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P R E FA C E

Sleep and sleep stages are well preserved across many species and are ac-
companied by the regular occurrence of several types of transient events,
e.g., slow oscillations, spindles, sharp wave-ripples, theta oscillations and
ponto-geniculo-occipital waves. Converging experimental evidence has shown
that these transient events are key to the process of memory consolidation
and homeostasis during sleep.

In my thesis, I would like to investigate the interplay between events and
the underlying network mechanisms. In particular, I am interested in uncov-
ering the mechanism that gives rise to the events and understanding what ef-
fects these events exert on the underlying network. Potentially, this involves
the characterization of network properties in a state-dependent manner.

My work is focused on addressing these questions with modeling ap-
proaches. My projects cover the use of both biophysical models that have
the benefits of the interpretability of the underlying network properties and
statistical models that can be used to infer the properties of the system based
on experimental data. While neither model is perfect, I will discuss at the
end how we can have a hybrid model that captures the advantages of both.

xi





S U M M A RY

Sleep and its major functions require the precise coordination of transient
mechanisms at multiple spatiotemporal scales. These phenomena are re-
flected in neural signals by the spontaneous occurrence of a variety of oscil-
latory patterns that we call neural events. At the systems level, the network
dynamics determine how and when such events are generated. Conversely,
the occurrence of events also influences the underlying network properties.
We are interested in the interplay between the events and the underlying
network mechanisms to address the potential functions of transient activity
during sleep. In this thesis, we achieve this goal with both biophysical and
statistical modelling approaches.

In Chapter 1, which is designed as a background introduction, we demon- an introductory
chapter for
background
knowledge and
overview

strate the functional significance of spontaneous transient neural events dur-
ing sleep in memory consolidation and homeostasis. We then provide a re-
view for some mechanistic and functional properties of typical events that
occur during different stages of sleep. Afterward, we provide a mind-map of
the major contents of this thesis that guides the readers into the subsequent
chapters and link them to the reviewed physiological facts.

In Chapter 2, we present the project of biophysical modeling of one par-
ticular type of neural event, the Ponto-Geniculo-Occipital (PGO) waves, to
understand how they influence cortical plasticity. Based on physiological ev- a chapter for

biophysical modelling
of events and
event-triggered
plasticity

idence, the model we have built is an acetylcholine-modulated neural mass
model of PGO wave propagation through pons, thalamus and cortex, repro-
ducing a broad range of empirical electrophysiological characteristics and
their modifications across sleep stages. Using a population model of Spike-
Time-Dependent Plasticity (STDP), we show that PGO waves drive recurrent
cortical circuits in different transient regimes depending on the sleep stage,
leading respectively to the potentiation of cortico-cortical synapses during
the pre-REM stage and their depression during REM sleep. Overall, our re-
sults provide a new view on how transient sleep events and their associated
sleep stage may implement precise control of system-wide plastic changes.

In Chapter 3, we start the line of statistical modelling of experimental
event ensembles to reflect dynamical phenomena emerging in complex sys-
tems. We consider the problem of learning accurate models of the peri- a chapter for

statistical modelling
of state-dependent
network dynamics
based on event
ensembles

event dynamics based only on data gathered by detecting these transient
events, as a widely-used approach to analyze spontaneous brain activities.
We show, however, the event detection procedure entails a selection bias
that leads to misrepresentation of the system properties. We analyze the se-
lection bias in the frameworks of dynamical systems and Structural Causal
Models (SCMs), and develop the Debiased Snapshot (DeSnap) approach to
de-bias the time-varying system properties estimated from such peri-event
data. As results, we demonstrate the benefits of this de-biasing approach
on toy examples and neural time series. In both cases, DeSnap reduces ar-
tifactual high-frequency peaks caused by the event detection procedure ap-
pearing in the spectrograms of the learned systems. Overall, these results
suggest that peri-event analysis of spontaneous activities is prone to biases
due to event selection, which can be detected and corrected by proper use
of time-varying stochastic models.

xiii
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In Chapter 4, we focus on quantifying brain-wide network interactions
based on simultaneous recordings of events in multiple structures. In thisa chapter for causal

investigation between
transient events

context, information-theoretic tools like Kullback-Leibler Divergence allow
us to design interpretable measures of causal influence based on princi-
ples of causality studies. We review several causality measures based on
these tools that are designed for stationary signals and extend them to
time-varying versions relying on time-varying Vector Autoregressive (VAR)
models. Using the formalism of SCM and their graphical representation, we
investigate the theoretical and empirical properties of these time-varying
causality measures when they are applied to peri-event data. After showing
the limitations of Transfer Entropy and Dynamic Causal Strength defined
in the literature, we introduce a novel measure, relative Dynamic Causal
Strength, and provide theoretical and empirical support for its benefits. In
combination with the DeSnap algorithm, these measures are applied to sim-
ulated and experimentally recorded neural time series, providing results in
agreement with our current understanding of the underlying neural circuits.

The last chapter is dedicated to an outlook, a potential way to combine
the methodology of Chapter 2 and Chapter 3 in order to learn data-driven
dynamics and validate our theoretical predictions of event-triggered corti-
cal synaptic rescaling. The problem is that the electrophysiological activitiesan outlook describing

the design of linking
the results of

Chapter 2 and
Chapter 3 in a hybrid

model

critical to implement the STDP rule are inaccessible through experimental
recordings. However, we can design a biophysically meaningful Recurrent
Neural Network based on a simplified cortical model (as part of our PGO
model). By training such a network with local field potentials recorded ex-
perimentally, we might be able to recover these plasticity-related activities
as hidden layer responses of the network. Thus this hybrid model is promis-
ing to check whether the opposite plasticity effect triggered by two subtypes
of PGO waves is consistent with our model prediction.
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1.1 transient events during sleep

1.1.1 Sleep and sleep functions

Sleep, a major component of the life of mammalian species, is essential to
their survival. During this physiological process, although external sensory
stimuli are shut down, the mammalian brain is able to implement the nu-
merous key functions, which, based on current knwoledge, include energy
restoration[12], immunological enhancement [228], homeostasis [56, 236]
and cognitive functions like memory consolidation [122] and emotional reg-
ulation [238]. Among these functions, homeostasis and memory consolida- Two major functions

of sleeption are two fundamental functional roles of sleep [122].
Both functions are represented in the plastic changes of synapses con-

necting neurons into functional circuits. For homeostasis, as proposed by
the Synaptic Homeostasis Hypothesis (SHY), synapses strengthened due to
learning experience during wakefulness are weakened during sleep [235,
236, 237]. This is hypothesized to reflect a global homeostatic regulation of
synaptic connectivity to avoid unsuitable network behaviors (i.e., network
instability). During memory consolidation, synaptic connections are selec-
tively enhanced to encode novel memory traces into existing neural net-
works. These synaptic modifications can occur in both local circuits, and at
the systems level, e.g., memory representations can be transferred from the
hippocampus to the neocortex for more stable long-term storage.

Despite early debates, current evidence suggests that these two functions
are not mutually exclusive [237, 122, 190, 189]. An overall synaptic down-
scaling at the population level can be accompanied by upscaling specific
synapses hosting important memory traces. Both functions contribute to
the stabilized long-term storage of memory engrams, which is critical for
the everyday survival.

1.1.2 Coordination of spontaneous transient mechanism contributes to synaptic
rescaling

Experimental evidence suggests that many brain functions rely on transient
network mechanisms that manifest themselves in the multiplicity of neural Here, transient

mechanisms refer to
properities of
dynamical systems,
while events are
observations

events that can be observed in brain activity across multiple structures.
Such phenomena may occur in response to stimuli, as has been observed

for gamma oscillations [232, 74], and may play a role in the dynamic encod-
ing of information. However, key phenomena can also occur spontaneously,
as the variety of events occurring during both Rapid-Eye-Movement (REM)
sleep and non-Rapid-Eye-Movement (NREM) sleep. Given as examples, the
major functionally significant transient sleep events include slow oscilla-
tions (SOs), thalamic spindles, hippocampal sharp wave-ripples (SPW-Rs),
hippocampal theta oscillations and Ponto-Geniculo-Occipital (PGO) waves
[63, 122, 190]. Figure 1.1 illustrates the spread of these events across brain re-
gions and sleep stages. Notably, apart from NREM and REM sleep, a third

3
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sleep stage, the pre-REM stage (defined as the transition between NREM
and REM stages) is also critcal for the study of sleep events.

It has been hypothesized that the precise coordination of transient mecha-
nisms at multiple spatiotemporal scales ensuring both the synergy between
modules contributing to the same task and the non-interference between
network activities in charge of different functions [192, 122, 189, 26].

These transient sleep phenomena have received great attention in the last
decades, especially the ones occurring during NREM sleep [27, 222, 211,
190, 122, 236, 237, 241]. While local mechanisms of transient event genera-
tion are relatively clear nowadays, many aspects of events remain elusive.
Specifically, in this thesis, we attempt to address two key questions:two key questions to

address in the thesis
1. How are different transient events coordinated together?

Accumulating evidence has shown that multiple types of events oc-
curring in different brain regions appear synchronized with specific
phase-locking relationships. At the same time, such co-occurrence is
more beneficial to memory consolidation than isolated events (see Sec-
tion 1.1.3.4, Section 1.1.4.3). It is curious to ask what are the mechanism
underlying such coordination. At the systems level, this resorts to ex-
ploring the internal dynamics within the inter-regional brain network
and the causal interactions that some drive the others. Understanding
such mechanisms will help to elucidate how different brain regions
activated during event co-occurrence communicate and cooperate to
perform the same task of memory processing.

2. How does these transient events contribute to synaptic rescaling?

Transient events, either detected in electroencephalogram (EEG) or lo-
cal field potentials (LFPs), are accompanied by (and generated from)
specific firing patterns in the hosting neurons. These patterns might
exhibit spike-time relationships that favour specific plastic changes in
the synapses. Given the consensus that memory promotion during
sleep is implemented by the adjustment of synaptic connectivities over
night, it is critical to form a mechanistic understanding of how synap-
tic rescaling is achieved by specific events, both in local neural circuits
and distributed brain networks.

These two questions, although addressing different aspects of the sys-
tem dynamics underlying event occurrence, are closely related (e.g., see
Section 1.1.3.4). The coordinated interplay between different event-hosting
regions might generate specific circuit dynamics forming the basis of event-
triggered plasticity changes. Reversely, synaptic strengthing or weakening
might re-organize the connectivity structure, which in turn alters the inter-
actions between different neurons within the circuit.

The following section will include an introduction to transient events
related to the thesis. Considering the emerging functional significance oflogic design of next

section hippocampal-neocortical-thalamic system in memory consolidation, together
with the specialized focus of our lab on PGO waves, the introduction will
be confined to the five types of aforementioned transient events, as illus-
trated in Figure 1.1. With the immense literature exploring these events, it
is impossible to provide an overview of all aspects of them. Therefore, the
introduction will focus on the following aspects:

• Some electrophysiological characteristics

• The brain regions and species a certain event manifest itself
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• Summary of generation mechanism

• Evidence supporting the role of a certain event in memory consolida-
tion

• Evidence to answer the two key questions

The purpose of such a design is the following. Reviewing the first two as-
pects is to familiarize the readers with some basic facts related to each type
of event. Mechanisms underlying event generation are briefly explained to
prepare useful mechanistic knowledge for the readers to understand later
discussions. Presenting the related evidence in memory consolidation jus-
tifies the significance of events we investigated in the thesis. Finally, we
discuss the most important evidence that addresses the two key questions.
Besides, the contributions of this thesis to each point, if any, will be briefly
mentioned. An overview of the links between the results of the thesis and
the background facts are established in Section 1.2.

Notably, reviews of events’ functional roles often fall into piling up ex-
perimental facts without providing a logical chain. To avoid such confusion
in the 4th point, the following will present the evidence with the classical
rationale to confirm that a particular event contributes causally to memory
consolidation. As the validation of any variables in any system, the first step
is to find the association (or linearly, correlation) between the occurrence
events and certain task performance as a sign of memory consolidation. A
causal role is further validated by manipulating the system under study
and comparing the outcome before and after manipulation. In the case of
transient events, such manipulations include disrupting and further enhanc-
ing the events by mediating the event generation circuits. This is possibly
implemented by lesions, pharmocological interventions (e.g. injecting the
agonists/antagonists that controls the generation of certain events), opto-
genetic control of the underlying circuits or different types of stimulations.
Associations between the change of task performance and the decrease or
increase of events after disruption or enhancement suggest a causal role of
this event in memory consolidation.

For the last point, synchronized occurrence of events and event-based
coordination of large-scale brain networks in Section 1.1.3.4, Section 1.1.4.3
and Section 1.1.4.4. Research status regarding the synaptic changes triggered
by transient events will be introduced for each event and for each coupling
of different events.

1.1.3 NREM events

Three major network rhythms occurring during NREM sleep are SOs, spin-
dles, and SPW-Rs. for abbreviations

check Section 1.1.2

1.1.3.1 Slow oscillations (SOs)

One of the most prominent features of NREM sleep is the SOs (<1Hz), ap-
pearing as the alternation between synchronized network hyperpolarization
(DOWN state) and synchronized depolarization (UP state) of neuronal pop-
ulations. A transient sharp biphasic SO is also referred to as a K-complex
(see Figure 1.1). SOs are generated within the cortex (layer 2/3 and 5) while Both SOs and

K-complexes will be
reproduced in a
neural mass model in
Chapter 2

propagating as travelling waves to a whole range of cortical and subcortical
regions, including the hippocampus [152, 174, 245].
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Figure 1.1: Overview of the manifestation of five typical transient neural events
during wakefulness and sleep across brain regions. The color-coded
half-transparent block, consistent with the corresponding colored names,
mark the sleep stages and regions each type of event spans during the
transition between wakefulness and sleep.

Both animal and human studies have provided evidence supporting the
causal role of SOs in memory consolidation. Correlational correspondence
between, on the one hand, the post-learning amount and intensity of SOs,
and on the other hand, the performance measures (declarative memory
retention/improvement on procedural tasks) has been reported in many
species [78, 233, 165, 145]. Reduction of SOs by transcranial stimulation is
reported to be correlated with impairment of memory retention after sleep
[79]. Furthermore, enhanced SOs via non-invasive brain stimulation tech-
niques contributes to improvement of memory consolidation performance
[171, 172, 151, 150, 180, 131].

There is still an ongoing debate on whether SOs promotes consolidation
via synaptic weakening, strengthening, or both [189]. SO-triggered depoten-
tiation has been long proposed by SHY, which was confirmed by a series
of experiments. For example, an optogenetically controlled Spike-Timing-
dependent-Plasticity (STDP) experiment in anesthetized rodents suggests
that the DOWN and UP states of SOs modulate the STDP rule implemented
by the circuit [87]. Conventional STDP is discovered during the DOWN state.
In contrast, another type of STDP rule found during the UP state is biased
towards depression, suggesting a gating mechanism that favors overall de-
pression during SOs.

However, other studies also suggest that SOs can induce synaptic strength-
ening. For example, SOs induced by in vivo pre-thalamic stimulation leads
to Long-term Potentiation (LTP) in the somatosensory cortex [32]. Besides,
SOs appearing together with spindles has been linked to LTP indirectly [173]
(see also Section 1.1.3.2 and Section 1.1.3.4). As the experiments are all con-
ducted for different brain regions in different conditions, it is still unclear
under which circumstances either these two directions of synaptic rescaling
occurs. Our modelling results presented in Chapter 2.3.5 support the role
of SOs in synaptic upscaling when SOs (K-complexes) are induced by PGO
waves or when they co-occur with spindles.
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1.1.3.2 Spindles

Another pronounced rhythm characterizing NREM sleep is the spindles,
which is prominent in the frequency band of 7-15Hz.

A typical spindle lasts 0.5-2 sec exhibiting a waxing and wining "spindle"-
like waveform. Originated in the thalamus, the spindle oscillations are gen- The

spindle-generating
mechanism will be
elaborated in
Section 2.2.3.1 and
Section 4.3.3

erated by the T-current modulated bursting activities in TRN neurons [220,
219]. TRN neurons pacemakes the T-current controlled bursting of thalam-
ocortical neurons to form the spindle rhythm [221, 222]. The initialization
and termination of the spindles are likely controlled by the cortex [35]. These
mechanisms form the basis for our reproduction of thalamocortical spindles
in a neural mass model in Chapter 2, and the interpretation of causal analy-
sis in Section 4.3.3 and Section 4.3.4.2.

Regarding the correlational role of spindle in memory consolidation, ex-
tensive studies in both humans and rats showed that spindle density during
NREM sleep after learning was increased [164, 70, 161] and correlated with
the subsequent task performance [40, 205, 77, 78, 234, 73, 194]. Furthermore,
the causal role of spindles in memory consolidation has been established by
manipulating spindle oscillations. For example, enhanced spindles via phar-
mocological interventions [160], optogenetic stimulation [128] or auditory
closed-loop stimulation [171] are all associated with improved task perfor-
mance reflecting the retention of memory contents.

Spindle-triggered plasticity in the cortex has also been addressed in many
studies. One crucial early evidence is the study reported in [197] where stim-
ulating cortical pyramidal neurons with experimentally recorded neuronal
firing patterns in vivo is able to induce LTP in vitro. More recently, an in
vivo imaging study revealed that spindles in rodents are accompanied by
transiently enhanced dendritic calcium influx into the cortical pyramidal
neurons [210]. As increased dendritic calcium activities have now been well-
accepted as a pre-requisite for LTP induction, this result suggests that the
LTP-triggered in vitro is likely to exist in vivo as well.

To elucidate the effects of potential spindle-triggered LTP in local circuits,
another two-photon calcium imaging study shows that isolated spindles
and spindle nested in the UP state of an SO modulates the firing rates of Population firing

rates can be an
indirect sign of
plasticity when the
synaptic strength are
not easily accessible

three types of cortical neurons in different manners [173]. Specifically, the
co-occurrence of SOs and spindles leads to a three-times-higher increase
of cortical pyramidal neurons than isolated spindles, while the discharge
changes of two other inhibitory neurons remain unaffected by the timing
of spindles. Such differentiated modulation of firing rates, which is sup-
ported by our modelling results in Section 2.3.5, suggests a functional role
of spindle-triggered LTP in re-organizing the local circuits and altering the
network dynamics.

1.1.3.3 Sharp Wave-Ripples

The third type of transient oscillation dominating NREM sleep is the SPW-
Rs, which also occur during quiet wakefulness (Figure 1.1).

Phenomenologically, SPW-Rs consists of two components - the sharp waves
appearing as large low-frequency deflections in the hippocampal LFPs and
high-frequency ripples (140-250 Hz) as the fast-field oscillations. Mecha-
nistically, the SPW-Rs are primarily generated in the CA1 area of the hip-
pocampus [41, 252, 193]. The somas of CA1 pyramidal cells are located in
the pyramidal layer (stratum pyramidale), while their apical dendritic trees
largely occupy the stratum radiatum. Driven by strong synchronous excita-
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tory inputs from CA3 neurons, the dendritic trees of CA1 neurons generate
post-synaptic activities, corresponding to LFP activities in the low frequen-
cies (0-30 Hz, due to the sharp-wave) and in the gamma band (30-80 Hz)
due to CA3 oscillations. Then the dendritic activities propagate to the soma,
where recurrent interactions between inhibitory and excitatory cells gener-
ate a very fast oscillation, the ripple. These mechanisms forms the basis of
causal analysis validation in Section 3.3.3.1.

SPW-Rs have been the focus of extensive work on sleep-dependent mem-
ory consolidation over the last two decades. This is mainly due to evidence
that SPW-Rs are accompanied with sequential reactivation of neurons en-
coding memory traces learned during wakefulness, making it a strong can-
didate for strengthening existing memory traces and embedding new mem-
ory traces into the existing neuronal networks [112, 83, 129, 187]. Indeed, a
large block of experimental evidence supports the role of SPW-Rs in mem-
ory consolidation: increase of SPW-Rs occurrence and frequency correlates
with improvement of post-training learning performance both in rodents
humans [71, 82, 2]. On the other hand, removing the SPW-R activities is suf-
ficient to impair learning performance, suggesting that SPW-Rs are essential
to consolidation processes [67, 81, 109].

Regarding event-triggered synaptic changes, SPW-Rs are assumed to pro-
mote hippocampal and cortical plasticity. The rationale behind this assump-
tion is the following: during SPW-Rs, specific hippocampal ensembles are
synchronously co-activated, making them likely to optimally impact STDP-
based plasticity [245, 136]. Notably, high-frequency bursts occurring during
SPW-Rs mimic tetanic stimulation protocols used to induce hippocampal
LTP [10, 7, 25, 28].

1.1.3.4 Coupling between NREM events

These three NREM events are often found to co-occur with a precise tempo-
ral relationship between one another.

As mentioned previously in Section 1.1.3.2, the coupling between SO and
spindles is able to trigger stronger enhancement of cortical firing rates of ex-
citatory neurons. Actually, numerous studies have suggested that spindles
nested in the UP state of an SO is the central mechanism underlying NREM-
based consolidation (see [122] for a review). Correlation evidence includes
the study where transcranial stimulation of SO activity in patients with mild
cognitive impairment improved both SO-spindle coupling and memory per-
formance after sleep [126]. Causal evidence can be provided by the results in
[128] where spindles induced by optogenetic thalamic stimulation enhanced
context-conditioned fear memory only when the spindles were induced in
phase-lock with spontaneously occurring SO UP state.

Synchronized occurrence of SOs and SPW-Rs are also proposed to be es-
sential for consolidating memory information. For example, [147] shows
task performance for recalling is higher if auditorily stimulated SOs are
synchronized with SPW-Rs compared to unsynchronized cases. A theoreti-
cal framework of synaptic plastic pressure has also been proposed a specific
role of the DOWN→UP in [136]: the isolated DOWN→UP transition rescales
cortical synapses based on their intrinsic firing rates while promotes the en-
coding of new memory traces when SPW-Rs co-occur with the DOWN→UP
transition.

Recent reviews (e.g.[122, 181]) have also addressed the functional signifi-
cance of a triplet coupling between SOs, spindles, and SPW-Rs, appearing
in both human [36, 218] and rodents [162, 128, 147]. The triplet coupling
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exhibits a precise temporal relationship where spindles are nested in the UP
state of SOs while SPW-Rs, together with the accompanying hippocampal
neuronal reactivation, nest in the excitable troughs of spindles [215]. It has
been proposed that the precise coordination between three events imple-
ment an inter-regional loop within the memory system with both top-down
and bottom-up control [122]. In the top-down direction, the DOWN state recalling the

existence of
conventional STDP
during DOWN
states, as introduced
in Section 1.1.3.1

of cortical SOs provides a general timing window for information transmis-
sion and plasticity by suppressing thalamic spindles, hippocampal SPW-Rs,
and associated replay. The following UP state then drives the generation
of thalamic spindles, which, in turn, act on hippocampal networks to syn-
chronize ripples and ensemble reactivations to their excitable troughs. In
other words, spindles control the timing of hippocampal reactivation. In the
opposite bottom-up direction, simultaneously, spindles spread to the cortex
and reach target networks still during the excitable SO up-state, a condition
facilitating synaptic consolidation processes in these networks.

1.1.4 REM events

The REM stage is characterized by the occurence of theta oscillations and
PGO waves.

1.1.4.1 Theta oscillations

Theta rhythms, which oscillate in the band 4-12 Hz, are the most prominent
feature of REM sleep. Theta activities appear primarily in the hippocampus
and other brain regions, especially those related to emotional memory, e.g.,
the amygdala, anterior cingulate cortex, and dorsolateral prefrontal cortex.
The generation of hippocampal theta oscillations is driven by medial septal
input [21, 256, 183], which are later mediated by parvalbumin-expressing
(PV+) fast-spiking interneurons within the hippocampus [179, 177].

A growing body of evidence supports the role of theta waves in memory
consolidation in humans and animals [175, 188, 179, 177]. An early study
found that increases of theta activities immediately following training on
a spatial visual discrimination task improved rats’ task performance [243].
In rodents, cued fear learning in rats was shown to increase theta coher-
ence between hippocampus and amygdala during subsequent REM sleep,
and this increase in coherence predicted the success of associative memory
consolidation [188]. Causally, induction of hippocampal theta activities by
optogenetic stimulation of PV+ interneurons compensated for the adverse
effects of sleep deprivation on the consolidation of fear memories in mice
[179, 177].

At the cellular level, theta oscillations are known to support replay of
hippocampal place cell sequences, following their sequential activation dur-
ing experience [142]. Local network effects triggered by theta oscillations
has been revealed under the paradigm of contextual fear memory learn-
ing, where the consolidation is predicted by the long-term stabilization of
spike-timing relationships [178] that favors STDP induction [195]. Electro-
physiological data in these experiments shows that the resonance of CA1

pyramidal neurons, in response to the rhythmic activities in local PV+ fast
spiking neurons, is associated with the stabilization of spike-timing rela-
tionships [179]. The causal role of the resonance in stabilization is validated
via manipulating the theta oscillations: pharmocogenetic or optogenetic dis-
ruptions of the theta oscillations destabilized CA1 spike-timing relationship
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and impairs the consolidation of contextual fear memory [179], while opto-
genetic enhancement of theta oscillations rescues the impairment [177]. To-
gether, available evidence suggests that the highly regular theta-frequency
activity that paces hippocampal neurons’ firing during REM drives network
plasticity and plays a critical role for hippocampally mediated memory con-
solidation.

1.1.4.2 Ponto-Geniculo-Occipital Waves

As another feature of REM sleep, a typical PGO wave often displays biphasic
waveforms in LFP activity traces, comprising of a fast-negative component
preceding a slower, weaker positive component, possibly followed by more
minor fluctuations [88, 30, 43]. Despite the three critical structures - the
Pons, the Lateral Geniculate Body of the thalamus, and the Occipital cortex -
where PGO waves are most frequently observed and named after [113], PGO
waves also manifest themselves in a broad range of brain structures in a
variety of species, e.g., cats [113, 97, 43], rodents [120, 55, 58, 57], non-human
primates [37, 192] and humans [139, 72]. Interestingly, during pre-REM andTwo subtypes of

PGO waves REM stages PGO waves exhibit two distinct subtypes [18]: during pre-REM
sleep they appear more in high-amplitude singlets [20] whereas REM PGO
waves tend to cluster in 3-5 successive weaker deflections [24, 20, 166, 47].

Electrophysiological evidence has shown that these two subtypes of PGO
waves are generated by the same cellular mechanism, which will be exten-
sively elaborated in Chapter 2. Here the mechanisms will be briefly summa-
rized. Triggered by the bursting of a small group of neurons in the pons, the
PGO-related activities propagate to the thalamocortical networks and gen-
erate the region-specific waveforms with the interactions between several
types of neuronal populations related to visual information processing. The
differentiation between the two subtypes is implemented by different types
of bursting activities (single/clustered) and the cholinergic modulation of
cellular activities.

A series of studies from Subimal Datta has demonstrated that PGO waves
are potentially involved in the consolidation of emotional memory [45].
In rats, an increase in P-wave density, either occurring spontaneously af-In rodents, PGO

waves are called
P-waves, which
propagate to the

hippocampus,
entorhinal cortex,

and amygdala instead
of the thalamus and

neocortex

ter learning or induced by injecting an acetylcholine agonist Carbachol, is
shown to correlate with effective consolidation performance during post-
training REM sleep [44, 51, 153, 53]. As for causal interventions, P-waves
induced by injecting the same agonist is able to prevent the learning impair-
ment caused by REM sleep deprivation [52].

Follow-up research in rats by the same group has shown that training-
activated P-waves trigger a cascade of plasticity-related gene expressions
and protein synthesis in the dorsal hippocampus and amygdala [50, 54].
This causal relationship between P-wave and the genetic process has been
validated by disruption experiments [50], suggesting the existence of P-
wave-triggered plasticity process in the hippocampus, although the direc-
tion of synaptic rescaling is upon further exploration. However, local synap-
tic effects triggered by PGO waves remain relatively unexplored and thus
speculative in other brain regions or species, e.g., cats and monkeys. With a
PGO neural mass model based on feline electrophysiological data, we will
show in Section 2.3.5 that the two subtypes of PGO waves are able to induce
opposite plastic effects in the cortical circuits during different sleep stages.
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1.1.4.3 Coupling between PGO waves and hippocampal events

As theta oscillations and REM PGO waves both occur during REM sleep, it is
natural to speculate their co-occurrence, which has been indeed supported
by early studies [204]. Several studies have demonstrated a correlational PGO-theta coupling

relationship between sustained theta activities and PGO waves in cats and
rodents, either through the phase-locking between extracellular potentials
[134, 118, 117] or through the positive correlation between theta-triggered
firing rate and PGO densities [119, 169]. A subsequent study revealed that
theta oscillations accelerate shortly before the negative peak of PGO waves,
suggesting directional interactions between these two events [118]. Outside
the pontine-hippocampus system, the intensity of P-waves is also reported
to modulate the synchronization between theta oscillations in the hippocam-
pus and amygdala [116].

In addition to PGO-theta coupling during REM sleep, a recent study in
our lab has provided evidence for the putative co-occurrence between pre-
REM PGO waves and the other hippocampal events, the SPW-Rs [192]. This putative PGO-ripple

couplingstudy is based on electrophysiological recordings in anesthetized monkeys,
exhibiting the alternation between two states resembling the NREM and
REM stages, which are accompanied by two subtypes of PGO waves that are
similar to pre-REM and REM PGO waves. Interestingly, during the NREM-
like state, high-frequency ripple-band and high-gamma-band activities are
found to be coupled to pre-REM-like PGOs while low-frequency transient
theta activities are reported to synchronize with REM-like PGOs. Our data
analysis results in Section 3.3.3.2 also confirms that ripple-band and high-
gamma band events are associated to one state while theta events to another
state. As the alternating states during anesthesia are hypothesized and jus-
tified to be an induced NREM-REM transition, this study suggests that it is
likely that during natural sleep, pre-REM PGO waves are also coupled to
SPW-Rs.

1.1.4.4 Coupling between PGO waves and thalamocortical events

As pre-REM PGO waves are present before the beginning of REM sleep,
they are mechanistically possible to interact with the other thalamocortical
events, i.e., SOs and spindles.

For spindles, both electrophysiological recordings and our modelling work
(Section 2.3.1) have shown that pre-REM PGO waves interrupt the occur-
rence of spindles as a potential mechanism of sleep stage transitions.

There is no clear evidence suggesting a coupling between SOs and pre-
REM PGO waves in the literature. However, our modelling work will show
that pre-REM PGO waves induce more K-complexes (Section 2.3.1), possibly
contributing to the large-amplitude oscillations of pre-REM stage. As PGO
waves are found to co-occur with SPW-Rs, the PGO-triggered K-complexes
might explain the functional fole of PGO-ripple coupling: the SPW-Rs that
occurs following PGO waves are nested in the DOWN→UP transitions of
K-complexes such that the SPW-R-associated reactivation can be better con-
solidated (see also Section 1.1.3.4).

1.2 overview of the thesis

This section provides an overview (Figure 1.2) of all the projects to form a
mind-map that guides the readers to grasp the main idea quickly. Specif-
ically, it will summarize the links between the reviewed events and the
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Figure 1.2: Overview of thesis structure as a mind-map. Colors encode contents for
different chapters.

projects such that the readers will have a clearer big picture of how we
addressed the two key questions raised in Section 1.1.2.

The thesis starts from two distinct lines of modelling. In one line, from
the line of biophysical modeling, we start with a neural mass model of PGO
waves (red boxes), which will be presented in Chapter 2. This is an attempt
to attack the second question of local synaptic rescaling effects induced by
transient events. With the incorporation of several critical neuronal popula-
tions, their intrinsic oscillation mechanisms, and neuromodulation mecha-
nism, we successfully reproduced both subtypes of PGO waves in different
stages of sleep, as well as cortical SOs (including K-complexes) and thalam-
ocortical spindles during the NREM stage.

This model is an implementation of the generation mechanisms intro-
duced in Section 1.1.4.2 for PGO waves, Section 1.1.3.1 for SOs and Sec-
tion 1.1.3.2 for spindles. Network dynamics of the model match the PGO-
triggered spindle interruptions presented in Section 1.1.4.4. The model also
predicts that pre-REM PGO waves induce K-complexes accompanied by a
DOWN→UP state transition (Section 1.1.3.4, Section 1.1.4.4), which might
explain why pre-REM PGO waves co-occur with SPW-Rs (Section 1.1.4.3).

Combining this model with a population STDP rule, we are able to charac-
terize the effects of cortical plasticity triggered by PGO waves and spindles
in the population model. Specifically, the spindle-triggered synaptic changes
differentiate with two subtypes of spindles, matching the contrast between
the isolated spindles and spindles nested in SO UP states introduced in
Section 1.1.3.2. For PGO waves, we found that two PGO subtypes trigger
opposite synaptic rescaling effects, which fills the gap of plasticity study re-
lated to PGO waves at the circuit level (Section 1.1.4.2). The results can be
compared with the rodent experiments introduced in Section 1.1.4.2.

To approach the first question proposed in Section 1.1.2, we start another
line of research: statistical modelling of the network mechanism underlying
the transient events. Transient mechanisms can be understood as a specific
state of network coordination of brain regions, where studying it with ob-
served events might be biased due to the selection procedure of peri-event
snapshots. We developed an algorithm - DeSnap - to correct for the selection
bias on peri-event snapshots, with which we are able to obtain a Gaussian
process approximation as a statistical model of the network dynamics. The
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effectiveness of the bias correction method is validated with simulated toy
models. This provides a general methodological framework for appropriate
analysis of peri-event data to uncover the network dynamics hosting coordi-
nated event interactions.

By applying the correction algorithm to correcting power spectrograms of
hippocampal SPW-R data, we validated in real data that the algorithm can
help us recover network dynamics representing specific states underlying
the events. The correspondence between events and states is consistent with
the PGO-ripple and PGO-theta coupling introduced in Section 1.1.4.3.

To further address the problem of causal interactions between events (as
part of the first question), we resort to causality studies of peri-event time
series. After comparing several existing causality measures, we proposed a
novel measure to characterize causal interactions between transient events.
The benefit of the new measure over previous ones is demonstrated with
simulation models.

We applied these measures to characterize the interplay between simu-
lated oscillatory events, simulated spindles, and intra-hippocampal record-
ings and found that the selection bias correction improves the performance
of the causality measures. Specifically, the time-varying interactions between
spindles and SOs recovered by the combination of bias correction and causal-
ity measures is in line with the mechanisms introduced in Section 1.1.3.2
and Section 1.1.3.4. The intra-hippocampal connectivities are in line with
the SPW-R generation mechanisms explained in Section 1.1.3.3.

Finally, as a speculative outlook, we propose a way to study the state-
dependent event-triggered plasticity with a hybrid model. We simplified
the cortical neural mass model and designed a hybrid model that integrates
the biophysical mechanisms and the statistical model we corrected so that
we can recover the hidden states critical for the plasticity analysis. This is
promising to validate our theoretical prediction of PGO-triggered plasticity
with experimental data and potentially provides a general framework for
studying event-triggered plasticity problem raised in the first question.
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2N E U R A L M A S S M O D E L L I N G O F
P O N T O - G E N I C U L O - O C C I P I TA L WAV E S

2.1 introduction

As briefly introduced in Section 1.1.1, in most mammalian species, the brain
undergoes drastic state changes between different sleep stages – REM and
NREM sleep – with broad behavioral and functional similarities. There is
moreover an emerging consensus on the existence of sleep-induced plas-
tic changes in relation to two hypothesized functions: memory consolida-
tion, and synaptic homeostasis [26, 235, 236]. Considerable evidence sup- The key problem of

this chapter is
synaptic rescaling

ports the hypothesis that such plastic changes in the cortical connections
are bidirectional, requiring both LTP to consolidate newly acquired memo-
ries, and long-term depression (LTD) to counterbalance increases in synaptic
strengths and thereby maintain network stability [91, 241, 136].

However, the detailed underlying mechanisms remain elusive and their
investigation requires assessing the brain-wide impacts on the plasticity
of a variety of phenomena happening during sleep. So far, an extensive
amount of experimental and computational modelling studies have focused
on the neural bases of transient events observed in NREM sleep (e.g., on the
hippocampal SPW-Rs, cortical SOs, and thalamic spindles as elaborated in
Section 1.1.3). In particular, it has been suggested that these NREM events
play a role in long term plastic changes necessary to memory consolidation
[222, 211, 190, 122] and synaptic downscaling [236, 237, 241]. However, ev-
idence suggests that key modifications of plasticity not only occur during
NREM but also during REM sleep [91, 53, 159, 21, 22, 253].

Interestingly, the transitional stage from NREM sleep to REM sleep (re-
ferred to as pre-REM stage) and the subsequent REM sleep stage are associ-
ated with the occurrence of another family of phasic events, the PGO waves
[224, 88]. As introduced in Section 1.1.4.2, PGO waves manifest themselves
in a broad range of brain structures and a variety of species. An important
feature of PGO waves is that they exhibit two distinct subtypes during pre-
REM sleep and REM sleep.

Given that converging evidence supports different roles played by NREM
and REM sleep stages in reorganizing networks across the brain [91, 210],
the fact that PGO waves span both sleep stages in the form of two sub-
types suggests that these events play a key role in coordinating plastic
changes, and their analysis may provide insights into the differences be-
tween plasticity promoting mechanisms during NREM and REM sleep. In-
deed, experimental evidence reviewed in Section 1.1.4.2 supports a key role
of REM-PGO waves in enhancing sleep-dependent learning and memory
[44, 51, 153, 52]. In contrast, little is known about the impact of pre-REM
PGO waves on plasticity. However, recent electrophysiological evidence for
a coupling between hippocampal SPW-Rs and PGO waves provided in Sec-
tion 1.1.4.3 suggests PGO waves are involved in memory consolidation pro-
cesses happening during NREM sleep [192], possibly contributing to cortical
synaptic rescaling.

In-vivo investigations of PGO-triggered plasticity changes remain chal-
lenging because: 1) unlike during repetitive stimulation protocols commonly difficulties of

experimental research

17
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applied in in vivo LTP studies [19], where the stimulation amplitude can be
manipulated, plastic effects induces by spontaneous activities with uncon-
trolled strength may be too weak to be observed; 2) With imaging tech-
niques combined with electrophysiological recordings, due to spatial spar-
sity [138, 251, 253], it is difficult to locate the specific neurons and spines
that receive PGO-associated potentials. As an alternative, investigating PGO
waves from the computational modelling perspective may provide insights
and guide further experimental studies. In particular, building a model of
large-scale PGO waves propagation may help elucidate how the phasic po-
tentials originated in the pontine region influence widespread brain regions
during sleep and possibly control their plasticity.

In this study, we use a multi-structure neural mass model to reproduce
prominent features of PGO waves at a system level and shed light on their
possible functions (Section 2.2.1). By including cholinergic neuromodulation
in our model (Section 2.2.4), we emphasize reproducing PGO-related phe-
nomena across sleep stages (Section 2.3.1, Section 2.3.2 and Section 2.3.3
)and account for the variability of PGO wave subtypes occurring either dur-
ing pre-REM or REM sleep (Section 2.3.4). Finally, we investigate the pu-
tative influence of PGO waves on cortical plasticity through a mesoscopic
model of STDP, suggesting that PGO waves may trigger opposite effects
in REM and pre-REM sleep (Section 2.3.5). We provide insights on such
state-dependent differences are achieved, suggesting a general framework
to predict the influence of phasic events on plasticity.

2.2 methods

2.2.1 Overview: Ponto-geniculo-occiptial neural mass model

We designed a neural mass model to simulate average rate-coded popula-
tion activities of several groups of homogeneous neurons [247, 248, 110, 141]
in three brain structures influenced by PGO waves: the pons, the thalamus
(more precisely the lateral geniculate nucleus (LGN), the thalamic reticular
nucleus (TRN), and the primary visual cortex. This Methods section will ex-
plain the assumptions and mathematical tools we used to build the model.

Section 2.2.2 is designed to be a systematic introduction of the modelling
methodology of neural mass models, which represents the state of a popu-
lation of identical neurons by the average firing rates across this population.
The basic elements of such a model are illustrated in Figure 2.1A. Briefly,model type: neural

mass model the population average membrane potential evolves according to its intrin-
sic dynamics as well as post-synaptic currents it receives from connected
populations, and outputs the population firing rate as a non-linear instanta-
neous function of the membrane potential using a sigmoidal activation. Af-
ter multiplication with a synaptic strength coefficient, the output firing rate
is convolved with the impulse response of the synapses that link the pop-
ulation to downstream neurons. Although neural mass models constitute a
strong simplification with respect to single-neuron models, recent work has
shown they can reproduce sleep-related phasic patterns, such as spindles
and SOs, with a satisfactory degree of realism, by taking into account key
intrinsic currents flowing through the cells’ membrane [242, 206]. We fol-
low this approach to model the activity of three key structures involved in
PGO-wave propagation.

More specifically, our model involves 6 neuronal populations, as repre-
sented in Figure 2.1B. The pontine population, representing low-frequencymodel structure
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Figure 2.1: Neural mass model of PGO waves. (A)Illustration of the working mech-
anism of neural mass models. Two neuronal populations modelled by
neural masses are illustrated in separate colors, where the dynamic of
each depends on the intrinsic currents and synaptic currents it receives.
Population dynamics, represented by the population membrane poten-
tial, is modelled to trigger firing rate via a sigmoid activation curve. These
four elements (marked in the dashed rectangle) describes the activities
of a single population, which is mathematically equivalent to a single
compartment model. (B) Global view of the model structure. The neu-
ral mass model, consisting of biologically plausible neuronal populations
and interconnections, receives brief pulses as model inputs to generate
PGO-related neuronal activities. The switch of sleep stages is modulated
by 4 major parameters (marked in green) associated with the change of
Acetylcholine concentration. The numbered conductances in each pop-
ulation, as well as its function in state establishment (see Section 2.3.1)
and PGO wave generaton, are listed in Table. 1. Abbreviation for neu-
ronal populations: Pyr: Pyramidal neurons; In: inhibitory neurons; TC:
thalamocortical neurons; RT: reticular thalamic neurons; LGin: interneu-
rons in LGN; R-PBL: neurons in the rostal peribrachial nucleus (PGO-
transferring neurons); C-PBL: neurons in the caudolateral peribrachial
nucleus (PGO-triggering neurons). Abbreviation for receptors: AMPA:
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; GABA: gamma-
Aminobutyric acid; nAChR: nicotinic acetylcholine receptor; mAChR:
muscarinic acetylcholine receptor.
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No. Population Intrinsic Currents Role of intrinsic current

1 Pyr Na+-dependent K+ current IKNa Induction of K-complexes

2 TC K+ leaky current ItLK Modulation of membrane potential

3 TC Ca2+ T-current ItT Spindle generation

4 TC Inward rectifier K+ h-current Wax and wining of spindle oscillation

5 RT K+ leaky current IrLK Modulation of membrane potential

6 RT Ca2+ T-current IrT Spindle generation

7 R-PBL hyerpolarizating current Generation of PGO-related bursts

Table 1: List of intrinsic currents and their corresponding roles in each neuronal pop-
ulation

bursting PGO transferring neurons located in the rostral peribrachial area
(R-PBL), receives high-frequency bursts from PGO triggering neurons lo-
cated in the caudolateral peribrachial area (C-PBL) [43, 48, 42, 49]. The thala-
mus comprises 3 populations that are hypothesized to underlie PGO wave
generation: the thalamocortical relay (TC) neurons in the LGN, the retic-
ular thalamic (RT) neurons in the peri-geniculate nucleus (PGN) of TRN
[221, 156] and the local intra-geniculate interneurons (LGin) in the LGN
[103, 104]. In the cortex, following [206], we model one excitatory popula-
tion of pyramidal cells (Pyr), and one inhibitory interneuron population (In).
The rationale underlying the selection of these neuronal populations, as well
as their connectivities, is elaborated in Section 2.2.3.design of the Method

section Section 2.2.3 also includes other assumptions important to the model con-
struction. Section 2.2.3.3 validates the model input, assumed as bursting
activities of C-PBL neurons triggering all the PGO-related activities in the
subsequent neuronal populations. Section 2.2.3.1 describes the reasons for
incorporating specific key intrinsic currents in each population to model
sleep oscillations related to the process of memory consolidation, e.g. spin-
dles and SOs (see Table 1 for a summary).

Section 2.2.4 describes how we implement cholinergic neuromodulation
in several neuronal populations that enables the PGO network to switch
between different sleep stages. This is the key mechanism in reproducing
the stage-dependent characteristic of PGO waves.

Section 2.2.5 presents our work on model validation. The parameter tun-
ing process of the pontine bursts to match experimental data is described
in Section 2.2.5.1. Section 2.2.5.2 elaborates on how we validate that the 5

assumed ponto-thalamic connections are all necessary for the reproduction
of transient PGO-triggered electrophysiological activities.

Finally, following a mesoscopic approximation of the STDP rule [76, 196],
knowing the pre-synaptic current and the post-synaptic firing rate also al-
lows us to make theoretical predictions about the plastic changes at a given
type of synapse. This integration of plasticity rule with the neural mass
model will be shown in Section 2.2.6.

2.2.2 Mechanisms of neural mass models

Neural mass models, with a compromise between model complexity and
biophysical mechanisms, reflect average rate-coded population activities of
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a group of homogeneous neurons [110, 141], where the mechanisms have
been briefly discussed in Section 2.2.1 and illustrated in Figure 2.1A.

2.2.2.1 Population firing rates

The firing of a given population of neurons is assumed to be elicited when
its average membrane potential goes beyond a threshold. Thus in a simpli-
fied implementation the firing rate Qk of a neuron population k is activated
through a sigmoidal function of its instantaneous membrane potential Vk :

Qk =
Qmax

k

1+ exp(−(Vk − θk)/σk)
(2.1)

In this function, θk denotes the physiological activation threshold which
can be obtained from experiments; σk is the activation gain that is often
influenced by neuromodulators and more generally the brain state.

2.2.2.2 Intrinsic currents

Both intrinsic currents and synaptic currents affect the cells’ membrane po-
tentials. Modelling intrinsic currents amounts to modelling the membrane’s
ion channels because they are only driven by the membrane itself instead of
being activated by pre-synaptic neurons. The current that passes through a
channel i in population k is classically expressed as the product of a fixed
maximum conductance gi (representing the conductance when the channel
is completely open) with a potential difference between the membrane po-
tential Vk and the reversal potential Ei of the channel (as a driving force).
Depending on the electrophysiological characteristics of a channel, some-
times an additional factor is used to model a voltage- (or ion-concentration-)
dependent opening probability of the channel. As a consequence, a voltage-
dependent intrinsic current from channel i in a population k is modeled in
the form:

Iki = gi · g(Vk) · (Vk − Ei) (2.2)

An important intrinsic current that controls the resting membrane po-
tentials of TC and RT neurons is the K+ leaky current [124]. The voltage- K+ leaky currents

independence of its opening probability is implied by its name, as ’leaky’
refers to the channels with a linear I-V curve. Thus in population k this
leaky current (with reversal potential Ek for K+) is denoted IkLK and mod-
eled as:

IkLK = gkLK · (Vk − EK) (2.3)

In addition, both TC and RT neurons possess a low-threshold calcium T-
current that generates rebound bursts in their firing patterns. The bursts are low-threshold

calcium T-currentsgenerated because the de-inactivation threshold of a T-current is lower than
the resting membrane potential - it can only be de-inactivated upon hyper-
polarization, so that bursting activities are caused by the overlapping time
regime between the voltage-dependent gating of activation and inactivation.
The modelling of T-currents in population k follows a Hodgkin-Huxley for-
mulation, i.e. the opening probability is written in the form of products
of two voltage-dependent gating variables mk∞ and hk

T representing respec-
tively the activation and inactivation variables of this calcium channel (see
[62] for more details).

IkT = gkT ·
(
mk∞)2 · hk

T · (Vk − ECa) (2.4)
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The T-currents in the two neuron types show distinct characteristics in
bursting frequency and acceleration. The underlying cellular differences in-
volve (in)activation potentials and time constants of the gating variables,
which were already investigated and quantified in earlier studies [61, 60, 62].

The h-current in TC neurons, controlling the waxing and waning of spin-
dles is also called an anomalous inward rectifier because its conductance
decreases with the rising of membrane [221]. Following what was imple-Inward rectifying

h-current mented in the original model, we assume that the opening probability change
is due to extracellular calcium (Ca2+) concentration, whereas the time con-
stants were fitted using experimental results [60]:

Ikh = gh · (mh1([Ca
2+]o) + ginc ·mh2([Ca

2+]o)) · (Vk − Eh) (2.5)

In the cortex, the generation of SOs (including K-complexes) is mediated
by a sodium-dependent potassium current in Pyr neurons, where the con-
ductance depends on sodium concentration [Na]:the

sodium-dependent
potassium current

IKNa = gKNa
0.37

1+ ( 38.7
[Na] )

3.5
· (Vk − Eh) (2.6)

˙[Na] = (αNaQe(Ve)) −Napump([Na])/τNa (2.7)

2.2.2.3 Postsynaptic currents

Apart from intrinsic currents, the action potentials of afferent populations
of neurons also affect the membrane potential dynamics through a variety
of chemical synapses. In the typical case of chemical synapse, neurotrans-
mitters released due to the activation of the pre-synaptic neuron diffuse in
the synaptic cleft and lead to the opening of targeted ion channels on the
post-synaptic membranes.

Here we assume a monosynaptic connection m from pre-synaptic neuron
population k ′ to post-synaptic population k. Then a synaptic current Jkm
obeys

Jkm = Pm · (Vk − Em) (2.8)

where Pm is the opening probability of post-synaptic channels. Unlike in-
trinsic currents, Pm is not only dependent of the target population’s own
membrane potentials g(Vk), but also on the instantaneous concentration of
released neurotransmitters, i.e.

Pm = smk · g(Vk) (2.9)

where smk represents the opening probability caused by neurotransmitters.

smk(t) = Nk ′k ·Qk ′(Vk ′(t))⊗ hm(t) (2.10)

Therefore the complete model for the synapse can be written as

Jkm(smk) = smk ·g(Vk) · (Vk−Em) = Nk ′k ·Qk ′(Vk ′(t))⊗hm(t) ·g(Vk) · (Vk−Em)

(2.11)
Compared to the general form of intrinsic currents, the product of the synap-
tic strength and maximum firing rate of pre-synaptic neuron Nk ′k ·Qmax

k ′

can be seen as equivalent to the maximum conductance (Eq. 2.1). It is gener-
ally be free to adjust Nk ′k as it depends on many biological parameters of
the network for which we do not have a reliable estimate (synaptic strength,
number of synapses per cell, etc.). The impulse response hm can be approxi-
mated using the time course of post-synaptic currents (PSCs) in response to
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brief pulses that can be obtained in voltage-clamp experiments. A common
approach to approximate such impulse responses is to model them as an
alpha function:

hm = γ2
m · t exp(−γmt) (2.12)

The alpha function reaches its peak value at the time point γ−1
m . Such im- the alpha function

pulse response corresponds to a second order linear dynamical system. As
a consequence, the opening probability can be written in the form of a dif-
ferential equation (for derivation, see Appendix. ??):

s̈mk = γ2
m · (Nk ′k ·Qk ′(Vk ′) − smk) − 2γm · ṡmk (2.13)

which is thus easy to simulate using classical iterative methods.
Most experiments revealing the PSC of an ion channel characterize its ki-

netics with a rise time and a decay time, which is incompatible with the al-
pha function. To incorporate these temporal features, an alternative impulse
response could be a concatenation of two first-order linear systems with
different time constants (referred later as ’two-exponential’). In the time do-
main, it takes the following form:

hm = B · (exp(−t/τ1) − exp(−t/τ2)) (2.14)

where B is the normalization term:

B = ((
τ2
τ1

)τrise/τ1 − (
τ2
τ1

)τrise/τ2)−1 (2.15)

In this formula, τrise denotes the rise time, whereas the decay time is set
by τ1. τ2 is calculated via the relationship τrise = τ1τ2/(τ2 − τ1). This
impulse response reaches its maximum at time log(τ1/τ2) · τrise. Similarly
to the case of alpha function, the convolution by hm can be written in the
form of a differential equation:

s̈mk = B(τ−1
2 −τ−1

1 )Nk ′k ·Qk ′(Vk ′)−τ−1
2 τ−1

1 smk−(τ−1
2 +τ−1

1 )ṡmk (2.16)

The ’two-exponential’ assumption of synaptic kinetics captures more char-
acteristics, but induces one more parameter. Therefore, to limit the num-
ber of unknown parameters, we model all synapses with precisely-reported
time constants with the ’two-exponential’ framework but confine unknown
synapses within the alpha function framework.

For synapses with long-distance projections across brain regions (e.g. tha-
lamocortical projection), following the original paper, we deal with the ax-
onal conductance delay by adding another linear filter of the synaptic out-
put, which can be approximated by the convolution of another alpha func-
tion:

ϕ̈k = ν2 · (Qk(Vk) −ϕk) − 2 · ϕ̇k (2.17)

2.2.2.4 Membrane potential and LFPs

The final step is to establish how the membrane potential evolves with the
transmembrane currents. The neuron population is assumed equivalent to
a neuron modelled with a single compartment model. As illustrated in Fig-
ure 2.1A, the most simplified case is a neuron population k influenced by a
single (m-type) synaptic current Jkm(smk) and a single intrinsic current Ii.

The denoted synaptic conductance follows the representation in Eq. 2.9.
With Kirchhoff’s current law, we would be able to get the adaptation of
membrane potential Vk with currents:

CmV̇k = −
Vk − EL

RL
− gmk(smk) · (Vk − EL) − Ii (2.18)
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The second term on the right in Eq. 2.18 represents the synaptic current,
where gmk(smk) is the real synaptic conductance. Comparing this form
with the synaptic current model (Eq. 2.8, 2.9), the synaptic conductance
smk · g(Vk) can be seen as the real conductance gmk(smk) normalized by
the leaky conductance 1/RL, i.e.

smk · g(Vk) =
gmk(smk)

1/RL
⇒ gmk(smk) =

smk · g(Vk)

RL
(2.19)

Thus combining Eq. 2.8, 2.9, Eq. 2.18 can be rewritten as:

CmV̇k = −
Vk − EL

RL
−

Jkm(smk)

RL
− Ii (2.20)

By re-arranging the denominator, we can obtain:

RL ·CmV̇k = −(Vk − EL) − Jkm(smk) − RL · Ii (2.21)

The first term on the right in Eq. 2.21 can be understood as another equiv-
alent current JkL that passes through the membrane. JkL = (Vk − Ek

L) is de-
fined as the general leaky current, a linear current unaffected by either pre-
synaptic or post-synaptic population. Note the K+ leaky current is excluded
because we specifically design it to be influenced by the concentration of
ACh.

In experiments a commonly reported feature is the membrane time con-
stant τk = RL ·Cm. With a rearrangement of terms, Eq. 2.21 can be written
as:

τkV̇k = −JkL − Jkm(smk) −C−1
m · τk · Ii (2.22)

In more general cases, the numbers of synaptic as well as intrinsic currents
are not necessarily confined to one. For multiple currents we can obtain the
general form:

τkV̇k = −JkL −
∑
m,k

Jkm(smk) −C−1
m τk

∑
i

Ii (2.23)

In many experimental studies, the thalamic PGO waves are often char-
acterized in LFPs. LFPs reflect some spatially extended measure of the ac-
tivities of a mass of neurons. While understanding the nature of LFPs is
still preliminary, one study attempted to link LFP with the currents flowing
through the neuron populations [154]. In this study, the authors approxi-
mate the LFP with a weighted sum of synaptic currents, e.g. AMPA and
GABA currents, which is to some extent compatible with our model. How-
ever, in our model, the intrinsic currents also play important roles. We pro-
pose to model the LFP of a neuron population as an instantaneous sum of
all currents to take into account the effects of intrinsic current:

LFPk = −JkL −
∑
m,k

Jkm(smk) −
∑
i

Ii (2.24)

2.2.3 Assumptions for model structures

After introducing the modelling methodology for each unit of neuronal pop-
ulation in the neural mass model, we now elaborate on the biological basis
forming the assumptions for the model structure. Specifically, this includes
the selection of neuron types and deciding on how different neuronal pop-
ulations are connected.
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Our model focuses primarily on the reproduction of electrophysiologi-
cal characteristics of PGO waves in the thalamus, where experimental PGO
wave traces are most prominent and cellular mechanisms are relatively clear
after extensive investigations in the field. Well-replicated thalamic PGO waves
enable us to speculate on the effect PGO wave triggers in the cortex. There-
fore, it is natural that we take as a starting point a neural mass model of
thalamocortical network proposed in [206], whose cortex and thalamus mod- for abbreviations

check Section 2.2.1
and Figure 2.1B

ules, as well as the thalamic neuronal types (the TC and RT neurons), match
well with our purpose. What we need to do, is to add the LGin neurons and
connect them with the pons in a biologically realistic way.

2.2.3.1 Brief description of the thalamocortical module

First, this section will describe the thalamocortical model we extended ([60,
206], in the following referred to as the Costa model), while clarifying the ma-
jor differences between the thalamocortical module of our model and the
Costa model. This Costa model can reproduce signatures of NREM sleep, The simulated

spindles will be used
to validate causality
measures in
Section 4.3.3 and
Section 4.3.4.2

e.g. thalamic spindles and K-complexes in the cortex, by incorporating vari-
ous intrinsic currents to generates specific neuronal activities (e.g. bursting).
Thus, elaborating the model would also facilitate the investigation of inter-
actions between PGO waves with these NREM events.

The thalamus module consists of TC and RT neurons, as they are the ma-
jor neuronal types reported in PGO-related studies [224]. Both neurons are the thalamus module

modeled as a rated-coded single compartment model described in Eq. 2.24.
To model the intrinsic properties of thalamic neurons, we follow the assump-
tions made in the Costa model , i.e. a K+ leaky current (Eq. 2.3) and a low-
threshold calcium T-current (Eq. 2.4) in both neurons populations, together
with a hyperpolarization-activated anomalous rectifier h-current (Eq. 2.5)in
TC neurons.

The cortex is simplified as a population of pyramidal cells interacting with
a group of inhibitory neurons. Similarly, for the cortex, we keep the intrinsic the cortex module

current - a sodium-dependent potassium current IKNa (Eq. 2.6 and Eq. 2.7)-
in Pyr neurons as the mechanism to maintain the NREM-related cortical
oscillations (i.e. SOs and K-complexes).

Following a major hypothesis of thalamic PGO wave generation [103], we
added another population representing LGin neurons using the same frame-
work. As for LGin neurons, we don’t make any assumptions in their intrinsic LGin neurons

currents or their role in spindle generation due to limited knowledge [254].

2.2.3.2 Major contributions to adapt the Costa model into a PGO model

Although the thalamocortical module in our PGO model is based on the
Costa model, including the synaptic connections and intrinsic currents, we
made major modifications to adapt it to a PGO model where the thala-
mus receives strong perturbations from the pons. With exploring alterna-
tive model settings and exploiting the parameter space (see Section 2.2.5),
we found that the following points are indispensable in the reproduction of
PGO waves.

1. Critically, for the modelling of neuromodulatory effects (see Section 2.2.4),
we differentiate the maximum conductance for the leaky potassium
channels in TC and RT, which used to be the same variable in the
original model. This change is responsible to modulate the membrane
potentials of TC and RT neurons differently during the switch between
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pre-REM and REM stages, which is important for the reproduction of
PGO-triggered firing patterns in both neuronal populations.

2. Another important modification is the incorporation of the LGin neu-
rons. As briefly addressed in Section 2.2.3.1, this type of neurons are
hypothesized to play a role in thalamic PGO wave generation, while
our simulation results also show that without this neuronal population
the negative peak in PGO waveform cannot be replicated.

3. To avoid additional spindle-like oscillations in the thalamus induced
by the pontine PGO inputs, we weakened the connection from Pyr
neurons to RT neurons and balanced their potassium leaky conduc-
tance accordingly to restore the N2 state for spindle generation and
N3 state as the pre-REM state.

4. To modulate the amplitude of REM PGO waves in the LFP, we changed
one of the bifurcation parameters of the cortex from the neural gain of
the sigmoid function to the maximum firing rate such that the signal-
to-noise ratio falls into a reasonable range.

5. Compared to the C++ implementation provided by the authors of the
Costa model, we transferred the model to Python and adjusted the
noise levels in both the thalamus and the cortex to maintain a preferred
frequency of spindle occurrence.

2.2.3.3 Model assumption for the pons

After introducing the thalamocortical module, we now focus on the mod-
elling of the pons module as the important input module triggering the
thalamocortical network.

Two groups of neurons in the pontine region, termed as the PGO trig-
gering neurons and transferring neurons, are the executive elements of PGO
waves [43]. They are both located in the peribrachial area (PBL) [214], which
contains a number of important nuclei that are involved in the regulation of
sleep and arousal. Functionally, the PBL can be separated into two parts: the
rostal (R-PBL) and the caudolateral (C-PBL) parts [43]. The R-PBL mainly
consists of the pedunculopontine tegmentum nucleus and laterodorsal tegmen-
tum nucleus, while the most important nuclei in C-PBL include the parabrachial
nucleus.

As their name indicates, experimental evidence showed that triggering
neurons are PGO-state-on bursting neurons assumed to initiate the PGO
phasic event located in C-PBL [48, 42, 43].

PGO triggering neurons were recorded to burst in high frequency (300-
500Hz) 25±7 ms before the thalamic PGO waves. These activities are hypoth-
esized to propagate to the so-called transferring neurons in R-PBL, which
are PGO-on low-frequency bursting neurons [43] firing low-frequency (120-
180 Hz) bursts with 3-5 spikes 5-15 ms before the thalamic PGO waves
[155, 170, 225, 201]. The transferring neurons were presumed to project di-
rectly to the thalamus [201] as the last relay station of the local PGO-related
circuits in the pons [182].

In the model, C-PBL activities (of the triggering neurons) are assumed
as a trigger that initializes the whole network activity. To match the high-
frequency bursts pooled across a population, the firing rate of C-PBL neu-
rons should rise rapidly and persist for a short period. It is then natu-
ral to model the C-PBL activity in pre-REM stage as a brief pulse lasting
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10 ms as an approximation of the bursting duration [48]. Deducing from
experimentally-reported peri-PGO spike histograms [48], we assume that
REM-related C-PBL bursts can be modelled by three 10-ms pulses with a
bursting interval of 200 ms.

The R-PBL PGO-transferring neuron populations are modelled with the
same type of sigmoidal activation function as for the thalamic neurons
(Eq. 2.1). The activation threshold remains unchanged because the pontine R-PBL

PGO-transferring
neurons

and thalamic spikings are both associated with fast Na2+ spikes and should
match each other. We present briefly here the synaptic connection from C-
PBL neurons to R-PBL neurons and some intrinsic cellular mechanisms of
R-PBL neurons.

The projection from triggering neurons to transferring neurons is presum-
ably glutamatergic [108, 202, 203, 46], indirectly supported by the findings
that other neurotransmitters are inhibitory [143, 132, 246]. Electrophysio- the projection from

triggering neurons to
transferring neurons

logical studies showed the projection could be mediated by a combination
of NMDA and AMPA receptors [203], with a contribution ratio as NMDA:
AMPA = 1:5. The same experiment also quantified the decay times for both
currents: 8.77 ms for the AMPA channel and 129.4 ms for NMDA. The
Nernst potentials were measured to be 16.3 mV for NMDA and 3.4 mV
for AMPA (close to the theoretical value of 0 mV).

Conductance of the AMPA channel is invariant to the post-synaptic mem-
brane potential. Non-linearity in NMDA currents has long been reported
and well-documented. We followed the classical modelling of the voltage
dependence first introduced by Destexhe ([61]):

gNMDA(Vl) =
1

1+ exp(−0.0062Vl)
[Mg2+]o/3.57 (2.25)

where l represents the population of R-PBL transferring neurons, and Vl

denotes its membrane potential. [Mg]o represents the extracellular concen-
tration for Mg2+ ions.

The slow-frequency bursts occurring in transferring neurons are rebound
bursts evoked by activating an intrinsic low-threshold calcium T-current un-
der hyperpolarization [115, 114]. As it is similar to the thalamic T-currents T-current in R-PBL

neuronsdiscovered in the TC neurons, we modelled it with Eq. 2.4 [62, 61], but refit-
ted the conductance with digitized experimental I-V curves [114]. We con-
structed a Boltzmann-like function that is able to approximate the activation
curve:

ml∞(Vl) =
2

1+ exp(−(Vl + 50.6)/0.44) + exp((Vl + 50.6)/17.4
) (2.26)

In a similar way, we fitted the inactivation gating variable leading to:

hl∞(Vl) =
1

1+ exp((Vl + 65)/2.7)
(2.27)

Considering the increasing concentration of ACh during PGO-related sleep
stages, together with evidence of the inhibitory effects of ACh on transfer- the cholinergic

hyperpolarizing
current in R-PBL
neurons

ring neurons [132], we assume that some cholinergic modulatory inputs
cause the hyperpolarization as a prerequisite to de-inactivate the T-current.
The cholinergic input goes through a potassium inward rectifier mediated
by a muscarinic receptor [132]. The I-V curve of cholinergic influence has
already been characterized, from which we defined an approximate mathe-
matical formulation with a procedure similar to the fitting of T-currents.

gIR(Vl) =
1

1+ exp((Vl + 35)/10.9)
(2.28)
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2.2.3.4 Propagation of pontine PGO waves to the thalamus

The complete model involving carefully-designed ponto-thalamic synaptic
connections is illustrated in Figure 2.1B. After receiving bursting activities
from the triggering neurons, the transferring neurons send cholinergic in-
puts to the three thalamic neurons (TC, RT, and LGin neurons) via 5 cholin-
ergic ponto-thalamic projections. Here we briefly present our assumptions
regarding the chemical nature and kinetics of the pontine-thalamic projec-
tions and neurophysiological evidence supporting them.

The R-PBL neurons send two excitatory projections to the TC neurons via
cholinergic projections mediated by both nicotinic acetylcholine receptors
(nAChR) and muscarinic acetylcholine receptors (mAChR) receptors. Thecholinergic

projections from
R-PBL to TC

neurons

nAChR-based channel, underlying the generation mechanism of a fast de-
polarization in diafferated cats [158, 102, 103, 103] and short bursting in nat-
urally sleeping cats [224, 158, 104], let through a mixed cation current with
a voltage-independent conductance and a Nernst potential of 18.9±8.9 mV
[158]. The mAChR-mediated synapse, generating the prolonged spiking in
TC neurons following the initial bursts, is coupled to a leaky K+ channel via
G-protein cascade (reversal potential: -97±6.1 mV, note that "leaky" implies
a voltage-independent conductance) [156]. We set the conductance negative
as activation of the mAChR-mediated synapse decreases the conductance
(i.e. closes the channel). Specifically, we speculate that this potassium leaky
channel is the same as the K+ leaky channel already included in the origi-
nal model of TC neurons (see Section 2.2.2.2 and Section 2.2.4), whose role
is designed to mediate membrane de-/hyperpolarization [158, 17, 16]. We
introduced a saturation mechanism: the maximum amount of conductance
decrease caused by the mAChR-mediated synapse is equal to its resting con-
ductance, i.e. it cannot go beyond complete closure. This saturation mecha-
nism was not reported but implied in the experimental papers and has been
proven useful in replicating the switch between PGO wave subtypes (see
Figure 2.6B).

Clear evidence suggests that the RT neurons also receive pontine inputs
via both nAChR- and mAChR-mediated synapses, corresponding to a PGO-
triggered fast depolarization/bursting and slow hyperpolarization observed
in RT neurons [103, 130, 176, 230, 11]. The time constants of synatic kineticscholinergic

projections from
R-PBL to RT neurons

were quantified (rise time: 10.8 ms, decay time: 123.6 ms), enabling us to ap-
ply the ’two-exponential’ form of synaptic model. Following classical mod-
els of nAChR-mediated channels, we assume a linear voltage-independent
with a reversal potential of -5 mV. On the contrary, the mAChR-regulated
channel, associated with a K+ channel with the Nernst potential of around
-93.2±0.6 mV [230], works as a inward rectifier [103, 176, 130, 230, 11], whose
conductance decreases with increased membrane potential, with voltage de-
pendence characterized and fitted with asigmoidal function:

gmAChR(Vr) =
1

1+ exp((Vr + 66.3)/29.1)
(2.29)

The corresponding rise time and decay time of the synaptic kinetics are
107.6±8.6 ms and 639.0±102 ms.

The assumption that LGin neurons contribute to thalamic PGO wave gen-
eration is supported by the existence of a transient hyperpolarization of
TC neurons caused by depolarization in LGin neurons [103, 104, 105, 224].
We model a nAChR-mediated projection from R-PBL neurons to LGin neu-cholinergic

projections from
R-PBL to LGin

neurons

rons to generate the depolarization [254], with the same model as the cor-
responding channel in TC neurons with differently-tuned synaptic kinetics.
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Conservatively, for simplicity, we omit the other potentially existing intrin-
sic current, as current experimental evidence is insufficient to support their
roles in thalamic PGO wave formation.

The transmission of PGO-related activities from the pons to the thalamus
is not instantaneous but delayed by membrane and axonal properties. For
the 5 pontine-thalamic connections, the only precisely reported fact is the la-
tency difference between nAChR-mediated and mAChR-mediated currents
in RT neurons, as 28 ms [230]. Latency histograms of the nAChR-mediated
currents in TC and RT neurons [105] also suggest a constraint in setting the
delays. Extrapolating with all taken into consideration, we implement the
delays in our model by setting a fixed latency for each projection that is
consistent with the experimentally-revealed facts.

2.2.4 Cholinergic modulation of PGO waves

After establishing the general form of ponto-thalamo-cortical modules, we
now turn to the modelling the state-dependent modulations of the neuronal
activities of different subtypes. The transition from pre-REM to REM sleep
stages is strongly dependent on the changes of certain neuromodulators
[43]. To reproduce the difference between PGO wave subtypes during pre-
REM and REM, we need to know how neuromodulation affects the PGO
propagating network.

As illustrated in Figure 2.2A, modulatory neuron populations associated
with ACh and monoamines (serotonin and noradrenaline) are reciprocally
interacting to influence the activities of the several neuron types related to
PGO wave generation [98]. Wakefulness and NREM sleep is accompanied The reason why only

cholinergic influence
is modelled

by a high concentration of monoamines and a low concentration of ACh.
In the transitional stage (i.e. pre-REM), the activities of aminergic neurons
decrease while the cholinergic neurons are gradually activated. When REM
sleep is approached, cholinergic activities remain persistently at a high level
whereas aminergic activities are suppressed. In short, aminergic neurons
plays a disinhibitory gating role for the cholinergic neurons, i.e. activities of
the former are negatively correlated with the latter. Thus for simplicity, we
can omit the monoamines and model only the effect of ACh on the network
activities.

The levels of acetylcholine concentration in the pons and the thalamus
are mainly influenced by the cholinergic tonic firing neurons in the R-PBL
which directly project to both thalamic nuclei. From NREM to REM states,
these neurons continuously increase their firing rates [225]. We use this ob-
servation to build a simple linear approximation of the transition between
the two states depending on the normalized ACh concentration [ACh](t)

(ranging from 0 to 1).
Our strategies of linking ACh concentration to the activity patterns of

PGO-related neurons are as follows:

• First, pick several crucial parameters in the model based on biologi-
cal plausibility (e.g. maximum conductance for currents or activation
threshold of neuronal populations), which were reported to contribute
to the switch from NREM sleep to REM sleep.

• Next, adjust and fix these parameters to reproduce the firing modes of
neurons in pre-REM and REM states.
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• Finally, establish a sigmoidal relationship between the ACh concentra-
tion and the crucial parameters based on experimental evidence, i.e.
highest ACh concentration during REM and lowest during pre-REM.

For the cortex, the state-reconstruction can be resolved by simplifying
the neuromodulated isolated cortical model in [38]: instead of modulating
the cortical network with the concentrations of ACh, serotonin, and no-
radrenaline, we restrict the neuromodulation to ACh. As for the cortical-
critical parameters, we followed their choice of the adaptation strength of
the sodium-dependent potassium current ḡKNa, but changed the other to
the maximum firing rate of Pyr neurons Qmax

p [6, 66, 217, 226] to ensure a
broader range of REM activities.

ACh has been reported in vitro and in vivo to tonically depolarize TC
neurons [157, 59, 223] and hyperpolarize RT neurons , both via a mAChR-
mediated K+ channels [240, 157, 239]. State transitions in the thalamus are
implemented by modulating the K+ leaky conductance present in the model
of both TC and RT neurons, as described in Section 2.2.2.2.

For TC neurons, we decreased its potassium leaky conductance from 0.24

to 0.06 to mimic its depolarization. The same conductance in RT neurons
was increased from 0.18 to 0.62 to simulate the hyperpolarization. The val-
ues of conductance are optimal parameters according to the empirical expe-
rience of tuning the dynamic system, whereas various other combinations
would also satisfy the requirements for state switches.

The resulting ACh-modulated model parameters are illustrated in Fig-
ure 2.2B. While some related studies [157, 59, 255], measuring how much the
leaky conductance was changed in response to ACh application, might have
provided a quantitative basis for setting the conductance values, we did not
follow them because many unknown experimental variables (in vivo/in vitro,
anesthesia, doses of micro-injections, etc.) lead to large uncertainty on the
parameter choice.

2.2.5 Validations for model assumptions

As introduced in the sections above, the full PGO model seems a compli-
cated structure with massive internal dynamical interactions. However, the
key of the model is the perturbations in the thalamocortical module trig-
gered by the pontine inputs which appear in the shape of PGO waves. There-
fore, it is critical to make sure that the pontine inputs, as well as the connec-
tivity from the pons to the thalamus, are based on reasonable assumptions.
In this section, we validate these two aspects by combining both biophysical
mechanisms and exploration of the model.

2.2.5.1 Pontine parameter tuning

The firing rate of R-PBL neurons is the final output of the pontine model
that is sent to the thalamic neurons. Interestingly, due to the T-current, the
bursting duration of R-PBL neurons is highly sensitive to the strength of the
cholinergic hyperpolarization. In the model, this strength is represented by
the conductance of the cholinergic hyperpolarizing current (gACh), which
requires appropriate adjustment. Therefore, we tuned the parameter of the
conductance in the model, where the resulting membrane potential and fir-
ing rates are illustrated in Figure 2.3.

The tuning results match the cellular mechanism underlying bursting ac-
tivities, which are co-activated by a low-threshold calcium T-current [115,
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Figure 2.2: ACh-modulated model parameters. (A) State-dependent changes of key
neuromodulatory tones (adapted from [98]). The aminergic tone domi-
nates the NREM state while the cholinergic tone is inhibited. When the
brain transits from NREM to REM sleep, the aminergic tone decreases,
dis-inhibiting the cholinergic tone. During REM sleep, the cholinergic
tone dominates while the aminergic tone remains low. (B) 4 critical param-
eters from the thalamocortical part are selected to reflect the cholinergic
influence of the network. Their changes are linked to ACh concentration
via a sigmoid-like relationship mimicking smooth stage switches.
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Figure 2.3: ACh-tuned pontine neuronal activities. PGO-triggered membrane poten-
tial and firing rate of R-PBL neurons modulated by the conductance of
a tonic cholinergic current. The conductance is critical to separate the
neuronal activity into three patterns: with small conductance (gACh <=

0.04), the membrane is slightly depolarized; with moderate conductance
(gACh = [0.04, 0.18]), a calcium spike rides on the PGO-triggered depo-
larization; when the conductance is set large (gACh > 0.18), the calcium
spike disappears. This effect reflects the nonlinear intrinsic properties of
the pontine T-current regulated by the cholinergic input current. The or-
ange line marks the selected value of gACh = 0.16.

Table 2: Quantitative similarities between pontine simulation and experimental re-
sults. See [48] for characteristics related to C-PBL and [225] for that of R-PBL
neurons.

Electrophysioligical characteristic simulated (ms) experimental range (ms)

bursting duration (C-PBL) 10 [6, 16.7]

bursting duration (R-PBL) 27 [16.7, 41.7]

latency to bursting onset (C-PBL→ RT) 25 [17.5, 32.5]

latency to bursting onset (R-PBL→ RT) 14 [5, 15]

latency to negative peak in LFP (R-PBL→ RT) [35, 39] [20, 40]

bursting interval (C-PBL) set to 200 ms around 20 0ms

114, 133] and a hyperpolarizing mAChR-mediated intrinsic cholinergic cur-
rent [132]. The low-threshold T-current, similar to the standard T-current
discovered in the thalamus and fitted on rat electrophysiological data, is ac-
tivated only upon resting hyperpolarization and a fast depolarizing input
(for details see Section 2.2.3.3). The conductance of the cholinergic intrinsic
currents regulates the degree of hyperpolarization in the resting potential
of R-PBL neurons.

As shown in Figure 2.3, with a fixed strength of synaptic input from C-
PBL neurons, only a carefully selected range of cholinergic conductance can
trigger a calcium spike with bursts; too strong or too weak resting hyper-
polarization only cause a small depolarizing effect but no bursts. There-
fore, based on such nonlinear properties, we can find an appropriate value
of the cholinergic conductance (gACh = 0.16) to achieve the biologically-
based temporal characteristics of pontine activity. This similarity is further
reported in Table 2.
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2.2.5.2 Validation of ponto-thalamic projections

As demonstrated in Section 2.2.3.4, activities of the R-PBL neurons are trans-
mitted to the thalamic module via 5 cholinergic projections. It is then a nat-
ural question whether this is a redundant assumption of the ponto-thalamic
connectivity and should be validated. Therefore we test the necessity of each
of the 5 projections by cutting it and check whether the resulting waveforms
are different from before cutting it. The detailed results will be presented in
Section 2.3.4, and we will only explain the rationale here.

Importantly, by tuning the strengths of the 5 projections, it is possible
to generate highly variable PGO waveforms in the thalamus. Before block-
ing any of the projections, we already fix an optimized parameter set that
generates the PGO waveforms similar to the experimental recordings (see
Section 2.3.2). After cutting one of the projections, we still need to account
for the variabilities generated by the remaining projections.

Therefore, in practice, together with removing one of the projections, we
scan the connectivity strengths of the remaining projections, while each pa-
rameter set results in a specific waveform. All these waveforms, as high-
dimensional vectors, can be mapped as features in a lower dimension after
dimension reduction. Eventually, if the lower-dimensional representation of
the optimized waveform does not overlap with the representations of the
waveforms after blocking a projection, this suggests that the optimized wave-
forms are sufficiently distant from the alternative waveforms in the high di-
mensional space. Therefore, we can conclude that each of the projections is
necessary for the modelling.

2.2.6 Spike-time-dependent plasticity for neural mass models

With the model constructed as presented above, we are able to generate tha-
lamic PGO waveforms resembling their counterparts recorded in the electro-
physiological signals (Section 2.3.2). The similarity between simulated and motivation of STDP

analysisexperimentally-reported cortical PGO activities cannot be addressed system-
atically due to the lack of experimental data of PGO-triggered cortical activi-
ties. However, as the thalamocortical interactions in our model are based on
biophysical mechanisms, it is reasonable to assume that the PGO-triggered
activities in the cortex are a useful approximation of the real signals. We
can further assume that the network dynamics underlying the cortical PGO
waveform have some biophysical similarities to the real mechanism. There-
fore, we use the simulated PGO-triggered activities to explore the plasticity
effects that PGO waves may induce in the cortical circuits.

Following a plasticity framework for mean-field models proposed by [196]
and [76], we introduce a time-dependent plasticity rule for neural mass mod-
els. The change of synaptic strength between an afferent population m and
an efferent population k depends on the simultaneous change of synaptic
synaptic current Jkm and post-synaptic firing rate Qk:

dN

dt mk
=

∫+∞
−∞

〈
Qk(t+ τ)H(τ)Jkm(t)

〉
t
dτ =

∫+∞
−∞

〈
Qk(t+ τ)Jkm(t)

〉
t
·H(τ)dτ

(2.30)
where H(τ) is the STDP function shown in Figure 2.4B and the bracket
denotes a time averaging. Parameters in the analysis are picked from in
vitro measurements in hippocampal cell cultures [13].

Simply put, this equation shows that the sign and strength of plastic
changes are determined by the similarity between the shape of the classical
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Figure 2.4: Illustration of the population STDP rule. (A) Illustration of the rela-
tionship between pyramidal pre-synaptic current JPyr−Pyr and post-
synaptic firing rate QPyr controlling cortico-cortical STDP plasticity. The
impulse response of the AMPA synapse links the two quantities. (B)
Illustration of the STDP window. The horizontal axis τ represents the
time difference between pre- and post-synaptic activities (see right inset).
The synapse gets strengthened when pre-synaptic activities elicit post-
synaptic ones, and vice versa for the opposite sequence.

STDP function (Figure 2.4B) and the shape of the cross-correlation function
between the pre- and post-synaptic activities, measured by the integral of
their product over time. In the context of this study, we are interested in theIntuition underlying

the population STDP
rule

plasticity of cortico-cortical excitatory connections, which are expected to be
modified by memory consolidation and homeostatic processes during sleep.
The considered pre-synaptic current is thus the excitatory AMPA current
that the Pyr population sends to itself, and the Pyr post-synaptic firing rate
measures the post-synaptic activities (Figure 2.4A), yielding the following
equation:

dNPyr−Pyr

dt
=

∫+∞
−∞

〈
QPyr(t+ τ)H(τ)JPyr−Pyr(t)

〉
t
dτ

=

∫+∞
−∞

〈
QPyr(t+ τ)JPyr−Pyr(t)

〉
t
·H(τ)dτ (2.31)

The STDP rule will be applied to both PGO waves and thalamic spin-
dles to account for their event-triggered plastic changes in the synapse, for
details see Section 2.3.5.

2.3 results

In the Results section, we will illustrate in the following sections how well
the model is able to reproduce many of these aspects of the experimental
recordings and extrapolate on plasticity effects.

2.3.1 Establishment of NREM, pre-REM and REM states

According to Section 2.2.4, we already established a link between ACh con-
centration and the switch of the model between NREM and REM stages, en-
abling us to simulate neuronal activities in both sleep stages. Based on this
mechanism, we first check whether the model reproduces long-term pat-
terns of ponto-thalamo-cortical activity observed experimentally. Figure 2.5
shows the LFPs in R-PBL, TC and Pyr neurons simulated in the whole net-
work by tuning the ACh-modulated parameters shown in Figure 2.2, illus-
trating the contrast between the 3 scenarios: NREM (pre-REM without PGO
waves), pre-REM (with PGO waves) and REM sleep.
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Figure 2.5: Establishment of sleep stages: State comparison of simulated LFPs in R-
PBL (top), TC (middle) and Pyr neurons (bottom). LFPs of the three neu-
ronal populations in three states (NREM, pre-REM and REM) are plot-
ted in separate colors for comparison. During the pre-REM state, in the
thalamus, contrary to the NREM state, spindles are interrupted by PGO
waves, as marked by grey shades of TC neurons in the pre-REM stage. In
the cortex, PGO waves trigger more slow oscillations during pre-REM, as
marked by grey shades of Pyr neurons in the pre-REM stage.
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Figure 2.6: Model Reproduction of pontine and thalamic neuronal activities. (A-B)
Comparison of simulated and experimental ponto-thalamic peri-PGO his-
tograms during pre-REM and REM states: in all conditions simulated re-
sults resemble experimental ones. The histograms are averaged over 1000

trials of simulated events with small variations of the ponto-thalamic pro-
jections.

During the simulated NREM stage (Figure 2.5 upper panel), R-PBL neu-
rons do not burst, as shown in early studies [155, 201, 225]. TC neurons show
strong spindle oscillations appearing with a frequency of occurrence of 0.1-
0.2 Hz in the simulated LFP, accompanied by SOs in the Pyr neurons. In the
presence of PGO inputs (Figure 2.5, middle panel), biphasic patterns occur
in R-PBL neurons triggered by PGO inputs. In the thalamus, some spindles
are blocked by PGO inputs, matching experimentally-recorded spindle in-
terruption by phasic brainstem stimulations [105], thus resulting in stronger
SOs in the cortex. During the REM stage (Figure 2.5, lower panel), thalamic
spindles disappear with a depolarizing effect of the ACh-modulated cur-
rent, displaying similar effects for SOs in the cortex. The activities of these
simulated stages match the corresponding tonic electrophysiological traces
shown in [224], supporting appropriate modelling of these states.

2.3.2 Model Reproduction of Pontine and Thalamic neuronal activities

Beyond the sustained activities of pre-REM and REM states, we checked the
ability of the model to replicate transient changes in PGO-triggered firing
patterns reported by classical literature in cats [224, 48, 225]. Figure 2.6, 2.7
show a comprehensive comparison between the key features of PGO-related
neuronal activities in simulations and their experimental counterparts re-
ported in classical electrophysiological studies in both pre-REM and REM
stages.

In the thalamus, the similarities are reflected in the following aspects (Fig-
ure 2.6A). First, TC and RT neurons show differences in their baseline firing
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Figure 2.7: Cosine similarity as a measure of similarity between simulated and ex-
perimental PGO waves. Yellow diamonds represent the cosine similarity
between the simulated and experimental peri-PGO histograms presented
in (b); violin-plots show the bootstrapped distribution of cosine similarity
calculated with 1000 epochs randomly selected from the original simula-
tion. Stars indicate that the cosine similarity in (b) is significantly different
from the bootstrapped null distribution (***:p<0.001; **:p<0.01; *:p<0.05).

rates (indirectly, membrane potentials), reflecting cholinergic modulation of
thalamic membrane potentials via a potassium leaky conductance. TC neu-
rons are more depolarized during REM than during pre-REM, while this is
the opposite for RT neurons. As depolarization inactivates the T-current of
TC cells, state modulation also switches the dynamics of TC neurons from
bursting during pre-REM, modeled by the sharp increase in firing rate at
PGO wave onset, to non-bursting during the simulated REM state.

In contrast, consistent with experimental studies [224], RT bursting activ-
ity spans both sleep stages. Besides, on a finer scale, after bursting RT neu-
rons undergo a slower hyperpolarization induced by the mAChR-receptor-
mediated synapse, which is reproduced by the simulated events. Such hy-
perpolarization is also present during the REM stage, contributing to the
decreased response in RT neurons to the second and third pontine pulses.
In line with experimental evidence, TC neurons show prolonged increased
firing following their initial bursts [157, 156]. Such sustained firing patterns
are caused by activation of the cholinergic ponto-thalamic synapse mediated
by a mAChR receptor, together with the dis-inhibition effect by RT neurons
during their hyperpolarization [104].

In addition, the similarity between experimental and simulation results is
significant (permutation test, p<0.05), as measured by a larger cosine sim-
ilarity between PGO peri-event time windows in comparison with those
from randomly selected trials as shown in Figure 2.7. These similarities all
validate the reliability of the model in replicating cellular in-vivo activity,
supporting it can serve as a steppingstone to investigate plasticity induced
by PGO wave activities.

2.3.3 Model Reproduction of thalamocortical LFP

Apart from the neuronal firing patterns, the model is also able to reproduce
the typical PGO-triggered LFP waveforms in the thalamus and cortex, which
were more frequently recorded in early reports of PGO waves (e.g.[30, 224,
170]).

In Figure 2.8, we present a comparison of the LFP waveforms and corre-
sponding spectrograms between two subtypes of PGO waves and two sub-
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Figure 2.8: Model Reproduction of thalamocortical LFP. (A-B) Averaged events and
normalized peri-PGO and peri-spindle spectrograms of TC and Pyr neu-
rons during pre-REM and REM sleep. Half-transparent shades represent
the standard deviation of time-varying events across 1000 trials. Yellow
shades mark the DOWN→UP state transition in the cortex. (C) Compari-
son of normalized power spectrum for all the conditions. Power spectrum
are computed by an average across time and normalized by frequency-
wise standard deviation. Shades reflect variability across 1000 trials (trial-
wise standard deviation).
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types of spindles presented in the original model paper [38]. The model pa-
rameters to generate the spindles are re-tuned (thus slightly different from
the original model) to suppress PGO-triggered spindle-like oscillations (see
also Section 2.2.3.2).

For the PGO waves, the simulated results in the thalamus can capture
many features of the experimental waveforms (compared to traces in e.g.
[30]), such as the biphasic pattern consisting of the negative and positive
deflections, as well as the stronger amplitude of the negative peak of the
pre-REM subtype. Moreover, the duration of the simulated waveforms (ap-
proximately 500 ms) matches the experimentally recorded waveforms (e.g.
in [30, 224, 170]). Spectrograms of the two subtypes in both the thalamus
and the cortex also show that the pre-REM PGO waves are prominent in
lower frequency bands compared to REM PGO waves.

In comparison, from both spectrograms and the averaged spectra (Figure
2.8C), spindles in the thalamus still oscillate in a higher frequency band than
both subtypes of PGO waves, albeit both pre-REM PGO waves and Type-I
spindles as thalamic inputs both trigger a transient DOWN state preceding a
Down-to-UP transition in the Pyr neurons of the cortex. This observation, as
well as the time scale (200-300 ms), matches well with experimental record-
ings showing that stimulation of the cortex triggers DOWN→UP transitions
[135].

2.3.4 Validation of Ponto-thalamic projections

Essentially, reproduction of all the aforementioned electrophysiological char-
acteristics largely depends on the parameter tuning of 5 ponto-thalamic pro-
jections (see Figure 2.1B) cooperatively transforming the pulse-like pontine
outputs into the subtypes’ specific waveforms in the thalamus. As explained
in Section 2.3.4, we investigated whether all of these projections play a role
in the waveform shapes by comparing our result to simulations resulting
from suppressing one projection at a time.

We consider one projection necessary if the PGO waveforms generated
with it can not be reproduced in its absence, regardless of the variation of
the other projections (see Section 2.2.5.2). In practice, this can be verified by
using a dimensionality reduction technique mapping each shape to a point
in a 2-dimensional space, and checking whether the waveforms simulated
with and without each projection map to distinct regions of this space.

We thus complement the dataset of the original PGO waveforms gener-
ated with full ponto-thalamic projections (which underlies the Figure 2.6B
and Figure 2.8A) with 5 datasets of 500 substitute PGO waveforms by block-
ing each of the ponto-thalamic projections. The blockade is implemented by
setting the corresponding projection strength to zero, while the strength of
unblocked projections is set to randomly deviate maximally 100% from the
optimized values. We assume that the range of parameter variations is large
enough to cover most of the parameter space for the generation of PGO
waveforms.

From these 6 datasets, we take as features the waveforms of population
membrane potential, firing rates and LFPs, separately for pre-REM and
REM states. We reduce the high-dimensional features into 2 dimensions
by applying T-SNE which has been shown to perform well on dimension
reduction problems of time series [146]. The point clouds in Figure 2.9 show
the REM features of the optimized PGO waveforms with full projections
are clearly separated from the 5 blockade conditions, although not during



40 neural mass modelling of ponto-geniculo-occipital waves

Figure 2.9: Selective blockade of each ponto-thalamic projection alter PGO wave-
forms. The two subplots compare the separability of dimension-reduced
features of optimal PGO waves (dark cyan) and substitute ones obtained
by blocking one ponto-thalamic projection at a time (the blocked ones
marked in the legend) in the simulated pre-REM (right panel) and REM
stages (left panel). Substitute PGO waves are generated with large noise
in the projection strengths to cover the large parameter space. Notably, in
the REM stage, the isolated cluster of original PGO features shows that
the model is not able to generate the optimal PGO waveforms without
any of the ponto-thalamic projections, suggesting the necessity of each
projection.

pre-REM states, which is enough to indicate that each of the ponto-thalamic
projections has a specific role in the generation PGO-related waveforms.

2.3.5 PGO-triggered cortical plasticity, compared to spindle-triggered plasticity

After this comprehensive validation of the model’s ability to reproduce
many electrophysiological aspects, we implement the population STDP rule
introduced in Section 2.2.6 on the PGO-triggered cortical activities to inves-
tigate potential plastic changes PGO waves trigger in the cortical circuit to
shed light on the synaptic rescaling problem.

The STDP rule characterizes the similarity between the STDP function
(Figure 2.4B) and the cross-correlation between the pre-synaptic AMPA-
modulating currents and post-synaptic membrane potentials of the Pyr neu-
rons. As results (Figure 2.10A), we find that the synaptic change is differentDifferent subtypes of

PGO waves trigger
opposite synaptic

effects

when they are triggered by different PGO wave subtypes. The strength of the
intra-cortical excitatory synapse rises sharply during pre-REM PGO waves
while increases slowly during no-PGO periods, suggesting that pre-REM
PGO waves induce LTP; the opposite effect in the right column implies that
REM PGO waves elicit Long-term Depression (LTD) in the same synapse.

To interpret the differentiated plastic effects induced by the two PGO sub-
types, the cross-correlation function between the pre- and post-synaptic ac-
tivities exploited by the STDP rule implementation is shown in Figure 2.10B.
The similar location of the maximum cross-correlation lag, achieving a neg-
ative value for both subtypes, reflecting that the considered pre-synaptic
AMPA current is the post-synaptic firing rate convolved with a causal alpha
function modelling the synaptic dynamics, as reflected by both subfigures
of Figure 2.10B. However, other characteristics of the cross-correlation differ
between the pre-REM and REM PGO waves: the cross-correlation in pre-
REM is much flatter than during REM, explaining the signed difference of
plasticity. Indeed, the flat pre-REM cross-correlation function implies that
Eq. 2.30 is approximately proportional to the integral of the STDP function
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Figure 2.10: PGO-triggered cortical plasticity. (A) Smoothed change of synaptic
strength in the intra-cortical excitatory synapse evoked by two subtypes
of PGO waves. (top) demeaned waveforms of pre-synaptic current (red)
and post-synaptic firing rate (blue). (middle) time-varying change of
synaptic strength. (bottom) synaptic strength of the intra-cortical excita-
tory synapse changing with time. (B) Comparison of cross-correlation
between the pre-synaptic current and the post synaptic activities. Light
blue shade represents standard deviation at each lag for all the trials
calculated. (C) Effect of STDP parameter A− on the plasticity direction
induced by two PGO subtypes. The color bar indicates the relative in-
crease/decrease of synaptic strengths across time. Solid lines mark the
critical value of the parameter that switches plasticity direction, i.e. po-
tentiation v.s.de-potentiation; dashed lines correspond to the critical val-
ues of other subtypes. (D) Effect of STDP parameters τ+ and τ− on the
plasticity direction induced by two PGO wave subtypes. Color bars and
lines are analogous to (C).
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of Figure 2.4B. Because this function has a larger positive area (in the posi-
tive lags) than the negative, this leads to an overall potentiating effect. For
the REM case, the sharp peak of the cross-correlation function at small neg-
ative lags puts more weight in the negative portion of the STDP function
of Figure 2.4B in Eq. 2.30, resulting in an overall depressing effect on the
synapse.

We next investigated the sensitivity of these results to the parameters of
the STDP window: the positive amplitude A+, the negative amplitude A−

and the time constants τ+ and τ−. Considering that the sign and relativeparameter sensitivity

magnitude of plastic changes being unchanged by an overall rescaling of
the STDP function, we fix the positive amplitude to a constant A+ = 1 for
this analysis. Figure 2.10C, 2.10D and 2.11 show how the switch of LTP/LTD
induction is modulated by changing these parameters.

Figure 2.10C characterizes how synaptic strength change over time with
different values of the negative amplitude A−. The calculation of the change
of synaptic strength in Figure 2.10A is performed for different values of
the negative amplitude A− = [0, 2] with a step of 0.05. The results are di-
rected plotted as rows of the heatmap. The solid line marks the value of
A− which leads to invariant synaptic strength over time for each subtype of
PGO waves.

Figure 2.10D plots the change of synaptic strengths along with the time in-
terval [0,1200] ms against the two time constants, whose values are scanned
in the range of [0, 100] ms with a step of 5 ms. During the scanning, the neg-
ative amplitude A− is kept constant (at the value of 0.75). Solid lines mark
the values of time constants ensuring no change is triggered by one PGO
wave of the corresponding type; while dashed lines mark the other type.
The parameter region surrounded by the two lines, which we referred to as
"common region", are those that guarantee the strengthening of synapses
triggered by pre-REM PGOs and weakening by REM PGOs. Interestingly,
the biologically-measured STDP function parameters measured by classical
studies [13] fall into this region (A+ = 1; A− = 0.75, τ+ = τ− = 20 ms).

Figure 2.11 scans all the three parameters, i.e. the negative amplitude and
both time constants. A− is scanned in the range of [0,2] with a step of 0.25.
The time constants are still scanned in the range of [0,100] ms with a step of
5 ms. For each value of the negative amplitude, we obtain the results similar
to what are presented in Figure 2.10D, but only plot the common region in
the figure to show that there could be a shared parameter set that satisfies
both LTP in the pre-REM stage and LTD in the REM stage. This further indi-
cates the robustness of our result, as common sets of biologically meaningful
parameters support our conclusion for both PGO wave subtypes.

In order to interpret the dynamics of other memory-relevant sleep events
from a cortical plasticity perspective, we also applied the same STDP frame-
work to the two subtypes of spindles simulated during the NREM stage
(Figure 2.12). Type-I spindles induce LTP-like behavior in the cortico-corticalType-I spindles is

accompanied by the
co-occurrence of an

SO while Type-II
spindles are isolated

connections, which makes sense as the peri-spindle neurons’ activities ex-
hibit a similar pattern as pre-REM PGO waves. More interestingly, Type-II
spindles lead to a much weaker (see axis scale) temporal increase of the
synaptic strength before it returns to a lower level. This analysis supports
that Type-II spindles induce a weaker LTP than type-I. This is in agreement
with experimental calcium imaging data (introduced in Section 1.1.3.2) in-
dicating that the co-occurrence of spindles and SOs, corresponding to Type-
Ispindles, leads to stronger increases of dendritic calcium in cortical neu-
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Figure 2.11: Parameter sensitivity of PGO-triggered plasticity. 3 parameters are
scanned at the same time (for details see text). The common regions
as in Figure 2.10D are plotted in different colors for different values of
the negative amplitude A−.

rons, which in turn are prone to trigger large plastic changes, compared to
isolated (Type-II) spindles [173].

2.4 discussion

In this chapter, we have shown that an acetylcholine-modulated ponto-thalamo-
cortical neural mass model spanning three sleep stages - NREM, pre-REM
and REM - can reproduce a series of electrophysiological features associated
with PGO waves, including the differences in firing rate patterns and LFP
waveforms of two PGO wave subtypes. Analysis of cortico-cortical plastic-
ity associated with these events, as well as spindles, suggests a sleep-stage
dependent role: NREM and pre-REM sleep events inducing long-term po-
tentiation, while REM events lead to long-term depression.

The choice of a neural mass model helps to maintain the realism of the
model by trading off the complexity that would have incurred using indi-
vidual units. It possesses the ability to account for detailed properties of
synaptic and intrinsic currents based on quantitative experimental results.
In particular, we show that the acetylcholine-modulated state-switching con-
ductance and the five ponto-thalamic cholinergic projections are the key to
the generation of PGO-triggered neural activities. It is worth noting that
among these projections, the results support the importance of including a
population of local geniculate interneurons receiving pontine input, which
is often neglected in previous thalamocortical models [167].

This is to the best of our knowledge the first computational model ac-
counting for the detailed cellular mechanisms of thalamic PGO wave genera-
tion, clarifying details in the classical electrophysiological literature [103, 43]
as well as paving the way for future single unit models of PGO waves. The
STDP framework for neural field theory, which has proved effective in char-
acterizing TMS-induced plasticity [250, 249], is extended here to neural mass
models deprived of spatial structure. The STDP rule, computed with param-
eters estimated experimentally in-vivo [13], reveals an opposite plasticity ef-
fect of two subtypes of PGO waves - potentiation for pre-REM PGO waves
and depression for REM PGO waves.
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Figure 2.12: Spindle-triggered cortical plasticity. (A) smoothed change of synaptic
strength induced by two subtypes of spindles. (top) demeaned wave-
forms of pre-synaptic current (red) and post-synaptic firing rate (blue).
(middle) time-varying change of synaptic strength. (bottom) synaptic
strength of the intra-cortical excitatory synapse changing with time. (B)
Comparison of cross-correlation between the pre-synaptic current and
the post synaptic activities. Light blue shade represents standard devi-
ation at each lag for all the trials calculated. (C) Effect of STDP param-
eter A− on the plasticity direction induced by two spindle wave sub-
types. The color bar indicates the relative increase/decrease of synaptic
strengths across time. Solid lines mark the critical value of the parame-
ter that switches plasticity direction, i.e. potentiation v.s.de-potentiation;
dashed lines correspond to the critical values of other subtypes. (D) Ef-
fect of STDP parameter τ+ and τ− on the plasticity direction induced
by two spindle subtypes. Color bars and lines are analogous to (C).
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These results support the ability of PGO waves to up- and down-scale
cortical synaptic weights in larger proportions than the baseline activity sur-
rounding them. This makes PGO waves the candidates to enforce synaptic
homeostasis, a role that spontaneous phasic sleep events are hypothesized to
play in line with considerable experimental evidence [173, 90]. Our results
for REM PGO waves, for which the contribution to synaptic homeostasis
remained elusive (Section 1.1.4.2), is in line with the downscaling effect of
REM sleep on cortical spike rates observed in rats in [241], and possibly
matches the eliminated spines during REM sleep in the mouse reported by
[253]. In contrast, the potentiation effects that we found for pre-REM PGO
waves, although apparently contradictory to the classically attributed depo-
tentiating role of NREM sleep, is still consistent with results in [241], as such
downscaling may be affected only a specific subgroup of synapses, with the
largest synaptic weights in the population, while other subgroups may un-
dergo potentiation to ensure consolidation of newly acquired memories (as
predicted in [136]).

Indeed, converging evidence suggests that interacting NREM events may
be involved in consolidating specific memory traces into local neural micro-
circuits, with the SO-ripple coupling a specific example [147, 128, 122]. Inter-
estingly, as reported by Ramirez-Villegas et al. [192] (see also Section 1.1.4.3),
pre-REM PGO waves co-occur with SPW-Rs, while our results exhibit a
co-occurrence of pre-REM PGO waves and SOs (specifically DOWN→UP
state transitions). According to synaptic plastic pressure theory proposed
by [136], ripples, associated with off-line reactivation of episodic memories,
occurring during DOWN→UP state transitions provide an opportune time
window for new memory traces with low average firing rates to get assim-
ilated into the existing network with relatively high firing rates. Pre-REM
PGO waves may serve as triggers and facilitators of this procedure.

Overall, our results suggest the variability of neuronal patterns observed
during sleep, may serve the purpose of differentially affecting the plastic-
ity of network elements. The multiphasic nature of these events and their
grouping in time may put the network in a dynamic state that ensures the
right synapses can be targeted for plastic changes despite the strong re-
currence of the microcircuit they are embedded in. The idea that specific
events are optimal to trigger certain plasticity mechanisms resonates with
recent experimental results showing spindles result in a targeted increase of
calcium activity in cortical dendrites during NREM sleep, suggesting that
these events are able to trigger dendritic depolarization independent of so-
matic activity [210]. Our results suggest further experimental work should
be conducted on the characterization of transient REM activity, and parallel
with a detailed modelling of the optimality of transient events for triggering
synaptic plasticity processes in recurrent microcircuits.





3E S T I M AT I O N O F S P O N TA N E O U S T R A N S I E N T
D Y N A M I C S B A S E D O N P E R I - E V E N T D ATA

3.1 introduction

As stressed in Section 1.1.2, implementation of synaptic scaling and other
network changes related to memory consolidation and homeostasis likely
relies on the occurrence of transient mechanisms during sleep. From a com- transient mechanism,

transient state, and
transient events

plex systems perspective, such a mechanism can be seen as putting the brain
network in a transient physiological state, where it exhibits specific dynam-
ical behavior and undergoes critical network reorganizations. An essential
feature of these states and the underlying mechanisms are their spontaneity,
as they are not triggered by an observable external input but instead result
from the internal dynamics of the system. Functional recording giving us
only a very partial observation of the network dynamics, inferring the prop-
erties of the underlying brain state favoring the occurrence of specific neural
events is thus a challenging task. One important clue in order to address this
question is the transient brain activity surrounding neural events presumed
to hallmark the state. These events are typically detected as repetitive pat-
terns of activity using classical filtering (e.g. [193]) or template matching
approaches (e.g. [208]).

Understanding the emergence and dynamics of such transient phenom-
ena in complex systems like the brain is a key challenge in neuroscience,
where models are broadly used to investigate the underlying mechanisms.
As mentioned in Section 1.2, biophysical modeling can be applied to sys-
tems whose operating mechanisms are relatively clear. An example pre-
sented in Chapter 2 is the generation of cortical K-complex modelled with
a neural mass framework, where bifurcation analysis of the model reveals
a canard explosion caused by random perturbation to the system [242, 39].
However, exploiting observation data to inform such modeling in a princi-
pled way remains largely elusive.

The critical issue regarding a statistical investigation of transient mecha-
nisms is how to appropriately capture the dynamical properties of a state
giving rise to specific events. Specifically, we are interested in learning a
dynamical law that determines the future activity of the system based on
past values. This state dependent model of the evolution of the system may
be used to characterize key properties of the underlying network in a given
state, such as causal interactions investigated in Chapter 4.

Classically, the analysis of neural dynamics associated with neural events
is based on an empirical detection followed by reporting “event-triggered”
averages (see e.g., [140, 229, 144]). This relies on collecting a panel of “peri-
event” sequences (i.e., comprising a “peri-event time” dimension, and a
“trial” dimension indexing the set of detected events) to perform advanced
analysis, such as phase-locking values [4] and Granger causality [89, 212].

However, this approach neglects the fact that the peri-event "trials" ac-
cumulated in this way are not from a randomized controlled trial, but in-
stead are selected based on a specific signal detection procedure, and thus event selection bias

problempotentially subject to selection biases of the state (for elaboration refer to
Section 3.2.1).

47
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In this sense, other analysis methods developed based on stimulus-triggered
activities, e.g., Dynamic Causal Modelling (DCM) in neuroimaging or panel
data analysis approaches in econometrics, should not be directly applied to
spontaneous activities without considering its specificity [75, 14, 101].

Therefore, it is imperative to attack the problem fundamentally by for-
malizing mathematically the processes underlying spontaneously emerging
neural activity and the limitations they entail from the perspective of sta-
tistical data analysis. In this work, we explicitly model the whole event-
triggered analysis procedure to emphasize the specific issues to pay atten-
tion to when exploiting such data for fitting statistical models (Section 3.2.2).
After pointing out identifiability issues related to such an approach in a
non-parametric setting (Section 3.2.3), we investigate the linear autoregres-
sive Gaussian case for which classical estimation procedures are shown to
be biased (Section 3.2.4). We then develop a bias correction procedure (Sec-
tion 3.2.5) whose efficiency is illustrated on simulated data (Section 3.3.1
and Section 3.3.2) and further applied on neural recordings (Section 3.3.3).
Section 3.3.3.2 shows that the de-biased power spectrograms of SPW-Rs is
able to categorize SPW-R events defined in three frequancy bands into two
groups associated with different states. Such categorization matches the ex-
perimental results introduced in Section 1.1.4.3.

3.2 methods

The Method section includes a comprehensive investigation of the event
selection bias problem using methodologies ranging from signal processing,
dynamical systems, structural causal models and probabilistic modelling.
Starting from a motivating example, we will formalize mathematically the
state-dependent event detection and dig into the bias problem progressively.
Finally, we will propose a bias correction method - the DeSnap algorithm in
Section 3.2.5.2 and summarize the main idea in Section 3.2.6.

3.2.1 A motivating example for selection bias in peri-event data

Assume we want to analyze certain transient network properties of a dy-
namical system. The true state dynamics is usually unobserved, and we
need instead to explore the transient events occurring spontaneously in an
observed stochastic process X̃t reflecting ongoing activity of the dynami-
cal system. Examples of these transient events are the neural events during
sleep, as reviewed in Section 1.1.2. Such investigation starts with an event de-
tection step to find the location of putative transient events in the observed
signals. Here we briefly describe the classical detection procedure and point
out the potential issues mentioned in Section 3.1.definition of key

terminologies:
detection signal,

snapshots, reference
points

The event detection is typically performed by applying a filter to the orig-
inal signal to get a detection signal. The filtering procedure can be either a
bandpass filter that captures frequency-based characteristics or a template-
matching approach that extract events exhibiting specific waveforms. Af-
terward, by setting a threshold for the detection signal, one can locate the
targeted events in the signal and obtain a multi-trial peri-event dataset by
extracting signal sub-sequences in a time window surrounding the locations
of each detected event occurrence.for an intuitive

understanding of the
naming of

"snapshots" refer to
Section 3.2.2.1

Such a dataset is also called panel data (in econometrics) or snapshots.
In the context of this thesis, we refer to the two-way multi-trial peri-event
dataset as a panel, while data at each peri-event time point from different
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Figure 3.1: Illustration of the snapshot selection procedure on a white noise signal.
(A) Time course of one realization of white noise. (B) Template used
for detecting events. (C) Detected events for the same realization as (A),
based on template matching with a detection threshold of 5SD. (D) Aver-
aged panel of the detected events in the peri-event time course.

trials is called a snapshot. The detected event locations are referred to as
reference points.

To illustrate the detection procedure, let us consider an example of event
detection with a Morlet wavelet-like discrete-time template (exemplifying
the detection of some oscillatory event)

wt =

{
3 exp(−|t|/4) cos(t) , |t| ⩽ 10 ,

0 , otherwise.

Due to the symmetry of the template (i.e. it is an even function), we can
implement the template matching procedure by computing a detection signal
D̃t resulting from the convolution of this template with the observed time
series X̃t Here the tilted

non-bold X̃t with the
tilde refers to
uni-variate observed
time series (discrete)
as shown in
Figure 3.1A,C

D̃t =
(
w ∗ X̃

)
t

,

and extract the peri-event snapshots in two steps: first, select the time points
tn (n = 1 . . .N) as reference points following a thresholding rule of the form

T = {tn} = {t|D̃t ⩾ d0} ,

with, for example, d0 chosen as a multiple of the standard deviation of
the realization of D̃t computed across time; second, gather the two-way
snapshot panel {X(n)

t′ }(n = 1 . . .N), representing the peri-event signal on an Here the untilted
non-bold Xt without
the tilde refers to
uni-variate
peri-event snapshots
(discrete) as shown in
Figure 3.1D

time window I = [−T/2, T/2] (with duration T ) in the neighborhood of each
reference point such that

X
(n)
t′ = X̃t′+tn , t′ ∈ I, tn ∈ T .
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As mentioned in Section 3.1, we can investigate the statistical properties
of such snapshots datasets, and in particular, how they can be used to accu-
rately infer state-dependent properties of the original process X̃t.

To illustrate a potential problem of such a detection procedure, we ap-
plied the above Morlet detector to a white noise signal made of i.i.d. nor-
mal samples (zero mean, unit variance) using a detection threshold of 5 SD
(standard deviation). The original signal, Morlet template and resulting peri-
event panel are provided in Figure 3.1A, B and D, showing that the resulting
panel contains only peri-event signals very similar to the template.

While such a phenomenon is expected from a template matching ap-
proach, this also demonstrates that the selection of snapshots based on such
procedure introduces a structure in Xt′+tn that is not related to the proper-
ties of the completely unstructured (i.i.d.) original time series X̃t.

In the next section, we will provide a snapshot analysis framework to shed
light on the source of selection bias in the theory of dynamical systems.

3.2.2 Snapshot analysis framework

We expose here informally a continuous-time framework to justify intu-
itively the snapshot analysis of transient events and show how it leads to
the modelling of peri-event snapshots as a time-varying difference equation.

The main idea of the framework is the following. Transient interactions
spontaneously emerging within the system can be modeled by restricting
the analysis to particular regions of its state space. We assume that a given
type of neural event is associated to a single specific region of the state space
favoring their emergence. The dynamics of hidden states in this region is
inferred by collecting multiple “trials” that each comprises the sequence
of measurements recorded from the system during one occurrence of the
targeted type of neural event. We assume these trials correspond to portions
of state space trajectories passing through the specific region of the state
space where events are prone to emerge.

3.2.2.1 Continuous time dynamics perspective

This section describes our approach from a continuous time dynamical per-
spective that may help the readers more familiar with the investigation of
complex systems with such tools. Readers less familiar with those may di-
rectly reach the next section describing our discrete time models.

Assume a deterministic continuous-time dynamical system governed by
the autonomous differential equation in state space Zdz

dt (t) = F(z(t)) ,

z(t0) = z0 ,
(3.1)

where z(t) represents the state of the system at time t, and z0 denotes the
initial state. Under mild assumptions, the flow of the vector field F provides
the unique solution to this problem

φ(z0, t) = z(t) , z0 ∈ Z, t ∈ R ,

satisfying the property

φ(φ(z0, t1), t2) = φ(z0, t1 + t2), t1, t2 ∈ R .
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As the states are usually hidden, we assume the observations of the sys-
tem is denoted as a vector x̃(t). For a given event instance, the observations Here the bold x̃(t)

with the tilde refers
to multi-variate
continuous
observations of the
system as shown in
Figure 3.2

x̃(t) are deterministic functions of the current state

x̃(t) = f̃(z(t)) .

We assume events are prone to occur when the state trajectory crosses a
manifold E0 in the state space illustrated in Figure 3.2. The manifold is the
state space representation of the transient mechanism we focus on. We fur-
ther define Et the images of this manifold corresponding to evolution of the
system t time steps after crossing E0 (t can be positive or negative, leading
to running the evolution backwards in time in the later case). Given the ob-
servation x̃(t), the deterministic mapping between two successive states (i.e.,
z(t) and z(t− 1)) implies that x̃(t) is also a deterministic function of the past
state z(t− 1).

Following the principle of the Takens theorem [231], information about
z(t− 1) can be gathered by collecting values of the observations at multi-
ple lags k in the past x̃p,t = {x̃(t− k)}k=1..p. However, this information may
remain incomplete, especially if the number of lags is small and the dimen-
sion of Z is large, which is likely the case for complex biological systems
such as the brain. This would also be the case if we would have considered
from the beginning an inherently stochastic dynamical system (governed by
stochastic differential equations).

Under ergodicity and mixing assumptions for our dynamical system (see
e.g. [127]), if the event occurs long enough after the initialization of the
dynamics, z(t− 1) is approximately distributed according to the invariant
measure µ of the system. As a consequence, it can be modeled as a random
vector Zt−1 ∼ µ, and the knowledge of the vector of past observations x̃p,t
up to lag p reduces the uncertainty on the state through the conditional
Zt−1|x̃p,t.

As shown in Figure 3.2, the deterministic (and invertible) mapping be-
tween Et−1 and Et through φ leads to a stochastic model for the state
Zt|x̃p,t as well as current observations X̃t|x̃p,t. We can thus parameterize Here the bold tilted

X̃t with the tilde
refers to
multi-variate discrete
observed time series

each conditional distribution as

X̃t|x̃p,t = f̃(φ(Zt−1|x̃p,t, 1)) = ft(x̃p,t, ηt) (3.2)

where ηt models the randomness of Zt−1 due to the remaining uncer-
tainty on the observations given x̃p,t, relevant to predict each observed vari-
able and ft models the time-varying deterministic mappings from the state
z(t− 1) ∈ Et−1 to each observed variable. It is noteworthy that the mapping
ft is assumed time-dependent because the distribution of the random part
of the state 1 is only dependent on the current location in the state space.
We stress that the above framework remains largely informal as it overlooks
many technical requirements for the final Eq. 3.2 to hold. This last equa-
tion, however, provides a connection between properties of the continuous
time dynamical system and the time varying discrete time models of the
observed time series introduced in the next section.

3.2.2.2 Discrete-time Snapshot Model

From Section 3.2.2.1, we see the interest of modelling time series data com-
prising transient events as a state-dependent time series, where the focus is

1 if the state was fully observed, the mapping would be independent of time, because the au-
tonomous differential equation (3.1)
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Figure 3.2: Interpretation of the peri-event analysis using a deterministic continuous
time dynamical system.

put on location of the state space where the events emerge. Here we present
how to treat the problem in a discrete-time setting, which directly applies
to neural time series analysis.

Assuming the time interval between snapshots is sufficiently small, we
make a linear approximation of Eq. 3.2, resulting in a linear Vector Autore-
gressive (VAR) models, for which coefficient estimation procedures are well-
established (see Section 3.2.4.2). The VAR model describes time series by
systems of difference equations linking future to past values and (poten-
tially) the values of additional exogenous variables.

For the multivariate n-dimensional observation X̃t, the time-inhomo-geneous
linear VAR model of order p takes the form:

X̃t = AtX̃p,t + ηt ,ηt ∼ N(kt,Σt) , (3.3)

where X̃p,t = {X̃t−1, · · · , X̃t−p} collects past process values up to lag p

as a single column vector, and {ηt}t∈Z is called the innovation process. In-
novations at each time points are assumed to be jointly independent n-
dimensional Gaussian random vectors. Moreover, the covariance Σt between
the components is assumed diagonal. Time-inhomogeneity of this model re-
flects the time-dependence in Eq. 3.2 and manifests it self both in the time-
dependence of the coefficient matrix At, as well as in the parameters of
the mean and variance innovation distribution (i.e., kt and Σt). Importantly,
the VAR model entails additional assumptions allowing the estimation of
the parameters from data. Chiefly, the independence assumption between
innovations at different time points entails order-p Markovianity of the pro-
cess, as the distribution of X̃t given the whole history of the process up to
time t− 1 depends only on random variable X̃p,t. In relation to the above
state space modelling perspective, this implies that the hidden state Zt doesFor a similar issue

see Section 3.2.3.4 not act as a hidden confounder of the dependency between successive time
samples of the observations.

For a simplified representation of the state dependency of the overall dy-
namics of the system, we use Markov switching models that combine state
dependency with VAR dynamics [92]. The Markov switching state Zt is a
discrete Markov chain with m-states and transition matrix M such that

p(Zt = k|Zt−1 = j) = Mk,j (3.4)

and this state controls the time varying parameters of the VAR model for
the discrete time series X̃t as observation

X̃t = AZt
X̃p,t + ηk, ηt ∼ N(kZt

,ΣZt
) . (3.5)
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Figure 3.3: Illustration of the event detection procedure for a time series. An original
signal X̃t with Morlet-shaped events are plotted in blue. The detection
signal D̃t is obtained by convolving X̃t with a Morlet template. The
threshold d0=3SD is marked by the black solid line. reference points tn
such that D̃tn ⩾ d0 are marked by pink dots. Peri-event data is marked
by pink windows in X̃t and extracted to form the peri-event panel on
the left.

In relation the above discussion on Markovianity of the VAR model, we can
see from these equations that the hidden state may affect the dependency
between the innovations by influencing the parameters of their distribution
at different time points. This violation of markovianity can however be ne-
glected in practice when considering the state changes are small on the con-
sidered time intervals. We will make this approximation in our estimation
procedure (see also Section 3.2.3.4).

3.2.2.3 Modelling of peri-event snapshot detection procedure

Based on this discretized model, we re-state the modelling of the peri-event
snapshot detection procedure (as introduced in Section 3.2.1).

As illustrated in Figure 3.3, the detection is typically based on a continuous-
value D̃t ascribed to each (discrete) time point t. To ease notations, we will
consider a causal detector basing its decision on the last ND samples, where
X̃D,t = {X̃t−1, · · · , X̃t−ND

}. Snapshots are extracted based on a determin-
istic detector function that extracts information from ND past samples

D̃t = w(X̃D,t)

such that only the snapshot satisfying Dt ⩾ d0 are kept, used as reference
points

T = {tn} = {t|D̃t ⩾ d0} ,

The size of reference points is denoted as N such n = 1 . . .N, also representing
the number of event trials extracted from the time series.

Such a detection procedure is equivalent to reconstructing the state space
by delayed embedding of the observations X̃t with the embedding dimen- state space

understanding of
detection

sion of ND and delay time of τ = 1 and transforming this ND dimensional
space into a 1-dimensional space of detection signal D̃t. The reference points
are detected by locating the time points in the embedded manifold pass-
ing one side of the embedded space separated by a hyperplane. The 1-
dimensional space is orthogonal of the hyperplane such that it is mapped to
the point D̃t = d0. This intuitive understanding is illustrated in Figure 3.4
as an example when the embedding dimension ND = 2.
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Figure 3.4: Illustration of detection in the embedded state space. Black curves marks
the embedded manifold of a non-linear system X̃t with the embedding
dimension ND = 2 and delay time τ = 1. The orange region represents
the embedded mapping of the manifold E0 in the hidden state space
marking Zt = 0. A hyperplaine is marked by the color separation, where
the orange side is mapped to the detection criterion Dt ⩾ d0 on the 1-
dimensional space orthogonal to the hyperplane.

Detected states are a partial selection of all states in the region.

Consistent with Section 3.2.1, for each reference point tn, the samples from
the long time series X̃t covering a fixed peri-event time window around tn,
i.e., I = [−T/2, T/2], are extracted to build a two-way panel {X(n)

t′ }:

X(n)
t′ = X̃t′+tn , t′ ∈ I, tn ∈ T . (3.6)

The following assumption of “perfect detection” is key to our approach.key assumption

Assumption 1 (Perfect detection). We assume that when D̃t is above a certain
known threshold d0, this indicates with probability one that the observed system is
in a target state Zt = 0, i.e., P(Zt = 0|Dt ⩾ d0) = 1

With this assumption, for each reference point tn, P(Ztn = 0|Dtn ⩾ d0) = 1.
Notably, this assumption provides only a sufficient condition to have Zt = 0,
but not a necessary one, i.e., P(Dt ⩾ d0|Zt = 0) ̸= 1. This assumption
suggests that such thresholding detection is a partial selection of all the
states Zt = 0 thus leading to selection bias (e.g. see Fig. 3.4). As a conse-
quence, collected snapshots at peri-event time t ′ are distributed according
to X̃t ′+tn |D̃tn ⩾ d0 which typically differs from X̃t ′+t|Zt = 0. RecoveringX̃t′+t|Zt = 0 is

the unbiased selection
of peri-event

snapshots

this last distribution based on the snapshot panel data is the main goal of
this chapter.

As the interpretation of such detection in the embedded space (e.g., Fig-
ure 3.4), a region in the embedded space ED (marked by the orange man-
ifold) can be understood as the reconstruction of the manifold E0 in the
hidden state space where Zt = 0 (Section 3.2.2.1). Thresholding detection
with the hyperplane only selects the embedded states at one side of the
hyperplane without covering the whole region ED. Thus similarly, the de-
tected states are a partial selection of all desired states in the embedded
space. This partial selection typically result from a necessary trade-off: low-
ering the threshold would cover a larger portion of ED, but would also cover
other regions of the state space that we are not interested in, such that the
perfect detection Assumption 1 would be violated.
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3.2.3 Selection bias based on Structural Causal Models

After establishing the mathematical formalism of peri-event snapshots and
their detection procedure, we know that the event selection bias observed in
the motivational example (see Section 3.2.1) is due to partial selection of the
states Zt = 0 based on thresholding D̃t ⩾ d0.

This phenomenon can be stated as a form of sample selection bias, which
has long been recognized as both a practical and fundamental issue [94]. It
refers to the mechanisms of selection of empirically observed data points,
intended or not, that may affect the inference of relevant quantities in statis-
tical or causal models [95, 100].

Notably, this question has been investigated within the framework of
Structural Causal Models (SCMs) [184], by using causal graphical models
equipped with a special node representing the sampling process. In this
section, we will first introduce the key concepts and properties of SCMs to
prepare for a theory of SCM-based selection bias. Then we will introduce
how to extend the theory to time series models, which includes the VAR
models we derived in Section 3.2.2.2.

3.2.3.1 Basics of Structural Causal Models

SCMs are generalizations of Bayesian networks that combine Structural Equa-
tion Models (SEM) to incorporate directional information for causal analysis
[184]. A structural equations takes the form

Y := f(X1, · · · , Xk, ϵ)

where the right hand side determines the assignment of values on the left-
hand side. In the most usual case, Y and {Xj}j∈{1,··· ,k} represent observed
variables and ϵ a variable accounting for (unobserved) exogenous effects.

Based on this, a SCM is defined for a set of random variables {Vj} associ-
ated to vertices in a graph as the follows.

Definition 1 (Structural Causal Model (SCM) (see e.g. [186])). A d-dimensional
structural causal model is a triplet (S,PN,G) consisting of:

• a directed acyclic graph G with d vertices

• a set S of structural equations

Vj := fj(PAj,Nj), j = 1, . . . ,d,

where PAj are the variables indexed by the set of parents of vertex j in G

• a joint distribution PN over the exogenous variables Nj, which are assumed
jointly independent.

One attractive feature of this formalism is that the SCM’s graph entails
key properties of the join distribution of the nodes {Vj}, like the Markov
properties and conditional independences (see e.g. [15]).

Proposition 1 (Markov properties). For a given SCM (S,PN,G), the joint dis-
tribution PV is Markovian with respect to G, i.e. it satisfies the following properties:

1. (local Markov property) each variable Vj is independent of its non-descendants
given its parents PAj,



56 estimation of spontaneous transient dynamics based on peri-event data

Figure 3.5: SCM, selection bias and recoverability (adapted from [5]). (A) SCM de-
scribing sample selection based on X, leading to identifiability of P(Y|X)
based on selected data. (B) SCM describing sample selection based on
Y, leading to non-identifiability of P(Y|X) based on selected data. (C)
SCM describing sample selection based on both X and Y, leading to non-
identifiability of P(Y|X) based on selected data.

2. (Markov factorization property) assume the joint distribution PV has a den-
sity, then

p(v) = p(v1, . . . , vd) =
d∏

j=1

p(vj|paj)

With the conditional independence indicated in the local Markov prop-
erty, the Bayesian network greatly simplifies the calculation of joint proba-
bilities. In addition, the concept of d-separation allows assessing systemati-
cally the conditional independences between subsets of nodes in G based on
graphical criteria of d-separation (see e.g. [184]).

Definition 2 (d-separation). A path p in graph G is said to be blocked by a set of
nodes Z if either: (1) p contains a chain i→ m→ j or a fork i← m→ j such that
the middle node m is in Z, or (2) p contains a collider i → m ← j such that the
middle node m is not in Z and such that no descendant of m is in Z.
Z is said to d-separate X from Y in G if and only if Z blocks every path from a

node in X to a node in Y. This property is denoted X ⊥⊥ GY|Z.

Indeed, d-separation allows stating the global Markov property (see e.g. Pe-
ters et al. [186]).

Proposition 2 (Global Markov property). For a given SCM (S,PN,G) and
subsets of nodes X, Y, Z in G, then

X ⊥⊥ GY|Z⇒ X ⊥⊥ PV
Y|Z .

This proposition indicates that the conditional independences in the graph
as defined by d-separation rules also hold for the corresponding random
variables of the associated SCM.

The next sections will show how these basic concepts and properties of a
SCM would fascilitate the understanding of sampling bias.

3.2.3.2 Recoverability with Sampling Selection Bias

In the simplest two-node SCM, the identifiability or recoverability of the
effect based on different sampling methods has been investigated in [5].

Figure 3.5A, B, C show three sampling conditions in a two-node SCM con-
sisting of variables X and Y (with X causing Y). Sampling is represented by
binary variable S in an additional node designed as descendant for either X
or Y. S takes the value 1 when a data point is selected and zero otherwise.
In Figure 3.5A, sample selection is a function of X only, while Figure 3.5B
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describes a sample selection based on Y only. Figure 3.5C presents the con-
dition where sample selection depends on both variables.

In this model, we are interested in estimating the conditional propability
of P(Y|X) from sampled data. What is critical is whether P(Y|X) can be recov-
ered from the joint distribution of the selected samples (X, Y)|S = 1 given
different sampling scenarios. Bareinboim et al. [5] show that, under stan-
dard assumptions, a necessary and sufficient condition for recoverability is
conditional independence between target variable Y and selection variable
S, given conditioning variable X (Y ⊥⊥ S|X)) such that P(Y|X,S = 1) = P(Y|X).
For the scenarios of Figure 3.5, this implies that P(Y|X) can be recovered
(X, Y)|S = 1 in the case of Figure 3.5A, but not in Figure 3.5B and Fig-
ure 3.5C.

The rationale is simple according to the d-separation rules (see Section 3.2.3.1
for details). In the condition of Figure 3.5A, conditioning on X corresponds
to the “fork” case in the d-separation rules, indicating that the conditional
independence Y ⊥⊥ S|X is satisfied. On the contrary, Figure 3.5B shows the
condition where such that P(Y|X) is not recoverable from sample selected
data because the above conditional independence requirement (Y indepen-
dent of S given X) is not satisfied. For Figure 3.5B, detailed proof has been
provided in Bareinboim et al. [5]. The case in Figure 3.5C corresponds to
the “collider” case of d-separation where a common observed descendant
induces extra dependency between the ancestors.

However, it is important to point out that this negative theoretical result
corresponds to a non-parametric case. In particular, putting further assump-
tions on the model that generated X and Y may help identify P(Y|X). We
will return to this point at the end of Section 3.2.3.4, followed by the whole
Section 3.2.5.2.

3.2.3.3 SCMs for inhomogeneous VAR models

The SCM perspective on time series models has been exploited in multiple
studies (e.g. [185, 111, 68]) and is potentially helpful for investigating selec-
tion bias. This section will show why the VAR model can be treated as an
SCM. This is a general VAR

model not specifically
related to our above
framework.

For a general form of VAR model with the stochastic process Xt:

Xt := AtXp,t + ηt ,ηt ∼ N(kt,Σt) (3.7)

As Xt at each time point is generated by its past Xp,t, as indicated by
our ”:=” notation in Eq. 3.7, difference equations describing VAR model can
be seen as a form of structural assignment of variables at time t based on
variables at past times (implying acyclicity of the corresponding graph). In
addition, the exogenous variables of each structural equation correspond to
the components of the innovation vectors ηt. Since these components for all
time points are jointly independent, all conditions of Definition 1 are sat-
isfied and the time series can be considered as an SCM. Interestingly, the
graph describing assignments at all times, called full-time graph, is poten-
tially infinite.

The VAR modelling of our observational data has been defined in Eq. 3.3
for X̃t. An example graph of such a VAR model (of order 2) is represented
in Figure 3.6A, where X̃t is structurally assigned by the past two states.
The corresponding SCM graph that incorporates the hidden state Zt is il-
lustrated in Figure 3.6B for the Markov switching VAR model defined in
Eq. 3.5, where the hidden state Zt is only dependent on its immediate past
Zt−1.
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Figure 3.6: SCMs for inhomogeneous VAR models for observation signals. (A) SCM
for an example inhomogeneous VAR(2) model of the observation data
X̃t. The SCM is consistent with Eq. 3.3. (B) State-dependent SCM for the
inhomogeneous VAR(2) model in (A) with the incorporation of hidden
states Zt. The SCM corresponds to Eq. 3.5.

For state-dependent peri-event data, the unbiased peri-event snapshots
X̃t′+t for the state Zt = 0 can be obtained by gathering observation signals
X̃t for peri-event time t′ + t where Zt = 0 and t′ = [−T/2, T/2] with the
peri-event window T (see Section 3.2.2.3). As seen in Figure 3.7A, the SCM
formalism for VAR model of the unbiased peri-event snapshots X̃t+t ′ |Zt =

0 can be seen as conditioned on the yellow hidden state node for t′ = 0 such
that Zt = 0.

To estimate the inhomogeneous VAR model, we are interested in obtain-
ing an unbiased estimate of the conditional distribution P(X̃t′+t|X̃p,t′+t,Zt =

0), which is critical for the Maximum Likelihood (ML) estimation formulas
(see Section 3.2.4.2 and Appendix A.3.1). In Figure 3.7A, at peri-event time
t′ = 0, as the node for the hidden state Zt′=0 is observed due to Assump-
tion 1 (and conditioned on), due to the Markov properties of SCMs, the past
hidden states Zt′ where t′ < 0 are irrelevant to the estimation of the con-
ditional P(X̃t′=1|X̃p,t′=0,Zt′=0 = 0). However, at peri-event time t′ ̸= 0,
the hidden states Zt′+t are not observed by conditioning on Zt = 0 and
therefore generate unblocked paths, e.g. from X̃t′=−4 to X̃t′=−1 throughX̃t′=−4 is chosen as

an example for the
observations not

included in
X̃p,t′=−1 in the

VAR(2) model

Zt′=−4, Zt′=−3, Zt′=−2 and Zt′=−1.
This illustrates the fact that the Markov properties cannot be, strictly

speaking, satisfied for the graph where the hidden states are marginalized,
represented in Figure 3.7B. Indeed, X̃t′+t|Zt = 0 cannot be assumed only
dependent on X̃p,t′+t|Zt = 0 for arbitrary perievent times t′. However, we
make the assumption that state varies only with low probability in the peri-
event time window, such that the peri-event hidden states satisfy approxi-
mately Zt′+t = 0 where t′ ̸= 0 (see also Section 3.2.2.2).

This approximation entails that all peri-event hidden states nodes Zt′+t

where t′ ̸= 0 are observed, blocking the paths through hidden states. There-
fore, we can approximate the SCM for peri-event snapshots into the form
presented in Figure 3.7B such that each node represents the conditional peri-
event variable conditioned on Zt = 0 and the Markovianity is approximately
satisfied.



estimation of spontaneous transient dynamics based on

peri-event data

Figure 3.7: SCMs for VAR model of peri-event snapshots. (A) An SCM for VAR
model of peri-event snapshots gathered from the full-time SCM in Fig-
ure 3.6B by setting the reference points as {t|Zt = 0}. (B) The SCM in (A)
can be approximated into a conditional graph when the peri-event states
Zt+t′ are of high probability to be Zt+t′ = 0. (C) An SCM illustrating
the detection of peri-event snapshots in (B) based on past ND states. The
yellow node marks the detection node.



60 estimation of spontaneous transient dynamics based on peri-event data

3.2.3.4 Event detection generates selection bias in time series models

This result presented in Section 3.2.3.2 can be extended to time series models,
explaining why the event detection procedure modelled in Section 3.2.2.3
induces selection bias. Here we directly apply the recoverability theory of
the two-node SCM model in Section 3.2.3.2 to the simplified peri-event SCM
model shown in Figure 3.7B.

The detection of peri-event snapshots based on the detection signal D̃t is
equivalent to adding a node for detection based on the past ND nodes (Fig-
ure 3.7D). When peri-event snapshots are obtained by applying the detec-
tion procedure to a state-dependent VAR model such as the Markov switch-
ing model of Eq. 3.5, we are interested in using the resulting distribution of
snapshot panel data conditioned on D̃t, i.e., P(X̃t ′+t|X̃p,t ′+t,Zt = 0, D̃t ⩾
d0) to recover the conditional probability characterizing the markovian dy-
namics P(X̃t ′+t|X̃p,t ′+t,Zt = 0) for t ′ in a peri-event time window. For a
better understanding, we point out here that the time points t in the con-
ditional P(X̃t ′+t|X̃p,t ′+t,Zt = 0, D̃t ⩾ d0) is the same as tn, indicating a
reference point where the event is detected (Section 3.2.2.3). Here we omit the
index n to see clearly the comparison between the two conditionals.

In this context, comparing the graphical relationship between X̃t ′+t and
X̃p,t ′+t to the relationship between Y and X in Section 3.2.3.2, we can con-
clude easily that P(X̃t ′+t|X̃p,t ′+t,Zt = 0) is identifiable from the snapshot
data P(X̃t ′+t| X̃p,t ′+t,Zt = 0, D̃t ⩾ d0) for points after the detection time
point t′ ⩾ 0 due to d separation. Similarly, based on the case presented in
Figure 3.5B,C, P(X̃t ′+t|X̃p,t ′+t,Zt = 0) are not identifiable for time points
before the detection time point, i.e., t′ < 0.

This theoretical result provides insights about challenges for identifying
the markovian dynamics of the system due to the selection process of peri-
event snapshots for generic time series models. However, this does not pre-
clude, a priori, that enforcing more assumptions on the model would lead
to identifiability for a broader range of time points. In the following, we use
a parametric (linear Gaussian) setting to estimate model parameters based
on such detection in the inhomogeneous time setting.

3.2.4 VAR model estimation for peri-event snapshots

Having clarified the theory of selection bias in peri-event snapshot detection
and investigating the nature of such bias with SCMs, we will next explore
how to correct it. As a prerequisite, we first introduce a general statistical
estimation framework for inhomogeneous VAR models based on peri-event
snapshots.

Repeating the VAR model in Eq. 3.7, we seeHere the bold tilted
Xt without the tilde

refers to
multi-variate random
variables undelying a

stochastic process

Xt := AtXp,t + ηt ,ηt ∼ N(kt,Σt) (3.8)

The model is determined by the model order p and 3 model parameters: the
coefficient matrix At, the innovations mean kt and the innovations covari-
ance Σt.

3.2.4.1 VAR model order selection

The determination of model order p falls into the category of classical model
selection. If the model order is too low, the corresponding VAR(p) model
will not be able to reconstruct enough past dynamics in the signal. On the
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contrary, a VAR model with higher order will over-fit the signals. In both
cases, the estimation of residuals, thus the estimation of innovations’ mean
and covariance, will be inaccurate, such that spurious results might be ob-
tained in subsequent analyses (e.g. causality analysis, see Section 4.2.2.1).

Two common ways to optimize the model order are the Akaike informa-
tion criterion (AIC) [1] and the Bayesian information criterion (BIC) [168].
They both introduce a penalty term in the log-likelihood function to com-
pensate for the effect caused by over-fitting with over-complex models:

IC(p) = − log(L(p)) +P(p) . (3.9)

The model order is selected as the order that minimizes the information
criterion. The penalty term P(p) involves the effect of model complexity
by punishing on the number of parameters, which scales as pd2 for a d-
dimensional VAR(p) models. For AIC the penalty term is just the propor-
tional to the number of parameters, scaling again as P(p) = pd2. BIC takes
into account the effect of sample size T − p as the log-likelihood function
also increases with the number of samples, and the corresponding penalty
term is P(p) = 1

2pd
2 log(T − p) (for derivation see Appendix A.3.4).

A critical issue that is often overlooked is the model order selection for the
multi-trial case. The difficulty is to decide what is the equivalent number of
parameters and equivalent sample size in the multi-trial and non-stationary
case. Despite previous attempts (for a review see Appendix A.3.2.1), we pro-
pose here an extended version of BIC that is appropriate for non-stationary
signals with multi-trial structures: for the multi-trial inhomogeneous case
as in Eq. 3.8, the penalty term should be P(p) = 1

2Tpd
2 log(N) (for an elab-

orated proof see Appendix A.3.4).

3.2.4.2 Estimation of VAR parameters

Besides the optimization of VAR model order, the model parameters should
be estimated consistently from the empirical peri-event snapshots.

Mathematically, with N i.i.d. samples {X
(n)
t }(n = 1...N), the coefficient Here the {X(n)

t } are
not confined to long
time series or
peri-events snapshots

matrix At can be estimated as a function of two covariance matrices (for a
derivation of Ordinary Least Square (OLS) estimation or an ML estimation
see Appendix A.3.1):

Ât = Σ̂XtXp
(Σ̂Xp

)−1 (3.10)

where the covariance matrices are estimated from the N-sampled data as:

Σ̂XtXp
=

1

N

N∑
n=1

(X
(n)
t − Ê[Xt])(X

(n)
p,t − Ê[Xp,t])

⊤ , (3.11)

and

Σ̂Xp
=

1

N

N∑
n=1

(X
(n)
p,t − Ê[Xp,t])(X

(n)
p,t − Ê[Xp,t])

⊤ , (3.12)

where Ê indicates the empirical means estimated as Ê[Xt] =
1
N

∑N
n=1X

(n)
t

and Ê[Xp,t] =
1
N

∑N
n=1X

(n)
p,t .

The innovations’ mean and covariance, estimated as the residual mean
and residual covariance matrix, take the following form:

k̂t = Ê[Xt] − ÂtÊ[Xp,t] (3.13)
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Σ̂t =
1

N

N∑
n=1

(X
(n)
t − ÂX

(n)
p,t − k̂t)(X

(n)
t − ÂX

(n)
p,t − k̂t)

⊤ (3.14)

In practice, when dealing with multi-trial data, the trials are assumed
to be repeated observations of the same process or processes deemed suf-
ficiently similar to correspond to the same underlying dynamical model.
Considering the VAR model we exploit in Eq. 3.3 is inhomogeneous in time,
the i.i.d. samples we use to estimate the parameters are gathered for all trials
at each time point.

3.2.4.3 Bias in estimating VAR model parameters with peri-event snapshots

Based on the equations for estimating VAR model parameters, we can show
here specifically how the detection procedure (represented by the yellow
detection node in Figure. 3.7C) causes the selection bias in recovering the
system dynamics.

Briefly, we start by fitting the panel data assuming it corresponds to
samples from an inhomogeneous VAR model described in Eq. 3.7 where
n = 1 . . .N:This is the VAR

model for peri-event
snapshots X̃t ′+t := At ′+tX̃p,t ′+t + ηt ′+t ,ηt ′+t ∼ N(kt ′+t,Σt ′+t) (3.15)

Notably, these quantities are all conditioned on Zt = 0 (consistent with Sec-
tion 3.2.3.3) while we omit the conditions to ease notation. As demonstrated
in Section 3.2.4.2, the parameters of such model can be inferred from the
time-resolved second-order statistics such thatThese equations are

just peri-event
version of the ones in

Section 3.2.4.2
Ât = Σ̂X̃t ′+tX̃p,t ′+t

(Σ̂X̃p,t ′+t
)−1 (3.16)

where the covariance matrices are estimated from the N-trials of data as:

Σ̂X̃t ′+tX̃p,t ′+t
=

1

N

N∑
n=1

(X̃t ′+t − Ê[X̃t ′+t])(X̃p,t ′+t − Ê[X̃p,t ′+t])
⊤ ,

(3.17)
and

Σ̂X̃p,t ′+t
=

1

N

N∑
n=1

(X̃p,t ′+t − Ê[X̃p,t ′+t])(X̃p,t ′+t − Ê[X̃p,t ′+t])
⊤ , (3.18)

where the empirical means are estimated as Ê[X̃t ′+t] =
1
N

∑N
n=1 X̃t ′+t

and Ê[X̃p,t ′+t] =
1
N

∑N
n=1 X̃p,t ′+t.

Clearly, the accurate recovery of the coefficient matrix is guaranteed by an
accurate estimation of the two covariance matrices in Eq. 3.17 and Eq. 3.18

from data. However, these statistics are conditioned on the snapshot selec-
tion criterion based on D̃t, while we want to assess the unconditional quan-
tities.

Specifically, as snapshots are detected in observed time series X̃t us-
ing condition D̃tn > d0, the covariance matrices we obtain directly from
the detected peri-events snapshots are estimates of the conditional covari-
ance matrices Σ̂X̃t ′+tn

X̃p,t ′+tn
|Ztn=0,D̃tn>d0

and ΣX̃p,t ′+tn
|Ztn=0,D̃tn>d0

,

may differ from the real (unconditional) ones, i.e. Σ̂X̃t ′+tX̃p,t ′+t|Zt=0 andFor notations check
Section 3.2.3.4

ΣX̃p,t ′+t|Zt=0.
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3.2.5 Debiasing based on threshold variations: the DeSnap algorithm

The event selection bias problem in uncovering state-dependent network
dynamics has been fully described in the above sections. In this section, we
will show that it is possible to correct the bias by sampling from multiple
conditions, i.e., the conditions where the threshold d0 takes multiple values
instead of a single one, resulting in multiple datasets of the peri-event snap-
shots. Specifically, we derive a Debiased Snapshot estimation (DeSnap) algo-
rithm, which relies on a Gaussian approximation and exploits the variation
in the second-order statistics of the data induced by variations of detection
thresholds.

3.2.5.1 Relationship between the unconditional and conditional statistics

Apparently, as the bias in practice originates from estimating the VAR model
with conditioned covariance matrices, the key of correction is to establish a
relationship between 1) the conditional covariance matrices obtained from
observed peri-event snapshots and 2) the unconditional covariance reflect-
ing the state-dependent network dynamics. The differences of the two condi-
tions are addressed in the last paragraph in Section 3.2.4.3.

To ease notations, in this section we will denote current state of peri-event
snapshot X̃t ′+t|Zt = 0 as Xt and the past states as X̃p,t ′+t|Zt = 0 as Xp,t. The new simplified

notations are bold,
untilted Xt without
tilde

We also simplify the detection signal in the event-hosting state D̃t|Zt =

0 as D. Consequently, the detected peri-event snapshots X̃t ′+tn |Dtn ⩾
d0,Ztn = 0 is denoted as Xt|D ⩾ d0. Similarly, the detected past state
X̃p,t ′+tn |Dtn ⩾ d0,Ztn = 0 are denoted as Xp,t|D ⩾ d0.

We start the derivation by representing the snapshot values at peri-event
time point t as an extended state variable Yt, by concatenating Xt and Xp,t,
where t ∈ [−T/2, T/2]:

Yt =

[
Xt

Xp,t

]
such that the first and second-order statistics, written in the following forms,
can be estimated directly from data (µ and Σ denotes the mean and covari-
ance of a random variable):

µYt|D⩾d0
=

[
µXt|D⩾d0

µXp|D⩾d0

]
,ΣYt|D⩾d0

=

 ∑
Xt|D⩾d0

ΣXtXp|D⩾d0∑
XpXt|D⩾d0

ΣXp|D⩾d0


(3.19)

Critically, here we make a joint Gaussian assumption of the lagged obser-
vations Yt and the detection signal D, so that we can take advantage of the
following property of multi-variate Gaussian distributions: the conditional
probability for one subset of components conditioned on the remaining ones
is still a Gaussian distribution (see e.g. [168]).

Under this Gaussian assumption, to derive the probabilities for condition
over threshold (i.e., D ⩾ d0), we start from for the probabilities of each values
of d ∈ D where d ⩾ d0. The conditional distribution of Yt|D = d is also
Gaussian with mean µYt|D=d and variance ΣYt|D=d, such that:

µYt|D=d = µYt
+ ΣYtDΣ−1

D (d− µD) (3.20)

ΣYt|D=d = ΣYt
− ΣYtDΣ−1

D ΣT
YtD

(3.21)

where µD is the mean of Dt over time: µD = E[Dt].
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Practically, Yt|D = d refers to the lagged snapshots detected at the thresh-
old d. What is of more interest are the condition where the snapshots are"at" means that only

points in D that
equals d are detected

as reference points

detected over the threshold d. As the conditions D = d are not overlapping
for different values of d, the joint probability of Yt and D|D ⩾ d0 is the sum
of the infinite joint probability of Yt and D|D = d (where d ⩾ d0)

P (Yt, D ⩾ d0) =

∫+∞
d0

P (Yt,D = d)dd (3.22)

Factorizing the joint probability into conditionals, the conditional probabil-
ity of Yt|D ⩾ d0 can then be derived as:

P (Yt | D ⩾ d0) =

∫+∞
d0

P(D = d)

P (D ⩾ d0)
P (Yt | D = d)dd (3.23)

Eq. 3.23 indicates that the lagged snaphsots Yt detected over threshold d

follows a Gaussian mixture distribution comprised of infinite Gaussian dis-P(D = d) and
P (D ⩾ d0) are not

necessarily
computable directly

from the data, for
details see

Section 3.2.5.2

tributions P (Yt | D = d), where P(D = d) and P (D ⩾ d0) are both constants
given any d and d0. The mean and covariance of this Gaussian mixture is
a function of the mean and covariance of each element [168]. By plugging
in Eq. 3.20 and Eq. 3.21, we can derive the two statistics in the following
expressions (see Appendix A.4 for detailed derivation):

µYt|D⩾d0
= µYt

+ ΣYtDΣ−1
D

(
d− µD

)
, (3.24)

ΣYt|D⩾d0
= ΣYt

+ ΣYtDΣ−1
D c(d0)Σ

−1
D ΣT

YtD
. (3.25)

where d is the average of Dt over the threshold d0:

d = E[D | D ⩾ d0] =

∫+∞
d0

dP(D = d)dd, (3.26)

c(d0) is a scalar statistic of Dt:

c(d0) =

∫+∞
d0

P(D = d)

P (D ⩾ d0)
(d− µD)2 dd−

(
d̄− µD

)2
− ΣD. (3.27)

To understand the role of each variable in Eq. 3.24 and Eq. 3.25, we catago-
rize them into 3 groups and make the following statements:

• What is knwon empirically from peri-event snapshots are the condi-
tional statistics µYt|D⩾d0

, ΣYt|D⩾d0
(which can be estimated according

to Section 3.2.4.2), and the binned conditions d (which we can specify
on our need for detection).

• What we are interested in recovering, are the unconditional mean µYt

and covariance matrix ΣYt
.

• ΣYtDΣ−1
D , µD and c(d0) are intermediate unknown variables that help

us estimated the unconditional statistics.

Therefore, Eq. 3.24 and Eq. 3.25 shows the desired link between the un-
conditional µYt

, ΣYt
and the conditional statsitics µYt|D⩾d0

and ΣYt|D⩾d0
.

The expressions suggest that at each time point, the differences between
the conditional statistics (conditioned on thresholding over d0) and the real
(unconditional) statistics, are linear functions of other statistics that only
depends on the detection threshold d0 :

µYt|D⩾d0
− µYt

= fµ(d(d0)) (3.28)
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ΣYt|D⩾d0
− ΣYt

= fΣ(c(d0)) (3.29)

where fµ and fΣ represent the linear relationships. This idea paves the
way for recovering the former from the latter, as we will propose in Sec-
tion. 3.2.5.2.

3.2.5.2 Details of DeSnap algorithm

As mentioned at the beginning of Section 3.2.5.1, all the equations derived
in Section 3.2.5.1 apply to the signals in a single state Zt = 0. For a uni-state
signals, the full-time time series of detection signal D are from the same
state, where statistics of D, like µD and c(d0), can be easily obtained by
exploiting the distribution of D.

Correction is more challenging in the case where the signal is a mixture
of multiple states, where the hidden states Zt are largely unobserved. With
Assumption 1 in Section 3.2.2.3, the reference points {tn|D ⩾ d0} always fall
in the desired state Zt = 0, suggesting that statistics of the observations Yt

calculated in the condition of D ⩾ d0 (e.g. µYt|D⩾d0
, ΣYt|D⩾d) are also in

the state Zt = 0 (for an example see Section 3.3.2). However, it is hard to reminder: D refers to
D̃t|Zt = 0recover D for every hidden state Zt = 0, making it difficult to estimate the

statistics related to D due to unobserved probabilities of P(D ⩾ d0) and
P(D = d|d ⩾ d0) in Eq. 3.26 and Eq. 3.27.

Actually, taking advantage of the linear relationships achieved under Gaus-
sian assumption in Eq. 3.28 and Eq. 3.29, these intermediate variables and
the unconditional statistics can all be retrieved by performing three linear
regressions.

• First, with the snapshots and a given set of binned thresholds d (which
must satisfy d ⩾ d0 but should not be too large to limit the sample
size of P(Yt|D = d)), we can regress d over µYt|D=d in Eq. 3.24 to get
the coefficient pt and the intercept qt corresponding to:

pt = ΣYtDΣ−1
D , (3.30)

qt = µYt
− ΣYtDΣ−1

D µD . (3.31)

• Secondly, qt is a linear function of pt as qt = µYt
− ptµD. Thus we

can regress pt over qt to estimate the mean of D (µD) as the coefficient
and µYt

as the intercept.

• Finally, Eq. 3.25 can be reorganized as:

ΣYt|D⩾d0
= ΣYt

+ c(d0)ptp
T
t , (3.32)

For a given threshold d0, c(d0) is a constant for all elements of the co-
variance matrix at all time points of the snapshots. Regressing ptp

T
t

over ΣYt|D⩾d for any single element across time, we can estimate
c(d0), by which we are able to retrieve ΣYt

from Eq. 3.32.

Notably, considering the linear form of covariance matrices in Eq. 3.32, it
is theoretically possible to regress c(d0) over ΣYt|D⩾d at different threshold
d0. However, practically it is better to avoid this regression because sample
size can be limited with higher values of d0.
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3.2.6 Summary of Methods

This section is designed to summarize all the information in Method section
to form an overview of the selection bias problem in analysing peri-event
snapshots and the ideas behind correction, while establishing a standard
snapshot analysis procedure to prepare for the applications in the Results
Section.

3.2.6.1 Analysis and correction of the bias in peri-event snapshots

For a thorough investigation of the nature of bias in peri-event snapshot
analysis, we re-state the key interpretations here to get the scattered ideas
into shape.

With the snapshot analysis framework, we assume that events prone to
emerge when the state space trajectory of the system crosses a specific re-
gion E0 such that we define the E0-passing hidden states as Zt = 0. Ac-
cording to Takens theorem, the state space trajectory can be reconstructed by
delayed embedding of the past ND states of the system’s observation X̃t,
where E0 in the hidden state space are preserved as a region ED in the
embedded space.

By design, the detection signal D̃t projects the state-space embedding
into a 1-dimensional space. By thresholding over the detection signal D̃t to
find the reference points {tn|D̃t ⩾ d0}, we are detecting the states in ED that
are located on one side of the hyperplane in state space associated to the
threshold value d0, as illustrated in Figure 3.4. This is naturally a biased
selection of states in ED corresponding to the fact that P(D̃t ⩾ d0|Zt = 0) ̸=
1.

Peri-event snapshots can be modelled as inhomogeneous VAR models,
where the estimation of time-varying model parameters depends on the con-
ditional probability P(X̃t′+t|X̃p,t′+t,Zt = 0). Further, we combined VAR
model with the sample selection bias theory in the framework of SCM, ex-
plaining in the non-parametric settings why conditioning on the detection
D̃t ⩾ d0 leads to non-recoverability of the conditional probability.

However, with an extra Gaussian assumption, it is possible to obtain an
unbiased estimate of the model parameters. To dig into the problem, we
found that two covariance matrices estimated from biased samples X̃t′+t|D̃t ⩾
d0 and X̃p,t′+t|D̃t ⩾ d0 lead to a biased estimation of the VAR coefficient
matrix At (Section 3.2.3.4). This implies that if the covariance matrices can be
corrected into the unbiased version, we are able to recover the real dynam-
ics of the system with unbiased At. This further motivated us to establish
a link between the covariance matrices conditioned and unconditioned on
the detection criterion D̃t ⩾ d0. We then propose that by setting multiple
detection thresholds and applying the DeSnap algorithm with three linear
regressions, we are able to recover the unconditioned covariance matrices,
thus the unbiased system dynamics associated to the target state Zt = 0

where the events occur.

3.2.6.2 Standard procedure in treating peri-event snapshots

Here, we present a standard procedure for treating peri-event snapshots
from detection to estimation and bias correction. For any original signal
under study, we first perform the detection procedure described in Sec-
tion 3.2.1: 1) depending on field knowledge, obtain the detection signal D̃t

by applying a causal filter; 2) apply a threshold d0 on the detection signal
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to detect the reference points {tn|D̃t ⩾ d0}; 3) extract peri-event snapshots
within a window around the reference points.

The inhomogeneous VAR model is then applied to model detected peri-
event snapshots, providing the time-varying estimation of coefficient matri-
ces, innovations mean and innovations variance, as described in Section 3.2.4.2.
The VAR model described by these model parameters is referred to as the As will seen in

Section 3.3.3.1,
sometimes the
snapshots are
re-aligned by the
peri-event peak to
compare with
event-triggered
activities

"conditional" or "uncorrected" model. With these model parameters, the peri-
event snapshots can be approximated by a Gaussian process, enabling us to
simulate multiple Monte-Carlo realizations of the process and calculate the
power spectrograms using a Morlet wavelet transform. Notably, it is possible
to calculate the spectrograms directly from the observed snapshots instead
of using the Monte-Carlo re-simulations; however, we do the latter to keep
consistency with the following "corrected" model.

Afterward, multiple thresholds dn ⩾ d0 higher than the original thresh-
old d0 are applied to the detection signal dn ⩾ d0 to obtain multiple
datasets of peri-event snapshots, with which we perform the DeSnap algo-
rithm as three linear regressions to uncover the unconditional (real) statistics
of the snapshots (i.e. µYt

, ΣYt
). The "unconditional" or "corrected" model can

be reconstructed with a Gaussian process using the model parameters cal-
culated according to Section 3.2.4.2. Similarly, power spectrograms can be
estimated by multiple Monte-Carlo simulations of the Gaussian process.

This standard procedure will be performed for different datasets in the
Results section, illustrating the outcome of each analysis step in different
conditions.

3.3 results

In Section 3.3.1 and Section 3.3.2, we first validate our DeSnap algorithm in
simulations with known system dynamics. Specifically, we simulate bivari-
ate oscillatory VAR(2) processes, with or without Markov-switching hidden
state, to illustrate how the detection of peri-event snapshots biases the esti-
mation of model coefficients as a representation of state-dependent system
dynamics, and how DeSnap corrects for this bias. In Section 3.3.3, we will
apply the DeSnap algorithm to a type of transient neural events, the SPW-Rs,
to test the algorithm and to explore the underlying network dynamics.

3.3.1 Validation on single-state VAR(2) process

We first test our method for the simple case of a bivariate stationary VAR(2)
model to see how well the bias correction could perform in the situation
where the state is homogeneous across time.

Despite the temporal homogeneity, similarly to the example of Figure 3.1,
we show that event detection introduces a time-inhomogeneity in the peri-
event snapshots exclusively caused by the selection bias, as explained in
Section 3.2.2.1. We will assess the ability of DeSnap to recover the time-
homogeneous parameters.

3.3.1.1 Simulation procedure

The dynamics of the system is controlled by a constant coefficient matrix
At = A, a constant non-zero innovations mean kt = k, and a constant inno-
vation covariance Σt = Σ, as defined in 3.3. Entries of this coefficient matrix
were randomly generated and then selected such that the VAR(2) model is
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stationary while allowing the occurrence of intrinsic local oscillations, which
we detect as events.

A =

[
−0.5751 1 −0.9408 1

0 1.7263 0 −0.9737

]
,k =

[
0

0.65

]
,Σ =

[
0.5 0

0 0.5

]

We simulated the process for 1× 105 s with a sampling rate of 1000Hz. By
calculating its power spectrum, we know that the simulated signals have
maximum spectral power at 79.6Hz.

The snapshots are detected by the following procedure (in line with what
has been described in Section 3.2.6.2): 1) the original signals (Figure 3.8A,
top and middle) are filtered in a narrow band around its power peak (74.6-
84.6Hz) with an order 49 Finite Impluse Response filter; 2) then the filtered
pair of signals are summed up (Figure 3.8A, bottom); 3) afterward, d0 =
mean + 3*standard deviation of D̃t is selected as a threshold for event de-
tection (marked by a black line in Figure 3.8A, bottom), where all points
over the threshold {tn|D̃t ⩾ d0} can be seen as reference points marking the
location of events; 4) peri-event snapshots are extracted by an 801-ms-long
window around the reference points (Figure 3.8A, black traces). As a result,
we detected snapshots comprising 5946 oscillatory events.

3.3.1.2 Results

Model order selection is first performed for the peri-event snapshots with
the BIC method proposed in Section 3.2.4.1, which results in an optimized
model order of 2, matching the true model structure.

With this model order, we first calculated the time-varying mean, covari-
ance matrix, and the resulting autoregressive coefficients for the "uncor-
rected" model, as described in Section 3.2.6.2. They are visualized in blue
traces in Figure 3.8B-C. Furthermore, with these time-varying statistics, the
samples of the snapshot panel can be approximated by Monte-Carlo simula-
tion of the fitted time-inhomogeneous VAR model, with which we estimated
the power spectrograms using reconstructed simulations of the snapshots
(see Section 3.2.6.2). The spectrograms are shown in Figure 3.8D.

We next obtain the "corrected" or "unconditional" estimation of the model
by applying our bias correction method, i.e., the DeSnap algorithm. Similarly,
we can obtain the corresponding statistics, i.e., time-varying mean, covari-
ance, model coefficients, which are shown in orange traces in Figure 3.8B-C
and the power spectrograms in Figure 3.8D are estimated through Monte-
Carlo simulation of the corrected model.

As shown in Figure 3.8B, compared to uncorrected averaged event wave-
forms, corrected waveforms match well the ground truth (black) as time-
invariant for both variables in the VAR(2) process. As shown in Figure 3.8C,
time-varying bias in covariance matrices (left subfigure showing the results
of the 1st element), together with the autoregressive coefficient matrices
(right subfigure for the 1st element), are both well-recovered after applying
the correction algorithm. Power spectrograms of the detected event snap-
shots are closer to ground truth (stationarity) after correction for both vari-
ables.

These results overall support that our bias correction method is able to
deal well with selection bias for the snapshots detected in one stationary
state.
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3.3.2 Validation on two-state VAR(2) process

As the objective of our approach is to estimate state-dependent system
dynamics for a specific value of the state (associated to the emergence
of events), we test the performance of our DeSnap algorithm for a two-
state Markov switching model, implementing alternations between a non-
oscillatory regime and the oscillatory regime modelled in the Section 3.3.1.

3.3.2.1 Simulation procedure

The simulation of the oscillatory process (denoted as “state 0”) still follows
the parameter settings described in Section 3.3.1. The non-oscillatory regime
(denoted as “state 1”) corresponds to a constant VAR coefficient matrix
At = A ′, zero-valued innovation mean kt = k ′ and the same innovations
covariance Σt = Σ, whose values are designed such that the process shows
weaker variance and less oscillations in the 74.6-84.6-Hz band compared to
the oscillatory process: the coefficient matrix

ensures
uni-directional causal
effect, which is useful
for Section 4.3.4.1

A ′ =

[
0.5 1 0.3 1

0 −1.5 0 −0.7

]
,k ′ =

[
0

0

]
,Σ =

[
0.5 0

0 0.5

]

The Markov switching model’s hidden state dynamics is determined by the
transition probabilities: P(state 0|state 1) = P(state 1|state 0) = 0.0001.

Similarly to Section 3.3.1.1, we simulated the process for 2× 105 s with
a sampling rate of 1000Hz, and obtained a snapshot panel of 23674 trials
after applying the same detection procedure. Example traces of the original
signals and the detection signal are presented in Figure 3.9A (with a similar
design as Figure 3.8A).

Notably, in this example, although thresholding ensures that reference
points are all in state 0, the finite and random temporal duration of state
0 implies that the extracted snapshot also includes points from state 0 with
an increasing probability as time deviates from the reference points (i.e. as
the absolute values for peri-event time t′ increases). This leads to a state
mixing which tends to bias the estimation (especially close to edges of the
peri-event time window). Nevertheless, the following results will show that
it does not affect much the performance of the correction at time points close
to the center of the detected event.

3.3.2.2 Results

Following the procedure explained in 3.3.1.2, we calculated the uncorrected
and corrected time-varying statistics and model parameters of the two-state
peri-event panel data, leading to the results shown in Figure 3.9B-E.

We can see from the figure that DeSnap performs well in the two-state case,
especially in the middle of the snapshots, close to the peri-event time t′ = 0.
Figure 3.9B shows that similar to Figure 3.8B, the bias in averaged event
waveforms can be well-corrected despite the state mixing at the border of the
window. In Figure 3.9C-D, large bias in the time-varying covariance matrix
and the coefficient matrix can be corrected by our method (exemplified by
the traces of two elements each), similar to Figure 3.8C.

The mixing of states does cause a small bias, the size of which increases
with the temporal distance from the reference point (better illustrated in Fig-
ure 3.9D, right). However, this mixing-induced bias is negligible compared
to the selection bias.
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Similarly, for power spectrograms, regardless of the mixing of states, the
selection bias correction method performs well on the two-state case. The
mixing bias is an intrinsic, inevitable problem of the threshold-based de-
tection approach but does not harm the performance of our selection bias
correction method.

3.3.3 Application to in-vivo hippocampal recordings

3.3.3.1 Data structure and results

We use the DeSnap approach to analyze the transient dynamics of the hip-
pocampal SPW-Rs [29, 192], whose key role in reactivation of memory en-
grams has been introduced in Section 1.1.3.3.

We perform the analysis on 16 pairs of 2.88h-long local field potential sig-
nals recorded in the CA1 hippocampal subfield in one anesthetized macaque
with a sampling rate of 667Hz. The two signals in each pair are recorded si-
multaneously in the stratum radiatum (“sr”) and pyramidal layer (“pl”), as
illustrated by the diagrams in Figure 3.10A (right insets). An example signal
trace of this “sr”-“pl” pair is presented in Figure 3.10A (top and middle).

The snapshots detection procedure is similar to what was performed in
the above simulations. The only differences are: 1) for ripples, we filter the
original broadband signal in the ripple band (90-190Hz, where ripples have
been reported to be significant [140, 192]) with a causal filter; 2) as the de-
tection signal is forward-shifted by the causal filter, we use a non-centered
detection window to counterbalance the time lag induced by this filter such
that the SPW-R events appear in the middle of the window.

We obtain a snapshot consisting of 1928 SPW-R events. Notably, for theAs seen in the
following, aligning
by “pl” signals, are

more sensitive to the
ripple-band

oscillations, ensures
better visualization

in Figure 3.11

uncorrected condition, we re-aligned the events by the peri-event peaks in
"pl" channels (and marked as "peri-event" in the figures). This is a more
straightforward way to compare the bias-corrected results with the widely
adopted event-triggered snapshots in experimental studies.

For autoregressive modeling, the optimal model order is set to 2 based on
the BIC method we proposed for inhomogeneous multi-trial datasets (see
Section 3.2.4.1). Then the DeSnap debiasing procedure was applied, resulting
in the corrected time-varying statistics presented in Figure 3.10B, C.

Comparing the averaged temporal profiles of SPW-R-based state in "sr"
and "pl" channels calculated with the "pl"-aligned peri-event datasets and
corrected model (Figure 3.10B), we can conclude that both channel’s pro-
files are attenuated after correction. Thus it is likely that in the uncorrected
version (which is classically used by neuroscientists), the temporal profiles
of transient states reflected by events are erroneously amplified due to the
event selection procedure.Unlike in

Figures 3.8, 3.9, here
we don’t plot the

comparison of
covariance matrices

and coefficient
matrices as there is

no ground truth

In Figure 3.10C, uncorrected spectrogram reflects a classical difference
between activities recorded in different layers of the CA1 subfields: “pl”
signals are more sensitive to the high-frequency component of the event,
the ripple oscillation (>90Hz), while “sr” is more sensitive to the lower-
frequency gamma activity (50-90Hz). Interestingly, the bias correction method
removed a peak in a high-frequency band in the power spectrogram of the
“pl” channel (Figure 3.10C), shifting location and time-width of the peak
reflecting the ripple oscillation to a lower frequency range and a longer du-
ration (≈20 ms), more in line with the properties estimated form single-trial
analysis (see Figure S5 in Ramirez-Villegas et al. [193]).
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This suggests common event selection procedures of SPW-Rs in neuro-
science might result in a biased power spectrogram that misrepresents single-
trial activities. As a consequence, it is critical to run a correction for event
selection such as DeSnap when exploiting peri-event data in order to avoid
misestimating key parameters tightly related to the underlying neural mech-
anisms, such as the frequency and duration of high-frequency oscillations.

3.3.3.2 Filter invariant spectrograms matches state-dependent network dynamics

We conducted an additional analysis on the peri-event snapshots of SPW-Rs
to illustrate the power of our bias correction method in recovering underly-
ing state-dependent dynamics based on detected events.

In contrast to the detection procedure described in Section 3.3.3.1 where
the original signal is filtered within a single frequency band (90-190 Hz),
here we compare the bias correction performance on hippocampal signals
after they are filtered in theta, high gamma, and ripple bands. These bands
have been reported to be associated with three different hippocampal tran-
sient events, as reviewed in Section 1.1.4.3.

Figure 3.11A, B reflect the correction of spectrograms after the detection
is performed in 10 shifted filter bands. The filter bands are presented as
two groups: in Figure 3.11A the 5 filter bands are shifted within theta and
low-gamma bands; in Figure 3.11B the other 5 filter bands range within
high-gamma and ripple bands.

Interestingly, we found that as the filter’s frequency band is shifted, the
corrected spectrograms of the high gamma and ripple signals remain un-
changed, as seen in Figure 3.11B for an example channel pair. Comparing
Figure 3.11B to Figure 3.11A, we can see that the corrected spectrograms
of theta events are different from the corrected spectrograms in A but also
remain relatively constant when the filter is shifted within the theta band
(i.e., first three subplots). In short, the corrected spectrograms categorizes
the events obtained with different filter bands into two clusters: one cluster
consisting of theta events, the other cluster comprised of high-gamma and
ripple events.

This separation of events based on filter band invariance is further con-
firmed by a similarity analysis of these 10 spectrograms for either the un-
corrected and corrected models. Comparing Figure 3.11C (top left) and Fig-
ure 3.11C (top right), the corrected spectrograms are better clustered into
two categories that are consistent with A and B. We also mapped these spec-
trograms in the high dimensional space by multidimensional scaling, as
shown in Figure 3.11C (bottom). In the corrected model (left), the 10 pairs Notably, the two

clusters are different
from the two groups:
the low-gamma
bands are outliers
that belong to neither
cluster

of spectrograms also appear as two clusters, while the clustering is not clear
for the uncorrected model (Figure 3.11C (bottom right)).

To illustrate the consistent contrast of clustering between the uncorrected
model and the corrected model, we calculate the cluster quality for all chan-
nel pairs, as shown in Figure 3.11D. Based on the two groups presented in
Figure 3.11A and Figure 3.11B, the cluster quality is defined as the ratio
between inter-group distance and intra-group distance of each point in Fig-
ure 3.11D. Intuitively, large cluster quality values indicate that both groups
are more clustered. As Figure 3.11D shows, all cluster quality values for 16

channel pairs for the corrected model are significantly higher than the val-
ues for the uncorrected model (p < 0.001), confirming that the spectrograms
of two groups form two clusters after correction.

Based on the previous idea that the corrected model captures the network
dynamics related to the state, this result suggests that the ripple and high
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gamma events occur in one state, and the theta events occur in another
state. Actually, this conclusion is consistent with the previous experimen-
tal findings mentioned in Section 1.1.4.3 that the theta events occur in one
state similar to the REM stage coupled to REM PGO waves, while the high-
gamma and ripple events occur in another state resembling the NREM state
marked by pre-REM PGO waves.

3.4 discussion

In summary, this chapter provides evidence for selection bias issues when
exploiting peri-event snapshots to infer the underlying network dynamics.
By analyzing and formulating the event detection procedure mathematically,
we provided a theory with dynamical systems and SCMs to account for the
nature of such selection bias.

In particular, we proposed a correction approach for the bias with inho-
mogeneous VAR models. The correction algorithm is based on a Gaussian
assumption that ensures a linear relationship between the correction term
and statistics of the threshold, enabling the underlying system dynamics to
be recovered via three linear regressions. Further, we validated the correc-
tion algorithm with simulated VAR(2) systems, whose results suggest that
the algorithm has the potential of recovering system dynamics underlying
observed events.

Reversely, such capability of the correction algorithm is able to deepen the
understanding of the mechanism underlying certain events. This has been
confirmed by our results in applying the correction methods to transient
hippocampal events defined in three different frequency bands, where the
clustering of events matching the differentiation of transient states in the lit-
erature. Thus this correction method can be potentially applied to multiple
unknown events and check whether they are generated by the same un-
derlying mechanism, which will help to reduce the complexity of research
when investigating certain events.

One needs to be careful when applying our correction algorithm to data,
as the Gaussian assumption must be satisfied. Besides, as the regression de-
pends on setting multiple large-valued thresholds to detect relatively rare
events, the number of detected peri-event snapshots decreases with higher
thresholds. Thus it is important to guarantee a relatively large sample size.
Nevertheless, the third regression has already been designed to avoid esti-
mation bias due to sample size, as addressed in Section 3.2.5.2.

In general, as this correction method provides a reconstruction of the sys-
tem dynamics via VAR models, it naturally forms the basis of more ad-
vanced model-based analysis and overcome the spontaneous event problem
we described in Section 3.1. We will show in Section 4.3.4 how this bias
correction method can be combined with causality measures to reflect state-
dependent causal interactions between two brain regions.
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Figure 3.8: Experiments with a stationary two dimensional (one-state) oscillatory
VAR(2) process. (A) Time course of both variables for one realization,
together with the detection signal (bottom trace). Horizontal line indi-
cates the detection threshold d0. (B) Time-resolved peri-event mean es-
timate based on the panel data, without and with correction for selec-
tion bias. The peri-event time t′ = 0 is at the center of the window. (C)
Time-resolved peri-event estimate of an example covariance coefficient
(left graph) and autoregressive coefficient (right) based on the panel data.
The peri-event time t′ = 0 is the same as (B). (D) Peri-event spectrogram
estimate of each variable of the model uncorrected (top) and corrected
(bottom).The peri-event time t′ = 0 is the same as (B).
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Figure 3.9: Experiments with a two-state oscillatory Markov switching model. (A)
Time course of both variables for one realization, together with the de-
tection signal (bottom trace). Black regions indicate a selected snapshot.
Horizontal line indicates the detection threshold d0. (B) Time-resolved
peri-event mean estimate based on the panel data, without and with cor-
rection for selection bias. The peri-event time t′ = 0 is at the center of the
window. (C) Time-resolved peri-event estimate of two example elements
of covariance matrices. The peri-event time t′ = 0 is the same as (B). (D)
Same as (C) for autoregressive coefficient. The peri-event time t′ = 0 is
the same as (B). (E) Peri-event spectrogram estimate of each variable of
the model uncorrected (top) and corrected (bottom). The peri-event time
t′ = 0 is the same as (B).
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Figure 3.10: Experiments with hippocampal recordings of SPW-Rs in anesthetized
macaque. (A) Exemplary traces, together with the detection signal (bot-
tom trace). Black regions indicate a selected snapshot. Horizontal line
indicates the detection threshold d0. Right inset indicates the position-
ing of the recording electrode and the putative hippocampal subfields
associated to each channel (”pl”: pyramidal layer, ”sr”: stratum radia-
tum). (B) Time-resolved peri-event mean estimate based on the panel
data, without and with correction for selection bias. The "uncorrected"
model in this case are peri-event snapshots aligned by the peaks of "pl".
The peri-event time t′ = 0 is at t=100 ms due to an un-balanced win-
dow. (C) Peri-event spectrogram estimate of each variable of the model
uncorrected (top) and corrected (bottom). The peri-event time t′ = 0 is
the same as (B).
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Figure 3.11: State-dependent filter-band invariance of corrected power spectrograms.
(A) (top row) Power spectrograms of SPW-Rs aligned by "pl" in an ex-
ample channel pair. The detection for events in different subfigures are
based on a group of different filtering frequency bands ranging from the
theta band to the low-gamma band (in the REM-like state). (bottom row)
Power spectrograms of SPW-Rs calculated by the corrected model. Dif-
ferent subplots represent the corrected power spectrogram based on the
same frequency band as the top row. (B) The same as (A) but the filtering
bands are in another group ranging from high-gamma to ripple bands
(in the NREM-like state). (C) Similarity analysis and multi-dimensional
scaling of the power spectrograms in the 10 frequency bands shown in
(A) and (B). (top) Similarity matrix within 10 frequency bands of the
two groups in (A) and (B) for ’pl’-aligned peri-event snapshots (left)
and the corrected model (right). (bottom) Multi-dimensional scaling of
10 frequency bands of the two groups in (A) and (B) for ’pl’-aligned peri-
event snapshots (left) and the corrected model (right). Color code marks
the center frequency of the corresponding filtering band. (D) Cluster
quality calculated as the ratio between inter-and intra-group distances
for the multi-dimensional scaling of REM and NREM bands, repeated
16 times by using different pairs of electrodes to fit the VAR models
(N=16). The black star indicates a significant difference between the two
groups (p = 3.05× 10−5).
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4.1 introduction

As addressed in Section 1.2, one way of uncovering the mechanisms of
brain-wide interactions is to investigate the causal interactions between neu-
ral events. In this chapter, we focus on the causal interactions between motivation for causal

analysis for transient
events

PGO waves and other transient events, especially SPW-Rs. This is a critical
problem because researchers are interested in characterizing how one event
drives another in order to understand how they are coordinated together.

In order to understand how these transient phenomena operate, causality
measures based on observed neural time series can be very helpful to quan-
tify the underlying transient influences between brain structures. Candidate
measures range from Granger Causality (GC), originating from the econo-
metrics literature[89], to its non-linear extensions (e.g.[149, 148, 64]) and,
more widely-acknowledged, its information-theoretic generalization: Trans-
fer Entropy (TE) [209, 244]. These measures quantify causal influences based
on the ability of putative causes to improve the predictability of future ob-
served effects. However, GC and TE are devised for stationary signals, which
limits there applicability to uncover causal interactions that vary rapidly
in time, as in the context of characterizing the interplay between transient
events (elaborated in Section 4.2.4.1).

Moreover, the characterization of causality should arguably be based on
the notions of counterfactuals and manipulation (elaborated in Section 4.2.1
and Section 4.2.4.2) instead of predictability of (unmanipulated) observa-
tions. In this sense, one can argue that TE and GC only measure statistical
dependencies in the time series instead of actual causality. Therefore, al-
though they have been widely used for assessing the significance of causal
links, whether they are appropriate quantities to measure the strength of
these links is still debated [227].

A more promising direction for causality analysis is through SCMs, as
introduced in Section 3.2.3.1. SCMs and their associated graphical represen-
tation allow causality measures to be evaluated by implementing putative
interventions on the system under study. Causality measures in the context
SCMs have been investigated in Ay and Krakauer [3], which discussed how
to account for knockout experiments and introduces a measure of informa-
tion flow. Furthermore, the work of Janzing et al. [111] provides interesting
theoretical justifications for this kind of measure and extends it to assess
causal strength (CS) of an arbitrary set of arrows in a graphical model. Com-
pared to GC or TE, information flow and CS have the benefit of being local,
in the sense that it depends only on the direct causes of the observed effects.
Besides, taking advantage of the interventional treatment, the SCM-based
CS has the potential to be extended to intuitively accounted for the coun-
terfactual condition where the cause is unchanged regardless of the causal
link, which can be inspired by the causal impact methodology [198, 23].

In this chapter, we will review the key notions of counterfactuals and
manipulations in causal analysis and clarify the differentiation between the
cause and the causal mechanism (Section 4.2.1). After reviewing the the-
oretical insights of GC, TE, CS and causal impact (Section 4.2.2), we will
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extend them as time-varying information-theoretic quantities in the context
of inhomogeneous VAR models, enabling the estimation of time-resolved
causality from peri-event data (Section 4.2.3). Some theoretical and practical
issues of these causality measures will be discussed in Section 4.2.4 within
the SCM framework, suggesting the benefits of time-varying CS over TE
while both suffer from the insensitivity to deterministic time-varying pertur-
bations (Section 4.2.4.4). To address this issue, we propose an extension of
DCS, relative DCS (rDCS), which captures causal influences even when they
are mediated by deterministic changes in the innovations of the peri-event
time series, and matches the intuition behind causal impact (Section 4.2.5).

We will validate these causality measures on simulated toy models (Sec-
tion 4.3.1 and Section 4.3.2) and simulated thalamocortical spindles (Sec-
tion 4.3.3), which points out an inconsistency issue with different peri-event
alignment methods. We propose to address the alignment issue by com-
bining the DeSnap algorithm introduced in Chapter 3 with causality mea-
sures to eliminate the effect of selection bias caused by different alignments
when characterizing transient causal interactions underlying neural events.
The effectiveness of such combination is further validated with toy models
(Section 4.3.4.1), thalamocortical spindles (Section 4.3.4.2) and hippocampal
SPW-Rs (Section 3.3.3.1).

4.2 method

To flesh out the above critiques regarding the appropriateness of GC and TE
for causality analysis, we first review some concepts in SCM-based causality
to set the basis for interpreting and evaluating causality measures in the
following sections.causality measures

include GC, TE,
causal strength,

causal impact

This will be followed by a review of several causality measures that are
proposed as candidates for addressing transient causal interactions between
neural systems. With a general mathematical introduction of each measure,
we will show how to extend it to time-varying time series models (e.g., the
inhomogenous VAR model discussed in Chapter 3).

Later, we will discuss the time-varying causality measures in the context
of causality principles. We will demonstrate the shortcomings of each mea-
sure in characterizing transient causal interactions, and by addressing them
pertinently, propose a novel measure that overcomes these shortcomings.

4.2.1 Principles of causality studies

Directly following what has been addressed in Section 4.1, investigations
of causal interactions in neural signals frequently overlooked principles of
causal manipulations and instead focused on distilling statistical dependen-
cies for predicting the signals’ future values. Here we discuss several basic
principles and concepts of the field of causality research and demonstrate
how they can be applied to investigating the causal interactions between
transient events occurring in different brain regions.

4.2.1.1 Counterfactuals

One important direction of causality analysis is based on the counterfactual
theories of causation, which dates back to David Hume [106] and has been
extensively developed by David Lewis [137].
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In this theory, causality boils down to comparing the actual outcomes and
the counterfactual outcomes. The actual outcome means what has indeed
happened (e.g., an event A), while counterfactual outcomes refer to a hypo-
thetical condition where the event A does not occur. This forms the basis
of causal investigations between two variables in empirical science, where
control experiments are designed with mutually exclusive treatments to im-
plement manipulations of the system, such that the results obtained with the
two treatments form a pair of actual and counterfactual outcomes. However,
the feasibility of obtaining the counterfactual conditions by manipulation
is only confined to the systems which can be carefully controlled, while in
reality, many physical and physiological processes cannot be easily located
and repeated. For example, as described in Section 1.1.2 and Section 2.1,
the neurons generating some transient events (e.g., the PGO waves) are too
sparsely distributed spatially to be recorded with current electrophysiolog-
ical techniques, creating obstacles for inhibiting these events to observe the
resulting transient effects in another brain region at a fine temporal scale.

In fact, practically, in many cases like this, the counterfactual analysis suf-
fers the problem that the counterfactual condition is difficult to define, e.g.,
the counterfactual event for one actual event can be expressed in different
forms depending on the context. Moreover, even if the definition is clear, the see the comparison in

Section 4.2.1.3counterfactual condition is usually hardly accessible unless in some specific
cases. Then the critical question is whether we can reconstruct the counter-
factual condition given the observational data only reflecting the actually
observed condition.

4.2.1.2 Interventions in SCMs

Fortunately, in the framework of SCMs (as introduced in Section 3.2.3.1),
an operation named intervention has been incorporated to perform pseudo-
manipulation of the system described by the SCM to obtain the counterfac-
tual condition. More specifically, it refers to artificially change one arrow or
one node in the SCM to observe the outcome of the change.

Classical interventions in an SCM are perfect interventions and amount to
imposing a fixed value on a random variable, but the framework allows a
much broader class of modifications of the SCM. For instance, instead of
a constant, one can do soft interventions where we impose the value of a
variable to be drawn from a given distribution, independently from other
variables in the SCM.

This allows us to perform an intervention of removing the effect of an
arrow, which is equivalent to feeding the effect node with an independent
copy of the cause node with the same distribution. Mathematically, taking
the SCM defined in Section 3.2.3.1, where a directed acyclic graph (G) is
described by the following structural equations

Vj := fj(PAj,Nj), j = 1, . . . ,d.

PAj are the variables indexed by the set of parents of vertex j in G. Interven-
ing on Vk consists in replacing its structural assignment by a new one:

Vk := f̃k(P̃Ak, Ñk) .

The resulting modified distribution P̃V = P
do(Vk:=f̃k(P̃Ak,Ñk))
V is called in-

tervention distribution (see e.g. [186, chapter 6]). Meanwhile, other structural
equations and the marginal distribution of the parents PAk are kept un-
changed.
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We will discuss in the Section 4.2.3 how to obtain candidate counterfactual
conditions for time series signals with appropriate intervention distributions
in SCMs.

4.2.1.3 Independence of cause and mechanism

Another essential principle to mention to construct a reasonable counterfac-
tual condition is the Independence of cause and mechanism [186].

The gist of this principle is that the cause and the mechanism that drives
the effect are essentially independent of each other and thus should be de-
composed. For example, for an abstract causal relationship where an event
C causes another event E. E is driven by C through a physical process that
modulates the system of E and exists regardless of the occurence of C. As a
specific example in neuroscience, in the propagation of spikes between two
neurons, cause corresponds to the spiking activities of the pre-synaptic neu-
rons. The mechanism refers to the synaptic machinery that leads to the exci-
tatory post-synaptic potentials, contributing to the spiking of post-synaptic
neurons. Without the pre-synaptic spikes, no post-synaptic firing would oc-
cur, which will not happen either without synaptic connectivity. Thus, in
characterizing causality, we would need to consider both the cause and the
mechanism.

A direct benefit of this principle is to help clarify the counterfactual condi-
tion. Still, in the example of C causing E, a natural counterfactual scenario is
"if the event C does not happen, the event E does not occur". However, tak-
ing into account of the mechanism, the original statement can be detailed as
"When C happens, and if there is a mechanism linking C to E, then E hap-
pens". Therefore, a better counterfactual condition should be "if C does not
happen or if there is no mechanism linking C to E, then E does not happen".

We will elaborate on the application of this principle in Section 4.2.3 and
Section 4.2.5.

4.2.2 Review of candidate causality measures

Having introduced the basic principles of causality analysis, in this section
we will review several widely used causality measures which can be poten-
tially applied to understand the transient interplay between neural events.

Here, the measures will be introduced as their classical definitions in a
stationary bivariate system consisting two variables X1 and X2. As intro-The notations are

designed to be
consistent with the

VAR model for
peri-event snapshots,

as introduced in
Section 3.2.4.2

duced in Section 3.2.4.2, in a homogeneous bivariate VAR model, at each
time t, the current state Xt = [X1

t ,X2
t ]

⊤ is a linear function of the past p

states gathered in the vector

Xp,t = [X1
p,t

⊤
,X2

p,t
⊤
]⊤ = [X1

t−1,X1
t−2, ...,X1

t−p,X2
t−1,X2

t−2, ...,X2
t−p]

⊤

(4.1)
and the exogeneous inputs as the innovation term

η = [η1,η2]⊤

in the following form

Xt := AXp,t + η ,η ∼ N(k,Σ) , (4.2)

where A =

[
a⊤ b⊤

c⊤ d⊤

]
, k =

[
k1

k2

]
, Σ =

[
σ1 0

0 σ2

]
are the model parameters.

Elements of the coefficient matrix a,b,c and d are all p-dimensional vectors.
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Expanding the vector version of Eq. 4.2 using Eq. 4.1, the equation can be
rewritten as:

X1
t = a⊤X1

p,t + b⊤X2
p,t + η1 , η1t ∼ N(k1, σ1) , (4.3)

X2
t = c⊤X1

p,t + d⊤X2
p,t + η2 , η2 ∼ N(k2, σ2) . (4.4)

Applying this statistical model to data requires estimation of the model
VAR model parameters, resorting to estimating of the statistics of X1

t , X2
t ,

X1
p,t and X2

p,t as random variables. Notably, in the homogeneous VAR
model, the subscripts (t and p, t) just mark the relative temporal relation-
ships between the current and the past state but do not confine the vari-
ables to each time point. Therefore, data at all time points can be gathered
as i.i.d. samples of X1

t , X2
t , X1

p,t and X2
p,t as required in the VAR estimation

procedure presented in Section 3.2.4.2. This will result in a time-invariant
estimate of their mean, (co)variance and the model parameters.

If causal interactions are bi-directional in such a bi-variate system, the
reviewed causality measures are supposed to reveal significant causal effects
in both directions. Here we clarify that in the later sections (e.g., Results), we
focus on the dominant direction of causations to check whether the causality
measures reflect a qualitative view of the system.

4.2.2.1 Granger causality

The Granger causality (GC), as well as it extention, the Transfer Entropy
(TE) (Section 4.2.2.2), is based on Wiener’s principle of causality. According
to the principle, Granger [89] postulates the existence of (Granger-)causality
from X2 to X1 if knowledge of X2

p,t, in addition to X1
p,t, will allow better

prediction of X1
t . This actually resorts to the comparation of two conditions,

where the first condition can be understood as the actual condition and the
second as a counterfactual condition: this is not necessary

the only way to
define the
counterfactual
condition

• predict X1
t with both X1

p,t and X2
p,t

• predict X1
t with only X1

p,t

Importantly, in the general definition of this notion, X1
p,t and X2

p,t refer
to the past of these time series, without further specification of a particular
model order, such that in our notation p should be understood as poten-
tially infinite. Choosing p actually raises issues (debates that are discussed
in Section 4.2.4.1), thus we ask the reader to bear with us that p remains
unspecified.

The classical Granger causality measure has been defined for the station-
ary VAR models as given in Eq. 4.2, where the coefficient matrix A and the
innovations η are assumed homogenous across time. This model describ-
ing the actual condition, as Eqs. 4.3-4.4- is referred to as the full model [80],
where the modelling of the first variable X1

t is dependent on both variables
X1
t and X2

t . To test whether X2 causes X1, the estimated innovation variance
of X1

t (σ1 in Eq. 4.3) also reflects the asymptotic mean squared residual er-
ror (σ̂1) of the forecast of X2

t under the assumption that both X1
p,t and X2

p,t
contribute to X1

t .
Under the proposed counterfactual condition where X1

t is predicted only
by X1

p,t, we have a reduced model

X1
t = a ′⊤X1

p ′,t + η1
′
, η1

′
∼ N(k1, σ ′

1) . (4.5)
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where the model order p ′, the coefficient a ′, the innovations mean k1 and in- for estimation
methods see
Section 3.2.4.2

novations variance σ ′
1 are different from the corresponding terms in Eq. 4.3

and should be re-estimated.
If X2 causes X1, then the full model is a better model of the data com-

pared to the reduced model. This means that the mean squared error of
the reduced model, σ̂ ′

1 should be larger than the full model, σ̂1. Then the
Granger causality can be defined as the log ratio of the residual variance
between the reduced model and the full model, which leads to estimate the
magnitude of Granger causality as

GC(X2 → X1) =
1

2
log
(
σ̂ ′
1

σ̂1

)
. (4.6)

The factor 1/2 chosen in this case is chosen for consistency with TE (see
Section 4.2.2.2).

While the above linear VAR model is the most widely used, Granger
causality has been extended to non-linear models following the same pre-
dictive approach [149, 148, 64].

4.2.2.2 Transfer Entropy

TE is an information-theoretic implementation of Wiener’s principle, where
the performance of prediction between the actual and counterfactual condi-
tions is quantified with conditional entropy. In information theory, the con-
ditional entropy measures the amount of information needed to describe
the outcome of a random variable given that the value of another random
variable. Thus conditional entropy is directly formulation of the Wiener’s
principle.

Quantifying to which amount X2 is Granger causes X1 then results in the
following quantity named transfer entropy,

TE(X2 → X1) = H(X1
t |X

1
p,t) −H(X1

t |X
1
p,t,X2

p,t)

=

∫
p(x1t ,X1

p,t,X2
p,t) log

(
p(x1t |X

1
p,t,X2

p,t)

p(x1t |X
2
p,t)

)
dx1tdX

1
p,tdX

2
p,t . (4.7)

Interestingly, introducing the widely used Kullback-Leibler (KL) divergence
DKL between to probability densities

DKL(p||q) =

∫
p(x) log

p(x)

q(x)
dx (4.8)

to quantify the discrepancy between two distributions, TE can be rewritten
as an expected KL-divergence between the corresponding conditional prob-
abilities,

TE(X2 → X1) = E(X1
p,t,X2

p,t)

[
DKL

(
p(X1

t |X
1
p,t,X2

p,t)∥p(X1
t |X

1
p,t)

)]
. (4.9)

We will abusively denote (making the expectation with respect to condi-Section 4.2.4.2 will
clarify why TE is not

applying
counterfactual

analysis, but here we
still refer the second

conditional as the
quotation-marked

"counterfactual" to
keep symmetry with
CS/DCS and rDCS

tioning variables implicit)

TE(X2 → X1) = DKL

(
p(X1

t |X
1
p,t,X2

p,t)∥p(X1
t |X

1
p,t)

)
. (4.10)

This formulization can be understood as a probabilistic comparison between
the actual and "counterfactual" conditions via KL divergence.
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Figure 4.1: Illustration of the intervention implemented in CS. (A) Structural causal
model of a bi-variate VAR(2) model defined in Eq. 4.13 and Eq. 4.14

with uni-directional coupling from X2 to X1. (B) The intervention im-
plemented in devising CS is to break the causal arrows and send an in-
dependent copy X2

p,t to X1
t at each time point. This diagram applies to

both CS and DCS (Section 4.2.3.2). The difference is: CS assumes a ho-
mogeneous VAR model while DCS depends on a inhomogeneous VAR
model.

As noticed in [8], under stationary VAR assumptions the analytic expres-
sion of KL divergence between Gaussian distributions applied to Eq. 4.10

leads directly to
GC(X2 → X1) = TE(X2 → X1) , (4.11)

such that TE appears as a generalization of GC. Therefore, in the following
we will only focus on TE in the time series models under Gaussian assump-
tions.

4.2.2.3 Causal strength

To overcome the limitation of TE and GC (see Section 4.2.4 for a discussion),
[3] has proposed a measure of information flow to quantify the influence of
some variables on others in a system, which has been further studied and
generalized in [111] as a measure of the causal strength (CS) of an arbitrary
set of arrows in a graphical model.

This measure respects an intuitive notion of locality: the strength of the
influence mediated by a given set of arrows pointing to an effect variable
depends only on the input to it (the marginal of the input variable) and on
the other arrows pointing to the same variables. A particular instantiation
of this measure for time series will be introduced in Section 4.2.3.2.

In the context of our bivariate time series, CS also addresses the difference
between the actual and counterfactual conditions with KL divergence. The
actual condition is the same as devised in TE/GC where X1

t is assumed to
be dependent on both X1

p,t and X2
p,t.

Following [3, 111] we can construct the counterfactual condition by im-
plementing the intervention that replaces the arrow X2

p,t → X1
t by an ar-

row injecting instead X2
p,t

′ as an independent copy of X2
p,t with the same

marginal, as illustrated in Figure. 4.1A. Importantly, compared to [111] but
in line with [3], we propose to replace the multivariate vector X2

p,t by a
copy without enforcing independence between the components of this vec-
tor, in order to preserve the structure of the SCM. The intervention distri-
bution results in the entailed conditional probability while the marginals
p(X2

p,t) = p(X2
p,t

′
): notations here for

intervention is
consistent with the
general form in
Section 4.2.1.2
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pdo(X
1
t :=f(X1

p,t,X2
p,t

′,η1
t))(X1

t |X
1
p,t) =

∑
X2

p,t
′

p(X1
t |X

1
p,t,X2

p,t)p(X
2
p,t

′
)

=
∑
X2

p,t

p(X1
t |X

1
p,t,X2

p,t)p(X
2
p,t)

Then KL divergence quantifies the distance between p(X1
t |X

1
p,t,X2

p,t) and

pdo(X
1
t :=f(X1

p,t,X2
p,t

′,η1
t))(X1

t |X
1
p,t,X2

p,t), leading to the (implicit) form of CS

CS(X2 → X1)

= E(X1
p,t,X2

p,t)

[
DKL(p(X

1
t |X

1
p,t,X2

p,t)∥p
do(X1

t :=f(X1
p,t,X2

p,t
′,η1

t))(X1
t |X

1
p,t,X2

p,t))
]

.

(4.12)

4.2.2.4 Causal impact and regression discontinuity.

In line with the potential outcome framework [198], Brodersen et al. [23] in-
troduced a Bayesian framework to quantify the causal impact of an interven-
tion at a given time point n on an observed time series {yk}. As illustrated in
Figure 4.2, it relies on observed pre-intervention data {y1, ...,yn} covariates
and priors on time series parameters to extrapolate a distribution of poten-
tial outcome sample paths { ˜yn+1, ..., ˜ym} under the counterfactual condition
that no intervention had been performed. Comparing the posterior predic-
tive density of these unobserved counterfactual responses to the observed
time course yn+1, ...,ym (under intervention) thus allows to quantify the
effect of the intervention. Such contrasting strategy is also present in a vari-
ant of regression discontinuity designs in economics and social sciences. In
particular, regression discontinuity in time assesses causal effects by compar-
ing outcomes distributions on time intervals before and after the onset of a
policy change [93]. One key difference of these approaches with respect to
TE and CS is the contrasting of properties of the models over different time
intervals, one before the intervention and one after. One specificity of such
framework is that the interventional distribution is often observed (e.g. a
patient is treated at a given time), while the counterfactual (unobserved) sce-
nario is one where no intervention is performed (what would have happend
if the patient had not been treated). This strategy makes intuitive sense in
the context of non-stationary data, while TE and CS have not been designed
for capturing such effects, as they have been applied chiefly in static (for CS)
or stationary settings (for TE and the natural extension of CS to time series,
DCS, described in the Section 4.2.3.1 and Section 4.2.3.2).

4.2.3 Time-varying extension of causality measures

The neural events are by nature non-stationary, hence for modeling these
signals with stochastic difference equations, while keeping the benefits of
linearity, we will extend the causality measures (TE and CS) in Section 4.2.2
into the inhomogeneous VAR models, where the coefficient of matrices in
Eq. 4.2 are assumed time dependent. Consistent with the compact form in
Section 3.2.4.2, the bi-variate non-stationary VAR model takes the form

X1
t = a⊤t X1

p,t + b⊤
t X2

p,t + η1t , η1t ∼ N(k1t , σ1,t) . (4.13)

X2
t = c⊤t X1

p,t + d⊤
t X2

p,t + η2t , η2t ∼ N(k2t , σ2,t) , (4.14)
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Time

Intervention

Post-intervention, counterfactual time-series

Post-intervention, observed time-series

Pre-intervention, observed time-series

Figure 4.2: Illustration of the principle of the regression discontinuity in time, and
causal impact methodologies. The observed time series where an inter-
vention occurs at a specified time point n is contrasted with the counter-
factual scenario that no intervention was performed.

The model can be represented in the framework of SCM illustrated in Fig-
ure 4.1A.

The estimation of inhomogeneous VAR model parameters and statistics
should follow the procedures introduced in Section 3.2.4.2. Compared to sta-
tionary VAR model, the time-varying version requires estimating the proba-
bilities p(X1

t |X
1
p,t,X2

p,t) and p(X1
t |X

1
p,t) with the samples obtained at each

time point, instead of gathering the samples along the whole time series (see
Section 3.2.4.2). For models based on arbitary distributions, the conditional
distributions need to be estimated empirically. Fortunately, with our Gaus-
sian assumption of the VAR model, the expressions of time-varying TE and
CS can be derived in explicit forms.

As both TE and CS are defined as the KL divergence of two conditionl
probabilities representing the actual and counterfactual conditions (which
are Gaussian according to the joint Gaussian assumption), we first present
here the general form of the KL divergence between two univariate Gaus-
sians N(µa, σ2

a) and N(µc, σ2
c):

DKL(N(µa, σ2
a)||N(µc, σ2

c)) = log
σ2
c

σ2
a

−
1

2
+

σ2
a + (µa − µc)

2

2σ2
c

(4.15)

This equation, as derived in Appendix A.5.1, enables us to calculate TE and
CS after establishing the explicit expression of the two conditional distribu-
tions accordingly.

For both measures, the actual condition is described by Eq. 4.13, where

N(µa,σ2
a) = p(X1

t |X
1
p,t,X2

p,t) .

The corresponding mean and variance of the conditional probability, as de-
rived in Appendix A.5.3, take the form:

µa = a⊤t X1
p,t + b⊤

t X2
p,t + k1t (4.16)

σ2
a = σ1,t (4.17)

The conditional probability of the counterfactual condition will be shown
individually for TE and CS in the following.



86 causal investigation of peri-event data

4.2.3.1 TE based on non-stationary VAR models

For TE, as the conditional probability representing the "counterfactual" con-
dition takes the form

N(µc,σ2
c) = p(X1

t |X
1
p,t) .

Resulting from the same model in Eq. 4.13, the mean and variance can be
derived as (for details ses Appendix A.5.3)

µc = a⊤t X1
p,t + b⊤

t E[X2
p,t|X

1
p,t] + k1t (4.18)

σ2
c = b⊤

t Cov[X2
p,t|X

1
p,t]bt + σ1,t (4.19)

Plugging the expressions of µa, µc, σ2
a and σ2

c into Eq. 4.15, the KL diver-
gence can be derived as

TE = dKL(N(µa, σ2
a)||N(µc, σ2

c)) = log
b⊤
t Cov[X2

p,t|X
1
p,t]bt + σ1,t

σ1,t

As X1
p,t and X2

p,t are jointly Gaussian, the conditional variance takes theNotably, "Cov" here
refer to the
covariance

operations, while
"Σ" refers to defined
variable representing

the covariance matrix

form
Cov[X2

p,t|X
1
p,t] = ΣX2

p
− ΣX1

pX
2
p
Σ−1
X1

p
ΣX2

pX
1
p

.

Covariance matrices ΣX1
p
= Cov[X1

p,t], ΣX1
pX

2
p
= Cov[X1

p,t,X2
p,t], ΣX2

p
=

Cov[X2
p,t] and ΣX2

pX
1
p
= Cov[X2

p,t,X1
p,t] are parts of the lagged covariance

matrix ΣXp,t defined in Eq. 3.12.
Therefore, the expression of time-varying TE should be

TE =
1

2
log

σ1,t + b⊤
t ΣX2

p
bt − b⊤

t ΣX1
pX

2
p
Σ−1
X1

p
ΣX2

pX
1
p

bt

σ1,t
(4.20)

4.2.3.2 Dynamic causal strength (DCS)

The counterfactual probability in CS, as explained in Section 4.2.2.3, is the
interventional distribution after removing the causal arrow from X2

p,t to X1
t

and substituting it with an independent copy X2
p,t

′such that p(X2
p,t

′
) =

p(X2
p,t):

N(µc,σ2
c) = pdo(X

1
t :=f(X1

p,t,X2
p,t

′,η1
t))(X1

t |X
1
p,t,X2

p,t) .

The corresponding model is:

X1
t = a⊤t X1

p,t + b⊤
t X2

p,t
′
+ η1t , η1t ∼ N(k1t , σ1,t) .

Mean and variance of this counterfactual probability are derived as (for
derivation see Appendix A.5.5):

µc = a⊤t X1
p,t + b⊤

t E[X2
p,t] + k1t (4.21)

σ2
c = b⊤

t Cov[X2
p,t]bt + σ1,t (4.22)

After plugging in the terms and reorganizing the terms, we can reach the
expression of DCS

DCS = DKL(N(µa, σ2
a)||N(µc, σ2

c)) =
1

2
log

b⊤
t Cov[X2

p,t]bt + σ1,t

σ1,t
(4.23)

In this paper, we call this time-varying measure (absolute) Dynamic Causal
Strength (DCS). We chose a different name than the ones proposed in these
papers to avoid confusion between this measure and both the ones proposed
in the literature and the novel measure we propose in Section 4.2.5.
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Figure 4.3: D-separation of bi-variate VAR(2) model. (A) Structural causal model of
a bi-variate VAR(2) model defined in Eq. 4.13 and Eq. 4.14 with uni-
directional coupling from X2 to X1. (B) Conditioning on both past states
of X1 and X2 blocks all paths from X1

t−3 to X1
t . Blue nodes represents

conditioned nodes while blue arrows marks blocked paths. Orange ar-
rows marks the unblocked paths. (C) Conditioning on past states of X1

alone blocks all paths from X1
t−3 to X1

t in the uni-directional case. Color
codes are the same as (B). (D) Conditioning on past states of X1 alone
does not block all paths from X1

t−3 to X1
t in the bi-directional case. Color

codes are the same as (B).

4.2.4 Discussion of the candidate causality measures

In general, TE and GC statistics are two commonly used measures of causal
strength for investigating interactions between brain regions (e.g., [244]).
Based on the observational conditional distribution of the neural signals
being analyzed, these two measures estimate a quantity that is easily inter-
pretable from a forecasting perspective. However, potential problems would
arise when they are interpreted based on SCMs and when they are applied
to non-stationary signals like transient events.

These problems are often neglected during applications, while we discuss
several of them in this section. We will show that DCS is better in some
aspects but still not suitable for dealing with a typical case in analyzing
transient events.

4.2.4.1 TE estimation is non-local

The first critical problem to be addressed is that the extension of TE or GC
to time-varying versions is largely limited by its non-locality.

In the original definitions of GC (Section 4.2.2.1) and TE (Section 4.2.2.2),
we remain imprecise regarding the number of past states p used for the
forecast in the model. While one can exploit classical model order selec-
tion techniques (e.g. AIC and BIC discussed in Section 3.2.4.1) to select the
best order for the full model, in case of bi-directional coupling, the reduced
model of Eq. 4.5 is misspecified (in a generic case) for any finite order.

This can be easily seen by exploiting the d-separation criterion presented
in Section 3.2.3.1, as illustrated in Figure 4.3. Figure 4.3A shows the SCM of
a second-order stationary VAR model with uni-directional coupling from X2

to X1, which is represented by causal arrows from X2
p,t = [X2

t−2,X2
t−1]

⊤ to
X1
t . Figure 4.3B shows the estimation in the full model, where conditioning
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on both X1
p,t and X2

p,t blocks all the path from X1
t−3 to X1

t . According to
the "chain" rule of d-separation, X1

t−3 and X1
t are conditional independent

(conditioned on X1
p,t and X2

p,t).
For such an uni-directionally-coupled system, a finite order for the re-

duced model also guarantees such conditional independence, as seen in
Figure 4.3C where all paths are blocked by conditioning. However, in the
same system with bi-directional coupling, for any k > p (i.e. k > 2), there is
always a path from X1

t−k to X1
t going through nodes of X2 that is unblocked

by (X1
t−p, · · · ,X1

t−1). As Figure 4.3D shows, 2 paths from X1
t−3 to X1

t are
not blocked by conditioning on X1

p,t. Under faithfulness assumptions, this
implies that there is conditional dependence between X1

t and its remote past
samples, no matter on how many finite past states we are conditioning on.
This further implies that to minimize the forecast error of X1

t in the reduced
model one should ideally exploit the past information of this time series up
to p = +∞.

This issue has been both raised and addressed in the literature, in partic-
ular by resorting to Autoregressive Moving Average models and state space
models for defining an appropriate reduced model (e.g. [9, 216]). However,
this remains a important limitation when extending TE to time-varying ver-
sions, where the model is assumed to be stationary only locally in time. For
example, in the non-stationary VAR model (Eq. 4.13 and Eq. 4.14), we as-
sume a constant linear model in a 1-point time window. The non-locality of
TE is particularly problematic for such time varying model assumption be-
cause with the local stationarity, only a limited number of past states can be
observed. Thus it is impossible to retrieve the infinite past state to estimate
an appropriate reduced model.

4.2.4.2 TE does not implement an intervention

Another interesting way of understanding the problem of TE is to look at
the "counterfactual" condition it defines.

As introduced in Section 4.2.2.2, for a uni-directionally-coupled system
where X2 causes X1. In the actual condition, X1

t is dependent on both X1
p,t

and X2
p,t (as in the full model) while the "counterfactual" condition assumes

X1
t is dependent only on X1

p,t (as in the reduced model).
Actually, the "counterfactual" condition ignores the influence of past states

of X2 on X1, which corresponds to marginalizing an SCM (i.e., removing ob-
served variables from the graph). In other words, the "counterfactual" con-
dition is modelling the observational data with another SCM (i.e., another
model), violating the basic idea of counterfactual analysis. Intuitively, this
is problematic because the counterfactual analysis in TE does not compare
the actual and counterfactual conditions based on their different outcomes
in the same model (e.g., different observed distributions) but by interpret-
ing the same data with different models. In this case, the "counterfactual"
outcomes given that X1

t is dependent only on X1
p,t is neither observed or

reconstructed based on the observed data, which is why TE only reflects
observational predictive dependency instead of causality.

By comparison, as addressed in Section 4.2.1.2 and Section 4.2.3.2, this
shortcoming of TE can be overcome by DCS, where the intervention in the
SCM framework enables the reconstruction of the counterfactual probabili-
ties where the causal link does not exist.
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4.2.4.3 TE underperforms for strongly synchronized signals

Besides, it has also been pointed out that the definition of TE in Eq. 4.10

has some other non-intuitive implications [3, 111]. In particular, there are
situations in which TE(X2 → X1) almost vanishes, although the influence is
intuitively clear. How frequent are the practical situations in which we have
these detrimental effects is unclear; however, theoretical analysis suggests
that this can happen when the time series are strongly correlated.

To see this, we can derive with Eq. 4.9 in the case where x2 is a deter-
ministic function of x1 such that TE vanishes. In an extreme case where X2

t

is propotional to X1
t such that X2

t = kX1
t , representing a time-wise synchro-

nization of the two signals, the conditional variance will be

ΣX2
p|X

1
p
= ΣX2

p
− ΣX2

pX
1
p
Σ−1
X1

p
ΣX1

pX
2
p
= ΣX2

p
− kΣX2

p
· ( 1

k2
Σ−1
X2

p
) · kΣX2

p
= 0

Plugging into Eq. A.5.3 yields,

TE(X2 → X1) = log
b⊤
t Cov[X2

p,t|X
1
p,t]bt + σ1,t

σ1,t
= log

σ1,t

σ1,t
= log 1 = 0

However, strong correlation between two observed time series does not
usually imply that causal interactions between them are week, from an SCM
perspective. We will illustrate this theoretical prediction in Section 4.3.1 and
compare with the results of DCS to show that DCS does not suffer from this
non-intuitive vanishing problem.

4.2.4.4 Insensitivity of TE and DCS to deterministic perturbations

While several intuitive properties make DCS a good candidate to quantify
causal influences, we exhibit a counterintuitive property common to TE and
DCS in the context of peri-event time series. It is common in neuroscience to
observe evoked potentials, a waveform that appears consistently in response
to a stimulus. More generally, neural activities in relation to events are likely
to have a deterministic component appearing in the peri-event snapshot
distribution (potentially even after the Desnap bias correction implemented
in Chapter 3), and such component may reflect mechanisms involved in
causal influences.

Consider an example bi-variate VAR(1) model in the following form

X1
t := η1t , (4.24a)

X2
t := cX1

t−1 + dX2
t−1 + η2t , (4.24b)

with c,d ̸= 0 and a stationary innovation for X2, η2t ∼ N(0, 1), but a non-
stationary innovation for X1, η1t ∼ N(αδt t0 , 1), which models a (soft) inter-
vention on the innovation expectation through the unit impulse at time t0
represented by the Kronecker delta

δtt0 =

1, for t = t0 ,

0, otherwise .

Then it can be easily shown that the expected time course of X2 is

EX2
t =

αcdt−t0+1, t ⩾ t0 + 1

0, otherwise.
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This witnesses the causal influence of X1
t0

on subsequent values of X2
t at sub-

sequent time, which for large α results in large deviations from the baseline
expectation of X2

t for t prior to t0.
Paradoxically, for a broad class of models that includes the example above,

such a deterministic causal influence cannot be detected by TE or DCS.

Proposition 3. For a linear VAR model, TE and DCS values are unaffected by
interventions on the innovations’ expectation at any time point.

Proof. Consider the order p VAR model of Eq. (3.3). Consider the inter-
vention at time t0 that transforms ηt0 in ηt0 + α. To compute the inter-
vention distribution of the new variables denoted (X̃1, X̃2) changes with
respect to the distribution of the original variables, we can examine the
difference with respect to (X1,X2) that has the same innovations, except
for η1t0 for which we remove a constant α. (X1,X2) is then distributed ac-
cording to the original distribution (before intervention), and the difference
(U,V) = (X̃1 −X1, X̃2 −X2) follows the equations

Ut = a⊤Up,t + b⊤Vp,t + δt t0

Vt = c⊤Up,t + d⊤Vp,t

which is a deterministic difference equation with a unique solution making
X and X̃ coincide before the intervention1 (ut , vt). As a consequence, the
intervention distribution P̃ is a shifted version of the original distribution:

P̃(x2t ,X2
p,t,X1

p,t) = P(x2t − ut,X2
p,t − up,t,X1

p,t − vp,t)

which implies the same for conditional marginal distributions, e.g.

P̃(x2t |X
2
p,t) = P(x2t − ut|X

2
p,t − up,t,X1

p,t − vp,t)

As a consequence TE on the intervention distribution writes

TE(X̃1 → X̃2) =

∫
p̃(x2t ,X2

p,t,X1
p,t) log

p̃(x2t |X
2
p,t,X1

p,t)

p̃(x2t |X
2
p,t)

dx2tdX
2
p,tdX

1
p,t

=

∫
p(x2t−ut,X2

p,t−up,t,X1
p,t−vp,t) log

p(x2t−ut|X
2
p,t−up,t,X1

p,t−vp,t)

p(x2t−ut|X2
p,t−up,t)

dx2tdX
2
p,tdX

1
p,t

=

∫
p(x2t ,X2

p,t,X1
p,t) log

p(x2t |X
2
p,t,X1

p,t)

p(x2t |X
2
p,t)

dx2tdX
2
p,tdX

1
p,t = TE(X1 → X2) .

The same reasoning can be applied to DCS leading to invariance as well.

This result is not what we would expect from a measure of influence,
because in the above example of Eq. 4.24, setting a large α intuitively leads
to a large influence of X1 on X2 provided c ̸= 0. Provided that TE and DCS
can be made arbitrary small by reducing Σt , TE and DCS would detect no
influence despite this strong effect on the mean of X2

t .

4.2.5 A novel measure: relative Dynamic Causal Strength

4.2.5.1 Motivation

To deal with the problem that neither TE nor DCS is applicable in the case
where the transient events are driven by a deterministic exogenous input,

1 Because initial conditions of this deterministic linear system are set to zero before the interven-
tion at t0
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Figure 4.4: Illustration of the intervention implemented in rDCS. (A) Structural
causal model of a bi-variate VAR(2) model defined in Eq. 4.13 and Eq. 4.14

with uni-directional coupling from X2 to X1. (B) The intervention imple-
mented in devising rDCS is to break the causal arrows and send an inde-
pendent copy of the stationary state X2

p,tref
to X1

t at each time point.

we propose a novel measure, the relative Dynamic Causal Strength (rDCS),
as an improved version of DCS with modifications specifically designed for
this problem.

Recalling the causality principles discussed in Section 4.2.1.3, the cause
and the mechanism triggered by the cause to generate the effect should be
considered separately. In the specific problem we are investigating, the cause
is the past states of X2 as X2

p,t, while the mechanism can be represented by
the model in Eq. 4.13 and symbolized by the corresponding causal arrow
in the SCMs. In the measures we have introduced so far, DCS only exploits
the case where the causal arrow is deleted as a counterfactual condition but
does not address the change in the cause itself.

In the case where X2 experiences a deterministic exogenous input in
a transient window, the cause increases significantly; thus, intuitively, the
causal effect should also be enhanced even if the causal arrow remains the
same (i.e., the coefficient b stays unchanged). According to the principle of
independence between cause and mechanism, apart from intervening on
the causal arrow, further intervention can be implemented on the cause
node to construct a counterfactual condition where the cause receives no
time-varying innovations.

Therefore, inspired by causal impact (Section 4.2.2.4) which characterizes
the difference between the current state and a baseline state, we propose
(additionally to DCS) to replace the marginal of X2

p,t by the marginal X2
p,tref

for a reference period tref . The reference period tref is typically chosen to
be a stationary period before the occurence of the transient deterministic
pertabations and statistics of X2

p,tref
can be averaged by statistics of X2

p,t

within this period. This leads to the relative Dynamical Causal Strength (rDCS)

rDCSttref
(X2 → X1) =

E(X1
p,t,X2

p,t)

[
DKL(p(X

1
t |X

2
p,t,X2

p,t)∥p
do(X1

t :=f(X1
p,t,X2

p,tref
,η1

t))
(X1

t |X
1
p,t,X2

p,t))

]
(4.25)

Intuitively, the relativeness originates from the comparison between the
current past states X2

p,t and the reference past states X2
p,tref

. It is then natu-

ral to predict that in the uni-directional case, rDCS(X2 → X1) = DCS(X2 →
X1) for any reference time tref if X2 is stationary because stationarity implies
that the marginal distributions of X2

p,tref
and X2

p,t are identical. As a partic-

ular case, this result implies that a transient loss of causal link from X2 to X1

will lead to rDCS = 0, while for a stationary bivariate system, DCS = rDCS
is constant.
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4.2.5.2 Time-varying implementation

Similar to the time-varying TE and DCS (Section 4.2.3.1 and Section 4.2.3.2),
rDCS can be estimated in the instantaneous manner with an explicit form
under the Gaussian assumption.

The actual condition where N(µa,σ2
a) = p(X1

t |X
1
p,t,X2

p,t) still holds for
the calculation of rDCS (Section 4.2.3). For the counterfactual condition with
the probability

N(µc,σ2
c) = p

do(X1
t :=f(X1

p,t,X2
p,tref

,η1
t))

(X1
t |X

1
p,t,X2

p,t)

where the model describing the intervened SCM (Figure 4.4B) is

X1
t = a⊤t X1

p,t + b⊤
t X2

p,tref

′
+ k1t + η1t .

Similarly, as elaborated in Appendix A.5.5, the mean and variance can be
derived as

µc = a⊤t X1
p,t + b⊤

t E[X2
p,tref

] + k1t (4.26)

σ2
c = b⊤

t Cov[X2
p,tref

]bt + σ1,t (4.27)

where the covariance variance of the reference state takes the form

Cov[X2
p,tref

] = E[(X2
p,tref

− E[X2
p,tref

])(X2
p,tref

− E[X2
p,tref

])⊤].

By putting these statistic into the expression of KL-divergence in Eq. 4.15

DKL(N(µa, σ2
a)||N(µc, σ2

c))

we can obtain the explicit form of rDCS

rDCS(X2 → X1) =
1

2
log

σ1,t + b⊤
t Cov[X2

p,tref
]bt

σ1,t
−

1

2

+
1

2
·
σ1,t + b⊤

t E[(X2
p,t − E[X2

p,tref
])(X2

p,t − E[X2
p,tref

])⊤]bt

σ1,t + b⊤
t Cov[X2

p,tref
]bt

(4.28)

4.3 results

In the Results section, we first focus on illustrating the properties of TE,
DCS and rDCS with toy models in simulations. The problem of vanishing
TE occurring with synchronized signals and the benefits of DCS in the same
situation will be validated in Section 4.3.1. Next, we will simulate a simple
uni-directionally coupled VAR system with rhythmic perturbations of the
cause variable to generate transient events, where we will show that rDCS is
able to reflect the change of causal effects due to this perturbation while TE
and DCS fail. From this example, we will raise an interesting phenomenon:
the choice of reference point to align the peri-event panel data influences
the estimation of causality measures. This relates to the selection bias issue
investigated in Chapter 3.

To address this problem, we will combine the selection bias correction
algorithm (i.e., the DeSnap algorithm) introduced in Chapter 3 with the cal-
culation of causality measures based on the corrected model parameters. We
will show the causality estimates based on such a combination better reflect
the underlying state-dependent dynamics. This is validated with the two-
state stationary process we investigated in Section 3.3.2, the biophysically
realistic simulation of thalamocortical spindles and recordings of hippocam-
pal SPW-Rs.
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4.3.1 Validation on strongly-correlated signals

As mentioned in Section 4.2.2.3, TE underperforms when the cause and
effect signals are strongly correlated with each other, while DCS are unaf-
fected by the synchrony between the pair of signals under analysis.

Here, to illustrate such contrast, we simulated a bivariate dynamical sys-
tem in the form of two synchronized continuous harmonic oscillators x(t) Here x(t) and y(t)

are irrelevant to the
rest of the thesis

and y(t), with uni-directional coupling (i.e., x(t) driving y(t)):d2x
dt2

= −2ζxωx
dx
dt −ω2

xx+nx ,
d2y
dt2

= −2ζyωy
dy
dt −ω2

yy+ cx+ny .
(4.29)

In this system, x(t) is designed as an under-damped oscillator (ζx = 0.015722)
which approximately oscillates at a limit cycle with a period Tx = 200 and
angular frequency ωx = 2π/Tx = 0.0314. To achieve synchrony, y(t) is also
designed as an under-damped oscillator ( ζy = 0.2) whose intrinsic oscil-
lation gradually vanishes and finally follows the oscillation of x(t) with a
coupling strength of c = 0.098. For y(t), Ty = 20, ωy = 2π/Ty = 0.314.
We also add some small Gaussian white innovations to both oscillators:
nx ∼ N(0, 0.02), ny ∼ N(0, 0.005). Adding this noise allows fitting a VAR
model to the the signals to assess the causal interactions with TE and DCS.
VAR parameter estimation would fail with deterministic signals by causing
the covariance matrix estimates to be singular.

Using the Euler method with a time step of 1 and random initial points
(N(0, 1)), we simulated 2000 trials of this uni-directionally coupled system
with 1000-point length. We discarded the first 500 points to ensure that the
time series reaches a sufficient level of synchronization. We can see this
system as a stationary VAR(2) process because numerical simulation with
the Euler method generates data with its past two states.

Figure 4.5 (left panel) shows the results of time-varying TE and DCS for
assessing the causal effects between x(t) and y(t). Calculation is performed
in both the ground truth direction (x(t)→ y(t)) and the opposite direction.

We first look at the control experiment. Consistent with the system’s sta-
tionarity, TE is constant in both directions while being higher in the ground-
truth direction. DCS in the ground-truth direction stays at a relatively high
level, despite some small oscillation under a frequency similar to the intrin-
sic oscillation frequency of x(t).

With respect to the detection of causal direction, both measures are able
to detect the correct direction (i.e., causation for x(t) → y(t) is much larger
than in the opposite direction). It is also reasonable that DCS in both direc-
tions is higher than TE, according to its definition in section 4.2.3.2. However,
from the control experiment, we cannot conclude that the smaller TE values
are due to its definition or due to the strong synchrony in the signals.

Therefore, we introduced a transient decrease of the noise variance in the
cause signals (x(t)). The logic of designing this transient change is the fol-
lowing: the level of synchronization will increase with weaker noise, but the
system and input remain the same because the noise change is negligible to
the signal amplitude; thus if TE is suitable for synchronized signals, its val-
ues are expected to stay constant. However, as the results show in Figure 4.5
(right panel), there is a transient decrease of TE during the interval where
noise variance is decreased, suggesting that TE performs poorly in the cases
where the cause and effect signals are synchronized.
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Figure 4.5: TE fails when the signals are strongly synchronized. (A) Control exper-
iments where synchrony is not changed. (top) Example of the bivariate
signal in the control experiment. (middle) Time-varying design of inno-
vation’s variance for both variables in the control experiment. (bottom)
Time-varying TE and DCS results in the control experiment. (B) TE under-
performs during transient increased synchrony induced by a tiny change
in noise variance. The transient change can be seen as an event. Subfigure
designs are the same as (A).

4.3.2 Validation on simulated perturbation events with nonzero innovations

In this section, we directly address the benefits of rDCS over the other pro-
posed causality measures when applied to signals driven by deterministic
perturbations. To illustrate this specific property, we designed some simple
transient events perturbing the innovation parameters of a stationary pro-
cess with uni-directional coupling. The events are generated by feeding the
cause signal with non-zero time-varying innovations such that both signals
will exhibit temporal oscillations. We refer to these events as perturbation
events in the following sections.

Interestingly, exploiting this toy model draws attention to a problem of
event alignment, which will be extensively explained in this section.

4.3.2.1 Simulation procedure

We simulated a non-stationary uni-directionally-coupled autoregressive sys-
tem defined in Eq. 4.13 and Eq. 4.14. The causal direction is X2 → X1. The
system is designed as a bivariate VAR(4) process with a time-invariant co-
efficient matrix: a⊤ = [−0.55,−0.45,−0.55,−0.85], b⊤ = [1.4,−0.3, 1.5, 1.7],
c⊤ = [0, 0, 0, 0] and d⊤ = [0.9,−0.25, 0, 0.25]. Uni-directional interactions is
ensured by setting the coupling strength in the opposite direction (i.e. c) as
zero for all lags. All entries of this coefficient matrix is randomly generated
and fixed to guarantee the stability of the VAR(4) system.

We implement the non-stationarity in η2t , the innovations of ’cause’ pro-
cess {X2

t }. Both innovations η1t and η2t are drawn from a Gaussian distribu-
tion with a variance of 0.1 (with no correlation in between, i.e. Cov[η1t ,η2t

⊤
] =

0); the difference is that E[η1t ] = k1t = 0 while E[η2t ] = k2t is non-zero
and time-varying. We designed the time-varying profile of k2t as a Morlet-
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shaped waveform to mimic the oscillatory properties of neural event signals:
k2t = H exp(−(αx)2/2) cos(5αx), where α = 2/25 is a constant controlling
the event duration, and H = 10 is the amplitude of the highest peak in the
center of the event. The total duration of the Morlet-shaped waveform is
101 ms. The innovation’s mean designed for both variables are shown in
Figure 4.6A (bottom).

We generated 1000 trials of the VAR(4) process with a length of 700 ms

(and a sampling frequency of 1kHz). The initial 200 points are discarded to
ensure that the time series is stationary, resulting in 500 points for each trial.

From the simulations, we can extract a dataset of multi-trial event snap-
shots in the following way: after detecting local maxima of amplitude ex-
ceeding 5SD a chosen signal (see below), we define this maximum as a ref-
erence point of the event in each trial and put it at the center the peri-event
time-window of 400 ms (for better readability, we only visualize a 120-ms
window around the event, with 60 ms at each side of the alignment posi-
tion). The averaged event waveform is illustrated in Figure 4.6A (top). We
will show in the next section that based on different choices of the refer-
ence point (i.e., different alignment methods), the model estimation and the
calculation of causality measures will perform dramatically differently.

4.3.2.2 Effect of alignment on model estimation and causality measures

The criterion for choosing the reference points determines how events are
aligned across multiple trials. While alignment might seem a trivial step at
first blush, its influence on VAR model estimation turns out to be critical.
Intuitively, as the model estimation depends on the assumption that all ob-
servations at each time point are i.i.d. samples, jittered alignments violate
the assumption and lead to biased estimation of the time-varying model
parameters.

In the following parts, we explore the effect of alignments by comparing
the model estimation and the performance of causality measures in the three
scenarios: 1) ground-truth alignment; 2) aligning by the cause; 3) aligning by the
effect.

Ground-truth alignment refers to the case where the detection point is the
peak of innovations mean of the cause signal. As the innovation is designed
as deterministic (i.e., identical) across trials, with this alignment, the data
points gathered across trials at each time point can be assumed sampled
i.i.d. from the original innovation distribution. The averaged waveform of
the snapshots with this alignment is presented in Figure 4.6A (top).

However, empirically, even if there is a deterministic input to all the
recorded trials, the innovation is a hidden variable in the system that cannot
be observed directly. Practically, detection points have to be chosen from the
observed signals, i.e., either the cause signal or the effect signal. Then it is
almost inevitable that different trials in a snapshot will be extracted with
small time shifts (i.e., jitters), as in various commonly-adopted criteria of
alignment (e.g., alignment on the power peak or the onset time). In our sim-
ulation, aligning by the cause means aligning by the peak of {X2

t }, and aligning
by the effect means aligning by the peak of {X1

t }.
We are then interested in how these different alignment methods and

the resulted time shifts would affect the performance of causality measures,
especially in the time-varying case that we focus on.

The multi-trial BIC criteria we proposed in Section 3.2.4.1 is able to recon-
struct the true model order: 4. We fitted the extracted events with VAR(4)
model with non-zero innovations mean (Eq. 4.13 and Eq. 4.14), so that they
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Figure 4.6: Causal analysis for simulated perturbation events with non-zero innova-
tions. (A) (top) Trial-averaged signals with ground-truth alignment (aligned
on innovations mean). (bottom) Deterministic innovation added into
cause and effect signals. (B) (left) Sum of squared errors (sSE) of coef-
ficient matrix estimation in three cases: ground-truth alignments, aligning
by the cause and aligning by the effect. For the case ground-truth alignments
the gray dashed line marks the peak of the innovation; for the other two
cases it marks the peak of the signals. (middle) Residual mean as an es-
timation of the innovations mean in the same three cases as in (left). The
red line is lagged compared to the blue one is because a delay before the
innovations peak causes the signals’ peak. (right) Estimated innovations
(residual) variance in the same three cases. The ground-truth innovations
variance is 0.1. (C) Averaged event waveform and causality measures (TE,
DCS and rDCS) results of the perturbation events with ground-truth align-
ments. The gray dashed line is the same as in (B). (D) The same as (d)
with aligning by the cause. (E) The same as (d) with aligning by the effect.
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can be directly applied to calculate the causality measures TE, DCS and
rDCS.

Figure 4.6B shows the accuracy of inhomogeneous VAR coefficient estima-
tion. The accuracy is represented by the summed squared error across all the
matrix coefficients at each time point (denoted as ’sSE’ for ’summed squared
error’). In the scenario ground-truth alignment, the sSE remains relatively con-
stant over time. This is consistent with the model design, i.e., the coefficient
matrix is set to be time-invariant, also suggesting that coefficient estimation
is rather accurate in this case. With the scenario of aligning by the cause ({X2

t }), origin of the
alignment problemthe accuracy is similar to the scenario ground-truth alignment, despite some

small fluctuations around the center of the event. This is reasonable because
aligning on the peak of the cause signals is almost equivalent to aligning
on the innovation when the innovation’s mean is strong enough relative to
the innovation’s variance (i.e., the deterministic part of the signal is stronger
than its stochastic part). In comparison, due to intrinsic dynamics, the peaks
of cause signals that appear around the same time point may arrive at the
effect signals with some shifts in time. Thus the scenario aligning by the effect
induces strong errors in coefficient estimation.

The idea that aligning by the effect induces time shifts is confirmed by the
estimation of innovation as residual mean and variance, as shown in Fig-
ure 4.6B (middle, right). In the scenario of ground-truth alignment, the am-
plitude and shape of the non-stationary innovation are fully reconstructed,
together with its variance estimated around the true value 0.1. It is similar
to the scenario of aligning by the cause, despite some small deviation of the
variance. In the scenario of aligning by the effect, the dis-alignment of innova-
tions peak lowers the amplitude of the estimated residual mean and induces
large errors in the residual variance.

Figure 4.6C, Figure 4.6D, Figure 4.6E show the corresponding results of
how causality measures perform in the three alignment scenarios. During
the periods where no transient events occur, all three measures are able to
detect a time-invariant stronger causal effect in the ground-truth direction
(X2 → X1) compared to the opposite direction. Besides, in line with the
theoretical predictions, DCS is higher than TE.

The different effects of alignment emerge during the time intervals where
we add non-stationary non-zero innovations. In the first two scenarios, TE
and DCS are almost constant across time, while rDCS shows stronger causal
effects in the ground-truth direction. In line with the results for model es-
timation, the time-invariance properties of TE and DCS are due to the fact
that innovations are well-aligned and regressed out by the model with a
non-zero mean. Therefore TE and DCS, which do not depend on the mean
of signals, would not show any time-varying difference related to the inno-
vations mean. The rDCS is, on the other hand, dependent on the signals
mean, and thus reveals a time-varying trend in a shape resembling the recti-
fied profile of the cause signal., suggesting that rDCS is able to reflect both
the existence of connectivity between two variables but also the change of
the cause variable.

By comparison, the time shifts caused by aligning on the effect lead to an
increased residual variance resulting from the poor alignment of the inno-
vations’ mean profile across trials. Thus there is a time-varying pattern of
causal effects detected by all the causality measures.

As a summary so far, in the presence of deterministic innovations, rDCS
is able to reveal the causal effect caused by both the cause and the mecha-
nism, while TE and DCS are only able to account for the effect caused by
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the mechanism. Interestingly, different alignment methods lead to different
results of TE and DCS due to temporal jittering. While in practice, such jitter-
ing can be considered as temporal smoothing, which does not affect much
causal analysis based on time-varying models, in the next section, we show
that alignment can be problematic when the events exhibit deterministic
waveforms.

4.3.3 Application to simulated thalamocortical spindle oscillations

The Costa model is able to generate two types of spindles (for example, see
Figure 4.7B). During the N2 stage of NREM sleep, spindles can be triggeredType-I and Type-II

spindles by cortical K-complexes (in the cortical Pyr neurons) through thalamocor-
tical interactions (referred to as Type-I) or generated spontaneously in the
thalamus (Type-II) by the hyperpolarization of its pacemaker, the GABAer-
gic neurons in the reticular thalamic nucleus. After initial generation, both
types of spindles are transmitted to the cortex, and the Type-I cortical spin-
dles typically co-occur with the positive peak of the K-complexes. These
two spindles are both within the spindle oscillation range (7-12 Hz) but are
visually distinguishable by their amplitude, duration and waveform.

We simulated the thalamocortical model for 2× 108 ms (56 minutes) with
a sampling frequency of 1000 Hz. To detect spindle waveforms, we set adetection procedure

of two subtypes threshold in the membrane potentials of the thalamocortical neurons (de-
noted as Vt for TC population): peaks of Vt above -52 mV indicate the
existence of spindles; a detected spindle is classified as Type-I if the highest
peak of Vt is above -45 mV; otherwise, they are sorted as Type-II spindles.
A typical Type-I spindle can be 1.5 sec in length, while the duration of a
typical Type-II spindle can be 2-3 sec.

After the detection procedure, we obtained 1282 Type-I and 1221 Type-II
spindle events that are simultaneously simulated in TC and Pyr neurons.
All the spindles, each as a trial, are aligned by their highest peak either in
the membrane potential of TC neurons or Pyr neurons.

4.3.3.1 Hypotheses on the ground truth for dominant directions of causation.

As a critical point to validate the causality measures, we discuss here the
“ground-truth” directions of these two subtypes of events. As TC and Pyr
neurons are anatomically reciprocally connected in the model, here we are
more interested in which neuronal population drives the other due to their
internal dynamics, which can be superficially understood as the summed
effects of both the connectivity and the activity of one of the neuronal pop-
ulation as the cause.

Interestingly, we cannot give a categorical ground truth answer to this
question without making further assumptions. This is largely due to the
complexity of the considered system, where defining interventions to assess
causality would need to be carefully designed in order to preserve some
properties of the subsystem while changing others. Such an approach would
require a deep understanding of the system’s dynamics in different interven-
tional regimes, which is beyond the scope of this thesis. Instead, we rely on
qualitative observations of the system’s dynamics to make conjectures on
the ground truth causality that we expect to infer with our approaches.

Based on visual inspection (e.g., Figure 4.7B) and theoretical exploration
of the dynamics of the thalamocortical system ([242, 39]), we conclude that
the causal interactions between Pyr and TC neurons for Type-I spindles
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Figure 4.7: Causal analysis with simulated spindles in a thalamocortical neural mass
model. (A) Model Structure as part of Figure 2.1B. The thalamocortical
spindles are generated within a neural circuit that consists of four neu-
ron types whose interactions are shown in the diagram. K-complexes
and spindles are observed typically in the cortical pyramidal neurons
and thalamocortical neurons. (B) Example waveforms of Type-I (and the
associated K-complexes) and Type-II spindles in the Pyr and TC neurons
during a short period of simulation. (C) Averaged event waveform and
causality measures (TE, DCS and rDCS) for Type-I spindles aligned by
Py neurons. Shades reflect time-varying standard deviations across 20

repeated simulation samples, as explained in the main text. (first row)
Averaged waveforms for thalamo-cortical Type-I spindles aligned by Pyr
neurons. (second - fourth row) time-varying TE, DCS and rDCS for Type-
I spindles aligned by Pyr neurons. (D) Averaged event waveform and
causality measures (TE, DCS and rDCS) for Type-I spindles aligned by
TC neurons. Designs are the same as in (C). (E) Averaged event waveform
and causality measures (TE, DCS and rDCS) Type-II spindles aligned by
Pyr neurons. Designs are the same as in (C). (F) Averaged event waveform
and causality measures (TE, DCS and rDCS) Type-II spindles aligned by
TC neurons. Designs are the same as in (C).
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undergoes three transient phases (qualitatively). As stated in Section 4.2.2,
here we list the dominant causal direction in each phase:

1. 1st phase: Pyr→TC

In the first phase, strong negative noise perturbs the Pyr neurons and
triggers the K-complex. The negative peak hyperpolarizes TC neurons
and initiates Type-I spindles in the DOWN→UP transition. Thus the
causal interactions in Pyr→TC dominate in this phase.

2. 2nd phase: TC→Pyr

In the second phase, the T-current in TC neurons is de-inactivated
and activated, generating spindle-range oscillations in the TC neurons,
which drives the spindle rhythms in Pyr neurons riding on the positive
peak of the K-complex. Thus the dominant causal direction of this
phase is TC→Pyr.

3. 3rd phase: Pyr→TC

The third phase starts shortly after the second phase and is partially
overlapping with the latter. During the third phase, K-complex evolu-
tion in the Pyr neurons attenuates the spindle envelop in TC neurons,
leading to its termination. Thus the causal interaction in the direction
Pyr→TC is dominant again.

Similarly, circuit dynamics underlying Type-II spindles also consist of two
phases:

1. 1st phase: Pyr→TCfor the different effect
in Pyr triggered by

strong/weak
perturbations, one

can refer to Figure 4
in [242]

In the first phase, weak negative perturbations entering the Pyr neu-
rons does not trigger K-complex but instead, induce the slight de-
inactivation of T-current in TC neurons that further develops into
spindle-like rhythms. Thus the initial trigger of Type-II spindles in
TC neurons is driven by Pyr neurons.

2. 2nd phase: TC→Pyr

Similar to the second phase of Type-I spindles, oscillations of Type-
II spindles in TC neurons propagate to Pyr neurons after it has been
initially triggered. Thus the dominant causal direction is TC→Pyr. Un-
like Type-I spindles, Type-II spindles are terminated via the internal
dynamics of TC neurons instead of by cortical K-complexes.

As such, the dominant drivers of both subtypes of spindles are transiently
switching. Therefore this dataset does not provide a fixed “cause”->“effect”
relation between the signals such that we can align by the cause or align by
the effect the peri-event data, as was allowed in the case of the perturbation
events (see Section 4.3.2). However, in the following section, we can still
make interesting observations regarding the inferred causation depending
on the alignment procedure.

4.3.3.2 Model estimation and results of causality measures

For both alignments of both types of spindles, the BIC selects reasonably
small order for the VAR model (i.e., around 4). The results are shown in
Figure 4.7C-F. The time-varying results are smoothed in a 20-ms window
for better visualization.
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Similar to the experiments of the perturbation events (Section 4.3.2), we
also calculated the standard deviations of the causality measures for spin-
dles. The variability originates from generating repeated simulations of the
thalamocortical system for the same duration, performing the same detec-
tion of spindles, and calculating causality measures. We generated 20 trials
of the same process, with the standard deviation plotted as shades in Fig-
ure 4.7C-F.

Consistent with results in the experiment of the perturbation events, TE
for spindles for all four alignment cases are close to but smaller than DCS,
and both are weaker than rDCS. rDCS reveals distinct profiles in all four
cases, likely due to the highly deterministic nature of the simulated spindles.

When Type-I spindles are aligned by Pyr neurons (Figure 4.7C), all three
causality measures show three peaks that match the three phases that we
hypothesized for ground-truth causal interactions (Section 4.3.3.1): 1) a peak
appearing at the initial phase of the K-complex in the direction Pyr → TC
is in line with the first phase; 2) slightly higher causal effects from TC to
Pyr than the other way round around the beginning of the thalamic spindle
oscillations is consistent with the second phase; 3) causal effects from Pyr to
TC are present from the beginning of spindles but become stronger after the
positive peak of K-complex. This is in line with what we conjectured for the
third phase. However, rDCS results amplify the first peak, which is likely
due to alignment by the negative peak of the K-complex in Pyr neurons.

In the case where Type-I spindles are aligned by TC neurons (Figure 4.7D),
the three peaks are still present in TE and DCS but the temporal relation-
ship is slightly different, which is likely due to different alignment methods.
More importantly, results in rDCS show an enormous peak in the direction
TC→Pyr which overrides all other peaks. This is because by aligning on the
peak of TC spindles, the events are highly synchronized in TC neurons, lead-
ing to a selection bias of the snapshots as introduced in Chapter 3. As rDCS
calculation is dependent on the mean of events relative to the stationary
state (Eq. 4.28), such large peaks in TC signals lead to very large values in
rDCS in the direction where the TC signal serves as the cause. Such selection
bias will also be seen in the next results.

For Type-II spindles, alignment has a stronger effect on the estimation
of causality measures. When Type-II spindles are aligned by Pyr neurons
(Figure 4.7E), spindle oscillations in TC neurons are greatly blurred, leading
to small amplitudes. In this case, results for TE, DCS and rDCS all reveal
bi-directional interactions during the spindle period (in the second phase of
the conjectured ground truth interactions). However, in contrast to what we
hypothesized as ground truth in Section 4.3.3.1 where causal effects from
TC to Pyr dominate, these results show a reversed rank of the two direc-
tions. This is also likely caused by selection bias on Pyr activity which leads
to larger amplitudes in the waveforms of Type-II spindles in Pyr neurons
compared to TC spindles.

When Type-II spindles are aligned by TC neurons (Figure 4.7F), as in the
same case in Type-I spindles, rhythmic peaks in thalamic spindles (TC activ-
ities) are well-aligned, leading to the transiently amplified rDCS results in
the direction TC→Pyr due to selection bias. This peak in rDCS is consistent
with the conjecture on the second phase of Type-II spindles, but its huge
amplitude makes other temporal interactions invisible from the figure (i.e.,
the first phase).

To summarize, in the case of simulated thalamocortical spindles, aligning
on either signal leads to opposite causal inference results. Specifically, while
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TE and DCS are sometimes able to recover the ground-truth causal direc-
tions, rDCS is highly sensitive to the alignment methods: aligning by either
signal amplifies the peak in the direction where this signal acts as the cause.

However, such sensitivity is not desired for event-based causal interac-
tions. As we addressed in Section 3.1, the events are detected to reflect the
transient network mechanisms defined as states. In the specific problem of
spindle events, the state refers to the period when the T-current in the TC
and RT neurons are de-inactivated, a pre-requisite to generate spindle-like
rhythmic patterns (Section 1.1.3.2). Therefore, the de-inactivating states and
spindle events are of similar length. Nevertheless, not all de-inactivation
periods share exactly the same duration and temporal dynamics due to ran-
dom noise, allowing some space for jittering when we align them. Therefore
selection bias is possible to occur when we align the spindles by either the
peak of Pyr or TC activities.

4.3.4 Combination of DeSnap and causality measures

In the results of the perturbation events and both subtypes of spindles, we
observed that alignment significantly affects the characterization of causal
interactions with all measures, especially rDCS. This is because the calcu-
lation of rDCS involves replacing the cause with a reference state, making
it sensitive to the time-varying statistics estimated by the model. As briefly
mentioned in Section 3.4, the selection bias correction method (DeSnap algo-
rithm) we proposed in Chapter 3 can be combined with the rDCS measure
to overcome this problem.

Intuitively, the causality measure calculated after applying the selection
bias correction method reflects the state-dependent causal interaction be-
tween two systems in the brain. In the following sections, we will calculate
the DeSnapped causality measure to validate their performance in a series of
examples that we have already investigated in previous sections.

4.3.4.1 DeSnapped causality analysis of oscillatory events in the two-state station-
ary system

First, as a simple example, we will illustrate the correction of event-based
causality into state-based causality with the oscillatory events we already
explored in the two-state stationary system in Section 3.3.2. This bivariate
system, consisting of variables X1 and X2, has been designed to be uni-
directionally coupled (X2 → X1, see Section 3.3.2.1). Figure 3.9 has illus-
trated comprehensively the correction process that proves effective in re-
covering the state-dependent parameters of the dynamics. Notably, we will
skip the example of the oscillatory events detected in the uni-state station-
ary process, as explained in Section 3.3.1, because if the DeSnapped causality
measures perform well enough for the two-state case, it naturally general-
izes to the simpler uni-state model.

Here, based on the estimated inhomogeneous VAR model parameters,
especially the coefficient matrix and the residual covariance, we are able
to calculate the three causality measures (TE, DCS, rDCS) directly based
on Eq. A.5.3, Eq. 4.23 and Eq. 4.28. . The comparison of revealed causalFor the detailed

calculation of rDCS
in the corrected

model, we refer to
Eq. A.29

interactions between the uncorrected model and corrected model can be
visualized in Figure 4.8.

Before the correction, all three measures are able to detect causal direc-
tions in line with the ground truth, i.e., X2 causing X1 but not in the oppo-
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Figure 4.8: DeSnapped causality measures of events in two-state stationary VAR pro-
cess. (left) Time-varying TE, DCS and rDCS calculated based on the
uncorrected model. (right) Time-varying TE, DCS and rDCS calculated
based on the corrected model after applying the DeSnap algorithm. For
details see Section 3.3.2 and Section 3.2.6.2.

site direction. This is consistent with the ground truth direction. However,
the time-varying causality measures are not constant across time (consistent
with the state-dependent stationarity). Instead, we observe a transient oscil-
latory pattern in the calculated TE, DCS and rDCS in the ground truth direc-
tions, which can be explained by the following logic. Due to the threshold-
based detection of the oscillatory events, in the uncorrected model, we are
focused specifically on the period accompanied by strong oscillations in
the signal (see Section 3.3.2). This is a biased characterization of the whole
stationary state that affects the model parameter estimations, eventually re-
sulting in the transient oscillatory pattern.

Consistent with the correction performance in the model dynamics in
Figure 3.9 that recovers the state-dependent stationarity, we can see that
the three causality measures calculated with the corrected model are rather
constant across time. This matches the generation mechanism of the state
that X2 causing X1 with constant connectivity (b in Eq. 4.13), but the cause
remains unchanged across time.

This result suggests that combining the selection bias correction method
with causality measures provides knowledge of the state-dependent causal
interaction underlying events but not the event itself. In the following sec-
tion, we will also show with the spindle example, (Section 4.3.3) the combi-
nation also provides a proper characterization of causal effects that avoids
alignment-induced biases.

4.3.4.2 DeSnapped causality analysis of simulated spindles

Recalling the results obtained by applying the three causality measures on
simulated spindles with different alignment methods (Section 4.3.3), we
know that alignment greatly affects the characterization of time-varying tha-
lamocortical causal interactions due to the deterministic waveform of the
events. Here we show how applying the DeSnap algorithm before calculat-
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ing the causality measures is helpful for the recovery of state-dependent
causal interactions. The detection signal (Section 3.2.2.3) is obtained by cal-
culating cosine similarities between windows of the original signals with the
spindle templates in each neuronal population. The template is obtained by
averaging the detected events in Section 4.3.3. The results of TE, DCS and
rDCS are shown in Figure 4.9.

For Type-I spindles (Figure 4.9A), all three causality measures reveal the
time-varying causal interactions that are consistent with the hypothesized
ground truth we proposed in Section 4.3.3.1. In the first phase, where the
initiation of K-complex in Pyr is supposed to drive TC activities, we observe
a small peak in the direction Pyr→TC. In the second phase, where thalamic
spindles in TC neurons drive cortical spindles in Pyr neurons, the results
show stronger causal effects from TC to Pyr neurons. In the third phase,
where spindle propagation still persists, the positive phase of the K-complex
in Pyr neurons drives the termination of thalamic spindles, which is in line
with the results of TE, DCS and rDCS.

Similarly, causality results for Type-II spindles, as illustrated in Figure 4.9B,
match the two phases described as the hypothesized ground truth. In the
first phase, weak perturbation to the Pyr neurons drives the de-inactivation
of TC neurons, resulting in the peak (Pyr→TC) at the beginning of the spin-
dles. In the second phase, thalamic spindles are transmitted to Pyr neurons
while Pyr activities modulate the envelope of spindle oscillations. Therefore
bi-directional interactions are detected while TC→Pyr is the dominant di-
rection. The difference between TC, DCS and rDCS is that rDCS amplifies
the contrast between the dominant and non-dominant directions due to its
definition.

As a summary of this section, in comparison to the uncorrected causal
analysis on the same datasets of thalamocortical spindles (Section 4.3.3), we
found that after correction for the selection bias, all three causality measures
are able to reveal causal interactions in line with the ground truth directions
in a time-varying manner. Compared to TE and DCS, rDCS recovers the
causal effect by the cause, which is consistent with its proposed benefits
as discussed in Section 4.2.5. Notably, although the connectivities between
the two neuronal populations are time-invariant in the model, TE and DCS
do not show temporally constant causal interactions. This is likely due to
the intrinsic non-linear interactions of neural mass models that cannot be
addressed with causality measures based on linear inhomogeneous VAR
models.

4.3.4.3 Application to hippocampal SPW-Rs

The validation so far for the combination of DeSnap algorithm and causality
measures are all conducted with simulation signals. In this section, we apply
the DeSnapped TE, DCS and rDCS on the hippocampal SPW-Rs to test the
performance of the measures in real data.

As explored in Section 3.3.3.1, the DeSnap algorithm is effective to correct"sr": stratum
radiatum;

"pl":pyramidal layer
of CA1

the selection bias for the internal dynamics underlying the SPW-Rs recorded
in the "sr" and "pl" layer of the CA1 hippocampal subfield. Based on the cel-
lular mechanism introduced in Section 1.1.3.3, the cell bodies of CA1 pyra-
midal neurons are located in the pyramidal ("pl") layer while their dendritic
trees spread into the stratum radiatum ("sr") layer (illustrated in Figure 3.10)A
(right). Therefore, the ground truth dominant causal direction underlying
this system is "sr"→"pl".
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Figure 4.9: DeSnapped causal analysis of two subtypes of simulated spindles. (A)
DeSnapped causality measures (TE, DCS and rDCS) for Type-I spindles.
Shades reflect time-varying standard deviations across 20 repeated signal
samples, as explained in the main text. (first row) Corredcted averaged
waveforms for thalamo-cortical Type-I spindles in TC and Pyr neurons.
(second - fourth row) Time-varying TE, DCS and rDCS for Type-I spin-
dles calculated after applying the selection bias correction method. (B)
DeSnapped causality measures (TE, DCS and rDCS) for Type-II spindles.
Designs are the same as in (A).

Consistent with Section 4.3.4.1 and Section 4.3.4.2, we also calculate the
peri-SPW-R causality measures with the peri-event snapshots detected and
aligned on the peaks of either "sr" or "pl". This corresponds to the uncor-
rected model as defined in Section 3.2.6.2. The results are visualized as a
comparison between the uncorrected and corrected model in Figure 4.10.
The standard deviation plotted in the figure originates from the variability
over 16 channel pairs.

The results show that regardless of alignment methods, all three causal-
ity measures are stronger in the ground truth direction ("sr"→"pl") at the
stationary stages where events do not occur (i.e., at the edge of the peri-
event window). This confirms their effectiveness in the stationary case, as
explained in Section 4.2.2. TE and DCS appear relatively unaffected by dif-
ferent alignment methods, as shown in Figure 4.10A, B (second-third row).
When the event occurs (i.e., around the center of the peri-event window), the
dominant causal direction becomes unclear as TE/DCS in both directions
exhibit transient peaks, although their values in the ground truth direction
are generally higher. However, bias correction by performing the DeSnap al-
gorithm has an effect on TE/DCS calculation. The peak in the ground truth
direction is weakened after correction, suggesting that the peak might reflect
spurious strong transient causal effects in the ground-truth direction.

The effect of bias correction is more significant for the calculation of
rDCS. When the events are aligned by "sr" or "pl", the uncorrected rDCS
both show a peak in the direction where the aligned variable acts as the
cause. This is consistent with similar problems showed in Section 4.3.4.1
and Section 4.3.4.2, and supports our conjecture that the peaks in opposite
directions are caused by selection bias. Indeed, after correcting, the peaks in
opposite directions disappear while the corrected rDCS remains stronger in
the ground truth direction.
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Figure 4.10: DeSnapped causal analysis of SPW-Rs aligned by "sr" and "pl". (A)
DeSnapped causality measures (TE, DCS and rDCS) for SPW-Rs aligned
by "sr". (first row) Corredcted and Uncorrected averaged waveforms for
SPW-Rs in the regions "sr" and "pl". Shades reflect time-varying stan-
dard deviations across 16 channel pairs, as explained in the main text.
(second - fourth row) Time-varying TE, DCS and rDCS for SPW-Rs calcu-
lated after applying the selection bias correction method. (B) DeSnapped
causality measures (TE, DCS and rDCS) for SPW-Rs aligned by "pl". De-
signs are the same as in (A).

These results confirm in real data that the DeSnap algorithm is helpful
to remove biased causal effects detected due to different alignment meth-
ods. Interestingly, the results on SPW-Rs do not show that rDCS performs
better than TE/DCS. As we argued in Section 4.2.5, rDCS is a better causal-Although SPW-Rs

are triggered by CA3
inputs into CA1,

they are not
necessarily

deterministic

ity measure when transient events result from deterministic perturbations,
while the recorded SPW-Rs are not necessary triggered by such determin-
istic components. The weak causal effect in the non-ground-truth direction
("pl"→"sr") is likely due to the back-propagation within CA1 pyramidal neu-
rons caused by the high-frequency recurrent activities within the local cir-
cuit in the "pl" region.

4.4 discussion

In summary, in this chapter, we have discussed the benefits and shortcom-
ings of two time-varying causality measures (TE and DCS) in characterizing
causal interactions based on peri-event data. To address their insensitivity to
deterministic perturbations, we proposed a novel measure, the rDCS, that
implements an intervention on both the cause and the mechanism in the
SCM framework. We compared the performance of these causality measures
on perturbation events with non-zero-meaned time-variant innovations, os-
cillatory events detected in stationary signals, simulated thalamocortical
spindles and hippocampal SPW-Rs. The superiority of rDCS is supported
by the perturbation events presented in Section 4.3.2. As causality analysis
of transient events aims at uncovering the network mechanisms underlying
these phenomena (e.g., addressing whether one event drives the other), we
propose to use rDCS as, in theory, it captures both the effects due to changes
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in the cause and the propagation of the activity of the cause through anatom-
ical connections.

However, we show that the data preparation procedure (i.e., the detection
procedure and the alignment of the events) potentially affect the detection
of causal effects and the quantification of their strength, especially rDCS. In
principle, the directionality of peri-event causal interactions is a property of
the state-dependent underlying transient mechanism and is not supposed
to vary with the detection procedure. However, we showed non-intuitive
results that the detected causal direction is dependent on the alignment
methods (i.e., the triggering region). We hypothesize that this is due to the
selection bias elaborated in Chapter 3, which is supported by the consis-
tent alignment-dependent rDCS results in all the tested datasets. Actually,
aligning neural events based on the activity in a single region is a common
practice in event-related brain research. These results obtained with such
peri-event data collection methods are then questionable because they may
be affected by selection bias.

The solution to this problem is thus directly linked to the framework we
proposed in Chapter 3. Events triggered by the peri-event peaks only reflect
network dynamics when the observations exhibit certain patterns but not
necessarily mapped to specific regions of the space of hidden states (see
Section 3.2.2.1). Therefore the peak-triggered events reflect the time period
that the observation is high-values, naturally resulting to a strong peak in recalling that rDCS

account for the
change in the cause
in addition to the
mechanism, stronger
observations
corresponds to larger
causes

causality measures in the direction where the triggering variable acts as the
cause.

Therefore, in order to reveal the state-dependent causal interactions based
on peri-event data, we combined the calculation of causality measures with
the selection bias correction algorithm (i.e., DeSnap) proposed in Chapter 3.
The combination is straightforward because the time-varying causality mea-
sures are defined with the VAR model parameters, which are directly cor-
rected with the DeSnap algorithm. We showed with different types of data
that DeSnapped causality measure corrected for the alignment-dependence
and recovers the real causal directions (Section 1.1.3.2 and Section 4.3.4.3).

Notably, as designed in Section 3.2.2.3, with DeSnap the peri-event snap-
shots are obtained with reference points {tn|D̃tn ⩾ d0}. Thus with neighbor-
ing reference points, we can extract temporally overlapping trials, leading
to a smoothing of events. It is still not clear whether the weakened peak in
the wrong direction is a result of the smoothing or due to the correction.
Further investigations should be done to clarify the role of smoothing in
bias correction
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5.1 exploring event-triggered plasticity with data-driven mod-
elling

Theoretical predictions are expected to guide experimental explorations. Our
theoretical results presented in Chapter 2 predicts that two subtypes of
PGO waves trigger opposite plastic changes in the cortical networks. This
modelling work exemplifies how to characterize the mesoscopic changes
of synaptic strength based on the circuit activities. Specifically, such inves-
tigation can be based on the population STDP rule, which considers the
cross-correlations of pre- and post-synaptic activities.

In models where all variables are accessible, it is natural to implement
the STDP rule. However, if one wants to check the physiological existence
of the opposite PGO-triggered plasticity, the two key variables, i.e. the pre-
synaptic current and post-synaptic firing rate (especially the former) are
technically hard to track. Indeed, measuring synaptic strength directly has
been a challenge due to experimental limitations and sparsity of neurons.
This is especially true when one aims to address population activities un-
derlying PGO waves: with electrophysiological approaches it is technically
challenging to visualize the vast number of the synapses or spines spanning
the whole primary visual cortex with imaging techniques.

As a consequence, we seek a more indirect way to infer the changes
procuded by the STDP rule from data. Considering that we already have
one model of PGO waves that proves effective in the reproduction of many
PGO-triggered features, we can assume that the mechanisms capture the
major circuit interactions. To better reproduce the specific event-triggered
network dynamics, we resort to finding more biologically plausible param-
eter sets for experimental PGO waves. Theoretically, this points to the prob-
lem of inferring parameters of differential equations describing a system
whose underlying mechanisms are already known.

Data-driven modelling of neural systems (more broadly, data-driven dy-
namical systems) have long been a great challenge for the community. Dy-
namic causal models attempt to model the brain-wide systems with simpli-
fication of neuronal populations, but the shared model in each brain struc-
ture reduces its biological plausibility [75]. More generically, many meth-
ods in the field of nonlinear filtering have been applied to such problems
[85, 125]. Still, these analytical methods are better suited for the characteriza-
tion of simpler systems. More recently, simulation-based Bayesian inference
approaches have also been developed to infer Hodgkin-Huxley mechanistic
models of the single neuron activities [84]. While promising, the computa-
tional cost of Bayesian inference combined with repeated runs of an external
(typically continuous-time) simulator remains an issue as the number of pa-
rameters increases. Our model consists of 16 differential equations describ-
ing the evolution of hidden variables, together with several linear output
functions modelling the LFPs. Practically, estimation of this system with the
above methods remains challenging. In contrast, we chose and approach in
which both data-based optimization and mechanistic modelling are based
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Figure 5.1: General framework of the hybrid model to learn internal dynamics from
empirical data.

on a discrete-time dynamical model that nicely aligns with the VAR models
exploited in Chapters 3-4.

We propose to adopt the current deep learning frameworks to train such
systems with complicated dynamics and a large number of parameters.
Specifically, we will present the design of an ongoing project. In this project,
we seek to train the experimental peri-event data with a flexible type of
Recurrent Neural Network (RNN), where the main idea is illustrated in Fig-
ure 5.1.

In brief, the internal structure of the RNN is adapted to incorporate the
dynamics of a mechanistic model with unknown model parameters that en-
tail biological meaning. The model is a simplification of the cortex module
within the PGO model introduced in Section 2.2.3.1. By training the net-
work with recorded peri-event data, we aim to retrieve the model dynamics
constituting the internal states in the RNN. The training procedure is im-
plemented by comparing the model output (as simulated signals) and the
empirical (recorded) signals and minimizing a loss function defined as the
distance between the simulated and empirical signals.

The detailed methodology will be elaborated in Section 5.2. We will ex-
plain the effectiveness and limits of such a model-fitting paradigm in re-
covering model parameters and hidden states based on preliminary results.
Finally, we will discuss possible reasons why the training of RNN may fail
and suggest potential solutions.

5.2 methodology underlying data-driven modelling with rnn

5.2.1 Simplified Neural Mass model of the cortex

As mentioned in Section 5.1, models describing network dynamics in a neu-
ral system usually appear in the form of differential equations. The dimen-
sion of differential equations and the number of parameters will limit the
performance of learning dynamical systems from data. Therefore, the model
complexity should be carefully controlled.

To reduce model complexity, we simplified our PGO model into an iso-
lated cortex model receiving thalamic inputs from TC neurons. The cortex
structure, i.e., the Pyr and In neurons together with their connectivities, is
preserved as we want to address intra-cortical plasticity. As seen in Fig-
ure 2.1B, both Pyr and In neurons receive inputs from TC neurons but not
from RT neurons. Conversely, Pyr neurons send cortico-thalamic feedbacks
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Figure 5.2: Sturctural illustration of the simplified cortical neural mass model. See
the main text for explanation of the working mechanism. This figure is
adapted from [200] with permission.

to both thalamic neurons. During bottom-up information transmission pro-
cesses like the propagation of PGO waves, the thalamocortical connections
are the major contributors to the circuit dynamics, while cortico-thalamic
projections have minor effects. Therefore, we decide to replace the recurrent
structure with a uni-directional thalamocortical projection from TC neurons
to both Pyr and In neurons.

Another significant difference with respect to the original PGO model is
the removal of the cortical sodium-modulated potassium channel, as intro-
duced in Section 2.2.2.2. This is because it is designed as a phenomenologi-
cal approximation of the cortical SO generation while the actual mechanism
is far more complicated. Meanwhile, this current is the mechanism control-
ling the triggering of high-amplitude K-complexes in response to a strong
perturbation to the Pyr neurons [39], suggesting a lack of variability in its
dynamic behavior. Thus keeping this intrinsic current is limiting the model
flexibility without gaining biophysical plausibility.

As a result, the simplified neural mass model of the cortex is illustrated
as Figure 5.2. The Pyr neurons can be described by the following set of
differential equations:

τE
dVE

dt
= −VE + νE→EsE − νI→EsI + η (5.1)

τEs
dsE
dt

= −sE + λE (5.2)

λE =
QE

1+ exp
(
−χE

(
VE − Vth,E

)) (5.3)

LFPE = µ′
E→EsE − µ′

I→EsI + µηη (5.4)

Similarly, the In neurons can be modelled with the following equations.

τI
dVI

dt
= −VI + νI→EsE − νI→IsI +αη (5.5)

τIs
dsI
dt

= −sI + λI (5.6)

λI =
QI

1+ exp
(
−χI

(
VI − Vth,I

)) (5.7)

LFPI = µ′
E→IsE − µ′

I→IsI +αµηη (5.8)
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Eq. 5.1 and Eq. 5.5 describe the dynamics of membrane potentials of Pyr
and In neurons (as VE and VI) processed in the soma. These two equa-
tions are consistent with the modelling of membrane potential adaptation
(Eq. 2.18) as explained in Section 2.2.2.4. Intra-cortical synaptic currents sE
and sI contributes to the change of both neuron populations with different
synaptic strengths denoted as ν. The thalamic input η represents the thala-
mic LFPs generated mainly by thalamocortical synaptic currents from TC to
both thalamic neurons. As the thalamocortical inputs are mainly influenced
by the distance between neuronal populations, we model the differences
between TC→Pyr and TC→In inputs with a scaling factor α. α takes the val-
ues from 0 to 1, reflecting the assumption that the TC→Pyr input is stronger
than the TC→In input.

The membrane potentials are mapped to the population firing rates with
a sigmoid function, yielding Eq. 5.3 and Eq. 5.7. In line with Section 2.2.2.3,
the dynamics of the synaptic current depends on the convolution between
the pre-synaptic firing rate and an alpha function representing the synaptic
kinetics. This results in Eq. 5.2 and Eq. 5.6 describing the excitatory (AMPA)
current sE from Pyr neurons and the inhibitory (GABA) current sI from In
neurons.

Finally, consistently with Section 2.2.2.4, the cortical LFPs are modelled
as a linear sum of the synaptic currents each neuronal population receives
[154], as defined in Eq. 5.4 and Eq. 5.8.

5.2.2 A bio-informed Recurrent Neural Networks

Having established the aforementioned dynamical system as a simplified
model of the cortex, in this section, we explain how to assimilate the dy-
namic structure into an RNN.

A typical RNN is comprised of 3 layers: an input layer, a hidden layer and
an output layer, as illustrated in Figure. 5.3. The word "recurrent" refers to
the loop that connects the hidden layer to itself. In fact, we can unfold such
a network into a directed acyclic graph (also shown in Figure. 5.3) such
that the dynamics of the output is only dependent on the hidden states
defined within the hidden layer. The hidden layer dynamics only depends
on the past hidden state and the current input at each time point. Compared
to convolutional neural networks, such a recurrent structure incorporates
a temporal relationship between the network inputs and outputs, which
proves very effective for the data with sequence characteristics, e.g., time
series data [213].

The specific RNNs commonly referred to in the community (as defined
in PyTorch) use different units at fixed, successive time intervals. However,
the idea of recurrence is encoded in the sharing of the parameters of the
functional relationship linking units at successive time steps: the detailed
relationships between the current and next hidden state may range from a
linear mapping to various types of non-linearities. In the latter case, gen-
eralized RNNs with complex architectures include Gated Recurrent Units
(GRUs) [34] and Long Short-Term Memory(LSTM) networks [99], etc.. How-
ever, these neural networks all have fixed structures that do not fit our sim-
plified neural mass model of the cortex. In fact, as the structures essentially
encode a time-discretized set of differential equations, the non-linearity in
the hidden states can be implemented in a much more flexible way to incor-
porate any biologically meaningful non-linear dynamics.
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Figure 5.3: RNN designed for peri-event data. A typical RNN can be unfolded into
different layers corresponding to different time points. The internal struc-
ture of an RNN can be designed to be biologically meaningful. The un-
folded RNN receives a peri-event signal as a time series as the model
input.

To implement the bio-informed RNN, the first step is to discretize the set
of differential equations of the simplified cortex model to match the step-
wise nature of the RNN. The equations presented in Section 5.2.1 can be
discretized to be the following set of difference equations:

VE(t) = (1−
∆t

τE
)VE(t− 1)+

∆t

τE
νE→EsE(t− 1)−

∆t

τE
νI→EsI(t− 1)+ η(t− 1)

VI(t) = (1−
∆t

τI
)VI(t− 1) +

∆t

τI
νE→IsE(t− 1) −

∆t

τE
sI(t− 1) +αη(t− 1)

sE(t) =
∆t

τEs

sE(t− 1) + (1−
∆t

τEs

)λE(t− 1)

sI(t) =
∆t

τIs
sI(t− 1) + 1−

∆t

τIs
λI(t− 1)

λE(t) = Sigmoid(VE(t))

λI(t) = Sigmoid(VI(t))

LFPE(t) = µ′
E→EsE(t) − µ′

I→EsI(t) + µηη(t)

LFPE(t) = µ′
E→IsE(t) − µ′

I→IsI(t) +αµη(t)

From these equations, we know that η is independent of the past states of
any other variable. Thus, consistent with the modelling idea introduced in
Section 5.2.1, it can be understood as the input to the model. The variable
LFP is seen as the output variable as it is only dependent on the current
values of the other variables. The other six variables, i.e., the membrane po-
tentials VE and VI, firing rates λE and λI, and intra-cortical synaptic currents
sE and sI, are designed to be the hidden states. The temporal dependence
of different variables in the model is visualized in Figure 5.4.

5.2.3 Implementation and training

As elaborated in Section 3.1, we are interested in the transient state under-
lying the observed events. Thus, we only train the RNN with peri-event
data and assume that the network parameters, as a state-dependent prop-
erty, remain unchanged. The compact form of the RNN (Figure 5.3) can be
interpreted as a three-layer structure; the "depth" of the network lies in the
unfolded version where each time step is one layer. In this sense, our RNN
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Figure 5.4: Detailed implementation of the biologically-informed RNN. Blue blocks
denote the hidden states at each time point. Blue arrows represent the
dependencies between the current state and the past states. The structure
is based on the difference equations listed in Section 5.2.2.

has the layer numbers that equal to the time duration of the peri-event snap-
shots. Receiving a time-wise input, the hidden states are updated at each
time point. At the same time, the network parameters are assumed to be
constant over time.

For the training, we feed the RNN with peri-event thalamic LFPs as in-
puts. The targets for training, corresponding to the network outputs, are the
peri-event cortical LFP snapshots. We optimize the network parameters by
minimizing a loss function as the mean squared error (MSE) between the
target and the network outputs.

The RNN is implemented with PyTorch, which enables automatic calcu-
lation of gradient descent optimization. The network is defined as an in-
stance of the nn PyTorch module. Attempted optimizers include Adam[121],
Adamax[199] and RMSprop[107]. Notably, we use the trick of batch training,
i.e., we train the network with a huge batch consisting of all the trials for
many epochs repeated. In this way, we are able to stabilize the learning
curve when applying some fast-training optimizers like the RMSprop or
Adam.

5.3 preliminary training results

We first test whether such a design would achieve our goal of recovering
the hidden states. The validation is most effective if we can successfully
recover the hidden states with data generated from systems with ground-
truth known mechanisms (e.g., known structures and parameters). Thus, we
simulated the linear version of dynamical systems defined in Section 5.2.1.
The linearity is implemented by defining a linear relationship instead of the
sigmoid functions in Eq. 5.3 and Eq. 5.7. After simulation, we obtained a
bi-variate 2000-point-long snapshot as training data (i.e., corresponding to
the model input η and target LFPE).

We first train the RNN in the simplest scenario where only one parameter,
the Pyr→Pyr connectivity νE→E, needs to be optimized. With a learning rate
of 0.01 of the optimizer Adam, the loss converges to stabilization, with the
parameter converging to its true value. The results of optimizing any one of
the other parameters are consistently effective. This suggests that training
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the RNN in this way is able to recover the parameters and thus the hidden
states.

However, when the number of unknown parameters increases to over 4,
with the same training procedure, the loss still converges, but the parame-
ters converge to values biased from their true values. The bias is dependent
on the initial values of the parameters before the training. Yet, the recovered
hidden states do not deviate much from the real time series, suggesting that
the training procedure with RNN has the potential of estimating the hidden
states with a few unknown parameters.

With this knowledge at hand, we applied the same procedure to peri-
event data reflecting thalamocortical PGO events (as LFP signals). Surpris-
ingly, although the loss function converges after around 60 trials, the pa-
rameters do not converge, indicating that the minimum is not achieved. The
reason behind the failed training is still unclear and would require further
investigation.

5.4 possible problems and potential solutions

In this section, we will briefly discuss the potential reasons why the same
training procedure did not work in real data.

Noise is the biggest problem in real data. For the simulated data, each
input is mapped with a target deterministically. However, the noise would
be huge in the real data and vary from trial to trial, making it hard to
minimize it with an MSE loss. Alternatively, a loss function based on KL
divergence might be a better option to characterize the noise distribution of
the large batch of data we feed into the network.

Besides, as a classical neural network training problem, the initial values
of parameter sets before training should also greatly influence convergence.
Suppose the initial values deviate too much from the real values (given
that the model is correct), with the automatic gradient descent algorithm.
In that case, the parameters might change in any direction, thus becoming
farther away from their true values. Unfortunately, although the parameters
are designed as biologically meaningful, we have no knowledge about their
true values. Thus, a feasible way is to train the RNN with random initial
values repeatedly and check the consistency of training results obtained
with different ranges of intial values.

A more inherent problem is the non-linearity entailed in the sigmoid func-
tion. Testing on this model shows that with the sigmoid non-linearity, the
system is easily saturated. This suggests that parameter sets ensuring a non-
saturated working region might be limited. Thus the standard parameter
optimization depending on back-propagation might drive the parameters
away from the region. As the preliminary results show that parameter opti-
mization is effective on a linearized modification of the model, an alternative
solution could be to train the RNN not with the original LFP data but with
the linear Gaussian process approximation of the event snapshots, which
we obtained in Chapter 3. In this way, the training data is linear in nature,
allowing a more complicated linear structure to model it.

More fundamentally, training directly with an RNN might be too prim-
itive as an application of deep learning to the problem of data-driven dy-
namic modelling. Instead, a new framework has recently been proposed to
model differential equations with real data, a method named Neural Or-
dinary Differential Equations (Neural ODE) [33]. With this network, any
sophisticated ODE solver can be applied to both the forward computation
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and backward propagation of errors. Potentially, this is promising to im-
prove the precision compared with a simple RNN that helps minimize the
loss function.



6G E N E R A L C O N C L U S I O N

In summary, in this thesis, we use both biological and statistical models
to investigate what network effects are triggered by spontaneous transient
events occurring during sleep. The network effects can be categorized into
two aspects: the transient causal interactions one event-hosting region ex-
erts on another, and the plastic effects one event triggers on the hosting net-
work. This coincides with the two key questions we wanted to address in
Section 1.1.2: 1) how transient events are coordinated and 2) how transient
events trigger synaptic rescaling. Both aspects are critical to understand-
ing the mechanisms underlying the memory consolidation and homeostasis
functions of sleep.

To address the first question, in Chapter 3, we pointed out that the tran-
sient events are markers of emergent dynamic properties of the underlying
neural system. Therefore it is critical to recover the state-dependent net-
work dynamics by exploiting peri-event data properly. As the spontaneity of
the event occurrence challenges the collection of peri-event data, frequently
leading to selection bias of the underlying states, we established a theoretical
framework that accounts for the origin of such selection bias during thresh-
olding detection. We formulated the bias problem for peri-event snapshots
in the frameworks of dynamical systems and SCMs. More importantly, we
proposed a DeSnap algorithm to correct the selection bias in peri-event snap-
shots based on VAR models with Gaussian assumptions. The performance
of correction is validated with simulated signals with a single stationary
state and with the Markovian alternation between two states, suggesting
that our bias correction algorithm is able to recover the system dynamics
when the event-hosting states are unobserved and transiently switching
across time. The DeSnap-recovered hippocampal states underlying SPW-R
and theta events match well with experimental findings, also suggesting the
effectiveness of bias correction.

Further and along the same line, in Chapter 4, we investigated how to
characterize the state-dependent transient causal interactions with peri-event
snapshots. Understanding such causal interplay requires knowledge of the
transient system dynamics, which we have already established in Chap-
ter 3. By modelling these system dynamics with time-varying VAR models,
we formulated the time-varying extension of TE and CS (i.e., DCS) in the
framework of SCM. We also proposed a novel measure, the rDCS, that is
based on interventional causality principles and is able to deal with the sit-
uations where TE and DCS fail. By applying these causality measures to
a series of simulated and real data, we demonstrated that without DeSnap
correction, calculating causality measures on peri-event snapshots aligned
by the peak of one event-hosting region significantly bias the detection of
peri-event causal interactions. This problem is critical as peri-event data ex-
ploited in the community are often triggered by a single hosting region. We
propose that network properties based on event-triggered dynamics should
be estimated after correcting for the selection bias.

To answer the second question, in Chapter 2 we built a mechanistic model
of PGO waves that covers three key regions generating three important
transient events. In particular, we reproduced at the mesoscopic level the
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transient electrophysiological properties of two subtypes of PGO waves
during different sleep stages, as well as SOs and spindles during NREM
sleep. We extrapolated on the event-triggered plasticity effects with these
replicated transient characteristics in cortical population activities. As re-
sults, we found that pre-REM and REM PGO waves trigger opposite plastic
changes in cortical circuits, which can be an interesting mechanism that co-
ordinates synaptic rescaling through the switches between NREM and REM
sleep. Our results on spindle-triggered LTP also support the differentiated
functional roles between isolated spindles and SO-spindle coupling. These
theoretical predictions on event-triggered plastic effects can be validated
with experimental results using a data-driven biophysical model proposed
in Chapter 5. This might be a promising framework to recover hidden vari-
ables from experimental data for mechanistic investigations.

Apart from plasticity effects, the PGO model, based on its biologically
plausible model assumptions, is able to validate the mechanistic hypoth-
esis proposed by experimentalists (i.e., in this sense, addressing the first
question). The successful reproduction of two subtypes of PGO waves sup-
ports the inter-regional cellular mechanism under PGO wave generation that
is previously under debate. The simulated pre-REM PGO waves trigger a
DOWN state followed by a DOWN→UP transition, which has been pro-
posed to implement the rescaling of cortical neurons’ firing patterns while
integrating new memory traces when co-occurring with SPW-Rs. This might
match the experimental findings for PGO-ripple coupling and suggest a co-
ordinated mechanism between SOs, SPW-Rs, and PGO waves.

Together, this thesis improves the knowledge of event-triggered network
effects by making predictions with mechanistic models and proposing generic
frameworks for event-based data analysis. Further experiments can be car-
ried out to validate the theoretical predictions while the data analysis ap-
proaches we developed pave the way for achieving more fruitful outcomes
based on experimental recordings.
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L I S T O F F I G U R E S

Figure 1.1 Overview of the manifestation of five typical tran-
sient neural events during wakefulness and sleep across
brain regions. The color-coded half-transparent block,
consistent with the corresponding colored names, mark
the sleep stages and regions each type of event spans
during the transition between wakefulness and sleep.

6

Figure 1.2 Overview of thesis structure as a mind-map. Colors
encode contents for different chapters. 12

Figure 2.1 Neural mass model of PGO waves. (A)Illustration of
the working mechanism of neural mass models. Two
neuronal populations modelled by neural masses are
illustrated in separate colors, where the dynamic of
each depends on the intrinsic currents and synap-
tic currents it receives. Population dynamics, repre-
sented by the population membrane potential, is mod-
elled to trigger firing rate via a sigmoid activation
curve. These four elements (marked in the dashed
rectangle) describes the activities of a single popula-
tion, which is mathematically equivalent to a single
compartment model. (B) Global view of the model
structure. The neural mass model, consisting of bi-
ologically plausible neuronal populations and inter-
connections, receives brief pulses as model inputs to
generate PGO-related neuronal activities. The switch
of sleep stages is modulated by 4 major parameters
(marked in green) associated with the change of Acetyl-
choline concentration. The numbered conductances
in each population, as well as its function in state es-
tablishment (see Section 2.3.1) and PGO wave gener-
aton, are listed in Table. 1. Abbreviation for neuronal
populations: Pyr: Pyramidal neurons; In: inhibitory
neurons; TC: thalamocortical neurons; RT: reticular
thalamic neurons; LGin: interneurons in LGN; R-PBL:
neurons in the rostal peribrachial nucleus (PGO-transferring
neurons); C-PBL: neurons in the caudolateral peri-
brachial nucleus (PGO-triggering neurons). Abbrevi-
ation for receptors: AMPA: α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid; GABA: gamma-Aminobutyric
acid; nAChR: nicotinic acetylcholine receptor; mAChR:
muscarinic acetylcholine receptor. 19
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Figure 2.2 ACh-modulated model parameters. (A) State-dependent
changes of key neuromodulatory tones (adapted from
[98]). The aminergic tone dominates the NREM state
while the cholinergic tone is inhibited. When the brain
transits from NREM to REM sleep, the aminergic tone
decreases, dis-inhibiting the cholinergic tone. During
REM sleep, the cholinergic tone dominates while the
aminergic tone remains low. (B) 4 critical parame-
ters from the thalamocortical part are selected to re-
flect the cholinergic influence of the network. Their
changes are linked to ACh concentration via a sigmoid-
like relationship mimicking smooth stage switches.
31

Figure 2.3 ACh-tuned pontine neuronal activities. PGO-triggered
membrane potential and firing rate of R-PBL neurons
modulated by the conductance of a tonic cholinergic
current. The conductance is critical to separate the
neuronal activity into three patterns: with small con-
ductance (gACh <= 0.04), the membrane is slightly
depolarized; with moderate conductance (gACh =

[0.04, 0.18]), a calcium spike rides on the PGO-triggered
depolarization; when the conductance is set large (gACh >

0.18), the calcium spike disappears. This effect re-
flects the nonlinear intrinsic properties of the pontine
T-current regulated by the cholinergic input current.
The orange line marks the selected value of gACh =

0.16. 32

Figure 2.4 Illustration of the population STDP rule. (A) Illus-
tration of the relationship between pyramidal pre-
synaptic current JPyr−Pyr and post-synaptic firing
rate QPyr controlling cortico-cortical STDP plastic-
ity. The impulse response of the AMPA synapse links
the two quantities. (B) Illustration of the STDP win-
dow. The horizontal axis τ represents the time dif-
ference between pre- and post-synaptic activities (see
right inset). The synapse gets strengthened when pre-
synaptic activities elicit post-synaptic ones, and vice
versa for the opposite sequence. 34

Figure 2.5 Establishment of sleep stages: State comparison of
simulated LFPs in R-PBL (top), TC (middle) and Pyr
neurons (bottom). LFPs of the three neuronal popu-
lations in three states (NREM, pre-REM and REM)
are plotted in separate colors for comparison. During
the pre-REM state, in the thalamus, contrary to the
NREM state, spindles are interrupted by PGO waves,
as marked by grey shades of TC neurons in the pre-
REM stage. In the cortex, PGO waves trigger more
slow oscillations during pre-REM, as marked by grey
shades of Pyr neurons in the pre-REM stage. 35
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Figure 2.6 Model Reproduction of pontine and thalamic neu-
ronal activities. (A-B) Comparison of simulated and
experimental ponto-thalamic peri-PGO histograms dur-
ing pre-REM and REM states: in all conditions sim-
ulated results resemble experimental ones. The his-
tograms are averaged over 1000 trials of simulated
events with small variations of the ponto-thalamic
projections. 36

Figure 2.7 Cosine similarity as a measure of similarity between
simulated and experimental PGO waves. Yellow di-
amonds represent the cosine similarity between the
simulated and experimental peri-PGO histograms pre-
sented in (b); violin-plots show the bootstrapped dis-
tribution of cosine similarity calculated with 1000 epochs
randomly selected from the original simulation. Stars
indicate that the cosine similarity in (b) is signifi-
cantly different from the bootstrapped null distribu-
tion (***:p<0.001; **:p<0.01; *:p<0.05). 37

Figure 2.8 Model Reproduction of thalamocortical LFP. (A-B) Av-
eraged events and normalized peri-PGO and peri-
spindle spectrograms of TC and Pyr neurons during
pre-REM and REM sleep. Half-transparent shades rep-
resent the standard deviation of time-varying events
across 1000 trials. Yellow shades mark the DOWN→UP
state transition in the cortex. (C) Comparison of nor-
malized power spectrum for all the conditions. Power
spectrum are computed by an average across time
and normalized by frequency-wise standard devia-
tion. Shades reflect variability across 1000 trials (trial-
wise standard deviation). 38

Figure 2.9 Selective blockade of each ponto-thalamic projection
alter PGO waveforms. The two subplots compare the
separability of dimension-reduced features of opti-
mal PGO waves (dark cyan) and substitute ones ob-
tained by blocking one ponto-thalamic projection at
a time (the blocked ones marked in the legend) in
the simulated pre-REM (right panel) and REM stages
(left panel). Substitute PGO waves are generated with
large noise in the projection strengths to cover the
large parameter space. Notably, in the REM stage, the
isolated cluster of original PGO features shows that
the model is not able to generate the optimal PGO
waveforms without any of the ponto-thalamic pro-
jections, suggesting the necessity of each projection.
40
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Figure 2.10 PGO-triggered cortical plasticity. (A) Smoothed change
of synaptic strength in the intra-cortical excitatory
synapse evoked by two subtypes of PGO waves. (top)
demeaned waveforms of pre-synaptic current (red)
and post-synaptic firing rate (blue). (middle) time-
varying change of synaptic strength. (bottom) synap-
tic strength of the intra-cortical excitatory synapse
changing with time. (B) Comparison of cross-correlation
between the pre-synaptic current and the post synap-
tic activities. Light blue shade represents standard
deviation at each lag for all the trials calculated. (C)
Effect of STDP parameter A− on the plasticity direc-
tion induced by two PGO subtypes. The color bar
indicates the relative increase/decrease of synaptic
strengths across time. Solid lines mark the critical
value of the parameter that switches plasticity direc-
tion, i.e. potentiation v.s.de-potentiation; dashed lines
correspond to the critical values of other subtypes.
(D) Effect of STDP parameters τ+ and τ− on the plas-
ticity direction induced by two PGO wave subtypes.
Color bars and lines are analogous to (C). 41

Figure 2.11 Parameter sensitivity of PGO-triggered plasticity. 3

parameters are scanned at the same time (for details
see text). The common regions as in Figure 2.10D are
plotted in different colors for different values of the
negative amplitude A−. 43

Figure 2.12 Spindle-triggered cortical plasticity. (A) smoothed change
of synaptic strength induced by two subtypes of spin-
dles. (top) demeaned waveforms of pre-synaptic cur-
rent (red) and post-synaptic firing rate (blue). (mid-
dle) time-varying change of synaptic strength. (bot-
tom) synaptic strength of the intra-cortical excitatory
synapse changing with time. (B) Comparison of cross-
correlation between the pre-synaptic current and the
post synaptic activities. Light blue shade represents
standard deviation at each lag for all the trials calcu-
lated. (C) Effect of STDP parameter A− on the plastic-
ity direction induced by two spindle wave subtypes.
The color bar indicates the relative increase/decrease
of synaptic strengths across time. Solid lines mark the
critical value of the parameter that switches plasticity
direction, i.e. potentiation v.s.de-potentiation; dashed
lines correspond to the critical values of other sub-
types. (D) Effect of STDP parameter τ+ and τ− on the
plasticity direction induced by two spindle subtypes.
Color bars and lines are analogous to (C). 44

Figure 3.1 Illustration of the snapshot selection procedure on a
white noise signal. (A) Time course of one realiza-
tion of white noise. (B) Template used for detecting
events. (C) Detected events for the same realization
as (A), based on template matching with a detection
threshold of 5SD. (D) Averaged panel of the detected
events in the peri-event time course. 49
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Figure 3.2 Interpretation of the peri-event analysis using a de-
terministic continuous time dynamical system. 52

Figure 3.3 Illustration of the event detection procedure for a time
series. An original signal X̃t with Morlet-shaped events
are plotted in blue. The detection signal D̃t is ob-
tained by convolving X̃t with a Morlet template. The
threshold d0=3SD is marked by the black solid line.
reference points tn such that D̃tn ⩾ d0 are marked
by pink dots. Peri-event data is marked by pink win-
dows in X̃t and extracted to form the peri-event panel
on the left. 53

Figure 3.4 Illustration of detection in the embedded state space.
Black curves marks the embedded manifold of a non-
linear system X̃t with the embedding dimension ND =

2 and delay time τ = 1. The orange region represents
the embedded mapping of the manifold E0 in the
hidden state space marking Zt = 0. A hyperplaine
is marked by the color separation, where the orange
side is mapped to the detection criterion Dt ⩾ d0

on the 1-dimensional space orthogonal to the hyper-
plane. 54

Figure 3.5 SCM, selection bias and recoverability (adapted from
[5]). (A) SCM describing sample selection based on X,
leading to identifiability of P(Y|X) based on selected
data. (B) SCM describing sample selection based on
Y, leading to non-identifiability of P(Y|X) based on
selected data. (C) SCM describing sample selection
based on both X and Y, leading to non-identifiability
of P(Y|X) based on selected data. 56

Figure 3.6 SCMs for inhomogeneous VAR models for observa-
tion signals. (A) SCM for an example inhomogeneous
VAR(2) model of the observation data X̃t. The SCM
is consistent with Eq. 3.3. (B) State-dependent SCM
for the inhomogeneous VAR(2) model in (A) with the
incorporation of hidden states Zt. The SCM corre-
sponds to Eq. 3.5. 58

Figure 3.7 SCMs for VAR model of peri-event snapshots. (A) An
SCM for VAR model of peri-event snapshots gathered
from the full-time SCM in Figure 3.6B by setting the
reference points as {t|Zt = 0}. (B) The SCM in (A) can
be approximated into a conditional graph when the
peri-event states Zt+t ′ are of high probability to be
Zt+t ′ = 0. (C) An SCM illustrating the detection of
peri-event snapshots in (B) based on past ND states.
The yellow node marks the detection node. 59
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Figure 3.8 Experiments with a stationary two dimensional (one-
state) oscillatory VAR(2) process. (A) Time course of
both variables for one realization, together with the
detection signal (bottom trace). Horizontal line indi-
cates the detection threshold d0. (B) Time-resolved
peri-event mean estimate based on the panel data,
without and with correction for selection bias. The
peri-event time t′ = 0 is at the center of the window.
(C) Time-resolved peri-event estimate of an example
covariance coefficient (left graph) and autoregressive
coefficient (right) based on the panel data. The peri-
event time t′ = 0 is the same as (B). (D) Peri-event
spectrogram estimate of each variable of the model
uncorrected (top) and corrected (bottom).The peri-
event time t′ = 0 is the same as (B). 73

Figure 3.9 Experiments with a two-state oscillatory Markov switch-
ing model. (A) Time course of both variables for one
realization, together with the detection signal (bot-
tom trace). Black regions indicate a selected snapshot.
Horizontal line indicates the detection threshold d0.
(B) Time-resolved peri-event mean estimate based on
the panel data, without and with correction for selec-
tion bias. The peri-event time t′ = 0 is at the center
of the window. (C) Time-resolved peri-event estimate
of two example elements of covariance matrices. The
peri-event time t′ = 0 is the same as (B). (D) Same
as (C) for autoregressive coefficient. The peri-event
time t′ = 0 is the same as (B). (E) Peri-event spectro-
gram estimate of each variable of the model uncor-
rected (top) and corrected (bottom). The peri-event
time t′ = 0 is the same as (B). 74

Figure 3.10 Experiments with hippocampal recordings of SPW-
Rs in anesthetized macaque. (A) Exemplary traces,
together with the detection signal (bottom trace). Black
regions indicate a selected snapshot. Horizontal line
indicates the detection threshold d0. Right inset indi-
cates the positioning of the recording electrode and
the putative hippocampal subfields associated to each
channel (”pl”: pyramidal layer, ”sr”: stratum radia-
tum). (B) Time-resolved peri-event mean estimate based
on the panel data, without and with correction for
selection bias. The "uncorrected" model in this case
are peri-event snapshots aligned by the peaks of "pl".
The peri-event time t′ = 0 is at t=100 ms due to an
un-balanced window. (C) Peri-event spectrogram es-
timate of each variable of the model uncorrected (top)
and corrected (bottom). The peri-event time t′ = 0 is
the same as (B). 75
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Figure 3.11 State-dependent filter-band invariance of corrected power
spectrograms. (A) (top row) Power spectrograms of
SPW-Rs aligned by "pl" in an example channel pair.
The detection for events in different subfigures are
based on a group of different filtering frequency bands
ranging from the theta band to the low-gamma band
(in the REM-like state). (bottom row) Power spectro-
grams of SPW-Rs calculated by the corrected model.
Different subplots represent the corrected power spec-
trogram based on the same frequency band as the top
row. (B) The same as (A) but the filtering bands are
in another group ranging from high-gamma to ripple
bands (in the NREM-like state). (C) Similarity analy-
sis and multi-dimensional scaling of the power spec-
trograms in the 10 frequency bands shown in (A) and
(B). (top) Similarity matrix within 10 frequency bands
of the two groups in (A) and (B) for ’pl’-aligned peri-
event snapshots (left) and the corrected model (right).
(bottom) Multi-dimensional scaling of 10 frequency
bands of the two groups in (A) and (B) for ’pl’-aligned
peri-event snapshots (left) and the corrected model
(right). Color code marks the center frequency of the
corresponding filtering band. (D) Cluster quality cal-
culated as the ratio between inter-and intra-group
distances for the multi-dimensional scaling of REM
and NREM bands, repeated 16 times by using differ-
ent pairs of electrodes to fit the VAR models (N=16).
The black star indicates a significant difference be-
tween the two groups (p = 3.05× 10−5). 76

Figure 4.1 Illustration of the intervention implemented in CS.
(A) Structural causal model of a bi-variate VAR(2)
model defined in Eq. 4.13 and Eq. 4.14 with uni-directional
coupling from X2 to X1. (B) The intervention imple-
mented in devising CS is to break the causal arrows
and send an independent copy X2

p,t to X1
t at each

time point. This diagram applies to both CS and DCS
(Section 4.2.3.2). The difference is: CS assumes a ho-
mogeneous VAR model while DCS depends on a in-
homogeneous VAR model. 83

Figure 4.2 Illustration of the principle of the regression disconti-
nuity in time, and causal impact methodologies. The
observed time series where an intervention occurs
at a specified time point n is contrasted with the
counterfactual scenario that no intervention was per-
formed. 84



146 bibliography

Figure 4.3 D-separation of bi-variate VAR(2) model. (A) Struc-
tural causal model of a bi-variate VAR(2) model de-
fined in Eq. 4.13 and Eq. 4.14 with uni-directional
coupling from X2 to X1. (B) Conditioning on both
past states of X1 and X2 blocks all paths from X1

t−3

to X1
t . Blue nodes represents conditioned nodes while

blue arrows marks blocked paths. Orange arrows marks
the unblocked paths. (C) Conditioning on past states
of X1 alone blocks all paths from X1

t−3 to X1
t in the

uni-directional case. Color codes are the same as (B).
(D) Conditioning on past states of X1 alone does not
block all paths from X1

t−3 to X1
t in the bi-directional

case. Color codes are the same as (B). 87

Figure 4.4 Illustration of the intervention implemented in rDCS.
(A) Structural causal model of a bi-variate VAR(2)
model defined in Eq. 4.13 and Eq. 4.14 with uni-directional
coupling from X2 to X1. (B) The intervention imple-
mented in devising rDCS is to break the causal ar-
rows and send an independent copy of the stationary
state X2

p,tref
to X1

t at each time point. 91

Figure 4.5 TE fails when the signals are strongly synchronized.
(A) Control experiments where synchrony is not changed.
(top) Example of the bivariate signal in the control
experiment. (middle) Time-varying design of innova-
tion’s variance for both variables in the control exper-
iment. (bottom) Time-varying TE and DCS results in
the control experiment. (B) TE underperforms dur-
ing transient increased synchrony induced by a tiny
change in noise variance. The transient change can be
seen as an event. Subfigure designs are the same as
(A). 94
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Figure 4.6 Causal analysis for simulated perturbation events with
non-zero innovations. (A) (top) Trial-averaged signals
with ground-truth alignment (aligned on innovations
mean). (bottom) Deterministic innovation added into
cause and effect signals. (B) (left) Sum of squared
errors (sSE) of coefficient matrix estimation in three
cases: ground-truth alignments, aligning by the cause and
aligning by the effect. For the case ground-truth align-
ments the gray dashed line marks the peak of the in-
novation; for the other two cases it marks the peak
of the signals. (middle) Residual mean as an estima-
tion of the innovations mean in the same three cases
as in (left). The red line is lagged compared to the
blue one is because a delay before the innovations
peak causes the signals’ peak. (right) Estimated in-
novations (residual) variance in the same three cases.
The ground-truth innovations variance is 0.1. (C) Av-
eraged event waveform and causality measures (TE,
DCS and rDCS) results of the perturbation events
with ground-truth alignments. The gray dashed line is
the same as in (B). (D) The same as (d) with aligning
by the cause. (E) The same as (d) with aligning by the
effect. 96

Figure 4.7 Causal analysis with simulated spindles in a thalam-
ocortical neural mass model. (A) Model Structure as
part of Figure 2.1B. The thalamocortical spindles are
generated within a neural circuit that consists of four
neuron types whose interactions are shown in the di-
agram. K-complexes and spindles are observed typ-
ically in the cortical pyramidal neurons and thalam-
ocortical neurons. (B) Example waveforms of Type-I
(and the associated K-complexes) and Type-II spin-
dles in the Pyr and TC neurons during a short pe-
riod of simulation. (C) Averaged event waveform and
causality measures (TE, DCS and rDCS) for Type-I
spindles aligned by Py neurons. Shades reflect time-
varying standard deviations across 20 repeated sim-
ulation samples, as explained in the main text. (first
row) Averaged waveforms for thalamo-cortical Type-
I spindles aligned by Pyr neurons. (second - fourth
row) time-varying TE, DCS and rDCS for Type-I spin-
dles aligned by Pyr neurons. (D) Averaged event wave-
form and causality measures (TE, DCS and rDCS) for
Type-I spindles aligned by TC neurons. Designs are
the same as in (C). (E) Averaged event waveform and
causality measures (TE, DCS and rDCS) Type-II spin-
dles aligned by Pyr neurons. Designs are the same
as in (C). (F) Averaged event waveform and causal-
ity measures (TE, DCS and rDCS) Type-II spindles
aligned by TC neurons. Designs are the same as in
(C). 99
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Figure 4.8 DeSnapped causality measures of events in two-state
stationary VAR process. (left) Time-varying TE, DCS
and rDCS calculated based on the uncorrected model.
(right) Time-varying TE, DCS and rDCS calculated
based on the corrected model after applying the DeSnap
algorithm. For details see Section 3.3.2 and Section 3.2.6.2.
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Figure 4.9 DeSnapped causal analysis of two subtypes of simu-
lated spindles. (A) DeSnapped causality measures (TE,
DCS and rDCS) for Type-I spindles. Shades reflect
time-varying standard deviations across 20 repeated
signal samples, as explained in the main text. (first
row) Corredcted averaged waveforms for thalamo-
cortical Type-I spindles in TC and Pyr neurons. (sec-
ond - fourth row) Time-varying TE, DCS and rDCS
for Type-I spindles calculated after applying the se-
lection bias correction method. (B) DeSnapped causal-
ity measures (TE, DCS and rDCS) for Type-II spin-
dles. Designs are the same as in (A). 105

Figure 4.10 DeSnapped causal analysis of SPW-Rs aligned by "sr"
and "pl". (A) DeSnapped causality measures (TE, DCS
and rDCS) for SPW-Rs aligned by "sr". (first row)
Corredcted and Uncorrected averaged waveforms for
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time-varying standard deviations across 16 channel
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row) Time-varying TE, DCS and rDCS for SPW-Rs
calculated after applying the selection bias correction
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the same as in (A). 106
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Figure 5.2 Sturctural illustration of the simplified cortical neu-
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Table 1 List of intrinsic currents and their corresponding roles
in each neuronal population 20

Table 2 Quantitative similarities between pontine simulation
and experimental results. See [48] for characteristics
related to C-PBL and [225] for that of R-PBL neu-
rons. 32
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AIC Akaike Information Criterion

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BIC Bayesian Information Criterion

CA1 Cornu ammonis field 1

CA3 Cornu ammonis field 3

C-PBL Caudolateral Peribrachial

CS Causal Strength

DCM Dynamic Causal Modelling

DCS Dynamic Causal Strength

DeSnap Debiased Snapshot

EEG electroencephalogram

GABA Gamma-aminobutyric acid

GC Granger Causality

GRU Gated Recurrent Unit

In Inhibitory (neurons)

KL Kullback-Leibler

LFP Local Field Potential

LGin intra-Geniculate inter(neurons)

LGN Lateral Geniculate Nucleues

LSTM Long Short-Term Memory

LTD Long-term depression

LTP Long-term potentiation

mAChR muscarinic Acetylcholine Receptor

ML Maximum Likelihood

MSE Mean Squared Errors
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nAChR nicotinic Acetylcholine Receptor

NET-fMRI Neural-Event-Triggered functional Magnetic Resonance Imaging

NREM Non-Rapid-Eye-Movement

ODE Ordinary Differential Equation
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PGO Ponto-Geniculo-occipital

PSC Postsynaptic Current
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Pyr Pyramidal (neurons)
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SEM Structural Equation Models

SHY Synaptic Homeostasis Hypothesis

SO Slow Oscillations

SPW-R Sharp Wave-Ripples

sSE Sum of squared errors

STDP Spike-Time-Dependent-Plasticity

TC Thalamocortical (neurons)

TE Transfer Entropy

TMS Transcranial Magnetic Stimulation

TRN Thalamic Reticular Nucleus
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AA P P E N D I X

a.1 derivation of synapse representation

a.1.1 Alpha function

For a synapse current (type m) from presynaptic population k ′ to postsy-
naptic population k with connectivity strength Nk ′k, assume its impulse
response is an alpha function:

hm(t) = γ2
m · t · exp(−γmt)

If we perform a Laplace transform to the impulse response, we would ob-
tain:

L[hm(t)](s) = L[γ2
mt exp(−γmt)](s) = γ2

m ·
Γ(2)

(s+ γm)2
=

γ2

(s+ γm)2

Here the impulse response equals:

hm(t) =
smk(s)

Nk ′k ·Qk ′(s)
=

γ2
m

s2 + 2γms+ γ2
m

If we rearrange the terms, we can get:

s2 · smk(s) + 2s · smk(s) + γ2
m · smk(s) = γ2

m ·Nk ′k ·Qk ′(s)

After an inverse Laplace transform and a rearrangement of the terms, we
can reach the differential equation that we want:

s̈mk = γ2
m(Nk ′k ·Qk ′(Vk ′(t)) − smk) − 2γmṡmk

a.1.2 ’Two-exponential’ inpulse response function

Similarly, for the ’two-exponential’ type of synaptic impulse response:

hm(t) = B(exp(−t/τ1) − exp(−t/τ2))

The Laplace transformed hm(t) would take the following form:

L[hm(t)](s) = L[B(exp(−t/τ1) − exp(−t/τ2))](s) =
B

s+ τ−1
1

−
B

s+ τ−1
2

Then we include the input and output of the system in the Laplace domain:

smk(s)

Nk ′k ·Qk ′(s)
=

B(τ−1
2 − τ−1

1 )

s2 + (τ−1
2 + τ−1

1 )s+ τ−1
2 τ−1

1

If we rearrange the terms, we can get:

s2 · smk(s)+(τ−1
2 +τ−1

1 )s · smk(s)+τ−1
2 τ−1

1 · smk(s) = B(τ−1
2 −τ−1

1 ) ·Nk ′k ·Qk ′(s)

After an inverse Laplace transform and a rearrangement of the terms, The
differential version is obtained after a reverse Laplace transform

s̈mk = B(τ−1
2 − τ−1

1 )Nk ′k ·Qk ′(Vk ′(t)) − τ−1
2 τ−1

1 smk − (τ−1
2 + τ−1

1 )ṡmk
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a.2 full list of equations for pgo model

a.2.1 Neuron populations

Firing rate function of population k, where k ∈ {t, r,g, l, c}, representing the
TC neurons, the RT neuron, the intra-LG interneurons, the PGO transferring
neurons and the PGO triggering neurons.

Qk =
Qmax

k

1+ exp(−(Vk − θk)/σk)

Membrane potential adaptations for population t, r,g, l

τtV̇t = −JtL − JAMPA(sat) − JnAChR(snt) − JGABA(sgt)−

C−1
m τt(I

t
LK + ItT + Ih)

τrV̇r = −JrL − JAMPA(sar) − JGABA(sgr) − JnAChR(snr)

− JmAChR(smr) −C−1
m τr(I

r
LK + IrT )

τgV̇g = −J
g
L − JnAChR(sng) − JmAChR(sng)

τlV̇l = −JlL − JAMPA(sal) − JNMDA(sdl) −C−1
m τl(I

l
T + IACh)

a.2.2 Synaptic currents

Synaptic currents are denoted in the form of J(sij). i ∈ {a,g,n,m,d} states
the synaptic type AMPA, GABA, nAChR, mAChR and NMDA, whereas
j ∈ {t, r,g, l, c} indicates the postsynaptic population in Section A.2.1.

General leaky currents of population k, where k ∈ {t, r,g, l, c}

JkL = (Vk − Ek
L)

AMPA synapse in postsynaptic population t

JAMPA(sat) = sat · (Vr − Eat)

s̈at = γ2
at(ϕn − sat) − 2γatṡat

GABA synapse in postsynaptic population t

JGABA(sgt) = sgt · (Vt − Egt)

s̈gt = γ2
gt · (Ngt ·Qr(Vr) +Ngt ·Qg(Vg) − sgt) − 2γgtṡgt

nAChR synapse in postsynaptic population t

JnAChR(snt) = snt · (Vt − Ent)

s̈nt = Bnt(τ
−1
nt,2 − τ−1

nt,1)NntQl(Vl) − τ−1
nt,2τ

−1
nt,1snt − (τ−1

nt,2 + τ−1
nt,1)ṡnt

mAChR synapse in postsynaptic population t

JmAChR(smt) = smt · (Vt − Emt)

s̈mt = γ2
mt (Nmt ·Ql(Vl) − smt) − 2γmtṡmt

AMPA synapse in postsynaptic population r

JAMPA(sar) = sar · (Vr − Ear)
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s̈ar = γ2
ar ((Nar) ·Qt(Vt) − sar) − 2γarṡar

GABA synapse for self-feedback in population r

JGABA(sgr) = sgr · (Vr − Egr)

s̈gr = γ2
gr ((Ngr) ·Qr(Vr) − sgr) − 2γgrṡgr

nAChR synapse in postsynaptic population r

JnAChR(snr) = snr · (Vr − Enr)

s̈nr = Bnr(τ
−1
nr,2 − τ−1

nr,1)NnrQl(Vl) − τ−1
nr,2τ

−1
nr,1snr − (τ−1

nr,2 + τ−1
nr,1)ṡnr

mAChR synapse in postsynaptic population r

JmAChR(smr) = smr · gmAChR(Vr) · (Vr − Emr)

gmAChR(Vr) =
1

1+ exp((Vr + 66.3)/29.1)

s̈mr = Bmr(τ
−1
mr,2−τ−1

mr,1)NmrQl(Vl)−τ−1
mr,2τ

−1
mr,1smr−(τ−1

mr,2+τ−1
mr,1)ṡmr

nAChR synapse in postsynaptic population g

JnAChR(sng) = sng · (Vg − Eng)

s̈ng = Bng(τ
−1
ng,2 − τ−1

ng,1)NngQl(Vl) − τ−1
ng,2τ

−1
ng,1sng − (τ−1

ng,2 + τ−1
ng,1)ṡng

mAChR synapse in postsynaptic population g

JmAChR(smg) = smg · (Vg − Emg)

s̈mg = Bmg(τ
−1
mg,2−τ−1

mg,1)NmgQl(Vl)−τ−1
mg,2τ

−1
mg,1smg−(τ−1

mg,2+τ−1
mg,1)ṡmg

AMPA synapse in postsynaptic population l

JAMPA(sal) = sal · (Vl − Eal)

s̈al = Bal(τ
−1
al,2 − τ−1

al,1)NalQc(Vc) − τ−1
al,2τ

−1
al,1sal − (τ−1

al,2 + τ−1
al,1)ṡal

NMDA synapse in postsynaptic population l

JNMDA(sdl) = sdl · gNMDA(Vl)(Vr − Edl)

gNMDA(Vl) =
1

1+ exp(−0.0062Vl)
[Mg2+]o/3.57

s̈dl = Bdl(τ
−1
dl,2 − τ−1

dl,1)NdlQc(Vc) − τ−1
dl,2τ

−1
dl,1sdl − (τ−1

dl,2 + τ−1
dl,1)ṡdl

a.2.3 Intrinsic currents

Intrinsic currents are presented as Iki , with the subscription i ∈ {LK, T ,h, IR}
describing the current types (K+ leaky currents, T-currents, h-currents and
k+ inward rectification currents). The superscription indicates the neuron
population where the intrinsic currents are located.

Potassium leaky currents of population t

ItLK = gtLK · (Vt − EK)

Low threshold Calcium T-current for population t

ItT = gtT · (m
t∞)2 · ht

T · (Vt − ECa)
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mt∞ =
1

1+ exp(−(Vt + 59)/6.2)

ḣt
T = (ht∞ − ht

T )/τ
t
h

ht∞ =
1

1+ exp(−(Vt + 81)/4)

τth = (30.8+ (211.4+ exp((Vt + 115.2)/5))/(1+ exp((Vt + 86)/3.2)))/31.2

Anomalous inward rectifier h-current for population t

Ith = gh · (mh1 + gincmh2) · (Vt − Eh))

ṁh1 = (mh∞(1−mh2) −mh1)/τ
h
m − k3 ∗ Phmh1 + k4mh2

ṁh2 = k3Phmh1 − k4mh2

Ph = k1[Ca]
4/(k1[Ca]

4 + k2)

˙[Ca] = −αCaI
t
T − ([Ca] −Ca0)/τCa

Potassium leaky currents of population r

IrLK = grLK · (Vr − EK)

Low threshold Calcium T-current for population r

IrT = grT · (m
r∞)2 · hr

T · (Vr − ECa)

mr∞ =
1

1+ exp(−(Vr + 52)/7.4)

ḣr
T = (hr∞ − hr

T )/τ
r
h

hr∞ =
1

1+ exp(−(Vr + 80)/5)

τth = (85+ 1/(exp((Vr + 48)/4))/(1+ exp(−(Vr + 407)/50)))/31.2

Low threshold Calcium T-current for population l

IlT = glT ·
(
ml∞)2 · hl

T · (Vl − ECa)

ml∞ =
1

1+ exp(−(Vl + 50.6)/0.44) + exp((Vl + 50.6)/17.4)

ḣl
T = (hl∞ − hl

T )/τ
l
h

hr∞ =
1

1+ exp((Vl + 65)/2.7)

τth = (52+(211.4+exp((Vl+115.2)/5))/(1+exp((Vl+86)/3.2)))/ exp(1.2 log(3))

K+ Inward rectifier of cholinergic input in population l

IlIR = glIR · gIR(Vl) · (Vl − EK)

glIR =
1

1+ exp((Vl + 66.3)/29.1)
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a.2.4 State modulation

∆[ACh](t) = − cos(
2π

T
t)

gtLK(t) = −0.5(gtLK,NREM − gtLK,REM) · (∆[ACh](t) − 1) + gtLK,REM)

grLK(t) = 0.5(grLK,REM − grLK,NREM) · (∆[ACh](t) + 1) + grLK,NREM)

a.3 var model estimation

a.3.1 Estimation of VAR model parameters

We consider stochastic process Xt generated by the linear Gaussian vector
autoregression of Eq. 3.3:

Xt = AtXp,t + ηt,ηt ∼ N (kt,Σt) Cov [ηt,Xp,t] = 0 (A.1)

As stated in Section 3.2.4.2, the VAR model parameters can be estimated
from data. Here we derive the OLS estimation and ML estimation of VAR
model parameters.

a.3.1.1 OLS estimation of VAR model parameters

For the case where kt = 0, multiplying both sides of Eq. A.1 with the trans-
pose of past states Xp,t yields

XtX
⊤
p,t = AtXp,tX

⊤
p,t + ηt ·X⊤

p,t

Taking the expectation at both sides eliminates the term related to the inno-
vation

E
[
XtX

⊤
p,t

]
= AtE

[
Xp,tX

⊤
p,t

]
+ 0

Therefore
Ât = E

[
XtX

⊤
p,t

]
E
[
Xp,tX

⊤
pt

]−1
.

For the case where kt ̸= 0, first we demean Eq. A.1 by substracting the
expectation on both sides

Xt − E [Xt] = At (Xp,t − E [Xp, t]) + (ηt − kt) ,

This equation times (Xt − E [Xt])
⊤ at both sides yields

(Xt − E [Xt)] (Xp,t − E [Xp,t])
⊤

= At (Xp,t − E [Xp,t]) (Xp,t − E [Xp,t)] + (ηt − kt) (Xp,t − E [Xp,t])
⊤

Similarly, apply expectation operation at both sides, we get

E
[
(Xt − E [Xt]) (Xp,t − E [Xp,t])

⊤
]
= AtE

[
(Xp,t − E [Xp,t]) (Xp,t − E [Xp,t])

T
]

because

E [(ηt − kt) (Xp,t − E [Xp,t])
⊤
]
= Cov (ηt,Xp,t) = 0 .

Therefore
Cov (Xt,Xp,t) = At Cov (Xp,t,Xp,t)
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Ât = Cov (Xt,Xp,t)Cov (Xp,t,Xp,t)
−1 = ΣXtXp,t

(
ΣXp,t

)−1
(A.2)

For an i.i.d. dataset with sample size N, we can estimate two covariance
matrices as

ΣXtXp
=

1

N

N∑
n=1

(X
(n)
t − E[Xt])(X

(n)
p,t − E[Xp,t])

⊤

ΣXp
=

1

N

N∑
n=1

(X
(n)
p,t − E[Xp,t])(X

(n)
p,t − E[Xp,t])

⊤

where mean can be estimated as E[Xt] =
1
N

∑N
n=1X

(n)
t , E[Xp,t] =

1
N

∑N
n=1X

(n)
p,t .

Therefore the VAR model coefficient At can be estimated as

Ât = ΣXtXp,t

(
ΣXp,t

)−1

From the equation

E [Xt] = ÂtE [Xp,t] + kt

we can estimate the innovation’s mean

k̂t = E [Xt] − ÂtE [Xp,t]

The innovation’s variance is estimated by the covariance of the residuals
η
(n)
t = X

(n)
t − ÂX

(n)
p,t yielding the form

Σ̂t =
1

N

N∑
n=1

(
X

(n)
t − ÂX

(n)
p,t

)(
X

(n)
t − ÂX

(n)
p,t

)⊤
a.3.1.2 ML estimation of VAR model parameters

For the dataset with N-sized i.i.d samples, the likelihood function is the
product of the likelihood of each sample

L (At,Σt;Xt) =

N∏
n=1

1√
2π |Σt|

exp
(
−
1

2

(
X

(n)
t −AtX

(n)
p,t

)
Σ−1
t

(
X

(n)
t −AtX

(n)
p,t

)⊤)
The log likelihood thus takes the form

l (At,Σt;Xt) =logL (At;Σt;Xt)

=−
N

2
log(2π) −

N

2
log |Σt|−

1

2

N∑
n=1

(
X

(n)
t −AtX

(n)
p,t

)
Σt

−1
(
X

(n)
t −AtX

(n)
p,t

)⊤
Thus the ML estimation is equivalent to finding the parameter values that
makes its derivative to zero

dl (At,Σt;Xt)

dAt
= −2

N∑
n=1

Σ−1
t

(
X

(n)
t −AtX

(n)
p,t

)
X

(n)
p,t

⊤
= 0 (A.3)

Reorganizing the terms yields

N∑
n=1

(
X

(n)
t − ÂtX

(n)
p,t

)
X

(n)
p,t

⊤
= 0.
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Thus the coefficient matrix can be estimated as

Ât =

(
N∑

n=1

X
(n)
t X

(n)
p,t

⊤
)(

N∑
n=1

X
(n)
p,t X

(n)
p,t

⊤
)−1

This is consistent with the OLS-estimated coefficient matrix in Eq. A.2.

a.3.2 VAR model order selection

Two common ways to optimize model order are the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC). They both in-
troduce a penalty term in the log-likelihood function to compensate for the
effect caused by over-fitting with over-complex models:

IC(p) = − log(L(p)) +P(p) . (A.4)

The model order is selected as the order that minimize the information crite-
rion. The penalty term P(p) involves the effect of model complexity by pun-
ishing on the number of parameters, which equals pd2 for a d-dimensional
VAR(p) models. For AIC the penalty term is just the number of parameters
P(p) = pd2. BIC takes into account of the effect of sample size T − p as
the log-likelihood function also increase with number of sample, and the
corresponding penalty term is P(p) = 1

2pd
2 log(T − p) (for derivation see

Appendix A.3.4).
In the rest of this paper, we focus on BIC and let alone AIC as AIC is

more likely to result in over-fitting while BIC tends to reconstruct the true
model order [123]. Although it was argued that the over-fitting feature of
AIC vanishes for VAR(p) processes with the dimensional higher than 3 [86],
in the bivariate case mainly dealt with in this paper we prefer to stick to
BIC.

a.3.2.1 Multi-trial selection of VAR model orders

A critical issue that are often neglected is the model order selection for the
multi-trial case. The difficulty is to decide what is the equivalent number of
parameters and equivalent sample size in the multi-trial and non-stationary
case. Naive ideas that there are (T − p) · pd2 parameters and N(T − p) sam-
ples might be misleading.

Previous studies proposed various methods to estimate time-varying VAR
model (for an overall review see [31]), together with some model order selec-
tion criteria for each specific type of methods. However, they didn’t provide
a specific penalty term in Eq. A.4 which is applicable for non-stationary and
multi-trial cases.

For example, Ding et al. proposed the short windowing method which
assumes local stationarity in the process [65], which is also a ML estimator of
the coefficients in a time window. Model order in this study was optimized
by the classical AIC by assuming L(p) as the product of the likelihood of
each sample in all the trials. However, the penalty term was not revised
accordingly.

In the studies using adaptive methods, similar treatment was applied in
[96]. Another related paper suggested to perform model order selection in-
dividually for each short window, and select the maximum order for the
whole process [163]. While this idea might sound reasonable, one is likely
to end up with a very large model order, especially with the time-varying
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model in Eq. (3.3), where coefficients are changing at each time point (i.e.
window length is 1 time point). Even when we pick the averaged model
order instead of the maximum, it is not a convincing way to evaluate the
overall effect of a fixed model order.

Other criteria may also lack generality. Schloegl proposed to use a revised
version of mean square error for model order selection combined with a
state-space estimation for time-varying models [207], but this may not ap-
ply to multi-trial case. [191] and [69] derived in a Bayesian approach the
criteria for time-varying VAR models, which is similar to our proposal be-
low. However, they assume that the coefficient matrix is composed of some
basis functions, and the criteria depend on the number of basis functions,
which differs from the general BIC form in Eq. A.4.

Therefore we propose here an extended version of BIC that is appropriate
for non-stationary signals with multi-trial structures: for multi-trial homoge-
neous VAR(p) models, the penalty term should be P(p) = 1

2pd
2 log(N(T −

p)); for the multi-trial inhomogeneous case the penalty term should be
P(p) = 1

2Tpd
2 log(N) (for proof see Appendix A.3.4).

Note that for single-trial homogeneous case where N = 1, the penalty
term reduces to pd2 log(T − P), which is consistent with the classical form
of BIC.

a.3.3 Derivation of Hessian of the likelihood function of the coefficient matrix At

The Hessian matrix can be obtained by calculating the derivative of the
first-order derivative of the log-likelihood given in Eq. A.3, which can be
rewritten as:

dl
dAt

=

N∑
n=1

Σ−1
t X

(n)
t X

(n)
p,t

⊤
−AtX

(n)
p,t X

(n)
p,t

⊤
(A.5)

We define a matrix C as the sum of the covariance matrix of the lagged
state Xp,t:

C =

N∑
n=1

X
(n)
p,t X

(n)
p,t

⊤
(A.6)

Each entry of the matrices At, Σ−1
t and C at the ith row and jth column

can be denoted as aij, σij, cij. Then the second-order derivative of the log-
likelihood w.r.t. element aij and akm is:

d2l
daijdakm

= −cmi · σkj (A.7)

The d× pd dimensional coefficient matrix At can be vectorized as a pd2-
dimensional vector by concatenating each column. If the Hessian matrix is
organized as H = d2l

dvec(At)⊤dvec(At)
, then the Hessian matrix can be rewrit-

ten as a compact form:

H = −C⊗ Σ−1
t (A.8)

a.3.4 Derivation of BIC for multi-trial VAR models

The key to model order selection is to find the optimal model order in the
class of VAR models which maximizes the compensated likelihood func-
tion after adding a penalty term. In the Bayesian perspective this likelihood
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probability is p({Xt}|p). This likelihood conditioned on model order is not
equal to the one conditioned on the estimated coefficient (i.e. p({Xt}|Â,p)
as Ât are just one choice of parameters given the p-ordered model with
the conditional probability p(Ât|p). In fact, with Laplace approximation the
likelihood can be elaborated as:

p({Xt}|p) =

∫
p({Xt},At|p)dAt ≈ p({Xt}|Ât,p)p(Ât|p)(2π)

pd2

2 |H|
−1
2 (A.9)

with H as the Hessian matrix of coefficient At defined in Eq. A.8.
Taking logarithm of both sides, and we can get the log-likelihood as:

logp({Xt}|p) ≈ logp({Xt}|Ât,p) + logp(Ât|p) +
pd2

2
log(2π) −

1

2
log |H|

(A.10)
The second and third term are independent of sample size. With suffi-

ciently large sample size, the first term dominates as it grows with sample
size. Therefore, comparing logp({Xt}|p) given different order p would re-
quire the knowledge how H changes with sample size.

Traditional BIC based on single-trial stationary VAR(p) processes assumes
that H increase linearly with sample size T − p, i.e. H ≈ (T − p)H0 for a
constant H0. Then the logarithm is:

−
1

2
log |H| ≈ −

1

2
log |(T − p)H0| = −

pd2

2
log(T − p) −

pd2

2
log |H0| (A.11)

Keeping the first term that depends on sample size, we can obtain the
likelihood probability as

logp({Xt}|p) ≈ logp({Xt}|Ât,p) −
1

2
log(T − p) (A.12)

The information criteria in Eq. A.4 IC(p) = − logp({Xt}|p), and L(p) =

p({Xt}|Ât,p). Thus the penalty term of traditional BIC is pd2

2 log(T − p).
For derivation of BIC in multi-trial cases, let us start again with the sim-

pler homogeneous case. Given the T i.i.d samples from a stationary d-dimension
VAR(p) model, the Hessian matrix of At takes the form in Eq. A.8 (for
derivation see Appendix A.3.3). The determinant of the Hessian matrix is

|H| = |C|d · |Σ−1
t |pd (A.13)

Then the logarithm of the determinant of the Hessian matrix is

log|H| = d log |C|− pd log |Σ−1
t | (A.14)

If N is very large and asymptotically C = N(T − p) · C0 (where C0 =

E[Xp,tX
⊤
p,t], the covariance of p lagged-states for each time point t, is sup-

posed to be a constant matrix with the dimension of pd for a stationary
process), then

log|H| = d log |NtC0|−pd log |Σ−1
t | = pd2 log(N(T −p))+d log |C0|−pd log |Σ|

(A.15)

log|H| = pd2 log(N(T − p)) + d log |C0|− pd log |Σ| (A.16)

The second and the third term can be ignored with large N, So the penalty
term should be: pd2 log(N(T − p)).
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Then for a non-stationary case, we can assume that there are T − p inho-
mogenous VAR models, and each VAR(p) model has N samples. The Hes-
sian matrix of each VAR model is denoted as Ht, and the covariance matrix
of each model is Ct0. If we assume that each VAR model has the same order,
then we can sum up log |Ht| :

N∑
n=1

log |Ht| =

N∑
n=1

(pd2 log(N) + d log |Ct0|− pd log |Σt|) (A.17)

N∑
n=1

log |Ht| = (T − p)pd2 log(N) + d

N∑
n=1

log |Ct0|− pd(

N∑
n=1

log |Σt|) (A.18)

Thus similarly we can ignore the second and the third term, and the
penalty term is (T − p)pd2 log(N).

a.4 correction of coefficient estimation bias caused by se-
lection

The calculation of many time-varying causality measures depends on the
accurate estimation of autoregressive coefficient matrices. However, estima-
tion with snapshots detected via thresholding tend to introduce selection
bias into the estimated statistics, thus leading to erroneous estimation of
causality measures.

If we assume that the peri-event snapshots under study can be modelled
as a multi-variate autoregressive process Xt, where the current state is a
linear combination of the previous states:

Xt = AtXp,t + ηt ,ηt ∼ N(kt,Σt) .

Notably, the notations for peri-event snapshots Xt is different from notations
for the general time series Xt.

This is a kth-order m-variate vector autoregressive process, with the cur-
rent state defined as

Xt =
[
X1
t ,X2

t , · · · ,Xm
t

]T
and the past state as Xp,t = [Xt−1, Xt−2, · · · , Xt−p]

T . Innovations ηt are
time-inhomogeneous Gaussian random variables, where E[η] = kt, Cov[η] =
Σt.

In line with the results in Section A.3.1, the estimation of two covariance
matrices ΣXtXp

and ΣXp
determines the estimation of VAR coefficient matrix

as Ât = Σ̂XtXp

(
Σ̂Xp

)−1
. The innovations mean and variances depends on

the estimation of coefficient (see Section A.3.1).
As snapshots are detected in time series X̃t using condition Dt0 > d0,

the covariances we obtain directly from the panel data estimation proce-
dure are estimates of the conditional covariance matrices ΣXtXp|Dt0

>d0
and

ΣXp|Dt0
>d0

, may differ from the real (unconditional) ones.
Therefore our DeSnap procedure introduces a new approach to reduce the

selection bias covariance matrices as follows. If we represent the snapshot
values at peri-event time point t as a lagged state Yt, by concatenating Xt

and Xp, where t ∈ [−T/2, T/2]:

Yt =

[
Xt

Xp,t

]
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then second-order statistics of panel data approximate the conditional mean
of the snapshots and can be written as :

µYt|Dt0
⩾d0

=

 µXt|Dt0
⩾d0

µXp|Dt0
⩾d0

 ,ΣYt|Dt0
⩾d0

=

 ∑
Xt|Dt0

⩾d0
ΣXtXp|Dt0

⩾d0∑
XpXt|Dt0

⩾d0
ΣXp|Dt0

⩾d0


(A.19)

For simplicity, we omit the time indices of Dt0 in the notations and refer
to the detection signal, denoted by D. We now show how to exploit infor-
mation in the snapshots to estimate the unconditional covariance under a
joint Gaussian assumption of Yt and D. For each values of d ∈ D where
d ⩾ d0, the conditional distribution of Yt|D = d is also Gaussian with mean
µYt|D=d and variance ΣYt|D=d, such that:

µYt|D=d = µYt
+ ΣYtDΣ−1

D (d− µD) (A.20)

ΣYt|D=d = ΣYt
− ΣYtDΣ−1

D ΣT
YtD

(A.21)

The conditional distribution of Yt|D ⩾ d0 can then be computed as:

P (Yt | D ⩾ d0) =

∫+∞
d0

P(D = d)

P (D ⩾ d0)
P (Yt | D = d)dd

The mean and covariance of this Gaussian mixture is a function of the
mean and covariance of each element. For the mean we get

µYt|D⩾d0

=
∫+∞
d0

P(D=d)
P(D⩾d0)

µY|D=ddd ,

=
∫+∞
d0

P(D=d)
P(D⩾d0)

(
µYt

+ ΣYtDΣ−1
D (d− µD)

)
dd ,

= µYt
+ ΣYtDΣ−1

D

∫+∞
d0

P(D=d)
P(D⩾d0)

(d− µD)dd ,

= µYt
+ ΣYtDΣ−1

D

(
d− µD

)
,

where d is the average of D = d ⩾ d0

For the covariance, we use the law of total covariance (for two random
variables X and Y)

Cov(X, Y) = E [Cov(X, Y,D)] + Cov (E [X|D] , E [Y|D])

to obtain

ΣYt|D⩾d ,

=
∫+∞
d0

P(D=d)
P(D⩾d0)

(
ΣYt

− ΣYtDΣ−1
D ΣT

YtD

)
dd ,

+
∫+∞
d0

P(D=d)
P(D⩾d0)

(
µY|D=d − µY|D⩾d0

)(
µY|D=d − µY|D⩾d0

)T
dd ,

= ΣYt
+ ΣYtDΣ−1

D cΣ−1
D ΣT

YtD
,
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where c =
∫+∞
d0

P(D=d)
P(D⩾d0)

(d− µD)2 dd−
(
d̄− µD

)2
− ΣD.

As a result, we have

µYt|D⩾d0
= µYt

+ ΣYtDΣ−1
D

(
d− µD

)
, (A.22)

ΣYt|D⩾d = ΣYt
+ ΣYtDΣ−1

D cΣ−1
D ΣT

YtD
. (A.23)

What can be estimated from peri-event panels in Eq. A.20, A.22 and
A.23 are the conditional statistics µYt|D⩾d0

, ΣYt|D⩾d (which we can esti-
mate from Eq. A.19, and the binned conditions d (which we can specify
on our need). What we are interested in recovering, are the unconditional
mean µYt

and covariance matrix ΣYt
. Some intermediate unknown variables

that help us estimated the unconditional statistics are ΣYtDΣ−1
D , µD and c.

For a uni-state signals, µD and c can be easily obtained by exploiting the
distribution of D; however, if the signal is a mixture of multiple states, these
statistics are largely unobserved. Actually, these intermediate variables and
the unconditional statistics can all be retrieved by performing three linear
regressions. First, with the snapshot and a given set of binned d (which
must satisfy d ⩾ d0 but should not be too large to limit the sample size of
P(Yt|D = d)), we can regress d over µYt|D=d in Eq. A.22 to get the coeffi-
cient at and the intercept bt corresponding to:

pt = ΣYtDΣ−1
D , (A.24)

qt = µYt
− ΣYtDΣ−1

D µD . (A.25)

Secondly, bt is a linear function of at as qt = µYt
− ptµD. Thus we can

regress pt over qt to estimate the mean of D (µD) as the coefficient and µYt

as the intercept.
Finally, Eq. A.23 can be reorganized as:

ΣYt|D⩾d = ΣYt
+ cptp

T
t , (A.26)

For a given threshold d0, c(d0) is a constant for all elements of the co-
variance matrix at all time points of the snapshots. Regressing ptp

T
t over

ΣYt|D⩾d for any single element across time, we can estimate c(d0), by which
we are able to retrieve ΣYt

from Eq. 3.32. Sometimes, as event extraction in-
duces temporal correlations, we can also apply a first order difference in the
panel such that ∆t(ΣYt|D⩾d) = ∆t(ΣYt

) + c∆t(pta
T
t ) = c∆t(ptp

T
t ). Then,

regressing ∆t(ptp
T
t ) over ∆t(ΣYt|D⩾d), we can similarly calculate c and re-

trieve ΣYt
from Eq. A.26.

a.5 derivations for time-varying causality measures

a.5.1 Derivation of KL-divergence between two uni-variate Gaussians

Time-varying TE, DCS and rDCS are formulated as the KL divergence be-
tween the corresponding actual and counterfactual conditions. Thus we first
present the KL divergence between two uni-variate Gaussian variables.

Consistent with Section 4.2.3, we denote the gaussian for the actual con-
dition as p(x) = N(µa,σ2

a), and the counterfactual gaussian as q(x) =

N(µc,σ2
c). Then the KL divergence between p(x) and q(x) is
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DKL(p||q) = −

∫
p(x) logq(x)dx+

∫
p(x) logp(x)dx

=

∫
[log(p(x)) − log(q(x))]p(x)dx

=

∫ [
−
1

2
log(2π) − log(σa) −

1

2

(
x− µa

σa

)2

+
1

2
log(2π) + log(σc) +

1

2

(
x− µc

σc

)2
]
×

1√
2πσa

exp

[
−
1

2

(
x− µa

σa

)2
]
dx

=

∫ {
log

σc

σa
+

1

2

[(
x− µc

σc

)2

−

(
x− µa

σa

)2
]}
× 1√

2πσa

exp

[
−
1

2

(
x− µa

σa

)2
]
dx

= Ep

[
log

σc

σa
+

1

2

[(
x− µc

σc

)2

−

(
x− µa

σa

)2
]]

= log
σc

σa
+

1

2σ2
c

Ep

[
(X− µc)

2
]
−

1

2σ2
a

Ep

[
(X− µa)

2
]

= log
σc

σa
+

1

2σ2
c

Ep

[
(X− µc)

2
]
−

1

2

Note that

(X− µc)
2 = (X− µa + µa − µc)

2

= (X− µa)
2 + 2(X− µa)(µa − µc) + (µa − µc)

2

Therefore,

DKL(N(µa, σ2
a)||N(µc, σ2

c)) = log
σc

σa
+

1

2σ2
c

Ep

[
(X− µa)

2
]

+ 2(µa − µc)Ep [X− µa] + (µa − µc)
2 −

1

2

=
1

2
log

σ2
c

σ2
a

+
σ2
a + (µa − µc)

2

2σ2
c

−
1

2
(A.27)

a.5.2 Conditional mean and variance for the actual condition

The actual condition defined for TE, DCS and rDCS is that the current state
of X1

t is dependent on the past of both X1 and X2, denoted as

N(µa,σ2
a) = p(X1

t |X
1
p,t,X2

p,t) .

The dynamics of X1
t is described by the structural equation

X1
t = a⊤t X1

p,t + b⊤
t X2

p,t + η1t , η1t ∼ N(k1t , σ1,t) . (A.28)
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Therefore, the time-varying conditional mean and variance can be derived
as

µa = E[a⊤t X1
p,t + b⊤

t X2
p,t + η1t |X

1
p,t,X2

p,t] = a⊤t X1
p,t + b⊤

t X2
p,t + k1t

σ2
a = Var[a⊤X1

p,t + b⊤X2
p,t + η1t |X

1
p,t,X2

p,t] = Var[η1t |X
1
p,t,X2

p,t] = σ1,t

a.5.3 Transfer Entropy

For TE, as the conditional probability representing the "counterfactual" con-
dition takes the formRecalling

Section 4.2.2.2, TE
does not rely on

counterfactuals but
here the

"counterfactual" is
just used for

symmetry reasons

N(µc,σ2
c) = p(X1

t |X
1
p,t) .

Resulting from the same model in Eq. A.28, the mean and variance can be
derived as

µc = E[a⊤t X1
p,t+b⊤

t X2
p,t+η1t |X

1
p,t] = a⊤t X1

p,t|X
1
p,t+b⊤

t E[X2
p,t|X

1
p,t] +k1t

σ2
c = Var[a⊤X1

p,t + b⊤X2
p,t + η1t |X

1
p,t] = b⊤

t Cov[X2
p,t|X

1
p,t]bt + σ1,t

while

E(X1
p,t,X2

p,t)
[(µa − µc)

2] = E(X1
p,t,X2

p,t)
[(b⊤

t (X2
p,t − E[X2

p,t|X
1
p,t]))

2]

= b⊤
t E[(X2

p,t−E|X2
p,t])(X

2
p,t−E|X2

p,t|X
1
p,t])

⊤]bt = b⊤
t Cov[X2

p,t|X
1
p,t]]bt

Plugging the expressions of µa, µc, σ2
a and σ2

c into Eq. A.27, the KL diver-
gence can be derived as

TE = DKL(N(µa, σ2
a)||N(µc, σ2

c)) =
1

2
log

b⊤
t Cov[X2

p,t|X
1
p,t]bt + σ1,t

σ1,t

As X1
p,t and X2

p,t are jointly Gaussian, the conditional variance takes the
form

Cov[X2
p,t|X

1
p,t] = ΣX2

p
− ΣX1

pX
2
p
Σ−1
X1

p
ΣX2

pX
1
p

.

Therefore, the expression of time-varying TE should be

TE =
1

2
log

σ1,t + b⊤
t ΣX2

p
bt − b⊤

t ΣX1
pX

2
p
Σ−1
X1

p
ΣX2

pX
1
p

bt

σ1,t

a.5.4 Dynamic Causal Strength

For DCS, the counterfactual condition is

N(µc,σ2
c) = pdo(X

1
t :=f(X1

p,t,X2
p,t

′,η1
t))(X1

t |X
1
p,t,X2

p,t)

with X1
t = a⊤t X1

p,t + b⊤
t X2

p,t
′
+ η1t , and X2

p,t
′ is a random sample drawn

from the distribution p(X2
p,t).

Then the conditional mean is:

µc = E[a⊤t X1
p,t + b⊤

t X2
p,t

′
+ η1t |X

1
p,t,X2

p,t] = a⊤t X1
p,t + b⊤

t E[X2
p,t] + η1t

The conditional variance is:

σ2
a = Var[a⊤X1

p,t + b⊤X2
p,t + η1t |X

1
p,t,X2

p,t]

= Var[b⊤X2
p,t

′
|X2

p,t] + Var[η1t ] = b⊤ Cov[X2
p,t]b + σ1,t
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with Cov[X2
p,t] = E[(X2

p,t − E|X2
p,t])(X

2
p,t − E|X2

p,t])
⊤].

DCS defined as the KL divergence between the actual and counterfactual
conditions:

DCS(X2 → X1) = E(X1
p,t,X2

p,t)

[
1

2
log

σ2
c

σ2
a

−
1

2
+

1

2
· σ

2
a + (µa − µc)

2

σ2
c

]

DCS(X2 → X1) =
1

2
log

σ2
c

σ2
a

−
1

2
+

1

2
·
σ2
a + E(X1

p,t,X2
p,t)

[(µa − µc)
2]

σ2
c

while

E(X1
p,t,X2

p,t)
[(µa − µc)

2] = E(X1
p,t,X2

p,t)
[(b⊤

t (X2
p,t − E[X2

p,t]))
2]

= b⊤
t E[(X2

p,t − E|X2
p,t])(X

2
p,t − E|X2

p,t])
⊤]bt = b⊤

t Cov[X2
p,t]bt

Therefore the expression of DCS can be obtained by plugging-in the means
and variances of the two Gaussian distributions,

DCS(X2 → X1) =
1

2
log

b⊤
t Cov[X2

p,t]bt + σ1,t

σ1,t
−

1

2

+
1

2
·
σ1,t + b⊤

t Cov[X2
p,t]bt

b⊤
t Cov[X2

p,t]bt + σ1,t
=

1

2
log

b⊤
t Cov[X2

p,t]bt + σ1,t

σ1,t

a.5.5 Relative Dynamic Causal Strength

The relative Causal Strength is ’relative’ in the sense that the intervention in-
volves an independent copy of a baseline state X2

p,tref
, instead of the lagged

state X2
p,t

′, such that X1
t
′
= a⊤t X1

p,t + b⊤
t X2

p,tref
+ η1t for the counterfactual

condition.

N(µc,σ2
c) = p

do(X1
t :=f(X1

p,t,X2
p,tref

,η1
t))

(X1
t |X

1
p,t,X2

p,t)

The conditional mean and variance for the counterfactual condition should
be revised as:

µc = E[a⊤t X1
p,t + b⊤

t X2
p,tref

+ η1t |X
1
p,t,X2

p,t] = a⊤t X1
p,t + b⊤

t E[X2
p,tref

] + η1t

σ2
c = Var[a⊤t X1

p,t + b⊤
t X2

p,tref
+ η1t |X

1
p,t,X2

p,t]

= Var[a⊤t X2
p,tref

|X2
p,t] + Var[η1t ] = b⊤

t Cov[X2
p,tref

]bt + σ1,t

with Cov[X2
p,tref

] = E[(X2
p,tref

− E|X2
p,tref

])(X2
p,tref

− E|X2
p,tref

])⊤].

E(X1
p,t,X2

p,t)
[(µa − µc)

2] = E(X1
p,t,X2

p,t)
[(b⊤

t (X2
p,t − E[X2

p,tref
]))2]

= b⊤
t E[(X2

p,t − E|X2
p,tref

])(X2
p,t − E|X2

p,tref
])⊤]bt

Therefore, the non-zero-mean Causal Strength with reference states is

rDCS(X2 → X1) =
1

2
log

σ1,t + b⊤
t Cov[X2

p,tref
]bt

σ1,t
−

1

2

+
1

2
·
σ1,t + b⊤

t E[(X2
p,t − E[X2

p,tref
])(X2

p,t − E[X2
p,tref

])⊤]bt

σ1,t + b⊤
t Cov[X2

p,tref
]bt
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Notably, when rDCS is applied to the DeSnap-corrected model (Section 3.2.6.2)
where we don’t have explicit access of the i.i.d. samples for X2

p,t, the term
E[(X2

p,t − E[X2
p,tref

])(X2
p,t − E[X2

p,tref
])⊤] should be expanded as:

E[(X2
p,t − E[X2

p,tref
])(X2

p,t − E[X2
p,tref

])⊤]

= E[X2
p,tX

2
p,t

⊤
]−E[X2

p,tE[X2
p,tref

]⊤]−E[E[X2
p,tref

]⊤X2
p,t

⊤
]+E[E[X2

p,tref
]E[X2

p,tref
]⊤]

= Cov(X2
p,t) + E[X2

p,t]E[X2
p,t]

⊤ − E[X2
p,t]E[X2

p,tref
]⊤

− E[X2
p,tref

]E[X2
p,t]

⊤ + E[X2
p,tref

]E[X2
p,tref

]⊤ (A.29)
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