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Abstract

It is hard to imagine what a world without objects would look like. While being able to rapidly recognise
objects seems deceptively simple to humans, it has long proven challenging for machines, constituting a
major roadblock towards real-world applications. This has changed with recent advances in deep learning:
Today, modern deep neural networks (DNNs) often achieve human-level object recognition performance.
However, their complexity makes it notoriously hard to understand how they arrive at a decision, which car-
ries the risk that machine learning applications outpace our understanding of machine decisions—without
knowing when machines will fail, and why; when machines will be biased, and why; when machines will
be successful, and why.

We here seek to develop a better understanding of machine decision-making by comparing it to human
decision-making. Most previous investigations have compared intermediate representations (such as net-
work activations to neural firing patterns), but ultimately, a machine’s behaviour (or output decision) has
the most direct relevance: humans are affected by machine decisions, not by “machine thoughts”. Therefore,
the focus of this thesis and its six constituent projects (1–6) is a functional comparison of human and ma-
chine decision-making. This is achieved by transferring methods from human psychophysics—a field with
a proven track record of illuminating complex visual systems—to modern machine learning.

The starting point of our investigations is a simple question: How do DNNs recognise objects, by tex-
ture or by shape? Following behavioural experiments with cue-conflict stimuli, we show that the textbook
explanation of machine object recognition—an increasingly complex hierarchy based on object parts and
shapes—is inaccurate. Instead, standard DNNs simply exploit local image textures ( 1 ). Intriguingly, this
difference between humans and DNNs can be overcome through data augmentation: Training DNNs on a
suitable dataset induces a human-like shape bias and leads to emerging human-level distortion robustness
in DNNs, enabling them to cope with unseen types of image corruptions much better than any previously
tested model. Motivated by the finding that texture bias is pervasive throughout object classification and ob-
ject detection ( 2 ), we then develop “error consistency”. Error consistency is an analysis to understand how
machine decisions differ from one another depending on, for instance, model architecture or training objec-
tive. This analysis reveals remarkable similarities between feedforward vs. recurrent ( 3 ) and supervised
vs. self-supervised models ( 4 ). At the same time, DNNs show little consistency with human observers,
reinforcing our finding of fundamentally different decision-making between humans and machines. In the
light of these results, we then take a step back, asking where these differences may originate from. We find
that many DNN shortcomings can be seen as symptoms of the same underlying pattern: “shortcut learning”,
a tendency to exploit unintended patterns that fail to generalise to unexpected input ( 5 ). While shortcut
learning accounts for many functional differences between human and machine perception, some of them
can be overcome: In our last investigation, a large-scale behavioural comparison, toolbox and benchmark
( 6 ), we report partial success in closing the gap between human and machine vision.

Taken together our findings indicate that our understanding of machine decision-making is riddled with
(often untested) assumptions. Putting these on a solid empirical footing, as done here through rigorous
quantitative experiments and functional comparisons with human decision-making, is key: for when hu-
mans better understand machines, we will be able to build machines that better understand humans—and
the world we all share.



Zusammenfassung

Es lässt sich nur schwer vorstellen, wie eine Welt ohne Objekte aussehen würde. Während die schnelle
Erkennung von Objekten für den Menschen täuschend einfach erscheint, war sie für Maschinen lange Zeit
eine Herausforderung, was eine große Hürde für praktische Anwendungen dargestellt hat. Dies hat sich
mit den jüngsten Fortschritten im Bereich Deep Learning geändert: Moderne Tiefe Neuronale Netze (TNNs)
erreichen heute oft eine Objekterkennungsleistung auf menschlichem Niveau. Ihre Komplexität macht es je-
doch notorisch schwer zu verstehen, wie sie zu einer Entscheidung kommen. Das birgt das Risiko, dass An-
wendungen des maschinellen Lernens unser Verständnis von maschinellen Entscheidungen übersteigen—
ohne zu wissen, wann Maschinen Fehler machen, und warum; wann Maschinen voreingenommen sind, und
warum; wann mann sich auf Maschinen verlassen kann, und warum.

Unser Ziel ist es, ein besseres Verständnis von maschinellen Entscheidungen zu entwickeln, indem wir
sie mit menschlichen Entscheidungen vergleichen. Bisherige Vergleiche haben meist Zwischenrepräsen-
tationen untersucht (wie beispielsweise Aktivierungsmuster eines neuronalen Netzwerks mit neuronalen
Feuerungsmustern), aber letztendlich hat das Verhalten (oder die Entscheidung) einer Maschine die größte
Relevanz: Menschen sind ganz konkret und direkt von maschinellen Entscheidungen betroffen, nicht von
“maschinellen Gedanken”. Daher liegt der Schwerpunkt dieser Arbeit und ihrer sechs Teilprojekte (1–6)
auf einem verhaltensbasierten Vergleich der menschlichen und maschinellen Entscheidungsfindung. Dies er-
reichen wir durch die Anpassung und den Transfer von Methoden aus der menschlichen Psychophysik,
einem Gebiet, das große Erfahrung darin hat, komplexe visuelle Systeme zu verstehen.

Der Ausgangspunkt unserer Untersuchungen ist eine einfache Frage: Wie erkennen TNNs Objekte, an-
hand ihrer Form (wie allgemein angenommen) oder etwa ihrer Textur? Basierend auf Verhaltensexperi-
menten mit Konfliktbildern zeigen wir, dass die Lehrbuch-Erklärung der maschinellen Objekterkennung—
eine zunehmend komplexe Hierarchie, die auf Objektteilen und Formen basiert—unzutreffend ist. Stattdessen
nutzen Standard-TNNs einfach lokale Texturinformationen aus ( 1 ). Interessanterweise kann dieser Un-
terschied zwischen Menschen und TNNs durch Anpassen der Trainingsdaten überwunden werden: Das
Training von TNNs auf einem geeigneten Datensatz verursacht einen menschenähnlichen Fokus auf die
Objektform und führt gleichzeitig dazu, dass TNNs deutlich robuster darin werden, Objekte trotz lokaler
Bildstörungen zu erkennen—deutlich besser als jedes zuvor getestete Modell, und nahe am menschlichen
Niveau. Motiviert durch die Erkenntnis, dass der Texturfokus in der Objektklassifikation und Objekterken-
nung allgegenwärtig ist ( 2 ), entwickeln wir anschließend “error consistency”. Error consistency (oder
Fehlerkonsistenz) ist eine Analyse, um zu verstehen, wie sich maschinelle Entscheidungen voneinander un-
terscheiden, zum Beispiel in Abhängigkeit von der Modellarchitektur oder dem Trainingsziel. Diese Analyse
zeigt bemerkenswerte Ähnlichkeiten zwischen rein vorwärtsgerichteten versus rekurrenten TNNs ( 3 ) und
überwachten versus selbstüberwachten Modellen ( 4 ). Gleichzeitig zeigen TNNs kaum Fehlerkonsistenz
mit menschlichen Versuchspersonen, was unseren Befund einer grundlegend unterschiedlichen Entschei-
dungsfindung zwischen Mensch und Maschine untermauert. Im Lichte dieser Ergebnisse gehen wir dann
einen Schritt zurück und fragen, woher diese Unterschiede stammen könnten. Wir beobachten, dass viele
verschiedene Defizite von TNNs als Symptome ein und desselben zugrunde liegenden Ursache gesehen
werden können: “Shortcut learning” (oder Abkürzungslernen), eine Tendenz, unbeabsichtigte Muster in den
Daten auszunutzen, die bei unerwarteten Eingaben schnell zu Fehlern führen ( 5 ). Das Abkürzungslernen
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ist für viele Verhaltensunterschiede zwischen menschlicher und maschineller Wahrnehmung verantwortlich,
allerdings können einige dieser Unterschiede überwunden werden: In unserer letzten Untersuchung, einem
umfassenden Verhaltensvergleich inklusive Software-Toolbox und Benchmark ( 6 ), berichten wir über einen
Teilerfolg: die Lücke zwischen menschlicher und maschineller Wahrnehmung beginnt, kleiner zu werden.

Zusammengenommen zeigen unsere Ergebnisse, dass unser Verständnis maschineller Entscheidungsfind-
ung von (oft ungeprüften) Annahmen durchdrungen ist. Diese auf eine solide empirische Basis zu stellen,
wie es hier durch rigorose quantitative Experimente und verhaltensbasierte Vergleiche mit der menschlichen
Entscheidungsfindung geschieht, ist der Schlüssel zum Erfolg: Denn wenn Menschen Maschinen besser ver-
stehen, werden wir in der Lage sein, Maschinen zu bauen, die Menschen besser verstehen—und die Welt,
die wir alle teilen.
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1 Introduction

1.1 Motivation: the future of machine learning

Time flies fast—but not like an arrow.
Just like an arrow never reverses direction, time never moves back-
wards: there is only one history. And yet, in liberating contrast to the
predetermined trajectory of an arrow in the air, there are inconceivably
many possible futures ahead of us. We cannot change the past, but we
can shape the future. However, at the same time, with choice comes
responsibility. From the joy of a moment, to the regret over a day lost
unproductive, to the fulfilment of a life with a legacy, to concerns over
the environmental trajectory of humankind itself—when the future has
become the past, we cannot change it anymore.

This responsibility can increasingly be felt within the field of ma-
chine learning, which has transitioned from a flourishing niche to a
key driver of technologies that affect billions of people around the
globe. This impact goes well beyond seemingly innocuous aspects
such as which products are being recommended to a user but also
affects, potentially, whether one is invited for a job interview, which
diagnosis one receives in the hospital, or whether one receives a bank
loan. In this context, machine learning, the science and art of teaching
algorithms how to learn from data, is currently at a crucial crossroads
where two very different paths for the future are possible: a bright
one and a rather dim one. On the bright path, machines promise to
solve some of humankind’s most challenging riddles, shed light onto
our own brains and minds, drastically reduce the number of traffic ac-
cidents, and overcome language barriers. On the dim path, however,
machines might just as well be used to make automated decisions that
humans can neither follow nor contend, increasing social disparities
by exploiting predictive patterns of biased datasets. In the following, I
will argue that our ability to choose between those two very different
futures crucially hinges on one challenge: whether our understanding
of machine decision-making will be able to keep pace with applications
of machine learning.
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Of course, obtaining a better understanding of machine decision-
making is not going to solve all problems of machine learning. In
particular, the impact of a tool is always going to depend on its user,
and there are many questionable or malicious use cases for which ma-
chine learning can be exploited. This makes it all the more important
that we understand the limitations, biases and robustness of those ma-
chine learning applications that are developed with good intentions.
In a particularly sad example of what the consequences are when this
is not the case, Joshua D. Brown, 40, died on 7 May 2016 when his Tesla
autopilot failed to identify a large white truck against the bright sky
(Vlasic & Boudette, 2016). This shows the pivotal role of understand-
ing what can, and cannot, be expected from a particular application of
machine learning.

Machine learning is currently the most successful paradigm within
the broader context of artificial intelligence (AI). “Artificial intelligence”
has become somewhat of a loaded term since it all too easily evokes the
expectation of human-level intelligence through mysterious yet power-
ful machines. While many machine learning startups appear happy to
tap into this expectation when registering their “.ai” domain, sky-high
expectations are easy to raise but hard to meet (e.g. Mitchell, 2021):
As a field, artificial intelligence has already experienced two extended
phases of enthusiasm each followed by a so-called “AI winter” char-
acterised by disappointment and a drastic reduction in funding, both
public and private. The first winter came around 1973, when govern-
ments, venture capitalists and even the general public realized that in
contrast to large expectations and even bigger promises, AI methods of
the time worked only on toy problems and were thus unlikely to lead
to widespread applications.1 About two decades later, following an 1 The beginning of this first AI winter

is often credited to the “Lighthill Re-
port” named after Sir James Lighthill,
who conducted a widely influential and
deeply critical survey of the current state
of AI on behalf of the British Science
Research Council (Lighthill, 1973). The
repercussions of this report were felt
well beyond the UK, as global funding
of AI research entered a steep decline.

extended period of renewed interest and funding, the second AI win-
ter was around the corner when it was realized that then-prominent
methods such as expert systems were useful indeed but only for very
limited and narrow use cases.

Fast-forwarding a few decades, we have now reached a stage where
machine learning is successfully being used in many fields and appli-
cation areas—is it, finally, time for an eternal summer? Critical voices
advise caution:

“In spite of all the commercial hustle and bustle around AI these days, there’s
a mood that I’m sure many of you are familiar with of deep unease among AI
researchers who have been around more than the last four years or so. This
unease is due to the worry that perhaps expectations about AI are too high,
and that this will eventually result in disaster ...”
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The fact that this sentiment certainly does not ring entirely false in
today’s ears, even though it was voiced nearly four decades ago (McDer-
mott et al., 1985, p. 122), gives reason for concern. If we had to make
an educated guess about the most likely cause of a new, third AI win-
ter: where would we see the biggest potential for disappointment and
disaster?

Probably not because today’s methods were to face strict theoretical
limits that strongly constrain their usefulness, similar to how one-layer
neural networks with monotonic nonlinearities were shown to be prov-
ably unable to represent the simple XOR-function, a major drawback
of early perceptrons (Minsky & Papert, 1969). Likewise, probably nei-
ther because today’s methods were only applicable to highly limited
and narrow use cases—currently, most methods require just a little
fine-tuning when applied to a different problem. In fact, it is precisely
their widespread use and deceptively good performance on demand-
ing tasks that might carry the greatest risk: the risk that machine learn-
ing applications outpace our understanding of machine decisions, that
we lull ourselves into a sense of security without knowing when ma-
chines will fail, and why; when machines will be biased, and why;
when machines will be successful, and why. Answering these ques-
tions will be of decisive importance if we are to avoid a third wave
of disappointment, and instead set out to use machine learning for a
brighter future.

It is the aim of this thesis to improve our understanding of machine
decision-making.2 For reasons outlined in the following sections, this 2 The term “machine decision” will be

used to refer to any kind of decision by
algorithms (not just those that control
physical devices).

will be achieved by comparing machine behaviour against human be-
haviour on visual object recognition.

1.2 Why compare machines against humans?

At first, developing a better understanding of machine decision-
making sounds like an entirely technical endeavour—and indeed, many
existing approaches attempt to understand machines “in isolation”,
without taking their relationships to humans into account. However,
there are a number of (explicit and implicit) ways in which humans ex-
ert a decisive influence over actual, perceived and presumed machine
decision-making. Jointly, the following factors explain why it is of-
ten helpful, and sometimes even indispensable, to compare machines
against humans.

(1.) Humans as annotators define ground truth
What exactly constitutes a machine “error” or “success” is in most
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cases defined by humans, irrespective of whether we would like to
build a machine that mimics typical human output (e.g. creating a bot
capable of small talk) or whether we would like to obtain a machine
that improves over human decision-making (e.g. in the medical con-
text, or in safety-critical applications like autonomous driving). Fur-
thermore, how errors are weighted relative to each other (e.g. whether
a decision is regarded as an innocuous mistake or a fatal error) often
depends on human values.

(2.) Humans as engineers create, train and evaluate models
Perhaps the most obvious way in which humans influence model decision-
making is in their role as researchers, engineers or data scientists who
create, train and evaluate models. This influence extends beyond neu-
tral technical choices, and cognitive psychology knows a number of
well-established ways in which humans are likely to bias the results
of an experiment. For instance, experimenter bias is a (usually uncon-
scious) tendency of an experimenter to “obtain from his subjects the
data he expects or wants to obtain” (Rosenthal & Fode, 1961, p. 183).
As a result, triple-blind experiments are often considered the gold
standard (participants do not know whether they e.g. receive a placebo
or treatment, neither does the experimenter, nor the data analyst). In
machine learning, experiments are usually single-blind: the machine
learning model does not have meta-knowledge, but experimenter and
data analyst are one and the same “non-blind” person. When training
multiple models, cherry picking (e.g. a tendency to report only the best
model / feature visualisation, effectively treating random seeds as hy-
perparameters) and confirmation bias (“a general tendency for people
to believe too much in their favored hypothesis”, cf. Klayman, 1995,
p. 385) may present themselves as subconscious allies of competitive
acceptance rates and a publish-or-perish culture (Smaldino & McEl-
reath, 2016; Frith, 2020). Finally, the law of the instrument (Kaplan,
1964; Maslow, 1966) may influence which machine learning models
are trained/evaluated in the first place: “If all you have is a hammer,
everything looks like a nail”, the proverb knows. (Any parallels to the
ubiquitous use of deep learning, whether warranted or unwarranted,
must surely be coincidental.)

(3.) Humans as benchmarks and baselines
“Of all things the measure is Man”, Protagoras famously said (quoted
from Silvermintz, 2015, p. viii, preface). To a certain degree, this state-
ment is relevant in machine learning as well, where many applications
need to be measured relative to human performance. While we may
be able to forgive a machine for making a driving error that most
humans would have made, we would never forgive ourselves for al-
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lowing our children to ride in an autonomous car that ends up making
a mistake we would not have made ourselves. Reaching or surpassing
human performance is a goal in many areas where machine learn-
ing is applied; however, in the light of this interest, it is astonishing
how rarely human performance is measured thoroughly. For instance,
ResNets—a deep learning model family—were famously reported to
surpass human-level accuracies on the challenging ImageNet dataset
by He et al. (2015), but the performance of “human object recognition”
is based on the self-reported accuracy of a single researcher, Andrej
Karpathy (Russakovsky et al., 2015), trained on just 500 images.3 It 3 You may wonder whether training on

500 images or 0.04% of the full ImageNet
training dataset already makes you an
“expert annotator” as described by Rus-
sakovsky et al. (2015)—a concern that
isn’t helped by the fact that the dataset
has twice as many classes (1,000); i.e. at
least 50% of classes were not represented
in the human training set at all.

remains speculative to ask why human performance is not evaluated
more frequently; it might well be the case that the careful and time-
consuming work to obtain high-quality human data appears daunting.
Nonetheless, surpassing human-level performance is a shared goal
across many application areas, ranging from games like chess (Camp-
bell et al., 2002), Atari (Mnih et al., 2015) and Go (Silver et al., 2016)
to pneumonia detection in the medical context (Rajpurkar et al., 2017),
face verification (Taigman et al., 2014), grammatical error correction
(Grundkiewicz & Junczys-Dowmunt, 2018), or language understand-
ing (McClelland et al., 2020), just to name a few.

(4.) Humans as role models
Human abilities not only serve as challenging benchmark baselines for
tasks that machines can already tackle; they also serve as role models
for tasks or capabilities that are still beyond reach. Here, humans are
often taken as a proof-of-concept. For instance, in their 2015 review of
deep learning, LeCun et al. (2015, p. 442) describe how humans and
animals “discover the structure of the world by observing it, not by
being told the name of every object”. This references the difference
between supervised learning, the dominant deep learning paradigm
of the time, and unsupervised or self-supervised learning, the chal-
lenge of learning useful representations without receiving external la-
bels (such as object names). At the time of writing their review, it
was clear that it could be achieved (taking biological learning as a role
model), but it was not yet clear how. In cases like these, machine learn-
ing often takes inspiration from human perception (e.g. Oord et al.,
2018; Lotter et al., 2020; Orhan et al., 2020), in the hope that this will
point the way towards improved machine perception.

(5.) Humans as metaphors
Historically, machines have often been used as metaphors for our own
brains and minds (Smith, 1993). These metaphors continually evolved;
usually, the most advanced machines and technologies of a time re-
placed or refined older metaphors. This tradition dates back to at least
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Réne Descartes, who coined the mechanistic metaphor: “I suppose the
body to be nothing but a statue or machine made of earth. [...] We
see clocks, artificial fountains, mills, and other such machines which,
although only man-made, have the power to move of their own accord
in many different ways. But I am supposing this machine to be made
by the hands of God, and so I think you may reasonably think it capa-
ble of a greater variety of movements than I could possibly imagine in
it, and of exhibiting more artistry than I could possibly ascribe to it.”
(Descartes, 1662, p. 15).

With the advent of modern times, clocks and mills had been re-
placed by computers as the most fascinating and complex machinery;
consequently, brains were described as file systems (Gregory, 1967) or
massively parallel distributed processors (McClelland & Rumelhart, 1986;
Rumelhart et al., 1986a). Today, terms like file systems and processors
perhaps sound a bit outdated, but we have found a new metaphor: the
deep learning metaphor (e.g. Kriegeskorte, 2015). Excitingly, deep neu-
ral networks for computer vision are image-computable, making them
possible candidates for models of human visual perception. How-
ever, this relationship is far from unidirectional: today, machines are
regarded as metaphors and computational models for aspects of hu-
man perception (Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte,
2014; Cadieu et al., 2014; Kriegeskorte, 2015; Yamins & DiCarlo, 2016;
Kubilius et al., 2016), but at the same time, our understanding of the
brain also influences how we perceive machines—albeit a lot less ex-
plicitly. This may be facilitated by the fact that we have reached a
stage where understanding the machines we build is often no longer
possible “by design”. For instance, the architectural primitives from
which modern deep neural networks are constructed typically do not
suffice to explain or predict their emergent behaviour (Lillicrap & Ko-
rding, 2019). Therefore, our interpretation may fall back to what we
believe and assume, rather than what we have established scientif-
ically.4 Here, metaphors come into play, and “while we cannot do 4 In science, metaphors can be much

more than just a figurative comparison.
In the extreme case, “consistency with
an accepted underlying metaphor goes
far towards determining what will and
what will not be accepted as an explana-
tion” (quoted from Smith, 1993, p. 284,
who credit this thought to Kuhn (1962)
studying the history of scientific revolu-
tions).

without metaphors they can easily betray us” (Smith, 1993, p. 27): the
deep learning metaphor of the brain opens the doors for anthropomor-
phism, which is a well-established tendency to ascribe human traits
and characteristics to non-humans such as animals or machines. This
cognitive bias is the daily bread and butter of those who tell tales and
fables, but not even deep learning researchers are immune to its ef-
fects (Buckner, 2019). As we will see in this thesis, this can reach the
point where we unknowingly use our own perception as models for
machine perception. It is all the more important to understand which
assumptions humans have when reasoning about machines.
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(6.) Humans as those who need to understand
Finally, we need to recall that at its heart, “understanding” is a human
concept: whether a better understanding of machine decision-making
can be achieved is only measurable by human standards. Since in
many cases, humans are also those who are affected by machine de-
cisions, being able to understand how a specific decision was reached
is not only a scientific, but very much a societal necessity—and, in the
European Union, to a certain degree even a legal requirement through
the so-called “right to explanation”, which sets high standards for the
interpretability of machine decisions (GDPR, 2016; Goodman & Flax-
man, 2017).

Taken together, we have seen that learning machines have a deeply
intertwined relationship with humans, whether explicit (humans influ-
ence which machine decides, what a machine decides, and how a ma-
chine decides) or implicit (humans influence how machine decisions
are interpreted). Therefore, the focus of my thesis is the comparison of
machine and human decision-making. Measuring exactly where they
agree and how they differ will enable us to draw conclusions based on
data, rather than implicit assumptions.

1.3 Why study behaviour?

While there are many different ways of comparing humans and
machines, most early human-machine comparisons have focused on
comparing representations, such as activity patterns in neural network
layers to activity patterns in the brain (e.g. Yamins et al., 2013, 2014;
Cadieu et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Güçlü & van
Gerven, 2015). In contrast, the analysis of behaviour (i.e. comparing net-
work decisions to human decisions) has been understudied and not re-
ceived the attention it deserves. In this thesis, analysing behaviour will
be a central methodological approach. As I explain below, analysing
behaviour is not only timely but also sensible for a number of princi-
pled reasons.

First of all, a machine’s behaviour (or output decision) has the most
direct practical relevance: humans are affected by machine decisions,
not by “machine thoughts”. If we are to understand decision-making,
we are best served by taking the actual decisions, i.e. the output of
a system (not just its internal representation), into account. This is
exactly what behavioural analyses are designed for.

Second, behavioural comparisons between humans and machines
can be achieved without invasive methods such as multielectrode ar-



24 to err is human? a functional comparison of human and machine decision-making

ray recordings that are often used for comparisons at the representa-
tional level. Invasive methods come with ethical challenges, drastically
limit the number of experiments one can perform, and in many cases
also involve drawing inferences about human perception without ac-
tually studying human perception (e.g. via analogies to non-human
primates). Moreover, the behavioural approach of studying machines
at the output level additionally has the advantage that we can inves-
tigate pre-trained networks without any modification or re-training,
which limits the influence of ad hoc choices (e.g. training hyperpa-
rameters, layer selection) and might even reduce experimenter bias
since the number of experimental knobs one needs to turn or tweak
becomes much smaller.

Third, the complexity of standard CNNs makes it notoriously diffi-
cult to understand how they arrive at a decision, and which aspects
of an image determine their behaviour. Illuminating exactly these
properties of complex systems is one of the core competencies of psy-
chophysics, a field that has developed rich methods for analysing per-
ceptual decision-making based on complex sensory input (Wichmann
& Jäkel, 2018). This creates opportunities for cross-fertilisation by
transferring well-established methods from a psychophysicist’s tool-
box to the analysis of CNNs. “Innovation happens at the fringes, not
at the center” (Hall & Yoon, 2017, p. 1), and often there are exciting
insights to be gained when the fringes of two originally very different
fields start to meet.

Fourth, analysing behaviour is perfectly suited for a functional com-
parison of humans and machines. Kay (2018, p. 7) defines the dif-
ference between a functional and a mechanistic model as follows: “a
functional model attempts only to match the outputs of a system given
the same inputs provided to the system, whereas a mechanistic model
attempts to also use components that parallel the actual physical com-
ponents of the system.” While in principle obtaining both mechanistic
and functional models of human perception are laudable long-term
goals, mechanistic models of biological systems always come with the
unavoidable question of what the right level of detail is: Brain areas?
Smaller neural circuits? Individual neurons? Neurotransmitters? Or
perhaps even individual atoms? There is no agreed-upon answer to
this question, but not incorporating certain details risks ending up
with a mechanistic model that does not faithfully account for biologi-
cal processes. On the other hand, attempting to incorporate all details
is nearly impossible, and even if one succeeded in this daunting task,
one would risk ending up with a “Map of the Empire whose size was
that of the Empire” (Borges, 1998, p. 325), i.e. with a model that stops
being useful since it is as complex as the original system it was in-
tended to model. Moreover, while CNNs are to a certain degree brain-
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inspired, they incorporate numerous design choices made purely for
engineering reasons such as ReLU activation functions or the use of
back-propagation (e.g. Werbos, 1974; Rumelhart et al., 1986b), render-
ing them poor candidates for mechanistic models: if anything, current
CNNs will be useful as functional models. In terms of Marr’s lev-
els of analysis (Marr, 1982), CNNs clearly differ from human percep-
tion on the implementational level, but it is an open question whether
they show similarities on the algorithmic level. Analyses at this level
seek to understand how a system algorithmically transforms input to
output, irrespective of how the computation might be implemented
physically or biologically. We know that “all models are wrong” (Box,
1976, p. 792), but it is an important open question whether CNNs will
be useful as algorithmic/functional models.

In conclusion, there are a number of compelling reasons for the
study of behaviour when it comes to comparing human and machine
decision-making: the approach is understudied and non-invasive, has
direct practical relevance, allows for the transfer of well-established
psychophysical methods, and targets the promising functional level of
comparison.

1.4 Why study visual object recognition?

Machine behaviour can be compared to human behaviour on
many different tasks. In my thesis, I chose to compare them specifi-
cally on visual object recognition. Vision is a very special sense: you
might still remember the difficulties of learning the first foreign lan-
guage, or of trying to understand mathematical concepts in school—
but I doubt anyone remembers how difficult it was to learn how to
recognise objects. While it is hard to tell in hindsight (after all, we
were still infants when we “learned to see”), there are good reasons
to believe that it might not even have appeared difficult to us in the
first place: the human brain is among the most intricate systems that
evolution has developed, and even though an adult brain weighs just
over 1 kg (Hartmann et al., 1994), it consumes a remarkable 20% of the
energy provided by oxygen (Kety, 1957; Raichle & Gusnard, 2002). For
comparison, imagine an airport where one-fifth of the fuel would be
used up to power the control tower alone! In this regard, brains are
extremely expensive, and a large part of the primate brain either di-
rectly receives visual input or is connected to visual areas (Felleman &
Van Essen, 1991). Consequently, visual tasks like “recognising objects”
that seem perfectly easy to us only appear to be effortless since our
brains are devoting enormous resources to this end: “We are all prodi-
gious olympians in perceptual and motor areas, so good that we make
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the difficult look easy.” (Moravec, 1988, p. 15f.). This has led to dif-
ficulties in estimating which tasks are currently feasible for machines,
and which ones beyond reach. As a consequence, the term Moravec’s
paradox was coined: tasks that seem highly advanced and complex for
humans, such as playing challenging board games, are comparatively
easy for machines to master—while tasks that humans do effortlessly,
like recognising objects robustly and reliably, have proven very chal-
lenging for machines (Moravec, 1988).5 5 One particularly remarkable example

of this paradox is the “Summer Vision
Project”, a 1966 MIT project for summer
interns tasked with developing a com-
puter vision program capable of recog-
nising objects over the course of a few
months (Papert, 1966). Needless to say,
the task turned out to be a tad more com-
plex than anticipated ... (Hutton, 2011).

Thus, vision is special, and within vision, object recognition takes
on a very important role: “At a functional level, visual object recogni-
tion is at the centre of understanding how we think about what we see.
Object identification is a primary end state of visual processing and a
critical precursor to interacting with and reasoning about the world”
(Peissig & Tarr, 2007, p. 76). Given the relevance of object recogni-
tion for understanding and interacting with the world around us, it is
easy to comprehend the considerable excitement following the break-
through performance of a machine model, AlexNet (Krizhevsky et al.,
2012), on a challenging 1,000-class object recognition task, the Ima-
geNet Large-Scale Visual Recognition Challenge (Russakovsky et al.,
2015). For the last decade, object recognition has been at the very fore-
front of progress: representations learned through object recognition
were successfully transferred to other tasks such as instance seman-
tic segmentation (Noh et al., 2015) or saliency prediction (Kümmerer
et al., 2015). Furthermore, important advances such as vision trans-
formers, a new type of architecture that does not rely on convolution
operations (Dosovitskiy et al., 2020) were first developed for object
recognition and later adapted for other tasks. In computer vision, ob-
ject recognition is continuing to set standards; investigating models
trained on object recognition means being able to study the very latest
developments on a task that is both well-established and important to
the community.

Last but certainly not least, visual object recognition is an area
where there have been particularly promising findings (and, occasion-
ally, particularly broad-ranging claims) regarding CNNs as faithful
computational models of human object recognition (e.g. Yamins et al.,
2013, 2014; Kriegeskorte, 2015; Kubilius et al., 2016, 2019; Zhuang et al.,
2021). The combination of these factors—the importance of vision
and object recognition for human perception, the central role of object
recognition within computer vision, and the fact that CNNs trained
on object recognition are being proposed as models for primate ven-
tral stream object recognition—collectively render visual object recog-
nition a very useful (if not the current best) area for comparing human
against machine behaviour.
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1.5 Outline

Machine learning has a growing impact on our everyday lives,
and whether this influence will be net positive depends on our ability
to understand machine decision-making. In the introduction I have
argued that understanding machine decision-making is more than a
purely technical endeavour—machines have a deeply intertwined rela-
tionship with humans, and just as we sometimes only truly understand
our own culture when living abroad, machine decision-making can
best be understood when comparing it to our own human decision-
making.

Figure 1.1 presents a schematic overview of the projects in this the-
sis. Projects P1 and P2 ask: “How do models recognise objects?”. The
question is simple, but the answer unexpected: contrary to what was
assumed previously (and in stark contrast to human perception), ob-
ject textures rather than object shapes are the behaviour-determining
features in object classification (P1) and object detection (P2). Given
that all investigated models are biased towards textures, what sets
models apart behaviourally—in other words, “How do models dif-
fer from one another?” This is the question that projects P3 and
P4 set out to answer. We will see that even radically different mod-
els such as feedforward vs. recurrent models (P3) and supervised vs.
self-supervised models (P4) systematically make similar errors: be-
haviourally, most models seem to be created equal (but different from
humans). Following these “How” questions, project P5 then presents
the concept of shortcut learning as an integrative perspective tackling
the question of “Why do machines decide the way they do”. The an-
swer sheds new light on projects P1–P4 since it may explain why mod-
els often learn the same strategies, but it also exposes further system-
atic differences to human behaviour. This leads us to the final question,
“How can we make progress?”, which will be (partially) answered
by project P6 presenting a comprehensive human-vs-machine toolbox
to benchmark and scrutinise object recognition behaviour. Testing a
range of promising machine learning developments on this bench-
mark, we will see that we are finally making progress in closing the
gap between human and machine behaviour when it comes to robust
visual object recognition.

After presenting these projects in Chapter 2, my thesis will conclude
with a general discussion (Chapter 3) and an outlook to some of the
big next questions that arise as a result of my experimental findings
(Chapter 4).
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Figure 1.1: Schematic overview of the
projects presented in this thesis. Projects
P1–P4 ask “How do machines decide”,
project P5 presents the concept of short-
cut learning as an integrative perspec-
tive tackling the question “Why do ma-
chines decide the way they do”. Fi-
nally, project P6 presents a compre-
hensive benchmark to measure future
progress, and reports first signs of (par-
tial) success. Throughout the thesis, ma-
chine decision-making will be compared
against human decision-making.



2 Publications

2.1 ImageNet-trained CNNs are biased towards texture; in-
creasing shape bias improves accuracy and robustness

Transparency notice This publication is based, in part, on my MSc the-
sis titled “Out of shape: quantifying and overcoming texture bias in
convolutional neural networks” (University of Tübingen, 2018). The
MSc thesis was written as a publication draft. Based on this draft, a
number of changes and additions were implemented afterwards, in-
cluding (but not limited to): completely new structure; visualisation
improvements to main figures; text changes to title, abstract, main pa-
per and appendix; more concise presentation of datasets; making code,
datasets & weights publicly available; incorporating robustness results
for networks trained on Stylized-ImageNet when tested on ImageNet-
C (Hendrycks & Dietterich, 2019); adding results for a very deep net-
work (ResNet-152), a very wide network (DenseNet-121) and a highly
compressed network (SqueezeNet1_1); testing a network trained on
a different dataset (Open Images); training AlexNet and VGG-16 on
Stylized-ImageNet to make sure the results are not limited to ResNet-
50; including results for transfer learning on a different object detec-
tion data set (MS COCO); testing accuracy and object detection per-
formance for ResNet-152 (a much deeper object detection backbone);
enhancing the presentation of claims and contributions; performing a
reaction time analysis; investigating a correlation between accuracy on
“edge” images and texture bias.



30 to err is human? a functional comparison of human and machine decision-making

Figure 2.1: Schematic overview of the
projects presented in this thesis. Projects
P1–P4 ask “How do machines decide”,
project P5 presents the concept of short-
cut learning as an integrative perspective
tackling the question “Why do machines
decide the way they do”. Finally, project
P6 presents a comprehensive benchmark
to measure future progress, and reports
first signs of (partial) success. Through-
out the thesis, machine decision making
will be compared against human deci-
sion making.
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ABSTRACT

Convolutional Neural Networks (CNNs) are commonly thought to recognise ob-
jects by learning increasingly complex representations of object shapes. Some
recent studies suggest a more important role of image textures. We here put these
conflicting hypotheses to a quantitative test by evaluating CNNs and human ob-
servers on images with a texture-shape cue conflict. We show that ImageNet-
trained CNNs are strongly biased towards recognising textures rather than shapes,
which is in stark contrast to human behavioural evidence and reveals fundamen-
tally different classification strategies. We then demonstrate that the same standard
architecture (ResNet-50) that learns a texture-based representation on ImageNet
is able to learn a shape-based representation instead when trained on ‘Stylized-
ImageNet’, a stylized version of ImageNet. This provides a much better fit for
human behavioural performance in our well-controlled psychophysical lab setting
(nine experiments totalling 48,560 psychophysical trials across 97 observers) and
comes with a number of unexpected emergent benefits such as improved object
detection performance and previously unseen robustness towards a wide range of
image distortions, highlighting advantages of a shape-based representation.

(a) Texture image
81.4% Indian elephant
10.3% indri

8.2% black swan

(b) Content image
71.1% tabby cat
17.3% grey fox

3.3% Siamese cat

(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri

9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

∗Joint senior authors
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1 INTRODUCTION

How are Convolutional Neural Networks (CNNs) able to reach impressive performance on complex
perceptual tasks such as object recognition (Krizhevsky et al., 2012) and semantic segmentation
(Long et al., 2015)? One widely accepted intuition is that CNNs combine low-level features (e.g.
edges) to increasingly complex shapes (such as wheels, car windows) until the object (e.g. car) can
be readily classified. As Kriegeskorte (2015) puts it, “the network acquires complex knowledge
about the kinds of shapes associated with each category. [...] High-level units appear to learn
representations of shapes occurring in natural images” (p. 429). This notion also appears in other
explanations, such as in LeCun et al. (2015): Intermediate CNN layers recognise “parts of familiar
objects, and subsequent layers [...] detect objects as combinations of these parts” (p. 436). We term
this explanation the shape hypothesis.

This hypothesis is supported by a number of empirical findings. Visualisation techniques like De-
convolutional Networks (Zeiler & Fergus, 2014) often highlight object parts in high-level CNN fea-
tures.1 Moreover, CNNs have been proposed as computational models of human shape perception
by Kubilius et al. (2016), who conducted an impressive number of experiments comparing human
and CNN shape representations and concluded that CNNs “implicitly learn representations of shape
that reflect human shape perception” (p. 15). Ritter et al. (2017) discovered that CNNs develop a
so-called “shape bias” just like children, i.e. that object shape is more important than colour for
object classification (although see Hosseini et al. (2018) for contrary evidence). Furthermore, CNNs
are currently the most predictive models for human ventral stream object recognition (e.g. Cadieu
et al., 2014; Yamins et al., 2014); and it is well-known that object shape is the single most impor-
tant cue for human object recognition (Landau et al., 1988), much more than other cues like size or
texture (which may explain the ease at which humans recognise line drawings or millennia-old cave
paintings).

On the other hand, some rather disconnected findings point to an important role of object textures
for CNN object recognition. CNNs can still classify texturised images perfectly well, even if the
global shape structure is completely destroyed (Gatys et al., 2017; Brendel & Bethge, 2019). Con-
versely, standard CNNs are bad at recognising object sketches where object shapes are preserved
yet all texture cues are missing (Ballester & de Araújo, 2016). Additionally, two studies suggest that
local information such as textures may actually be sufficient to “solve” ImageNet object recogni-
tion: Gatys et al. (2015) discovered that a linear classifier on top of a CNN’s texture representation
(Gram matrix) achieves hardly any classification performance loss compared to original network
performance. More recently, Brendel & Bethge (2019) demonstrated that CNNs with explicitly con-
strained receptive field sizes throughout all layers are able to reach surprisingly high accuracies on
ImageNet, even though this effectively limits a model to recognising small local patches rather than
integrating object parts for shape recognition. Taken together, it seems that local textures indeed
provide sufficient information about object classes—ImageNet object recognition could, in princi-
ple, be achieved through texture recognition alone. In the light of these findings, we believe that it
is time to consider a second explanation, which we term the texture hypothesis: in contrast to the
common assumption, object textures are more important than global object shapes for CNN object
recognition.

Resolving these two contradictory hypotheses is important both for the deep learning community
(to increase our understanding of neural network decisions) as well as for the human vision and
neuroscience communities (where CNNs are being used as computational models of human object
recognition and shape perception). In this work we aim to shed light on this debate with a num-
ber of carefully designed yet relatively straightforward experiments. Utilising style transfer (Gatys
et al., 2016), we created images with a texture-shape cue conflict such as the cat shape with elephant
texture depicted in Figure 1c. This enables us to quantify texture and shape biases in both humans
and CNNs. To this end, we perform nine comprehensive and careful psychophysical experiments
comparing humans against CNNs on exactly the same images, totalling 48,560 psychophysical tri-
als across 97 observers. These experiments provide behavioural evidence in favour of the texture
hypothesis: A cat with an elephant texture is an elephant to CNNs, and still a cat to humans. Beyond
quantifying existing biases, we subsequently present results for our two other main contributions:

1To avoid any confusion caused by different meanings of the term ‘feature’, we consistently use it to refer
to properties of CNNs (learned features) rather than to object properties (such as colour). When referring to
physical objects, we use the term ‘cue’ instead.
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Figure 2: Accuracies and example stimuli for five different experiments without cue conflict.

changing biases, and discovering emergent benefits of changed biases. We show that the texture bias
in standard CNNs can be overcome and changed towards a shape bias if trained on a suitable data
set. Remarkably, networks with a higher shape bias are inherently more robust to many different
image distortions (for some even reaching or surpassing human performance, despite never being
trained on any of them) and reach higher performance on classification and object recognition tasks.

2 METHODS

In this section we outline the core elements of paradigm and procedure. Extensive details to facilitate
replication are provided in the Appendix. Data, code and materials are available from this repository:
https://github.com/rgeirhos/texture-vs-shape

2.1 PSYCHOPHYSICAL EXPERIMENTS

All psychophysical experiments were conducted in a well-controlled psychophysical lab setting and
follow the paradigm of Geirhos et al. (2018), which allows for direct comparisons between human
and CNN classification performance on exactly the same images. Briefly, in each trial participants
were presented a fixation square for 300 ms, followed by a 300 ms presentation of the stimulus
image. After the stimulus image we presented a full-contrast pink noise mask (1/f spectral shape)
for 200 ms to minimise feedback processing in the human visual system and to thereby make the
comparison to feedforward CNNs as fair as possible. Subsequently, participants had to choose one
of 16 entry-level categories by clicking on a response screen shown for 1500 ms. On this screen,
icons of all 16 categories were arranged in a 4× 4 grid. Those categories were airplane, bear,
bicycle, bird, boat, bottle, car, cat, chair, clock, dog, elephant, keyboard,
knife, oven and truck. Those are the so-called “16-class-ImageNet” categories introduced in
Geirhos et al. (2018).

The same images were fed to four CNNs pre-trained on standard ImageNet, namely AlexNet
(Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015), VGG-16 (Simonyan & Zisserman,
2015) and ResNet-50 (He et al., 2015). The 1,000 ImageNet class predictions were mapped to the
16 categories using the WordNet hierarchy (Miller, 1995)—e.g. ImageNet category tabby cat
would be mapped to cat. In total, the results presented in this study are based on 48,560 psy-
chophysical trials and 97 participants.

2.2 DATA SETS (PSYCHOPHYSICS)

In order to assess texture and shape biases, we conducted six major experiments along with three
control experiments, which are described in the Appendix. The first five experiments (samples
visualised in Figure 2) are simple object recognition tasks with the only difference being the image
features available to the participant:

Original 160 natural colour images of objects (10 per category) with white background.
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Figure 3: Visualisation of Stylized-ImageNet (SIN), created by applying AdaIN style transfer to
ImageNet images. Left: randomly selected ImageNet image of class ring-tailed lemur.
Right: ten examples of images with content/shape of left image and style/texture from different
paintings. After applying AdaIN style transfer, local texture cues are no longer highly predictive
of the target class, while the global shape tends to be retained. Note that within SIN, every source
image is stylized only once.

Greyscale Images from Original data set converted to greyscale using
skimage.color.rgb2gray. For CNNs, greyscale images were stacked
along the colour channel.

Silhouette Images from Original data set converted to silhouette images showing an entirely
black object on a white background (see Appendix A.6 for procedure).

Edges Images from Original data set converted to an edge-based representation using
Canny edge extractor implemented in MATLAB.

Texture 48 natural colour images of textures (3 per category). Typically the textures consist
of full-width patches of an animal (e.g. skin or fur) or, in particular for man-made
objects, of images with many repetitions of the same objects (e.g. many bottles next
to each other, see Figure 7 in the Appendix).

It is important to note that we only selected object and texture images that were correctly classified
by all four networks. This was made to ensure that our results in the sixth experiment on cue
conflicts, which is most decisive in terms of the shape vs texture hypothesis, are fully interpretable.
In the cue conflict experiment we present images with contradictory features (see Figure 1) but still
ask the participant to assign a single class. Note that the instructions to human observers were
entirely neutral w.r.t. shape or texture (“click on the object category that you see in the presented
image; guess if unsure. There is no right or wrong answer, we are interested in your subjective
impression”).

Cue conflict Images generated using iterative style transfer (Gatys et al., 2016) between an image
of the Texture data set (as style) and an image from the Original data set (as content).
We generated a total of 1280 cue conflict images (80 per category), which allows
for presentation to human observers within a single experimental session.

We define “silhouette” as the bounding contour of an object in 2D (i.e., the outline of object segmen-
tation). When mentioning “object shape”, we use a definition that is broader than just the silhouette
of an object: we refer to the set of contours that describe the 3D form of an object, i.e. including
those contours that are not part of the silhouette. Following Gatys et al. (2017), we define “texture”
as an image (region) with spatially stationary statistics. Note that on a very local level, textures
(according to this definition) can have non-stationary elements (such as a local shape): e.g. a single
bottle clearly has non-stationary statistics, but many bottles next to each other are perceived as a
texture: “things” become “stuff” (Gatys et al., 2017, p. 178). For an example of a “bottle texture”
see Figure 7.
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2.3 STYLIZED-IMAGENET

Starting from ImageNet we constructed a new data set (termed Stylized-ImageNet or SIN) by strip-
ping every single image of its original texture and replacing it with the style of a randomly selected
painting through AdaIN style transfer (Huang & Belongie, 2017) (see examples in Figure 3) with a
stylization coefficient of α = 1.0. We used Kaggle’s Painter by Numbers data set2 as a style
source due to its large style variety and size (79,434 paintings). We used AdaIN fast style transfer
rather than iterative stylization (e.g. Gatys et al., 2016) for two reasons: Firstly, to ensure that train-
ing on SIN and testing on cue conflict stimuli is done using different stylization techniques, such
that the results do not rely on a single stylization method. Secondly, to enable stylizing entire Ima-
geNet, which would take prohibitively long with an iterative approach. We provide code to create
Stylized-ImageNet here:
https://github.com/rgeirhos/Stylized-ImageNet

3 RESULTS

3.1 TEXTURE VS SHAPE BIAS IN HUMANS AND IMAGENET-TRAINED CNNS

Almost all object and texture images (Original and Texture data set) were recognised correctly by
both CNNs and humans (Figure 2). Greyscale versions of the objects, which still contain both shape
and texture, were recognised equally well. When object outlines were filled in with black colour to
generate a silhouette, CNN recognition accuracies were much lower than human accuracies. This
was even more pronounced for edge stimuli, indicating that human observers cope much better with
images that have little to no texture information. One confound in these experiments is that CNNs
tend not to cope well with domain shifts, i.e. the large change in image statistics from natural images
(on which the networks have been trained) to sketches (which the networks have never seen before).

We thus devised a cue conflict experiment that is based on images with a natural statistic but con-
tradicting texture and shape evidence (see Methods). Participants and CNNs have to classify the
images based on the features (shape or texture) that they most rely on. The results of this exper-
iment are visualised in Figure 4. Human observers show a striking bias towards responding with
the shape category (95.9% of correct decisions).3 This pattern is reversed for CNNs, which show a
clear bias towards responding with the texture category (VGG-16: 17.2% shape vs. 82.8% texture;
GoogLeNet: 31.2% vs. 68.8%; AlexNet: 42.9% vs. 57.1%; ResNet-50: 22.1% vs. 77.9%).

3.2 OVERCOMING THE TEXTURE BIAS OF CNNS

The psychophysical experiments suggest that ImageNet-trained CNNs, but not humans, exhibit a
strong texture bias. One reason might be the training task itself: from Brendel & Bethge (2019) we
know that ImageNet can be solved to high accuracy using only local information. In other words, it
might simply suffice to integrate evidence from many local texture features rather than going through
the process of integrating and classifying global shapes. In order to test this hypothesis we train a
ResNet-50 on our Stylized-ImageNet (SIN) data set in which we replaced the object-related local
texture information with the uninformative style of randomly selected artistic paintings.

A standard ResNet-50 trained and evaluated on Stylized-ImageNet (SIN) achieves 79.0% top-5 ac-
curacy (see Table 1). In comparison, the same architecture trained and evaluated on ImageNet (IN)
achieves 92.9% top-5 accuracy. This performance difference indicates that SIN is a much harder
task than IN since textures are no longer predictive, but instead a nuisance factor (as desired). In-
triguingly, ImageNet features generalise poorly to SIN (only 16.4% top-5 accuracy); yet features
learned on SIN generalise very well to ImageNet (82.6% top-5 accuracy without any fine-tuning).

In order to test wheter local texture features are still sufficient to “solve” SIN we evaluate the per-
formance of so-called BagNets. Introduced recently by Brendel & Bethge (2019), BagNets have a
ResNet-50 architecture but their maximum receptive field size is limited to 9×9, 17×17 or 33×33

2https://www.kaggle.com/c/painter-by-numbers/ (accessed on March 1, 2018).
3It is important to note that a substantial fraction of the images (automatically generated with style transfer

between randomly selected object image and texture image) seemed hard to recognise for both humans and
CNNs, as depicted by the fraction of incorrect classification choices in Figure 4.
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Figure 4: Classification results
for human observers (red circles)
and ImageNet-trained networks
AlexNet (purple diamonds), VGG-
16 (blue triangles), GoogLeNet
(turquoise circles) and ResNet-50
(grey squares). Shape vs. tex-
ture biases for stimuli with cue
conflict (sorted by human shape
bias). Within the responses that
corresponded to either the correct
texture or correct shape category,
the fractions of texture and shape
decisions are depicted in the main
plot (averages visualised by vertical
lines). On the right side, small
barplots display the proportion of
correct decisions (either texture or
shape correctly recognised) as a
fraction of all trials. Similar results
for ResNet-152, DenseNet-121 and
Squeezenet1 1 are reported in the
Appendix, Figure 13.
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pixels. This precludes BagNets from learning or using any long-range spatial relationships for clas-
sification. While these restricted networks can reach high accuracies on ImageNet, they are unable
to achieve the same on SIN, showing dramatically reduced performance with smaller receptive field
sizes (such as 10.0% top-5 accuracy on SIN compared to 70.0% on ImageNet for a BagNet with
receptive field size of 9× 9 pixels). This is a clear indication that the SIN data set we propose does
actually remove local texture cues, forcing a network to integrate long-range spatial information.

Most importantly, the SIN-trained ResNet-50 shows a much stronger shape bias in our cue conflict
experiment (Figure 5), which increases from 22% for a IN-trained model to 81%. In many categories
the shape bias is almost as strong as for humans.

3.3 ROBUSTNESS AND ACCURACY OF SHAPE-BASED REPRESENTATIONS

Does the increased shape bias, and thus the shifted representations, also affect the performance
or robustness of CNNs? In addition to the IN- and SIN-trained ResNet-50 architecture we here
additionally analyse two joint training schemes:

• Training jointly on SIN and IN.
• Training jointly on SIN and IN with fine-tuning on IN. We refer to this model as Shape-ResNet.

architecture IN→IN IN→SIN SIN→SIN SIN→IN

ResNet-50 92.9 16.4 79.0 82.6
BagNet-33 (mod. ResNet-50) 86.4 4.2 48.9 53.0
BagNet-17 (mod. ResNet-50) 80.3 2.5 29.3 32.6
BagNet-9 (mod. ResNet-50) 70.0 1.4 10.0 10.9

Table 1: Stylized-ImageNet cannot be solved with texture features alone. Accuracy comparison
(in percent; top-5 on validation data set) of a standard ResNet-50 with Bag of Feature networks
(BagNets) with restricted receptive field sizes of 33×33, 17×17 and 9×9 pixels. Arrows indicate:
train data→test data, e.g. IN→SIN means training on ImageNet and testing on Stylized-ImageNet.
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Figure 5: Shape vs. texture bi-
ases for stimuli with a texture-shape
cue conflict after training ResNet-
50 on Stylized-ImageNet (orange
squares) and on ImageNet (grey
squares). Plotting conventions and
human data (red circles) for com-
parison are identical to Figure 4.
Similar results for other networks
are reported in the Appendix, Fig-
ure 11.
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top-1 IN top-5 IN Pascal VOC MS COCO
name training fine-tuning accuracy (%) accuracy (%) mAP50 (%) mAP50 (%)

vanilla ResNet IN - 76.13 92.86 70.7 52.3
SIN - 60.18 82.62 70.6 51.9
SIN+IN - 74.59 92.14 74.0 53.8

Shape-ResNet SIN+IN IN 76.72 93.28 75.1 55.2

Table 2: Accuracy comparison on the ImageNet (IN) validation data set as well as object detec-
tion performance (mAP50) on PASCAL VOC 2007 and MS COCO. All models have an identical
ResNet-50 architecture. Method details reported in the Appendix, where we also report similar
results for ResNet-152 (Table 4).

We then compared these models with a vanilla ResNet-50 on three experiments: (1) classification
performance on IN, (2) transfer to Pascal VOC 2007 and (3) robustness against image perturbations.

Classification performance Shape-ResNet surpasses the vanilla ResNet in terms of top-1 and top-
5 ImageNet validation accuracy as reported in Table 2. This indicates that SIN may be a useful data
augmentation on ImageNet that can improve model performance without any architectural changes.

Transfer learning We tested the representations of each model as backbone features for Faster R-
CNN (Ren et al., 2017) on Pascal VOC 2007 and MS COCO. Incorporating SIN in the training data
substantially improves object detection performance from 70.7 to 75.1 mAP50 (52.3 to 55.2 mAP50
on MS COCO) as shown in Table 2. This is in line with the intuition that for object detection, a
shape-based representation is more beneficial than a texture-based representation, since the ground
truth rectangles encompassing an object are by design aligned with global object shape.

Robustness against distortions We systematically tested how model accuracies degrade if images
are distorted by uniform or phase noise, contrast changes, high- and low-pass filtering or eidolon
perturbations.4 The results of this comparison, including human data for reference, are visualised
in Figure 6. While lacking a few percent accuracy on undistorted images, the SIN-trained network
outperforms the IN-trained CNN on almost all image manipulations. (Low-pass filtering / blurring
is the only distortion type on which SIN-trained networks are more susceptible, which might be due
to the over-representation of high frequency signals in SIN through paintings and the reliance on

4Our comparison encompasses all distortions reported by Geirhos et al. (2018) with more than five different
levels of signal strength. Data from human observers included with permission from the authors (see appendix).
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Figure 6: Classification accuracy on parametrically distorted images. ResNet-50 trained on Stylized-
ImageNet (SIN) is more robust towards distortions than the same network trained on ImageNet (IN).

sharp edges.) The SIN-trained ResNet-50 approaches human-level distortion robustness—despite
never seeing any of the distortions during training.

Furthermore, we provide robustness results for our models tested on ImageNet-C, a comprehensive
benchmark of 15 different image corruptions (Hendrycks & Dietterich, 2019), in Table 5 of the
Appendix. Training jointly on SIN and IN leads to strong improvements for 13 corruption types
(Gaussian, Shot and Impulse noise; Defocus, Glas and Motion blur; Snow, Frost and Fog weather
types; Contrast, Elastic, Pixelate and JPEG digital corruptions). This substantially reduces overall
corruption error from 76.7 for a vanilla ResNet-50 to 69.3. Again, none of these corruption types
were explicitly part of the training data, reinforcing that incorporating SIN in the training regime
improves model robustness in a very general way.

4 DISCUSSION

As noted in the Introduction, there seems to be a large discrepancy between the common assump-
tion that CNNs use increasingly complex shape features to recognise objects and recent empirical
findings which suggest a crucial role of object textures instead. In order to explicitly probe this
question, we utilised style transfer (Gatys et al., 2016) to generate images with conflicting shape and
texture information. On the basis of extensive experiments on both CNNs and human observers in
a controlled psychophysical lab setting, we provide evidence that unlike humans, ImageNet-trained
CNNs tend to classify objects according to local textures instead of global object shapes. In com-
bination with previous work which showed that changing other major object dimensions such as
colour (Geirhos et al., 2018) and object size relative to the context (Eckstein et al., 2017) do not
have a strong detrimental impact on CNN recognition performance, this highlights the special role
that local cues such as textures seem to play in CNN object recognition.

Intriguingly, this offers an explanation for a number of rather disconnected findings: CNNs match
texture appearance for humans (Wallis et al., 2017), and their predictive power for neural responses
along the human ventral stream appears to be largely due to human-like texture representations, but
not human-like contour representations (Laskar et al., 2018; Long & Konkle, 2018). Furthermore,
texture-based generative modelling approaches such as style transfer (Gatys et al., 2016), single
image super-resolution (Gondal et al., 2018) as well as static and dynamic texture synthesis (Gatys
et al., 2015; Funke et al., 2017) all produce excellent results using standard CNNs, while CNN-
based shape transfer seems to be very difficult (Gokaslan et al., 2018). CNNs can still recognise
images with scrambled shapes (Gatys et al., 2017; Brendel & Bethge, 2019), but they have much
more difficulties recognising objects with missing texture information (Ballester & de Araújo, 2016;
Yu et al., 2017). Our hypothesis might also explain why an image segmentation model trained on
a database of synthetic texture images transfers to natural images and videos (Ustyuzhaninov et al.,
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2018). Beyond that, our results show marked behavioural differences between ImageNet-trained
CNNs and human observers. While both human and machine vision systems achieve similarly
high accuracies on standard images (Geirhos et al., 2018), our findings suggest that the underlying
classification strategies might actually be very different. This is problematic, since CNNs are being
used as computational models for human object recognition (e.g. Cadieu et al., 2014; Yamins et al.,
2014).

In order to reduce the texture bias of CNNs we introduced Stylized-ImageNet (SIN), a data set
that removes local cues through style transfer and thereby forces networks to go beyond texture
recognition. Using this data set, we demonstrated that a ResNet-50 architecture can indeed learn
to recognise objects based on object shape, revealing that the texture bias in current CNNs is not
by design but induced by ImageNet training data. This indicates that standard ImageNet-trained
models may be taking a “shortcut” by focusing on local textures, which could be seen as a version
of Occam’s razor: If textures are sufficient, why should a CNN learn much else? While texture
classification may be easier than shape recognition, we found that shape-based features trained on
SIN generalise well to natural images.

Our results indicate that a more shape-based representation can be beneficial for recognition tasks
that rely on pre-trained ImageNet CNNs. Furthermore, while ImageNet-trained CNNs generalise
poorly towards a wide range of image distortions (e.g. Dodge & Karam, 2017; Geirhos et al., 2017;
2018), our ResNet-50 trained on Stylized-ImageNet often reaches or even surpasses human-level
robustness (without ever being trained on the specific image degradations). This is exciting because
Geirhos et al. (2018) showed that networks trained on specific distortions in general do not acquire
robustness against other unseen image manipulations. This emergent behaviour highlights the use-
fulness of a shape-based representation: While local textures are easily distorted by all sorts of noise
(including those in the real world, such as rain and snow), the object shape remains relatively stable.
Furthermore, this finding offers a compellingly simple explanation for the incredible robustness of
humans when coping with distortions: a shape-based representation.

5 CONCLUSION

In summary, we provided evidence that machine recognition today overly relies on object textures
rather than global object shapes as commonly assumed. We demonstrated the advantages of a shape-
based representation for robust inference (using our Stylized-ImageNet data set5 to induce such a
representation in neural networks). We envision our findings as well as our openly available model
weights, code and behavioural data set (49K trials across 97 observers)6 to achieve three goals:
Firstly, an improved understanding of CNN representations and biases. Secondly, a step towards
more plausible models of human visual object recognition. Thirdly, a useful starting point for future
undertakings where domain knowledge suggests that a shape-based representation may be more
beneficial than a texture-based one.
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A APPENDIX

A.1 REPRODUCIBILITY & ACCESS TO CODE / MODELS / DATA

In this Appendix, we report experimental details for human and CNN experiments. All trained model
weights reported in this paper as well as our human behavioural data set (48,560 psychophysical
trials across 97 observers) are openly available from this repository:
https://github.com/rgeirhos/texture-vs-shape

A.2 PROCEDURE

We followed the paradigm of Geirhos et al. (2018) for maximal comparability. A trial consisted of
300 ms presentation of a fixation square and a 200 ms presentation of the stimulus image, which
was followed by a full-contrast pink noise mask (1/f spectral shape) of the same size lasting for 200
ms. Participants had to choose one of 16 entry-level categories by clicking on a response screen
shown for 1500 ms. On this screen, icons of all 16 categories were arranged in a 4 × 4 grid. The
experiments were not self-paced and therefore one trial always lasted 2200 ms (300 ms + 200 ms +
200 ms + 1500 ms = 2200 ms). The necessary time to complete an experiment with 1280 stimuli
was 47 minutes, for 160 stimuli six minutes, and for 48 stimuli two minutes. In the experiments
with 1280 trials, observers were given the possibility of taking a brief break after every block of 256
trials (five blocks in total).

As preparation, participants were shown the response screen prior to an experiment and were asked
to name all 16 categories in order to get an overview over the possible stimuli categories and to make
sure that all categories were clear from the beginning. They were instructed to click on the category
they believed was presented. Responses through clicking on a response screen could be changed
within the 1500 ms response interval, only the last entered response was counted as the answer.
Prior to the real experiment a practice session was performed for the participants to get used to the
time course of the experiment and the position of category items on the response screen. This screen
was shown for an additional 300 ms in order to provide feedback and indicate whether the entered
answer was incorrect. In that case, a short low beep sound occurred and the correct category was
highlighted by setting its background to white. The practice session consisted of 320 trials. After
160 trials the participants had the chance to take a short break. In the break, their performance of
the first block was shown on the screen along the percentage of trials where no answer was entered.
After the practice blocks, observers were shown an example image of the manipulation (not used in
the experiment) to minimise surprise. Images used in the practice session were natural images from
16-class-ImageNet (Geirhos et al., 2018), hence there was no overlap with images or manipulations
used in the experiments.

A.3 APPARATUS

Observers were shown the 224×224 pixels stimuli in a dark cabin on a 22”, 120 Hz VIEWPixx LCD
monitor (VPixx Technologies, Saint-Bruno, Canada). The screen of size 484×302 mm corresponds
to 1920 × 1200 pixels, although stimuli were only presented foveally at the center of the screen
(3 × 3 degrees of visual angle at a viewing distance of 107 cm) while the background was set
to a grey value of 0.7614 in the [0, 1] range, the average greyscale value of all stimuli used in
the original experiment. Participants used a chin rest to keep their head position static during an
experiment. Stimulus presentation was conducted with the Psychophysics Toolbox (version 3.0.12)
in MATLAB (Release 2016a, The MathWorks, Inc., Natick, Massachusetts, United States) using a
12-core desktop computer (AMD HD7970 graphics card “Tahiti” by AMD, Sunnyvale, California,
United States) running Kubuntu 14.04 LTS. Participants clicked on a response screen, showing an
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experiment instruction # p. #♀ #♂ age range mean age # stimuli rt

original neutral 5 5 0 21–27 24.2 160 772
greyscale neutral 5 4 1 20–26 23.4 160 811
texture neutral 5 2 3 23–36 29.0 48 769
silhouette neutral 10 9 1 21–37 24.1 160 861
edge neutral 10 6 4 18–30 23.0 160 791
cue conflict neutral 10 7 3 20–29 23.0 1280 828
cue conflict control texture 10 5 5 23–32 26.6 1280 942
cue conflict control shape 10 9 1 18–25 21.8 1280 827
filled silhouette neutral 32 22 10 18–30 22.3 160 881

overall 97 69 28 18–37 23.5 48,560 trials 857

Table 3: Characteristics of human participants (p.) across experiments. The symbol ‘#’ refers to
“number of”; ‘rt’ stands for “median reaction time (ms)” in an experiment.

iconic representation of all of the 16 object categories as reported in Geirhos et al. (2018), with a
normal computer mouse.

A.4 PARTICIPANTS

In total, 97 human observers participated in the study. For a detailed overview about how they
were distributed across experiments see Table 3. No observer participated in more than one experi-
ment, and all participants reported normal or corrected-to-normal vision. Observers participating in
experiments with a cue conflict manipulation were paid e 10 per hour or gained course credit. Ob-
servers measured in all other experiments (with a clear ground truth category) were able to earn an
additional bonus up to e 5 or equivalent further course credit based on their performance. This mo-
tivation scheme was applied to ensure reliable answer rates, and explained to observers in advance.
Participant bonus, in these cases, was calculated as follows: The base level with a bonus of e 0 was
set to 50% accuracy. For every additional 5% of accuracy, participants gained a e 0.50 bonus. This
means that with a performance above 95%, an observer was able to gain the full bonus of e 5 or
equivalent course credit. Overall, we took the following steps to prevent low quality human data:
1., using a controlled lab environment instead of an online crowdsourcing platform; 2. the payment
motivation scheme as explained above; 3. displaying observer performance on the screen at regular
intervals during the practice session; and 4. splitting longer experiments into five blocks, where
participants could take a break in between blocks.

A.5 CNN MODELS & TRAINING DETAILS

ResNet-50 We used a standard ResNet-50 architecture from PyTorch (Paszke et al., 2017), the
torchvision.models.resnet50 implementation. For the comparison against BagNets re-
ported in Table 1, results for IN training correspond to a ResNet-50 pre-trained on ImageNet with-
out any modifications (model weights from torchvision.models). Reported results for SIN
training correspond to the same architecture trained on SIN for 60 epochs with Stochastic Gradient
Descent (torch.optim.SGD) using a momentum term of 0.9, weight decay (1e-4) and a learning
rate of 0.1 which was multiplied by a factor of 0.1 after 20 and 40 epochs of training. We used a
batch size of 256. This SIN-trained model is the same model that is reported in Figures 5 and 6 as
well as in Table 2. In the latter, this corresponds to the second row (training performed on SIN, no
fine-tuning on ImageNet). For the model reported in the third row, training was jointly performed on
SIN and on IN. This means that both training data sets were treated as one big data set (exactly twice
the size of the IN training data set), on which training was performed for 45 epochs with identical
hyperparameters as described above, except that the initial learning rate of 0.1 was multiplied by 0.1
after 15 and 30 epochs. The weights of this model were then used to initialise the model reported
in the fourth row of Table 2, which was fine-tuned for 60 epochs on ImageNet (identical hyperpa-
rameters except that the initial learning rate of 0.01 was multiplied by 0.1 after 30 epochs). We
compared training models from scratch versus starting from an ImageNet-pretrained model. Em-
pirically, using features pre-trained on ImageNet led to better results across experiments, which is
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why we used ImageNet pre-training throughout experiments and models (for both ResNet-50 and
restricted ResNet-50 models).

BagNets Model weights (pre-trained on ImageNet) and architectures for BagNets (results reported
in Table 1) were kindly provided by Brendel & Bethge (2019). For SIN training, identical settings
as for the SIN-trained ResNet-50 were used to ensure comparability (training for 60 epochs with
SGD and identical hyperparameters as reported above).

Faster R-CNN We used the Faster R-CNN implementation from https://github.com/
jwyang/faster-rcnn.pytorch (commit 21f28986) with all hyperparameters kept at default.
The only changes we made to the model is replacing the encoder with ResNet-50 (respectively
ResNet-152 for the results in Table 4) and applying custom input whitening. For Pascal VOC 2007
we trained the model for 7 epochs with a batch size of 1, a learning rate of 0.001 and a learning rate
decay step after epoch 5. Images were resized to have a short edge of 600 pixels. For MS COCO we
trained the same model on the 2017 train/val split for training and testing respectively. We trained
for 6 epochs with a batch size of 16 on 8 GPUs employing a learning rate of 0.02 and a decay step
after 4 epochs. Images were resized to have a short edge of 800 pixels.

Pre-trained AlexNet, GoogLeNet, VGG-16 We used AlexNet (Krizhevsky et al., 2012),
GoogLeNet (Szegedy et al., 2015) and VGG-16 (Simonyan & Zisserman, 2015) for the evalu-
ation reported in Figure 4. Evaluation was performed using Caffe (Jia et al., 2014). Network
weights (training on ImageNet) were obtained from https://github.com/BVLC/caffe/
wiki/Model-Zoo (AlexNet & GoogLeNet) and http://www.robots.ox.ac.uk/ (VGG-
16).

ResNet-101 pre-trained on Open Images V2 For our comparison of biases in ImageNet vs.
OpenImages (Figure 13 right) the ResNet-101 pretrained on Open Images V2 (Krasin et al., 2017)
was used. It was obtained from https://github.com/openimages/dataset/blob/
master/READMEV2.md along with the inference code provided by the authors. In order to map
predictions to the 16 classes, we used the parameters top k = 100000 and score threshold = 0.0
to obtain as all predictions, and then mapped the responses to our 16 classes using the provided label
map. 15 out of our 16 classes are classes in Open Images as well; the remaining class keyboard
was mapped to Open Images class computer keyboard (in this case, Open Images makes a
finer distinction to separate musical keyboards from computer keyboards).

ResNet-101, ResNet-152, DenseNet-121, SqueezeNet1 1 For the comparison to other mod-
els pre-trained on ImageNet (Figure 13 left), we evaluated the pre-trained networks provided by
torchvision.models.

Training AlexNet, VGG-16 on SIN For the evaluation of model biases after training on SIN
(Figure 11), we obtained the model architectures from torchvision.models and trained the
networks under identical circumstances as ResNet-50. This includes identical hyperparameter set-
tings, except for the learning rate. The learning rate for AlexNet was set to 0.001 and for VGG-16
to 0.01 initially; both learning rates were multiplied by 0.1 after 20 and 40 epochs of training (60
epochs in total).

A.6 IMAGE MANIPULATIONS AND IMAGE DATABASE

In total, we conducted nine different experiments. Here is an overview of the images and / or image
manipulations for all of them. All images were saved in the png format and had a size of 224× 224
pixels. Original, texture and cue conflict images are visualised in Figure 7.

Original experiment This experiment consisted of 160 coloured images, 10 per category. All
of them had a single, unmanipulated object (belonging to one category) in front of a white back-
ground. This white background was especially important since these stimuli were being used as
content images for style transfer, and we thus made sure that the background was neutral to produce
better style transfer results. The images for this experiment as well as for the texture experiment
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described below were carefully selected using Google advanced image search with the criteria “la-
belled for noncommercial reuse with modification (free to use, share and modify)” and the search
term “<entity> white background” (original) or “<entity> texture” (texture). In some cases where
this did not lead to sufficient results, we used images from the ImageNet validation data set which
were manually modified to have a white background if necessary. We made sure that both the im-
ages from this experiment as well as the texture images were all correctly recognised by all four
pre-trained CNNs (if an image was not correctly recognised, we replaced it by another one). This
was used to ensure that our results for cue conflict experiments are fully interpretable: if, e.g., a
texture image was not correctly recognised by CNNs, there would be no point in using it as a texture
(style) source for style transfer.

Greyscale experiment This experiment used the same images as the original experiment with the
difference that they were converted to greyscale using skimage.color.rgb2gray. For CNNs,
greyscale images were stacked three times along the colour channel.

Silhouette experiment The images from the original experiment were transformed into silhouette
images showing an entirely black object on a white background. We used the following transfor-
mation procedure: First, images were converted to bmp using command line utility (convert).
They were then converted to svg using potrace, and then to png using convert again. Since
an entirely automatic binarization pipeline is not feasible (it takes domain knowledge to understand
that a car wheel should, but a doughnut should not be filled with black colour), we then manually
checked every single image and adapted the silhouette using GIMP if necessary.

Edge experiment The stimuli shown in this condition were generated by applying the “Canny”
edge extractor implemented in MATLAB (Release 2016a, The MathWorks, Inc., Natick, Mas-
sachusetts, United States) to the images used in the original experiment. No further manipulations
were performed on this data set. This line of code was used to detect edges and generate the stimuli
used in this experiment:
imwrite(1-edge(imgaussfilt(rgb2gray(imread(filename)), 2),
’Canny’), targetFilename);

Texture experiment Images were selected using the procedure outlined above for the original
experiment. Some objects have a fairly stationary texture (e.g. animals), which makes it easy to find
texture images for them. For the more difficult case (e.g. man-made objects), we made use of the
fact that every object can become a texture if it is used not in isolation, but rather in a clutter of many
objects of the same kind (e.g. Gatys et al., 2017). That is, for a bottle texture we used images
with many bottles next to each other (as visualised in Figure 7).

Cue conflict experiment This experiment used images with a texture-shape cue conflict. They
were generated using iterative style transfer (Gatys et al., 2016) between a texture image (from the
texture experiment described above) and a content image (from the original experiment) each. While
48 texture images and 160 content images would allow for a total of 48 × 160 = 7680 cue conflict
images (480 per category), we used a balanced subset of 1280 images instead (80 per category),
which allows for presentation to human observers within a single experimental session. The pro-
cedure for selecting the style and content images was done as follows. For all possible 16 × 16
combinations of style and texture categories, exactly five cue conflict images were generated by
randomly sampling style and content images from their respective categories. Sampling was per-
formed without replacement for as long as possible, and then without replacement for the remaining
images. The same stimuli acquired with this method were used for the cue conflict control exper-
iments, where participants saw exactly these images but with different instructions biased towards
shape and towards texture (results described later). For our analysis of texture vs. shape biases
(Figure 4), we excluded trials for which no cue conflict was present (i.e., those trials where a bicycle
content image was fused with a bicycle texture image, hence no texture-shape cue conflict present).

Filled silhouette experiment Style transfer is not the only possibility to generate a texture-shape
cue conflict, and we here aimed at testing one other method to generate such stimuli: cropping
texture images with a shape mask, such that the silhouette of an object and its texture constitute a
cue conflict (visualised in Figure 7). Stimuli were generated by using the silhouette images from the
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Figure 7: Visualisation of stimuli in data sets. Top two rows: content and texture images. Bottom
rows: cue conflict stimuli generated from the texture and content images above (silhouettes filled
with rotated textures; style transfer stimuli).
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Figure 8: Visualisation of image distortions. One exemplary image (class bird, original image
in colour at the top left) is manipulated as follows. From left to right: additive uniform noise, low
contrast, high-pass filtering, low-pass filtering. In the row below, a greyscale version for comparison;
the other manipulations from left to right are: Eidolon manipulations I, II and III as well as phase
noise. Figure adapted from Geirhos et al. (2018) with the authors’ permission.

silhouette experiment as a mask for texture images. If the silhouette image at a certain location has
a black pixel, the texture was used at this location, and for white pixels the resulting target image
pixel was white. In order to have a larger variety of textures than the 48 textures used in the texture
experiment, the texture database was augmented by rotating all textures with ten different previously
chosen angles uniformly distributed between 0 and 360 degrees, resulting in a texture database of
480 images. Results for this control experiment, not part of the main paper, are reported later. We
ensured that no silhouette was seen more than once per observer.

Robustness experiment (distorted images) For this experiment, human accuracies for reference
were provided by Geirhos et al. (2018). Human ‘error bars’ indicate the full range of results for
human observers. CNNs were then evaluated on different image manipulations applied to natural
images as outlined in the paper. For maximal comparability, we also used the same images. For
a description of the parametric distortion we kindly refer the reader to Geirhos et al. (2018). In
Figure 8, we plot one example image across manipulations.

A.7 STYLIZED-IMAGENET (SIN)

We used AdaIN style transfer (Huang & Belongie, 2017) to generate Stylized-ImageNet.
More specifically, the AdaIN implementation from https://github.com/naoto0804/
pytorch-AdaIN (commit 31e769c159d4c8639019f7db7e035a7f938a6a46) was employed to
stylize the entire ImageNet training and validation data sets. Style transfer was performed once
per ImageNet image. As a style source, we used images from Kaggle’s Painter by Numbers
data set (https://www.kaggle.com/c/painter-by-numbers/, accessed on March 1,
2018). Style selection was performed randomly with replacement. Every ImageNet image was styl-
ized once and only once. Paintings from the Kaggle data set were used if at least 224 × 224 pixels
in size; the largest possible square crop was then downsampled to this size prior to using it as a style
image. All accuracies are reported on the respective validation data sets. Code to generate Stylized-
ImageNet from ImageNet (and the Kaggle paintings) is available on github in this repository:
https://github.com/rgeirhos/Stylized-ImageNet

A.8 RESULTS: CUE CONFLICT CONTROL EXPERIMENTS (DIFFERENT INSTRUCTIONS)

We investigated the effect of different instructions to human observers. The results presented in the
main paper for cue conflict stimuli correspond all to a neutral instruction, not biased w.r.t. texture
or shape. In two separate experiments, participants were explicitly instructed to ignore the textures
and click on the shape category of cue conflict stimuli, and vice versa. The results, presented in
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top-1 IN top-5 IN Pascal VOC
training fine-tuning accuracy (%) accuracy (%) mAP50 (%)

IN (vanilla ResNet-152) - 78.31 94.05 76.9
SIN - 65.26 86.31 75.0
SIN+IN - 77.62 93.59 77.3
SIN+IN IN 78.87 94.41 78.3

Table 4: Accuracy and object detection performance for ResNet-152. Accuracy comparison on the
ImageNet (IN) validation data set as well as object detection performance (mAP50) on PASCAL
VOC 2007. All models have an identical ResNet-152 architecture.

Noise Blur

training ft mCE Gaussian Shot Impulse Defocus Glas Motion Zoom

IN (vanilla ResNet-50) - 76.7 79.8 81.6 82.6 74.7 88.6 78.0 79.9
SIN - 77.3 71.2 73.3 72.1 88.8 85.0 79.7 90.9
SIN+IN - 69.3 66.2 66.8 68.1 69.6 81.9 69.4 80.5
SIN+IN IN 73.8 75.9 77.0 77.5 71.7 86.0 74.0 79.7

Weather Digital

training ft Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG

IN (vanilla ResNet-50) - 77.8 74.8 66.1 56.6 71.4 84.8 76.9 76.8
SIN - 71.8 74.4 66.0 79.0 63.6 81.1 72.9 89.3
SIN+IN - 68.0 70.6 64.7 57.8 66.4 78.2 61.9 69.7
SIN+IN IN 74.5 72.3 66.2 55.7 67.6 80.8 75.0 73.2

Table 5: Corruption error (lower=better) on ImageNet-C (Hendrycks & Dietterich, 2019), consisting
of different types of noise, blur, weather and digital corruptions. Abbreviations: mCE = mean
Corruption Error (average of the 15 individual corruption error values); SIN = Stylized-ImageNet;
IN = ImageNet; ft = fine-tuning. Results kindly provided by Dan Hendrycks.
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Figure 9: Accuracies and example stimuli for five different experiments without cue conflict, com-
paring training on ImageNet (IN) to training on Stylized-ImageNet (SIN).
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(b) Texture bias instruction

Figure 10: Classification results for human observers (red circles) and ImageNet-trained networks
AlexNet (purple diamonds), VGG-16 (blue triangles), GoogLeNet (turquoise circles) and ResNet-
50 (grey squares) on stimuli with a texture-shape cue conflict generated with style transfer, and
biased rather than neutral instructions to human observers. Plotting conventions and CNN data as
in Figure 4.

Figure 10, indicate that for a shape bias instruction, human data are almost exactly the same as
for the neutral instruction reported earlier (indicating that human observers are indeed using shapes
per default); and if they are instructed to ignore the shapes and click on the texture category, they
still show a substantial shape bias (indicating that even if they seek to ignore shapes, they find it
extremely difficult to do so).

A.9 RESULTS: FILLED SILHOUETTE EXPERIMENT

This experiment was conducted as a control experiment to make sure that the strong differences
between humans and CNNs when presented with cue conflict images are not merely an artefact of
the particular setup that we employed. Stimuli are visualised in Figure 7; results in Figure 12. In a
nutshell, we also find a shape bias in humans when stimuli are not generated via style transfer but
instead through cropping texture images with a shape mask, such that the silhouette of an object and
its texture constitute a cue conflict. CNNs have a less pronounced texture bias in these experiments;

19



50 to err is human? a functional comparison of human and machine decision-making

Published as a conference paper at ICLR 2019

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Fraction of 'texture' decisions

Fraction of 'shape' decisions

S
ha

pe
 c

at
eg

or
ie

s

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

Figure 11: Texture vs shape biases on of AlexNet and VGG-16 after training on Stylized-ImageNet.
Plotting conventions as in Figures 4 and 5. Plot shows biases for AlexNet (purple diamonds), VGG-
16 (blue triangles) and human observers (red circles) for comparison. For GoogLeNet, no data is
available since network training was performed in PyTorch and torchvision.models unfortu-
nately does not provide a GoogLeNet (inception v1) architecture.

ResNet-50 trained on SIN still responds with the shape category more than ResNet-50 trained on
IN. Overall, these results are much more difficult to interpret since the texture-silhouette cue conflict
stimuli, visualised in Figure 7, do not have a clear-cut texture-shape distinction like the cue conflict
stimuli generated via style transfer. Still, they are largely in accord with the style transfer results
presented in the main paper.

A.10 IMAGE RIGHTS & ATTRIBUTION

The images presented in Figure 7 were collected from different origins. We here indicate
their URL, creator and license terms (if applicable). Some of the images presented in Fig-
ure 7 also appear in Figures 1, 2 and 9; the terms below apply accordingly. Top row, cat
image: https://pixabay.com/p-964343/, released under the CC0 creative commons
license as indicated on the website. The CC0 creative commons license is accessible from
https://creativecommons.org/publicdomain/zero/1.0/legalcode. Car
image: https://pixabay.com/p-1930237/, released under the CC0 creative commons
license as indicated on the website. Bear image: ImageNet image n02132136 871.JPEG,
manually modified to have a white background. Second row, elephant texture: cropped
from https://www.flickr.com/photos/flowcomm/5089601226, released under
the CC BY 2.0 license by user flowcomm as indicated on the website. The license is ac-
cessible from https://creativecommons.org/licenses/by/2.0/legalcode.
Clock texture: cropped from https://commons.wikimedia.org/wiki/File:
HK_Sheung_Wan_%E4%B8%AD%E6%BA%90%E4%B8%AD%E5%BF%83_Midland_Plaza_
shop_Japan_Home_City_clocks_displayed_for_sale_April-2011.jpg, re-
leased under the Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0
Generic and 1.0 Generic licenses by user Ho Mei Danniel as indicated on the website. The CC
Attribution-Share Alike 3.0 license is accessible from https://creativecommons.
org/licenses/by-sa/3.0/legalcode. Bottle texture: cropped from https:
//commons.wikimedia.org/wiki/File:Liquor_bottles.jpg, released under the
CC BY 2.0 license by user scottfeldstein as indicated on the website. The CC BY 2.0 license
is accessible from https://creativecommons.org/licenses/by/2.0/legalcode.
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Figure 12: Classification results for human observers and CNNs on stimuli with a texture-silhouette
cue conflict (filled silhouette experiment). Plotting conventions as in Figures 4 and 5.
Left: Human observers (red circles) and ImageNet-trained networks AlexNet (purple diamonds),
VGG-16 (blue triangles), GoogLeNet (turquoise circles) and ResNet-50 (grey squares).
Right: Human observers (red circles, data identical to the left) and ResNet-50 trained on ImageNet
(grey squares) vs. ResNet-50 trained on Stylized-ImageNet (orange squares).
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Figure 13: The texture bias on cue conflict stimuli is not specific to ImageNet-trained networks (left)
and also occurs in very deep, wide and compressed networks (right).
Left: The texture bias is not specific to ImageNet-trained networks. Comparison of texture-shape
biases on cue conflict stimuli generated with style transfer for ResNet-101 trained on ImageNet
(grey squares) and ResNet-101 trained on the Open Images Dataset V2 (green squares) along with
human data for comparison (red circles). Both networks have a qualitatively similar texture bias.
We use a ResNet-101 architecture here since Open Images has released a pre-trained ResNet-101.
Right: The texture bias also appears in a very deep network (ResNet-152, grey squares), a very wide
one (DenseNet-121, purple trianlges), and a very compact one (SqueezeNet1 1, brown diamonds).
Human data for comparison (red circles). All networks are pre-trained on ImageNet.
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2.2 Benchmarking Robustness in Object Detection: Autonomous
Driving when Winter is Coming

Additional autorship information The star symbol (*) on the next page
indicates equal contribution (C.M., B.M., R.G. and E.R.); the dagger
symbol (†) indicates joint senior authors (O.B., A.S.E., M.B. and W.B.).
This was explicitly stated in arXiv version v1; the explanation was
shortened to the symbols for the camera-ready version of the paper.

Figure 2.2: Schematic overview of the
projects presented in this thesis. Projects
P1–P4 ask “How do machines decide”,
project P5 presents the concept of short-
cut learning as an integrative perspective
tackling the question “Why do machines
decide the way they do”. Finally, project
P6 presents a comprehensive benchmark
to measure future progress, and reports
first signs of (partial) success. Through-
out the thesis, machine decision making
will be compared against human deci-
sion making.

https://arxiv.org/abs/1907.07484v1
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Abstract

The ability to detect objects regardless of image distortions or weather conditions
is crucial for real-world applications of deep learning like autonomous driving. We
here provide an easy-to-use benchmark to assess how object detection models per-
form when image quality degrades. The three resulting benchmark datasets, termed
Pascal-C, Coco-C and Cityscapes-C, contain a large variety of image corruptions.
We show that a range of standard object detection models suffer a severe perfor-
mance loss on corrupted images (down to 30–60% of the original performance).
However, a simple data augmentation trick—stylizing the training images—leads to
a substantial increase in robustness across corruption type, severity and dataset. We
envision our comprehensive benchmark to track future progress towards building
robust object detection models. Benchmark, code and data will be made publicly
available.

clean data light snow heavy snow

Figure 1: Mistaking a dragon for a bird (left) may be dangerous but missing it altogether because of
snow (right) means playing with fire. Sadly, this is exactly the fate that an autonomous agent relying
on a state-of-the-art object detection system would suffer. Predictions generated using Faster R-CNN;
best viewed on screen.

1 Introduction

A day in the near future: Autonomous vehicles are swarming the streets all over the
world, tirelessly collecting data. But on this cold November afternoon traffic comes to
an abrupt halt as it suddenly begins to snow: winter is coming. Huge snowflakes are
falling from the sky and the cameras of autonomous vehicles are no longer able to
make sense of their surroundings, triggering immediate emergency brakes. A day

Machine Learning for Autonomous Driving Workshop at the 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019), Vancouver, Canada.
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Figure 2: Expect the unexpected: To ensure safety, an autonomous vehicle must be able to recognize
objects even in challenging outdoor conditions such as fog, rain, snow and at night.1

later, an investigation of this traffic disaster reveals that the unexpectedly large size of
the snowflakes was the cause of the chaos: While state-of-the-art vision systems had
been trained on a variety of common weather types, their training data contained
hardly any snowflakes of this size...

This fictional example highlights the problems that arise when Convolutional Neural Networks
(CNNs) encounter settings that were not explicitly part of their training regime. For example, state-
of-the-art object detection algorithms such as Faster R-CNN [Ren et al., 2015] fail to recognize
objects when snow is added to an image (as shown in Figure 1), even though the objects are still
clearly visible to a human eye. At the same time, augmenting the training data with several types
of distortions is not a sufficient solution to achieve general robustness against previously unknown
corruptions: It has recently been demonstrated that CNNs generalize poorly to novel distortion types,
despite being trained on a variety of other distortions [Geirhos et al., 2018].

On a more general level, CNNs often fail to generalize outside of the training domain or training data
distribution. Examples include the failure to generalize to images with uncommon poses of objects
[Alcorn et al., 2019] or to cope with small distributional changes [e.g. Zech et al., 2018, Touvron
et al., 2019]. One of the most extreme cases are adversarial examples [Szegedy et al., 2013]: images
with a domain shift so small that it is imperceptible for humans yet sufficient to fool a DNN. We here
focus on the less extreme but far more common problem of perceptible image distortions like blurry
images, noise or natural distortions like snow.

As an example, autonomous vehicles need to be able to cope with wildly varying outdoor conditions
such as fog, frost, snow, sand storms, or falling leaves, just to name a few (as visualized in Figure 2).
One of the major reasons why autonomous cars have not yet gone mainstream is the inability of their
recognition models to function well in adverse weather conditions [Dai and Van Gool, 2018]. Getting
data for unusual weather conditions is hard and while many common environmental conditions can
(and have been) modelled, including fog [Sakaridis et al., 2018a], rain [Hospach et al., 2016], snow
[Bernuth et al., 2019] and daytime to nighttime transitions [Dai and Van Gool, 2018], it is impossible
to foresee all potential conditions that might occur “in the wild”.

If we could build models that are robust to every possible image corruption, it is to be expected that
weather changes would not be an issue. However, in order to assess the robustness of models one
first needs to define a measure. While testing models on the set of all possible corruption types is
impossible. We therefore propose to evaluate models on a diverse range of corruption types that
were not part of the training data and demonstrate that this is a useful approximation for predicting
performance under natural distortions like rain, snow, fog or the transition between day and night.

More specifically we propose three easy-to-use benchmark datasets termed PASCAL-C, COCO-C and
Cityscapes-C to assess distortion robustness in object detection. Each dataset contains versions of the
original object detection dataset which are corrupted with 15 distortions, each spanning five levels of
severity. This approach follows Hendrycks and Dietterich [2019], who introduced corrupted versions
of commonly used classification datasets (ImageNet-C, CIFAR10-C) as standardized benchmarks.
After evaluating standard object detection algorithms on these benchmark datasets, we show how a
simple data augmentation technique—stylizing the training images—can strongly improve robustness
across corruption type, severity and dataset.

1Outdoor hazards have been directly linked to increased mortality rates [Lystad and Brown, 2018].
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1.1 Contributions

Our contributions can be summarized as follows:

1. We demonstrate that a broad range of object detection and instance segmentation models
suffer severe performance impairments on corrupted images.

2. To quantify this behaviour and to enable tracking future progress, we propose the Robust
Detection Benchmark, consisting of three benchmark datasets termed PASCAL-C,
COCO-C & Cityscapes-C.

3. We demonstrate that improved performance on this benchmark of synthetic corruptions
corresponds to increased robustness towards real-world “natural” distortions like rain, snow
and fog.

4. We use the benchmark to show that corruption robustness scales with performance on clean
data and that a simple data augmentation technique—stylizing the training data—leads to
large robustness improvements for all evaluated corruptions without any additional labelling
costs or architectural changes.

5. We make our benchmark, corruption and stylization code openly available in an easy-to-use
fashion:

• Benchmark, 2 data and data analysis are available at https://github.com/
bethgelab/robust-detection-benchmark.

• Our pip installable image corruption library is available at https://github.com/
bethgelab/imagecorruptions.

• Code to stylize arbitrary datasets is provided at https://github.com/bethgelab/
stylize-datasets.

1.2 Related Work

Benchmarking corruption robustness Several studies investigate the vulnerability of CNNs to
common corruptions. Dodge and Karam [2016] measure the performance of four state-of-the-art
image recognition models on out-of-distribution data and show that CNNs are in particular vulnerable
to blur and Gaussian noise. Geirhos et al. [2018] show that CNN performance drops much faster
than human performance for the task of recognizing corrupted images when the perturbation level
increases across a broad range of corruption types. Azulay and Weiss [2018] investigate the lack
of invariance of several state-of-the-art CNNs to small translations. A benchmark to evaluate the
robustness of recognition models against common corruptions was recently introduced by Hendrycks
and Dietterich [2019].

Improving corruption robustness One way to restore the performance drop on corrupted data
is to preprocess the data in order to remove the corruption. Mukherjee et al. [2018] propose a
DNN-based approach to restore image quality of rainy and foggy images. Bahnsen and Moeslund
[2018] and Bahnsen et al. [2019] propose algorithms to remove rain from images as a preprocessing
step and report a subsequent increase in recognition rate. A challenge for these approaches is that
noise removal is currently specific to a certain distortion type and thus does not generalize to other
types of distortions. Another line of work seeks to enhance the classifier performance by the means of
data augmentation, i.e. by directly including corrupted data into the training. Vasiljevic et al. [2016]
study the vulnerability of a classifier to blurred images and enhance the performance on blurred
images by fine-tuning on them. Geirhos et al. [2018] examine the generalization between different
corruption types and find that fine-tuning on one corruption type does not enhance performance
on other corruption types. In a different study, Geirhos et al. [2019] train a recognition model on
a stylized version of the ImageNet dataset [Russakovsky et al., 2015], reporting increased general
robustness against different corruptions as a result of a stronger bias towards ignoring textures
and focusing on object shape. Hendrycks and Dietterich [2019] report several methods leading to
enhanced performance on their corruption benchmark: Histogram Equalization, Multiscale Networks,
Adversarial Logit Pairing, Feature Aggregating and Larger Networks.

2Our evaluation code to assess performance under corruption has been integrated into one of the most widely
used detection toolboxes. The code can be found here: https://github.com/bethgelab/mmdetection
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Evaluating robustness to environmental changes in autonomous driving In recent years,
weather conditions turned out to be a central limitation for state-of-the art autonomous driving
systems [Sakaridis et al., 2018a, Volk et al., 2019, Dai and Van Gool, 2018, Chen et al., 2018,
Lee et al., 2018]. While many specific approaches like modelling weather conditions [Sakaridis
et al., 2018a,b, Volk et al., 2019, Bernuth et al., 2019, Hospach et al., 2016, Bernuth et al., 2018] or
collecting real [Wen et al., 2015, Yu et al., 2018, Che et al., 2019, Caesar et al., 2019] and artificial
[Gaidon et al., 2016, Ros et al., 2016, Richter et al., 2017, Johnson-Roberson et al., 2017] datasets
with varying weather conditions, no general solution towards the problem has yet emerged. Radecki
et al. [2016] experimentally test the performance of various sensors and object recognition and
classification models in adverse weather and lighting conditions. Bernuth et al. [2018] report a drop
in the performance of a Recurrent Rolling Convolution network trained on the KITTI dataset when
the camera images are modified by simulated raindrops on the windshield. Pei et al. [2017] introduce
VeriVis, a framework to evaluate the security and robustness of different object recognition models
using real-world image corruptions such as brightness, contrast, rotations, smoothing, blurring and
others. Machiraju and Channappayya [2018] propose a metric to evaluate the degradation of object
detection performance of an autonomous vehicle in several adverse weather conditions evaluated on
the Virtual KITTI dataset. Building upon Hospach et al. [2016], Volk et al. [2019] study the fragility
of an object detection model against rainy images, identify corner cases where the model fails and
include images with synthetic rain variations into the training set. They report enhanced performance
on real rain images. Bernuth et al. [2019] model photo-realistic snow and fog conditions to augment
real and virtual video streams. They report a significant performance drop of an object detection
model when evaluated on corrupted data.

2 Methods

2.1 Robust Detection Benchmark

We introduce the Robust Detection Benchmark inspired by the ImageNet-C benchmark for
object classification [Hendrycks and Dietterich, 2019] to assess object detection robustness on
corrupted images.

Corruption types Following Hendrycks and Dietterich [2019], we provide 15 corruptions on five
severity levels each (visualized in Figure 3) to assess the effect of a broad range of different corruption
types on object detection models.3 The corruptions are sorted into four groups: noise, blur, digital
and weather groups (as defined by Hendrycks and Dietterich [2019]). It is important to note that
the corruption types are not meant to be used as a training data augmentation toolbox, but rather
to measure a model’s robustness against previously unseen corruptions. Thus, training should be
done without using any of the provided corruptions. For model validation, four separate corruptions
are provided (Speckle Noise, Gaussian Blur, Spatter, Saturate). The 15 corruptions described above
should only be used to test the final model performance.

Benchmark datasets The Robust Detection Benchmark consists of three benchmark datasets:
PASCAL-C, COCO-C and Cityscapes-C. Among the vast number of available object detection
datasets [Everingham et al., 2010, Geiger et al., 2012, Lin et al., 2014, Cordts et al., 2016, Zhou et al.,
2017, Neuhold et al., 2017, Krasin et al., 2017], we chose to use PASCAL VOC [Everingham et al.,
2010], MS COCO [Lin et al., 2014] and Cityscapes [Cordts et al., 2016] as they are the most commonly
used datasets for general object detection (PASCAL & COCO) and street scenes (Cityscapes). We
follow common conventions to select the tests splits: VOC2007 test set for PASCAL-C, the COCO
2017 validation set for COCO-C and the Cityscapes validation set for Cityscapes-C.

Metrics Since performance measures differ between the original datasets, the dataset-specific
performance (P) measures are adopted as defined below:

P :=

{
AP50(%) PASCAL VOC
AP(%) MS COCO & Cityscapes

3These corruption types were introduced by Hendrycks and Dietterich [2019] and modified by us to work
with images of arbitrary dimensions. Our generalized corruptions can be found at https://github.com/
bethgelab/imagecorruptions and installed via pip3 install imagecorruptions.
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Figure 3: 15 corruption types from Hendrycks and Dietterich [2019], adapted to corrupt arbitrary
images (example: randomly selected PASCAL VOC image, center crop, severity 3). Best viewed on
screen.

where AP50 stands for the PASCAL ‘Average Precision’ metric at 50% Intersection over Union (IoU)
and AP stands for the COCO ‘Average Precision’ metric which averages over IoUs between 50% and
95%. On the corrupted data, the benchmark performance is measured in terms of mean performance
under corruption (mPC):

mPC =
1

Nc

Nc∑

c=1

1

Ns

Ns∑

s=1

Pc,s (1)

Here, Pc,s is the dataset-specific performance measure evaluated on test data corrupted with corruption
c under severity level s while Nc = 15 and Ns = 5 indicate the number of corruptions and severity
levels, respectively. In order to measure relative performance degradation under corruption, the
relative performance under corruption (rPC) is introduced as defined below:

rPC =
mPC

Pclean
(2)

rPC measures the relative degradation of performance on corrupted data compared to clean data.

Submissions Submissions to the benchmark should be handed in as a simple pull request to the
Robust Detection Benchmark4 and need to include all three performance measures: clean perfor-
mance (Pclean), mean performance under corruption (mPC) and relative performance under corruption
(rPC). While mPC is the metric used to rank models on the Robust Detection Benchmark, the
other measures provide additional insights, as they disentangle gains from higher clean performance
(as measured by Pclean) and gains from better generalization performance to corrupted data (as
measured by rPC).

Baseline models We provide baseline results for a set of common object detection models including
Faster R-CNN [Ren et al., 2015], Mask R-CNN [He et al., 2017], Cascade R-CNN [Cai and Vasconce-
los, 2018], Cascade Mask R-CNN [Chen et al., 2019a], RetinaNet [Lin et al., 2017a] and Hybrid Task
Cascade [Chen et al., 2019a]. We use a ResNet50 [He et al., 2016] with Feature Pyramid Networks
[Lin et al., 2017b] as backbone for all models except for Faster R-CNN where we additionally test
ResNet101 [He et al., 2016], ResNeXt101-32x4d [Xie et al., 2017] and ResNeXt-64x4d [Xie et al.,
2017] backbones. We additionally provide results for Faster R-CNN and Mask R-CNN models with
deformable convolutions [Dai et al., 2017, Zhu et al., 2018] in Appendix D. Models were evaluated
using the mmdetection toolbox [Chen et al., 2019b]; all models were trained and tested with
standard hyperparameters. The details can be found in Appendix A.
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Figure 4: Training data visualization for COCO and Stylized-COCO. The three different training
settings are: standard data (top row), stylized data (bottom row) and the concatenation of both (termed
‘combined’ in plots).

2.2 Style transfer as data augmentation

For image classification, style transfer [Gatys et al., 2016]—the method of combining the content of
an image with the style of another image—has been shown to strongly improve corruption robustness
[Geirhos et al., 2019]. We here transfer this method to object detection datasets testing two settings:
(1) Replacing each training image with a stylized version and (2) adding a stylized version of each
image to the existing dataset. We apply the fast style transfer method AdaIN [Huang and Belongie,
2017] with hyperparameter α = 1 to the training data, replacing the original texture with the randomly
chosen texture information of Kaggle’s Painter by Numbers5 dataset. Examples for the stylization
of COCO images are given in Figure 4. We provide ready-to-use code for the stylization of arbitrary
datasets at https://github.com/bethgelab/stylize-datasets.

2.3 Natural Distortions

Foggy Cityscapes Foggy Cityscapes Sakaridis et al. [2018a] is a version of Cityscapes with
synthetic fog in three severity levels (given byt he attenuation coefficient β = 0.005m−1, 0.01m−1
and 0.02m−1), that was carefully designed to look as realistic as possible. We use Fogy Cityscapes
only at test time, testing the same models as used for our experiments with the original Cityscapes
dataset and report results in the same AP metric.

BDD100k BDD100k Yu et al. [2018] is a driving dataset consisting of 100 thousand videos of
driving scenes recorded in varying conditions including weather changes and different times of the
day6. We use these annotations to perform experiments, on different weather conditions ("clear",
"rainy" and "snowy") and on the transition from day to night. Training is performed on what we
would consider "clean" data - clear for weather and daytime for time - and evaluation is performed
on all three splits. We use Faster R-CNN with the same hyper-parameters as in our experiments on
COCO. Details of the dataset preparation can be found in Appendix C.

3 Results

3.1 Image corruptions reduce model performance

In order to assess the effect of image corruptions, we evaluated a set of common object detection
models on the three benchmark datasets defined in Section 2. Performance is heavily degraded
on corrupted images (compare Table 1). While Faster R-CNN can retain roughly 60% relative
performance (rPC) on the rather simple images in PASCAL VOC, the same model suffers a dramatic
reduction to 33% rPC on the Cityscapes dataset, which contains many small objects. With some

4https://github.com/bethgelab/robust-detection-benchmark
5https://www.kaggle.com/c/painter-by-numbers/
6The frame at the 10th second of each video is annotated with additional information including bounding

boxes which we use for our experiments
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PASCAL VOC

clean corrupted relative
model backbone P [AP50] mPC [AP50] rPC [%]
Faster r50 80.5 48.6 60.4

MS COCO

clean corrupted relative
model backbone P [AP] mPC [AP] rPC [%]
Faster r50 36.3 18.2 50.2
Faster r101 38.5 20.9 54.2
Faster x101-32x4d 40.1 22.3 55.5
Faster x101-64x4d 41.3 23.4 56.6
Mask r50 37.3 18.7 50.1

Cascade r50 40.4 20.1 49.7
Cascade Mask r50 41.2 20.7 50.2

RetinaNet r50 35.6 17.8 50.1
HTC x101-64x4d 50.6 32.7 64.7

Cityscapes

clean corrupted relative
model backbone P [AP] mPC [AP] rPC [%]
Faster r50 36.4 12.2 33.4
Mask r50 37.5 11.7 31.1

Table 1: Object detection performance of various models. Backbones indicated with r are ResNet
and x ResNeXt. All model names except for RetinaNet and HTC indicate the corresponding model
from the R-CNN family. All COCO models were downloaded from the mmdetection modelzoo.
For all reported quantities: higher is better; square brackets denote metric.

variations, this effect is present in all tested models and also holds for instance segmentation tasks
(for instance segmentation results, please see Appendix D).

3.2 Robustness increases with backbone capacity

We test variants of Faster R-CNN with different backbones (top of Table 1) and different head
architectures (bottom of Table 1) on COCO. For the models with different backbones, we find that
all image corruptions—except for the blur types—induce a fixed penalty to model performance,
independent of the baseline performance on clean data: ∆ mPC ≈ ∆ P (compare Table 1 and
Appendix Figure 10). Therefore, models with more powerful backbones show a relative performance
improvement under corruption.7 In comparison, Mask R-CNN, Cascade R-CNN and Cascade Mask
R-CNN which draw their performance increase from more sophisticated head architectures all have
roughly the same rPC of ≈ 50%. The current state-of-the-art model Hybrid Task Cascade [Chen
et al., 2019a] is in so far an exception as it employs a combination of a stronger backbone, improved
head architecture and additional training data to not only outperform the strongest baseline model
by 9% AP on clean data but distances itself on corrupted data by a similar margin, achieving a
leading relative performance under corruption (rPC) of 64.7%. These results indicate that robustness
in the tested regime can be improved primarily through a better image encoding, and better head
architectures cannot extract more information if the primary encoding is already sufficiently impaired.

3.3 Training on stylized data improves robustness

In order to reduce the strong effect of corruptions on model performance observed above, we tested
whether a simple approach (stylizing the training data) leads to a robustness improvement. We
evaluate the exact same model (Faster R-CNN) with three different training data schemes (visualized
in Figure 4):

standard: the unmodified training data of the respective dataset
stylized: the training data is stylized completely

combined: concatenation of standard and stylized training data

7This finding is further supported by investigating models with deformable convolutions (see Appendix D).
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(c) Cityscapes-C
Figure 5: Figure 5: Training on stylized data improves test performance of Faster R-CNN on corrupted
versions of PASCAL VOC, MS COCO and Cityscapes which include all 15 types of corruptions
shown in Figure 3. Corruption severity 0 denotes clean data. Corruption specific performances are
shown in the appendix (Figures 7, 8, 9).

PASCAL VOC [AP50] MS COCO [AP] Cityscapes [AP]
clean corr. rel. clean corr. rel. clean corr. rel.

train data P mPC rPC [%] P mPC rPC [%] P mPC rPC [%]
standard 80.5 48.6 60.4 36.3 18.2 50.2 36.4 12.2 33.4
stylized 68.0 50.0 73.5 21.5 14.1 65.6 28.5 14.7 51.5

combined 80.4 56.2 69.9 34.6 20.4 58.9 36.3 17.2 47.4
Table 2: Object detection performance of Faster R-CNN trained on standard images, stylized images
and the combination of both evaluated on standard test sets (test 2007 for PASCAL VOC; val 2017
for MS COCO, val for Cityscapes); higher is better.

The results across our three datasets PASCAL-C, COCO-C and Cityscapes-C are visualized in
Figure 5. We observe a similar pattern as reported by Geirhos et al. [2019] for object classification
on ImageNet—a model trained on stylized data suffers less from corruptions than the model trained
only on the original clean data. However, its performance on clean data is much lower. Combining
stylized and clean data seems to achieve the best of both worlds: high performance on clean data
as well as strongly improved performance under corruption. From the results in Table 2, it can be
seen that both stylized and combined training improve the relative performance under corruption
(rPC). Combined training yields the highest absolute performance under corruption (mPC) for all
three datasets. This pattern is fairly consistent. Detailed results across corruption types are reported
in the Appendix (Figure 7, Figure 8 and Figure 9).

3.4 Training directly on stylized data is better than using stylized data only during
pre-training

For comparison reasons, we reimplemented the object detection models from Geirhos et al. [2019]
and tested them for corruption robustness. Those models use backbones which are pre-trained with
Stylized-ImageNet, but the object detection models are trained on the standard clean training sets of
Pascal VOC and COCO. In contrast, we here use backbones trained on standard “clean” ImageNet
and train using stylized Pascal VOC and COCO. We find that stylized pre-training helps not only on
clean data (as reported by Geirhos et al. [2019]) but also for corruption robustness (Table 3), albeit
less than our approach of performing the final training on stylized data (compare to Table 2)8.

8Note that Geirhos et al. [2019] use Faster R-CNN without Feature Pyramids (FPN), which is why the
baseline performance of these models is different from ours
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PASCAL VOC [AP50] MS COCO [AP]
clean corr. rel. clean corr. rel.

train data P mPC rPC [%] P mPC rPC [%]
IN 78.9 45.7 57.4 31.8 15.5 48.7

SIN 75.1 48.2 63.6 29.8 15.3 51.3
SIN+IN 78.0 50.6 64.2 31.1 16.0 51.4

SIN+IN ft IN 79.0 48.9 61.4 32.3 16.2 50.1
Table 3: Object detection performance of Faster R-CNN pre-trained on ImageNet (IN), Stylized
ImageNet (SIN) and the combination of both evaluated on standard test sets (test 2007 for PASCAL
VOC; val 2017 for MS COCO); higher is better.

BDD100k [AP] Weather Day/Night
clear rainy rel. snowy rel. day night rel.

train data P mPC rPC [%] mPC rPC [%] P mPC rPC [%]
clean 27.8 27.6 99.3 23.6 84.9 30.0 21.5 71.7

stylized 20.9 21.0 100.5 18.7 89.5 24.0 16.8 70.0
combined 27.7 28.0 101.1 24.2 87.4 30.0 22.5 75.0

Table 4: Performance of Faster R-CNN across different weather conditions and time changes when
trained on standard images, stylized images and the combination of both evaluated on BDD100k (see
Appendix C for dataset details); higher is better.

3.5 Robustness to natural distortions is connected to synthetic corruption robustness

A central question is whether results on the robust detection benchmark generalize to real-world
natural distortions like rain, snow or fog as illustrated in Figure 2. We test this using BDD100k [Yu
et al., 2018], a driving scene dataset with annotations for weather conditions. For our first experiment,
we train a model only on images that are taken in “clear” weather. We also train models on a stylized
version of the same images as well as the combination of both following the protocol from Section 3.3.
We then test these models on images which are annotated to be “clear”, “rainy” or “snowy” (see
Appendix C for details). We find that these weather changes have little effect on performance on all
three models, but that combined training improves the generalization to “rainy” and “snowy” images
(Table 4 Weather). It may be important to note that the weather changes of this dataset are often
relatively benign (e.g., images annotated as rainy often show only wet roads instead of rain).

A stronger test is generalization of a model trained on images taken during daytime to images taken
at night which exhibit a strong appearance change. We find that a model trained on images taken
during the day performs much worse at night but combined training improves nighttime performance
(Table 4 Day/Night and Appendix C).

As a third test of real-world distortions, we test our approach on Foggy Cityscapes Sakaridis et al.
[2018a] which uses fog in three different strengths (given by the attenuation factor β = 0.005, 0.01
or 0.2m−1) as a highly realistic model of natural fog. Fog drastically reduces the performance of
standard models trained on Cityscapes which was collected in clear conditions. The reduction is
almost 50% for the strongest corruption, see Table 5. In this strong test for OOD (out-of-distribution)
robustness, stylized training increases relative performance substantially from about 50% to over
70% (Table 5).

Taken together, these results suggest that there is a connection between performance on synthetic and
natural corruptions. Our approach of combined training with stylized data improves performance in
every single case with increasing gains in harder conditions.

3.6 Performance degradation does not simply scale with perturbation size

We investigated whether there is a direct relationship between the impact of a corruption on the
pixel values of an image and the impact of a corruption on model performance. The left of Figure 6
shows the relative performance of Faster R-CNN on the corruptions in PASCAL-C dependent on the
perturbation size of each corruption measured in Root Mean Square Error (RMSE). It can be seen
that no simple relationship exists, counterintuitively robustness increases to corruption types with
higher perturbation size (there is a weak positive correlation between rPC and RMSE, r = 0.45).
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Foggy Cityscapes [AP] β = 0.005 β = 0.01 β = 0.02
clean corr. rel. corr. rel. corr. rel.

train data P mPC rPC [%] mPC rPC [%] mPC rPC [%]
standard 36.4 30.2 83.0 25.1 69.0 18.7 51.4
stylized 28.5 26.2 91.9 24.7 86.7 22.5 78.9

combined 36.3 32.2 88.7 29.9 82.4 26.2 72.2
Table 5: Object detection performance of Faster R-CNN on Foggy Cityscapes when trained on
Cityscapes with standard images, stylized images and the combination of both evaluated on the
validation set; higher is better; β is the attenuation coefficient in m−1

This stems from the fact that corruptions like Fog or Brightness alter the image globally (resulting in
high RMSE) while leaving local structure unchanged. Corruptions like Impulse Noise alter only a
few pixels (resulting in low RMSE) but have a drastic impact on model performance.

To investigate further if classical perceptual image metrics are more predictive, we look at the
relationship between the perceived image quality of the original and corrupted images measured in
structural similarity (SSIM, higher value means more similar, Figure 6 on the right). There is a weak
correlation between rPC and SSIM (r = 0.48). This analysis shows that SSIM better captures the
effect of the corruptions on model performance.
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Figure 6: Relative performance under corruption (rPC) as a function of corruption RMSE (left, higher
value=greater change in pixel space) and SSIM (right, higher value=higher perceived image quality)
evaluated on PASCAL VOC. The dots indicate the rPC of Faster R-CNN trained on standard data;
the arrows show the performance gained via training on ‘combined’ data. Corruptions are grouped
into four corruption types: noise, blur, weather and digital.

4 Discussion

We here showed that object detection and instance segmentation models suffer severe performance
impairments on corrupted images. This drop in performance has previously been observed in image
recognition models [e.g. Geirhos et al., 2018, Hendrycks and Dietterich, 2019]. In order to track future
progress on this important issue, we propose the Robust Detection Benchmark containing three
easy-to-use benchmark datasets PASCAL-C, COCO-C and Cityscapes-C. We provide evidence that
performance on our benchmarks predicts performance on natural distortions and show that robustness
corresponds to model performance on clean data. Apart from providing baselines, we demonstrate
how a simple data augmentation technique, namely adding a stylized copy of the training data in
order to reduce a model’s focus on textural information, leads to strong robustness improvements. On
corrupted images, we consistently observe a performance increase (about 16% for PASCAL, 12%
for COCO, and 41% for Cityscapes) with small losses on clean data (0–2%). This approach has the
benefit that it can be applied to any image dataset, requires no additional labelling or model tuning and,
thus, comes basically for free. At the same time, our benchmark data shows that there is still space
for improvement and it is yet to be determined whether the most promising robustness enhancement
techniques will require architectural modifications, data augmentation schemes, modifications to the
loss function, or a combination of these.
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We encourage readers to expand the benchmark with novel corruption types. In order to achieve
robust models, testing against a wide variety of different image corruptions is necessary—there is no
‘too much’. Since our benchmark is open source, we welcome new corruption types and look forward
to your pull requests to https://github.com/bethgelab/imagecorruptions! We envision our
comprehensive benchmark to track future progress towards building robust object detection models
that can be reliably deployed ‘in the wild’, eventually enabling them to cope with unexpected weather
changes, corruptions of all kinds and, if necessary, even the occasional dragonfire.
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Appendix

A Implementation details: Model training

We train all our models with two images per GPU which corresponds to a batch size of 16 on eight
GPUs. On COCO, we resize images so that their short edge is 800 pixels and train for twelve epochs
with a starting learning rate of 0.01 which is decreased by a factor of ten after eight and eleven
epochs. On PASCAL VOC, images are resized so that their short edge is 600 pixels. Training is done
for twelve epochs with a starting learning rate of 0.00125 with a decay step of factor ten after nine
epochs. For Cityscapes, we stayed as close as possible to the procedure described in [He et al., 2017],
rescaling images to a shorter edge size between 800 and 1024 pixels and train for 64 epochs (to match
24k steps at a batch size of eight) with an initial learning rate of 0.0025 and a decay step of factor
ten after 48 epochs. For evaluation, only one scale (1024 pixels) is used. Specifically, we used four
GPUs to train the COCO models and one GPU for all other models9 Training with stylized data is
done by simply exchanging the dataset folder or adding it to the list of dataset folders to consider. For
all further details please refer to the config files in our implementation (which we will make available
after the end of the anonymous review period).

B Corrupting arbitrary images

In the original corruption benchmark of ImageNet-C [Hendrycks and Dietterich, 2019], two tech-
nical aspects are hard-coded: The image-dimensions and the number of channels. To allow for
different data sets with different image dimensions, several corruption functions are defined inde-
pendently of each other, such as make_cifar_c, make_tinyimagenet_c, make_imagenet_c and
make_imagenet_c_inception. Additionally, many corruptions expect quadratic images. We have
modified the code to resolve these constraints and now all corruptions can be applied to non-quadratic
images with varying sizes, which is a necessary prerequisite for adapting the corruption benchmark
to the PASCAL VOC and COCO datasets. For the corruption type Frost, crops from provided
images of frost are added to the input images. Since images in PASCAL VOC and COCO have
arbitrarily large dimensions, we resize the frost images to fit the largest input image dimension if
necessary. The original corruption benchmark also expects RGB images. Our code now allows
for grayscale images.10 Both motion_blur and snow relied on the motion-blur functionality of
Imagemagick, resulting in an external dependency that could not be resolved by standard Python
package managers. For convenience, we reimplemented the motion-blur functionality in Python and
removed the dependency on non-Python software.

C BDD100k

We use the weather annotations present in the BDD100k dataset Yu et al. [2018] to split it in images
with clear, rainy and snowy conditions. We disregard all images which are annotated to have any
other weather condition (foggy, partly cloudy, overcast and undefined) to make the separation easier11.
We use all images from the training set which are labeled having clear weather conditions for training.
For testing, we created 3 subsets of the validation set each containing 725 images in clear, rainy
or snowy conditions12. The sets were created to have the same size which was determined by the
category with the least images (rainy). Having same sized test sets is important because evaluation
under the AP metric leads to lower scores with increasing sequence length [Gupta et al., 2019].

9In all our experiments, we employ the linear scaling rule [Goyal et al., 2017] to select the appropriate
learning rate.

10There are approximately 2–3% grayscale images in PASCAL VOC/MS COCO.
11It would have been great to combine the performance on natural fog with the results from Foggy Cityscapes

but as there are only 13 foggy images in the validation set the results cannot be seen as representative in any way
12We will release the datasets splits at https://github.com/bethgelab/

robust-detection-benchmark
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MS COCO
clean corr. rel.

model backbone P [AP] mPC [AP] rPC [%]
Mask r50 34.2 16.8 49.1

Cascade Mask r50 35.7 17.6 49.3
HTC x101-64x4d 43.8 28.1 64.0

Cityscapes
clean corr. rel.

model backbone P [AP] mPC [AP] rPC [%]
Mask r50 32.7 10.0 30.5

Table 6: Instance segmentation performance of various models. Backbones indicated with r:
ResNet. All model names indicate the corresponding model from the R-CNN family. All models
were downloaded from the mmdetection modelzoo.

MS COCO Cityscapes
clean corr. rel. clean corr. rel.

train data [P] [mPC] [rPC] [P] [mPC] [rPC]
standard 34.2 16.9 49.4 32.7 10.0 30.5
stylized 20.5 13.2 64.1 23.0 11.3 49.2

combined 32.9 19.0 57.7 32.1 14.9 46.3
Table 7: Instance segmentation performance of Mask R-CNN trained on standard images, stylized
images and the combination of both evaluated on standard test sets (test 2007 for PASCAL VOC; val
2017 for MS COCO, val for Cityscapes).

D Additional Results

D.1 Instance Segmentation Results

We evaluated Mask R-CNN and Cascade Mask R-CNN on instance segmentation. The results are
very similar to those on the object detection task with a slightly lower relative performance ( 1%, see
Table 6). We also trained Mask R-CNN on the stylized datasets finding again very similar trends
for the instance segmentation task as for the object detection task (Table 7). On the one hand, this
is not very surprising as Mask R-CNN and Faster R-CNN are very similar. On the other hand, the
contours of objects can change due to the stylization process, which would expectedly lead to poor
segmentation performance when training only on stylized images. We do not see such an effect but
rather find the instance segmentation performance of Mask R-CNN to mirror the object detection
performance of Faster R-CNN when trained on stylized images.

D.2 Deformable Convolutional Networks

We tested the effect of deformable convolutions [Dai et al., 2017, Zhu et al., 2018] on corruption
robustness. Deformable convolutions are a modification of the backbone architecture exchanging
some standard convolutions with convolutions that have adaptive filters in the last stages of the encoder.
It has been shown that deformable convolutions can help on a range of tasks like object detection and
instance segmentation. This is the case here too as networks with deformable convolutions do not
only perform better on clean but also on corrupted images improving relative performance by 6-7%
compared to the baselines with standard backbones (See Tables 8 and 9). The effect appears to be the
same as for other backbone modifications such as using deeper architectures (See Section 3 in the
main paper).

Image rights & attribution

Figure 1: Home Box Office, Inc. (HBO).
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MS COCO
clean corr. rel.

model backbone P [AP] mPC [AP] rPC [%]
Faster r50-dcn 40.0 22.4 56.1
Faster x101-64x4d-dcn 43.4 26.7 61.6
Mask r50-dcn 41.1 23.3 56.7

Table 8: Object detection performance of models with deformable convolutions Dai et al. [2017].
Backbones indicated with r are ResNet, the addition dcn signifies deformable convolutions in stages
c3-c5. All model names indicate the corresponding model from the R-CNN family. All models were
downloaded from the mmdetection modelzoo.

MS COCO
clean corr. rel.

model backbone P [AP] mPC [AP] rPC [%]
Mask r50-dcn 37.2 20.7 55.7

Table 9: Instance segmentation performance of Mask R-CNN with deformable convolutions [Dai
et al., 2017]. The backbone indicated with r is a ResNet 50, the addition dcn signifies deformable
convolutions in stages c3-c5. The model was downloaded from the mmdetection modelzoo.
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Figure 7: Results for each corruption type on PASCAL-C.
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Figure 8: Results for each corruption type on COCO-C.
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Figure 9: Results for each corruption type on Cityscapes-C.
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Figure 10: Results for each corruption type using different backbones. Faster R-CNN trained on MS
COCO with ResNet-50, ResNet-101 and ResNext-101_64x4d backbones.
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2.3 Beyond accuracy: quantifying trial-by-trial behaviour of
CNNs and humans by measuring error consistency

Figure 2.3: Schematic overview of the
projects presented in this thesis. Projects
P1–P4 ask “How do machines decide”,
project P5 presents the concept of short-
cut learning as an integrative perspective
tackling the question “Why do machines
decide the way they do”. Finally, project
P6 presents a comprehensive benchmark
to measure future progress, and reports
first signs of (partial) success. Through-
out the thesis, machine decision making
will be compared against human deci-
sion making.
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Abstract

A central problem in cognitive science and behavioural neuroscience as well as in
machine learning and artificial intelligence research is to ascertain whether two
or more decision makers—be they brains or algorithms—use the same strategy.
Accuracy alone cannot distinguish between strategies: two systems may achieve
similar accuracy with very different strategies. The need to differentiate beyond
accuracy is particularly pressing if two systems are at or near ceiling performance,
like Convolutional Neural Networks (CNNs) and humans on visual object recogni-
tion. Here we introduce trial-by-trial error consistency, a quantitative analysis for
measuring whether two decision making systems systematically make errors on
the same inputs. Making consistent errors on a trial-by-trial basis is a necessary
condition if we want to ascertain similar processing strategies between decision
makers. Our analysis is applicable to compare algorithms with algorithms, humans
with humans, and algorithms with humans.
When applying error consistency to visual object recognition we obtain three main
findings: (1.) Irrespective of architecture, CNNs are remarkably consistent with
one another. (2.) The consistency between CNNs and human observers, however,
is little above what can be expected by chance alone—indicating that humans and
CNNs are likely implementing very different strategies. (3.) CORnet-S, a recurrent
model termed the “current best model of the primate ventral visual stream”, fails to
capture essential characteristics of human behavioural data and behaves essentially
like a standard purely feedforward ResNet-50 in our analysis; highlighting that
certain behavioural failure cases are not limited to feedforward models. Taken
together, error consistency analysis suggests that the strategies used by human and
machine vision are still very different—but we envision our general-purpose error
consistency analysis to serve as a fruitful tool for quantifying future progress.

1 Introduction1

Complex systems are notoriously difficult to understand—be they Convolutional Neural Networks
(CNNs) or the human mind or brain. Paradoxically, for CNNs, we have access to every single
model parameter, know exactly how the architecture is formed of stacked convolution layers, and

1Blog post summary: https://medium.com/@robertgeirhos/are-all-cnns-created-equal-d1
3a33b0caf7

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.
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Figure 1: Do humans and CNNs make consistent errors? From left to right three steps for analysing
this question are visualised. For a detailed description of these steps please see the intuition (1.1).
(a) Observed vs. expected error overlap (errors on the same trials) for a classification experiment
where humans and CNNs classified the same images [11]. Values above the diagonal indicate more
overlap than expected by chance. (b) Same data as on the left but measured by error consistency (κ).
Higher values indicate greater consistency; shaded areas correspond to a simulated 95% percentile
for chance-level consistency. (c) Error consistency vs. ImageNet accuracy.

we can inspect every single pixel of the training data—yet understanding the behaviour emerging
from these primitives has proven surprisingly challenging [1], leaving us continually struggling to
reconcile the success story of CNNs with their brittleness [2–4].2 In response to the need to better
understand the internal mechanisms, a number of visualisation methods have been developed [6–8].
And while many of them have proven helpful in fuelling intuitions, some have later been found to be
misleading [9, 10]; moreover, most visualisation analyses are qualitative at nature. On the other hand,
quantitative comparisons of different algorithms like benchmarking model accuracies have led to a
lot of progress across deep learning, but reveal little about the internal mechanism: two models may
reach similar levels of accuracy with very different internal processing strategies, an aspect that is
gaining importance as CNNs are rapidly approaching ceiling performance across tasks and datasets.
In order to understand whether two algorithms are implementing a similar or a different strategy, we
need analyses that are quantitative and allow for drawing conclusions about the internal mechanism.

We here introduce error consistency3, a quantitative analysis for measuring whether two black-box
perceptual systems systematically make errors on the same inputs. Irrespective of any potential
differences at Marr’s implementational level [12] (which may be quite large, e.g. between two
different neural network architectures or even larger between a CNN and a human observer), one
can only conclude that two systems use a similar strategy if these systems make similar errors: not
just a similar number of errors (as measured by accuracy), but also errors on the same inputs, i.e. if
two systems find the same individual stimuli difficult or easy (as measured by error consistency). An
agreement can be considered inverse to the Reichenbach-principle [13] of correlation: correlation
between variables does not imply a direct causal relationship. However, correlation does imply at
least an indirect causal link through other variables. For error consistency, zero error consistency
implies that two decision makers are not using the same strategy. While error consistency can be
applied across fields, tasks and domains (including vision, auditory processing, etc.), we believe it to
be of particular relevance at the intersection of deep learning, neuroscience and cognitive science.
Both brains and CNNs have, at various points, been described as black-box mechanisms [14–16].
But do the spectacular advances in deep learning shed light on the perceptual and cognitive processes
of biological vision? Does similar performance imply similar mechanism or algorithm? Do different
CNNs indeed make different errors?4 We believe that fine-grained analysis techniques like error
consistency may serve an important purpose in this debate.

2Note again the parallel in neuroscience, even for very simple brains: The nervous system of the nematode
C.elegans is basically known in its entirety— still it is not fully understood how the (comparatively) complex
behaviour of C.elegans is brought about by the biological “hardware” [5].

3For a discussion of this terminology we refer to Section S.1 in the appendix
4[17] found surprising similarities for self-supervised vs. supervised CNNs using error consistency.
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Molecular psychophysics. Analysing errors for every single input is inspired by the idea of “molec-
ular psychophysics” by David Green [18]. He argued that the goal of psychophysics should be to
predict human responses to individual stimuli (trials) and not only aggregated responses (accuracy),
let alone only averages across many individuals, as is common in much of the behavioural sciences.
Green also predicted that once models of perceptual processes became more advanced, accuracy
would cease to be a good criterion to assess and compare them rigorously (see p. 394 in [18]).

Related work. Using error consistency we can analyse human and CNN error patterns in a way
that has, we believe, not been done before. We obtain novel findings but we do not consider error
consistency to be an entirely novel method by itself. Instead, it builds on, extends and adapts existing
methods and ideas developed in three different fields: molecular psychophysics (as described above)
as well as causal inference and the social sciences (as described below). Our goal is the systematic
analysis of human and CNN error patterns at the trial-by-trial level. Many previous analyses
have focused on the aggregated level instead: In machine learning, performance is predominantly
measured by accuracy and existing metrics to analyse errors such as comparisons between confusion
matrices [19–23] or scores based on KL divergence [24] pool over single trials, thereby losing crucial
information—they are not “molecular” but only “molar” in Green’s terminology [18]. [25, 26]
went an important step further by comparing errors at an image-by-image level, but consistency
was only computed after aggregating across participants, and [25] use a metric that automatically
leads to higher consistency when comparing two systems with higher accuracy (without discounting
for consistency due to chance). Closely related to our analysis is [27], who investigated similarity
between models in the context of overfitting. In the context of causal inference, [28] performed a
trial-by-trial analysis, plotting expected vs. observed behaviour (a starting point for our analysis). In
social sciences, psychology and medicine, comparisons between participants are common, e.g. for
problems like “How do people differ when answering a questionnaire?”. In that context, so-called
inter-rater agreement is measured by Cohen’s kappa [29]. Here we repurpose and extend Cohen’s
kappa (κ) for the analysis of classification errors by humans and machines, and provide confidence
intervals and analytical bounds (limiting possible consistency).

Terminology. A decision maker is any (living or artificial) entity that implements a decision rule. A
decision rule is a function that defines a mapping from input to output (see [4] for a taxonomy of
decision rules). Note that the same decision rule can result from different strategies. We use the term
strategy synonymously with the term algorithm. For instance, Quicksort(X) and Mergesort(X)
use a different algorithm (strategy), but they implement the same decision rule: the output will always
be the same. Permute(X), on the other hand, will (usually) lead to a different output. Hence, similar
output (or similar errors, i.e., high error consistency) is a necessary, but not a sufficient condition for
similar strategies.

1.1 Intuition

Before going through the mathematical details in Section 2, let us consider a simple example of a
psychophysical experiment where human observers and CNNs classified objects from 160 images
(line drawing / edge-like stimuli in this case). There are three steps in order to analyse error
consistency (visualised in Figure 1). We can start by analysing how many of the decisions (either
correct or incorrect) to individual trials are identical (observed error overlap). This number only
becomes meaningful when plotted against the error overlap expected by chance (Figure 1a): for
instance, two observers with high accuracies will necessarily agree on many trials by chance alone.
However, this visualisation may be hard to interpret since higher values do not simply correspond to
higher consistency (instead, above-chance consistency is measured by distance from the diagonal). In
a second step, we can therefore normalise the data (Figure 1b) by dividing each datapoint’s distance
to the diagonal by the total distance between the diagonal and ceiling (1.0). Now, we can directly
compare the error consistency between decision makers: if error consistency is measured by κ,
then κ = 0 means chance-level consistency (independent processing strategies), κ > 0 indicates
consistency beyond chance (similar strategies) and κ < 0 inconsistency beyond chance (inverse
strategies). Lastly, we can analyse the relationship between error consistency (κ) and an arbitrary
other variable, for instance in order to determine whether better ImageNet accuracy leads to higher
consistency between a CNN and human observers (Figure 1c), which is not the case here.
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2 Methods

When comparing two decision makers the most obvious comparison is accuracy. Our goal is to
go beyond accuracy per se by assessing the consistency of the responses with respect to individual
stimuli. As a prerequisite, all decision makers need to evaluate the exact same stimuli. The order
of presentation is irrelevant as long as the responses can be sorted w.r.t. stimuli afterwards.5 In
the following, we show how error consistency can be computed and which bounds and confidence
intervals apply for the observed error overlap (2.1) and for κ (2.2). Experimental methods are
described in 2.3 and code is available from https://github.com/wichmann-lab/error-cons
istency.

2.1 Observed vs. expected error overlap

If two observers i and j (be they algorithms, humans or animals) respond to the same n trials, we
can investigate by how much their decisions overlap. For this purpose, we only analyse whether the
decisions were correct/incorrect (irrespective of the number of choices). The observed error overlap
cobs is defined as cobsi,j =

ei,j
n where ei,j is the number of equal responses (either both correct or

both incorrect). In order to find out whether this observed overlap is beyond what can be expected by
chance, we can compare observers i and j to a theoretical model: independent binomial observers
(binomial: making either a correct or an incorrect decision; independent: only random consistency).
In this case, we can expect only overlap due to chance cexpi,j :

cexpi,j
= pipj + (1− pi)(1− pj). (1)

This is the sum of the probabilities that two observers i and j with accuracies pi and pj give the same
correct and incorrect response by chance.6

Confidence intervals. Unfortunately, the confidence interval of cobsi,j in the scatter-plot of Figure 1a
is not trivial to obtain. [28] used a standard binomial confidence interval. This is, however, only a
very rough estimate of the true confidence interval since the position on the x-axis (cexp) itself is also
estimated from the data and thus influenced by variation. We sample data for the null hypothesis of
independent observers and calculate the corresponding 95% percentiles (cf. Figure 2). This process is
described in Section S.3 in the appendix.

Bounds. Confidence intervals allow to investigate hypotheses. In addition, theoretical bounds might
help to assess the degree of the observed consistency not being due to chance: a data point close
or at the bound has maximum distance to the diagonal for a given value of cexp. For this end we
have calculated bounds of cobs as an additional diagnostic tool. The influence of these bounds on the
confidence intervals is visualised in Figure 2.

Ideally, we also want to express the bounds of cobs directly as a function of cexp. The analytical
derivation of the bounds below can be found in the Appendix (S.2) and are visualised in Figure 2.

0 ≤ cobsi,j ≤ 1−
√

1− 2cexpi,j if cexpi,j ≤ 0.5, (2)
√

2cexpi,j
− 1 ≤ cobsi,j ≤ 1 if cexpi,j

≥ 0.5. (3)

2.2 Error consistency measured by Cohen’s kappa

cobsi,j described above quantifies the observed error overlap between observers i and j. In order to
obtain a single behavioural score for error consistency, that is, one disentangled from accuracy7, we
need to discount for error overlap by chance cexpi,j . This is solved by Cohen’s κ [29] with which we

5For human observers the order of presentation can make a (typically small) difference as human observers
exhibit serial dependencies and other non-stationarities [18, 30]. Participants, e.g., may make more errors or
lapses towards the end of an experiment due to fatigue [31]), and it is thus recommended to randomly shuffle
presentation order for each participant to avoid such a “trivial” consistency of errors. Luckily, non-stationarities
are usually only problematic if the signal levels are low, i.e. near chance performance.

6Note that cexp > 0.5 ⇐⇒ p1, p2 > 0.5 ∨ p1, p2 < 0.5, see also Figure SF.2 in the appendix.
7In fact, error consistency is an accuracy corrected metric, see S.4 in the appendix
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Figure 2: Simulated data of cexp, cobs and κ for 160 trials under the assumption of independent
decision makers. Analytical bounds and 95% percentile derived from the simulation of 100,000
experiments do not align with the often reported erroneous confidence interval.

measure error consistency:

κi,j =
cobsi,j − cexpi,j

1− cexpi,j

. (4)

We do not include a comparison of κ to the (Pearson) correlation coefficient since it has been shown
that correlation is not a suitable measure of agreement [32, 33].

Confidence intervals. Confidence intervals of the average κ of groups, such as the average error
consistency of humans vs. humans in Figure 1c, are based on the empirical standard error of the
mean and a normal distribution assumption of the average error consistency (a numerical simulation
of binomial observers confirmed that this assumption is valid here). Analogous to the observed
consistency we use a sampling approach to obtain confidence intervals of κ given cexp, see S.3 for
details. This is necessary since the original confidence approximation interval derived by Cohen [29]
(yellow dashes for error consistency in Figure 2) were later shown to be erroneous [34, 35].8 While a
corrected approximate version for individual kappas does exist [34, 38], there is to our knowledge no
analytical or approximate confidence interval for κ given cexp, and hence our sampling approach.

Bounds. The following bounds show the limits of κ given a specific value of cexp, please see
Section S.2 for the derivation and Figure 2 for visualisation9:

−cexpi,j

1− cexpi,j

≤ κi,j ≤
1−√

1− 2cexpi,j
− cexpi,j

1− cexpi,j

if cexpi,j
≤ 0.5, (5)

√
2cexpi,j − 1− cexpi,j

1− cexpi,j

≤ κi,j ≤ 1 if cexpi,j ≥ 0.5. (6)

2.3 Experimental methods

Stimuli: motivation. Exemplary stimuli are visualised in Figure 3. We tested both “vanilla” images
(plain unmodified colour images from ImageNet [40]) and three different types of out-of-distribution
(o.o.d.) images. The motivation for using o.o.d. images is the following: Significant progress in
neuroscience—e.g., discovering receptive fields of simple and complex cells—was made using
“unnatural” bar-like stimuli. In deep learning, adversarial examples and texture bias were discovered
by testing models on (unnatural) images different than the training data. Hence, we can learn a lot
about the inner workings of a system by probing it with appropriate “artificial” stimuli [41, 42]; [4]
even argues that o.o.d. testing is a necessity for drawing reliable inferences about a model’s strategy.
Standard ImageNet images (where human and pre-trained CNN accuracies are both very high and
similar, .960± .036%) are included as a baseline condition.

8This erroneous confidence interval is still used in many publications, including very influential ones [36, 37].
9Bounds of kappa depending on cobs instead of cexp can be found in [39].
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Stimuli: method details. [11] tested N=10 human observers in their cue conflict, edge and silhouette
experiments. Starting from normal images with a white background, different image manipulations
were applied. For cue conflict images, the texture of a different image was transferred to this image
using neural style transfer [43], creating a texture-shape cue conflict with a total of 1280 trials per
observer and network. For edge stimuli, a standard edge detector was applied to the original images
to obtain line-drawing-like stimuli (160 trials per observer). Silhouette stimuli were created by filling
the outline of an object with black colour, leaving just the silhouette (160 trials per observer).10

Lastly, ImageNet stimuli were standard coloured ImageNet images; we used the behavioural data
(N=2 observers) and stimuli from [44] for this experiment.

Paradigm. In order to compare the error consistency of two perceptual systems (e.g. CNNs and
humans), those two systems a) need to be evaluated on the exact same stimuli and b) need to be
in a regime with neither perfect accuracy nor chance-level performance. We found the publicly
available stimuli and data from [11] to be an ideal test case. [11] compared object recognition
abilities of humans and algorithms in a carefully designed psychophysical experiment. After a 200
ms presentation of a 224× 224 pixels image, observers had 16 categories to choose from (e.g. car,
dog, chair). For ImageNet-trained networks, categorisation responses for 1,000 fine-grained classes
were mapped to those 16 classes using the WordNet hierarchy [45]. In order to obtain the probability
of a broad category (e.g. dog), response probabilities of all corresponding fine-grained categories
(e.g. all ImageNet dog breeds) were averaged using the arithmetic mean.11

Convolutional Neural Networks. Human responses were compared against classification decisions
of all available CNN models from the PyTorch model zoo (for torchvision version 0.2.2) and
against a recurrent model, CORnet-S [46]. All CNNs were trained on ImageNet. Details here: S.5.
Additionally, we analysed the relationship between model shape bias (induced by training on Stylized-
ImageNet) and error consistency with human observers: S.6.

3 Results

If two perceptual systems or decision makers implement the same strategy they can be expected to
systematically make errors on the same stimuli. In the following, we show how error consistency
can be used within visual object recognition to compare algorithms with humans (Section 3.1) and
algorithms with algorithms (Section 3.2).

3.1 Comparing algorithms with humans: investigating whether better ImageNet models
show higher error consistency with human behavioural data

In deep learning, there is a strong linear relationship between ImageNet accuracy and transfer
learning performance [47]; in computational neuroscience, better categorisation accuracy improves
the prediction of neural firing patterns [48]. But do better performing ImageNet models also make
more human-like errors?

Error consistency vs. model performance. In Figure 3, we analyse the error consistency between
human observers and sixteen standard ImageNet-trained CNNs. We find that humans to humans show
a fair degree of consistency w.r.t. individual stimuli. That is, their agreement on which cats or chairs
or cars are easy/hard to categorise is well beyond chance. Interestingly, CNN-to-CNN consistency
is even higher than human-to-human consistency in all three experiments. This occurs despite the
fact that human accuracies are higher than CNN accuracies across experiments: for instance in
the silhouette experiment, the average human accuracy is 0.75 whereas the average CNN accuracy
is 0.54 (see Table 1, supplementary information). However, the consistency between CNNs and
humans is close to zero for two experiments (cue conflict stimuli and line drawings); a linear model
fit indicates no improvement with better ImageNet validation accuracy: F (1, 158) = 0.086, p =
.769, R2 = 0.001 for cue conflict and F (1, 158) = 0.478, p = .491, R2 = 0.003 for line drawing
stimuli. For silhouettes, there is a significant positive relationship between ImageNet accuracy and
error consistency with F (1, 158) = 53.530, p = 1.21 · 10−11, R2 = 0.253; for ImageNet images,
on the other hand, there is a significant negative relationship between top-5 accuracy and error
consistency with F (1, 30) = 8.162, p = .008, R2 = 0.214.

10For parametrically distorted images (Appendix, Figure SF.7) we used the stimuli from [44].
11This aggregation is optimal. A derivation is included in the appendix of the arXiv version v3 of [44].
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Figure 3: Do better ImageNet models make more human-like errors? Error consistency vs. top-5
ImageNet validation accuracy for four experiments: cue-conflict, edges, silhouettes and standard
ImageNet images (exemplary stimuli are visualised on the right). Model colours as in Figure 4a;
similar colours indicate same model family. Dashed black lines plot a linear model fit. Whiskers
and colored tube show 95% confidence intervals around the mean. Small transparent circles indicate
error consistency between a CNN and an individual human observer; mean consistency is shown as a
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Figure 4: (a) How is error consistency influenced by model architecture? PyTorch models tested
on edge stimuli (160 trials per observer). (b) Recurrent CORnet-S behaves just like a standard
feedforward ResNet-50 on cue conflict stimuli (1280 trials). Shaded areas indicate a simulated 95%
percentile for consistency by chance.

We conclude that there is a substantial algorithmic difference between human observers and the
investigated sixteen CNNs: humans and CNNs are very likely implementing different strategies. This
difference is narrowing down for silhouette stimuli, whereas it is as big as ever for cue conflict, line
drawing and ImageNet stimuli: AlexNet from 2012 is just as error-consistent as recent models. Our
results are in stark contrast to the observation that better ImageNet models appear to be better models
of the primate visual cortex, even if they better predict neural activity [48].

Error consistency vs. model architecture. We were surprised to see that the consistency between
different CNNs is even higher than the consistency between different human observers. In Figure 4a,
we investigate the degree to which this CNN-CNN consistency is influenced by similarities in model
architecture. When distinguishing between models from the same architecture family (e.g., all
ResNet models) and models from a different model family (e.g., ResNet vs. VGG) we observe that
even though models from the same family score higher on average, model-to-model consistency
is generally very high.12 In line with these results, [27] also reported extremely high similarity
between different models on the ImageNet test set. This might shed some light on the finding that
many trained and fitted CNNs predict neural data similarly well, largely irrespective of architecture
[49]. Interestingly, the highest observed error consistency (κ = 0.793) occurs for DenseNet-121 vs.
ResNet-18: two models from a different model family with different depth (121 vs. 18 layers) and
different connectivity. High error consistency between different CNNs suggests that using CNNs as
an ensemble may currently be less effective than desirable, since ensembles benefit from independent
(rather than consistent) models. It remains an open question why even multiple instances of a single
model (trained with a different random seed) internally often differ substantially [50, 51], yet in spite
of large architectural differences across models and model families, all CNNs that we investigated
seem to be implementing fairly similar strategies.

3.2 Comparing algorithms with algorithms: the “current best model of the primate ventral
visual stream” behaves like a vanilla ResNet-50 according to error consistency analysis

In order to understand how object recognition is achieved in brains, a necessary—but not sufficient—
pre-requisite are quantitative metrics to track improvements and models that improve on those metrics.
[46] went an important step in both directions by proposing Brain-Score, a benchmark where
models can be ranked according to a number of metrics, for instance how well their activations
predict how biological neurons fire when primates see the same images as an ImageNet-trained
CNN. Using this benchmark, the authors tested hundreds of architectures to develop CORnet-S, a
brain-inspired recurrent neural network. CORnet-S is able to capture recurrent dynamics (so-called
object solution times) of monkey behaviour and achieves previously unmatched performance on

12Results for two other experiments are plotted in the appendix, Figure SF.3.
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Brain-Score while retaining good ImageNet performance (73.1% top-1). These results, in the
author’s words, “establish CORnet-S, a compact, recurrent ANN, as the current best model of the
primate ventral visual stream” performing “brain-like object recognition” [46, p. 1]. Building such a
model is an exciting undertaking and, as perhaps indicated by the highly competitive selection as
an “Oral” contribution to NeurIPS 2019, an endeavour that sparked considerable excitement at the
intersection of the neuroscience and machine learning communities. But how much is behavioural
consistency improved in comparison to a baseline model (ResNet-50)? This is exactly the type of
question that can be answered with the help of our error consistency analysis.

Figure 4 shows that CORnet-S shares only slightly above-chance error consistency with most human
observers—even the highest CORnet-S-to-human error consistency is lower than the lowest human-
to-human error consistency. However, there is no improvement whatsoever over a ResNet-50 baseline:
Cohen’s κ for CNN-human consistency is very low for both models (.068: ResNet-50; .066: CORnet-
S) compared to .331 for human-human consistency. Perhaps worse still, AlexNet from 2012 has
higher error consistency than CORnet-S (.080). CNN-CNN consistency between CORnet-S and
ResNet-50 is exceptionally high (.711), many datapoints even overlap exactly—a pattern confirmed
by additional experiments in the appendix (Figures SF.5, SF.6 and SF.7), where we also perform a
more detailed comparison to all six Brain-Score metrics (Figures SF.9, SF.10, SF.11 and SF.12
showing, if at all, only a weak relationship between error consistency and Brain-Score metrics).
This indicates that CORnet-S is likely implementing a very different strategy than the human brain:
in our analysis, CORnet-S has more behavioural similarities with a standard feedforward ResNet-50
than with human object recognition.13 This provides evidence that recurrent computations—often
argued to be one of the key missing ingredients in standard CNNs towards a better account of
biological vision [46, 52–56]—do not necessarily lead to different behaviour compared to a purely
feedforward CNN. It is still an open question to determine the conditions under which recurrence
provides advantages over feedforward networks. Recent evidence seems to indicate that recurrence
may be especially useful for difficult images [57–59].

Overall, the observed discrepancy between the leading score of CORnet-S on Brain-Score and
its similarity to a standard ResNet-50 according to error consistency analysis points to the decisive
importance of metrics: CORnet-S was mainly built for neural predictivity and while it scores very
well on a number of other benchmarks, such as capturing object solution times and even a previously
reported behavioural error analysis [26], it performs poorly on the behavioural metric reported here,
trial-by-trial error consistency. New metrics to scrutinise models will hopefully lead to an improved
generation of models, which in turn might inspire ever-more challenging analyses. An ideal model
of biological object recognition would score well on multiple metrics (both neural and behavioural
data, an important idea behind Brain-Score), including on metrics that the model was not directly
optimised for.

4 Conclusion
Error consistency is a quantitative analysis for comparing strategies/methods of black-box decision
makers—be they brains or algorithms. Accuracy alone is insufficient for distinguishing between
strategies: two decision makers may achieve similar accuracy with very different strategies. In contrast
to aggregated metrics (averaging across trials/stimuli and observers/networks), error consistency
measures behavioural errors on a fine-grained level following the idea of “molecular psychophysics”
[18]. Using error consistency we find:

• Irrespective of architecture, CNNs are remarkably consistent with one another

• The consistency between humans and CNNs, however, is little beyond what can be expected
by chance alone, indicating that CNNs still employ very different perceptual mechanisms and
“brain-like machine learning” may be still but a distant dream (cf. [60])

• Recurrent CORnet-S, termed the “current best model of the primate ventral visual stream”, fails to
capture essential characteristics of human behavioural data and instead behaves effectively like a
standard feedforward ResNet-50 in our analysis.

Taken together, error consistency analysis suggests that the strategies used by human and machine
vision are still very different—but we envision that error consistency will be a useful analysis in the
quest to understand complex systems, be they CNNs or the human mind and brain.

13Interestingly, CORnet-S and ResNet-50 also score fairly similarly on a few metrics of Brain-Score.
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Broader Impact

Error consistency is a statistical analysis for measuring whether two or more decision makers make
similar errors. Like any statistical analysis, it can be used for better or worse. For instance, as a
very simple example, calculating the mean of a number of observations can be used to quantify
a world-wide temperature increase caused by human carbon emissions [61, 62] (positive impact).
However, calculating the mean could just as well be utilised by authoritarian governments to obtain an
aggregated credit score of “social”—i.e., conformist—behaviour (negative impact) [63]. Concerning
error consistency, we could envisage the following broader impact.

Potential positive impact. Quantifying differences between decision making strategies can con-
tribute to a better understanding of algorithmic decisions. This improves model interpretability, which
is a scientific goal by itself but also closely linked to societal requirements like accountability of
algorithmic decision making and the “right to explanation” in the European Union [64]. Furthermore,
calculating the error consistency between humans and CNNs can be used for fact-checking overly
hyped “human-like AI” statements, e.g. by startups. We argue that human-level accuracy does not
imply human-like decision making, which might contribute to increased rigour in model evaluation.

Potential negative impact. While not intended to cause any harm, quantifying differences between
individuals can be used to identify group-conform and outlier behaviour. Furthermore, measuring
error consistency between machines and humans might be used to quantify progress towards building
machines that mimic human decision making on certain tasks. While this might sound exciting to a
scientist, it very likely sounds a lot more frightening from the perspective of someone losing their job
because a machine would then be capable of doing the same work more cheaply. Depending on the
complexity of the task, this may not be a problem in the near future but, given current trends in the
use of machine learning for automation, perhaps in the distant future.
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Supplementary Material

Code and data to reproduce results and figures are available from https://github.com/wichmann-lab/er
ror-consistency.

The supplementary material is structured as follows. We start with terminology in Section S.1, afterwards we
derive bounds of cobs and kappa in Section S.2 (limiting possible consistency), followed by a description of how
we simulated the confidence intervals for cexp and kappa under the null hypothesis of independent observers in
Section S.3. Finally, we provide method details for Brain-Score and the evaluated CNNs in Section S.5 and
report accuracies across experiments in Table 1.

In addition to method details, we provide extended experimental results in Figure SF.3 (error consistency of all
PyTorch models for cue conflict and edge stimuli) as well as Figures SF.5, SF.6, SF.7, SF.8 (detailed analyses
of CORnet-S vs. ResNet-50). Figures SF.9, SF.10 and SF.11 and SF.12 (investigating the relationship between
Brain-Score metrics and error consistency).

Furthermore, Figure SF.4 visualises qualitative error differences by plotting which stimuli were particularly easy
for humans and CNNs, respectively.

S.1 Terminology: “error consistency”

We would like to briefly clarify the name error consistency. Our analysis helps to compare the consistency of two
decision makers. Two decision makers necessarily show some degree of consistency due to chance agreement.
Error consistency helps to examine whether the two decision makers show significantly more consistency than
expected by chance by analysing behavioural error patterns. However, this analysis takes into account not only
the consistency of errors but also the consistency of correctly answered trials, hence ‘error consistency’ may
sound imprecise at first. Nonetheless, we believe that the term captures the most crucial aspect of this analysis:
Humans and CNNs —which are particularly well suited for our analysis—are often close to ceiling performance
or at least have high accuracies. Thus trials where the decision makers agree do not provide much evidence for
distinguishing between processing strategies. In contrast, the (few) errors of the decision makers are the most
informative trials in this respect: Hence the name error consistency.

S.2 Derivation of bounds for cobs and kappa given cexp

How much observed consistency can we expect at most for a given expected consistency? We assume two
independent observers i and j with accuracies pi and pj . For given pi, pj only a certain range of cobs is possible:

cobsmax = 1− |pi − pj | and cobsmin = |pj + pi − 1|. (7)

Ideally, we also want to express the bounds of cobs directly as a function of cexp. We obtain the following
bounds:

0 ≤ cobsi,j ≤ 1−
√

1− 2cexpi,j if cexpi,j < 0.5, (8)
√

2cexpi,j − 1 ≤ cobsi,j ≤ 1 if cexpi,j ≥ 0.5. (9)

These bounds are visualised in Figure 2.

The derivation is as follows. We distinguish between two cases.

Case 1: pi ≤ 0.5 & pj ≤ 0.5 or pi ≥ 0.5 & pj ≥ 0.5⇐⇒ cexpi,j ≥ 0.5

The expected consistency then lies in the interval of [0.5, 1], see Figure SF.2. First we calculate the upper bound
bobsmax given cexpi,j . Please note that a specific cexpi,j can be obtained by multiple combinations of values for
pi and pj . For a given cexpi,j we choose pj = pi. We can calculate the exact value of pi in this case with eq.
(1). However since pj = pi we get with eq. (7) that bobsmax = 1. Thus we directly obtain from eq. (7) that the
upper bound of cobsi,j is always 1 for all cexpi,j in the interval [0.5, 1].

It is a bit more challenging to derive the lower bound bobsmin given cexpi,j . Using equation (7) and (1) we
obtain

bobsmin = pi +
cexpi,j + pi − 1

2pi − 1
− 1. (10)

Setting
∂bobsmin

∂pi
= 0 to find the minimum results in

pimin =
1

2
±

√
1

4
− −2cexpi,j + 2

4
. (11)
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We only take the positive term in eq. (11) since pi > 0.5 by definition. Checking the second order derivative
confirms a minimum. Finally using equation eq. (11) with eq. (10) we calculate

bobsmin =
√

2cexpi,j − 1, thus (12)
√

2cexpi,j − 1 ≤ cobsi,j ≤ 1. (13)

Case 2: pi > 0.5 & pj < 0.5 or pi < 0.5 & pj > 0.5⇐⇒ cexpi,j < 0.5

The expected consistency then lies in the interval of [0, 0.5[, see Figure SF.2. This case is point symmetric to the
right part. Thus we obtain for the bounds of the left part

bobsmax2
= 1− bobsmin(1− cexpi,j ), (14)

bobsmin2
= 0 and finally (15)

0 ≤ cobsi,j ≤ 1−
√

1− 2cexpi,j . (16)

Bounds for kappa If we plug in the bounds of cobsi,j into the equation of kappa, we obtain the following
bounds for kappa:

−cexpi,j
1− cexpi,j

≤ κi,j ≤
1−√

1− 2cexpi,j − cexpi,j
1− cexpi,j

if cexpi,j < 0.5, (17)

√
2cexpi,j − 1− cexpi,j

1− cexpi,j
≤ κi,j ≤ 1 if cexpi,j ≥ 0.5. (18)

S.3 Calculating 95% percentiles of observed overlap and kappa for the null hypothesis of
independent observers given an expected consistency

Here we describe the procedure to calculate 95% percentiles of κ and cobs.

Our null hypothesis is that two decision makers are independent. Assuming independence, we can easily simulate
these two observers. Based on pi, pj (the accuracies of decision makers i and j) we sample n trials and calculate
cexpi,j , cobsi,j , andκi,j accordingly based on these simulated values. This process is repeated systematically
for different pi and pj . For this purpose we sample a grid of 4200 x 4200 points in the range [[0, 1], [0, 1]].
For each individual combination of pi and pj , the sampling is repeated five times, thus in total we simulate
4200× 4200× 5 = 88, 200, 000 values.14

The grid is not divided equally. 66% of pi and pj are located in the upper and lower 15% of the domain. This is
important because kappa diverges for large values of cexp (small and large values of pi and pj); thus a dense
sampling is necessary there.

Based on these simulated data we obtain 95% percentiles for cobs and κ. We binned the data in 1% steps and
used the standard quantile-function of R (type 7, see [66]). It is important to note that we have only a small
number of trials (160 or 1280).15 Therefore cobs can take a maximum number of 161 or 1281 values respectively.
The range of uniquely observed values is very small for a given cexp. This implies that the accuracy of our
percentiles is limited for data points that are very close to the quantiles. However, this does not influence our
findings.

Please note that the denominator of kappa gets very small for high values of cexp. Thus we see some instability
of kappa towards high expected consistencies. Figure SF.1 shows diagnostic plots for both cases.

S.4 Disentangling of Error consistency and Accuracy

Our argument for the disentanglement between kappa and accuracy is as follows. For independent observer
no correlation between accuracy and kappa is observed, e.g. In Figure 2b, κ and cexp 16 are not correlated
(r=-0.00015, p > 0.05). As expressed by the bounds in Figure 2, κ is limited by accuracy. If two observers have
an accuracy for 90%, only certain levels of (dis-)agreement are possible. Error consistency (measured by κ) aims
to correct for accuracy and thus in our experiments different kinds of correlations between error consistency and
overall accuracy occur. We observe zero correlation in (Figures 3a, 3b) and positive correlation in Figure 3c. In
Figure 3d we observe a negative correlation between accuracy and error consistency. We conclude that there is

14The more values are simulated, the better: we chose the maximum number of samples feasible to simulate
on our hardware within reasonable time.

15Percentiles for a different number of trials can also be computed with the code that we provide.
16Accuracy and cexp are linked as one can see in figure SF.2
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Figure SF.1: Simulated data of cexp, cobs and κ for 160 (top) and 1280 (bottom) trials per block. Black
dots show 100.000 randomly drawn blocks from our simulation. Blue lines show analytical bounds.
Red lines show the 95% percentiles. Orange dashed lines show the wrong binomial confidence
interval (left) and the erroneous confidence interval for κ (right) reported in many papers.

no correlation between consistency (κ) and accuracy for independent observers whilst for dependent (consistent)
observers correlations are possible. Kappa corrects for accuracy but is not independent from it.

S.5 Method details for Brain-Score and CNNs

Human responses were compared against classification decisions of all available CNN models from the PyTorch
model zoo (for torchvision version 0.2.2) [67], namely alexnet, vgg11-bn, vgg13-bn, vgg16-bn,
vgg19-bn, squeezenet1-0, squeezenet1-1, densenet121, densenet169, densenet201,
inception-v3, resnet18, resnet34, resnet50, resnet101, resnet152. For the VGG model
family [68], we used the implementation with batch norm. CORnet-S, an additional recurrent model
[46] analysed in Section 3.2, was obtained from the author’s github implementation.17 The comparison
to Brain-Score in Figures SF.9, SF.10, SF.11 and SF.12 uses Brain-Score values obtained from the
Brain-Score website(date of download: April 17, 2020) and error consistency values obtained by us. Note
that the model implementations differ slightly: we consistently used PyTorch models whereas Brain-Score
tested models from a few different frameworks (the full list can be seen here). Namely, squeezenet1-0,
squeezenet1-1, resnet18, resnet-34 are identical (PyTorch); the VGG models use Keras instead
(without batch norm) and so do the Brain-Score DenseNet models; inception_v3, resnet50_v1,
resnet101_v1, resnet152_v1 are TFSlim models. Since model implementations usually differ slightly

17https://github.com/dicarlolab/CORnet
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across frameworks, a small variation in the results can be expected depending on the chosen model and
framework.

S.6 Error consistency of shape-biased models

We analyzed three CNNs with different degrees of stylized training data from [11]. Model shape bias predicts
human-CNN error consistency for cue conflict stimuli, indicating that networks basing their decisions on object
shape (rather than texture) make more human-like errors:

model shape bias (%) 20.5 21.4 34.7 81.4
human-CNN consistency (κ) .066 .068 .098 .195

observer / model cue conflict edge silhouette
1 subject-01 0.69 0.89 0.80
2 subject-02 0.76 0.94 0.66
3 subject-03 0.84 0.93 0.80
4 subject-04 0.62 0.84 0.78
5 subject-05 0.85 0.89 0.77
6 subject-06 0.82 0.93 0.72
7 subject-07 0.76 0.81 0.76
8 subject-08 0.78 0.96 0.64
9 subject-09 0.86 0.61 0.76

10 subject-10 0.77 0.92 0.85
11 alexnet 0.19 0.29 0.43
12 vgg11-bn 0.12 0.14 0.46
13 vgg13-bn 0.12 0.25 0.36
14 vgg16-bn 0.14 0.22 0.47
15 vgg19-bn 0.15 0.28 0.46
16 squeezenet1-0 0.14 0.15 0.24
17 squeezenet1-1 0.17 0.14 0.29
18 densenet121 0.19 0.24 0.42
19 densenet169 0.21 0.33 0.53
20 densenet201 0.21 0.38 0.51
21 inception-v3 0.27 0.28 0.54
22 resnet18 0.19 0.20 0.47
23 resnet34 0.19 0.16 0.45
24 resnet50 0.18 0.14 0.54
25 resnet101 0.20 0.24 0.49
26 resnet152 0.21 0.21 0.56
27 cornet-s 0.18 0.25 0.46

Table 1: Accuracies for human observers and CNNs for all three experiments. In the cue conflict
experiment case, an answer is counted as correct in this table if this answer corresponds to the correct
shape category (other choices are possible).
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Figure SF.2: Values that cexp can take depending on pi and pj for two independent observers.
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Figure SF.3: Error consistencs vs. expected error overlap for all PyTorch models.
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(a) Cue conflict stimuli

(b) Edge stimuli

(c) Silhouette stimuli

Figure SF.4: “Easy” stimuli for humans and CNNs. For each experiment, the images in the top
row were those that most humans correctly classified. In the bottom row: stimuli that most CNNs
correctly classified. If there were more than five images where humans were very accurate on, we
here selected those where CNNs were the least accurate, and vice versa. ImageNet stimuli are not
visualised due to image permission reasons.
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pattern was also observed by Hermann and Kornblith [69], who performed a detailed investigation of
the factors that influence model shape bias.
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Figure SF.6: Error consistency of CORnet-S vs. ResNet-50 for edge and silhouette stimuli.
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Figure SF.7: Classification accuracy on parametrically distorted images for ResNet-50, CORnet-S
and human observers. Again, CORnet-S behaves like a ResNet-50 rather than like human observers.
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Figure SF.8: Confusion matrices for humans, ResNet-50 and CORnet-S. Different rows correspond to
different experiments. Top row: cue conflict stimuli, second row: edge stimuli, third row: silhouette
stimuli, last row: ImageNet stimuli.
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Figure SF.9: Error consistency vs. Brain-Score metrics for PyTorch models, “cue conflict” stimuli.
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Figure SF.10: Error consistency vs. Brain-Score metrics for PyTorch models, “edge” stimuli.
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Figure SF.11: Error consistency vs. Brain-Score metrics for PyTorch models, “silhouette” stimuli.
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Figure SF.12: Error consistency vs. Brain-Score metrics for PyTorch models, “ImageNet” stimuli.
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2.4 On the surprising similarities between supervised and self-
supervised models

Figure 2.4: Schematic overview of the
projects presented in this thesis. Projects
P1–P4 ask “How do machines decide”,
project P5 presents the concept of short-
cut learning as an integrative perspective
tackling the question “Why do machines
decide the way they do”. Finally, project
P6 presents a comprehensive benchmark
to measure future progress, and reports
first signs of (partial) success. Through-
out the thesis, machine decision making
will be compared against human deci-
sion making.
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Abstract

How do humans learn to acquire a powerful, flexible and robust representation of
objects? While much of this process remains unknown, it is clear that humans do
not require millions of object labels. Excitingly, recent algorithmic advancements
in self-supervised learning now enable convolutional neural networks (CNNs) to
learn useful visual object representations without supervised labels, too. In the
light of this recent breakthrough, we here compare self-supervised networks to
supervised models and human behaviour.
We tested models on 15 generalisation datasets for which large-scale human be-
havioural data is available (130K highly controlled psychophysical trials). Sur-
prisingly, current self-supervised CNNs share four key characteristics of their
supervised counterparts: (1.) relatively poor noise robustness (with the notable ex-
ception of SimCLR), (2.) non-human category-level error patterns, (3.) non-human
image-level error patterns (yet high similarity to supervised model errors) and
(4.) a bias towards texture. Taken together, these results suggest that the strategies
learned through today’s supervised and self-supervised training objectives end
up being surprisingly similar, but distant from human-like behaviour. That being
said, we are clearly just at the beginning of what could be called a self-supervised
revolution of machine vision, and we are hopeful that future self-supervised models
behave differently from supervised ones, and—perhaps—more similar to robust
human object recognition.

1 Introduction

“If intelligence is a cake, the bulk of the cake is unsupervised learning, the icing on the cake is
supervised learning and the cherry on the cake is reinforcement learning”, Yann LeCun famously
said [1]. Four years later, the entire cake is finally on the table—the representations learned via
self-supervised learning now compete with supervised methods on ImageNet [2] and outperform
supervised pre-training for object detection [3]. But given this fundamentally different learning
mechanism, how do recent self-supervised models differ from their supervised counterparts in terms
of their behaviour?

We here attempt to shed light on this question by comparing eight flavours of “cake” (PIRL, MoCo,
MoCoV2, InfoMin, InsDis, SimCLR-x1, SimCLR-x2, SimCLR-x4) with 24 common variants of

2nd Workshop on Shared Visual Representations in Human and Machine Intelligence (SVRHM), NeurIPS 2020.
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“icing” (from the AlexNet, VGG, Squeezenet, DenseNet, Inception, ResNet, ShuffleNet,
MobileNet, ResNeXt, WideResNet and MNASNet star cuisines). Specifically, our culinary test
buffet aims to investigate:

1. Are self-supervised models more robust towards distortions?

2. Do self-supervised models make similar errors as either humans or supervised models?

3. Do self-supervised models recognise objects by texture or shape?

For all of these questions, we compare supervised and self-supervised1 models against a comprehen-
sive set of openly available human psychophysical data totalling over 130,000 trials [4, 5]. This is
motivated on one hand by the fact that humans, too, rapidly learn to recognise new objects without
requiring hundreds of labels per instance; and on the other hand by a number of fascinating studies
reporting increased similarities between self-supervised models and human perception. For instance,
Lotter et al. [6] train a model for self-supervised next frame prediction on videos, which leads
to phenomena known from human vision, including perceptual illusions. Orhan et al. [7] train a
self-supervised model on infant video data, finding good categorisation accuracies on some (small)
datasets. Furthermore, Konkle and Alvarez [8] and Zhuang et al. [9] report an improved match with
neural data; Zhuang et al. [9] also find more human-like error patterns for semi-supervised models
and Storrs and Fleming [10] observe that a self-supervised network accounts for behavioural patterns
of human gloss perception. While methods and models differ substantially across these studies, they
jointly provide evidence for the intriguing hypothesis that self-supervised machine learning models
may better approximate human vision.

2 Methods

Models. InsDis [11], MoCo [12], MoCoV2 [13], PIRL [3] and InfoMin [14] were obtained as
pre-trained models from the PyContrast model zoo. We trained one linear classifier per model on top
of the self-supervised representation. A PyTorch [15] implementation of SimCLR [2] was obtained via
simclr-converter. All self-supervised models use a ResNet-50 architecture and a different training
approach within the framework of contrastive learning [e.g. 16]. For supervised models, we used all
24 available pre-trained models from the PyTorch model zoo version 1.4.0 (VGG: with batch norm).

Linear classifier training procedure. The PyContrast repository by Yonglong Tian contains a
Pytorch implementation of unsupervised representation learning methods, including pre-trained
representation weights. The repository provides training and evaluation pipelines, but it supports only
multi-node distributed training and does not (currently) provide weights for the classifier. We have
used the repository’s linear classifier evaluation pipeline to train classifiers for InsDis [11], MoCo
[12], MoCoV2 [13], PIRL [3] and InfoMin [14] on ImageNet. Pre-trained weights of the model
representations (without classifier) were taken from the provided Dropbox link and we then ran the
training pipeline on a NVIDIA TESLA P100 using the default parameters configured in the pipeline.
Detailed documentation about running the pipeline and parameters can be found in the PyContrast
repository (commit #3541b82).

Datasets. Models were tested on 12 different image degradations from [4], as well as on texture-vs-
shape datasets from [5]. Plotting conventions follow these papers (unless indicated otherwise).

3 Results

We here investigate four behavioural characteristics of self-supervised networks, comparing them
to their supervised counterparts on the one hand and to human observers on the other hand: out-of-
distribution generalisation (3.1), category-level error patterns (3.2), image-level error patterns (3.3),
and texture/shape biases (3.4).

1“Unsupervised learning” and “self-supervised learning” are sometimes used interchangeably. We use the
term “self-supervised learning”’ since the methods use (label-free) supervision.
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Figure 1: Noise generalisation results for humans (red diamonds) vs. supervised models (grey cicles)
vs. self-supervised models (orange triangles). Self-supervised SimCLR variants: blue triangles.

3.1 With the exception of SimCLR, supervised and self-supervised models show similar
(non-human) out-of-distribution generalisation

Motivation. Given sufficient quantities of labelled training data, CNNs can learn to identify objects
when the input images are noisy. However, supervised CNNs typically generalise poorly to novel
distortion types not seen during training, so-called out-of-distribution images [4]. In contrast, human
perception is remarkably robust when dealing with previously unseen types of noise. Given that
recent self-supervised networks are trained to identify objects under a variety of transformations (like
scaling, cropping and colour shifts), have they learned a more robust, human-like representation of
objects, where high-level semantic content is unimpaired by low-level noise?

Results. In Figure 1, we compare self-supervised and supervised networks on twelve different
types of image distortions. Human observers were tested on the exact same distortions by [4]. Across
distortion types, self-supervised networks are well within the range of their poorly generalising
supervised counterparts. However, there is one exception: SimCLR shows strong generalisation
improvements on uniform noise, low contrast and high-pass images—quite remarkable given that the
network was trained using other augmentations (random crop with flip and resize, colour distortion,
and Gaussian blur). Apart from SimCLR, however, we do not find benefits of self-supervised training
for distortion robustness. These results for ImageNet models contrast with [17] who observed some
robustness improvements for a self-supervised model trained on the CIFAR-10 dataset.

3.2 Self-supervised models make non-human category-level errors

Motivation. On clean images, CNNs now recognise objects as well as humans. But do they also
confuse similar categories with each other (which can be investigated using confusion matrices)?

Results. In Figure 4 (moved to appendix for space reasons), we compare category-level errors of
humans against a standard supervised CNN (ResNet-50) and three self-supervised CNNs. We chose
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(c) Silhouette experiment

‘silhouette’ stimuli

Figure 2: Self-supervised models make errors on the same images as supervised models. Error
consistency (high κ = consistent errors) between all combinations of the following three groups:
humans (hum), supervised networks (sup) and self-supervised networks (self-sup). Stimuli from
[5]: (a) cue conflict, (b) edges and (c) silhouettes (visualisation by [18]). For all three experiments,
consistency between networks is much higher than between networks and humans: CNNs make
errors on the same images as other CNNs, whether these are supervised or self-supervised.
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uniform noise for this comparison since this is one of the noise types where SimCLR shows strong
improvements, nearing human-level accuracies. Looking at the confusion matrices, both humans
and CNNs start with a dominant diagonal indicating correct categorisation. With increasing noise
level, however, all CNNs develop a strong tendency to predict one category and only one, such as
“knife” for ResNet-50. Human observers, on the other hand, more or less evenly distribute their
errors across classes. For supervised networks, this pattern of errors was already observed by [4];
we here find that this peculiar idiosyncrasy is shared by self-supervised networks, indicating that
discriminative supervised training is not the underlying reason for this non-human behaviour.

3.3 Self-supervised models make non-human image-level errors (error consistency)

Motivation. Achieving human-level accuracies on a dataset does not necessarily imply using a
human-like strategy: different strategies can lead to similar accuracies. Therefore, it is essential to
investigate on which stimuli errors occur. If two decision makers—for instance, a human observer
and a CNN—use a similar strategy, we can expect them to consistently make errors on the same
individual images. This intuition is captured by error consistency (κ), a metric to measure the degree
to which decision makers make the same image-level errors [18]. κ > 0 means that two decision
makers systematically make errors on the same images; κ = 0 indicates no more error overlap than
what could be expected by chance alone.

Results. Figure 2 plots the consistency of errors (measured by κ). Humans make highly similar
errors as other humans (mean κ = 0.32), but neither supervised nor self-supervised models make
human-like errors. Instead, error consistency between model groups (self-supervised vs. supervised)
is just as high as consistency within model groups: self-supervised models make errors on the same
images as supervised models, an indicator for highly similar strategies.

3.4 Self-supervised models are biased towards texture

Motivation. Standard supervised networks recognise objects by relying on local texture statistics,
largely ignoring global object shape [5, 19, 20]. This striking difference to human visual perception
has been attributed to the fact that texture is a shortcut sufficient to discriminate among objects
[21]—but is texture also sufficient to solve self-supervised training objectives?

Results. We tested a broad range of CNNs on the texture-shape cue conflict dataset from [5].
This dataset consists of images where the shape belongs to one category (e.g. cat) and the texture
belongs to a different category (e.g. elephant). When plotting whether CNNs prefer texture or shape
(Figure 3), we observe that most self-supervised models have a strong texture bias known from
traditional supervised models. This texture bias is less prominent for SimCLR (58.3–61.2% texture
decisions), which is still on par with supervised model Inception-V3 (60.7% texture decisions).
These findings are in line with [22], who observed that the influence of training data augmentations
on shape bias is stronger than the role of architecture or training objective. Neither supervised nor
self-supervised models have the strong shape bias that is so characteristic for human observers,
indicating fundamentally different decision making processes between humans and CNNs.

4 Discussion

Comparing self-supervised networks to supervised models and human observers, we here investigated
four key behavioural characteristics: out-of-distribution generalisation, category-level error patterns,
image-level error patterns, and texture bias. Overall, we find that self-supervised models resemble
their supervised counterparts much more closely than what could have been expected given fundamen-
tally different training objectives. While standard models are notoriously non-robust [4, 21, 23–25],
SimCLR represents a notable exception in some of our experiments as it is less biased towards texture
and much more robust towards some types of distortions. It is an open question whether these benefits
arise from the specific set of data augmentations used during SimCLR model training.

Perhaps surprisingly, error consistency analysis suggests that the images on which supervised and
self-supervised models make errors overlap strongly, much more than what could have been expected
by chance alone. This provides evidence for similar processing mechanisms: It seems that switching
label-based supervision for a contrastive learning scheme does not have a strong effect on the inductive
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Figure 3: Self-supervised models are biased towards texture. Vertical lines indicate the average
across categories for a certain model. Humans: red diamonds, supervised models: grey cicles,
self-supervised models: orange triangles, self-supervised SimCLR variants: blue triangles.

bias of the resulting model—at least for the currently used contrastive approaches. Furthermore, we
find little evidence for human-like behaviour in the investigated self-supervised models. While this
investigation focused on state-of-the-art contrastive learning methods, other self-supervised methods
might lead to different results.

We are clearly just witnessing the beginning of what could be called a self-supervised revolution
of machine vision, and we expect future self-supervised models to behave significantly differently
from supervised ones. What we are showing is that the current self-supervised CNNs are not yet
more human-like in their strategies and internal representations than plain-vanilla supervised CNNs.
We hope, however, that analyses like ours may facilitate the tracking of emerging similarities and
differences, whether between different types of models or between models and human perception.
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Appendix

Figure 4 shows confusion matrices for uniform noise, Figure 5 for low-pass filtering.
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Figure 4: Confusion matrices for different conditions (“Cond.”) of the uniform noise experiment.
Columns show ground truth object categories, rows indicate predicted categories. Supervised
ResNet-50 and self-supervised networks InsDis, MoCoV2 & SimCLR-x4 all preferentially select a
single category with increasing noise level.
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Figure 5: Confusion matrices for low-pass filtering. Again, CNNs develop a preference for a certain
category as the distortion strength increases.
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Abstract

Deep learning has triggered the current rise of artificial intelligence and is the workhorse
of today’s machine intelligence. Numerous success stories have rapidly spread all over
science, industry and society, but its limitations have only recently come into focus. In this
perspective we seek to distil how many of deep learning’s problem can be seen as different
symptoms of the same underlying problem: shortcut learning. Shortcuts are decision rules
that perform well on standard benchmarks but fail to transfer to more challenging testing
conditions, such as real-world scenarios. Related issues are known in Comparative Psy-
chology, Education and Linguistics, suggesting that shortcut learning may be a common
characteristic of learning systems, biological and artificial alike. Based on these observa-
tions, we develop a set of recommendations for model interpretation and benchmarking,
highlighting recent advances in machine learning to improve robustness and transferability
from the lab to real-world applications.

1 Introduction
If science was a journey, then its destination would be the discovery of simple explanations
to complex phenomena. There was a time when the existence of tides, the planet’s orbit
around the sun, and the observation that “things fall down” were all largely considered to be
independent phenomena—until 1687, when Isaac Newton formulated his law of gravitation
that provided an elegantly simple explanation to all of these (and many more). Physics has
made tremendous progress over the last few centuries, but the thriving field of deep learning
is still very much at the beginning of its journey—often lacking a detailed understanding
of the underlying principles.

For some time, the tremendous success of deep learning has perhaps overshadowed
the need to thoroughly understand the behaviour of Deep Neural Networks (DNNs). In an
ever-increasing pace, DNNs were reported as having achieved human-level object classifi-
cation performance [1], beating world-class human Go, Poker, and Starcraft players [2, 3],

This is the preprint version of an article that has been published by Nature Machine Intelligence
(https://doi.org/10.1038/s42256-020-00257-z).
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Problem

Shortcut

Task for DNN Answer question

Changes answer if irrelevant
information is added

 

Recognise object

Hallucinates teapot if cer-
tain patterns are present

Uses features irrecogni-
sable to humans

Recognise pneumonia

Fails on scans from
new hospitals 

Looks at hospital token,
not lung

Only looks at last sentence and 
ignores context

Caption image

Describes green
hillside as grazing sheep

Uses background to
recognise primary object

Article: Super Bowl 50

Paragraph: “Peython Manning became the first quarterback 
ever to lead two di�erent teams to multiple Super Bowls. He 
is also the oldest quarterback ever to play in a Super Bowl 
at age 39. The past record was held by John Elway, who 
led the Broncos to victory in Super Bowl XXXIII at age 38 
and is currently Denver’s Executive Vice President of Foot-
ball Operations and General Manager. Quarterback Je� 
Dean had a jersey number 37 in Champ Bowl XXXIV.”
Question: “What is the name of the quarterback who was 
38 in Super Bowl XXXIII?”
Original Prediction: John Elway
Prediction under adversary: Je� Dean

Figure 1. Deep neural networks often solve problems by taking shortcuts instead of learning the
intended solution, leading to a lack of generalisation and unintuitive failures. This pattern can be
observed in many real-world applications.

detecting cancer from X-ray scans [4], translating text across languages [5], helping com-
bat climate change [6], and accelerating the pace of scientific progress itself [7]. Because
of these successes, deep learning has gained a strong influence on our lives and society. At
the same time, however, researchers are unsatisfied about the lack of a deeper understand-
ing of the underlying principles and limitations. Different from the past, tackling this lack
of understanding is not a purely scientific endeavour anymore but has become an urgent
necessity due to the growing societal impact of machine learning applications. If we are
to trust algorithms with our lives by being driven in an autonomous vehicle, if our job ap-
plications are to be evaluated by neural networks, if our cancer screening results are to be
assessed with the help of deep learning—then we indeed need to understand thoroughly:
When does deep learning work? When does it fail, and why?

In terms of understanding the limitations of deep learning, we are currently observing
a large number of failure cases, some of which are visualised in Figure 1. DNNs achieve
super-human performance recognising objects, but even small invisible changes [8] or a
different background context [9, 10] can completely derail predictions. DNNs can generate
a plausible caption for an image, but—worryingly—they can do so without ever looking
at that image [11]. DNNs can accurately recognise faces, but they show high error rates
for faces from minority groups [12]. DNNs can predict hiring decisions on the basis of
résumés, but the algorithm’s decisions are biased towards selecting men [13].

How can this discrepancy between super-human performance on one hand and aston-
ishing failures on the other hand be reconciled? One central observation is that many
failure cases are not independent phenomena, but are instead connected in the sense that
DNNs follow unintended “shortcut” strategies. While superficially successful, these strate-
gies typically fail under slightly different circumstances. For instance, a DNN may appear
to classify cows perfectly well—but fails when tested on pictures where cows appear out-
side the typical grass landscape, revealing “grass” as an unintended (shortcut) predictor
for “cow” [9]. Likewise, a language model may appear to have learned to reason—but
drops to chance performance when superficial correlations are removed from the dataset
[14]. Worse yet, a machine classifier successfully detected pneumonia from X-ray scans
of a number of hospitals, but its performance was surprisingly low for scans from novel
hospitals: The model had unexpectedly learned to identify particular hospital systems with
near-perfect accuracy (e.g. by detecting a hospital-specific metal token on the scan, see
Figure 1). Together with the hospital’s pneumonia prevalence rate it was able to achieve a
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reasonably good prediction—without learning much about pneumonia at all [15].
At a principal level, shortcut learning is not a novel phenomenon. The field of machine

learning with its strong mathematical underpinnings has long aspired to develop a formal
understanding of shortcut learning which has led to a variety of mathematical concepts and
an increasing amount of work under different terms such as learning under covariate shift
[16], anti-causal learning [17], dataset bias [18], the tank legend [19] and the Clever Hans
effect [20]. This perspective aims to present a unifying view of the various phenomena that
can be collectively termed shortcuts, to describe common themes underlying them, and lay
out the approaches that are being taken to address them both in theory and in practice.

The structure of this perspective is as follows. Starting from an intuitive level, we in-
troduce shortcut learning across biological neural networks (Section 2) and then approach
a more systematic level by introducing a taxonomy (Section 3) and by investigating the
origins of shortcuts (Section 4). In Section 5, we highlight how these characteristics affect
different areas of deep learning (Computer Vision, Natural Language Processing, Agent-
based Learning, Fairness). The remainder of this perspective identifies actionable strate-
gies towards diagnosing and understanding shortcut learning (Section 6) as well as current
research directions attempting to overcome shortcut learning (Section 7). Overall, our se-
lection of examples is biased towards Computer Vision since this is one of the areas where
deep learning has had its biggest successes, and an area where examples are particularly
easy to visualise. We hope that this perspective facilitates the awareness for shortcut learn-
ing and motivates new research to tackle this fundamental challenge we currently face in
machine learning.

2 Shortcut learning in biological neural networks
Shortcut learning typically reveals itself by a strong discrepancy between intended and
actual learning strategy, causing an unexpected failure. Interestingly, machine learning is
not alone with this issue: From the way students learn to the unintended strategies rats use
in behavioural experiments—variants of shortcut learning are also common for biological
neural networks. We here point out two examples of unintended learning strategies by
natural systems in the hope that this may provide an interesting frame of reference for
thinking about shortcut learning within and beyond artificial systems.

2.1 Shortcut learning in Comparative Psychology: unintended
cue learning
Rats learned to navigate a complex maze apparently based on subtle colour differences—
very surprising given that the rat retina has only rudimentary machinery to support at best
somewhat crude colour vision. Intensive investigation into this curious finding revealed
that the rats had tricked the researchers: They did not use their visual system at all in the
experiment and instead simply discriminated the colours by the odour of the colour paint
used on the walls of the maze. Once smell was controlled for, the remarkable colour dis-
crimination ability disappeared ...1

Animals are no strangers to finding simple, unintended solutions that fail unexpectedly:
They are prone to unintended cue learning, as shortcut learning is called in Comparative

1Nicholas Rawlins, personal communication with F.A.W. some time in the early 1990s, confirmed via email
on 12.11.2019.
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Psychology and the Behavioural Neurosciences. When discovering cases of unintended
cue learning, one typically has to acknowledge that there was a crucial difference between
performance in a given experimental paradigm (e.g. rewarding rats to identify different
colours) and the investigated mental ability one is actually interested in (e.g. visual colour
discrimination). In analogy to machine learning, we have a striking discrepancy between
intended and actual learning outcome.

2.2 Shortcut learning in Education: surface learning
Alice loves history. Always has, probably always will. At this very moment, however, she is
cursing the subject: After spending weeks immersing herself in the world of Hannibal and
his exploits in the Roman Empire, she is now faced with a number of exam questions that
are (in her opinion) to equal parts dull and difficult. “How many elephants did Hannibal
employ in his army—19, 34 or 40?” ... Alice notices that Bob, sitting in front of her, seems
to be doing very well. Bob of all people, who had just boasted how he had learned the
whole book chapter by rote last night ...

In educational research, Bob’s reproductive learning strategy would be considered surface
learning, an approach that relies on narrow testing conditions where simple discriminative
generalisation strategies can be highly successful. This fulfils the characteristics of shortcut
learning by giving the appearance of good performance but failing immediately under more
general test settings. Worryingly, surface learning helps rather than hurts test performance
on typical multiple-choice exams [21]: Bob is likely to receive a good grade, and judging
from grades alone Bob would appear to be a much better student than Alice in spite of her
focus on understanding. Thus, in analogy to machine learning we again have a striking
discrepancy between intended and actual learning outcome.

3 Shortcuts defined: a taxonomy of decision rules
With examples of biological shortcut learning in mind (examples which we will return to
in Section 6), what does shortcut learning in artificial neural networks look like? Figure 2
shows a simple classification problem that a neural network is trained on (distinguishing
a star from a moon).2 When testing the model on similar data (blue) the network does
very well—or so it may seem. Very much like the smart rats that tricked the experimenter,
the network uses a shortcut to solve the classification problem by relying on the location
of stars and moons. When location is controlled for, network performance deteriorates
to random guessing (red). In this case (as is typical for object recognition), classification
based on object shape would have been the intended solution, even though the difference
between intended and shortcut solution is not something a neural network can possibly
infer from the training data.

On a general level, any neural network (or machine learning algorithm) implements
a decision rule which defines a relationship between input and output—in this example
assigning a category to every input image. Shortcuts, the focus of this article, are one
particular group of decision rules. In order to distinguish them from other decision rules,
we here introduce a taxonomy of decision rules (visualised in Figure 3), starting from a
very general rule and subsequently adding more constraints until we approach the intended
solution.

2Code is available from https://github.com/rgeirhos/shortcut-perspective.
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Figure 2. Toy example of shortcut learning in neural networks. When trained on a simple dataset
of stars and moons (top row), a standard neural network (three layers, fully connected) can easily
categorise novel similar exemplars (mathematically termed i.i.d. test set, defined later in Section 3).
However, testing it on a slightly different dataset (o.o.d. test set, bottom row) reveals a shortcut
strategy: The network has learned to associate object location with a category. During training,
stars were always shown in the top right or bottom left of an image; moons in the top left or bottom
right. This pattern is still present in samples from the i.i.d. test set (middle row) but not in o.o.d. test
images (bottom row), exposing the shortcut.

(1) all possible decision rules, including non-solutions
Imagine a model that tries to solve the problem of separating stars and moons by predicting
“star” every time it detects a white pixel in the image. This model uses an uninformative
feature (the grey area in Figure 3) and does not reach good performance on the data it was
trained on, since it implements a poor decision rule (both moon and star images contain
white pixels). Typically, interesting problems have an abundant amount of non-solutions.

(2) training solutions, including overfitting solutions
In machine learning it is common practice to split the available data randomly into a train-
ing and a test set. The training set is used to guide the model in its selection of a (hopefully
useful) decision rule, and the test set is used to check whether the model achieves good per-
formance on similar data it has not seen before. Mathematically, the notion of similarity
between training and test set commonly referred to in machine learning is the assumption
that the samples in both sets are drawn from the same distribution. This is the case if both
the data generation mechanism and the sampling mechanism are identical. In practice this
is achieved by randomising the split between training and test set. The test set is then
called independent and identically distributed (i.i.d.) with regard to the training set. In or-
der to achieve high average performance on the test set, a model needs to learn a function
that is approximately correct within a subset of the input domain which covers most of
the probability of the distribution. If a function is learned that yields the correct output on
the training images but not on the i.i.d. test images, the learning machine uses overfitting
features (the blue area in Figure 3).
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Figure 3. Taxonomy of decision rules. Among the set of all possible rules, only some solve the
training data. Among the solutions that solve the training data, only some generalise to an i.i.d. test
set. Among those solutions, shortcuts fail to generalise to different data (o.o.d. test sets), but the
intended solution does generalise.

(3) i.i.d. test solutions, including shortcuts
Decision rules that solve both the training and i.i.d. test set typically score high on standard
benchmark leaderboards. However, even the simple toy example can be solved through at
least three different decision rules: (a) by shape, (b) by counting the number of white pixels
(moons are smaller than stars) or (c) by location (which was correlated with object category
in the training and i.i.d. test sets). As long as tests are performed only on i.i.d. data, it is
impossible to distinguish between these. However, one can instead test models on datasets
that are systematically different from the i.i.d. training and test data (also called out-of-
distribution or o.o.d. data). For example, an o.o.d. test set with randomised object size
will instantly invalidate a rule that counts white pixels. Which decision rule is the intended
solution is clearly in the eye of the beholder, but humans often have clear expectations. In
our toy example, humans typically classify by shape. A standard fully connected neural
network3 trained on this dataset, however, learns a location-based rule (see Figure 2). In
this case, the network has used a shortcut feature (the blue area in Figure 3): a feature that
helps to perform well on i.i.d. test data but fails in o.o.d. generalisation tests.

(4) intended solution
Decision rules that use the intended features (the red area in Figure 3) work well not only
on an i.i.d. test set but also perform as intended on o.o.d. tests, where shortcut solutions
fail. In the toy example, a decision rule based on object shape (the intended feature) would
generalise to objects at a different location or with a different size. Humans typically have a
strong intuition for what the intended solution should be capable of. Yet, for complex prob-
lems, intended solutions are mostly impossible to formalise, so machine learning is needed
to estimate these solutions from examples. Therefore the choice of examples, among other
aspects, influence how closely the intended solution can be approximated.

3A convolutional (rather than fully connected) network would be prevented from taking this shortcut by design.
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4 Shortcuts: where do they come from?
Following this taxonomy, shortcuts are decision rules that perform well on i.i.d. test data
but fail on o.o.d. tests, revealing a mismatch between intended and learned solution. It is
clear that shortcut learning is to be avoided, but where do shortcuts come from, and what
are the defining real-world characteristics of shortcuts that one needs to look out for when
assessing a model or task through the lens of shortcut learning? There are two different as-
pects that one needs to take into account. First, shortcut opportunities (or shortcut features)
in the data: possibilities for solving a problem differently than intended (Section 4.1). Sec-
ond, feature combination: how different features are combined to form a decision rule
(Section 4.2). Together, these aspects determine how a model generalises (Section 4.3).

4.1 Dataset: shortcut opportunities
What makes a cow a cow? To DNNs, a familiar background can be
as important for recognition as the object itself, and sometimes even
more important: A cow at an unexpected location (such as a beach
rather than grassland) is not classified correctly [9]. Conversely, a
lush hilly landscape without any animal at all might be labelled as a
“herd of grazing sheep” by a DNN [22].

This example highlights how a systematic relationship between object and background or
context can easily create a shortcut opportunity. If cows happen to be on grassland for
most of the training data, detecting grass instead of cows becomes a successful strategy for
solving a classification problem in an unintended way; and indeed many models base their
predictions on context [23, 24, 25, 26, 9, 27, 10]. Many shortcut opportunities are a conse-
quence of natural relationships, since grazing cows are typically surrounded by grassland
rather than water. These so-called dataset biases have long been known to be problematic
for machine learning algorithms [18]. Humans, too, are influenced by contextual biases (as
evident from faster reaction times when objects appear in the expected context), but their
predictions are much less affected when context is missing [28, 29, 30, 31]. In addition
to shortcut opportunities that are fairly easy to recognise, deep learning has led to the dis-
covery of much more subtle shortcut features, including high-frequency patterns that are
almost invisible to the human eye [32, 33]. Whether easy to recognise or hard to detect,
it is becoming more and more evident that shortcut opportunities are by no means disap-
pearing when the size of a dataset is simply scaled up by some orders of magnitude (in the
hope that this is sufficient to sample the diverse world that we live in [34]). Systematic
biases are still present even in “Big Data” with large volume and variety, and consequently
even large real-world datasets usually contain numerous shortcut opportunities. Overall,
it is quite clear that data alone rarely constrains a model sufficiently, and that data cannot
replace making assumptions [35]. The totality of all assumptions that a model incorporates
(such as, e.g., the choice of architecture) is called the inductive bias of a model and will be
discussed in more detail in Section 6.3.
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4.2 Decision rule: shortcuts from discriminative learning
What makes a cat a cat? To standard DNNs, the example image on
the left clearly shows an elephant, not a cat. Object textures and
other local structures in images are highly useful for object classifi-
cation in standard datasets [36], and DNNs strongly rely on texture
cues for object classification, largely ignoring global object shape
[37, 38].

In many cases, relying on object textures can be sufficient to solve an object categorisation
task. Obviously, however, texture is only one of many attributes that define an object.
Discriminative learning differs from generative modeling by picking any feature that is
sufficient to reliably discriminate on a given dataset but the learning machine has no notion
of how realistic examples typically look like and how the features used for discrimination
are combined with other features that define an object. In our example, using textures
for object classification becomes problematic if other intended attributes (like shape) are
ignored entirely. This exemplifies the importance of feature combination: the definition
of an object relies on a (potentially highly non-linear) combination of information from
different sources or attributes that influence a decision rule.4 In the example of the cat
with elephant texture above, a shape-agnostic decision rule that merely relies on texture
properties clearly fails to capture the task of object recognition as it is understood for
human vision. While the model uses an important attribute (texture) it tends to equate
it with the definition of the object missing out other important attributes such as shape.
Of course, being aligned with the human decision rule does not always conform to our
intention. In medical or safety-critical applications, for instance, we may instead seek an
improvement over human performance.

Inferring human-interpretable object attributes like shape or texture from an image
requires specific nonlinear computations. In typical end-to-end discriminative learning,
this again may be prone to shortcut learning. Standard DNNs do not impose any human-
interpretability requirements on intermediate image representations and thus might be
severely biased to the extraction of overly simplistic features which only generalise under
the specific design of the particular dataset used but easily fail otherwise. Discriminative
feature learning goes as far that some decision rules only depend on a single predictive
pixel [39, 40, 41] while all other evidence is ignored.5 In principle, ignoring some evi-
dence can be beneficial. In object recognition, for example, we want the decision rule to be
invariant to an object shift. However, undesirable invariance (sometimes called excessive
invariance) is harmful and modern machine learning models can be invariant to almost all
features that humans would rely on when classifying an image [41].

4In Cognitive Science, this process is called cue combination.
5In models of animal learning, the blocking effect is a related phenomenon. Once a predictive cue/feature (say,

a light flash) has been associated with an outcome (e.g. food), animals sometimes fail to associate a new, equally
predictive cues with the same outcome [42, 43, 44].
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Figure 4. Both human and machine vision generalise, but they generalise very differently. Left:
image pairs that belong to the same category for humans, but not for DNNs. Right: images pairs
assigned to the same category by a variety of DNNs, but not by humans.

4.3 Generalisation: how shortcuts can be revealed
What makes a guitar a guitar? When tested on this pattern never seen
before, standard DNNs predict “guitar” with high certainty [45].
Exposed by the generalisation test, it seems that DNNs learned to
detect certain patterns (curved guitar body? strings?) instead of gui-
tars: a successful strategy on training and i.i.d. test data that leads to
unintended generalisation on o.o.d. data.

This exemplifies the inherent link between shortcut learning and generalisation. By itself,
generalisation is not a part of shortcut learning—but more often than not, shortcut learning
is discovered through cases of unintended generalisation, revealing a mismatch between
human-intended and model-learned solution. Interestingly, DNNs do not suffer from a
general lack of o.o.d. generalisation (Figure 4) [45, 36, 46, 41]. DNNs recognise guitars
even if only some abstract pattern is left—however, this remarkable generalisation perfor-
mance is undesired, at least in this case. In fact, the set of images that DNNs classify as
“guitar” with high certainty is incredibly big. To humans only some of these look like gui-
tars, others like patterns (interpretable or abstract) and many more resemble white noise
or even look like airplanes, cats or food [8, 45, 41]. Figure 4 on the right, for example,
highlights a variety of image pairs that have hardly anything in common for humans but
belong to the same category for DNNs. Conversely, to the human eye an image’s category
is not altered by innocuous distribution shifts like rotating objects or adding a bit of noise,
but if these changes interact with the shortcut features that DNNs are sensitive to, they
completely derail neural network predictions [8, 47, 9, 48, 49, 50, 38]. This highlights
that generalisation failures are neither a failure to learn nor a failure to generalise at all,
but instead a failure to generalise in the intended direction—generalisation and robustness
can be considered the flip side of shortcut learning. Using a certain set of features creates
insensitivity towards other features. Only if the selected features are still present after a
distribution shift, a model generalises o.o.d.

9



publications 123

5 Shortcut learning across deep learning
Taken together, we have seen how shortcuts are based on dataset shortcut opportunities
and discriminative feature learing that result in a failure to generalise as intended. We will
now turn to specific application areas, and discover how this general pattern appears across
Computer Vision, Natural Language Processing, Agent-based (Reinforcement) Learning
and Fairness / algorithmic decision-making. While shortcut learning is certainly not lim-
ited to these areas, they might be the most prominent ones where the problem has been
observed.

Computer Vision To humans, for example, a photograph of a car still shows the same
car even when the image is slightly transformed. To DNNs, in contrast, innocuous trans-
formations can completely change predictions. This has been reported in various cases
such as shifting the image by a few pixels [47], rotating the object [49], adding a bit of
random noise or blur [51, 50, 52, 53] or (as discussed earlier) by changing background
[9] or texture while keeping the shape intact [38] (see Figure 4 for examples). Some key
problems in Computer Vision are linked to shortcut learning. For example, transferring
model performance across datasets (domain transfer) is challenging because models often
use domain-specific shortcut features, and shortcuts limit the usefulness of unsupervised
representations [54]. Furthermore, adversarial examples are particularly tiny changes to
an input image that completely derail model predictions [8] (an example is shown in Fig-
ure 4). Invisible to the human eye, those changes modify highly predictive patterns that
DNNs use to classify objects [33]. In this sense, adversarial examples—one of the most
severe failure cases of neural networks—can at least partly be interpreted as a consequence
of shortcut learning.

Natural Language Processing The widely used language model BERT has been
found to rely on superficial cue words. For instance, it learned that within a dataset of nat-
ural language arguments, detecting the presence of “not” was sufficient to perform above
chance in finding the correct line of argumentation. This strategy turned out to be very use-
ful for drawing a conclusion without understanding the content of a sentence [14]. Natural
Language Processing suffers from very similar problems as Computer Vision and other
fields. Shortcut learning starts from various dataset biases such as annotation artefacts
[55, 56, 57, 58]. Feature combination crucially depends on shortcut features like word
length [59, 60, 14, 61], and consequently leads to a severe lack of robustness such as an
inability to generalise to more challenging test conditions [62, 63, 64, 65]. Attempts like
incorporating a certain degree of unsupervised training as employed in prominent language
models like BERT [5] and GPT-2 [66] did not resolve the problem of shortcut learning [14].

Agent-based (Reinforcement) Learning Instead of learning how to play Tetris, an
algorithm simply learned to pause the game to evade losing [67]. Systems of Agent-based
Learning are usually trained using Reinforcement Learning and related approaches such
as evolutionary algorithms. In both cases, designing a good reward function is crucial,
since a reward function measures how close a system is to solving the problem. However,
they all too often contain unexpected shortcuts that allow for so-called reward hacking
[68]. The existence of loopholes exploited by machines that follow the letter (and not the
spirit) of the reward function highlight how difficult it is to design a shortcut-free reward
function [69]. Reinforcement Learning is also a widely used method in Robotics, where
there is a commonly observed generalisation or reality gap between simulated training
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environment and real-world use case. This can be thought of as a consequence of narrow
shortcut learning by adapting to specific details of the simulation. Introducing additional
variation in colour, size, texture, lighting, etc. helps a lot in closing this gap [70, 71].

Fairness & algorithmic decision-making Tasked to predict strong candidates on
the basis of their résumés, a hiring tool developed by Amazon was found to be biased
towards preferring men. The model, trained on previous human decisions, found gender to
be such a strong predictor that even removing applicant names would not help: The model
always found a way around, for instance by inferring gender from all-woman college names
[13]. This exemplifies how some—but not all—problems of (un)fair algorithmic decision-
making are linked to shortcut learning: Once a predictive feature is found by a model, even
if it is just an artifact of the dataset, the model’s decision rule may depend entirely on the
shortcut feature. When human biases are not only replicated, but worsened by a machine,
this is referred to as bias amplification [72]. Other shortcut strategies include focusing on
the majority group in a dataset while accepting high error rates for underrepresented groups
[12, 73], which can amplify existing societal disparities and even create new ones over
time [74]. In the dynamical setting a related problem is called disparity amplification [74],
where sequential feedback loops may amplify a model’s reliance on a majority group. It
should be emphasised, however, that fairness is an active research area of machine learning
closely related to invariance learning that might be useful to quantify and overcome biases
of both machine and human decision making.

6 Diagnosing and understanding shortcut learning
Shortcut learning currently occurs across deep learning, causing machines to fail unexpect-
edly. Many individual elements of shortcut learning have been identified long ago by parts
of the machine learning community and some have already seen substantial progress, but
currently a variety of approaches are explored without a commonly accepted strategy. We
here outline three actionable steps towards diagnosing and analysing shortcut learning.

6.1 Interpreting results carefully
Distinguishing datasets and underlying abilities Shortcut learning is most decep-
tive when gone unnoticed. The most popular benchmarks in machine learning still rely
on i.i.d. testing which drags attention away from the need to verify how closely this test
performance measures the underlying ability one is actually interested in. For example, the
ImageNet dataset [75] was intended to measure the ability “object recognition”, but DNNs
seem to rely mostly on “counting texture patches” [36]. Likewise, instead of performing
“natural language inference”, some language models perform well on datasets by simply
detecting correlated key words [56]. Whenever there is a discrepancy between the simplic-
ity with which a dataset (e.g. ImageNet, SQuAD) can be solved and the complexity evoked
by the high-level description of the underlying ability (e.g. object recognition, scene under-
standing, argument comprehension), it is important to bear in mind that a dataset is useful
only for as long as it is a good proxy for the ability one is actually interested in [56, 76].
We would hardly be intrigued by reproducing human-defined labels on datasets per se (a
lookup table would do just as well in this case)—it is the underlying generalisation ability
that we truly intend to measure, and ultimately improve upon.
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Morgan’s Canon for machine learning Recall the cautionary tale of rats sniffing
rather than seeing colour, described in Section 2.1. Animals often trick experimenters by
solving an experimental paradigm (i.e., dataset) in an unintended way without using the un-
derlying ability one is actually interested in. This highlights how incredibly difficult it can
be for humans to imagine solving a tough challenge in any other way than the human way:
Surely, at Marr’s implementational level [77] there may be differences between rat and
human colour discrimination. But at the algorithmic level there is often a tacit assump-
tion that human-like performance implies human-like strategy (or algorithm) [78]. This
same strategy assumption is paralleled by deep learning: Surely, DNN units are different
from biological neurons—but if DNNs successfully recognise objects, it seems natural to
assume that they are using object shape like humans do [37, 36, 38].

Comparative Psychology with its long history of comparing mental abilities across
species has coined a term for the fallacy to confuse human-centered interpretations of an
observed behaviour and the actual behaviour at hand (which often has a much simpler
explanation): anthropomorphism, “the tendency of humans to attribute human-like psy-
chological characteristics to nonhumans on the basis of insufficient empirical evidence”
[79, p. 5]. As a reaction to the widespread occurrence of this fallacy, psychologist Lloyd
Morgan developed a conservative guideline for interpreting non-human behaviour as early
as 1903. It later became known as Morgan’s Canon: “In no case is an animal activity to be
interpreted in terms of higher psychological processes if it can be fairly interpreted in terms
of processes which stand lower on the scale of psychological evolution and development”
[80, p. 59]. Picking up on a simple correlation, for example, would be considered a pro-
cess that stands low on this psychological scale whereas “understanding a scene” would
be considered much higher. It has been argued that Morgan’s Canon can and should be
applied to interpreting machine learning results [79], and we consider it to be especially
relevant in the context of shortcut learning. Accordingly, it might be worth acquiring the
habit to confront machine learning models with a “Morgan’s Canon for machine learn-
ing”6: Never attribute to high-level abilities that which can be adequately explained by
shortcut learning.

Testing (surprisingly) strong baselines In order to find out whether a result may
also be explained by shortcut learning, it can be helpful to test whether a baseline model
exceeds expectations even though it does not use intended features. Examples include us-
ing nearest neighbours for scene completion and estimating geolocation [81, 82], object
recognition with local features only [36], reasoning based on single cue words [59, 14]
or answering questions about a movie without ever showing the movie to a model [83].
Importantly, this is not meant to imply that DNNs cannot acquire high-level abilities. They
certainly do have the potential to solve complex challenges and serve as scientific models
for prediction, explanation and exploration [84]—however, we must not confuse perfor-
mance on a dataset with the acquisition of an underlying ability.

6.2 Detecting shortcuts: towards o.o.d. generalisation tests
Making o.o.d. generalisation tests a standard practice Currently, measuring model
performance by assessing validation performance on an i.i.d. test set is at the very heart of
the vast majority of machine learning benchmarks. Unfortunately, in real-world settings

6Our formulation is adapted from Hanlon’s razor, “Never attribute to malice that which can be adequately
explained by stupidity”.
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the i.i.d. assumption is rarely justified; in fact, this assumption has been called “the big lie
in machine learning” [85]. While any metric is typically only an approximation of what
we truly intend to measure, the i.i.d. performance metric may not be a good approximation
as it can often be misleading, giving a false sense of security. In Section 2.2 we described
how Bob gets a good grade on a multiple-choice exam through rote learning. Bob’s repro-
ductive approach gives the superficial appearance of excellent performance, but it would
not generalise to a more challenging test. Worse yet, as long as Bob continues to receive
good grades through surface learning, he is unlikely to change his learning strategy.

Within the field of Education, what is the best practice to avoid surface learning? It
has been argued that changing the type of examination from multiple-choice tests to essay
questions discourages surface learning, and indeed surface approaches typically fail on
these kinds of exams [21]. Essay questions, on the other hand, encourage so-called deep or
transformational learning strategies [86, 87], like Alice’s focus on understanding. This in
turn enables transferring the learned content to novel problems and consequently achieves a
much better overlap between the educational objectives of the teacher and what the students
actually learn [88]. We can easily see the connection to machine learning—transferring
knowledge to novel problems corresponds to testing generalisation beyond the narrowly
learned setting [89, 90, 91]. If model performance is assessed only on i.i.d. test data, then
we are unable to discover whether the model is actually acquiring the ability we think it is,
since exploiting shortcuts often leads to deceptively good results on standard metrics [92].
We, among many others [93, 78, 94, 95, 96], have explored a variety of o.o.d. tests and we
hope it will be possible to identify a sufficiently simple and effective test procedure that
could replace i.i.d. testing as a new standard method for benchmarking machine learning
models in the future.

Designing good o.o.d. tests While a distribution shift (between i.i.d. and o.o.d. data)
has a clear mathematical definition, it can be hard to detect in practice [101, 102]. In
these cases, training a classifier to distinguish samples in dataset A from samples in dataset
A’ can reveal a distribution shift. We believe that good o.o.d. tests should fullfill at least
the following three conditions: First, per definition there needs to be a clear distribution
shift, a shift that may or may not be distinguishable by humans. Second, it should have
a well-defined intended solution. Training on natural images while testing on white noise
would technically constitute an o.o.d. test but lacks a solution. Third, a good o.o.d. test
is a test where the majority of current models struggle. Typically, the space of all con-
ceivable o.o.d. tests includes numerous uninteresting tests. Thus given limited time and
resources, one might want to focus on challenging test cases. As models evolve, gener-
alisation benchmarks will need to evolve as well, which is exemplified by the Winograd
Schema Challenge [103]. Initially designed to overcome shortcut opportunities caused by
the open-ended nature of the Turing test, this common-sense reasoning benchmark was
scrutinised after modern language models started to perform suspiciously well—and it in-
deed contained more shortcut opportunities than originally envisioned [104], highlighting
the need for revised tests. Fortunately, stronger generalisation tests are beginning to gain
traction across deep learning. While o.o.d. tests will likely need to evolve alongside the
models they aim to evaluate, a few current encouraging examples are listed in Box I. In
summary, rigorous generalisation benchmarks are crucial when distinguishing between the
intended and a shortcut solution, and it would be extremely useful if a strong generally
applicable testing procedure will emerge from this range of approaches.
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Box I. EXAMPLES OF INTERESTING O.O.D. BENCHMARKS

We here list a few selected, encouraging examples of o.o.d. benchmarks.

Adversarial attacks can be seen as testing on model-specific worst-case o.o.d. data, which
makes it an interesting diagnostic tool. If a successful adversarial attack [8] can change model
predictions without changing semantic content, this is an indication that something akin to
shortcut learning may be occurring [33, 97].

ARCT with removed shortcuts is a language argument comprehension dataset that follows the
idea of removing known shortcut opportunities from the data itself in order to create harder test
cases [14].

Cue conflict stimuli like images with conflicting texture and shape information pitch fea-
tures/cues against each other, such as an intended against an unintended cue [38]. This approach
can easily be compared to human responses.

ImageNet-A is a collection of natural images that several state-of-the-art models consistently
classify wrongly. It thus benchmarks models on worst-case natural images [46].

ImageNet-C applies 15 different image corruptions to standard test images, an approach we find
appealing for its variety and usability [52].

ObjectNet introduces the idea of scientific controls into o.o.d. benchmarking, allowing to
disentangle the influence of background, rotation and viewpoint [98].

PACS and other domain generalisation datasets require extrapolation beyond i.i.d. data per
design by testing on a domain different from training data (e.g. cartoon images) [99].

Shift-MNIST / biased CelebA / unfair dSprites are controlled toy datasets that introduce corre-
lations in the training data (e.g. class-predictive pixels or image quality) and record the accuracy
drop on clean test data as a way of finding out how prone a given architecture and loss function
are to picking up on shortcuts [39, 40, 100, 41].

6.3 Shortcuts: why are they learned?
The “Principle of Least Effort” Why are machines so prone to learning shortcuts,
detecting grass instead of cows [9] or a metal token instead of pneumonia [15]? Exploit-
ing those shortcuts seems much easier for DNNs than learning the intended solution. But
what determines whether a solution is easy to learn? In Linguistics, a related phenomenon
is called the “Principle of Least Effort” [119], the observation that language speakers gen-
erally try to minimise the amount of effort involved in communication. For example, the
use of “plane” is becoming more common than “airplane”, and in pronouncing “cupboard”,
“p” and “b” are merged into a single sound [120, 121]. Interestingly, whether a language
change makes it easier for the speaker doesn’t always simply depend on objective measures
like word length. On the contrary, this process is shaped by a variety of different factors,
including the anatomy (architecture) of the human speech organs and previous language
experience (training data).
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Box II. SHORTCUT LEARNING & INDUCTIVE BIASES

The four components listed below determine the inductive bias of a model and dataset: the set of
assumptions that influence which solutions are learnable, and how readily they can be learned.
Although in theory DNNs can approximate any function (given potentially infinite capacity)
[105], their inductive bias plays an important role for the types of patterns they prefer to learn
given finite capacity and data.

• Structure: architecture. Convolutions make it harder for a model to use location—a
prior [106] that is so powerful for natural images that even untrained networks can be
used for tasks like image inpainting and denoising [107]. In Natural Language Processing,
transformer architectures [108] use attention layers to understand the context by modelling
relationships between words. In most cases, however, it is hard to understand the implicit
priors in a DNN and even standard elements like ReLU activations can lead to unexpected
effects like unwarranted confidence [109].

• Experience: training data. As discussed in Section 4.1, shortcut opportunities are present
in most data and rarely disappear by adding more data [32, 69, 56, 38, 33]. Modifying
the training data to block specific shortcuts has been demonstrated to work for reducing
adversarial vulnerability [110] and texture bias [38].

• Goal: loss function. The most commonly used loss function for classification, cross-
entropy, encourages DNNs to stop learning once a simple predictor is found; a modifica-
tion can force neural networks to use all available information [41]. Regularisation terms
that use additional information about the training data have been used to disentangle in-
tended features from shortcut features [39, 111].

• Learning: optimisation. Stochastic gradient descent and its variants bias DNNs towards
learning simple functions [112, 113, 114, 115]. The learning rate influences which patterns
networks focus on: Large learning rates lead to learning simple patterns that are shared
across examples, while small learning rates facilitate complex pattern learning and mem-
orisation [116, 117]. The complex interactions between training method and architecture
are poorly understood so far; strong claims can only be made for simple cases [118].

Understanding the influence of inductive biases In a similar vein, whether a solu-
tion is easy to learn for machines does not simply depend on the data but on all of the four
components of a machine learning algorithm: architecture, training data, loss function, and
optimisation. Often, the training process starts with feeding training data to the model with
a fixed architecture and randomly initialised parameters. When the model’s prediction is
compared to ground truth, the loss function measures the prediction’s quality. This super-
vision signal is used by an optimiser for adapting the model’s internal parameters such that
the model makes a better prediction the next time. Taken together, these four components
(which determine the inductive bias of a model) influence how certain solutions are much
easier to learn than others, and thus ultimately determine whether a shortcut is learned
instead of the intended solution [122]. Box II provides an overview of the connections
between shortcut learning and inductive biases.
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7 Beyond shortcut learning
A lack of out-of-distribution generalisation can be observed all across machine learning.
Consequently, a significant fraction of machine learning research is concerned with over-
coming shortcut learning, albeit not necessarily as a concerted effort. Here we highlight
connections between different research areas. Note that an exhaustive list would be out of
the scope for this work. Instead, we cover a diverse set of approaches we find promising,
each providing a unique perspective on learning beyond shortcut learning.

Domain-specific prior knowledge Avoiding reliance on unintended cues can be achieved
by designing architectures and data-augmentation strategies that discourage learning short-
cut features. If the orientation of an object does not matter for its category, either data-
augmentation or hard-coded rotation invariance [123] can be applied. This strategy can
be applied to almost any well-understood transformation of the inputs and finds its proba-
bly most general form in auto-augment as an augmentation strategy [124]. Extreme data-
augmentation strategies are also the core ingredient of the most successful semi-supervised
[125] and self-supervised learning approaches to date [126, 127].

Adversarial examples and robustness Adversarial attacks are a powerful analysis tool for
worst-case generalisation [8]. Adversarial examples can be understood as counterfactual
explanations, since they are the smallest change to an input that produces a certain output.
Achieving counterfactual explanations of predictions aligned with human intention makes
the ultimate goals of adversarial robustness tightly coupled to causality research in machine
learning [128]. Adversarially robust models are somewhat more aligned with humans and
show promising generalisation abilities [129, 130]. While adversarial attacks test model
performance on model-dependent worst-case noise, a related line of research focuses on
model-independent noise like image corruptions [51, 52].

Domain adaptation, -generalisation and -randomisation These areas are explicitly con-
cerned with out-of-distribution generalisation. Usually, multiple distributions are observed
during training time and the model is supposed to generalise to a new distribution at test
time. Under certain assumptions the intended (or even causal) solution can be learned
from multiple domains and environments [131, 39, 111]. In robotics, domain randomisa-
tion (setting certain simulation parameters randomly during training) is a very successful
approach for learning policies that generalise to similar situations in the real-world [70].

Fairness Fairness research aims at making machine decisions “fair” according to a cer-
tain definition [132]. Individual fairness aims at treating similar individuals similarly
while group fairness aims at treating subgroups no different than the rest of the population
[133, 134]. Fairness is closely linked to generalisation and causality [135]. Sensitive group
membership can be viewed as a domain indicator: Just like machine decisions should not
typically be influenced by changing the domain of the data, they also should not be biased
against minority groups.

Meta-learning Meta-learning seeks to learn how to learn. An intermediate goal is to learn
representations that can adapt quickly to new conditions [136, 137, 138]. This ability is
connected to the identification of causal graphs [139] since learning causal features allows
for small changes when changing environments.
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Generative modelling and disentanglement Learning to generate the observed data forces
a neural network to model every variation in the training data. By itself, however, this does
not necessarily lead to representations useful for downstream tasks [140], let alone out-
of-distribution generalisation. Research on disentanglement addresses this shortcoming by
learning generative models with well-structured latent representations [141]. The goal is
to recover the true generating factors of the data distribution from observations [142] by
identifying independent causal mechanisms [128].

8 Conclusion
“The road reaches every place, the short cut only one”

— James Richardson [143]

Science aims for understanding. While deep learning as an engineering discipline has seen
tremendous progress over the last few years, deep learning as a scientific discipline is still
lagging behind in terms of understanding the principles and limitations that govern how
machines learn to extract patterns from data. A deeper understanding of how to overcome
shortcut learning is of relevance beyond the current application domains of machine learn-
ing and there might be interesting future opportunities for cross-fertilisation with other
disciplines such as Economics (designing management incentives that do not jeopardise
long-term success by rewarding unintended “shortcut” behaviour) or Law (creating laws
without “loophole” shortcut opportunities). Until the problem is solved, however, we offer
the following four recommendations:

(1) Connecting the dots: shortcut learning is ubiquitous
Shortcut learning appears to be a ubiquitous characteristic of learning systems, biologi-
cal and artificial alike. Many of deep learning’s problems are connected through shortcut
learning—models exploit dataset shortcut opportunities, select only a few predictive fea-
tures instead of taking all evidence into account, and consequently suffer from unexpected
generalisation failures. “Connecting the dots” between affected areas is likely to facilitate
progress, and making progress can generate highly valuable impact across various appli-
cations domains.

(2) Interpreting results carefully
Discovering a shortcut often reveals the existence of an easy solution to a seemingly com-
plex dataset. We argue that we will need to exercise great care before attributing high-level
abilities like “object recognition” or “language understanding” to machines, since there is
often a much simpler explanation.

(3) Testing o.o.d. generalisation
Assessing model performance on i.i.d. test data (as the majority of current benchmarks do)
is insufficient to distinguish between intended and unintended (shortcut) solutions. Conse-
quently, o.o.d. generalisation tests will need to become the rule rather than the exception.

(4) Understanding what makes a solution easy to learn
DNNs always learn the easiest possible solution to a problem, but understanding which
solutions are easy (and thus likely to be learned) requires disentangling the influence of
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structure (architecture), experience (training data), goal (loss function) and learning (opti-
misation), as well as a thorough understanding of the interactions between these factors.

Shortcut learning is one of the key roadblocks towards fair, robust, deployable and trust-
worthy machine learning. While overcoming shortcut learning in its entirety may poten-
tially be impossible, any progress towards mitigating it will lead to a better alignment be-
tween learned and intended solutions. This holds the promise that machines behave much
more reliably in our complex and ever-changing world, even in situations far away from
their training experience. Furthermore, machine decisions would become more transpar-
ent, enabling us to detect and remove biases more easily. Currently, the research on short-
cut learning is still fragmented into various communities. With this perspective we hope to
fuel discussions across these different communities and to initiate a movement that pushes
for a new standard paradigm of generalisation that is able to replace the current i.i.d. tests.
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Appendix

A Toy example: method details
The code to reproduce our toy example (Figure 2) is available from https://github.com/rgeirhos/

shortcut-perspective. Two easily distinguishable shapes (star and moon) were placed on a
200×200 dimensional 2D canvas. The training set is constructed out of 4000 images, where 2000
contain a star shape and 2000 a moon shape. The star shape is randomly placed in the top right and
bottom left quarters of the canvas, whereas the moon shape is randomly placed in the top left and
bottom right quarters of the canvas. At test time the setup is nearly identical, 1000 images with a
star and 1000 images with a moon are presented. However, this time the position of star and moon
shapes are randomised over the full canvas, i.e. in test images stars and moons can appear at any
location.

We train two classifiers on this dataset: a fully connected network as well as a convolutional
network. The classifiers are trained for five epochs with a batch size of 100 on the training set and
evaluated on the test set. The training objective is standard crossentropy loss and the optimizer is
Adam with a learning rate of 0.00001, β1 = 0.9, β2 = 0.999 and ε = 1e−08. The fully connected
network was a three-layer ReLU MLP (multilayer perceptron) with 1024 units in each layer and
two output units corresponding to the two target classes. It reaches 100% accuracy at training time
and approximately chance-level accuracy at test time (51.0%). The convolutional network had three
convolutional layers with 128 channels, a stride of 2 and filter size of 5×5 interleaved with ReLU
nonlinearities, followed by a global average pooling and a linear layer mapping the 128 outputs to
the logits. It reaches 100% accuracy on train and test set.

B Image rights & attribution
Figure 1 consists of four images from different sources. The first image from the left was taken from
https://aiweirdness.com/post/171451900302/do-neural-nets-dream-of-electric-sheep

with permission of the author. The second image from the left was generated by ourselves. The third
image from the left is from ref. [15]. It was released under the CC BY 4.0 license as stated here:
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002683

and adapted by us from Figure 2B of the corresponding publication. The image on the right
is Figure 1 from ref. [64]. It was released under CC BY 4.0 license as stated here: https:

//www.aclweb.org/anthology/D17-1215/(at the bottom) and retrieved by us from .
The image from Section 4.1 was adapted from Figure 1 of ref. [9] with permission from the

authors (image cropped from original figure by us). The image from Section 4.2 was adapted from
Figure 1 of ref. [38] with permission from the authors (image cropped from original figure by us).
The image from Section 4.3 was adapted from Figure 1 of ref. [45] with permission from the authors
(image cropped from original figure by us).

Figure 4 consists of a number of images from different sources. The first author of the corre-
sponding publication is mentioned in the figure for identification. The images from ref. [8] were
released under the CC BY 3.0 license as stated here: https://arxiv.org/abs/1312.6199 and
adapted by us from Figure 5a of the corresponding publication (images cropped from original fig-
ure by us). The images from ref. [50] were adapted from Figure 1 of the corresponding paper with
permission from the authors (images cropped from original figure by us). The images from ref. [49]
were adapted from Figure 1 of the corresponding paper with permission from the authors (images
cropped from original figure by us). The images from ref. [38] were adapted from Figure 1 of
the corresponding paper with permission from the authors (images cropped from original figure by
us). The images from ref. [41] were adapted from Figure 1 of the corresponding paper with per-
mission from the authors (images cropped from original figure by us). The images from ref. [36]
were adapted from Figure 5 of the corresponding paper with permission from the authors (images
cropped from original figure by us). The images from ref. [9] were adapted from Figure 1 of the

28



142 to err is human? a functional comparison of human and machine decision-making

corresponding paper with permission from the authors (images cropped from original figure by us).
The images from ref. [45] were adapted from Figure 1 and Figure 2 of the corresponding paper
with permission from the authors (images cropped from original figures by us).
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2.6 Partial success in closing the gap between human and ma-
chine vision

Transparency notice A much less comprehensive version of this work
was presented as “Oral” at the 2020 NeurIPS workshop on “Shared
Visual Representations in Human & Machine Intelligence” (Geirhos
et al., 2020c).

NeurIPS 2021 Oral & VSS 2022 Oral

Figure 2.6: Schematic overview of the
projects presented in this thesis. Projects
P1–P4 ask “How do machines decide”,
project P5 presents the concept of short-
cut learning as an integrative perspective
tackling the question “Why do machines
decide the way they do”. Finally, project
P6 presents a comprehensive benchmark
to measure future progress, and reports
first signs of (partial) success. Through-
out the thesis, machine decision making
will be compared against human deci-
sion making.
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Abstract

A few years ago, the first CNN surpassed human performance on ImageNet. How-
ever, it soon became clear that machines lack robustness on more challenging test
cases, a major obstacle towards deploying machines “in the wild” and towards
obtaining better computational models of human visual perception. Here we ask:
Are we making progress in closing the gap between human and machine vision?
To answer this question, we tested human observers on a broad range of out-of-
distribution (OOD) datasets, recording 85,120 psychophysical trials across 90
participants. We then investigated a range of promising machine learning devel-
opments that crucially deviate from standard supervised CNNs along three axes:
objective function (self-supervised, adversarially trained, CLIP language-image
training), architecture (e.g. vision transformers), and dataset size (ranging from 1M
to 1B).
Our findings are threefold. (1.) The longstanding distortion robustness gap be-
tween humans and CNNs is closing, with the best models now exceeding human
feedforward performance on most of the investigated OOD datasets. (2.) There is
still a substantial image-level consistency gap, meaning that humans make different
errors than models. In contrast, most models systematically agree in their cate-
gorisation errors, even substantially different ones like contrastive self-supervised
vs. standard supervised models. (3.) In many cases, human-to-model consistency
improves when training dataset size is increased by one to three orders of mag-
nitude. Our results give reason for cautious optimism: While there is still much
room for improvement, the behavioural difference between human and machine
vision is narrowing. In order to measure future progress, 17 OOD datasets with
image-level human behavioural data and evaluation code are provided as a toolbox
and benchmark at https://github.com/bethgelab/model-vs-human/.

1 Introduction

Looking back at the last decade, deep learning has made tremendous leaps of progress by any standard.
What started in 2012 with AlexNet [1] as the surprise winner of the ImageNet Large-Scale Visual
Recognition Challenge quickly became the birth of a new AI “summer”, a summer lasting much
longer than just a season. With it, just like with any summer, came great expectations: the hope
that the deep learning revolution will see widespread applications in industry, that it will propel
breakthroughs in the sciences, and that it will ultimately close the gap between human and machine

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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perception. We have now reached the point where deep learning has indeed become a significant
driver of progress in industry [e.g. 2, 3], and where many disciplines are employing deep learning
for scientific discoveries [4–9]—but are we making progress in closing the gap between human and
machine vision?

IID vs. OOD benchmarking. For a long time, the gap between human and machine vision was
mainly approximated by comparing benchmark accuracies on IID (independent and identically
distributed) test data: as long as models are far from reaching human-level performance on challenging
datasets like ImageNet, this approach is adequate [10]. Currently, models are routinely matching
and in many cases even outperforming humans on IID data. At the same time, it is becoming
increasingly clear that models systematically exploit shortcuts shared between training and test
data [11–14]. Therefore we are witnessing a major shift towards measuring model performance on
out-of-distribution (OOD) data rather than IID data alone, which aims at testing models on more
challenging test cases where there is still a ground truth category, but certain image statistics differ
from the training distribution. Many OOD generalisation tests have been proposed: ImageNet-C
[15] for corrupted imaes, ImageNet-Sketch [16] for sketches, Stylized-ImageNet [17] for image
style changes, [18] for unfamiliar object poses, and many more [19–29]. While it is great to have
many viable and valuable options to measure generalisation, most of these datasets unfortunately
lack human comparison data. This is less than ideal, since we can no longer assume that humans
reach near-ceiling accuracies on these challenging test cases as they do on standard noise-free IID
object recognition datasets. In order to address this issue, we carefully tested human observers
in the Wichmannlab’s vision laboratory on a broad range of OOD datasets, providing some 85K
psychophysical trials across 90 participants. Crucially, we showed exactly the same images to
multiple observers, which means that we are able to compare human and machine vision on the
fine-grained level of individual images [30–32]). The focus of our datasets is measuring distortion
robustness: we tested 17 variations that include changes to image style, texture, and various forms of
synthetic additive noise.

Contributions & outlook. The resulting 17 OOD datasets with large-scale human comparion data
enable us to investigate recent exciting machine learning developments that crucially deviate from
“vanilla” CNNs along three axes: objective function (supervised vs. self-supervised, adversarially
trained, and CLIP’s joint language-image training), architecture (convolutional vs. vision transformer)
and training dataset size (ranging from 1M to 1B images). Taken together, these are some of the most
promising directions our field has developed to date—but this field would not be machine learning if
new breakthroughs weren’t within reach in the next few weeks, months and years. Therefore, we
open-sourced modelvshuman, a Python toolbox that enables testing both PyTorch and TensorFlow
models on our comprehensive benchmark suite of OOD generalisation data in order to measure
future progress. Even today, our results give cause for (cautious) optimism. After a method overview
(Section 2), we are able to report that the human-machine distortion robustness gap is closing: the
best models now match or in many cases even exceed human feedforward performance on most of
the investigated OOD datasets (Section 3). While there is still a substantial image-level consistency
gap between humans and machines, this gap is narrowing on some—but not all—datasets when the
size of the training dataset is increased (Section 4).

2 Methods: datasets, psychophysical experiments, models, metrics, toolbox

OOD datasets with consistency-grade human data. We collected human data for 17 generalisa-
tion datasets (visualized in Figures 7 and 8 in the Appendix, which also state the number of subjects
and trials per experiment) on a carefully calibrated screen in a dedicated psychophysical laboratory (a
total of 85,120 trials across 90 observers). Five datasets each correspond to a single manipulation
(sketches, edge-filtered images, silhouettes, images with a texture-shape cue conflict, and stylized
images where the original image texture is replaced by the style of a painting); the remaining twelve
datasets correspond to parametric image degradations (e.g. different levels of noise or blur). Those
OOD datasets have in common that they are designed to test ImageNet-trained models. OOD images
were obtained from different sources: sketches from ImageNet-Sketch [16], stylized images from
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Stylized-ImageNet [17], edge-filtered images, silhouettes and cue conflict images from [17]1, and the
remaining twelve parametric datasets were adapted from [33]. For these parametric datasets, [33]
collected human accuracies but unfortunately, they showed different images to different observers
implying that we cannot use their human data to assess image-level consistency between humans and
machines. Thus we collected psychophysical data for those images ourselves by showing exactly
the same images to multiple observers for each of those twelve datasets. Additionally, we cropped
the images from [33] to 224 × 224 pixels to allow for a fair comparison to ImageNet models (all
models included in our comparison receive 224× 224 input images; [33] showed 256× 256 images
to human observers in many cases).

Psychophysical experiments. 90 observers were tested in a darkened chamber. Stimuli were
presented at the center of a 22” monitor with 1920× 1200 pixels resolution (refresh rate: 120 Hz).
Viewing distance was 107 cm and target images subtended 3× 3 degrees of visual angle. Human
observers were presented with an image and asked to select the correct category out of 16 basic
categories (such as chair, dog, airplane, etc.). Stimuli were balanced w.r.t. classes and presented in
random order. For ImageNet-trained models, in order to obtain a choice from the same 16 categories,
the 1,000 class decision vector was mapped to those 16 classes using the WordNet hierarchy [34]. In
Appendix I, we explain why this mapping is optimal. We closely followed the experimental protocol
defined by [33], who presented images for 200 ms followed by a 1/f backward mask to limit the
influence of recurrent processing (otherwise comparing to feedforward models would be difficult).
Further experimental details are provided in Appendix C.

Why not use crowdsourcing instead? Our approach of investigating few observers in a high-
quality laboratory setting performing many trials is known as the so-called “small-N design”, the
bread-and-butter approach in high-quality psychophysics—see, e.g., the review “Small is beautiful:
In defense of the small-N design” [35]. This is in contrast to the “crowdsourcing approach” (many
observers in a noisy setting performing fewer trials each). The highly controlled conditions of
the Wichmannlab’s psychophysical laboratory come with many advantages over crowdsourced
data collection: precise timing control (down to the millisecond), carefully calibrated monitors
(especially important for e.g. low-contrast stimuli), controlled viewing distance (important for
foveal presentation), full visual acuity (we performed an acuity test with every observer prior to
the experiment), observer attention (e.g. no multitasking or children running around during an
experiment, which may happen in a crowdsourcing study), just to name a few [36]. Jointly, these
factors contribute to high data quality.

Models. In order to disentangle the influence of objective function, architecture and training
dataset size, we tested a total of 52 models: 24 standard ImageNet-trained CNNs [37], 8 self-
supervised models [38–43],2 6 Big Transfer models [45], 5 adversarially trained models [46], 5 vision
transformers [47, 48], two semi-weakly supervised models [49] as well as Noisy Student [50] and
CLIP [51]. Technical details for all models are provided in the Appendix.

Metrics. In addition to OOD accuracy (averaged across conditions and datasets), the following
three metrics quantify how closely machines are aligned with the decision behaviour of humans.

Accuracy difference A(m) is a simple aggregate measure that compares the accuracy of a machine m
to the accuracy of human observers in different out-of-distribution tests,

A(m) : R→ [0, 1],m 7→ 1

|D|
∑

d∈D

1

|Hd|
∑

h∈Hd

1

|Cd|
∑

c∈Cd

(accd,c(h)− accd,c(m))2 (1)

where accd,c(·) is the accuracy of the model or the human on dataset d ∈ D and condition c ∈ Cd

(e.g. a particular noise level), and h ∈ HD denotes a human observer tested on dataset d. Analogously,
one can compute the average accuracy difference between a human observer h1 and all other human
observers by substituting h1 for m and h ∈ HD \ {h1} for h ∈ HD (which can also be applied for
the two metrics defined below).

1For those three datasets consisting of 160, 160 and 1280 images respectively, consistency-grade psy-
chophysical data was already collected by the authors and included in our benchmark with permission from the
authors.

2We presented a preliminary and much less comprehensive version of this work at the NeurIPS 2020
workshop SVRHM [44].
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Aggregated metrics like A(m) ignore individual image-level decisions. Two models with vastly
different image-level decision behaviour might still end up with the same accuracies on each dataset
and condition. Hence, we include two additional metrics in our benchmark that are sensitive to
decisions on individual images.

Observed consistency O(m) [32] measures the fraction of samples for which humans and a model
m get the same sample either both right or both wrong. More precisely, let bh,m(s) be one if both
a human observer h and m decide either correctly or incorrectly on a given sample s, and zero
otherwise. We calculate the average observed consistency as

O(m) : R→ [0, 1],m 7→ 1

|D|
∑

d∈D

1

|Hd|
∑

h∈Hd

1

|Cd|
∑

c∈Cd

1

|Sd,c|
∑

s∈Sd,c

bh,m(s) (2)

where s ∈ Sd,c denotes a sample s (in our case, an image) of condition c from dataset d. Note that
this measure can only be zero if the accuracy of h and m are exactly the same in each dataset and
condition.

Error consistency E(m) [32] tracks whether there is above-chance consistency. This is an important
distinction, since e.g. two decision makers with 95% accuracy each will have at least 90% observed
consistency, even if their 5% errors occur on non-overlapping subsets of the test data (intuitively, they
both get most images correct and thus observed overlap is high). To this end, error consistency (a.k.a.
Cohen’s kappa, cf. [52]) indicates whether the observed consistency is larger than what could have
been expected given two independent binomial decision makers with matched accuracy, which we
denote as ôh,m. This can easily be computed analytically [e.g. 32, equation 1]. Then, the average
error consistency is given by

E(m) : R→ [−1, 1],m 7→ 1

|D|
∑

d∈D

1

|Hd|
∑

h∈Hd

1

|Cd|
∑

c∈Cd

( 1
|Sd,c|

∑
s∈Sd,c

bh,m(s))− ôh,m(Sd,c)

1− ôh,m(Sd,c)

(3)

Benchmark & toolbox. A(m), O(m) and E(m) each quantify a certain aspect of the human-
machine gap. We use the mean rank order across these metrics to determine an overall model ranking
(Table 2 in the Appendix). However, we would like to emphasise that the primary purpose of this
benchmark is to generate insights, not winners. Since insights are best gained from detailed plots
and analyses, we open-source modelvshuman, a Python project to benchmark models against human
data.3 The current model zoo already includes 50+ models, and an option to add new ones (both
PyTorch and TensorFlow). Evaluating a model produces a 15+ page report on model behaviour. All
plots in this paper can be generated for future models—to track whether they narrow the gap towards
human vision, or to determine whether an algorithmic modification to a baseline model (e.g., an
architectural improvement) changes model behaviour.

3 Robustness across models: the OOD distortion robustness gap between
human and machine vision is closing

We are interested in measuring whether we are making progress in closing the gap between human
and machine vision. For a long time, CNNs were unable to match human robustness in terms of
generalisation beyond the training distribution—a large OOD distortion robustness gap [14, 33, 53–
55]. Having tested human observers on 17 OOD datasets, we are now able to compare the latest
developments in machine vision to human perception. Our core results are shown in Figure 1: the
OOD distortion robustness gap between human and machine vision is closing (1a, 1b), especially for
models trained on large-scale datasets. On the individual image level, a human-machine consistency
gap remains (especially 1d), which will be discussed later.

Self-supervised models “If intelligence is a cake, the bulk of the cake is unsupervised learning,
the icing on the cake is supervised learning and the cherry on the cake is reinforcement learning”,

3Of course, comparing human and machine vision is not limited to object recognition behaviour: other
comparisons may be just as valid and interesting.
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(a) OOD accuracy (higher = better).

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ac
cu

ra
cy

 d
iff

er
en

ce

sq
ue

ez
en

et
1_

0
In

sD
is:

 R
es

Ne
t-5

0
sq

ue
ez

en
et

1_
1

sh
uf

fle
ne

t_
v2

_x
0_

5
PI

RL
: R

es
Ne

t-5
0

al
ex

ne
t

m
na

sn
et

0_
5

M
oC

o:
 R

es
Ne

t-5
0

vg
g1

1_
bn

vg
g1

3_
bn

m
na

sn
et

1_
0

m
ob

ile
ne

t_
v2

re
sn

et
18

vg
g1

6_
bn

re
sn

et
50

Re
sN

et
-5

0 
L2

 e
ps

 5
.0

In
fo

M
in

: R
es

Ne
t-5

0
Re

sN
et

-5
0 

L2
 e

ps
 0

.0
re

sn
et

34
wi

de
_r

es
ne

t5
0_

2
M

oC
oV

2:
 R

es
Ne

t-5
0

vg
g1

9_
bn

Si
m

CL
R:

 R
es

Ne
t-5

0x
1

Re
sN

et
-5

0 
L2

 e
ps

 3
.0

re
sn

ex
t5

0_
32

x4
d

Re
sN

et
-5

0 
L2

 e
ps

 1
.0

Re
sN

et
-5

0 
L2

 e
ps

 0
.5

de
ns

en
et

12
1

re
sn

et
15

2
re

sn
et

10
1

re
sn

ex
t1

01
_3

2x
8d

Si
m

CL
R:

 R
es

Ne
t-5

0x
2

Si
m

CL
R:

 R
es

Ne
t-5

0x
4

wi
de

_r
es

ne
t1

01
_2

Vi
T-

S
in

ce
pt

io
n_

v3
de

ns
en

et
16

9
de

ns
en

et
20

1
Vi

T-
B 

(1
4M

)
Vi

T-
B

Bi
T-

M
: R

es
Ne

t-5
0x

1 
(1

4M
)

SW
SL

: R
es

Ne
t-5

0 
(9

40
M

)
Bi

T-
M

: R
es

Ne
t-1

01
x3

 (1
4M

)
Bi

T-
M

: R
es

Ne
t-5

0x
3 

(1
4M

)
No

isy
 S

tu
de

nt
: E

Ne
tL

2 
(3

00
M

)
Bi

T-
M

: R
es

Ne
t-1

52
x4

 (1
4M

)
Bi

T-
M

: R
es

Ne
t-1

52
x2

 (1
4M

)
Vi

T-
L 

(1
4M

)
Bi

T-
M

: R
es

Ne
t-1

01
x1

 (1
4M

)
Vi

T-
L

SW
SL

: R
es

Ne
Xt

-1
01

 (9
40

M
)

CL
IP

: V
iT

-B
 (4

00
M

)
hu

m
an

s

(b) Accuracy difference (lower = better).
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(c) Observed consistency (higher = better).
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(d) Error consistency (higher = better).

Figure 1: Core results, aggregated over 17 out-of-distribution (OOD) datasets: The OOD robustness
gap between human and machine vision is closing (top), but an image-level consistency gap remains
(bottom). Results compare humans, standard supervised CNNs, self-supervised models, adversarially
trained models, vision transformers, noisy student, BiT, SWSL and CLIP. For convenience, ↓ marks
models that are trained on large-scale datasets. Metrics defined in Section 2. Best viewed on screen.

Yann LeCun said in 2016 [56]. A few years later, the entire cake is finally on the table—the
representations learned via self-supervised learning4 now compete with supervised methods on
ImageNet [43] and outperform supervised pre-training for object detection [41]. But how do recent
self-supervised models differ from their supervised counterparts in terms of their behaviour? Do they
bring machine vision closer to human vision? Humans, too, rapidly learn to recognise new objects
without requiring hundreds of labels per instance; additionally a number of studies reported increased
similarities between self-supervised models and human perception [57–61]. Figure 2 compares the
generalisation behaviour of eight self-supervised models in orange (PIRL, MoCo, MoCoV2, InfoMin,
InsDis, SimCLR-x1, SimCLR-x2, SimCLR-x4)—with 24 standard supervised models (grey). We
find only marginal differences between self-supervised and supervised models: Across distortion
types, self-supervised networks are well within the range of their poorly generalising supervised
counterparts. However, there is one exception: the three SimCLR variants show strong generalisation
improvements on uniform noise, low contrast, and high-pass images, where they are the three top-
performing self-supervised networks—quite remarkable given that SimCLR models were trained on a
different set of augmentations (random crop with flip and resize, colour distortion, and Gaussian blur).
Curious by the outstanding performance of SimCLR, we asked whether the self-supervised objective
function or the choice of training data augmentations was the defining factor. When comparing
self-supervised SimCLR models with augmentation-matched baseline models trained in the standard
supervised fashion (Figure 15 in the Appendix), we find that the augmentation scheme (rather than
the self-supervised objective) indeed made the crucial difference: supervised baselines show just
the same generalisation behaviour, a finding that fits well with [62], who observed that the influence
of training data augmentations is stronger than the role of architecture or training objective. In
conclusion, our analyses indicate that the “cake” of contrastive self-supervised learning currently
(and disappointingly) tastes much like the “icing”.

4“Unsupervised learning” and “self-supervised learning” are sometimes used interchangeably. We use the
term “self-supervised learning”’ since those methods use (label-free) supervision.
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Figure 2: The OOD distortion robustness gap between human and machine vision is closing. Robust-
ness towards parametric distortions for humans, standard supervised CNNs, self-supervised models,
adversarially trained models, vision transformers, noisy student, BiT, SWSL, CLIP. Symbols indicate
architecture type (# convolutional, O vision transformer, ♦ human); best viewed on screen.

Adversarially trained models The vulnerability of CNNs to adversarial input perturbations is,
arguably, one of the most striking shortcomings of this model class compared to robust human
perception. A successful method to increase adversarial robustness is adversarial training [e.g.
63, 64]. The resulting models were found to transfer better, have meaningful gradients [65], and
enable interpolating between two input images [66]: “robust optimization can actually be viewed
as inducing a human prior over the features that models are able to learn” [67, p. 10]. Therefore,
we include five models with a ResNet-50 architecture and different accuracy-robustness tradeoffs,
adversarially trained on ImageNet with Microsoft-scale resources by [46] to test whether models with
“perceptually-aligned representations” also show human-aligned OOD generalisation behaviour—as
we would hope. This is not the case: the stronger the model is trained adversarially (darker shades of
blue in Figure 2), the more susceptible it becomes to (random) image degradations. Most strikingly, a
simple rotation by 90 degrees leads to a 50% drop in classification accuracy. Adversarial robustness
seems to come at the cost of increased vulnerability to large-scale perturbations.5 On the other hand,
there is a silver lining: when testing whether models are biased towards texture or shape by testing
them on cue conflict images (Figure 3), in accordance with [69, 70] we observe a perfect relationship
between shape bias and the degree of adversarial training, a big step in the direction of human shape
bias (and a stronger shape bias than nearly all other models).

Vision transformers In computer vision, convolutional networks have become by far the dominat-
ing model class over the last decade. Vision transformers [47] break with the long tradition of using
convolutions and are rapidly gaining traction [71]. We find that the best vision transformer (ViT-L
trained on 14M images) even exceeds human OOD accuracy (Figure 1a shows the average across 17
datasets). There appears to be an additive effect of architecture and data: vision transformers trained
on 1M images (light green) are already better than standard convolutional models; training on 14M
images (dark green) gives another performance boost. In line with [72, 73], we observe a higher
shape bias compared to most standard CNNs.

5This might be related to [68], who studied a potentially related tradeoff between selectivity and invariance.
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Figure 3: Shape vs. texture biases of different models. While human shape bias is not yet matched,
several approaches improve over vanilla CNNs. Box plots show category-dependent distribution of
shape / texture biases (shape bias: high values, texture bias: low values).

Standard models trained on more data: BiT-M, SWSL, Noisy Student Interestingly, the biggest
effect on OOD robustness we find simply comes from training on larger datasets, not from advanced
architectures. When standard models are combined with large-scale training (14M images for BiT-M,
300M for Noisy Student and a remarkable 940M for SWSL), OOD accuracies reach levels not known
from standard ImageNet-trained models; these models even outperform a more powerful architecture
(vision transformer ViT-S) trained on less data (1M) as shown in Figure 1a. Simply training on
(substantially) more data substantially narrows the gap to human OOD accuracies (1b), a finding that
we quantified in Appendix H by means of a regression model. (The regression model also revealed a
significant interaction between dataset size and objective function, as well as a significant main effect
for transformers over CNNs.) Noisy Student in particular outperforms humans by a large margin
overall (Figure 1a)—the beginning of a new human-machine gap, this time in favour of machines?

CLIP CLIP is special: trained on 400M images6 (more data) with joint language-image supervision
(novel objective) and a vision transformer backbone (non-standard architecture), it scores close to
humans across all of our metrics presented in Figure 1; most strikingly in terms of error consistency
(which will be discussed in the next section). We tested a number of hypotheses to disentangle why
CLIP appears “special”. H1: because CLIP is trained on a lot of data? Presumably no: Noisy
Student—a model trained on a comparably large dataset of 300M images—performs very well on
OOD accuracy, but poorly on error consistency. A caveat in this comparison is the quality of the
labels: while Noisy Student uses pseudolabeling, CLIP receives web-based labels for all images.
H2: because CLIP receives higher-quality labels? About 6% of ImageNet labels are plainly wrong
[74]. Could it be the case that CLIP simply performs better since it doesn’t suffer from this issue?
In order to test this, we used CLIP to generate new labels for all 1.3M ImageNet images: (a) hard
labels, i.e. the top-1 class predicted by CLIP; and (b) soft labels, i.e. using CLIP’s full posterior
distribution as a target. We then trained ResNet-50 from scratch on CLIP hard and soft labels (for
details see Appendix E). However, this does not show any robustness improvements over a vanilla
ImageNet-trained ResNet-50, thus different/better labels are not a likely root cause. H3: because
CLIP has a special image+text loss? Yes and no: CLIP training on ResNet-50 leads to astonishingly
poor OOD results, so training a standard model with CLIP loss alone is insufficient. However, while
neither architecture nor loss alone sufficiently explain why CLIP is special, we find a clear interaction
between architecture and loss (described in more detail in the Appendix along with the other “CLIP
ablation” experiments mentioned above).

4 Consistency between models: data-rich models narrow the substantial
image-level consistency gap between human and machine vision

In the previous section we have seen that while self-supervised and adversarially trained models
lack OOD distortion robustness, models based on vision transformers and/or trained on large-scale
datasets now match or exceed human feedforward performance on most datasets. Behaviourally, a

6The boundary between IID and OOD data is blurry for networks trained on big proprietary datasets. We
consider it unlikely that CLIP was exposed to many of the exact distortions used here (e.g. eidolon or cue conflict
images), but CLIP likely had greater exposure to some conditions such as grayscale or low-contrast images.
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Figure 4: Data-rich models narrow the substantial image-level consistency gap between humans
and machines. Error consistency analysis on a single dataset (sketch images; for other datasets see
Appendix, Figures 9, 11, 12, 13, 14) shows that most models cluster (dark red = highly consistent
errors) irrespective of their architecture and objective function; humans cluster differently (high
human-to-human consistency, low human-to-model consistency); but some data-rich models including
CLIP and SWSL blur the boundary, making more human-like errors than standard models.

natural follow-up question is to ask not just how many, but which errors models make—i.e., do they
make errors on the same individual images as humans on OOD data (an important characteristic of
a “human-like” model, cf. [32, 75])? This is quantified via error consistency (defined in Section 2);
which additionally allows us to compare models with each other, asking e.g. which model classes
make similar errors. In Figure 4, we compare all models with each other and with humans, asking
whether they make errors on the same images. On this particular dataset (sketch images), we can
see one big model cluster. Irrespective of whether one takes a standard supervised model, a self-
supervised model, an adversarially trained model or a vision transformer, all those models make highly
systematic errors (which extends the results of [32, 76] who found similarities between standard
vanilla CNNs). Humans, on the other hand, show a very different pattern of errors. Interestingly,
the boundary between humans and some data-rich models at the bottom of the figure—especially
CLIP (400M images) and SWSL (940M)—is blurry: some (but not all) data-rich models much
more closely mirror the patterns of errors that humans make, and we identified the first models to
achieve higher error consistency with humans than with other (standard) models. Are these promising
results shared across datasets, beyond the sketch images? In Figures 1c and 1d, aggregated results
over 17 datasets are presented. Here, we can see that data-rich models approach human-to-human
observed consistency, but not error consistency. Taken in isolation, observed consistency is not a
good measure of image-level consistency since it does not take consistency by chance into account;
error consistency tracks whether there is consistency beyond chance; here we see that there is still
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(b) 5 “promising” datasets

Figure 5: Partial failure, partial success: Error consistency with humans aggregated over multiple
datasets. Left: 12 datasets where model accuracies exceed human accuracies; here, there is still a
substantial image-level consistency gap to humans. Right: 5 datasets (sketch, silhouette, edge, cue
conflict, low-pass) where humans are more robust. Here, OOD accuracy is a near-perfect predictor of
image-level consistency; especially data-rich models (e.g. CLIP, SWSL, BiT) narrow the consistency
gap to humans. Symbols indicate architecture type (# convolutional, O vision transformer, ♦ human).

a substantial image-level consistency gap between human and machine vision. However, several
models improve over vanilla CNNs, especially BiT-M (trained on 14M images) and CLIP (400M
images). This progress is non-trivial; at the same time, there is ample room for future improvement.

How do the findings from Figure 4 (showing nearly human-level error consistency for sketch images)
and from Figure 1d (showing a substantial consistency gap when aggregating over 17 datasets) fit
together? Upon closer inspection, we discovered that there are two distinct cases. On 12 datasets
(stylized, colour/greyscale, contrast, high-pass, phase-scrambling, power-equalisation, false colour,
rotation, eidolonI, -II and -III as well as uniform noise), the human-machine gap is large; here,
more robust models do not show improved error consistency (as can be see in Figure 5a). On
the other hand, for five datasets (sketch, silhouette, edge, cue conflict, low-pass filtering), there
is a completely different result pattern: Here, OOD accuracy is a near-perfect predictor of error
consistency, which means that improved generalisation robustness leads to more human-like errors
(Figure 5b). Furthermore, training on large-scale datasets leads to considerable improvements along
both axes for standard CNNs. Within models trained on larger datasets, CLIP scores best; but models
with a standard architecture (SWSL: based on ResNet-50 and ResNeXt-101) closely follow suit.

It remains an open question why the training dataset appears to have the most important impact on
a model’s decision boundary as measured by error consistency (as opposed to other aspects of a
model’s inductive bias). Datasets contain various shortcut opportunities [14], and if two different
models are trained on similar data, they might converge to a similar solution simply by exploiting the
same shortcuts—which would also fit well to the finding that adversarial examples typically transfer
very well between different models [77, 78]. Making models more flexible (such as transformers,
a generalisation of CNNs) wouldn’t change much in this regard, since flexible models can still
exploit the same shortcuts. Two predictions immediately follow from this hypothesis: (1.) error
consistency between two identical models trained on very different datasets, such as ImageNet vs.
Stylized-ImageNet, is much lower than error consistency between very different models (ResNet-50
vs. VGG-16) trained on the same dataset. (2.) error consistency between ResNet-50 and a highly
flexible model (e.g., a vision transformer) is much higher than error consistency between ResNet-50
and a highly constrained model like BagNet-9 [79]. We provide evidence for both predictions in
Appendix B, which makes the shortcut hypothesis of model similarity a potential starting point for
future analyses. Looking forward, it may be worth exploring the links between shortcut learning and
image difficulty, such as understanding whether many “trivially easy” images in common datasets
like ImageNet causes models to expoit the same characteristics irrespective of their architecture [80].
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5 Discussion

Summary We set out to answer the question: Are we making progress in closing the gap between
human and machine vision? In order to quantify progress, we performed large-scale psychophysical
experiments on 17 out-of-distribution distortion datasets (open-sourced along with evaluation code
as a benchmark to track future progress). We then investigated models that push the boundaries
of traditional deep learning (different objective functions, architectures, and dataset sizes ranging
from 1M to 1B), asking how they perform relative to human visual perception. We found that the
OOD distortion robustness gap between human and machine vision is closing, as the best models
now match or exceed human accuracies. At the same time, an image-level consistency gap remains;
however, this gap that is at least in some cases narrowing for models trained on large-scale datasets.

Limitations Model robustness is studied from many different viewpoints, including adversarial
robustness [77], theoretical robustness guarantees [e.g. 81], or label noise robustness [e.g. 82]. The
focus of our study is robustness towards non-adversarial out-of-distribution data, which is particularly
well-suited for comparisons with humans. Since we aimed at a maximally fair comparison between
feedforward models and human perception, presentation times for human observers were limited to
200 ms in order to limit the influence of recurrent processing. Therefore, human ceiling performance
might be higher still (given more time); investigating this would mean going beyond “core object
recognition”, which happens within less than 200 ms during a single fixation [83]. Furthermore,
human and machine vision can be compared in many different ways. This includes comparing
against neural data [84, 85], contrasting Gestalt effects [e.g. 86], object similarity judgments [87], or
mid-level properties [61] and is of course not limited to studying object recognition. By no means
do we mean to imply that our behavioural comparison is the only feasible option—on the contrary,
we believe it will be all the more exciting to investigate whether our behavioural findings have
implications for other means of comparison!

Discussion We have to admit that we view our results concerning the benefits of increasing dataset
size by one-to-three orders of magnitude with mixed feelings. On the one hand, “simply” training stan-
dard models on (a lot) more data certainly has an intellectually disappointing element—particularly
given many rich ideas in the cognitive science and neuroscience literature on which architectural
changes might be required to bring machine vision closer to human vision [88–93]. Additionally,
large-scale training comes with infrastructure demands that are hard to meet for many academic
researchers. On the other hand, we find it truly exciting to see that machine models are closing not
just the OOD distortion robustness gap to humans, but that also, at least for some datasets, those
models are actually making more human-like decisions on an individual image level; image-level
response consistency is a much stricter behavioural requirement than just e.g. matching overall
accuracies. Taken together, our results give reason to celebrate partial success in closing the gap
between human and machine vision. In those cases where there is still ample room for improvement,
our psychophysical benchmark datasets and toolbox may prove useful in quantifying future progress.
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Appendix

We here provide details on models (A), describe additional predictions and experiments regarding
error consistency mentioned in Section 4 (B), report experimental details regarding our psychphysical
experiments (C), provide license information (D), and describe training with ImageNet labels provided
by CLIP (E) as well as experiments with supervised SimCLR baseline models (F), provide overall
benchmark scores ranking different models (G), describe a regression model (H) and motivate the
choice of behavioural response mapping (I). Stimuli are visualized in Figures 7 and 8.

Our Python library,“modelvshuman”, to test and benchmark models against high-quality human
psychophyiscal data is available from https://github.com/bethgelab/model-vs-human/.

A Model details

Standard supervised models. We used all 24 available pre-trained models from the PyTorch
model zoo version 1.4.0 (VGG: with batch norm).

Self-supervised models. InsDis [38], MoCo [39], MoCoV2 [40], PIRL [41] and InfoMin [42]
were obtained as pre-trained models from the PyContrast model zoo. We trained one linear classifier
per model on top of the self-supervised representation. A PyTorch [94] implementation of SimCLR
[43] was obtained via simclr-converter. All self-supervised models use a ResNet-50 architecture and
a different training approach within the framework of contrastive learning [e.g. 95].

Adversarially trained models. We obtained five adversarially trained models [46] from the robust-
models-transfer repository. All of them have a ResNet-50 architecture, but a different accuracy-L2-
robustness tradeoff indicated by ε. Here are the five models that we used, in increasing order of
adversarial robustness: ε = 0, 0.5, 1.0, 3.0, 5.0.

Vision transformers. Three ImageNet-trained vision transformer (ViT) models [47] were
obtained from pytorch-image-models [48]. Specifically, we used vit_small_patch16_224,
vit_base_patch16_224 and vit_large_patch16_224. They are referred to as ViT-S, ViT-B and ViT-L
throughout the paper. Additionally, we included two transformers that were pre-trained on Ima-
geNet21K [96], i.e. 14M images with some 21K classes, before they were fine-tuned on “standard”
ImageNet-1K. These two models are referred to as ViT-L (14M) and ViT-B (14M) in the paper. They
were obtained from the PyTorch-Pretrained-ViT repository, where they are called L_16_imagenet1k
and B_16_imagenet1k. (No ViT-S model was available from the repository.) Note that the “im-
agenet1k” suffix in the model names does not mean the model was only trained on ImageNet1K.
On the contrary, this indicates fine-tuning on ImageNet; as mentioned above these models were
pre-trained on ImageNet21K before fine-tuning.

CLIP. OpenAI trained a variety of CLIP models using different backbone networks [51]. Unfortu-
nately, the best-performing model has not been released so far, and it is not currently clear whether
it will be released at some point according to issue #2 of OpenAI’s CLIP github repository. We
included the most powerful released model in our analysis, a model with a ViT-B/32 backbone.

Noisy Student One pre-trained Noisy Student model was obtained from pytorch-image-models
[48], where the model is called tf_efficientnet_e2_ns_475. This involved the following preprocessing
(taken from [97]):
from PIL . Image import Image
from t o r c h v i s i o n . t r a n s f o r m s import Compose , Res ize , CenterCrop , ToTensor , Normal i ze

def g e t _ n o i s y _ s t u d e n t _ p r e p r o c e s s i n g ( ) :
n o r m a l i z e = Normal i ze ( mean = [ 0 . 4 8 5 , 0 . 4 5 6 , 0 . 4 0 6 ] ,

s t d = [ 0 . 2 2 9 , 0 . 2 2 4 , 0 . 2 2 5 ] )
i m g _ s i z e = 475
c r o p _ p c t = 0 .936
s c a l e _ s i z e = i m g _ s i z e / c r o p _ p c t
re turn Compose ( [

R e s i z e ( s c a l e _ s i z e , i n t e r p o l a t i o n =PIL . Image . BICUBIC ) ,
Cen te rCrop ( i m g _ s i z e ) ,
ToTensor ( ) ,
n o r m a l i z e ,

] )
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SWSL Two pre-trained SWSL (semi-weakly supervised) models were obtained from
semi-supervised-ImageNet1K-models, one with a ResNet-50 architecture and one with a
ResNeXt101_32x16d architecture.

BiT-M Six pre-trained Big Transfer models were obtained from pytorch-image-models
[48], where they are called resnetv2_50x1_bitm, resnetv2_50x3_bitm, resnetv2_101x1_bitm,
resnetv2_101x3_bitm, resnetv2_152x2_bitm and resnetv2_152x4_bitm.

Linear classifier training procedure. The PyContrast repository by Yonglong Tian contains a
Pytorch implementation of unsupervised representation learning methods, including pre-trained
representation weights. The repository provides training and evaluation pipelines, but it supports only
multi-node distributed training and does not (currently) provide weights for the classifier. We have
used the repository’s linear classifier evaluation pipeline to train classifiers for InsDis [38], MoCo
[39], MoCoV2 [40], PIRL [41] and InfoMin [42] on ImageNet. Pre-trained weights of the model
representations (without classifier) were taken from the provided Dropbox link and we then ran the
training pipeline on a NVIDIA TESLA P100 using the default parameters configured in the pipeline.
Detailed documentation about running the pipeline and parameters can be found in the PyContrast
repository (commit #3541b82).

B Error consistency predictions

Table 1: Error consistency across all five non-parametric datasets. Specifically, this comparison
compares the influence of dataset vs. architecture (top) and the influence of flexibility vs. constraints
(bottom). Results are described in Section B.

sketch stylized edge silhouette cue conflict

ResNet-50 vs. VGG-16 0.74 0.56 0.68 0.71 0.59
ResNet-50 vs. ResNet-50 trained on Stylized-ImageNet 0.44 0.09 0.10 0.67 0.27

ResNet-50 vs. vision transformer (ViT-S) 0.67 0.43 0.41 0.68 0.48
ResNet-50 vs. BagNet-9 0.31 0.17 0.32 0.14 0.44

In Section 4, we hypothesised that shortcut opportunities in the dataset may be a potential underlying
cause of high error consistency between models, since all sufficiently flexible models will pick up on
those same shortcuts. We then made two predictions which we test here.

Dataset vs. architecture. Prediction: error consistency between two identical models trained on
very different datasets, such as ImageNet vs. Stylized-ImageNet, is much lower than error consistency
between very different models (ResNet-50 vs. VGG-16) trained on the same dataset. Observation:
According to Table 1, this is indeed the case—training ResNet-50 on a different dataset, Stylized-
ImageNet [17], leads to lower error consistency than comparing two ImageNet-trained CNNs with
different architecture. While this relationship is not perfect (e.g., the difference is small for silhouette
images), we have confirmed that this is a general pattern not limited to the specific networks in the
table.

Flexibility vs. constraints. Prediction: error consistency between ResNet-50 and a highly flexible
model (e.g., a vision transformer) is much higher than error consistency between ResNet-50 and a
highly constrained model like BagNet-9 [79]. Observation: A vision transformer (ViT-S) indeed
shows higher error consistency with ResNet-50 than with BagNet-9 (see Table 1). However, this
difference is not large for one out of five datasets (cue conflict). One could imagine different reasons
for this: perhaps BagNet-9 is still flexible enough to learn a decision rule close to the one of standard
ResNet-50 for cue conflict images; and of course there is also the possibility that the hypothesis is
wrong. Further insights could be gained by testing successively more constrained versions of the
same base model.
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C Experimental details regarding psychophysical experiments

C.1 Participant instructions and preparation

Participants were explained how to respond (via mouse click), instructed to respond as accurately as
possible, and to go with their best guess if unsure. In order to rule out any potential misunderstanding,
participants were asked to name all 16 categories on the response screen. Prior to the experiment,
visual acuity was measured with a Snellen chart to ensure normal or corrected to normal vision.
Furthermore, four blocks of 80 practice trials each (320 practice trials in total) on undistorted colour
or greyscale images were conducted (non-overlapping with experimental stimuli) to gain familiarity
with the task. During practice trials, but not experimental trials, visual and auditory feedback was
provided: the correct category was highlighted and a “beep” sound was played for incorrect or missed
trials. The experiment itself consisted of blocks of 80 trials each, after each blocks participants were
free to take a break. In order to increase participant motivation, aggregated performance over the last
block was displayed on the screen.

C.2 Participant risks

Our experiment was a standard perceptual experiment, for which no IRB approval was required. The
task consisted of viewing corrupted images and clicking with a computer mouse. In order to limit
participant risks related to a COVID-19 infection, we implemented the following measures: (1.) The
experimenter was tested for corona twice per week. (2.) Prior to participation in our experiments,
participants were explained that they could perform a (cost-free) corona test next to our building,
and that if they choose to do so, we would pay them 10C/hour for the time spent doing the test and
waiting for the result (usually approx. 15–30min). (3.) Experimenter and participant adhered to a
strict distance of at least 1.5m during the entire course of the experiment, including instructions
and practice trials. During the experiment itself, the participant was the only person in the room;
the experimenter was seated in an adjacent room. (4.) Wearing a medical mask was mandatory for
both experimenter and participant. (5.) Participants were asked to disinfect their hands prior to the
experiment; additionally the desk, mouse etc. were disinfected after completion of an experiment.
(6.) Participants were tested in a room where high-performance ventilation was installed; in order to
ensure that the ventilation was working as expected we performed a one-time safety check measuring
CO2 parts-per-million before we decided to go ahead with the experiments.

C.3 Participant remuneration

Participants were paid 10C per hour or granted course credit. Additionally, an incentive bonus of up
to 15C could be earned on top of the standard remuneration. This was meant to further motivate our
participants to achieve their optimal performance. The minimum performance for receiving a bonus
was set as 15% below the mean of the previous experiments accuracy. The bonus then was linearly
calculated with the maximal bonus being given from 15% above the previous experiments mean. The
total amount spent on participant compensation amounts to 647,50C.

C.4 Participant declaration of consent

Participants were asked to review and sign the following declaration of consent (of which they
received a copy):

Psychophysical study
Your task consists of viewing visual stimuli on a computer monitor and evaluating them by pressing a
key. Participation in a complete experimental session is remunerated at 10 Euros/hour.
Declaration of consent
Herewith I agree to participate in a behavioural experiment to study visual perception. My
participation in the study is voluntary. I am informed that I can stop the experiment at any time
and without giving any reason without incurring any disadvantages. I know that I can contact the
experimenter at any time with questions about the research project.
Declaration of consent for data processing and data publication
Herewith I agree that the experimental data obtained in the course of the experiment may be used in
semianonymised form for scientific evaluation and publication. I agree that my personal data (e.g.
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name, phone number, address) may be stored in digital form; they will not be used for any other
purpose than for contacting me. This personal data will remain exclusively within the Wichmannlab
and will not be passed on to third parties at any time.

D Licenses

Licenses for datasets, code and models are included in our code (see directory “licenses/”, file
“LICENSES_OVERVIEW.md” of https://github.com/bethgelab/model-vs-human.

E Training with CLIP labels
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(a) OOD accuracy (higher = better).
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(b) Accuracy difference (lower = better).
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(c) Observed consistency (higher = better).
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(d) Error consistency (higher = better).

Figure 6: Aggregated results comparing models with and without CLIP-provided labels. Comparison
of standard ResNet-50 (light grey), CLIP with vision transformer backend (brown), CLIP with
ResNet-50 backend (brown), and standard ResNet-50 with hard labels (bright yellow) vs. soft labels
(dark yellow) provided by evaluating standard CLIP on ImageNet; as well as humans (red diamonds)
for comparison. Detailed performance across datasets in Figure 16.

As CLIP performed very well across metrics, we intended to obtain a better understanding for why
this might be the case. One hypothesis is that CLIP might just receive better labels: About 6% of
ImageNet validation images are mis-labeled according to Northcutt et al. [74]. We therefore designed
an experiment where we re-labeled the entire ImageNet training and validation dataset using CLIP pre-
dictions as ground truth (https://github.com/kantharajucn/CLIP-imagenet-evaluation).
Having re-labeled ImageNet, we then trained a standard ResNet-50 model from scratch on this dataset
using the standard PyTorch ImageNet training script. Training was performed on our on-premise
cloud using four RTX 2080 Ti GPUs for five days. We ran the training pipeline in distributed mode
with an nccl backed using the default parameters configured in the script, except for the number
of workers which we changed to 25. Cross-entropy loss was used to train two models, once with
CLIP hard labels (the top-1 class predicted by CLIP) and once with CLIP soft labels (using CLIP’s
full posterior distribution as training target). The accuracies on the original ImageNet validation
dataset of the resulting models ResNet50-CLIP-hard-labels and ResNet-50-CLIP-soft-labels are
63.53 (top-1), 86.97 (top-5) and 64.63 (top-1), 88.60 (top-5) respectively. In order to make sure that
the model trained on soft labels had indeed learned to approximate CLIP’s posterior distribution on
ImageNet, we calculated the KL divergence between CLIP soft labels and probability distributions
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from ResNet-50 trained on the CLIP soft labels. The resulting value of 0.001 on both ImageNet
training and validation dataset is sufficiently small to conclude that the model had successfully learned
to approximate CLIP’s posterior distribution on ImageNet. The results are visualised in Figure 6. The
results indicate that simply training a standard ResNet-50 model with labels provided by CLIP does
not lead to strong improvements on any metric, which means that ImageNet label errors are unlikely
to hold standard models back in terms of OOD accuracy and consistency with human responses.

(a) Sketch (b) Stylized (c) Edge (d) Silhouette (e) Cue conflict

Figure 7: Exemplary stimuli (nonparametric image manipulations) for the following datasets: sketch
(7 observers, 800 trials each), stylized (5 observers, 800 trials each), edge (10 observers, 160 trials
each), silhouette (10 observers, 160 trials each), and cue conflict (10 observers, 1280 trials each).
Figures c–e reprinted from [32] with permission from the authors. [32] also analyzed “diagnostic”
images, i.e. stimuli that most humans correctly classified (but few networks) and vice-versa.

Figure 8: Exemplary stimuli (parametric image manipulations). Manipulations are either binary (e.g.
colour vs. grayscale) or they have a parameter (such as the degree of rotation, or the contrast level).
Top row: colour vs. grayscale (4 observers, 1280 trials each), low contrast (4 observers, 1280 trials
each), high-pass (4 observers, 1280 trials each), low-pass/blurring (4 observers, 1280 trials each),
phase noise (4 observers, 1120 trials each), true power spectrum vs. power equalisation (4 observers,
1120 trials each). Bottom row: true vs. opponent colour (4 observers, 1120 trials each), rotation (4
observers, 1280 trials each), Eidolon I (4 observers, 1280 trials each), Eidolon II (4 observers, 1280
trials each), Eidolon III (4 observers, 1280 trials each, additive uniform noise (4 observers, 1280 trials
each). Figure adapted from [33] with permission from the authors.

F Supervised SimCLR baseline models

Figure 15 compares the noise generalisation performance self-supervised SimCLR models against
augmentation-matched baseline models. The results indicate that the superior performance of
SimCLR in Figure 2 are largely a consequence of SimCLR’s data augmentation scheme, rather than
a property of the self-supervised contrastive loss.

G Benchmark scores

Figure 1 in the main paper shows aggregated scores for the most robust model in terms of OOD
accuracy (Figure 1a), and for the most human-like models in terms of accuracy, observed and
error consistency (Figures 1b, 1c, 1d). Numerically, these metrics are represented in two tables,
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ranking the models according to out-of-distribution robustness (Table 3) and human-like behaviour
(Table 2). Since the latter is represented by three different metrics (each characterising a distinct
aspect), the mean rank across those three metrics is used to obtain a final ordering. The following
conditions and datasets influence benchmark scores: For the five nonparametric datasets, all datasets
are taken into account. For the twelve parametric datasets, we also take all datasets into account
(overall, all 17 datasets are weighted equally); however, we exclude certain conditions for principled
reasons. First of all, the easiest condition is always excluded since it does not test out-of-distribution
behaviour (e.g., for the contrast experiment, 100% contrast is more of a baseline condition rather
than a condition of interest). Furthermore, we exclude all conditions for which human average
performance is strictly smaller than 0.2, since e.g. comparisons against human error patterns are
futile if humans are randomly guessing since they cannot identify the stimuli anymore. For these
reasons, the following conditions are not taken into account when computing the benchmark scores.
Colour vs. greyscale experiment: condition “colour”. True vs. false colour experiment: condition
“true colour”. Uniform noise experiment: conditions 0.0, 0.6, 0.9. Low-pass experiment: conditions
0, 15, 40. Contrast experiment: conditions 100, 3, 1. High-pass experiment: conditions inf, 0.55,
0.45, 0.4. Eidolon I experiment: conditions 0, 6, 7. Phase noise experiment: conditions 0, 150, 180.
Eidolon II experiment: conditions 0, 5, 6, 7. Power-equalisation experiment: condition “original
power spectrum”. Eidolon III experiment: conditions 0, 4, 5, 6, 7. Rotation experiment: condition 0.

H Regression model

In order to quantify the influence of known independent variables (architecture: transformers vs.
ConvNets; data: small (ImageNet) vs. large (“more” than standard ImageNet); objective: supervised
vs. self-supervised) on known dependent variables (OOD accuracy and error consistency with
humans), we performed a regression analysis using R version 3.6.3 (functions lm for fitting and
anova for regression model comparison). We modelled the influence of those predictors on OOD
accuracy, and on error consistency with human observers in two separate linear regression models
(one per dependent variable). To this end, we used incremental model building, i.e. starting with
one significant predictor and subsequently adding predictors if the reduction of degrees of freedom
is justified by a significantly higher degree of explained variance (alpha level: .05). Both error
consistency and accuracy, for our 52 models, followed (approximately) a normal distribution, as
confirmed by density and Q-Q-plots. That being said, the fit was better for error consistency than for
accuracy.

The final regression model for error consistency showed:

• a significant main effect for transformers over CNNs (p = 0.01936 *),
• a significant main effect for large datasets over small datasets (p = 3.39e-05 ***),
• a significant interaction between dataset size and objective function (p = 0.00625 **),
• no significant main effect of objective function (p = 0.10062, n.s.)

Residual standard error: 0.02156 on 47 degrees of freedom
Multiple R-squared: 0.5045, Adjusted R-squared: 0.4623
F-statistic: 11.96 on 4 and 47 DF, p-value: 8.765e-07
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

The final regression model for OOD accuracy showed:

• a significant main effect for large datasets over small datasets (p = 4.65e-09 ***),
• a significant interaction between dataset size and architecture type (transformer vs. CNNs; p

= 0.0174 *),
• no significant main effect for transformers vs. CNNs (p = 0.8553, n.s.)

Residual standard error: 0.0593 on 48 degrees of freedom
Multiple R-squared: 0.5848, Adjusted R-squared: 0.5588
F-statistic: 22.53 on 3 and 48 DF, p-value: 3.007e-09
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
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Limitations: a linear regression model can only capture linear effects; furthermore, diagnostic plots
showed a better fit for the error consistency model (where residuals roughly followed the expected
distribution as confirmed by a Q-Q-plot) than for the OOD accuracy model (where residuals were not
perfectly normal distributed).

I Mapping behavioural decisions

Comparing model and human classification decisions comes with a challenge: we simply cannot ask
human observers to classify objects into 1,000 classes (as for standard ImageNet models). Even if this
were feasible in terms of experimental time constraints, most humans don’t routinely know the names
of a hundred different dog breeds. What they do know, however, is how to tell dogs apart from cats
and from airplanes, chairs and boats. Those are so-called “basic” or “entry-level” categories [98]. In
line with previous work [17, 32, 33], we therefore used a set of 16 basic categories in our experiments.
For ImageNet-trained models, to obtain a choice from the same 16 categories, the 1,000 class decision
vector was mapped to those 16 classes using the WordNet hierarchy [34]. Those 16 categories were
chosen to reflect a large chunk of ImageNet (227 classes, i.e. roughly a quarter of all ImageNet
categories is represented by those 16 basic categories). In order to obtain classification decisions from
ImageNet-trained models for those 16 categories, at least two choices are conceivable: re-training
the final classification layer or using a principled mapping. Since any training involves making a
number of choices (hyperparameters, optimizer, dataset, ...) that may potentially influence and in
the worst case even bias the results (e.g. for ShuffleNet, more than half of the model’s parameters
are contained in the final classification layer!), we decided against training and for a principled
mapping by calculating the probability of a coarse class as the average of the probabilities of the
corresponding fine-grained classes. Why is this mapping principled? As derived by [33] (pages 22
and 23 in the Appendix of the arXiv version, https://arxiv.org/pdf/1808.08750.pdf), this is
the optimal way to map (i.e. aggregate) probabilities from many fine-grained classes to a few coarse
classes. Essentially, the aggregation can be derived by calculating the posterior distribution of a
discriminatively trained CNN under a new prior chosen at test time (here: 1/16 over coarse classes).
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Table 2: Benchmark table of model results. The three metrics “accuracy difference” “observed
consistency” and “error consistency” (plotted in Figure 1) each produce a different model ranking.
The mean rank of a model across those three metrics is used to rank the models on our benchmark.

model accuracy diff. ↓ obs. consistency ↑ error consistency ↑ mean rank ↓
CLIP: ViT-B (400M) 0.023 0.758 0.281 1.333
SWSL: ResNeXt-101 (940M) 0.028 0.752 0.237 4.000
BiT-M: ResNet-101x1 (14M) 0.034 0.733 0.252 4.333
BiT-M: ResNet-152x2 (14M) 0.035 0.737 0.243 5.000
ViT-L 0.033 0.738 0.222 6.667
BiT-M: ResNet-152x4 (14M) 0.035 0.732 0.233 7.667
BiT-M: ResNet-50x3 (14M) 0.040 0.726 0.228 9.333
BiT-M: ResNet-50x1 (14M) 0.042 0.718 0.240 9.667
ViT-L (14M) 0.035 0.744 0.206 9.667
SWSL: ResNet-50 (940M) 0.041 0.727 0.211 11.667
ViT-B 0.044 0.719 0.223 12.000
BiT-M: ResNet-101x3 (14M) 0.040 0.720 0.204 14.333
densenet201 0.060 0.695 0.212 15.000
ViT-B (14M) 0.049 0.717 0.209 15.000
ViT-S 0.066 0.684 0.216 16.667
densenet169 0.065 0.688 0.207 17.333
inception_v3 0.066 0.677 0.211 17.667
Noisy Student: ENetL2 (300M) 0.040 0.764 0.169 18.000
ResNet-50 L2 eps 1.0 0.079 0.669 0.224 21.000
ResNet-50 L2 eps 3.0 0.079 0.663 0.239 22.000
wide_resnet101_2 0.068 0.676 0.187 24.333
SimCLR: ResNet-50x4 0.071 0.698 0.179 24.667
SimCLR: ResNet-50x2 0.073 0.686 0.180 25.333
ResNet-50 L2 eps 0.5 0.078 0.668 0.203 25.333
densenet121 0.077 0.671 0.200 25.333
resnet101 0.074 0.671 0.192 25.667
resnet152 0.077 0.675 0.190 25.667
resnext101_32x8d 0.074 0.674 0.182 26.667
ResNet-50 L2 eps 5.0 0.087 0.649 0.240 27.000
resnet50 0.087 0.665 0.208 28.667
resnet34 0.084 0.662 0.205 29.333
vgg19_bn 0.081 0.660 0.200 30.000
resnext50_32x4d 0.079 0.666 0.184 30.333
SimCLR: ResNet-50x1 0.080 0.667 0.179 32.000
resnet18 0.091 0.648 0.201 34.667
vgg16_bn 0.088 0.651 0.198 34.667
wide_resnet50_2 0.084 0.663 0.176 35.667
MoCoV2: ResNet-50 0.083 0.660 0.177 36.000
mobilenet_v2 0.092 0.645 0.196 37.000
ResNet-50 L2 eps 0.0 0.086 0.654 0.178 37.333
mnasnet1_0 0.092 0.646 0.189 38.333
vgg11_bn 0.106 0.635 0.193 38.667
InfoMin: ResNet-50 0.086 0.659 0.168 39.333
vgg13_bn 0.101 0.631 0.180 41.000
mnasnet0_5 0.110 0.617 0.173 45.000
MoCo: ResNet-50 0.107 0.617 0.149 47.000
alexnet 0.118 0.597 0.165 47.333
squeezenet1_1 0.131 0.593 0.175 47.667
PIRL: ResNet-50 0.119 0.607 0.141 48.667
shufflenet_v2_x0_5 0.126 0.592 0.160 49.333
InsDis: ResNet-50 0.131 0.593 0.138 50.667
squeezenet1_0 0.145 0.574 0.153 51.000
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Table 3: Benchmark table of model results (accuracy).
model OOD accuracy ↑ rank ↓
Noisy Student: ENetL2 (300M) 0.829 1.000
ViT-L (14M) 0.733 2.000
CLIP: ViT-B (400M) 0.708 3.000
ViT-L 0.706 4.000
SWSL: ResNeXt-101 (940M) 0.698 5.000
BiT-M: ResNet-152x2 (14M) 0.694 6.000
BiT-M: ResNet-152x4 (14M) 0.688 7.000
BiT-M: ResNet-101x3 (14M) 0.682 8.000
BiT-M: ResNet-50x3 (14M) 0.679 9.000
SimCLR: ResNet-50x4 0.677 10.000
SWSL: ResNet-50 (940M) 0.677 11.000
BiT-M: ResNet-101x1 (14M) 0.672 12.000
ViT-B (14M) 0.669 13.000
ViT-B 0.658 14.000
BiT-M: ResNet-50x1 (14M) 0.654 15.000
SimCLR: ResNet-50x2 0.644 16.000
densenet201 0.621 17.000
densenet169 0.613 18.000
SimCLR: ResNet-50x1 0.596 19.000
resnext101_32x8d 0.594 20.000
resnet152 0.584 21.000
wide_resnet101_2 0.583 22.000
resnet101 0.583 23.000
ViT-S 0.579 24.000
densenet121 0.576 25.000
MoCoV2: ResNet-50 0.571 26.000
inception_v3 0.571 27.000
InfoMin: ResNet-50 0.571 28.000
resnext50_32x4d 0.569 29.000
wide_resnet50_2 0.566 30.000
resnet50 0.559 31.000
resnet34 0.553 32.000
ResNet-50 L2 eps 0.5 0.551 33.000
ResNet-50 L2 eps 1.0 0.547 34.000
vgg19_bn 0.546 35.000
ResNet-50 L2 eps 0.0 0.545 36.000
ResNet-50 L2 eps 3.0 0.530 37.000
vgg16_bn 0.530 38.000
mnasnet1_0 0.524 39.000
resnet18 0.521 40.000
mobilenet_v2 0.520 41.000
MoCo: ResNet-50 0.502 42.000
ResNet-50 L2 eps 5.0 0.501 43.000
vgg13_bn 0.499 44.000
vgg11_bn 0.498 45.000
PIRL: ResNet-50 0.489 46.000
mnasnet0_5 0.472 47.000
InsDis: ResNet-50 0.468 48.000
shufflenet_v2_x0_5 0.440 49.000
alexnet 0.434 50.000
squeezenet1_1 0.425 51.000
squeezenet1_0 0.401 52.000

24



168 to err is human? a functional comparison of human and machine decision-making

Accuracy

colour greyscale
Colour

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(a) Colour vs. greyscale

Error consistency

colour greyscale
Colour

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

Accuracy

true opponent
Colour

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(b) True vs. false colour

Error consistency

true opponent
Colour

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

0.0 .03 .05 .1 .2 .35 .6 .9
Uniform noise width

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(c) Uniform noise

0.0 .03 .05 .1 .2 .35 .6 .9
Uniform noise width

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

0 1 3 5 7 10 15 40
Filter standard deviation

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(d) Low-pass

0 1 3 5 7 10 15 40
Filter standard deviation

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

100 50 30 15 10 5 3 1
Contrast in percent

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(e) Contrast

100 50 30 15 10 5 3 1
Contrast in percent

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

inf 3.0 1.5 1.0 .7 .55 .45 .4
Filter standard deviation

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(f) High-pass

inf 3.0 1.5 1.0 .7 .55 .45 .4
Filter standard deviation

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

0 1 2 3 4 5 6 7
Log2 of 'reach' parameter

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(g) Eidolon I

0 1 2 3 4 5 6 7
Log2 of 'reach' parameter

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

0 30 60 90 120 150 180
Phase noise width [ ]

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(h) Phase noise

0 30 60 90 120 150 180
Phase noise width [ ]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

0 1 2 3 4 5 6 7
Log2 of 'reach' parameter

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(i) Eidolon II

0 1 2 3 4 5 6 7
Log2 of 'reach' parameter

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

original equalised
Power spectrum

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(j) Power equalisation

original equalised
Power spectrum

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

0 1 2 3 4 5 6 7
Log2 of 'reach' parameter

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(k) Eidolon III

0 1 2 3 4 5 6 7
Log2 of 'reach' parameter

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

0 90 180 270
Rotation angle [ ]

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

(l) Rotation

0 90 180 270
Rotation angle [ ]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r c
on

sis
te

nc
y 

(k
ap

pa
)

Figure 9: OOD generalisation and error consistency results for humans, standard supervised CNNs,
self-supervised models, adversarially trained models, vision transformers, noisy student, BiT, SWSL,
CLIP. Symbols indicate architecture type (# convolutional, O vision transformer, ♦ human); best
viewed on screen. ‘Accuracy’ measures recognition performance (higher is better), ‘error consistency’
how closely image-level errors are aligned with humans. Accuracy results are identical to Figure 2 in
the main paper. In many cases, human-to-human error consistency increases for moderate distortion
levels and drops afterwards.
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Figure 10: Error consistency for ‘sketch’ images (same as Figure 4 but sorted w.r.t. mean error
consistency with humans).
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Figure 11: Error consistency for ‘stylized’ images (sorted w.r.t. mean error consistency with humans).
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Figure 12: Error consistency for ‘edge’ images (sorted w.r.t. mean error consistency with humans).
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Figure 13: Error consistency for ‘silhouette’ images (sorted w.r.t. mean error consistency with
humans).
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Figure 14: Error consistency for ‘cue conflict’ images (sorted w.r.t. mean error consistency with
humans).
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(k) Eidolon III
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Figure 15: Comparison of self-supervised SimCLR models with supervised, augmentation-matched
baseline models. Note that for better visibility, the colours and symbols deviate from previous plots.
Plotting symbols: triangles for self-supervised models, stars for supervised baselines. Two different
model-baseline pairs are plotted; they differ in the model width: blue models have 1x ResNet width,
green models have 4x ResNet width [43]. For context, human observers are plotted as red diamonds.
Baseline models kindly provided by Hermann et al. [62].
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(k) Eidolon III
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Figure 16: Do CLIP-provided labels lead to better performance? Comparison of standard ResNet-50
(light grey circles), CLIP with vision transformer backend (brown triangles), CLIP with ResNet-50
backend (brown circles), and standard ResNet-50 with hard labels (bright yellow circles) vs. soft
labels (dark yellow circles) provided by evaluating standard CLIP on ImageNet; as well as humans
(red diamonds) for comparison. Symbols indicate architecture type (# convolutional, O vision
transformer, ♦ human); best viewed on screen. With the exception of high-pass filtered images,
standard CLIP training with a ResNet-50 backbone performs fairly poorly.
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3 Discussion

Deep learning is here to stay, and looking back at how its impor-
tance rapidly grew over the last decade already gives a glimpse of
the even bigger impact it is likely to have in the future. In order for
this to be a net positive impact, it is crucial that our understanding
of machine decision-making will be able to keep pace with applica-
tions of deep learning. Over the course of six projects, I set out to
develop a better understanding of machine decision-making through
a functional comparison with human decision-making. While there
are many different lenses through which these projects can be viewed,
I would like to specifically discuss two perspectives here: the induc-
tive bias perspective (Section 3.1), which is a machine-centric point of
view, and the model of human object recognition perspective (Section 3.2),
a human-centric point of view. This chapter will conclude with a dis-
cussion of limitations (Section 3.3). Finally, an outlook chapter takes on a
more forward-looking role by discussing two important questions for
future research (Chapter 4).

3.1 The inductive bias perspective

Bias is good. This is one of the most simple and yet most important
insights of machine learning.1 Without bias, generalisation is impossi- 1 Of course, many forms of bias are

harmful, whether they are exhibited
by humans or algorithms (e.g. Mehrabi
et al., 2019). While it is impossible to ob-
tain a successful algorithm that is unbi-
ased in every regard, this certainly does
not imply that we should accept harmful
forms of algorithmic bias.

ble. This was already recognised by Mitchell (1980, p. 2): “the power of
a generalization system follows directly from its biases [...]. Therefore,
progress toward understanding learning mechanisms depends upon
understanding the sources of, and justification for, various biases.”

Nearly two decades later, this insight was formalized in the so-
called No Free Lunch theorem (Wolpert & Macready, 1997), which states
that the performance of any two algorithms (such as two classifiers),
averaged over all possible input configurations, is equal. For instance,
consider the following input-output pairs: (0,0), (2,2), (7,7), (22,22), (45,
45), (58,58). Given unseen input 42, which output would we predict?
It seems reasonable to infer a linear relationship between input and
output, and hence predict output 42 for input 42—but making this
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inference step falls nothing short of making an assumption about the
relationship between input and output—in other words, being biased.
In a world without assumptions, (42,42) would be as reasonable a pre-
diction as (42,-44), (42,π), or (42,0).2 2 Given different input-output pairs such

as (1,1), (2,4), (3,9), (5,25), (6,36) you
probably would have inferred a different
(here: quadratic) relationship. However,
assuming linearity “whenever the data
looks linear” is an example of a bias,
even though it is certainly a useful one
in the specific world we live in.

The assumptions that a machine learning model makes before see-
ing any data is called the model’s inductive bias. The process of devel-
oping a specific machine learning model (which can also be thought of
as a hypothesis about the relationship between input and output) can
be conceptualised as follows:

all hypotheses hypothesis space hypothesis
inductive bias data

Starting with the set of all possible hypotheses, one can narrow this
down to a model’s hypothesis space by selecting a model’s inductive
bias. For instance, the class of linear models already has much fewer
hypotheses in its hypothesis space compared to the set of all conceiv-
able hypotheses. (It may be important to note that a model’s inductive
bias is more than just the size of the model’s hypothesis space: it is
also a matter of how easily certain hypotheses are learned—for in-
stance, some hypotheses may be representable by a model in principle
but the model’s optimisation never selects them, which would also be
a type of bias.) Finally, data is used to estimate model parameters and
to obtain a final hypothesis. In the case of a linear model, this would
typically mean computing intercept and slope such that the model op-
timally fits the (known) data. The resulting single hypothesis is then
used to obtain a prediction for previously unseen data.

This already shows that there is a fundamental trade-off between
inductive bias and data: The more constrained a model’s hypothesis
space is, the less the model needs to learn from data. (In the extreme
case, if the hypothesis space were to contain only a single hypothe-
sis, no data would be needed.) In machine learning, this traditionally
motivated incorporating domain knowledge into models, for instance
through hand-engineered features. However, in recent times, hand-
engineered features often turned out to be inferior to simply learning
model parameters through a lot of data (LeCun et al., 2015). As a con-
sequence, modern deep learning is often lacking a good understanding
of the inductive bias that certain aspects of a model’s architecture, task
or loss function bring along. To give an example of what might hap-
pen if this understanding is lacking, one cautionary tale is reported
by Rendsburg et al. (2020). The authors investigated why NetGAN
(Bojchevski et al., 2018), a rather complicated method to sample new
graphs similar to input graphs, works well in practice: not because
NetGAN uses random walks, not because a GAN can somehow es-
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cape the No Free Lunch theorem (Wolpert & Macready, 1997), and not
because an LSTM is part of the process—instead, it works well sim-
ply since the procedure inadvertently introduced a certain low-rank
bias.3 Stripping NetGAN of the GAN/LSTM/random walk compo- 3 GAN: Generative Adversarial Net-

work (Goodfellow et al., 2014); LSTM:
Long Short-Term Memory (Hochreiter &
Schmidhuber, 1997).

nents and using the low-rank bias directly works just as well, but is
much faster and interpretable. This goes to show how important it is
to understand the inductive bias of a model, especially for complex
deep learning models.

Many of the projects in my thesis can be considered to contribute a
few sentences to the conversation about the inductive biases of deep
learning models. In Geirhos et al. (2020b), we discovered that despite
large engineering efforts around the development of new architectures,
these choices hardly matter in terms of the resulting decision bound-
ary: some models are more accurate than others, but they all make
highly consistent errors. In a similar vein, in Geirhos et al. (2020c) we
demonstrated that despite considerable excitement around contrastive
self-supervised learning (which is based on new loss functions that do
not require labels), the resulting models’ inductive biases hardly differ
from the inductive biases of their supervised counterparts. Finally, in
Michaelis et al. (2019) and Geirhos et al. (2020a) we highlighted that
many properties exhibited by models trained on classification also ap-
pear across models trained on different tasks such as object detection
and even natural language processing.

In contrast, there is one aspect that appeared to truly matter over
and over again across projects: the decisive role of data. The train-
ing dataset can change a model’s texture bias to a shape bias (Geirhos
et al., 2019a), it can drastically improve out-of-distribution robustness
(Geirhos et al., 2019a; Michaelis et al., 2019; Geirhos et al., 2021), and
it can even lead to improved consistency with human behavioural er-
ror patterns (Geirhos et al., 2021). In my interpretation these findings
indicate that currently common choices of architectures, loss functions
and tasks impose fewer constraints on the hypothesis space than pre-
viously thought (and perhaps intended).4 This leads to a large influ- 4 This may be related to the finding

that common training pipelines are of-
ten underspecified, i.e. models with iden-
tical architectures/loss functions/tasks
can have large differences in behaviour
depending on innocuous aspects such as
the initial random seed (D’Amour et al.,
2020).

ence of data when it comes to selecting the final hypothesis—with po-
tential downsides in terms of shortcut learning (Geirhos et al., 2020a)
or dataset bias (Wichmann et al., 2010; Torralba & Efros, 2011). Ulti-
mately, much remains to be understood about inductive biases of deep
learning models: how they can be formalised, how they interact with
different datasets, and how they might be specified as desired.

Like any decision-maker, humans too have an inductive bias, and
comparing human against machine decision-making has been a com-
mon thread throughout the projects of this thesis. How these results
fit into the discussion about deep neural networks as potential models
of human object recognition is discussed in the following section.
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3.2 The model of human object recognition perspective

Deep neural networks have been proposed as a “new framework
for modeling biological vision and brain information processing” by
Kriegeskorte (2015, p. 417)—a proposition I termed the deep learning
metaphor of the brain in the introduction.5 Today’s considerable ex- 5 Strikingly similar excitement for (shal-

low) neural networks as models for
brains and minds was already seen in
the 1980s under the banner of paral-
lel distributed processing (McClelland
& Rumelhart, 1986; Rumelhart et al.,
1986a).

citement around deep neural networks (DNNs) as potential models
of primate ventral stream object recognition is primarily based on in-
vestigations reporting similar representational spaces (Yamins et al.,
2013, 2014; Cadieu et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014;
Güçlü & van Gerven, 2015). However, comparisons of behaviour have
been rare.6 This thesis can be seen as an attempt to change this. 6 Notable exceptions include e.g. Kher-

adpisheh et al. (2016a); Rajalingham
et al. (2018); Funke et al. (2021).

Our comprehensive toolbox and benchmark (model-vs-human) aim
at enabling functional comparisons of human and machine decision-
making for everyone—including those who do not have a psychophys-
ical laboratory at their disposal (Geirhos et al., 2021). This benchmark
brought together many of the building blocks developed in my pre-
ceding projects. Comparing human and machine behaviour requires
high-quality psychophysical datasets (Geirhos et al., 2018, 2019a), pre-
cise metrics to track behaviour at a much finer scale than overall accu-
racy (Geirhos et al., 2019a, 2020b), and a well-maintained codebase and
benchmark incorporating leading models of different flavours (Geirhos
et al., 2020b,c, 2021).

What can we conclude from this functional comparison about DNNs
as potential models of human object recognition? My findings advise
caution when it comes to broad-ranging claims about “human-like”
models. For instance, recurrent CORnet-S, touted the “the current best
model of the primate ventral visual stream” (Kubilius et al., 2019, p. 1)
turned out to be a near-equivalent of standard ResNet-50 on a func-
tional level (Geirhos et al., 2020b). This is particularly concerning in
the light of substantial hopes that have been placed in recurrent mod-
els (O’Reilly et al., 2013; Spoerer et al., 2017; Kietzmann et al., 2019a,b;
Lindsay, 2020; van Bergen & Kriegeskorte, 2020). Given that shallow
recurrent networks are functionally identical to deep feedforward net-
works with weight sharing (Liao & Poggio, 2016), one cannot help but
wonder whether it is truly “inevitable that computational neuroscience
will come to rely increasingly on complex models, likely from the fam-
ily of deep recurrent neural networks” (Kietzmann et al., 2019a, p. 2),
or whether recurrence might instead be mostly an implementational
(but not a functional) difference between brains and standard models.

In spite of the numerous behavioural discrepancies between brains
and machines that we found, I would argue that it would be wrong
to come to a final conclusion about the potential of DNNs as mod-

https://github.com/bethgelab/model-vs-human


discussion 179

els of human visual perception just yet. I certainly have been sur-
prised by the rapid pace of progress more than once. For instance, in
2020 we found radically different behavioural error patterns between
humans and standard convolutional neural networks (Geirhos et al.,
2020b). One year later, vision transformers (Dosovitskiy et al., 2020)
are increasingly replacing convolutional networks, and training vision
transformers on large-scale datasets already leads to considerable im-
provements when it comes to error consistency with human observers
(Geirhos et al., 2021). This highlights how fast the field is still pro-
gressing, and I personally look forward to scrutinising the many im-
provements yet to come. Whether or not they will change the role of
DNNs as models of human object recognition—the tools, datasets and
methods developed in this thesis will be available to help answer this
question.

3.3 Limitations

Although each of the six studies presented in this thesis has its
own approach and consequently its own limitations, there are some
that they have in common. These include, among others:

(1.) Infinitely many out-of-distribution test sets are conceivable
A focus of my thesis is comparing humans and machine learning mod-
els on out-of-distribution (OOD) data, i.e. on data that does not orig-
inate from the same distribution as the standard training and IID test
data (IID stands for independent and identically distributed data). As
argued in Geirhos et al. (2020a), this approach is sensible since it is
impossible to distinguish whether a model just learned a shortcut or
the intended solution by testing on IID data alone. The reason for
this is that shortcuts—such as, for instance, image backgrounds like
“grass” predictive of category “cow”—lead to deceptively good IID
performance: in standard datasets, cows typically happen to be pho-
tographed against a grass landscape. However, if tested on OOD data,
such as a cow on the beach instead of the typical setting, the “grass”
shortcut would no longer lead to good performance (Beery et al., 2018).

While OOD testing is a very reliable method to detect shortcut
learning, it comes with the challenge that infinitely many OOD test
sets are conceivable. This entails that good performance on an OOD
test can only be a necessary, but never a sufficient, condition for assert-
ing that a model indeed learned the intended solution. Furthermore,
in many cases, there is a clear-cut distinction between IID and OOD
data (such as between natural images and silhouettes), but sometimes
the boundaries are not as sharp. In the case of ImageNet-V2, for in-
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stance, Recht et al. (2019) closely followed the original ImageNet data
collection procedure to obtain a non-overlapping test set. Intended
to be drawn from exactly the same distribution, models trained on
standard ImageNet nonetheless showed a large accuracy drop (on the
order of 11% top-1 accuracy) when tested on this new test set: “in prac-
tice it is hard to argue whether two high-dimensional distributions are
exactly the same. We typically lack a precise definition of either dis-
tribution, and collecting a real dataset involves a plethora of design
choices.” (Recht et al., 2019, p. 3).7 These design choices, which also 7 In cases like these, it can be beneficial to

train a classifier to distinguish between
those two near-identical test sets, as e.g.
argued by Geirhos et al. (2020a). If the
classifier succeeds, one can conclude that
there must have been a systematical dis-
tribution shift even if this difference was
not noticeable to humans.

come with the creation of OOD test sets, are certainly a limitation of
the overall approach of OOD generalisation testing.

(2.) Conclusions are limited to tested models
This limitation may sound obvious, but it is still a very important
caveat. We cannot generalise any of the findings of this thesis to mod-
els not investigated. While I would certainly hope (and expect) that the
findings transfer to other models of the same kind, this remains spec-
ulation until tested. I have attempted to make this clear throughout
my projects, but there are cases where I did not fully succeed. For in-
stance, the title of Geirhos et al. (2019a) starts with “ImageNet-trained
CNNs are biased towards texture” in an effort to be explicit about the
fact that the conclusions are limited to ImageNet-trained models. Still,
this title is a generalisation: Had we been completely precise (at the ex-
pense of brevity), the title would have started with “ImageNet-trained
ResNet-50, ResNet-152, VGG-16, GoogLeNet, AlexNet, DenseNet-121

and Squeezenet1_1 are biased towards texture”.
Since the conclusions of my projects will always be limited to the

investigated models—which, in all likelihood, will soon be replaced by
even better models—most of these projects have aimed to achieve two
goals at the same time: on the one hand, to gain a better understanding
of current (yet presumably short-lived) state-of-the-art models; on the
other hand, to develop metrics, propose benchmarks and make large-
scale behavioural datasets openly available.8 These latter aspects of my 8 An example would be the “model-vs-

human” toolbox: https://github.com/

bethgelab/model-vs-human
PhD thesis will hopefully continue to be useful on a much longer time
scale than insights about specific models that are currently in vogue.

(3.) Different behaviour does not imply different interm. representation
A functional comparison of human and machine decision-making is
limited to drawing statements about behaviour. This means that even
though we found many instances of behavioural differences between
biological and artificial systems, it cannot be ruled out that they still
have highly similar intermediate representations on the basis of these
investigations. The relationship between behaviour and intermediate
representations will be an important aspect of the following chapter.

https://github.com/bethgelab/model-vs-human
https://github.com/bethgelab/model-vs-human


4 Outlook: “Big Questions” for the
future

Research is about finding answers—but perhaps equally im-
portantly, about asking the right questions. Good scientists have many
more questions in their mind than they have time to answer them.
Therefore, an important aspect of a scientist’s life is choosing which
questions to tackle next, and usually a good moment to ask this ques-
tion is after a project is completed. Typically, there are numerous
follow-up questions directly related to that project—for instance, in
the case of an experimental project, one might ask: Would the in-
vestigated effect a also hold under manipulation b? When increasing
stimulus presentation time from c to d, how would the results change?
Similarly, for a computational project: Can we improve on the bench-
mark even further by replacing architecture e with architecture f ?

In many cases, these rather “obvious” follow-up questions can lead
to some form of progress, occasionally even to unexpected contradic-
tions or challenges to the previous interpretation. (And, most certainly,
control experiments are integral to the scientific routine.) However,
while the tree of knowledge does indeed grow from branching out in
ever more fine-grained directions, at some point the time has come to
take a step back and ask: Are we growing the right branch? Is the
direction of our work a direction we consider truly important, a direc-
tion that tackles some of the biggest problems in our field? Hamming
(1986) once said, “If you do not work on an important problem, it’s
unlikely you’ll do important work. It’s perfectly obvious.”

In this spirit, I would like to focus the outlook of this thesis not on
the many “obvious” follow-up questions to my PhD research, but on
two “Big Questions” arising from and related to my results, questions
that I personally consider truly important to our field: “How can the
contradiction between behavioural and neural results be resolved?”
(Section 4.1), and “What does a network’s representation tell us about
the network’s behaviour?” (Section 4.2). Finally, this chapter will end
with a few concluding remarks (Section 4.3).
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4.1 How can the contradiction between behavioural and neural
results be resolved?

Every analysis tool provides a unique perspective on the subject of
study, but ultimately different tools ought to complement each other.
For instance, in biology, the macroscopic study of an ecosystem gives a
glimpse of the evolutionary pressures at work, which can then inform
microscopic investigations about, for instance, the muscular structure
of a bird’s wing. Different analysis tools have different advantages,
but in the end, one would hope to converge on a comprehensive and
unanimous interpretation.1 1 In a similar vein, David Marr intro-

duced three levels of analysis applica-
ble to any information processing sys-
tem, including brains: the computational
(what is the goal of the system?), the
algorithmic (how does it achieve this al-
gorithmically?), and the implementational
level (how is the algorithm implemented
physically or biologically?). Studying
each of these levels has its own mer-
its, but for a complete understanding, all
levels need to be known and, of course,
be coherent (Marr, 1982).

However, in the study of deep neural networks as potential mod-
els of human feedforward object recognition, the interpretations fol-
lowing two different analysis approaches could not be more differ-
ent. On the one hand, many of those using tools from neuroscience
are rather enthusiastic, praising CNNs as the leading models of pri-
mate object recognition. On the other hand, the majority of those us-
ing behavioural analysis tools paint a much darker picture, observing
markedly non-human behaviour in standard CNNs. Therefore, a cru-
cial question is: How can the contradiction between behavioural and
neural results be resolved?

It may be important to note that in Geirhos et al. (2021), we found
promising behavioural results for the latest generation of models such
as vision transformers and CNNs trained with up to one billion im-
ages; a finding that is in line with Muttenthaler & Hebart (2021) who
found that one such model (CLIP) also predicts human behavioural
similarity ratings very well. At the time of writing, however, it is not
clear whether these models also lead to improvements on neural met-
rics, thus the following discussion on the contradiction between neural
and behavioural results focuses on standard CNNs.

Neural enthusiasm

A central goal of computational neuroscience is to predict the activity
of biological neurons for complex sensory input like natural images.
While many neurons at an early stage of processing (such as V1) are
characterised fairly well by models based on Gabor filter banks, pre-
dicting neural responses for higher layers like the inferior temporal
cortex (IT) has long been beyond reach. This changed with a series of
landmark investigations using intermediate representations of CNNs
to predict neural activity, an approach that outperformed all existing
approaches despite using networks purely optimised for categorisa-
tion performance rather than neural predictivity. In their 2016 review
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article, Yamins & DiCarlo (2016, p. 364) summarise the far-reaching im-
pact of this line of research: “deep hierarchical neural networks are be-
ginning to transform neuroscientists’ ability to produce quantitatively
accurate computational models of the sensory systems, especially in
higher cortical areas where neural response properties had previously
been enigmatic. Such models have already achieved several notable
results, explaining multiple lines of neuroscience data in both humans
and monkeys”. This enthusiasm is shared by many others, including
Kriegeskorte (2015, p. 417), who noted “surprisingly similar represen-
tational spaces” between CNNs and primate brains. Overall, today’s
“neural enthusiasm” for CNNs is based on two main feats: their abil-
ity to fit neural data, and their ability to predict how neural activity
can be increased.

(1.) Fitting neural data Yamins et al. (2013, 2014) were the first to
report an improved match to neural data when using CNNs. Their
approach based on Hierarchical Modular Optimization (HMO), i.e. an
optimisation procedure different from today’s predominant stochastic
gradient descent, led to a model that accounted for about 50% of ex-
plainable IT variance, a substantial leap compared to previous models.
Soon, their findings would be corroborated and extended by a num-
ber of laboratories (Agrawal et al., 2014; Cadieu et al., 2014; Khaligh-
Razavi & Kriegeskorte, 2014; Güçlü & van Gerven, 2015; Cichy et al.,
2016; Kubilius et al., 2016). Today, CNNs successfully predict neural
data across all stages of the ventral stream. This is not just the case
for high-level areas like IT where previous attempts fell short but also
for low-level areas like V1. Here, despite the decent predictive perfor-
mance of established models, CNNs outperform all other approaches
slightly but significantly (Cadena et al., 2019).

(2.) Predicting how to increase neural activity “All models are wrong,
but some are useful”, the aphorism knows (cf. Box, 1976). There-
fore, instead of asking whether CNNs as models of human visual per-
ception are right or wrong, good or bad, we might better be asking
whether they are useful. The usefulness of a model is best assessed by
its ability to make (potentially counter-intuitive) predictions. In this
regard, CNNs do make a highly counter-intuitive prediction: when
trained to predict the firing patterns of neurons for natural image in-
put, CNNs can then be used to predict how input patterns should
look like such that neural activity would be increased even further for
a certain neuron. Crucially, even for a low-level visual area (mouse
V1), these input patterns show complex structures, some of which do
not resemble Gabor filters at all—and indeed, when these complex pat-
terns are subsequently presented on a screen, neural activity increases
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strongly, more so than control stimuli like Gabors or natural images
(Walker et al., 2019).2 2 Gabor filters have traditionally been

thought to be near-optimal for mouse,
monkey and human V1 neurons. Should
those complex patterns that excite
mouse or monkey V1 neurons much
more than Gabors also have their coun-
terpart in human visual area V1, then
one might be able to confirm this with a
behavioural experiment in humans, for
instance with the paradigm of Watson
et al. (1983), which might help in devel-
oping a better understanding of the non-
linear nature of those neurons.

Similar closed-loop investigations have reported equally promising
results for monkey areas V4 (Bashivan et al., 2019) and IT (Ponce et al.,
2019), which speaks to the ability of CNNs not only to fit neural data
but also—when trained accordingly—to predict the counter-intuitive
effect of an intervention, namely the manipulation of input patterns
which elicit higher responses than both standard filters and natural
images. Overall, the approach of fitting a machine learning model to
reproduce aspects of a black-box system (such as a biological brain)
and then testing whether the model’s solution sheds light onto the
computations of the investigated system is called machine learning
system-identification. This approach predates present-day investiga-
tions; in the past, it has helped understand various aspects of visual
processing (e.g. Wichmann et al., 2005; Kienzle et al., 2009; Macke &
Wichmann, 2010), auditory perception (e.g. Schönfelder & Wichmann,
2013) and even bat echolocation (Yovel et al., 2008).

Behavioural disappointment

In contrast to enthusiasm on the representational (neural) side, be-
havioural investigations comparing humans and CNNs report a num-
ber of striking discrepancies: (1.) CNNs and humans often use differ-
ent image cues. (2.) Consequently, when images are manipulated, they
generalise differently. (3.) In addition to differences in the number of
errors, error patterns (or the distribution of errors) diverge as well.
Those three aspects are described below; Ma & Peters (2020) provide
an accessible overview of the many analysis approaches available to a
psychophysicist.

(1.) Features / cues / strategies There are numerous cases where CNNs
use different image cues than humans. For instance, CNNs may latch
onto the background of an image, recognising a cow only if the cow
is placed in front of a green grass landscape (Beery et al., 2018). Ad-
ditionally, as we have seen in Geirhos et al. (2019a), CNNs trained on
ImageNet preferably detect image textures instead of object shapes—a
strategy not usually employed by human observers, who mainly recog-
nise objects by their global shape (Baker et al., 2018; Geirhos et al.,
2019a). This finding is corroborated by Doerig et al. (2020), who stud-
ied crowding effects and found that in typical CNNs, global aspects of
a stimulus do not influence how local aspects are processed—in con-
trast to humans, where global configuration often shapes local pro-
cessing, leading to the famous statement “forest before trees” (Navon,
1977, p. 353). Moreover, image regions on which humans rely during
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categorisation differ from those selected by CNNs (Karimi-Rouzbahani
et al., 2017).

(2.) Generalisation CNNs and humans both reach near-ceiling accura-
cies when tested on unmanipulated, noise-free colour images. How-
ever, as soon as the signal-to-noise ratio decreases through image degra-
dations, standard CNNs typically generalise poorly (Geirhos et al.,
2018) and they struggle to cope with large levels of variation (Gho-
drati et al., 2014). According to Kheradpisheh et al. (2016b), CNNs
may sometimes agree with humans on the order of manipulation diffi-
culty (e.g. rotating an image is more difficult than a shift in object po-
sition), but CNNs fail to predict how a certain amount of noise should
be distributed on an image such that humans wouldn’t recognise it
(Berardino et al., 2017).

Taken together, one may be tempted to conclude that CNNs simply
cannot cope with test images deviating too much from the image statis-
tics seen during training, i.e. that CNNs simply generalise much worse
than humans. However, this conclusion would be premature. While
CNNs and humans indeed select different image cues even in simple
toy experiments (Geirhos et al., 2020a; Funke et al., 2021), CNNs only
generalise poorly when those selected cues are affected through an
image manipulation. In many cases, CNNs can even recognise images
completely unrecognisable to humans—as long as the crucial texture
statistics are intact (Brendel & Bethge, 2018). In short: both humans
and machines generalise, but they often generalise differently (Geirhos
et al., 2020a). For instance, CNNs are known to assign a highly con-
fident prediction to pattern-like input images mostly unrecognisable
to humans (Nguyen et al., 2015). Perhaps the most striking differ-
ence in generalisation is the adversarial vulnerability of CNNs, which
constitutes a major behavioural discrepancy to human visual percep-
tion (Szegedy et al., 2013). While humans may sometimes be able to
predict the category that a CNN recognises in a seemingly random
pattern (Zhou & Firestone, 2019), this holds only under certain re-
stricted experimental assumptions (Dujmović et al., 2020), and there is
no evidence to suggest that humans can be fooled by adversarial ex-
amples in general. Overall, striking generalisation differences between
human and machine vision are a key factor behind the “behavioural
disappointment”.3 3 In spite of some rather “disappointing”

behavioural results, it is important to
keep in mind that deep neural networks
perform much better than previous pre-
deep-learning algorithms in many chal-
lenging problem settings.

(3.) Error patterns As described above, depending on the image ma-
nipulation, CNNs and humans make a different number of errors—but
do they differ only in accuracy or also in terms of their error patterns?
A few studies using different methods have consistently shown that
this is indeed the case: humans make different errors than standard
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CNNs (Kheradpisheh et al., 2016a; Geirhos et al., 2017, 2018, 2020b;
Rajalingham et al., 2018). On a coarse level, CNNs are reported to
capture category-level confusion, but not image-level confusion pat-
terns (Rajalingham et al., 2018). This study differs in a number of
experimental choices from the paradigm used in this thesis (synthetic
instead of natural objects, online crowdsourcing instead of controlled
lab environment, object presentation not masked, total number of ob-
jects limited to 24 stimuli, repeated presentation of the same object to
an observer, target object displayed on choice screen in every trial);
additionally, responses were aggregated across participants. Despite
these experimental differences, the core finding is shared between the
methodologically highly distinct studies by Rajalingham et al. (2018)
and Geirhos et al. (2020b): image-level error patterns between standard
CNNs and humans differ. In our interpretation, this behavioural anal-
ysis indicates that there are important functional differences between
current human and machine vision.

Both analysis approaches—the neuroscientific one and the be-
havioural one—investigate the same subject of study, namely CNNs
as potential models for human visual object recognition. Resolving
the contradiction between those two interpretations will be important
since it has direct implications on the role of deep learning for the brain
sciences: are CNNs best used only as a tool, as a model, or perhaps
even not at all? Besides, while there are beautiful cases of neuroscien-
tific and behavioural experiments working hand in hand to investigate
a certain phenomenon, one cannot help but wonder whether they will
always be the right partners to investigate biological brain function if
they lead to contradicting interpretations even for comparatively sim-
ple artificial neural networks built from just a few canonical primi-
tives. Currently, a few different hypothesis options are conceivable to
explain the gap between neuroscientific enthusiasm and behavioural
disappointment.

Hypothesis 1: The behavioural glass is half empty, the neural one half
full

This hypothesis states that the seemingly contradicting neuroscientific
enthusiasm and behavioural disappointment are first and foremost a
matter of interpretation. Behavioural and neuroscientific results are
computed on different scales and metrics, thus mathematically relat-
ing one to another is challenging—instead, one typically resorts to
comparing them using natural language. This in turn opens the com-
parison to influences from the authors’ personal perspectives. Expec-
tations for the usefulness of CNNs as models of higher-level cogni-
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tion may differ, and consequently, so might interpretations—but es-
sentially, irrespective of whether the glass is perceived as half empty
or half full, it would still be the same amount of water in the glass.

A prediction following from this hypothesis is that there should
be a positive rank-order correlation between measurements of brain
and behavioural fit: if both approaches measure the same underlying
phenomenon, then better models of human behaviour should also be
better models of neuroscientific data. Putting this prediction to a test,
this does not seem to be the case. On average, error consistency (a
behavioural metric) is not correlated with brain measurements at all,
as can be seen in Figures SF 9–12 of Geirhos et al. (2020b). Likewise,
on the Brain-Score benchmark (Schrimpf et al., 2018), neural and be-
havioural scores are only weakly linked, if at all (see Figure 4.1). This
indicates that irrespective of potential nuances in interpretation (which
may well be at play), there is still an underlying discrepancy between
neural and behavioural analyses that cannot be accounted for by the
“glass half empty, half full” hypothesis.

Figure 4.1: Scatter plot of neural
(Inferior temporal cortex, IT) vs. be-
havioural scores for models tested on
Brain-Score. If anything, there is a very
weak correlation between those two met-
rics.

Hypothesis 2: Good representation, poor objective

This hypothesis4 resolves the contradiction between an excellent rep-

4 This hypothesis was informally put for-
ward as a possible explanation by Tim
Kietzmann (personal communication).

resentation and poor behaviour by assuming that, essentially, both
points of view are accurate: CNNs acquire a human-like intermedi-
ate representation, but the last few layers of the network are predomi-
nantly shaped by the objective function which leads to non-human be-
haviour. This explanation is somewhat supported by Kornblith et al.
(2020), who observed that networks trained with different loss func-
tions hardly differed in approximately the first two-thirds of their
representation, while in the last third of the layers representations
diverged substantially, which resulted in very different network be-
haviour depending on the specific loss function—consistent with the
“good representation, poor objective” hypothesis. In contrast, when
the same loss function is used, even initially different high-level repre-
sentations might end up in a very similar regime at the output layer,
as shown in Figure 4.2 plotting an embedding of different networks
differing only in their random seed—a finding that might explain why
standard networks consistently end up with very similar behaviour
(Geirhos et al., 2020b).

The plausibility of this hypothesis is further corroborated by a thought
experiment showing how the output-level behaviour of a representa-
tion is be determined by the last few layers: Take a CNN with a per-
fectly human-like representation up to layer N. The behaviour of the
M-layer network, however, can be influenced to a large degree by the
layers N+1, ..., M. For instance, even a single last layer could assign

Brain-Score
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zero weight to the input it receives from the previous layer and in-
stead use the bias to always predict an arbitrary class irrespective of
the input. Or, in another example of what might happen after layer N,
if there are no constraints on either the width or the depth of layers
N+1, ..., M, they can represent any function according to the universal
function approximation theorems (Hornik et al., 1989). In short: even
with the best intermediate representation, the behaviour of the net-
work can be determined by the last layer(s), and those are known to
be shaped by the objective function. Therefore, a suboptimal objective
function might lead to non-human behaviour.

Experimentally, based on this hypothesis one would predict that the
neuroscientific fit to primate neural data is best for intermediate layers
and starts to decline strongly at exactly the point where Kornblith et al.
(2020) identified diverging representations depending on the choice of
objective function. Furthermore, this hypothesis would explain why
Kubilius et al. (2016) observed a human-like shape representation in
CNNs whereas the experiments presented earlier in this thesis clearly
show that CNN behaviour is determined by object texture rather than
object shape (Geirhos et al., 2019a).

Figure 4.2: How similar are the represen-
tations of 10 different training instances
of a convolutional neural network across
layers? This plot shows a 2D embed-
ding based on multidimensional scaling
(Shepard, 1962; Kruskal, 1964), with di-
mension 1 on the abscissa against di-
mension 2 on the ordinate. The analy-
sis is based on all pairs of distances be-
tween representational dissimilarity ma-
trices (Kriegeskorte et al., 2008); the fig-
ure is adapted from Figure 3 of Mehrer
et al. (2020) to include the readout layer
(Tim Kietzmann, personal communica-
tion). Network differences grow with in-
creasing depth but converge again at the
very last (readout) layer.

And yet, despite the apparent appeal of this hypothesis, one crucial
question remains: Given the well-documented preference of CNNs to
exploit shortcuts whenever they can (Geirhos et al., 2020a), often learn-
ing nothing but the most predictive feature, why would CNNs acquire
a human-like representation in the first place? If a good texture repre-
sentation is sufficient to solve the task of object recognition, why would
CNNs learn a human-like shape representation, too? If detecting cer-
tain high-frequency patterns correlated with object class (Jo & Bengio,
2017; Ilyas et al., 2019) is sufficient to recognise objects, why would
CNNs learn a human-like object representation, too? In this regard, a
human-like intermediate representation would be an epiphenomenon
of training: during training, a human-like representation is caused
(for some reason), but this does not cause human-like behaviour at the
output level. Essentially, if the “good representation, poor objective”
hypothesis were true, this would mean that we have solved one riddle
(why there is neuroscientific enthusiasm yet behavioural disappoint-
ment) but ended up with another one—why even a poor choice of ob-
jective function along with the preference of CNNs to learn shortcuts
would still lead to the development of a human-like representation.

Hypothesis 3: A matter of stimuli

A completely different hypothesis asks whether broad comparisons
between neural and behavioural studies might be strained simply since
both approaches commonly use different stimulus classes. For stan-
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dard non-distorted images of natural objects, behavioural object recog-
nition accuracies are well within the range of CNN accuracies. Many
behavioural discrepancies only become apparent when switching from
non-distorted images to images with reduced signal-to-noise ratio,
where certain image cues are systematically altered: a common prac-
tice in behavioural generalisation experiments. In contrast, landmark
studies on the representational similarities between primate and ma-
chine vision are based on standard objects, often placed against a ran-
dom background but not systematically distorted. In other words,
could it be the case that comparing behavioural and neural studies
would be a comparison of apples and oranges? Can the different in-
terpretations simply be accounted for by the potential confound that
many behavioural interpretations are based on out-of-distribution gen-
eralisation, whereas neural experiments mostly focus on standard ob-
jects closer to the training distribution?

Interestingly, Xu & Vaziri-Pashkam (2021) recently analysed the pro-
portion of variance in human brains that a range of different CNNs
account for—when using either standard, low-pass filtered, or high-
pass filtered images. This approach bridges the gap between common
neural and behavioural experimental approaches by using distorted
stimuli for the analysis of neural representations.5 However, while 5 Of course, neuroscience has a long his-

tory of using controlled artificial stim-
uli, see e.g. Rust & Movshon (2005)—
however, many prominent studies com-
paring primate and CNN representa-
tions are instead based on undistorted
object images.

the authors find a substantial reduction in explained variance when
switching from real-world objects to artificial objects, the differences
between explained variance for standard and spectrum-altered images
are much smaller. Although more experiments and studies will be
needed, these findings cast doubt on the hypothesis that discrepancies
from neural and behavioural analyses can be fully accounted for by a
mere difference in experimental stimuli.

Hypothesis 4: A matter of baselines

Whether or not one is thrilled or disappointed by the performance of
CNNs naturally depends on the baseline against which they are com-
pared. Measured against an ant, even a mouse appears as large as a
giraffe: but are ants the right choice of comparison? Similarly, in neu-
roscience, trained CNNs are routinely compared against the predictive
performance of untrained models, begging the question of whether
this might unduly overestimate their performance.

In behavioural object recognition experiments, an untrained base-
line would be trivially easy to beat: any machine algorithm perform-
ing better than chance would be closer to human performance. But is
this sufficient to assert that the algorithm uses somewhat human-like
computations? Not necessarily so. In our error consistency analy-
sis (Geirhos et al., 2020b), we compared CNNs to performance-matched
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baselines: do we observe consistency to human behaviour beyond
what can be expected by any algorithm that can do the task? This
distinction turned out to be crucial—all CNNs perform better than the
random baseline, but only a few better than the performance-matched
baseline.

In those neural experiments where baselines are used, untrained
baselines are still the standard—presumably mostly because it is not
easy to define an appropriate performance-matched baseline. For in-
stance, this might involve defining a random intermediate representa-
tion subject to the constraint that the output layer matches the ob-
ject recognition performance of the CNN in question. This means
that there might currently be a fair chance of overestimating the pre-
dictive accuracy of CNNs for neural data. Trained CNNs certainly
predict neural data better than untrained ones (Yamins et al., 2014;
Güçlü & van Gerven, 2015), but only by about 5–10% accuracy dif-
ference according to Saxe et al. (2020). What if a substantial por-
tion of this already small advantage were to vanish when comparing
against a performance-matched baseline?6 As a cautionary tale on 6 This hypothesis was informally put for-

ward by Felix Wichmann (personal com-
munication).

the importance of appropriately strong baselines, Macke & Wichmann
(2010) showed that even for a simple two-class problem, human-to-
model correlations can be driven by high accuracies on both classes.
In essence, if both a model and a human observer achieve an accuracy
of 0.9 for each of the classes, their overall responses will be strongly
correlated simply because they both can do the task fairly well, so
this cannot be used as a criterion to assess whether they use similar
processing mechanisms. When conditioning on a ground truth class,
however, their correlation will only be high if they indeed make the
same mistakes (which would be a much stronger indication of similar
processing mechanisms).

In the light of this hypothesis, the contradiction between neurosci-
entific enthusiasm and behavioural disappointment would be resolved
if one can experimentally show that CNNs perform better than a ran-
dom baseline, but only slightly better than a performance-matched
baseline.

Taken together

Behavioural and neural analyses have led to two opposing viewpoints,
with important implications for the role of neural networks as mod-
els of human perception. We have seen that these discrepancies are
deeper than a mere matter of interpretation and that there are a num-
ber of hypotheses that may explain the contradiction. Ultimately, only
experiments will bring answers—but I hope to have convinced you
that it is a question worth asking.
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4.2 What does a network’s representation tell us about the net-
work’s behaviour?

We have seen a number of different hypotheses on where the con-
tradiction between behavioural and neural results may originate from.
The importance of solving this problem is clear—not only are we cur-
rently lacking an agreed-upon understanding of the value that CNNs
bring to brain and behavioural research, but this issue also points to
a much bigger context: It seems that we currently lack a good un-
derstanding of what a network’s (intermediate) representation tells
us about the network’s behaviour. One usually expects two decision-
makers (such as two models, or a model and a human observer) with
a similar intermediate representation to also show similar behaviour.
For instance, Kornblith et al. (2020, p. 1) write that studies seek to “un-
derstand the behavior of neural networks by comparing representations
between layers and between different trained models”, Morcos et al.
(2018, p. 1) state that “comparing different neural network representations
and determining how representations evolve over time remain chal-
lenging open questions in our understanding of the function of neu-
ral networks”, and Blanchard et al. (2019, p. 5404) “hypothesize that
networks exhibiting brain-like activation behaviour [as measured by
representational dissimilarity matrices] will demonstrate brain-like char-
acteristics, e.g., stronger generalization capabilities”. In all three quotes,
emphasis was added to point out how easily expectations for (interme-
diate) model representations become expectations for model function
and behaviour. However, whether this expectation is truly warranted
or whether it is just one of the untested assumptions in a field that
eventually become “common knowledge” without ever being ques-
tioned remains to be determined.7 7 In an effect used by rhetoricians and

politicians alike, people are more likely
to believe in the validity of a state-
ment if the statement is repeated mul-
tiple times—irrespective of whether the
statement is true or false (Hasher et al.,
1977).

Understanding the function of an intermediate representation: recep-
tive and projective fields

Which statements can we make about the relationship between an in-
termediate representation and behaviour? From a slightly different
angle, this question has been the subject of debate in computational
neuroscience as well. Here, instead of assessing the role of a layer,
one is often interested in understanding the function of an individ-
ual neuron. The receptive field of a neuron is determined by the chain
of neurons from which the neuron receives its input, similar to how
a neural network layer’s activation depends on the preceding layer’s
activation. For quite some time, it was—at least implicitly—assumed
that this would be all there is to know, that the function of a neu-
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ron can be completely characterised by understanding the neuron’s
receptive field (i.e. the patterns to which the neuron responds most
strongly). For instance, in the classic case of Hubel & Wiesel (1959), if
one has discovered that a neuron most strongly responds to oriented
bars, then it is easy to believe that one has succeeded in understand-
ing the role of that neuron. However, in an early example of the value
of computational modelling with artificial neural networks, Lehky &
Sejnowski (1988) showed that this perspective is incomplete. Even for
a simple three-layer network, it is just as important to consider the pro-
jective field of a neuron, which is the set of neurons that receive input
from the neuron in question. Depending on connectivity and weight
patterns, a neuron with fixed receptive field can serve many differ-
ent purposes. In the case of Lehky & Sejnowski (1988), intermediate
neurons appeared to detect edges, but examining their projective field
revealed that they were being used to extract surface curvature from
shading. Relating this simple yet fundamental insight back to the rep-
resentation vs. behaviour discussion, it seems clear that the role of a
network’s intermediate representation cannot fully be understood if
one does not take the projective field into account.

This might sound rather obvious, but even so, it sometimes appears
to be underappreciated in the context of deep learning, particularly
when it comes to neural network interpretability methods. Two promi-
nent interpretability approaches are feature visualisation and attribution
techniques (e.g. Olah et al., 2018). These two methods ask related yet
different questions. Attribution techniques are concerned with under-
standing, for instance, how much a certain input pixel contributes to
the network’s output. In contrast, feature visualisation is asking what a
unit (or channel) is selective for, much like the study of receptive fields
in neuroscience. Yet in practice, feature visualisations sometimes take
on a similar role as attribution techniques when intermediate visuali-
sations are taken as evidence for a network’s decision, such as in the
following common pattern: “How did the network recognise this dog?
Intermediate unit x is highly activated, a unit that is selective for dog
snouts (according to feature visualisation), therefore ‘dog’ is predicted
by the network.”

As plausible as this interpretation may seem at first glance, one
cannot decide whether it is correct without examining the projective
field of unit x. In the extreme case, this unit’s projective field may
consist only of zero-weight connections, rendering the unit activation
irrelevant to the network’s output decision: “it is obvious that a neu-
ron without any output cannot have a computational function” (Se-
jnowski, 2006, p. 396). To give a prominent example where the role of
the projective field is neglected, network dissection (Bau et al., 2017)—
a method based exclusively on the receptive field of a unit, without
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any consideration of its projective field—has been described as aim-
ing at a “comprehensive functional understanding of the model” in a
well-known tutorial and survey article (Montavon et al., 2018, p. 2),
where ‘functional understanding’, according to the authors, refers to a
characterisation of “the model’s black-box behavior, without however
trying to elucidate its inner workings or shed light on its internal rep-
resentations”. In contrast, Lehky & Sejnowski (1988, p. 454) already
pointed out that a functional understanding of a neuron “appears to
require not only knowledge of the pattern of input connections form-
ing its receptive field, but also knowledge of the pattern of output
connections, which forms its projective field”.

To make matters worse, the term ‘function of a neuron’ is not always
used in the same way, which can be the source of additional confusion:
Schubert et al. (2021, p. 1) state that “feature visualization allows us to
establish a causal link between each neuron and its function”. Here, it
seems plausible to assume that ‘function’ is used in the mathematical
sense, as a complete characterisation of the input-output relationship
of a neuron (if it were used in the traditional neuroscientific sense, the
statement would be wrong since feature visualization is blind to a neu-
ron’s projective field). In this sense, if the input is known, the function
determines the network’s output, just like knowing function f (x) = x2

and input x = 4 can be used to determine the output f (4) = 16. In
contrast, neuroscientists typically use the term “function of a neuron”
in a broader sense, as in “the function that a neuron fulfils” within a
certain context, like a nervous system (abstracted away from the ques-
tion of how the neuron may implement this). Here, the projective field
plays an important role: whether a sensory neuron may connect to
other sensory neurons, or to motor neurons, or both, makes a crucial
difference in terms of the neuron’s function. Taken together, irrespec-
tive of whether one would like to understand the function of a neuron
within a brain or the function of an intermediate unit within a neural
network—it is crucial to assess both the receptive as well as the pro-
jective field of that neuron or unit. The same holds for collections of
neurons or units, and for entire network layers.

Extreme cases: the role of the projective field

We are interested in understanding how much a network’s interme-
diate representation determines the network’s behaviour. Since the
output behaviour of a network naturally depends upon the computa-
tions that happen in-between such an intermediate representation and
the output layer (in other words, on the projective field of the interme-
diate representation), we can start to understand the relationship be-
tween representation and behaviour by considering two extreme cases
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of projective fields. To this end, we ask: How much is the output of
an M-layer network influenced, constrained or even determined by the
representation at layer N, for some N < M? As we will see, it is pos-
sible that the final network output at layer M is completely unrelated to
the intermediate representation at layer N, but it is also possible that
the output of layer M is completely determined (for instance, identical)
to the output of layer N.

Completely unrelated. The layers of standard neural networks form a
Markov chain (Tishby & Zaslavsky, 2015), where the output of layer li
is computed as follows: li = ReLU(w · li−1 + b). Here, w refers to the
weight matrix and b to the bias vector. According to the data process-
ing inequality (Cover, 1999), mutual information I along subsequent
processing stages A, B and C (here: network layers) cannot increase:
I(A; C) ≤ I(B; C). Therefore, it is clear that once information about
the input is lost in layers 1, ..., N, then later layers will never be able
to re-gain this information. In this sense, the network’s output (or be-
haviour) will be clearly constrained by the amount of information that
the intermediate representation has kept or discarded. In an extreme
case, one can achieve mutual information of zero bits between the rep-
resentation at layer N and the representation at layer M, simply with a
single layer somewhere in-between N and M where the weight matrix
w is a zero matrix. Then, all information provided by the preceding
layer is lost, and the network output will simply be ReLU(b), i.e. a rec-
tified version of the constant bias vector b which does not depend on
the input at all. In effect, this would mean that all inputs are mapped
to an arbitrary constant output, irrespective of which input patterns
the network is exposed to. Therefore, in this extreme case, the output
is completely unrelated to the representation at intermediate layer N.

Completely determined. In contrast, it is equally possible to construct a
case where the output is identical to the representation at intermediate
layer N. A prerequisite is that there is no bottleneck in-between layers
N and M, i.e. that all layers from N + 1 to M have at least k units, where
k is equal to the number of units in output layer M. If this condition
is fulfilled (which is the case for nearly all standard architectures, e.g.
those performing well on ImageNet), then it is possible to create a
bijective mapping between k (arbitrary) units of layer N to k units
of layer N + 1 to k units of layer N + 2 and so forth, unit one maps
k units of layer M − 1 to k units of layer M. This can be achieved
by using weights of 1 between units that form this mapping, weights
of zero between units that are not part of this mapping, and biases
of zero in general. Effectively, this means that the activations of k
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output units are completely identical to the output of k units in layer
N (for standard units with a ReLU activation function). Therefore, in
this artificial extreme case, the output is completely determined by the
representation at intermediate layer N.

Relating representational to behavioural metrics

As highlighted by those two extreme cases, in principle the network
output can be completely identical to some intermediate representa-
tion or completely unrelated to it—depending on the projective field
of the intermediate layer. In practice, the situation will likely be much
more nuanced, falling somewhere along the spectrum spanned by
those extremes—but where exactly remains to be understood.

In order to find out more about the relationship between represen-
tation and behaviour in standard trained neural networks, one could
test whether networks that are similar in terms of their representation
are also similar in terms of their behaviour. For instance, one could
make a scatter plot of networks in terms of their respective similari-
ties according to representational vs. behavioural metrics. In terms of
representational metrics, sensible choices could include a few widely
used metrics like RSA (Kriegeskorte et al., 2008), SVCCA (Raghu et al.,
2017), CCA (Morcos et al., 2018) and CKA (Kornblith et al., 2019); in
terms of behavioural metrics it might be interesting to look at overall
accuracy (do two networks make a similar number of errors?), error
consistency (Geirhos et al., 2020b, asking whether two networks make
similar errors), along with other behavioural similarity metrics. Hav-
ing tested those networks, one could then assess the relationship of
representational vs. behavioural similarity on a scatter plot (potentially
grouped by architecture types), and assess whether there is a positive
rank-order correlation between the two.

Realistic extreme cases

After investigating what happens in practice, i.e. to which degree rep-
resentational and behavioural metrics are related for common mod-
els, a logical next step would then be to set the obtained results into
context by understanding realistic extreme cases. The two theoretical
extreme cases presented above may be instructive, but they are not
plausible or realistic since network performance would be completely
destroyed, while in practice, we know that networks have decent test
performance. This leads to the following two questions: Given fixed
intermediate representations, and a target accuracy, what is the maxi-
mal behavioural difference that we can possibly achieve? Conversely,
given a fixed degree of behavioural similarity between two networks
(including, but potentially not limited to, similar target accuracies),
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what is the maximal representational difference that we can possible
achieve?

While to the best of my knowledge none of these questions has been
studied so far, there are a few building blocks on which further inves-
tigations could build. Changing as much about the internal represen-
tation as possible while keeping performance at a high level is related
to the concepts of random classifiers and random intermediate layers.

Random classifier Hoffer et al. (2018) showed that it is possible to set
the linear classifier of a network—usually a fully-connected layer—to
a random but orthonormal projection which is then kept fixed and
never updated during training. On a variety of architectures trained
on ImageNet, this leads to comparable performance even though much
fewer parameters are trainable—in the case of ShuffleNet (Zhang et al.,
2018), the last fully connected layer even accounts for more than half
of the model’s parameters.

Usually, the motivation behind keeping a proportion of network
weights fixed is of engineering nature, as one can use this to increase
the speed of training or reduce a network’s sample complexity. How-
ever, there are epistemic consequences as well. Much of what is “com-
monly known” (or, what might sometimes be a more appropriate de-
scription, “commonly assumed”) about deep learning is based on the
notion that deep neural networks are powerful function approxima-
tors which learn a suitable representation given enough training data.
The concept of a random layer never updated during training contrasts
with the intuition that learning always plays such a crucial role.

Random intermediate layers Just like it is possible to use a random fi-
nal layer (i.e. a random classifier), it is also possible to insert a certain
(and often surprisingly high) degree of randomness into intermediate
network layers. Often, one starts by freezing randomly assigned initial
weights and then learning a standard linear classifier on top of this
(partly or fully) fixed random representation. The approach of using
one or more layers with a fixed random projection has a long history
in machine learning. For instance, even the classic perceptron by Rosen-
blatt (1958) contains a randomly connected layer. Since then, the use
of random connections has repeatedly been explored under different
names: the Gamba perceptron (Minsky & Papert, 1969), Extreme Learn-
ing Machines (Huang et al., 2006)—a term that sparked great contro-
versy since it essentially rebranded an old idea (Wang & Wan, 2008),
but nonetheless sparked renewed interest in the concept of a random
layer—furthermore, there are Random Kitchen Sinks (Rahimi et al., 2007;
Rahimi & Recht, 2008), and, in the context of recurrent systems, Echo
State Networks (Jaeger, 2002) along with Liquid State Machines (Maass
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et al., 2002) and other variants of what today is usually termed Reser-
voir Computing (Lukoševičius & Jaeger, 2009). An accessible overview
of the history of random connections in neural networks can be found
in Shen et al. (2020), who introduce Reservoir Transformers as one of
the most recent examples of using fixed random instead of trained
weights. While it may sound counter-intuitive to learn useful repre-
sentations without actually learning much (i.e. by keeping randomly
chosen weights fixed), there is theoretical support for this idea: Cover
(1965) showed that high-dimensional non-linear transformations in-
crease the chances of a representation becoming linearly separable,
indicating that even random transformations can be useful.

What does this mean for the relationship between network repre-
sentation and network behaviour? Essentially, if it could be shown
that a network can reach human-like behaviour even if a large fraction
of its weights remain random and are never updated during training,
then the specific representation (whether it is fully trained or mostly
random) would matter less than previously thought. This would also
imply that “learning” might be overrated: much of the magic would
happen through cascades of non-linear and random linear transfor-
mations. While this remains pure speculation and contrasts with our
finding of the decisive importance of data (Geirhos et al., 2019a, 2021),
it has been argued that learning might indeed play a larger role in
machines than it should. By contrast, biological brains often rely on
innate mechanisms which scaffold and speed up learning. According
to Zador (2019, p. 1), “most animal behavior is not the result of clever
learning algorithms—supervised or unsupervised—but is encoded in
the genome”. The human genome is about six orders of magnitude too
small to store all connections in the brain (Zador, 2019). This means
that the genome is quite clearly not a lookup table in which the perfect
connections and weights are stored, which fits well with the intuition
that random connections are valuable as well.

Taken together

Motivated by the fact that brains and CNNs appear to have “sur-
prisingly similar representational spaces” (Kriegeskorte, 2015, p. 417)
while at the same time there are “marked behavioural differences be-
tween ImageNet-trained CNNs and human observers” (Geirhos et al.,
2019a, p. 9), we asked whether there is more to understand in the re-
lationship between a network’s representation and its behaviour (or
function). Typical analyses of intermediate representations are blind
to the projective field. Depending on the projective field, intermediate
representations can be either completely unrelated or completely iden-
tical to the network output—in practice, typical networks will most
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likely fall somewhere along this broad spectrum, but it remains to be
investigated where exactly, for instance by correlating representational
and behavioural similarity metric results for a range of standard net-
works. In a second step, one could then seek to understand whether
networks of a certain performance level always end up in a specific
region of this space. Here, it might be helpful to test networks with a
certain degree of randomness (such as a random classifier or random
intermediate layers). These partly random networks strongly deviate
from standard models in terms of their processing, and likely in their
representation, but not at the cost of a detrimental effect on network
performance, which makes them ideal candidates for such a compar-
ison. Even though numerous representational and behavioural analy-
ses have been conducted separately, we know surprisingly little about
how a network’s intermediate representation is linked to network be-
haviour.

4.3 Concluding remarks

We can consider ourselves lucky to live in a world where ma-
chine learning is possible. Perception is a process of inferring—typically
reasonably accurate—hypotheses about the world around us. If this
world were unpredictable, neither human nor machine perception would
be able to form accurate hypotheses—and as a consequence, it is un-
likely that either machines or humans would have evolved in the first
place. Successful hypotheses require predictability, and they are tai-
lored to the world we live in. As Gregory (1967, p. 174) puts it, “when
we are transferred to an alien or bizarre environment, where our filing
cards [i.e. our assumptions or hypotheses] are inappropriate, we inter-
pret the images in the eyes according to principles found reliable in
the previous, familiar world—but now they may systematically mis-
lead and then perception goes wrong. Space travellers beware!”

Given the importance of appropriate assumptions for successful
perception, it is remarkable how little is understood about the assump-
tions that modern deep neural networks make—and how they relate
to those of human perceptual decision-making. In this thesis, I con-
ducted a functional comparison of human and machine behaviour on
visual object recognition. Starting with the simple question “How do
models recognise objects?”, investigating models for both object classi-
fication and object detection revealed a texture bias (in contrast to the
textbook explanation of neural network object recognition). Overcom-
ing this texture bias through data augmentation induces a human-like
shape bias instead, and leads to improved robustness towards image
distortions. In a second step, I asked how assumptions vary across
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models, in other words, “How do models differ from one another?”.
Using error consistency as a behavioural metric, we found remarkable
similarities between otherwise very different models, such as between
recurrent and feedforward models and between supervised and self-
supervised models. By contrast, human observers also made highly
consistent errors with other human observers—but the consistency be-
tween models and humans was only slightly beyond chance, indicat-
ing that they are making different assumptions. Why this might be
the case was the topic of a perspective article on shortcut learning, a
concept that unifies many of deep learning’s failures. Since shortcut
learning leads to deceptively high performance on standard test sets,
we argued that out-of-distribution testing will need to take on a much
more prominent role. Consequently, a comprehensive comparison of
human and machine out-of-distribution generalisation was the topic
of my last project, which was able to report partial success in closing
the gap between human and machine vision.

On a broader level, my findings indicate that our understanding
of machine decision-making is riddled with (often untested) assump-
tions, but they can be put on a solid empirical footing through rig-
orous quantitative experiments and functional comparisons to human
decision-making: for when humans better understand machines, we
will be able to build machines that better understand humans—and
the world we all share.
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