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Abstract

Genomics has accelerated discovery in biology in an unprecedented way. Still, we are far
from solving grand challenges facing humanity. The challenge to combat antimicrobial
resistance requires us to accelerate natural product discovery by several orders of
magnitude. We are already running out of our existing arsenal of antibiotics and novel
approaches are needed to accelerate the pace of their discovery and development. Quick
screening of natural product biosynthesis potential via metagenome mining holds new hope
to revive the antibiotic discovery pipeline. Thanks to recent advancements in next generation
sequencing technologies and big data mining, now we can hope to rationally survey the
diverse ecosystem metagenomes to discover novel secondary metabolites.

In this thesis we have presented our developed metagenome data mining pipeline
and approaches to explore novel regions of natural products chemical space. We present
our results and insights from multiple ecosystem metagenome surveys. Novel biosynthesis
genes, domains, cluster sequences and comparative patterns from the surveyed ecosystem
are highlighted in separate chapters. Metagenome mining patterns from following diverse
ecosystems were studied: 1) Different horizons of soil sampled from three sites in close
vicinity from the Schoenbuch forest; 2) Lake Huron sediments; 3) human gut microbiome
and 4) the Tuebingen actinomycetes strain collection.

The insights gained from this thesis will be helpful to the natural products research
community to accelerate metagenome based novel natural products discovery and revive

the antibiotics discovery pipeline.



Zusammenfassung

Die Genomik hat die Entdeckung in der Biologie auf beispiellose Weise beschleunigt.
Dennoch sind wir weit davon entfernt, die grof3en Herausforderungen der Menschheit zu
I6sen. Die Herausforderung, antimikrobielle Resistenzen zu bekampfen, erfordert, dass wir
die Entdeckung von Naturstoffen um mehrere GroéRenordnungen beschleunigen. Unser
vorhandenes Antibiotika-Arsenal geht uns bereits aus, und es werden neue Ansatze
benétigt, um das Tempo ihrer Entdeckung und Entwicklung zu beschleunigen. Ein schnelles
Screening des Biosynthesepotenzials von Naturstoffen durch Metagenom-Mining birgt neue
Hoffnung, die Pipeline zur Entdeckung von Antibiotika wiederzubeleben. Dank der jingsten
Fortschritte bei den Sequenzierungstechnologien der nachsten Generation und dem Big-
Data-Mining kénnen wir nun hoffen, die vielfaltigen Metagenome des Okosystems rational
zu untersuchen, um neue Sekundarmetaboliten zu entdecken.

In dieser Dissertation haben wir unsere entwickelte Metagenom-Data-Mining-Pipeline
und Ansétze zur Erforschung neuartiger Regionen des chemischen Raums von Naturstoffen
vorgestellt. Wir prasentieren unsere Ergebnisse und Erkenntnisse aus mehreren
Okosystem-Metagenom-Untersuchungen. Neuartige Biosynthesegene, Domaénen,
Clustersequenzen und Vergleichsmuster aus dem untersuchten Okosystem werden in
separaten Kapiteln beleuchtet. Es wurden Metagenom-Mining-Muster ausfolgenden
verschiedenen Okosystemen untersucht: 1) Verschiedene Bodenhorizonte, die von drei
Standorten in unmittelbarer Nahe des Schonbucher Waldes beprobt wurden; 2) Sedimente
des Huron Sees; 3) menschliches Darmmikrobiom und 4) die Tibinger Stammsammlung.

Die aus dieser Dissertation gewonnenen Erkenntnisse werden der
Naturstoffforschungsgemeinschaft helfen, die Metagenom-basierte Entdeckung neuer

Naturstoffe zu beschleunigen und die Entdecker- Pipeline von Antibiotika wiederzubeleben.
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Chapter 1: Introduction

1.1 The quest for understanding the fundamental secret of life.

Understanding the fundamental secrets of life is the overarching motivation of all human
endeavours. Tuebingen has witnessed the unravelling of such secrets, most fundamental
discoveries in research areas of biology, chemistry and cosmology. Johannes Friedrich
Miescher in 1869 became the first scientist to isolate nucleic acid in the lab of Felix Hoppe-
Seyler at University of Tuebingen (Dahm, 2008). This discovery truly marked the beginning
of the genomics era. During the subsequent period in the twentieth century our
understanding of biology and genetics improved many folds. Julius Lothar Meyer discovered
the early version of the periodic table and ushered the chemistry revolution (Pulkkinen,
2020). In the seventeenth century, Johannes Kepler discovered the laws of planetary
motion (Voelkel, 2001); Wilhelm Schikard invented a mechanical calculator (Hanisch et al.,
2000). Meyer, Kepler and Schikard have all been associated with the University of
Tuebingen. More recently in 1995 Christiane Nisslein-Volhard was awarded the Nobel Prize
in Medicine for her research on the genetic control of embryonic development (Nusslein-
Volhard, 2012). The knowledge — generated during these quests — has become the holy
grail for overcoming human suffering and disease. Established in 1477 Eberhard Karls
Universitat Tlbingen, since then has attracted the best minds and nurtured their talents to
find answers to the fundamental secrets of life. This makes Tuebingen truly a place of
scientific pilgrimage for the researchers seeking ultimate knowledge via the path of science.
While frontiers of understanding consciousness, overcoming disease, extending longevity
and making life transplanetary are the challenging goals of our generation, this thesis is a
small step in the humble pursuit of accelerating the novel natural products discovery through

mining the metagenomic data.
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In the introductory chapter, firstly | have given an historical account of the Antibiotics era and
discussed the problem of antimicrobial resistance. Next, | have described how genome
mining revolutionised and revived the discovery pipelines of antibiotics. Subsequently, | have
discussed why we need to go beyond studying single genomes and start exploring
metagenomes to uncover the hidden microbial diversity and unlock the treasure of vast
natural product chemical space. Then | have described the research problem that | have
studied during this dissertation project and how | have solved certain aspects of this vast
topic. Then | have given an overview of the structure of my thesis and brief contents of the

chapters.

1.2 Pre antibiotics era, antibiotics era and the discovery void

Before the discovery of antibiotics (pre antibiotics era) even a small injury was equivalent to
a death sentence. Due to infection post injury only a lucky few survived who recovered
miraculously, the remaining just died often painfully. This situation changed on the arrival of
antibiotics (the present, antibiotics era). Serendipitous discovery of Penicillin by Alexander
Fleming in 1928 ushered in the beginning of the antibiotics era (Droog, 2015). First few
decades of the beginning of this era were considered a golden epoch as numerous
antibiotics were discovered. Selman Waksman, Albert Schatz, Yellapragada Subbarow were
the most successful pioneers of this field who discovered the widely used clinical antibiotics
(Samanta and Bandyopadhyay, 2019). Most of the discovered antibiotics were from the
bacteria isolated from soil samples and rediscovery of these known antibiotics during
subsequent discovery expeditions became the next big challenge. The big pharma industry
even started to close the discovery units due to the challenges and limited profits (Shlaes,
2010). This led to a discovery void and now there is dearth of drugs to treat new infectious

diseases.
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1.3 Post antibiotics era and Antimicrobial Resistance

We are currently on the threshold of the post antibiotics era due to the widely developed
antimicrobial resistance (AMR) and we might reach a stage where again microbial infections
can become untreatable. We — as human species — are truly living in a microbial world. It
is estimated that there are more than about a trillion bacterial species, of which we have so
far discovered and studied only a few hundreds of thousands (Locey and Lennon, 2016).
These bacterial species are constantly in an arms race amongst each other. They keep
competing for resources, food, survival, and evolution. Some of the species have evolved
mechanisms to biosynthesize natural chemical products to kill other species. Penicillin is one
such compound produced by Penicillium mould that kills bacteria by inhibiting the cell wall
synthesis. It is interesting to raise several questions here. Bacteria also evolve to combat
this chemical attack by several mechanisms viz: export/efflux the antibiotic,
degrade/catabolize the antibiotic, target modification etc(Reygaert, 2018). These resistance
mechanisms make these evolved bacteria more dreadful and are responsible for the havoc

we are currently experiencing and we term it as "Antimicrobial resistance (AMR)"

1.4 Natural products, secondary metabolites, specialised

metabolites, antibiotics: What are they?

All these terms are mostly used interchangeably by the research community. These small
molecules are naturally produced by microbes hence this broadest term of “natural products”
is frequently used. As these compounds are mostly distinct from the primary metabolites
produced by the particular species, the term “secondary metabolites” is also used. Natural
products definition encompasses both primary and secondary metabolites. Since the word
“secondary” has the possibility of diluting the importance of these biomolecules, some
researchers prefer the term “specialised metabolites” as being more appropriate. Generally
these biomolecules function as inhibitors of bacterial growth (bacteriostatic) or sometimes

even kill the other organisms (bactericidal), so the term antibiotics is used.


https://www.zotero.org/google-docs/?bdPnuu
https://www.zotero.org/google-docs/?xT49eG

Chemically these small molecules can be classified according to the biosynthetic pathway
they follow. Major biosynthetic pathways include those encoding for polyketide synthases
(PKS), non-ribosomal peptide synthetases (NRPS), ribosomally synthesised and post
translationally synthesized peptides (RiPPs), terpenes, saccharides etc. Clinically used
secondary metabolites have diverse pharmacological actions. Antibiotics, antifungal, anti-
cancerous, immuno-modulatory, antiviral, antimalarial, antipsychotic, antiobesity etc. are
some of the pharmacological actions shown by the diverse natural products produced by

microbes and plants. Some of these natural products' chemical structures are shown in

Figure 1.
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Figure 1: Popular natural products structures. Biosynthetic class these drug belong to and
their pharmacological actions is mentioned in the brackets in the caption. Ivermectin
(PKS:antiviral and antiparasitic), Tetracycline (PKS: antibiotics), bleomycin (PKS-NRPS:
anticancer), daptomycin (NRP: antibiotics), Lovastatin (PKS:anti-cholesterol), Platensimycin

(Terpene: antibiotic), Geosmin (Terpene: volatile odour), Nisin (RiPPs: antibiotic),



Gentamycin (Saccharide-PKS: antibiotics), Vancomycin (Glycopeptide: antibiotic). Image

Source: Chemical structures from PubChem https://pubchem.ncbi.nim.nih.gov/

1.5 Traditional routes to discovery

Historically most of the clinically used antibiotic drugs are produced by microbes isolated
from soil. Culturing requirement was of prime importance for exploring the antibiotics
potential. After growing the isolated species in fermenters, classical chemistry methods
came in handy to extract and isolate the potential molecules that show activity. Bioassays
measuring the antibiotic activity of isolated compounds against collection of pathogenic
organisms were performed. Sophisticated structure elucidation methods are then used to get

the exact chemical structure of the biomolecule.

1.6 Hidden microbial dark matter and genome mining

The next generation sequencing (NGS) technologies ushered in the genomics revolution to
the extent that it has now become a routine to sequence microbial genomes. Genome
databases have become treasure trove that can be mined for novel genes. As these
genomes were annotated and studied, it also started becoming evident that the genomes of
the biosynthetically gifted streptomyces contained more than one biosynthesis gene cluster
(BGC), in some cases several BGCs (Baltz, 2021). Most of the remaining BGCs were silent
and were not expressed. Additionally, it is also reported that we are successful in culturing
only a fraction (few percent) of the total microbial species present in a particular soil sample
(Stewart, 2012). Due to this limitation the large fraction of microbial diversity remains hidden
and there is dire need for research methods that can help in uncovering this diversity and

realise the full biosynthetic potential.

1.7 BigData and metagenome mining potential

Genomic and metagenomic databases (listed in Annexure A: Table 1) contain huge amounts

of genomes and shotgun metagenomic data. Using novel approaches and tools this BigData
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can be mined for discovering biosynthetic gene clusters and biosynthetic diversity patterns.
The observed biosynthetic pattern when correlated with relevant metadata about the
geographical coordinates, horizons (in case of soil samples), treatment conditions,
taxonomic diversity, can become useful in rationally answering the long-standing questions
about 1) Where the metagenome sampling studies should be conducted to maximise the
chances of discovery on novel BGC? 2) How evolutionary patterns shape the microbial
communities in a particular ecosystem? Chemical databases (listed in Annexure A: Table 2)
along with genomic databases (listed in Annexure A: Table 1) contain rich sources of
information that can be mined to discover novel natural products and evolutionary patterns.
Some of these datasets can also be used to train the machine learning algorithms that can
further help in predicting structural and functional aspects of known and unknown natural
products. Crude patterns observed from the meta analysis should be taken with a grain of
salt and more standardised sampling procedures supported with detailed documentation
would be necessary to claim definite patterns and mechanisms. While it is extremely
challenging to discover novel natural products via culture independent approaches using
metagenomics, the field has recently tasted success through discovery of Malacidin and
Cadaside (Figure 2) (Hover et al., 2018; Wu et al., 2019). Both these natural products have
been discovered through metagenomic surveys of soil samples. They show activity against
multi-drug resistant pathogens.

The field is currently ripe with standardised tools (listed in Annexure A: Table 3) for
genome mining of BGCs and comparative analysis to infer meaningful patterns. Some of the
analysis approaches can be directly applied to developing metagenome mining workflows,
for some minor adaptation might be necessary. In most of the cases these algorithms run
smoothly for smaller metagenome data sizes, but as the sample sizes increase or if the data
volume per sample increases, the existing tools run into problems. Sometimes these
problems are specific to hardware requirements and can be handled by increasing the
resource size (example by increasing the Random Access Memory of the workstations or

the storage space). There is definitely a tremendous scope of developing new optimised
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algorithms which can accelerate the metagenome mining and analysis. For more details,
insights on the topic of big data and evolutionary genome mining for discovery of novel
natural products, refer to our published review [See Annexure A].
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Figure 2. Metagenome derived natural products structures: Malacidin and cadaside. Image

Source: Chemical structures from PubChem https://pubchem.ncbi.nim.nih.gov/

1.8 Research problem

Almost all of the low hanging fruits — the clinically used antibiotics drugs discovered so far
— have been picked up by the traditional methods. After tasting the success of discovering

novel BGCs from the genomes of culturable microbial species, now the focus has shifted to
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mine the hidden dark matter of unculturable microbial diversity. Metagenome sequencing
and subsequent metagenome mining method has the potential to uncover novel regions of
natural products chemical space. Following factors make adoption of metagenome mining
methods challenging: 1) the huge amount of microbial diversity present in diverse
ecosystems; this makes it difficult to decide which ecosystems, geographical locations
should be surveyed and sampled to maximise the chances of discovery of natural products
2) High sequencing costs to capture complete metagenomes; this makes the method
accessible to limited generously funded laboratories 3) Unavailability of easy to use
metagenome mining methods and tools; the natural product chemist and microbial
ecologists who are interested in using metagenomics methods find it challenging to use the
existing command line bioinformatics tools and might need additional skills of using cloud

and cluster computing to handle the huge memory space and computation requirements.

1.9 Obijectives

Relevant metagenomic approaches, methods and tools are required to be developed using
genomics and computational biology techniques to harness the biosynthetic potential.
Following objectives were taken up during this dissertation project.
1) Development of bioinformatics pipeline for exploration of natural products chemical
space.
2) Comparative metagenomic exploration of soil horizons from multiple sites to identify
domain and BGC diversity patterns and correlations.
3) Metagenomic exploration of diverse ecosystems viz. human gut, lake sediments, and

strain collections, to identify patterns and generate new hypotheses.

1.10 Thesis Outline

The biological concepts and topics crucial for understanding the basics involved in the area

of natural products genome mining and metagenome mining have been described in
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Chapter 2. Briefly, this covers topics about microbial diversity, natural products chemical
space, biosynthesis pathways of natural products, next generation sequencing technologies
and metagenome mining.

Chapter 3 covers technical background. The algorithms and databases involved in genome
and metagenome mining have been surveyed and reviewed in this chapter. Microbial
community diversity profiling methods, natural products domain exploration methods, natural
products biosynthetic cluster exploration methods, metagenome assembly and biosynthesis
potential exploration method, and easy to use tools and techniques have been covered.

In Chapter 4 MBEZ pipeline and scripts are described. Analysis steps, workflows, required
inputs and generated results output formats have been described.

The Chapter 5 discusses the collaborative pilot project results of a survey of microbial
community diversity and biosynthetic diversity of different horizons of Schoenbuch forest
soil. Results from the amplicon sequencing, shotgun sequencing (short reads), and shotgun
seqguencing (long reads) methods have been described. Comparative advantages of each of
the methods is also highlighted.

Chapter 6 covers the biosynthesis potential survey of diverse ecosystems, specifically gut
microbiomes, lake sediments metagenome and Tuebingen strain collection were studied.

In the final Chapter 7 overall conclusion, expected future impact of the developed methods

and approaches, and future challenges in the field are discussed.
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Chapter 2: Biological Background

Bacterial species and communities were the focus during this dissertation project and in this
chapter | have described the necessary biological background that will be helpful in

understanding the subsequent chapters.

2.1 Microbes as source of natural products

Microbes are microscopic organisms and are ubiquitously present in all ecosystems. They
constitute archaea, bacteria and fungi. They are the most primitive life forms that arose
billions of years ago. Some studies have dated this to be precisely in the range of
somewhere around 3.4-3.9 billions of years ago (Betts et al. 2018). Bacterial taxonomy
comprises following ranks: phylum, family, class, order, genus, species, strain. Bacterial
genomes are circular in structure with densely packed genes. Some bacteria also harbour
plasmid genomes. The genome sizes range from a few hundred nucleotide kilobase pairs to
few megabase pairs. Most of the clinically used antibiotics to treat infectious disease are
produced by bacteria isolated from soil. Antibiotics are the small molecules biosynthesized

naturally by bacteria to help them survive.

2.2 Bacterial Diversity: How much do we know?

It won't be an understatement to say that we are living on the microbial planet. According to
some estimates there are a trillion bacterial species that live on this planet (Locey and
Lennon 2016). Only a minute fraction of these have been studied so far. Figure 1 gives a

glimpse of the exponential increase of numbers of genomes deposited over several years.
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Figure 1. Exponential increase in the number of prokaryotic genomes in NCBI over the
course of years.

Every gram of soil contains approximately thousands of bacterial species and of these
generally only a few percent (around 2%) of species we can isolate and culture in the
lab(Bubnoff 2006). The remaining 98 % we cannot isolate as these require complex media
and culture conditions. Practically it is difficult or often impossible to create such conditions
artificially in the lab or to create complex growth media that meets the growth needs of
unculturable bacteria. Methods that can help in exploring this hidden microbial diversity have

the potential to expedite the natural products discovery rate.

2.3 16S rRNA based profiling of diversity of bacteria

16s rRNA gene is conserved across bacteria and is used as a marker for taxonomic labelling
(Johnson et al. 2019). This gene contains 1542 nucleotides and constitute several variable
regions which help in differentiating the bacteria (Figure 2). These variable regions can be
PCR amplified and sequenced via NGS (Yarza et al. 2014). Amplicon based metagenome

profiling method has become widely used to profile diversity of a particular metagenomic
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sample. Primers covering the variable v3 region have been used in the projects described

later in this thesis.
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Figure 2. E.coli 16S ribosomal RNA secondary structure showing variable regions.
Nucleotide positions: V3 (433-497) and V4 (576-682). Reprinted by permission from
[Springer Nature Customer Service Centre GmbH]: Yarza, P., et al. (2014). Nature Reviews

Microbiology, 12(9), 635-645. https://doi.org/10.1038/nrmicro3330 . © 2014
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2.4 Primary and secondary metabolism pathways

Primary metabolic pathways in bacteria produce the basic biological metabolites necessary
for development and growth of bacteria. These involve carbohydrates, proteins, nucleic
acids, and lipid metabolic pathways. Apart from these primary metabolic pathways bacteria
also produce specialized metabolites via secondary metabolic pathways (Craney, Ahmed,
and Nodwell 2013; Davies 2013). These involve biosynthesis of polyketides, NRP, RiPP,

terpenes. Biosynthetic pathways of a few antibiotics are described later in this chapter.

2.5 Natural products chemical space and atlas

How many structural families of natural products are biosynthesised by bacteria that are
known so far? One indirect way to get a rough estimate would be to subtract archaeal and
fungal GCFs from the total ~30k GCFs from BIGFAM (Kautsar et al. 2021). This would give
an idea about the potential but the exact structure that these GCFs/BGCs encode cannot be
known until each of these BGCs are experimentally characterised. Alternatively, if we only
cluster the known BGCs from MiBiG database then this would also be an underestimation as
many NP structures have not been connected to their respective BGCs. So the best way to
get an estimate would be to classify the NP atlas containing structures (includes bacterial
and fungal compounds) (van Santen et al. 2019) using a NP Classifier (Kim et al. 2020).
Currently, 653 classes (including plants, marine organisms, fungi, and microorganisms) have
been assigned under 7 major chemical pathways by NP Classifier. Pathways include amino
acids/peptides, fatty acids, carbohydrates, polyketides, shikimates-phenylpropanoids,
terpenoids, and alkaloids. For the latest Natural Products atlas [29,006 total (11,264
bacterial) compounds] there are 466 total (313 bacterial) unique classes predicted by NP
Classifier. NP Atlas also reports structural similarity based clustering of microbial compounds
based on Dice similarity scoring (0.75 cutoff) and Morgan fingerprinting (radius= 2).

Specifically for bacterial compounds this resulted in 3297 clusters and 2487 nodes (based
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on atom pairs fingerprinting and Dice similarity scoring (0.7 cutoff)). If we compare these
cluster numbers to the number of GCF from BIGFAM (25,667 bacterial GCFs; applying
taxon filter), it becomes evident that only about 10 percent of biosynthetic potential has been

structurally characterised and studied.

2.6 Biosynthesis of bacterial natural products

2.6.1 Polyketide Biosynthesis Pathway

Nature has devised a strategy analogous to the famous assembly line production process of
the automobile industry, to make a class of molecules called the polyketide antibiotics. As a
representative example for the class of polyketides, | have briefly described the biosynthesis
of a popular antibiotic Erythromycin. Erythromycin is produced by the bacterial species
Aeromicrobium erythreum. The BGC sequence length of erythromycin is 61845 nucleotides
(Figure 3). The key intermediate synthesised during the biosynthesis of Erythromycin is
called 6-Deoxyerythronolide B (Figure 4) (Musiol-Kroll and Wohlleben 2018). It is
synthesised by 6-Deoxyerythronolide B Synthase (DEBS). DEBS is made up of 3 very large
proteins consisting of multiple domains. DEBS1 is a homodimer consisting of two modules
(Module 1 and Module 2). Likewise DEBS2 contains modules 3 and 4; and DEBS3 contains
modules 5 and 6. Each of the domains does a specific chemical modification function.
Polyketide synthase domains (PKS) namely acyltransferase (AT), acyl carrier protein(ACP),
ketosynthase(KS), dehydrogenase (DH); ketoreductase(KR), enoyl reductase (ER) and
thioesterase (TE) are present in the DEBS. DEBS assembly line uses multiple precursors
viz. propionyl coenzyme A and methylmalonyl coenzyme A (Cortes et al. 1990; Donadio et
al. 1991). Subsequently, incremental addition of precursors via each module leads to
production of 6-Deoxyerythronolide B. The actual enzymatic chemistry that is happening on
each of the modules involves the synchronous functioning of catalytic domains present in
each of the modules. Translocation of precursor (the growing polyketide) from ACP of

upstream module is moved to KS domain (in active site) and is bound to KS domain through
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thioester linkage. Next event in the catalytic cycle is acyl transfer. Acyltransferase governs
which precursor would be used for the acyl transfer reaction. This is followed by a chain
elongation step where the polyketide chain elongation takes place. A two dimensional
reaction scheme depicted in Figure 4 is a cartoon representation of the biosynthesis
pathway, simplified for ease of understanding. Three dimensional structural details and
complexity of a few of these steps have been solved using X-ray crystallography and nuclear

magnetic resonance.
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Figure 3: Biosynthetic gene cluster of erythromycin. A) Map showing the position and lengths
of genes. B) Modules domain view of the erythromycin biosynthesis genes. Image Source:

https://mibig.secondarymetabolites.org/repository/BGC0000054/index.html#ricl

20



DEBST ) pEBS2 B DEBS3 D

Load Module 2 Module 6
mm Module 1 m—— Module 3 EEEEEEE——

SCoA

o o .

NMe,

" Ho
"0 ,m Post-PKS enzymes

(Tailoring reactions)
€<— <

<

Erythromycin A 6-Deoxyerythronolide B

Figure 4. Biosynthesis pathway of erythromycin (DEBS). The assembly line consists of
modular PKS machinery. Three subunits DEBS 1, DEBS 2 and DEBS 3 are organized into
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protein; KS, ketosynthase; DH, dehydrogenase; KR, ketoreductase; ER, enoylreductase; TE,
thioesterase.). Image Source: Musiol-Kroll, E. M., & Wohlleben, W. (2018). Antibiotics, 7(3),

62. https://doi.org/10.3390/antibiotics7030062 , Copyright: Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
2.6.2 Nonribosomal Peptide Biosynthesis Pathway

As a representative example for the class of NRPs, | have briefly described the biosynthesis
of a Kistamicin. Kistamicin is a glycopeptide antibiotic produced by Actinomadura parvosata
subsp. Kistnae (Nonomuraea sp. ATCC55076). The biosynthetic gene cluster is of length of

around 60 kbp (Figure 5A) (Greule et al. 2019). Biosynthesis pathway of glycopeptide
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consists of 1) NRPS biosynthetic system 2) Oxidative cyclization cascade. NRPS comprises
of multiple biosynthetic domains, namely adenylation domain, condensation domain,
epimerization domain, peptidyl carrier protein, thioesterase and X-domain. These domains
catalyze the assembly line like linear chain elongation reaction to synthesize the
heptapeptide precursor. The chain elongation steps occur in linear fashion as shown in

Figure 5B on different modules one after another.
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Figure 5. Kistamicin biosynthetic gene cluster and the biosynthesis pathway.

(A) Map showing following genes: 4 nonribosomal peptide synthetase, MbtH protein,
biosynthesis genes of non-proteinogenic amino acids 4- hydroxyphenylglycine (Hpg)
and 3,5-dihydroxyphenylglycine (Dpg), 2  Cytochrome P450 encoding genes — oxyA and

oxyC, FAD-type halogenase, transporter genes, genes encode regulatory proteins,
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additional genes and genes with unknown functions. BGC Source organism: Actinomadura
parvosata subsp. Kistnae (Nonomuraea sp. ATCC55076); Cluster length: around 60 kb;
MIBIG link: https://mibig.secondarymetabolites.org/repository/BGC0001635/index.html#rlcl
(B) Seven NRPS modules (module 1-7) consisting of multiple biosynthesis domains are
shown. Heptapeptide precursor linear biosynthesis steps happening at each module are
elucidated serially under each module. Final structure of kistamicin is produced via three
crosslinking reactions catalysed by the Oxy enzymes and the X domain present in the last
module. NRPS domain abbreviation : A, adenylation domain; C, condensation domain; E,
epimerization domain; PCP, peptidyl carrier protein; TE, thioesterase; X, Oxy recruiting
domain. Image Source: Greule, A. et al. Nat Commun 10, 2613 (2019).
https://doi.org/10.1038/s41467-019-10384-w, Copyright: Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/).

2.7 Next generation sequencing and genome mining revolution

Sanger sequencing was the workhorse of the human genome project that was completed in
2001(Venter et al. 2001). NIH and Celera were the joint winners of the race to decipher our
genome. At that time billions of dollars were spent to accomplish this goal and technological
revolution (genome sequencing) was hoped for making the fruits of the human genome
available for the masses. Expected sequencing costs had to be reduced by several orders of
magnitude. Even the throughput had to be scaled up to achieve accessibility of these
methods in clinics and research labs.

Pyrosequencing based sequencing technology achieved by 454 (later acquired by Roche)
headed by Jonathan Rothberg truly ushered in the next generation sequencing era
(Margulies et al. 2005). Early generations of 454 sequencers could churn out several
hundreds of megabases of nucleotide sequences. This was followed by Illumina which
further achieved greater throughput and was a more economical method. Paired end short
read sequencing method has become the routine method for sequencing bacterial genomes.

Short reads have the limitation that they produce many contigs upon assembly, and very
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rarely one can get a complete genome as a single contig. This limitation was subsequently
removed by long read technologies such as Oxford Nanopore and PacBio (Amarasinghe et
al. 2020). Sequencing of several kilobase of DNA fragments, sometimes even the reads in
megabase lengths became possible. The limitation of this method is the low quality of bases
and sequencing costs are high as compared to the short read technology.

Using the lllumina or nanopore only data or hybrid data assembled genome as an input to
algorithms for genome mining of BGCs has become a starting step in any endeavours
hoping for discovering novel natural products. antiSMASH uses rule-based logic to annotate
and find the BGC in the genome. Briefly, it first finds the genes using prodigal and annotates
the genes using pHMMs from PFAM and custom HMM models. Subsequently, clusters are
annotated based on collection of cluster rules which comprise the composition and order of

genes and domains as previously found in known clusters (Medema et al. 2011).

2.8 Biosynthesis domain diversity profiling via amplicon

seqguencing.

16S rRNA gene amplicon sequencing gives a glimpse into microbial diversity present in a
particular sample. This method is economical and standard protocols, primers and analysis
tools are available, which makes it a widely used method. Amplicon sequencing has also
been used for studying diversity of biosynthetic domains involved in biosynthesis of
secondary metabolites. Degenerate primers capable of amplifying the biosynthetic domains
or genes have been reported (Ginolhac et al. 2004; Pimentel-Elardo et al. 2012). These
include ketosynthase domain, adenylation domain. KS and A domain primers were also
used in one of the projects described later. This domain diversity can be used as a proxy for

inferring the biosynthetic potential of the particular sample.
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2.9 Metagenome mining for estimating biosynthesis potential

Metagenome sequencing methods decipher total DNA present in the sample. After
extracting the DNA, sequencing libraries can be prepared according to the chosen short
read technology or the long-read technology protocol. Subsequently the sequencing is done
using the next generation sequencers. After platform specific image processing and base
calling, the fastq files containing reads are produced. This data can be assembled in
metagenomic contigs using appropriate metagenome assembler. Assemblers used in this
thesis are briefly described in chapter 3. How much metagenome data should be generated
for a particular sample to capture the total metagenomic content? This is a crucial question
that should be considered before sequencing any sample. Following factors affect the
decision: 1) Desired goals of the particular project 2) Available budget 3) Accessible
sequencers 4) Sample alpha diversity estimates.

The assembled metagenome-assembled genomes and contigs give access to the
biosynthetic gene clusters which can be detected by antiSMASH. Clusters having high
similarity with clusters from MiBiG database can be considered known clusters, while the
remaining as unknown ones, which could be harbouring novel biomolecules.

Metagenomes from diverse ecosystems have been profiled so far. These include soil, animal
and human gut, different body sites of humans, marine sources, lakes and plants. Studies
reporting metagenomic surveys from soils from different sites and covering different scales
of land are available in literature. Microbial diversity patterns at continent wide scale, in
grassland meadows and even in urban green spaces show the immense diversity that is
present in the different soils (Bahram et al. 2018; Crits-Christoph et al. 2020; Delgado-
Baquerizo and Eldridge 2019; Thompson et al. 2017; Wang et al. 2018). Massive
sequencing efforts would be needed to capture the diversity pattern and develop rational
approaches that can guide the future survey.

After the annotation of BGCs derived from the MAGS, the clustered are prioritised for their

further wet-lab exploration. Based on the BGCs taxonomic phylogenetic proximity, a suitable
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host is chosen for heterologous expression. Currently, due to limited availability of suitable
hosts from distant phylum, the required amount of optimisation based on transcriptional and
translational regulatory conditions, it is extremely challenging to reach the stage of
successful production of novel natural products. These limitations hinder the realization of
biosynthetic potential harboured by promising samples and environments. Still
metagenomes sequencing followed by BGC mining analysis gives a comprehensive glimpse

into the biosynthetic potential.
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Chapter 3: Technical Background

3.1 Microbial Community Diversity Profiling Methods

While studying microbiomes from any ecosystem the following two questions are of prime
importance: 1) Which microbial species are present in the sample? 2) What are the
particular species doing in the sample? The first question can be answered by using two
methods. Firstly, by studying the sequence diversity of 16S rRNA amplicons. 16S ribosomal
RNA gene is highly conserved across the species of bacteria and archaea and is used as a
phylogenetic marker. The SILVA 16S rRNA gene database is used for taxonomic annotation
for amplicon based methods (Quast et al. 2013). QIIME2 a microbiome data science
platform implements the multi-step microbial community diversity profiling workflow for
amplicon data (Bolyen et al. 2019). Briefly, the steps include 1) Data quality filtration and
preprocessing 2) DADA2 based denoising and chimera filtration to construct the Amplicon
sequence variants (ASV) 3) OTU construction and taxonomic analysis 4) Rarefaction, alpha,
beta diversity analysis 5) Correlation and association analysis (Callahan et al. 2016).
Profiling and tracking of particular strains is difficult while using the 16S rRNA based
amplicon sequencing dataset.

Secondly, by using the shotgun metagenome sequencing data and annotating it with the
non-redundant protein database. Such protein annotation can be accelerated by using
BLASTX and DIAMOND and the classification based on NCBI or SILVA taxonomy can be
visualised using MEGAN (Camacho et al. 2009; Buchfink, Xie, and Huson 2014; Huson et al.
2016). Recent methods available for taxonomic classification a) Kraken2 is based on k-mer

matches b) kaiju is based on Maximum Exact Matches
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3.2 Natural Products Biosynthesis Domain exploration methods

Protein domain regions present in the genes responsible for multi-step biosynthesis
pathways of natural products, can be used to study the secondary metabolite gene diversity.
Ketosynthase (KS), Adenylation (A), Condensation (C) have been studied extensively so far.
In this section we review the methods available for natural products biosynthesis domain

annotation and diversity analysis.
3.2.1 NaPDoS

Natural Products Domain Seeker is the web based tool for automated computation of
biosynthetic gene diversity analysis (Ziemert et al. 2012). Currently polyketide synthase
(PKS) and non-ribosomal peptide synthetase (NRPS) genes can be analysed using
NaPDoS. Specifically, KS and C domain annotation and phylogenetic placement analysis is
catered to. Input data types that are accepted include PCR products, genome sequence and
metagenomic reads. Output results include Hidden Markov Model (HMM) search using KS
and C domain HMM models. BLAST annotation against the 459 KS and 190 C domains is

performed to assign the biosynthesis pathway related information.
3.2.2 BIG-MEXx

Biosynthetic Gene cluster MEtagenomic eXploration toolbox (BiG-MEx) can be used for
annotation of numerous BGC protein domains (Pereira 2020). Presently, annotation of 150
BGC domains covering major secondary metabolite biosynthesis pathways is possible
(Table) . Input data types compatible with this tool are BGC domain amplicon-seq datasets,
shotgun metagenomic datasets. Results include UProC based domain annotation and
abundance statistics. Diversity analysis includes computation of Shannon alpha diversity
index. Five docker containers
(bgc_dom_annot,bgc_dom_amp_div,bgc_dom_meta div,bgc_dom_merge_div,

bgc_class_pred) are available from DockerHub (https://hub.docker.com/u/epereira) and the

source code in available from GitHub (https://github.com/pereiramemo/BIG-MEX).
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AMP-binding LE-LACA481 PF13575 cypl novK

ATd LE-MER+2PEP |PKS_AT cypemycin phosphonates
AfsA Lactococcin PKS KS dmat phytoene_synt
Antimicrobial14 |Lactococcin_972 | PP-binding ectoine_synt phzB
Antimicrobial17 |Lant_dehyd_C |[TIGR03601 fabH prnB
Antimicrobial18 [Lant_dehyd N |TIGR03602 fom1 puré
Autoind_synth  |LcnG-beta TIGR03603 frbD pur10

A-OX Linocin_M18 TIGR03604 ft1fas salQ

BLS LipM TIGR03605 fung_ggpps skfc
Bacteriocllc_cy |[LipU TIGR03651 fung_ggpps2 spcDK _like cou
Bacteriocin_lII LipV TIGR03678 glycocin spcDK_like_glyc
Bacteriocin_llc [LmbU TIGR03693 goadsporin_like | spcFG_like
Bacteriocin_Ild [Lycopene_cycl |TIGR03731 hglD strH_like
Bacteriocin_Ili |L_biotic_typeA |TIGR03793 hglE stri_like1

CAS MA-2PEPA TIGR03795 indsynth stri_like2

CaiA MA-DUF TIGR03798 lasso strepbact
Chal_sti_synt C |MA-EPI TIGR03882 mcjC strep_ PEQAXS
Chal_sti_synt N [MA-LAC481 TIGR03975 melC sublancin
Cloacin MA-NIS TIGR04363 micJ25 subtilosin
Condensation |MA-NIS+EPI Terpene_synth mitE t2clf

DOIS MGT Terpene_synth_ C [mmyO t2fas

DUF692 MoeO5 ToyB moeGT t2ks

DUF1205 NAD_binding_4 |TunD mvd_mst t2ks2
Gallidermin NapT7 YcaO mvnA tabtoxin
Glycos_transf_1 [Neocarzinostat |bacilysin neol_like terpene_cyclase
Glycos_transf_2 [PF00067 bcpB nikJ thiostrepton
Glyco_transf_28 [PF00106 botH nikO thuricin
lucA_lucC PF02441 bt1fas novH trichodiene_synth
LANC _like PF04820 cyanobactin_synth | novl valA_like
LE-DUF PF13561 cycdipepsynth novd vimB

Table: List of BGC domains that can be analysed using BiG-MEXx. Source:

https://github.com/pereiramemo/BiG-MEXx/blob/master/data/150 uproc bgc dom.list

3.2.3 Dom2BGC

dom2BGC is a pipeline tool helpful in analysing the functional amplicons that target BGC
domains (Tracanna et al. 2021). AMP binding domain involved in non-ribosomal peptide

synthetase biosynthesis pathway can be analysed using dom2BGC. MIBIG and antiSMASH-
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DB contain the comprehensive collection of AMP binding domains present in BGCs
sequences (Blin, Pascal Andreu, et al. 2019). dom2BGC annotates the sample amplicons
based on sequence similarity to this largest collection of AMP binding domains. Using co-
occurrence network dom2BGC also detects groups of amplicons that jointly originate from

the same BGCs from multiple samples.

3.3 Natural Products Biosynthesis Cluster exploration methods

3.3.1 CLUSEAN

Bacterial secondary metabolites are small molecules having diverse functions. Some of
these have antimicrobial and cytostatic actions and are used as drugs to fight infections and
cancerous diseases. These molecules are biosynthesized in an assembly line-like multi-step
process by multimodular megaenzymes. These megaenzyme genes are often clustered in
the genome. CLUSEAN (CLUster SEquence ANalyzer) helps in detecting and analyzing
such gene clusters (Weber et al. 2009). It uses BLAST and HMMER for annotating the

functional domains.
3.3.2 antiSMASH

Subsequent to CLUSEAN, antiSMASH (antibiotics & Secondary Metabolite Analysis Shell)
was developed by the research group led by University of Tuebingen and was released in
2011 (Medema et al. 2011). Since then it has become a popular tool and is being updated
continuously to improve the analysis of existing BGC classes and add newer classes of
BGCs. Recently version 6 of antiSMASH has been released (Blin, Shaw, et al. 2019). The
pipeline annotates 70 BGC types
(https://docs.antismash.secondarymetabolites.org/glossary/) covering major secondary
metabolite compound classes: polyketides, non-ribosomal peptides, lantibiotics,
bacteriocins, nucleosides, beta-lactams, terpenes, aminoglycosides, aminocoumarins,

indolocarbazoles, butyrolactones, siderophores, melanins and others. At the heart of the
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antiSMASH is the rule-based detection of BGCs using the signature profile Hidden Markov

Models (pHMMSs) of proteins or protein domains.
3.3.3 BIGSCAPE

Due to the next generation sequencing revolution and availability of an easy to use
antiSMASH tool, more and more genomes and BGCs became publicly available and it
started becoming challenging to draw suitable inferences without comprehensive analysis of
these numerous BGCs together. Through BIGSCAPE a new informatics workflow was
created that made scaling up the mining of entire microbiome and strain collection
comprising hundreds or even thousands of bacteria (Navarro-Mufioz et al. 2020). Using
BIGSCAPE it is possible to create a sequence similarity network of BGCs and gene cluster
families. Further using CORASON (Core analysis of syntenic orthologs to prioritize natural
products cluster), the phylogenetic relationship across the BGCs can be studied. It is also
possible to include the MIBIG clusters during the BIGSCAPE analysis. This helps in knowing

which sample clusters are having similarity to known clusters present in the MIBIG database.

3.3.4 deepBGC

Machine learning methods have recently become extremely popular and have been widely
used to improve the prediction accuracies and precisions of numerous bioinformatics
algorithms. As long as high quality data is abundantly available for training the machine
learning algorithms, this method has a potential to revolutionize the complete landscape of
research and development. deepBGC uses deep learning supplemented with random forest
classifier to identify BGCs and predict their compound classes and potential chemical activity
(Hannigan et al. 2019). Previously undetected BGCs have been shown to be identified by

deepBGC.
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3.4 Metagenome Assembly and Natural products biosynthesis
potential exploration methods

3.4.1 metaSPADES

Metagenome assembly is challenging in terms of huge magnitude of data and also requires
an extensive amount of computational resources. High amounts of RAM, CPU cores and
processing time, and storage is a must for performing metagenome assemblies.
metaSPADES constructs the de Bruijn graph using all the metagenomic sequence reads
(Nurk et al. 2017). After transformation and creation of the assembly graph it reconstructs
paths that belong to longer genomic contigs. It can accept both short and long reads and can

also perform hybrid assembly of such metagenomic sequence data.

3.4.2 CloudSPADES

Low cost lllumina short reads and high cost PacBio or Oxford Nanopore long reads are
generally both needed for de novo assembly of the genome. Synthetic long reads
technology is useful in generating low cost contiguous de novo assemblies. 10X Genomics
and TELL-Seq methods have been recently introduced that cater the synthetic long reads
data (Chen et al. 2020). CloudSPADE uses the sets of collections of substrings in a cloud
containing a set of all the substring (Tolstoganov et al. 2019). Barcoded reads are
assembled into contigs which are subsequently used to create clouds based on the set of
contigs that a synthetic long read is mapped to. Using the assembly graphs the correct order

and orientation of the contigs is deduced.
3.4.3 TELL-Link

Transposase enzyme linked long reads sequencing library technology generates barcode
linked reads for genome and metagenome scale sequencing application (Chen et al. 2020).
TELL-Link is as barcode aware assembly pipeline that assembles contigs and creates
scaffolds. It takes as the input the processed FASTQ data processed through the TELL-

Read pipeline. K-mer based assembly graphs are constructed and the barcode information
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is used to resolve complex structures. The reads that share the same barcode are used to
reconstruct the local assembly. Chosen k-mer sizes affect the assembly results and the
pipeline provides options to specify global assembly graph and local assembly graph k-mer

sizes.

3.5 Tools worth exploring in future

NextFlow enables reproducible scientific workflow pipeline deployment on both clouds and
clusters. It caters Docker and Singularity containers and makes the pipelines portable on
diverse computational platforms.

GECCO (GEne Cluster prediction with COnditional random fields; https://gecco.embl.de)
uses conditional random fields (CRFs) for identifying BGCs in genomic and metagenomic
data (Carroll et al. 2021). A recent preprint describing GECCO claims a significant increase

in identification of BGCs than the traditional rule-based approach.
3.5.1 Miscellaneous tools

Numerous technical tools were used in the projects described in this thesis. Some of these
tools and technologies make command-line agnostic researchers' lives easy. These include
Docker containers, CONDA and Pip package management system, Jupyter Notebooks and

VIM editor.
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Abstract

Motivation: With the increasing threat of antibiotic resistant pathogens, reemerging
infectious diseases and high cancer rates, there is an urgent need for new therapeutics. The
majority of drugs has been, and continues to be, developed from chemical scaffolds
produced by living organisms, so called natural products. A large portion of these natural
products is produced as secondary metabolites by microbes. Next generation sequencing
methods and the enormous amount of available DNA data has shifted drug discovery efforts
from traditional bioactivity guided screening methods towards genome-based approaches.
Genome mining, heterologous expression, and genetic engineering offer the unique
opportunity to discover the huge untapped potential hidden in environmental data. Shotgun
metagenomic DNA sequencing and meta-barcoding approaches have revealed the
expansive biodiversity of bacteria and their secondary metabolites that have been missed by
traditional culture-based drug discovery methods. However, the complex nature of
metagenomic data and the highly repetitive structure of natural product biosynthetic
pathways makes the analysis challenging.

Results: MBEZ contains a collection of easy to use pipelines for microbial community
profiling, biosynthetic domain abundance and diversity profiling, and biosynthesis potential
exploration. It allows easy screening of the shotgun and amplicon metagenomic data for
known and novel natural products. This pipeline enables natural product chemists,
microbiologists and microbial ecologists to mine their metagenomic data fast, efficiently and
without a deeper knowledge about natural product biosynthesis or bioinformatic analyses.

Availability and implementation: https://github.com/thinkgenome/MBEZ
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4.1 Introduction

Most of the currently used drugs to fight infections are secondary metabolites (SM) produced
by microbial species (Patridge et al. 2016). Biosynthesis of these SMs involves assembly
line-like multi step pathways (Helfrich and Piel 2016; Walsh 2016; Ray and Moore 2016).
Polyketide, non ribosomal peptides (NRP), ribosomally synthesized and post-translationally
modified peptides (RiPPs), terpenes are the biosynthetic classes in which these natural
products (NPs) are generally classified. Genes of enzymes and proteins involved in
biosynthesis of these NPs are found in clusters in the genomes of the respective producer
organism. Some of the enzymes are composed of multiple domains that function in tandem
i.e ketosynthase (KS), adenylation (A), condensation (C) domains.

As the sequencing costs have dropped and next generation sequencing (NGS)
throughput has tremendously improved, huge amounts of metagenomic data is currently
publicly available from databases (Chevrette et al. 2021). This data can be mined to discover
novel biosynthetic domains, genes and clusters. Currently few tools or pipelines are
available to explore these metagenomic datasets to explore the biosynthetic diversity and
potential. We are presenting here MBEZ, a collection of pipelines that we have developed to
help in exploring the metagenomic datasets for facilitating the discovery of biosynthesis

genes, domains .

4.2 Material and Methods

4.2.1 Microbial community diversity exploration pipeline:

The inputs to this pipeline can be 16S rRNA gene amplicons or shotgun seq datasets
(Figure 1). For 16S rRNA amplicons the pipeline uses QIIME2 tool and accomplishes multi-
step analysis involving raw data quality control, denoising, amplicon sequence variants
computation, taxonomic annotations, correlation analysis, rarefaction analysis (Bolyen et al.
2019). Bash script and Jupyter notebook of these pipelines is also made available for the

users to run the analysis with custom threshold parameters. For shotgun seq datasets the
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pipeline uses Diamond to accelerate the annotation of reads against non redundant protein

database of NCBI followed by taxonomic classification using NCBI taxonomy (Buchfink, Xie,

and Huson 2014).

Tool:
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\
\

Figure 1: Markmap showing the details of MBEZ pipelines. Integrated tools, requisite inputs,
resulting outputs, and Use Case/Applications of all the implemented pipelines is depicted.

Markmap developed using https://markmap.js.org/
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4.2.2 BGC domain diversity exploration pipeline:

The inputs to this pipeline can be KS, A domain amplicons or shotgun seq datasets. For
BGC amplicon analysis the pipeline can be run using QIIME2, dom2BGC and BiG-MEXx
(Pereira 2020; Pereira-Flores et al. 2021; Tracanna et al. 2021; Bolyen et al. 2019). For
domain diversity analysis using shotgun seq dataset, the pipeline can be used to profile

+100 domains using BiG-MEX.

4.2.3 Biosynthesis potential exploration pipeline:

The inputs to this pipeline should be the assembled metagenomic contigs. BGC annotation
is performed separately for each sample using antiSMASH. Sequence similarity network of
the predicted clusters is performed using BiGSCAPE to quantify frequency of occurrence for
each BGC class sample (Navarro-Mufioz et al. 2020). Diversity results are displayed as

boxplots for each BGC class.

4.2.4 Implementation

MBEZ pipelines are written as bash scripts and can also be run in stepwise manner using
the available jupyter notebook for each pipeline. Conda, Python and Docker availability is a
prerequisite for running MBEZ pipelines. QIIME2, BiG-MEx, dom2BGC, MEGAN,
antiSMASH, BiIGSCAPE, DIAMOND, and HMMER have been integrated into different
pipelines of MBEZ (Huson et al. 2016). Detailed manual and help documentation is
available in the GitHub repo. For each pipeline, a demo dataset is made available for the
ease of testing and interpretation. Existing pipelines can also be customised using the bash

scripts and jupyter notebooks.

4.3 Conclusion

MBEZ fills the gap that was previously there due to unavailability of easy to use

metagenome mining pipeline for exploring natural products diversity. For advanced users,
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the bash scripts and Jupyter notebooks will be helpful in running the pipeline with custom
parameters. Overall, MBEZ will facilitate and accelerate the metagenome mining analysis,

explore natural products domains, BGC diversity and assess biosynthesis potential.
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Abstract: Discovery of novel antibiotics is crucial for combating rapidly spreading
antimicrobial resistance and new infectious diseases. Most of the clinically used
antibiotics are natural products, secondary metabolites produced by soil microbes
that can be cultured in the lab. Rediscovery of these secondary metabolites during
discovery expeditions costs both time and resources. Metagenomics approaches
can overcome this challenge by capturing both culturable and unculturable hidden
microbial diversity. To be effective, such an approach should address questions like:
Which sequencing method is better at capturing the microbial diversity and
biosynthesis potential? What part of soil should be sampled? Can patterns and
correlations from such big data explorations guide future novel natural products
discovery surveys? Here we address these questions by a paired amplicon and
shotgun metagenomic sequencing survey of samples from soil horizons of multiple
forest sites very close to each other. Metagenome mining identified numerous novel
biosynthetic gene clusters (BGC), and enzymatic domain sequences. Hybrid
assembly of both long reads and short reads improved the metagenomic assembly
and resulted in better BGC annotations. A higher percentage of novel domains was
recovered from shotgun metagenome datasets than amplicon datasets. Overall, in
addition to revealing the biosynthetic potential of soil microbes, our results suggest
the importance of sampling not only different soils but also their horizons to capture
microbial and biosynthetic diversity and highlight the merits of metagenome

sequencing methods.
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Importance: This study helped uncover the biosynthesis potential of forest soils via
exploration of shotgun metagenome and amplicon sequencing methods and showed
that both methods are needed to expose the full microbial diversity in soil. Based on
our metagenome mining results, we suggest revising the historical strategy of
sampling soils from far-flung places as we found a significant amount of novel and
diverse BGCs and domains even from different soils that are very close to each
other. Furthermore, sampling of different soil horizons can reveal the additional
diversity that remains often hidden and is mainly caused by differences in
environmental key parameters such as soil pH and nutrient contents. This paired
metagenomic survey identified diversity patterns and correlations, a step towards

developing a rational approach for future natural products discovery surveys.

5.1 Introduction

One of the major driving forces of the medical revolution in the twentieth century was
the discovery of antibiotics, which are often derived from secondary metabolites
produced by microorganisms (Davies and Davies, 2010; Wohlleben et al., 2016).
These natural products can be categorized based on their biosynthesis pathways.
Major biosynthetic classes are polyketides (PKS), non-ribosomal peptides (NRPS),
ribosomally synthesized and post translationally modified peptides (RiPPs), terpenes
and saccharides. In bacteria the genes that encode these biosynthetic pathways are
clustered together in the genome, popularly termed as biosynthetic gene clusters
(BGC). The genes in some of these BGCs encode modular domains and enzymes
that function in an assembly line-like fashion to produce complex biomolecules.
Ketosynthase (KS) and Adenylation (A) domains, which have been the focus of this

study, are involved in the biosynthesis of PKS and NRPS classes of secondary
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metabolites in bacteria. Studying the gene sequence diversity of these domains aids
in predicting the chemical structures encoded by BGCs that contain such
domains(Ziemert et al., 2012). Based on the understanding of the biosynthetic
chemical logic of these natural products, novel strategies have been developed not
only to chemically synthesise analogous or derivative molecules, but also to
accelerate their discovery via genome and metagenome mining methods (Chu et al.,

2020; Sugimoto et al., 2019; Zhang et al., 2017).

Many natural products have been discovered as well as studied and a collection of
more than 400,000 of such biomolecules is freely available on publicly accessible
repositories (Mouncey et al.,, 2019; Sorokina and Steinbeck, 2020). These
biomolecules show diverse pharmacological functions such as antibacterial,
antifungal, anticancer, immuno-modulatory and antiviral activity (Boufridi and Quinn,
2018). Less characterized is their ecological function. Multiple hypotheses and
theories have been proposed about the role of secondary metabolites in the lives of
the microbes that produce them. Some of these bioactive molecules are deployed in
the arms race against other species in a particular microbial community; others might
serve as intra-, inter-species, or even inter-kingdom, signalling and communication

agents or regulate developmental processes (Tyc et al., 2017).

Most of the antibiotics discovered so far have been isolated from soil microbes,
specifically those that could be cultured in the lab. As research groups around the
world started to extensively survey random soils to identify novel antibiotics, they
experienced the challenge of rediscovering previously characterized antibiotics
(Baltz, 2008; Silver, 2011). The use of 16S rRNA gene based metagenome profiling
unveiled the extent of the hidden microbial diversity as only about 1-2 % of all the

species present in a particular soil sample could be cultured in the lab (Bodor et al.,
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2020; Yarza et al., 2014). The subsequent revolution in next generation sequencing
technologies made it possible not only to easily sequence the isolated species
genomes, but also to capture the unculturable microbial diversity using metagenome
sequencing approaches (Bahram et al., 2018; Delgado-Baquerizo et al., 2018;
Handelsman, 2004). More recently, long read sequencing technologies, namely
Oxford Nanopore and PacBio sequencing, have enabled significant improvements in
assembly of shotgun metagenomes into long contigs. These are a prerequisite for
the identification of the often very large biosynthetic clusters encoding secondary
metabolites. One study even reported comparable results by only using MinlION
nanopore sequencing for recovering multiple complete bacterial genomes from

complex microbial communities within a bioreactor (Arumugam et al., 2019).

The metagenomic soil surveys reported so far aimed at identifying microbial
community diversity and patterns, and covered areas spanning from urban green
spaces, grassland meadows, up to continent-wide scale soil analyses (Bahram et al.,
2018; Crits-Christoph et al., 2018; Delgado-Baquerizo et al., 2018; Thompson et al.,
2017; Wang et al., 2018). Few of them also aimed at identifying the biosynthetic
domain composition of bacterial natural products but using exclusively amplicon
sequencing approaches (Borsetto et al., 2019; Crits-Christoph et al., 2020; Elfeki et
al., 2018; Lemetre et al., 2017; Reddy et al., 2012; Sharrar et al., 2019). Those
studies were able to identify diversity patterns and correlations between natural
product diversity and environmental features, thus improving our understanding of
ecological and evolutionary pressures that drive the distribution of natural products
across different geographical scales. However, little is known about how sampling
strategies can be optimized for improved discovery of diverse natural products.

Those studies that addressed these issues identified distribution patterns of PKS and
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NRPS based on biomes, types and characteristics of the soil (composition, pH,
temperature, etc.), as well as geographic distance (Charlop-Powers et al., 2016,
2015; Morlon et al., 2015; Reddy et al., 2012). However, they analyzed the soil in
either similar or different ecosystems on a global scale. Moreover, while Morlon
identified plant community composition as the main driver of natural product
diversity, Charlop-Powers showed that geographic proximity was more important. In
fact, soil types and associated soil properties may largely vary even at a local scale
(i.e. decimeters) due to differences such as in the geological parental material,
(micro-)relief, or plant community. Also, soil properties may considerably vary
vertically, as different soil horizons may largely differ in physico-chemical properties
(e.g. pH, available nutrients, redox conditions, water content) due to pedogenetic
processes (FAO and IUSS, 2015). As a consequence of such highly diverse micro-
environments, microbial diversity was shown to generally vary by soil depth being
accompanied by decreasing abundances (Eilers et al., 2012; Fierer et al., 2003; Will
et al.,, 2010). Therefore, we speculated that analysis of different soil samples from
different ecosystems in the same geographical area could provide more insight into
the fine scale distribution of secondary metabolites and how sampling strategies can

affect natural product discovery.

Here we report results from our metagenomics study of different horizons of soil
sampled from various sites within the Schdonbuch Forest, a nature reserve area in
Southern Germany, using both Nanopore and Illumina NGS sequencing technology.
Major objectives of this pilot project were a) to compare the natural product domains
and biosynthesis cluster diversity of different soils and their horizons; b) to recover
longer metagenome assembled contigs via hybrid assembly of short and long reads

facilitating discovery of biosynthesis gene clusters; ¢) to compare the amplicon
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sequencing and shotgun metagenome sequencing methods; d) to assess correlation
between microbial community diversity and physico-chemical properties of different
soils. Our findings indicate that natural product diversity is high in different soils even
in close proximity to each other, and that sampling the different soil horizons also
makes a difference. Mining of metagenomic reads led to the detection of many
known and novel domains involved in the biosynthesis of polyketide and non-
ribosomal peptides. Hybrid assembly of short and long reads led to the identification
of biosynthesis gene clusters that could have never been detected by short read

sequencing alone.

5.2 Results

5.2.1 Amplicon-seq mining revealed major differences in bacterial diversity

and their biosynthetic potential in the different soils and their horizon

In order to understand how the diversity of secondary metabolites changes with the
type of soil and its horizons, we identified a study area located in the Schénbuch
forest nature reserve, which is part of the South German Scarplands region (Einsele,
1986). Soils in this area are characterized by a high diversity due to a variety of
geological material and landscape morphology. Samples were collected from three
soil pits representing three characteristic but highly diverse soil types, named
Cambisol, Podzol, and Stagnosol. All soil pits are located near to each other in a
straight line within some 150m from each other (Fig. 1A). Soil analysis have shown
that these soils are heavily layered with very different parameters in each layer,
studies have shown that the bacterial diversity is changing greatly but no one knows
about the secondary metabolite diversity (Eilers et al.,, 2012). In order to get an

overview of the actual domain diversity of the three different soils, all three soils and
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their respective horizons were sampled, metagenomic DNA was isolated and
subsequently sequenced using lllumina amplicon as well as shotgun sequencing
methods. Additionally, Oxford nanopore sequencing was used to sequence one
sample. Sample details, study outline, sequencing yields and analysis workflow are
summarised in Figure 1 and Table Sla-c (see Table Sla-c at

https://doi.org/10.5281/zeno0d0.5195507).
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Figure 1: Geographic location, study outline and analysis workflow. A) Sampling site
geographic location map of Tuebingen, Germany (Map Data ©2021 Google) . Multiple soil
horizons from three sites were sampled. Photo depicting the 3 horizons of Cambisol soil. B)
Sample and sequencing information, See Table S10a (see Table S10a at
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https://doi.org/10.5281/zen0d0.5195507) for details about soil names and profile description.
C) Amplicon sequencing and analysis workflow, D) Shotgun sequencing and analysis
workflow}

Amplicon analysis of specific genes of interest has proven to be an efficient and
cost-effective strategy for metagenomic analysis. Amplifying specific genes of
interest allows high coverage of these genes without extensive sequencing.
Therefore, in a first approach, we explored the microbial diversity and natural
products domain diversity by sequencing the 16S rRNA gene, A domain and KS
domain amplicons (biosynthetic diversity indicators) using an lllumina paired end

sequencing approach.

A 16S rRNA Amplicon dataset B  Shotgun-seq dataset
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Figure 2: Microbial composition across 3 sampling sites (Podzol, Stagnosol and
Cambisol) and 3 soil horizons (O, A and B). A) Bar plot showing taxonomic profile for
16S rRNA amplicon dataset. B) Bar plot showing taxonomic profile for Shotgun-seq
dataset. Taxonomic profile at phylogenetic rank of phyla is shown. Top ten phyla are

depicted in different colours and remaining phyla are grouped as category of
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"Remainder"” depicted in grey colour. Same colours for each phyla are used for side-
by-side visualisation. SILVA rRNA database was used for classifying amplicons and

maxikraken2 database was used for classifying shotgun-seq reads.

Taxonomic annotation of the Illumina based 16S rRNA gene Amplicon Sequence
Variants (ASVs) using the Silva taxonomic database showed that all soil samples
have a very diverse bacterial composition as expected (Fig.2 and see Table S4a at
https://doi.org/10.5281/zenod0.5195507). Comparing the taxonomic composition of
all samples revealed that not only the three different soils but also their various
horizons differed in their bacterial composition, even on the relatively wide phylum
level (Fig. 2). Planctomycetes was the most abundant phylum in all three soil
samples and all horizons. The Chloroflexi phylum was most abundant in the
Cambisol B horizon with a relative frequency double than that of other soils. By
comparing the number of ASVs and clustering them to OTUs (operational taxonomic
units), we noticed that the highest number of OTUs was present in the A horizon of
Cambisol, which represents the second layer below the surface (see Table S6a at
https://doi.org/10.5281/zenodo.5195507). In contrast, in Podzol and Stagnosol the
number of OTUs in the O horizons was higher as compared to the respective A
horizons. The lowest number of OTUs was found in the Cambisol B horizon,
indicating that Cambisol contained the most but also the least bacterial diversity of
the three different soils depending on the horizon. In order to classify A domain- and
KS domain amplicons into groups that represent distinct chemical classes and
biosynthetic gene clusters (BGCs), we clustered these amplicons into operational
biosynthetic units (OBU) (as previously described (Elfeki et al., 2018)). Rarefaction
curve analysis for both classes of OBUs showed that the curves are still ascending,

indicating that the full biosynthetic diversity hasn’t been captured yet, in contrast to
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the taxonomic diversity represented by the 16s rRNA amplicons (Fig 3). Comparing
the domain diversity of the different soils and their horizons showed that unique KS
and A domains (ASV clustered at 97% similarity, see Fig 4) were at a maximum in
the Cambisol B horizon, the soil with the lowest number of OTUs (see Table S6a at

https://doi.org/10.5281/zen0do.5195507). In order to wuncover any possible

correlation between biosynthetic diversity and taxonomic diversity, we compared
various alpha diversity indices of KS and A domains with the 16S diversity. The OTU
alpha diversity, Faith PD, Shannon and Evenness showed high correlation across

16S and A domain amplicons (see Table S6a at

https://doi.org/10.5281/zenod0.5195507), whereas there was no clear correlation for

KS domains, and even negative correlation between evenness of 16S and KS

domains was observed.
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Figure 3: Rarefaction curves for 16S rRNA gene amplicons, A domain amplicons and
KS domain amplicons. The bold curve shows mean value of OTU/OBU at a
particular sequencing depth for all horizons of a particular site. The faint colour area

around each curve shows the confidence interval of 67 %.

In order to disclose any overlap between the different soils, we compared 16S as
well as KS and A domain amplicons in the different samples using Upset plots (Fig.
4). This analysis revealed that, while there was an overlap of 42 16S amplicons
across all the 7 samples, no such degree of sequence similarity was observed for KS
and A domains. ASVs of these domains were only conserved between samples of

different horizons of the same site.

54



Intersection Size

600

400
Set Size

Intersection Size
a

Podzol. Ah
Cambisol Bw1
Canmbisol.O
Podzol.O
Stagnosol.Ah
Cambisal.Ah
Stagnosel.O

1000}

7504

250,

808 795

582 g7

4 oop 28 2

24 24 22 2 20 19 19 W 15

Pocizol AR
Podzol.O
Cambisol Bwi
Stagnosol Ah
Cambisol Ah
Stagnosol.0
Cambisol.O

1200{

Intersection Size

Podzal AR
Podzol.O
Stagnosol.Ah
Cambisol Bwi
Cambisol.O
Cambisol An
Stagnosol.O

1500 1000 0
Set Size

—

—

——

——

——

1500 1000 0

500
Set Size

Figure 4

ety gl

55



Figure 4. Intersections and distribution of A) 16S, B) KS domain and C) A domain
(ASVs clustered at 97% similarity). The bar plot (top) in each panel shows
intersection size (the number of ASVS) in the combinatorial sets of relevant samples.
The matrix below the bar plot indicates sets of samples that are represented by each

bar.

To see if the differences in taxonomic diversity and biosynthetic potential of the
different soil samples were correlated with the unique soil physico-chemical
parameters, we calculated alpha diversity (16S and Domains) correlations with the
soil parameters (see Table S6b at https://doi.org/10.5281/zenodo0.5195507).
Although, we were able to detect some correlations between biosynthetic potential -
pH showed a close correlation between KS domain alpha diversity measures
(shannon r=0.75, p=0.05 and evenness, r=0.78,p=0.03), we think that more data are

needed in order to interpret these results properly.

5.2.2 Shotgun metagenome mining further uncovered microbial diversity and

identified novel BGCs

Amplicon sequencing based studies of the metagenome diversity are an economical
approach, however, its limitations became evident when we performed shotgun
metagenome sequencing using lllumina short reads and Nanopore long reads for the

same samples and compared both methods.
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Table 1. Taxonomic annotation summary (Tool: kraken2, database: maxikraken2) of

shotgun-seq Illumina metagenomes

Name #raw paired | Classified | Unclassified | Microbial | Bacterial | Viral
end reads reads % | reads % reads % |reads % | reads %
Podzol-O | 113,350,452 | 43.90 56.10 43.80 42.90 0.01
Podzol-A | 86,440,710 | 45.80 54.20 45.80 44.90 0.01
Cambisol- | 82,298,268 | 51.60 48.40 51.60 50.70 0.01
@)
Cambisol- | 71,637,596 | 50.30 49.70 50.20 49.40 0.01
A
Cambisol- | 75,654,703 | 35.30 64.70 35.30 34.40 0.01
B
Stagnosol- | 64,281,069 | 52.50 47.50 52.50 51.50 0.01
]
Stagnosol- | 53,255,349 | 49.90 50.10 49.90 49 0.01
A

We used the Kraken2 algorithm in order to annotate the shotgun metagenomes,
which led to an average of 47.04 percent of classified reads and an average of 52.95
percent unclassified reads (Table 1). Interestingly, Proteobacteria and Actinobacteria
were the top 2 annotated phyla amongst all the metagenomes (Figure 2), a result
which differs greatly from the 16S rRNA gene amplicon annotations. Using the
unassembled metagenomes, we also used the BiG-MEXx software for annotations of

BGC domains and the diversity analysis. BiG-MEx was able to annotate 150 BGC
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domains (see Table S5b at https://doi.org/10.5281/zenod0.5195507), most of them
as A-domains. By performing comparative analysis of KS and A domains captured
via amplicon and shotgun metagenome sequencing, we found that more than 90
percent of domains detected in shotgun metagenomes could not be detected using
amplicon sequencing. More precisely, sequence similarity analysis between domains
identified via amplicon sequencing and shotgun metagenome sequencing revealed
the presence of domains unique to each of the methods. 638 KS Amplicon-seq
amplicons did not show similarity to any of the KS shotgun-seq OBUs, whereas 1571
A-domain amplicon-seq amplicons did not show similarity to any of the 181,324 A-
domain shotgun-seq OBUs (see Table S9 at
https://doi.org/10.5281/zenodo0.5195507). The alpha diversity comparisons between
microbial community diversity and biosynthetic domain diversity showed a diverse
pattern for each domain. We also found no concurrence of these diversity

correlations between amplicon-seq and shotgun-seq datasets.

In a next step, we assembled the shotgun metagenome data to recover full
biosynthetic gene cluster sequences and thus obtain more valuable information
about the encoded compounds. The metaSPADESs based assembly of lllumina reads
of all the metagenomic samples led to a total of more than 2 million contigs longer
than 1kb. The total length of all the contigs exceeded 9 Giga bases, with the largest
contig of about 3,5 Mega bases. The assembled contigs longer than 10kb were
analyzed for the presence of BGCs using antiSMASH (version 5). A total of 1102
BGCs were identified. The detailed biosynthetic class wise breakup of the BGC
annotation is provided in figure 5. Again, the highest number of BGCs was annotated
as belonging to the class of NRPSs followed by 262 RiPPs (see Table S7a at

https://doi.org/10.5281/zenodo.5195507). Podzol O horizon contained a maximum
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number of 470 BGCs followed by Podzol A horizon with 315 BGCs (Figure 5). In
contrast to the domain analysis, Podzol samples displayed the maximum number of
clusters as compared to other sites. However, this might be due to the better
assembly of Podzol samples as a result of the highest number of reads being
generated from the O and A horizon of Podzol soil (see Table Sla at
https://doi.org/10.5281/zen0do.5195507). BiG-SCAPE clustering of the dataset
composed of Illumina only assembled contigs helped investigate the overlap of
clusters across the soil. While most of the BGCs were unique to each sample, we
found only a single Gene Cluster Family (GCF) containing BGCs from each of the

seven samples. This GCF belongs to the class of terpenes.
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Figure 5: {Biosynthetic gene cluster abundance distribution. A) BGC abundance
distribution across soil sampling sites.(grouped according to BiG-SCAPE class). B)

BGC abundance distribution across soil horizons

Apart from antiSMASH based BGC discovery, we also explored the machine
learning based method for novel cluster discovery and annotation. We found around
22194 putative BGCs in the metagenomic contigs using the DeepBGC tool. For 7295
of these BGCs the biosynthesis class could be predicted. Biological activity could be
predicted in 17032 putative BGCs (see Table S8 at
https://doi.org/10.5281/zenod0.5195507). While the number of the detected BGCs is
several fold higher than that annotated via antiSMASH, it will be interesting to see
the wet-lab validation of these clusters in future studies. Although absolute numbers
of predicted BGCs differ between antiSMASH and DeepBGC, highest number of

BGCs were predicted in Podzol samples by both these tools.

5.2.3 Comparative analysis highlights the advantage of long reads to capture

biosynthetic potential.

The assembly statistics of the short-read shotgun data helped appreciate its
advantages and limits. Subsequently, as we were interested in assessing how long
reads Nanopore data would improve the recovery of BGCs, we performed a
metaSPADES based hybrid assembly of lllumina and Nanopore reads of the
Cambisol A metagenome. The hybrid assembly substantially enhanced the overall
length of the contigs and the number of longer contigs. We found seven times more
hybrid contigs of length greater than 50 kb as compared to the lllumina only contigs
of same length. The largest hybrid contig was of 598,670 bases (see Table S3a and

S3b at https://doi.org/10.5281/zen0do.5195507). AntiSMASH analysis resulted in the
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annotation of 169 BGCs among the hybrid contigs longer than 10 Kb. This is more
than double the number of BGCs that were found in lllumina only contigs. A total of
1026 BGCs were even annotated in the hybrid contigs with lengths greater than 1
kb. Comparison of metagenomic contig length (lllumina only versus hybrid data)
revealed substantial improvements with the hybrid assembly approach (see Table
S3a and S3b at https://doi.org/10.5281/zenodo0.5195507. In several instances hybrid
assembly enabled the extension of lllumina contigs containing BGCs, thus making it
possible to determine whether resistance markers or regulator-encoding genes were
present within the clusters. We found more than two fold more BGCs in hybrid
contigs that were not on contig-borders as compared to illumina only contigs
detected via antiSMASH annotation. We also performed BiG-SCAPE clustering of all
BGCs from lllumina and hybrid metagenomes to identify BGCs that were detected in
multiple samples. This analysis led to the identification of 1803 GCFs. 1625 GCFs
contained only single members (see Table S7b at

https://doi.org/10.5281/zen0d0.5195507).

5.3 Discussion

Soil formation is a slow process: depending on climatic conditions; it might take
several hundred years to form just a centimeter layer of soil. While most of the
antibiotics discovered so far have been largely isolated from culturable microbes in
random sampling of topsoils, the immense metabolic diversity of unculturable
microbial dark matter in both, topsoils and deeper soil horizons, has remained largely
hidden (Durand et al., 2019). As the depth of soil increases, the organic and
inorganic chemical constituents and morphology of soil change drastically creating

micro-environments that can accelerate the evolution of novel microbial species
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(Wilpiszeski et al., 2019). To capture the biosynthetic novelty of all such microbes,
those that were born due to serendipitous events and those that survived the so
called microbial arms race, we decided to broaden the soil surveys not only to
include soils from different sites but also to cover sampling of diverse soil horizons
(Hao et al., 2021). Our study is also unique in that it used both, amplicon sequencing
and shotgun metagenome sequencing of the same soil samples to determine the
biosynthetic potential that a particular site and ecosystem hold, and to discover novel

natural products domains and BGCs (Figure 1).

Although few species were ubiquitously present across all the sites and all the soil
horizon layers, a significantly higher proportion of OTUs/species were seen to be
unique to individual samples (Figure 4a). BGC domain diversity and distribution
observed across all the samples indicate higher overlap within a particular sampling
site than across sites (Figure 4b and 4c). Our survey of multiple soil horizons from
multiple sites helped appreciate the presence of high vertical diversity (differences
between O, A and B horizons of each soil type) emphasizing the importance of
sampling not only different geographical sites but also the vertical diversity present in
different soil horizons. This is in line with previous findings based on 16S rRNA
analysis (Eilers et al., 2012). The reasons behind such a great diversity across sites
could be attributed to the variable environmental conditions (Will et al., 2010). For
example, Podzol is an extreme nutrient-poor, acidic and water-scarce environment
where microbial decomposition of the tree litter is so much hampered that a thick
organic litter layer sits on top of the topsoil (i.e. A-horizon); in the Stagnosol’s A and
B horizon, instead, the water dynamics can entirely fall dry during summer, changing

the redox from reducing to oxic.
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Drastic deviations in estimating microbial composition via both 16S amplicon-seq
and shotgun-seq have been previously reported (Brumfield et al., 2020; Jovel et al.,
2016). In our study, Planctomycetes emerged as the major phylum in the amplicon-
seq analysis while Proteobacteria and Actinobacteria were the predominant phyla in
the shotgun-seq analysis (Figure 2). This deviation could be attributed to primer and
PCR bias of the 16S amplicon method (Brumfield et al., 2020; Jovel et al., 2016) and
to the different bioinformatics workflows (Balvociaté and Huson, 2017). Also, the
sequencing depth in studying the microbial composition via 16S amplicon
sequencing appeared to be sufficient and saturating as per the rarefaction curves
(Figure 3). Subsequent shotgun metagenome sequencing analysis of the same
samples revealed that amplicon-based analysis underestimated the alpha diversity

of the samples.

Although we hoped to find unique patterns of correlations between microbial
community diversity and biosynthetic diversity, our results of both amplicon-seq and
shotgun-seq datasets only revealed few correlations with few biosynthetic gene
domains. We speculate that these patterns would become more evident as more
optimised amplicon primers, capable of amplifying additional biosynthetic genes and
their domains, would become available. In case of shotgun-seq datasets, higher
depth of sequencing of the samples would not only help in recovering more full
length BGCs but also help in revealing biosynthesis domain diversity patterns. Better
software tools capable of handling such high volume of data would be required to

mine the biosynthetic diversity patterns.

Assembly of shotgun-seq lllumina reads followed by antiSMASH annotation led to
the discovery of 1102 BGCs. Proteobacteria, Acidobacteria and Actinobacteria were

the major phyla to which many of these BGCs were taxonomically annotated.
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Distribution patterns of BGC classes across the sampling sites and soil horizons,
show that the Podzol site has the maximum BGCs (Figure 5). BGC abundance
distribution was observed more in sampling site-wise comparison than soil layer-wise
comparison. BGC clustering analysis also revealed how different the various
samples and horizons are as only a single BGC was found to be present across all
the samples (see Figure S1 at https://doi.org/10.5281/zenodo0.5195507). Hybrid
assembly of Illumina short reads with nanopore long reads led to the recovery of
complete BGCs in some cases, enabling the identification of the regulatory genes
and resistance genes in the vicinity of the identified BGCs. Such proximity analysis
can be helpful in prioritizing the BGCs for e.g., the characterization of the encoded
compounds in heterologous expression systems (Mungan et al., 2020). Machine
learning based annotation of assembled contigs using DeepBGC led to identification
of even more putative BGCs. For many of them, however, the biosynthesis class and
activity could not be predicted, likely as a consequence of the low similarity between

these novel BGCs and those used for DeepBGC training.

Amplicon sequencing and shotgun metagenome sequencing both are important
when aiming for novel domain discovery as we observed unique domain sequences
with each of the methods (see Table S9 at https://doi.org/10.5281/zenodo0.5195507).
For both KS and A domains, 90 percent more domain sequences were identified in
shotgun datasets as compared to amplicon datasets, highlighting the immense
biosynthesis potential that has yet to be discovered. As the costs of shotgun
metagenomic sequencing are still prohibitive and make these methods accessible to
only a few, our shotgun results will be useful to design domain sequence-based
primers that are not biased to a particular genus and can be used for massive,

amplicon-based diversity surveys.
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Our study helped capture the snapshot of microbial diversity and metabolic novelty
from the soils sampled on a single day. However, the limited number of samples,
made it hard to draw meaningful biological conclusions from the observed
correlations between the diversity of BGCs and soil physico-chemical parameters.
Large-scale and more systematic sampling across changing weather or seasons will
be necessary to capture the true dynamics and complete diversity. We were not able
to recover metagenome assembled genomes (MAGS) due to sequencing volume
limitation. Considering the massive diversity present in soil, hundreds if not
thousands of gigabases would be required to reach a stage to claim complete
coverage of all the species genome in a particular metagenome sample (Rodriguez-
R et al., 2018). Reaching terabase scales (10'?) is not only a current economical
bottleneck, but also it calls for better metagenome assembly algorithms that are both
space and time efficient. Alternatively, novel methods that uses live-FISH
(fluorescence in situ hybridization) combined with FACS (fluorescence-activated cell
sorting) has been reported to be capable of isolating live bacteria solely based on
their 16S rRNA gene sequence (Batani et al., 2019). In future, using such novel
methods it will become possible to accelerate the BGC discovery from candidate or

novel phyla present in densely rich soil samples.

Some of the BGCs discovered in this study are currently being explored for further
heterologous expression and structure elucidation in our laboratory. All the data
resources generated here have been shared in the public domain to facilitate further
experiments and analysis by the natural products research community. It will be a
herculean task to explore and map the complete chemical space that natural
products cover on the entire earth. Our metagenomic data give a glimpse of the

immense microbial and biosynthetic diversity that exists even in the next door soils.

65



5.4 Conclusion

Overall, this study helped uncover the biosynthesis potential of the Schonbuch forest
soil by combining metagenome and amplicon sequencing. This paired strategy
helped identify more novel BGC domains than it would have been possible with only
either of the sequencing methods. Our analysis also confirmed the limitations of
amplicon sequencing, which is extremely powerful in providing a glimpse of the
microbial and biosynthetic diversity in soil samples, but this is biased to sequences
that are abundant in the samples and to the chosen primers. We show that a
shotgun metagenome approach is able to overcome these limitations and better as
compared to the amplicon-based approach at capturing the microbial diversity. The
additional use of Nanopore sequencing data for one of the soil samples allowed us
to improve metagenome assembly and to recover novel BGCs. Nonetheless, long
read sequencing remains too costly to be routinely used in soil surveys of microbial
and BGCs diversity. Physico-chemical parameters that correlate with the domains or
BGC diversity will help develop a rationale to guide such explorative surveys. In the
future, sequencing terabases of metagenomes might become feasible and
economical. At such sequencing depths we might then only be limited by
heterologous expression and functional validation of novel natural products.
Probably such a foreseeable future is just a decade away. Until then, the approaches
and rationale developed here will help fuel the drug discovery pipeline to combat

antimicrobial resistance.
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5.5 Methods

5.5.1 Soil sampling, physico-chemical parameters characterization.

The sampled Schonbuch forest soils developed from Lower and Middle Triassic
Keuper sequences, which locally comprise thin sequences of sandstones and
evaporitic marlstones, as well as aeolian (loess), colluvial, and alluvial deposits
(Einsele, 1986; Grathwohl et al., 2013) . The soils were described and classified
according to the classification system of the Food and Agriculture Organization of the
United Nations (Jahn et al., 2006) and IUSS Working Group WRB (FAO and IUSS,
2015). Differences concerning the geochemistry (i.e. pH and CaCO3 concentrations)
of the geological soil parent material resulted in highly different soil types, which
were explicitly taken into account in this study. The first soil pit, located at the top-
slope of a south-exposed slope was classified as a Podzol, which has developed
from a sandstone outcrop. The second soil was classified as a Cambisol, which has
developed from sandstone mixed with aeolian deposits (loess). The third soil was a
Stagnosol, which has formed from a clay-rich marl. See Table S10a for further
details on the soil profiles (see Table S10a at
https://doi.org/10.5281/zenod0.5195507). Sampling was carried out horizon-wise.
Bulk samples were taken from the soil genetic horizons for geochemical analyses,
comprising the mineral topsoil (A horizon) and mineral subsoil (B horizon). For
simplification, the organic litter layers (Oi and Oe) that cover the mineral soil horizons
were combined as one bulk sample per site. Carbon and Nitrogen measurements:
Dried (40°C) litter and fine soil (<2mm) samples were homogenized with a planetary
ball mill (Pulverisette 5, Fritsch Idar-Oberstein, Germany). Total C and N

concentrations were measured by a CNS elemental analyser (Vario EL Ill, Elementar
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Analyse systeme GmbH, Langenselbold, Germany). For details regarding detection
limits and quality controls, see Table S10b (see Table S10b at

https://doi.org/10.5281/zen0d0.5195507).

X-ray fluorescence: To determine the major element concentrations in fine mineral
soil samples of A and B horizons, glass beads of a homogenized mixture of 1.5 g
dried and powdered sample material and 7.5 g lithium tetraborate were fused at
1050 °C for 30 min. On Bruker AXS Pioneer S4, glass beads were analyzed by

wavelength dispersive X-ray fluorescence (XRF).

ICP-OES: To determine concentrations of major and trace elements in O horizon
soils, litter samples were dissolved by an acid pressure digestion system (Loftfield
PDS-6, Loftfield Analytical Solutions, Neu Eichenberg, Germany). Therefore,
homogenized sample material (target weight: 0.05g) was transferred into Teflon
pressure beakers before adding 4mL HNO3 conc. (65%, Merck KGaA, p.a. = 98%).
After heating for seven hours at 180°C, digestion solutions were filtered (MN 619 G%a
@185mm, Macherey-Nagel, Duren, Germany) and diluted with Millipore water
(Synergy UV ultrapure, Millipore) to a final volume of 50 mL. The digests were finally
analysed by an inductively coupled plasma optical emission spectrometer (ICP-OES
Optima 5300 DV, PerkinElmer, Wellesley USA) according to EN ISO 11885. To
check for accuracy and precision of the digestions, the two certified reference
materials BCR-129 (hay powder) and BCR-141 (plankton) were used. Based on the
measured average concentration values and the target values, recovery rates were
calculated for each element (see Table S10c at
https://doi.org/10.5281/zenod0.5195507). Despite a good reproducibility (RSD of 5 to
11%), most major and trace elements in BCR-129 and 141 were systematically

underestimated (up to 30%, see Table S10c at
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https://doi.org/10.5281/zenodo.5195507), which is why correction factors were
calculated and applied to the other samples. Additional analytical information is
provided in Table S10c (see Table S10c at https://doi.org/10.5281/zenod0.5195507).
All vessels used were soaked in 10% HCI overnight and rinsed with Millipore water

prior use.

Soil sampling for Nanopore/lllumina sequencing: The A horizon of the soil type
Cambisol used for high molecular weight (HMW) DNA isolation for subsequent
sequencing was sampled from the Schénbuch forest in November 2016, transported

to the lab and stored at -20 °C.

Soil sampling for lllumina and amplicon sequencing of 7 soil samples: The O and A
horizon of the soil types Podzol and , Stagnosol as well as the O, A and B horizon of
Cambisol soil were sampled from the Schonbuch forest on May 3, 2019. Samples
were collected using a soil probe, transported to the lab and stored at -20°C. To
obtain the fine soil fraction, all soil samples were passed through a coarse mesh
screen (1.2 x 1.2 cm) and subsequently a fine mesh screen (2 x 2 mm) prior to

metagenomic DNA isolation.

5.5.2 Metagenome sequencing.

Isolation of HMW DNA from the A horizon of Cambisol for Nanopore sequencing run
1: HMW DNA was isolated from thawed fine soil samples using a published protocol
(Brady 2007) with the following modification to increase the purity of the isolated
DNA: After electroelution of the DNA out of the gel and into the dialysis bag, the
dialysis bag was incubated in 0.5X TE buffer overnight before following the next
steps of the protocol. Library preparation and Nanopore sequencing of the isolated

DNA was performed by genXONE Inc. on a GridlON device.
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Isolation of HMW DNA from the A horizon of Cambisol for lllumina sequencing: For
lllumina sequencing the above described DNA sample was further purified using the
spin columns of the PowerLyzer PowerSoil DNA Isolation Kit (MO BIO Laboratories,
Inc., #12855-100) and following an alternative protocol that was provided by MO
BIO: The DNA sample isolated for Nanopore sequencing run 1 was filled up to
650 pl with H20, and 650 pl of solution C4 and 650 pl of 100% ethanol were
added. 650 ul of the mixture was loaded at a time on a MO BIO spin column and
DNA was bound in three steps by centrifugation. The membrane was washed with
650 ul of 100% ethanol and subsequently with 500 pl of solution C5. The spin
column was dried by centrifugation for 2 min at full speed and transferred to a clean
tube. DNA was eluted with H2O. Library preparation (TrueSeq DNA PCR-Free) and

lllumina sequencing was performed by CeGaT GmbH on a NovaSeq 6000 PE150.

Isolation of HMW DNA from the A horizon of Cambisol for Nanopore sequencing run
2: HMW DNA was isolated from 6 x 5g of thawed fine soil using a published protocol
(Verma, Singh et al. 2017) with the following modifications to increase DNA yield and
purity: After dissolving the dried pellets in 1 ml of 1X TE buffer, 1 pl of RNase | was
added and incubated for 30 min at 37 °C before following the next steps of the
protocol. In addition to precipitating the DNA with 0.7 volumes of isopropanol, 0.1
volumes of 5 M sodium acetate were added. After completing the protocol, the DNA
was further gel purified as described by Brady (Brady, 2007) with adding a dialysis
step in 0.5X TE overnight after electroelution of the DNA out of the gel and into the
dialysis bag. Library preparation (native ligation sequencing kit, SQK-LSK109) and
sequencing was performed by the NGS Competence Center Tubingen (NCCT) on a

PromethlON device.
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Isolation of metagenomic DNA from 7 soil samples for Illumina sequencing:
Metagenomic DNA was isolated from the O and A horizon of the Podzol, Cambisol
and Stagnosol using the PowerLyzer PowerSoil DNA Isolation Kit (MO BIO
Laboratories, Inc., #12855-100) and following an alternative protocol that was
provided by MO BIO: 250 mg of each thawed fine soil sample was added to dry
glass bead tubes and 500 pl of bead solution and 200 pul of
phenol/chloroform/isoamyl alcohol were added followed by 60 pl of solution C1.
Cells were opened using a Precellys 24 device (6500 rpm, 2 cycles of 20 seconds
with 5 seconds pause) followed by centrifugation to the pellet. The supernatant was
transferred to a new tube and 5 pl of RNase A were added as an additional step not
mentioned in the protocol. 250 pl of solution C2, followed by 100 ul of solution C3
were added and mixed. The mixture was incubated for 5 min at 4 °C and
subsequently centrifuged to the pellet. The supernatant was transferred to a new
tube and 650 pl of solution C4 and 650 ul of 100% ethanol were added. 650 ul of
the mixture was loaded at a time on a MO BIO spin column and DNA was bound in
three steps by centrifugation. The membrane was washed with 650 pl of 100%
ethanol and subsequently with 500 pl of solution C5 in case of non-stained
membranes. In the case of brown membranes, a mixture of 300 pl solution C4 and
370 pl 100% ethanol were used to wash the membrane before washing with 100%
ethanol and solution C5. The spin column was dried by centrifugation for 2 min at full
speed and transferred to a clean tube. DNA was eluted with H20. Metagenomic
DNA from the B horizon of the Cambisol was isolated following the protocol of
Verma, Singh et al. (Verma et al., 2017) with the above mentioned modifications.
Library preparation (TrueSeq DNA PCR-Free) and Illumina sequencing was

performed by CeGaT GmbH on a NovaSeq 6000 PE150.
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Amplicon sequencing: Isolated metagenomic DNA of the 7 soil samples and
published degenerate primers that recognize conserved regions in NRPS A domains
(Adom_fw:GCSTACSYSATSTACACSTCSGG;

Adom_rv:SASGTCVCCSGTSCGGTAS) (Pimentel-Elardo et al., 2012), PKSI KSI
domains (KSI_fw:CCSCAGSAGCGCSTSYTSCTSGA,;
KSI_rv:GTSCCSGTSCCGTGSGYSTCSA) (Ginolhac et al., 2004) and 16S rRNA
genes (16S_fw:CCTACGGGNGGCWGCAG;
16S_rv:GACTACHVGGGTATCTAATCC) (Klindworth et al., 2013) were used to
generate amplicons via PCR. Concentrations of the DNA extracted from each of the
7 soil samples was measured using Qubit 3.0 Fluorometer and adjusted to 1.5 ng/ pl.
PCR was performed using the Q5 High-Fidelity DNA Polymerase Kit (NEB) with the
following reaction setup for a 25 pl reaction: 5 ul of 5X Q5 Reaction Buffer, 0.5 pl of
10 mM dNTPs, 0.5 pl of 10 p Fw/Rv Primer, 3 ul of template DNA, 0.25 pl of Q5
High-Fidelity DNA Polymerase, 5 pl of 5X Q5 High GC Enhancer and 10.25 pl of
nuclease-free water. The following thermocycling conditions were used: 98 °C for 30
sec followed by 30 cycles of 98 °C for 10 sec, 58.5 °C (A domain) or 68 °C (KSI
domain, 16S rRNA gene) for 30 sec, 72 °C for 20 sec and a final step with 72 °C for
2 min. For each soil and primer pair, four 25 ul reactions were performed. 5 pl of
each was analyzed via agarose gel electrophoresis and the remaining volume of the
samples (20 yl each) were pooled. Pooled A domain and pooled 16S rRNA gene
amplicons for each soil were purified using the QIA quick PCR purification Kit (50)
following the manufacturer’s instructions. Pooled KSI domain amplicons were gel
purified using the QIAquick Gel Extraction Kit (QIAGEN) following the manufacturer’s
instructions. Sequencing was performed by the NGS Competence Center Tubingen

(NCCT) on a MiSeq System.
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5.5.3 Shotgun-seq Analysis.

Shotgun metagenome analysis: The shotgun Illumina and Nanopore reads were
checked for sequence quality and adapter sequences using FastQC tool. To assess
the advantages of using both short and long reads for recovering metagenomic
BGCs, we performed both individual technology specific reads assembly as well as
hybrid assembly. lllumina reads were assembled using metaSPADES (version
3.11.1) using default parameters (Nurk et al., 2017) . Hybrid assembly of lllumina
and Nanopore reads were performed using metaSPADES (De Maio et al., 2019).
Assembly comparisons were performed using the QUAST tool (Gurevich et al.,
2013). Taxonomic Annotation and abundance estimation analysis was performed
both on reads and assembled contigs. Accelerated BlastX annotations against NCBI
non redundant proteins database was done using Diamond (version 0.9.24)
(Buchfink et al., 2014). Alignment free fast taxonomic annotation tool Kraken2 with
maxikraken2 database (available from
https://lomanlab.github.io/mockcommunity/mc_databases.html) was also used to

annotate the taxonomy of reads and assembled metagenomes (Wood et al., 2019).

Natural products biosynthesis domains and cluster annotation and diversity analysis:
Using the BiG-MEXx tool, we performed the BGC domain annotation and diversity
analysis (Pereira, 2020). Annotation of 150 domains involved in biosynthesis of
natural products was done.The assembled contigs with length greater than 10 kb
were run through a local installation of the antiSMASH pipeline (version 5) for
identifying the BGCs (Blin et al., 2019). For more focused annotations of KS and C
domains, NaPDoS online server was used (Ziemert et al.,, 2012). BGCs were
clustered using BiG-SCAPE with default parameters(Navarro-Mufioz et al., 2020).

GCFs containing MIBIG (version 2.0 ) BGCs were considered closer to known BGC
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products (Kautsar et al., 2020). The assembled contigs were also annotated using
DeepBGC tool to predict novel BGCs based machine learning method (Hannigan et

al., 2018).

5.5.4 Amplicon-seq Analysis.

Amplicon Analysis (Microbial Abundance and Diversity): The QIIME2 (version
2019.4) "Moving Pictures" tutorial steps were mostly followed for 16S Amplicons
analysis (Bolyen et al., 2019). DADA2 was used to process both sequencing reads,
leading to longer Amplicon Sequence Variants (ASV) (Callahan et al., 2016). DADA2
pipeline performed quality filtering, denoising and chimera detection (see Table S2 at
https://doi.org/10.5281/zenod0.5195507). The ASVs were clustered into OTU by
vsearch plugin available in QIIMEZ2 at 97% identity by the de-novo clustering method.
OTUs were classified using Naive Bayes classifier with the Silva database (version
132) (Quast et al., 2013). Subsequently, the maftt based multiple sequence
alignment of features was performed which was used for phylogenetic tree
construction via FastTree (Price et al.,, 2010). Q2-diversity plugin based alpha
diversity and beta diversity analysis was performed to compute Shannon, Faith PD,
OTU, Evenness alpha diversity indices and Jaccard, Bray-curtis, and UniFrac beta

diversity distances .

Amplicon Analysis (BGC Domain Abundance): Amplicons of AMP-binding domain
and KS domain were analyzed using QIIMEZ2 pipeline steps described above for 16S
amplicon analysis with modifications as described in the following text. Only readl
sequences were used as there was no overlap with read 2 and the relative quality of
read 2 was bad. HMM search was performed using domain specific HMM models

available via antiSMASH tool. Only the features matching the HMM models at default
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thresholds were further analysed. ASVs were clustered at 97% identity using q2-
diversity plugin. KS domain sequence amplicons were further annotated using
NaPDoS to identify putative pathway products. Domains matching with NaPDoS
database domains with less than 85 % identity were considered to be putative novel

domains.

Comparison of amplicon-seq and shotgun-seq identified BGC domains: All the
shotgun-seq domains identified for each sample after the BiG-MEx analysis, were
concatenated. Using Dedupe script from BBTools (version 37.62), domains were
deduplicated at 85 percent identity. Amplicon-seq domains were mapped on the
deduplicated domains from shotgun-seq using BWA and SAMtools to identify

common and unique domains.

Statistical analysis. Spearman rank correlation was computed between alpha
diversity indices of 16S, A domain and KS domains. Similarly, correlation was also
computed between alpha diversity indices and soil physico-chemical parameters. R
version 3.6.2 and Rstudio were used to compute the statistical significance and
correlation. The ggplot2 package was used to develop the boxplots (Wickham,
2011). Upset plots were developed using online UpSetR Shiny App webserver (Lex
et al., 2014). giime2R package, Pavian (Breitwieser and Salzberg, 2020) and
Seaborn python visualisation library were used to plot the taxonomic profile and

rarefaction curve.
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Chapter 6: Metagenomic big-data explorations
of natural products diversity in diverse

ecosystems

This chapter covers the biosynthesis potential survey of diverse ecosystems and is

divided in following parts:

Part I: Manuscript — Evaluating the Distribution of Bacterial Natural Product

Biosynthetic Genes Across Lake Huron Sediment

Part 1l: Dynamics of the human gut secondary metabolome during antibiotic

treatment.

Part I1ll: Using linked reads and long reads to recover biosynthetic gene

clusters from Tuebingen strain collections.
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Abstract
Environmental microorganisms continue to serve as a major source of bioactive natural

products (NPs) and as an inspiration for many other scaffolds in the toolbox of modern
medicine. Nearly all microbial NP-inspired therapies can be traced to field expeditions to
collect samples from the environment. Despite the importance of these expeditions in the
search for new drugs, few studies have attempted to document the extent to which NPs or
their corresponding production genes are distributed within a given environment. To gain
insight into this, the geographic occurrence of NP ketosynthase (KS) and adenylation (A)
domains was documented across 53 and 58 surface sediment samples, respectively,
covering 59,590 square kilometers of Lake Huron. Overall, no discernable NP geographic
distribution patterns were observed for 90,528 NP classes of nonribosomal peptides and
polyketides detected in the survey. While each sampling location harbored a similar number
of A domain operational biosynthetic units (OBUSs), limited overlap of OBU type was
observed, suggesting that at the sequencing depth used in this study, no single location
served as a NP ‘hotspot’. These data support the hypothesis that there is ample variation in
NP occurrence between sampling sites and suggests that extensive sample collection efforts
are required to fully capture the functional chemical diversity of sediment microbial

communities on a regional scale.

6.1 Introduction

The preparation of Pyocyanase in 1899 and the discovery of bioactive natural
products (NPs) penicillin and gramicidin in 1928 and 1939, respectively, marked the
beginning of modern microbial drug discovery efforts.(Aldrich, 1999; Emmerich and L&w,
1899; Fleming A., 1929; Gause and Brazhnikova, 1944) Since then, environmental
microorganisms have served as a major source of bioactive NPs and as an inspiration for a
plethora of therapeutic scaffolds. These small molecules have generated therapies for an
array of diseases such as cancer, bacterial infections, immune disorders, and others, as

34% of FDA approved drugs from 2000 to 2014 were NPs or NP-derived.(Newman and
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Cragg, 2020) Importantly, nearly all of these microbial NP-inspired therapies resulted from
field expeditions to collect samples from the environment. In general, these field expeditions
have been guided by the hypothesis that environments in diverse geographic locations
contain different ecological pressures, and as a result harbor minimally-overlapping
populations of NP biosynthetic pathways.(Cheng et al., 2015; Clardy et al., 2009; Fischbach
and Walsh, 2009)

Despite the importance of sample collection expeditions toward the search for new
drugs, few studies have attempted to document the extent to which NPs or their
corresponding production genes are distributed in any given environment. Charlop-Powers
et al. compared the NP biosynthetic potential of soil samples from a diverse array of
environmental microbiomes.(Charlop-Powers et al., 2015) Their analyses of 185 soil
microbiomes collected from five continents suggested that geographic distance and local
environment contributed to biosynthetic diversity differences observed between
samples.(Charlop-Powers et al.,, 2015) Additionally, Lemetre et al. found that changes in
latitude correlated with changes in biosynthetic domain composition within soil samples on a
continent-wide scale.(Lemetre et al., 2017) Borsetto et al. correlated the observed
differences in biosynthetic gene cluster (BGC) diversity in a range of soils within
metagenome data, with the microbial community present at each site and with geographic
location, and suggested that environmental variables influence the biosynthetic potential at a
given site.(Borsetto et al., 2019) Similarly, Sharrar et al. found that patterns of abundance of
BGC types varied by taxonomy in soil bacteria, and that bacteria with higher biosynthetic
potential were associated with specific types of soil vegetation.(Sharrar et al., 2020) These
studies demonstrate that biosynthetic domain composition can differ with changing
geography and/or variables within the soil. Thus, characterizing the geographic distribution
of NP-producing BGCs at a finer geographical resolution will inform front-end discovery
practices such as sample collection and microbial library generation, which traditionally have

a high degree of uncertainty.(Hernandez et al., 2021)
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Due to decreasing sequencing costs and availability of online tools, probing microbial-
based chemical diversity in nature has become attainable without relying on cultivation
techniques. To gain insight into how specific NP classes are distributed in an environment,
the occurrence of NP domains was characterized in up to 58 surface sediment samples
covering a 59,590 square kilometer region in Lake Huron. Ketosynthase (KS) domains from
polyketide synthases (PKS) and adenylation (A) domains from nonribosomal peptide
synthetase (NRPS) were examined, as they represent conserved domains within two
common classes of NPs that often encode for the production of antibiotics, siderophores,
and other bioactive compounds. The current study provides preliminary evidence that there
is substantial variation in NP composition between sampling sites on a regional scale and
suggests that extensive sample collection efforts will be required to fully capture the BGC
diversity that exists in sediment. Investigating BGC distribution patterns and dynamics in
Lake Huron represents an essential initial step toward the design of a more methodical
environmental sample collection approach, a critical front-end process that has been largely

unchanged since antibiotic discovery efforts began in the early 20™ century.

6.2 Results and Discussion

6.2.1 . Characterization of BGC Domain Sequence Diversity in Sediment

In August and September of 2014, 59 samples were collected from Lake Huron — a
geographic region that spans 59,590 square kilometers (Annexure B, Table S1). To confirm
the bacterial diversity present represents populations that commonly occur in freshwater
systems, the taxonomic diversity of bacteria at each site was assessed using microbial 16S
rRNA gene amplicons (Annexure B, Supp. Experimental Procedures). Results were
congruent with those of typical lake bacterial populations (Annexure B, Supp. Table
S4).(Newton et al., 2011)To assess the composition of NP domains at each collection site,
previously designed degenerate primers were used to amplify the KSa domain for PKS

[[((Metsa-Ketela et al., 1999) and the A domain for NRPS genes from genomic DNA (gDNA)
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extracted from sediment samples.(Ayuso-Sacido and Genilloud, 2005) The KSa and A
domains were selected because they are among the most conserved catalytic domains of
the PKS type Il and NRPS gene clusters respectively. Furthermore, this sequence
conservation has yielded primer sets for PCR amplification(Ayuso-Sacido and Genilloud,
2005; Ginolhac et al., 2004; Metsa-Ketela et al., 1999) as well as bioinformatic tools and
databases to facilitate the annotation and prediction of NPs.(Kautsar et al., 2020; Weber and
Kim, 2016)

The selected conserved regions were PCR-amplified from genomic DNA using a two-
stage PCR protocol, as described previously.(Nagib et al., 2018) Briefly, 613 bp fragments of
KSa (B-ketoacyl synthase) and 700 bp fragments of NRPS A domains were amplified using
degenerate oligonucleotides, respectively.(Ayuso-Sacido and Genilloud, 2005; Metsa-Ketela
et al.,, 1999) All primers were synthesized with a locus-specific sequence as well as a
universal 5’ tail.(Naqib et al., 2018) Resulting sequences were filtered using profile hidden
Markov models (pHMMs) downloaded from antiSMASH's HMM detection modules to
remove non-specific sequences.(Blin et al., 2019) These models are based on known and
predicted KSa and A domain architectures.(Adamek et al., 2019) Filtered sequences were
then clustered at 85% similarity to approximate compound class designations and to avoid
overestimation of chemical diversity in sediment.(Elfeki et al., 2018) Sequences were
extracted from the manually curated and annotated BGC database MIBiG(Kautsar et al.,
2020), subjected to different clustering thresholds, and evaluated for their ability to group
according to similar biosynthetic origins/molecular products. The optimal clustering threshold
fluctuated and was dependent on the specific compound class and ranged from 80% to
90%. Therefore, analysis proceeded using an 85% similarity threshold. At 85% similarity, the
sequence groupings — or operational biosynthetic units (OBUS) — represent an estimation of
compound classes. To further scrutinize this clustering method, amplicons from a control
Streptomyces strain, Streptomyces coelicolor A3(2), were subjected to this process (see
Methods section 4.5).(Bentley et al., 2002) S. coelicolor A3(2) produces two KSa domain-

containing compounds (actinorhodin and a spore pigment) and twelve A domain-containing
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compounds (CDA1lb, CDA2a, CDA2b, CDA3a, CDA3b, CDA4a, CDA4b, coelibactin,
coelimycin P1, undecylprodigiosin, SCO-2138, and a putative tris-hydroxamate tetrapeptide
iron chelator coelichelin).(Bentley et al., 2002; Lautru et al., 2005) Analysis of S. coelicolor
A3(2) amplicons at 85% similarity yielded two KSa domain OBUs and fifteen A domain
OBUs, and confirmed this as a suitable threshold to organize 300 bp fragments into groups
that represent compound classes.

Of the 59 sediment samples, 6 from the KSa dataset and 1 from the A domain
dataset did not return sufficient quality data to be included in the analysis. In total, 1,818 KSa
OBUs (5,815 total sequences) throughout 53 sediment samples, and 171,527 A domain
OBUs (1,730,091 total sequences) throughout 58 sediment samples were observed. This
represents approximately 34 KSa and 2,957 A domain OBUs per sediment sample (Table
1). These original numbers were then adjusted to account for suspected overestimation of
chemical diversity, as described in the following section. The large disparity in KSa and A
domain OBU counts may be attributed to (1) primer biases and accuracy, (2) depth of
sequencing, and (3) the size of the family to which these domains belong. A domains belong
to a large superfamily of adenylate-forming enzymes,(Schmelz and Naismith, 2009) in
contrast to the smaller KSa (a-ketoacyl synthases) domain family, which are known to
produce aromatic polyketides and polyenes, and whose primers were designed specifically
for strains within the Streptomyces genus.(Chen et al., 2018; Du et al., 2018) The number
and putative identity of OBUs for each compound class is listed in Supporting Tables S6A-B.
As previously reported, the KSa primers are highly degenerate, with substantial off-target
amplification.(Liu et al., 2016) Due to this limitation, KSa data, including distribution analysis

and maps, can be found in the Supplemental Information.
6.2.2 .Analysis of Characterized NP BGC Distribution in Lake Sediment

In order to assess the occurrence of known NP BGC classes across Lake Huron
sediment, the identity of each OBU was verified. Sequence representatives from each OBU

were aligned against domain sequences extracted from the MIBIG database using the
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DIAMOND alignment tool via its default settings.(Buchfink et al., 2015; Kautsar et al., 2019)
MIBIG associates BGCs with known NP structures, allowing prediction of the product of each
matching OBU and as a result, estimation of the chemical diversity at each sample site. To
ensure that a 300 bp amplicon is sufficient for structural annotation, sequences from control
strain S. coelicolor A3(2) were amplified, sequenced, and aligned (Supplementary
Experimental Procedures).(Bentley et al.,, 2002) Amplified KSa and A domain sequences
from S. coelicolor A3(2) aligned appropriately against coelichelin, coelibactin, and select
calcium-dependent antibiotic (CDA) sequences from S. coelicolor in MIBIG at a maximum e-
value of 3.90 e®. In general, an e-value smaller than 0.01 is considered a reliable hit for
homology matches, while an e-value in the range of 1e is considered a match of high
reliability.(Scholz et al., 2016) These results were used as a guide to select a list of
annotated OBUs to map across lake sediment. Based on empirical tests and comparison to
e-values obtained from the S. coelicolor A3(2) control, a maximum e-value threshold of 1.2
e™ was selected for KSa domain OBUs and 1.3 e for A domain OBUs. These stringent
cutoffs allowed only high-confidence OBU assignments to be used in the study.

Once OBU sequence representatives were aligned against sequences from the
MIBIG database, the majority of these could not be assigned to known chemical compound
classes. In total, of the 1,818 KSa domain OBUs that were observed across 53 samples, 32
(1.7%) were assigned to known compound classes. Similarly, of 171,527 total A domain
OBUs observed across 58 samples, 108 (0.06%) were assigned to known compound
classes. Of particular note is that some distinct OBU sequence representatives were
assigned to the same compound class (for example, five separate OBU sequence
representatives aligned to rifamycin), which resulted in an overestimation of compound
classes present in sediment. To correct for this, it was necessary to estimate the average
number of times a compound class was divided into separate OBUs in the dataset; this
average was deemed a “split correction factor” (see Annexure B, Supplementary Table S6
for discussion). The total number of observed OBUs was then divided by that factor,

resulting in a more accurate estimation of the compound classes present in sediment: a total
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of 1,198 KSa domain OBUs, of which 21 (1.8%) were known compound classes, and a total
of 90,528 A domain OBUSs, of which 57 (0.06%) were known compound classes. Further

details are listed in Supplementary Tables S6A-B.

Table 1

KSa A
Total # of OBUs detected 1,818 171,527
Total # of OBUs after adjustment by the split correction factor 1,198 90,528

Average # of OBUs per sample after adjustment by the split

+ +
correction factor 23 (¢18) 1,561 (£798)

Table 1. A and KSa domain abundances in sediment.

Figure 1.
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Figure 1. Boxplots depicting the variability of KSa and A domain OBU abundance in each
sediment sample. A and B represent boxplots of OBU counts after adjustment by the split
correction factor, which corrects for overestimations of compound classes present in
sediment.
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Of the 78 OBUs matched to known classes of PKS (21) and NRPS (57) NPs in
MIBIG, distribution maps of compounds that occurred in at least two distinct locations were
generated after rarefaction analysis to the lowest sample count (15 sequences for KSa
domain OBUs and 3,487 for A domain OBUSs). A total of 30 OBUs met these criteria.

These 30 OBUs were further categorized into antibiotics, siderophores, and other
bioactive NP classes such as anticancer and antiviral compounds. OBUs from each of the
30 classes were mapped and patterns of occurrence were assessed (representative OBUs
per category are shown in Figure 2, while maps for the remaining OBUs are shown in
Supplementary Figures S3-5). The size of the colored circles are proportional to the number
of sequences detected at each sampling site, after rarefaction. Figures 2A-D show the
distribution of cyclomarin, surugamide, pyoverdin, and coelichelin classes. For example,
sequence reads for cyclomarin class antibiotics (Figure 2A) were detected in five distinct
geographic locations across the lake, while sequence reads for pyoverdin-type siderophores
(Figure 2C) were detected in 38 distinct geographic locations across the lake. Four of these
locations contained both compounds. Overall, the distribution profiles among the compound
classes analyzed were non-overlapping in lake sediment. In general, siderophores were the
most frequently detected compound class in lake sediment, exceeding that of antibiotics and

other bioactive NPs.

Figure 2
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Figure 2. Detection of domain sequences of select NP classes in Lake Huron sediment.
Figures 2A-D show the detection and relative read abundance of cyclomarin, surugamide,
pyoverdin, and coelichelin classes, respectively. Figures S3-5 depict the distribution of
additional NP classes. Different sized circles represent sequence read abundance at a
rarefaction depth of 13 sequences per sample for KSa domain sequences and of 3,487
sequences per sample for A domain sequences at each collection site in Lake Huron.
Representative structures from each of the four compound classes are shown in Figures 2E-
H.
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6.2.3 Analysis of Uncharacterized NP BGC Distribution in Lake Sediment

The majority of OBUs detected in Lake Huron sediment were not assigned to known
compound classes (98.3% KSa domain OBUs and 99.9% of A domain OBUs, respectively).
Instead of constructing maps for all 90,528 uncharacterized A domain OBUSs, the number of
locations at which a given OBU was detected was plotted (Figure 3). This allowed
determination of the frequency of occurrence of OBUs across lake sediment. Figure 3
demonstrates that the vast majority of A domain OBUs (96.5%) occurred in fewer than 10
samples (in varying occurrence patterns, data not shown), across the 58 locations. For
example, 40,003 OBUs (83.7%) were detected in only a single sediment location, and 2,524
OBUs (5.3%) were detected in only two locations (in varying occurrence patterns). However,
no more than 1,042 OBUs were detected at any single sampling site (Figure 4); thus, the
genetic diversity detected is broadly distributed. Figures 3 and 4 together demonstrate that
there is little overlap among occurrence patterns of these OBUs, indicating that there are not
select NP ‘hotspots’ among our 58 sampling sites and that NP occurrence varies
considerably across Lake Huron sediment.

Figure 3
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Figure 4. Box plot indicating observed number of A domain OBUs across all locations
at a rarefaction depth of 3,487; each point represents the number of A domain OBUs at that
location. The number of A domain OBUs that appears in each location ranges from 491 to

1,042.

We sought to determine whether A domain OBUs were likely to co-occur in the
environment. Correlation coefficients based on presence/absence and abundance were
calculated for each OBU pair for the 1,000 most abundant OBUs from rarified BIOM tables,
based on the formula in Supp. Table S7. Among these, 0.16% of OBUs displayed a strong
positive correlation with each other (a correlation score of 0.9 or above). This analysis
further supports the lack of co-occurrence of dominant OBU classes in these sediments.
Similarly, correlation analyses were undertaken to assess whether A domain OBUs
correlated with the presence of specific Actinobacteria or Proteobacteria OTUs at each
location (see Annexure B, Supplemental Information Table S7). No significant correlations
were observed. One possible cause of this may be that the detected OBUs are associated
with mobile genetic elements and therefore are associated with multiple taxa.(Penn et al.,
2009)Alternatively, primer biases (OBU versus OTU) coupled with insufficient OTU
sequencing depth prevented sufficient detection of the necessary sequences needed to
observe such correlations. Further experiments using shotgun metagenome sequencing will
be required to confirm this result.

This study aimed to generate a preliminary assessment of how NP OBUs are distributed
across Lake Huron sediment. As shown in Figure 2 (and Annexure B, Supp. Figures S3-S5),
among the select 30 characterized OBUs that were analyzed, no discernable patterns of
occurrence in Lake Huron surface sediment were observed. Some NP OBUs exhibited
frequent occurrences in sediment across the geographic locations sampled, while others

were confined to select sample sites.
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This study is one of the few attempts to document the distribution of specific classes
of NPs at a regional scale in an environment representative of a collection
expedition.(Charlop-Powers et al., 2016) The observed NP distribution profiles lend
experimental evidence to a few predictable phenomena, that to the best of our knowledge
have seldom been demonstrated on a large scale. First, individual compound profiles,
particularly those that represent bioactive NPs (antibiotics, anticancer, etc), exhibit sparse
occurrence across Lake Huron sediment. Second, some profiles occur more frequently
across the collection sites, such as the pyoverdins and griseorhodins (Figure 2C and
Annexure B, Supp. Figure S5H). This may suggest that the NP is highly functional in its
environment or is located on a mobile genetic element that is commonly transferred between
species, among other possibilities. Regardless, of the greater than 90,000 known and
uncharacterized NP OBUs analyzed, there is little evidence for discernable patterns of NP
occurrence across Lake Huron sediment. This suggests that robust sampling is required to
survey an environment of this magnitude, and that oversampling leading to redundant NP
recovery is not a major concern (though cultivation methods will be a significant factor in
recovering those NP populations from sediment).?® Further experiments should be
performed to assess whether the OBU distribution trend observed in this study is also
detected in the culturable bacterial population, a metric more appropriate to evaluate the
efficiency of most microbial drug discovery programs. An attempt to document OBU recovery
from culturable bacterial populations was addressed in other complementary studies.(Bech
et al., 2020; Elfeki et al., 2018) A similar study that analyzes sequences within an area of
higher geographic resolution, at multiple time points, and with consideration toward
environmental pressures specific to the benthic lake environment, would provide more
detailed information on the available NP chemical space in Lake Huron sediment. Events
such as algal blooms or other localized environmental phenomena at the time of collection

can influence results in any of the sampled locations.
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The need for novel approaches to improve detection of NP BGCs from
eDNA

There are a few experimental limitations to the current study (see Sl for more
detailed explanation). First, the low abundance of sequence reads belonging to NPs can be
attributed to undersampling, limited eDNA extracted from sediment, or biases generated
from PCR amplification using highly degenerate primers. In addition, the resulting amplicons
are only partially representative of the BGC population present in sediment. The design of
new primers with a broader detection range can improve discovery of non-traditional BGCs.
However, alternative, non-PCR-based approaches such as deep shotgun metagenome
sequencing coupled with long-read sequence data (e.g. data generated using Oxford
Nanopore and Pacific Biosciences sequencing platforms), or enrichment strategies followed
by deep sequencing (e.g., Oxford Nanopore selective sequencing,(Edwards et al., 2019)
hybridization capture+shotgun metagenome sequencing(Zhou et al., 2015)) will be
necessary for further discovery. Finally, the MIBiG database was used to assess compound
classes.(Kautsar et al., 2020, p. 2) The number of existing NPs greatly outnumbers the
entries in MIBIG, underlining the need for the community to contribute to and expand this

valuable resource.

6.3 Conclusion

Despite decades of collecting soil microorganisms for use in drug discovery, few
attempts have been made to measure the extent to which NP production genes are
distributed in the environment. In this study, KSa and A domain amplicon sequencing was
used to document distribution profiles of NPs across Lake Huron surface sediment. Overall,
no discernable NP geographic distribution patterns were observed when comparing OBUs
from greater than 90,000 NP classes (NRPS and PKS). We observed that the distribution
profiles of the majority of A domain OBUs were non-overlapping across the 58 locations,
while each location harbored relatively equal number of OBUs, suggesting that at the

sequencing depth used in this study, no single location served as a NP ‘hotspot’. Finally,
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analysis of the top 1,000 most abundant OBUs detected in Lake Huron sediment, which
belong to unknown/uncharacterized NPs, indicate that co-occurrence patterns are rare, but
do exist. This preliminary evidence supports that there is ample variation in NP occurrence
between sampling sites and suggests that extensive sample collection efforts will be
required to fully capture the diversity that exists in sediment on a regional scale. Overall,
investigating BGC distribution patterns and dynamics in Lake Huron has highlighted the
need for a more methodical environmental sample collection approach, a great unmet need

in NP drug discovery.

6.4 Methods

6.4.1 Collection of Sediment Samples, Cultivation of Sediment Bacteria on

Nutrient Agar

Sediment samples were collected using a PONAR grab in the summer of 2012 from Lake
Huron, the Georgian Bay, and the Northern Channel during a research expedition aboard
the EPA’s Lake Guardian Research Vessel. Surface depths of sediment are listed in Supp.
Table S1. Approximately 1 cm?® of sediment was homogenized, and an aliquot was placed
into a 2 mL cryovial containing 20% glycerol. These were stored in cryogenic vials in a

Dewar until transported back to the laboratory where they were stored in a -20°C freezer.
6.4.2 Genomic DNA Isolation from Sediment and Nutrient Agar

Cryogenic vials were thawed at room temperature, and gDNA was extracted from
approximately 0.25 g of sediment, using a DNeasy PowerSoil Kit (Qiagen, Netherlands)

according to the manufacturer’s instructions.
6.4.3 KSa and A Domain Amplification and Sequencing

KSa and A domain amplicon sequencing was performed using the same two-step PCR
strategy described in the Supporting Information. Briefly, a 613 bp fragment of the KSa (B-
ketoacyl synthase) was amplified using degenerate primers (5'-

TSGCSTGCTTCGAYGCSATC-3') and (5'-TGGAANCCGCCGAABCCGCT-3').(Metsa-Ketela
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et al., 1999) 700-bp NRPS A domain gene fragments were amplified using degenerate
oligonucleotides A3F (5'-GCSTACSYSATSTACACSTCSGG-3') and A7R
(5'SASGTCVCCSGTSCGGTAS-3').(Ayuso-Sacido and Genilloud, 2005) All primers were
synthesized with a locus-specific sequence as well as a universal 5' tail (i.e., CS1 and CS2
linkers). 20 uL of PCR reaction mixture consisted of 1 yL of DNA at 10 ng/uL, 1 pyL of a 10
MM solution of each primer, 10 yL KAPA Taq 2X ReadyMix (Kapa Biosystems), 0.8 uL of
DMSO, 3.2 uL of 100 mg mL™ Bovine Albumin Serum, and 3 pL of DI water. The thermal
cycling conditions were set to an initial denaturation step at 95 °C for 5 min; 7 cycles of 1 min
at 95 °C, 1 min at 65 °C (annealing temperature was lowered 1 °C per cycle), and 1 min at
72 °C; and 40 cycles of 1 min at 95 °C, 90 s at 58 °C and 1 min at 72 °C; and a final
elongation step at 72 °C for 5 min. Amplification products were verified by agarose gel
electrophoresis and purified using a QIAquick PCR cleanup kit according to the
manufacturer’s protocol (Qiagen). The resulting PCR amplicons were used as templates for
the second PCR step, as described above, to incorporate sequencing adapters and sample-
specific barcodes. Pooled and purified amplicon libraries, with a 20% phiX spike-in, were
loaded onto a MiSeq V3 flow cell, and sequenced using paired-end 2 x 300 reads.
Sequencing was performed at the Genome Research Core at the University of lllinois at

Chicago.
6.4.4 Bioinformatic Analyses of BGC Data

Only forward reads were used in further analysis due to the low quality of reverse reads. All
sequences generated from the lllumina MiSeq sequencer were trimmed on the ends of the
read according to Phred quality scores, then denoised using the DADA2 implemented in
Qiime2, and finally chimeras were removed using uchime-denovo as implemented in
Qiime2.(Bolyen et al., 2019, p. 2; Callahan et al.,, 2016, p. 2) The degenerate primer
sequences were removed. Filtered and trimmed reads were then 6-frame translated into
amino acid sequences using TranslatorX.(Abascal et al., 2010) Only frames with no internal

stop codons were kept using TranslatorX’s “guess most likely reading frame” option. Amino

100



acid sequences were then filtered via HMMER(Johnson et al., 2010) using HMM prebuilt
generic detection models downloaded from antiSMASH v5.0.0.(Blin et al.,, 2019) The
following models were used: AMP-binding and A-OX for A domain, and t2ks and t2pks2 for
PKS type Il. Only sequences that passed the default e-value thresholds were kept, resulting
in a much lower number of sequences per sample (Supp. Table S3). Sequences were then
clustered at 80%, 85%, 90%, and 95% using USEARCH v11’s UCLUST cluster_fast greedy
algorithm via the cluster_fast command. Singletons were kept for the clustering.(Edgar,
2010) A feature-by-sample abundance matrix (a feature table or biological observation
matrix, BIOM)(McDonald et al., 2012) file was then created. A representative sequence from
each cluster—labeled an OBU—was extracted to a separate file, using the USEARCH v11’s
makeudb_usearch command, and the file was aligned against the MIBIG database using
DIAMOND.(Buchfink et al., 2015) Sequence reads belonging to the same molecular class
clustered best at 85%. Therefore, the 85% sequence similarity threshold was used for
subsequent analyses. An OBU representative sequence was annotated with its BLAST
identity only if the pairwise identity was at least 85% and coverage over at least 84 amino
acids. An OBU-by-sample BIOM file was then created and rarefied to the minimum number
of sequences within samples. Singletons were retained during OBU clustering. Since OBU
clustering occurred at 85% (as opposed to the single nucleotide/ASV level), changes in a
single nucleotide OBU diversity are not expected to change the richness of the sample. In
addition, to ensure that singletons were real sequences and not PCR error, 10 singletons
from each domain were blasted against the NCBI's protein database, and all singletons

mapped to the correct group (A and KSa domains).

6.4.5 Bioinformatic Method Validation Using Reference Strains

Control strain S. coelicolor A3(2) was included in wet lab and bioinformatics analysis to
ensure clustering methods and compound identities were valid. S. coelicolor A3(2) was
subjected to the same amplification procedure using the degenerate primers that amplify a

fragment of the KSa (-ketoacyl synthase) and a fragment of the A domain. KSa and A
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domain amplicons were sequenced and analyzed using the strategy described in sections
4.3 and 4.4. Resulting sequence data were then filtered using the same HMM prebuild
generic detection models described above. Sequences that passed the default e-value
thresholds were kept. Sequences were then clustered at 80% 85%, 90%, and 95%. At 85%,
KSa amplicons grouped into two OBUs. A representative sequence from each OBU was
mapped against MIBIG for compound identification. Indeed, the representative sequence
from the first OBU mapped to actinorhodin and the representative sequence from the second
OBU mapped to a spore pigment, as expected. Similarly, at 85%, A domain amplicons
grouped into 15 OBUs. After mapping against MIBIG, a representative sequence from 10
OBUs mapped to the CDA family of compounds (CDA1lb, CDA2a, CDA2b, CDA3a, CDA3Db,
CDA4a, CDAA4b), one representative sequence mapped to coelimycin P1l, one
representative sequence mapped to coelibactin, and three representative sequences
mapped to coelichelin. There were no OBU representative sequences mapped to the

remaining A domain containing compounds undecylprodigiosin and SCO-2138.

Acknowledgments
The authors wish to acknowledge the following contributors: A. Li (UIC), K. Rockne (UIC), S.

Carlson (formerly UIC), and crew of EPA RV Lake Guardian for assistance with sediment
collection; G. Chlipala of UIC’s Core for Research Informatics and A. Nagib of UIC’s DNA
Sequencing Core for assistance processing data. This publication was supported by
Vahlteich Scholar research funds, the lllinois—Indiana Sea Grant, the Office of Technology
Management at UIC, UIC startup funds, and funding from National Institutes of Health grant

RO1 GM125943.

6.5 Reference

Abascal, F., Zardoya, R., Telford, M.J., 2010. TranslatorX: Multiple alignment of nucleotide sequences
guided by amino acid translations. Nucleic Acids Research 38, 7-13.
https://doi.org/10.1093/nar/gkq291

102



Adamek, M., Alanjary, M., Ziemert, N., 2019. Applied evolution: Phylogeny-based approaches in
natural products research. Natural Product Reports 36, 1295-1312.
https://doi.org/10.1039/CONP00027E

Aldrich, S., 1999. Alexander Fleming Discovery and Development of Penicillin - Landmark - American
Chemical Society. American Chemical Society International Historic Chemical Landmarks.
https://doi.org/10.2307/3561468

Ayuso-Sacido, A., Genilloud, O., 2005. New PCR primers for the screening of NRPS and PKS-I
systems in actinomycetes: Detection and distribution of these biosynthetic gene sequences in
major taxonomic groups. Microbial Ecology 49, 10-24. https://doi.org/10.1007/s00248-004-
0249-6

Bech, P.K., Lysdal, K.L., Gram, L., Bentzon-Tilia, M., Strube, M.L., 2020. Marine Sediments Hold an
Untapped Potential for Novel Taxonomic and Bioactive Bacterial Diversity. mSystems 5.
https://doi.org/10.1128/mSystems.00782-20

Bentley, S.D., Chater, K.F., Cerdefio-Tarraga, A.M., Challis, G.L., Thomson, N.R., James, K.D.,
Harris, D.E., Quail, M.A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen,
C.W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S.,
Huang, C.H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O’'Neil, S., Rabbinowitsch, E.,
Rajandream, M.A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares,
R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B.G., Parkhill,
J., Hopwood, D.A., 2002. Complete genome sequence of the model actinomycete
Streptomyces coelicolor A3(2). Nature 417, 141-147. https://doi.org/10.1038/417141a

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H.,
Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A.,
Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodriguez, A.M., Chase, J., Cope,
E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C.,
Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson,
D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C.,
Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K.B., Keefe, C.R.,
Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.1., Lee,
J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D.,
McDonald, D., Mclver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey,
A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras,
D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P.,
Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D.,
Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der
Hooft, J.J.J., Vargas, F., Vazquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W.,
Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z.,
Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible,
interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol
37, 852—857. https://doi.org/10.1038/s41587-019-0209-9

Borsetto, C., Amos, G.C.A., da Rocha, U.N., Mitchell, A.L., Finn, R.D., Laidi, R.F., Vallin, C., Pearce,
D.A., Newsham, K.K., Wellington, E.M.H., 2019. Microbial community drivers of PK/NRP
gene diversity in selected global soils. Microbiome 7, 78. https://doi.org/10.1186/s40168-019-
0692-8

Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND.
Nature Methods 12, 59-60. https://doi.org/10.1038/nmeth.3176

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, AW., Johnson, A.J.A., Holmes, S.P., 2016.
DADAZ2: High-resolution sample inference from lllumina amplicon data. Nature Methods 13,
581-583. https://doi.org/10.1038/nmeth.3869

Charlop-Powers, Z., Owen, J.G., Reddy, B.V.B., Ternei, M., Guimaraes, D.O., De Frias, U.A., Pupo,
M.T., Seepe, P., Feng, Z., Brady, S.F., 2015. Global biogeographic sampling of bacterial
secondary metabolism. eLife 2015, e05048. https://doi.org/10.7554/eL ife.05048

Charlop-Powers, Z., Pregitzer, C.C., Lemetre, C., Ternei, M.A., Maniko, J., Hover, B.M., Calle, P.Y.,
McGuire, K.L., Garbarino, J., Forgione, H.M., Charlop-Powers, S., Brady, S.F., 2016. Urban
park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. PNAS 113,
14811-14816. https://doi.org/10.1073/pnas.1615581113

Cheng, K., Rong, X., Pinto-Tomas, A.A., Fernandez-Villalobos, M., Murillo-Cruz, C., Huang, Y., 2015.
Population genetic analysis of Streptomyces albidoflavus reveals habitat barriers to
homologous recombination in the diversification of streptomycetes. Applied and
Environmental Microbiology 81, 966—975. https://doi.org/10.1128/AEM.02925-14

103



Clardy, J., Fischbach, M.A., Currie, C.R., 2009. The natural history of antibiotics. Current Biology 19,
R437-R441. https://doi.org/10.1016/j.cub.2009.04.001

Du, D., Katsuyama, Y., Shin-ya, K., Ohnishi, Y., 2018. Reconstitution of a Type Il Polyketide Synthase
that Catalyzes Polyene Formation. Angewandte Chemie 130, 1972-1975.
https://doi.org/10.1002/ange.201709636

Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26,
2460-2461. https://doi.org/10.1093/bioinformatics/btq461

Edwards, H.S., Krishnakumar, R., Sinha, A., Bird, S.W., Patel, K.D., Bartsch, M.S., 2019. Real-Time
Selective Sequencing with RUBRIC: Read Until with Basecall and Reference-Informed
Criteria. Scientific Reports 9, 11475. https://doi.org/10.1038/s41598-019-47857-3

Elfeki, M., Alanjary, M., Green, S.J., Ziemert, N., Murphy, B.T., 2018. Assessing the Efficiency of
Cultivation Techniques To Recover Natural Product Biosynthetic Gene Populations from
Sediment. ACS Chemical Biology 13, 2074-2081.
https://doi.org/10.1021/acschembio.8b00254

Emmerich, R., Low, O., 1899. Bakteriolytische Enzyme als Ursache der erworbenen Immunitat und
die Heilung von Infectionskrankheiten durch dieselben. Zeitschrift flr Hygiene und
Infectionskrankheiten 31, 1-65. https://doi.org/10.1007/BF02206499

Fischbach, M.A., Walsh, C.T., 2009. Antibiotics for emerging pathogens. Science 325, 1089-1093.
https://doi.org/10.1126/science.1176667

Fleming A., 1929. On the antibacterial action of cultures of a penicillium,with special reference to their
use in the isolation of B. influenzae. British journal of experimental pathology 10, 226—236.

Gause, G.F., Brazhnikova, M.G., 1944. Gramicidin S and its use in the treatment of infected wounds.
Nature 154, 703. https://doi.org/10.1038/154703a0

Ginolhac, A., Jarrin, C., Gillet, B., Robe, P., Puijic, P., Tuphile, K., Bertrand, H., Vogel, T.M., Perriére,
G., Simonet, P., Nalin, R., 2004. Phylogenetic analysis of polyketide synthase | domains from
soil metagenomic libraries allows selection of promising clones. Applied and Environmental
Microbiology 70, 5522-5527. https://doi.org/10.1128/AEM.70.9.5522-5527.2004

Hernandez, A., T. Nguyen, L., Dhakal, R., T. Murphy, B., 2021. The need to innovate sample
collection and library generation in microbial drug discovery: a focus on academia. Natural
Product Reports. https://doi.org/10.1039/DONP00029A

Johnson, L.S., Eddy, S.R., Portugaly, E., 2010. Hidden Markov model speed heuristic and iterative
HMM search procedure. BMC Bioinformatics 11, 1471-2105. https://doi.org/10.1186/1471-
2105-11-431

Kautsar, S.A., Blin, K., Shaw, S., Navarro-Mufioz, J.C., Terlouw, B.R., van der Hooft, J.J.J., van
Santen, J.A., Tracanna, V., Suarez Duran, H.G., Pascal Andreu, V., Selem-Mojica, N.,
Alanjary, M., Robinson, S.L., Lund, G., Epstein, S.C., Sisto, A.C., Charkoudian, L.K.,
Collemare, J., Linington, R.G., Weber, T., Medema, M.H., 2020. MIBIG 2.0: a repository for
biosynthetic gene clusters of known function. Nucleic Acids Res 48, D454-DA458.
https://doi.org/10.1093/nar/gkz882

Lemetre, C., Maniko, J., Charlop-Powers, Z., Sparrow, B., Lowe, A.J., Brady, S.F., 2017. Bacterial
natural product biosynthetic domain composition in soil correlates with changes in latitude on
a continent-wide scale. Proceedings of the National Academy of Sciences of the United
States of America 114, 11615-11620. https://doi.org/10.1073/pnas.1710262114

Liu, L., Salam, N., Jiao, J.Y., Jiang, H.C., Zhou, E.M., Yin, Y.R., Ming, H., Li, W.J., 2016. Diversity of
Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of
their Biosynthetic Gene Profiles. Microbial Ecology. https://doi.org/10.1007/s00248-016-0756-
2

McDonald, D., Clemente, J.C., Kuczynski, J., Rideout, J.R., Stombaugh, J., Wendel, D., Wilke, A.,
Huse, S., Hufnagle, J., Meyer, F., Knight, R., Caporaso, J.G., 2012. The Biological
Observation Matrix (BIOM) format or: How | learned to stop worrying and love the ome-ome.
GigaScience 464, 1-6. https://doi.org/10.1186/2047-217X-1-7

Metsa-Ketela, M., Salo, V., Halo, L., Hautala, A., Hakala, J., Mantsala, P., Ylihonko, K., 1999. An
efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiology
Letters 180, 1-6. https://doi.org/10.1016/S0378-1097(99)00453-X

Nagqib, A., Poggi, S., Wang, W., Hyde, M., Kunstman, K., Green, S.J., 2018. Making and sequencing
heavily multiplexed, high-throughput 16S ribosomal RNA gene amplicon libraries using a
flexible, two-stage PCR protocol. Methods in molecular biology (Clifton, N.J.) 1783, 149-169.
https://doi.org/10.1007/978-1-4939-7834-2_7

104



Newman, D.J., Cragg, G.M., 2020. Natural Products as Sources of New Drugs over the Nearly Four
Decades from 01/1981 to 09/2019. Journal of Natural Products 83, 770-803.
https://doi.org/10.1021/acs.jnatprod.9b01285

Newton, R.J., Jones, S.E., Eiler, A., McMahon, K.D., Bertilsson, S., 2011. A Guide to the Natural
History of Freshwater Lake Bacteria. Microbiology and Molecular Biology Reviews 75, 14—-49.
https://doi.org/10.1128/MMBR.00028-10

Penn, K., Jenkins, C., Nett, M., Udwary, D.W., Gontang, E.A., McGlinchey, R.P., Foster, B., Lapidus,
A., Podell, S., Allen, E.E., Moore, B.S., Jensen, P.R., 2009. Genomic islands link secondary
metabolism to functional adaptation in marine Actinobacteria. The ISME Journal 3, 1193-
1203. https://doi.org/10.1038/ismej.2009.58

Scholz, M., Ward, D. V., Pasolli, E., Tolio, T., Zolfo, M., Asnicar, F., Truong, D.T., Tett, A., Morrow,
A.L., Segata, N., 2016. Strain-level microbial epidemiology and population genomics from
shotgun metagenomics. Nature Methods 13, 435—-438. https://doi.org/10.1038/nmeth.3802

Sharrar, A.M., Crits-Christoph, A., Méheust, R., Diamond, S., Starr, E.P., Banfield, J.F., 2020.
Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and
Vegetation Type. mBio 11. https://doi.org/10.1128/mBi0.00416-20

Weber, T., Kim, H.U., 2016. The secondary metabolite bioinformatics portal: Computational tools to
facilitate synthetic biology of secondary metabolite production. Synthetic and Systems
Biotechnology 1, 69-79. https://doi.org/10.1016/j.synbio.2015.12.002

Zhou, J., He, Z., Yang, Y., Deng, Y., Tringe, S.G., Alvarez-Cohen, L., 2015. High-Throughput
Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed
Formats. mBio 6. https://doi.org/10.1128/mBi0.02288-14

105



Part Il: Dynamics of the human gut secondary metabolome during antibiotic

treatment.

Abstract

Antibiotic-mediated perturbation of the human gut microbiome increases the risk of a variety
of diseases, including infections (Willing, Russell, and Finlay 2011). The increased infection
risk is the result of unrestrained proliferation of opportunistic microbes that may occupy
ecological niches previously unavailable to them (De La Cochetiere et al. 2008). Bacterial
secondary metabolites are known to play crucial roles in microbe-microbe and microbe-host
interactions (Ziemert, Alanjary, and Weber 2016). However, not much is known about their
antimicrobial role within the human gut. The aim of this project was to monitor changes
within the secondary metabolome potential of the gut microbiome in the course of antibiotic
treatment to identify bacterial biosynthetic gene clusters and metabolites with a potential role
in community stabilization and host defense. In this exploratory study we have determined
patterns, identified crucial pathways, and built solid hypotheses for testing in wet lab

experiments.

6.6 Introduction

Secondary metabolites (SM) are fundamental units with which microbes sense and respond
to their environment. SM key functions include microbial communication, defense, nutrient
acquisition and development (O’Brien and Wright 2011). In the past, these molecules have
been mainly studied as natural products for their use as antibiotics or chemotherapeutics.
However, the availability of improved genomic data as well as of more sensitive detection
methods and increasing insights into biological systems recently uncovered a role for SM in
a wide range of symbiotic relationships not only among microbes but also in connection to
their multicellular hosts (Donia and Fischbach 2015). In this respect, multiple genome mining
efforts revealed the presence of a multitude of secondary metabolite biosynthetic gene

clusters (BGCs) within the human microbiome (Donia and Fischbach 2015). Furthermore,
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various bioactive metabolites have been isolated from human-associated microbes, leading
to question their role within the human microbiome and their relevance in microbe-microbe
and microbe-host interactions (Sugimoto et al. 2019; Zipperer et al. 2016). As antibiotic
treatment alters the composition of the human gut microbiota and increases the risk of
infections, for example with Clostridium difficile (De La Cochetiere et al. 2008), in this study
we wanted to understand how the use of antibiotics affects the secondary metabolome of
human gut commensal bacteria and uncover a potential role for bacterial SM in stabilizing

microbial communities and preventing infections.

6.7 Methods

The group of Matthias Willmann and Silke Peter analyzed two clinical cohorts in Tuebingen
and Cologne and gained shotgun metagenomic data of 41 hematological patients before,
during, and after prophylactic treatment with ciprofloxacin and cotrimoxazole. This clinical
study - Amplification and Selection of Antimicrobial Resistance in the Intestine (ASARI)-
showed that antibiotic treatment had major effects on the diversity of the human microbiome
and resistome and provides the basis for the proposed project (Willmann et al. 2019). During
the last years one of the main research areas in the Ziemert lab has been the determination
of SM biosynthetic potential in environmental bacteria (Ziemert et al. 2012; Elfeki et al.
2018). For that purpose, we developed the pipeline MBEZ, which performs a standardized
analysis of the distribution and diversity of secondary metabolite gene clusters in various
kinds of metagenomic data, including shotgun metagenomes and amplicon sequences.
MBEZ implements programs such as QIIME II, BiG-MEXx, antiSMASH, and BiGSCAPE, and
allows a fast and reproducible screen of metagenomic data for secondary metabolite
diversity, bacterial taxonomic diversity and correlations between the two. Within the
framework of this project, MBEZ was employed to analyze secondary metabolite patterns
within human microbiome data in order to unravel BGC abundance dynamics during the
course of antibiotic treatment. Briefly, the metagenomic contigs were analysed with

antiSMASH for annotating BGCs. The detected BGCs were clustered with known MIBIG
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BGCs using BIiGSCAPE. The BGC abundance plots were developed using the ggplot2

package.

6.8 Results and Discussion

A preliminary analysis of the ASARI data revealed the distinctive presence of biosynthetic
gene clusters (BGCs) in each patient sample (Table 1). Interestingly, many of these BGCs
have so far remained uncharacterized as only a few BGCs clustered with the known BGCs
in MIBIG database (Table 2). In the ciprofloxacin treatment cohort, BGC abundance across
treatment stages showed a decreasing trend (Figure 1). BGC abundance across
cotrimoxazole treatment stages was comparatively constant (Figure 2). At treatment stage
TO and T2 the BGC abundance across cotrimoxazole and ciprofloxacin cohorts showed
differential abundance (Figure 3). Comparative view of BGC biosynthesis class abundance
across treatment stages in cotrimoxazole and ciprofloxacin cohorts is shown in Figure 4.
Furthermore, a pattern analysis across the different time points of ciprofloxacin treatment
revealed a major decrease in the abundance of sactipeptide gene clusters within the
microbial communities (Figure 5). Magnitude of decrease in abundance of sactipeptide gene
clusters was not that prominent in the metagenomic dataset of the cotrimoxazole treated
cohort as compared to the ciprofloxacin treated cohort (Figure 6).

Sactipeptides are ribosomally assembled and posttranslationally modified natural product
peptides that currently consist of five members (Flihe and Marahiel 2013). Interestingly,
some members of this class show a narrow antimicrobial activity against Clostridium difficile
(Fluhe and Marahiel 2013), thus providing a possible explanation for the increased

susceptibility to this bacterial pathogen after antibiotic treatment.
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PKS-
NRPS- PKS-
RIPPs |Others |NRPS Hybrids |others ([Terpenes|PKSI
Number of families
795 363 766 18 48 67 22
Average number of
BGCs per family 5 5 3 3 2 4 2
Max number of BGCs
in a family 67 76 46 15 15 32 7
Families with MIBiG
Reference BGCs 8 2 5 3 0 0 1

Tablel : BGC class annotation and abundance based on BiG-SCAPE clustering

Table 2: Know BGC clusters detected in ASARI metagenome

MiBIG ID

BGC Name

BGC0000624.1:

Salivaricin CRL1328 alpha peptide / salivaricin CRL1328 beta peptide

biosynthetic gene cluster

BGC0000619.1:

Gassericin T biosynthetic gene cluster

BGC0001602.1:

Gassericin-T biosynthetic gene cluster

BGC0001388.1:

Gassericin E biosynthetic gene cluster

BGC0000526.1:

Macedocin biosynthetic gene cluster

BGC0000534.1:

Mutacin K8 biosynthetic gene cluster

BGC0001788.1:

Suicin 65 biosynthetic gene cluster

BGC0000485.1:

Acidocin B biosynthetic gene cluster

BGCO0000491.1:

Gassericin A biosynthetic gene cluster

BGC0001222.1:

Acidocin B biosynthetic gene cluster

BGC0000547.1:

Salivaricin 9 biosynthetic gene cluster

BGC0000545.1:

Ruminococcin A biosynthetic gene cluster

BGC0001701.1:

Nisin O biosynthetic gene cluster

BGC0001575.1:

Dipeptide aldehydes biosynthetic gene cluster

BGC0001055.1:

Yersiniabactin biosynthetic gene cluster

BGC0000972.1:

Colibactin biosynthetic gene cluster

BGC0000467.1:

Yersiniabactin biosynthetic gene cluster

BGC0001686.1:

N-octanoyl-Met-Phe-H biosynthetic gene cluster

BGC0001055.1:

Yersiniabactin biosynthetic gene cluste

BGC0001499.1:

Aerobactin biosynthetic gene cluster

BGCO0001555.1:

Colicin V biosynthetic gene cluster

BGC0000836.1:

APE Ec biosynthetic gene cluster
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Figure 1. BGC abundance across ciprofloxacin treatment stages (Sampling stages: TO,
within a maximum of 3 days before the start of antibiotic prophylaxis; T1, 1 day after initiation
of prophylaxis; T2, after 3 days of prophylaxis; T3, at the end of the observation period).
Individual patient assembled metagenomic contigs were annotated (BGC annotations) using

antiSMASH

cotrimazole treatment
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Figure 2: BGC abundance across cotrimoxazole treatment stages (Sampling stages: TO,
within a maximum of 3 days before the start of antibiotic prophylaxis; T1, 1 day after initiation
of prophylaxis; T2, after 3 days of prophylaxis; T3, at the end of the observation period).
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Individual patient assembled metagenomic contigs were annotated (BGC annotations) using
antiSMASH
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Figure 3. Comparative view of BGC abundance across cotrimoxazole and ciprofloxacin
treatment stages (Sampling stages: TO, within a maximum of 3 days before the start of
antibiotic prophylaxis; T1, 1 day after initiation of prophylaxis; T2, after 3 days of prophylaxis;

T3, at the end of th

BGC_Class:treatment
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Figure 4: Comparative view of BGC biosynthesis class abundance across cotrimoxazole and
ciprofloxacin treatment stages (Sampling stages: TO, within a maximum of 3 days before the
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start of antibiotic prophylaxis; T1, 1 day after initiation of prophylaxis; T2, after 3 days of
prophylaxis; T3, at the end of the observation period).
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Figure 5: Sactipeptide BGC abundance in metagenomes of individual patients before, during
and after ciprofloxacin treatment. (Sampling stages: TO, within a maximum of 3 days before
the start of antibiotic prophylaxis; T1, 1 day after initiation of prophylaxis; T2, after 3 days of
prophylaxis; T3, at the end of the observation period).
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Figure 6: Sactipeptide BGC abundance in metagenomes of individual patients before, during
and after cotrimoxazole treatment. (Sampling stages: TO, within a maximum of 3 days before
the start of antibiotic prophylaxis; T1, 1 day after initiation of prophylaxis; T2, after 3 days of
prophylaxis; T3, at the end of the observation period).

In our search for novel BGCs and NP, we have undertaken this exploration of metagenomes
from human gut samples. Apart from finding many novel BGCs, as the dataset contained
data from sampling and sequencing of metagenomic DNA during the course of antibiotics
treatment, it became possible to observe the dynamic changes that happens over the course

of antibiotics treatment. While the unique sactipeptide pattern observed in our exploration is

helpful in generating new hypothesis, a follow up exploration and validation of such patterns
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in a similar repeat trial or reanalysis of publicly available datasets having analogous trial
design, would be necessary.
Further explorations in gut microbiome, will not only uncover the BGC diversity, but also has

the huge potential for designing novel strategies for controlling microbes to fight infections.
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Part 11l : Using linked reads and long reads to recover biosynthetic gene

clusters from Tuebingen actinomycetes strain collections.

Abstract

Current capability of next generation sequencing makes this technology suitable for
deciphering the complete genomes of thousands of bacterial species in a single sequencing
run. The reconstruction of bacterial genomes can be further optimized to get efficient
assemblies at economical costs using hybrid data of both long and short reads. Linked short
reads technologies such as Transposase Enzyme Linked Long-read Sequencing (TELL-
Seq™) and 10X genomics can further improve the approach and can be used to sequence
the complete strain collections. Using TELL-seq and Nanopore data generated for one such
pool consisting of 115 streptomyces species from our Tuebingen Strain Collection resulted in
single contigs with more than 4 megabases. Biosynthetic gene cluster (BGC) annotation of
such large contigs can lead to discovery of complete sequences of novel BGCs. In this
project we have sequenced and analysed 10 such pools consisting of 110 streptomyces
species in each pool. Tracing of strains and BGCs of interest has become easier using this
data and this has also led to accelerated novel natural product discovery using this rare and

unigque strain collection.

6.10 Overview and motivation

Microorganisms derived natural products and their analogs have been to date our most
important source and inspiration for medically used antibiotics. The aim of the German
Center for infectious research, Thematic Translation Unit: DZIF TTU9 -Novel Antibiotics, is to
facilitate the discovery of new natural products as new antibiotics through innovative and
effective methods including genome mining and synthetic biology. Two important
prerequisites for the application of these methods are whole genome sequencing of
available strain collections as a source for novel natural products, and the development of

molecular tools in available strains. At the Tubingen DZIF Partner site, a unique proprietary
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strain collection of more than 2000 actinomycetes producing natural compounds is available,
which have been isolated over a span of 50 years by Prof. Z&hner and Prof. Fiedler from a
diversity of locations worldwide. Over 100 novel natural products with novel structures have
been already isolated from these strains in a multitude of publications (Hennrich et al. 2020;
Ortlieb 2019). So far, only about 150 strains have been sequenced, all of which show high
genetic potential to produce many more natural products than have been isolated so far.
Facilitating sequencing of the entire Tlbingen strain collection would allow to uncover the full
genetic potential of all strains, and significantly expand the possibilities for genome mining
and host engineering within the DZIF TTU9. Current capability of next generation
sequencing makes this technology suitable for deciphering the complete genomes of
thousands of bacterial species in a single sequencing run, however, growing and DNA
isolation of 2000 strains is a time- and cost intensive effort. To reduce cost and labour we
developed a metagenomic approach to sequence the strain collection in pools, each
consisting of 115 strains, and combining long- and short-read technologies. Linked short-
reads technologies such as Transposase Enzyme Linked Long-read Sequencing (TELL-
Seq™) can further improve the approach and can be applied to sequence the complete

strain collection (Chen et al. 2020).

6.11 Methods

6.11.1 Library preparation and NGS sequencing

1100 strains from the Tubinger strain collection have been grown and harvested on plates
and pooled into 10 different pools containing cell material from 110 strains each. For each
pool DNA has been isolated and tested if amount, size, and purity is suitable for long-read
sequencing methods. The pools are stored in the freezer and are all ready for sequencing.
Our pilot study including only one pool has shown that a 30x coverage of Nanopore data and
60x coverage of lllumina Novaseq data is sufficient to gain very long contigs of almost 4 Mb

suitable for effective genome mining approaches. All pools were sent to the NGS
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Competence Center Tubingen (NCCT) for lllumina TELL-Seq and Nanopore library
preparation. The libraries were barcoded, and sequenced on Nanopore flowcells and S2

Novaseq lllumina FlowCell.

6.11.2 Bioinformatics Analysis:

Nanopore PromethlON raw data

Guppy based base calling

& ~

fastq reads
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Figure 1. Analysis workflow for Nanopore data.

Nanopore PromethlON raw data was processed with Guppy 4.0.14 (Figure 1). The base
called fastq reads were then barcode trimmed and merged. Flye 2.8.1-b1676 and Unicycler
v0.4.8 were used separately to assemble the nanopore only reads of each sample pool

(Wick et al. 2017; Kolmogorov et al. 2020).
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6.11.3 TELL-Seq analysis

The TELL-seq lllumina raw data was processed with a tell-read pipeline to generate linked
reads. Using tell-link de novo pipeline the linked reads for each of the sample pools was
assembled to generate contigs (Chen et al. 2020). The assembled contigs were annotated

using antiSMASH (Blin et al. 2019).

6.12 Results and Discussion

On PromethlON around 9 million long reads were sequenced and a total of more than 13
Gigabases sequence data was generated for 10 sample pools. The average read length was
nearly 1.5 kb. On lllumina Novaseq, 1030 million paired end reads (2 X 150 bp) were
generated for the same 10 sample pools. Raw barcode statistics and tell-read pipeline
barcode processing statistics are shown in Table 1.

Raw Barcode Statistics

BHVYYYDRXX-results- BHVYYYDRXX-results- BHVYYYDRXX-results- BHVYYYDRXX-results- BHVYYYDRXX-results-

sample lane1_T502 lane1_T503 lane1_T504 lane1_T505 lane1_T506
total_reads 96,341,666 105,409,364 107,821,693 104,363,337 95,716,696
reads_with_barcode_all_Gs 1,776,390 920,718 1,521,628 1,734,331 1,230,417
reads_with_correct_barcode 92,169,286 102,232,667 104,072,921 100,309,066 92,155,544
reads_with_error_barcode 4,172,380 3,176,697 3,748,772 4,054,271 3,561,152
Y%reads_with_correct_barcode 95.7% 97.0% 96.5% 96.1% 96.3%
Y%reads_with_error_barcode 4.3% 3.0% 35% 3.9% 3.7%
unique_barcede 6,699,373 6,573,284 6,462,665 6,670,438 6,289,259
unique_correct_raw_barcode 5,424,590 5,444,577 5,349,383 5,481,938 5,015,258
mean_#reads/correct_barcode 17.0 18.8 19.5 18.3 18.4

Barcode Processing Statistics

correction T502 T503 T504 T505 T506
barcode_with_single_read 4,063,549 3,976,054 3,981,153 4,097,860 4,112,732
barcode_with_more_than_3_reads 1,838,317 1,720,749 1,724,389 1,748,191 1,490,046
reads_related_to_barcode_with_more_than_3_reads 90,429,097 99,393,630 102,083,276 98,351,333 90,015,518
1mismatch_barcode_corrected 1,324,743 1,317,677 1,327,047 1,335,681 1,256,892
error_barcode_number 937,191 824,331 819,156 875,004 964,676
final_correct_barcode_number 4,437,439 4,431,276 4,316,462 4,459,753 4,068,691
final_reads_number 92,261,482 102,334,055 104,176,623 100,408,753 92,245,364
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Raw Barcode Statistics

BHVYYYDRXX- BHVYYYDRXX- BHVYYYDRXX- BHVYYYDRXX- BHVYYYDRXX- BHVYYYDRXX-
sample results-lane2_T501 Its-lane2_T502 Its-lane2_T503 Its-lane2 _T505 results-lane2 _T507 results-lane2_T508
total_reads 110,765,075 83,328,488 7,537,348 135,629,052 118,067,006 40,113,859
reads_with_barcode_all_Gs 3,647,243 585,337 936,425 6,216,092 1,284,181 1,357,018
reads_with_correct_barcode 104,075,705 81,140,162 6,382,646 126,572,685 114,488,206 37,754,571
reads_with_error_barcode 6,689,370 2,188,326 1,154,702 9,056,367 3,578,800 2,359,288
%reads_with_correct_barcode 94.0% 97.4% 84.7% 93.3% 97.0% 94.1%
%reads_with_error_barcode 6.0% 26% 15.3% 6.7% 3.0% 5.9%
unique_barcode 7,137,174 6,871,713 1,372,739 8,727,352 6,561,084 3,769,864
unique_correct_raw_barcode 5,569,486 5,980,140 1,235,262 7,226,778 5,466,624 3,197,180
mean_#reads/correct_barcode 18.7 13.6 5.2 17.5 20.9 11.8

Barcode Processing Statistics

correction T501 T502 T503 T505 T507 T508
barcode_with_single_read 4,763,038 3,898,254 645,030 5,474,447 4,092,452 2,077,596
barcode_with_more_than_3_reads 1,648,234 2,068,995 420,078 2,022,747 1,721,529 1,196,946
reads_related_to_barcode_with_more_than_3_reads 104,339,015 77,326,232 6,160,368 127,300,074 112,244,243 36,873,265
1mismatch_barcode_corrected 1,603,645 1,150,398 98,898 1,866,500 1,401,801 563,401
error_barcode_number 1,163,115 689,171 117,463 1,123,095 818,229 457,303
final_correct_barcode_number 4,370,414 5,032,144 1,156,378 5,737,757 4,341,054 2,759,160
final_reads_number 104,157,852 81,210,399 6,387,624 126,679,694 114,579,985 37,785,729

Table 1: TELL-Seq raw barcode statistics and barcode processing statistics for 10 Sample

pools run on 2 lanes of lllumina flowcell.

Statistics without reference  scaffold.full

# contigs 78 849

# contigs (>= 0 bp) 78 849

# contigs (>= 1000 bp) 18670

# contigs (>= 5000 bp) 126

# contigs (>= 10000 bp) 94

# contigs (>= 25000 bp) 47

# contigs (>= 50000 bp) 29

Largest contig 4342632
Total length 82970907
Total length (>= 0 bp) 82970907
Total length (>= 1000 bp) 42659143
Total length (>= 5000 bp) 14266213

Total length (>= 10000 bp) 14033714
Total length (>= 25000 bp) 13319207
Total length (>= 50000 bp) 12666110

N50 1027
N75 679
L50 17512
L75 42 843
GC (%) 66.9
Mismatches

#N's 60727
# N's per 100 kbp 73.19

Table 2: TELL-Seq assembly statistics (using the tell-link de novo assembly pipeline) of a

representative sample pool. Largest contig length of more than 4 megabases was produced.
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Using TELL-seq and Nanopore data generated for one such pool, consisting of 115
streptomyces species from our Tuebingen Strain Collection, resulted in single contigs with
more than 4 megabases (Table 2). Annotating these large contigs and applying genome
mining tools led to the identification of novel biosynthetic gene clusters (BGCs). Easy
backtracking of strains from our rare and unique strain collection is feasible. Using this set-
up, the discovery of novel natural products has been drastically accelerated. This project is
currently an ongoing project in ZiemertLab and the sequencing strategy, analysis pipelines

and robust comparative methods are under development.

6.13 Conclusion and Outlook

TELL-Seq method is being continuously updated, improved and optimised. Currently, only
limited samples data was processed (tell-link based de novo assembly) without facing any
software or data related issues. Nevertheless the limited results obtained so far were
sufficient for appreciating the power of this novel method. Algorithms and software tools for
hybrid assembly of linked reads along with long reads might be developed in future. Using
these will further improve the assembly of pooled metagenome data. Recovery of near
complete metagenome assembled genomes would be then possible and the true potential of
linked reads and long reads can be then realised for discovering biosynthetic gene clusters

from the strain collections.

6.14 References

Blin, Kai, Simon Shaw, Katharina Steinke, Rasmus Villebro, Nadine Ziemert, Sang Yup Lee, Marnix H
Medema, and Tilmann Weber. 2019. “AntiSMASH 5.0: Updates to the Secondary Metabolite
Genome  Mining Pipeline.” Nucleic Acids Research 47 (W1): W81-87.
https://doi.org/10.1093/nar/gkz310.

Chen, Zhoutao, Long Pham, Tsai-Chin Wu, Guoya Mo, Yu Xia, Peter L. Chang, Devin Porter, et al.
2020. “Ultralow-Input Single-Tube Linked-Read Library Method Enables Short-Read Second-
Generation Sequencing Systems to Routinely Generate Highly Accurate and Economical
Long-Range  Sequencing Information.” Genome Research 30 (6): 898-909.
https://doi.org/10.1101/gr.260380.119.

Hennrich, Oliver, Franziska Handel, Regina Ort-Winklbauer, and Yvonne Mast. 2020. “Genome
Sequences of Two Putative Streptogramin Producers, Streptomyces Sp. Strains TU 2975 and
TU 3180, from the Tiibingen Strain Collection.” Microbiology Resource Announcements 9

119


https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY

(21): e01582-19. https://doi.org/10.1128/MRA.01582-19.

Kolmogorov, Mikhail, Derek M. Bickhart, Bahar Behsaz, Alexey Gurevich, Mikhail Rayko, Sung Bong
Shin, Kristen Kuhn, et al. 2020. “MetaFlye: Scalable Long-Read Metagenome Assembly
Using Repeat Graphs.” Nature Methods 17 (11): 1103-10. https://doi.org/10.1038/s41592-
020-00971-x.

Ortlieb, Nico. 2019. “Characterization of Natural Products from Actinobacteria of the Tubingen Strain
Collection — Screening, Isolation & Structure Elucidation.” Dissertation, Universitat Tubingen.
https://doi.org/10.15496/publikation-31678.

Wick, Ryan R., Louise M. Judd, Claire L. Gorrie, and Kathryn E. Holt. 2017. “Unicycler: Resolving
Bacterial Genome Assemblies from Short and Long Sequencing Reads.” PLOS
Computational Biology 13 (6): €1005595. https://doi.org/10.1371/journal.pcbi.1005595.

120


https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY
https://www.zotero.org/google-docs/?oJpLBY

Chapter 7: General Conclusion

7.1 Concluding remarks on results

In this thesis, | have presented a metagenomic approaches to explore novel regions
of natural products chemical space. An easy to use metagenome data mining pipeline for
exploring natural products diversity was presented in Chapter 4. We used this pipeline to
explore the biosynthesis potential present in the different horizons of soil sampled from three
sites in close vicinity from the Schoenbuch forest. Amplicon sequencing and analysis of 16S
rRNA gene and BGC domains were highlighted in the manuscript included in Chapter 5.
Shotgun metagenome sequencing using lllumina Short reads and Nanopore based long
reads further helped in recovering the BGC clusters.

Further in Chapter 6, that covers metagenomic big-data explorations in diverse
ecosystems, in part 1 | have included our manuscript in which we report the distribution of
bacterial natural product biosynthetic genes across lake Huron sediment. While this
exploration helped in appreciating the tremendous NP diversity present in the lake
sediments, a need for wider and extensive sampling was experienced to fully capture the
functional chemical diversity.

Part 2 of this chapter covers the aspects of how the dynamics of the human gut
secondary metabolome changes during antibiotic treatment. The sactipeptide BGC
abundance pattern observed in the metagenomic samples collected during the course of
ciprofloxacin treatment helped in generating new hypotheses that can be further tested in
future.

In part 3 a novel approach is presented that helps to discover the BGC sequences
from the pooled bacterial strains from the strain collections. Linked reads technology
improves the BGC discovery, and could be widely adopted by the research community until

the long read sequencing becomes economical and error rate is reduced.
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Using the approaches mentioned in this thesis, it will be possible to map the NP
chemical space at different scales, based on the availability of resources, funds and
rationale. To map the NP chemical space of the entire earth, even at kilometer resolution,
megaprojects - worth billions of dollars- would be required. Such megaprojects can change
the entire landscape of the field of NP discovery. It might lead to discovering many new NP
diversity hotspots, novel phyla and gifted microbial strains. Fruits of understanding the NP
chemical space, would be massive, and have the potential to revolutionize science. Novel
NP chemical classes, truly unknown (BGC) unknown (chemical structure), can guide
development of new survey rationale and discovery algorithm development. The massive
amount of metagenomic data generated in such projects will also improve the quality of the
taxonomy database. This will improve our understanding of how microbial diversity
community structure gets shaped, how new strains evolve, how nature innovates to produce
novel NP chemical classes, and what ecological roles these molecules and microbes play.
Using the new NP knowledge, designing novel and more potent chemical probes capable of
fishing out unique chemical compounds directly from environmental samples, would become
possible. In this context, the future of chemical and synthetic biology would certainly be
brighter than even what we can imagine.

There are already many orphan BGCs - those for which we don't know the structure
of natural products they encode - available from public databases, and it is difficult to predict
their chemical structure. Recent breakthrough (AlphFold 2) that improved prediction of
protein structure by many folds, uses artificial intelligence and was developed by Google’s
DeepMind, has started to positively impact all biomedical studies that require structural
insights for solving numerous challenges. Aided by such powerful methods and ever
increasing metagenomic big-data, future machine learning based predictions has the

potential to fill the so-called “Genes to molecules” gap.
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7.2 Impact and applications of developed approaches and

methods

Acceleration of discovering novel genes, domains and clusters involved in
biosynthesis of novel natural products would have a direct positive impact in reviving the
antibiotic discovery pipeline in industry and academia. While we all are in the current Covid-
19 pandemic, the need for searching or synthesizing novel antibiotics and antiviral drugs has
tremendously increased. Specifically in context to the increase in hospitalization experienced
during the past several waves of Covid-19, this would be driving the havoc of antimicrobial
resistance and we need to be geared up to combat this future storm.

Amplicon based explorations have the potential to quickly and inexpensively uncover
the microbial diversity and biosynthetic gene/domain diversity. Discovery of novel
biosynthetic domains can drive the rational prioritization of the environmental samples for
deeper metagenome sequencing via shotgun approaches for the characterization of full
length BGCs and subsequent characterization of biosynthetic pathways. MBEZ pipeline will
assist in such analysis for identifying patterns and correlations.

Biosynthetic cluster diversity comparisons and resulting patterns would make it
possible to infer how the BGCs shape the microbial community structure. Ecological and
evolutionary dynamics that govern the distribution of specialised metabolites could be then
hypothesized using metagenomic big-data. Temporal and longitudinal metagenomic dataset
analysis might even make it possible to study the BGC evolutionary history and mechanisms
involved in creation of chemical diversity in nature. The long-standing outstanding questions
of the natural products research field, such as, can one rationally choose the best natural
ecosystem to survey metagenomes and discover novel antibiotics/natural products? Has the
world profiled enough metagenomes for such NP discovery or still serendipity is best bet
yet? — some of these questions have been previously articulated by Prof. Paul R. Jensen —
such as “At what rate are BGCs created and lost? How often do new chemical scaffolds

evolve?”’(Jensen, 2016). We can hope to answer these questions in future.
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7.3 Future challenges

Current metagenomic sequence data sizes demand sophisticated and bigger
computing resources such as high memory workstations, computing cloud and high
performance computing clusters. Novel algorithms and software tools that can accelerate
metagenome mining and make the analysis possible on smaller personal computers and
laptops are needed for democratising this powerful approach to discovering novel natural
products.

Subsequent bottleneck after discovering novel BGCs is to heterologously express
them in suitable hosts for getting the metabolic products that these BGCs encode. Currently
due to availability of limited hosts, expressing BGCs from rare phylum is a big challenge.

Large-insert metagenomic library creating methods along-with high throughput
cloning and functional characterization novel methods would be needed to cope up with the
high rates of discovery achieved via metagenome sequencing methods.

Due to high rates of microbial species extinctions that we are experiencing, those
that were partly fueled by climate change, it is difficult to fathom the magnitude of natural
products chemical space that we are continuously losing forever. Novel metagenome mining
methods, and mega diversity expeditions will be needed to map and uncover the entire
natural products chemical space that earth currently holds. Apart from academic interests,
the survival and flourishing of humanity is dependent on these novel natural product

discoveries.

7.4 References

Jensen, P.R., 2016. Natural Products and the Gene Cluster Revolution. Trends in Microbiology 24,
968-977. https://doi.org/10.1016/.tim.2016.07.006

124



Annexure A:

Publication: The confluence of big data and evolutionary
genome mining for the discovery of natural products
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1. Introduction

Evolution is a process; therefore, evolutionary theory seeks to
describe the series of events that have allowed life to appear,
develop, and diversify. Natural selection, postulated by Charles
Darwin more than one hundred and fifty years ago, is perhaps
the most recognized of these theories, linking the natural
histories of all living forms to their reproductive fitness." In the
years since Darwin, we have come to appreciate that evolu-
tionary processes display enormous complexity and act through
both selective and neutral forces of varying physicochemical,
ecological, temporal, and population-level constraints.? Neutral,
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non-adaptive evolution was once thought to be discordant with
Darwinian evolution; now we appreciate that evolutionary
histories provide evidence of both selective pressures and
neutral events.>* Founder effects, genetic drift, gene flow, and
many other neutral mechanisms shape the genetic variation
within populations upon which natural selection operates.®
The enzymes of natural product (NP) biosynthesis are
encoded in genomic information, and as such do not escape
these forces of evolution.*” This distinction is as important to
recognize as it is easy to neglect: NPs with antagonistic
functions, like antibiotics or other biocides, are typically
assumed to be under positive selection to maintain the
interactions with their molecular target(s) necessary to retain
function. Paradoxically, the historical use of the term
‘secondary metabolism’, synonymous with trivial or
unimportant metabolism, at the same time suggests neutral
evolution, free to drift from one structure to the next. This
conundrum highlights the importance of better defining
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evolutionary principles during chemical and biological
investigation of natural products.

In this review, we aim at providing basic evolutionary prin-
ciples as they have been embraced by genome miners interested
in natural products-based drug discovery and the development
of bioinformatics tools useful for this purpose. We discuss the
origins of this sub-discipline (Sub-section 1.1), as well as
working definitions and core evolutionary and Big Data prin-
ciples, both generally and specifically regarding evolution-
driven genome mining approaches (Sub-sections 2.1 and 2.2).
We distinguish and highlight selected examples in which the
confluence of Big Data and evolutionary genome mining for the
discovery of natural products is more evident; and provide
information to better understand and efficiently use these tools,
but also to prompt newcomers and pave the way for the devel-
opment of tools embracing the predictive power of the theory of
evolution and the wealth of Big Data. Both databases and
algorithms with relevant evolutionary features are presented in
Sub-sections 2.3 and 2.4. Selected examples of NPs research
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embracing evolutionary thinking - from enzymes to whole
microbiomes - are provided in Sub-sections 3.1 and 3.2. The
selected cases highlight evolutionary thinking and include the
few examples that involve tools of what we call evolutionary
genome mining of natural products. The final Sub-section 4
provides future directions for the development of this emerging
sub-discipline as an important area of research to better
understand NPs as whole and direct their biotechnological
exploitation.

1.1 Origins of evolutionary genome mining of natural
products

Advances in DNA sequencing have allowed for the study of
allelic variation and how it relates to different phenotypes and
evolutionary pressures.® These genetic investigations have
developed into entire fields of molecular and genome evolution
research, most notably advancing the areas of population
genetics and phylogenetics. Population genetics investigates
the frequencies and dynamics of genetic differences in and
across populations, aiming to understand how some gene
variants are more or less frequent than others.® In contrast,
phylogenetics seeks to relate gene variants to each other by
inferring an evolutionary history that explains differences
between both genes and species.® Indeed, one might argue that
phylogenetics was the first molecular biology Big Data method
used broadly in biology, and remains so, as it aims to unveil
hidden patterns otherwise ambiguous using empirical knowl-
edge alone.” These inferences can be used to predict evolu-
tionary histories through building networks of relatedness (e.g.
phylogenetic trees) and reconstructing ancestral states, and
therefore, in order to adopt evolutionary theory properly, these
frameworks should be considered when approaching the
evolution of NPs, especially when mining large datasets.
While evolutionary frameworks increasingly appear in the
study of NPs, the extreme interdisciplinarity of NP research has
led to adoption of evolutionary principles at different rates in

Nadine Ziemert received her
Diploma and PhD degrees from
the Humboldt University in Ber-
lin, followed by a postdoc and
project scientist position at the
Scripps Institution of Oceanog-
raphy in La jJolla, California.
Since 2015, she is a Professor at
the University of Tiibingen,
where she leads an interdisci-
plinary research group focusing
on genome mining approaches
and the evolution of secondary
metabolites in bacteria and their
diverse functions.

This journal is © The Royal Society of Chemistry 2021

View Article Online

Natural Product Reports

different subdisciplines, depending on scientific goals and
availability of data and the technologies used for their genera-
tion and analysis. For example, NP chemists often focus on
empirical and mechanistic data to direct future investigations,
and by doing so, they reinforce working models of biosynthetic
logic in well-studied enzymes, for instance, nonribosomal
peptide synthetases (NRPS)" and polyketide synthases (PKS)."?
In contrast, phylogenetics, whether at the species, gene, or
genome level, aims to unveil broader patterns and place them
into evolutionary context. This is increasingly done for bacte-
rial,”** fungal**'” and plant’®'* NP biosynthetic enzymes, and
even across different taxonomic lineages that produce similar
NPs.?*?! Phylogenetic insights may have limited mechanistic
value, but they can assist in posing novel mechanistic hypoth-
eses that can be experimentally tested. The combination of both
approaches is embraced by Dean and Thornton's functional
synthesis, which proposes that sequence analyses should be
coupled with empirical, molecular experiments to retrace the
evolutionary histories of biochemical processes and their
phenotypes.*

In recent years, these two apparently disparate schools of
thoughts have converged, yielding new protein evolution
theory**?** and NP genome-mining applications.>*?” Indeed, the
marriage of phylogenies and mechanistic insights, implicit in
early protein evolution-rate studies,” is the essence of evolu-
tionary genome mining of NPs. The genes involved in NP
biosynthesis and function, a subset of which have been vali-
dated through mechanistic studies, can be used to reconstruct
large-scale phylogenies of multiple genes and their proteins.
The genetic patterns uncovered by this Big Data approach can
then feed back into more mechanistic predictions, providing
hypotheses to further validate via new empirical, mechanistic
studies. As these patterns can be affected by both evolutionary
forces and the genetic mechanisms underlying them (in
bacteria,®” fungi***"' and plants®*** alike, yet each with their own
intricacies) it is of utmost importance that these are clearly
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defined and appreciated by the natural products community
when describing NP evolution.

2. Big data and evolutionary genome
mining of natural products: from key
concepts to databases and algorithms

Genomic assemblies from DNA sequencing data and a strain’s
associated phenotypic and/or meta information are the source
of Big Data needed for the development of NP evolutionary
genome mining databases (training sets) and algorithms
(tools). This stems from the fact that the interactions between
the chemical products of natural product biosynthesis and their
molecular targets are shaped by evolutionary processes that
control chemical structure, regulation, and/or availability.®
Thus, the enzymes that assemble natural products are subject
to these evolutionary pressures as well.**" Biosynthesis of
natural products is typically a series of incorporating building
blocks into a larger structure and the stepwise addition of
chemical modifications. Precursors may be sourced from other
parts of metabolism, the environment, or synthesized within
the biosynthetic gene cluster itself.**” Some biosynthetic
enzymes are large macromolecular machines, like NRPSs'* or
PKSs," while others are single domain enzymes.* BGCs can be
as simple as a few genes or as complex as many dozens of genes
whose encoded enzymes work in concert to produce the final
product(s). The enzymes at work within natural product
biosynthesis are as diverse and varied as the chemical struc-
tures they biosynthesize, the molecular targets with which they
engage, and the interactions within and between species that
they mediate. Taking this context into account, we next define
evolutionary and Big Data key concepts as the foundations of
evolutionary genome mining of natural products databases and
algorithms.

2.1. Key big data concepts in natural products research

Big Data refers to datasets that fit four major criteria: volume,
velocity, variety, and validation. First, volume: Big Data must be
big.** This typically refers to having many different entries or

View Article Online

Review

examples or replicates, depending on your data type. The
distinction between “normal” datasets and Big Data is an ever-
changing definition: what is considered Big Data today will
likely not be Big Data in the future. This is mainly due to
scientific breakthroughs leading to technological improve-
ments and data generation. Second, velocity: Big Data grows
quickly, which is mainly prompted by technological advances. A
useful example of volume and velocity is shown in Fig. 1,
highlighting the growth (velocity) of the number (volume) of
genomes in NCBI over time. Third, variety: Big Data typically
has several layers of information, which will be discussed below
specifically for NP research. Finally, validation: a Big Data
approach is only as good as its training data, so ensuring that
training information is verified in some way is necessary for
confidence in making forward predictions and identifying
patterns. While validation is not strictly required for a dataset to
be considered “Big”, applications will have limited value if they
are based on unverified information. This may sound fairly
obvious yet is something that needs to be explicitly stated. Gene
annotations are a common example where validation becomes
very important: comparing your gene of interest to a validated
dataset (e.g. UniProt, SwissProt) yields classifications that are
much higher confidence than if you were to compare to unva-
lidated datasets (e.g NCBI-NR) where the annotations of the
dataset itself are unvalidated and errors can compound.*

As datasets grow bigger (volume) at faster rates (velocity), an
unvalidated dataset made up only of predictions may have
misannotations. These errors can lead to many more subse-
quent misannotations, which themselves can further exacer-
bate these errors.* Thus, understanding the level of validation
for your dataset is necessary to properly interpret your results.
Together, these four Vs present analysis challenges, as Big Data
is often too large or complex such that non-traditional or
parallel computing tools are needed for analysis with ad hoc
algorithms.?”* In general, for a natural products researcher in
the early 2020s, data becomes ‘Big Data’ when it is too large or
too complex to do simple statistics in spreadsheet-based soft-
ware (e.g. Microsoft Excel). These data, moreover, are hard to
process and visualize with available tools within tolerable
computing times.

200,000 400
—— genera
175,000 genomes 350
150,000 300
125,000 / 250
100,000 200
75,000 150
50,000 100
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0
1999 2003 2007 2011 2015 2019 2015 2016 2017 2018 2019
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Fig.1 Growth of the number of NCBI Genomes (bacteria and archaea) and Genera per year from 1999 to 2019. Data from GTDB (release 95).

Inset: number of Genera represented by data in MIBIG.
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Table 1 Genomic databases to explore natural products diversity and evolution

Database name® Parameter name

Parameter value Current version (date)

MIBiG*® BGCs
IMG-ABC®® BGCs
antiSMASH-db®’ BGCs
BiG-FAM"® BGCs
NGCBI genome Bacteria spp.
Archaea spp.
Eukaryote spp.
MGnify”* Metagenomes
IMG/M™? MAGs
BGCs
CARD” Alleles
Reference sequences
SRA (bacteria) Datasets
SRA (archaea) Datasets
NCBI WGS (bacteria) Projects
NCBI WGS (archaea) Projects
Resfinder 4.0 7* Resistance genes
MG-RAST 4.0.3 7® Metagenome

1923 2.0 (2019)

410 683 5.0

147 517 3.0

1225 071 1.0

278 820 November 2020

5625 November 2020

14 486 November 2020
32746 November 2020
52515 November 2020
104 211 November 2020
213 809 February 2021
3146 February 2021
1466 494 November 2020
38592 November 2020
941 266 December 2020
6225 December 2020
2690 December 2020
447 497 January 2021

% Most of the listed databases in Tables 1 and 2 arguably satisfy the Big Data characteristics of volume and variety. Since there have been only few
periodic releases for some of these databases, the velocity characteristics of Big Data can be appreciated for only a few of these. The month and year
(date) of each database in Tables 1 and 2, when last accessed, are provided. Exact dates for current versions are not provided as are not available.

Standard genome mining approaches to uncover NP
biosynthesis have been used to explore a wide range of taxa and
environments, identifying “microbial dark matter” as a prom-
ising source of hidden chemical treasures. In evolutionary
genome mining of NPs this becomes an essential consideration
with potentially confounding factors. As shown in Fig. 1, the
first two ‘Vs’, volume and velocity, are currently covered by the
sequence data in large databases. In NP research, however, data
is not limited to genetics, but it has many other layers,
including chemical, gene expression, ecological, and evolu-
tionary data. For instance, the MIBiG* data repository is a good
example of ‘variety’, in that it includes multifaceted chemical
and genetic data. It also has a high standard of validation, as the
level of validation is listed for each entry. These advantages
come at the cost of volume and velocity: keeping the standards
of variety and validation high mean that this repository grows at
slower rates than for example the NCBI genome database.

Important to evolutionary genome mining, MIBiG and other
repositories tend to be biased towards a limited number of taxa
that have been investigated in great detail, like species of the
genus Aspergillus in fungi'®*" or Streptomyces*®* within the
Actinobacteria. While a bias towards bacterial genera clearly
exists, this issue is slowly decreasing with other Genera such as
Nocardia,” Amycolatopsis,”® Salinispora,”® Micromonospora,”
Pseudonocardia,” Rhodococcus,*>™ etc. emerging as promising
NP producers. Yet, bias in sampling remains a critical consid-
eration in evolutionary studies as they can confound results and
sometimes lead to erroneous conclusions, as argued recently in
the case of Aspergillus.>

In summary, Big Data available for evolutionary studies and
genome mining of natural products come from several sources,
including both broad and specialized chemical and genetic
databases {see Tables 1 and 2). As an example, NCBI database
contains over 1.4 million bacterial and over 38 thousand

Table 2 Chemical databases to explore natural products diversity and evolution

a

Database name Parameter name

Parameter value Current version (date)

MACADAM"** Metabolites

PubChem” Compounds

GNPS** NP compounds
Spectra

NP Atlas”® Compounds

COCONUT™® Compounds

StreptomeDB**® Compounds

PoDP™* Paired (meta)genomes and
metabolomes

Siderophore DB Compounds

LOTUS"™’ NP compounds

@ Refer to table notes in Table 1.
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18 163 1
221 083
24 594 v 2020_06
406 747 March 2021
4000 2
4853 2021

GitHub v0.9.2
262 June 2021
276 518 February 2021
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archaeal samples at the writing of this manuscript, with data
existing as either genomes, transcriptomes, or metagenomes.
These data however are far from being informative into NP
research unless they are organized and/or translated into other
forms or layers of information and analyzed with suitable tools.
Based on our own experience, Big Data for natural products
research today implies algorithms fast enough to conveniently
analyze the genomes and/or metabolomes of over 30 thousand
strains or samples. These numbers will rapidly multiply in the
future, and thus it is critical to continually reassess “natural
classifications” seen in evolutionary relationships, keeping in
mind that sampling bias of training data remains a funda-
mental, yet often overlooked, issue. Scalability of tools is also
a consideration. For example, multiple sequence alignments
and phylogenies of hundreds or thousands of genes was once
considered Big Data, and remains so, yet now we can perform
phylogenomic comparisons across entire kingdoms of life on an
inexpensive laptop computer or free public web server.”*” This
scalability of datasets and analysis tools can provide the genetic
context necessary to perform evolutionary genome mining.

2.2. Key evolutionary concepts in natural products research

Evolutionary pressures that drive the appearance and that
overall shape the physicochemical and biomolecular features of
natural products biosynthesis, can be incredibly dynamic and
complex. Nevertheless, overarching principles of evolution of
NP enzymes and/or pathways emerge. Just as biochemical
principles {e.g. adenylation {(A) domain specificity of NRPSs or
chain elongation during PKS-catalyzed synthesis) are mecha-
nistically fundamental for the understanding of NP biosyn-
thesis, the following broad evolutionary principles, with
a mechanistic bearing, can be considered:

(i) Enzyme promiscuity drives pathway evolution through
genetic expansion-and-recruitment events, providing the
building blocks to assemble, shuffle, and combine NP biosyn-
thetic pathways.*>>*

(ii) Once enzymes {or domains) are recruited into NP
biosynthesis, they tend to cluster together as multidomain
megasynthases and/or biosynthetic gene clusters {(BGC).%"**

These two corollaries are valid across bacteria®?”*%>
fungi*®** and plants®*»***® within their unique physiological,
morphological, and chromosomal peculiarities. They also
hold across different taxonomic lineages that share homol-
ogous NP biosynthetic enzymes.®**® It is starting to be widely
appreciated that the phenomena from which these corol-
laries derive can occur under strong positive selection, but
growing evidence and theory suggests a key role for negative
selection and neutral forces on BGC dynamics.® Once
recombination events cluster enzymes together, either as
multidomain enzymes or BGCs, the resulting pathways can
recruit other auxiliary elements, such as regulators, domain-
domain interactors, transporters, and importantly, resis-
tance genes.’* As these principles were comprehensively
demonstrated in the last decade or so, they were exploited by
researchers for the development of the four main evolu-
tionary genome mining tools that the NP community has
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used to identify and investigate novel pathways: (i) EvoMin-
ing,?*%7 (ii) ARTS™*'(iii} BiG-SCAPE* and (iv) CORASON.*
These tools are placed in the context of Big Data and dis-
cussed in further detail in Sub-section 2.4.

Using phylogenetics to unveil the evolutionary patterns of NPs
follows two main approaches. On the one hand, gene trees can be
used to infer a gene's evolutionary history and provide evidence for
past events that have led to present-day data (i.e. branches or leaves
of the tree). For evolutionary genome mining, gene trees can be
useful in identifying expansions {e.g. duplications) and subsequent
diversification of biosynthetic genes of interest. On the other hand,
species trees describe the reconstructed evolutionary history of
a set of species or individuals, and thus are useful for identifying
larger-scale evolutionary events.* Critically assessing how the
topologies of genes and species agree and disagree can shed light
on important evolutionary events, such as horizontal transfers.*
While NP research is focused on BGCs (a collection of genes),
much can be learned from studying single-gene and species trees.
Understanding the distribution and evolution of NPs within taxa,
for example, is a prerequisite for effective sampling and bio-
prospecting strategies.

For those interested in evolutionary genome mining of
NPs, it is important to note that the above-mentioned
approaches are the result of properly embracing phyloge-
netics and evolutionary principles, often implementing
concepts and principles not typically studied by NP chem-
ists. Fig. 2 shows the main concepts that those interested in
the use and development of these tools should take into
account. As mentioned, the main two evolutionary mecha-
nisms driving the appearance of novel NP biosynthetic
pathways are diversification {enzyme promiscuity and BGC
dynamics) and selection {positive, negative, and neutral).
However, it is only when these forces combine and impact
the fitness of the NP-producing organism that pathways are
assembled and reassembled during the course of evolu-
tion.** The main genetic mechanisms driving these evolu-
tionary events have been identified and have been used in
the development of NP evolutionary genome-mining tools
(thicker arrows, Fig. 2). However, much remains to be
deciphered regarding the evolution of NPs, especially in
terms of their expression and function in the real environ-
mental settings of their producing organisms, where fitness
operates. Study cases are available (see Sub-section 3), but
their scarcity makes them anecdotal and thus more data is
needed to develop mining tools based on Big Data principles
to investigate this layer of complexity (thinner and/or
dashed arrows, Fig. 2).

2.3 Natural products databases available for evolutionary
genome mining

As mentioned, data available for investigating natural products
in the Big Data era comes from several sources. However, this
information only becomes useful when organized on databases
(training sets) that can be coupled with metadata of the
organisms themselves, but also with information about the
technology and methods used to generate the data. Examples of
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Fitness in the laboratory

Fitness in a niche

Fitness in species-species
interactions & complex
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Diversification
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Drift
Promiscuity

Chemistry

Pathway/ antiSMASH, EvoMining, etc.
BGC transPACT, SANDPUMA, etc.
RNAseq, etc.

Individual analyses

Fig. 2 Evolutionary genome mining of natural products in a concept-driven framework. Studies on the evolutionary histories of NPs, their
biosynthetic genes, and their producing organisms are driven by analyses at different levels of organization. Individual analyses (bottom) focus on
a pathway/BGC and their molecular product(s) or chemistry. Examples of tools that predict NP chemistry from BGCs are shown in purple. These
individual data can then be contextualized with comparative analyses (middle) across many conditions or strains/species, with an emphasis in the
genetic events underlying the evolution of NPs BGCs. One example is Gene Expression studies (gray, RNAseq) where comparisons of tran-
scriptional patterns can place genes in a broader biological context. Analyses at the level of ecological and/or evolutionary processes (top) are the
most challenging, and as a field we have only just begun to understand how Gene Expression, BGC, NP chemistry, and other “lower-level” data
contribute to molecular function, and in turn how function contributes to an organism'’s fitness (linked by dotted lines to highlight that there are
not yet standardized methods, but there is opportunity to develop them integrating Big Data). This remains a major challenge, as fitness is often
a function of the environment. Evolution occurs as a dynamic process in which the fitness impact of a BGC's product influences the BGCs genetic
components (e.g. diversification, selection, and other processes; see box). These in turn can feed back into fitness. Previously characterized
genes and/or patterns of genetic events can then be used to identify and characterize BGCs de novo from genomic data (pink), either through
rules-based or evolutionary methods.

well-executed databases include the GNPS mass spectra public 2.4 Big data and natural products evolutionary genome
database,®* the MIBiG repository with experimentally validated ~mining algorithms

datasets,*** and the bioinformatically predicted BGCs of the
antiSMASH-db®¢” (Tables 1 and 2). Recently, the first evolu-
tionary database, i.e. ActDES, which is specific for the Actino-
bacteria, has been reported.®® All of these databases, despite
complying with the four ‘Vs’ in one way or another, including
variety, are useful in comparative or evolutionary studies, but
not sufficient as none of them provide a comprehensive multi-
layer database including or embracing evolution. In turn, at this
stage, it is the responsibility of the evolutionary genome miner
to select and integrate the most suitable and relevant DBs from
those provided in Tables 1 and 2, within a phylogenomics
framework. Selected DBs are highlighted throughout this review
with the aim of emphasising their value in relation to the four
‘Vs'.

Communication between evolutionary biologists, computer
scientists and mathematicians has historically led to biological
insight, including the developments of population genetics
theory and the transition matrices that are key to common
genomic search algorithms like BLAST.” These disciplines have
successfully converged again in recent years for the develop-
ment of sophisticated NP genome-mining algorithms and
platforms (Table 3). In this subsection, we list and explain
major evolutionary genome mining of NPs approaches available
to date with a focus on those that directly or indirectly rely on
the use of the theory of evolution in any of its forms, either
within the algorithms themselves or in their visualizations. The
availability of genomic data (e.g. MIBiG, CARD, antiSMASH-db,
Table 1) is fundamental, but probably more often will also be
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Table 3 Big Data algorithms for exploring natural products diversity and evolution
Algorithm Validation dataset Type of data Method Date
ARTS 2.0 (ref. 61) Bacterial kingdom genomes Genomes Duplication and BGC May 2020
and metagenomes proximity, phylogeny and
resistance screen
BiG-SCAPE™ Clusters from ~3000 BGCs Jaceard index plus November 2019
genomes maximum likelihood
FastTree
EvoMining 2.0 >’ ~100 conserved families Biosynthetic genes Duplication and gene December 2019
from ~1000 genomes proximity to MIBiG,
phylogeny
BiG-SLICE*® BiG-FAM (1 225 071) BGCs Balanced iterative reducing August 2020
and clustering using
hierarchies
CORASON™ ~3000 Genomes or BGCs Blast plus FastTree November 2019
(visualization)
Clinker® NA BGCs (visualization) Hierarchical clustering January 2021
FlaGs™® 324 BGCs (visualization) BGC's hidden Markov model September 2020
TREND?’ NA BGCs (visualization) Hierarchical clustering April 2020
MicroReact® NA Trees with metadata Libraries: Chart.js, leaflet, November 2016
(visualization) phylocanvas, react, Sigma
Anvi'o® NA Pangenomes (visualization) Hidden Markov models October 2015

inputs from purely chemical DBs (Table 2), e.g. GNPS, Paired
Omics Data Platform (PODP), which can also serve as training
data in supervised algorithms. Notably, some of these genomic-
based algorithms already include input from chemical

databases.**””7® Thus, the integration of data types, as in MIBiG
or PODP, may provide training datasets with valuable links
between genomic and chemical data, further embracing variety.
This integration holds great promise and value to the field, but
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Fig. 3 Evolution-driven genome mining tools. (A) Evolutionary algorithms need as inputs genomes from taxonomically related lineages, where
conserved protein families (orange) are selected for further exploration (ARTS/EvoMining). Conserved (orange and red) and extra (gray) copies of
these families are identified and compared by a phylogenetic distance against proteins from NP databases (blue). Finally, the tree used in the
phylogenetic distance is provided as a visualization, where predictions are included (green). (B) Algorithms with an evolutionary visualization but
without evolutionary driven distances does not restrict their input genomes to be phylogenetically related. Gene clusters obtained from these
algorithms are gathered in gene cluster families (GCF) by classification methods. Finally, evolutionary visualizations can be provided, either as
a whole-BGC network of phylogenetic tree (BiG-SCAPE/CORASON) or as the occurrence of each GCF throughout a species tree (BiG-SLICE).
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since it is only beginning to occur, it remains to be seen how
regularly chemical data will be embraced by evolution-driven
genome mining efforts.

Currently, evolutionary genome-mining for the discovery of
novel NPs™ aims to provide answers to two main questions, and
by doing so, generate predictions: (i) which genes and/or BGCs
produce metabolites not typically associated with central
metabolism? and (ii) which genes or domains specific to
a lineage represent innovation and diversification compared to
ancestral states? As mentioned, several specialty databases™
(Tables 1 and 2) are available and are used by the main evolu-
tionary genome mining tools that the NP community has used
to identify and investigate novel pathways: (i) EvoMining,?**” (ii)
ARTS®™*! (i) BiG-SCAPE® and (iv) CORASON.* Following
a similar rationale, a conceptual framework for mining side-
rophore BGCs based on their transporters has recently been
reported.*® Importantly, available tools can be used indepen-
dently or in combination, and go in hand with species-level
phylogenetic analyses which directly integrate NP biosynthesis
(e.g. AutoMLST®™) or analyses that are part of more generalized
phylogenetic pipelines.* The combination of the latter, ie
a species tree, with large-scale BGC prediction and their taxo-
nomic distribution, is BiG-SLiCE output™

Supervised algorithms make use of the DBs mentioned in
the previous sub-section in the form of training sets with vali-
dated labels about what is an NP BGC and what is not.*® Here,
the “correct” classifications are known for training data and
used to make predictions about new data. These methods
typically require heavy {(and often manual) curation of training
sets, and thus the importance of the fourth Vv, validation. So far,
most of NP research adopting genome mining approaches
employs supervised algorithms, mainly used in classification
problems that require prior knowledge.® Unsupervised algo-
rithms, instead aim to extract patterns and trends from unla-
beled data,* similar to phylogenies. These can be helpful to
identify data features {e.g. genes and domains) that are impor-
tant for categorization, but since no “true” answer is known
false-positive errors may be more frequent. Clustering or other
grouping methods used in unsupervised methods attempt to
give some structure to a dataset. Typically, supervised and
unsupervised strategies are complementary, as it is the case in
NP evolutionary genome-mining (Fig. 3).

Within NP research, supervised problems are used to iden-
tify and classify domains, genes, and BGCs. ClusterFinder® was
one of the first algorithms that attempted to classify regions of
the genome as NP BGC {or not) by calculating a moving average
of a “biosynthetic score”, calculated based on domain- and
gene-level agreement with profile Hidden Markov Models of
biosynthetic enzymes. Although ClusterFinder® does not
directly leverage evolutionary theory in its algorithm, it is
indirectly inferring the evolutionary processes that shaped BGC
regions throughout the genome. Many of these algorithms have
been trained primarily {or exclusively) on bacterial data, and
thus accurate and reliable identification of fungal BGCs
remains a challenge. Fortunately, recent work has begun to take
fungal-specific genes and genetic structure into account to
address this issue.*®® A similar scenario in plants® has now
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been encountered since the realization that BGCs actually exist
in this large and prominent group of NP producing organisms.

Identifying shared and novel features within and between
taxonomic lineages is attempted by unsupervised algorithms,
such as BiG-SCAPE, BiG-SLICE and CORASON. For example,
BiG-SCAPE, and more recently BiG-SLICE, clusters BGCs into
gene cluster families {(GCFs) without requiring prior knowledge
of these families. This is done after calculating distance scores
between BGCs on the basis of shared protein families and BGC
organization. After clustering, it can be useful to sort and/or
connect these GCFs with each other into bigger “clans”, that
are related but more distantly so than members of the same
GCF. This broader context can be used to track evolutionary
events of related BGCs and investigate how these events are
distributed across gene and/or strain phylogenies. An
alternative-yet-complementary approach employed by COR-
ASON involves phylogenetic trees of shared enzymatic features,
including in some instances whole-BGCs phylogenies. Impor-
tantly, these processes use supervised classifications of genes
and domains to perform unsupervised clustering into GCFs, so
they too require high quality (i.e. validated, or at least carefully
curated) genomic and chemical databases.

In contrast, EvoMining and ARTS, represent the first {and to
our knowledge, thus far the only) heuristic algorithms that
incorporate evolutionary thinking as part of the supervised
approach itself, attempting to infer what is central metabolism
and what may be secondary metabolism, with a certain degree
of diversification hinting towards the appearance of an
specialized pathway. Evolution is inferred as a distance metric,
which can be seen as similar to a support vector machine
algorithm,*** but implemented using a tree to determine
appropriate groupings {and thus classifications) for biosyn-
thetic enzymes. Put in another way, it seeks to identify which
query enzymes cluster more closely with central metabolism
and which cluster more closely with secondary or specialized
metabolism. Extra gene copies are assessed by EvoMining as
potential recruitments into NP biosyntheses, and these gene
families may differ from one taxonomic lineage to another
(Fig. 3A).

After classification into BGC families {e.g. with BiG-SLICE
and/or BiG-SCAPE), further evolutionary context can be added
in the visualization stage with CORASON according to the
phylogenetic history of genes within the BGC or the strain-level
phylogeny of the producing organism itself. In turn, CORASON
identifies gene clusters in a genomes database and sorts them
according to their evolutionary relationships. Tools such as
MicroReact® can also allow for visual exploration of large
phylogenetic trees annotated with metadata. EvoMining and
ARTS both start with labeled sets (genes that are either the
primary copy or specialized metabolism copies that belong to
other databases, e.g. CARD/MIBIG) and employ supervised
methods where evolutionary distance is used to classify putative
BGCs. As a consequence, their predictions are intuitively dis-
played phylogenetically. Other software suites that perform
pangenomic visualization {e.g. Anvio*) are also useful in that
they allow identification of families with potential gene expan-
sion and/or recruitment events. Many recent tools aim to sort
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and visualize relations between BGCs: for example, Multi-
GeneBlast* (implemented in antiSMASH), finds gene homologs
in BGC comparisons. Given otherwise identified BGCs {e.g. by
antiSMASH or other tools), BiG-SCAPE* can classify them into
BGC families and other visualization tools such as clinker,*
FlaGs** and TREND? allow for interactive visualizations
(Fig. 3B).

3. Genomic and enzymatic evolution
of natural products
3.1 Evolution of the genome of NP-producing organisms

Multiple studies have been conducted on the evolution of NP
producers, providing useful indications for targeted bio-
prospecting. Biosynthetic potential and diversity appear to be
related to the ecological niche of the producers, as was
confirmed in multiple instances.**** In some cases, though,
phylogeny is more important, as observed in microbial taxa
where secondary metabolism is most similar in closely related
organisms rather than those isolated from the same
source.'*'** Such investigations showcase possible promising
targets for NP research, be they specific known'*'* or under-
studied taxa'#*'% or different environments/niches.!¢®10>-104108
As such, it is clear therefore that evolution can be applied for the
discovery of novel natural products, which can powerful if
properly embraced.

Comparative genomic analyses have shown that most bacterial
taxa harbor only a few BGCs while some dedicate a large propor-
tion of their genomes to specialized or secondary metabo-
lism e 1on104106110-412 The guantity and diversity of BGC content
differs among the taxa, with extreme cases reported.****> How
disperse the phylogenetic distribution of a BGC is, can allude to
the various effects selection has had on its related pathways.**
Most notably, horizontal gene transfer (HGT) is a relatively
frequent phenomenon in BGCs, which is one likely explanation for
their extended distribution across distant taxa and their observed
diversity.btestoi0a101e117 ywhile HGT is observed frequently in
BGCs compared to other genetic elements, it is important to note
that the evolutionary timescales involved are still quite large®*****
and depend on both population structure and genetic identity of
donor and recipient.®**'*® Vertical inheritance of BGCs within the
same lineage is the dominant means through which biosynthetic
information is transferred.®*** This is a key distinction that should
be made when studying the evolution of BGCs, as the more subtle
vertical evolutionary dynamics happen from generation to gener-
ation, while HGT events are typically observed at timescales closer
to thousands, millions, or billions of years.

Thus far, all analyses mentioned in this subsection were not
conducted on a Big Data scale. Indeed, the information
discovered so far is being confirmed by multiple independent
inquiries, yet still issues of small taxonomic coverage and
sampling biases remain. In 2014, three articles were published
that followed a more global approach to NP producer genomics.
Cimermancic ® and co-authors analyzed more than 1000
genomes from across the bacterial kingdom and created
a “global map” of biosynthesis, encompassing ~33 000
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predicted BGCs. Doroghazi* and co-authors focused on one
phylum and, using different metrics and methods than
Cimermancic, reached a similar conclusion by collecting
information on the producers capacity and potential. At the
same time, Medema'® and co-authors examined a large
number of known BGCs and proved that the rates of evolu-
tionary events within such units are much higher than in
clusters of primary metabolism. Since these studies were first
published, the available data has multiplied and so too have the
methods for processing them; more universal-scope analyses
will soon follow and give the answers to questions that remain
open, including how and when biosynthetic diversity evolved***
or the capacity of nature to keep providing us with new
compounds.***

The above-mentioned studies have focused on microbes that
have been cultured under laboratory conditions. However, the
number of unculturable organisms is vast and metagenomic
analyses have begun to unravel their hidden biosynthetic
potential, indicating promising new sources for NP bio-
prospecting (see next paragraph). Furthermore, investigating
evolutionary patterns based on environmental samples can
shed light on the functions of the NPs found in nature as well as
their raison d'etre within their microcosm.*”* This is important
as NP evolution occurs at the population level, as highlighted by
recent examples where population genomics frameworks have
been adopted to mine NPs in genomic data, both in fungi and
bacteria.****»*#225 Such approaches have even proven valuable
at the bacterial colony-level of a domesticated model laboratory
strain, Le. Streptomyces coelicolor.**>**”

Soil metagenomic surveys in urban greenspaces, grassland
meadows, and areas covering up to continent-wide scale have re-
ported microbial diversity patterns.'”*****® These patterns are
drastically affected by the environment and massive sequencing
efforts are required to comprehensively capture their diversity, even
at kilometer scale. High throughput functional studies involving
creation of large-insert metagenomic libraries provides a novel
approach to examine the functional and phylogenetic diversity of
sampled ecosystems.””*** Economically attractive approaches
using amplicon sequencing have been used to prove the domain-
level diversity of environmental NPs. Such approaches have
provided clues to answer the long standing question of which sites
should be surveyed to maximize the discovery of novel natural
products.5104155138158 ©Magsive amounts of shotgun metagenomic
data are already easily available from public repositories. Analyzing
these Big Data to infer significant NP patterns has now become the
next bottleneck and faster algorithms and easy to use tools are
badly required to mine the potential resource. Additionally,
detailed documentation, standardized sampling procedures, and
still more metadata are required to be incorporated into public
databases in order to exploit patterns and extract useful
information.

3.2. BGC and multidomain enzyme evolution

The evolutionary history of BGCs can be studied by building
separate and/or concatenated trees of their genes and protein
products. These can have very different topologies than the
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species trees of the NP producers themselves, suggesting
unconventional sequence transmission events, such as Hori-
zontal Gene Transfer {see previous section), gene conversion,
intra-genomic recombination,® and others. Together, these
trees and functional information of NP genes can be used as
a foundation to predict the activity of yet-unknown compounds
and suggest potential links between fitness and the evolutionary
forces at work.

Natural products exhibit extremely diverse chemistry. Their
evolutionary complexity is no less complex. Domains evolve in the
context of genes, genes in the context of BGCs, and BGCs in the
context of their the producers’ genomes.**** Further, how these
metabolites contribute to the fitness of their producing organisms
depends largely on their environmental niche, which is often
completely unknown or has poorly-understood factors and
boundaries.*** Because of this interdependence between multiple
levels of organization, evolution does not affect clusters
uniformly.*® Indicatively, trans-acyltransferase (trans-AT) AT
domains have evolved independently from cis-AT AT domains: the
latter cluster into NP-specific clades and are known to be acquired
vertically, while the prior are present in many different phyla and
appear to be transferred horizontally.** Based on the clades
formed in trans-AT AT and KS trees, it appears their evolution is
strongly linked to their elongation substrate specificities.®t 114
Indeed, computational pipelines such as transPACT** place KS
sequence information into a phylogenetic framework to predict
substrate specificity for unknown sequences. Cis-AT and trans-AT
PKS variants can produce similar metabolites even though they
have distinct evolutionary histories. This case of evolution may be
influenced by the modularity of Type I PKS clusters that can be
more plastic due to intragenic recombinations and may allow for
adaptability in a wide range of ecological niches.***

Although much of NP evolution is thought of at the level of
BGCs or genes, important evolutionary changes can also
happen at even smaller scales. Substrate specificity of
different NP enzymes is often dictated by the three-
dimensional organization of their active sites and/or
protein-protein interaction surfaces, so subtle changes to
the protein sequence of these areas can steer specificity {and
promiscuity) in multiple evolutionary directions. In some
cases, these changes correlate with phylogeny, so knowledge
of the evolutionary mechanisms behind BGCs can allow for
collecting reliable information from domain phylogeny.
NRPS domains also show evolutionary patterns linking
phylogeny and chemistry.*** Similar to the trans-AT KS
domains of the PKS clusters, A-domains of NRPSs cluster
into clades according to substrate specificity, while C-
domains are highly conserved and follow a BGC-specific
pattern.”**'* Computational methods such as SAND-
PUMA'* and others have used this phylogenetic signal to
reliably predict the substrate specificity of A-domains.
Recently, “substrate level” evolutionary signals, like in
trans-AT KS and NRPS A-domains, can be used to predict
substrate specificity, while “pathway level” evolutionary
signals, like in NRPS C-domains can be used to predict BGC-
level patterns of similar molecules.*®
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4. What lies ahead? Needs and
opportunities for evolutionary genome
mining of NPs

Evolutionary genome mining of natural products in the Big
Data era has inherited the tradition of phylogenetics, in the
sense that natural history coupled with genetic and chemical
observations can provide mechanistic insight. With this heri-
tage comes the promise of discovering “the known unknowns,
unknown knowns, and unknown unknowns of secondary
metabolism”, which has important implications in gene
expression and the distinctions between “cryptic” and “silent”
BGCs.” Although genomic and metabolomic speciality data-
bases have made considerable progress, we envisage an ever-
growing need for novel speciality datasets merging different
layers of information. A promising current endeavor is the
assemblage of metabologenomics databases, where genetic
information and predictions are merged with chemical data
{e.g. Paired Omics database”). Nevertheless, the systematic
inclusion of other data types, including evolutionary relation-
ships, remains a challenge. One notable evolutionary database
has been recently released for Actinobacteria,® but those with
larger scale and broader taxonomic coverage are much needed.
These high-variety databases promise new insights in the NP
field as a whole. Similarly, the accompanying algorithms
needed to efficiently compute high volume datasets will allow
us to perform these analyses at scale and keep pace with the
technological advances that generate data at high velocity. In
the near future we expect these data to go beyond only genomes,
metabolomes, and metagenomes and begin to encompass
ecological and functional metadata.**®

Biosynthetic enzyme domains are the focus of current, and
likely future, algorithms. This presents unique challenges for
enzyme families whose classifications are problematic and/or
understudied in the community. For instance, chemists have
provided insights into why sequence-based phylogenies are
insufficient for certain enzymes: transition-state intermediaries
can be highly reactive and plastic, and therefore sequence space
is less constrained than in enzymes with well-defined active
sites.'” Examples of this include the terpene cyclases, cyto-
chrome P450s, hydrolases and type III polyketide synthases,
amongst others. In these examples, analyses could benefit from
alternative methods to establish relationships useful to provide
classification and dataset structure. In turn, this may provide
more informative training sets within well-structured data-
bases, increasing the quality of predictions surrounding these
important classes of natural products biosynthetic enzymes. It
should be noted that classification of some of these enzymes
within abovementioned DBs, such as antiSMASH-db, does not
necessarily mean that this problem has been sorted out (see
validation; previous sections). Pangenomic analyses*™'*® to
identify expanded enzyme families within lineages may provide
an interesting possibility to classify enzyme families on evolu-
tionary grounds.

Here, by reviewing the nascent history of evolutionary
genome mining of natural products as a sub-discipline, it has
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become apparent that a prerequisite for the development of
successful algorithms is the realization and characterization of
genetic events driving the evolution of biosynthetic enzymes in
their genomic context {e.g. BGCs). As such, we highlight the
following evolutionary concepts with the promise to link
evolution to genetic and chemical mechanisms. It has become
clearer that “natural” evolution of natural products can be
governed by dynamic processes that result in functional
replacements. For example, in convergent evolution of chemi-
cally related scaffolds with diverse biomolecular activities,"*
whose biosynthesis is directed by non-related BGCs that
produce functionally similar molecules. It has also become
clearer that biosynthetic pathways can be encoded by physically
unrelated loci (in contrast to BGCs), which may consist of sub-
clusters,'® and that the same BGC can produce diverse natural
products with different biological functions in response to the
environmental conditions.”™ This intragenomic cross-talk
might be seen as a simplified version of the metabolic
exchange between different organisms within a microbiome, for
which evolutionary experimental and conceptual frameworks
have been developed.'*”*s>*5* Both levels of metabolic cross-talk
represent an immanent Big Data challenge: to genomically
mine large datasets to correlate physically unlinked loci and
propose metabolic relationships™'** How to best embrace
evolutionary processes, many of which we are only beginning to
understand, in Big Data genome mining for natural products
remains an exciting yet challenging endeavor; one that will
surely provide many possibilities for the future of this emerging
sub-discipline.
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Annexure B

Supplemental Information
Evaluating Distribution of Bacterial Natural Product Biosynthetic Genes Across Lake Huron
Sediment

Supplementary Experimental Procedures.
16S rRNA Gene Amplification and Sequencing

The V4 region of microbial small subunit rRNA genes (16S rRNA) was PCR-amplified from
genomic DNA using a two-stage PCR protocol, as described previously.! Primers 515F (5'-
GTGCCAGCMGCCGCGGTAA-3') and 806R (5-GGACTACHVGGGTWTCTAAT-3') were
synthesized with 5' linker sequences Cs1 (forward primer;
ACACTGACGACATGGTTCTACA) and CS2 (reverse primer;
TACGGTAGCAGAGACTTGGTCT).? Each 25 uL PCR reaction mixture consisted of 0.5 pL
10 ng/uL gDNA, 0.8 uL of 10 uM of 515F, 10 uM of 806R, 12.5 uL KAPA Taq 2X ReadyMix
(Kapa Biosystems), and 10.4 uL of deionized (DI) water. The thermal cycling conditions were
set to a denaturation step at 95 °C for 5 min, 28 cycles of 95 °C for 30 s, 45 °C for 60 s, and
68 °C for 90 s, and a final elongation step at 68 °C for 7 min. Amplification products were
observed by agarose gel electrophoresis and purified using QIAquick PCR cleanup Kit,
according to the manufacturer's protocol (Qiagen, Inc.). Subsequently, a second PCR
amplification was performed to incorporate Illumina sequencing adapters and a sample-
specific barcode into the amplicons. Each reaction received a separate primer pair with a
unique 10-base barcode, obtained from the Access Array Barcode Library for lllumina
(Fluidigm, South San Francisco, CA). In addition to lllumina adapter sequences and sample-
specific barcodes, these “Access Array” primers contained the lllumina CS1 and CS2 linker
primers at the 3' ends of the oligonucleotides. Cycling conditions were as follows: 95 °C for 5
min, followed by 8 cycles of 95 °C for 30 min, 60 °C for 30 min, and 72 °C for 60 min. The
pooled libraries, with a 20% phiX spike-in, were loaded onto MiSeq V2 flow cells, and
sequenced. Fluidigm sequencing primers, targeting the CS1 and CS2 linker regions, were
used to initiate paired-end 2 x 250 base read sequencing. Library preparation, pooling, and
sequencing were performed at the University of lllinois at Chicago Sequencing Core
(UICSQOQC).

Bioinformatic Analyses of 16S rRNA Sequence Data

Approximately 6.5 million 16S rRNA sequencing reads were obtained for 59 sediment
samples in duplicate. All sequence data generated from the Illlumina MiSeq sequencer were
first pre-processed using the QIIME-1.9.7 pipeline® at the UIC Sequencing Core. Bar-coded
16S rRNA gene sequences were demultiplexed, primers and chimeras were removed, and
the reads were filtered according to Phred quality scores. Forward and reverse reads were
merged and labeled according to sample source. Samples were then processed using the
DADA2 option within the software package Qiime2* for sequence quality control and feature
table construction. The resulting analysis generated 141,078 amplicon sequence variants
(ASVs).* A sequence representative of each ASV was classified using the Silva_128
database.®> A taxon-by-sample abundance matrix (a feature table or biological observation
matrix, BIOM)® file was then created.

Estimated amount of DNA in KSa and A Domain Amplification

To demonstrate that the amount of gDNA used in a PCR reaction was representative of a full
biome: 1 PCR reaction contained ~10 ng DNA. 10 ng of gDNA is roughly equivalent to gDNA
from ~500,000 to 20,000,000 soil bacterial cells (a single gram of healthy soil contains
11.0x10™ cells in 1 g dry weight at the sediment surface, and a bacterial cell contains
approximately 0.5-20 fg DNA).

Accession Codes.
Sample SRA data can be accessed using Accession code PRINA690811.
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Table S1. Sediment sample collection data for Lake Huron expedition.

Sample name Longitude Latitude
GB01 -80.8563933 44.71783667
GBO03 -80.61701 44.72527
GB04 -80.1672617 44.64574667
GBO05 -80.2431117 44.796915
GBO06 -80.435975  44.73815167
GB09 -79.9675 44.87164167
GB12 -80.8747533 44.92021167
GB17 -80.8742217 45.24485
GB29 -81.0829917 45.58357
GB35 -81.670485  45.52572833
GB36 -81.620125  45.70816833
GB39 -81.2583983 45.87294667
GB42 -81.5954067 45.91245667
HOO01 -83.6141917 43.937425
HO002 -83.3324467 44.12494167
HO006 -82.0184967 43.52649333
HO12 -82.1130467 43.900655
HO027 -82.5024567 44.09988833
H032 -82.3596233 44.35418333
HO37 -82.7836283 44.76185333
HO38 -82.2023783 44.75069333
H048 -82.5911867 45.26139333
HO054 -83.402845  45.63384
HO061 -83.9164083 45.74978833
HO096 -82.83258 44.33275
H101 -82.3348767 43.26900667
H102 -82.403855  43.70586833
H103 -82.2209217 44.14485833
H104 -81.83796 44.37196167
H107 -82.554065 44.61541667
H108 -83.05021 44.557415
H109 -83.000015  44.150185
H110 -83.8036883 43.77230833
H118 -83.165955  44.91682333
H119 -82.8106817 45.39766833
H121 -83.403945  45.81889667
H123 -83.90591 45.93646167
H124 -84.4215683 45.85121
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HTXD
HTXM
HTXS
HXSG
NC68
NC70
NC71
NC73
NC76
NC77
NC79
NC82
NC83
NC84
NC87
NC88
NC89
TBO1

TB02

TBO3

TB0O4

-82.33345
-82.46681
-82.4991167
-82.4991167
-83.8536033
-83.671975
-83.74624
-83.3551783
-83.4329117
-83.1977083
-82.886655
-82.7588
-82.5497
-82.5564417
-82.197085
-81.999815
45.91649
-83.1496367
-83.240505
-83.277
-83.0352944

43.33989
43.33977
43.33974333
43.33974333
46.04127
46.13648
46.23346833
46.18685167
46.00034
45.97041667
46.12299667
45.93686333
45.99998167
46.09173833
46.06112167
46.05529667
-82.1617117
44.89958667
44.93872833
44.95524667
44.15244444
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Table S2. Sediment sample gDNA quantification using Nanodrop.

Sample | ng/uL | Sample | ng/pL
GB01-A | 17.5 | GBO01-B | N/A
GB03-A | 16.5 | GB03-B | 22
GB04-A | 144 | GB04-B | 15.9
GBO05-A | 20 GBO05-B | 14.9
GBO06-A | 13 GB06-B | N/A
GB09-A | 26.3 | GB09-B | 21.2
GB12-A | N/A | GB12-B | 15
GB17-A | 8.2 GB17-B | 8.8
GB29-A | 17.6 | GB29-B | 16
GB35-A | 17.9 GB35-B | N/A
GB36-A | 10.9 | GB36-B |19
GB39-A | 13.8 | GB39-B | 17.5
GB42-A | 15.3 | GB42-B | 20.2
HOO01-A | 25.1 H001-B | 20.1
HO002-A | 18.1 | HO02-B | 18.2
HO06-A | 26.5 | HO06-B | 24.4
HO012-A | 13.8 | H012-B | 14.8
H027-A | 23.3 | H027-B | 30.7
HO032-A | 13.9 | H032-B | 17.9
HO037-A | 16.5 HO037-B | 12.1
HO038-A | 10.6 | HO38-B | 22.2
H048-A | 30.6 | HO048-B | 26.4
HO054-A | 13 HO054-B | 16.7
HO061-A | 15.3 H061-B | 11.4
H096-A | 17.8 | H096-B | 14.2
H101-A | 18.4 | H101-B | 17.6
H102-A | 24.4 | H102-B | 225
H103-A | 18.1 H103-B | 15.2
H104-A | 7.4 H104-B | 9.8
H107-A | 9.8 H107-B | 15.9
H108-A | 18.1 | H108-B | 20.2
H109-A | 20.1 | H109-B | 24.3
H110-A | 30.8 | H110-B | 32.3
H118-A | 6.2 H118-B | 5.9
H119-A |29.1 | H119-B | 25
H121-A | 14.3 |H121-B | 134
H123-A | 24 H123-B | 25.1
H124-A | 27.4 H124-B | 17
HTXD-A | 9.3 HTXD-B | 13.5
HTXM-A | 6.8 HTXM-B | 6.4
HTXS-A | 4 HTXS-B | 5
HXSG-A | 3.1 HXSG-B | 3.8
NC68-A | 11.4 | NC68-B | 19.9
NC70-A | 23.8 | NC70-B | 19.1
NC71-A | 4.9 NC71-B | 19.5
NC73-A | 225 | NC73-B | 13.3
NC76-A | 19.3 | NC76-B | 20.1
NC77-A | 13.1 NC77-B | 13.2
NC79-A | 23.1 | NC79-B | 325
NC82-A | 21.7 | NC82-B | 19.3
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NC83-A | 155 NC83-B | 174
NC84-A | 13 NC84-B | 13
NC87-A | 21.1 NC87-B | 10.6
NC88-A | 24.4 NC88-B | 6.7
NC89-A | 14.9 NC89-B | 144
NEO1-A | 6.8 NEO1-B | 3.9
NEO2-A [ 5.3 NEO2-B | 7.4
NEO3-A | 9.9 NEO3-B | 9.4
NEO4-A | 5.1 NEO4-B | 1.8
TBO1-A | 175 |TB01-B |15.7
TB02-A | 6.6 TB02-B | 4.3
TBO3-A | 6.1 TBO3-B | 8.4
TB04-A | 6.9 TB04-B | 8.2

Table S3. Sequence reads per sample before and after filtering.
S3A. A domain sequence reads per sample before and after filtering

Sample A domain sequence count
before filtering after filtering

GBO1 100068 29538
GBO03 87304 33514
GB04 81992 30589
GBO05 79378 30822
GB06 94934 23731
GBO09 16605 3487
GB12 84785 20090
GB17 63581 19046
GB29 93624 30221
GB35 104613 24546
GB36 120819 19103
GB39 90825 29671
GB42 66836 26490
HOO01 47575 22825
HO002 46549 24705
HO06 58045 26476
HO12 52019 27589
HO27 54526 28092
HO032 55399 29310
HO37 43365 11407
HO38 74084 28311
HO048 42879 25550
HO54 57279 30289
HO054B 47330 27082
HO61 27332 19480
HO096 32191 19325
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H101 49232 31717
H102 38635 24216
H103 49020 28022
H104 43140 23638
H107 46000 26520
H108 56986 30330
H109 50588 25213
H110 61123 31547
H118 54969 29164
H119 60357 32965
H121 42440 24175
H123 50282 29375
H124 64667 39958
HTXD 44915 25960
HTXM 61883 31140
HTXS 64642 34153
HXSG 65939 36061
NC68 93915 44407
NC68B 86165 27941
NC70 85876 35580
NC71 118527 33900
NC73 78861 29530
NC76 67029 32849
NC77 76025 29920
NC79 63627 14229
NC82 80280 30078
NC83 77778 29099
NC84 77518 29234
NC87 79403 25970
NC88 74994 32434
NC89 53 2

TBO1 91511 33540
TB02 109450 31474
TBO3 122427 14537
TB0O4 91202 31209

S3B. KSa domain sequence reads per sample before and after filtering

Sample KSa domain sequence count
before filtering after filtering
GB01 142872 40
GBO03 116849 42
GB04 117531 43
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GBO05 52214 29
GBO06 106274 45
GB09 94289 33
GB12 122097 65
GB17 93897 15
GB29 103481 49
GB35 131773 35
GB36 134277 47
GB39 110956 41
GB42 145182 40
HOO1 115109 32
HO002 106612 43
HO06 113030 33
HO12 200784 33
HO27 103413 39
HO032 146624 31
HO37 115310 109
HO38 116346 26
HO048 8575 108
HO54 129969 929
HO61 115873 13
HO096 123566 89
H101 126539 29
H102 78024 70
H103 64881 63
H104 94503 10
H107 66572 19
H108 116249 30
H109 1929 13
H110 257816 313
H118 76047 212
H119 201467 50
H121 123562 71
H123 121709 101
H124 112397 63
HTBXM 100854 54
HTBXD 522 47
HTBXS 196054 60
HXSGB 182584 50
NC79 11704 84
NC82 130853 101
NC83 125930 106
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NC84 112485 64
NC87 126142 60
NC88 15451 58
NC89 146028 35
TBO1 159206 81
TB02 131451 66
TBO3 143707 64
TB04 73951 21

Table S4. Most abundant phyla in sediment

Kingdom
Bacteria
Bacteria
Bacteria
Bacteria
Bacteria
Bacteria
Bacteria
Unassigned
Bacteria
Bacteria

Table S5. Number of sequences in most abundant OBUs

Phylum
Proteobacteria
Acidobacteria
Bacteroidetes
Nitrospirae
Actinobacteria
Planctomycetes
Verrucomicrobia
Other
Cyanobacteria
Chloroflexi

S5A. A domain OBUs

average (%)
43.94
7.07
6.21
5.73
5.60
5.22
5.16
4.54
4.07
2.50

% sequences of most
abundant A domain

Location OBU
GB01 5.7
GBO03 1.9
GB04 3.2
GBO05 3.8
GBO06 8.5
GB09 4.0
GB12 54
GB17 4.9
GB29 2.1
GB35 2.0
GB36 6.3
GB39 3.2
GB42 2.2
HOO01 3.9
H002 2.9
HO06 3.2
HO12 5.6
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HO27 4.5
HO32 7.2
HO37 23.0
HO38 2.5
HO48 2.1
HO54 4.1
HO61 5.2
HO096 3.5
H101 2.4
H102 3.9
H103 5.9
H104 2.7
H107 3.7
H108 4.2
H109 2.5
H110 3.4
H118 1.8
H119 2.8
H121 2.8
H123 3.0
H124 4.1
HTXD 2.5
HTXM 1.9
HTXS 15
HXSG 0.8
NC68 3.9
NC70 2.7
NC71 3.6
NC73 5.3
NC76 5.1
NC77 5.3
NC79 3.8
NC82 3.6
NC83 2.7
NC84 2.5
NC87 2.7
NC88 3.2
NC89 1.9
TBO1 2.2
TB02 1.7
TBO03 2.6
TB04 4.0
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S5B. KSa domain OBUs

% sequences of most

abundant KSa domain

Location OBU
GB01 10.0
GBO03 4.8

GB04 27.9
GBO05 10.0
GBO06 15.6
GBO09 45

GB12 15.4
GB17 7.7

GB29 11.1
GB35 20.0
GB36 7.4

GB39 15.4
GB42 13.0
HOO01 15.6
HO002 17.6
HO06 13.0
HO12 30.3
HO027 17.9
HO032 12.9
HO37 27.5
HO038 15.4
H048 15.7
HO054 16.7
HO61 25.0
HO096 29.2
H101 10.3
H102 17.1
H103 52.4
H104 20.0
H107 28.6
H108 20.0
H109 38.5
H110 54.3
H118 32.4
H119 26.0
H121 22.5
H123 5.9

H124 10.4
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HTXD 12.8
HTXM 111
HTXS 15.0
HXSG 4.3
NC79 10.7
NC82 7.2
NC83 9.4
NC84 15.6
NC87 11.7
NC88 6.9
NC89 8.8
TBO1 12.2
TB02 4.5
TBO3 18.8
TB0O4 33.3
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Table S6. List of molecular classes that KSa and A domain sequences aligned to in the
MIBIG 2.0 database.” The entry under molecular class denotes the molecular product for
which the biosynthetic gene cluster (BGC) was annotated in MIBIG. If a KSa or an A domain
sequence aligned against a molecular product of a given BGC, that sequence was classified
as a sequence producing a compound from the molecular class corresponding to that
molecular product. A maximum e-value threshold of 1.2 e™** was selected for KSa domain
OBUs and 1.3 e™* for A domain OBUs. These stringent cutoffs allowed only high-confidence
OBU assignments to be used in the study.

Split correction factor estimation for estimating OBU counts.

To assign OBU sequence representatives to chemical compound classes, the former were
aligned against sequences in the MIBIiG database using the DIAMOND alignment tool.?
MIBIG associates biosynthetic gene clusters (BGCs) with known natural product (NP)
structures, allowing prediction of the product of each matching OBU and as a result,
estimation of the chemical diversity at each sample site. Some distinct OBU sequence
representatives were assigned to the same compound class (for example, five separate
OBU sequence representatives aligned to rifamycin), which resulted in an overestimation of
compound classes present in sediment. To correct for this, the number of times the same
chemical compound class was represented by different OBU sequence representatives was
computed for each chemical compound class. This number was then averaged for all
observed chemical compounds classes and called the “split correction factor” (i.e. a residual
error). To avoid overestimating chemical compound classes present in the sediment, the
total number of observed OBUs was divided by that factor, resulting in less biased
estimation of the chemical compound classes variance present in sediment.

Split correction factor for KSa: 1.517241379

Split correction factor for A: 1.894739749

S6A. List of identified A domain hits after rarefaction and stringent filtering.

# of sequences
Molecular class detected q

Molecular class in x samples belonging to
molecular class

Pyoverdin 39 89

Scabichelin 13 26

Salinichelin 11 31

Albachelin 6 6

Polyoxypeptin 5 18

Cyclomarin D 5 15

Coelichelin 5 5

RP-1776 4 7

Arylomycin 4 5

Phthoxazolin 4

WP s 1

Sarpeptin A/B 3 9

Anikasin 3 6

Aurantimycin A 3 6

Microtermolide A 3 6

Erythrochelin 3 5

Antimycin 3 3

Ficellomycin 3 3
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Mycobactin
Taromycin A
Surugamide A/D
Tolaasin A
Coelibactin
Clorobiocin
Pyxipyrrolone A/B
UK-68,597
Viscosin
Balhimycin

BE-43547
A1/A2/B1/B2/B3/C1/C2

GacamideA
Rakicidin A/B
Telomycin

Cadaside A/B

CDA
1b/2a/2b/3a/3b/4a/4b

Lokisin

Malonomycin
Massetolide A
Myxoprincomide-c506
Oxalomycin B
Rhodochelin

A-47934

Colistin A/B
Cyphomycin
Cystothiazole A
Delftibactin A/B
Friulimicin A/B/C/D
Griseoviridin / fijimycin A
Heterobactin A/S2
Myxochelin A/B
Nunapeptin / nunamycin
Octapeptin C4
Polymyxin
Syringomycin
Thaxteramide C
Virginiamycin S1

Weishanmycin

N N N N N D N N N W

PN NN N

R R R R R R R R R R R R R R R R R R R R R R

=

N W w b~ M OO O 00 W

w N NN N

P R, R R P R R P R R P P P P P N DNDNDDNDNDNDN

[N
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S6B. List of identified KSa domain hits after rarefaction and stringent filtering.

Molecular class

Molecular class detected in
X many samples

# of sequences belonging
to molecular class

Griseorhodin A
Spore pigment

Rosamicin (salinipyrone A
/ pacificanone A)

Meridamycin
Rifamycin
Chaxamycin A/B/C/D
Sceliphrolactam
Epothilone B
Glycopeptidolipid
Rakicidin A/B
Tiacumicin B
7-deoxypactamycin
A83543A
Borrelidin
ECO-02301
Lydicamycin

Methylatedalkyl-
resorcinol/Methylatedacyl-
phloroglucinol

Piericidin Al
Streptovaricin
Tautomycetin

Tylactone

89
33

©

P P P PP N N DN DN O W o N

78
66

25

118
32

16

23

N N

N W W
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Table S7. Correlation coefficients between OTU/OBU groups.

In order to examine the correlation between the presence/absence and abundance between
different OBUs and between OBUs and OTUSs, the correlation coefficient between different
groups was calculated using the following formula:®

Correl(X,Y) = 2(X = Xave) Y = Yave)
\/Z(x - xave)2 Z(y - Yave)z

Where x,4,, and y .. are the sample means.

A correlation coefficient calculates the relationship between two OBU/OTU groups. A
correlation coefficient of -1 denotes an absolute negative relationship, O denotes a lack of
relationship, and 1 denotes a positive correlation. For example, a perfect negative
relationship between two OBUSs indicates that OBU1 is only present when OBU2 is not
present. In contrast, perfect positive relationship indicates that OBU1 is only present when
OBU2 is also present. The correlation between groups tested are reported in Tables S3A-C.
All numbers were rounded up to display two decimals.
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S7A. Correlation coefficients between KSa and A domain OBUSs.

KSa A Domain | Siderophore | Antibiotic | Other bioactive
OBUs OBUs S S NPs
16S OTUs -0.10 -0.05 -0.01 -0.02 -0.25
Actinobacteria | 0.18 -0.09 0.07 0.18 0.39
proteobactert | 913 0.16 0.25 0.19 0.04

In general, there was no correlation between any single KSa or A domain OBU with a
16S OTU within the phyla Actinobacteria or Proteobacteria. These data suggest that of the
NP biosynthetic pathways detected, very few co-occur in the environment. As discussed in
the main article, the lack of correlation may be that either the detected OBUs are associated
with mobile genetic elements and therefore are associated with multiple taxa, or that
differential primer biases (OBU versus OTU) prevented sufficient detection of the necessary
seqguences needed to observe said correlation. Further experiments are required to confirm

this.
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S7B. Correlation coefficients between KSa domain OBUs.

To test for co-occurrence patterns, correlation coefficients were calculated for the

twenty most abundant KSa domain OBUs against each other. This resulted in the correlation
matrix below. The rows and columns indicate the KSa OBUs in order of most to least
abundance. One notable correlation observed was between the most abundant KSa domain
OBU (KSa_1) and the fourteenth most abundant KSa domain OBU (KSa_14). The
correlation coefficient for these OBUs was 0.999987 (reported as 1 in the table). To ensure
that these OBUs were not nearly identical, the sequence representative for these OBUs
were aligned against each other using BLAST.' This yielded an identity of 68.93%. This
suggests that these OBUs may co-occur in the environment, providing evidence of either
phylogenetic or ecological forces that drive regional NP distribution.
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S7C. Correlation coefficients between all A domain OBUs.

Similarly, co-occurrence patterns were examined by calculating correlation
coefficients for the twenty most abundant A domain OBUs against each other. This resulted
in the correlation matrix below. The rows and columns indicate the KSa OBUs in order of
most to least abundance. One notable correlation observed was between the twelfth most
abundant A domain OBU (A_12) and the twentieth most abundant A domain OBU (A_20).
The correlation coefficient for these OBUs was 0.94. To ensure that these OBUs were not
identical, the sequence representative for these OBUs were aligned against each other
using BLAST.* This yielded an identity of 92.00%. This provides additional evidence for
cooccurrence patterns.

A A A Al|AL]AL|AL]AL|AL|AL|AL]AL]AL]A2
1 [ A2 A3 | A AS T | AB A | 1 2 3 4 5 6 7 8 9 0
p 061 | 03 | 062 | 0.15 0.07 | 0.23 | - 0.2 - 0.4 0.24 | 0.4 0.09 | 072 | -
Al 008 | 9 9312 2 o1 |9 9 o1 |9 oo | 9 2 3 o1 |9 9 011 | s
9 4 6
007 | 0o | - 052 | - 061 | - 04 |03 |- ; 02 | o7 |ooz2|- -
A2 6 2 |o3t]3 02 | 6 006 | 1 9 031 | %' | o005 |8 6 3 031 | 2% [ 025
06 | 020 | 057 | - 035 | 015 | 01 | 02 05 | 012 |05 |01 | 046|020 |:
A3 2 |2 5 02 |9 8 9 1 05 [ g 5 6 8 1 5 g.zs 0.44
016 | 0.7 | - 006 | 0.2 | 00 | - 01 | 006 01 | 047 »
A4 4 2 01| %0256 8 9 038 | 5 2 01 14 4 0 021 | 03
; 03 | - 020 | : - 036 | 0.1 | 024 | 02 ; 086 | 0.03 | 042
AS 011 | 3 | o019 | 5 Pl I I 7 1 5 03 | 024 | 7 8 6
; 0.78 02 |o2 |- 05 | - 06 | o5 | o2 |- -
AS 01 | 2 001 ¢ 7 036 | 1 002 | 6 7 5 001 | 933 [ 03
- 037 | - p 023 | - 0.37 - 0.30 | 0.41 | 0.25
A7 o o1 |oo |9 o1 |9 02 o o1 | 2 2 9
6 6 7
; 01 | o3 |- 05 | - 05 | 026 | - - .
A8 016 | 8 2 037 | 9 017 | %7 | 8 7 01 | 9% [ 0s3
p p 0.0 0.95 | | - 0.36 |
A9 01 |00 | -01 00 | o 0.05
9 9 8 5 2 009 | 2 : 0.09
Al 03 | - . ; : 05 | 036 | - - .
0 2 028 | 99 [ 014 |90 |6 9 037 | 918 | 0.24
3 3 9
Al - 0.1 - 0.1 022 | - - -
1 033 | 3 008 | 7 05 14 013 | 9% [ 027
A_l - - p - 0.12 | 035
A 03 | 100 |03 [ 04 ] 5,19 9 0.94
6 5
Al 0.07 | 0.7 0.1 0.48 -
3 8 6 3 6 0321926 f 936
Al p - 038 | -
4 00 0 011 | 4 007 | oo7
1 3
Al 02 | 024 | 030 ]:
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Al 020 | - -
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7 016 | 9% | 036
AL 0.01
A 9 015
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S7D. Correlation coefficients between observed A domain OBUs and Shannon indices.

The correlation coefficient between observed A domain OBUs and Shannon indices
was calculated using the formula in Table S7. The resulting coefficient was 0.69, indicating a
small positive correlation between abundance and diversity in this dataset.

ST7E. Correlation coefficients between observed A domain sequence abundance and OBU
occurrence.

The correlation coefficient between observed A domain sequence abundance and
OBU occurrence (the number of times a given OBU appeared at a given location) was
calculated using the formula in Table S7. The resulting coefficient was 0.37, indicating no
correlation between sequence abundance and OBU occurrence per site in this dataset.
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Table S8. Shannon index and OBU count for individual samples before and after rarefaction.
The number of sequences per sample was rarified to the fewest sequence reads present in
any sample (15 sequences for KSa domain OBUs and 3,487 for A domain OBUs). It was
computed using the scikit-bio’s diversity calculation via QIIME.** The Shannon (aka
Shannon-Wiener) index is defined as:

S
H= - Z(pi log,p;)
i=1

Where s is the number of OBUs and p; is the proportion of the community represented by
OTU i. The Shannon indices reported are for KSa and A domain OBUs before and after
rarefaction. Both data was included because the fewest sequence reads present in KSa
domain samples was too low (15 sequences) for significant conclusions. The Shannon
indices are reported in Tables S8A-B.
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S8A. Shannon index for KSa domain OBUs before and after rarefaction.
After rarefaction

Before rarefaction

Sample
GBO1
GBO3
GB04
GBO5
GBO06
GBO09
GB12
GB17
GB29
GB35
GB36
GB39
GB42
HO0O1
H002
H006
HO12
HO027
H032
HO037
HO038
HO048
HO054
HO061
H096
H101
H102
H103
H104
H107
H108
H109
H110
H118
H119
H121

Shannon
5.45
5.33
4.29
3.83
4.63
5.46
5.18
4.66
4.84
4.63
5.51
5.3
4.83
4.28
2.92
5.02
3.67
4.84
451
3.16
4.1
4.09
1.52
3.5
3.79
4.83
4.1
2.27
3.73
3.05
3.77
2.68
3.19
1.69
3.95
4.24

OBU count
57
42
40
23
39
49
64
26
41
37
55
53
38
23
23
40
20
43
33
19
23
36
28
13
30
35
31
14
15
13
24
8
55
16
25
37

Shannon

3.46
3.77
3.24
2.87
3.13
3.91
3.37
3.91
3.77
3.46
3.91
3.32
3.77
3.51
2.17
3.06
2.74
3.46
3.37
2.61
3.46
3.14
1.56
3.46
3.46
3.64
3.51
1.77
3.37
2.56
2.68
2.68
1.55
1.74
3.06
3.19

OBU count
12
14
11
10
11
15
12
15
14
12
15
11
14
12
-
10
9
12
11
-
12
10
5
12
12
13
12
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H123

H124

HTXD
HTXM
HTXS
HXSG
NC68
NC70
NC71
NC73
NC76
NC77
NC79
NC82
NC83
NC84
NC87
NC88
NC89
TBO1

TBO2

TBO3

TB04

6.28
5.23
4.26
5.55
4.77
5.51
N/A
N/A
N/A
N/A
N/A
N/A
514
6.71
5.38
5.43
6.01
5.69
5.55
574
6.5
5.8
4.18

114
63
26
64
49
68
N/A
N/A
N/A
N/A
N/A
N/A
51
135
99
67
91
55
53
79
97
77
21

3.64
3.77
3.19
3.91
3.46
3.91
N/A
N/A
N/A
N/A
N/A
N/A
3.51
3.77

3.77
3.51
3.77
3.91
3.64
3.91
3.64
3.77

13
14
10
15
12
15
N/A
N/A
N/A
N/A
N/A
N/A
12
14

14
12
14
15
13
15
13
14
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S8B. Shannon index for A domain OBUs before and after rarefaction.
After rarefaction

Before rarefaction

Sample

GBO1
GBO03
GB04
GBO05
GBO06
GB09
GB12
GB17
GB29
GB35
GB36
GB39
GB42
HOO1
HO002
HO06
HO12
HO27
HO032
HO37
HO38
HO048
HO054
HO61
HO096
H101
H102
H103
H104
H107
H108
H109
H110
H118
H119

Shannon

8.95
9.47
9.27
9.34
8.44
10.03
9.64
9.3
9.54
9.77
9.27
9.06
9.34
9.3
9.22
9.25
9.06
9.36
8.96
6.13
9.38
9.21
8.89
8.85
9.19
9.17
9.41
8.92
9.42
9.18
9.11
9.08
9.16
9.95
9.83

oBU
count

1326
1478
1357
1539
1260
1975
1748
1494
1532
1666
1589
1388
1422
1576
1431
1465
1382
1576
1399
919

1494
1404
1175
1213
1367
1382
1478
1304
1472
1418
1432
1348
1362
1783
1684

Shannon OBU count

9.76
10.4
10.05
10.17
9.23
10.03
10.56
9.98
10.38
10.64
10.17
9.75
10.18
10.12
9.98
10.1
9.8
10.13
9.88
6.55
10.29
9.91
9.5
9.32
9.83
9.98
10.15
9.67
10.12
9.96
9.92
9.92
9.99
10.88
10.69

5956
7158
5621
6914
5430
1975
6741
4783
6569
6797
5979
5845
5557
5936
5677
6030
5580
6407
6165
2508
6472
5052
4467
3468
4138
5836
5342
5574
4769
5235
6175
5393
6244
7084
6735
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H121
H123
H124
HTXD
HTXM
HTXS
HXSG
NC68
NC70
NC71
NC73
NC76
NC77
NC79
NC82
NC83
NC84
NC87
NC88
NC89
TBO1
TBO2
TBO3
TBO4

9.36
9.63
9.13
9.6
9.68
9.77
9.77
9.76
9.65
9.8
8.87
8.87
9.05
9.62
9.71
9.69
9.51
9.32
9.36
N/A
9.52
9.65
8.99
8.97

1459
1606
1392
1559
1617
1524
1486
1728
1721
1745
1391
1329
1307
1717
1775
1768
1639
1501
1548
N/A

1457
1417
1328
1156

10.14
10.55
10.04
10.42
10.69
10.61
10.55
10.77
10.82
10.94
9.67
9.64
9.84
10.34
10.8
10.88
10.55
10.25
10.22
N/A
10.32
10.31
9.7
9.49

5248
6806
7168
5848
7125
6173
5964
9532
9611
9350
6408
5979
5450
4791
8694
9247
8432
6832
7740
N/A

6129
5227
4152
4105
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Figure S1. Rarefaction curves to estimate A and KSa domain OBU diversity
S1A. Rarefaction curve for A domain OBUs
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S1B. Rarefaction curve for KSa domain OBUs
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Figure S2. A and KSa domain OBU and sequence abundances.

The sequence read abundance at each collection site was mapped and represented as
different sized circles. A-D show the relative abundances of A domain OBUs clustered at
85% (A), of A domain sequences (B), KSa domain OBUs clustered at 85% (C), and KSa
domain sequences. (D), respectively. Sequences were rarified at 13 sequences per sample
for KSa domain sequences and at a rarefaction of 3,487 sequences per sample for A
domain sequences to map known sequences.
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Figure S3. Occurrence of known antibiotics in Lake Huron sediment. Sequences were
rarified at 13 sequences per sample for KSa domain sequences and at a rarefaction of 3,487
sequences per sample for A domain sequences before mapping.

S3A. Occurrence of anikasin-like molecules in Lake Huron sediment.
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S3B. Occurrence of aurantimycin-like molecules in Lake Huron sediment.
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S3C. Occurrence of chaxamycin-like molecules in Lake Huron sediment.
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S3D. Occurrence of ficellomycin-like molecules in Lake Huron sediment.
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S3E. Occurrence of taromycin-like molecules in Lake Huron sediment.
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S3F. Occurrence of rosamycin-like molecules in Lake Huron sediment.

0.0
® 25
® so
® s
® 10

lat

long

Rifamycins
a“ 0

® s

® o

-84 83 82 81 -80
long

S3G. Occurrence of rifamycin-like molecules in Lake Huron sediment.
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Figure S4. Occurrence of known siderophores in Lake Huron sediment.
S4A. Occurrence of erythrochelin-like molecules in Lake Huron sediment.
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S4B. Occurrence of albachelin-like molecules in Lake Huron sediment.
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S4C. Occurrence of mycobactin-like molecules in Lake Huron sediment.
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S4D. Occurrence of coelibactin-like molecules in Lake Huron sediment.
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Figure S5. Occurrence of all other known, detected bioactive natural products in Lake Huron
sediment. Sequences were rarified at 13 sequences per sample for KSa domain sequences
and at a rarefaction of 3,487 sequences per sample for A domain sequences before
mapping.

S5A. Occurrence of meridamycin-like molecules in Lake Huron sediment.
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S5C. Occurrence of phthoxazolin-like molecules in Lake Huron sediment.
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S5E. Occurrence of epothilone-like molecules in Lake Huron sediment.
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S5F. Occurrence of rakicidin-like molecules in Lake Huron sediment.

RN
o
5"
-84 83 82 81 -

46

45

44

43

long

-80

Rakicidins
0

® 5

@ 10

® 5

O 2

S5G. Occurrence of tiacumicin-like molecules in Lake Huron sediment.
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S5H. Occurrence of griseorhodin-like molecules in Lake Huron sediment.
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Supplementary Discussion.

Of the known identified OBUs, those corresponding to antibiotics and other bioactive
compounds were scarce in comparison to siderophores; on average, four sequence reads,
and six sequence reads were detected per location for antibiotics and other bioactive
compounds, respectively. In contrast, ten sequence reads were detected per location for
siderophores. One potential explanation for this is that bacteria more commonly use
siderophores in the environment. Siderophores are essential for a microbe’s survival: they
chelate essential metals and thereby make them available for use in processes such as
oxygen metabolism, and DNA and RNA syntheses.***® Strains that are relevant for the field
of NP drug discovery are present in undetectable amounts in sediment.** This might be the
reason a large proportion of the OBUs (98.3% KSa domain OBUs and 99.9% of A domain
OBUS, respectively) failed to match any of the compounds available in the MIBIG database.
It is also worth noting there was no observed correlation between OBU presence/abundance
and OTU presence/abundance (Supp. Table S7).

Expanded experimental limitations discussion.
The need for novel approaches to improve detection of NP BGCs from eDNA.

There are a few experimental limitations to the current study. First, the low
abundance of sequence reads belonging to NPs can be attributed to limited eDNA extracted
from sediment and biases generated from PCR amplification using highly degenerate
primers. In addition, the resulting amplicons are only partially representative of the BGC
population present in sediment: (1) the eDNA extraction step is biased towards non-spore
forming bacteria, (2) the primers used in this study target a limited range of bacterial taxa,
since they were designed specifically for Actinobacteria sequences (A domain primers) or a
small subset of Actinobacteria, such as Streptomyces spp. (KSa domain primers), and (3)
PCR amplification itself yields a distorted representation of the true distribution of gene
targets. Yet, these primers and PCR conditions are commonly used to evaluate BGC
diversity in eDNA from various environments. The design of new, more inclusive primers will
be vital for the discovery of non-traditional BGCs. Similarly, alternative, non-PCR-based
approaches may also be necessary. Such approaches include deep shotgun metagenome
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sequencing coupled with long-read sequence data (e.g. Oxford Nanopore, PacBio, Loop
Genomics), or enrichment sequencing (e.g., Oxford Nanopore selective sequencing,
hybridization capture+shotgun metagenome sequencing). Finally, the MIBIG database was
used to assess molecular classes.” The number of existing NPs greatly outnumbers the
number of entries in MIBiG, underlining the need for the community to contribute to this and
similar existing databases to identify NPs.
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Annexure E: List of Abbreviations

16S rRNA

AMR
antiSMASH
ARTS
AT
ATP
BGC
BinAC
BLAST
bp
CMFI
DEBS
deNBI
DFG
DNA
DZIF
GCF
HMM
IBMI
IMIT
kb

KR
KS
MAG
MBEZ
MDR
MiBIG
NABI
NaPDoS
NCBI
NCCT
NGS
NIH
NP
NRPS
PacBio
PCP
PCR
Pfam
pHMM
PKS
RiPP
RNA
SM
TE
TELL-seq

16S ribosomal ribonucleic acid (rRNA), where S (Svedberg) is a unit of measurement of

sedimentation rate

antimicrobial resistance

antibiotics & Secondary Metabolite AnalysisShell
Antibiotic Resistant Target Seeker

acyl transferase

Adenosine Triphosphate

Biosynthetic Gene Cluster

Bioinformatics and Astrophysics Cluster

Basic Local Alignment Search Tool

basepair

Controlling Microorganisms to Fight Infections
6-Deoxyerythronolide B Synthase

German Network for Bioinformatics Infrastructure
German Research Foundation (Deutsche Forschungsgemeinschaft)
Deoxyribonucleic acid

Deutsche Zentrum fiir Infektionsforschung

Gene Cluster Family

Hidden Markov Model

Interfaculty Institute for Biomedical Informatics
Interfaculty Institute for Microbiology and Infection Medicine Tiibingen
kilobase

ketoreductase

ketosynthase

Metagenome Assembled Genome

Metagenome biosynthesis potential exploration easy tool
Multi-Drug Resistant

Minimum Information about a Biosynthetic Gene cluster
National Agri Food Biotechnology Institute

Natural Product Domain Seeker

National Center for Biotechnology Information

NGS Competence Center Tubingen

Next Generation Sequencing

National Institute of Health

Natural Product

Non-Ribosomal Peptide Synthetase

Pacific Biosystems

Peptide Carrier Protein

Polymerase Chain Reaction

Protein family

profile Hidden Markov Model

Polyketide Synthases

ribosomally synthesized and post-translationally modified peptides
Ribonucleic acid

Secondary Metabolite

thioesterase

Transposase Enzyme Linked Long-read Sequencing
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