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Abstract 

Genomics has accelerated discovery in biology in an unprecedented way. Still, we are far 

from solving grand challenges facing humanity. The challenge to combat antimicrobial 

resistance requires us to accelerate natural product discovery by several orders of 

magnitude.  We are already running out of our existing arsenal of antibiotics and novel 

approaches are needed to accelerate the pace of their discovery and development. Quick 

screening of natural product biosynthesis potential via metagenome mining holds new hope 

to revive the antibiotic discovery pipeline. Thanks to recent advancements in next generation 

sequencing technologies and big data mining, now we can hope to rationally survey the 

diverse ecosystem metagenomes to discover novel secondary metabolites.  

In this thesis we have presented our developed metagenome data mining pipeline 

and approaches to explore novel regions of natural products chemical space. We present 

our results and insights from multiple ecosystem metagenome surveys. Novel biosynthesis 

genes, domains, cluster sequences and comparative patterns from the surveyed ecosystem 

are highlighted in separate chapters. Metagenome mining patterns from following diverse 

ecosystems were studied: 1) Different horizons of soil sampled from three sites in close 

vicinity from the Schoenbuch forest; 2) Lake Huron sediments; 3) human gut microbiome 

and 4) the Tuebingen actinomycetes strain collection. 

The insights gained from this thesis will be helpful to the natural products research 

community to accelerate metagenome based novel natural products discovery and revive 

the antibiotics discovery pipeline. 
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Zusammenfassung 

Die Genomik hat die Entdeckung in der Biologie auf beispiellose Weise beschleunigt. 

Dennoch sind wir weit davon entfernt, die großen Herausforderungen der Menschheit zu 

lösen. Die Herausforderung, antimikrobielle Resistenzen zu bekämpfen, erfordert, dass wir 

die Entdeckung von Naturstoffen um mehrere Größenordnungen beschleunigen. Unser 

vorhandenes Antibiotika-Arsenal geht uns bereits aus, und es werden neue Ansätze 

benötigt, um das Tempo ihrer Entdeckung und Entwicklung zu beschleunigen. Ein schnelles 

Screening des Biosynthesepotenzials von Naturstoffen durch Metagenom-Mining birgt neue 

Hoffnung, die Pipeline zur Entdeckung von Antibiotika wiederzubeleben. Dank der jüngsten 

Fortschritte bei den Sequenzierungstechnologien der nächsten Generation und dem Big-

Data-Mining können wir nun hoffen, die vielfältigen Metagenome des Ökosystems rational 

zu untersuchen, um neue Sekundärmetaboliten zu entdecken. 

In dieser Dissertation haben wir unsere entwickelte Metagenom-Data-Mining-Pipeline 

und Ansätze zur Erforschung neuartiger Regionen des chemischen Raums von Naturstoffen 

vorgestellt. Wir präsentieren unsere Ergebnisse und Erkenntnisse aus mehreren 

Ökosystem-Metagenom-Untersuchungen. Neuartige Biosynthesegene, Domänen, 

Clustersequenzen und Vergleichsmuster aus dem untersuchten Ökosystem werden in 

separaten Kapiteln beleuchtet. Es wurden Metagenom-Mining-Muster ausfolgenden 

verschiedenen Ökosystemen untersucht: 1) Verschiedene Bodenhorizonte, die von drei 

Standorten in unmittelbarer Nähe des Schönbucher Waldes beprobt wurden; 2) Sedimente 

des Huron Sees; 3) menschliches Darmmikrobiom und 4) die Tübinger Stammsammlung. 

Die aus dieser Dissertation gewonnenen Erkenntnisse werden der 

Naturstoffforschungsgemeinschaft helfen, die Metagenom-basierte Entdeckung neuer 

Naturstoffe zu beschleunigen und die Entdecker- Pipeline von Antibiotika wiederzubeleben. 
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 Introduction Chapter 1:

 

1.1 The quest for understanding the fundamental secret of life. 

Understanding the fundamental secrets of life is the overarching motivation of all human 

endeavours. Tuebingen has witnessed the unravelling of such secrets, most fundamental 

discoveries in research areas of biology, chemistry and cosmology.  Johannes Friedrich 

Miescher in 1869 became the first scientist to isolate nucleic acid in the lab of Felix Hoppe-

Seyler at University of Tuebingen (Dahm, 2008). This discovery truly marked the beginning 

of the genomics era. During the subsequent period in the twentieth century our 

understanding of biology and genetics improved many folds. Julius Lothar Meyer discovered 

the early version of the periodic table and ushered the chemistry revolution (Pulkkinen, 

2020). In the seventeenth century,  Johannes Kepler discovered the laws of planetary 

motion (Voelkel, 2001); Wilhelm Schikard invented a mechanical calculator (Hanisch et al., 

2000). Meyer, Kepler and Schikard have all been associated with the University of 

Tuebingen. More recently in 1995 Christiane Nüsslein-Volhard was awarded the Nobel Prize 

in Medicine for her research on the genetic control of embryonic development (Nüsslein-

Volhard, 2012). The knowledge — generated during these quests — has become the holy 

grail for overcoming human suffering and disease. Established in 1477 Eberhard Karls 

Universität Tübingen, since then has attracted the best minds and nurtured their talents to 

find answers to the fundamental secrets of life. This makes Tuebingen truly a place of 

scientific pilgrimage for the researchers seeking ultimate knowledge via the path of science. 

While frontiers of understanding consciousness, overcoming disease, extending longevity 

and making life transplanetary are the challenging goals of our generation, this thesis is a 

small step in the humble pursuit of accelerating the novel natural products discovery through 

mining the metagenomic data. 

  

https://www.zotero.org/google-docs/?6Jgxyo
https://www.zotero.org/google-docs/?ugDh5e
https://www.zotero.org/google-docs/?ugDh5e
https://www.zotero.org/google-docs/?5RVQt5
https://www.zotero.org/google-docs/?bZa25f
https://www.zotero.org/google-docs/?bZa25f
https://www.zotero.org/google-docs/?kuoPIe
https://www.zotero.org/google-docs/?kuoPIe
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In the introductory chapter, firstly I have given an historical account of the Antibiotics era and 

discussed the problem of antimicrobial resistance. Next, I have described how genome 

mining revolutionised and revived the discovery pipelines of antibiotics. Subsequently, I have 

discussed why we need to go beyond studying single genomes and start exploring 

metagenomes to uncover the hidden microbial diversity and unlock the treasure of vast 

natural product chemical space. Then I have described the research problem that I have 

studied during this dissertation project and how I have solved certain aspects of this vast 

topic. Then I have given an overview of the structure of my thesis and brief contents of the 

chapters. 

1.2 Pre antibiotics era, antibiotics era and the discovery void 

Before the discovery of antibiotics (pre antibiotics era) even a small injury was equivalent to 

a death sentence. Due to infection post injury only a lucky few survived who recovered 

miraculously, the remaining just died often painfully. This situation changed on the arrival of 

antibiotics (the present, antibiotics era). Serendipitous discovery of Penicillin by Alexander 

Fleming in 1928 ushered in the beginning of the antibiotics era (Droog, 2015). First few 

decades of the beginning of this era were considered a golden epoch as numerous 

antibiotics were discovered. Selman Waksman, Albert Schatz, Yellapragada Subbarow were 

the most successful pioneers of this field who discovered the widely used clinical antibiotics 

(Samanta and Bandyopadhyay, 2019). Most of the discovered antibiotics were from the 

bacteria isolated from soil samples and rediscovery of these known antibiotics during 

subsequent discovery expeditions became the next big challenge. The big pharma industry 

even started to close the discovery units due to the challenges and limited profits (Shlaes, 

2010). This led to a discovery void and now there is dearth of drugs to treat new infectious 

diseases. 

https://www.zotero.org/google-docs/?ryUDky
https://www.zotero.org/google-docs/?V7nApP
https://www.zotero.org/google-docs/?KceTdZ
https://www.zotero.org/google-docs/?KceTdZ
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1.3 Post antibiotics era and Antimicrobial Resistance 

We are currently on the threshold of the post antibiotics era due to the widely developed 

antimicrobial resistance (AMR) and we might reach a stage where again microbial infections 

can become untreatable. We — as human species — are truly living in a microbial world. It 

is estimated that there are more than about a trillion bacterial species, of which we have so 

far discovered and studied only a few hundreds of thousands (Locey and Lennon, 2016). 

These bacterial species are constantly in an arms race amongst each other. They keep 

competing for resources, food, survival, and evolution. Some of the species have evolved 

mechanisms to biosynthesize natural chemical products to kill other species. Penicillin is one 

such compound produced by Penicillium mould that kills bacteria by inhibiting the cell wall 

synthesis. It is interesting to raise several questions here. Bacteria also evolve to combat 

this chemical attack by several mechanisms viz: export/efflux the antibiotic, 

degrade/catabolize the antibiotic, target modification etc(Reygaert, 2018). These resistance 

mechanisms make these evolved bacteria more dreadful and are responsible for the havoc 

we are currently experiencing and we term it as "Antimicrobial resistance (AMR)" 

1.4 Natural products, secondary metabolites, specialised 

metabolites, antibiotics: What are they? 

All these terms are mostly used interchangeably by the research community. These small 

molecules are naturally produced by microbes hence this broadest term of ―natural products‖ 

is frequently used. As these compounds are mostly distinct from the primary metabolites 

produced by the particular species, the term ―secondary metabolites‖ is also used. Natural 

products definition encompasses both primary and secondary metabolites. Since the word 

―secondary‖ has the possibility of diluting the importance of these biomolecules, some 

researchers prefer the term ―specialised metabolites‖ as being more appropriate. Generally 

these biomolecules function as inhibitors of bacterial growth (bacteriostatic) or sometimes 

even kill the other organisms (bactericidal), so the term antibiotics is used. 

https://www.zotero.org/google-docs/?bdPnuu
https://www.zotero.org/google-docs/?xT49eG
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Chemically these small molecules can be classified according to the biosynthetic pathway 

they follow. Major biosynthetic pathways include those encoding for polyketide synthases 

(PKS), non-ribosomal peptide synthetases (NRPS), ribosomally synthesised and post 

translationally synthesized peptides (RiPPs), terpenes, saccharides etc. Clinically used 

secondary metabolites have diverse pharmacological actions. Antibiotics, antifungal, anti-

cancerous, immuno-modulatory, antiviral, antimalarial, antipsychotic, antiobesity etc. are 

some of the pharmacological actions shown by the diverse natural products produced by 

microbes and plants. Some of these natural products' chemical structures are shown in 

Figure 1. 

 

Figure 1 
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Figure 1: Popular natural products structures. Biosynthetic class these drug belong to and 

their pharmacological actions is mentioned in the brackets in the caption. Ivermectin 

(PKS:antiviral and antiparasitic), Tetracycline (PKS: antibiotics), bleomycin (PKS-NRPS: 

anticancer), daptomycin (NRP: antibiotics), Lovastatin (PKS:anti-cholesterol), Platensimycin 

(Terpene: antibiotic), Geosmin (Terpene: volatile odour), Nisin (RiPPs: antibiotic), 
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Gentamycin (Saccharide-PKS: antibiotics), Vancomycin (Glycopeptide: antibiotic). Image 

Source: Chemical structures from PubChem https://pubchem.ncbi.nlm.nih.gov/ 

1.5 Traditional routes to discovery 

Historically most of the clinically used antibiotic drugs are produced by microbes isolated 

from soil. Culturing requirement was of prime importance for exploring the antibiotics 

potential. After growing the isolated species in fermenters, classical chemistry methods 

came in handy to extract and isolate the potential molecules that show activity. Bioassays 

measuring the antibiotic activity of isolated compounds against collection of pathogenic 

organisms were performed. Sophisticated structure elucidation methods are then used to get 

the exact chemical structure of the biomolecule.  

1.6 Hidden microbial dark matter and genome mining  

The next generation sequencing (NGS) technologies ushered in the genomics revolution to 

the extent that it has now become a routine to sequence microbial genomes. Genome 

databases have become treasure trove that can be mined for novel genes. As these 

genomes were annotated and studied, it also started becoming evident that the genomes of 

the biosynthetically gifted streptomyces contained more than one biosynthesis gene cluster 

(BGC), in some cases several BGCs (Baltz, 2021). Most of the remaining BGCs were silent 

and were not expressed. Additionally, it is also reported that we are successful in culturing 

only a fraction (few percent) of the total microbial species present in a particular soil sample 

(Stewart, 2012). Due to this limitation the large fraction of microbial diversity remains hidden 

and there is dire need for research methods that can help in uncovering this diversity and 

realise the full biosynthetic potential. 

1.7 BigData and metagenome mining potential 

Genomic and metagenomic databases (listed in Annexure A: Table 1) contain huge amounts 

of genomes and shotgun metagenomic data. Using novel approaches and tools this BigData 

https://www.zotero.org/google-docs/?3jHdft
https://www.zotero.org/google-docs/?2WFfiG
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can be mined for discovering biosynthetic gene clusters and biosynthetic diversity patterns. 

The observed biosynthetic pattern when correlated with relevant metadata about the 

geographical coordinates, horizons (in case of soil samples), treatment conditions, 

taxonomic diversity, can become useful in rationally answering the long-standing questions 

about 1) Where the metagenome sampling studies should be conducted to maximise the 

chances of discovery on novel BGC? 2) How evolutionary patterns shape the microbial 

communities in a particular ecosystem? Chemical databases (listed in Annexure A: Table 2) 

along with genomic databases (listed in Annexure A: Table 1) contain rich sources of 

information that can be mined to discover novel natural products and evolutionary patterns. 

Some of these datasets can also be used to train the machine learning algorithms that can 

further help in predicting structural and functional aspects of known and unknown natural 

products. Crude patterns observed from the meta analysis should be taken with a grain of 

salt and more standardised sampling procedures supported with detailed documentation 

would be necessary to claim definite patterns and mechanisms. While it is extremely 

challenging to discover novel natural products via culture independent approaches using 

metagenomics, the field has recently tasted success through discovery of Malacidin and 

Cadaside (Figure 2) (Hover et al., 2018; Wu et al., 2019). Both these natural products have 

been discovered through metagenomic surveys of soil samples. They show activity against 

multi-drug resistant pathogens. 

The field is currently ripe with standardised tools (listed in Annexure A: Table 3) for 

genome mining of BGCs and comparative analysis to infer meaningful patterns. Some of the 

analysis approaches can be directly applied to developing metagenome mining workflows, 

for some minor adaptation might be necessary. In most of the cases these algorithms run 

smoothly for smaller metagenome data sizes, but as the sample sizes increase or if the data 

volume per sample increases, the existing tools run into problems. Sometimes these 

problems are specific to hardware requirements and can be handled by increasing the 

resource size (example by increasing the Random Access Memory of the workstations or 

the storage space). There is definitely a tremendous scope of developing new optimised 

https://www.zotero.org/google-docs/?m3lsVR
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algorithms which can accelerate the metagenome mining and analysis. For more details, 

insights on the topic of big data and evolutionary genome mining for discovery of novel 

natural products, refer to our published review [See Annexure A]. 

Figure 2 

 

Figure 2: Metagenome derived natural products structures: Malacidin and cadaside. Image 

Source: Chemical structures from PubChem https://pubchem.ncbi.nlm.nih.gov/ 

1.8 Research problem 

Almost all of the low hanging fruits — the clinically used antibiotics drugs discovered so far 

— have been picked up by the traditional methods. After tasting the success of discovering 

novel BGCs from the genomes of culturable microbial species, now the focus has shifted to 
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mine the hidden dark matter of unculturable microbial diversity. Metagenome sequencing 

and subsequent metagenome mining method has the potential to uncover novel regions of 

natural products chemical space. Following factors make adoption of metagenome mining 

methods challenging: 1) the huge amount of microbial diversity present in diverse 

ecosystems; this makes it difficult to decide which ecosystems, geographical locations 

should be surveyed and sampled to maximise the chances of discovery of natural products 

2) High sequencing costs to capture complete metagenomes; this makes the method 

accessible to limited generously funded laboratories 3) Unavailability of easy to use 

metagenome mining methods and tools; the natural product chemist and microbial 

ecologists who are interested in using metagenomics methods find it challenging to use the 

existing command line bioinformatics tools and might need additional skills of using cloud 

and cluster computing to handle the huge memory space and computation requirements.   

1.9 Objectives 

Relevant metagenomic approaches, methods and tools are required to be developed using 

genomics and computational biology techniques to harness the biosynthetic potential. 

Following objectives were taken up during this dissertation project. 

1) Development of bioinformatics pipeline for exploration of natural products chemical 

space.  

2) Comparative metagenomic exploration of soil horizons from multiple sites to identify 

domain and BGC diversity patterns and correlations. 

3) Metagenomic exploration of diverse ecosystems viz. human gut, lake sediments, and 

strain collections, to identify patterns and generate new hypotheses. 

 

1.10 Thesis Outline 

The biological concepts and topics crucial for understanding the basics involved in the area 

of natural products genome mining and metagenome mining have been described in 
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Chapter 2. Briefly, this covers topics about microbial diversity, natural products chemical 

space, biosynthesis pathways of natural products, next generation sequencing technologies 

and metagenome mining. 

Chapter 3 covers technical background. The algorithms and databases involved in genome 

and metagenome mining have been surveyed and reviewed in this chapter. Microbial 

community diversity profiling methods, natural products domain exploration methods, natural 

products biosynthetic cluster exploration methods, metagenome assembly and biosynthesis 

potential exploration method, and easy to use tools and techniques have been covered. 

In Chapter 4 MBEZ pipeline and scripts are described. Analysis steps, workflows, required 

inputs and generated results output formats have been described. 

The Chapter 5 discusses the collaborative pilot project results of a survey of microbial 

community diversity and biosynthetic diversity of different horizons of Schoenbuch forest 

soil. Results from the amplicon sequencing, shotgun sequencing (short reads), and shotgun 

sequencing (long reads) methods have been described. Comparative advantages of each of 

the methods is also highlighted. 

Chapter 6 covers the biosynthesis potential survey of diverse ecosystems, specifically gut 

microbiomes, lake sediments metagenome and Tuebingen strain collection were studied.  

In the final Chapter 7 overall conclusion, expected future impact of the developed methods 

and approaches, and future challenges in the field are discussed. 
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  Biological Background Chapter 2:

Bacterial species and communities were the focus during this dissertation project and in this 

chapter I have described the necessary biological background that will be helpful in 

understanding the subsequent chapters. 

2.1 Microbes as source of natural products 

Microbes are microscopic organisms and are ubiquitously present in all ecosystems. They 

constitute archaea, bacteria and fungi. They are the most primitive life forms that arose 

billions of years ago. Some studies have dated this to be precisely in the range of 

somewhere around 3.4-3.9 billions of years ago (Betts et al. 2018).  Bacterial taxonomy 

comprises following ranks: phylum, family, class, order, genus, species, strain. Bacterial 

genomes are circular in structure with densely packed genes. Some bacteria also harbour 

plasmid genomes. The genome sizes range from a few hundred nucleotide kilobase pairs to 

few megabase pairs. Most of the clinically used antibiotics to treat infectious disease are 

produced by bacteria isolated from soil. Antibiotics are the small molecules biosynthesized 

naturally by bacteria to help them survive.  

2.2 Bacterial Diversity: How much do we know? 

It won't be an understatement to say that we are living on the microbial planet. According to 

some estimates there are a trillion bacterial species that live on this planet (Locey and 

Lennon 2016). Only a minute fraction of these have been studied so far. Figure 1 gives a 

glimpse of the exponential increase of numbers of genomes deposited over several years.   

https://www.zotero.org/google-docs/?PElCun
https://www.zotero.org/google-docs/?IfIOjv
https://www.zotero.org/google-docs/?IfIOjv
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Figure 1. Exponential increase in the number of prokaryotic genomes in NCBI over the 

course of years. 

Every gram of soil contains approximately thousands of bacterial species and of these 

generally only a few percent (around 2%) of species we can isolate and culture in the 

lab(Bubnoff 2006). The remaining 98 % we cannot isolate as these require complex media 

and culture conditions. Practically it is difficult or often impossible to create such conditions 

artificially in the lab or to create complex growth media that meets the growth needs of 

unculturable bacteria. Methods that can help in exploring this hidden microbial diversity have 

the potential to expedite the natural products discovery rate. 

2.3 16S rRNA based profiling of diversity of bacteria 

16s rRNA gene is conserved across bacteria and is used as a marker for taxonomic labelling 

(Johnson et al. 2019). This gene contains 1542 nucleotides and constitute several variable 

regions which help in differentiating the bacteria (Figure 2). These variable regions can be 

PCR amplified and sequenced via NGS (Yarza et al. 2014). Amplicon based metagenome 

profiling method has become widely used to profile diversity of a particular metagenomic 

https://www.zotero.org/google-docs/?CfU93i
https://www.zotero.org/google-docs/?WUZ4lH
https://www.zotero.org/google-docs/?WbO4Rq
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sample. Primers covering the variable v3 region have been used in the projects described 

later in this thesis. 

 

Figure 2. E.coli 16S ribosomal RNA secondary structure showing variable regions. 

Nucleotide positions: V3 (433-497) and V4 (576-682). Reprinted by permission from 

[Springer Nature Customer Service Centre GmbH]: Yarza, P., et al. (2014). Nature Reviews 

Microbiology, 12(9), 635-645. https://doi.org/10.1038/nrmicro3330 . © 2014 

https://doi.org/10.1038/nrmicro3330
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2.4 Primary and secondary metabolism pathways 

Primary metabolic pathways in bacteria produce the basic biological metabolites necessary 

for development and growth of bacteria. These involve carbohydrates, proteins, nucleic 

acids, and lipid metabolic pathways. Apart from these primary metabolic pathways bacteria 

also produce specialized metabolites via secondary metabolic pathways (Craney, Ahmed, 

and Nodwell 2013; Davies 2013). These involve biosynthesis of polyketides, NRP, RiPP, 

terpenes. Biosynthetic pathways of a few antibiotics are described later in this chapter. 

2.5 Natural products chemical space and atlas 

How many structural families of natural products are biosynthesised by bacteria that are 

known so far? One indirect way to get a rough estimate would be to subtract archaeal and 

fungal GCFs from the total ~30k GCFs from BIGFAM (Kautsar et al. 2021). This would give 

an idea about the potential but the exact structure that these GCFs/BGCs encode cannot be 

known until each of these BGCs are experimentally characterised. Alternatively, if we only 

cluster the known BGCs from MiBiG database then this would also be an underestimation as 

many NP structures have not been connected to their respective BGCs. So the best way to 

get an estimate would be to classify the NP atlas containing structures (includes bacterial 

and fungal compounds) (van Santen et al. 2019) using a NP Classifier (Kim et al. 2020). 

Currently, 653 classes (including plants, marine organisms, fungi, and microorganisms) have 

been assigned under 7 major chemical pathways by NP Classifier. Pathways include amino 

acids/peptides, fatty acids, carbohydrates, polyketides, shikimates-phenylpropanoids, 

terpenoids, and alkaloids. For the latest Natural Products atlas [29,006 total (11,264 

bacterial) compounds] there are 466 total (313 bacterial) unique classes predicted by NP 

Classifier. NP Atlas also reports structural similarity based clustering of microbial compounds 

based on Dice similarity scoring (0.75 cutoff) and Morgan fingerprinting (radius= 2). 

Specifically for bacterial compounds this resulted in 3297 clusters and 2487 nodes (based 

https://www.zotero.org/google-docs/?rHzTIc
https://www.zotero.org/google-docs/?rHzTIc
https://www.zotero.org/google-docs/?LO4mx9
https://www.zotero.org/google-docs/?3o0lqz
https://www.zotero.org/google-docs/?VbAM2p
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on atom pairs fingerprinting and Dice similarity scoring (0.7 cutoff)). If we compare these 

cluster numbers to the number of GCF from BIGFAM (25,667 bacterial GCFs; applying 

taxon filter), it becomes evident that only about 10 percent of biosynthetic potential has been 

structurally characterised and studied. 

2.6 Biosynthesis of bacterial natural products 

2.6.1  Polyketide Biosynthesis Pathway 

Nature has devised a strategy analogous to the famous assembly line production process of 

the automobile industry, to make a class of molecules called the polyketide antibiotics. As a 

representative example for the class of polyketides, I have briefly described the biosynthesis 

of a popular antibiotic Erythromycin. Erythromycin is produced by the bacterial species 

Aeromicrobium erythreum. The BGC sequence length of erythromycin is 61845 nucleotides 

(Figure 3). The key intermediate synthesised during the biosynthesis of Erythromycin is 

called 6-Deoxyerythronolide B (Figure 4) (Musiol-Kroll and Wohlleben 2018). It is 

synthesised by 6-Deoxyerythronolide B Synthase (DEBS). DEBS is made up of 3 very large 

proteins consisting of multiple domains. DEBS1 is a homodimer consisting of two modules 

(Module 1 and Module 2). Likewise DEBS2 contains modules 3 and 4; and DEBS3 contains 

modules 5 and 6. Each of the domains does a specific chemical modification function. 

Polyketide synthase domains (PKS) namely acyltransferase (AT), acyl carrier protein(ACP), 

ketosynthase(KS), dehydrogenase (DH); ketoreductase(KR), enoyl reductase (ER) and 

thioesterase (TE) are present in the DEBS. DEBS assembly line uses multiple precursors 

viz. propionyl coenzyme A and methylmalonyl coenzyme A (Cortes et al. 1990; Donadio et 

al. 1991). Subsequently, incremental addition of precursors via each module leads to 

production of 6-Deoxyerythronolide B. The actual enzymatic chemistry that is happening on 

each of the modules involves the synchronous functioning of catalytic domains present in 

each of the modules. Translocation of precursor (the growing polyketide) from ACP of 

upstream module is moved to KS domain (in active site) and is bound to KS domain through 

https://www.zotero.org/google-docs/?8yTNrW
https://www.zotero.org/google-docs/?wLinD0
https://www.zotero.org/google-docs/?wLinD0
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thioester linkage. Next event in the catalytic cycle is acyl transfer. Acyltransferase governs 

which precursor would be used for the acyl transfer reaction. This is followed by a chain 

elongation step where the polyketide chain elongation takes place. A two dimensional 

reaction scheme depicted in Figure 4 is a cartoon representation of the biosynthesis 

pathway, simplified for ease of understanding. Three dimensional structural details and 

complexity of a few of these steps have been solved using X-ray crystallography and nuclear 

magnetic resonance. 

 

Figure 3: Biosynthetic gene cluster of erythromycin. A) Map showing the position and lengths 

of genes. B) Modules domain view of the erythromycin biosynthesis genes. Image Source: 

https://mibig.secondarymetabolites.org/repository/BGC0000054/index.html#r1c1 
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Figure 4. Biosynthesis pathway of erythromycin (DEBS). The assembly line consists of 

modular PKS machinery. Three subunits DEBS 1, DEBS 2 and DEBS 3 are organized into 

multiple modules. Every module catalyzes one elongation step using the multiple PKS 

domains present within these modules (PKS domains: AT, acyltransferase; ACP, acyl carrier 

protein; KS, ketosynthase; DH, dehydrogenase; KR, ketoreductase; ER, enoylreductase; TE, 

thioesterase.). Image Source: Musiol-Kroll, E. M., & Wohlleben, W. (2018). Antibiotics, 7(3), 

62. https://doi.org/10.3390/antibiotics7030062 , Copyright: Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

2.6.2  Nonribosomal Peptide Biosynthesis Pathway 

As a representative example for the class of NRPs, I have briefly described the biosynthesis 

of a Kistamicin. Kistamicin is a glycopeptide antibiotic produced by Actinomadura parvosata 

subsp. Kistnae (Nonomuraea sp. ATCC55076). The biosynthetic gene cluster is of length of 

around 60 kbp (Figure 5A) (Greule et al. 2019). Biosynthesis pathway of glycopeptide 

https://doi.org/10.3390/antibiotics7030062
https://www.zotero.org/google-docs/?9exdxA
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consists of 1) NRPS biosynthetic system 2) Oxidative cyclization cascade. NRPS comprises 

of multiple biosynthetic domains, namely adenylation domain, condensation domain, 

epimerization domain, peptidyl carrier protein, thioesterase and X-domain. These domains 

catalyze the assembly line like linear chain elongation reaction to synthesize the 

heptapeptide precursor. The chain elongation steps occur in linear fashion as shown in 

Figure 5B on different modules one after another.  

 

Figure 5. Kistamicin biosynthetic gene cluster and the biosynthesis pathway. 

(A) Map showing following genes: 4 nonribosomal peptide synthetase, MbtH protein, 

biosynthesis genes of non-proteinogenic amino acids 4- hydroxyphenylglycine (Hpg) 

and 3,5-dihydroxyphenylglycine (Dpg), 2 Cytochrome P450 encoding genes – oxyA and 

oxyC, FAD-type halogenase, transporter genes, genes encode  regulatory proteins, 
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additional genes and genes with unknown functions. BGC Source organism: Actinomadura 

parvosata subsp. Kistnae (Nonomuraea sp. ATCC55076); Cluster length: around 60 kb; 

MIBiG link: https://mibig.secondarymetabolites.org/repository/BGC0001635/index.html#r1c1 

(B) Seven NRPS modules (module 1-7) consisting of multiple biosynthesis domains are 

shown. Heptapeptide precursor linear biosynthesis steps happening at each module are 

elucidated serially under each module. Final structure  of kistamicin is produced via three 

crosslinking reactions catalysed by the Oxy enzymes and the X domain present in the last 

module. NRPS domain  abbreviation : A,  adenylation domain; C, condensation domain; E, 

epimerization domain; PCP, peptidyl carrier protein; TE, thioesterase; X, Oxy recruiting 

domain. Image Source: Greule, A. et al. Nat Commun 10, 2613 (2019). 

https://doi.org/10.1038/s41467-019-10384-w, Copyright: Creative Commons Attribution (CC 

BY) license (http://creativecommons.org/licenses/by/4.0/). 

2.7 Next generation sequencing and genome mining revolution 

Sanger sequencing was the workhorse of the human genome project that was completed in 

2001(Venter et al. 2001). NIH and Celera were the joint winners of the race to decipher our 

genome. At that time billions of dollars were spent to accomplish this goal and technological 

revolution (genome sequencing) was hoped for making the fruits of the human genome 

available for the masses. Expected sequencing costs had to be reduced by several orders of 

magnitude. Even the throughput had to be scaled up to achieve accessibility of these 

methods in clinics and research labs. 

Pyrosequencing based sequencing technology achieved by 454 (later acquired by Roche) 

headed by Jonathan Rothberg truly ushered in the next generation sequencing era 

(Margulies et al. 2005). Early generations of 454 sequencers could churn out several 

hundreds of megabases of nucleotide sequences. This was followed by Illumina which 

further achieved greater throughput and was a more economical method. Paired end short 

read sequencing method has become the routine method for sequencing bacterial genomes. 

Short reads have the limitation that they produce many contigs upon assembly, and very 

https://www.zotero.org/google-docs/?B1xZpa
https://www.zotero.org/google-docs/?LOZ3qv
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rarely one can get a complete genome as a single contig. This limitation was subsequently 

removed by long read technologies such as Oxford Nanopore and PacBio (Amarasinghe et 

al. 2020). Sequencing of several kilobase of DNA fragments, sometimes even the reads in 

megabase lengths became possible. The limitation of this method is the low quality of bases 

and sequencing costs are high as compared to the short read technology. 

Using the Illumina or nanopore only data or hybrid data assembled genome as an input to 

algorithms for genome mining of BGCs has become a starting step in any endeavours 

hoping for discovering novel natural products. antiSMASH uses rule-based logic to annotate 

and find the BGC in the genome. Briefly, it first finds the genes using prodigal and annotates 

the genes using pHMMs from PFAM and custom HMM models. Subsequently, clusters are 

annotated based on collection of cluster rules which comprise the composition and order of 

genes and domains as previously found in known clusters (Medema et al. 2011). 

2.8 Biosynthesis domain diversity profiling via amplicon 

sequencing. 

16S rRNA gene amplicon sequencing gives a glimpse into microbial diversity present in a 

particular sample. This method is economical and standard protocols, primers and analysis 

tools are available, which makes it a widely used method. Amplicon sequencing has also 

been used for studying diversity of biosynthetic domains involved in biosynthesis of 

secondary metabolites. Degenerate primers capable of amplifying the biosynthetic domains 

or genes have been reported (Ginolhac et al. 2004; Pimentel-Elardo et al. 2012). These 

include ketosynthase domain, adenylation domain. KS and A domain primers were also 

used in one of the projects described later. This domain diversity can be used as a proxy for 

inferring the biosynthetic potential of the particular sample. 

 

https://www.zotero.org/google-docs/?JFpGmr
https://www.zotero.org/google-docs/?JFpGmr
https://www.zotero.org/google-docs/?IdizLO
https://www.zotero.org/google-docs/?V07NM0
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2.9 Metagenome mining for estimating biosynthesis potential 

Metagenome sequencing methods decipher total DNA present in the sample. After 

extracting the DNA, sequencing libraries can be prepared according to the chosen short 

read technology or the long-read technology protocol. Subsequently the sequencing is done 

using the next generation sequencers. After platform specific image processing and base 

calling, the fastq files containing reads are produced. This data can be assembled in 

metagenomic contigs using appropriate metagenome assembler. Assemblers used in this 

thesis are briefly described in chapter 3. How much metagenome data should be generated 

for a particular sample to capture the total metagenomic content? This is a crucial question 

that should be considered before sequencing any sample. Following factors affect the 

decision: 1) Desired goals of the particular project 2) Available budget 3) Accessible 

sequencers 4) Sample alpha diversity estimates. 

The assembled metagenome-assembled genomes and contigs give access to the 

biosynthetic gene clusters which can be detected by antiSMASH. Clusters having high 

similarity with clusters from MiBiG database can be considered known clusters, while the 

remaining as unknown ones, which could be harbouring novel biomolecules. 

Metagenomes from diverse ecosystems have been profiled so far. These include soil, animal 

and human gut, different body sites of humans, marine sources, lakes and plants. Studies 

reporting metagenomic surveys from soils from different sites and covering different scales 

of land are available in literature. Microbial diversity patterns at continent wide scale, in 

grassland meadows and even in urban green spaces show the immense diversity that is 

present in the different soils (Bahram et al. 2018; Crits-Christoph et al. 2020; Delgado-

Baquerizo and Eldridge 2019; Thompson et al. 2017; Wang et al. 2018). Massive 

sequencing efforts would be needed to capture the diversity pattern and develop rational 

approaches that can guide the future survey. 

After the annotation of BGCs derived from the MAGs, the clustered are prioritised for their 

further wet-lab exploration. Based on the BGCs taxonomic phylogenetic proximity, a suitable 

https://www.zotero.org/google-docs/?cjqlpx
https://www.zotero.org/google-docs/?cjqlpx
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host is chosen for heterologous expression. Currently, due to limited availability of suitable 

hosts from distant phylum, the required amount of optimisation based on transcriptional and 

translational regulatory conditions, it is extremely challenging to reach the stage of 

successful production of novel natural products. These limitations hinder the realization of 

biosynthetic potential harboured by promising samples and environments. Still 

metagenomes sequencing followed by BGC mining analysis gives a comprehensive glimpse 

into the biosynthetic potential. 
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 Technical Background Chapter 3:

 

 

3.1 Microbial Community Diversity Profiling Methods 

 

While studying microbiomes from any ecosystem the following two questions are of prime 

importance: 1) Which microbial species are present in the sample? 2) What are the 

particular species doing in the sample? The first question can be answered by using two 

methods. Firstly, by studying the sequence diversity of 16S rRNA amplicons. 16S ribosomal 

RNA gene is highly conserved across the species of bacteria and archaea and is used as a 

phylogenetic marker. The SILVA 16S rRNA gene database is used for taxonomic annotation 

for amplicon based methods (Quast et al. 2013). QIIME2 a microbiome data science 

platform implements the multi-step microbial community diversity profiling workflow for 

amplicon data (Bolyen et al. 2019). Briefly, the steps include 1) Data quality filtration and 

preprocessing 2) DADA2 based denoising and chimera filtration to construct the Amplicon 

sequence variants (ASV) 3) OTU construction and taxonomic analysis 4) Rarefaction, alpha, 

beta diversity analysis 5) Correlation and association analysis (Callahan et al. 2016). 

Profiling and tracking of particular strains is difficult while using the 16S rRNA based 

amplicon sequencing dataset.   

Secondly, by using the shotgun metagenome sequencing data and annotating it with the 

non-redundant protein database. Such protein annotation can be accelerated by using 

BLASTX and DIAMOND and the classification based on NCBI or SILVA taxonomy can be 

visualised using MEGAN (Camacho et al. 2009; Buchfink, Xie, and Huson 2014; Huson et al. 

2016). Recent methods available for taxonomic classification a) Kraken2 is based on k-mer 

matches b) kaiju is based on Maximum Exact Matches 

https://www.zotero.org/google-docs/?ByzBXt
https://www.zotero.org/google-docs/?uvvSCE
https://www.zotero.org/google-docs/?n6w4Er
https://www.zotero.org/google-docs/?3rIBJJ
https://www.zotero.org/google-docs/?3rIBJJ
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3.2 Natural Products Biosynthesis Domain exploration methods 

Protein domain regions present in the genes responsible for multi-step biosynthesis 

pathways of natural products, can be used to study the secondary metabolite gene diversity. 

Ketosynthase (KS), Adenylation (A), Condensation (C) have been studied extensively so far. 

In this section we review the methods available for natural products biosynthesis domain 

annotation and diversity analysis. 

3.2.1  NaPDoS 

Natural Products Domain Seeker is the web based tool for automated computation of 

biosynthetic gene diversity analysis (Ziemert et al. 2012). Currently polyketide synthase 

(PKS) and non-ribosomal peptide synthetase (NRPS) genes can be analysed using 

NaPDoS. Specifically, KS and C domain annotation and phylogenetic placement analysis is 

catered to. Input data types that are accepted include PCR products, genome sequence and 

metagenomic reads. Output results include Hidden Markov Model (HMM) search using KS 

and C domain HMM models.  BLAST annotation against the 459 KS and 190 C domains is 

performed to assign the biosynthesis pathway related information. 

3.2.2  BiG-MEx 

Biosynthetic Gene cluster MEtagenomic eXploration toolbox (BiG-MEx) can be used for 

annotation of numerous BGC protein domains (Pereira 2020). Presently, annotation of 150 

BGC domains covering major secondary metabolite biosynthesis pathways is possible 

(Table) . Input data types compatible with this tool are BGC domain amplicon-seq datasets, 

shotgun metagenomic datasets. Results include UProC based domain annotation and 

abundance statistics. Diversity analysis includes computation of Shannon alpha diversity 

index. Five docker containers 

(bgc_dom_annot,bgc_dom_amp_div,bgc_dom_meta_div,bgc_dom_merge_div, 

bgc_class_pred) are available from DockerHub (https://hub.docker.com/u/epereira) and the 

source code in available from GitHub (https://github.com/pereiramemo/BiG-MEx). 

https://www.zotero.org/google-docs/?PTSWTY
https://www.zotero.org/google-docs/?agJP4h
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Table: List of BGC domains that can be analysed using BiG-MEx. Source: 

https://github.com/pereiramemo/BiG-MEx/blob/master/data/150_uproc_bgc_dom.list 

3.2.3  Dom2BGC 

dom2BGC is a pipeline tool helpful in analysing the functional amplicons that target BGC 

domains (Tracanna et al. 2021). AMP binding domain involved in non-ribosomal peptide 

synthetase biosynthesis pathway can be analysed using dom2BGC. MIBiG and antiSMASH-

https://github.com/pereiramemo/BiG-MEx/blob/master/data/150_uproc_bgc_dom.list
https://www.zotero.org/google-docs/?9Ynh9M


 31 

DB contain the comprehensive collection of AMP binding domains present in BGCs 

sequences (Blin, Pascal Andreu, et al. 2019). dom2BGC annotates the sample amplicons 

based on sequence similarity to this largest collection of AMP binding domains. Using co-

occurrence network dom2BGC also detects groups of amplicons that jointly originate from 

the same BGCs from multiple samples. 

 

3.3 Natural Products Biosynthesis Cluster exploration methods 

3.3.1  CLUSEAN 

Bacterial secondary metabolites are small molecules having diverse functions. Some of 

these have antimicrobial and cytostatic actions and are used as drugs to fight infections and 

cancerous diseases. These molecules are biosynthesized in an assembly line-like multi-step 

process by multimodular megaenzymes. These megaenzyme genes are often clustered in 

the genome. CLUSEAN (CLUster SEquence ANalyzer) helps in detecting and analyzing 

such gene clusters (Weber et al. 2009). It uses BLAST and HMMER for annotating the 

functional domains. 

3.3.2  antiSMASH 

Subsequent to CLUSEAN, antiSMASH (antibiotics & Secondary Metabolite Analysis Shell) 

was developed by the research group led by University of Tuebingen and was released in 

2011 (Medema et al. 2011). Since then it has become a popular tool and is being updated 

continuously to improve the analysis of existing BGC classes and add newer classes of 

BGCs. Recently version 6 of antiSMASH has been released (Blin, Shaw, et al. 2019). The 

pipeline annotates 70 BGC types 

(https://docs.antismash.secondarymetabolites.org/glossary/) covering major secondary 

metabolite compound classes: polyketides, non-ribosomal peptides, lantibiotics, 

bacteriocins, nucleosides, beta-lactams, terpenes, aminoglycosides, aminocoumarins, 

indolocarbazoles, butyrolactones, siderophores, melanins and others. At the heart of the 

https://www.zotero.org/google-docs/?ZeuxPl
https://www.zotero.org/google-docs/?SYSmVX
https://www.zotero.org/google-docs/?b0e7hj
https://www.zotero.org/google-docs/?oB8u8s
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antiSMASH is the rule-based detection of BGCs using the signature profile Hidden Markov 

Models (pHMMs) of proteins or protein domains. 

3.3.3  BIGSCAPE 

Due to the next generation sequencing revolution and availability of an easy to use 

antiSMASH tool, more and more genomes and BGCs became publicly available and it 

started becoming challenging to draw suitable inferences without comprehensive analysis of 

these numerous BGCs together. Through BIGSCAPE a new informatics workflow was 

created that made scaling up the mining of entire microbiome and strain collection 

comprising hundreds or even thousands of bacteria (Navarro-Muñoz et al. 2020). Using 

BIGSCAPE it is possible to create a sequence similarity network of BGCs and gene cluster 

families. Further using CORASON (Core analysis of syntenic orthologs to prioritize natural 

products cluster), the phylogenetic relationship across the BGCs can be studied. It is also 

possible to include the MIBiG clusters during the BIGSCAPE analysis. This helps in knowing 

which sample clusters are having similarity to known clusters present in the MIBiG database. 

3.3.4  deepBGC 

Machine learning methods have recently become extremely popular and have been widely 

used to improve the prediction accuracies and precisions of numerous bioinformatics 

algorithms. As long as high quality data is abundantly available for training the machine 

learning algorithms, this method has a potential to revolutionize the complete landscape of 

research and development. deepBGC uses deep learning supplemented with random forest 

classifier to identify BGCs and predict their compound classes and potential chemical activity 

(Hannigan et al. 2019). Previously undetected BGCs have been shown to be identified by 

deepBGC. 

 

https://www.zotero.org/google-docs/?nCAA2n
https://www.zotero.org/google-docs/?9wQThm
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3.4 Metagenome Assembly and Natural products biosynthesis 

potential exploration methods 

3.4.1  metaSPADES 

Metagenome assembly is challenging in terms of huge magnitude of data and also requires 

an extensive amount of computational resources. High amounts of RAM, CPU cores and 

processing time, and storage is a must for performing metagenome assemblies. 

metaSPADES constructs the de Bruijn graph using all the metagenomic sequence reads 

(Nurk et al. 2017). After transformation and creation of the assembly graph it reconstructs 

paths that belong to longer genomic contigs. It can accept both short and long reads and can 

also perform hybrid assembly of such metagenomic sequence data.  

3.4.2  CloudSPADES 

Low cost Illumina short reads and high cost PacBio or Oxford Nanopore long reads are 

generally both needed for de novo assembly of the genome. Synthetic long reads 

technology is useful in generating low cost contiguous de novo assemblies. 10X Genomics 

and TELL-Seq methods have been recently introduced that cater the synthetic long reads 

data (Chen et al. 2020). CloudSPADE uses the sets of collections of substrings in a cloud 

containing a set of all the substring (Tolstoganov et al. 2019). Barcoded reads are 

assembled into contigs which are subsequently used to create clouds based on the set of 

contigs that a synthetic long read is mapped to. Using the assembly graphs the correct order 

and orientation of the contigs is deduced. 

3.4.3  TELL-Link 

Transposase enzyme linked long reads sequencing library technology generates barcode 

linked reads for genome and metagenome scale sequencing application (Chen et al. 2020). 

TELL-Link is as barcode aware assembly pipeline that assembles contigs and creates 

scaffolds. It takes as the input the processed FASTQ data processed through the TELL-

Read pipeline. K-mer based assembly graphs are constructed and the barcode information 

https://www.zotero.org/google-docs/?91XQo7
https://www.zotero.org/google-docs/?tTRdFR
https://www.zotero.org/google-docs/?rCUmYz
https://www.zotero.org/google-docs/?IQmBqR
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is used to resolve complex structures. The reads that share the same barcode are used to 

reconstruct the local assembly. Chosen k-mer sizes affect the assembly results and the 

pipeline provides options to specify global assembly graph and local assembly graph k-mer 

sizes. 

3.5 Tools worth exploring in future 

NextFlow enables reproducible scientific workflow pipeline deployment on both clouds and 

clusters. It caters Docker and Singularity containers and makes the pipelines portable on 

diverse computational platforms. 

GECCO (GEne Cluster prediction with COnditional random fields; https://gecco.embl.de) 

uses conditional random fields (CRFs) for identifying BGCs in genomic and metagenomic 

data (Carroll et al. 2021). A recent preprint describing GECCO claims a significant increase 

in identification of BGCs than the traditional rule-based approach. 

3.5.1  Miscellaneous tools  

Numerous technical tools were used in the projects described in this thesis. Some of these 

tools and technologies make command-line agnostic researchers' lives easy. These include 

Docker containers, CONDA and Pip package management system, Jupyter Notebooks and 

VIM editor.  
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Abstract 

Motivation: With the increasing threat of antibiotic resistant pathogens, reemerging 

infectious diseases and high cancer rates, there is an urgent need for new therapeutics. The 

majority of drugs has been, and continues to be, developed from chemical scaffolds 

produced by living organisms, so called natural products. A large portion of these natural 

products is produced as secondary metabolites by microbes. Next generation sequencing 

methods and the enormous amount of available DNA data has shifted drug discovery efforts 

from traditional bioactivity guided screening methods towards genome-based approaches. 

Genome mining, heterologous expression, and genetic engineering offer the unique 

opportunity to discover the huge untapped potential hidden in environmental data. Shotgun 

metagenomic DNA sequencing and meta-barcoding approaches have revealed the 

expansive biodiversity of bacteria and their secondary metabolites that have been missed by 

traditional culture-based drug discovery methods. However, the complex nature of 

metagenomic data and the highly repetitive structure of natural product biosynthetic 

pathways makes the analysis challenging. 

Results: MBEZ contains a collection of easy to use pipelines for microbial community 

profiling, biosynthetic domain abundance and diversity profiling, and biosynthesis potential 

exploration. It allows easy screening of the shotgun and amplicon metagenomic data for 

known and novel natural products. This pipeline enables natural product chemists, 

microbiologists and microbial ecologists to mine their metagenomic data fast, efficiently and 

without a deeper knowledge about natural product biosynthesis or bioinformatic analyses. 

Availability and implementation: https://github.com/thinkgenome/MBEZ 
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4.1 Introduction 

Most of the currently used drugs to fight infections are secondary metabolites (SM) produced 

by microbial species (Patridge et al. 2016). Biosynthesis of these SMs involves assembly 

line-like multi step pathways (Helfrich and Piel 2016; Walsh 2016; Ray and Moore 2016). 

Polyketide, non ribosomal peptides (NRP), ribosomally synthesized and post-translationally 

modified peptides (RiPPs), terpenes are the biosynthetic classes in which these natural 

products (NPs) are generally classified. Genes of enzymes and proteins involved in 

biosynthesis of these NPs are found in clusters in the genomes of the respective producer 

organism. Some of the enzymes are composed of multiple domains that function in tandem 

i.e ketosynthase (KS), adenylation (A), condensation (C) domains. 

As the sequencing costs have dropped and next generation sequencing (NGS) 

throughput has tremendously improved, huge amounts of metagenomic data is currently 

publicly available from databases (Chevrette et al. 2021). This data can be mined to discover 

novel biosynthetic domains, genes and clusters. Currently few tools or pipelines are 

available to explore these metagenomic datasets to explore the biosynthetic diversity and 

potential. We are presenting here MBEZ, a collection of pipelines that we have developed to 

help in exploring the metagenomic datasets for facilitating the discovery of biosynthesis 

genes, domains . 

4.2 Material and Methods 

4.2.1  Microbial community diversity exploration pipeline: 

The inputs to this pipeline can be 16S rRNA gene amplicons or shotgun seq datasets 

(Figure 1). For 16S rRNA amplicons the pipeline uses QIIME2  tool and accomplishes multi-

step analysis involving raw data quality control, denoising, amplicon sequence variants 

computation, taxonomic annotations, correlation analysis, rarefaction analysis (Bolyen et al. 

2019). Bash script and Jupyter notebook of these pipelines is also made available for the 

users to run the analysis with custom threshold parameters. For shotgun seq datasets the 

https://www.zotero.org/google-docs/?Zb3r4l
https://www.zotero.org/google-docs/?Q9Ewq4
https://www.zotero.org/google-docs/?OlICfA
https://www.zotero.org/google-docs/?7r3n1O
https://www.zotero.org/google-docs/?7r3n1O
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pipeline uses Diamond to accelerate the annotation of reads against non redundant protein 

database of NCBI followed by taxonomic classification using NCBI taxonomy (Buchfink, Xie, 

and Huson 2014). 

 

Figure 1: Markmap showing the details of MBEZ pipelines. Integrated tools, requisite inputs, 

resulting outputs, and Use Case/Applications of all the implemented pipelines is depicted. 

Markmap developed using https://markmap.js.org/ 

 

 

 

 

https://www.zotero.org/google-docs/?z6CNwU
https://www.zotero.org/google-docs/?z6CNwU
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4.2.2  BGC domain diversity exploration pipeline: 

The inputs to this pipeline can be KS, A domain amplicons or shotgun seq datasets. For 

BGC amplicon analysis the pipeline can be run using QIIME2, dom2BGC and BiG-MEx 

(Pereira 2020; Pereira-Flores et al. 2021; Tracanna et al. 2021; Bolyen et al. 2019). For 

domain diversity analysis using shotgun seq dataset, the pipeline can be used to profile 

+100 domains using BiG-MEx. 

 

4.2.3  Biosynthesis potential exploration pipeline: 

The inputs to this pipeline should be the assembled metagenomic contigs.  BGC annotation 

is performed separately for each sample using antiSMASH. Sequence similarity network of 

the predicted clusters is performed using BiGSCAPE to quantify frequency of occurrence for 

each BGC class sample (Navarro-Muñoz et al. 2020). Diversity results are displayed as 

boxplots for each BGC class.  

 

4.2.4  Implementation 

MBEZ pipelines are written as bash scripts and can also be run in stepwise manner using 

the available jupyter notebook for each pipeline. Conda, Python and Docker availability is a 

prerequisite for running MBEZ pipelines. QIIME2, BiG-MEx, dom2BGC, MEGAN, 

antiSMASH, BiGSCAPE, DIAMOND, and HMMER have been integrated into different 

pipelines of MBEZ (Huson et al. 2016).  Detailed manual and help documentation is 

available in the GitHub repo. For each pipeline, a demo dataset is made available for the 

ease of testing and interpretation. Existing pipelines can also be customised using the bash 

scripts and jupyter notebooks. 

4.3 Conclusion 

MBEZ fills the gap that was previously there due to unavailability of easy to use 

metagenome mining pipeline for exploring natural products diversity. For advanced users, 

https://www.zotero.org/google-docs/?m2JPOT
https://www.zotero.org/google-docs/?7ZMsEp
https://www.zotero.org/google-docs/?xAsdZ6
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the bash scripts and Jupyter notebooks will be helpful in running the pipeline with custom 

parameters. Overall, MBEZ will facilitate and accelerate the metagenome mining analysis, 

explore natural products domains, BGC diversity and assess biosynthesis potential. 
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Abstract: Discovery of novel antibiotics is crucial for combating rapidly spreading 

antimicrobial resistance and new infectious diseases. Most of the clinically used 

antibiotics are natural products, secondary metabolites produced by soil microbes 

that can be cultured in the lab. Rediscovery of these secondary metabolites during 

discovery expeditions costs both time and resources. Metagenomics approaches 

can overcome this challenge by capturing both culturable and unculturable hidden 

microbial diversity. To be effective, such an approach should address questions like: 

Which sequencing method is better at capturing the microbial diversity and 

biosynthesis potential? What part of soil should be sampled? Can patterns and 

correlations from such big data explorations guide future novel natural products 

discovery surveys? Here we address these questions by a paired amplicon and 

shotgun metagenomic sequencing survey of samples from soil horizons of multiple 

forest sites very close to each other. Metagenome mining identified numerous novel 

biosynthetic gene clusters (BGC), and enzymatic domain sequences. Hybrid 

assembly of both long reads and short reads improved the metagenomic assembly 

and resulted in better BGC annotations. A higher percentage of novel domains was 

recovered from shotgun metagenome datasets than amplicon datasets. Overall, in 

addition to revealing the biosynthetic potential of soil microbes, our results suggest 

the importance of sampling not only different soils but also their horizons to capture 

microbial and biosynthetic diversity and highlight the merits of metagenome 

sequencing methods. 
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Importance: This study helped uncover the biosynthesis potential of forest soils via 

exploration of shotgun metagenome and amplicon sequencing methods and showed 

that both methods are needed to expose the full microbial diversity in soil. Based on 

our metagenome mining results, we suggest revising the historical strategy of 

sampling soils from far-flung places as we found a significant amount of novel and 

diverse BGCs and domains even from different soils that are very close to each 

other. Furthermore, sampling of different soil horizons can reveal the additional 

diversity that remains often hidden and is mainly caused by differences in 

environmental key parameters such as soil pH and nutrient contents. This paired 

metagenomic survey identified diversity patterns and correlations, a step towards 

developing a rational approach for future natural products discovery surveys. 

5.1 Introduction 

One of the major driving forces of the medical revolution in the twentieth century was 

the discovery of antibiotics, which are often derived from secondary metabolites 

produced by microorganisms (Davies and Davies, 2010; Wohlleben et al., 2016). 

These natural products can be categorized based on their biosynthesis pathways. 

Major biosynthetic classes are polyketides (PKS), non-ribosomal peptides (NRPS), 

ribosomally synthesized and post translationally modified peptides (RiPPs), terpenes 

and saccharides. In bacteria the genes that encode these biosynthetic pathways are 

clustered together in the genome, popularly termed as biosynthetic gene clusters 

(BGC). The genes in some of these BGCs encode modular domains and enzymes 

that function in an assembly line-like fashion to produce complex biomolecules. 

Ketosynthase (KS) and Adenylation (A) domains, which have been the focus of this 

study, are involved in the biosynthesis of PKS and NRPS classes of secondary 
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metabolites in bacteria. Studying the gene sequence diversity of these domains aids 

in predicting the chemical structures encoded by BGCs that contain such 

domains(Ziemert et al., 2012). Based on the understanding of the biosynthetic 

chemical logic of these natural products, novel strategies have been developed not 

only to chemically synthesise analogous or derivative molecules, but also to 

accelerate their discovery via genome and metagenome mining methods (Chu et al., 

2020; Sugimoto et al., 2019; Zhang et al., 2017). 

Many natural products have been discovered as well as studied and a collection of 

more than 400,000 of such biomolecules is freely available on publicly accessible 

repositories (Mouncey et al., 2019; Sorokina and Steinbeck, 2020). These 

biomolecules show diverse pharmacological functions such as antibacterial, 

antifungal, anticancer, immuno-modulatory and antiviral activity (Boufridi and Quinn, 

2018). Less characterized is their ecological function. Multiple hypotheses and 

theories have been proposed about the role of secondary metabolites in the lives of 

the microbes that produce them. Some of these bioactive molecules are deployed in 

the arms race against other species in a particular microbial community; others might 

serve as intra-, inter-species, or even inter-kingdom, signalling and communication 

agents or regulate developmental processes (Tyc et al., 2017). 

Most of the antibiotics discovered so far have been isolated from soil microbes, 

specifically those that could be cultured in the lab. As research groups around the 

world started to extensively survey random soils to identify novel antibiotics, they 

experienced the challenge of rediscovering previously characterized antibiotics 

(Baltz, 2008; Silver, 2011). The use of 16S rRNA gene based metagenome profiling 

unveiled the extent of the hidden microbial diversity as only about 1-2 % of all the 

species present in a particular soil sample could be cultured in the lab (Bodor et al., 
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2020; Yarza et al., 2014). The subsequent revolution in next generation sequencing 

technologies made it possible not only to easily sequence the isolated species 

genomes, but also to capture the unculturable microbial diversity using metagenome 

sequencing approaches (Bahram et al., 2018; Delgado-Baquerizo et al., 2018; 

Handelsman, 2004). More recently, long read sequencing technologies, namely 

Oxford Nanopore and PacBio sequencing, have enabled significant improvements in 

assembly of shotgun metagenomes into long contigs. These are a prerequisite for 

the identification of the often very large biosynthetic clusters encoding secondary 

metabolites. One study even reported comparable results by only using MinION 

nanopore sequencing for recovering multiple complete bacterial genomes from 

complex microbial communities within a bioreactor (Arumugam et al., 2019). 

The metagenomic soil surveys reported so far aimed at identifying microbial 

community diversity and patterns, and covered areas spanning from urban green 

spaces, grassland meadows, up to continent-wide scale soil analyses (Bahram et al., 

2018; Crits-Christoph et al., 2018; Delgado-Baquerizo et al., 2018; Thompson et al., 

2017; Wang et al., 2018). Few of them also aimed at identifying the biosynthetic 

domain composition of bacterial natural products but using exclusively amplicon 

sequencing approaches (Borsetto et al., 2019; Crits-Christoph et al., 2020; Elfeki et 

al., 2018; Lemetre et al., 2017; Reddy et al., 2012; Sharrar et al., 2019). Those 

studies were able to identify diversity patterns and correlations between natural 

product diversity and environmental features, thus improving our understanding of 

ecological and evolutionary pressures that drive the distribution of natural products 

across different geographical scales. However, little is known about how sampling 

strategies can be optimized for improved discovery of diverse natural products. 

Those studies that addressed these issues identified distribution patterns of PKS and 
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NRPS based on biomes, types and characteristics of the soil (composition, pH, 

temperature, etc.), as well as geographic distance (Charlop-Powers et al., 2016, 

2015; Morlon et al., 2015; Reddy et al., 2012). However, they analyzed the soil in 

either similar or different ecosystems on a global scale. Moreover, while Morlon 

identified plant community composition as the main driver of natural product 

diversity, Charlop-Powers showed that geographic proximity was more important. In 

fact, soil types and associated soil properties may largely vary even at a local scale 

(i.e. decimeters) due to differences such as in the geological parental material, 

(micro-)relief, or plant community. Also, soil properties may considerably vary 

vertically, as different soil horizons may largely differ in physico-chemical properties 

(e.g. pH, available nutrients, redox conditions, water content) due to pedogenetic 

processes (FAO and IUSS, 2015). As a consequence of such highly diverse micro-

environments, microbial diversity was shown to generally vary by soil depth being 

accompanied by decreasing abundances (Eilers et al., 2012; Fierer et al., 2003; Will 

et al., 2010). Therefore, we speculated that analysis of different soil samples from 

different ecosystems in the same geographical area could provide more insight into 

the fine scale distribution of secondary metabolites and how sampling strategies can 

affect natural product discovery. 

Here we report results from our metagenomics study of different horizons of soil 

sampled from various sites within the Schönbuch Forest, a nature reserve area in 

Southern Germany, using both Nanopore and Illumina NGS sequencing technology. 

Major objectives of this pilot project were a) to compare the natural product domains 

and biosynthesis cluster diversity of different soils and their horizons; b) to recover 

longer metagenome assembled contigs via hybrid assembly of short and long reads 

facilitating discovery of biosynthesis gene clusters; c) to compare the amplicon 
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sequencing and shotgun metagenome sequencing methods; d) to assess correlation 

between microbial community diversity and physico-chemical properties of different 

soils. Our findings indicate that natural product diversity is high in different soils even 

in close proximity to each other, and that sampling the different soil horizons also 

makes a difference. Mining of metagenomic reads led to the detection of many 

known and novel domains involved in the biosynthesis of polyketide and non-

ribosomal peptides. Hybrid assembly of short and long reads led to the identification 

of biosynthesis gene clusters that could have never been detected by short read 

sequencing alone. 

5.2 Results 

5.2.1  Amplicon-seq mining revealed major differences in bacterial diversity 

and their biosynthetic potential in the different soils and their horizon 

In order to understand how the diversity of secondary metabolites changes with the 

type of soil and its horizons, we identified a study area located in the Schönbuch 

forest nature reserve, which is part of the South German Scarplands region (Einsele, 

1986). Soils in this area are characterized by a high diversity due to a variety of 

geological material and landscape morphology. Samples were collected from three 

soil pits representing three characteristic but highly diverse soil types, named 

Cambisol, Podzol, and Stagnosol. All soil pits are located near to each other in a 

straight line within some 150m from each other (Fig. 1A). Soil analysis have shown 

that these soils are heavily layered with very different parameters in each layer, 

studies have shown that the bacterial diversity is changing greatly but no one knows 

about the secondary metabolite diversity (Eilers et al., 2012). In order to get an 

overview of the actual domain diversity of the three different soils, all three soils and 
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their respective horizons were sampled, metagenomic DNA was isolated and 

subsequently sequenced using Illumina amplicon as well as shotgun sequencing 

methods. Additionally, Oxford nanopore sequencing was used to sequence one 

sample. Sample details, study outline, sequencing yields and analysis workflow are 

summarised in Figure 1 and Table S1a-c (see Table S1a-c at 

https://doi.org/10.5281/zenodo.5195507). 
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Figure 1: Geographic location, study outline and analysis workflow. A) Sampling site 

geographic location map of Tuebingen, Germany (Map Data ©2021 Google) . Multiple soil 

horizons from three sites were sampled. Photo depicting the 3 horizons of Cambisol soil. B) 

Sample and sequencing information, See Table S10a (see Table S10a at 
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https://doi.org/10.5281/zenodo.5195507) for details about soil names and profile description. 

C) Amplicon sequencing and analysis workflow, D) Shotgun sequencing and analysis 

workflow} 

Amplicon analysis of specific genes of interest has proven to be an efficient and 

cost-effective strategy for metagenomic analysis. Amplifying specific genes of 

interest allows high coverage of these genes without extensive sequencing. 

Therefore, in a first approach, we explored the microbial diversity and natural 

products domain diversity by sequencing the 16S rRNA gene, A domain and KS 

domain amplicons (biosynthetic diversity indicators) using an Illumina paired end 

sequencing approach. 

 

Figure 2: Microbial composition across 3 sampling sites (Podzol, Stagnosol and 

Cambisol) and 3 soil horizons (O, A and B). A) Bar plot showing taxonomic profile for 

16S rRNA amplicon dataset. B) Bar plot showing taxonomic profile for Shotgun-seq 

dataset. Taxonomic profile at phylogenetic rank of phyla is shown. Top ten phyla are 

depicted in different colours and remaining phyla are grouped as category of 
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"Remainder" depicted in grey colour. Same colours for each phyla are used for side-

by-side visualisation. SILVA rRNA database was used for classifying amplicons and 

maxikraken2 database was used for classifying shotgun-seq reads. 

Taxonomic annotation of the Illumina based 16S rRNA gene Amplicon Sequence 

Variants (ASVs) using the Silva taxonomic database showed that all soil samples 

have a very diverse bacterial composition as expected (Fig.2 and see Table S4a at 

https://doi.org/10.5281/zenodo.5195507). Comparing the taxonomic composition of 

all samples revealed that not only the three different soils but also their various 

horizons differed in their bacterial composition, even on the relatively wide phylum 

level (Fig. 2). Planctomycetes was the most abundant phylum in all three soil 

samples and all horizons. The Chloroflexi phylum was most abundant in the 

Cambisol B horizon with a relative frequency double than that of other soils. By 

comparing the number of ASVs and clustering them to OTUs (operational taxonomic 

units), we noticed that the highest number of OTUs was present in the A horizon of 

Cambisol, which represents the second layer below the surface (see Table S6a at 

https://doi.org/10.5281/zenodo.5195507). In contrast, in Podzol and Stagnosol the 

number of OTUs in the O horizons was higher as compared to the respective A 

horizons. The lowest number of OTUs was found in the Cambisol B horizon, 

indicating that Cambisol contained the most but also the least bacterial diversity of 

the three different soils depending on the horizon. In order to classify A domain- and 

KS domain amplicons into groups that represent distinct chemical classes and 

biosynthetic gene clusters (BGCs), we clustered these amplicons into operational 

biosynthetic units (OBU) (as previously described (Elfeki et al., 2018)). Rarefaction 

curve analysis for both classes of OBUs showed that the curves are still ascending, 

indicating that the full biosynthetic diversity hasn´t been captured yet, in contrast to 
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the taxonomic diversity represented by the 16s rRNA amplicons (Fig 3). Comparing 

the domain diversity of the different soils and their horizons showed that unique KS 

and A domains (ASV clustered at 97% similarity, see Fig 4) were at a maximum in 

the Cambisol B horizon, the soil with the lowest number of OTUs (see Table S6a at 

https://doi.org/10.5281/zenodo.5195507). In order to uncover any possible 

correlation between biosynthetic diversity and taxonomic diversity, we compared 

various alpha diversity indices of KS and A domains with the 16S diversity. The OTU 

alpha diversity, Faith PD, Shannon and Evenness showed high correlation across 

16S and A domain amplicons (see Table S6a at 

https://doi.org/10.5281/zenodo.5195507), whereas there was no clear correlation for 

KS domains, and even negative correlation between evenness of 16S and KS 

domains was observed. 
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Figure 3: Rarefaction curves for 16S rRNA gene amplicons, A domain amplicons and 

KS domain amplicons. The bold curve shows mean value of OTU/OBU at a 

particular sequencing depth for all horizons of a particular site. The faint colour area 

around each curve shows the confidence interval of 67 %. 

In order to disclose any overlap between the different soils, we compared 16S as 

well as KS and A domain amplicons in the different samples using Upset plots (Fig. 

4). This analysis revealed that, while there was an overlap of 42 16S amplicons 

across all the 7 samples, no such degree of sequence similarity was observed for KS 

and A domains. ASVs of these domains were only conserved between samples of 

different horizons of the same site. 
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Figure 4 
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Figure 4: Intersections and distribution of A) 16S, B) KS domain and C) A domain 

(ASVs clustered at 97% similarity). The bar plot (top) in each panel shows 

intersection size (the number of ASVs) in the combinatorial sets of relevant samples. 

The matrix below the bar plot indicates sets of samples that are represented by each 

bar.  

To see if the differences in taxonomic diversity and biosynthetic potential of the 

different soil samples were correlated with the unique soil physico-chemical 

parameters, we calculated alpha diversity (16S and Domains) correlations with the 

soil parameters (see Table S6b at https://doi.org/10.5281/zenodo.5195507). 

Although, we were able to detect some correlations between biosynthetic potential - 

pH showed a close correlation between KS domain alpha diversity measures 

(shannon r=0.75, p=0.05 and evenness, r=0.78,p=0.03), we think that more data are 

needed in order to interpret these results properly. 

5.2.2  Shotgun metagenome mining further uncovered microbial diversity and 

identified novel BGCs 

Amplicon sequencing based studies of the metagenome diversity are an economical 

approach, however, its limitations became evident when we performed shotgun 

metagenome sequencing using Illumina short reads and Nanopore long reads for the 

same samples and compared both methods. 
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Table 1: Taxonomic annotation summary (Tool: kraken2, database: maxikraken2) of 

shotgun-seq Illumina metagenomes 

Name #raw paired 

end reads 

Classified 

reads % 

Unclassified 

reads % 

Microbial 

reads % 

Bacterial 

reads % 

Viral 

reads % 

Podzol-O 113,350,452 43.90 56.10 43.80 42.90 0.01 

Podzol-A 86,440,710 45.80 54.20 45.80 44.90 0.01 

Cambisol-

O 

82,298,268 51.60 48.40 51.60 50.70 0.01 

Cambisol-

A 

71,637,596 50.30 49.70 50.20 49.40 0.01 

Cambisol-

B 

75,654,703 35.30 64.70 35.30 34.40 0.01 

Stagnosol-

O 

64,281,069 52.50 47.50 52.50 51.50 0.01 

Stagnosol-

A 

53,255,349 49.90 50.10 49.90 49 0.01 

 

We used the Kraken2 algorithm in order to annotate the shotgun metagenomes, 

which led to an average of 47.04 percent of classified reads and an average of 52.95 

percent unclassified reads (Table 1). Interestingly, Proteobacteria and Actinobacteria 

were the top 2 annotated phyla amongst all the metagenomes (Figure 2), a result 

which differs greatly from the 16S rRNA gene amplicon annotations. Using the 

unassembled metagenomes, we also used the BiG-MEx software for annotations of 

BGC domains and the diversity analysis. BiG-MEx was able to annotate 150 BGC 
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domains (see Table S5b at https://doi.org/10.5281/zenodo.5195507), most of them 

as A-domains. By performing comparative analysis of KS and A domains captured 

via amplicon and shotgun metagenome sequencing, we found that more than 90 

percent of domains detected in shotgun metagenomes could not be detected using 

amplicon sequencing. More precisely, sequence similarity analysis between domains 

identified via amplicon sequencing and shotgun metagenome sequencing revealed 

the presence of domains unique to each of the methods. 638 KS Amplicon-seq 

amplicons did not show similarity to any of the KS shotgun-seq OBUs, whereas 1571 

A-domain amplicon-seq amplicons did not show similarity to any of the 181,324 A-

domain shotgun-seq OBUs (see Table S9 at 

https://doi.org/10.5281/zenodo.5195507). The alpha diversity comparisons between 

microbial community diversity and biosynthetic domain diversity showed a diverse 

pattern for each domain. We also found no concurrence of these diversity 

correlations between amplicon-seq and shotgun-seq datasets. 

In a next step, we assembled the shotgun metagenome data to recover full 

biosynthetic gene cluster sequences and thus obtain more valuable information 

about the encoded compounds. The metaSPADEs based assembly of Illumina reads 

of all the metagenomic samples led to a total of more than 2 million contigs longer 

than 1kb. The total length of all the contigs exceeded 9 Giga bases, with the largest 

contig of about 3,5 Mega bases. The assembled contigs longer than 10kb were 

analyzed for the presence of BGCs using antiSMASH (version 5). A total of 1102 

BGCs were identified. The detailed biosynthetic class wise breakup of the BGC 

annotation is provided in figure 5. Again, the highest number of BGCs was annotated 

as belonging to the class of NRPSs followed by 262 RiPPs (see Table S7a at 

https://doi.org/10.5281/zenodo.5195507). Podzol O horizon contained a maximum 
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number of 470 BGCs followed by Podzol A horizon with 315 BGCs (Figure 5). In 

contrast to the domain analysis, Podzol samples displayed the maximum number of 

clusters as compared to other sites. However, this might be due to the better 

assembly of Podzol samples as a result of the highest number of reads being 

generated from the O and A horizon of Podzol soil (see Table S1a at 

https://doi.org/10.5281/zenodo.5195507). BiG-SCAPE clustering of the dataset 

composed of Illumina only assembled contigs helped investigate the overlap of 

clusters across the soil. While most of the BGCs were unique to each sample, we 

found only a single Gene Cluster Family (GCF) containing BGCs from each of the 

seven samples. This GCF belongs to the class of terpenes.  
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Figure 5: {Biosynthetic gene cluster abundance distribution. A) BGC abundance 

distribution across soil sampling sites.(grouped according to BiG-SCAPE class). B) 

BGC abundance distribution across soil horizons 

Apart from antiSMASH based BGC discovery, we also explored the machine 

learning based method for novel cluster discovery and annotation. We found around 

22194 putative BGCs in the metagenomic contigs using the DeepBGC tool. For 7295 

of these BGCs the biosynthesis class could be predicted. Biological activity could be 

predicted in 17032 putative BGCs (see Table S8 at 

https://doi.org/10.5281/zenodo.5195507). While the number of the detected BGCs is 

several fold higher than that annotated via antiSMASH, it will be interesting to see 

the wet-lab validation of these clusters in future studies. Although absolute numbers 

of predicted BGCs differ between antiSMASH and DeepBGC, highest number of 

BGCs were predicted in Podzol samples by both these tools. 

5.2.3  Comparative analysis highlights the advantage of long reads to capture 

biosynthetic potential. 

The assembly statistics of the short-read shotgun data helped appreciate its 

advantages and limits. Subsequently, as we were interested in assessing how long 

reads Nanopore data would improve the recovery of BGCs, we performed a 

metaSPADES based hybrid assembly of Illumina and Nanopore reads of the 

Cambisol A metagenome. The hybrid assembly substantially enhanced the overall 

length of the contigs and the number of longer contigs. We found seven times more 

hybrid contigs of length greater than 50 kb as compared to the Illumina only contigs 

of same length. The largest hybrid contig was of 598,670 bases (see Table S3a and 

S3b at https://doi.org/10.5281/zenodo.5195507). AntiSMASH analysis resulted in the 
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annotation of 169 BGCs among the hybrid contigs longer than 10 Kb. This is more 

than double the number of BGCs that were found in Illumina only contigs. A total of 

1026 BGCs were even annotated in the hybrid contigs with lengths greater than 1 

kb. Comparison of metagenomic contig length (Illumina only versus hybrid data) 

revealed substantial improvements with the hybrid assembly approach (see Table 

S3a and S3b at https://doi.org/10.5281/zenodo.5195507. In several instances hybrid 

assembly enabled the extension of Illumina contigs containing BGCs, thus making it 

possible to determine whether resistance markers or regulator-encoding genes were 

present within the clusters. We found more than two fold more BGCs in hybrid 

contigs that were not on contig-borders as compared to illumina only contigs 

detected via antiSMASH annotation. We also performed BiG-SCAPE clustering of all 

BGCs from Illumina and hybrid metagenomes to identify BGCs that were detected in 

multiple samples. This analysis led to the identification of 1803 GCFs. 1625 GCFs 

contained only single members (see Table S7b at 

https://doi.org/10.5281/zenodo.5195507). 

5.3 Discussion 

Soil formation is a slow process: depending on climatic conditions; it might take 

several hundred years to form just a centimeter layer of soil. While most of the 

antibiotics discovered so far have been largely isolated from culturable microbes in 

random sampling of topsoils, the immense metabolic diversity of unculturable 

microbial dark matter in both, topsoils and deeper soil horizons, has remained largely 

hidden (Durand et al., 2019). As the depth of soil increases, the organic and 

inorganic chemical constituents and morphology of soil change drastically creating 

micro-environments that can accelerate the evolution of novel microbial species 
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(Wilpiszeski et al., 2019). To capture the biosynthetic novelty of all such microbes, 

those that were born due to serendipitous events and those that survived the so 

called microbial arms race, we decided to broaden the soil surveys not only to 

include soils from different sites but also to cover sampling of diverse soil horizons 

(Hao et al., 2021). Our study is also unique in that it used both, amplicon sequencing 

and shotgun metagenome sequencing of the same soil samples to determine the 

biosynthetic potential that a particular site and ecosystem hold, and to discover novel 

natural products domains and BGCs (Figure 1). 

Although few species were ubiquitously present across all the sites and all the soil 

horizon layers, a significantly higher proportion of OTUs/species were seen to be 

unique to individual samples (Figure 4a). BGC domain diversity and distribution 

observed across all the samples indicate higher overlap within a particular sampling 

site than across sites (Figure 4b and 4c). Our survey of multiple soil horizons from 

multiple sites helped appreciate the presence of high vertical diversity (differences 

between O, A and B horizons of each soil type) emphasizing the importance of 

sampling not only different geographical sites but also the vertical diversity present in 

different soil horizons. This is in line with previous findings based on 16S rRNA 

analysis (Eilers et al., 2012). The reasons behind such a great diversity across sites 

could be attributed to the variable environmental conditions (Will et al., 2010). For 

example, Podzol is an extreme nutrient-poor, acidic and water-scarce environment 

where microbial decomposition of the tree litter is so much hampered that a thick 

organic litter layer sits on top of the topsoil (i.e. A-horizon); in the Stagnosol‘s A and 

B horizon, instead, the water dynamics can entirely fall dry during summer, changing 

the redox from reducing to oxic. 
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Drastic deviations in estimating microbial composition via both 16S amplicon-seq 

and shotgun-seq have been previously reported (Brumfield et al., 2020; Jovel et al., 

2016). In our study, Planctomycetes emerged as the major phylum in the amplicon-

seq analysis while Proteobacteria and Actinobacteria were the predominant phyla in 

the shotgun-seq analysis (Figure 2). This deviation could be attributed to primer and 

PCR bias of the 16S amplicon method (Brumfield et al., 2020; Jovel et al., 2016) and 

to the different bioinformatics workflows (Balvočiūtė and Huson, 2017). Also, the 

sequencing depth in studying the microbial composition via 16S amplicon 

sequencing appeared to be sufficient and saturating as per the rarefaction curves 

(Figure 3). Subsequent shotgun metagenome sequencing analysis of the same 

samples revealed that amplicon-based analysis underestimated the alpha diversity 

of the samples. 

Although we hoped to find unique patterns of correlations between microbial 

community diversity and biosynthetic diversity, our results of both amplicon-seq and 

shotgun-seq datasets only revealed few correlations with few biosynthetic gene 

domains. We speculate that these patterns would become more evident as more 

optimised amplicon primers, capable of amplifying additional biosynthetic genes and 

their domains, would become available. In case of shotgun-seq datasets, higher 

depth of sequencing of the samples would not only help in recovering more full 

length BGCs but also help in revealing biosynthesis domain diversity patterns. Better 

software tools capable of handling such high volume of data would be required to 

mine the biosynthetic diversity patterns. 

Assembly of shotgun-seq Illumina reads followed by antiSMASH annotation led to 

the discovery of 1102 BGCs. Proteobacteria, Acidobacteria and Actinobacteria were 

the major phyla to which many of these BGCs were taxonomically annotated. 
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Distribution patterns of BGC classes across the sampling sites and soil horizons, 

show that the Podzol site has the maximum BGCs (Figure 5). BGC abundance 

distribution was observed more in sampling site-wise comparison than soil layer-wise 

comparison. BGC clustering analysis also revealed how different the various 

samples and horizons are as only a single BGC was found to be present across all 

the samples (see Figure S1 at https://doi.org/10.5281/zenodo.5195507). Hybrid 

assembly of Illumina short reads with nanopore long reads led to the recovery of 

complete BGCs in some cases, enabling the identification of the regulatory genes 

and resistance genes in the vicinity of the identified BGCs. Such proximity analysis 

can be helpful in prioritizing the BGCs for e.g., the characterization of the encoded 

compounds in heterologous expression systems (Mungan et al., 2020). Machine 

learning based annotation of assembled contigs using DeepBGC led to identification 

of even more putative BGCs. For many of them, however, the biosynthesis class and 

activity could not be predicted, likely as a consequence of the low similarity between 

these novel BGCs and those used for DeepBGC training. 

Amplicon sequencing and shotgun metagenome sequencing both are important 

when aiming for novel domain discovery as we observed unique domain sequences 

with each of the methods (see Table S9 at https://doi.org/10.5281/zenodo.5195507). 

For both KS and A domains, 90 percent more domain sequences were identified in 

shotgun datasets as compared to amplicon datasets, highlighting the immense 

biosynthesis potential that has yet to be discovered. As the costs of shotgun 

metagenomic sequencing are still prohibitive and make these methods accessible to 

only a few, our shotgun results will be useful to design domain sequence-based 

primers that are not biased to a particular genus and can be used for massive, 

amplicon-based diversity surveys. 
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Our study helped capture the snapshot of microbial diversity and metabolic novelty 

from the soils sampled on a single day. However, the limited number of samples, 

made it hard to draw meaningful biological conclusions from the observed 

correlations between the diversity of BGCs and soil physico-chemical parameters. 

Large-scale and more systematic sampling across changing weather or seasons will 

be necessary to capture the true dynamics and complete diversity. We were not able 

to recover metagenome assembled genomes (MAGs) due to sequencing volume 

limitation. Considering the massive diversity present in soil, hundreds if not 

thousands of gigabases would be required to reach a stage to claim complete 

coverage of all the species genome in a particular metagenome sample (Rodriguez-

R et al., 2018). Reaching terabase scales (10  ) is not only a current economical 

bottleneck, but also it calls for better metagenome assembly algorithms that are both 

space and time efficient. Alternatively, novel methods that uses live-FISH 

(fluorescence in situ hybridization) combined with FACS (fluorescence-activated cell 

sorting) has been reported to be capable of isolating live bacteria solely based on 

their 16S rRNA gene sequence (Batani et al., 2019). In future, using such novel 

methods it will become possible to accelerate the BGC discovery from candidate or 

novel phyla present in densely rich soil samples. 

Some of the BGCs discovered in this study are currently being explored for further 

heterologous expression and structure elucidation in our laboratory. All the data 

resources generated here have been shared in the public domain to facilitate further 

experiments and analysis by the natural products research community. It will be a 

herculean task to explore and map the complete chemical space that natural 

products cover on the entire earth. Our metagenomic data give a glimpse of the 

immense microbial and biosynthetic diversity that exists even in the next door soils. 
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5.4 Conclusion 

Overall, this study helped uncover the biosynthesis potential of the Schönbuch forest 

soil by combining metagenome and amplicon sequencing. This paired strategy 

helped identify more novel BGC domains than it would have been possible with only 

either of the sequencing methods. Our analysis also confirmed the limitations of 

amplicon sequencing, which is extremely powerful in providing a glimpse of the 

microbial and biosynthetic diversity in soil samples, but this is biased to sequences 

that are abundant in the samples and to the chosen primers. We show that a 

shotgun metagenome approach is able to overcome these limitations and better as 

compared to the amplicon-based approach at capturing the microbial diversity. The 

additional use of Nanopore sequencing data for one of the soil samples allowed us 

to improve metagenome assembly and to recover novel BGCs. Nonetheless, long 

read sequencing remains too costly to be routinely used in soil surveys of microbial 

and BGCs diversity. Physico-chemical parameters that correlate with the domains or 

BGC diversity will help develop a rationale to guide such explorative surveys. In the 

future, sequencing terabases of metagenomes might become feasible and 

economical. At such sequencing depths we might then only be limited by 

heterologous expression and functional validation of novel natural products. 

Probably such a foreseeable future is just a decade away. Until then, the approaches 

and rationale developed here will help fuel the drug discovery pipeline to combat 

antimicrobial resistance. 
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5.5 Methods 

5.5.1  Soil sampling, physico-chemical parameters characterization. 

The sampled Schönbuch forest soils developed from Lower and Middle Triassic 

Keuper sequences, which locally comprise thin sequences of sandstones and 

evaporitic marlstones, as well as aeolian (loess), colluvial, and alluvial deposits 

(Einsele, 1986; Grathwohl et al., 2013) . The soils were described and classified 

according to the classification system of the Food and Agriculture Organization of the 

United Nations (Jahn et al., 2006) and IUSS Working Group WRB (FAO and IUSS, 

2015). Differences concerning the geochemistry (i.e. pH and CaCO3 concentrations) 

of the geological soil parent material resulted in highly different soil types, which 

were explicitly taken into account in this study. The first soil pit, located at the top-

slope of a south-exposed slope was classified as a Podzol, which has developed 

from a sandstone outcrop. The second soil was classified as a Cambisol, which has 

developed from sandstone mixed with aeolian deposits (loess). The third soil was a 

Stagnosol, which has formed from a clay-rich marl. See Table S10a for further 

details on the soil profiles (see Table S10a at 

https://doi.org/10.5281/zenodo.5195507). Sampling was carried out horizon-wise. 

Bulk samples were taken from the soil genetic horizons for geochemical analyses, 

comprising the mineral topsoil (A horizon) and mineral subsoil (B horizon). For 

simplification, the organic litter layers (Oi and Oe) that cover the mineral soil horizons 

were combined as one bulk sample per site. Carbon and Nitrogen measurements: 

Dried (40°C) litter and fine soil ( 2mm) samples were homogenized with a planetary 

ball mill (Pulverisette 5, Fritsch Idar-Oberstein, Germany). Total C and N 

concentrations were measured by a CNS elemental analyser (Vario EL III, Elementar 
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Analyse systeme GmbH, Langenselbold, Germany). For details regarding detection 

limits and quality controls, see Table S10b (see Table S10b at 

https://doi.org/10.5281/zenodo.5195507). 

X-ray fluorescence: To determine the major element concentrations in fine mineral 

soil samples of A and B horizons, glass beads of a homogenized mixture of 1.5 g 

dried and powdered sample material and 7.5 g lithium tetraborate were fused at 

1050 °C for 30 min. On Bruker AXS Pioneer S4, glass beads were analyzed by 

wavelength dispersive X-ray fluorescence (XRF). 

ICP-OES: To determine concentrations of major and trace elements in O horizon 

soils, litter samples were dissolved by an acid pressure digestion system (Loftfield 

PDS-6, Loftfield Analytical Solutions, Neu Eichenberg, Germany). Therefore, 

homogenized sample material (target weight: 0.05g) was transferred into Teflon 

pressure beakers before adding 4mL HNO3 conc. (65%, Merck KGaA, p.a.   98%). 

After heating for seven hours at 180°C, digestion solutions were filtered (MN 619 G¼ 

Ø185mm, Macherey-Nagel, Düren, Germany) and diluted with Millipore water 

(Synergy UV ultrapure, Millipore) to a final volume of 50 mL. The digests were finally 

analysed by an inductively coupled plasma optical emission spectrometer (ICP-OES 

Optima 5300 DV, PerkinElmer, Wellesley USA) according to EN ISO 11885. To 

check for accuracy and precision of the digestions, the two certified reference 

materials BCR-129 (hay powder) and BCR-141 (plankton) were used. Based on the 

measured average concentration values and the target values, recovery rates were 

calculated for each element (see Table S10c at 

https://doi.org/10.5281/zenodo.5195507). Despite a good reproducibility (RSD of 5 to 

11%), most major and trace elements in BCR-129 and 141 were systematically 

underestimated (up to 30%, see Table S10c at 
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https://doi.org/10.5281/zenodo.5195507), which is why correction factors were 

calculated and applied to the other samples. Additional analytical information is 

provided in Table S10c (see Table S10c at https://doi.org/10.5281/zenodo.5195507). 

All vessels used were soaked in 10% HCl overnight and rinsed with Millipore water 

prior use. 

Soil sampling for Nanopore/Illumina sequencing: The A horizon of the soil type 

Cambisol used for high molecular weight (HMW) DNA isolation for subsequent 

sequencing was sampled from the Schönbuch forest in November 2016, transported 

to the lab and stored at -20 °C. 

Soil sampling for Illumina and amplicon sequencing of 7 soil samples: The O and A 

horizon of the soil types Podzol and , Stagnosol as well as the O, A and B horizon of 

Cambisol soil were sampled from the Schönbuch forest on May 3, 2019. Samples 

were collected using a soil probe, transported to the lab and stored at -20°C. To 

obtain the fine soil fraction, all soil samples were passed through a coarse mesh 

screen (1.2 x 1.2 cm) and subsequently a fine mesh screen (2 x 2 mm) prior to 

metagenomic DNA isolation. 

5.5.2  Metagenome sequencing. 

Isolation of HMW DNA from the A horizon of Cambisol for Nanopore sequencing run 

1: HMW DNA was isolated from thawed fine soil samples using a published protocol 

(Brady 2007) with the following modification to increase the purity of the isolated 

DNA: After electroelution of the DNA out of the gel and into the dialysis bag, the 

dialysis bag was incubated in 0.5X TE buffer overnight before following the next 

steps of the protocol. Library preparation and Nanopore sequencing of the isolated 

DNA was performed by genXONE Inc. on a GridION device. 
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Isolation of HMW DNA from the A horizon of Cambisol for Illumina sequencing: For 

Illumina sequencing the above described DNA sample was further purified using the 

spin columns of the PowerLyzer PowerSoil DNA Isolation Kit (MO BIO Laboratories, 

Inc., #12855-100) and following an alternative protocol that was provided by MO 

BIO: The DNA sample isolated for Nanopore sequencing run 1 was filled up to 

650  μl with H2O, and 650  μl of solution C4 and 650  μl of 100% ethanol were 

added. 650  μl of the mixture was loaded at a time on a MO BIO spin column and 

DNA was bound in three steps by centrifugation. The membrane was washed with 

650  μl of 100% ethanol and subsequently with 500  μl of solution C5. The spin 

column was dried by centrifugation for 2 min at full speed and transferred to a clean 

tube. DNA was eluted with H2O. Library preparation (TrueSeq DNA PCR-Free) and 

Illumina sequencing was performed by CeGaT GmbH on a NovaSeq 6000 PE150. 

Isolation of HMW DNA from the A horizon of Cambisol for Nanopore sequencing run 

2: HMW DNA was isolated from 6 x 5g of thawed fine soil using a published protocol 

(Verma, Singh et al. 2017) with the following modifications to increase DNA yield and 

purity: After dissolving the dried pellets in 1 ml of 1X TE buffer, 1  μl of RNase I was 

added and incubated for 30 min at 37 °C before following the next steps of the 

protocol. In addition to precipitating the DNA with 0.7 volumes of isopropanol, 0.1 

volumes of 5 M sodium acetate were added. After completing the protocol, the DNA 

was further gel purified as described by Brady (Brady, 2007) with adding a dialysis 

step in 0.5X TE overnight after electroelution of the DNA out of the gel and into the 

dialysis bag. Library preparation (native ligation sequencing kit, SQK-LSK109) and 

sequencing was performed by the NGS Competence Center Tübingen (NCCT) on a 

PromethION device. 
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Isolation of metagenomic DNA from 7 soil samples for Illumina sequencing: 

Metagenomic DNA was isolated from the O and A horizon of the Podzol, Cambisol 

and Stagnosol using the PowerLyzer PowerSoil DNA Isolation Kit (MO BIO 

Laboratories, Inc., #12855-100) and following an alternative protocol that was 

provided by MO BIO: 250 mg of each thawed fine soil sample was added to dry 

glass bead tubes and 500  μl of bead solution and 200  μl of 

phenol/chloroform/isoamyl alcohol were added followed by 60  μl of solution C1. 

Cells were opened using a Precellys 24 device (6500 rpm, 2 cycles of 20 seconds 

with 5 seconds pause) followed by centrifugation to the pellet. The supernatant was 

transferred to a new tube and 5  μl of RNase A were added as an additional step not 

mentioned in the protocol. 250  μl of solution C2, followed by 100  μl of solution C3 

were added and mixed. The mixture was incubated for 5 min at 4 °C and 

subsequently centrifuged to the pellet. The supernatant was transferred to a new 

tube and 650  μl of solution C4 and 650  μl of 100% ethanol were added. 650  μl of 

the mixture was loaded at a time on a MO BIO spin column and DNA was bound in 

three steps by centrifugation. The membrane was washed with 650  μl of 100% 

ethanol and subsequently with 500  μl of solution C5 in case of non-stained 

membranes. In the case of brown membranes, a mixture of 300  μl solution C4 and 

370  μl 100% ethanol were used to wash the membrane before washing with 100% 

ethanol and solution C5. The spin column was dried by centrifugation for 2 min at full 

speed and transferred to a clean tube. DNA was eluted with H2O. Metagenomic 

DNA from the B horizon of the Cambisol was isolated following the protocol of 

Verma, Singh et al. (Verma et al., 2017) with the above mentioned modifications. 

Library preparation (TrueSeq DNA PCR-Free) and Illumina sequencing was 

performed by CeGaT GmbH on a NovaSeq 6000 PE150. 
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Amplicon sequencing: Isolated metagenomic DNA of the 7 soil samples and 

published degenerate primers that recognize conserved regions in NRPS A domains 

(Adom_fw:GCSTACSYSATSTACACSTCSGG; 

Adom_rv:SASGTCVCCSGTSCGGTAS) (Pimentel-Elardo et al., 2012), PKSI KSI 

domains (KSI_fw:CCSCAGSAGCGCSTSYTSCTSGA; 

KSI_rv:GTSCCSGTSCCGTGSGYSTCSA) (Ginolhac et al., 2004) and 16S rRNA 

genes (16S_fw:CCTACGGGNGGCWGCAG; 

16S_rv:GACTACHVGGGTATCTAATCC) (Klindworth et al., 2013) were used to 

generate amplicons via PCR. Concentrations of the DNA extracted from each of the 

7 soil samples was measured using Qubit 3.0 Fluorometer and adjusted to 1.5 ng/ μl. 

PCR was performed using the Q5 High-Fidelity DNA Polymerase Kit (NEB) with the 

following reaction setup for a 25  μl reaction: 5  μl of 5X Q5 Reaction Buffer, 0.5  μl of 

10 mM dNTPs, 0.5  μl of 10  μ Fw/Rv Primer, 3  μl of template DNA, 0.25  μl of Q5 

High-Fidelity DNA Polymerase, 5  μl of 5X Q5 High GC Enhancer and 10.25  μl of 

nuclease-free water. The following thermocycling conditions were used: 98 °C for 30 

sec followed by 30 cycles of 98 °C for 10 sec, 58.5 °C (A domain) or 68 °C (KSI 

domain, 16S rRNA gene) for 30 sec, 72 °C for 20 sec and a final step with 72 °C for 

2 min. For each soil and primer pair, four 25  μl reactions were performed. 5  μl of 

each was analyzed via agarose gel electrophoresis and the remaining volume of the 

samples (20 μl each) were pooled. Pooled A domain and pooled 16S rRNA gene 

amplicons for each soil were purified using the QIA quick PCR purification Kit (50) 

following the manufacturer‘s instructions. Pooled KSI domain amplicons were gel 

purified using the QIAquick Gel Extraction Kit (QIAGEN) following the manufacturer‘s 

instructions. Sequencing was performed by the NGS Competence Center Tübingen 

(NCCT) on a MiSeq System. 
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5.5.3  Shotgun-seq Analysis. 

Shotgun metagenome analysis: The shotgun Illumina and Nanopore reads were 

checked for sequence quality and adapter sequences using FastQC tool. To assess 

the advantages of using both short and long reads for recovering metagenomic 

BGCs, we performed both individual technology specific reads assembly as well as 

hybrid assembly. Illumina reads were assembled using metaSPADES (version 

3.11.1) using default parameters (Nurk et al., 2017) . Hybrid assembly of Illumina 

and Nanopore reads were performed using metaSPADES (De Maio et al., 2019). 

Assembly comparisons were performed using the QUAST tool (Gurevich et al., 

2013). Taxonomic Annotation and abundance estimation analysis was performed 

both on reads and assembled contigs. Accelerated BlastX annotations against NCBI 

non redundant proteins database was done using Diamond (version 0.9.24) 

(Buchfink et al., 2014). Alignment free fast taxonomic annotation tool Kraken2 with 

maxikraken2 database (available from 

https://lomanlab.github.io/mockcommunity/mc_databases.html) was also used to 

annotate the taxonomy of reads and assembled metagenomes (Wood et al., 2019). 

Natural products biosynthesis domains and cluster annotation and diversity analysis: 

Using the BiG-MEx tool, we performed the BGC domain annotation and diversity 

analysis (Pereira, 2020). Annotation of 150 domains involved in biosynthesis of 

natural products was done.The assembled contigs with length greater than 10 kb 

were run through a local installation of the antiSMASH pipeline (version 5) for 

identifying the BGCs (Blin et al., 2019). For more focused annotations of KS and C 

domains, NaPDoS online server was used (Ziemert et al., 2012). BGCs were 

clustered using BiG-SCAPE with default parameters(Navarro-Muñoz et al., 2020). 

GCFs containing MIBiG (version 2.0 ) BGCs were considered closer to known BGC 
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products (Kautsar et al., 2020). The assembled contigs were also annotated using 

DeepBGC tool to predict novel BGCs based machine learning method (Hannigan et 

al., 2018). 

5.5.4  Amplicon-seq Analysis. 

Amplicon Analysis (Microbial Abundance and Diversity): The QIIME2 (version 

2019.4) "Moving Pictures" tutorial steps were mostly followed for 16S Amplicons 

analysis (Bolyen et al., 2019). DADA2 was used to process both sequencing reads, 

leading to longer Amplicon Sequence Variants (ASV) (Callahan et al., 2016). DADA2 

pipeline performed quality filtering, denoising and chimera detection (see Table S2 at 

https://doi.org/10.5281/zenodo.5195507). The ASVs were clustered into OTU by 

vsearch plugin available in QIIME2 at 97% identity by the de-novo clustering method. 

OTUs were classified using Naive Bayes classifier with the Silva database (version 

132) (Quast et al., 2013). Subsequently, the maftt based multiple sequence 

alignment of features was performed which was used for phylogenetic tree 

construction via FastTree (Price et al., 2010). Q2-diversity plugin based alpha 

diversity and beta diversity analysis was performed to compute Shannon, Faith PD, 

OTU, Evenness alpha diversity indices and Jaccard, Bray-curtis, and UniFrac beta 

diversity distances . 

Amplicon Analysis (BGC Domain Abundance): Amplicons of AMP-binding domain 

and KS domain were analyzed using QIIME2 pipeline steps described above for 16S 

amplicon analysis with modifications as described in the following text. Only read1 

sequences were used as there was no overlap with read 2 and the relative quality of 

read 2 was bad. HMM search was performed using domain specific HMM models 

available via antiSMASH tool. Only the features matching the HMM models at default 
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thresholds were further analysed. ASVs were clustered at 97% identity using q2-

diversity plugin. KS domain sequence amplicons were further annotated using 

NaPDoS to identify putative pathway products. Domains matching with NaPDoS 

database domains with less than 85 % identity were considered to be putative novel 

domains. 

Comparison of amplicon-seq and shotgun-seq identified BGC domains: All the 

shotgun-seq domains identified for each sample after the BiG-MEx analysis, were 

concatenated. Using Dedupe script from BBTools (version 37.62), domains were 

deduplicated at 85 percent identity. Amplicon-seq domains were mapped on the 

deduplicated domains from shotgun-seq using BWA and SAMtools to identify 

common and unique domains. 

Statistical analysis. Spearman rank correlation was computed between alpha 

diversity indices of 16S, A domain and KS domains. Similarly, correlation was also 

computed between alpha diversity indices and soil physico-chemical parameters. R 

version 3.6.2 and Rstudio were used to compute the statistical significance and 

correlation. The ggplot2 package was used to develop the boxplots (Wickham, 

2011). Upset plots were developed using online UpSetR Shiny App webserver (Lex 

et al., 2014). qiime2R package, Pavian (Breitwieser and Salzberg, 2020) and 

Seaborn python visualisation library were used to plot the taxonomic profile and 

rarefaction curve. 
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  Metagenomic big-data explorations Chapter 6:

of natural products diversity in diverse 

ecosystems 

 

This chapter covers the biosynthesis potential survey of diverse ecosystems and is 

divided in following parts: 

 

Part I: Manuscript — Evaluating the Distribution of Bacterial Natural Product 

Biosynthetic Genes Across Lake Huron Sediment 

 

Part II: Dynamics of the human gut secondary metabolome during antibiotic 

treatment.  

 

Part III: Using linked reads and long reads to recover biosynthetic gene 

clusters from Tuebingen strain collections.  
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Genes Across Lake Huron Sediment. 
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Abstract 

Environmental microorganisms continue to serve as a major source of bioactive natural 

products (NPs) and as an inspiration for many other scaffolds in the toolbox of modern 

medicine.  Nearly all microbial NP-inspired therapies can be traced to field expeditions to 

collect samples from the environment. Despite the importance of these expeditions in the 

search for new drugs, few studies have attempted to document the extent to which NPs or 

their corresponding production genes are distributed within a given environment. To gain 

insight into this, the geographic occurrence of NP ketosynthase (KS) and adenylation (A) 

domains was documented across 53 and 58 surface sediment samples, respectively, 

covering 59,590 square kilometers of Lake Huron. Overall, no discernable NP geographic 

distribution patterns were observed for 90,528 NP classes of nonribosomal peptides and 

polyketides detected in the survey. While each sampling location harbored a similar number 

of A domain operational biosynthetic units (OBUs), limited overlap of OBU type was 

observed, suggesting that at the sequencing depth used in this study, no single location 

served as a NP ‗hotspot‘. These data support the hypothesis that there is ample variation in 

NP occurrence between sampling sites and suggests that extensive sample collection efforts 

are required to fully capture the functional chemical diversity of sediment microbial 

communities on a regional scale.  

6.1 Introduction  

The preparation of Pyocyanase in 1899 and the discovery of bioactive natural 

products (NPs) penicillin and gramicidin in 1928 and 1939, respectively, marked the 

beginning of modern microbial drug discovery efforts.(Aldrich, 1999; Emmerich and Löw, 

1899; Fleming A., 1929; Gause and Brazhnikova, 1944) Since then, environmental 

microorganisms have served as a major source of bioactive NPs and as an inspiration for a 

plethora of therapeutic scaffolds. These small molecules have generated therapies for an 

array of diseases such as cancer, bacterial infections, immune disorders, and others, as 

34% of FDA approved drugs from 2000 to 2014 were NPs or NP-derived.(Newman and 
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Cragg, 2020) Importantly, nearly all of these microbial NP-inspired therapies resulted from 

field expeditions to collect samples from the environment. In general, these field expeditions 

have been guided by the hypothesis that environments in diverse geographic locations 

contain different ecological pressures, and as a result harbor minimally-overlapping 

populations of NP biosynthetic pathways.(Cheng et al., 2015; Clardy et al., 2009; Fischbach 

and Walsh, 2009)  

Despite the importance of sample collection expeditions toward the search for new 

drugs, few studies have attempted to document the extent to which NPs or their 

corresponding production genes are distributed in any given environment. Charlop-Powers 

et al. compared the NP biosynthetic potential of soil samples from a diverse array of 

environmental microbiomes.(Charlop-Powers et al., 2015) Their analyses of 185 soil 

microbiomes collected from five continents suggested that geographic distance and local 

environment contributed to biosynthetic diversity differences observed between 

samples.(Charlop-Powers et al., 2015) Additionally, Lemetre et al. found that changes in 

latitude correlated with changes in biosynthetic domain composition within soil samples on a 

continent-wide scale.(Lemetre et al., 2017) Borsetto et al. correlated the observed 

differences in biosynthetic gene cluster (BGC) diversity in a range of soils within 

metagenome data, with the microbial community present at each site and with geographic 

location, and suggested that environmental variables influence the biosynthetic potential at a 

given site.(Borsetto et al., 2019) Similarly, Sharrar et al. found that patterns of abundance of 

BGC types varied by taxonomy in soil bacteria, and that bacteria with higher biosynthetic 

potential were associated with specific types of soil vegetation.(Sharrar et al., 2020) These 

studies demonstrate that biosynthetic domain composition can differ with changing 

geography and/or variables within the soil. Thus, characterizing the geographic distribution 

of NP-producing BGCs at a finer geographical resolution will inform front-end discovery 

practices such as sample collection and microbial library generation, which traditionally have 

a high degree of uncertainty.(Hernandez et al., 2021) 
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Due to decreasing sequencing costs and availability of online tools, probing microbial-

based chemical diversity in nature has become attainable without relying on cultivation 

techniques. To gain insight into how specific NP classes are distributed in an environment, 

the occurrence of NP domains was characterized in up to 58 surface sediment samples 

covering a 59,590 square kilometer region in Lake Huron. Ketosynthase (KS) domains from 

polyketide synthases (PKS) and adenylation (A) domains from nonribosomal peptide 

synthetase (NRPS) were examined, as they represent conserved domains within two 

common classes of NPs that often encode for the production of antibiotics, siderophores, 

and other bioactive compounds. The current study provides preliminary evidence that there 

is substantial variation in NP composition between sampling sites on a regional scale and 

suggests that extensive sample collection efforts will be required to fully capture the BGC 

diversity that exists in sediment. Investigating BGC distribution patterns and dynamics in 

Lake Huron represents an essential initial step toward the design of a more methodical 

environmental sample collection approach, a critical front-end process that has been largely 

unchanged since antibiotic discovery efforts began in the early 20th century. 

6.2 Results and Discussion 

6.2.1 . Characterization of BGC Domain Sequence Diversity in Sediment  

In August and September of 2014, 59 samples were collected from Lake Huron – a 

geographic region that spans 59,590 square kilometers (Annexure B, Table S1). To confirm 

the bacterial diversity present represents populations that commonly occur in freshwater 

systems, the taxonomic diversity of bacteria at each site was assessed using microbial 16S 

rRNA gene amplicons (Annexure B, Supp. Experimental Procedures). Results were 

congruent with those of typical lake bacterial populations (Annexure B, Supp. Table 

S4).(Newton et al., 2011)To assess the composition of NP domains at each collection site, 

previously designed degenerate primers were used to amplify the KSα domain for PKS 

II(Metsä-Ketelä et al., 1999) and the A domain for NRPS genes from genomic DNA (gDNA) 



 88 

extracted from sediment samples.(Ayuso-Sacido and Genilloud, 2005) The KSα and A 

domains were selected because they are among the most conserved catalytic domains of 

the PKS type II and NRPS gene clusters respectively. Furthermore, this sequence 

conservation has yielded primer sets for PCR amplification(Ayuso-Sacido and Genilloud, 

2005; Ginolhac et al., 2004; Metsä-Ketelä et al., 1999) as well as bioinformatic tools and 

databases to facilitate the annotation and prediction of NPs.(Kautsar et al., 2020; Weber and 

Kim, 2016)  

The selected conserved regions were PCR-amplified from genomic DNA using a two-

stage PCR protocol, as described previously.(Naqib et al., 2018) Briefly, 613 bp fragments of 

KSα (β-ketoacyl synthase) and 700 bp fragments of NRPS A domains were amplified using 

degenerate oligonucleotides, respectively.(Ayuso-Sacido and Genilloud, 2005; Metsä-Ketelä 

et al., 1999) All primers were synthesized with a locus-specific sequence as well as a 

universal 5′ tail.(Naqib et al., 2018) Resulting sequences were filtered using profile hidden 

Markov models (pHMMs) downloaded from antiSMASH‘s HMM detection modules to 

remove non-specific sequences.(Blin et al., 2019) These models are based on known and 

predicted KSα and A domain architectures.(Adamek et al., 2019) Filtered sequences were 

then clustered at 85% similarity to approximate compound class designations and to avoid 

overestimation of chemical diversity in sediment.(Elfeki et al., 2018) Sequences were 

extracted from the manually curated and annotated BGC database MIBiG(Kautsar et al., 

2020), subjected to different clustering thresholds, and evaluated for their ability to group 

according to similar biosynthetic origins/molecular products. The optimal clustering threshold 

fluctuated and was dependent on the specific compound class and ranged from 80% to 

90%. Therefore, analysis proceeded using an 85% similarity threshold. At 85% similarity, the 

sequence groupings – or operational biosynthetic units (OBUs) – represent an estimation of 

compound classes. To further scrutinize this clustering method, amplicons from a control 

Streptomyces strain, Streptomyces coelicolor A3(2), were subjected to this process (see 

Methods section 4.5).(Bentley et al., 2002) S. coelicolor A3(2) produces two KSα domain-

containing compounds (actinorhodin and a spore pigment) and twelve A domain-containing 
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compounds (CDA1b, CDA2a, CDA2b, CDA3a, CDA3b, CDA4a, CDA4b, coelibactin, 

coelimycin P1, undecylprodigiosin, SCO-2138, and a putative tris-hydroxamate tetrapeptide 

iron chelator coelichelin).(Bentley et al., 2002; Lautru et al., 2005) Analysis of S. coelicolor 

A3(2) amplicons at 85% similarity yielded two KSα domain OBUs and fifteen A domain 

OBUs, and confirmed this as a suitable threshold to organize 300 bp fragments into groups 

that represent compound classes.  

Of the 59 sediment samples, 6 from the KSα dataset and 1 from the A domain 

dataset did not return sufficient quality data to be included in the analysis. In total, 1,818 KSα 

OBUs (5,815 total sequences) throughout 53 sediment samples, and 171,527 A domain 

OBUs (1,730,091 total sequences) throughout 58 sediment samples were observed. This 

represents approximately 34 KSα and 2,957 A domain OBUs per sediment sample (Table 

1). These original numbers were then adjusted to account for suspected overestimation of 

chemical diversity, as described in the following section. The large disparity in KSα and A 

domain OBU counts may be attributed to (1) primer biases and accuracy, (2) depth of 

sequencing, and (3) the size of the family to which these domains belong. A domains belong 

to a large superfamily of adenylate-forming enzymes,(Schmelz and Naismith, 2009) in 

contrast to the smaller KSα (α-ketoacyl synthases) domain family, which are known to 

produce aromatic polyketides and polyenes, and whose primers were designed specifically 

for strains within the Streptomyces genus.(Chen et al., 2018; Du et al., 2018) The number 

and putative identity of OBUs for each compound class is listed in Supporting Tables S6A-B.  

As previously reported, the KSα primers are highly degenerate, with substantial off-target 

amplification.(Liu et al., 2016) Due to this limitation, KSα data, including distribution analysis 

and maps, can be found in the Supplemental Information.  

6.2.2  .Analysis of Characterized NP BGC Distribution in Lake Sediment  

In order to assess the occurrence of known NP BGC classes across Lake Huron 

sediment, the identity of each OBU was verified. Sequence representatives from each OBU 

were aligned against domain sequences extracted from the MIBiG database using the 
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DIAMOND alignment tool via its default settings.(Buchfink et al., 2015; Kautsar et al., 2019) 

MIBiG associates BGCs with known NP structures, allowing prediction of the product of each 

matching OBU and as a result, estimation of the chemical diversity at each sample site. To 

ensure that a 300 bp amplicon is sufficient for structural annotation, sequences from control 

strain S. coelicolor A3(2) were amplified, sequenced, and aligned (Supplementary 

Experimental Procedures).(Bentley et al., 2002) Amplified KSα and A domain sequences 

from S. coelicolor A3(2) aligned appropriately against coelichelin, coelibactin, and select 

calcium-dependent antibiotic (CDA) sequences from S. coelicolor in MIBiG at a maximum e-

value of 3.90 e-43. In general, an e-value smaller than 0.01 is considered a reliable hit for 

homology matches, while an e-value in the range of 1e-50 is considered a match of high 

reliability.(Scholz et al., 2016) These results were used as a guide to select a list of 

annotated OBUs to map across lake sediment. Based on empirical tests and comparison to 

e-values obtained from the S. coelicolor A3(2) control, a maximum e-value threshold of 1.2 

e-15 was selected for KSα domain OBUs and 1.3 e-11 for A domain OBUs. These stringent 

cutoffs allowed only high-confidence OBU assignments to be used in the study.  

 Once OBU sequence representatives were aligned against sequences from the 

MIBiG database, the majority of these could not be assigned to known chemical compound 

classes. In total, of the 1,818 KSα domain OBUs that were observed across 53 samples, 32 

(1.7%) were assigned to known compound classes. Similarly, of 171,527 total A domain 

OBUs observed across 58 samples, 108 (0.06%) were assigned to known compound 

classes. Of particular note is that some distinct OBU sequence representatives were 

assigned to the same compound class (for example, five separate OBU sequence 

representatives aligned to rifamycin), which resulted in an overestimation of compound 

classes present in sediment. To correct for this, it was necessary to estimate the average 

number of times a compound class was divided into separate OBUs in the dataset; this 

average was deemed a ―split correction factor‖ (see Annexure B,  Supplementary Table S6 

for discussion). The total number of observed OBUs was then divided by that factor, 

resulting in a more accurate estimation of the compound classes present in sediment: a total 
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of 1,198 KSα domain OBUs, of which 21 (1.8%) were known compound classes, and a total 

of 90,528 A domain OBUs, of which 57 (0.06%) were known compound classes. Further 

details are listed in Supplementary Tables S6A-B.  

 

Table 1 

  KSα A 

Total # of OBUs detected 1,818 171,527 

Total # of OBUs after adjustment by the split correction factor 1,198 90,528  

Average # of OBUs per sample after adjustment by the split 

correction factor 
23 (±18) 1,561 (±798) 

 

Table 1. A and KSα domain abundances in sediment. 

 

 

 

 

 

 

 

 

Figure 1. 

 

 
 Figure 1. Boxplots depicting the variability of KSα and A domain OBU abundance in each 

sediment sample. A and B represent boxplots of OBU counts after adjustment by the split 

correction factor, which corrects for overestimations of compound classes present in 

sediment.  
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Of the 78 OBUs matched to known classes of PKS (21) and NRPS (57) NPs in 

MIBiG, distribution maps of compounds that occurred in at least two distinct locations were 

generated after rarefaction analysis to the lowest sample count (15 sequences for KSα 

domain OBUs and 3,487 for A domain OBUs). A total of 30 OBUs met these criteria.  

These 30 OBUs were further categorized into antibiotics, siderophores, and other 

bioactive NP classes such as anticancer and antiviral compounds. OBUs from each of the 

30 classes were mapped and patterns of occurrence were assessed (representative OBUs 

per category are shown in Figure 2, while maps for the remaining OBUs are shown in 

Supplementary Figures S3-5). The size of the colored circles are proportional to the number 

of sequences detected at each sampling site, after rarefaction. Figures 2A-D show the 

distribution of cyclomarin, surugamide, pyoverdin, and coelichelin classes. For example, 

sequence reads for cyclomarin class antibiotics (Figure 2A) were detected in five distinct 

geographic locations across the lake, while sequence reads for pyoverdin-type siderophores 

(Figure 2C) were detected in 38 distinct geographic locations across the lake. Four of these 

locations contained both compounds. Overall, the distribution profiles among the compound 

classes analyzed were non-overlapping in lake sediment. In general, siderophores were the 

most frequently detected compound class in lake sediment, exceeding that of antibiotics and 

other bioactive NPs.  

 

 

Figure 2  
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Figure 2. Detection of domain sequences of select NP classes in Lake Huron sediment. 

Figures 2A-D show the detection and relative read abundance of cyclomarin, surugamide, 

pyoverdin, and coelichelin classes, respectively. Figures S3-5 depict the distribution of 

additional NP classes. Different sized circles represent sequence read abundance at a 

rarefaction depth of 13 sequences per sample for KSα domain sequences and of 3,487 

sequences per sample for A domain sequences at each collection site in Lake Huron. 

Representative structures from each of the four compound classes are shown in Figures 2E-

H.  
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6.2.3 Analysis of Uncharacterized NP BGC Distribution in Lake Sediment  

The majority of OBUs detected in Lake Huron sediment were not assigned to known 

compound classes (98.3% KSα domain OBUs and 99.9% of A domain OBUs, respectively). 

Instead of constructing maps for all 90,528 uncharacterized A domain OBUs, the number of 

locations at which a given OBU was detected was plotted (Figure 3). This allowed 

determination of the frequency of occurrence of OBUs across lake sediment. Figure 3 

demonstrates that the vast majority of A domain OBUs (96.5%) occurred in fewer than 10 

samples (in varying occurrence patterns, data not shown), across the 58 locations. For 

example, 40,003 OBUs (83.7%) were detected in only a single sediment location, and 2,524 

OBUs (5.3%) were detected in only two locations (in varying occurrence patterns). However, 

no more than 1,042 OBUs were detected at any single sampling site (Figure 4); thus, the 

genetic diversity detected is broadly distributed. Figures 3 and 4 together demonstrate that 

there is little overlap among occurrence patterns of these OBUs, indicating that there are not 

select NP ‗hotspots‘ among our 58 sampling sites and that NP occurrence varies 

considerably across Lake Huron sediment.  

Figure 3 
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Figure 3. The number of locations from which an A domain OBU occurs. The majority of A 

domain OBUs occur in fewer than ten locations.  

Figure 4 
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Figure 4. Box plot indicating observed number of A domain OBUs across all locations 

at a rarefaction depth of 3,487; each point represents the number of A domain OBUs at that 

location. The number of A domain OBUs that appears in each location ranges from 491 to 

1,042. 

 

We sought to determine whether A domain OBUs were likely to co-occur in the 

environment. Correlation coefficients based on presence/absence and abundance were 

calculated for each OBU pair for the 1,000 most abundant OBUs from rarified BIOM tables, 

based on the formula in Supp. Table S7. Among these, 0.16% of OBUs displayed a strong 

positive correlation with each other (a correlation score of 0.9 or above).  This analysis 

further supports the lack of co-occurrence of dominant OBU classes in these sediments. 

Similarly, correlation analyses were undertaken to assess whether A domain OBUs 

correlated with the presence of specific Actinobacteria or Proteobacteria OTUs at each 

location (see Annexure B, Supplemental Information Table S7). No significant correlations 

were observed. One possible cause of this may be that the detected OBUs are associated 

with mobile genetic elements and therefore are associated with multiple taxa.(Penn et al., 

2009)Alternatively, primer biases (OBU versus OTU) coupled with insufficient OTU 

sequencing depth prevented sufficient detection of the necessary sequences needed to 

observe such correlations. Further experiments using shotgun metagenome sequencing will 

be required to confirm this result. 

This study aimed to generate a preliminary assessment of how NP OBUs are distributed 

across Lake Huron sediment. As shown in Figure 2 (and Annexure B, Supp. Figures S3-S5), 

among the select 30 characterized OBUs that were analyzed, no discernable patterns of 

occurrence in Lake Huron surface sediment were observed. Some NP OBUs exhibited 

frequent occurrences in sediment across the geographic locations sampled, while others 

were confined to select sample sites. 
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This study is one of the few attempts to document the distribution of specific classes 

of NPs at a regional scale in an environment representative of a collection 

expedition.(Charlop-Powers et al., 2016) The observed NP distribution profiles lend 

experimental evidence to a few predictable phenomena, that to the best of our knowledge 

have seldom been demonstrated on a large scale. First, individual compound profiles, 

particularly those that represent bioactive NPs (antibiotics, anticancer, etc), exhibit sparse 

occurrence across Lake Huron sediment. Second, some profiles occur more frequently 

across the collection sites, such as the pyoverdins and griseorhodins (Figure 2C and 

Annexure B, Supp. Figure S5H). This may suggest that the NP is highly functional in its 

environment or is located on a mobile genetic element that is commonly transferred between 

species, among other possibilities. Regardless, of the greater than 90,000 known and 

uncharacterized NP OBUs analyzed, there is little evidence for discernable patterns of NP 

occurrence across Lake Huron sediment. This suggests that robust sampling is required to 

survey an environment of this magnitude, and that oversampling leading to redundant NP 

recovery is not a major concern (though cultivation methods will be a significant factor in 

recovering those NP populations from sediment).23 Further experiments should be 

performed to assess whether the OBU distribution trend observed in this study is also 

detected in the culturable bacterial population, a metric more appropriate to evaluate the 

efficiency of most microbial drug discovery programs. An attempt to document OBU recovery 

from culturable bacterial populations was addressed in other complementary studies.(Bech 

et al., 2020; Elfeki et al., 2018)  A similar study that analyzes sequences within an area of 

higher geographic resolution, at multiple time points, and with consideration toward 

environmental pressures specific to the benthic lake environment, would provide more 

detailed information on the available NP chemical space in Lake Huron sediment. Events 

such as algal blooms or other localized environmental phenomena at the time of collection 

can influence results in any of the sampled locations. 
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The need for novel approaches to improve detection of NP BGCs from 

eDNA 

 There are a few experimental limitations to the current study (see SI for more 

detailed explanation). First, the low abundance of sequence reads belonging to NPs can be 

attributed to undersampling, limited eDNA extracted from sediment, or biases generated 

from PCR amplification using highly degenerate primers. In addition, the resulting amplicons 

are only partially representative of the BGC population present in sediment. The design of 

new primers with a broader detection range can improve discovery of non-traditional BGCs. 

However, alternative, non-PCR-based approaches such as deep shotgun metagenome 

sequencing coupled with long-read sequence data (e.g. data generated using Oxford 

Nanopore and Pacific Biosciences sequencing platforms), or enrichment strategies followed 

by deep sequencing (e.g., Oxford Nanopore selective sequencing,(Edwards et al., 2019) 

hybridization capture+shotgun metagenome sequencing(Zhou et al., 2015)) will be 

necessary for further discovery. Finally, the MIBiG database was used to assess compound 

classes.(Kautsar et al., 2020, p. 2) The number of existing NPs greatly outnumbers the 

entries in MIBiG, underlining the need for the community to contribute to and expand this 

valuable resource.  

6.3 Conclusion 

Despite decades of collecting soil microorganisms for use in drug discovery, few 

attempts have been made to measure the extent to which NP production genes are 

distributed in the environment. In this study, KSα and A domain amplicon sequencing was 

used to document distribution profiles of NPs across Lake Huron surface sediment. Overall, 

no discernable NP geographic distribution patterns were observed when comparing OBUs 

from greater than 90,000 NP classes (NRPS and PKS). We observed that the distribution 

profiles of the majority of A domain OBUs were non-overlapping across the 58 locations, 

while each location harbored relatively equal number of OBUs, suggesting that at the 

sequencing depth used in this study, no single location served as a NP ‗hotspot‘. Finally, 
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analysis of the top 1,000 most abundant OBUs detected in Lake Huron sediment, which 

belong to unknown/uncharacterized NPs, indicate that co-occurrence patterns are rare, but 

do exist. This preliminary evidence supports that there is ample variation in NP occurrence 

between sampling sites and suggests that extensive sample collection efforts will be 

required to fully capture the diversity that exists in sediment on a regional scale. Overall, 

investigating BGC distribution patterns and dynamics in Lake Huron has highlighted the 

need for a more methodical environmental sample collection approach, a great unmet need 

in NP drug discovery. 

6.4 Methods  

6.4.1  Collection of Sediment Samples, Cultivation of Sediment Bacteria on 

Nutrient Agar 

Sediment samples were collected using a PONAR grab in the summer of 2012 from Lake 

Huron, the Georgian Bay, and the Northern Channel during a research expedition aboard 

the EPA‘s Lake Guardian Research Vessel. Surface depths of sediment are listed in Supp. 

Table S1. Approximately 1 cm3 of sediment was homogenized, and an aliquot was placed 

into a 2 mL cryovial containing 20% glycerol. These were stored in cryogenic vials in a 

Dewar until transported back to the laboratory where they were stored in a -20°C freezer.  

6.4.2  Genomic DNA Isolation from Sediment and Nutrient Agar 

Cryogenic vials were thawed at room temperature, and gDNA was extracted from 

approximately 0.25 g of sediment, using a DNeasy PowerSoil Kit (Qiagen, Netherlands) 

according to the manufacturer‘s instructions. 

6.4.3  KSα and A Domain Amplification and Sequencing 

KSα and A domain amplicon sequencing was performed using the same two-step PCR 

strategy described in the Supporting Information. Briefly, a 613 bp fragment of the KSα (β-

ketoacyl synthase) was amplified using degenerate primers (5′-

TSGCSTGCTTCGAYGCSATC-3′) and (5′-TGGAANCCGCCGAABCCGCT-3′).(Metsä-Ketelä 
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et al., 1999) 700-bp NRPS A domain gene fragments were amplified using degenerate 

oligonucleotides A3F (5′-GCSTACSYSATSTACACSTCSGG-3′) and A7R 

(5′SASGTCVCCSGTSCGGTAS-3′).(Ayuso-Sacido and Genilloud, 2005) All primers were 

synthesized with a locus-specific sequence as well as a universal 5′ tail (i.e., CS1 and CS2 

linkers). 20 μL of PCR reaction mixture consisted of 1 μL of DNA at 10 ng/μL, 1 μL of a 10 

μM solution of each primer, 10 μL KAPA Taq 2X ReadyMix (Kapa Biosystems), 0.8 μL of 

DMSO, 3.2 μL of 100 mg mL–1 Bovine Albumin Serum, and 3 μL of DI water. The thermal 

cycling conditions were set to an initial denaturation step at 95 °C for 5 min; 7 cycles of 1 min 

at 95 °C, 1 min at 65 °C (annealing temperature was lowered 1 °C per cycle), and 1 min at 

72 °C; and 40 cycles of 1 min at 95 °C, 90 s at 58 °C and 1 min at 72 °C; and a final 

elongation step at 72 °C for 5 min. Amplification products were verified by agarose gel 

electrophoresis and purified using a QIAquick PCR cleanup kit according to the 

manufacturer‘s protocol (Qiagen). The resulting PCR amplicons were used as templates for 

the second PCR step, as described above, to incorporate sequencing adapters and sample-

specific barcodes. Pooled and purified amplicon libraries, with a 20% phiX spike-in, were 

loaded onto a MiSeq V3 flow cell, and sequenced using paired-end 2 × 300 reads. 

Sequencing was performed at the Genome Research Core at the University of Illinois at 

Chicago. 

6.4.4  Bioinformatic Analyses of BGC Data 

Only forward reads were used in further analysis due to the low quality of reverse reads. All 

sequences generated from the Illumina MiSeq sequencer were trimmed on the ends of the 

read according to Phred quality scores, then denoised using the DADA2 implemented in 

Qiime2, and finally chimeras were removed using uchime-denovo as implemented in 

Qiime2.(Bolyen et al., 2019, p. 2; Callahan et al., 2016, p. 2) The degenerate primer 

sequences were removed. Filtered and trimmed reads were then 6-frame translated into 

amino acid sequences using TranslatorX.(Abascal et al., 2010) Only frames with no internal 

stop codons were kept using TranslatorX‘s ―guess most likely reading frame‖ option. Amino 
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acid sequences were then filtered via HMMER(Johnson et al., 2010) using HMM prebuilt 

generic detection models downloaded from antiSMASH v5.0.0.(Blin et al., 2019) The 

following models were used: AMP-binding and A-OX for A domain, and t2ks and t2pks2 for 

PKS type II. Only sequences that passed the default e-value thresholds were kept, resulting 

in a much lower number of sequences per sample (Supp. Table S3). Sequences were then 

clustered at 80%, 85%, 90%, and 95% using USEARCH v11‘s UCLUST cluster_fast greedy 

algorithm via the cluster_fast command. Singletons were kept for the clustering.(Edgar, 

2010) A feature-by-sample abundance matrix (a feature table or biological observation 

matrix, BIOM)(McDonald et al., 2012) file was then created. A representative sequence from 

each cluster—labeled an OBU—was extracted to a separate file, using the USEARCH v11‘s 

makeudb_usearch command, and the file was aligned against the MIBiG database using 

DIAMOND.(Buchfink et al., 2015) Sequence reads belonging to the same molecular class 

clustered best at 85%. Therefore, the 85% sequence similarity threshold was used for 

subsequent analyses. An OBU representative sequence was annotated with its BLAST 

identity only if the pairwise identity was at least 85% and coverage over at least 84 amino 

acids. An OBU-by-sample BIOM file was then created and rarefied to the minimum number 

of sequences within samples. Singletons were retained during OBU clustering.  Since OBU 

clustering occurred at 85% (as opposed to the single nucleotide/ASV level), changes in a 

single nucleotide OBU diversity are not expected to change the richness of the sample. In 

addition, to ensure that singletons were real sequences and not PCR error, 10 singletons 

from each domain were blasted against the NCBI‘s protein database, and all singletons 

mapped to the correct group (A and KSα domains). 

6.4.5 Bioinformatic Method Validation Using Reference Strains  

Control strain S. coelicolor A3(2) was included in wet lab and bioinformatics analysis to 

ensure clustering methods and compound identities were valid. S. coelicolor A3(2) was 

subjected to the same amplification procedure using the degenerate primers that amplify a 

fragment of the KSα (β-ketoacyl synthase) and a fragment of the A domain. KSα and A 
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domain amplicons were sequenced and analyzed using the strategy described in sections 

4.3 and 4.4. Resulting sequence data were then filtered using the same HMM prebuild 

generic detection models described above. Sequences that passed the default e-value 

thresholds were kept. Sequences were then clustered at 80% 85%, 90%, and 95%. At 85%, 

KSα amplicons grouped into two OBUs. A representative sequence from each OBU was 

mapped against MIBIG for compound identification. Indeed, the representative sequence 

from the first OBU mapped to actinorhodin and the representative sequence from the second 

OBU mapped to a spore pigment, as expected. Similarly, at 85%, A domain amplicons 

grouped into 15 OBUs. After mapping against MIBIG, a representative sequence from 10 

OBUs mapped to the CDA family of compounds (CDA1b, CDA2a, CDA2b, CDA3a, CDA3b, 

CDA4a, CDA4b), one representative sequence mapped to coelimycin P1, one 

representative sequence mapped to coelibactin, and three representative sequences 

mapped to coelichelin. There were no OBU representative sequences mapped to the 

remaining A domain containing compounds undecylprodigiosin and SCO-2138.  
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Part II: Dynamics of the human gut secondary metabolome during antibiotic 

treatment. 

Abstract 

 

Antibiotic-mediated perturbation of the human gut microbiome increases the risk of a variety 

of diseases, including infections (Willing, Russell, and Finlay 2011). The increased infection 

risk is the result of unrestrained proliferation of opportunistic microbes that may occupy 

ecological niches previously unavailable to them (De La Cochetière et al. 2008). Bacterial 

secondary metabolites are known to play crucial roles in microbe-microbe and microbe-host 

interactions (Ziemert, Alanjary, and Weber 2016). However, not much is known about their 

antimicrobial role within the human gut. The aim of this project was to monitor changes 

within the secondary metabolome potential of the gut microbiome in the course of antibiotic 

treatment to identify bacterial biosynthetic gene clusters and metabolites with a potential role 

in community stabilization and host defense. In this exploratory study we have determined 

patterns, identified crucial pathways, and built solid hypotheses for testing in wet lab 

experiments.  

6.6 Introduction 

Secondary metabolites (SM) are fundamental units with which microbes sense and respond 

to their environment. SM key functions include microbial communication, defense, nutrient 

acquisition and development (O‘Brien and Wright 2011). In the past, these molecules have 

been mainly studied as natural products for their use as antibiotics or chemotherapeutics. 

However, the availability of improved genomic data as well as of more sensitive detection 

methods and increasing insights into biological systems recently uncovered a role for SM in 

a wide range of symbiotic relationships not only among microbes but also in connection to 

their multicellular hosts (Donia and Fischbach 2015). In this respect, multiple genome mining 

efforts revealed the presence of a multitude of secondary metabolite biosynthetic gene 

clusters (BGCs) within the human microbiome (Donia and Fischbach 2015). Furthermore, 
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various bioactive metabolites have been isolated from human-associated microbes, leading 

to question their role within the human microbiome and their relevance in microbe-microbe 

and microbe-host interactions (Sugimoto et al. 2019; Zipperer et al. 2016). As antibiotic 

treatment alters the composition of the human gut microbiota and increases the risk of 

infections, for example with Clostridium difficile (De La Cochetière et al. 2008), in this study 

we wanted to understand how the use of antibiotics affects the secondary metabolome of 

human gut commensal bacteria and uncover a potential role for bacterial SM in stabilizing 

microbial communities and preventing infections.  

6.7 Methods  

The group of Matthias Willmann and Silke Peter analyzed two clinical cohorts in Tuebingen 

and Cologne and gained shotgun metagenomic data of 41 hematological patients before, 

during, and after prophylactic treatment with ciprofloxacin and cotrimoxazole. This clinical 

study - Amplification and Selection of Antimicrobial Resistance in the Intestine (ASARI)- 

showed that antibiotic treatment had major effects on the diversity of the human microbiome 

and resistome and provides the basis for the proposed project (Willmann et al. 2019). During 

the last years one of the main research areas in the Ziemert lab has been the determination 

of SM biosynthetic potential in environmental bacteria (Ziemert et al. 2012; Elfeki et al. 

2018). For that purpose, we developed the pipeline MBEZ, which performs a standardized 

analysis of the distribution and diversity of secondary metabolite gene clusters in various 

kinds of metagenomic data, including shotgun metagenomes and amplicon sequences. 

MBEZ implements programs such as QIIME II, BiG-MEx, antiSMASH, and BiGSCAPE, and 

allows a fast and reproducible screen of metagenomic data for secondary metabolite 

diversity, bacterial taxonomic diversity and correlations between the two. Within the 

framework of this project, MBEZ was employed to analyze secondary metabolite patterns 

within human microbiome data in order to unravel BGC abundance dynamics during the 

course of antibiotic treatment. Briefly, the metagenomic contigs were analysed with 

antiSMASH for annotating BGCs. The detected BGCs were clustered with known MIBiG 
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BGCs using BiGSCAPE. The BGC abundance plots were developed using the ggplot2 

package.  

6.8 Results and Discussion 

A preliminary analysis of the ASARI data revealed the distinctive presence of biosynthetic 

gene clusters (BGCs) in each patient sample (Table 1). Interestingly, many of these BGCs 

have so far remained uncharacterized as only a few BGCs clustered with the known BGCs 

in MIBiG database (Table 2). In the ciprofloxacin treatment cohort, BGC abundance across 

treatment stages showed a decreasing trend (Figure 1). BGC abundance across 

cotrimoxazole treatment stages was comparatively constant (Figure 2). At treatment stage 

T0 and T2 the BGC abundance across cotrimoxazole and ciprofloxacin cohorts showed 

differential abundance (Figure 3). Comparative view of BGC biosynthesis class abundance 

across treatment stages in cotrimoxazole and ciprofloxacin cohorts is shown in Figure 4. 

Furthermore, a pattern analysis across the different time points of ciprofloxacin treatment 

revealed a major decrease in the abundance of sactipeptide gene clusters within the 

microbial communities (Figure 5). Magnitude of decrease in abundance of sactipeptide gene 

clusters was not that prominent in the metagenomic dataset of the cotrimoxazole treated 

cohort as compared to the ciprofloxacin treated cohort (Figure 6).  

Sactipeptides are ribosomally assembled and posttranslationally modified natural product 

peptides that currently consist of five members (Flühe and Marahiel 2013). Interestingly, 

some members of this class show a narrow antimicrobial activity against Clostridium difficile 

(Flühe and Marahiel 2013), thus providing a possible explanation for the increased 

susceptibility to this bacterial pathogen after antibiotic treatment. 
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Table1 : BGC class annotation and abundance based on BiG-SCAPE clustering  

 

Table 2: Know BGC clusters detected in ASARI metagenome 

MiBIG ID BGC Name 

BGC0000624.1: 
Salivaricin CRL1328 alpha peptide / salivaricin CRL1328 beta peptide 
biosynthetic gene cluster 

BGC0000619.1: Gassericin T biosynthetic gene cluster 

BGC0001602.1: Gassericin-T biosynthetic gene cluster 

BGC0001388.1: Gassericin E biosynthetic gene cluster 

BGC0000526.1: Macedocin biosynthetic gene cluster 

BGC0000534.1: Mutacin K8 biosynthetic gene cluster 

BGC0001788.1: Suicin 65 biosynthetic gene cluster 

BGC0000485.1: Acidocin B biosynthetic gene cluster 

BGC0000491.1: Gassericin A biosynthetic gene cluster 

BGC0001222.1: Acidocin B biosynthetic gene cluster 

BGC0000547.1: Salivaricin 9 biosynthetic gene cluster 

BGC0000545.1: Ruminococcin A biosynthetic gene cluster 

BGC0001701.1: Nisin O biosynthetic gene cluster 

BGC0001575.1: Dipeptide aldehydes biosynthetic gene cluster 

BGC0001055.1: Yersiniabactin biosynthetic gene cluster 

BGC0000972.1: Colibactin biosynthetic gene cluster 

BGC0000467.1: Yersiniabactin biosynthetic gene cluster 

BGC0001686.1: N-octanoyl-Met-Phe-H biosynthetic gene cluster 

BGC0001055.1: Yersiniabactin biosynthetic gene cluste 

BGC0001499.1: Aerobactin biosynthetic gene cluster 

BGC0001555.1: Colicin V biosynthetic gene cluster 

BGC0000836.1: APE Ec biosynthetic gene cluster 

  RIPPs Others NRPS 

PKS-

NRPS-
Hybrids 

PKS-
others Terpenes PKSI 

Number of families 
795 363 766 18 48 67 22 

Average number of 

BGCs per family 5 5 3 3 2 4 2 

Max number of BGCs 

in a family 67 76 46 15 15 32 7 

Families with MIBiG 

Reference BGCs 8 2 5 3 0 0 1 
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Figure 1: BGC abundance across ciprofloxacin treatment stages (Sampling stages: T0, 
within a maximum of 3 days before the start of antibiotic prophylaxis; T1, 1 day after initiation 
of prophylaxis; T2, after 3 days of prophylaxis; T3, at the end of the observation period). 
Individual patient assembled metagenomic contigs were annotated (BGC annotations)  using 
antiSMASH  

 

Figure 2: BGC abundance across cotrimoxazole treatment stages (Sampling stages: T0, 
within a maximum of 3 days before the start of antibiotic prophylaxis; T1, 1 day after initiation 
of prophylaxis; T2, after 3 days of prophylaxis; T3, at the end of the observation period). 
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Individual patient assembled metagenomic contigs were annotated (BGC annotations)  using 
antiSMASH  

 

Figure 3: Comparative view of BGC abundance across cotrimoxazole and ciprofloxacin 
treatment stages (Sampling stages: T0, within a maximum of 3 days before the start of 
antibiotic prophylaxis; T1, 1 day after initiation of prophylaxis; T2, after 3 days of prophylaxis; 
T3, at the end of the observation period).  

 

Figure 4: Comparative view of BGC biosynthesis class abundance across cotrimoxazole and 
ciprofloxacin treatment stages (Sampling stages: T0, within a maximum of 3 days before the 
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start of antibiotic prophylaxis; T1, 1 day after initiation of prophylaxis; T2, after 3 days of 
prophylaxis; T3, at the end of the observation period).  

 

Figure 5: Sactipeptide BGC abundance in metagenomes of individual patients before, during 
and after ciprofloxacin treatment. (Sampling stages: T0, within a maximum of 3 days before 
the start of antibiotic prophylaxis; T1, 1 day after initiation of prophylaxis; T2, after 3 days of 
prophylaxis; T3, at the end of the observation period).  
 

 

Figure 6: Sactipeptide BGC abundance in metagenomes of individual patients before, during 
and after cotrimoxazole treatment. (Sampling stages: T0, within a maximum of 3 days before 
the start of antibiotic prophylaxis; T1, 1 day after initiation of prophylaxis; T2, after 3 days of 
prophylaxis; T3, at the end of the observation period).  
 

In our search for novel BGCs and NP, we have undertaken this exploration of metagenomes 

from human gut samples. Apart from finding many novel BGCs, as the dataset contained 

data from sampling and sequencing of metagenomic DNA during the course of antibiotics 

treatment, it became possible to observe the dynamic changes that happens over the course 

of antibiotics treatment. While the unique sactipeptide pattern observed in our exploration is 

helpful in generating new hypothesis, a follow up exploration and validation of such patterns 
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in a similar repeat trial or reanalysis of publicly available datasets having analogous trial 

design, would be necessary. 

Further explorations in gut microbiome, will not only uncover the BGC diversity, but also has 

the huge potential for designing novel strategies for controlling microbes to fight infections. 
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Part III : Using linked reads and long reads to recover biosynthetic gene 

clusters from Tuebingen actinomycetes strain collections. 

Abstract 

 

Current capability of next generation sequencing makes this technology suitable for 

deciphering the complete genomes of thousands of bacterial species in a single sequencing 

run. The reconstruction of bacterial genomes can be further optimized to get efficient 

assemblies at economical costs using hybrid data of both long and short reads. Linked short 

reads technologies such as Transposase Enzyme Linked Long-read Sequencing (TELL-

Seq™) and 10X genomics can further improve the approach and can be used to sequence 

the complete strain collections. Using TELL-seq and Nanopore data generated for one such 

pool consisting of 115 streptomyces species from our Tuebingen Strain Collection resulted in 

single contigs with more than 4 megabases. Biosynthetic gene cluster (BGC) annotation of 

such large contigs can lead to discovery of complete sequences of novel BGCs. In this 

project we have sequenced and analysed 10 such pools consisting of  110 streptomyces 

species in each pool. Tracing of strains and BGCs of interest has become easier using this 

data and this has also led to accelerated novel natural product discovery using this rare and 

unique strain collection. 

6.10 Overview and motivation 

Microorganisms derived natural products and their analogs have been to date our most 

important source and inspiration for medically used antibiotics. The aim of the German 

Center for infectious research, Thematic Translation Unit: DZIF TTU9 -Novel Antibiotics, is to 

facilitate the discovery of new natural products as new antibiotics through innovative and 

effective methods including genome mining and synthetic biology. Two important 

prerequisites for the application of these methods are whole genome sequencing of 

available strain collections as a source for novel natural products, and the development of 

molecular tools in available strains. At the Tübingen DZIF Partner site, a unique proprietary 
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strain collection of more than 2000 actinomycetes producing natural compounds is available, 

which have been isolated over a span of 50 years by Prof. Zähner and Prof. Fiedler from a 

diversity of locations worldwide. Over 100 novel natural products with novel structures have 

been already isolated from these strains in a multitude of publications (Hennrich et al. 2020; 

Ortlieb 2019). So far, only about 150 strains have been sequenced, all of which show high 

genetic potential to produce many more natural products than have been isolated so far. 

Facilitating sequencing of the entire Tübingen strain collection would allow to uncover the full 

genetic potential of all strains, and significantly expand the possibilities for genome mining 

and host engineering within the DZIF TTU9. Current capability of next generation 

sequencing makes this technology suitable for deciphering the complete genomes of 

thousands of bacterial species in a single sequencing run, however, growing and DNA 

isolation of 2000 strains is a time- and cost intensive effort. To reduce cost and labour we 

developed a metagenomic approach to sequence the strain collection in pools, each 

consisting of 115 strains, and combining long- and short-read technologies. Linked short-

reads technologies such as Transposase Enzyme Linked Long-read Sequencing (TELL-

Seq™) can further improve the approach and can be applied to sequence the complete 

strain collection (Chen et al. 2020). 

6.11 Methods 

6.11.1  Library preparation and NGS sequencing 

1100 strains from the Tübinger strain collection have been grown and harvested on plates 

and pooled into 10 different pools containing cell material from 110 strains each. For each 

pool DNA has been isolated and tested if amount, size, and purity is suitable for long-read 

sequencing methods. The pools are stored in the freezer and are all ready for sequencing. 

Our pilot study including only one pool has shown that a 30x coverage of Nanopore data and 

60x coverage of Illumina Novaseq data is sufficient to gain very long contigs of almost 4 Mb 

suitable for effective genome mining approaches. All pools were sent to the NGS 

https://www.zotero.org/google-docs/?9JQ6st
https://www.zotero.org/google-docs/?9JQ6st
https://www.zotero.org/google-docs/?uAsKcI
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Competence Center Tübingen (NCCT) for Illumina TELL-Seq and Nanopore library 

preparation. The libraries were barcoded, and sequenced on Nanopore flowcells and S2 

Novaseq Illumina FlowCell.  

6.11.2  Bioinformatics Analysis: 

 

Figure 1: Analysis workflow for Nanopore data. 

Nanopore PromethION raw data was processed with Guppy 4.0.14 (Figure 1). The base 

called fastq reads were then barcode trimmed and merged. Flye 2.8.1-b1676 and Unicycler 

v0.4.8 were used separately to assemble the nanopore only reads of each sample pool 

(Wick et al. 2017; Kolmogorov et al. 2020). 

https://www.zotero.org/google-docs/?eG4wF8
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6.11.3 TELL-Seq analysis 

The TELL-seq Illumina raw data was processed with a tell-read pipeline to generate linked 

reads. Using tell-link de novo pipeline the linked reads for each of the sample pools was 

assembled to generate contigs (Chen et al. 2020). The assembled contigs were annotated 

using antiSMASH (Blin et al. 2019). 

6.12 Results and Discussion 

On PromethION around 9 million long reads were sequenced and a total of more than 13 

Gigabases sequence data was generated for 10 sample pools. The average read length was 

nearly 1.5 kb. On Illumina Novaseq, 1030 million paired end reads (2 X 150 bp) were 

generated for the same 10 sample pools. Raw barcode statistics and tell-read pipeline 

barcode processing statistics are shown in Table 1. 

 

https://www.zotero.org/google-docs/?AHqiKe
https://www.zotero.org/google-docs/?r0Qb9i
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Table 1: TELL-Seq raw barcode statistics and barcode processing statistics for 10 Sample 

pools run on 2 lanes of Illumina flowcell. 

 

Table 2: TELL-Seq assembly statistics (using the tell-link de novo assembly pipeline) of a 

representative sample pool. Largest contig length of more than 4 megabases was produced. 
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Using TELL-seq and Nanopore data generated for one such pool, consisting of 115 

streptomyces species from our Tuebingen Strain Collection, resulted in single contigs with 

more than 4 megabases (Table 2). Annotating these large contigs and applying genome 

mining tools led to the identification of novel biosynthetic gene clusters (BGCs). Easy 

backtracking of strains from our rare and unique strain collection is feasible. Using this set-

up, the discovery of novel natural products has been drastically accelerated. This project is 

currently an ongoing project in ZiemertLab and the sequencing strategy, analysis pipelines 

and robust comparative methods are under development. 

6.13 Conclusion and Outlook 

TELL-Seq method is being continuously updated, improved and optimised. Currently, only 

limited samples data was processed (tell-link based de novo assembly) without facing any 

software or data related issues. Nevertheless the limited results obtained so far were 

sufficient for appreciating the power of this novel method. Algorithms and software tools for 

hybrid assembly of linked reads along with long reads might be developed in future. Using 

these will further improve the assembly of pooled metagenome data. Recovery of near 

complete metagenome assembled genomes would be then possible and the true potential of 

linked reads and long reads can be then realised for discovering biosynthetic gene clusters 

from the strain collections. 
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  General Conclusion Chapter 7:

7.1 Concluding remarks on results 

In this thesis, I have presented a metagenomic approaches to explore novel regions 

of natural products chemical space. An easy to use metagenome data mining pipeline for 

exploring natural products diversity was presented in Chapter 4. We used this pipeline to 

explore the biosynthesis potential present in the different horizons of soil sampled from three 

sites in close vicinity from the Schoenbuch forest. Amplicon sequencing and analysis of 16S 

rRNA gene and BGC domains were highlighted in the manuscript included in Chapter 5. 

Shotgun metagenome sequencing using Illumina Short reads and Nanopore based long 

reads further helped in recovering the BGC clusters.  

Further in Chapter 6, that covers metagenomic big-data explorations in diverse 

ecosystems, in part 1 I have included our manuscript in which we report the distribution of 

bacterial natural product biosynthetic genes across lake Huron sediment. While this 

exploration helped in appreciating the tremendous NP diversity present in the lake 

sediments, a need for wider and extensive sampling was experienced to fully capture the 

functional chemical diversity.  

Part 2 of this chapter covers the aspects of how the dynamics of the human gut 

secondary metabolome changes during antibiotic treatment. The sactipeptide BGC 

abundance pattern observed in the metagenomic samples collected during the course of 

ciprofloxacin treatment helped in generating new hypotheses that can be further tested in 

future.  

In part 3 a novel approach is presented that helps to discover the BGC sequences 

from the pooled bacterial strains from the strain collections. Linked reads technology 

improves the BGC discovery, and could be widely adopted by the research community until 

the long read sequencing becomes economical and error rate is reduced. 
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Using the approaches mentioned in this thesis, it will be possible to map the NP 

chemical space at different scales, based on the availability of resources, funds and 

rationale. To map the NP chemical space of the entire earth, even at kilometer resolution, 

megaprojects - worth billions of dollars- would be required. Such megaprojects can change 

the entire landscape of the field of NP discovery. It might lead to discovering many new NP 

diversity hotspots, novel phyla and gifted microbial strains. Fruits of understanding the NP 

chemical space, would be massive, and have the potential to revolutionize science. Novel 

NP chemical classes, truly unknown (BGC) unknown (chemical structure), can guide 

development of new survey rationale and discovery algorithm development. The massive 

amount of metagenomic data generated in such projects will also improve the quality of the 

taxonomy database. This will improve our understanding of how microbial diversity 

community structure gets shaped, how new strains evolve, how nature innovates to produce 

novel NP chemical classes, and what ecological roles these molecules and microbes play. 

Using the new NP knowledge, designing novel and more potent chemical probes capable of 

fishing out unique chemical compounds directly from environmental samples, would become 

possible. In this context, the future of chemical and synthetic biology would certainly be 

brighter than even what we can imagine. 

There are already many orphan BGCs - those for which we don't know the structure 

of natural products they encode - available from public databases, and it is difficult to predict 

their chemical structure. Recent breakthrough (AlphFold 2) that improved prediction of 

protein structure by many folds, uses artificial intelligence and was developed by Google‘s 

DeepMind, has started to positively impact all biomedical studies that require structural 

insights for solving numerous challenges. Aided by such powerful methods and ever 

increasing metagenomic big-data, future machine learning based predictions has the 

potential to fill the so-called ―Genes to molecules‖ gap. 
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7.2 Impact and applications of developed approaches and 

methods 

Acceleration of discovering novel genes, domains and clusters involved in 

biosynthesis of novel natural products would have a direct positive impact in reviving the 

antibiotic discovery pipeline in industry and academia. While we all are in the current Covid-

19 pandemic, the need for searching or synthesizing novel antibiotics and antiviral drugs has 

tremendously increased. Specifically in context to the increase in hospitalization experienced 

during the past several waves of Covid-19, this would be driving the havoc of antimicrobial 

resistance and we need to be geared up to combat this future storm.  

Amplicon based explorations have the potential to quickly and inexpensively uncover 

the microbial diversity and biosynthetic gene/domain diversity. Discovery of novel 

biosynthetic domains can drive the rational prioritization of the environmental samples for 

deeper metagenome sequencing via shotgun approaches for the characterization of full 

length BGCs and subsequent characterization of biosynthetic pathways. MBEZ pipeline will 

assist in such analysis for identifying patterns and correlations. 

Biosynthetic cluster diversity comparisons and resulting patterns would make it 

possible to infer how the BGCs shape the microbial community structure. Ecological and 

evolutionary dynamics that govern the distribution of specialised metabolites could be then 

hypothesized using metagenomic big-data. Temporal and longitudinal metagenomic dataset 

analysis might even make it possible to study the BGC evolutionary history and mechanisms 

involved in creation of chemical diversity in nature. The long-standing outstanding questions 

of the natural products research field, such as, can one rationally choose the best natural 

ecosystem to survey metagenomes and discover novel antibiotics/natural products? Has the 

world profiled enough metagenomes for such NP discovery or still serendipity is best bet 

yet? — some of these questions have been previously articulated by Prof. Paul R. Jensen — 

such as ―At what rate are BGCs created and lost? How often do new chemical scaffolds 

evolve?‖(Jensen, 2016). We can hope to answer these questions in future.  
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7.3 Future challenges 

Current metagenomic sequence data sizes demand sophisticated and bigger 

computing resources such as high memory workstations, computing cloud and high 

performance computing clusters. Novel algorithms and software tools that can accelerate 

metagenome mining and make the analysis possible on smaller personal computers and 

laptops are needed for democratising this powerful approach to discovering novel natural 

products. 

Subsequent bottleneck after discovering novel BGCs is to heterologously express 

them in suitable hosts for getting the metabolic products that these BGCs encode. Currently 

due to availability of limited hosts, expressing BGCs from rare phylum is a big challenge. 

Large-insert metagenomic library creating methods along-with high throughput 

cloning and functional characterization novel methods would be needed to cope up with the 

high rates of discovery achieved via metagenome sequencing methods. 

Due to high rates of microbial species extinctions that we are experiencing, those 

that were partly fueled by climate change, it is difficult to fathom the magnitude of natural 

products chemical space that we are continuously losing forever. Novel metagenome mining 

methods, and mega diversity expeditions will be needed to map and uncover the entire 

natural products chemical space that earth currently holds. Apart from academic interests, 

the survival and flourishing of humanity is dependent on these novel natural product 

discoveries. 
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Annexure A:   

 

Publication: The confluence of big data and evolutionary 

genome mining for the discovery of natural products 
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Annexure B  
Supplemental Information  

Evaluating Distribution of Bacterial Natural Product Biosynthetic Genes Across Lake Huron 

Sediment 

 
Supplementary Experimental Procedures. 

16S rRNA Gene Amplification and Sequencing 

The V4 region of microbial small subunit rRNA genes (16S rRNA) was PCR-amplified from 
genomic DNA using a two-stage PCR protocol, as described previously.1  Primers 515F (5′-
GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) were 
synthesized with 5′ linker sequences CS1 (forward primer; 
ACACTGACGACATGGTTCTACA) and CS2 (reverse primer; 
TACGGTAGCAGAGACTTGGTCT).2 Each 25 μL PCR reaction mixture consisted of 0.5 μL 
10 ng/μL gDNA, 0.8 μL of 10 μM of 515F, 10 μM of 806R, 12.5 μL KAPA Taq 2X ReadyMix 
(Kapa Biosystems), and 10.4 μL of deionized (DI) water. The thermal cycling conditions were 
set to a denaturation step at 95 °C for 5 min, 28 cycles of 95 °C for 30 s, 45 °C for 60 s, and 
68 °C for 90 s, and a final elongation step at 68 °C for 7 min. Amplification products were 
observed by agarose gel electrophoresis and purified using QIAquick PCR cleanup kit, 
according to the manufacturer‘s protocol (Qiagen, Inc.). Subsequently, a second PCR 
amplification was performed to incorporate Illumina sequencing adapters and a sample-
specific barcode into the amplicons. Each reaction received a separate primer pair with a 
unique 10-base barcode, obtained from the Access Array Barcode Library for Illumina 
(Fluidigm, South San Francisco, CA). In addition to Illumina adapter sequences and sample-
specific barcodes, these ―Access Array‖ primers contained the Illumina CS1 and CS2 linker 
primers at the 3′ ends of the oligonucleotides. Cycling conditions were as follows: 95 °C for 5 
min, followed by 8 cycles of 95 °C for 30 min, 60 °C for 30 min, and 72 °C for 60 min. The 
pooled libraries, with a 20% phiX spike-in, were loaded onto MiSeq V2 flow cells, and 
sequenced. Fluidigm sequencing primers, targeting the CS1 and CS2 linker regions, were 
used to initiate paired-end 2 × 250 base read sequencing. Library preparation, pooling, and 
sequencing were performed at the University of Illinois at Chicago Sequencing Core 
(UICSQC). 
Bioinformatic Analyses of 16S rRNA Sequence Data 

Approximately 6.5 million 16S rRNA sequencing reads were obtained for 59 sediment 
samples in duplicate. All sequence data generated from the Illumina MiSeq sequencer were 
first pre-processed using the QIIME-1.9.7 pipeline3 at the UIC Sequencing Core. Bar-coded 
16S rRNA gene sequences were demultiplexed, primers and chimeras were removed, and 
the reads were filtered according to Phred quality scores. Forward and reverse reads were 
merged and labeled according to sample source. Samples were then processed using the 
DADA2 option within the software package Qiime24 for sequence quality control and feature 
table construction. The resulting analysis generated 141,078 amplicon sequence variants 
(ASVs).4 A sequence representative of each ASV was classified using the Silva_128 
database.5 A taxon-by-sample abundance matrix (a feature table or biological observation 
matrix, BIOM)6 file was then created.  
 
Estimated amount of DNA in KSα and A Domain Amplification  

To demonstrate that the amount of gDNA used in a PCR reaction was representative of a full 
biome: 1 PCR reaction contained ~10 ng DNA. 10 ng of gDNA is roughly equivalent to gDNA 
from ~500,000 to 20,000,000 soil bacterial cells (a single gram of healthy soil contains 
11.0×1010 cells in 1 g dry weight at the sediment surface, and a bacterial cell contains 
approximately 0.5–20 fg DNA). 
 
Accession Codes.  

Sample SRA data can be accessed using Accession code PRJNA690811.  
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Table S1. Sediment sample collection data for Lake Huron expedition. 

Sample name Longitude Latitude 

GB01 -80.8563933 44.71783667 

GB03 -80.61701 44.72527 

GB04 -80.1672617 44.64574667 

GB05 -80.2431117 44.796915 

GB06 -80.435975 44.73815167 

GB09 -79.9675 44.87164167 

GB12 -80.8747533 44.92021167 

GB17 -80.8742217 45.24485 

GB29 -81.0829917 45.58357 

GB35 -81.670485 45.52572833 

GB36 -81.620125 45.70816833 

GB39 -81.2583983 45.87294667 

GB42 -81.5954067 45.91245667 

H001 -83.6141917 43.937425 

H002 -83.3324467 44.12494167 

H006 -82.0184967 43.52649333 

H012 -82.1130467 43.900655 

H027 -82.5024567 44.09988833 

H032 -82.3596233 44.35418333 

H037 -82.7836283 44.76185333 

H038 -82.2023783 44.75069333 

H048 -82.5911867 45.26139333 

H054 -83.402845 45.63384 

H061 -83.9164083 45.74978833 

H096 -82.83258 44.33275 

H101 -82.3348767 43.26900667 

H102 -82.403855 43.70586833 

H103 -82.2209217 44.14485833 

H104 -81.83796 44.37196167 

H107 -82.554065 44.61541667 

H108 -83.05021 44.557415 

H109 -83.000015 44.150185 

H110 -83.8036883 43.77230833 

H118 -83.165955 44.91682333 

H119 -82.8106817 45.39766833 

H121 -83.403945 45.81889667 

H123 -83.90591 45.93646167 

H124 -84.4215683 45.85121 
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HTXD -82.33345 43.33989 

HTXM -82.46681 43.33977 

HTXS -82.4991167 43.33974333 

HXSG -82.4991167 43.33974333 

NC68 -83.8536033 46.04127 

NC70 -83.671975 46.13648 

NC71 -83.74624 46.23346833 

NC73 -83.3551783 46.18685167 

NC76 -83.4329117 46.00034 

NC77 -83.1977083 45.97041667 

NC79 -82.886655 46.12299667 

NC82 -82.7588 45.93686333 

NC83 -82.5497 45.99998167 

NC84 -82.5564417 46.09173833 

NC87 -82.197085 46.06112167 

NC88 -81.999815 46.05529667 

NC89 45.91649 -82.1617117 

TB01 -83.1496367 44.89958667 

TB02 -83.240505 44.93872833 

TB03 -83.277 44.95524667 

TB04 -83.0352944 44.15244444 
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Table S2. Sediment sample gDNA quantification using Nanodrop. 

Sample  ng/μL Sample  ng/μL 

GB01-A 17.5 GB01-B  N/A 

GB03-A 16.5 GB03-B 22 

GB04-A 14.4 GB04-B 15.9 

GB05-A 20 GB05-B 14.9 

GB06-A 13 GB06-B  N/A 

GB09-A 26.3 GB09-B 21.2 

GB12-A  N/A GB12-B 15 

GB17-A 8.2 GB17-B 8.8 

GB29-A 17.6 GB29-B 16 

GB35-A 17.9 GB35-B  N/A 

GB36-A 10.9 GB36-B 19 

GB39-A 13.8 GB39-B 17.5 

GB42-A 15.3 GB42-B 20.2 

H001-A 25.1 H001-B 20.1 

H002-A 18.1 H002-B 18.2 

H006-A 26.5 H006-B 24.4 

H012-A 13.8 H012-B 14.8 

H027-A 23.3 H027-B 30.7 

H032-A 13.9 H032-B 17.9 

H037-A 16.5 H037-B 12.1 

H038-A 10.6 H038-B 22.2 

H048-A 30.6 H048-B 26.4 

H054-A 13 H054-B 16.7 

H061-A 15.3 H061-B 11.4 

H096-A 17.8 H096-B 14.2 

H101-A 18.4 H101-B 17.6 

H102-A 24.4 H102-B 22.5 

H103-A 18.1 H103-B 15.2 

H104-A 7.4 H104-B 9.8 

H107-A 9.8 H107-B 15.9 

H108-A 18.1 H108-B 20.2 

H109-A 20.1 H109-B 24.3 

H110-A 30.8 H110-B 32.3 

H118-A 6.2 H118-B 5.9 

H119-A 29.1 H119-B 25 

H121-A 14.3 H121-B 13.4 

H123-A 24 H123-B 25.1 

H124-A 27.4 H124-B 17 

HTXD-A 9.3 HTXD-B 13.5 

HTXM-A 6.8 HTXM-B 6.4 

HTXS-A 4 HTXS-B 5 

HXSG-A 3.1 HXSG-B 3.8 

NC68-A 11.4 NC68-B 19.9 

NC70-A 23.8 NC70-B 19.1 

NC71-A 4.9 NC71-B 19.5 

NC73-A 22.5 NC73-B 13.3 

NC76-A 19.3 NC76-B 20.1 

NC77-A 13.1 NC77-B 13.2 

NC79-A 23.1 NC79-B 32.5 

NC82-A 21.7 NC82-B 19.3 



 147 

NC83-A 15.5 NC83-B 17.4 

NC84-A 13 NC84-B 13 

NC87-A 21.1 NC87-B 10.6 

NC88-A 24.4 NC88-B 6.7 

NC89-A 14.9 NC89-B 14.4 

NE01-A 6.8 NE01-B 3.9 

NE02-A 5.3 NE02-B 7.4 

NE03-A 9.9 NE03-B 9.4 

NE04-A 5.1 NE04-B 1.8 

TB01-A 17.5 TB01-B 15.7 

TB02-A 6.6 TB02-B 4.3 

TB03-A 6.1 TB03-B 8.4 

TB04-A 6.9 TB04-B 8.2 

 
 
Table S3. Sequence reads per sample before and after filtering. 

S3A. A domain sequence reads per sample before and after filtering 

Sample A domain sequence count  

  before filtering after filtering 

GB01 100068 29538 

GB03 87304 33514 

GB04 81992 30589 

GB05 79378 30822 

GB06 94934 23731 

GB09 16605 3487 

GB12 84785 20090 

GB17 63581 19046 

GB29 93624 30221 

GB35 104613 24546 

GB36 120819 19103 

GB39 90825 29671 

GB42 66836 26490 

H001 47575 22825 

H002 46549 24705 

H006 58045 26476 

H012 52019 27589 

H027 54526 28092 

H032 55399 29310 

H037 43365 11407 

H038 74084 28311 

H048 42879 25550 

H054 57279 30289 

H054B 47330 27082 

H061 27332 19480 

H096 32191 19325 
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H101 49232 31717 

H102 38635 24216 

H103 49020 28022 

H104 43140 23638 

H107 46000 26520 

H108 56986 30330 

H109 50588 25213 

H110 61123 31547 

H118 54969 29164 

H119 60357 32965 

H121 42440 24175 

H123 50282 29375 

H124 64667 39958 

HTXD 44915 25960 

HTXM 61883 31140 

HTXS 64642 34153 

HXSG 65939 36061 

NC68 93915 44407 

NC68B 86165 27941 

NC70 85876 35580 

NC71 118527 33900 

NC73 78861 29530 

NC76 67029 32849 

NC77 76025 29920 

NC79 63627 14229 

NC82 80280 30078 

NC83 77778 29099 

NC84 77518 29234 

NC87 79403 25970 

NC88 74994 32434 

NC89 53 2 

TB01 91511 33540 

TB02 109450 31474 

TB03 122427 14537 

TB04 91202 31209 

 
S3B. KSα domain sequence reads per sample before and after filtering 

Sample KSα domain sequence count  

  before filtering after filtering 

GB01 142872 40 

GB03 116849 42 

GB04 117531 43 
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GB05 52214 29 

GB06 106274 45 

GB09 94289 33 

GB12 122097 65 

GB17 93897 15 

GB29 103481 49 

GB35 131773 35 

GB36 134277 47 

GB39 110956 41 

GB42 145182 40 

H001 115109 32 

H002 106612 43 

H006 113030 33 

H012 200784 33 

H027 103413 39 

H032 146624 31 

H037 115310 109 

H038 116346 26 

H048 8575 108 

H054 129969 929 

H061 115873 13 

H096 123566 89 

H101 126539 29 

H102 78024 70 

H103 64881 63 

H104 94503 10 

H107 66572 19 

H108 116249 30 

H109 1929 13 

H110 257816 313 

H118 76047 212 

H119 201467 50 

H121 123562 71 

H123 121709 101 

H124 112397 63 

HTBXM 100854 54 

HTBXD 522 47 

HTBXS 196054 60 

HXSGB 182584 50 

NC79 11704 84 

NC82 130853 101 

NC83 125930 106 
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NC84 112485 64 

NC87 126142 60 

NC88 15451 58 

NC89 146028 35 

TB01 159206 81 

TB02 131451 66 

TB03 143707 64 

TB04 73951 21 

 
Table S4. Most abundant phyla in sediment 

Kingdom Phylum average (%) 

Bacteria Proteobacteria 43.94 

Bacteria Acidobacteria 7.07 

Bacteria Bacteroidetes 6.21 

Bacteria Nitrospirae 5.73 

Bacteria Actinobacteria 5.60 

Bacteria Planctomycetes 5.22 

Bacteria Verrucomicrobia 5.16 

Unassigned Other 4.54 

Bacteria Cyanobacteria 4.07 

Bacteria Chloroflexi 2.50 

 
Table S5. Number of sequences in most abundant OBUs 

S5A. A domain OBUs 

Location 

% sequences of most 
abundant A domain 
OBU 

GB01 5.7 

GB03 1.9 

GB04 3.2 

GB05 3.8 

GB06 8.5 

GB09 4.0 

GB12 5.4 

GB17 4.9 

GB29 2.1 

GB35 2.0 

GB36 6.3 

GB39 3.2 

GB42 2.2 

H001 3.9 

H002 2.9 

H006 3.2 

H012 5.6 
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H027 4.5 

H032 7.2 

H037 23.0 

H038 2.5 

H048 2.1 

H054 4.1 

H061 5.2 

H096 3.5 

H101 2.4 

H102 3.9 

H103 5.9 

H104 2.7 

H107 3.7 

H108 4.2 

H109 2.5 

H110 3.4 

H118 1.8 

H119 2.8 

H121 2.8 

H123 3.0 

H124 4.1 

HTXD 2.5 

HTXM 1.9 

HTXS 1.5 

HXSG 0.8 

NC68 3.9 

NC70 2.7 

NC71 3.6 

NC73 5.3 

NC76 5.1 

NC77 5.3 

NC79 3.8 

NC82 3.6 

NC83 2.7 

NC84 2.5 

NC87 2.7 

NC88 3.2 

NC89 1.9 

TB01 2.2 

TB02 1.7 

TB03 2.6 

TB04 4.0 
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S5B. KSα domain OBUs 

Location 

% sequences of most 
abundant KSα domain 
OBU 

GB01 10.0 

GB03 4.8 

GB04 27.9 

GB05 10.0 

GB06 15.6 

GB09 4.5 

GB12 15.4 

GB17 7.7 

GB29 11.1 

GB35 20.0 

GB36 7.4 

GB39 15.4 

GB42 13.0 

H001 15.6 

H002 17.6 

H006 13.0 

H012 30.3 

H027 17.9 

H032 12.9 

H037 27.5 

H038 15.4 

H048 15.7 

H054 16.7 

H061 25.0 

H096 29.2 

H101 10.3 

H102 17.1 

H103 52.4 

H104 20.0 

H107 28.6 

H108 20.0 

H109 38.5 

H110 54.3 

H118 32.4 

H119 26.0 

H121 22.5 

H123 5.9 

H124 10.4 
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HTXD 12.8 

HTXM 11.1 

HTXS 15.0 

HXSG 4.3 

NC79 10.7 

NC82 7.2 

NC83 9.4 

NC84 15.6 

NC87 11.7 

NC88 6.9 

NC89 8.8 

TB01 12.2 

TB02 4.5 

TB03 18.8 

TB04 33.3 
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Table S6. List of molecular classes that KSα and A domain sequences aligned to in the 

MIBiG 2.0 database.7 The entry under molecular class denotes the molecular product for 

which the biosynthetic gene cluster (BGC) was annotated in MIBiG. If a KSα or an A domain 

sequence aligned against a molecular product of a given BGC, that sequence was classified 

as a sequence producing a compound from the molecular class corresponding to that 

molecular product. A maximum e-value threshold of 1.2 e-15 was selected for KSα domain 

OBUs and 1.3 e-11 for A domain OBUs. These stringent cutoffs allowed only high-confidence 

OBU assignments to be used in the study. 

 

Split correction factor estimation for estimating OBU counts.  
To assign OBU sequence representatives to chemical compound classes, the former were 
aligned against sequences in the MIBiG database using the DIAMOND alignment tool.8 
MIBiG associates biosynthetic gene clusters (BGCs) with known natural product (NP) 
structures, allowing prediction of the product of each matching OBU and as a result, 
estimation of the chemical diversity at each sample site. Some distinct OBU sequence 
representatives were assigned to the same compound class (for example, five separate 
OBU sequence representatives aligned to rifamycin), which resulted in an overestimation of 
compound classes present in sediment. To correct for this, the number of times the same 
chemical compound class was represented by different OBU sequence representatives was 
computed for each chemical compound class. This number was then averaged for all 
observed chemical compounds classes and called the ―split correction factor‖ (i.e. a residual 
error). To avoid overestimating chemical compound classes present in the sediment, the 
total number of observed OBUs was divided by that factor, resulting in less biased 
estimation of the chemical compound classes variance present in sediment.  
Split correction factor for KSα: 1.517241379 
Split correction factor for A: 1.894739749 
 
S6A. List of identified A domain hits after rarefaction and stringent filtering.  

Molecular class 
Molecular class detected 
in x samples 

# of sequences 
belonging to 
molecular class 

Pyoverdin 39 89 

Scabichelin 13 26 

Salinichelin 11 31 

Albachelin 6 6 

Polyoxypeptin 5 18 

Cyclomarin D 5 15 

Coelichelin 5 5 

RP-1776 4 7 

Arylomycin 4 5 

Phthoxazolin 4 4 

Thaxteramide 
A1/A2/B1/B2 

3 11 

Sarpeptin A/B 3 9 

Anikasin 3 6 

Aurantimycin A 3 6 

Microtermolide A 3 6 

Erythrochelin 3 5 

Antimycin 3 3 

Ficellomycin 3 3 
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Mycobactin 3 3 

Taromycin A 2 8 

Surugamide A/D 2 6 

Tolaasin A 2 6 

Coelibactin 2 5 

Clorobiocin 2 4 

Pyxipyrrolone A/B 2 4 

UK-68,597 2 3 

Viscosin 2 3 

Balhimycin 2 2 

BE-43547 
A1/A2/B1/B2/B3/C1/C2 

2 2 

GacamideA 2 2 

Rakicidin A/B 2 2 

Telomycin 2 2 

Cadaside A/B 1 3 

CDA 
1b/2a/2b/3a/3b/4a/4b 

1 2 

Lokisin 1 2 

Malonomycin 1 2 

Massetolide A 1 2 

Myxoprincomide-c506 1 2 

Oxalomycin B 1 2 

Rhodochelin 1 2 

A-47934 1 1 

Colistin A/B 1 1 

Cyphomycin 1 1 

Cystothiazole A 1 1 

Delftibactin A/B 1 1 

Friulimicin A/B/C/D 1 1 

Griseoviridin / fijimycin A 1 1 

Heterobactin A/S2 1 1 

Myxochelin A/B 1 1 

Nunapeptin / nunamycin 1 1 

Octapeptin C4 1 1 

Polymyxin 1 1 

Syringomycin 1 1 

Thaxteramide C 1 1 

Virginiamycin S1 1 1 

Weishanmycin 1 1 
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S6B. List of identified KSα domain hits after rarefaction and stringent filtering. 

Molecular class 
Molecular class detected in 
x many samples 

# of sequences belonging 
to molecular class 

Griseorhodin A 39 78 

Spore pigment 33 66 

Rosamicin (salinipyrone A 
/ pacificanone A) 

9 25 

Meridamycin 7 118 

Rifamycin 6 32 

Chaxamycin A/B/C/D 3 5 

Sceliphrolactam 3 4 

Epothilone B 2 16 

Glycopeptidolipid 2 2 

Rakicidin A/B 2 23 

Tiacumicin B 2 14 

7-deoxypactamycin 1 1 

A83543A 1 1 

Borrelidin 1 1 

ECO-02301 1 1 

Lydicamycin 1 1 

Methylatedalkyl-
resorcinol/Methylatedacyl-
phloroglucinol 

1 1 

Piericidin A1 1 1 

Streptovaricin 1 3 

Tautomycetin 1 3 

Tylactone 1 2 
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Table S7. Correlation coefficients between OTU/OBU groups.  

In order to examine the correlation between the presence/absence and abundance between 
different OBUs and between OBUs and OTUs, the correlation coefficient between different 
groups was calculated using the following formula:9 

      (   )  
∑(      )(      )

√∑(      )
 ∑(      )

 
 

Where      and      are the sample means.  

A correlation coefficient calculates the relationship between two OBU/OTU groups. A 
correlation coefficient of -1 denotes an absolute negative relationship, 0 denotes a lack of 
relationship, and 1 denotes a positive correlation. For example, a perfect negative 
relationship between two OBUs indicates that OBU1 is only present when OBU2 is not 
present. In contrast, perfect positive relationship indicates that OBU1 is only present when 
OBU2 is also present. The correlation between groups tested are reported in Tables S3A-C. 
All numbers were rounded up to display two decimals. 
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S7A. Correlation coefficients between KSα and A domain OBUs.  

 

KSα 
OBUs  

A Domain 
OBUs  

Siderophore
s 

Antibiotic
s 

Other bioactive 
NPs 

16S OTUs -0.10 -0.05 -0.01 -0.02 -0.25 

Actinobacteria 0.18 -0.09 0.07 0.18 0.39 

Proteobacteri
a 

0.13 0.16 0.25 0.19 0.04 

 

In general, there was no correlation between any single KSα or A domain OBU with a 
16S OTU within the phyla Actinobacteria or Proteobacteria. These data suggest that of the 
NP biosynthetic pathways detected, very few co-occur in the environment.  As discussed in 
the main article, the lack of correlation may be that either the detected OBUs are associated 
with mobile genetic elements and therefore are associated with multiple taxa, or that 
differential primer biases (OBU versus OTU) prevented sufficient detection of the necessary 
sequences needed to observe said correlation. Further experiments are required to confirm 
this. 
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S7B. Correlation coefficients between KSα domain OBUs.  

To test for co-occurrence patterns, correlation coefficients were calculated for the 
twenty most abundant KSα domain OBUs against each other. This resulted in the correlation 
matrix below. The rows and columns indicate the KSα OBUs in order of most to least 
abundance. One notable correlation observed was between the most abundant KSα domain 
OBU (KSα_1) and the fourteenth most abundant KSα domain OBU (KSα_14). The 
correlation coefficient for these OBUs was 0.999987 (reported as 1 in the table). To ensure 
that these OBUs were not nearly identical, the sequence representative for these OBUs 
were aligned against each other using BLAST.10 This yielded an identity of 68.93%. This 
suggests that these OBUs may co-occur in the environment, providing evidence of either 
phylogenetic or ecological forces that drive regional NP distribution. 
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S7C. Correlation coefficients between all A domain OBUs. 

Similarly, co-occurrence patterns were examined by calculating correlation 
coefficients for the twenty most abundant A domain OBUs against each other. This resulted 
in the correlation matrix below. The rows and columns indicate the KSα OBUs in order of 
most to least abundance. One notable correlation observed was between the twelfth most 
abundant A domain OBU (A_12) and the twentieth most abundant A domain OBU (A_20). 
The correlation coefficient for these OBUs was 0.94. To ensure that these OBUs were not 
identical, the sequence representative for these OBUs were aligned against each other 
using BLAST.10 This yielded an identity of 92.00%. This provides additional evidence for 
cooccurrence patterns.  
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S7D. Correlation coefficients between observed A domain OBUs and Shannon indices. 

The correlation coefficient between observed A domain OBUs and Shannon indices 
was calculated using the formula in Table S7. The resulting coefficient was 0.69, indicating a 
small positive correlation between abundance and diversity in this dataset.  

 
S7E. Correlation coefficients between observed A domain sequence abundance and OBU 

occurrence. 

The correlation coefficient between observed A domain sequence abundance and 
OBU occurrence (the number of times a given OBU appeared at a given location) was 
calculated using the formula in Table S7. The resulting coefficient was 0.37, indicating no 
correlation between sequence abundance and OBU occurrence per site in this dataset.  
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Table S8. Shannon index and OBU count for individual samples before and after rarefaction.  

The number of sequences per sample was rarified to the fewest sequence reads present in 
any sample (15 sequences for KSα domain OBUs and 3,487 for A domain OBUs). It was 
computed using the scikit-bio‘s diversity calculation via QIIME.11 The Shannon (aka 
Shannon-Wiener) index is defined as:  

     ∑(         )

 

   

 

Where s is the number of OBUs and pi is the proportion of the community represented by 
OTU i. The Shannon indices reported are for KSα and A domain OBUs before and after 
rarefaction. Both data was included because the fewest sequence reads present in KSα 
domain samples was too low (15 sequences) for significant conclusions. The Shannon 
indices are reported in Tables S8A-B. 
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S8A. Shannon index for KSα domain OBUs before and after rarefaction.  

Before rarefaction   After rarefaction 

Sample Shannon OBU count Shannon OBU count 

GB01 5.45 57 3.46 12 

GB03 5.33 42 3.77 14 

GB04 4.29 40 3.24 11 

GB05 3.83 23 2.87 10 

GB06 4.63 39 3.13 11 

GB09 5.46 49 3.91 15 

GB12 5.18 64 3.37 12 

GB17 4.66 26 3.91 15 

GB29 4.84 41 3.77 14 

GB35 4.63 37 3.46 12 

GB36 5.51 55 3.91 15 

GB39 5.3 53 3.32 11 

GB42 4.83 38 3.77 14 

H001 4.28 23 3.51 12 

H002 2.92 23 2.17 7 

H006 5.02 40 3.06 10 

H012 3.67 20 2.74 9 

H027 4.84 43 3.46 12 

H032 4.51 33 3.37 11 

H037 3.16 19 2.61 7 

H038 4.1 23 3.46 12 

H048 4.09 36 3.14 10 

H054 1.52 28 1.56 5 

H061 3.5 13 3.46 12 

H096 3.79 30 3.46 12 

H101 4.83 35 3.64 13 

H102 4.1 31 3.51 12 

H103 2.27 14 1.77 5 

H104 3.73 15 3.37 12 

H107 3.05 13 2.56 8 

H108 3.77 24 2.68 8 

H109 2.68 8 2.68 8 

H110 3.19 55 1.55 4 

H118 1.69 16 1.74 5 

H119 3.95 25 3.06 9 

H121 4.24 37 3.19 10 
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H123 6.28 114 3.64 13 

H124 5.23 63 3.77 14 

HTXD 4.26 26 3.19 10 

HTXM 5.55 64 3.91 15 

HTXS 4.77 49 3.46 12 

HXSG 5.51 68 3.91 15 

NC68 N/A N/A N/A N/A 

NC70 N/A N/A N/A N/A 

NC71 N/A N/A N/A N/A 

NC73 N/A N/A N/A N/A 

NC76 N/A N/A N/A N/A 

NC77 N/A N/A N/A N/A 

NC79 5.14 51 3.51 12 

NC82 6.71 135 3.77 14 

NC83 5.38 99 2 7 

NC84 5.43 67 3.77 14 

NC87 6.01 91 3.51 12 

NC88 5.69 55 3.77 14 

NC89 5.55 53 3.91 15 

TB01 5.74 79 3.64 13 

TB02 6.5 97 3.91 15 

TB03 5.8 77 3.64 13 

TB04 4.18 21 3.77 14 
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S8B. Shannon index for A domain OBUs before and after rarefaction.  

Before rarefaction   After rarefaction 

Sample Shannon 
OBU 
count 

Shannon OBU count 

GB01 8.95 1326 9.76 5956 

GB03 9.47 1478 10.4 7158 

GB04 9.27 1357 10.05 5621 

GB05 9.34 1539 10.17 6914 

GB06 8.44 1260 9.23 5430 

GB09 10.03 1975 10.03 1975 

GB12 9.64 1748 10.56 6741 

GB17 9.3 1494 9.98 4783 

GB29 9.54 1532 10.38 6569 

GB35 9.77 1666 10.64 6797 

GB36 9.27 1589 10.17 5979 

GB39 9.06 1388 9.75 5845 

GB42 9.34 1422 10.18 5557 

H001 9.3 1576 10.12 5936 

H002 9.22 1431 9.98 5677 

H006 9.25 1465 10.1 6030 

H012 9.06 1382 9.8 5580 

H027 9.36 1576 10.13 6407 

H032 8.96 1399 9.88 6165 

H037 6.13 919 6.55 2508 

H038 9.38 1494 10.29 6472 

H048 9.21 1404 9.91 5052 

H054 8.89 1175 9.5 4467 

H061 8.85 1213 9.32 3468 

H096 9.19 1367 9.83 4138 

H101 9.17 1382 9.98 5836 

H102 9.41 1478 10.15 5342 

H103 8.92 1304 9.67 5574 

H104 9.42 1472 10.12 4769 

H107 9.18 1418 9.96 5235 

H108 9.11 1432 9.92 6175 

H109 9.08 1348 9.92 5393 

H110 9.16 1362 9.99 6244 

H118 9.95 1783 10.88 7084 

H119 9.83 1684 10.69 6735 
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H121 9.36 1459 10.14 5248 

H123 9.63 1606 10.55 6806 

H124 9.13 1392 10.04 7168 

HTXD 9.6 1559 10.42 5848 

HTXM 9.68 1617 10.69 7125 

HTXS 9.77 1524 10.61 6173 

HXSG 9.77 1486 10.55 5964 

NC68 9.76 1728 10.77 9532 

NC70 9.65 1721 10.82 9611 

NC71 9.8 1745 10.94 9350 

NC73 8.87 1391 9.67 6408 

NC76 8.87 1329 9.64 5979 

NC77 9.05 1307 9.84 5450 

NC79 9.62 1717 10.34 4791 

NC82 9.71 1775 10.8 8694 

NC83 9.69 1768 10.88 9247 

NC84 9.51 1639 10.55 8432 

NC87 9.32 1501 10.25 6832 

NC88 9.36 1548 10.22 7740 

NC89 N/A N/A N/A N/A 

TB01 9.52 1457 10.32 6129 

TB02 9.65 1417 10.31 5227 

TB03 8.99 1328 9.7 4152 

TB04 8.97 1156 9.49 4105 
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Figure S1. Rarefaction curves to estimate A and KSα domain OBU diversity  

S1A. Rarefaction curve for A domain OBUs 

 
S1B. Rarefaction curve for KSα domain OBUs 
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Figure S2. A and KSα domain OBU and sequence abundances. 

The sequence read abundance at each collection site was mapped and represented as 
different sized circles. A-D show the relative abundances of A domain OBUs clustered at 
85% (A), of A domain sequences (B), KSα domain OBUs clustered at 85% (C), and KSα 
domain sequences. (D), respectively. Sequences were rarified at 13 sequences per sample 
for KSα domain sequences and at a rarefaction of 3,487 sequences per sample for A 
domain sequences to map known sequences. 
 

 
 
 
 
 
Figure S3. Occurrence of known antibiotics in Lake Huron sediment. Sequences were 

rarified at 13 sequences per sample for KSα domain sequences and at a rarefaction of 3,487 

sequences per sample for A domain sequences before mapping. 

 S3A. Occurrence of anikasin-like molecules in Lake Huron sediment.  
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S3B. Occurrence of aurantimycin-like molecules in Lake Huron sediment.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
S3C. Occurrence of chaxamycin-like molecules in Lake Huron sediment. 
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S3D. Occurrence of ficellomycin-like molecules in Lake Huron sediment. 
 

 
S3E. Occurrence of taromycin-like molecules in Lake Huron sediment. 
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S3F. Occurrence of rosamycin-like molecules in Lake Huron sediment. 
 

 
 
 
 
 
 
 

 
S3G. Occurrence of rifamycin-like molecules in Lake Huron sediment. 
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Figure S4. Occurrence of known siderophores in Lake Huron sediment. 

S4A. Occurrence of erythrochelin-like molecules in Lake Huron sediment.  

 
S4B. Occurrence of albachelin-like molecules in Lake Huron sediment.  
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S4C. Occurrence of mycobactin-like molecules in Lake Huron sediment.  
 

 
 
 
 
 
 
 
 
 
S4D. Occurrence of coelibactin-like molecules in Lake Huron sediment. 
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Figure S5. Occurrence of all other known, detected bioactive natural products in Lake Huron 

sediment. Sequences were rarified at 13 sequences per sample for KSα domain sequences 

and at a rarefaction of 3,487 sequences per sample for A domain sequences before 

mapping. 

S5A. Occurrence of meridamycin-like molecules in Lake Huron sediment.  
 

 
S5B. Occurrence of RP1776-like compounds in Lake Huron sediment.  
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S5C. Occurrence of phthoxazolin-like molecules in Lake Huron sediment.  
 

 
S5D. Occurrence of tolaasin-like molecules in Lake Huron sediment.  
 

S5E. Occurrence of epothilone-like molecules in Lake Huron sediment.  
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S5F. Occurrence of rakicidin-like molecules in Lake Huron sediment.  
 
 

 
S5G. Occurrence of tiacumicin-like molecules in Lake Huron sediment.  
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S5H. Occurrence of griseorhodin-like molecules in Lake Huron sediment. 

 
Supplementary Discussion. 

Of the known identified OBUs, those corresponding to antibiotics and other bioactive 
compounds were scarce in comparison to siderophores; on average, four sequence reads, 
and six sequence reads were detected per location for antibiotics and other bioactive 
compounds, respectively. In contrast, ten sequence reads were detected per location for 
siderophores. One potential explanation for this is that bacteria more commonly use 
siderophores in the environment. Siderophores are essential for a microbe‘s survival: they 
chelate essential metals and thereby make them available for use in processes such as 
oxygen metabolism, and DNA and RNA syntheses.12,13 Strains that are relevant for the field 
of NP drug discovery are present in undetectable amounts in sediment.14 This might be the 
reason a large proportion of the OBUs (98.3% KSα domain OBUs and 99.9% of A domain 
OBUS, respectively) failed to match any of the compounds available in the MIBiG database. 
It is also worth noting there was no observed correlation between OBU presence/abundance 
and OTU presence/abundance (Supp. Table S7).  
 
Expanded experimental limitations discussion. 
The need for novel approaches to improve detection of NP BGCs from eDNA. 
  There are a few experimental limitations to the current study. First, the low 
abundance of sequence reads belonging to NPs can be attributed to limited eDNA extracted 
from sediment and biases generated from PCR amplification using highly degenerate 
primers. In addition, the resulting amplicons are only partially representative of the BGC 
population present in sediment: (1) the eDNA extraction step is biased towards non-spore 
forming bacteria, (2) the primers used in this study target a limited range of bacterial taxa, 
since they were designed specifically for Actinobacteria sequences (A domain primers) or a 
small subset of Actinobacteria, such as Streptomyces spp. (KSα domain primers), and (3) 
PCR amplification itself yields a distorted representation of the true distribution of gene 
targets. Yet, these primers and PCR conditions are commonly used to evaluate BGC 
diversity in eDNA from various environments. The design of new, more inclusive primers will 
be vital for the discovery of non-traditional BGCs. Similarly, alternative, non-PCR-based 
approaches may also be necessary. Such approaches include deep shotgun metagenome 

E
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sequencing coupled with long-read sequence data (e.g. Oxford Nanopore, PacBio, Loop 
Genomics), or enrichment sequencing (e.g., Oxford Nanopore selective sequencing, 
hybridization capture+shotgun metagenome sequencing). Finally, the MIBiG database was 
used to assess molecular classes.7 The number of existing NPs greatly outnumbers the 
number of entries in MIBiG, underlining the need for the community to contribute to this and 
similar existing databases to identify NPs.  
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Annexure E: List of Abbreviations 

 
16S rRNA 16S ribosomal ribonucleic acid (rRNA), where S (Svedberg) is a unit of measurement of 

sedimentation rate 

AMR antimicrobial resistance  

antiSMASH antibiotics & Secondary Metabolite AnalysisShell   

ARTS Antibiotic Resistant Target Seeker    

AT acyl transferase      

ATP Adenosine Triphosphate      

BGC Biosynthetic Gene Cluster     

BinAC Bioinformatics and Astrophysics Cluster 

BLAST Basic Local Alignment Search Tool   

bp basepair 

CMFI Controlling Microorganisms to Fight Infections 

DEBS 6-Deoxyerythronolide B Synthase 

deNBI German Network for Bioinformatics Infrastructure 

DFG German Research Foundation (Deutsche Forschungsgemeinschaft) 

DNA Deoxyribonucleic acid      

DZIF Deutsche Zentrum für Infektionsforschung 

GCF Gene Cluster Family     

HMM Hidden Markov Model     

IBMI Interfaculty Institute for Biomedical Informatics 

IMIT Interfaculty Institute for Microbiology and Infection Medicine Tübingen 

kb kilobase 

KR ketoreductase       

KS ketosynthase       

MAG Metagenome Assembled Genome 

MBEZ Metagenome biosynthesis potential exploration easy tool 

MDR Multi-Drug Resistant      

MiBIG Minimum Information about a Biosynthetic Gene cluster 

NABI National Agri Food Biotechnology Institute 

NaPDoS Natural Product Domain Seeker    

NCBI National Center for Biotechnology Information   

NCCT NGS Competence Center Tübingen 

NGS Next Generation Sequencing 

NIH National Institute of Health 

NP Natural Product 

NRPS Non-Ribosomal Peptide Synthetase     

PacBio Pacific Biosystems 

PCP Peptide Carrier Protein     

PCR Polymerase Chain Reaction     

Pfam Protein family      

pHMM profile Hidden Markov Model 

PKS Polyketide Synthases      

RiPP ribosomally synthesized and post-translationally modified peptides  

RNA Ribonucleic acid      

SM Secondary Metabolite      

TE thioesterase       

TELL-seq Transposase Enzyme Linked Long-read Sequencing  
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