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Abstract

Understanding groundwater flow processes requires detailed information on the het-
erogeneity and anisotropy of hydraulic conductivity. In sedimentary aquifers, the spa-
tial variability of hydraulic conductivity results from the stratification of material and
primarily occurs between individual horizontal layers. On large scales, the vertical
heterogeneity induces hydraulic anisotropy with the horizontal conductivity typically
exceeding the vertical one. Despite the importance of hydraulic anisotropy, for exam-
ple in the design of remediation systems or in the planning of dewatering measures in
construction pits or mines, research focusing on estimating the difference between the
horizontal and vertical hydraulic conductivity has so far been limited.

This work investigates the potential of a field method for estimating the large-scale
hydraulic anisotropy induced by vertical heterogeneity in stratified aquifers. The ap-
proach is based on the inversion of drawdown data steming from pumping tests in a
partially penetrating well in which water is successively extracted from different aquifer
portions, and the hydraulic response is measured in multi-level piezometers placed at
different radial distances and in different directions to the pumping well. Extracting
water from a partially penetrating well induces the vertical low component required to
resolve hydraulic anisotropy.

A synthetic study that resembles the following field tests was developed to find the best
combination of model and data-acquisition strategy, while minimizing the uncertainty
in the estimation of hydraulic anisotropy during model calibration. This study shows
that there is a dependency between the model complexity and the required observation
strategy which should be aligned with the modeling goals.

Field tests were performed in a fluvial gravel aquifer in the Upper Rhine Valley, Ger-
many. In a series of pumping tests, water was sequentially extracted from three different
intervals of a pumping well and the hydraulic response was observed at surrounding ob-
servation wells, placed at different distances and depths. A homogeneous anisotropic
groundwater flow model and a heterogeneous one with multiple, locally anisotropic,
horizontal layers, were fitted to the data collected during the field tests. Different
measurement errors and model errors were considered by adapting the measurement
uncertainties during model calibration. The results show that estimating differences
in horizontal and vertical hydraulic conductivities is possible when data from pump-

ing tests in a partially penetrating well and with a tomographic layout are inverted.




To better reproduce the true measurements and improve the estimation of hydraulic
anisotropy, a multi-layer model that resolves the main vertical structure of hydraulic

conductivity is preferable.
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Zusammenfassung

Um Grundwasserstromungsprozesse verstehen zu kénnen, werden detaillierte Infor-
mationen iiber die Heterogenitit und Anisotropie der hydraulischen Durchléssigkeit
benotigt. In Porengrundwasserleitern resultiert die raumliche Variabilitat der hydraulis-
chen Durchlissigkeit von der Schichtung unterschiedlichen Materials und besteht vor-
wiegend zwischen einzelnen horizontalen Lagen. Grofrdumig betrachtet induziert die
vertikale Heterogenitdt hydraulische Anisotropie, fiir welche die horizontale Durchlas-
sigkeit typischerweise grofier ist als die vertikale Durchlissigkeit. Trotz der Bedeu-
tung der hydraulischen Anisotropie, wie beispielsweise in der Auslegung hydraulischer
Sanierungsmafnahmen oder bei der Dimensionierung von Wasserhaltungsmafnahmen
in Baugruben oder Bergwerken, existieren bisher nur bedingt Forschungen zur Bestim-
mung des Unterschieds zwischen horizontaler und vertikaler Durchlissigkeit.

Diese Arbeit untersucht das Potential einer Feldmethode um die grofraumige hydraulis-
che Anisotropie induziert durch die vertikale Heterogenitdt in geschichteten Grund-
wasserleitern zu ermitteln. Der Ansatz basiert auf der Inversion von Absenkungsdaten
die von Pumpversuchen in einem teilverfilterten Brunnen stammen, in welchem Grund-
wasser sequentiell aus verschiedenen Bereichen des Grundwasserleiters entnommen wird,
und das hydraulische Antwortsignal in Mehrkanalmessstellen und Messstellenbiindeln
aufgezeichnet wird, die in verschiedenen Entfernungen und Richtungen zum Pumpbrun-
nen positioniert sind. Die Grundwasserentnahme aus einem teilverfilterten Brunnen
induziert die vertikale Stromungskomponente die benotigt wird, um die hydraulische
Anisotropie aufzuldsen.

Es wurde eine synthetische Studie entwickelt, die den nachfolgenden Feldversuchen gle-
icht, um die beste Kombination von Modell und Datenerhebung zu bestimmen, bei
gleichzeitiger Minimierung der Unsicherheit der ermittelten hydraulischen Anisotropie.
Diese Studie zeigt, dass eine Abhingigkeit zwischen der Modellkomplexitit und der
bendtigten Beobachtungsstrategie besteht, welche an die Modellziele ausgerichtet wer-
den sollte.

Es wurden Feldversuche in einem fluviatilen Kiesgrundwasserleiter im Oberrheingraben,
Deutschland, durchgefiihrt. In einer Reihe von Pumpversuchen wurde Grundwasser
sequentiell aus drei verschiedenen Intervallen eines Pumpbrunnens entnommen und
das hydraulische Antwortsignal wurde in verschiedenen Entfernungen und Tiefen zum

Pumpbrunnen aufgezeichnet.
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Es wurde ein homogen-anisotropes Grundwasserstromungsmodell und ein geschichtetes
Modell mit mehreren, lokal-anisotropen, horizontalen Schichten verwendet, um die
gemessenen Felddaten anzupassen.

Verschiedene Messfehler und Modellfehler wurden beriicksichtigt indem die Messun-
sicherheiten wahrend der Modellkalibrierung angepasst wurden. Die Ergebnisse zeigen,
dass Unterschiede in den horizontalen und vertikalen Durchlissigkeiten ermittelt wer-
den kénnen, wenn Daten von Pumpversuchen in einem teilverfilterten Brunnen und mit
einem tomographischen Layout invertiert werden. Um die gemessenen Daten besser
wiedergeben zu kénnen und die Schitzung der hydraulischen Anisotropie zu verbessern,
empfiehlt es sich ein Mehrschichtmodell zu verwenden, welches die wesentliche vertikale

Struktur der hydraulischen Durchléssigkeit auflost.
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Chapter 1

Introduction

Groundwater flow and transport processes in porous media are part of a broad research
field studied by hydrogeologists. Characterizing these processes requires abundant in-
formation on the subsurface features and their hydraulic properties, with hydraulic
conductivity K being one of the most important. Hydraulic conductivity quantifies the
ease with which groundwater flows through a porous medium, and depends on both
the properties of water, and the physical properties of the aquifer material, such as the
pore size, geometry and connectivity (Freeze and Cherry, 1979). In natural systems,
these properties change in space, leading to spatial variations of hydraulic conductiv-
ity (heterogeneity). The hydraulic conductivity also depends on the direction of flow
(anisotropy), which is strongly influenced by the sediment bedding that result from
variable sediment transport and deposition regimes (Bennett et al., 2019). The study
of hydraulic anisotropy is a cornerstone of this work. The effects of hydraulic anisotropy
on groundwater flow are often misconceived and confused with that of heterogeneity.

To clearly distinguish both concepts, they are defined in the following.

Subsurface heterogeneity is the spatial variability of subsurface properties as the
result of non-uniform and dynamic conditions under which material deposition occurs.
Subsurface material may express individual, continuous or intermittent layers, or include
lenses composed of material that differ from the surrounding (Kruseman and de Ridder,
1994). In sedimentary aquifers, the subsurface structure is the imprint of depositional
processes occurring at different velocities and geologic timescales that determine the

size and amount of sediment load (Aigner et al., 1998; Bennett et al., 2017). As a
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result, the subsurface is of bedded character in which hydraulic conductivity especially

varies among individual strata, leading to vertical heterogeneity.

In contrast to heterogeneity, anisotropy refers to the directional dependence of ma-
terial properties, and its expressions are closely related to the observed scale. On small
scales, the directional dependence on hydraulic conductivity is a result of the orienta-
tion of grains, which are typically elongated in the horizontal direction (Borghi et al.,
2015). On larger scales, the continuity of channel deposits in e.g., alluvial aquifers with
internal variation of their hydraulic properties, can lead to strong horizontal anisotropy
(Gianni et al., 2019). In stratified aquifers, the bedded character enhances groundwater
flow along layer boundaries, rather than across them (Bear, 1972; Borghi et al., 2015),
inducing a higher horizontal than vertical hydraulic conductivity. Such aquifers can be
described by an effective hydraulic conductivity tensor Keg with the principal com-
ponents aligned with the horizontal and vertical directions. The anisotropy ratio, i.e.
the ratio of horizontal to vertical hydraulic conductivity, is typically larger than unity,
unless the layers are tilted (Bear, 1972; Maier et al., 2020), and can reach ratios of up
to 100 in stratified aquifers (Freeze and Cherry, 1979).

Many hydrogeological applications, such as the design of remediation systems (Cardiff
and Barrash, 2011; Zschornack et al., 2013; Bair and Lahm, 1996; Zlotnik and Ledder,
1996), the prediction of solute transport (Bohling et al., 2007; Sanchez-Leon et al.,
2016), and the enhancement of transverse mixing of solute plumes (Chiogna et al.,
2015; Cirpka et al., 2015), depend not only on precise information on subsurface het-
erogeneity but also require information on hydraulic anisotropy. Particularly relevant
activities in which information on the hydraulic anisotropy is essential, are the delin-
eation of capture zones of partially penetrating wells (Bair and Lahm, 1996), the design
of horizontal collector wells for water supply, and the application of dewatering mea-
sures near big rivers to keep a construction pit dry (Maier et al., 2020). Hydraulic
anisotropy influences the spatial extent of the depression cone when lowering water ta-
bles upon pumping. While higher hydraulic conductivities in the horizontal direction
increase the lateral extent of the depression cone, the comparatively lower vertical hy-
draulic conductivities limit its vertical extent (Maier et al., 2020; Bair and Lahm, 1996).
Neglecting the ratio of horizontal to vertical hydraulic conductivity in the calculation

of such systems can lead to an inefficient design and unnecessary costs.




Several experimental methods have been developed for resolving the spatial vari-
ability of hydraulic conductivity at different scales and degrees of resolution. Direct
push methods, such as direct-push injection logging (DPIL; Butler et al., 2002; Dietrich
et al., 2008; Lessoff et al., 2010) and the direct—push permeameter (DPP; Butler et al.,
2007; Chen et al., 2008, 2010; Klammler et al., 2011; Zschornack et al., 2013) can resolve
the variation of hydraulic conductivity in the vertical direction. In these tests, a steel
rod is advanced vertically into the subsurface with a short filter section attached to its
lower end. At depths in which information on hydraulic conductivity is desired, the tool
is halted and measurements are performed based on water injection to the surrounding
aquifer portion. While direct-push injection logging is based on measuring the hydraulic
resistance of the aquifer material surrounding the screen attached to the steel rod by
considering the ratio between the pressure applied and the discharge (Dietrich et al.,
2008), the direct-push permeameter measures the discharge and head response at two
locations above the injection screen (Butler et al., 2007). Both methods can provide

one-dimensional vertical hydraulic conductivity profiles at high resolution.

Another well established field method is hydraulic tomography, which aims to resolve
subsurface heterogeneity at large scales and high resolutions (Gottlieb and Dietrich,
1995; Yeh and Liu, 2000; Bohling, 2009; Cardiff et al., 2009). Hydraulic tomography
consists of a series of pumping tests in which different aquifer portions are stressed
either by injection or extraction of water, and the hydraulic head responses are recorded
at numerous observation points. Despite the abundant information on the vertical
variation of hydraulic conductivity contained in data collected by hydraulic tomography,
the reported applications concentrate on the characterization of aquifer heterogeneity

rather than focusing on anisotropy.

Despite the importance of hydraulic anisotropy, only few studies present a rigorous
assessment of the ratio of horizontal to vertical hydraulic conductivity on large scales.
Klammler et al. (2017) proposed a theoretical framework to estimate the bulk hydraulic
anisotropy from measurements obtained with the direct-push permeameter, however, it

does not consider the vertical variability of hydraulic conductivity.

An alternative method is the tomographic slug test proposed and tested by Paradis
et al. (2015, 2016) in a littoral aquifer. Paradis et al. (2015, 2016) suggest that tomo-
graphic slug tests are more appropriate for resolving hydraulic anisotropy induced by

heterogeneities at small scales, also in the horizontal direction, e.g., from cross-bedding.
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Similar to hydraulic tomography, in tomographic slug tests different aquifer portions
are stressed in a series of slug tests, while the hydraulic head responses are measured
in surrounding observation points. A limitation of this field method is the very small
range of investigation in the horizontal direction (typically <10m), especially in highly
permeable aquifers (Paradis et al. 2015).

Overall, there is still a lack of research investigating the distinction between hor-
izontal and vertical hydraulic conductivities in highly permeable and heterogeneous

aquifers, and their effects on groundwater flow.

1.1 Objectives

In this work, I focus on the concept of hydraulic anisotropy on large scales and its
interrelation with the spatial variability of hydraulic conductivity in stratified aquifers.
Among the previously reviewed field methods, hydraulic tomography presents a very
promising approach for resolving vertical variations of hydraulic conductivity. Consid-
ering the informative value of tomographic data with respect to scale and resolution,
I raise the question to what extent pumping tests with a tomographic setup provide a
potential method for determining the directional dependence of hydraulic conductivity

on large scales.

The main objective of this thesis therefore is to investigate the potential of a hy-
draulic tomographic approach to estimate the large-scale hydraulic anisotropy induced
by the vertical heterogeneity on smaller scales in stratified aquifers. In the following, I
define guiding research questions, hypothesis, and methodologies to address the overall

goal of this thesis and assign them to four different work packages.

Work Package 1: Joint Optimization of Measurement and Modeling Strate-
gies

In the first work package, I address the question of how to setup and select a numerical
groundwater flow model as an appropriate representation of the true system. At the
same time, [ want to encounter an optimal data-acquisition strategy to inform the model
with non-redundant and conclusive data when bearing an available time and budget in
mind. With this, the main research question arises of whether the data should be col-

lected based on a predefined model or vice versa.
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Typically, both model selection and data collection aim to reduce the prediction un-
certainty of unknown parameters but concern two different disciplines in hydrogeology.
From a modelers point of view, the main hypothesis would state that model perfor-
mance can be improved by finding the optimal model. Field operators on the other
hand would hypothesize that feeding a model with the right data is key for estimating
parameters with small uncertainty. Usually, model selection and data collection are
considered individually, in many cases simply because either the model or the experi-
mental setup and/or field data are already available. Unfortunately, this may lead to
the implementation of sub-optimal models and/or field tests. I therefore hypothesize
that finding the best model and best data-acquisition strategy is a joint problem calling
for a joint solution. T propose a joint optimization that is able to find the optimal
combination of model and data-acquisition strategy to improve model simulations of a
natural system. Though it can be applied to various modeling problems, I restrict its
application to improve the estimation of hydraulic anisotropy. For a proof-of-concept,
I analyze hypothetical pumping tests with a tomographic setup. The proposed method
is published by Maier et al (2020).

Work Package 2: Establish a Research Field Site

The second work package deals with the implementation of pumping tests that follow
the principles of hydraulic tomography. To test a field application of the tomographic-
pumping tests, similar to the synthetic field tests in work package 1, a new research site
was established in Kappel-Grafenhausen, located in the Upper Rhine Valley, Germany.
The goal of this work package is to design a well network at the field site that facili-
tates the estimation of anisotropic hydraulic conductivity. For example, decisions must
be made regarding the design of the pumping well and the number and placement of

observation wells.

The site was instrumented with a large diameter pumping well that was equipped with
three isolated well-screen sections to facilitate water extraction from different depths.
To measure depth-oriented hydraulic responses to pumping, the observation wells were
installed as clusters of partially penetrating wells and multi-level wells. The well clus-
ters and multi-level wells were placed at different radial distances and directions to the
pumping well.

I performed a total of 22 pumping-test series in which water was successively extracted
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from the three well-screen sections of the partially penetrating pumping well and a total

number of 58 observation points were monitored during each test.

Work Package 3: Develop a data-processing strategy to generate a compre-
hensive data base from hydraulic tests

In total, more than a thousand drawdown curves were obtained from the performed
pumping tests. This raises the question of how to handle large data amounts obtained
from field applications and how to condense the data for use in posterior data inversion.
In general, T hypothesize that the principle of data reproducibility is a useful concept for
data validation and data reduction. Another hypothesis is that the challenges related
to analyzing the complete transient response of the data or of reaching a steady-state
pumping regime can be circumvented by considering the steady-shape regime of the

pumping tests.

To facilitate the use of the large amount of data, I developed a data-processing
strategy that reduces the data set to a manageable size while clearly exposing the

reproducibility of the pumping-test data.

Work Package 4: Assessment of the model performance

Inverting the data collected at the field site requires a groundwater flow model with a
suitable representation of the aquifer under investigation. In the fourth work package,
I address the research question of how to setup a model that ideally has the smallest
possible level of complexity to represent the true system and how to evaluate model
performance. Along these lines, I hypothesize that it is indispensable to use existing
hydrogeological information of a field site for adapting the model setup to a specific
site. As different models have different errors, I hypothesize that model performance
should be assessed by considering not only different measurement errors but also the

model error.

For inverting the pumping test data, I tested the performance of two different models
with varying degrees of complexity. A simple groundwater flow model was defined as
homogeneous but anisotropic, whereas a more complex variant included five individual
and locally anisotropic horizontal layers. The layering was defined based on lithological
information obtained from the drilling profile at the pumping-well location. To account
for random, systematic, and conceptual model errors, I propose a calibration strategy
where the total error is determined during the calibration process. With this, the model

performance is assessed based on the model error required to accept a model.
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1.2 Thesis Structure

In the following Chapter 2, 1 present the underlying theory including the governing
equations for groundwater flow, well hydraulics and the concept of anisotropy consid-
ered in this work. In Chapter 3, I present the methodology to jointly optimize the
measurement and modeling strategies and apply it to a synthetic test case considering
radial flow in stratified aquifers for predicting the large-scale hydraulic anisotropy in
Chapter 4. Chapter 5 describes the field site that was instrumented in the course of
this work, with details on the hydrogeological setting and the measurement network.
Chapter 5 also describes the design of the pumping tests performed at the field site,
presents an overview of the database generated with the processed dataset, the method-
ology followed to assess data reproducibility, and the error model adopted in this work.
The final part of Chapter 5 presents the model inversion with the field data including a
description of the numerical model and the calibration strategy, and a discussion of the
results. In Chapter 6, I summarize the motivation and findings of my work and draw
conclusions on the potential and limitations of tomographic pumping tests for resolving
hydraulic anisotropy on large scales. Additionally, I give recommendations to improve

the application of the field tests for enhancing the estimation of anistropic conductivity.

The work presented in Chapter 3 and 4 has essentially been published in Water
Resources Research (Maier et al., 2020). Table 1.1 lists the proportion of contributions

associated with each author of the publication.

Table 1.1: Proportions of collaborative work presented in Chapter 3 and 4.

Author Author | Scientic | Data Analysis & Paper
position | Ideas % | Generation % | Interpretation % | Writing %
Ruth Maier First 20 95 35 30
Ana Gonzalez-Nicolas | Second 10 0 5 10
Carsten Leven Third 20 0 10 10
Wolfgang Nowak Fourth 25 0 20 20
Olaf A. Cirpka Fifth 25 5 30 30
Title of paper: Joint Optimization of Measurement and Modeling Strategies
o With Application to Radial Flow in Stratified Aquifers

Publication Status: Published
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Chapter 2

Theory

2.1 Groundwater Flow Equation

Following the law of mass conservation, the total source and sink of mass in a control
volume equals the sum of the change in mass storage and the net mass flux across the
surface of the control volume. In a saturated porous medium, the entire pore space
is saturated with water and the effective porosity n. equals the volumetric water con-
tent. Combining Darcy’s law and the continuity equation yields the following governing

equation for transient groundwater flow in a porous medium:

oh
where W, denotes the total sources and sinks, h denotes the hydraulic head, ¢ is time
and Vh describes the hydraulic gradient. The specific storage coefficient Sj is equal to

the sum of the compressibility of the pore space and water:

One  Ne 0py
_ One  neOpu

0= pw Oh

(2.2)

where p,, denotes the density of water.
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In eq. (2.1) K is the hydraulic conductivity tensor

Kﬂcx ny Kacz
K=|K, K, K, (2.3)
sz sz Kzz

where the off-diagonal entries become zero if the principle directions are aligned with

the z-, y- and z-directions of the applied coordinate system.

2.2 Well Hydraulics

Radial-symmetric groundwater flow to a partially penetrating pumping well can be

expressed in radial and vertical coordinates r and z, respectively:

10 oh 0 oh oh
- (K,«TE) + e (Kz$> = SOE (2.4)

where K, and K, denote the radial and vertical hydraulic conductivities and A is the
hydraulic head. By assuming a horizontal layering in stratified aquifers, I consider the
radial and vertical hydraulic conductivities of the aquifer to vary only in the vertical
direction, i.e. K,.(z) and K,(z).

In pumping-test analysis usually the drawdown s is considered which is the change
in hydraulic heads induced upon pumping. By measuring the drawdown rather than the
hydraulic head, the influence of ambient flow is eliminated. Considering the drawdown,

eq. (2.4) can be written as

10 s 0 O0s 0s
- (K,.r§> + e (Kz&) = Soa (2.5)

In all numerical simulations, I consider confined conditions and a flat aquifer base and

top. The upper and lower boundaries 2, and 2, are no-flow boundaries

@
0z

_os
0z

Z=Zbot

=0Vvr (2.6)

Z=Ztop
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and zero drawdown occurs at all depths at the outer radius R of the domain
s(R,z) =0Vz (2.7)

In all hydraulic tests presented in this work, water is extracted from different depths of
a partially penetrating well. The boundary conditions along the well with radius r = r,,

are defined as the following

p

s = constant and
Zr(is(n‘)‘i‘B 88 . . w . w
Jetir—% 2mrEeg de=Qu i aiae) = F <2< zll) +F (28)
0
—sdz = otherwise
\ or

assuming a constant head and a constant total flux (), along the well screen .. con-
sidered for water extraction. No flow boundaries are assigned at all depths below the

active well screen of length w, centered at z..

Instead of considering the transient regime of the pumping tests, which would require
specifying initial conditions and the specific storativity, I analyze the constant-shape
regime of the pumping tests, in which the absolute values of drawdown still change but
the hydraulic-head differences between measurement locations remain constant (Bohling
et al., 2002, 2007). The drawdown differences between observation points can therefore

be simulated by the steady-state drawdown equation:

18K85 8K85

ror o)+ g g,) =0 (29)

2.3 Anisotropy Ratio

The K-field in stratified aquifers can be described by highly-resolved vertical conduc-
tivity profiles in which the radial and vertical hydraulic conductivities K, and K, vary
among individual horizontal layers. I upscale the horizontal conductivity by taking

the arithmetic average of the highly resolved K,-field over the layer thickness, and the

11
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vertical conductivity by the harmonic average of the highly-resolved K ,-field:

1 Ztop(J)
K5G) = 57 [ @ (2.10)
2top(F) ' 1 -1
K1(5) :Az/ . <K (Od() (2.11)
Zbot (J Z

in which zp0t(j) and z4,(j) are the bottom and top vertical coordinates of the layer j
over which the averaging is performed, respectively, and Az = 2;,,(j) — zpt(J) is the

corresponding layer thickness.

The ratio of K¢/ to K¢/ is the anisotropy ratio

19 — W (212)

2.4 Model Inversion

Knowledge of the hydraulic properties of a system is often scarce when modeling ground-
water flow. A common method to estimate unknown parameters is the approach of
numerical inverse modeling in which the unknown parameters m of a forward model
are estimated by matching the dependent variables y to field observations d (Poeter
and Hill, 1997).

In this thesis, I determine the unknown model parameters by performing a non-linear
least squares fit and considering an error model that depends on the model outcome.

In general, the objective function states

¢ =(d—y(m))" Cyy (d - y(m)) (2.13)

with Cyy being the covariance matrix of errors. The model inversion then implies
finding the parameter set m that minimizes the objective function ¢. This requires
that the number of independent measurements, i.e. the length of the data vector d, is

larger than the number of parameters, i.e. the length of the parameter vector m.

12



Chapter 3

Joint Optimization of Measurement

and Modeling Strategies !

3.1 General Approach

The process of scientific modeling for environmental applications has been widely dis-
cussed by the scientific community, and big efforts have led to a large number of pub-
lications that focus on its formalization (e.g., Hill and Tiedeman, 2007; Walker et al.,
2003; Oreskes, 1998; Woessner and Anderson, 1996). Though differing in some details,
all these formalizations agree that model construction and data acquisition are inter-
twined and that the typical modeling cycle consists of clearly defining the modeling
goal, constructing a conceptual model, translating it into a numerical model, collecting
informative data, calibrating and validating the model, and if several competing models

have been formulated, selecting the best one of them.

There are two main challenges in this cycle: The first one is to decide on the most
appropriate modeling strategy: where a balance between model complexity and reason-
able simplifications should be pursued. This is a recurring question of model selection
(Beven, 2002; Raftery, 1995), that also rises frequently in groundwater problems (e.g.,
Yeh and Yoon, 1981). The second challenge is to decide on appropriate strategies to
collect data. How much and which data is sufficient and conclusive (for calibration,

validation, and selection) while keeping the costs for experimental /field campaigns at a

!The essential content of Chapter 3 is published by Maier et al. (2020)
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bearable level? This well-known problem is called optimal design of experiments. It is
mostly formalized as a mathematical optimization problem under the uncertainty of the
vet unmeasured data (e.g., Leube et al., 2012; Miiller, 2005; Chaloner and Verdinelli,
1995).

Traditionally, these two challenges are treated as disjoint: either one selects a model
with data being given, or one optimizes a field campaign to feed the information needs
of a given model. Therefore, an even more substantial question regarding the modeling
cycle arises: should one design the measurement strategy based on the selected model
or vice versa? Apparently, there is an interrelation of measurement and modeling
strategies, which rather calls for a joint solution. So far a rational, objective approach
that jointly assists both modelers and experimentalists to target the joint problem more

systematically has been lacking.

[ propose that rational model selection should go hand-in-hand with cost-efficient
data collection to achieve the best possible model performance towards a given mod-
eling goal for a given experimental budget. I hypothesize that this joint problem can
be solved by a corresponding joint optimization. This optimization has to find the best
combination of model choice and corresponding field-campaign design, so that the best
expected performance towards the given modeling goal can be achieved. As predic-
tive model performance is only speculative during the design phase of models and field
campaigns, the optimization needs a means of anticipating both predictive uncertainty
and systematic predictive errors. To include both uncertainty and systematic errors
in this step, I propose to use an ensemble of highly resolved virtual realities to gener-
ate realistic virtual measurements and prediction targets. While these virtual realities
provide hypothetical truths, calibrating models with this level of detail would trigger
infeasible data requirements. Along with the virtual realities, ensembles of simplified
models with different model complexity are generated that undergo model selection for

different measurement designs that are subject to choice.

In the following, I present the framework for the joint optimization. The methodol-

ogy includes five steps which are illustrated in Figure 3.1.
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Step 1 Problem Statement

+ spatially variable parameter field

+ spatially discretized parameter field

* measurable quantities (possible data types)
+ target quantity (modeling goal)

Define Measurement Designs

» possible observation points
* combinations of observation points (designs)

Step 2

blueprint of virtual realities
conceptual simplifications

A 4 \ 4

Step 3 Generate Ensembles of

Virtual Realities M, Model Candidates M,

highly resolved ,true“ parameter sets =% parameter sets of simplified models

v A

Ltrue“ observations modeled observations

v v

Lfrue” target quantities modeled target quantities

Step 4 Mimic Best-Fit Calibration

find best-fit parameter set (agreement between
,frue® and modeled observations) for given
design and model

Step 5 Jointly Determine Optimal

Design & Model Choice

3 Check performance of best-fit model ¢
with respect to target quantity

Figure 3.1: General approach for jointly optimizing the measurement and modeling
strategy of a complex system (from Maier et al., 2020).
3.1.1 Definition of the Modeling Problem and Modeling Goals

The first step includes defining the basic conceptual model of a problem which involves

stating the governing equations with their initial and boundary conditions to simulate
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the system at hand. Conceptual uncertainties may arise from the selection of state
variables and processes to be modeled, from the spatial discretization of the material
properties of the system and from the initial and boundary conditions of the modeling
problem (Tiedeman et al., 2003). For example, in this thesis the conceptual uncertainty

is restricted to the scale and zonation of material properties only.

The true spatially variable parameter field is denoted x, which in reality exhibits
variations on all spatial scales. In order to achieve identifiability in model calibration,
one must typically discretize or simplify the parameter field, for example by the intro-
duction of internally homogeneous zones, or the definition of a limited set of spatial base
functions used for spatial interpolation (e.g., RamaRao et al., 1995). This yields a vec-
tor x;, of a few uncertain parameter values, in which the index k refers to a model choice
(see Section 3.1.3). Hence, both the uncertainty of parameter values and the structural
uncertainty are considered regarding the spatial discretization of the parameter fields.
These two uncertainties are not independent of each other — it is well known that a
coarser representation of material properties requires partially upscaled (effective) pa-
rameter values (Rubin, 2003, Chapter 5), if not even effective governing equations that

differ from the equations used at high resolution.

In order to calibrate the competing models, a quantity y must be defined which could
potentially be measured in a field test and can be computed by the model candidates.
Choosing a measurement design, that is, a set of locations where to measure y, will be

discussed in Step 2 (see Section 3.1.2).

The performance of the calibrated models, for given measurement designs and pa-
rameter representation, requires defining a quantitative and computable target quantity
t associated with a given modeling goal. An optimized measurement and modeling strat-
egy should lead to the best agreement in the target quantity between the prediction of
the calibrated model and observations of the target quantity. At the moment when the
model and experimental strategy are developed, however, true measurements do not
exist yet, so that they have to be simulated with the given uncertain knowledge about

the system.

The last aspect is how to handle the high prior uncertainty regarding the true system.
The identified best measurement setup and conceptual model should be robust against
this uncertainty. Therefore, an ensemble of virtual realities at high spatial resolution

is considered and the performance of the measurement designs and model concepts is
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computed over the entire ensemble. This ensemble of virtual realities allows mimicking
many possible outcomes of any proposed measurement design, and so to statistically

anticipate the subsequent calibration, validation and model selection.

3.1.2 Definition of Possible Observation Points

In Step 2 of the proposed framework, a set of possible observation locations, here
called points, needs to be defined. By this, the optimal-design problem becomes a
selection process among preset designs. The individual possible points are denoted
pi,t = 1...n,, where n, is the total number of observation points considered. This
set is larger than the number of observation points that could be assessed in a single,
feasible field experiment. Thus, many preset designs can be proposed as different subsets
from this large set: permissible measurement combinations are defined, denoted as the
designs d;,j = 1...ng to be tested, in which j is an index to a particular design,
and ngy is the total number of designs. These combinations are chosen to be realistic
from a field-experimental perspective regarding the number of points and their spatial
arrangement. Note that the number of observation points chosen in design d;, denoted

Neps, can be design specific.

In classical optimal design, the problem would be to identify the best measurement
design d; within the set of proposed designs, given a conceptual model M, (see Sec-
tion 3.1.3), minimizing an uncertainty metric of the target quantity ¢. Instead, the
error metric is minimized between a yet-to-be selected model M;, and an assumed (yet

uncertain) truth.

3.1.3 Definition of the Ensemble of Virtual Realities and of the
Ensemble of Simplified Model Candidates

Step 3 includes the definition of several model ensembles: The ensemble of virtual
realities M, replaces the true field system. These models exhibit the highest possible
resolution of the parameter field x and include all known processes. The discretized
parameter field of the virtual reality is denoted as xq. Because the prior uncertainty

is fairly high, many virtual realities are generated, leading to an ensemble of x,. In
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the following, x¢(1),l = 1...n,, is the parameter set of realization [ associated with the

virtual reality M,(l), and n, is the number of realizations.

In addition to the virtual realities M,, n,, ensembles of feasible model candidates
M,k =1...n,, are specified. These are conceptually simpler than the virtual realities
and could actually be calibrated in real applications (Doherty and Christensen, 2011).
In the application presented in Chapter 4, the individual ensembles M, differ from each

other by the resolution (and hence scale) of the parameter fields x.

In principle, generating the n,, ensembles of models M could be independent of
the virtual realities, but in this work they are constructed by upscaling the parameter
vectors Xg(l) of each virtual reality [ to a lower resolution, resulting in one upscaled
parameter vector xi(l) for each simplified model k and realization [. This procedure
ensures that the different model ensembles are realistically similar, and it avoids the dif-
ficult procedure of specifying consistent parameter priors for models at different scales.
Using all x¢(!) and x(1), hypothetical field data (measurable quantities y) are simu-
lated at all possible observation locations p; considered. In the following, yo(pi(d;),!) is
the (error-free) simulated measurement at point ¢ within design j in virtual reality (or
realization) number [, whereas y,(p;(d;),[) is the same simulated measurement in the

simplified model number k.

The simulated measurements of the virtual realities need to be perturbed by sys-
tematic and random measurement errors that reflect possible contributions to errors in
field measurements (Barlebo et al., 2004). In particular, the uncertainty of placing the
observations at the right place is accounted for by implementing a random perturbation
E(ps(dy),) Of the measurement locations p;(d;) for each virtual reality xo([). Additionally,
white noise g, is added to each measurement at point ¢ and virtual reality [ drawn
from a Gaussian distribution with zero mean and a standard deviation representing the
standard measurement error. The latter corresponds to the resolution of the intended

measurement device used in a field experiment.

In contrast to the virtual high-resolution realities, the simulated measurements based
on the simplified model candidates for calibration are not perturbed: only the virtual
realities have the job to mimic the outcomes of proposed field campaigns, while the

simplified models will be calibrated against these mimicked outcomes.
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For all virtual-reality realizations [ and all conceptual models M, also the corre-
sponding target quantities to(l) and tx(l) are computed, which will be important for

model selection in Step 5 (see Section 3.1.5).

3.1.4 Mimicking a Best-Estimate Calibration

Step 4 includes a best-estimate calibration for each virtual reality [ and measurement
design d;, in which the simulated and perturbed data sets of the virtual realities are
compared to measurement-error free predictions by the simplified conceptual models
M;.. Rather than performing an iterative optimization, the existing ensembles of model
candidates are used, each consisting of the same number n, of realizations. For each
virtual reality {, design d;, and simplifying model Mj, the realization A of the simplified
model is determined with the smallest sum of squared differences ¢(d;, k, [, \) between
the perturbed simulated measurements of the virtual reality and non-perturbed simu-

lated measurements of model M:

nobs(dj) 2
O(dj, kLA = ) (yo (pi(d;) + eutay) 1) + o — yi(pi(dy), A)) (3.1)
i=1
Note, that since I compare each virtual-reality realization [ with all available realizations
of a model candidate, I need to introduce the additional index A. The best realization
of model M, is denoted A, (d;, k,1):

Aopt(dj, k1) = ar[g mi]n o(dj, k1, N) (3.2)
Al

This procedure is repeated with all virtual realities and all measurement designs, result-
ing in n,, X n, best-fit models per measurement design. For the approach to actually
mimic a best estimate calibration, the number of realizations n, must be sufficiently
large. Due to the measurement errors included in the virtual-reality runs and the inac-
curacies of model simplifications, the index of the optimal realization A, (d;, k, 1) may
differ from the index of the virtual reality [ that has generated the data. Unlike in
methods that aim at posterior distributions of parameters (e.g., Leube et al., 2012), [
is not excluded from the set of candidates, as the peak of the likelihood in a real best-

estimate calibration using the conceptual model M} may be very close to the upscaled
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parameter set xy(().
After having identified the best-fit pairs, the quality of the best fit is quantified with
the root mean squared error RMSEY(d;, k) for each design d; and conceptual model

M, on average over all virtual-reality realizations

RMSEY(d;, k) = —Z¢ (dj, b 1, A = Aope(dj, K, 1)) (3.3)

Nobs(d;) Tor

In this thesis, the joint optimization framework is applied to a synthetic case study,
in which the individual conceptual models M, differ in the spatial resolution of the
same parameter field x. Thus, one may expect that a model variant with a larger
number of discretized parameters is better in meeting the perturbed measurements
than a variant with fewer discretized parameters. That is, the corresponding error
metric ¢(d;, k, 1, A\opt(dj, k, 1)) should be smaller for k representing a model with more
model parameters. However, the simulated measurements are prone to error, so that
the higher flexibility of the model with more parameters may be wasted on reproducing
these errors without increasing the prediction certainty — a phenomenon known as
overfitting (Vanlier et al., 2014). Hence, to truly test which combination of conceptual
model and measurement design is best, their ability to predict the target quantity ¢ must
be evaluated rather than their ability to reproduce the error affected measurements on

which they have been calibrated.

3.1.5 Optimization with Respect to the Modeling Goal

After determining all best-fit models for each design and conceptual model, the perfor-
mance of the selected models in predicting the target quantity ¢ is analyzed, i.e. the
modeling goal, over all virtual-reality realizations. Towards this end, the relative error
Et

rel

design d;, and conceptual model M:

(d;, k,1) is computed in the target quantity ¢ for each virtual reality [, measurement

tO(l) ()‘ozot(d k l))

E (d:, k1) =
rel( YRR ) to(l)

(3.4)

With eq. (3.4) empirical distributions are obtained depending on the measurement de-

sign d; and conceptual model M. These empirical distributions are analyzed by three
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standard metrics: (1) the mean relative error M E? ,(d;, k), quantifying a bias in predict-

ing the target quantity, (2) the standard deviation of the relative error SDE! ,(d;, k),
quantifying the spread, and (3) the root mean squared relative error RMSE!,,(d;, k),

quantifying the overall misfit:

MEwt'el n Z rel d k l (35)
1 Ny 2
t _
SDErel(dj7 k) - n, — 1 lzl: (Ef‘el<d k l) MEf‘el(d k)) (36)
RMSE!,(d;, k) = - Z i (dj, k1) (3.7)

The optimal combination of measurement design d; and conceptual model M; would
have a mean relative error M E!, of zero and a minimal spread SDE!,,,
minimal RMSE"

rel*

measurement, design d opt and conceptual model M opt COnsidering the target quantity ¢:

resulting in a

This yields the following criterion for jointly selecting the optimal

{doptv opt} - al:(g min RMSE] (dja k) (38)

rel
K}
Rather than jointly selecting the measurement design and conceptual model, the best
design d; could be determined for meeting a given target ¢, conditioned on a specific

model selection My, (or the best conceptual model conditioned on a specific design).
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Chapter 4

Synthetic Case Study!

4.1 Application to Radial Flow in Stratified Aquifers

I investigate the hydraulic anisotropy in stratified aquifers using an approach similar
to that of hydraulic tomography: I consider steady-shape pumping tests using partially
screened extraction wells, with screens at various depths, and multi-level observation
wells at various radial distances. For analyzing these data, a model needs to be speci-
fied considered as an appropriate representation of the complex subsurface. Calibrating
a model with the attempt to fully resolve the K-field of an effectively heterogeneous
subsurface would either demand an infeasible data amount or lead to enormous un-
certainties. Simplifying the model requires important decisions on using a sequence
of scalar, local conductivity values across some relevant number of strata, an effective
macroscopic conductivity tensor over the entire aquifer formation, or something in be-
tween. Simultaneously, the challenge of designing the measurement strategy has to be
addressed with which conclusive and sufficient data should be obtained while reducing
the number of necessary observation wells to minimize costs. In facing this challenge,
designing the data collection and choosing the affordable model complexity are inher-
ently interconnected, and the optimal combination of measurement design and model

selection depends on the ultimate application of the calibrated model.

!The essential content of Chapter 4 is published by Maier et al. (2020)



CHAPTER 4. SYNTHETIC CASE STUDY

In the following, the optimization framework proposed in Chapter 3 is applied to
a synthetic case study of radial flow in stratified aquifers. Therefore, hydraulic tests
are considered as outlined in Section 2.2. The hydraulic tests were performed to guide
the dimensioning of dewatering construction sites in fluvial aquifers that can be ap-
proximated as stratified systems. Both the hydraulic tests and the dewatering scenario
are briefly described next, followed by an outline of Steps 2 to 5 of the optimization

framework applied to the synthetic case study.

4.1.1 Hydraulic Tests

For the hydraulic tests steady-state groundwater flow was simulated to a partially pen-
etrating well with water extraction from six well screens ig.. € {1;2;3;4;5;6} placed at
different depths. The setup of the hydraulic tests follows the governing equations and
boundary conditions outlined in Section 2.2. As mentioned in Section 2.2, the steady-
shape regime of the pumping tests was analyzed, i.e. the pumping regime in which
drawdown differences between observation locations remain constant (Bohling et al.,
2002, 2007).

Regarding the framework described in Section 3.1, the combined parameter fields
K, (z) and K,(z) make up the parameter field = with different spatial resolutions among
the conceptual models to be calibrated and in the virtual realities. As a consequence
of the steady-shape pumping regime, the measured quantity y consists of drawdown-
differences between piezometer screens rather than the absolute values. Quasi steady-
state drawdowns were measured in several multi-level piezometers at different radial

distances (Figure 4.1a).

4.1.2 Dewatering Scenario

As target application, the dewatering of a hypothetical cylindrical construction pit was
considered and radial symmetric steady-state groundwater flow was simulated towards
a construction pit within a large river. As shown in Figure 4.1b, the construction
pit is separated from the surrounding river at the radial distance rg,..; by sheet piles

extending to a depth zspee: that is somewhat deeper than the bottom pit z,;. Outside
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a) Setup of the Hydraulic Tests to determine Hydraulic Conductivity
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Figure 4.1: (a) Setup of the hydraulic test to estimate hydraulic conductivity: Radial
symmetric steady state groundwater flow to a partially penetrating well. Water is suc-
cessively extracted along six well-screen sections iy, at » = r, = 0.1 m and drawdown
is observed at all depths of water extraction in 3 out of 18 radial distances to the pump-
ing well. Analysis of 816 designs, each design combining three multi-level piezometers.
(b) Application to the dewatering of a construction pit: Radial symmetric steady-state
groundwater flow (colored lines: head contours; black lines: streamlines) towards a
construction pit within a large river. The base of the construction pit is at z,;, sheet
piles pushed to depth z = z.¢ are placed at r = rg,.; to separate the construction pit
from the surrounding river. (from Maier et al., 2020)

of the construction pit, the hydraulic head at the top equals the river stage h e |L]-
This implies the following fixed-head boundary conditions:

h(T < Tsheet; Z = Zpit) = Zpit (41)

h(’f’ > Tsheets 2 = Ztop) - hm’fuer (42)




CHAPTER 4. SYNTHETIC CASE STUDY

In addition, there are no-flow boundary conditions at the outer radial boundary of the

domain, the bottom of the aquifer and along the sheet piles:

oh

or r=R

oh

il =0V 4.4

az Z=Zpot ' ( )
oh
°r =0 (4.5)
8T T=Tsheet Zsheet <Z<Ztop

The key target quantity to predict (¢ according to the nomenclature of Section 3.1.1)
was defined as the dewatering flux (); needed to keep the water table in the pit at the
bottom of the pit. This flux is computed by integrating the vertical specific discharge
over the area of the construction pit:

Tsheet
Qu = —K.(2)2r / R IS (4.6)
0

As computing the dewatering flux required setting up and running an additional numer-
ical model, I also tested whether the fully upscaled, anisotropic hydraulic conductivity
tensor (see Section 2.3) is met by the estimated conductivity distribution resulting from
the analysis of the hydraulic test. This resulted in two more target quantities, namely

the effective horizontal and vertical conductivities K¢/ and K¢/, respectively.

4.1.3 Proposed Designs of Observation Wells in the Hydraulic
Test

To suggest potential measurement designs, spatial locations p; need to be defined at
which the drawdown may be measured. Trying to stay realistic regarding experimental
feasibility, the number of multi-level piezometers was limited to three and the number
of observation depths per multi-level piezometers to six, namely exactly at the depths
of the screen sections of the extraction well. Figure 4.1a shows 18 potential distances at

which the multi-level piezometer could be placed, including the multi-level extraction
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well itself. Therefore, the total number of observation points p; is n, = 108 points. In

N Intended * Misplaced

-0.2  -01 0 0.1 0.2

F- rIntended [m]

Figure 4.2: Misplacing piezometers by perturbing the r- and z-coordinate of an in-
tended measurement point in the virtual realities. The variability of the horizontal
placement increases with depth. (from Maier et al., 2020)

the virtual realities I considered that piezometers may be misplaced. This was simulated
by considering erroneous r- and z-coordinates of an intended measurement point in the
virtual realities (but not in the simplified models to be calibrated against the data).
Towards this end, random values were computed drawn from uncorrelated uniform dis-
tributions on the interval [-0.025m; 0.025m] and [-0.02m; 0.02m| for perturbing the r-
and z-coordinates of a proposed observation point, respectively. In the field installa-
tion of piezometers the horizontal position may increasingly drift with depth, causing
increasing uncertainty of the actual horizontal position with increasing depth. To ac-

count for this uncertainty, the r-coordinates of measurement points were additionally
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perturbed by the following double-cumulative noise term:

i

Ercum(2i) = 5 x 107°[m] Z Zwk (4.7)

j=1 k=1

in which the summation is performed over the layers of the numerical grid starting from
the top, z; is the vertical coordinate of i-th grid layer from the top, and w; is drawn
from a standard normal distribution. Information on the spatial discretization is given
in Section 4.1.4.

Radial distance
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Figure 4.3: Setup and sorting of designs by means of set 0 and set 1. In each set, the
piezometer closest to the pumping well (green cross) is considered as fixed. The two
remaining piezometers are shifted further outwards, starting with the outermost one
(blue cross). After the outermost piezometer has reached the last radial distance avail-
able, the second piezometer (grey cross) is moved to the next position. This procedure
is repeated until the second and third piezometer have reached the two last available
positions. This is when the respective set is completed and the next set starts by mov-
ing the piezometer closest to the pumping well to the next position and so forth. (from
Maier et al., 2020)
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An example of resulting deviations in intended and misplaced measurement locations
is shown in Figure 4.2. Since the pumping well was not considered to be affected from an
imprecise placement of measurement location such errors were excluded in the therein

considered observation points.

Considering drawdown differences, each design includes 3 x 6 — 1 = 17 observations.
However, for designs involving the extraction well the pumped screen section itself was
excluded as an observation point since in field applications the extraction screen is
typically influenced by well-skin effects and pressure fluctuations caused by the pump.
Thus, such designs only include 16 drawdown differences. There are in total ngy —
816 possibilities to combine three out of 18 multi-level piezometers, making up the
individual measurement designs d;. The designs are grouped into sets numbered 0 to
15 according to the distance of the respective observation well closest to the pumping
well (Figure 4.1a). Within one set, the designs are sorted by shifting the observation
wells further outwards, starting with the outermost well until it reaches the last possible

radial distance (Figure 4.3).

In each design d;, the lowermost observation point of the observation well closest to
the pumping well constitutes the reference point for generating drawdown differences
As. For the particular case that water is extracted at the lowermost depth when analyz-
ing designs of set 0, the reference point is changed to the second lowermost observation
point for generating As. Fach simulated drawdown of the virtual realities was inde-
pendently perturbed by a measurement error £, drawn from a normal distribution with
zero mean and standard deviation o = 3 mm corresponding to the resolution of the

intended measurement device in a field test.

4.1.4 Generating Realizations of Hydraulic Conductivity as Vir-
tual Realities and for Model Calibration

The ensemble of virtual realities with the parameter sets xy contains n, = 20,000 re-
alizations of highly resolved vertical profiles of hydraulic conductivity. Towards this
end, multi Gaussian one-dimensional fields of the horizontal log-hydraulic conductivity
were generated with an exponential covariance function of uncertain mean, variance,
and correlation length. For each realization the mean, variance, and correlation length

were drawn from a uniform distribution on the interval of the respective minimum and
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maximum (Table 4.1b) before generating the autocorrelated vertical profile of InK,.(z).
Figure 5a shows the example of a highly resolved conductivity profile with the blue line
marking the local horizontal conductivity and the red line the slightly smaller vertical
conductivity. To obtain local values of the vertical hydraulic conductivity, a random
local anisotropy factor between 1 and 2 was employed using the cumulative distribu-

tion function of a standard normal distribution shifted by 1. Each highly resolved

Table 4.1: Parameters of the tests case.

a. Pumping rate in hydraulic tests

Hydraulic tests Dewatering scenario
Pumping rate Q,, 0.004 m?/s -
b. Ranges of statistical hyper-parameters of InK

Minimum Maximum

Mean -11.5 -4.6
Variance 0.5 3
Correlation length 0.1m 1.5m
c. Spatial discretization

Hydraulic tests Dewatering scenario
Vertical discretization 0.025m 0.025m

0.1m for r<rgpee; = dmy;
Logarithmically increasing from
T'sheet 1O Tadius R = 50m

Logarithmically increasing from well

ial di .. . :
Radial discretization radius 7, = 0.1m to radius R = 50m

hydraulic conductivity field, representing a virtual reality, was partially upscaled to
obtain the candidate parameter fields of the n,, x n, realizations of simplified models.
The first conceptual model assumes a single homogeneous anisotropic layer, denoted 1-
layer model. The second model assumes two layers of equal thickness, the third model
three layers and the fourth model six layers, denoted 2-, 3-, and 6-layer model, respec-
tively. The partial upscaling of the highly resolved K,-field and K, -field were performed
according to eq. (2.10) and eq. (2.11), respectively.

Figure 4.4b illustrates the partially upscaled conductivity profiles according to the
1-, 2-, 3- and 6-layer model derived from the highly resolved profile shown in Figure
4.4a. K¢ and K¢ of the 1-layer model represent the fully upscaled radial and vertical
conductivities and act both as a candidate in the calibration exercise and as alternative

targets ¢t of the overall optimization.
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Figure 4.4: Example of vertical profiles of horizontal and vertical hydraulic conduc-
tivity, K, and K, respectively. (a) Highly resolved profile used as virtual reality; (b)
partially upscaled profiles of K, and K, according to the models of 1, 2, 3, and 6 hor-
izontal layers used as candidate fields in the calibration-mimicry. (from Maier et al.,
2020)
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4.1.5 Numerical Implementation and Computational Effort

The entire computational code was written in Matlab. The generation of highly-resolved
auto-correlated hydraulic-conductivity fields was done by the spectral approach of Di-
etrich and Newsam (1993), whereas the flow fields were computed by conforming Finite

Elements using bilinear elements on a rectangular grid.

With the ensemble size of n, = 20,000 realizations, 6 x 20,000 = 120,000 drawdown
fields of the hydraulic tests had to be simulated using the virtual truths, one for each
of the six extraction depths and for each realization. From this, all hypothetical mea-
surement values for all 816 designs and 20,000 realizations could be constructed. Also,
20,000 simulations of the dewatering example had to be performed using the virtual
realities in order to obtain the correct values of the target quantity for Step 5. Infor-
mation on the discretization of both numerical models is given in Table 4.1c.

The computational effort for the simulations using the simplified conceptual models was

four times larger because four conceptual models were tested.

All other steps followed the procedure outlined in Section 3.1:

e The locations of all potential observation points were perturbed in all realizations
of the virtual truth. The simulated drawdown values at these locations were then
picked and perturbed with measurement noise. The right drawdown differences
were assigned to the right measurement designs to obtain the virtual measure-
ments Yo(pi(d;) + €pi(d;)0r 1 + Egopi(a;)0) Tor all realizations [ of the virtual truth

and all designs d; (part of Step 3 in Figure 3.1).

e The target quantities K¢/ (1), K¢/ (1), and Q4(l) were computed for all realiza-
tions (1) of the virtual truth (part of Step 3 in Figure 3.1).

e The simulated drawdown values were picked at all unperturbed potential observa-
tion points in all realizations of all four candidate models and the right drawdown
differences were assigned to the right measurement designs to obtain the simu-
lated measurements y;(p;(d;), \) of the different candidate models (part of Step
3 in Figure 3.1).

e The best-estimate calibration was mimicked for each virtual reality [, measure-
ment design d; and conceptual model M) according to equation 3.2 (Step 4 in
Figure 3.1).
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e The combination of measurement design d; for a given conceptual model M;, was
determined (or the best combination of the latter two) by finding the minimum of
the root mean squared relative errors RMSE! (d;, k) according to equation 3.7

with ¢ being K¢/, K¢/ or Qg (Step 5 in Figure 3.1).

The overall computational effort on a Fujitsu P957 / power High End PC was 336.1

hours wall-clock time.

4.2 Results and Discussion

4.2.1 Reproduction of Measurements by the Calibrated Models

Figure 4.5 illustrates the root mean square error RMSEY(d;, k) (see eq. (3.3)) of the
best-fit realizations ), for each measurement design d; and conceptual-model candi-
date k as colored lines (red: 1-layer model, green: 2-layer model, blue; 3-layer model,
gold: 6-layer model). The RMSEY(d;, k)-values quantify how well the measurements
simulated by the calibrated simplified models agree with the simulated and perturbed
measurements of the virtual realities after mimicking the calibration (Step 4). For com-
parison Figure 4.5 also contains a black line representing the root mean squared value
of the measurements in the virtual realities quantifying the total strength of the signal.
Because Figure 4.5 shows the RMSEY(d;, k)-values on a semi-logarithmic scale, the
distance between the colored and the black line can be interpreted as relative error of
the calibration. For additional comparison, the mean measurement error considered in

the field tests was computed (purple line in Figure 4.5).

First, a discussion of the general trends is provided: As described in Section 4.1.3,
the designs are sorted into sets comprising all designs with the same observation well
closest to the pumping well. Set 0 includes the non-pumped well screens of the pumping
well as observation points (see Figure 4.1a). As seen in Figure 4.5, the RMSEY(d;, k)-
values in general decrease with increasing distance between the pumping well and the
first multi-level piezometer and approach the measurement error (see purple line of
Figure 4.5). However, also the measured drawdown-differences decrease (see black line
of Figure 4.5) so that the relative misfits for a given conceptual model do not differ so

strongly between the different design sets.
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Figure 4.5: Root mean square error RMSEY(d;, k) of the best-fit of the 1-, 2-, 3-, and
6-layer models in meeting the drawdown differences of the virtual reality as function of
the measurement design. Black line: root mean squared values of the measurements.
Purple line: Measurement error expected from the measurement devices employed in

field tests. (from Maier et al., 2020)

As can be seen by the illustrative drawdown contour-lines in Figure 4.1a, the vertical
variation in drawdown decreases with increasing distance to the pumping well so that
a distinction between models with many or few layers becomes hardly possible when
only distant multi-level piezometers are considered. For the same reason, the imprecise
location of the observation points in the virtual realities has a higher effect on the
absolute and relative measurement error for close-by than for far-away piezometers.
However, such misplacements were not considered for observations at the non-pumped
well screens of the pumping well. The latter may explain why, contrary to the general

trend, the design set 1 results in larger calibration errors than the design set 0.
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In a next step, the models are compared: Obviously, for all designs, the 6-layer model
shows the smallest misfit of the measurements. This confirms the trivial expectation
that a model with a higher spatial resolution of the hydraulic conductivity can reproduce
measurements better than a model with a coarser resolution. In the design set including
the extraction well as a piezometer, the 2-, and 3-layer models perform similarly well as
the 6-layer model, whereas the RM SEY(d;, k)-curves of the model candidates separate
when considering designs of larger set numbers. This also accounts for the 1-layer
model which performs worst for all designs, followed by the 2- and 3-layer models. The
increased spreading between model candidates with increased set number (pronounced
by the logarithmic scaling in Figure 4.5) results from the decrease in signal (see black line
in Figure 4.5) suggesting that increasing the spatial resolution of a model for reproducing
measurements especially matters when measurements are afflicted with a small signal

strength.

4.2.2 Predictive Performance of Calibrated Models

While the 6-layer model is best in reproducing the observed drawdown-differences, this
does not guarantee that it is also best in predicting the desired target quantities, as
there is the danger of overfitting. To assess the predictive performance of the models,
the relative error was computed in predicting the target quantities of the dewatering
flux Qg, the effective radial hydraulic conductivity K¢// upscaled over the full aquifer
thickness, and the equally effective vertical hydraulic conductivity K¢/7.

First, the empirical probability is reported that a particular calibrated model M
performs best in meeting an individual target quantity ¢ for a given design d; over all
realizations [ = 1...n, of the virtual reality. Per individual realization [, the selection

of best-performing model is denoted K ,(d;,[):

t
kopt

(d;, k,1)? (4.8)

(dj1) = argmin E,,
Then, the relative frequencies of model selection are counted across the virtual-reality
realizations. Figure 7 shows the resulting selection probability for the 1-, 2-, 3-, or 6-
layer models, respectively. Each subplot is related to one of the three target quantities
(dewatering flux Q4 and fully upscaled horizontal and vertical hydraulic conductivities
K& and K¢7).
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Figure 4.6: Fraction of all realizations n, in which a particular model candidate was
determined as best among the available model candidates in minimizing Ef(d;, k, 1)
of the target quantities: (a) Qg, (b) K¢/ and (¢) K¢//. (from Maier et al., 2020)

Looking at general trends across all target quantities shows that all selection proba-
bilities range between 5.4% and 49%. This indicates that none of the model candidates
explicitly predominates model selection. In general, the selection probability of the
1-, 2-, 3-, and 6-layer models reach similar values with increasing design number, that
is, with increasing distance between the pumping well and the observation wells. As
already discussed in Section 4.2.1, the vertical variation in drawdown decreases with
increasing distance to the pumping well. This leads to a better fit in calibration. In
the current context, this also means that a distinction between models becomes hardly

possible when only distant multi level piezometers are considered.

Looking at individual model errors, for all target quantities the homogeneous 1-layer

model is selected the least. This even holds for the fully upscaled directional hydraulic
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conductivities K¢/ and K¢/ which are uniform effective parameters that should relate
perfectly to the 1-layer conceptual model (per definition, see Section 2.3). This may
be explained with the discrepancy by the spatially non-uniform sensitivities of the
drawdown measurements with respect to hydraulic conductivity even under uniform
hydraulic conditions, which leads to a bias in the estimated conductivities of the 1-
layer model. Since the 1-layer model considers the largest possible scale, its selection
probability for the fully upscaled directional hydraulic conductivities K¢/ and K¢//

improves for piezometers at far radial distances.

In a next step, the individual target quantities are discussed. Figure 4.6a shows
that the 6-layer model has the highest fraction of best predicting the dewatering flux
(24 among the model candidates, regardless of the measurement designs in set 0-10. This
may be explained by the flow field in the vicinity of the construction pit shown in Figure
4.1b: The dewatering flux crucially depends on (a) the hydraulic conductivity tensor
around the bottom end of the sheet pile and (b) the vertical hydraulic conductivity
integrated between the bottom of the sheet pile z4,..; and the bottom of the construction

pit 2. The 6-layer model is suited best to capture these properties.

In contrast, for predicting K¢/ and K¢/ the 6-layer model is not chosen as fre-
quently as the best model (Figure 4.6b and c). Here, first the 3-layer model and then
the 2-layer model approximate the best performing model (predicting K¢//) or perform
just as well as the 6-layer model (predicting K¢//) when increasing the distance of the
multi-level piezometers to the pumping well. This can be explained with the effect of
overfitting the erroneous measurements in the virtual reality suggesting that the model
complexity of a 6-layer model is required for predicting )4, vet does not necessarily
yvield better results for predicting K¢/ and K¢/,

4.2.3 Predictive Errors

Finally, to provide quantitative statements, Figure 4.7 shows the root mean squared
relative errors RMSE!,, in predicting the three target quantities in all 20,000 realiza-
tions considering the 816 different designs with the calibrated 1-, 2-, 3-, and 6-layer
models. The individual subplots refer to the chosen conceptual models, whereas the
line colors distinguish the target quantities. For all designs and models, the RMSE?, -
values strongly depend on the targeted parameter K¢/ K¢/ or Qg, respectively. The
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errors vary between (.13 and 3.66, indicating that the target quantities are under- or
overestimated by 13% to 366%, depending on the selected measurement design, model
candidate, and target quantity. For most measurement designs and model candidates,
predicting the fully upscaled horizontal hydraulic conductivity K¢/ is easier than pre-
dicting the fully-upscaled vertical conductivity K¢/ and the dewatering flux 4. This
can be explained by the flow being predominantly horizontal, so that the designs are

more informative about horizontal properties of the system. Over all designs, the av-
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Figure 4.7: Root mean squared relative errors RMSE!,, in predicting K¢/ (blue),
K¢'7 (red), and Qg (black) as function of the chosen measurement designs for individual
model choices. (a) 1-layer model, (b) 2-layer model, (¢) 3-layer model, (d) 6-layer model.
(from Maier et al., 2020)

erage magnitude of RMSE!

exhibiting the largest offsets between the correct target quantity values and the predic-

depends on the selected model, with the 1-layer model

el

tion by the calibrated model, whereas the most complex 6-layer model scores mostly
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the best, even though the prediction errors of the 3-layer model highly resemble those
of the 6-layer model.

The RMSE! -values show characteristic trends among the analyzed measurement
designs, which are similar among the model candidates but appear to be differently
pronounced due to the given dependence on systematic model errors. In the following,

these trends are discussed for the different target quantities.

In general, the highest error in predicting K¢/ (blue lines in Figure 4.7a-d) is
obtained by applying the first design within each set. These are the designs in which
the three multi-level piezometers are the closest to each other. With increasing design
number within a set, the errors in predicting K¢// fluctuate showing a decreasing trend
towards the last design of the associated set. In order to predict the fully upscaled
horizontal hydraulic conductivity K¢/ it is best to include measurements with the
largest horizontal offset possible, and in a given set this is achieved by taking the two
outermost positions for piezometers two and three. However, it is neither preferable to
choose a first piezometer location that is too close to the pumping well, where the effects
of misplacing the piezometers are the biggest, nor too far away where the measured
signal gets too small. This implies that the least uncertainty in predicting K¢/ is
achieved with the first multi-level piezometer being placed at intermediate distances to

the extraction well, and the two others as far away as possible.

In contrast to the RMSE! -values for K&/, those for K¢/ and @4 show an in-
creasing trend within each set (red and black lines in Figure 4.7a-d), expressing that
the prediction uncertainty is reduced when the second multi-level piezometer is placed
close to the first rather than the third one. This can be explained by the necessity of
strong vertical drawdown differences in the observations to obtain good estimates of
the vertical hydraulic conductivity, and strong vertical gradients are found closer to the
extraction well. Similar to the error in predicting K¢//, the measurement-design sets
with the first observation well at a close, but not too close distance to the pumping well

seem to guarantee the smallest prediction error of K¢/ and Q.

4.2.4 Multi-Objective Optimization

Equation (3.8) describes how to select the single best combination of measurement

design d; and conceptual model M}, to be calibrated to the data in order to meet an
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CHAPTER 4. SYNTHETIC CASE STUDY

individual target quantity t € {Qq, K¢/, K¢//}. Depending on the target, the results
reveal different optimal designs that are visualized in Figure 4.8a. In order to satisfy

all three criteria, a multi-objective optimization is needed (resulting designs see Figure
4.8b).

a. Optimal designs for individual targets

6m 7m 30m
K°™: Design 606

3m 6m 15m
K2™: Design 393

T 9m 10m

t () Q: Design 101

b. Designs from multi-objective optimization

4m 6m 19m
Design 473

4m 6m 25m
Design 474

@ 3-layer model 6-layer model

Figure 4.8: Optimized modeling and measurement strategies for reducing the relative
prediction error of target quantities. The color of the points refers to the resulting
model candidate, i.e., gold for the 6-layer model and blue for the 3-layer model. a.
Results for minimizing errors of each target quantity K¢/, K¢//, and Qg, respectively.
Choosing one of these designs and models implies making a compromise with respect to
minimizing the prediction uncertainty of the respectively two other target quantities.
b. Designs resulting from multi-objective optimization. (from Maier et al., 2020)

For this purpose, potential trade offs were examined in predicting the different target
quantities with a certain model and measurement strategy following the Pareto prin-
ciple. Towards this end, the RM SE"_-values were considered for all target quantities
from all available combinations n,,, x ng = 3’264 of conceptual models and measurement
designs and are plot against each other in Figure 4.9. In particular, Figure 4.9a-c show
pairwise Pareto plots of the relative prediction error in two of the three target quantities
(Figure 4.9a: K&/ and K¢/7; Figure 4.9b: K¢/ and Qg; Figure 4.9¢: K¢V and Qg)
for all combinations of calibrated model candidates and measurement designs, whereas
Figure 4.9d shows a three-dimensional Pareto plot of all three RM SE? -values. The
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4.2. RESULTS AND DISCUSSION

red, green, blue, and gold colors of points and spheres in Figure 4.9 relate to the 1-, 2-,

3-, and 6-layer models, respectively.

Figure 4.9 illustrates that there are no big trade-off effects when optimizing the
model-and-design combinations for the fully upscaled horizontal conductivity K¢/ and
either the corresponding fully-upscaled vertical conductivity K¢/ (Figure 4.9a) or the
dewatering flux Qg (Figure 4.9b). Meeting K¢/ and Q, clearly leads to a preference
for the 6-layer model and 3-layer model, respectively, whereas meeting K¢// alone does

not show such a preference. However, meeting the criterion of minimizing RM SE!; for

el
t = K¢/7 does not truly exclude meeting the other two criteria. The Pareto front (not
shown) was computed, but it contained only a very small number of points, confirming

the lacking trade-off between meeting K¢/ and K¢/ and K¢/ and Qg, respectively. As

y eff
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Figure 4.9: Root mean squared relative errors RMSE!,, in predicting the three target
quantities for all measurement designs and all model choices (indicated by colors). (a)
pairwise plot of RMSE!, for t = K¢/ and t = K¢/ (b) pairwise for t = K¢/ and
t = Qu, (c) pairwise for t = K¢/ and t = Qq, (d) RM SE!_-values for all three targets.
Gray lines in (a)-(c) and planes in (d): separation of the 10% best from the rest. (from
Maier et al., 2020)

indicated by Figure 4.9a and Figure 4.9b, Figure 4.9c shows that the 6-layer model is the

preferred model for minimizing RM SE?,, for t = K¢/ whereas for minimizing RM SE*

el el
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for t = Q4 the 3-layer model pre-dominates model selection. However, similar to their
lacking trade-offs with K¢/ selecting a model-and-design combination for predicting

the target K¢/ does not necessarily deteriorate the prediction of Qg.

Instead of computing the Pareto front, I thus decided to set threshold values corre-
sponding to the 10% best model-and-design combinations of the 3’264 choices (RMSE?,,
=0.19 for t = K&/, RMSE!,, = 0.43 for t = K¢/ and RMSE!,, = 0.54 for t = Q).
Figure 4.9a-c show these threshold values as gray lines, and Figure 4.9d as translucent
gray planes parallel to the axes. The spheres with clear colors in the foreground of Fig-
ure 4.9d belong at least in one of the three criteria to the 10% best model-and-design
combinations, and those of them closest to the observer belong to the best regarding

multiple criteria.

There are exactly two model-and-design combinations that belong to the 10% best
with respect to K¢/, K¢/ and Q4. Both suggest to analyze the data by the 6-layer
model and to install the closest multi-level piezometer at 4 m distance to the pumping
well, and the second closest at 6 m, whereas the location of the furthest multi-level
piezometer is chosen either at 19 m or at 25 m distance (see also Figure 4.8b). I

consider these two designs as the overall best ones.
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Chapter 5

Field Application

The synthetic case study presented in Chapter 4 has shown that calibrating groundwater-
flow models using data from hydraulic tests with a tomographic layout is a promising
method for estimating the large-scale hydraulic anisotropy. To test a field application
of the method, I investigated a fluvial gravel aquifer in South-West Germany. A new
field site was instrumented with a measurement network that was especially designed
for performing the hydraulic tests at the site. In the center of the well network, a large-
diameter well, having three separate well-screen sections, was installed while 14 nested
observation wells were placed in four different directions from the pumping well. To
facilitate depth-oriented observations, all nested observation wells were installed with

screen openings in different depth, yielding a total of 58 observation points.

At the field site, a total of 22 pumping tests were performed in which water was
successively extracted from the three well-screen sections of the pumping well. During
each pumping test, the hydraulic response was measured in all available observation
points. According to the synthetic case study (see Chapter 4), the field measurements
were analyzed considering the steady-shape pumping regime of the tests. All raw and
processed data are available on the FDAT repository of the University of Tiibingen
(http://hdlLhandle.net/10900.1/274eabc9-0edd-40b1-9e34-541¢09¢4479¢, Maier et al.,
2021, available from January 2022).

The hydraulic tests were simulated and the hydraulic anisotropy was estimated
by calibrating two groundwater flow models with the field measurements. Similar to

the synthetic case study, a homogeneous anisotropic groundwater-flow model and a
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groundwater-flow model, consisting of multiple, locally anisotropic, horizontal layers,

were considered.

In the following, T describe the newly instrumented field site, delineate the pumping
tests performed at the site and present the different steps considered in data processing.
I then present the numerical groundwater-flow models, the calibration strategy, and the

model-calibration results.

5.1 Field Site and Well Instrumentation

The field site is located in the Upper Rhine Valley, north of the municipality Kappel-
Grafenhausen, Baden-Wiirttemberg, South-West Germany (Figure 5.1a). The field site
is surrounded by a diversion channel for flood protection in the west and by River Elz
in the east. The general groundwater flow direction is from the southeast to the north-
west with a hydraulic gradient of 0.14%. The fluvial unconsolidated aquifer consists of
Quaternary sediments of the Neuenburg-Formation (qNE), and is characterized by a
stratification of fine to sandy gravels and sands (LGRB, 2004; Wirsing and Luz, 2007).
The saturated aquifer of ~41 m thickness is overlain by a ~2 m thick layer of allu-
vial fines and bounded by considerably less conductive Quaternary sediments from the
Breisgau-Formation (qBR) at the aquifer base (LGRB, 2004; Wirsing and Luz, 2007).
Results from a grain size analysis of an exploration drilling at the field site indicate
hydraulic-conductivity values of the aquifer in the range of 6.7 x 107 m/s to 2.6 x 10!
m/s. In further preliminary hydrogeological investigations at the site, eleven direct-push
injection logs were performed at different locations. The results reveal no significant
lateral differences in hydraulic conductivity but indicate lower hydraulic conductivities

at depths from 5-10 m with respect to the aquifer top.

Figure 5.1b shows a plan view of the field installation at the site. A large pumping
well (denoted RO1) was installed via grab drilling in the center of the well network
(Figure 5.2). The pumping well has a diameter of 800 mm and reaches to a depth of
21 m within the aquifer. It was designed with three separate screen sections, denoted
I, II, and III, of 2 m length each and with a spacing of 4.5 m in between, centered
at elevations of 37.32 m (upper screen), 30.82 m (middle screen) and 24.32 m (lower

screen) above the aquifer base. Figure 5.3 shows a schematic 3-D illustration of the

44



5.1. FIELD SITE AND WELL INSTRUMENTATION

a. N :
¢
A ?(a('\ ma(\\l
Gel
e
&>
g "ﬁﬁt Kappel
Grafenhausen
Ladan o ol 0 500 1000 m
A
b.

P

wW @ Pumping Well RO1
@ Multi-Channel-Tubing Well
@ Well Bundle
S
0 7,5 15m
|

Figure 5.1: a. Overview map of the field site. b. Plan view of the installed measure-
ment network at the site.

well configuration. Note that all z-coordinates are given in reference to the aquifer
bottom. The well was installed with a prepacked filter along the filter-screen sections
and completed with coarse gravel to a 0.4 m-thick filter pack, extending by 0.5 m above
and below the individual screen sections. Each filter-pack section is connected above

and below to a clay fill through a 0.5 m thick secondary filter layer. Three groups of
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Grab drillermm W

Figure 5.2: a. Side view and b. plan view of the grab drilling of pumping well RO1.

nested observation wells were installed each in the north, east, south, and west direction
of the pumping well RO1, at radial distances of vy &~ 3.5 m, r, &~ 6.5 m and r3 ~ 10.5
m, respectively (Figure 5.3). Two additional groups of nested observation wells were
installed at a radial distance of 4, ~ 21 m, one to the east and the other to the west
of well RO1. To facilitate a depth-oriented observation, each of the 14 groups of nested
observation wells provides screen openings at different depths. The design of the nested

observation wells is described in more detail in the following.
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5.1. FIELD SITE AND WELL INSTRUMENTATION

Each group of nested observation wells positioned north, south and west of RO1
comprises three 1-inch piezometers, denoted three-well-bundle, that were installed with
direct-push drilling and have a 0.3 m long screen at its bottom. Two of the three
piezometers are placed at depths between the elevation of the pumping-well screens I
and II, and the third is at a depth between the elevation of the pumping-well screens
IT and IIT (Figure 5.3). The individual piezometers were completed by allowing natural

collaps to occur in the annular well space.

i
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Figure 5.3: Overview of the measurement network installed at the field site. The
vertical coordinate is measured from the base of the aquifer, the horizontal coordinates
from the pumping well RO1 in the middle, illustrated by its well screens.

All observation wells to the east of ROl are continuous multi-channel tubing wells
(CMT-wells; Einarson and Cherry, 2002), with seven individual channels with a width
of ~1 em. The CMT-wells were installed using percussion drilling. Their depths are
above, at, and below the elevation of the pumping-well screens I, II, and III. Starting
from the top to the bottom, the screen openings are enumerated from 1 to 7 (Figure
5.3). While screen openings 1 to 6 are 0.4 m long, the lowermost screen opening 7 has a
length of 0.1 m. Similar to the pumping well, each CMT well was designed with a filter

pack consisting of 0.09 m-thick coarse gravel at the depths of the filter-screen sections,

47



CHAPTER 5. FIELD APPLICATION

extending 0.2 m above and below each section. The individual filter-pack sections are

connected above and below to a bentonite fill.

In total, the monitoring network installed at the field site consists of 58 observation

points.

To determine the well efficiency of pumping well R01, a step-drawdown pumping
test was performed after completion of the well. In three pumping steps, lasting for 8
h each, water was extracted with a pumping rate of 0.01 m?/s, 0.02 m3/s and 0.036
m3 /s, respectively. In each pumping step, water was extracted simultaneously from
all three well-screens sections I, 1T, and TII using a frequency-controlled submersible
pump (GRUNDFOS). Figure 5.4 shows that the well efficiency decreases with increasing

pumping rate.

1
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Figure 5.4: Estimation of the well efficiency of pumping well RO1 (Stoll, 2020).

5.2 Hydraulic Tests

As a proof-of-concept, three series of short-term pumping tests were performed by ex-
tracting water successively from the screen sections I, II, and III of pumping well RO1
with a frequency-controlled submersible pump (GRUNDFOS). To prevent water inflow

from the adjacent screen sections, a straddle packer system was introduced into the well
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and placed above and/or below the active screen section. On account of the large di-

ameter of pumping well R01, the straddle packer was designed as a customized system.

The packer system can be adapted in its configuration according to water extraction in

the upper, middle or lower well-screen section. Figure 5.5 shows the different composi-

tions of the straddle packer.

For each pumping depth, multiple pumping tests p; were performed with different

— Y Groundwatertable

I — -

= =

-

=

Raiser pipe

< Well screen

i > Inflated packer

€¢mm Water extraction

Figure 5.5: Configurations of the straddle packer according to water extraction from

well-screen section I, II or IIL.

pumping rates Q. (p;). All experiments belonging to the same extraction interval con-

stitute a specific hydraulic test y. Details on the number of pumping tests belonging to

the individual hydraulic tests and the applied pumping rates are listed in Table 5.1.

Table 5.1: Key data of the pumping test series.

II-Middle screen

ITI-Bottom screen

I-Upper screen
Hydraulic test y 1
Number of pumping tests p, 5
Reduced number of pumping tests p, 4
Time to reach steady-shape behavior ¢, [s] 1800
Range of Q,,(p:)[L/s] 10.0 - 10.5

2
10
7
1680
5.5 -10.9

3
7
4
1700
17.8 - 19.0

During each pumping test, the transient drawdown response was measured in all

available observation points. Fiber-optic pressure transducers (FISO Technologies, Inc.,
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Quebec, QC, Canada) were used to record the drawdown response in 14 of the 28
channels available from the CMT wells. T manually measured the drawdown response
in the remaining channels using an e-tape. In all 1-inch piezometers of the three-well-
bundles the drawdown response was recorded using different types of piezoresistive data
loggers. Additionally, the barometric pressure was recorded throughout the complete
test period. Detailed information on sensor type, sensor resolution and sampling interval

of the different measurement devices is given in Table 5.2.

Table 5.2: Details on the sensors used to measure the drawdown response to water
extraction in pumping well RO1.

Sensor Type Specification Resolution [mm] Freiir::g;fn[gHz]

Fiber-optic FOP-MPZ-NS-1173B 1 0.9

pressure transducer | FISO Technologies )
Micro-Diver

Absolute TD-Diver 3 0.2

pressure transducer | CTD-Diver ’
Eijkelkamp Soil & Water

Relative Dipper-PT i 0.033

pressure transducer | SEBA Hydrometrie )

Water level meter Manual measurement - -

Barometric Baro-Diver

pressure transducer | Van FEssen Instruments 0.3 0.0033

Due to technical problems with one data logger the total number of active observa-
tion points in each hydraulic test was reduced to 57.
In order to monitor the stability of the pumping rate, I regularly took flowmeter read-
ings and observed the drawdown within the pumping well using a pressure transducer.
The latter in-well drawdown measurements are not considered in data analysis later
on because these measurements are affected by pump-induced pressure variations and

well-skin effects.

5.3 Data Processing

The pumping tests resulted in a total of 1334 drawdown curves, from which defec-

tive datasets caused by strong instabilities of pressure transducers or the pumping rate
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were eliminated. Figure 5.6 shows exemplary datasets of what was defined as defec-
tive datasets. In general, datasets showing a drawdown signal that evidently does not
correspond to the true signal of pumping were excluded. As shown in Figure 5.6, the
instability of pressure transducer recordings can be expressed differently, including a
steady decrease of drawdown (lowermost blue and yellow drawdown curves in Figure
5.6), a continuous trend in drawdown (green drawdown curve in Figure 5.6) or no re-

sponse to pumping at all. With respect to flow rate stability, the entire pumping phase

100

50 -

s [mm]

-50

102 10°

t[s]

Figure 5.6: Exemplary datasets excluded from model calibration due to instable pres-
sure transducer recordings.

was assessed including the late-term steady discharge. In preceding tests, e.g., the step-
drawdown pumping test outlined in section 5.1, and during the hydraulic tests described
in section 5.2, it was examined that the system shows an incredibly quick response to
changes in the flow rate. Thus, it was possible to identify flow rate instabilities not only

directly from flow rate readings but also from observation data.

After the elimination of defective datasets, each curve was corrected to consider
barometric pressure variations. Considering that drawdown is linearly proportional to
the pumping rate, a scaling was performed for drawdown curves from pumping tests with
different extraction rates to those of a harmonized rate @y, of 0.01 m3/s. The scaling
is based on the mean discharge observed during the pumping phase up to timepoint
tirim (Table 5.1). These scaled curves were used to compare the multiple hydraulic

responses observed at each observation point and hydraulic test, and to check the data
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reproducibility. Pumping tests in which the drawdown curves predominantly failed the
reproducibility test, were discarded, reducing the total number of pumping tests from
pi to p, of each hydraulic test (Table 5.1).

In a next step, I consider the steady-shape pumping regime of the field tests in which
the absolute value of drawdown still changes but the hydraulic-head differences between
measurement locations remain constant (Bohling et al., 2002, 2007). By analyzing the
steady-shape pumping regime, uncertainties can be avoided that are associated with the
recorded transient behavior of the hydraulic responses, and the intensive computational

requirements of simulating transient groundwater flow is reduced.

In the reduced set of pumping tests p,., the steady-shape regime was defined by iden-
tifying the time (¢:.4,,) at which changes in drawdown differences between observation
locations could be neglected (see Table 5.1). Figure 5.7 shows an exemplary dataset to
demonstrate the identification of the steady shape pumping regime. Figure 5.7a shows
the absolute drawdowns versus pumping time until timepoint ¢;.;,,, = 1800 s obtained
with pumping test p; = 5 of hydraulic test I, i.e. when water was extracted from the
upper screen in pumping well R01. The drawdowns increase with time and decrease
with increasing radial distance to the well (different colors in Figure 5.7a). Figure 5.7b
shows the difference in drawdown between all observation points and observation point
WO04.3, chosen as an exemplary reference point. Contrary to the absolute drawdowns,
the drawdown differences appear to remain constant after a pumping time of ~15 min,

that is, prior to the selected timepoint ..

Additionally, I computed the logarithmic derivative of drawdown as a function of
time in log-log scale (Renard et al., 2009) using the differentiation algorithm after
Bourdet et al. (1989) to assess the change in deviation at each observation point (Figure
5.7¢). Figure 5.7¢ shows that for p, = 5 of hydraulic test I the logarithmic derivatives
stabilize prior to timepoint t;,;, with deviations smaller than 1 mm. The stabilization
of logarithmic derivatives indicates that most likely the infinite acting radial flow phase
was reached (Renard et al., 2009). With this, the aquifer can be assumed of infinite areal
extent at timepoint t.;,, with no influences of well bore effects or external boundaries

on drawdown.

In a last step, I averaged the drawdown s, at timepoint ., from all pumping

tests p, available in hydraulic test y. By that, a single averaged drawdown measurement
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a. b. Hydraulic Test I, P, = 5 c.

102 10°
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Figure 5.7: Dataset of pumping test p, = 5 when water was extracted from the
upper screen (hydraulic test I) showing a. the absolute drawdown measurements versus
pumping time. b. the difference in drawdown measured in the different observation
wells and reference well W04.3. c. the logarithmic time derivative of drawdown.

Smeas Was obtained for each observation point k£ in each hydraulic test y

Pr

Smeas(ya k) = l Z Sobs,i<y7 k) (51)

" i=1

and an associated standard deviation o,.,. as metric of the reproducibility of each

measurement:

'y 1_ 1 ZT(Sobs,i(ya k) - Smeas(ya k))2 (52)

i=1

Orepr (ya k) =

I denote o,y the reproducibility error, which contributes to the overall error of the
measurements but does not include systematic errors in the data (e.g., due to the mis-
placement of observation points) or in the conceptual model (e.g., due to disregarding

horizontal heterogeneity).

To quantify the variability among the measurement points, I clustered observation
points which are arranged in different directions to the pumping well, but coincide
by +0.6 m and +£0.5 m in their r- and z-coordinates, respectively, and compare the
associated drawdown measurements s,,..s- These cluster ranges are considered to be
realistic since intended measurement locations of observation points may be misplaced

in the installation of observation wells (Maier et al., 2020). I computed the mean value
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te, and standard deviation o., from all measurements n., available in each cluster c,

nCp (CP)

1 Z Smeas,i(Ys Cp) (5.3)

e, (¢p) i=1

fhe, (Y) =

! Z (Smeas,i(yv CP) - Mcp (y>>2 (54)

O¢, (y) - Ne, (Cp) i=1

5.4 Processed Data Set

The previously presented data-processing strategy facilitated the reduction of over 1000
recorded drawdown curves to a set of n,,.0s = 3 X 57 = 171 steady-shape drawdown
observations, given that in each of the three hydraulic tests the recording in one ob-
servation point failed. Figure 5.8 shows the drawdown measurements s,,..s rescaled to
reflect a harmonized pumping rate of 0.01 m3/s belonging to the hydraulic test per-
formed at the top (Figure 5.8 a), the middle (Figure 5.8b) and the bottom (Figure 5.8¢)
screen of the pumping well. The measurements are displayed as a function of the radial
distance to the pumping well (different colors in Figure 5.8a-5.8¢), while for each radial
distance the observations are aligned with elevation (bar placement along the z-axis
in Figure 5.8a-c). As expected, Figure 5.8a-Figure 5.8¢ show that in each hydraulic
test the observed drawdown decreases with increasing radial distance to the pumping
well and are higher at elevations close to the pumped screen interval. The drawdown
observations s,cq.s range between millimeters and meters. The signal strength differs
between the three tests even after correcting for different pumping rates. When ex-
tracting water from the lower screen (Figure 5.8c¢), the drawdown does not reach the
high values observed in the other tests, whereas the strongest responses result from
the hydraulic test with water extraction from the middle screen (Figure 5.8b). These
differences may be caused by vertical variations of hydraulic conductivity. In particular,
a lower-conductivity layer at a depth close to that of the middle screen could explain

higher drawdown values when water is extracted from this screen.

Figure 5.9a shows the rescaled drawdown measurements s,,..s together with the

errors obtained during the reproducibility test o,.,. (see section 5.3). Again, Figure 6a
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Hydraulic Test | Hydraulic Test Il Hydraulic Test Ill

Figure 5.8: Field measurements of the hydraulic tests performed at (a) the top, (b) the
middle and (¢) the bottom screen of the pumping well. The yellow, grey, blue and orange
colors correspond to the radial distances r; €[3.3,3.6], ro €[6.2,6.8], r5 €[10.2,10.7] and
ry €[20.9,21], respectively.

shows that the measurement signal varies between the three hydraulic tests (different
colors in Figure 5.9a) while the associated errors are within a similar range for the
three tests. In general, the reproducibility errors do not exceed values of 2.2 cm and

are smallest for the hydraulic test with water extraction in the lower screen.

A comparison of the errors between the four directions (north, east, south, and west
of the pumping well, see different marker symbols in Figure 5.9a) reveals no significant

spatial pattern with respect to reproducibility.

Figure 5.9b shows the errors associated with measurements obtained at similar radial
distance and depth but in different directions to the pumping well. In contrast to
the comparably small reproducibility errors oy, the errors associated with horizontal

heterogeneity are higher and reach values of up to 10 cm.

5.5 Numerical Model Setup

To simulate the hydraulic tests described in section 5.2, two different groundwater

flow models were built. The first model considers a single, homogeneous layer (1-layer
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Figure 5.9: a. Measurement errors o,y resulting from the reproducibility analysis
as function of the drawdown measurements S,,.... Colors indicate extraction from
the different pumping intervals in different depths, marker styles indicate horizontal
orientation of the measurement points. b. Measurement errors o., resulting from
measurements at similar radial distances and depths but different directions to the
pumping well.

model) whereas the second one contains five horizontal layers (5-layer model). Both
models account for hydraulic anisotropy in each layer, that is, to each layer a radial and
vertical hydraulic conductivity K, and K, are assigned, respectively. In both models,
the aquifer is treated as confined, which is a justifiable assumption due to the short test

durations, and the small drawdowns in comparison to the total thickness of the aquifer.

Figure 5.10 shows the basic model setup. In both models, two separate units are
defined that represent the gravel pack (red units in Figure 5.10) and clay fill (gray
units in Figure 5.10) of the filter pack installed around the pumping well. To each unit
an isotropic hydraulic conductivity K, and K, are assigned, respectively. The black
dashed horizontal lines in Figure 5.10 indicate the layer boundaries considered in the
5-layer model. I used the existing field description of the drill core of pumping well R01
(Figure 5.10, Figure 5.11a) to define the actual location of the layers 1 to 5 in the 5-layer

model, numbered from the aquifer top to the bottom. As a selection criterion, I assumed
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Figure 5.10: Conceptual representation of the 1-layer and 5-layer model, distinguished
by dashed horizontal lines. The drilling profile is displayed left to the pumping well
showing lithologic information at the pumping well location. Also, the gravel pack
(red) and clay seal (gray) are displayed right to the pumping well. The black crosses
correspond to individual observation points, placed at radial distances ry ~ 3.5 m, ry ~
6.5 m, r3 ~ 10.5 m and r4 = 21 m. The model domain reaches from the saturated
aquifer thickness at z,,, = 41.05 m to the aquifer bottom at z,,, = 0 m. Note that axes
are not to scale and that the contour lines of drawdown correspond to an exemplary
response in a homogeneous aquifer system, i.e. considering a 1-layer model.

a continuous horizontal layer to be present at depths in which the sand fraction clearly
exceeds that of the gravel and spans more than half a meter in thickness (Figure 5.11b).
I defined the threshold criterion of 0.5 m assuming that a layer of larger thickness is
more likely to occur more or less consistent with depth throughout the domain than a

layer of smaller thickness and thus, can be resolved in a model in the first place.

To simulate the hydraulic tests, I used a Finite-Element model implemented in Mat-
lab that solves the axisymmetric steady-state groundwater flow equation on rectangular
elements. The radial grid spacing increases logarithmically, whereas the vertical resolu-
tion is uniform with a grid spacing of 0.17 m. To obtain simulation results at observation
points that did not fall onto nodes of the grid, a bilinear interpolation was performed

consistent with the Finite Element formulation.
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Figure 5.11: a. Relative gravel and sand fractions from the field description of the
drilling core of the large diameter well RO1 at the field site Kappel-Grafenhausen (white
gaps = core loss). b. Definition of five horizontal layers considering depths of more than
half a meter in thickness in which the sand fraction clearly exceeds the gravel fraction.
c. Calibrated radial (blue) and vertical hydraulic conductivities (red) of the 1-layer
(dashed lines) and 5-layer model (solid lines).

5.6 Model Calibration

After setting up the groundwater flow models, the 1-layer and 5-layer models were

calibrated independently using the Trust-Region Reflective Least-Square method of the
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function 1sqnonlin in the optimization toolbox of Matlab (Coleman and Li, 1996).
All three hydraulic tests were considered jointly in the calibration, with n,,..s = 171

drawdown observations.

As mentioned in section 2.2 and 5.3, I consider a steady-shape pumping regime,
in which drawdown differences between observation locations remain constant. Typi-
cally, this requires the specification of pairs of observation points by either setting one
observation location as the superordinate reference point (Maier et al., 2020) or by
considering all feasible pairs of observation points (Bohling et al., 2002). Each field
measurement, however, is subject to measurement errors of different types, including
measurement noise or the misplacement of observation wells (Maier et al., 2020). I
have tested the effect of considering different observation points as the reference point,
yielding different model-calibration results due to measurement error. To avoid the
propagation of uncertainties in the generation of pairs of observation points, I included
a virtual reference point in the model calibration. That is, for each hydraulic test the
simulated drawdown was considered as Sg,=|s: — Sef| in which s, is the simulated
steady-state drawdown and s,.s is the drawdown at a virtual reference point, that is

also estimated.

Then, the differences between the simulated and measured drawdowns sg;,, and
Smeas Were computed and normalized by the error o; of each measurement ¢, which is

defined by an error model discussed below.

The objective function ¢ was to minimize the sum of squared normalized residuals:

. ni (Ssim,i<p) — Smeas,i>>2 (5.5)

O'.
i=1 v

in which p is the parameter vector including the logarithms of K, and K, of all hori-
zontal layers considered, the log-hydraulic conductivities K, and K of the filter pack,
and the drawdown s,.; for each of the three hydraulic tests. Thus, in total, the 1-layer

and 5-layer models included n,q, = 7 and n,q, — 15 calibration parameters, respectively.

To normalize the residuals of simulated and measured drawdowns in model calibra-
tion, I chose an error model that accounts for the combined effects of the reproducibility
error, a potential measurement bias (e.g., due to the misplacement of the observation

points), and most importantly the model-conceptual error (e.g., due to a suboptimal
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definition of layers or lacking 3-D heterogeneity). In essence, I don’t claim to have
defined models that are perfect representations of reality and accept misfits that are
bigger than the error of the measurements themselves for the sake of keeping the hy-
drogeological models comparably simple and the fitted parameters meaningful. In this
framework, a heteroscedastic error model must be defined with a set of parameters that
become part of the fitting procedure. As different models have different deficiencies,
they have different model errors, and judging the quality of the different models is based

on the fitted coefficients of the error model.

I have tested different error models and upon analyzing the residuals, I have chosen
the following parameterization:
b-s?
o=a+ —" (5.6)
& + Smeas
with a, b and ¢ being the error-model parameters. This specific error model starts off
with a constant error with lim ¢ = a corresponding to the absolute error, then shows

Smeas—0

a quadratic increase with the measurement, and converges to a linear dependence on

Smeas for large values with  lim = b corresponding to the relative error. The

Smeas—+00 § s
parameter ¢ quantifies how quickly the error model converges from the measurement-

independent to the linear regime.

The error model parameters were determined by calibrating the 1-layer and 5-layer
model according to the expectation-maximization method (Dempster et al., 1977). That
is, the objective function was iteratively minimized with the Trust-Region Reflective
Least-Square method of the function 1sqnonlin in the optimization toolbox of Matlab
(Coleman and Li, 1996) and the error-model parameters were updated by performing
a least-square fit of the error model to the absolute residuals |Ssm(P) — Smeas | Of the
model fit to the measured drawdown s,,..,. With this, the error model parameters a, b
and ¢ were included in the optimization process along with all model parameters. The
iterative calibration procedure was considered completed when the change in all model

and error parameters was less than 1%.

The comparison of the different models is now not based on meeting the observations
within the measurement error but on the magnitude of the model error needed to accept
the different models.
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After fitting the models, the associated standard deviation &, of estimation of the

model parameter ¢ was computed by linearized error propagation:
Gp; = 1/ Cppl(i,1) (5.7)
with the parameter covariance matrix Cp, computed by:
Cpp = (JTny_lJ)_l (5.8)

in which the Jacobian J contains the partial derivatives of all simulated measurements
with respect to all parameters, and Cy, is the diagonal matrix of the squared errors
according to the error model. Because the parameters a and b of the error model are
bigger if the model shows larger misfits, the resulting parameter standard deviations of

estimation are also bigger.

5.7 Results and Discussion

5.7.1 Goodness of Model Calibration

Figure 5.12a and Figure 5.12b show the absolute differences between simulated and
measured drawdowns [Ssim — Smeas| Versus the measured drawdowns s,eqs of the 1-layer
and 5-layer model calibration considering the final error model update. Comparing
Figure 5.12a and Figure 5.12b shows that the differences between simulated and mea-
sured drawdowns are significantly higher for the 1-layer than for the 5-layer model. In
both cases, the error-model fit according to eq. (5.6) is able to capture the majority of
measurements and its errors, while some outliers exist. Figure 5.12¢ and Figure 5.12d
present a comparison between measured and simulated drawdown values, s,,.qs and
Ssim, for the best fitting 1-layer and 5-layer models associated with the error models
determined in Figure 5.12a and Figure 5.12b, respectively. Figure 5.12¢ reveals that the
1-layer model systematically underestimates the drawdown in the second hydraulic test,
in which water was extracted from the middle screen section, whereas the 5-layer model
can decently fit all three hydraulic tests (Figure 5.12d). As discussed in section 5.4, the
drawdown values were higher in the second test series than in the tests where water

was extracted from the bottom and top screen, respectively. The 5-layer model can
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Figure 5.12: Assessment of model results: Absolute difference between simulated and
measured drawdown versus the measured drawdowns of the 1-layer and 5-layer model
and the thereto fitted error models (a and b). Field measurements versus simulated

results of the 1- and 5-layer models (¢ and d) with errorbars according to the error
model. The black diagonal lines represent the 1:1 identity lines.

reproduce this pattern by fitting a lower horizontal hydraulic-conductivity value to the
middle depth of the aquifer (see Table 5.3), whereas the 1-layer can either fit the high

drawdown values of the second hydraulic test or the smaller drawdown measurements
of the first and third tests.

In general, the 5-layer model meets the majority of measured drawdowns (Figure
5.12d), with only a few measurements falling far off the identity line. As indicated by

the different marker styles in Figure 5.12d, there is no clear relationship between the

62



5.7. RESULTS AND DISCUSSION

directions of the measurement locations (north, east, west, and south of the pumping
well) and the tendency towards over- or underestimating the measured drawdown values,

obviating horizontal anisotropy.

5.7.2 Fitted Parameter Values

Table 5.3 and Table 5.4 list the parameters estimated for both models. As mentioned
in section 5.6, the model parameters included the radial and vertical hydraulic con-
ductivities K, and K, of each horizontal layer considered in the model, the hydraulic
conductivities of the gravel fill K, and clay fill K of the filter pack, and the drawdown
Sref at a virtual reference point to avoid computing the drawdown differences between
true observation points in the steady-shape regime. While Table 5.4 contains the fitted

values of s,.r, they don’t have any real physical meaning.

Figure 5.11c includes the radial (blue lines) and vertical (red lines) hydraulic con-
ductivities estimated for the 1-layer model (dashed lines) and the 5-layer model (solid
lines). In both cases, the radial hydraulic conductivities are higher than the vertical

counterparts, except for layer 4 of the 5-layer model (Table 5.3).

The radial and vertical hydraulic log-conductivities estimated for the sand layer 4
have considerably higher associated standard deviations ¢(InK) of estimation than all
other conductivity estimates (Table 5.3), indicating that the measurements are insensi-
tive to the conductivities estimated for that layer. Also, the fitted conductivity values
of the 5-layer model reveal that the sand layer 2 is quite similar to layer 1. This implies
that the sand layers, which were delineated by the analysis of the drilling core, may not
necessarily constitute distinct individual layers, but rather represent transition zones
between the three main aquifer segments. In hindsight, the investigated aquifer portion
may have been subdivided into three main sections, without much impact. The horizon-
tal hydraulic conductivity K, for the top and bottom of the investigated aquifer portion
show significant higher values than the middle section, whereas the fitted vertical con-
ductivity K, systematically increases with depth. The reduced horizontal conductivity
of the middle section (layer 3) can explain the larger drawdown values in the second

test series, in which groundwater was extracted from the middle screen.
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Table 5.3: Calibrated radial and vertical hydraulic conductivities and the associated
standard deviations ¢ of estimation of each horizontal layer in the 1-layer and 5-layer
models.

Layer KT [m/s] ('J\'anr Kz [m/s] &anZ
1-layer model 1.1 x 1073 ] 0.0581 [ 1.9x 10~* | 0.154
20x 1073 ] 0581 |26x107°| 1.063
4.6x 1073 | 0912 | 1.8 x107° | 0.605
2.6x107* | 0.171 | 7.2x107°| 0.190
1.0 x 1076 | 195.942 | 8.1 x 1073 | 37.113
24 %1073 | 0.164 |2.9x 107 | 0.3499

5-layer model

Ol W v+

In both models, the estimated hydraulic conductivity of the gravel pack K, is higher
than any conductivity value of the aquifer, whereas the fitted conductivity of the clay

seal K, is so small that it can be considered impermeable (Table 5.4).

Table 5.4: Calibration results of the locally anisotropic 1-layer and 5-layer models.

1-layer model 5-layer model

K% [m/s] 1.1 x 1073 1.9 x 1073

KT [m/s] 1.9 x 1074 9.5 x 107°

I[—] 5.9 19.7
Kgp[m/s] 1.5 x 1071 8.8 x 107*
Ko[m/s] 2.2 x 1078 7.9 x 1078
Sref,I/Sref,11/Sref 111 | 0.078 / 0.058 / 0.069 | 0.035 / 0.029 / 0.026
ajm] 0.003 0.001

b[—] 0.88 0.27

c[m] 0.29 0.02

Finally, I compare the determined absolute and relative errors of the 1-layer and
5-layer models (Table 5.4) to assess the goodness of the model-calibration fit. While
the 1-layer model shows an absolute error of ¢ = 3 mm and a relative error of b = 88%),
the 5-layer model has an absolute error of 1 mm and a considerably lower relative error

of 27%, proving to be the preferred model choice.

5.7.3 Assessing the Effective Conductivity Estimates

Subsequent to model calibration, the radial and vertical conductivity estimates of all

available horizontal layers were fully upscaled to obtain the effective radial and effective
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vertical hydraulic conductivities K¢/ and K¢/, respectively (Table 5.4). In the 1-
layer model, the fitted horizontal and vertical conductivities K, and K, correspond
to the effective values K¢/ and K¢/, respectively. The estimated effective horizontal
conductivities K¢/ of the 5-layer model is about twice as high as the estimated value
of the 1-layer model (see Table 5.4), while the upscaled vertical conductivity K¢/ of
the 5-layer model is about half the fitted value of the 1-layer model. As a consequence,
the anisotropy ratio ¥ = K¢/ /K¢// differs between the two models by a factor of more
than 3 (= 6 versus ~ 20). Both estimated anisotropy ratios are within reasonable ranges
expected for fluvial deposits (Freeze and Cherry, 1979; Kruseman and de Ridder, 1994).

157

Ssim [m]

1.5

[m]

S
meas

Figure 5.13: Simulated drawdowns versus measured drawdowns when running the
1-layer model with the effective conductivity estimates obtained from the 5-layer model
calibration. The black diagonal line present the 1:1 identity line.

To examine the value of the effective conductivity estimates, I have run the 1-layer
model considering the effective conductivity results obtained by fully upscaling the 5-
layer model. Figure 5.13 shows the resulting simulated drawdowns versus the measured
drawdowns and the 1:1 identity line (black line in Figure 5.13). I compare the mea-
surement fit of the 1-layer model when using the effective values from the 5-layer model
(Figure 5.13) with the measurement fit based on the effective values resulting from the
1-layer model calibration (Figure 5.12¢). Comparing Figure 5.13 and Figure 5.12¢ indi-

cates that considering a homogeneous model with the effective conductivity estimates
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obtained from a multilayer model does not yield any improvement nor any deterioration
in fitting the true drawdown measurements. This suggests that the effective horizontal
hydraulic conductivity and effective vertical hydraulic conductivity are little informative

when neglecting vertical differences of the hydraulic conductivity within the aquifer.

5.7.4 Comparison to Locally Isotropic Models

To check whether the horizontal layers should really be locally anisotropic, the 1-layer
and 5-layer models were calibrated considering the hydraulic conductivity of each avail-
able layer to be isotropic, i.e. K, = K,. By this, the number of model parameters is
reduced to 6 and 10 for the 1-layer and 5-layer model, respectively. For differentiation,
I now refer to the groundwater flow models as either locally isotropic or anisotropic
1-layer and 5-layer models. Figure 5.14a and b show the absolute differences between
the simulated and measured drawdowns of the locally isotropic 1-layer and 5-layer
models considering the final error model update. Similar to the results of the locally
anisotropic model calibrations, the locally isotropic 5-layer model reveals smaller differ-

ences between simulated and measured drawdowns than the 1-layer model counterpart.

Figure 5.14c and d show the simulated versus the measured drawdowns for the
calibration result of the locally isotropic 1-layer and 5-layer models considering the error-
model fit displayed in Figure 5.14a and b. The systematic underestimation of the large-
drawdown values by the locally anisotropic 1-layer model (see Figure 5.12¢) is enhanced
when assuming a single isotropic conductivity value of the entire formation (see Figure
5.14¢). This is consistent with a relative error of 100% for the isotropic 1-layer model
listed in Table 5.5. Quite obviously, assuming a uniform isotropic conductivity is not

appropriate.

Figure 5.14d shows the fit of the locally isotropic 5-layer model, which performs
better than both the isotropic and anisotropic 1-layer models. The comparisons be-
tween Figure 5.12d and Figure 5.14d as well as between the coefficients of the error
model (27% relative error for the locally anisotropic model versus 37% for the locally
isotropic counterpart, in both cases with small to negligible absolute errors) indicates
that accounting for different horizontal and vertical hydraulic conductivities within the

layers improves fitting the depth oriented drawdown observations.
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Figure 5.14: Assessment of model results when considering isotropic hydraulic con-
ductivity: Absolute difference between simulated and measured drawdown versus the
measured drawdowns of the 1-layer and 5-layer model and the thereto fitted error models
(a and b). Field measurements versus simulated results of the 1- and 5-layer models (c
and d) with errorbars according to the error model. The black diagonal lines represent
the 1:1 identity lines.

Table 5.5 also lists the conductivity estimates and the associated standard deviations
of estimation for each layer considered in the locally isotropic 1-layer and 5-layer models.
The conductivity estimates of the individual layers of the locally isotropic 5-layer model
of layers 2 and 3 are very similar, putting the choice of the layers into question. As
discussed in section 5.7.2, layers 2 and 4 may not necessarily constitute individual
horizontal layers throughout the aquifer but rather represent passages between the

adjoining layers. Comparing the conductivity estimates of the locally isotropic and
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Table 5.5: Calibrated isotropic hydraulic conductivities and the associated standard
deviations 6y, of estimation of each horizontal layer in the 1-layer and 5-layer models.
Error model parameters of the isotropic 1-layer and isotropic 5-layer model.

layer | K[m/s|] | dmk ajm] b[—] | c[m]
1-layer model 1.4 x 1073 | 0.142 0.006 1.00 | 0.18
1 [29x10730.132
2 | 1.3x107%|0.320
5-layer model | 3 | 1.3x107* | 0.109 | 2.23 x 107* | 0.37 | 0.02
4 [92x1073|0.642
5 | 1.0x10731{0.425
K [m/s] 1.10 x 1073
K [m/s] 3.72 x 1074

anisotropic 5-layer models shows that the fitted isotropic conductivities of layers 1,
3 and 5 are similar to the radial conductivities of the locally anisotropic model with

similar standard deviations.

Upon full upscaling, the effective hydraulic conductivity of the locally isotropic 1-
layer model is with 1.4 x 1073 m/s in a similar range as the effective radial conductivity
resulting from the locally anisotropic 1-layer model calibration (for comparison see Table
5.4). In case of the locally isotropic 5-layer model the directional dependence of the
effective hydraulic conductivity K¢// is with 1.1 x 1072 m/s similar to the anisotropic
counterpart but K¢/ is with 3.72 x 107* m/s four times larger (for comparison see
Table 5.4). Comparing the resulting anisotropy ratios among the locally anisotropic 5-
layer model (9 = 19.7) and the locally isotropic 5-layer model (J = 3.0) indicates that
neglecting local differences in radial and vertical hydraulic conductivity significantly

reduces the anisotropy ratio on larger scales.

For both the locally isotropic and anisotropic 5-layer models the fitted error models
approximate a linear error model with an intercept of zero. For consistency I have
applied the same error model to the 1-layer and 5-layer models, yet, the significance of

the absolute error may be questioned for the 5-layer models.

5.7.5 Updating the Model Setup

As discussed in section 5.7.2 and section 5.7.4, the sand layers 2 and 4 defined in the

locally anisotropic and locally isotropic 5-layer models may be merged to the three main
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aquifer segments rather than considering them as individual horizontal layers. To test
this hypothesis, I setup a groundwater flow model of three horizontal layers (3-layer
model) by removing the lower and upper boundaries of sand layer 2 and 4, respectively.
Similar to the previously considered locally anisotropic groundwater flow models, the
3-layer model was calibrated estimating the radial and vertical hydraulic conductivities
K, and K, of each horizontal layer, the conductivities of the gravel fill and clay fill,
Kg, and K., and the drawdown at a virtual reference point s,.;. Again, an iterative
calibration procedure was performed in which the error model parameters a, b and ¢
were determined. In the following, I compare the results of the 3-layer model to the

results of the 5-layer model, both considering local anisotropy.

Figure 5.15a shows the absolute difference between the simulated and measured
drawdown values |Sgim — Smeas| versus the measured drawdown values s,¢qs considering
the final error model update. Similar to the 5-layer model, the error model fit of the
3-layer model meets the majority of measurements and its errors with few exceptions

(for comparison see Figure 5.12b). Figure 5.15b presents the measured drawdown $,,cqs
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Figure 5.15: Absolute difference between simulated and measured drawdown versus
the measured drawdown of the 3-layer model and the thereto fitted error model (a).
Field measurements versus simulated results of the 3-layer model (b) with errorbars
according to the error model. The black diagonal line represents the 1:1 identity line.
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versus the simulated drawdown s, resulting from model calibration with the 3-layer
model considering the error model fit in Figure 5.15a. Comparing Figure 5.15b and
5.12d reveals that both the 5-layer model and the 3-layer model are able to reproduce
the true drawdown measurements similarly well, taking into account individual outliers.
This indicates that excluding the sand layers 2 and 4 in model calibration does not

genuinely affect the reproduction of measured drawdown.

Table 5.6 and 5.7 list the parameters estimated for the 3-layer model. Both the
radial conductivities K, and vertical conductivities K, estimated for layer 1, 2 and
3 of the 3-layer model (Table 5.6) resemble the respective conductivity estimates of
the equivalent aquifer segments assigned to layers 1, 3 and 5 of the 5-layer model at

standard deviations of the estimation in the same order of magnitude (for comparison
see Table 5.3).

Comparing the effective radial and vertical conductivities K¢/ and K¢/ after full
upscaling among the 5-layer and 3-layer model indicates very similar results. The
anisotropy ratios predicted with the 3-layer model and 5-layer model are within the
same order of magnitude, yet, the predicted anisotropy ratio for the 3-layer model is
with ¥ = 15.9 smaller than the predicted anisotropy ratio of 1 = 19.7 of the 5-layer

model.

Table 5.6: Calibrated radial and vertical hydraulic conductivities and the associated
standard deviations & of estimation of each horizontal layer in the 3-layer model.

Layer | K,[m/s] | 6mk, | K.[m/s] | 6mk,

1 2.6 x 1072 [ 0.130 | 3.2 x 107° | 0.348
3-layer model 2 3.0x107% ] 0.324 | 8.2 x 1075 | 0.187
3 2.2x 1073 ] 0.141 | 3.1 x 10* | 0.283

In a last step, I assess the model performance of the 3-layer model based on the
absolute and relative errors of the determined error model fit (Table 5.7). Similar to
the fitted error model of the 5-layer model, the error model fit of the 3-layer model
approximates a linear error model with an intercept of zero. The relative error of the
3-layer model is with b = 25% slightly smaller than the relative error resulting from
model calibration with the 5-layer model (b = 27%). This indicates that the investigated

aquifer may as well be represented by three instead of five aquifer segments.
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Table 5.7: Calibration results of the locally anisotropic 3-layer model.

3-layer model
Ke%[m/s] 1.7x 1073
KT [m/s] 1.1x10™*
I[—] 15.9
Kepm/s] 1.0 x 10°
K [m/s] 1.0 x 1076
Sref,I/Sref,II/Sref,III 0.039 / 0.036 / 0.030
a[m| 2.2 x 10~
b[—] 0.25
c[m] 7.1 %1073

5.7.6 Considering Water Extraction from a Single Well Screen

The results presented so far are based on joint inversion of pumping-test data in which
water is extracted from different depths of the aquifer. Installing a partially penetrating
well and sealing off the non-active well screens for extracting water from different depths,
however, causes a considerable field effort. This raises the question of how much benefit
is gained from tomographic pumping tests compared to tests in which water is extracted
from a single well screen only when the target quantity is the hydraulic anisotropy.
Towards this end, I inverted the data associated with hydraulic test I, II, and III
separately and compared the results to the joint inversion of all three tests. Like before, I
calibrated a locally anisotropic 1-layer model and a locally anisotropic model of multiple
layers estimating the radial and vertical conductivities K, and K, of each horizontal
layer, the conductivities of the gravel and clay fill K, and K, and the drawdown at a
virtual reference point s,.;. Based on the results presented in section 5.7.5, I consider

a multi-layer model that consists of three horizontal layers (3-layer model).

Figure 5.16 shows a comparison of the measured and simulated drawdown s,,,cqs and
Ssim resulting from the 1-layer and 3-layer model calibration. The findings correspond
to the results when considering the final error-model update in model calibration.

As discussed in section 5.4, the signal strength of drawdown varies among the three
hydraulic tests, showing larger drawdown values when water was extracted from the
middle screen than from the upper or lower screen. When inverting data from all three
hydraulic tests jointly, the 1-layer model is not able to reproduce the observed differences

in drawdown among the three hydraulic tests (for comparison see Figure 5.12¢). In
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contrast, the 1-layer model is able to meet the majority of measured drawdowns for all
hydraulic tests when each test is considered independently in model calibration, but
the estimated coefficients differ (Figure 5.16a-c).

Upper Screen Middle Screen Lower Screen

1-layer model
[m]

3-layer model

Figure 5.16: Field measurements versus simulated results of the 1-layer model when
separately inverting data from hydraulic test I (a), II (b), and III (¢) with errorbars
according to the error model. Field measurements versus simulated results of the 3-
layer model when separately inverting data from hydraulic test I (d), II (e), and III (f)
with errorbars according to the error model. The black diagonal lines represent the 1:1
identity lines.

In case of the 3-layer model both the data inversion of pumping tests following the
tomographic approach and the separate data inversion of each hydraulic test show a

good fit between the simulated and measured drawdowns (Figure 5.12d and Figure
5.16d-f).

In a next step, I compare the estimated radial and vertical conductivities K, and K,
of each horizontal layer available in the 1-layer and 3-layer model among the different

inversion approaches.

K, and K, estimated with the 1-layer model correspond to the effective radial and

vertical conductivities K¢/ and K¢/ and show similar values for the data inversion
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of hydraulic test T and IIT (Table 5.8 and Figure 5.17a-b). In contrast, K¢/ and K¢//
resulting from data inversion of hydraulic test II are considerably smaller (Table 5.8
and Figure 5.17a-b). This confirms the assumption of vertical variations of hydraulic
conductivity showing that the upper and lower part of the aquifer are more conductive
than the middle part (for comparison see section 5.4 and section 5.7.2). For the inver-
sion approach considering data from tomographic pumping tests the large drawdowns
measured in hydraulic test II are highly erroneous so that they have little influence
on the adjustment of hydraulic parameters. As a consequence, the estimated effective
conductivities from data inversion considering the tomographic pumping tests resemble
the estimates resulting from the separate data inversion of hydraulic test I and III (see
Figure 5.17a-b).

Figure 5.17¢ and d display the standard deviations ¢(InK) of estimation associated
with the estimated radial and vertical log-conductivities, respectively. All standard de-
viations of estimation are within an order of magnitude of 10~! m and do not show any

significant trend among the different inversion approaches.

Independent of the inversion approach, the 3-layer model estimates higher radial con-
ductivities K, for the upper and lower layer than for the middle layer (Figure 5.17¢). In
contrast, the vertical conductivities K, show an increasing trend with increasing depth
for all inversion approaches (Figure 5.17f). Despite the similar distribution of K, and
K, among the different inversion approaches, the estimated parameters strongly differ.
Consequently, also the resulting effective radial and vertical hydraulic conductivities
K¢ and K¢/ strongly differ (see Table 5.8) and range from K¢/ = 9.53x107*m/s (hy-
draulic test II) to K¢/ = 1.39x 1072m/s (hydraulic test I), and K¢/ = 6.88 x 10~ "m/s
(hydraulic test ITT) to K¢/f = 1.47x107*m/s (hydraulic test I). This leads to anisotropy
ratios varying up to three orders of magnitude.

To examine the strong variations of estimated parameters, 1 consider the standard
deviations (InK) of estimation associated with the estimated radial and vertical log-
conductivities (Figure 5.17g-h). In general, the standard deviations of estimation are
significantly higher when inverting data from hydraulic test I, II, and III separately
than when inverting the data from all three hydraulic tests jointly. The separate data
inversions of hydraulic test I, II, and IIT show that the standard deviations of log-
conductivities increase with increasing distance to the layer in which the active well
screen is located. Thus, the estimated parameters are afflicted with higher uncertain-

ties for layers that are located beyond the layer considered for water extraction.
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Figure 5.17: Radial and vertical conductivities K, and K, estimated for each avail-
able horizontal layer of the 1-layer model (a-b) and 3-layer model (e-f) considering the
following inversion approaches: inverting data from pumping tests following the tomo-
graphic approach, inverting data from hydraulic test I (water extraction from the upper
screen), IT (water extraction from the middle screen), and III (water extraction from
the lower screen), and inverting a reduced data set. Associated standard deviations of
log-conductivities resulting from the 1-layer (c-d) and 3-layer model calibration (g-h)
using different inversion approaches.

Finally, I assess the resulting error-model parameters (Table 5.8 and Table 5.9).
The absolute errors of the 1-layer model show no significant abnormalities among the

different inversion approaches. While the data inversion of pumping tests following the
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Table 5.8: Calibration results of the locally anisotropic 1-layer model when separately
inverting data of hydraulic test I, I, and III.

Upper Screen | Middle Screen | Lower Screen

Ke¥[m/s] 9.9 x 1074 4.2 x 1074 1.1 x1073
KT [m/s] 2.4 x 1074 4.0 x 1075 2.9 x 1074
V-] 4.1 10.6 3.7

Kep[m/s] 4.0 x 1071 2.1 x 107t 2.4 x 107t
Ke[m/s] 1.2 x 1078 4.4 %1078 1.4x 1078
Sref 8.3 x 1072 2.3 x 1071 7.4 %1072
ajm)| 6.5 x 1073 2.3 x 1072 2.2 x 10714
b[—] 0.32 0.20 0.35

c[m)] 2.5 x 1071 6.9 x 1076 1.1 x 1072

tomographic approach has shown a considerably high relative error of b = 88% (see
Table 5.4), the separate data inversions of hydraulic test I, II, and III reveal smaller
relative errors ranging between 20% and 35% (Table 5.8).

The absolute errors for the separate data inversions of hydraulic test I, II, and III
with the 3-layer model are within the mm-range (Table 5.9). While the relative errors
are similar for the separate data inversion of hydraulic test II and the inversion of
data considering the tomographic approach, the relative error of the data inversion of
hydraulic test III is twice as high. Inverting data from hydraulic test I reveals a very

large relative error of b = 296 and a physically unreasonable coefficient ¢ of 453 m.

Table 5.9: Calibration results of the locally anisotropic 3-layer model when separately
inverting data of hydraulic test I, I, and III.

Upper Screen | Middle Screen | Lower Screen

K [m/s] 1.4 x 1072 9.5 x 1074 2.3 x 1073
K¢ [m/s] 1.5 x 1074 7.3 x 1070 6.9 x 1077
I[-] 94.5 13.0 3382.2
Kgp[m/s] 8.0 x 1072 51 x 1071 2.3 x 107*
Ki[m/s] 1.8 x 1079 1.0 x 1076 3.7 x 107°
Srof 1.0 x 1078 8.1 x 1072 1.0 x 1078
a[m] 5.0 x 1073 7.5 x 1073 1.4 x 1073
b[—] 296 0.21 0.43

c[m)] 454 7.2 x 1076 2.3 x 1071

Overall, the 1-layer model shows a better agreement between the simulated and

measured drawdowns for the data inversion from pumping tests with a single well screen.
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Also, the resulting relative errors are smaller compared to the data inversion considering
the tomographic pumping-test approach. The conductivity estimates resulting from
the separate data inversions, however, differ for the different hydraulic tests. Thus,
considering pumping tests with a single well screen can lead to the wrong interpretation

that the aquifer is anisotropic but vertically homogeneous.

Also the 3-layer model reveals different parameter estimates for pumping tests with
a single well screen which strongly depend on the chosen well screen. The associated
standard deviations of estimation indicate that including a single well screen yields
acceptable uncertainties only for the estimated conductivities of the layer in which the
active well screen is located. Therefore, it only makes sense to calibrate a multi-layer
model when water is extracted from different depths and the data is jointly considered

in the inversion.

5.7.7 Reducing the Number of Observation Points

The field effort of the tomographic pumping tests is not only related to the number of
extraction screens of the pumping well but also to the number of observation wells. In
the following, I therefore assess the data inversion of tomographic pumping tests con-
sidering a reduced dataset. The reduced dataset is based on drawdown measurements
from observation wells in one direction to the pumping well only. I calibrated the locally
anisotropic 1-layer and 3-layer model, considering all field observations from wells that
are located east to the pumping well since these are the observation wells that reveal

the largest number of depth-oriented observation points.

Figure 5.18a and b show that the 1-layer model and 3-layer model reproduce the
true measurements with a reduced dataset similarly well as with the complete dataset
(for comparison see Figure 5.12¢ and Figure 5.15b). For the reduced dataset the 3-layer
model even reveals a distinctively good fit. This can be attributed to the small influence
of potential local heterogeneities and horizontal anisotropy when field measurements are

considered from one direction only.

The estimated radial and vertical conductivities K, and K, from the 1-layer and
3-layer model calibrations with a reduced dataset are similar to the results of the 1-layer
and 3-layer model calibrations with the complete dataset (compare Table 5.10 with Ta-

ble 5.3 and Table 5.6). Consequently, also the effective radial and vertical conductivities,
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and the resulting anisotropy ratios are comparable. Additionally, the standard devia-
tions of the log-conductivities are very similar for the reduced and complete dataset,
for both the 1-layer (Figure 5.17c-d) and 3-layer model (Figure 5.17g-h).

Upper Screen ==== Middle Screen ====| ower Screen [ North 0 East O South ¥ West

a. ‘ ‘ ‘ b.
1.5¢ 1 1.5+

sim [m]
sim [m]

05+

1.5 0 0.5 1 1.5
[m]

S
meas

Figure 5.18: Field measurements versus simulated results of the 1-layer model (a)
and 3-layer model (b) considering data inversion of tomographic pumping tests with a
reduced dataset and with errorbars according to the error model. The black diagonal
lines represent the 1:1 identity lines.

Finally, I consider the parameters of the error model resulting from the 1-layer and
3-layer model calibration with a reduced data set (Table 5.10). For both the 1-layer
and 3-layer model the absolute errors are higher for the reduced dataset (a = 1.6 x 1072
m and ¢ = 1.1 x 1072 m) than for the complete dataset (¢ = 3.1 x 107 m and
a = 2.2 x 107" m). In contrast, the relative errors are reduced from b = 0.88 for the
complete dataset to b = 0.81 for the reduced dataset with the 1-layer model, and from

= 0.25 (complete dataset) to b = 0.06 (reduced dataset) with the 3-layer model.

Overall, the results considering a reduced dataset do not show significant differences
to the results based on the complete dataset. This suggests that installing observation
wells in one direction to the pumping well only would have been sufficient. Yet, to
identify horizontal heterogeneity and anisotropy in the first place, individual observation

points in different directions to the pumping well are required.
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Table 5.10: Calibration results of the locally anisotropic 1-layer and 3-layer model
considering a reduced dataset.

1-layer model 3-layer model

K m/s] 1.0 x 1073 2.1x 1073
Kef[m/s] 2.1 x 107 1.2 x 107

I[-] 4.8 16.5
Kgp[m/s] 1.9 x 1073 7.2 x 1073
Ki[m/s] 2.3 x 1077 1.0 x 1076
Srof.I/Sref 11/Sret 1 | 0.080 / 0.069 / 0.131 | 0.038 / 0.032 / 0.018
a[m)] 1.6 x 1072 1.1 x 1072

b[-] 0.81 0.06

c[m] 4.2 x 107! 4.8 x 10712
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Chapter 6

Conclusions and Outlook

This thesis was motivated by the shortage of hydrogeological methods on estimating the
hydraulic anisotropy interrelated with the vertical variability of hydraulic conductivity.
Knowledge of differences in the horizontal and vertical hydraulic conductivities is crucial
for many hydrogeological applications, especially where a strong vertical low compo-
nent is present, e.g. in the design of horizontal collector wells, in riverbank-filtration
setups or in the design of geotechnical dewatering systems. The main goal of this thesis
was to investigate the potential of a field method similar to that of hydraulic tomog-
raphy for estimating the large-scale hydraulic anisotropy in stratified aquifers induced
by the vertical heterogeneity on smaller scales. The approach is based on calibrating
groundwater flow models using data of sequential pumping tests with partially pene-
trating wells, during which water is extracted from different aquifer sections and the
hydraulic response is measured at different radial and vertical distances to an extraction

screen.

In the following, I summarize the main findings of this work and draw conclusions

regarding the research questions and goals defined in section 1.1.

Should data be collected based on a predefined model or vice versa?

To address the challenge of model selection and data collection, I developed an op-
timization framework in which both challenges are jointly addressed. The proposed
framework is based on mimicking best-fit model calibration using simulated and per-
turbed measurements in an ensemble of virtual realities and selecting the simulated
measurements of ensembles of reasonable model candidates. In addition, the calibra-

tion is performed for a variety of feasible data-acquisition strategies defined in different
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observation designs. The approach was tested for the application case of radial flow
in stratified aquifers, for which the virtual realities exhibited a high resolution of the
vertical hydraulic-conductivity profiles, while the model candidates proposed consid-
ered 1, 2, 3, or 6 horizontal layers of uniform, anisotropic conductivity. The conceptual
question of the model selection was therefore whether one should estimate macroscopic
hydraulic anisotropy, or hydraulic heterogeneity, or a combination of both, whereas
the measurement-design question was whether multi-level piezometers should be placed
particularly close to the pumping well (where drawdown signals are strong and ex-
hibit strong vertical differences but are particularly prone to spatial misplacements of
the piezometers) or further away (where both the signal and systematic measurement

errors are smaller).

Instead of judging the calibrated conceptual models and measurement designs by
the ability of the models to reproduce the measurements in calibration, I defined the
following prediction targets of the calibrated models: the effective radial and vertical
hydraulic conductivities and the dewatering flux of a hypothesized construction pit.
The prediction targets of the models should be as close to the predictions of the virtual

realities as possible.

The most complex conceptual model performed best with respect to meeting the
“true” measurements during calibration. Choosing the number of layers to be identical
to the number of observation depths was advantageous, since this selection not only led
to the best fit of observations but also to the best prediction of the effective vertical
hydraulic conductivity and the dewatering flux necessary to keep the hypothesized
construction pit dry. For the effective horizontal conductivity chosen as target quantity,
the superiority of the 6-layer model was less persistent over the different observation

designs.

Quite clearly, ignoring the observation design in model selection would deteriorate
the model performance. For example, placing observation wells at far radial distances
to the pumping well hampers resolving hydraulic-conductivity values of several layers.
Likewise, ignoring the model choice when optimizing the measurement strategy would
make little sense. The analysis also showed that the joint selection of the conceptual
model and the measurement strategy depends on the ultimate objective of the model
application. Reducing the prediction uncertainty in the effective horizontal conductivity

required observation points with large radial distance, whereas reducing the prediction

80



uncertainty in the effective vertical conductivity and the dewatering flux required multi-
level observation wells at small radial distances, where the vertical hydraulic gradients

are the biggest.

Design a well network to resolve hydraulic anisotropy

While the study of jointly optimizing measurement and modeling strategies was based
on hypothetical field scenarios and synthetic data only, I also investigated a field ap-
plication of the hydraulic tests. To perform pumping tests with a tomographic setup a
new research site was established in a fluvial gravel aquifer in the Upper Rhine Valley.
At the site, a well network was installed with a large diameter pumping well in the
center of the network and observation wells were placed at different radial distances
to the pumping well. The pumping well was designed with three isolated well screens
to enable water extraction from different depths. By extracting water from a partially
penetrating well, a strong vertical flow component is induced which is required to re-
solve the directional dependence of hydraulic conductivity in stratified aquifers. The
observation wells were installed either as multi-level wells or as clusters of partially pen-
etrating wells, facilitating the observation of hydraulic responses at different depths. To
account for horizontal anisotropy, at least a few observation wells need to be placed in

a different direction to the pumping well than along a main transect only.

How should large field datasets be handled and which data compression
should be used before inversion?

A total of 22 pumping-test series were performed in which water was sequentially ex-
tracted from the three different well screens, measuring more than 1000 transient draw-
down responses in the well network of 58 observation points. By repeating the tests
with different pumping rates and then rescaling the results to a common rate allowed
checking the reproducibility of the performed pumping tests. Considering extraction
from each well screen at a time, I averaged all reproducible data of an observation point

reducing the large data volume to a manageable size.

Analyzing the steady-shape regime of the pumping tests provided a beneficial ap-
proach in data analysis, with which the challenges related to analyzing transient data
or of reaching steady state drawdown in field applications were avoided (Bohling et
al. 2002, Bohling et al. 2007). In posterior data calibration, I have demonstrated

that implementing a virtual reference point to compute drawdown differences is a rea-
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sonable alternative to the computation of drawdown differences based on pairs of true

observation points, for which inherent measurement errors might be propagated.

How should a groundwater flow model be setup to represent well the true
system and how should model performance be evaluated?

To assess the effects of different model settings, I fitted the response of an anisotropic
single-layered homogeneous model, and a locally anisotropic multi-layer model to the
field data of the pumping tests with water extraction from different depths. To setup
the multi-layer model, T used available lithologic information from the drilling profile
of the pumping well. In addition to calibrate radial and vertical hydraulic conductivity
for each horizontal layer, I calibrated the error model parameters for assessing model

performance.

The results showed that if sufficient data are available, it is preferable to resolve
the main vertical structure of hydraulic conductivity over fitting a uniform effective
conductivity tensor. A better agreement was obtained between simulated and measured
drawdown, and systematic bias was avoided, with the multi-layer model than with the
single-layer one. The resulting effective radial and vertical conductivities of the multi-
layer model turned out to be informative only when the vertical variability in hydraulic

conductivity within the aquifer was considered.

In general, the determination of locally anisotropic horizontal layers could be vali-
dated by comparing the locally anisotropic groundwater models to poorly performing
locally isotropic groundwater models. The locally anisotropic multi-layer model had a
better overall performance and was further enhanced by adapting the number of hor-
izontal layers to those indicated by the calibration results, showing that a multi-layer
model with one layer per well screen is advantageous. To define the position of the layer
boundaries, the initially implemented information from the drilling profile proved to be
valuable, but assuming more layers than extraction depths was not really necessary at
the site.

Finally, I compared the data inversion of pumping tests with water extraction from
different depths to an approach in which data associated with water extraction from a
single well screen was inverted. When analyzing data using a partially pumping well
with a single well screen, anisotropic one-layer models could be fitted to the data rea-
sonably well, but the coefficients highly depended on the depth of water extraction. The

ability of reproducing the data could easily be misinterpreted as having understood the
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hydraulic structure of the aquifer. The results showed that a combination of pumping
tests with water extraction from different depths is necessary to estimate the vertical

variability and anisotropy of stratified aquifers.

6.1 Recommendations

I have demonstrated the applicability of inverting tomographic pumping tests that
target the vertical variability and anisotropy of potentially stratified aquifers. Of course,
the experimental effort of installing a multi-section partially penetrating well of a large
diameter comes with a considerably high effort. Performing the pumping tests, however,
is not restricted to such a large-diameter well or to the screen lengths considered in this
study. The well was designed to allow a pumping rate that induces a sufficiently large
depression cone within a measurable signal range in a highly productive gravel aquifer.
For other applications, the diameter and screen lengths of the extraction well could be

adjusted depending on the scale and aquifer under investigation.

To justify the assumption of radial symmetric flow (neglecting horizontal heterogene-
ity and/or anisotropy) it was important to install observation wells in several directions
from the pumping well. To further improve the experimental design, I recommend to
tailor the installation of multi-level observation wells. The efforts required to install
multi-level observation wells, to observe the hydraulic response in those wells, and to
process the obtained field data may be reduced by developing a depth-oriented measure-
ment network particularly in one direction while considering individual control points

in further directions.

As mentioned previously, the multi-layer model considered for the inversion of the
field test data was based only on geological information obtained through the drilling
profile of the pumping well. To improve the delineation of hydraulically relevant layers,
I suggest performing flowmeter and direct-push injection-logging tests. With this, the
existence of consistent layers with higher or lower conductivities across several vertical

profiles could be verified.

Overall, the hydraulic-tomography approach investigated in this thesis shows its
potential for estimating the hydraulic anisotropy interrelated with the vertical hetero-

geneity in stratified aquifers. Yet, the approach requires precise knowledge on vertical
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variations in hydraulic conductivity. Further research is necessary to reduce the uncer-
tainty of anisotropy estimates by improving the integration of subsurface heterogeneity.
I recommend to combine the approach with further hydrogeological subsurface investi-
gation techniques. For example, using tracer tomography to delineate preferential flow
paths can provide valuable information regarding vertical conductivity variations. With
this, model errors might be reduced and the prediction uncertainty of anisotropy could
be decreased. The same monitoring network used for the hydraulic tomography could

be used to monitor the evolution of the tracer plume, minimizing the extra field work.

Even though the horizontal variability is often smaller than the differences among
the vertical layers, the assumption of two-dimensional radial symmetric flow may not
always be valid at other field sites and a three dimensional problem might have to be

considered.
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