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1 Introduction

Cancer is a major public-health problem worldwide and according to the most
recent report on global cancer statistics (GLOBOCAN 2018) produced by the In-
ternational Agency for Research on Cancer, incidence and mortality are rapidly
increasing [1]. For 2018, 18.1 million new cancer cases and 9.6 million cancer
deaths were estimated to have occurred worldwide. These findings clearly indicate
the need for research on more effective cancer treatments.
Besides surgery and chemotherapy, an essential mode of cancer treatment today is

radiotherapy (RT). It has been estimated from a comprehensive review of evidence
based clinical guidelines that approximately 50% of patients with cancer would
benefit from receiving RT at least once during the course of their illness [2]. RT
plays an important role in curative but also in palliative treatment in patients and
can be indicated as a sole therapy or in combination with surgery or concurrent
chemotherapy.
The basic principle of RT is to deliver a high dose of ionizing radiation to the

tumor tissue in order to induce cellular death by DNA damage, while minimizing
the dose to surrounding normal tissue for the prevention of adverse side-effects.
Typically, photon beams are used for treatment which are generated by 4–25MV
linear accelerators (Linacs). Photon energies range from less than 100 keV up to
several MeV, depending on the maximum energy of the electrons accelerated by the
Linac. Most DNA damage arises from ionizations caused by secondary electrons
that originate from ionizations of other molecules, mainly water molecules, caused
by the incident photons. These are mainly due to Compton scattering which is
the dominating interaction of photons with matter at photon energies of 100 keV–
10MeV.
Research in radiobiology has contributed to a better understanding of cancer

biology and response of normal and malignant tissue to radiation exposure and
led to different concepts of fractionated treatment which are commonly applied
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1 Introduction

in clinical practice [3]. By delivering the radiation dose to the tumor in multiple
fractions over several days or weeks, side effects, in particular, can be reduced as
normal cells have a higher capability of DNA repair compared to cancer cells [4].
In addition, technological advances have strongly contributed to improvements in

the treatment of cancer with RT. These include, in particular, improvements in the
precision of dose delivery. Using modern techniques such as intensity modulated
RT (IMRT), radiation fields can be applied from different angles, and field sizes
and shapes can be adjusted to match the geometry of the tumor structure e.g., by
using multileaf collimators. Thus, the radiation exposure of surrounding healthy
tissue can be reduced while a high therapeutic dose can be delivered that is highly
confined to the tumor [5].
At present, IMRT with photon radiation is standard of care, but also electrons,

protons and heavier charged particles such as carbon ions can nowadays be used
for treatment. These particles have different physical properties which result in
different depth-dose profiles in tissue compared to photons. These can be exploited
to improve the treatment of specific tumor sites. Electrons deposit their energy at
low depth, which is beneficial for the treatment of near-surface or superficial cancer
like skin cancer. The dose deposition of protons and ions, on the other hand, is
characterized by slowly increasing deposition with a pronounced peak in higher
depth (Bragg peak). This curve profile can be exploited to reduce the integral
dose received by healthy tissue or to better spare specific organs at risk located
closely to the target structure. The indication of expensive proton or particle
therapy, however, depends on the tumor location and clinical trials are currently
ongoing to identify the patients who are most likely to benefit from these elaborate
technologies [6].
Such high precision treatment modalities require 3D high resolution imaging

information on the tumor and surrounding tissue for precise treatment planning.
Treatment planning comprises the delineation of the tumor and organs at risk
and the simulation of dose distributions in these regions to determine the optimal
delivery parameters of a prescribed dose. Primarily, x-ray computed tomography
(CT) images are used for treatment planning. CT images provide spatially
accurate anatomical information to identify the regions of interest and, since CT
numbers reflect the distribution of the photon linear attenuation coefficients, can
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Figure 1.1: IMRT treatment plan on a CT in axial view of a 41-year-old patient with
sinus cancer. The plan shows dose isocontours with a total dose of 60 Gy delivered to
the tumor target volume (red contour), while brain stem (dark green) and brain (light
blue) are best possibly spared from radiation dose. This optimized dose distribution is
achieved by irradiating the tumor from multiple directions using multileaf collimators
and intensity modulation. The figure is reprinted and adapted by permission of Springer
Nature from reference [7].

be converted to electron density maps needed for dose calculation. A typical
IMRT treatment plan overlayed to a planning CT is shown for a head and neck
cancer patient in Fig. 1.1.

However, despite the advanced treatment concepts and the highly developed
technologies for radiation dose delivery and treatment planning available today,
different tumor types, such as head and neck cancer, are still associated with high
rates of recurrence. About 50% of patients with locally advanced head and neck
cancer experience loco-regional recurrence within three years of follow-up [8]. More-
over, RT delivered to the head and neck region is still linked to a high rate of acute
and late side effects.
Modern medical imaging techniques like positron emission tomography (PET)

and magnetic resonance imaging (MRI) have the potential to help identify such pa-
tients with poor response and to serve as a basis for improvements in RT treatment.
For example, it has been shown that functional MR image-derived parameters such
as the apparent diffusion coefficient (ADC) derived from diffusion-weighted (DW)
MRI has high potential for prediction of treatment response. DW-MRI is a tech-
nique sensitive to the motion of water molecules in the cellular environment and the
derived parameter ADC is an effective diffusion coefficient of the water molecules
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1 Introduction

being restricted in free motion by the biological environment, such as by hydropho-
bic cellular membranes. It has been shown that head and neck tumors with certain
characteristics such as high stromal content, low cell density, and micro-necrosis
are associated to treatment resistance and poor outcome, and that these charac-
teristics are linked to less diffusion restriction of water molecules [9, 10]. This, in
turn, is reflected by a higher ADC and different studies have found that high ADC
is a valuable parameter for identifying patients with poor response [9, 11,12].
Furthermore, dynamic contrast-enhanced (DCE) MRI has been shown to be valu-

able for predicting treatment outcome or local disease control [13, 14]. DCE-MRI
reflects the spatio-temporal distribution of a paramagnetic contrast agent in tissue
and allows to extract physiological information on perfusion and microvasculature
of tissue e.g., by pharmacokinetic modeling of the acquired time-series data [15].
Here, higher vascular-related parameters seem to be related to better response to
therapy [9].
On the other hand, using dedicated tracers labeled with different positron emit-

ting radioisotopes, PET allows to image different physiopathological processes
within the tumor. One example for such processes is increased glucose metabolic
activity which can be detected using 18F-labeled Fluorodeoxyglucose (FDG). An-
other example is cellular hypoxia, i.e., oxygen deprived tissue regions. Such regions
are associated to a higher radioresistance and can be detected by means of trac-
ers such as 18F-Fluoromisonidazole (FMISO) accumulating in areas of low oxygen
partial pressure. 18F-FDG PET [16], as well as 18F-FMISO-PET [17,18] have been
shown to have potential to identify head and neck cancer patients with treatment
resistance and poor outcome.
Beyond the prediction of treatment response, MRI and PET based methods

have the potential to improve RT treatment in many different respects. MRI al-
lows different mechanisms to determine image contrast, such as weighting of the
signal intensity by tissue type dependent relaxation times T2 or T1, and offers
superior soft tissue contrast as compared to CT. Therefore, it may provide more
precise information on tumor localization and spread and, thus, increase the de-
lineation accuracy of tumor volumes [19]. In patients with head and neck cancer,
contrast-enhanced T1-weighted MRI may further contribute to a higher confidence
in determining the exact tumor extent and infiltration of crucial adjacent struc-
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tures [20]. Using FDG-PET for imaging glucose metabolic activity has been shown
to enhance the accuracy of RT target definition or staging [21,22].
In addition, PET and MR imaging play a pivotal role in the development of new

personalized treatment strategies for cancer patients with poor prognosis includ-
ing the subset of patients with high-risk head and neck cancer [23–25]. Different
concepts have been proposed to adapt a treatment of a patient individually. As
mentioned, imaging features may help identifying subgroups of patients that are
more likely to respond favorably or poorly to a given treatment. This information
may then serve to tailor the treatment e.g., by prescribing a lower or higher dose
to the entire tumor. On the other hand, based on specific imaging information
indicating the local risk of relapse, subvolumes of the tumor may be targeted by
a nonuniform dose distribution within the tumor [26]. Either a distinct subvol-
ume of the tumor could be boosted (dose escalation, dose painting), or the dose
could be prescribed on voxel level according to imaging derived probability maps
of radioresponsiveness (dose painting by numbers) [25, 27].
In head and neck cancer, different imaging tools are currently being investigated

as candidates for such strategies, most notably 18F-FDG PET [28,29], as a surrogate
for tumor burden, and PET with tracers such as 18F-FMISO [30], as a surrogate for
cellular hypoxia. In addition to PET, DW-MRI and DCE-MRI have been shown
to be valuable for adapting RT treatment, e.g. by dose painting [31,32].
An exemplary multiparametric data set of a patient with head and neck

cancer comprising functional PET, DW- and DCE-MRI information which could
potentially be used for treatment adaptation, is provided in Fig. 1.2.

The recent development of combined PET/MRI as a hybrid system has allowed
to unite the advantages of both modalities within a single system [33]: the high
soft tissue contrast and the wide range of functional imaging options of MRI, and
the molecular information of PET. Combined PET/MRI as an integrated system
may, thus, play a key role in further development and implementation of imag-
ing based RT treatment adaptation [7,23,34,35]. The accurate spatial integration
of the imaging data into RT planning, however, requires patient examination in
RT treatment position [19,36,37]. The adaptation of a PET/MRI examination to
treatment position, on the other hand, is challenging as it requires RT patient im-
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1 Introduction

Figure 1.2: Multiparametric functional imaging of a 57-year-old male patient with head
and neck cancer. A: 18F FDG-PET overlayed to anatomical T2-weighted MRI. B: Com-
bined 18F FMISO PET/MRI acquired 4 h p.i. . C: ADC map derived from diffusion-
weighted MRI and D: Perfusion map showing the distribution of the parameter Ktrans
derived via kinetic analysis from dynamic contrast-enhanced MRI inside the tumour vol-
ume. The radiotherapy gross tumour volume is outlined in each image slice. The figure
is reprinted under the terms of the Creative Commons Attribution–NonCommercial 4.0
Unported License from reference [23].

mobilization equipment to be combined with the MRI hardware i.e., in particular,
with the radiofrequency receiver coils. In contrast to stand-alone MRI systems, us-
ing a specially tailored coil setup for hybrid PET/MRI further requires appropriate
PET photon attenuation correction with respect to the setup [38].
In the context of this thesis, a recently proposed RT-specific prototype setup [39]

was further developed and systematically evaluated for attenuation corrected PET,
and MR image quality within a clinical study. In addition to clinical feasibility,
the aim was to assess whether the image quality of the prototype setup would
meet the demands to accurately integrate PET/MRI data sets into RT planning.

Besides consistent patient positioning for precise data integration, high geometric
accuracy of the image data is a further essential prerequisite for using medical im-
ages in RT planning [7,19,24]. This is a critical issue especially in DW-MRI which
is often performed based on echo-planar imaging (EPI) sequences. EPI offers favor-
ably short acquisition times reducing bulk motion-induced phase perturbations [40].
However, such EPI techniques are sensitive to magnetic field inhomogeneities lead-
ing to image distortions and signal loss. This especially applies to the head and
neck region, where unfavorable geometry and susceptibility changes at air–tissue
interfaces can lead to severe geometric distortions of DW-MR images up to a few
centimeters [41,42].
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As high geometric fidelity is crucial for concepts of biologically adapted RT
planning, a second focus in this work was on the assessment of the geometric
accuracy of DW-MRI in head and neck, and on the definition of an appropriate
method for distortion correction.

Multimodality imaging in general, and simultaneous PET/MRI in particular,
have been shown to be of clinical value in many respects related to the treatment
of cancer, such as target volume delineation in RT planning as outlined above,
staging, the detection of distant metastases, monitoring of response to therapy or
follow up [43–45]. Nonetheless, a primary role of multimodality imaging to help
improve outcome in patients treated with RT may revert to characterizing the
primary tumor and its microenvironment [26,46].
One important feature to determine on such cellular level is hypoxia. Tumor

hypoxia is one of the main factors for treatment resistance and poor prognosis,
and has been shown to be present in many solid tumor types including head and
neck cancer [18,47–50]. PET imaging using different hypoxia sensitive tracers such
as 18F-FMISO is one means of noninvasive detection of hypoxia and has been ex-
plored in patient [18,51] as well as in small animal studies [52]. Clinical studies, in
particular, have shown that imaging of tumor hypoxia has high prognostic value
with respect to RT response, when image information is derived from time series
data [17, 30, 53–55] as such dynamic data includes both information on early tem-
poral tracer distribution in the tumor tissue related to vascular properties as well
as information on late retention effects [17,30,53–58].
Unfortunately, in many clinics the availability of hypoxia PET is limited and

dynamic imaging protocols are extensive. In head and neck cancer patients, for
instance, such protocols often consist of multiple scans from the time of injection up
to 4 hours p.i. [17, 53]. Therefore, it would be an advantage if similar information
on tumor hypoxia could be obtained by more easily available, functional MRI using
brief protocols that are readily translatable into routine clinical practice.
In the third part of this thesis, a dedicated method was therefore developed to

predict information on tumor hypoxia derived from dynamic FMISO-PET solely by
functional MRI. The method is based on the training of different machine learning
models using parameters derived from DW- and DCE-MRI as predictor variables.
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2 Objective and outline

It is the aim of this work to contribute methods which leverage the integration of
multiparametric PET and MR imaging into RT for future biologically individual-
ized treatment of head and neck cancer patients. The methods presented in Part I
and II of this thesis focus on different prerequisites for precise image integration into
RT treatment planning. The method presented in Part III takes aim at advancing
the use of multiparametric MRI as a tool for treatment adaptation strategies tar-
geting hypoxic, radioresistant subregions within a tumor. In the following, a brief
outline of each part is presented.

• Part I (Chapter 4) addresses the extension, implementation and characteriza-
tion of a RT prototype setup designed for combined PET/MRI examinations
of head and neck cancer patients in RT treatment position. The motivation
is to thereby facilitate precise integration of the imaging data into treatment
planning. A prototype setup consisting of a flat table top and MR coil hold-
ers for flexible body coils was extended by a dedicated add-on to allow for
patient fixation with RT positioning tools. A first objective was to assess the
feasibility of applying the experimental setup for patient examination in the
context of a clinical study, using calculated attenuation maps of the hardware
in addition to MR-based attenuation maps of the patient for retrospective
PET photon attenuation correction. A second objective was to systemati-
cally evaluate the prototype setup for PET and MR image quality from the
angle of integrating the image data into RT treatment planning. Therefore,
a suitable evaluation method was developed based on quantitative measures
for pairwise similarity analysis of RT target structures defined repeatedly on
images acquired with the experimental setup and images acquired with a
diagnostic reference setup.

9



2 Objective and outline

• Part II (Chapter 5) deals with the geometric accuracy of DWI as part of
a RT specific PET/MRI protocol for the head and neck region. Geometric
accuracy is a critical issue in DWI in this anatomic region, but a further
essential prerequisite for using the images in RT planning. Therefore, the
focus was (i) on the assessment of geometric accuracy, (ii) on the definition
of an appropriate method for distortion correction and (iii) on the stability of
determining the diffusion coefficient ADC. Correction of susceptibility induced
distortions was implemented based on repeated DWI data acquisition with
reversed phase encoding directions, a method originally proposed for DWI
in the brain [59]. To assess the geometric accuracy of original and corrected
images in the critical head and neck area, an evaluation method was defined
based on quantitative measures for pairwise similarity analysis of anatomical
structures repeatedly delineated on original/distortion corrected images and
an anatomical T2 weighted MRI reference image.

• Part III (Chapter 6) aimed at finding a set of parameters derived from
clinically applicable MRI protocols that might serve as a tool for tumor char-
acterization and as a basis for future treatment adaptation. The strategy to
pursue this aim was to make use of supervised learning of imaging information
on a known biological factor for radiation treatment resistance i.e., tumor hy-
poxia measured by dynamic FMISO-PET. Different machine learning models
were trained to learn that information based on parameters derived from DWI
and DCE-MRI used as input variables. The dynamic FMISO-PET/MRI data
which formed the basis for model development was measured in small animal
models of human head and neck cancer and a final, best performing model
was tested in an independent cohort.
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3 Background

3.1 PET photon attenuation correction methods for combined
PET/MRI

3.1.1 Principles and physical aspects of PET imaging

Using dedicated pharmaceuticals labeled with different positron emitting radionu-
clides (e.g., 18F, 64Cu, 68Ga,), PET allows to image different physiopathological
processes within a patient (or an animal model). Such processes of interest may
be glucose metabolic activity of tumor tissue, which can be detected using the
18F-labeled glucose analog FDG, or tumor hypoxia, which can be traced using
18F-Fluoroazomycin arabinoside (FAZA) [60], 18F-Fluortanidazole (HX4) [61] or
the most extensively studied hypoxia specific radiotracer 18F-FMISO [18]. In or-
der to localize the functional information, PET is commonly combined with the
anatomical imaging modality CT or, more recently, MRI.
To conduct a PET scan, the radiotracer is administered to the patient by in-

travenous injection. An uptake time between injection and scanning is generally
necessary for adequate image contrast and mostly depends on the retention mecha-
nism of the tracer, the tissue or organ of interest and the half-life of the radionuclide.
In PET, radionuclides are chosen that decay by positron emission. In this work,
18F was used which features a half-life of 109.77 min and a probability of positron
decay of 96.9% (3.1% electron capture). The positron decay equation for 18F reads:

18F −→ 18O + e+ + νe + E , (3.1)

where 18O denotes a stable nonradioactive isotope of oxygen, e+ the emitted
positron, νe an electron neutrino and E excess energy partitioned as kinetic energy
between the positron and the electron neutrino with varying amounts. Annihila-
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3 Background

tion of the emitted positron with an electron of the surrounding tissue leads to
a pair of 511 keV photons being emitted in opposing directions. These photons
can be externally detected by a ring-shaped PET system typically consisting of
scintillation crystals coupled to photomultiplier tubes. For PET integrated into
MRI, magnetic field-insensitive readout electronics such as avalanche photodiodes
(APDs) are used instead of photomultiplier tubes which are used in conventional
stand-alone PET or PET/CT systems [62].
From the detector signals, the density distribution of the positron emitting ra-

dionuclide in the patient and hence, the concentration of the tracer molecule, can
mathematically be reconstructed. The reconstruction relies on coincidence detec-
tion of two photons and on associating the detection with an annihilation event
having occurred in an undetermined position along a straight line (line of response,
LOR) connecting the two detector elements which recorded the pair of photons.
The coincidence window is typically in the order of a few nanoseconds. PET image
reconstruction is then mainly based on iterative algorithms such as filtered back
projection (FBP) or ordered subset expectation maximization (OSEM) to recover
the original activity distribution from the full set of the acquired LOR projection
data (the recorded counts along the LORs) [63].
In Figure 3.1, the iterative process of image reconstruction with FBP is demon-

strated for an exemplary FDG-PET image slice of a patient’s head (patient data
from the study in Part I/Chapter 4). The LOR projection data is typically stored
in sinogram format (Figure 3.1 A), with matrix row data corresponding to the
subset of LORs at a certain angle, and columns indicating the distance of an LOR
to the center of the projection plane (image plane). Summation of successive back
projections of the sinogram matrix row data on an image plane of same dimension
(3.1 B/E/H) and normalization to the number of iterations then allows to recover
the actual PET image (Figure 3.1 I).
Advanced PET systems are capable to further enhance spatial resolution and

signal-to-noise ratio (SNR) by making use of measuring the time-of-flight (TOF)
difference between two photons to better approximate the localization of the annihi-
lation event along an LOR [64]. However, TOF availability is limited for integrated
PET/MRI, as here, mostly timing characteristics of avalanche photodiodes are too
slow [65].
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3.1 PET attenuation correction methods

Figure 3.1: PET image reconstruction based on iterative back projection of the acquired
raw data collected in sinogram format (A). Each data point in the sinogram image cor-
responds to the number of recorded counts along a specific LOR, which is defined by its
angle and distance to the image center. The images B/E/H in the second column of the
figure show the back projection of the sinogram matrix row data indicated as red lines
in A/D/G, for three different angles. The third column of the figure shows the recon-
structed image at the respective angle i.e., the normalized summation of backprojections
after 1, 60 and a total of 180 iterations (C/F/I).
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For image analysis and integration of images into RT planning, the spatial reso-
lution of an image plays an important role. Often, the PET image grid is used as
reference grid, e.g., for resampling MR image data in the context of joint PET/MR
image analysis. This is opportune, as often resolution in PET is lower compared
to MR images, especially inplane. With a modern clinical PET system a spatial
resolution of approximately 4mm (full width at half maximum, FWHM) can be
achieved [66]. The average spatial resolution of the PET system implemented in
the clinical PET/MRI scanner used in this work, the Siemens mMR Biograph,
has been determined as 4.3mm [67]. With current small animal PET inserts for
combined preclinical PET/MRI, a higher spatial resolution of approximately 1–2
mm can be achieved [62, 68]. The spatial resolution of a PET image is limited
by several factors with the size of the detector element being the most dominant
one [69]. Further factors mainly include the positron range before annihilation,
and acollinearity of the annihilation photons. A fundamental limit for the spatial
resolution Γ (in mm FWHM) can be determined as:

Γ =
√

(d/2)2 + s2 + (0.0044R)2 , (3.2)

where d denotes the width of a detector element, s the positron range and R the
radius of the detector ring system [69].
For the clinical and small animal PET/MRI systems used in this study, the

detector crystal width was 4 and 1.5mm, respectively. The positron range is de-
pendent on the radionuclide and the density of the matter it travels through and
is 0.5mm fwhm in soft tissue for 18F, which is the minimum value among different
radionuclides commonly used for medical PET. The range is due to the positron
being emitted from the nucleus with up to a few MeV of kinetic energy (0.64 MeV
for 18F), such that it travels a certain distance in the tissue before it thermalizes
and annihilates with an electron. In a combined PET/MR system, the presence of
a strong magnetic field of a few Tesla forces the positron to follow a helical path,
which reduces its range between emission and annihilation, especially in the plane
transverse to the magnetic field. However, it has been shown that this effect is not
significant for 18F in soft tissue at 3T in terms of an improved resolution [70].
The acollinearity factor 0.0044R depends on the detector ring size, which is

set to accommodate the patient or experimental animal being examined. For the
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clinical and small animal PET/MRI systems used in this study, radius R was 400
and 60mm, respectively. Acollinearity is due to the fact that the bound state of
positron and electron (positronium) has some residual momentum before it decays
into the pair of annihilation photons, such that the photons may not exactly be
emitted at 180◦ with respect to the reference frame of the detector system [69].

3.1.2 Interaction of PET annihilation photons with matter

Interactions of the annihilation photons with matter is an important factor for PET
image quality. Photon attenuation, scatter and random coincidence effects result
in a reduction in image quality, however, these factors can partially be corrected
for.
Photon attenuation can be described by the exponential law of Lambert-Beer,

which reads:
I

I0
= e−

∫
µ(x)dx (3.3)

where I0 is the intensity of photon radiation that would be measured in the absence
of attenuation, I the remaining intensity due to attenuation and µ(x) the photon
energy-dependent linear attenuation coefficient varying with the material at posi-
tion x along the photon path. Integration is over the photon path. In the case
of PET, both annihilation photons have to escape the patient without attenuation
so that a true coincident event can be recorded by two detector elements. With
Equation 3.3, the probability for this scenario can easily be estimated. Thus, the
probability for the two photons passing through the patient without interaction is
equal to the product of their respective single probabilities and given by:

e−
∫ v

0 µ(x)dx · e−
∫ d

v
µ(x)dx = e−

∫ d

0 µ(x)dx (3.4)

with d the total path length in the tissue, v the distance that one photon travels
from the location of the positron annihilation to escape, d minus v the distance that
the other annihilation photon must travel and µ(x) the position-dependent linear
attenuation coefficient at the photon energy 511 keV [71]. Thus, the probability of
both photons traversing the patient without interaction is independent from the
location of the annihilation event along an LOR, and is equal to the probability of
a single photon traversing the total path length.
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Attenuation coefficents are generally given as mass attenuation coefficients nor-
malized to the density of the material. In data libraries provided by the US National
Institute for Standards and Technology (NIST), values of mass attenuation coef-
ficients [72] and densities [73] are listed for a wide range of materials. According
to [72] and [73], the mass attenuation coefficient and the density of human soft
tissue (st) are similar to the values for water, i.e., µ511 keV,st/ρst ≈ 0.096 cm2/g and
ρst ≈ 1 g/cm3. Assuming uniform attenuation, the probability expression simplifies
to e−µd and with µ511 keV,st = 0.096 cm−1, the probability of a pair of annihilation
photons traversing e.g., d = 10 cm of soft tissue without interaction would, thus,
be just about 38%.
Most of the interactions (99.76%) are due to Compton scattering, which is the

dominant type of interaction for 511 keV photons in soft tissue (cf. Figure 3.2).
Moreover, Compton scattering is also the dominant type for fat tissue (99.81%),
bone (99.07%) or materials of MR hardware components, which may be present in
the field of view of the PET detector, since at the energy level of 511 keV, it is not
much dependent from the atomic number of the material (cf. Figure 3.3 A).
Photons undergoing Compton scattering in tissue deviate from their original

direction, with some loss of energy. So on the one hand, if the energy of the scat-
tered photon falls within the energy window of the detector crystal, a coincidence
count may still be recorded. However, due to the angular deviation of the scat-
tered photon, the associated LOR will be misinterpreted. At the energy of 511
keV, scattered photons mainly propagate in forward direction, with little energy
loss [74]. Thus, incorrect counts are recorded that group around correct counts,
which results in image blurring. A more narrow energy window in detection would
lower the rate of recorded scatter, but the relative energy resolution of detector
scintillation crystals is limited to approximately 10% [75], which means that at
least, scattered photons with a scatter angle φ . 27◦ cannot be discriminated since
the energy loss associated to such angles is less than 50 keV. The PET/MRI system
used in this work was characterized by a relative energy resolution of 14.5%; an
energy window of lutetium oxyorthosilicate (LSO) crystals of 430–610 keV; and a
scatter fraction of the recorded signal of 37.9% (as determined by NEMA, National
Electrical Manufacturers Association, protocol) [67].
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Figure 3.2: Total mass attenuation coefficient and different components (coherent scat-
tering, Compton scattering, photoelectric absorption and pair-production in nuclear field)
for soft tissue as a function of photon energy. Soft tissue data is simulated by data for
water which has a similar effective atomic number (Z ≈ 7). The total mass attenuation
coefficient relative to the energy of annihilation photons detected in PET is highlighted
(dotted horizontal line). Curves were generated using values obtained from reference [72].
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Figure 3.3: A: Ratio of Compton scattering-related attenuation to total attenuation,
(µσ/ρ)/(µtotal/ρ), as a function of atomic number Z and energy E of the incident photon.
The effective atomic numbers associated to human soft tissue and bone are highlighted as
dotted horizontal lines; the energy of annihilation photons E = 511 keV is highlighted as
a dotted vertical line. At 511 keV, Compton scattering is the dominant type of interaction
for human tissue, also for elements with high Z such as Calcium (Z=20) contained in
bone or teeth, or Titanium (Z=22) eventually present in implants. This holds true for
materials used in MR radiofrequency coils which may be placed within the PET field
of view. B: Similarly, the ratio of photoelectric absorption-related attenuation to total
attenuation, (µτ/ρ)/(µtotal/ρ), is presented as a function of atomic number and photon
energy. Here, the range of effective CT energies of E = 50–80 keV for typical 80 kV to
140 kV x-ray spectra are highlighted. At these energies, the contribution of photoelectric
absorption to total attenuation is low for low-Z associated matter like air, fat tissue
and soft tissue, as compared to Compton scattering, but becomes more dominant with
increasing Z, such as in bone. Surface plots were generated using tabular data from
reference [72].
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On the other hand, if the energy loss of scattered photons is too high, no according
coincidence signal can be recorded. Such photon attenuation-related signal loss is
not the same for all LORs and needs to be corrected for to prevent image artifacts
due to underestimation of the activity concentration [71].
In combined PET/CT systems, the information of x-ray transmission can be used

to correct the PET data for attenuation. In combined PET/MRI, this CT infor-
mation is not intrinsically available and, thus, requires different methods for PET
photon attenuation correction of the MRI hardware and the patient. Attenuation
maps of the hardware can be determined once beforehand based on CT data ac-
quired in a separate CT scan and can subsequently be deposited on the PET/MR
system. Attenuation maps of the patient can be determined during PET/MR
examination by dedicated MRI sequence techniques. Such CT- and MR-based
correction methods are discussed in detail in the following three Sections.

3.1.3 Attenuation correction

PET information can be corrected for attenuation by applying an attenua-
tion correction factor (ACF) for each LOR during image reconstruction. This
correction process is illustrated in Figure 3.4 for the same exemplary PET
image slice as shown before (Fig. 3.1). Here, an attenuation corrected PET
sinogram (Fig. 3.4 C) is obtained by elementwise matrix multiplication of the
original PET sinogram (Fig. 3.4 A) with a sinogram of the ACF (Fig. 3.4 B). The
ACF is equal to the inverse of the attenuation probability along the LOR given in
Equation 3.4, that is

ACF = exp
[∫

LOR
µ511 keV (x) dx

]
. (3.5)

The final corrected PET image (Fig. 3.4 D) can then be obtained from the corrected
sinogram data by iterative reconstruction algorithms such as FBP, as described
above (Section 3.1.1).
Thus, correction with ACF just requires knowledge of the linear attenuation

coefficient µ511 keV at each position x in the image and conversion of such an atten-
uation map to a map of the ACF in a sinogram format. Such an ACF sinogram
can be obtained by forward projection of the attenuation map using Equation 3.5
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Figure 3.4: PET photon attenuation correction. Elementwise matrix multiplication of a
measured PET sinogram (A) with a ACF sinogram (B) yields an attenuation corrected
PET sinogram (C). D: An attenuation corrected PET image reconstructed from the
corrected sinogram using FBP. The PET data refers to an image slice of a patient’s head
in axial view; the ACF sinogram is derived from a combined attenuation map of MRI
hardware and patient as shown in Figure 3.5.

20



3.1 PET attenuation correction methods

as illustrated in Figure 3.5 for an attenuation map of MRI hardware and a pa-
tient’s head. Here, ACF projection profiles (Fig. 3.5 D–F) obtained from forward
projection of µ511 keV along LORs, i.e., along the columns of the attenuation map
matrix (Fig. 3.5 G–I), are shown for three different angles. These profiles can then
be collected row-wise in a data matrix (Fig. 3.5 A–C) with number of columns
corresponding to the number of columns of the attenuation map, and complete
iteration over 180° results in a final ACF sinogram (Fig. 3.5 C).

3.1.4 CT-based attenuation maps

For PET/MRI, an attenuation map of the MRI transmit and receive coils can be
obtained by processing data from an x-ray CT scan of the equipment, as CT mea-
sures the linear attenuation coefficients averaged over the x-ray energy spectrum.
The latter is dependent on the tube voltage. The effective energy of a 120 kV spec-
trum, for instance, is approximately 60 keV. At such energy, the linear attenuation
coefficients are very different from those for 511 keV photons and vary greatly with
the atomic number of the material because of the photoelectric effect which, at
x-ray energies, becomes more dominant with increasing atomic number (cf. Fig-
ure 3.3 B). Therefore, the ratio of linear attenuation coefficients at x-ray and PET
photon energy is not constant but depends upon the material in the individual
voxel.
A common method to estimate linear attenuation coefficients at 511 keV from

CT data relies on estimating the composition of the material by the measured CT
number HU (Hounsfield unit). HU is the average linear attenuation coefficient at
the x-ray energy normalized to the coefficient for water, µx-ray,w:

HU(x) = 1000 · µx-ray(x)− µx-ray,w
µx-ray,w

(3.6)

where HU = 0 for a voxel x corresponding to water and HU = −1000 for air, as
µair ≈ 0.
A method introduced by Carney et al. is based on applying a bilinear transform

to estimate µ511 keV from measured HU [76]. The motivation behind the bilinear
transform is that for matter associated with low Z and therefore low fraction of
photoelectric absorption such as air (Z=7.37), skeletal muscle (Z=7.06), soft tissue
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Figure 3.5: ACF sinogram (C) obtained by Equation 3.5 and iterative forward projection
of a combined attenuation map for MRI hardware (MR table, overlay, coil holders and
coils) and a patient’s head (G, axial image slice). D–F: ACF projection profiles obtained
through projection along LORs (columns of the image matrix) for three different angles;
direction of projection is indicated by red arrows. A–C: ACF projection data collected
row-wise for all angles in a data matrix with same number of columns as the attenuation
map.
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(Z=7.07) or water (Z=7.22, values from [73]; cf. Figure 3.3 B), the ratio of the
total mass attenuation coefficients at CT energy and PET energy is approximately
constant. For materials with higher Z such as bone, on the other hand, the contri-
bution of photoelectric absorption at CT energy is more important, and the ratio
of coefficients is much different. Terefore, a different scaling factor is required for
bone-like voxels [77].
The transform proposed by Carney et al. reads:

µ511 keV =





9.6 · 10−5 cm−1 · (HU + 1000) for HU ≤ BP
a · (HU + 1000) + b for HU > BP

(3.7)

where breakpoint BP and parameters a and b (in cm−1) depend on the tube voltage
setting of the CT. Values of BP, a and b for various peak kilovoltage (kVp) settings
are provided in [76]. The presented transform was optimized for human tissue
and was defined by separated linear least-square fits to measured HUs in phantom
reference tissue inserts with known 511 keV linear attenuation coefficients. kVp-
dependent values for BP range from 30–52 such that Equation 3.7 yields correct
linear attenuation coefficients for air (HU = −1000, µ511 keV = 0) and water (HU =
0, µ511 keV = 0.096 cm−1), and approximately correct values for the different soft
tissues. The linear equation for HU > BP assumes that voxels are composed
of a certain ratio of bone tissue to soft tissue. Thus, equation 3.7 yields adequate
values for µ511 keV in the patient, but also in certain hardware components, when the
assumption on the composition of the material is valid. In this work, this method
was used for calculating hardware attenuation maps of an RT table overlay and an
add-on for mask fixation.
To estimate 511 keV linear attenuation coefficients of different hardware such as

of MRI radiofrequency coils, this assumption on the composition of the material
has been shown to not be valid and different values for the constants a and b have to
be used. In [78], a and b were determined for an MR flexible radiofrequency coil by
linear fitting of HU measured by CT plotted against µ511 keV measured by a 511 keV
reference transmission scan. Using these adapted values for a and b instead of
values listed in [76] to determine a 511 keV attenuation map of radiofrequency coils
prevents from overestimating µ511 keV and, thus, from overestimating the activity
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concentration in the image at respective locations. The attenuation maps used in
this work for correction of a pair of flexible coils relied on this adapted transform.

3.1.5 MR-based attenuation maps

Unlike attenuation maps of MRI hardware which have to rely on pre-acquired CT
or 511 keV transmission data, a 511 keV attenuation map of the patient (human µ-
map) can be determined during the PET/MR examination. Different methods have
been developed. Some are based on estimating attenuation information directly
from the PET emission data [79], but most methods are based on MRI data [80,81].
In contrast to CT, MR based attenuation correction is challenging as MR images do
not provide a direct correlation to photon attenuation. While both CT signal and
511 keV photon attenuation are mainly determined by the electron density of the
material, the MR signal intensity is related to the proton density and characteristic
relaxation times. Moreover, low signal intensity of bone and lung in images acquired
with conventional MR sequences because of low proton density and short transverse
relaxation times, makes it difficult to detect these tissue types.
Nonetheless, several attenuation correction methods have been developed to in-

directly provide information on photon attenuation based on MRI [80, 81]. These
methods can mostly be categorized into two categories. The first is that of atlas or
template based methods [82,83] which typically rely on a CT template, e.g. a pair
of previously aligned MRI and CT images of a normal subject. This template may
be transformed to the MR image of the patient being examined, or a previously
trained algorithm may be used to generate a pseudo-CT image based on the MRI.
The human µ-map may then be obtained by traditional scaling of the HU of the
transformed template CT or pseudo-CT, as described above.
The second category is based on MRI using Dixon [84, 85], ultrashort-echo-time

(UTE) [85,86] or zero-echo-time (ZTE) techniques [87]. In these methods, the pa-
tient MR image is segmented into different tissue classes and constant attenuation
values are assigned to each class. Recently, advanced methods have been proposed
to assign continuous attenuation coefficients on voxel level [88,89]. UTE and ZTE
techniques, in particular, allow for identifying bone tissue.
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In the first generation of PET/MRI systems like the one used in this work, mostly
segmentation-based methods with discrete attenuation values are used that ignore
bone, because of their straightforward implementation and fast runtime [90].
In segmentation-based methods, the tissue classes fat and water (nonfat soft

tissue), are typically identified using Dixon technique [91], which is an imaging
and processing technique for fat and water separation exploiting the difference in
resonance frequencies between fat- and water-bound protons (chemical shift). The
technique is based on the assumption that only water and fat contribute to the
signal of an image. Under this assumption, and neglecting errors e.g., in magnetic
field homogeneity, the signal can theoretically be expressed as:

S = Sw + Sf · eiα (3.8)

where Sw and Sf represent the magnitudes of the magnetizations at a given pixel
for water and fat, respectively [92]. α is the phase angle of fat relative to that of
water due to their chemical shift difference:

α = γ ·B0 · σ ·∆t (3.9)

where γ is the proton gyromagnetic ratio, σ is the chemical shift factor of fat
relative to water, and B0 is the external magnetic field of the scanner. In a typical
two-point Dixon acquisition, two separate images are acquired with different ∆t,
representing changes in echo time (TE), which are tuned to obtain specific values
of α. Thus, one image can be acquired with water and fat being in-phase (α = 0,
eiα = 1) and another being 180◦ out-of-phase (α = π, eiα = −1):

S1 = Sw + Sf (3.10)
S2 = Sw − Sf (3.11)

By averaging the sum and differences of voxel intensities in in- and opposed-phase
images S1 and S2, water only and fat only images Sw and Sf can be generated,
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respectively:

1
2 [S1 + S2] = 1

2 [(Sw + Sf ) + (Sw − Sf )] = Sw (3.12)
1
2 [S1 − S2] = 1

2 [(Sw + Sf )− (Sw − Sf )] = Sf (3.13)

The MR image segmentation approach used in this work was a 5-class segmen-
tation of an MR image into air, lung, fat tissue, a fat–nonfat tissue mixture, and
nonfat soft tissue. In this approach, segmentation is based on processing the in-
phase, fat, and water images S1, Sf , and Sw obtained with a two-point Dixon
technique [90]. Bone tissue is ignored and treated as soft tissue. Air and tissue are
determined by thresholding the intensity-normalized in-phase MR image. Misclas-
sification of low-intensity bone voxels as air is reduced by a morphological image
closing filter [84]. Fat and nonfat soft tissue are identified based on the Dixon
fat and water only images. This is done by assigning voxels that show more than
twice the intensity in the fat image as compared to the water image, to fat, and
vice versa for water. Voxels with a ratio of fat and water intensities of more than
1/2 but less than 2, are interpreted as a mixture of fat and water-like soft tissue.
To these voxels, an attenuation coefficient equal to the mean value of the fat and
water attenuation coefficients is assigned. Lung tissue is detected as the largest
connected group of low-intensity voxels [90]. The linear attenuation coefficients
which are finally assigned to the five tissue classes are: 0 cm−1 for air, 0.0224 cm−1

for lung, 0.0854 cm−1 for fat tissue, 0.0927 cm−1 for the fat-nonfat tissue mixture,
and 0.1 cm−1 for water-like soft tissue.
Dixon images and an attenuation map derived using this approach are presented

for an exemplary patient in Figure 3.6. In addition, an attenuation map obtained
by combining the Dixon technique with an atlas based technique for the integration
of bone information is shown.
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Figure 3.6: Illustration of Dixon technique for MR based photon attenuation correc-
tion of a 49-year-old male patient with head and neck cancer examined with combined
PET/MRI. A: In-phase MR image acquired in typical coronal orientation. B: Opposed-
phase image, same coronal slice. C–D: Fat and water images derived from in- and
opposed-phase images (cf. Equations 3.12–3.13). E: 511 keV linear attenuation coeffi-
cient map obtained by 5-class Dixon segmentation [90] containing discrete values, ig-
noring bone. F: Dixon based attenuation map similar to E, with additional atlas based
attenuation information on bone. Note, that for visualization purposes, the window level
for attenuation maps in E and F is set to a subinterval of the total range of attenuation
values (range E, 0–1000 ×10−4cm−1; range F, 0–2488 ×10−4cm−1).
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3.2 Functional MRI and distortion correction methods for
diffusion-weighted MR image data

3.2.1 Principles and physical aspects of MR imaging

Most imaging techniques including x-ray or CT operate with short-wavelength
radiation with wavelengths being smaller than the structures to be imaged. Wave-
lengths of x-rays, for instance, are in the order of magnitude of around 10−11–
10−10 m). MRI, on the contrary, uses electromagnetic radiation with wavelengths
in the order of 1–10m (non-ionizing radiowaves). Despite the large wavelengths,
MRI allows for image resolutions in the millimeter or submillimeter range by ex-
ploiting the intrinsic magnetic properties of atomic nuclei and their behaviour in a
high magnetic field.
The nuclear spin or intrinsic angular momentum I is associated with a magnetic

moment, µ = γI, that can interact with external magnetic fields. The gyromag-
netic ratio γ is the ratio of magnetic moment to angular momentum and is specific
to each nucleus. The nuclear spins partially align in an external static magnetic
field of field strength B0, precessing around its axis with a specific angular fre-
quency named Larmor frequency ωL = γB0. ωL is dependent on the nucleus type
and the magnetic field strength and for protons, ωL is 42.6MHz per T. The spins
can further interact and resonate with electromagnetic waves of a frequency cor-
responding to ωL, and can thus be excited to induce a measurable highfrequent
voltage in a nearby receiver coil.
Many types of nuclei exhibit a nuclear spin. The condition for a nonzero nuclear

spin is fulfilled for all atomic nuclei except those with an even number of protons
and at the same time, an even number of neutrons. In medical imaging, mostly
hydrogen (1H) nuclei (protons) are used because of high natural abundance in the
human body and high gyromagnetic ratio.
The strong static magnetic field B0 in a MR tomograph is generated by a super-

conducting magnet coil. The field strength is typically in the order of magnitude
of a few T. This yields a slight surplus of protons aligned along B0 in energetically
more favorable parallel orientation as compared to antiparallely aligned protons. At
3T and physiologic temperatures, for instance, it is a surplus of 1/105. The number
of excess protons generates a net macroscopic magnetization M . As the precess-
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ing protons absorb radiofrequency energy tuned to their precessional frequency
ωL and transition to the higher energy, anti-parallel direction, magnetizationM is
deflected from its alignment along B0 creating a magnetization component perpen-
dicular to the field axis and rotating at ωL. The rotating transverse magnetization
induces a measurable high-frequent voltage in a closely positioned receiver coil.
Spatial encoding of the signal demands additional gradient coils to generate a

magnetic field with field strength in the order of mT/m that superimposes on B0,
to attain a defined position-dependency of ωL. Upon a sequence of RF pulses,
magnetic field gradient settings and signal acquisitions, raw signal data can be
collected in k-space and can be transformed to image data by Fourier Transform.
This yields an image matrix containing complex numbers z = |z|exp(iφ) whose
magnitude values |z| give the grey-scale values of the actual MR image.
Besides the spatial proton density, the tissues’ T2 and T1 relaxation properties

are typically exploited to create image contrast. T2 relaxation describes the process
by which the transverse component of magnetization decays after a radiofrequency
pulse due to dephasing of the spins. This exponential decay is characterized by
the time constant T2, the time required for the transverse magnetization to fall to
approximately 37% (1/e) of its initial value. T1 relaxation describes the process
by which the longitudinal magnetization returns to its initial value after a radiofre-
quency pulse, as spins favor to return to the lower energy, parallel orientation.
This exponential recovery process is characterized by the time constant T1, the
time needed for recovery of approximately 63% (1− 1/e) of the initial longitudinal
magnetization.
T1 and T2 relaxation processes occur at different time scales and vary bet-

ween different tissue types, as they are influenced by molecular motion, size and
interactions. MRI sequences can provide different contrasts depending on chosen
sequence parameters which have influence on whether T1- or T2-based contrast is
more pronounced. This is especially useful for the differentiation, e.g., of tumor
versus adjacent normal tissue and of great relevance to radiotherapy in terms of
target volume definition.
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3.2.2 Dynamic contrast-enhanced and diffusion-weighted imaging

Besides proton density, T1 or T2 weightings, which basically provide anatomical
information, different weightings and image contrasts can be obtained, e.g., by
using dedicated exogenous contrast agents (contrast-enhanced MRI), or by using
specific sequences of radiofrequency pulses and field gradient settings to sensitize
MRI for the diffusion of water molecules (diffusion-weighted (DW) MRI). By the
analysis of images obtained with such methods, different functional information on
a tumor and insights into the tumor microenvironment can be obtained. These
may help to retrieve prognostic or predictive information on treatment outcome,
or may assist in a better evaluation of treatment efficacy during treatment.
In T1-weighted contrast-enhanced MRI, image contrast can be modified by a

strongly paramagnetic contrast agent administered to the patient intravenously.
The paramagnetic agent, typically gadolinium based, alters the relaxation prop-
erties of tissue molecules in its vicinity. Predominantly, T1 relaxation time of
nearby hydrogen protons is shortened, which results in enhanced signal intensity
in T1 weighted images. DCE-MRI relates to the measurement of the T1 changes
in tissue over time by recording time-series image data after a bolus administra-
tion of the contrast agent. Following the injection, the contrast agent molecules
are circulated to organs and tissue through blood supply and may pass through
the vascular endothelium via diffusion into the extracellular, extravascular space
of the tissue. This leads to local concentration dependent contrast enhancement
which is, throughout the time course, eventually lowered through transport of the
agent back out of the tissue. Observing and quantifying the time course of such
contrast enhancement then allows to relate to different physiological properties of
the tissue. These include blood flow, blood vessel permeability and different tissue
volume fractions [15]. For such analysis, different pharmacokinetic models have
been proposed [93, 94], but also alternative, data-driven approaches may be used
to extract parameters of relevance to RT, such as principal component analysis
(PCA). PCA of dynamic image data is addressed in Section 3.4.1.
DW-MRI, on the other hand, allows to visualize local diffusion of water molecules

in the tissue. Diffusion, i.e., Brownian motion, is thermally driven and influenced
by the cellular environment of the water molecules, such as hydrophobic cellular
membranes. Thus, DW-MRI allows to relate to the cellular architecture of the
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tissue, such as to cell density, organization of the tissue in terms of shape and
size of the intercellular space, and to the integrity of cellular membranes [95].
Technically, diffusion-weighting can be achieved by an additional pair of gradients
of the same magnitude and duration but with reversed sign applied between the
radiofrequency excitation and signal collection. This way, stationary spins are not
influenced by the gradients, in contrast to diffusing spins, for which dephasing
occurs at a degree related to the local diffusion. This is, because for non-stationary
or diffusing spins, the position-dependent phase change received through the first
gradient is not recompensated by the second gradient. For an ensemble of diffusing
spins, this results in a reduction in signal that is higher than for an ensemble
of spins with few mobility. And the higher the diffusion-weighting for the image
acquisition, the higher the signal reduction in regions of diffusing spins.
From a serial acquisition of images with the same sequence parameter settings

but different strengths of diffusion weighting (b-value setting), a physical parameter
map of the apparent diffusion coefficient ADC can be derived, e.g., for tumor
tissue, by modeling the diffusion-related signal decay. ADC represents an effective
diffusion coefficient of water molecules, which are restricted in free motion by the
cellular environment, such as by the cellular membranes [95]. The b-value, which is
varied to control the diffusion-weighted contrast, is a MR sequence parameter that
summarizes the settings of the magnitude G of the diffusion sensitizing gradients,
the temporal duration δ of a gradient, as well as the time gap ∆ between the two
gradients:

b = γ2G2 δ2 (∆− δ/3) . (3.14)

Different models can be used to derive information on diffusion from a series of
b-value images. A typical model to extract the ADC from such DW-MRI data
assumes a mono-exponential signal decay with increasing b-value:

S = S0 exp(−ADC · b) (3.15)

where S denotes the measured signal intensity of an image voxel and S0 a secondary
fit parameter describing the signal intensity at b = 0. An example for mapping the
ADC in a tumor is given in Fig. 3.7.
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Due to its robustness, the mono-exponential model is often chosen over more
complex models, such as intra-voxel incoherent motion (IVIM) [96, 97]. IVIM is a
bi-exponential model, that allows for more advanced separation of perfusion and
diffusion effects, but poses challenges in image acquisition and quality, and is less
robust than the mono-exponential model especially for analysis in head-and-neck
tumors at a voxel level [98].
In general, several factors should be considered at the time of image acquisi-

tion in order to optimize DW-MR image quality for robust data analysis. Mainly,
additional averages should be performed to compensate for the reduction in SNR
at high b-values. Moreover, parallel imaging, short TE and fat suppression are
recommended [95]. Breath-hold techniques or respiratory triggering may be favor-
able to reduce motion induced artifacts. Advanced shimming techniques help to
reduce magnetic field inhomogeneity and related image distortions [41]. The latter
is a critical issue especially in DW-MRI of the head and neck and, therefore, it is
discussed in the next section.

3.2.3 Image distortion and distortion correction

DW-MRI is often performed based on echo-planar imaging (EPI) sequences. This
is a technique, that offers short acquisition times through rapid data collection in
k-space. In single-shot EPI, for instance, the total of k-space is filled by a contin-
uous echo train after a single radiofrequency excitation pulse. Such k-space filling
is achieved through a series of alternating readout and phase-encoding gradients
leading to zigzag-like k-space sampling trajectories. Thus, the technique is ex-
tremely fast in terms of image acquisition and therefore, less sensitive for motion
artifacts [40].
However, this sampling and encoding approach makes EPI very sensitive to mag-

netic field inhomogeneities. Apart from scanner imperfections and eddy-currents
arising e.g., from strong diffusion-encoding gradients, B0 field inhomogeneities are
particularly severe near boundaries between materials or tissues with large sus-
ceptibility differences [99]. In contrast to conventional imaging techniques, the
field-sensitive direction in EPI is the phase-encoding direction. In the frequency-
encoding direction, strong gradients with a large receiver bandwidth are applied
for rapid sampling of k-space. In comparison, the bandwidth in the phase-encoding
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Figure 3.7: Illustration of ADC mapping based on a mono-exponential model for DW-
MRI data of a xenografted head-and-neck tumor. A: DW-MR image series acquired with
various diffusion-weightings controlled by the b-value (given in s/mm2), presented for one
tumor slice (axial view). B: A mono-exponential fit to the diffusion related signal decay
for a tumor voxel using (3.15) to extract the parameter ADC. C: ADC map obtained by
modeling the DW-MRI data for each image voxel.
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direction is very low due to the continuous encoding scheme. In our patient study,
for instance, the bandwidth per pixel in phase-encoding direction was just about
20Hz, versus 1736Hz in frequency-encoding direction. The low pixel bandwidth
makes the phase-encoding direction much more sensitive to small offsets in preces-
sion frequency from magnetic field inhomogeneities accumulated during the long
echo-train readout. For example, given a bandwidth in phase-encoding direction of
20Hz/pixel, a local frequency offset ∆fB of, e.g., 100Hz induced by B0 static field
inhomogeneity or magnetic susceptibility differences, would result in an unwanted
pixel displacement in phase-encoding direction of 5 pixels.
Especially in the head-and-neck region of a patient, distortions can be severe due

to the complex geometry of chin, jaw and shoulders and magnetic susceptibility
differences at interfaces of air and soft tissue, or soft tissue and bone. Since high
geometric accuracy is essential for RT planning purposes, such distortions need to
be corrected for, before image derived information, such as information on tumoral
ADC, can be used for treatment adaptation strategies.
A typical method for distortion correction is field mapping, i.e., estimating the

magnetic field inhomogeneity ∆B0(r) from the phase information of two (distortion
unsusceptible) gradient echo images acquired with different echo time (TE) [99].
The phase map of each complex image data set z can be obtained by φ = Im(z)

Re(z) .
In gradient echo imaging, the resonant nuclear spins accumulate transverse phase
during the acquisition in dependence on the local magnetic field B(r) = B0(r) +
∆B0(r) they experience, such that the resulting complex image will acquire a phase

φ(r) = ω(r) · TE = γB(r) · TE . (3.16)

In the case of repeated imaging with different TE, where ∆TE = TE2 − TE1 > 0,
the magnetic field inhomogeneity can be determined from the phase difference
∆φ(r) = φ2(r)− φ1(r):

∆φ(r) = γB(r) ·∆TE (3.17)

⇒ ∆φ(r) = γ [B0(r) + ∆B0(r)] ·∆TE (3.18)

⇒ ∆B0(r) = ∆φ(r)
γ∆TE −B0(r) . (3.19)
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Then, knowing ∆B0, the pixel shift in phase encoding direction of an EPI image
can be calculated. ∆B0 can be expressed as a frequency deviation ∆fB = 1

2π∆ω =
1

2πγ∆B0, such that the pixel shift will be given by:

u = ∆fB
∆fpp

(3.20)

where ∆fpp is the bandwidth per pixel in phase encoding direction [100].
A downside of such field mapping approaches is that they require additional scan

time and are susceptible for errors related to patient movements or to phase wrap-
ping. Moreover, using a field map to correct for distortions in a single distorted EPI
image would not be able to properly correct local areas in which the information
of several voxels have been mapped into a single voxel (signal compression), where
it would lead to a loss of detail in the distortion-corrected image [59].
To overcome these drawbacks, alternative methods for field map estimation and

distortion correction have been proposed. The idea of one such technique proposed
for DW-MRI in the brain, is to repeatedly acquire DW-MRI data with reversed
phase-encode direction (RPED), such as to obtain pairs of images with equal mag-
nitude distortions in opposing directions [59, 101]. From one of these image pairs,
preferably from the zero or low b-value image pair which has higher SNR, the un-
derlying magnetic field map can be estimated using an image registration approach
and applied to the sets of repeatedly acquired b-value images to obtain unwarped,
distortion-reduced data. The process is illustrated in Figure 3.8. The principle
of estimating the field map reverts to finding the transformation field, that, when
applied to the two images, would maximize the similarity of the unwarped images.
This approach is a parametrized approach based on the representation of the un-
known transform by cosine basis functions and based on minimizing a similarity
metric in the form of the sum-of-squared differences between the unwarped images.
Application of the final transform to the pair of images is based on least-squares
restoration.
The advantage of RPED-based correction compared to classic field map based

correction of a single EPI image is, that information loss in areas of signal compres-
sion in one image can be compensated by information from corresponding areas
of signal expansion in the other image acquired with inverse phase encoding direc-
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Figure 3.8: Illustration of distortion and correction for DW-MRI data of a 55-year-old
male patient with head and neck cancer examined with combined 18F-FDG PET/MRI.
Original DW-MR image (b=150 s/mm2) with phase-encoding direction anteroposterior
(A) and posteroanterior (B) acquired in axial orientation. C: Distortion corrected image
with RPED technique. D: RPED technique based field map displaying B0 field inhomo-
geneity in terms of frequency shift. E: Distortion corrected ADC map. F: T2w STIR
(short-TI inversion recovery) as geometric reference image. Two structures of interest
are shown: a diseased lymph node (red, PET-defined) and normal spinal cord (orange,
delineated on the T2w STIR). These structures are superimposed on DW-MR images
and the ADC map to highlight geometric (in-)accuracy. Note a minor artifact remaining
in the chin region.
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tion [102]. This advantage of the method, however, can only be fully exploited, if
all b-value images are acquired repeatedly with RPED.
A recent study has shown that the RPED correction technique outperforms dif-

ferent methods including the classic field mapping approach based on repeated
gradient echo imaging with different echo times. This is mainly due to its addi-
tional advantage of lost information recovery in regions of signal compression [102].
Since high geometric fidelity is essential for RT purposes, RPED technique was

implemented in this work for distortion correction of DW-MRI. It was evaluated
whether this method presented for neuroimaging could be translated to combined
PET/MRI data acquisition with RT imaging setup in patients with head-and-neck
cancer.

3.3 Measures for image quality assessment

For different analyses performed in this work, the geometrical or quantitative ac-
curacy of images was assessed by image comparison to a reference image. This
approach was central to the comparison between distortion corrected DW-MR and
anatomical MR reference images (discussed above), as well as to the comparison
between attenuation corrected PET images acquired with RT and diagnostic setup,
an issue addressed earlier in Section 3.1.4.
Methods for image quality assessment included pairwise comparison of radioon-

cological structures of interest that were defined as binary masks on two images.
This strategy was based on the assumption, that images acquired with experimen-
tal and reference technique can be considered as equivalent, if manual or automatic,
threshold-based contouring on the images yields structures with similar shape, size
and location. Therefore, the following volume and distance based measures were
used to assess the similarity of two structures, or voxel sets, A and B:

• Dice similarity index (DSI), a frequently used evaluation measure in medical
image analysis. The measure quantifies the match of two sets A and B by
normalizing the size of their intersection to the average of their sizes.

DSI(A,B) = |A ∩B|
1
2 (|A|+ |B|) (3.21)
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Thus, DSI = 1 for a perfect match and DSI = 0 for a total mismatch.
• Relative volume difference (RVD) of a set A compared to a reference set B:

RVD(A,B) = |A| − |B||B| (3.22)

• Average symmetric surface distance (ASSD), the average of all the distances
from points x on the boundary of A (LA) to the boundary of B (LB), and
from points y on LB to LA, respectively:

ASSD(A,B) = 1
|LA|+ |LB|


 ∑

x∈LA

d(x, LB) +
∑

y∈LB

d(y, LA)

 (3.23)

where the distance measure for a point x from a set of points L is defined
as d(x, L) = miny∈L d(x, y), with d(x, y) the Euclidean distance between the
points.

• Distance between geometric centers (DOGC) of two structures A and B:

DOGC(A,B) = d(cA, cB) (3.24)

with cA = 1
|A|
∑
x∈A x, the central voxel of A, and cB = 1

|B|
∑
y∈B y, the central

voxel of B.

3.4 Machine learning techniques

In the context of the study on predictive modeling of FMISO-PET derived hy-
poxia information by MRI derived image parameters, different machine learning
techniques were implemented in the analysis. Machine learning refers to a wide-
ranging set of techniques for understanding relationships or structure from data.
Such techniques can be grouped into two categories: unsupervised and supervised
learning techniques.
Unsupervised learning is a type of learning that can be beneficial in finding un-

known patterns in data observations without supervising output or pre-assignment
of data labels. Typical methods for unsupervised learning include principal compo-
nent and cluster analysis (Sections 3.4.1, 3.4.2). These techniques were used to
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extract a reduced set of parameters describing high-dimensional time-series image
data, and to group similar time series data together in order to identify character-
istic patterns.
Supervised learning techniques, on the other hand, describe learning strategies

that involve building a model for predicting or estimating an output based on
observed input parameters. The model is build by inferring a function from ex-
emplary input-output paired data (labeled training data), which maps the input
to the known output. Ideally, a well trained model is then able to generalize and
predict the output of new, previously unseen data (independent test data). As
types of supervised techniques, gradient boosted decision trees (GBDT, 3.4.3) and
artificial neural networks (ANN, 3.4.4) played a central role in this work to find
a prediction model that allows for estimating the hypoxia PET information from
different MRI derived image parameters.

3.4.1 Principal component analysis

Principal component analysis (PCA) was used to derive parameter maps from
time-series image data at a voxel level. PCA is a data-driven technique based
on transforming data in terms of observations of a set of potentially correlated
variables, into a set of values of linearly uncorrelated variables. Its design makes
it possible to subsequently use the method for dimensionality reduction or noise
filtering of the data.
PCA transforms the data from the original variable space to a new coordinate

system whose coordinates are found in an iterative approach:

1. The first coordinate is chosen as the one when the variance of the data pro-
jections on the coordinate is greatest among all possible coordinate choices;

2. Similarly, the subsequent coordinate is defined by producing greatest vari-
ance of data projections on a new coordinate orthogonal to the previous one.
This step is repeated until the number of new coordinates corresponds to the
number of original variables.

This way, the new coordinates, the principal components (PCs), form a new set
of basis vectors to represent the data. For full representation, the number of PCs
has to be equal to the number of original variables. But in general, most of the
variation in the data will be accounted for by a lower number of PCs [103].
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In the case of PCA applied to time-series signal data from image voxels, the total
number of PCs generated corresponds to the number of original time points. Let p
denote the total number of time points or PCs, respectively, and si = (si1, . . . sip),
the vector representing the signal time-series data of the ith voxel at the various
p time-points. Let further pcj = (pc1j, . . . pcpj)T, with ‖pcj‖ = 1, denote the jth
principal component, with T the transpose. Then these new basis vectors map
each data vector s to a new vector of principal component projection coefficients
(ci1, . . . cip) with

cij = si · pcj for j = 1, . . . p (3.25)

with cij, the projection coefficient corresponding to the jth principal component.
The total set of projection coefficients, that is n × p matrix C = (cij), with n,

the total number of data (voxels), is a unique and full representation of the data
in principal component space. This allows for the signal data si of a voxel to be
reconstructed as linear combination of the PCs:

si =
p∑

j=1
cijpcT

j (3.26)

with vector pcT
j the transpose of pcj. It is a main characteristic of the method

that the data variance captured by the PCs successively decreases from the first to
the last PC. Therefore, typically the linear combination can be truncated at the
first PCs such that dimensionality is reduced and the data filtered. The process of
PCA for analysis of dynamic image data is presented in Fig. 3.9.

3.4.2 K-means clustering

K-means clustering is an iterative algorithm designed to partition a number of n ob-
servations into a chosen number of k clusters, with each observation being assigned
to the cluster with the nearest center. The aim is to find a data partitioning that
minimizes the sum of the whithin-cluster, sum-of-squares point-to-cluster-center
distances:

arg min
C

k∑

i=1

∑

x∈Ci

d2(x, ci) (3.27)
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Figure 3.9: Illustration of PCA performed on FMISO-PET time-series data (dynamic
data) acquired in xenografted head-and-neck tumors. A: Dynamic FMISO-PET data for
an exemplary tumor. B: First two principal components (PC1 and PC2) obtained by
PCA on normalized FMISO-PET data; the results refer to the analysis performed on the
total of image voxels of a number of tumors. C: Measured dynamic FMISO-PET data for
an exemplary tumor voxel (black data) shown together with the data reconstructed using
(3.26) truncated at p = 1 (blue data) and p = 2 (red data), respectively. D: Parameter
maps of the projection coefficients cj=1 and cj=2 for the same tumor as presented in A.
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where x is a data point from a set of n observations {x1, x2, . . . xn},
C = {C1, C2, . . . Ck} the total set of k clusters, ci = 1

|Ci|
∑
x∈Ci

x, the cen-
ter (mean) of cluster Ci and d2(x, ci) the squared Euclidean distance between
point x and cluster center ci.
Clusters satisfying (3.27) are found by an iterative approach [104]:

1. Initialization: to randomly choose k points as initial cluster center locations;
2. Assignment: to calculate point-to-cluster-center distances of all observations

to each cluster center and to assign each observation to the cluster with the
nearest center;

3. Update: to calculate the mean of the observations in each cluster to obtain k
new center locations.

4. Iteration: to repeat steps 2–3 until assignment of data points to clusters does
not change or a predefined maximum number of iterations is reached.

The k-means algorithm can converge to a local minimum. However, multiple
replicates can be performed with different starting points. Thus, in practice the
solution yielding the lowest minimum (lowest total sum of distances among all
replicates) is chosen as final result.

3.4.3 Gradient boosted decision trees

In the third study presented in this work, the prediction problem was formulated
as a classification problem of a qualitative, discrete response variable (the hy-
poxia class type) and different MRI derived image parameters served as predictor
variables. To address the prediction problem, the supervised learning technique
gradient boosted decision trees (GBDT) was chosen as a candidate model for its
capability to approximate complicated nonlinear functions and to handle a multi-
class response variable.
GBDT belongs to the family of decision tree ensemble based learners. A decision

tree is based on segmenting the space of all predictor variable values into a number
of non-overlapping subregions, and assign a constant or a label to each subregion.
Let the subregions be denoted Rj, j = 1, . . . J with γi the assigned constant. The
predictive rule for a tree model T and an observation x would then be [105]:

x ∈ Rj → T (x) = γj . (3.28)
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For a regression tree, for instance, the constant γi assigned to the subregion could
be the mean response associated the observations contained in the subregion; for
a classification tree, it could be the class mode, i.e., the most commonly occurring
class of training observations in the respective subregion.
Now let some training data consist of p predictor variables and a response for

each of N observations, i.e., (xi, yi) for i = 1, . . . N , with xi = (xi1, . . . xip). Then
a decision tree can be more generally expressed as:

T (x; Θ) =
J∑

j=1
γjI(x ∈ Rj) (3.29)

with I(x ∈ Rj), a binary indicator function taking on the value 1 for x ∈ Rj and
0, otherwise; and Θ = {Rj, γj}J1 the set of parameters defining the tree [105].
To build (or grow) a decision tree relates to finding the optimal Rj and γj which

define the partitioning of the data space. This is thus an optimization problem
with respect to Θ, as Θ summarizes these parameters:

Θ̂ = arg min
Θ

J∑

j=1

∑

xi∈Rj

L(yi, γj) . (3.30)

To approximately solve this optimization problem typically a top-down recursive
splitting algorithm is used, so as to find the best splits that result in the best
Rj [105]. As a criterion to evaluate the quality of a split, some loss function
L(yi, γj) is used. For regression, typically minimization of the sum of squares,
∑(yi− γj)2, serves as loss function which results in ȳj, the mean of the yi in region
Rj, as the best estimation of γj. The loss function takes on small values if the
variance of yi in the regions is low. It is thus a measure for purity of the subregions
(node purity). High node purity is preferable as it indicates that the predicted
response for an observation is likely to be close to its true value.
For classification, where the response is a discrete class label k of classes k =

1 . . . K, a different loss function is needed as criterion, such as cross entropy or log
loss:

D(yi, p̂jk) = −
K∑

k=1
p̂jklogp̂jk (3.31)
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with p̂jk = 1
Nj

∑
xi∈Rj

I(yi = k) the fraction of training observations in the jth
region that belong to the kth class; and Nj the number of training observations
in Rj [106]. Function D takes on small values for p̂jk close to either zero, or one.
This is the case when regions mainly contain observations belonging to the same
class [107]. D is thus a measure for purity of the subregions. Here, high purity
(small D) is preferable as it indicates a high probability of predicting the majority
class in the region; it is thus a good loss function to minimize in order to obtain
good predicitive performance for a classification tree.

Similar to other tree ensemble based learners, like random forest, GBDT involves
combining multiple decision trees into a single model. This way, a higher predic-
tion accuracy and generalization capacity can be achieved as compared to a single
tree model. In contrast to random forest, GBDT is an additive model and trees
are grown sequentially, such that each tree uses information from the previously
grown trees to step by step slowly minimize the prediction error. Moreover, GBDT
involves fitting the trees to modified versions of the input data instead of fitting
the input data directly.
A boosted tree model can basically be described as a sum of trees (base learn-

ers) [105]:

fM(x) =
M∑

m=1
T (x; Θm) (3.32)

which are built in a forward stagewise procedure, such that at step m, a tree T is
added to the current model:

fm(x) = fm−1(x) + T (x; Θm) . (3.33)

This reverts to finding the tree T , parametrized by Θm, that best possibly improves
fm−1 with respect to some loss function to provide a better model fm that is closer
to y. This means that, at each step m one has to solve:

Θ̂m = arg min
Θm

N∑

i=1
L(yi, fm−1(xi) + T (xi; Θm)) . (3.34)
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The solution tree is the one that maximally reduces (3.34). It would thus be the
tree that corresponds to the negative gradient of the loss function L. If the loss
function was squared error loss, i.e., L(yi, fm−1) = 1

2 (yi − fm−1(xi))2, then the
gradient would be yi − fm−1(xi), which are the current residuals of the previous
model fm−1, and the solution tree could be approximated by a regression tree that
best predicts these residuals. The resulting constants in each region Rjm would
just be the mean of the residuals in that region. In other words, instead of fitting
the actual data, the trees are fitted to the residuals resulting from the prediction
of the previous model.
In general, an approximate solution for (3.34) is given by fitting a new tree at

each stage m to the negative gradient of the respective loss function with respect to
the predictions from the previous model (gradient boosting approach). In GBDT
classification, typically multinomial deviance is used as loss function and, in order
to solve (3.34), regression trees are fitted to the pseudo-residuals obtained by the
negative gradient of the deviance function, such that the final output of fM are
probabilities for observations to belong to a class k.
Similar to other machine learning methods, different hyper-parameters can be

tuned in a cross validation setting where the training data is repeatedly split into
subpartitions used for repeated training and testing of different versions of a model
type. For instance, boosting-related hyper-parameterscan be tuned, such as the
number of iterations, i.e., the number of trees M . A different category of hyper-
parameters is tree shape related, and influence the subregios Rjm and Jm (the
number of subregions Rjm) of the mth tree. An example is setting a maximum
limit of observations NJ to be allowed in a subregion.
Both boosting and tree related hyper-parameters can be tuned and tested in a

cross validation setting to find an improved version of the model with increased
predictive performance and better generalization capacity. To assess the predictive
performance of the model, score functions like area-under-the-curve of the receiver
operating characteristic (ROC-AUC) can be used.

3.4.4 Artificial neural networks

As an alternative model to GBDT, an artificial neural network (ANN) was chosen
to approach the prediction problem in Part III. Similar to GBDT, it is a supervised
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learning technique capable of approximating complicated nonlinear functions and
to handle a multiclass response variable.
Different types of ANN exist. Here, a multilayer perceptron was used, a type

of ANN consisting of at least three layers (input, hidden and output layer) of
connected units (nodes, or neurons). Each unit of a layer is connected to every
unit of the next layer such that an ANN can be graphically represented as a network
connecting the input data X in the input layer via one or multiple hidden layers
to the output layer (Fig. 3.10). For a single hidden layer network and for the
case of multiclass classification of K classes, the output layer consists of K units
with the kth unit modeling the probability of class k. The response variable Yk is
coded as 0 – 1 for the kth class. The hidden layer consists of M units, where the
mth unit, Zm, is computed by applying a non-linear activation function to a linear
combination of the input X:

Zm = σ(α0m + αmX), m = 1, . . .M , (3.35)

with σ the activation function, e.g. a sigmoid function, α0m an intercept parameter,
and αm the weights from the input units to the mth hidden unit [108]. The hidden
units owe their name to the fact that the Zm they are creating, are not directly
observed but further processed. That is, the response Yk is modeled as a function
of linear combinations of the Zm:

fk(X) = gk(H), k = 1, . . . K, (3.36)

with H = (H1, . . . HK) and

Hk = β0k + βkZ, k = 1, . . . K , (3.37)

where Z = (Z1, . . . ZM), and βm0, βm are further intercept and weight parame-
ters [108]. gk is typically chosen as a function like the softmax function, so as to
obtain class-membership probabilities.
During training of the ANN, the set of model parameters {αm0, αm, βm0, βm}

is optimized with respect to a loss function. As a loss function for classification,
typically the cross-entropy function is chosen, similar to (3.31) used for GBDT. As
optimization algorithm, gradient descent is normally chosen. The gradient of the
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Figure 3.10: Network diagram for a single hidden layer neural network (ANN) used for
classification. Each unit in the hidden layer transforms the values from the previous
layer (here the input layer) with a linear transform, followed by a non-linear activation
function as described by (3.35). The output layer finally receives the values from the
previous hidden layer to transform them into some output values, e.g., class-membership
probabilities, as described by (3.36) and (3.37).

loss function with respect to the model parameters can be derived using the chain
rule, which translates into the backprojection algorithm. Using backprojection,
the model parameters are iteratively updated to improve the network’s predictive
performance.
Similar to GBDT and other machine learning methods, different hyper-

parameters can be tuned in a cross validation setting to test different versions of
a model type. For ANN, for instance, the hidden layer size and number of layers
can be increased to increase the flexibility of the model to closer fit the model to
the training data. To avoid overfitting, the model can further be regularized e.g.,
by penalizing weights with large magnitudes.
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Abstract

Background and purpose: Functional PET/MRI has great potential to im-
prove radiotherapy planning (RTP). However, data integration requires imaging
with radiotherapy-specific patient positioning. Here, we investigated the feasibility
and image quality of radiotherapy-customized PET/MRI in head-and-neck cancer
(HNC) patients using a dedicated hardware setup.
Material and Methods: Ten HNC patients were examined with simultaneous
PET/MRI before treatment, with radiotherapy and diagnostic scan setup, respec-
tively. We tested feasibility of radiotherapyspecific patient positioning and com-
pared the image quality between both setups by pairwise image analysis of 18F-
FDG-PET, T1/T2-weighted and diffusion-weighted MRI. For image quality assess-
ment, similarity measures including average symmetric surface distance (ASSD) of
PET and MR-based tumor contours, MR signal-to-noise ratio (SNR) and mean
apparent diffusion coefficient (ADC) value were used.
Results: PET/MRI in radiotherapy position was feasible – all patients were suc-
cessfully examined. ASSD (median/range) of PET and MR contours was 0.6 (0.4
— 1.2) and 0.9 (0.5 -– 1.3)mm, respectively. For T2-weighted MRI, a reduced SNR
of −26.2% (−39.0 – −11.7%) was observed with radiotherapy setup. No significant
difference in mean ADC was found.
Conclusion: Simultaneous PET/MRI in HNC patients using radiotherapy po-
sitioning aids is clinically feasible. Though SNR was reduced, the image quality
obtained with a radiotherapy setup meets RTP requirements and the data can thus
be used for personalized RTP.
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4.1 Introduction

4.1 Introduction

Within the scope of radiotherapy (RT) planning, imaging information is primarily
used for precise delineation of target volumes and calculation of an optimal ra-
diation dose distribution. In current clinical practice, these two steps of the RT
workflow are most commonly based on computed tomography (CT) data, since CT
offers high geometric fidelity and provides the electron density information of the
tissue [109]. However, in the current era of precision radiation oncology [110], the
additional integration of data from different imaging modalities such as (functional)
magnetic resonance imaging (MRI) or positron emission tomography (PET) has
great potential to improve and individualize RT planning [23–25]. First, T2- or T1-
weighted (contrast-enhanced) MRI shows superior soft tissue contrast as compared
to CT. Therefore, it may provide more precise information on tumor localization
and spread and thus increase the delineation accuracy of target volumes [19,20,111].
In addition, functional information assessed with PET [16, 17], diffusion-weighted
(DW) MRI [11, 12, 31] or dynamic contrast-enhanced (DCE) MRI [13, 14, 32] has
been associated with RT outcome in different tumor sites including head-and-neck
cancer (HNC). Its integration may thus be a promising strategy for adapting RT
planning for patients individually [26, 27, 112]. The combination of PET and MRI
as a hybrid system now offers spatially and temporally coregistered anatomical and
functional image data and may therefore become a key technology for individual
therapy adaptation [7, 23,34,35,113].
The integration of combined PET/MRI into RT, however, requires patient ex-

amination in RT position for accurate image alignment with the RT planning
CT [19,36,37,114,115]. Especially for HNC, it has been shown that the accuracy of
rigid or deformable registration algorithms is strongly improved when patient im-
ages are acquired in RT position for both CT and MRI [114,115]. The adaptation
to treatment position, on the other hand, is challenging as it requires RT immo-
bilization equipment to be combined with the MRI hardware, in particular with
the radiofrequency coils used for signal reception. For stand-alone MRI systems,
dedicated RT coil setups have been presented [116, 117]. However, these setups
cannot readily be transferred to a combined PET/MRI system since they do not
meet the demands of hardware PET attenuation correction, i.e., foremost, a fixed
and reproducible positioning of each hardware device for the usage of predefined
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attenuation maps [38]. For combined PET/MRI of HNC, an initial RT-specific
solution has recently been proposed by Paulus et al. [39]. It comprises a flat table
top and MR coil holders for flexible body coils.
In the present study, we upgraded the initial setup with a dedicated add-on,

designed and manufactured in-house, for the use of a RT mask fixation system.
Besides feasibility assessment of patient imaging in RT treatment position, the aim
of the study was to systematically evaluate the image quality of the customized
setup in a clinical setting in comparison with a diagnostic setup. Our hypotheses
were, that (i) following attenuation correction, good agreement between PET data
with RT and diagnostic setup is achievable, that (ii) MR image quality with RT
setup is inferior but still sufficient for RT planning applications, and that (iii)
potentially reduced MR image quality does not adversely affect the stability of
DW-MRI in terms of the mean apparent diffusion coefficient (ADC).

4.2 Material and Methods

Study design and imaging protocol

During the pilot phase of a prospective clinical trial (NCT -02666885), ten patients
with loco-regionally advanced head-and-neck squamous cell-carcinoma (HNSCC)
of the oro- or hypopharynx were examined before the start of multimodal treat-
ment (surgery and adjuvant RT) with simultaneous PET/MRI (Biograph mMR,
Siemens Healthcare GmbH, Erlangen, Germany). The imaging protocol included
18F-FDG PET, T2-weighted (T2w) MRI using turbo spin echo (TSE) technique,
T1w MRI after contrast agent administration (gadolinium) using volumetric inter-
polated breath-hold examination (VIBE) technique and DW-MRI (b = 150 and
800 s/mm2). Further protocol details are given in Table 4.1. PET and MR se-
quence parameters are listed in Supplementary Tables 4.2 and 4.3, respectively.
Following intravenous injection of 18F-FDG, two consecutive scans were performed
for each patient with RT-specific and diagnostic setup. The RT setup consisted
of a flat MR table top and a pair of C-shaped coil holders (Qfix, Avondale, PA,
USA) for 6-channel flexible body matrix coils, as introduced in [39]. In addition,
an in-house designed add-on was mounted onto the MR table top which allows for
patient fixation with a thermoplastic RT mask (ITV, Innsbruck, Austria). The
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4.2 Material and Methods

Figure 4.1: Coil setups for RT specific (A) and diagnostic imaging (B) of the head-and-
neck on the Biograph mMR. Setup A consists of a flat table top, C-shaped coil holders
and an add-on for patient fixation with a thermoplastic mask. For setup A, a µ-map of
the hardware components (C) was generated and used for attenuation correction during
PET image reconstruction.

diagnostic setup consisted of the state-of-the-art 16-channel head-and-neck coil of
the mMR system. Both hardware setups are depicted in Fig. 4.1. Hearing pro-
tection was ensured using earplugs. Scan limits were infraclavicular level to skull
base. For both setups, the first element of the spine array coil was activated to
improve signal acquisition in the neck region.

Data processing

Since objects located within the field of view of the PET detector may lead to
attenuation and scattering of the PET photons before signal detection, reliable
quantification requires data correction. Therefore, attenuation correction was per-
formed during PET data reconstruction using attenuation maps (µ-maps) of both
patient and hardware. The individual human µ-map was acquired based on a
Dixon fat-water separation technique [84]. For the RT scan, a hardware µ-map
was used that was created from CT images of the hardware components by bi-
linear transformation of CT Hounsfield units into linear attenuation coefficients
(LAC) at the characteristic PET photon energy level of Eγ = 511 keV, as described
in [39,76]. For the diagnostic scan, default vendor-supplied attenuation correction
of the hardware was applied.
DW-MRI was performed using echo-planar imaging (EPI) technique. Since EPI

is sensitive to B0-field inhomogeneities and susceptibility changes especially in the
head-and-neck region which can lead to image distortions and signal loss, a method
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Table 4.1: Patient characteristics and imaging protocol.

Patient Tumor site No. of
lesion ROIs

Att. corr.
FDG-PET

MR-based
µ-map

T2w MRI
(TSE)

T1w MRI
(VIBE)

Diffusion-weighted MRI

b=150 (AP) b=150 (PA) b=800 (AP) b=800 (PA) ADC d.c.

#01 OP 2 X X (X)c X X X (X)b (X)b (X)b

#02 OP/HP/VAL 3a X X X X X X X X X
#03 HP 2 X X X X X X X X X
#04 OP 2a X X X X X X X X X
#05 OP 1 X X X X X X X X X
#06 OP/MC 2 X X X X X X X X X
#07 BT/UV 2 X X X X X X X X X
#08 HP 2 X X X X X X X X X
#09 OP 1 X X X X X X X X X
#10 HP 1 X X X X (X)c (X)c (X)c (X)c (X)c

Abbreviations: OP – oropharynx; HP – hypopharynx; VAL – vallecula; MC – mouth cavity; BT – base of tongue; UV – uvula; ROI – region of interest;
att. corr. – attenuation corrected; TSE – turbo spin echo; VIBE – volume interpolated breath hold; AP – anteroposterior; PA – posteroanterior; d.c. –
distortion corrected.
a One FDG avid ROI was no RT target; one MR ROI was only weakly PET positive and not considered in PET analysis.
b Error in MR sequence parameter settings for scan with diagnostic setup.
c Strong geometric distortions in DW-MRI with RT setup.
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for distortion correction was applied based on repeated data collection with reversed
phase- encoding directions (RPED) as described in [118].

Image analysis

The evaluation of PET and MR image quality was performed patient-by-patient by
systematic image comparison between RT and diagnostic setup. PET images were
compared by estimating the similarity of corresponding regions of interest (ROI).
To better account for the difference in positioning between the two examinations,
rigid image registration was applied locally with a binary mask using elastix [119].
ROIs were defined in primary tumors and FDG-positive lymph nodes by creating
operator-independent 3D threshold contours that comprised voxels with PET ac-
tivity concentrations greater than or equal to 50% of the local maximum [120]. For
pairwise ROI comparison (n = 17), the following similarity measures were calcu-
lated in MATLAB R2017b (The MathWorks, Inc., Natick, Massachusetts, United
States): Dice similarity index (DSI), relative volume difference (RVD), average
symmetric surface distance (ASSD) and Euclidean distance of geometric centers
(DOGC).
To evaluate the impact of the RT-tailored coil configuration on MR-based PET

attenuation correction, human µ-maps were compared. Rigid registration was ap-
plied to the pair of µ-maps in two steps, i.e., for head and neck separately. Nearest
neighbor interpolation was chosen for final resampling to preserve discrete µ-map
values. For each one of the four tissue classes present in the RT µ-map, its relative
fraction and the corresponding mean attenuation coefficient in the reference µ-map
were determined.
For MR image quality assessment signal- and contrast-to-noise ratios (SNR,

CNR) were calculated. In T2w and distortion corrected DW-MR images, SNR
was determined in four anatomical ROIs defined manually in the submandibular
glands (left, right) and spinal cord at positions C1–2 and C4–5. In addition, SNR
of lesion and CNR of lesion versus adjacent tissue were determined for T2w MRI
based on the PET-derived ROIs. Image noise was estimated as the standard devia-
tion (SD) of the signal intensity in a background region [121]. For T1w MRI direct
quantitative comparison was not feasible as images were acquired at different times
after a single contrast agent administration. To further investigate if MR image
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quality with RT setup would allow for accurate delineation, RT target structures
were contoured manually by a radiation oncologist in training and a board-certified
radiologist (KZ, SG) on MR images from both scans using information of T2w and
contrast-enhanced T1w MRI. Rigid image registration allowed for the calculation
of similarity measures between the ROI pairs (DSI, RVD, ASSD and DOGC).
To assess the stability of DW-MRI, ADC maps were derived from the distor-

tion corrected b-value images. Mean ADC values were compared between RT and
diagnostic setups in the lesions based on the PET-derived ROIs. A variability
or repeatability coefficient was calculated as the SD of ADC percentage change
multiplied by 1.96 [122].
To assess the difference (i) in SNR and CNR in T2w and DW-MRI and (ii) in

ADC values between the scan setups, statistical analysis was performed using a
Wilcoxon signed rank test (MATLAB R2017b). In either case, a p-value below .05
was considered statistically significant.

4.3 Results

All patients were successfully examined with simultaneous 18F-FDG PET, anatom-
ical and DW-MRI in diagnostic as well as in RT setup using a dedicated hardware
solution for RT-specific patient positioning. However, one DW-MRI dataset with
RT setup presented strong distortion artifacts, probably due to patient swallowing,
which could not be corrected using RPED; one DW-MRI dataset with diagnostic
setup was incomplete due to wrong protocol settings.
Fig. 4.2 shows an example for high ROI agreement between RT and diagnostic

PET scan. Relative to the measurement with diagnostic setup, the analysis of
ROI similarity yielded a cohort median DSI of 0.88 (range: 0.69–0.94) and RVD of
−1% (−40-–24%). Similarly, median ASSD and DOGC were found to be 0.6mm
(0.4–1.2mm) and 0.9mm (0.4–3.8mm), respectively.
Within regions where the human µ-map with RT setup identified soft tissue,

fat, the intermediate class between soft tissue and fat, and air with respective
LACs of 1000, 854, 927 and 0 × 10−4 cm−1, the following median (range) values
were found in the µ-map with diagnostic setup: 989 (898–996), 865 (812–923),
935 (888–976) and 780 (50–993) ×10−4 cm−1, respectively. Mean relative fractions
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4.3 Results

Figure 4.2: Comparison of PET-derived ROIs in FDG-positive tumor and lymph node
regions between images acquired with RT and diagnostic scan setup. Boxplots present re-
sults of four different similarity measures for all patient ROIs. A–D: Dice similarity index
(DSI), relative volume difference (RVD), average symmetric surface distance (ASSD) and
the distance of geometric centers (DOGC). E: ROIs in two lesions are shown exemplarily
for one patient (#06) on a fused PET/MR image in axial view.

of the four tissue classes in RT and diagnostic µ-map (±SD) were determined
as 77.9 ± 15.6/75.1 ± 25.7%, 13.7 ± 13.4/13.9 ± 19.2%, 7.2 ± 2.7/8.8 ± 6.7% and
1.2 ± 1.4/2.3 ± 1.5%, respectively. We refer to Supplementary Fig. 4.6 for data
plots and an exemplary µ-map.
Exemplary images of T2w MRI with RT and diagnostic setup are presented in

Fig. 4.3. ROI-based analysis of T2w and distortion corrected DW-MRI with b-
values of 150 and 800 s/mm2 resulted in a cohort median difference in SNR of
−26.2% (−39.0–−11.7%), −37.9% (−66.7–17.9%) and −31.4% (−65.9–20.9%), re-
spectively. Similarly, a relative difference of SNR in lesion of −32.2% (−39.3–2.8%)
and of CNR in lesion versus adjacent tissue of −31.3% (−44.7–10.6%) was found
between the coil setups for T2w MRI (Fig. 4.4). Differences in SNR and CNR were
found to be significant for both T2w and DW-MRI (p < .001).
However, high similarity was found for MR delineated contours. Median DSI and

RVD were 0.85 (0.68-–0.89) and 0% (−18—50%), respectively. ASSD and DOGC
were 0.9mm (0.5—1.3mm) and 1.4mm (0.3—4.0mm) (Fig. 4.5).
No significant difference was found between ADC values generated with RT and

diagnostic setup. For the lesions, a cohort median difference in ADC of −1.7%
(−25.5—24.1%) (p = n.s.) was determined (Supplementary Fig. 4.7). The re-
peatability coefficient was 17.6%.
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Figure 4.3: T2w MRI using turbo spin echo (TSE) technique of two patients (A, B: #05;
C, D: #09) acquired with RT specific (A, C) and diagnostic scan setup (B, D). Note the
difference in patient positioning between both scans. ROIs are shown for tumor (red)
and adjacent tissue (green). The difference in tumor SNR and CNR in (A) relative to
(B) was −21.8% and −21.1%, respectively (good correspondence). Similarly, −30.7%
and −31.5% were found for (C) relative to (D) (average correspondence).
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4.3 Results

Figure 4.4: Bland Altman plots (A–E) for SNR and CNR for measurements with RT
and diagnostic setup. Graphs show difference between two measurements plotted against
their average. Solid lines indicate the mean of differences and the limits of agreement
(mean± 1.96×SD). Corresponding confidence intervals are shown as gray-shaded areas.
A–C: SNR in anatomical ROIs for T2w and distortion-corrected DW-MRI with b-values
of 150 and 800 s/mm2, respectively. D, E: SNR in lesion and CNR in lesion vs. adjacent
tissue for T2w MRI, respectively. F: Boxplot for the relative difference of SNR and CNR
between both scan setups for A–E, accordingly.

Figure 4.5: Pairwise comparison of MR delineated target structures between RT and
diagnostic scans. Boxplots present results of four different similarity measures for all
contours. A–D: Dice similarity index (DSI), relative volume difference (RVD), average
symmetric surface distance (ASSD) and the distance of geometric centers (DOGC). E:
ROIs in two lesions are shown exemplarily for one patient (#06) on a T1w contrast-
enhanced MR image in axial view.
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4.4 Discussion

In personalized RT, treatment adaptation based on PET/MR information could be
of particular relevance. However, data integration requires precise alignment with
the RT planning CT. Advanced strategies like deformable image registration are
available and may yield reasonable results [123], but multimodal alignment is more
precise if both examinations are conducted in RT position, especially for head-and-
neck [115]. The purpose of this study was to assess feasibility and image quality of
a dedicated hardware solution for PET/MRI in treatment position. Image quality
assessment, in particular, was based on the pairwise comparison of FDG-PET and
MR contours, MRI-derived SNR and mean ADC values between RT and diagnostic
setup.
Image analysis of the first ten patients recruited in this clinical trial demonstrated

the clinical feasibility of functional PET/MR examination in RT-specific position
using a customized hardware setup and dedicated positioning aids – all patients
were successfully examined. Although patients reported that mask fixation felt
rather tight, the setup was well tolerated and no examination had to be interrupted
or aborted.
Certain components of the RT setup used in this study have been presented ear-

lier [39]. Results of phantom-based PET analysis indicated that correct hardware
component attenuation correction is feasible. However, the initial setup did not yet
allow for patient examination in actual RT position but needed a modified tabletop
to allow for the use of head-and-neck immobilization equipment. In the present
study, this add-on was designed and a CT-based attenuation map was generated
for attenuation correction.
ROI-based analysis showed that PET images acquired with RT and diagnostic

setup could be rated as equivalent with regards to target volume definition, as high
volume agreement (high DSI/RVD; low ASSD/DOGC) was found. In particular,
the cohort maximum ASSD of 1.17mm was less than the PET voxel size of 2.8mm.
However, ASSD rather represents a low estimate of residual volume mismatch.
Besides that, results may be regarded as conservative estimates as registration
uncertainty is included. Direct quantitative PET comparison was not practicable
due to variations in physiological tracer uptake between consecutive examinations.
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In this study, hardware component µ-maps were used in offline PET data recon-
struction toolkit RetroRecon. A method for more automated hardware component
attenuation correction has recently been proposed [124] and may further simplify
the clinical workflow, in particular if the setup is to be extended to other anatomical
regions.
A fat-water separating Dixon sequence was used in this study for generation of

human µ-maps. As the flexible coils of the RT setup had a greater distance to the
head-and-neck, which comes along with lower SNR, the Dixon-based µ-map was
verified toward correct tissue segmentation. Very good agreement of LACs between
both scan setups was found except for air segmentation. However this difference is
rather negligible since in the head-and-neck region, the fraction of voxels assigned
to air is very low (1.2±1.4 vs. 2.3±1.5% for RT and diagnostic setup, respectively).
Moreover, the discordance in air detection is likely caused by the variation of air
pockets in the oral or pharyngeal region between the two examinations, rather than
by deficiencies in the µ-map generation with RT coil setup.
The results are relevant not only for correct PET quantification but also for

future RT planning based on PET/MRI as the sole modality, because MR Dixon
sequences are an attractive approach to generate substitute or pseudo CTs [125].
For this purpose, correct tissue classification is crucial for dosimetric accuracy, but
we do not expect significant differences for pseudo CTs between the setups as for
Dixon-based µ-maps only minor differences were observed, as discussed above.
SNR was measured in T2w and DW-MRI. Of note is that the method for noise

estimation was chosen for simplicity and its frequent use while potentially more
accurate methods exist especially when parallel imaging techniques are used. How-
ever, such approaches may require e.g. specific sequence modification for additional
acquisition of noise only data without radiofrequency pulse excitation [126], multi-
ple repeated image acquisition for pixel-by-pixel noise SD or repeated acquisition
for a noise estimate based on pixel-by-pixel difference [127].
Reduced SNR and CNR were observed as compared to diagnostic imaging. Yet,

the image quality seems to be sufficient for RT planning applications as good agree-
ment was found between target structures delineated on MRI. The level of agree-
ment should be assessed against the level of variability of repeated MR delineation
since manual delineation is open to both inter- and intra-observer variation [128].
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Recently, these two types of variation were quantified for two head-and-neck spe-
cialists by a mean DSI of 0.80 and 0.86, respectively [129]. Our results seem to
be in the same order (DSI = 0.83± 0.06 (mean± SD)) and thus support the con-
clusion that MR image quality with RT setup appears suitable for RT planning
requirements.
The purpose of a PET/MR examination for RT planning is rather different from

a diagnostic one. Besides uniform patient positioning for precise alignment with RT
planning CT, isotropic voxel size and geometric accuracy of MRI are essential [7,24].
In this protocol, isotropic voxel size was realized for T1w MRI and geometric
accuracy was assessed for DW-MRI and reported earlier [118]. To improve accuracy
of EPI-based DW-MRI by correction for B0-field inhomogeneities and susceptibility
induced image distortions different techniques have been proposed [41, 130, 131].
Here, RPED technique was used. The level of geometric accuracy of DW-MRI
after RPED correction was in the order of 1mm [118]. Of note is that the method
may correct for geometric distortions but cannot accurately account for signal loss
or pile-up.
Comparison of ADC values within FDG-avid tumor and lymph node regions

yielded no significant difference between both scan setups indicating that the RT
setup does not adversely influence quantification accuracy of DW-MRI. However,
deviations in ADC of up to 25.5% and a repeatability coefficient of 17.6% were
observed. These values may seem large but correspond to baseline ADC variabil-
ity in patients with HNSCC. Based on repeated measurements with a one-week
interval in 16 patients, Hoang et al. have determined deviations of up to 25% and
a repeatability coefficient of 15% [122]. Hence, we consider that the variation in
ADC between our two measurements does not necessarily arise from the difference
in imaging setup but may rather reflect the uncertainty of EPI-based DW-MRI in
head-and-neck.
One question is whether the ADC variability will not compromise clinically rel-

evant information. This especially applies to the measurement of baseline and
intratreatment ADC changes to predict outcome or monitor early treatment re-
sponse [132, 133]. Clinically this is appealing as it would allow to opt for alter-
native treatment strategies for patients with poor prognosis or nonresponders. It
is essential, though, that data interpretation takes into account the high intrinsic
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variability in ADC and yet, relevant ADC information was found e.g. for HNSCC
nodal disease where baseline variability was less than intratreatment change [122].
A general advantage of using immobilization equipment during examination is the

reduction in bulk motion artifacts in MR images. Artifacts were less pronounced
in MR images acquired with RT mask fixation as compared to the diagnostic setup
(data not shown). Artifacts due to swallowing, however, cannot entirely be avoided.
Beyond that, the RT setup could potentially still be improved. Closer positioning
of the coils to the patient would certainly improve the image quality, but repro-
ducible positioning could become more challenging. Besides increasing the number
of averages decreasing the resolution, decreasing the acceleration or reducing TE
would give a gain in SNR. However, modifications at the expense of longer acqui-
sition time should be balanced carefully against patient comfort as imaging with
mask fixation is demanding. We recommend to opt for a total scan time of no
longer than 30min.
Potentially, similar detail to PET/MRI with RT setup in combination with a

planning CT could be obtained by combining data from stand-alone MRI in RT
position with a planning PET/CT. It may be with the prospect of direct MR
planning for head-and-neck in the future that the value of combined PET/MRI
with RT setup becomes most pronounced since the number of examinations could
be reduced to one.
In conclusion, simultaneous PET/MR examination of HNC patients using RT

positioning aids is clinically feasible. Besides good agreement of PET, the proposed
setup comes with a compromise in MR image quality in terms of SNR. However,
MR delineation accuracy was not adversely affected and ADC measurement with
RT setup was found to be stable. The image quality obtained with RT setup
therefore meets RT planning requirements and thus allows for precise integration
of PET/MRI for future personalized treatment strategies.
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Table 4.2: PET parameters.

Parameter RT scan Diagnostic scan

Radiopharmaceutical 18F-FDG 18F-FDG
Injected dose 238±8MBq (range: 219–248MBq) –
Acquisition start time 84±0.4min p.i. (range: 84–85min) 139±5min p.i. (range: 130–146min)
Time difference to first
scan – 54± 5min (range: 45–61min)
Frame duration 6min 6min
Reconstruction method 3D OP-OSEM (2 it., 21 subs.) and

4mm Gaussian filtering
3D OP-OSEM (2 it., 21 subs.) and
4mm Gaussian filtering

Inplane resolution 2.80× 2.80mm2 2.80× 2.80mm2

Slice thickness 2.03mm 2.03mm
Matrix size 256× 256 256× 256
Number of slices 127 127

Values are listed as mean ± standard deviation. The time difference between the two scans was due
to the time needed for setup change and because the second (diagnostic) scan of the head-and-neck
region was part of a whole-body examination in caudocranial direction for staging of the disease and
the detection of distant metastases. Abbr.: RT - radiotherapy; FDG - Fluorodeoxyglucose; p.i. - post
injection; OP-OSEM - ordinary Poisson ordered subset expectation maximization; it. - iterations; subs.
- subsets.

Figure 4.6: A: data plot shows linear attenuation coefficient (LAC) values (mean ±
standard deviation (SD)) in MR-based patient µ-map acquired with diagnostic setup
that were determined within the respective tissue class segments in the RT µ-map. B:
relative fraction of each tissue class within the RT (red) and the diagnostic µ-map (gray).
Error bars are shown in light color, respectively, and represent 1× SD. C: axial view of
MR-based µ-map of one patient (#02, RT setup) with segmented tissue classes.
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Table 4.3: MR sequence parameters.

Parameter DW-MRI T2w MRI Dixon scan T1w MRI

Inplane resolution 2.1× 2.1mm2 0.6× 0.6mm2 2.6× 2.6mm2 1.25×1.25mm2

Slice thickness 5mm 3mm 2.6mm 1.25/3.08mm
Slice gap 1mm 0.3mm – –
Matrix size 192× 156 384× 384 192× 79 224× 192/

320× 240
Repetition time 5800ms 7440ms 3.6ms 4.4/4.25ms
Echo time 58ms 75ms 2.36/1.23ms

(in/opp)
1.58/1.88ms

b-values 150 and 800 s/mm2 – – –
Diffusion directionality Isotropic – – –
Turbo factor – 14 – –
Contrast agent – – – Gadovist
Flip angle 180 deg 160 deg 10 deg 12 deg
Number of averages 3/3 (b150/b800) 2 1 4/1
Bandwidth 1736Hz/px 260Hz/px 965Hz/px 338/446Hz/px
Field of view 324× 399mm2 240× 240mm2 328× 500mm2 240×280/300×

400mm2

Number of slices 34 47 128 80/64
Parallel imaging
technique GRAPPA GRAPPA GRAPPA GRAPPA
Acceleration factor 2 2 2 2
Fat suppression None None – Yes
Acquisition type 2D 2D 3D 3D

For T1w MRI, values refer to RT and diagnostic setup, respectively. Abbr.: in - in-phase; opp - opposed-
phase; RT - radiotherapy scan; diagn. - diagnostic scan.
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Figure 4.7: A: Bland Altman plot for mean ADC values in PET-derived ROIs measured
with RT and diagnostic setup. Graph shows difference between two measurements plotted
against their average. Solid lines indicate the mean of differences and the limits of
agreement (mean ± 1.96 × SD). Corresponding confidence intervals are shown as gray-
shaded areas. B: relative difference of ADC between both scans. C, D: ADC map of
one patient (#06, axial slice) acquired with RT and diagnostic setup, respectively. ROI
structures in lesions are shown in color. Note the difference in patient positioning between
both scans.

67



4 R.M. Winter et al./Radiother Oncol 128 (2018) 485–491

Figure 4.8: DW-MRI and ADC maps of two patients (#06 and #09) acquired with RT
and diagnostic scan setups, respectively. A–D: DW-MRI with b = 150 s/mm2 with RT
and diagnostic setup of patient #06 (A, B) and patient #09 (C, D), respectively. E–F:
DW-MRI with b = 800 s/mm2 with RT and diagnostic setup of patient #06 (E, F) and
#09 (G, H). I–L: Similarly, ADC maps are presented for patient #06 (I, J) and #09
(K, L). PET-derived ROIs are shown for patient #06 (green, orange) and patient #09
(blue) to estimate the difference in ADC. A mean difference in SNR between both scan
setups of −24.1% and −16.6% was found for b150 and b800 images for patient #06 (good
correspondence). Similarly, a difference of −29.3% and −29.6% was found for patient
#09 (average correspondence). The mean difference in ADC was 7.8% and 0.7% for green
and orange ROI (good correspondence) and 14% for blue ROI (average correspondence)
for patient #06 and #09, respectively.
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5.1 Introduction

Simultaneous positron emission tomography/magnetic resonance imaging
(PET/MRI) has high potential to improve radiotherapy (RT) planning.
Key advantages are increased delineation accuracy and the integration of
functional information that may be used for patient-individual therapy adapta-
tion [7, 24,25,34,35,113,134].
In particular, diffusion-weighted (DW) MRI has been associated with RT out-

come in different tumor entities including head and neck [11, 12, 31]. In clinical
routine, diagnostic DW-MRI is commonly performed based on echo-planar imag-
ing (EPI) sequences due to favorably short acquisition times reducing bulk motion-
induced phase perturbations [40]. However, such EPI techniques are sensitive to
B0-field inhomogeneities which leads to image distortions and signal loss. This
especially applies to the head and neck region [41], where unfavorable geometry
and susceptibility changes can lead to high geometric mismatch of the DW- and
an anatomical MR image. For future biologically adapted RT planning purposes
based on DW-MRI information, however, high geometric fidelity is crucial [36,113].
PET/MRI integration into RT requires accurate image co-registration with the

RT planning computed tomography (CT). Therefore, patient examination in RT-
specific position is essential. Adapting PET/MRI examinations to RT position
requires immobilization tools to be combined with the MRI hardware. For imaging
of the head and neck, a dedicated hardware solution has recently been proposed [39].
In this study, we evaluated its clinical performance with respect to DW-MRI. Since
EPI-based DW-MRI is prone to image distortions whereas RT planning demands
high geometric fidelity, the focus of this investigation was (i) on the assessment of
geometric accuracy, (ii) on the definition of an appropriate method for distortion
correction and (iii) on the stability of the apparent diffusion coefficient (ADC).

5.2 Material and Methods

During the pilot phase of a prospective clinical trial (NCT-02666885), ten head
and neck squamous cell-carcinoma (HNSCC) patients were examined with simul-
taneous PET/MRI (Biograph mMR, Siemens Healthineers GmBH, Erlangen, Ger-
many) including T2-weighted (T2w) MRI and EPI-based DW-MRI (b = 150 and
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800 s/mm2), prior to the start of RT. For each patient, two scans were performed
– using a RT-specific and a standard diagnostic setup (Supplementary Figure 5.3).
The RT setup consisted of a flat MR table top and coil holders for 6-channel flex-
ible body coils, as described in [39]. An in-house designed add-on was mounted
onto the MR table top to ensure patient fixation with a thermoplastic RT mask
(ITV, Innsbruck, Austria). MR sequence parameters were identical for both scans
(Supplementary Table 1).
Distortion correction of DW-MR images was realized based on repeated data

collection with reversed phase-encoding directions (RPED), i.e. with orienta-
tions anteroposterior (AP) and posteroanterior (PA), resulting in pairs of images
with distortions oriented in opposing directions. From these pairs of images, the
susceptibility-induced off-resonance field was estimated using a method similar to
that described by Andersson et al. [59] and as implemented in open-source toolkit
FSL [135]. AP and PA images were combined into a single, distortion corrected
one, by finding the field that, when applied to the two images, would maximize the
similarity of the unwarped images.
Geometric accuracy of distortion-corrected and uncorrected DW-MRI was de-

rived from pairwise comparison with distortion-robust T2w-MRI. Left and right
submandibular glands and the spinal cord at C1-2 and C4-5 were defined manually
as regions of interest (ROIs) (i) on the original DW-MR image with b = 150 s/mm2

(AP), (ii) on the corresponding distortion-corrected image, (iii) on the T2w-MR
image. ROIs from DW-MRI were resampled onto the T2w-MRI grid. ROI-based
similarity measures included Dice similarity index (DSI), relative volume differ-
ence (RVD), average symmetric surface distance (ASSD) and Euclidean distance
of geometric centers.
To assess the quantitative fidelity of DW-MRI, ADC maps were derived from

distortion-corrected b-value images and compared between scan setups by their
mean values based on the pre-defined anatomical ROIs.
To evaluate (i) the benefit of RPED-technique for geometric alignment between

DW-MRI and anatomical reference MRI, statistical analysis was performed using
a Wilcoxon rank sum test (MATLAB R2009b). To evaluate (ii) the difference
in ADC values between scan setups, statistical analysis was performed using a
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Figure 5.1: Overview of original DW-MRI (b = 150 s/mm2) with phase-encoding direc-
tion anteroposterior (A, E) and posteroanterior (B, F), corresponding distortion-corrected
images (C, G) and T2w-MRI (D, H) of one patient (#06). A-D: axial slice; E-H: sagittal
slice. The image set was acquired with RT-specific scan setup. The four ROIs placed
in submandibular glands and different sections of the spinal cord based on the T2w-MR
image are shown in color and are as well displayed on the DW-MR images in order to
highlight the respective geometric (in-)accuracy.

Wilcoxon signed rank test. In either case, a p-value below 0.05 was considered
statistically significant.

5.3 Results

Acquisition of T2w- and DW-MRI in the diagnostic setup as well as in the RT setup
was feasible in all patients. However, for one patient strong distortion artifacts and
signal loss could not be corrected by using RPED, most likely due to swallowing
artifacts. Figure 5.1 shows an example of original DW-MRI acquired using two
different phase-encoding directions in comparison to the distortion-corrected image
data as well as the anatomical T2w-MRI.
Relative to T2w-MRI, DSI (mean ± standard deviation) was 0.85 ± 0.04/0.53 ±

0.17 and 0.79 ± 0.16/0.53 ± 0.17 for RT-specific and diagnostic setup in distortion-
corrected/uncorrected images, respectively. Similarly, RVD was found to be −2 ±
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Figure 5.2: Boxplots display results of four similarity measures for inter- and intra-
scan setup comparison of original, uncorrected DW-MR images (b = 150 s/mm2, phase-
encoding AP) and corresponding corrected images; similarity was assessed on a ROI
basis with ROIs defined on the T2w-MR image serving as reference. Boxplots represent
single ROI-based values over all patients. A, B: To highlight ROI similarity between the
(un-)corrected DW-MR image and the T2w-MR reference image, the latter is shown for
one patient (acquisition with RT setup) in two planes and ROIs that were defined on the
DW-MR images are displayed together with the reference ROI.

12/−16 ± 12% and −3 ± 16/−13 ± 21%. ASSD was 0.4 ± 0.2/1.3 ± 0.5mm and
0.5 ± 0.4/1.4 ± 0.8mm and the distance of the geometric centers of the ROIs was
determined as 1.0 ± 0.5/3.3 ± 1.6mm and 1.4 ± 1.1/3.4 ± 2.1mm.
Distortion correction based on RPED yielded substantially increased geometric

accuracy, demonstrated by significant improvements of the ROI-based measures
DSI (p < .001), RVD (p < .01), ASSD (p < .001) and distance of ROI centers
(p < .001) for RT and diagnostic scan setup alike (Figure 5.2).
The relative difference of volume-averaged ADC values in distortion-corrected

maps with respect to the diagnostic setup was 1 ± 10% (p = n.s., Supplementary
Figure 5.4).
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5.4 Discussion

For the integration of PET/MRI into RT planning, precise image fusion of
PET/MRI and planning CT is mandatory. For this purpose, patient examination
in RT position is essential, especially in the case of head and neck [115]. Image
analysis of the first ten patients recruited in this clinical trial demonstrated the
clinical feasibility of functional PET/MRI examination in RT-specific position
using a customized hardware setup.
PET/MRI integration into RT also requires high geometric accuracy of the image

data [36, 113]. Image analysis revealed substantial distortions in DW-MRI data.
Meanwhile, the choice of coil setup did not affect the magnitude of image distortion.
This was as expected, as magnetic field inhomogeneity and susceptibility artifacts
are not expected to differ between coil setups. Final distortion correction with
RPED-technique yielded significant improvement of geometric match between DW-
MRI and anatomical image data, in particular when using the RT setup for data
acquisition. Thus, DW-MRI integration into RT planning would be considerably
improved when applying this correction technique.
This easy-to-implement RPED-based method for distortion correction may in

the future also be relevant for other hybrid MR-applications related to RT, such
as the MR-Linac or MR-hyperthermia, since technology advances in DW-MR se-
quence design minimizing geometric inaccuracy are generally implemented with a
considerable time delay into novel, cutting-edge multimodality systems, compared
to state-of-the-art MR standalone systems.
Besides RPED, different alternative techniques have been proposed for reducing

artifacts in EPI-based DW-MRI. Reduction of echo spacing in readout-segmented
multi-shot EPI (rsEPI), for instance, diminishes spatial inaccuracy in areas of sus-
ceptibility changes, but comes at the expense of substantially longer scan times,
compared to standard single-shot EPI [130]. Another approach for the correction of
geometric distortions has been developed based on the generation of magnetic field
maps using data acquisition with different echo-times [131]. The main disadvantage
of this technique is that field map calculation is based on multiple gradient-echo
images that are acquired separately from each other and from the actual DW-MR
dataset, rendering the method more sensitive to motion. Only recently, integrated
2D shim and frequency adjustment for EPI-based DW-MRI (intEPI) has been im-
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plemented for the mMR system in our institution, which yielded very promising
results in terms of image quality improvement and could be used in combination
with RPED or other correction methods in the future, to further optimize geometric
accuracy for RT purposes [41].
Although image quality using flexible coils was expected to be lower compared to

a standard diagnostic head and neck coil, primarily because the distance between
subject and coils is increased due to the space needed for RT positioning aids,
visual assessment of images acquired with RT setup revealed rather lower levels of
image artifacts since patient motion was reduced by mask fixation. Nevertheless,
artifacts due to swallowing cannot be avoided by RT mask fixation.
No significant difference in corrected ADC values was found between the scan

setups. Thus, data acquisition with RPED-technique using flexible radiofrequency
coils in the context of RT-specific patient positioning seems not to be a limitation
for quantitative DW-MRI and future multi-parametric PET/MRI schemes.
Limitations of the similarity assessment between DW-MRI and anatomical ref-

erence MRI may originate from manual ROI delineation and resampling on a com-
mon image grid. However, both steps were considered necessary for effective image
comparison and calculation of similarity measures. Moreover, only one b-value
(b = 150 s/mm2) was used for analysis. Nevertheless, results are considered to be
representative, since the susceptibility-induced field causing distortions may be, to
a first approximation, considered constant for all acquired images, meaning that
one set of images is internally consistent [59].
Investigation of the effects of the RT hardware setup on PET data quantification

and MR image quality was beyond the scope of this work and will be analyzed in
a future study.
In conclusion, PET/MRI examination of HNSCC patients in RT position using

dedicated positioning aids is clinically feasible. Distortions in DW-MRI can effec-
tively be reduced by RPED-technique. ADC acquisition with RT setup was found
to be stable. The presented imaging solution thus enables more precise integra-
tion of simultaneous PET and DW-MRI into RT planning for future personalized
treatment strategies.
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5.6 Supplementary Material

Figure 5.3: Imaging setups. A: RT-specific scan setup consisting of MR table top, coil
holders for 6-channel flexible coils and table top add-on for patient fixation with RT
mask. B: Diagnostic 16-channel head and neck coil that does not allow imaging in RT
position.
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Figure 5.4: Left panel: ROI-derived mean ADC values for both scan setups. Right panel:
Relative difference in ADC values between the RT-specific and the diagnostic reference
setup.
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Table 5.1: MR sequence parameters.

Parameter DW-MRI T2w-MRI
Inplane resolution 2.1× 2.1mm2 0.6× 0.6mm2

Slice thickness 5mm 3mm
Slice gap 1mm 0.3mm
Matrix size 192× 156 384× 384
Repetition time 5800ms 7440ms
Echo time 58ms 75ms
b-values 150 and 800 s/mm2 –
Flip angle 180 deg 160 deg
Number of averages 3 2
Bandwidth 1736Hz/px 260Hz/px
Field of view 324× 399mm2 240 × 240mm2

Number of slices 34 47
Acceleration factor 2 2
Fat suppression None None
Acquisition type 2D 2D
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Abstract

Background and purpose: Hypoxia imaging via dynamic FMISO-PET has
shown prognostic value for radiation therapy response of patients with head-and-
neck squamous cell-carcinoma (HNSCC). However, in routine clinical practice
FMISO-PET is subject to limited availability and extensive imaging protocols.
Its replacement by MRI would be an intriguing alternative. Our hypothesis is
that a multi-parametric model comprising both diffusion and perfusion related
MRI parameters is able to predict dynamic FMISO-PET at a voxel level. In the
present study, machine learning approaches were used to develop such model on
FMISO-PET/MRI data of human HNSCC xenografts grown in mice.
Material and Methods: Combined PET/MRI data of n = 62 ectopic HN-
SCC xenografts was acquired including dynamic FMISO-PET, diffusion-weighted
(DWI) and dynamic contrast-enhanced (DCE) MRI. Animal data was processed
on voxel level (116 980 voxels) and split randomly into training (80%) and inde-
pendent test cohorts (20%). K-means clustering was performed on noise filtered
FMISO-PET time-series data to categorize each voxel into one of five different
hypoxia-associated curve types. These hypoxia curve types were used as response
variable for classification. Three MRI parameters served as predictors: ADC and
projection coefficients c1 and c2 of the first two principal components obtained by
principal component analysis of the DCE-MRI data. Gradient boosted decision
trees (GBDT) and artificial neural networks (ANN) were trained and assessed by
5-fold cross-validation, and the model with best predictive performance was eval-
uated in the independent test cohort. ROC area-under-the-curve (AUC) served as
metric to assess predictive performance.
Results: Cross-validation on the training data yielded a similar validation fold
based ROC-AUC score of 0.80± 0.02 (macro-averaged) for both GBDT and ANN.
GBDT was favored over ANN as final model for better interpretability and yielded
ROC-AUC = 0.80 in the independent test cohort. Parameter importances of ADC
and DCE-MRI projection coefficients c1 and c2 in the final model were 20%, 39%
and 41%, respectively.
Conclusion: A GBDT classifier for multi-parametric prediction of dynamic
FMISO-PET derived hypoxia classes by DWI and DCE-MRI was trained and
successfully validated on small animal data. The proposed method presents a
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novel approach for voxelwise learning of functional image information. Retraining
the model on patient data for clinical validation seems highly promising.

6.1 Introduction

Tumor hypoxia is an important adverse prognostic factor for treatment outcome of
patients receiving radiation therapy (RT) and has been shown to be present in a
wide variety of solid tumors including head-and-neck squamous cell-carcinoma (HN-
SCC) [18,47–50]. A well-established method to detect and assess tumor hypoxia in
both preclinical and clinical settings is positron-emission-tomography (PET) with
hypoxia-specific 18F labeled radiotracers such as Fluoromisonidazole (FMISO), Flu-
oroazomycin arabinoside (FAZA) or Fluortanidazole (HX4) [18,51,60,61,136]. Clin-
ical studies have shown that imaging of tumor hypoxia via hypoxia PET has high
prognostic value for RT response of patients with HNSCC [17, 51, 60]. Planning
studies investigating predictive potential and first trials adapting RT dose prescrip-
tion based on PET derived hypoxia status are currently ongoing [30,137,138].
Hypoxia PET, in particular, has high prognostic value with respect to RT re-

sponse when image information on tumor hypoxia is derived from time series
data [17, 30, 53–55] as such dynamic data includes both information on early tem-
poral tracer distribution in the tumor tissue related to vascular properties as well
as on late retention effects [17, 30, 53–58]. However, in routine clinical practice
dynamic hypoxia PET is subject to limited availability and extensive imaging pro-
tocols. A surrogate marker derived from functional magnetic resonance imaging
(MRI) may provide a more practical and readily implementable alternative.
Under this perspective, recent studies have investigated pairwise correlations

between hypoxia information and various MRI parameters [113, 139–142]. Mod-
erate to high correlations between different FMISO-PET parameters and parame-
ters derived from dynamic contrast-enhanced (DCE) MRI were identified for pa-
tients with HNSCC [113, 139, 140], but also high variation across patients was
observed [113, 139]. Different studies found significant correlations between single
DCE-MRI derived parameters and hypoxia defined by pimonidazole staining of
tumor tissue from HNSCC patients [141,142].
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However, a relation between functional MRI and hypoxia PET might not be fully
captured by simple pairwise correlation analysis alone. Hompland et al. presented
a strategy to indirectly measure hypoxia in prostate cancer by exploiting joint
information of two parameters derived from diffusion-weighted MRI (DWI) [97].
With a model including apparent diffusion coefficient (ADC) and fractional blood
volume (fBV) from intravoxel incoherent motion (IVIM) modeling, good results for
prediction of pimonidazole immunoscore could be obtained.
Machine learning now offers advanced tools to build prediction models that

may capture very complex relationships between multimodal imaging parame-
ters [143–145]. Therefore, we hypothesized that a machine learning model combin-
ing both diffusion and vascularity related parameters from DWI and DCE-MRI is
able to predict dynamic hypoxia PET on tumor voxel level. In the present study,
we developed such model on dynamic FMISO-PET/MRI data of human HNSCC
xenografts grown in mice and investigated its robustness in an independent cohort.

6.2 Material and Methods

Imaging

62 ectopic HNSCC xenografts grown in mice (female immunodeficient nude mice, 4–
6 weeks old, NMRI nu/nu, Charles River Laboratories) were examined with simul-
taneous PET/MRI (7T MRI Bruker Biospec equipped with a PET insert [62,146]).
The image protocol included dynamic FMISO-PET (90min), T2-weighted (T2w)
MRI (2D RARE), DWI (2D standard DTI) and DCE-MRI (2D FLASH). Experi-
ments were approved according to institutional guidelines and German animal wel-
fare regulations (35/9185.81-2/R4/16). HNSCC xenografts were derived from eight
different cell-lines: (UT-SCC-45, XF354, UT-SCC-14, UT-SCC-8, FaDu, CAL-33,
UT-SCC-5, SAS). 2–5 days before tumor cell injection (hind leg, subcutaneous),
animals received a 4Gy total body irradiation to suppress the residual immune
system and facilitate tumor growth. During imaging experiments, animals were
anesthetized using a mixture of isoflurane (1.5–2%) and air. Breathing rate was
constantly monitored and body temperature regulated via water heating pads.
FMISO tracer was administered intravenously (tail vein). PET data was acquired

in list mode and reconstructed into 65 time-series images with time frame setting
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of 36× 10, 18× 60 and 11× 360 s using 2D-OSEM (4 iterations, 16 subsets). MR
data was acquired with a mouse whole-body radiofrequency coil (Bruker). DWI
was performed with nine equidistant b-values ranging from b = 0– 800 s/mm2.
T2w MRI and DWI image acquisitions were breathing gated. DCE-MRI was ac-
quired from 1min before to 12.5min after gadolinium based contrast agent injection
(Gadobutrol, Gadovist, Bayer Vital GmbH, Germany) with a temporal resolution
of 5.4 s. Further PET and MR acquisition parameters are listed in Supplemen-
tary Table 6.2. Complete datasets of 42 animals could be used for analysis as of
62 animals examined, five had to be excluded for small tumor size, fourteen for
incomplete data acquisition and one for image artifacts.

Pre-processing

For data analysis on a common image grid, rigid image registration was applied
using open source tool elastix [119]. Evaluation of the image similarity metric
was constrained to a small region containing the tumor and surrounding area.
The PET image with voxel size of 0.65 × 0.65 × 0.8mm3 was chosen as fixed
image. Registration was chosen over direct resampling for corrections of potential
misalignments which could occur due to slight leg movements or shifts e.g., due to
bladder filling. Tumor tissue was delineated on T2-weighted MRI data by a board
certified radiation oncologist (SB) with open source software 3DSlicer.

Strategy for data analysis

Prediction of dynamic FMISO-PET information was defined as a multi-class clas-
sification problem of different hypoxia-associated curve types that occur within a
tumor. To identify such hypoxia curve types and find a suitable set of MRI pre-
dictor variables for a dedicated classification model, animal data was processed
on the voxel level (116 980 voxels). Animal data was split randomly into training
(80%) and independent test cohorts (20%) to decouple model development from
final validation. During data splitting, integrity of tumor structures and cell-line
ratios were maintained.
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Extraction of quantitative parameter maps

Principal component analysis (PCA) was used to derive parameter maps from dy-
namic image data on voxel level. PCA is a dedicated method for dimensionality
reduction and noise filtering of data. Applied to time-series image data, it gener-
ates a set of new variables named principal components (PCs) which is of same
size as the original set of variables, i.e., the set of time points, forming a new
set of basis vectors for data representation. Associated projection coefficients c
are, thus, a unique and full representation of the data in coefficient space. This
allows for the signal Sti of a voxel at time point ti collected in vector notation
as S = St1 , St2 , . . . , StT ) to be reconstructed as linear combination of the PCs:
S = ∑T

j=1 cjPCj, where cj denotes the coefficient of that voxel corresponding
to the jth principal component vector PCj and T the total number of principal
components equal the total number of time points. As it is characteristic for the
method that data variance captured by the PCs successively decreases from the
first to the last PC, the linear combination can be truncated at the first PCs to
obtain dimensionality reduction and filtering.
Regarding dynamic FMISO-PET, PCA was applied after conversion of mea-

sured activity concentrations to standardized uptake values (SUV) by normaliza-
tion to animal weight and injected activity. For DCE-MRI, PCA was applied
after normalization of time dependent signal data Sti to relative signal increase:
∆Sti = (Sti − S̄0)/S̄0, where S̄0 represents the mean signal before contrast agent
injection. Of note is that to fully decouple final testing from training, PCA was
applied to the training data only, whereas projection coefficients cj of the test data
were determined by data projection to the training PCs.
In addition, apparent diffusion coefficient (ADC) maps were derived by

modeling DWI signal decay with a common mono-exponential function
S(b) = S0 exp(−ADC × b), with b-value b denoting the diffusion weighting
at image acquisition and S0 representing DWI signal intensity at b = 0 s/mm2.

Derivation of hypoxia classes associated to different types of FMISO-PET
time-activity curves

To group voxels into different classes of hypoxia, FMISO-PET data represented by
coefficients c1 and c2 was clustered using K-means algorithm with K = 5 clusters.
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Before clustering, coefficients were normalized to zero mean and unit standard
deviation. Since each data point in coefficient space represents a filtered time-
activity curve of a voxel, voxels could directly be assigned to one of five different
classes of cluster-specific FMISO-PET time-activity curves associated to different
levels of hypoxia. These hypoxia-associated classes were used as discrete response
variable for predictive modeling.
In order to keep independent testing unlinked from training, the hold out test

data was not included into k-means clustering but assigned to the five hypoxia
classes by nearest neighbor search of cluster centers.

Classification

Two different classification models were trained on the training data for prediction
of the five hypoxia classes: gradient boosted decision trees (GBDT) and a deep
learning artificial neural network (ANN) based on a multi-layer perceptron archi-
tecture. In both models, ADC, and DCE-MRI projection coefficients c1 and c2
served as predictors (features). In a first step, all possible subsets of features were
tested for best predictive performance using 5-fold cross-validation. Mean area un-
der the curve (AUC) of receiver operating characteristic (ROC) was used as score
function to assess predictive performance. Calculation of ROC-AUC was adapted
to the multiclass problem by binarizing the response variable according to common
scheme one-vs-all.
In a second step, hyper-parameter settings of each classifier were optimized on

the best performing feature subset found in step one. This was done by evaluation
of dual learning curves on training and validation folds obtained by 5-fold cross-
validation. Metrics used to evaluate the learning curves were mean Log Loss and
ROC-AUC. The strategy for optimization involved three phases: first, to build
a flexible model that slightly overfits the training data, i.e. to minimize training
loss/maximize training ROC-AUC; second, to decrease the learning rate; and third,
to regularize the model in order to minimize validation loss and maximize validation
ROC-AUC. Minimum validation loss was used to determine the optimum number
of iterations. Hyper-parameters tuned are listed in Supplementary Table 6.3.
In a third and final step, the model with best predictive performance was re-

trained on the full training data and tested in the independent test cohort. In
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addition to ROC-AUC, a confusion matrix was used to assess the classifier’s per-
formance.
Image processing was implemented using Matlab (ReleaseR2018b) and Python

(Python 3.6.7, SciPy 0.19.1); for machine learning Python library scikit-learn
(0.19.1) was used.

6.3 Results

Parameter maps

The results of PCA on the dynamic image data obtained in the training cohort
are presented in Fig. 6.1. The first two PCs found for FMISO-PET and DCE-MRI
data are presented in Fig. 6.1A and 6.1D, respectively. The percentage of total
variance explained by the first two PCs was 79.4% and 3.3% for FMISO-PET, and
93.5% and 2.1% for DCE-MRI, respectively (Fig. 6.1B and 6.1E). In both cases, the
percentage of total variance explained by PCs of lower order was < 1%. Fig. 6.1C
and 6.1F demonstrate the accuracy of FMISO-PET and DCE-MRI voxel curve
reconstruction by truncated linear combination of PC1 and PC2.
A fused PET/MR image of an exemplary tumor and maps of FMISO-PET pro-

jection coefficients c1 and c2 relative to PC1 and PC2 are presented in Fig. 6.2A–C.
Maps of all three parameters used as predictor variables for classification of FMISO-
PET curve types, i.e., maps of ADC and DCE-MRI projection coefficients c1 and
c2, are presented in Fig. 6.2D–F.

Hypoxia classes associated to different types of FMISO-PET time-activity curves

Results obtained in the process of finding hypoxia classes associated to character-
istic FMISO-PET curve types as response variable for classification are presented
in Fig. 6.2A–C. Fig. 6.2A depicts results from k-means clustering of projection
coefficients c1 and c2 relative to FMISO-PET PC1 and PC2. The different curve
types or hypoxia classes obtained by the clustering are presented in Fig. 6.2B. An
exemplary tumor map of these hypoxia classes is shown in Fig. 6.2C. Clustering
assigned 26.3%, 23.7%, 15.1%, 23.3% and 11.6% of voxels in the training cohort to
hypoxia classes 1–5, respectively.
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Figure 6.1: Principle component analysis. The first two principle components (PCs)
are presented for FMISO-PET (A) and DCE-MRI (C). The percentage of total variance
explained by the first few PCs of FMISO-PET and DCE-MRI is plotted in B and D,
respectively. Exemplary voxel data of FMISO-PET (C) and DCE-MRI (F) is shown
together with data reconstructions by PC1 and by truncated linear combination of PC1
and PC2.
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Figure 6.2: A fused image of FMISO-PET at 90min p.i. and T2 weighted MRI is shown
for a tumor in axial view in A. Parameter maps of FMISO-PET projection coefficients
c1 and c2 are presented in B and C, respectively. In the bottom row, maps of the three
predictor variables ADC (D), DCE-MRI projection coefficient c1 (E) and c2 (F) are
presented.

Figure 6.3: The process of finding hypoxia classes associated to FMISO-PET voxel curve
types to be used as response variable for classification. A: K-means clustering of FMISO-
PET voxel curve data in coefficient space of c1 and c2. B: FMISO-PET curve types
obtained by clustering. Bold lines correspond to cluster centers in B; shaded areas cor-
respond to ±1 standard deviation. C: Exemplary map of the hypoxia associated classes
for a tumor from the training cohort. The same tumor is shown as in Fig. 6.2.

88



6.3 Results

Table 6.1: Selection of best feature set based on the training cohort. Mean ROC-
AUC averaged over the validation folds of 5-fold cross-validation was used as score to
estimate predictive performance. GBDT was tested using a total number of estima-
tors of noetotal = 200, whereas ANN was tested using a total number of iterations of
noitotal = 500 and the highest scored result as well as corresponding noe and noi were
identified. Feature combinations were ranked according to score. Hyper-parameter set-
tings are listed in Supplementary Table 6.3.

Feature combination GBDT ANN

ROC-AUC ± SD noe rank ROC-AUC ± SD noi rank

ADC 0.589± 0.025 14 7 0.576± 0.022 500 7
DCE-MRI c1 0.740± 0.034 188 4 0.740± 0.035 14 4
DCE-MRI c2 0.691± 0.020 102 6 0.691± 0.021 139 6
ADC/DCE-MRI c1 0.759± 0.030 104 3 0.756± 0.029 500 3
ADC/DCE-MRI c2 0.720± 0.021 159 5 0.720± 0.021 374 5
DCE-MRI c1/DCE-MRI c2 0.781± 0.024 112 2 0.782± 0.023 252 2
ADC/DCE-MRI c1/DCE-MRI c2 0.793± 0.022 162 1 0.793± 0.021 340 1

Abbr.: GBDT: gradient boosted decision trees, ANN: artificial neural network, ROC: receiver operating
characteristic, AUC: area under the curve, SD: standard deviation, noe: number of estimators, noi:
number of iterations.

Classification

Among all feature subsets evaluated on the training data using cross-validation, the
set of ADC/DCE-MRI c1/DCE-MRI c2 performed best for prediction of FMISO-
PET derived hypoxia classes in both GBDT and ANN. Scores are listed in Table 6.1.
Exemplary learning curves obtained with that feature set and best hyper-parameter
settings found during optimization are presented in Supplementary Fig. 6.8 and 6.9.
With optimized settings, GBDT and ANN yielded a similar cross-validation

based ROC-AUC score of 0.80±0.02, averaged over all hypoxia classes. For further
evaluation, GBDT was favored over ANN as final model for better interpretability.
ROC curves of all single hypoxia classes obtained with GBDT in cross-validation
folds of the training cohort are presented in Fig. 6.4 along with a confusion matrix
in Fig. 6.5. When retrained on the full training dataset, parameter importance
of ADC, DCE-MRI c1 and DCE-MRI c2 for GBDT based classification was 20%,
39% and 41%, respectively.
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Figure 6.4: ROC curves of hypoxia associated classes 1–5 obtained with GBDT in cross-
validation folds of the training data. A bold curve refers to calculated mean over the five
folds (pale colored curves).

In the independent test cohort, retrained GBDT yielded a ROC-AUC score of
0.80 with single class scores ranging from 0.73 – 0.94. ROC curves and the confu-
sion matrix obtained in that test cohort are plotted in Fig. 6.6. To visualize the
partial dependence between FMISO-PET hypoxia classes and the different MRI
parameters, test data was plotted in 2D parameter spaces for all three pairwise
combinations of parameters and color-coded for real and predicted classes (Supple-
mentary Fig. 6.10). Fig. 6.7 shows an exemplary tumor taken from the independent
test cohort with real versus predicted map of hypoxia classes.

6.4 Discussion

The study was performed in ectopic HNSCC xenografts grown in mice that were
imaged simultaneously with dynamic FMISO PET, T2w MRI, DWI and DCE-
MRI. The multimodal image data was processed on voxel level which allowed for
training of decision trees and neural network based classification models towards
intratumoral prediction of distinct FMISO-PET derived hypoxia classes by three
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Figure 6.5: Confusion matrix of hypoxia associated classes 1–5 obtained with GBDT
in cross-validation folds of the training data. Values refer to the fraction of the total
number of voxels within a certain true class type i (for i = 1, . . . 5) that was predicted
as class type j (for j = 1, . . . 5), and are given as mean ±1 standard deviation averaged
over the 5 folds. Values in the diagonal from the upper left to the lower right report the
fractions of correct predictions (true positives), whereas prediction errors are represented
by values outside the diagonal.
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Figure 6.6: A: ROC curves and AUC scores for the five hypoxia associated classes ob-
tained with GBDT in the independent test cohort. Confusion matrix of hypoxia associ-
ated classes 1—5 obtained with GBDT in the independent test cohort. Values refer to
the fraction of the total number of voxels within a certain true class type i that was pre-
dicted as class type i (for i = 1, . . . 5) that was predicted as class type j (for j = 1, . . . 5).
Values in the diagonal from the upper left to the lower right report the fractions of correct
predictions (true positives), whereas prediction errors are represented by values outside
the diagonal.

Figure 6.7: True (A–C) versus predicted map (D–F) of hypoxia associated classes for an
exemplary tumor from the independent test cohort. A/D: axial view; B/E: coronal view;
C/F: sagittal view.
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different MRI parameters. Both models showed high predictive performance and
GBDT was favored over ANN as final model for better interpretability. Robustness
of GBDT was demonstrated by validation in an independent test cohort.
During model development, PCA was used as a model free approach for cap-

turing multi-frame dynamic imaging information by a few number of quantitative
parameters. For both FMISO-PET and DCE-MRI, the first two PCs explained
most of the total variance of the original data and sufficed for adequate reconstruc-
tion (cf. Fig. 6.1). These findings are similar to findings of previous studies where
PCA was used for parameter extraction from DCE-MRI [147–149] or dynamic
PET [150, 151]. PCA was chosen over pharmacokinetic modeling as physiological
parameters derived from modeling may involve several uncertainties [149,152,153].
These include, in particular, that model assumptions may be oversimplified to ac-
count for certain voxel dynamics such that the model does not fit adequately or
model parameters may not accurately reflect the underlying physiology.
Five different hypoxia classes associated to FMISO-PET time activity curves

were derived by k-means clustering, a data driven approach for automatic parti-
tioning of data. K = 5 was chosen to obtain a limited number of distinct classes of
time-activity curves. The curve types found show different patterns of early and
late tracer uptake which may point at different levels of tissue perfusion, diffusion
and hypoxia induced retention effects [57,58]. Class 1 seems to indicate avascular,
necrotic tissue as over time only slow tracer uptake occurs. Classes 2–3 are char-
acterized by rather low early, yet pronounced late uptake which could be related
to different levels of hypoxia induced retention. Classes 4 and 5 show more pro-
nounced early and less pronounced increase or even decrease in late tracer uptake
and may therefore represent rather well perfused, normoxic voxels. Mapping of
the different classes yielded spatially contiguous regions mostly in an onion-shape
or rim-core structure, suggesting a plausible biological basis. Overall, dynamics of
derived classes seem to reflect different levels of physiological properties associated
to treatment resistance but would require further biological validation for more
precise characterization.
Using dynamic FMISO-PET information as response variable to predict was de-

liberately favored over using parameters derived from a static acquisition, such as
tumor-to-muscle (TMR) or tumor-to-blood ratio (TBR) based parameters. Such
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static hypoxia parameters depend on the exact time point at which images are
obtained and have been shown to be associated to only limited reproducibility as
definition of background activity is prone to variability [154]. Furthermore, they
may mislead to a similar assessment of time-activity curves stemming from different
physiologies missing out on information on vascular tissue properties [57,58]. Some
studies identified static maximum TMR or TBR as prognostic measures [51, 155].
However, results of different studies demonstrated that FMISO-PET has only prog-
nostic value for therapy outcome, or higher prognostic value, when perfusion and
retention information are both taken into account [30,53,156].
To tackle the prediction problem in this study, classifiers were chosen from two

different families of learners, i.e., decision tree ensembles and neural networks. Both
supervised learning algorithms were suitable candidates since they are capable of
approximating complicated nonlinear functions and capable of handling a multi-
class response variable. GBDT, in particular, was opted for as it has been shown
that this model most often outperforms classifiers from different families, such as
K-nearest-neighbor classification, random forest or support vector machines, for a
wide range of classification problems [157].
Cross-validation in the training cohort yielded ROC-AUC ≥ 0.73 for any of

the five classes which indicates good generalization capacity of the model. ROC-
AUC scores obtained in the independent test cohort were very similar to the ones
obtained with cross-validation and confirm good generalization capacity and ro-
bustness of the proposed method.
Evaluation of the confusion matrices, on the other hand, revealed a certain risk

of misclassification between hypoxia classes. To some extent this may be explained
by uncertainties in mapping response to predictor data due to the resampling of
MR image data with different spacing onto a common image grid (PET), which
was necessary for voxelwise learning, but involved interpolation of signal intensities.
Different spacing of MR images resulted from a tradeoff between good image quality
and good coverage of the entire tumor volume. In general, it was observed that
when classes were not predicted correctly, they were rather confused with adjacent
than with non-adjacent ones. In particular, a low percentage of true positives
(14 ± 3% in cross-validation, 24% in the test cohort) was obtained for voxels of
class 5. This might be explained by the imbalanced nature of the classification
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problem with class 5 representing just 11.6% of voxels in the training cohort (12%
in the test cohort). In addition, similar dependence between classes and values
of MRI parameters of classes 4 and 5, as indicated by partial dependence plots
in Supplementary Fig. 6.10, could be a contributing factor to misclassification.
However, the fraction of false positives for class 5 was rather low (cf. off-diagonal
values in column 5 of the confusion matrices shown in Fig. 6.5 and 6.6) and good
ROC performance was observed. Moreover, type 4 and 5 voxels can be considered
as rather well perfused, low risk voxels compared to voxels of type 1–3, as outlined
above, and may be less of interest e.g., for treatment adaptation.
Different MRI techniques have been presented recently to image hypoxia such as

blood oxygenation level dependent (BOLD) or oxygen-enhanced (OE) MRI, also
known as tumor oxygenation level dependent (TOLD) MRI [158]. These tech-
niques measure changes in transverse (R2∗) or longitudinal relaxation rates (R1),
respectively, induced by inhalation of oxygen or hyperoxic gas such as carbogen.
However, at present these techniques still lack sufficient technical, biological, and
clinical validation to be established in routine clinical practice [158, 159]. Never-
theless, parameters derived from such techniques could easily be added and trained
with the proposed model.
Recently, Hompland et al. presented a new strategy to indirectly measure hypoxia

in prostate cancer by exploiting joint information of IVIM parameters derived from
DWI [97]. With ADC and fractional blood volume fBV the model included a com-
bination of oxygen consumption and supply related image parameters. This is
similar to our model where joint information of ADC and projection coefficients
c1 and c2 relative to PC1 and PC2 of DCE-MRI are used as input parameters.
While ADC has been shown to be correlated with cell density and oxygen con-
sumption [95], DCE-MRI time signal curves depend on temporal contrast agent
distribution related to perfusion and microvasculature of tissue [15]. Therefore,
high and low values of projection coefficient c2 would, in particular, translate to
high and low level of early perfusion and oxygen inflow. However, a major dif-
ference is that in contrast to the model proposed by Hompland et al., our model
could be directly applied to learn and predict voxel based image information since
both predictor and response variables were present on voxel level. This allowed for
successful training of a complex, non-linear model.
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Different approaches have been presented to predict hypoxia based on easily
available imaging modalities other than MRI. Even et al. used CT, 18F-
Fluorodeoxyglucose (FDG) PET and DCE-CT features to predict hypoxia as
derived by HX4-PET in non-small cell lung cancer (NSCLC) [160]. Similarly
to our study, a solely data-driven approach was used based on imaging in com-
bination with supervised learning. The model was trained on clusters of voxels
(supervoxels) to predict static TBR and correctly classified tumors as hypoxic
(hypoxic volume (TBR > 1.2) > 1 cm3) or nonhypoxic. However, larger hypoxic
volumes were all underestimated which would limit the use of that method e.g.,
to adapt treatment. Beyond that, the method of grouping voxels to supervoxels
increased the predictive performance in that study and could be implemented in
our model to potentially further improve its performance.
Another method to predict hypoxia in head and neck cancer has been proposed

by Crispin-Ortuzar et al. [161], who used a combination of FDG-PET and contrast-
enhanced CT radiomics features as predictor variables. Good results were obtained
with supervised learning to stratify patients based on predicted FMISO TBRmax.
However, that model does not allow for prediction of virtual images or parameter
maps such that no spatial information on tumor hypoxia can be collected and
eventually be targeted for therapy adaptation.
The model we presented in this study was trained on ectopic xenograft tumors

under preclinical laboratory conditions but might in principle be translated to a
clinical setting. Factors like reduced breathing rates during imaging, breathing
of anesthetic gas, small animal cardiovascular system, as well as ectopic tumor
location may alter tracer kinetics as observed e.g., for dynamic FMISO-PET [162].
The model would therefore benefit from retraining on patient data before clinical
validation.
In conclusion, a multi-parametric machine learning classifier was trained on small

animal data for predictive modeling of dynamic FMISO-PET derived hypoxia
classes by DWI and DCE-MRI and was successfully validated in an independent
test cohort. The proposed method constitutes a novel approach for voxel-based
learning of dynamic functional image information. Retraining the model on pa-
tient data for clinical validation seems highly promising.
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Table 6.2: PET and MR image acquisition parameters.

T2w MRI DWI DCE-MRI FMISO-PET

Sequence 2D RARE Diffusion weighted SE 2D FLASH List mode acquisition,
reconstruction using
2D-OSEM (4 it., 16
subs.)

Voxel size inplane 0.14× 0.14mm2 0.30× 0.30mm2 0.40×0.40mm2 0.65× 0.65mm2

Slice thickness 0.4mm 0.75mm 1.0mm 0.8mm
Slice gap – 0.25mm 0.5mm –
Matrix size 256× 256 96× 76 75× 60 128× 128
Number of slices 60 21 13 89
TR/TE 5841/38ms 1100/42ms 72/1.5ms –
Flip angle 90 deg 90 deg 12 deg –
Bandwidth 141Hz/px 587Hz/px 1420Hz/px –
Fat suppression Yes Yes – –
RARE factor 6 – – –
b-values – 0, 100, 200, 300, 400, – –

500, 600, 700, 800 s/mm2

Injected dose or
contrast agent

– – 0.02mMol
Gadovist

12.1±2.1MBq of 18F-
FMISO

Temporal resolu-
tion/framing

– – 5.4 s 36×10 s, 18×60 s, 11×
360 s

Acquisition time – – −1 – 12.5min 0 – 90min p.i.
Breathing gated Yes Yes – –

Abbr.: RARE: rapid imaging with refocused echoes, also known as turbo spin-echo (TSE), SE: spin-echo, FLASH:
fast low-angle shot, OSEM: ordered subset expectation maximization, TR/TE: repetition time/echo time.
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Table 6.3: Hyper-parameters tuned included n_estimators, min_samples_split,
min samples_leaf, max_features, max_depth, and learning_rate for GBDT, and
hidden_layer_sizes, alpha, learning_rate and number of iterations for ANN where rec-
tified linear unit function (relu) was used as activation function and adam algorithm as
optimizer. Hyper-parameter naming corresponds to the implementation in scikit-learn.

GBDT ANN

Hyper-parameters used for
search of best feature set

{min_samples_split: 1,000, {hidden_layer_sizes: 10,

min_samples_leaf: 100, learning_rate_init: 1e-3,
max_faetures: total no. of fea-
tures in subset,

learning_rate: constant,

max_depth: 1, alpha: 1e-4,
learning_rate: 0.1} batch_size: 2% of samples in

training fold}
Optimized hyper-parameters
used for final model

{n_estimators: 98, {hidden_layer_sizes:
50/50/50,

min_samples_split: 10,000, learning_rate_init: 1e-4,
min_samples_leaf: 5,000, learning_rate: constant,
max_features: 3, alpha: 5e-1,
max_depth: 3, batch_size: 2% of samples in

training fold,
learning_rate: 0.05} max_iter: 1988}

Abbr.: GBDT: gradient boosted decision trees, ANN: artificial neural network, min_samples_split: min-
imum no. of samples to split an internal node, min_samples_leaf: minimum no. of samples to be at a leaf
node, max_features: no. of features to consider when looking for the best split, max_depth: maximum
depth of an estimator, hidden_layer_sizes: no. of neurons in each hidden layer, alpha: regularization
parameter, batch_size: size of minibatches, max_iter: maximum no. of iterations.

99



6 R.M. Winter et al./manuscript in preparation

Figure 6.8: Dual learning curves of loss and ROC-AUC for GDBT. The first column shows
model performance with initial hyper-parameter settings. In a first step of optimization,
the maximum depth of trees was succesively increased from 1 to 3 to closer fit the model
to the training data, i.e., to minimize training loss (second column). In the following,
further hyper-parameters such as the maximum number of samples to be in a leaf or
number of samples required to split an internal node, were tuned to regularize the model
and decrease validation loss. The third column shows the learning curves for the final
model with optimized settings, which are listed in detail in Supplementary Table 6.3.
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Figure 6.9: Dual learning curves of loss and ROC-AUC for ANN. The first column
shows model performance with initial hyper-parameter settings. In particular, a low
hidden layer size was started with, i.e., one hidden layer of 10 neurons. In a first step of
optimization, the hidden layer size was successively increased to three layers of 50 neurons
each in order to minimize training loss and closer fit the model to the training data (second
column). In the following, L2 penalty parameter alpha was tuned to regularize the model
and decrease validation loss. The third column shows the learning curves for the final
model with optimized settings, which are listed in detail in Supplementary Table 6.3.
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Figure 6.10: Partial dependence of FMISO-PET curve types on MRI parameters pre-
sented for the independent test cohort. Data is color coded by hypoxia class (blue: class
1, orange: class 2, yellow: class 3, purple: class 4, green: class 5). True data (left column)
is presented versus predicted data (right column).
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This work addressed three central aspects of integrating functional image data
into high precision RT practice. The first was of physical-technical nature and
addressed an imaging solution for combined PET/MRI of head-and-neck cancer
patients in RT treatment position. The adaptation to treatment position is essential
for precise image integration into RT planning, but challenging as it requires PET
photon attenuation correction of the RT immobilization equipment and the MR
radiofrequency coils and coil holders. Besides the image quality of attenuation
corrected PET images, also the MR image quality was evaluated since the coils were
used in a configuration with a greater distance to the patient so as to allow for the
use of the immobilization tools. The image quality was evaluated for anatomical
MRI as well as for DWI. Moreover, Dixon based attenuation maps for MR-based
PET photon attenuation correction of the patient were assessed. In general, the
methodology was based on a comparison of RT-specific images to diagnostic images
that served as reference.
In summary, the image analysis demonstrated that PET/MRI in head-and-neck

cancer patients using RT positioning aids is clinically feasible. High volume agree-
ment was found between radiooncological structures defined on PET images ac-
quired with RT setup and diagnostic setup, respectively. In particular, the distance
measures ASSD and DOGC quantifying the discordance between the structures
presented median values below the PET voxel size of 2.8mm edge length, and be-
low the consensus level of 2mm accepted, for instance, as level of distortion for
MR images to be used in head-and-neck treatment planning [36,163].
A limitation was the SNR in the MR images. For T2w MRI, a reduced SNR of

about -26% was observed. However, no major difference in contouring was observed
between images acquired with RT, and with diagnostic reference setup: median
ASSD and DOGC were, also, within the uncertainty of 2mm, that is tolerated for
MRI in RT [36,163].
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A similar reduction in SNR was observed for diffusion-weighted MR images.
However, no significant difference in tumor volume-averaged ADC was found be-
tween RT-specific and diagnostic examinations. Nonetheless, further investigations
should be conducted if ADC was to be processed at a voxel level.
In conclusion of the first part of this work, the image quality obtained with the

RT setup meets RT requirements and the data can in general be used for future
personalized therapy adaptation strategies.

The second part addressed the image quality of DWI in the head-and-neck in
terms of geometric accuracy as this constitutes another essential prerequisite for
using MR images in RT treatment planning. Geometric accuracy is a critical
issue in EPI-based DWI, as EPI is sensitive to magnetic field inhomogeneities
leading to image distortions and signal loss. This especially applies to the head-and-
neck region, where unfavorable geometry and susceptibility changes at air-tissue
interfaces can lead to severe geometric distortions up to a few centimeters.
An appropriate method for distortion correction was implemented based on re-

peated data acquisition with RPED. The results obtained in the clinical study
showed, that distortions in DWI could effectively be reduced by the RPED tech-
nique. Mean ASSD and DOGC between structures repeatedly defined on distortion
corrected DWI and anatomical reference images were reduced through RPED down
to 0.4 and 1.0mm, respectively. This level of remaining inaccuracy is within the
uncertainty of up to 2mm tolerated for distortions in MRI for RT of head-and-neck
cancer [36, 163]. Moreover, similar to the analysis in Part I, RT mask fixation of
the patient had a slightly positive effect on image quality as it helps to prevent
unwanted patient movement during image acquisition.
RPED in combination with the RT imaging setup thus enables more precise

integration of DWI data into RT planning for head-and-neck cancer patients and
is an appropriate solution especially when sophisticated techniques for distortion
reduction, such as readout-segmented, multi-shot EPI or EPI with novel integrated
shim and frequency adjustment [41], are not available at a MRI system.

The third project aimed at finding a set of parameters derived from clinically
readily available MRI protocols to serve as a tool for tumor characterization in
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terms of treatment resistance. The strategy was to make use of supervised learning
of tumor hypoxia as measured by dynamic FMISO-PET, a known indicator for
radiation treatment resistance. Different machine learning models were trained to
learn that information based on parameters derived from DWI and DCE-MRI. The
PET/MRI data used for model development was measured in small animal models
of human head and neck cancer and a final, best performing model was tested in
hold out test data.
Cross-validation in the training cohort indicated good predictive performance for

both model types. GBDT was favored as final model for better interpretability.
Retrained GBDT yielded a mean ROC-AUC score of 0.80 in the independent test
cohort confirming good generalization capacity and robustness.
As a variable to predict, dynamic FMISO-PET information was deliberately

favored over different parameters derived from a static acquisition, such as tumor-
to-muscle (TMR) or tumor-to-blood ratio (TBR). Some studies identified maximum
TMR and TBR as prognostic measures for therapy response [51, 155]. However,
results of different studies demonstrated that FMISO-PET has only prognostic
value, or higher prognostic value for therapy outcome, when perfusion and retention
information derived from dynamic data acquisition are both accounted for [30, 53,
156].
To address the prediction problem, GBDT was chosen as a candidate model for

its capability to approximate complicated nonlinear functions and to handle a mul-
ticlass response variable. Moreover, this model most often outperforms classifiers
from different families, such as K-nearest-neighbor classification, random forest or
support vector machines, for a wide range of classification problems [157].
Different approaches have been presented to predict hypoxia, based on imaging

modalities that are easily available in RT departments and do not rely on experi-
mental PET tracers [160, 161]. With those models, good results were obtained in
terms of classifying the tumors as hypoxic or non-hypoxic. However, in contrast
to the model presented in this thesis, the methods are limited in terms of poten-
tial treatment adaptation. Larger hypoxic volumes are either underestimated in
size [160], or the model does not allow for prediction of virtual images or parameter
maps [161], such that no spatial information on tumor hypoxia can be collected
and be used as a potential target for therapy adaptation.
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To conclude, a machine learning classifier for the prediction of hypoxia-associated
PET information based on multi-parametric MRI was trained and successfully
tested on small animal data. The proposed method constitutes a novel approach
for learning of dynamic functional image information at a voxel level. The results
give new insights into the relation between dynamic hypoxia PET and functional
MRI and motivate a retraining in patient data for the development of novel MRI
based therapy adaptation strategies.
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8 Outlook

Especially for head and neck cancer, PET and MRI may in future help improve
RT in many aspects. This includes improvements in the delineation accuracy of
the tumor [20, 164, 165], staging [43] or the detection of tumor recurrence after
therapy [166]. In these respects, the tools presented in the first two parts of this
work will certainly leverage the accurate integration of the data into RT planning
if data is acquired with simultaneous PET/MRI.
Beyond that, functional image guidance will be a key factor for improving therapy

outcome [110]. Here, PET/MRI will certainly play an important role in terms
of characterizing the tumor and its microenvironment. Recently, a preliminary
correlation analysis of functional PET and MRI parameters was conducted where
the RT imaging setup and the presented methods for data correction were applied
in a clinical study [167]. Similarly, more advanced multiparametric characterization
of head-and-neck tumors on voxel level by means of combined PET/MRI in RT
positioning could, in future, give new insights into the tumor biology for novel
treatment adaptation strategies.
Regarding the RPED technique for DWI in head-and-neck, the results obtained

in this work further encourage the usage of the method on a different hybrid MRI
technology, the MR-Linac. With this new technology, especially with the 1.5T
MR-Linac system, daily functional imaging during RT treatment is feasible and
will certainly further facilitate the development and implementation of new func-
tional imaging based strategies for treatment adaptation. First analyses have shown
that good image quality of functional MRI with a 1.5T MR-Linac system can be
achieved in phantoms [168]. However, DWI image quality in head-and-neck-cancer
patients on the MR-Linac may still be compromised as compared to the phantom
setting, due to the difficult patient geometry and the number of areas of suscepti-
bility differences between different tissues present in the head and neck. Therefore,
similar to DWI on a hybrid PET/MRI system, DWI on a MR-Linac system may
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potentially benefit from the RPED technique for improvements in geometric ac-
curacy. A main limitation for the implementation of RPED, however, will be the
additional scan time this technique requires for repeated data acquisition.
As concerns the preclinical small animal study, the results give new insights into

the relation between hypoxia PET and functional MRI and motivate a translation
to a clinical setting for the development of novel MRI based therapy adaptation
strategies. Therefore, a retraining of the machine learning model on patient data is
required before this model can be used in clinical practice. A further confirmation of
the different hypoxia associated classes found by clustering of the dynamic FMISO-
PET data, e.g., with pimonidazole immunohistochemistry, could help validate the
hypothesis that certain classes would be a suitable target for dose escalation. Once
a biological rationale is substantiated, probability maps, obtained by the machine
learning model GBDT for a voxel to belong to one of these classes, could also
potentially be used for dose painting approaches.
Nonetheless, adequate measures would need to be found to help raise overall

acceptance for future machine learning based treatment adaptation. Acceptance
for the usage in clinical practice is challenging as it is often difficult to understand
a machine learning model’s process of decision making. To compensate this draw-
back, thorough external validation would be necessary to strengthen the evidence
for a model. Notwithstanding, the issue will need to be discussed in more depth in
the medical community in order for promising machine learning tools to find their
way into routine clinical practice, and to improve medical image analysis along
with treatment of cancer in the future.
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