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Abstract—The growth in variety of Container Network Interface
(CNI) implementations as well as increasing Kubernetes adoption
on bare metal require a thorough assessment of its performance
characteristics. Specifically, the question whether CNI can saturate
network links above 10 Gbit/s is of interest. This paper highlights
an initial approach and central research questions towards the
goal of this assessment. Therefore, we propose a method to acquire
measurements that act as a groundwork for further investigations.
Preliminary results show that a simple setup is not able to saturate
even a 50 Gbit/s link.
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I. INTRODUCTION

With the rise of server virtualization, tightly related aspects
of network virtualization became ubiquitous. Cloud computing
platforms like Kubernetes and OpenStack make it easy to
leverage them in order to enable connectivity among workloads,
multi-tenancy and separation of concerns.

This paper narrows the scope to Kubernetes and investigates
how virtual networking is realized and how it performs.
We therefore pick several representative Container Network
Interface (CNI') implementations and compare them against
each other.

While most of these technologies are adopted in (virtual-
ized) cloud environments with limited and shared networking
resources, we specifically look at their capabilities on physical
hardware utilizing interfaces above 10 Gbit/s throughput.
Considered metrics hereby include possible link saturation,
compute resource utilization and latency. Further, Kubernetes
allows for a multitude of configurations regarding connectivity
among containers. This also applies to the service abstraction
wrapping multiple pods and therefore containers, an ingress
component handling access from outside of the cluster and
network policies maintaining connectivity rules.

The core questions being worked on in the scope of this
ongoing research are (i) whether CNI implementations can
achieve the high throughput rates of their underlying physical
interfaces, (ii) how many connections are necessary to saturate
it and (iii) how Kubernetes network resources affect this
performance.

II. RELATED WORK

Kapocius [1] performed a thorough performance study
of several CNI solutions measuring latency and throughput

Thttps://github.com/containernetworking/cni

amongst other metrics. However, this is focused on link
aggregation of 1Gbit/s links, assessing performance degradation
imposed by the amount of aggregated links.

Later, Qi et al. [2] investigated inter and intra host CNI
performance utilizing 25 Gbit/s network cards. Interesting
metrics presented by them are CPU cycles per packet and
an interface startup time latency breakdown. Yet our core
questions remain unanswered. Compared to them we pursue
a more thorough investigation of the CNI impact on distinct
Kubernetes resources like services, ingresses, meshes and policies
while scaling resources as high as possible.

The relation between network policies and CNI implementa-
tions have been investigated by Budigiri et al. [3]. While they
only found a minor impact on latency, their testing environment
was virtualized with a maximum bandwidth of 5 Gbit/s and
focused on the CNI provider Calico.

III. METHODOLOGY

In order to retrieve meaningful reproducible data, a bench-
marking workflow on a test infrastructure is built. The workflow
is separated in 4 steps. At first the (i) participating servers are
bootstrapped. Therefore an operating system is booted into
memory, including its configuration. Part of this process is the
bootstrapping of Kubernetes with its embedded CNI. Upon
finish, a (ii) benchmarking workload is deployed. This workload
utilizes Netperf> which allows the collection of measurements
for bandwidth and latency. The benchmark itself is run for 10
minutes to generate sufficient data points. Afterwards, the (iii)
data is collected and the (iv) infrastructure is being destroyed.
Figure 1 illustrates that process. The logical test setup for
the benchmarks consists of four servers interconnected with
a single switch. The servers involved are a (a) netperf client,
(b) netperf server, (c¢) Kubernetes master and (d) data sink for
measurements. Figure 2 visualizes this setup.

IV. RESULTS

Preliminary measurements results have been performed on a
test setup built on physical infrastructure. The involved servers
each are based on Intel Xeon E5-2630 CPUs with 2.40GHz
and 256GB DDR4 RAM. Furthermore, each is equipped with a
Mellanox MCX515A (50Gbit/s) network interface card. These
are directly connected to a Mellanox MLX SN2100 switch

Zhttps://hewlettpackard.github.io/netperf/
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Figure 2. Logical test setup

running the Onyx 3.9 operating system. The server operating
systems are Fedora CoreOS 33 with kernel 5.9. The Kubernetes
distribution is a Rancher k3s with version v1.20.

In order to set measurements between two pods and two hosts
into perspective, we first perform some benchmarks without
any network virtualization. These baseline tests validate the
sufficiency and the capabilities of the methodology. Since a
single stream could not utilize the full bandwidth capacity of
our setup, we parallelized this test to 3 simultaneous streams.

Upon determination and verification of this baseline per-
formance, further measurements for pod-to-pod performance
with network virtualization can be performed. Since the
CNI implementation by Flannel® is widely adopted it is
benchmarked first within the scope of this paper. Flannel
can be configured to utilize different approaches for network
virtualization. Here the default configuration (VXLAN) is
applied. The baseline and the Flannel performance benchmark
are highlighted in Figure 3.

These results yield several insights: (i) One TCP connection
cannot saturate a 50 Gbit/s link with this specific CPU,
whereas a second run with (ii) 3 parallel connections is able
to do so. While Flannel’s single performance (iii) is slightly
oversaturating a 10 Gbit/s link, we were not able to achieve
more than ~13 Gbit/s in this scenario. As we can see, latency
and especially its standard deviation is significantly higher than
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Figure 3. Preliminary results of throughput, latency and cpu utilization
measurements
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that for scenarios without any network virtualization. The time
this process can spend in user, system and softirq time is much
lower. Lower softirq directly correlate to lower throughput.

V. CONCLUSION AND OUTLOOK

The hardware/software combination we are currently running
is capable of providing single connections with 10 Gbit/s, but
is certainly quickly limited afterwards. However, we can only
partly answer the introductory question whether CNI is ready
for >10Gbit/s yet. For inter host connections using Flannel with
VXLAN this is not the case. Thus further investigations with
more parallelism, further CNI provider and different Kubernetes
Resources are necessary.

Theoretically better performing eBPF [4] based solutions
seem to be promising, since they are able to avoid parts of the
classic netfilter stack. The impact of service meshes on top of
CNI providers could be another interesting direction.

These measurements opened up a lot of further questions
regarding bottlenecks, strategies and possible performance
tunings. As a consequence we currently pursue further research
to answer those questions. Ultimately, these insights shall be
helpful for deciding which CNI solution fits best for specific
requirements.
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