L = L+ ∪L−. A clause is a subset of L. We say that a clause
Cj ⊆ L is a k-clause if |Cj | = k and Cj is monotone if Cj ⊆ L+ or Cj ⊆ L−.
A Boolean formula is a set of m clauses

m⋃

j=1

{Cj}.

A Boolean formula is monotone if Cj is monotone for each j ∈ {1, . . . ,m}.
A truth assignment β : V → {T, F} maps each variable to the truth value T
(True) or F (False). A formula is satisfied for a truth assignment β : V →
{T, F} if β sets at least one literal in each clause true (e.g., a negative
literal evaluates to true if β sets the corresponding variable false). If such a
truth assignment exists, we say that the formula is satisfiable; otherwise the
formula is unsatisfiable. Further, a formula is nae-satisfiable if and only if

3

there exists a truth assignment β that sets at least one literal in each clause
true and at least one false. The main result concerns the following decision
problem.

Monotone 3-Sat-(2, 2)
Input. A Boolean formula

m⋃

j=1

{Cj}

over a set V = {x1, x2, . . . , xn} of variables such that (i) each Cj is a
unique monotone 3-clause that contains exactly three distinct variables,
and (ii), amongst the clauses, each variable appears unnegated exactly
twice and negated exactly twice.
Question. Does there exist a truth assignment for V such that each
clause of the formula is satisfied?

Remark. A monotone 3-clause always contains exactly three distinct vari-
ables.

In one instance, we reduce from Monotone 3-Sat*-(2, 2) [6] which is
the variant of Monotone 3-Sat-(2, 2) where variables may appear more
than once in a clause. Note that we can assume that each variable appears
at most twice in a given clause, since each clause is monotone and there are
only two unnegated and two negated appearances of any variable.
Enforcers. In the construction of an unsatisfiable instance of Monotone
3-Sat-(2, 2) and the reductions after that, we make use of gadgets that
enforce truth assignments to have certain properties (gadgets also go by the
name of enforcers [2]). As an example, we consider an enforcer introduced
by Berman et al. [2, p. 3]:

S(ℓ1, ℓ2, ℓ3) =(ℓ1 ∨ a ∨ b) ∧ (ℓ2 ∨ b ∨ c) ∧ (ℓ3 ∨ a ∨ c) ∧
(a ∨ b ∨ c) ∧ (a ∨ b ∨ c),

where a, b, c are new variables. The enforcer S(ℓ1, ℓ2, ℓ3) can not be satisfied
by a truth assignment β that sets all literals in {ℓ1, ℓ2, ℓ3} false. On the
other hand, if at least one literal in {ℓ1, ℓ2, ℓ3} evaluates to true, we can
find truth values for the variables a, b, c such that all clauses of the enforcer
are satisfied. In other words, S(ℓ1, ℓ2, ℓ3) simulates a clause but has the
advantage that we can allow duplicates since each literal in {ℓ1, ℓ2, ℓ3} ends
up in a different clause (cf. [2, p. 3]). Note that this enforcer is not monotone.
In this article, we construct a monotone version with 99 new variables and
133 clauses (instead of 3 new variables and 5 clauses in the setting above).

4

3 Construction of an unsatisfiable instance of Mono-
tone 3-Sat-(2, 2)

In this section, we construct an unsatisfiable instance of Monotone 3-
Sat-(2, 2). First, we construct an enforcer M(i)(u1, u2, u3) that, intuitively,
consists of three smaller gadgets. The first gadget is only satisfiable by truth
assignments for the corresponding variables that can be placed in one of two
categories. Depending on the category of the truth assignment (and the
restrictions imposed by them), it is not possible to find a truth assignment
for the variables contained in the second or the third gadget such that all
clauses are satisfied. The second and the third gadget (see Lemmas 1 and 2)
have been found via computer search. The basic idea of the implemented
Python code is the following: start with a collection of random candidates
and try to improve them by swapping literals of differenct clauses, where this
operation preserves the properties of an instance of Monotone 3-Sat-(2, 2)
(a reduction in the number of satisfying truth assignments is considered an
improvement here). We used the PySAT Toolkit [11] to (1) obtain a list of
all satisfying truth assignments for a given collection of clauses, and (2), to
verify some of our constructions (see appendix). Finally, we combine several
instances of the enforcer M(i)(u1, u2, u3) to obtain an unsatisfiable instance
of Monotone 3-Sat-(2, 2).

We start with the construction of the first gadget. Let F2 denote the set
consisting of the following 2-clauses:

1. {x1, x2} 2. {x2, x3} 3. {x2, x4}

Further let F3 denote the set consisting of the following 3-clauses:

4. {x3, x5, x6}

5. {x4, x5, x6}

6. {x5, x7, x8}

7. {x6, x7, x8}

8. {x7, z1, z2}

9. {x7, z3, z4}

10. {x8, z1, z2}

11. {x8, z3, z4}

First, the 2-clauses in F2 are equivalent to the implications

x1 ⇒ x2, x2 ⇒ x3, x2 ⇒ x4.

Hence, if β(x1) = F then β(x2) = T and consequently β(x3) = β(x4) =
F . Next, we introduce a set of clauses for which no satisfying truth assign-
ment exists that sets β(x3) = F and β(x4) = F . To this end, let G be the
set consisting of the following 3-clauses:

12. {x3, y1, y2}

13. {x3, y3, y4}

14. {x4, y5, y6}

15. {x4, y7, y8}

16. {y1, y4, y7}

17. {y2, y5, y9}

18. {y3, y8, y9}

19. {y1, y5, y8}

20. {y1, y6, y9}

21. {y2, y3, y6}

22. {y2, y4, y8}

23. {y3, y5, y7}

5

24. {y4, y7, y9}

Note that for β(x3) = β(x4) = F , omitting the appearances of x3 and
x4 in G has no effect on the satisfiability. We deferred the proof that the
resulting instance is unsatisfiable to the appendix (see Lemma 1). Now,
for at least one xi ∈ {x3, x4} we have β(xi) = T and we may assume that
β(x1) = T and β(x2) = F . Next, by clauses 4 and 5 we have β(xj) =
F for at least one xj ∈ {x5, x6}. Then, clauses 6 and 7 imply β(xk) =
T for at least one xk ∈ {x7, x8}. Hence, by clauses 8, 9, 10 and 11 we
get two clauses {F, z1, z2} and {F, z3, z4} which is equivalent to {z1, z2}
and {z3, z4}. Recalling that β(x1) = T and β(x2) = F , the first three
clauses in the following set H of 3-clauses evaluate to {F, z5, z6}, {F, z7, z8}
and {F, z7, z15}, respectively.

25. {x1, z5, z6}

26. {x1, z7, z8}

27. {x2, z7, z15}

28. {z1, z6, z8}

29. {z1, z11, z12}

30. {z2, z6, z8}

31. {z2, z11, z12}

32. {z3, z5, z9}

33. {z3, z13, z14}

34. {z4, z5, z14}

35. {z4, z9, z10}

36. {z7, z10, z13}

37. {z5, z8, z15}

38. {z6, z7, z9}

39. {z9, z11, z13}

40. {z10, z11, z14}

41. {z10, z12, z14}

42. {z12, z13, z15}

Now, the inferred 2-clauses

{z1, z2}, {z3, z4}, {z5, z6}, {z7, z8} and {z7, z15}

in conjunction with the clauses H\{{x1, z5, z6}, {x1, z7, z8}, {x2, z7, z15}} are
unsatisfiable (again, the proof is deferred to the appendix; see Lemma 2).

Hence, the constructed set of 42 clauses

M := {{x1, x2}, {x2, x3}, {x2, x4}} ∪ F3 ∪ G ∪ H

over the set of variables V := X8
1 ∪ Y 9

1 ∪ Z15
1 is unsatisfiable. We note that

each literal appears at most twice in M. The only variables that appear less
than 4 times are x1, x5, x6, y6 and z15 each of which appear once unnegated
and twice negated. Consider the following enforcer

M(i)(u1, u2, u3) := {{xi1, xi2, ui1}, {xi2, xi3, ui2}, {xi2, xi4, ui3}} ∪ F i
3 ∪ Gi ∪Hi,

where F i
3,Gi,Hi is obtained from F3,G,H by replacing each variable, say v,

with vi (e.g. z1 is replaced with zi1). The enforcer M(i)(u1, u2, u3) has two
properties that we use to construct an unsatisfiable instance of Monotone
3-Sat-(2, 2). First, as alluded to in Section 2, we can deal with duplicates

6

in a clause {u1, u2, u3}, i.e., if u2 = u3 and, second, we can transform a
mixed clause into a monotone clause. Further, we obtain a second enforcer

M(i)
(u1, u2, u3) by negating every literal in M(i)(u1, u2, u3).

It is easy to verify that the following collection of clauses is unsatisfiable
(we do not use set notation here since the clauses contain duplicates):

(a ∨ d ∨ f) ∧ (b ∨ d ∨ e) ∧ (e ∨ b ∨ b) ∧ (d ∨ f ∨ c)

∧ (a ∨ c ∨ e) ∧ (e ∨ c ∨ c) ∧ (d ∨ a ∨ b) ∧ (a ∨ f ∨ f).

Now, we are in a position to construct an unsatisfiable instance U of
Monotone 3-Sat-(2, 2):

U := {{a, d, f}, {b, d, e}} ∪M(1)(e, b, b) ∪M(2)(d, f , c) ∪M(3)(a, c, e)

∪M(4)
(e, c, c) ∪M(5)

(d, a, b) ∪M(6)
(a, f, f)

∪
⋃

i∈{1,5,6}
{{x1i , x2i , x3i }, {x4i , x5i , x6i }}

∪ {{y16 , y26, y36}, {y46 , y56 , y66}, {z115, z215, z315}, {z415, z515, z615}}

Proposition 1. There is an unsatisfiable instance of Monotone 3-Sat-
(2, 2) with 198 variables and 264 clauses.

Now, with the result from Darmann and Döcker [6, Thm. 4] we get the
following theorem as a consequence of the existence of an unsatisfiable in-
stance of Monotone 3-Sat-(2, 2).

Theorem 1. Monotone 3-Sat-(2, 2) is NP-complete.

Since Monotone 3-Sat-(k, k) is known to be NP-complete for each
fixed k ≥ 3 [6, Cor. 2], we get the following corollary.

Corollary 1. Monotone 3-Sat-(k, k) is NP-complete for each fixed k ≥ 2.

A special case that is always satisfiable

We briefly consider instances of Monotone 3-Sat-(k, k) with the property
that for each clause C = {x, y, z} the instance also contains C = {x, y, z}.
Noting that this is Monotone NAE 3-SAT with exactly k appearances of
each variable, it follows that this problem is hard for k = 4 (see [6, Cor. 1]).
Remark. In the context of NAE SAT monotone means that negations are
completely absent. This is no restriction since the two clauses {x, y, z} and
{x, y, z} impose exactly the same restrictions in this setting.

Porschen et al. [14, Thm. 4] show that for k = 3 the corresponding
Monotone NAE 3-SAT problem can be solved in linear time. In partic-
ular, they show that such an instance is nae-satisfiable if and only if the

7

variable graph has no component isomorphic to the complete graph K7 on 7
vertices [14, Cor. 4]. The variable graph (cf., e.g., [12, p. 2] and [14, p. 175])
of an instance of NAE 3-SAT (resp. 3-SAT), contains a vertex for each
variable and an edge between two vertices if the corresponding variables
appear together in some clause of the instance. For example, the variable
graph of the following instance is isomorphic to the K7 and is, thus, not
nae-satisfiable:

UNAE = {{x1, x2, x7}, {x1, x3, x6}, {x1, x4, x5},
{x2, x3, x4}, {x2, x5, x6}, {x3, x5, x7}, {x4, x6, x7}}.

Let us now consider k = 2. We show that the property mentioned above
leads to a trivial instance of Monotone NAE 3-SAT with exactly two
appearances of each variable and, hence, Monotone 3-Sat-(2, 2) is always
satisfiable if clauses always appear in pairs {C,C}. Jain [12, p. 2] observed
that instances of Monotone NAE 3-SAT are in P if the variable graph is 4-
colorable. Indeed, such instances are trivial since we can associate each truth
value with exactly two colors such that a 4-coloring corresponds to a truth
assignment that sets at least one variable of each clause false and at least one
true (since each clause contains exactly three distinct variables, all clauses
are satisfied). Pilz [13, Thm. 12] used an approach based on this idea to show
that every instance of Planar SAT in which each clause contains at least
three negated or at least three unnegated appearances of distinct variables
is satisfiable. He transformed the incidence graph of the formula into a
certain subgraph of the variable graph, showed that this transformation
preserves planarity, and then applied the Four Color Theorem [1] to obtain
a 4-coloring. Hence, all we need to show is that the variable graph of an
instance of Monotone NAE 3-SAT where each variable appears exactly
twice is always 4-colorable. First, observe that a vertex corresponding to a
variable x in the variable graph of such an instance has degree 2 if and only
if x is contained in two clauses

{x, y, z}, {x, y, z}

for some variables y, z such that x, y, z are pairwise distinct (otherwise x
has at least three neighbours). Such clauses can simply be removed as it is
trivial to nae-satisfy them. Hence, we can assume that the variable graph
has no cycles and, in particular, no cycles of odd length. Furthermore, it
is easy to see that each instance has a number of variables that is divisible
by 3 and, hence, each connected component in the variable graph contains
a number of vertices that is a multiple of 3. Now, there is no component
with 3 vertices since we already removed the clauses that would result in
such a subgraph (the K3 is a cycle of odd length). Noting that the degree
of each vertex is bounded by 4, we conclude that no component with 6 or
more vertices is a complete graph. Consequently, we can assume that the

8

variable graph of an instance of Monotone NAE 3-SAT does not contain
a component that is a complete graph or a cycle of odd length. Hence,
the variable graph is 4-colorable by Brooks’ Theorem [4] and we get the
following theorem.

Theorem 2. All instances of Monotone NAE 3-SAT, where each vari-
able appears exactly twice, are satisfiable.

Corollary 2. Let I =
⋃m

j=1{Cj} be an instance of Monotone 3-Sat-
(2, 2). If the instance I has the property

Cj ∈ I ⇒ Cj ∈ I,

where Cj is obtained from Cj by negating each literal, then I is satisfiable.

4 More ways to obtain the main result

It is also possible to show NP-hardness of Monotone 3-Sat-(2, 2) by reduc-
tion fromMonotone 3-Sat*-(2, 2), for which NP-hardness was established
by Darmann and Döcker [6, Thm. 5]. To this end, let

N (i)(ui, ui) := {{xi1, xi2}, {xi2, xi3, ui}, {xi2, xi4, ui}} ∪ F i
3 ∪ Gi ∪Hi,

By construction, this set of clauses is not satisfied for any truth assignment
β that sets β(u1) = T . Now, we can construct another enforcer which has
exactly three positive 2-clauses:

S(v1, v2, v3) ={{x11, x12, v1}, {x21, x22, v2}, {x31, x32, v3}}
∪ N (1)(u1, u1) \ {{x11, x12}} ∪ N (2)(u2, u2) \ {{x21, x22}}
∪ N (3)(u3, u3) \ {{x31, x32}} ∪ {{u1, u2, u3}}
∪

⋃

i∈{1,5,6}
{{x1i , x2i , x3i }}

∪ {{y16 , z115, u1}, {y26 , z215, u2}, {y36 , z315, u3}}

Let VS denote the set of variables that appear in S(v1, v2, v3). Each variable
v ∈ VS \ {v1, v2, v3} appears exactly twice unnegated and twice negated.
For each instance of S(v1, v2, v3), we create new variables VS \ {v1, v2, v3}
(we omitted additional indices to improve readability). By negating each
literal in v ∈ VS \ {v1, v2, v3} we obtain a second enforcer S(v1, v2, v3). By
construction, the enforcer S(v1, v2, v3) has no satisfying truth assignment
β with β(v1) = β(v2) = β(v3) = F . On the other hand, if β(vi) = T for
at least one vi ∈ {v1, v2, v3}, we can assign truth values to the remaining
variables of S(v1, v2, v3) such that all clauses of the enforcer are satisfied
(this is straightforward to verify with a SAT solver).

9

Given an instance I of Monotone 3-Sat*-(2, 2), we replace each posi-
tive (resp. negative) clause with a duplicate, say (p∨p∨q) (resp. (p∨p∨q)),
by an enforcer S(p, p, q) (resp. S(p, p, q)). The result is an instance of
Monotone 3-Sat-(2, 2) that is satisfiable if and only if I is satisfiable.

Yet another approach is the following. We can also reduce from 3-
Sat-(2, 2), for which NP-hardness was established by Berman et al. [2,
Thm. 1], and use an extended version of the enforcers M(i)(u1, u2, u3) and

M(i)
(u1, u2, u3) to transform mixed clauses that may be present in a given

instance into monotone clauses. To this end, consider

Mj :=M(3j)(u1, u2, u3) ∪M(3j+1)(u4, u5, u6) ∪M(3j+2)(u7, u8, u9)

∪ {{x3j1 , x3j5 , x3j6 }, {y3j6 , z3j15, x
3j+1
1 }, {x3j+1

5 , x3j+1
6 , y3j+1

6 }}
∪ {{z3j+1

15 , x3j+2
1 , x3j+2

5 }, {x3j+2
6 , y3j+2

6 , z3j+2
15 }}

Combining three instances of the enforcer M(i)(u1, u2, u3) in this way has
the advantage that each instance ofMj introduces only variables that appear
exactly twice unnegated and twice negated. A second enforcer Mj is again
obtained by negating all literals. In order to be able to use these enforcers
to replace all mixed clauses in a given instance of 3-Sat-(2, 2) we need the
number of clauses with a positive (resp. negative) duplicate to be divisible
by 3. This can be achieved by simply taking three copies of the original
instance on pairwise disjoint sets of variables. With the help of a SAT
solver it is easy to verify that Mj has only satisfying truth assignments that
set at least one literal in each of {u1, u2, u3}, {u4, u5, u6} and {u7, u8, u9}
true.

5 On a restricted variant of ∀∃ 3-SAT

In this section, we consider the monotone variant of the following problem
and show that it remains ΠP

2 -complete in restricted settings. We assume
the reader is familiar with basic concepts regarding the polynomial hier-
archy and, in particular, with the complexity class ΠP

2 . For an in-depth
introduction to this theory, we refer to Stockmeyer [16] (see [15] for a list
containing many problems that are known to be ΠP

2 -complete). We use the
same notation defined in [8], e.g., for i ≤ i′, let

Xi′
i := {xi, xi+1, . . . , xi′},

and
QXi′

i := QxiQxi+1 · · ·Qxi′ , Q ∈ {∀,∃}.
Let s1, s2, t1, t2 be four non-negative integers.

10

Balanced ∀∃ 3-SAT-(s1, s2, t1, t2) [8, p. 6f]
Input. A quantified Boolean formula

∀Xp
1∃Xn

p+1

m⋃

j=1

{Cj}

over a set V = {x1, x2, . . . , xn} of variables such that (i) n = 2p, (ii)
each Cj is a 3-clause that contains three distinct variables, and (iii),
amongst the clauses, each universal variable appears unnegated exactly
s1 times and negated exactly s2 times, and each existential variable
appears unnegated exactly t1 times and negated exactly t2 times.
Question. For every truth assignment for {x1, x2, . . . , xp}, does there
exist a truth assignment for {xp+1, xp+2, . . . , xn} such that each clause
of the formula is satisfied?

Recently, Döcker et al. [8, Thm. 3.1 and Thm. 3.2] showed that Bal-
anced ∀∃ 3-SAT-(2, 2, 2, 2) and Balanced ∀∃ 3-SAT-(1, 1, 2, 2) are both
ΠP

2 -complete. We use the gadgets Mj and Mj to show that these results
also hold for instances, where each clause is monotone (i.e., each clause con-
sists of exactly three unnegated variables or exactly three negated variables,
respectively). Since the transformation is virtually identical for both cases,
we focus on the second result and mention the necessary adaption to obtain
the first result. Consider an instance of Balanced ∀∃ 3-SAT-(1, 1, 2, 2),
i.e. a quantified Boolean formula

Φ = ∀Xp
1∃Xn

p+1ϕ,

with ϕ =
⋃m

j=1{Cj}. Let ϕ′ and ϕ′′ be the sets of clauses obtained from
ϕ by replacing xi with yi and zi, respectively (yi and zi are distinct new
variables). It is easy to see that the following quantified Boolean formula is
a yes-instance if and only if Φ is a yes-instance.

Φ′ = ∀(Xp
1 ∪ Y p

1 ∪ Zp
1)∃(Xn

p+1 ∪ Y n
p+1 ∪ Zn

p+1)(ϕ ∪ ϕ′ ∪ ϕ′′).

Now, the number of mixed clauses with two negative (resp. positive) literals
is divisible by 3. Hence, we can replace such clauses in triples using Mj and
Mj , respectively. For example, we replace first triple of mixed clauses, e.g.,

{xi, xj , xk}, {yi, yj, yk}, {zi, zj , zk},

with the following collection of monotone clauses

M0 :=M(0)(xi, xj, xk) ∪M(1)(yi, yj , yk) ∪M(2)(zi, zj , zk)

∪ {{x01, x05, x06}, {y06 , z015, x11}, {x15, x16, y16}}
∪ {{z115, x21, x25}, {x26, y26, z215}}.

11

Note that we introduce 3 · 32 = 96 new existential variables with each
instance of Mj or Mj. By construction, the resulting quantified Boolean
formula Φ′′ is a yes-instance if and only if Φ′ is a yes-instance. Since we
introduced a number of existential variables that is divisible by 3, we can
use multiple instances (each with new variables) of the following quantified
enforcer introduced by Döcker et al. [8, p. 9]

Q3 ={u, r, a}, {u, b, a}, {v, q, b}, {v, r, a}, {w, a, b}, {w, q, b},

where u, v, w, q, r are universal variables and a, b are existential variables,
to obtain a quantified Boolean formula with the same number of existen-
tial and universal variables. Since Q3 is a yes-instance [8, Lem. 3.2], the
resulting quantified Boolean formula is a yes-instance if and only if Φ′′ is
a yes-instance. Noting that the transformation is polynomial, we get the
following theorem.

Theorem 3. Balanced Monotone ∀∃ 3-SAT-(1, 1, 2, 2) is ΠP
2 -complete.

The only difference in the reduction fromBalanced ∀∃ 3-SAT-(2, 2, 2, 2)
to obtain the first result is the last step. Here, we are not able to use the
existing quantified enforcer Q1 given in [8, p. 9], since it introduces mixed
clauses. For this reason, we adapt the quantified enforcer Q3 as follows

Q1
mon ={u, r, a}, {u, b, a}, {v, q, b}, {v, r, a}, {w, a, b}, {w, q, b},

{u, r, c}, {u, d, c}, {v, q, d}, {v, r, c}, {w, c, d}, {w, q, d},

where u, v, w, q, r are universal variables and a, b, c, d are existential vari-
ables. Intuitively, we use two instances of Q3 on the same universal vari-
ables but with different existential variables. Consider an arbitrary truth
assignment β for the universal variables. Since Q3 is a yes-instance we can
find truth values β(a) and β(b) such that the top eight clauses in Q1

mon are
satisfied. Hence, for β(c) = β(a) and β(d) = β(b) we can satisfy all clauses
in Q1

mon. In other words, Q1
mon is a yes-instance of ∀∃ 3-SAT that intro-

duces 5 universal variables but only 4 existential variables (each of which
appears exactly twice unnegated and exactly twice negated). Now, we can
use multiple instances (each with new variables) of Q1

mon to obtain a formula
with the same number of existential and universal variables. Thus, we get
the following theorem.

Theorem 4. Balanced Monotone ∀∃ 3-SAT-(2, 2, 2, 2) is ΠP
2 -complete.

References

[1] K. Appel, and W. Haken (1989). Every Planar Map is Four Colorable.
In Contemporary Mathematics, vol. 98, American Mathematical Soc.

12

[2] P. Berman, M. Karpinski, and A. D. Scott (2003). Approximation hard-
ness of short symmetric instances of MAX-3SAT. Electronic Colloquium
on Computational Complexity, Report No. 49.

[3] A. Biere (2016). Splatz, Lingeling, Plingeling, Treengeling, YalSAT en-
tering the SAT competition 2016. In Proceedings of SAT Competition
2016, pp. 44–45.

[4] R. L. Brooks (1941). On colouring the nodes of a network. Mathematical
Proceedings of the Cambridge Philosophical Society, 37(2).

[5] S. A. Cook (1971). The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, pp. 151–158.

[6] A. Darmann and J. Döcker (2019). On simplified NP-complete variants
of Not-All-Equal 3-SAT and 3-SAT. arXiv preprint arXiv:1908.04198.

[7] A. Darmann, J. Döcker, B. Dorn (2018). The Monotone Satisfiability
Problem with Bounded Variable Appearances. International Journal of
Foundations of Computer Science, 29(6):979–993.

[8] J. Döcker, B. Dorn, S. Linz, C. Semple (2019). Placing quantified vari-
ants of 3-SAT and Not-All-Equal 3-SAT in the polynomial hierarchy.
arXiv preprint arXiv:1908.05361.

[9] M. R. Garey and D. S. Johnson (1979). Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness, W. H. Freeman and
Company.

[10] M. J. H. Heule, W. A. Hunt, N. Wetzler (2013). Trimming while check-
ing clausal proofs. In 2013 Formal Methods in Computer-Aided Design.
IEEE (2013), pp. 181–188.

[11] A. Ignatiev, A. Morgado, J. Marques-Silva (2018). PySAT: A Python
Toolkit for Prototyping with SAT Oracles. In O. Beyersdorff, C. Win-
tersteiger (eds) Theory and Applications of Satisfiability Testing –
SAT 2018. SAT 2018. Lecture Notes in Computer Science, vol. 10929,
Springer, pp. 428–437.

[12] P. Jain (2010). On a variant of Monotone NAE-3SAT and the Triangle-
Free Cut problem. arXiv preprint arXiv:1003.3704.

[13] A. Pilz. Planar 3-SAT with a clause/variable cycle. Discrete Mathemat-
ics & Theoretical Computer Science, 21(3).

[14] S. Porschen, B. Randerath, E. Speckenmeyer (2004). Linear time algo-
rithms for some not-all-equal satisfiability problems. In E. Giunchiglia,

13

A. Tacchella (eds) Theory and Applications of Satisfiability Testing.
SAT 2003. Lecture Notes in Computer Science, vol. 2919, Springer, pp.
172–187.

[15] M. Schaefer and C. Umans (2002). Completeness in the polynomial-
time hierarchy: A compendium. SIGACT News, 33:32–49.

[16] L. J. Stockmeyer (1976). The polynomial-time hierarchy. Theoretical
Computer Science, 3:1–22.

[17] C. A. Tovey (1984). A simplified NP-complete satisfiability problem.
Discrete Applied Mathematics, 8:85–89.

A Proofs

We used the PySAT Toolkit [11] in the proofs of Lemmas 1 and 2 to obtain
a DRUP proof [10] which is a certificate of unsatisfiablity. Here, we use
the solver Lingeling [3] included in the PySAT Toolkit since it is one of the
solvers that provide the option to return such a certificate of unsatisfiability.

Lemma 1. The following set of clauses over variables Y 9
1 is unsatisfiable.

1. {y1, y2}
2. {y3, y4}
3. {y5, y6}
4. {y7, y8}

5. {y1, y4, y7}
6. {y2, y5, y9}
7. {y3, y8, y9}
8. {y1, y5, y8}

9. {y1, y6, y9}
10. {y2, y3, y6}
11. {y2, y4, y8}
12. {y3, y5, y7}

13. {y4, y7, y9}

Proof. We can use the following Python code to obtain a DRUP proof.

from pysat . s o l v e r s import L inge l i n g
cn f = [[1 , 2] , [3 , 4] , [5 , 6] , [7 , 8] , [1 , 4 , 7] , [2 , 5 , 9] ,

[3 , 8 , 9] , [−1 , −5, −8] , [−1 , −6, −9] , [−2 , −3, −6] ,
[−2 , −4, −8] , [−3 , −5, −7] , [−4 , −7, −9]]

s o l v e r = L inge l i n g (boot s t rap wi th=cnf , w i th proo f=True)
print s o l v e r . s o l v e ()
print s o l v e r . g e t p r oo f ()
s o l v e r . d e l e t e ()

Output of the program:

False
[’−8 −7 −5 0 ’ , ’−8 9 5 0 ’ , ’−5 −8 0 ’ , ’ d −1 −5 −8 0 ’ , ’−8 9 0 ’ ,

’ d 5 −8 9 0 ’ , ’9 0 ’ , ’−4 −2 0 ’ , ’d −8 −4 −2 0 ’ , ’−5 −3 0 ’ , ’d
−7 −5 −3 0 ’ , ’−3 −2 0 ’ , ’ d −6 −3 −2 0 ’ , ’−2 0 ’ , ’1 0 ’ , ’−6
0 ’ , ’5 0 ’ , ’−8 0 ’ , ’−3 0 ’ , ’7 0 ’ , ’4 0 ’ , ’ 0 ’]

Lemma 2. The following set of clauses over variables Z15
1 is unsatisfiable.

14

1. {z1, z2}

2. {z3, z4}

3. {z5, z6}

4. {z7, z8}

5. {z7, z15}

6. {z1, z6, z8}

7. {z1, z11, z12}

8. {z2, z6, z8}

9. {z2, z11, z12}

10. {z3, z5, z9}

11. {z3, z13, z14}

12. {z4, z5, z14}

13. {z4, z9, z10}

14. {z7, z10, z13}

15. {z5, z8, z15}

16. {z6, z7, z9}

17. {z9, z11, z13}

18. {z10, z11, z14}

19. {z10, z12, z14}

20. {z12, z13, z15}

Proof. We can use the following Python code to obtain a DRUP proof.

from pysat . s o l v e r s import L inge l i n g
cn f = [[−1 , −2] , [−3 , −4] , [−5 , −6] , [−7 , −8] , [7 , 1 5] ,

[1 , 6 , 8] , [1 , 11 , 12] , [2 , 6 , 8] , [2 , 11 , 12] ,
[3 , 5 , 9] , [3 , 13 , 14] , [4 , 5 , 1 4] , [4 , 9 , 1 0] ,
[7 , 10 , 13] , [−5 , −8, −15] , [−6 , −7, −9] ,
[−9 , −11, −13] , [−10 , −11, −14] , [−10 , −12, −14] ,
[−12 , −13, −15]]

s o l v e r = L inge l i n g (boot s t rap wi th=cnf , w i th proo f=True)
print s o l v e r . s o l v e ()
print s o l v e r . g e t p r oo f ()
s o l v e r . d e l e t e ()

Output of the program:

False
[’ 6 8 0 ’ , ’d 1 6 8 0 ’ , ’14 10 13 0 ’ , ’11 12 0 ’ , ’d 1 11 12 0 ’ ,

’−8 14 −13 0 ’ , ’14 −13 0 ’ , ’d −8 14 −13 0 ’ , ’14 10 0 ’ , ’d 13
14 10 0 ’ , ’−9 10 7 0 ’ , ’−9 10 0 ’ , ’d 7 −9 10 0 ’ , ’−5 0 ’ , ’10
9 0 ’ , ’d 4 10 9 0 ’ , ’−13 −15 0 ’ , ’d −12 −13 −15 0 ’ , ’−14 −10
0 ’ , ’d −11 −14 −10 0 ’ , ’14 13 0 ’ , ’d 3 14 13 0 ’ , ’13 7 0 ’ , ’d
10 13 7 0 ’ , ’7 0 ’ , ’−8 0 ’ , ’6 0 ’ , ’−9 0 ’ , ’3 0 ’ , ’10 0 ’ , ’−4
0 ’ , ’−14 0 ’ , ’ 0 ’]

B Enforcer M(i)(u1, u2, u3)

The set of clauses M constructed in Section 3 is the basis for the enforcer
M(i)(u1, u2, u3) and thus, for several results presented in this article. To
facilitate verification of our results, we provide the set M as a Python list:

[[1, 2], [-2, -3], [-2, -4], [-3, -5, -6], [-4, -5, -6], [5, 7, 8], [6, 7, 8], [-7, -18, -19], [-7, -20, -21], [-8,

-18, -19], [-8, -20, -21], [3, 9, 10], [3, 11, 12], [4, 13, 14], [4, 15, 16], [9, 12, 15], [10, 13, 17], [11, 16,

17], [-9, -13, -16], [-9, -14, -17], [-10, -11, -14], [-10, -12, -16], [-11, -13, -15], [-12, -15, -17], [2, 24,

32], [18, 23, 25], [18, 28, 29], [19, 23, 25], [19, 28, 29], [20, 22, 26], [20, 30, 31], [21, 22, 31], [21, 26,

15

27], [24, 27, 30], [-1, -22, -23], [-1, -24, -25], [-22, -25, -32], [-23, -24, -26], [-26, -28, -30], [-27, -28,

-31], [-27, -29, -31], [-29, -30, -32]]

C Unsatisfiable instance of Monotone 3-Sat-(2, 2)

The unsatisfiable instance constructed in Section 3 as a Python list:

[[-193, -196, -198], [194, 196, 197], [1, 2, 197], [-2, -3, -194], [-2, -4, -194], [-3, -5, -6], [-4, -5,

-6], [5, 7, 8], [6, 7, 8], [-7, -18, -19], [-7, -20, -21], [-8, -18, -19], [-8, -20, -21], [3, 9, 10], [3, 11, 12],

[4, 13, 14], [4, 15, 16], [9, 12, 15], [10, 13, 17], [11, 16, 17], [-9, -13, -16], [-9, -14, -17], [-10, -11,

-14], [-10, -12, -16], [-11, -13, -15], [-12, -15, -17], [2, 24, 32], [18, 23, 25], [18, 28, 29], [19, 23, 25],

[19, 28, 29], [20, 22, 26], [20, 30, 31], [21, 22, 31], [21, 26, 27], [24, 27, 30], [-1, -22, -23], [-1, -24,

-25], [-22, -25, -32], [-23, -24, -26], [-26, -28, -30], [-27, -28, -31], [-27, -29, -31], [-29, -30, -32], [33,

34, 196], [-34, -35, -195], [-34, -36, -198], [-35, -37, -38], [-36, -37, -38], [37, 39, 40], [38, 39, 40],

[-39, -50, -51], [-39, -52, -53], [-40, -50, -51], [-40, -52, -53], [35, 41, 42], [35, 43, 44], [36, 45, 46],

[36, 47, 48], [41, 44, 47], [42, 45, 49], [43, 48, 49], [-41, -45, -48], [-41, -46, -49], [-42, -43, -46], [-42,

-44, -48], [-43, -45, -47], [-44, -47, -49], [34, 56, 64], [50, 55, 57], [50, 60, 61], [51, 55, 57], [51, 60,

61], [52, 54, 58], [52, 62, 63], [53, 54, 63], [53, 58, 59], [56, 59, 62], [-33, -54, -55], [-33, -56, -57],

[-54, -57, -64], [-55, -56, -58], [-58, -60, -62], [-59, -60, -63], [-59, -61, -63], [-61, -62, -64], [65, 66,

193], [-66, -67, -195], [-66, -68, -197], [-67, -69, -70], [-68, -69, -70], [69, 71, 72], [70, 71, 72], [-71,

-82, -83], [-71, -84, -85], [-72, -82, -83], [-72, -84, -85], [67, 73, 74], [67, 75, 76], [68, 77, 78], [68,

79, 80], [73, 76, 79], [74, 77, 81], [75, 80, 81], [-73, -77, -80], [-73, -78, -81], [-74, -75, -78], [-74,

-76, -80], [-75, -77, -79], [-76, -79, -81], [66, 88, 96], [82, 87, 89], [82, 92, 93], [83, 87, 89], [83, 92,

93], [84, 86, 90], [84, 94, 95], [85, 86, 95], [85, 90, 91], [88, 91, 94], [-65, -86, -87], [-65, -88, -89],

[-86, -89, -96], [-87, -88, -90], [-90, -92, -94], [-91, -92, -95], [-91, -93, -95], [-93, -94, -96], [-97, -98,

-197], [98, 99, 195], [98, 100, 195], [99, 101, 102], [100, 101, 102], [-101, -103, -104], [-102, -103,

-104], [103, 114, 115], [103, 116, 117], [104, 114, 115], [104, 116, 117], [-99, -105, -106], [-99, -107,

-108], [-100, -109, -110], [-100, -111, -112], [-105, -108, -111], [-106, -109, -113], [-107, -112, -113],

[105, 109, 112], [105, 110, 113], [106, 107, 110], [106, 108, 112], [107, 109, 111], [108, 111, 113],

[-98, -120, -128], [-114, -119, -121], [-114, -124, -125], [-115, -119, -121], [-115, -124, -125], [-116,

-118, -122], [-116, -126, -127], [-117, -118, -127], [-117, -122, -123], [-120, -123, -126], [97, 118, 119],

[97, 120, 121], [118, 121, 128], [119, 120, 122], [122, 124, 126], [123, 124, 127], [123, 125, 127],

[125, 126, 128], [-129, -130, -196], [130, 131, 193], [130, 132, 194], [131, 133, 134], [132, 133, 134],

[-133, -135, -136], [-134, -135, -136], [135, 146, 147], [135, 148, 149], [136, 146, 147], [136, 148, 149],

[-131, -137, -138], [-131, -139, -140], [-132, -141, -142], [-132, -143, -144], [-137, -140, -143], [-138,

-141, -145], [-139, -144, -145], [137, 141, 144], [137, 142, 145], [138, 139, 142], [138, 140, 144], [139,

141, 143], [140, 143, 145], [-130, -152, -160], [-146, -151, -153], [-146, -156, -157], [-147, -151, -153],

[-147, -156, -157], [-148, -150, -154], [-148, -158, -159], [-149, -150, -159], [-149, -154, -155], [-152,

-155, -158], [129, 150, 151], [129, 152, 153], [150, 153, 160], [151, 152, 154], [154, 156, 158], [155,

156, 159], [155, 157, 159], [157, 158, 160], [-161, -162, -193], [162, 163, 198], [162, 164, 198], [163,

165, 166], [164, 165, 166], [-165, -167, -168], [-166, -167, -168], [167, 178, 179], [167, 180, 181], [168,

178, 179], [168, 180, 181], [-163, -169, -170], [-163, -171, -172], [-164, -173, -174], [-164, -175, -176],

[-169, -172, -175], [-170, -173, -177], [-171, -176, -177], [169, 173, 176], [169, 174, 177], [170, 171,

16

174], [170, 172, 176], [171, 173, 175], [172, 175, 177], [-162, -184, -192], [-178, -183, -185], [-178,

-188, -189], [-179, -183, -185], [-179, -188, -189], [-180, -182, -186], [-180, -190, -191], [-181, -182,

-191], [-181, -186, -187], [-184, -187, -190], [161, 182, 183], [161, 184, 185], [182, 185, 192], [183,

184, 186], [186, 188, 190], [187, 188, 191], [187, 189, 191], [189, 190, 192], [1, 33, 65], [-97, -129,

-161], [5, 37, 69], [-101, -133, -165], [6, 38, 70], [-102, -134, -166], [14, 46, 78], [-110, -142, -174],

[32, 64, 96], [-128, -160, -192]]

17

	Summary
	German
	English

	List of Publications
	Personal Contribution
	Introduction
	Objectives
	Discussion of Results
	Preliminaries on the polynomial hierarchy
	Phylogenetics
	Preliminaries
	Deciding the existence of a cherry-picking sequence
	Displaying trees across two phylogenetic networks

	Satisfiability
	Formal framework
	Related work and a brief historical overview
	Monotone 3-SAT with bounded variable appearances
	On a simple hard variant of Not-All-Equal 3-SAT
	Quantified variants of the satisfiability problem
	Using restricted SAT variants in hardness proofs

	Concluding remarks

	Appendix
	Accepted Manuscripts
	On the existence of a cherry-picking sequence
	Deciding the existence of a cherry-picking sequence is hard on two trees
	Displaying trees across two phylogenetic networks
	Display sets of normal and tree-child networks
	The monotone satisfiability problem with bounded variable appearances
	On simplified NP-complete variants of Monotone 3-SAT
	On a simple hard variant of Not-All-Equal 3-SAT
	Placing quantified variants of 3-SAT and Not-All-Equal 3-SAT in the polynomial hierarchy

	Additional Manuscripts
	Monotone 3-SAT-(2,2) is NP-complete

