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Abstract
The most common repercussion of stroke is disability, affecting millions of survivors
globally each year. More than half of the victims develop chronic motor impairments.
There is no efficient standardized therapy for this group. The processes in the brain
of patients who recover their motor ability are poorly understood, even after decades of
research. Finding, observing and tracking neurophysiological correlates of stroke and re-
covery could facilitate the interpretation of the brain activity before and during treatment.
New therapies could be devised and studies designed, based on models and predicitions
derived from these biomarkers.
This thesis presents analyses of neurophysiological data of brain and muscles of healthy
individuals and chronic stroke patients with severe motor impairments. Candidates for
biomarkers are presented and their potential evaluated. First, desynchronization of the
Sensorimotor Rhythm was considered. The brain activity of chronic stroke patients was
analyzed during movement attempts of the paretic arm. There was a correlation between
motor impairment and the evolution of desynchronization strength as well as the hemi-
spheric laterality of the desynchronization. Moreover, the location of the lesion might
have an effect on the strength of desynchronization. Furthermore, there was a significant
difference of the peak center frequency of the rhythm compared between stroke patients
and healthy individuals. Secondly, low-frequency activity of the brain during movement
attempts of the stroke patients increased from before to after the intervention, confirming
previous work in animal models and patients with less severe impairment. Thirdly, a
methodology for the analysis of coherent brain oscillations during movement attempts
is presented. First results show that connectivity within the hemisphere of the lesion as
well as the communication between the hemispheres increased with the therapy. Finally,
an experiment investigating potential effects of intensive robot-based interventions on
muscle activity is presented. Results from four stroke patients did not indicate that the
rehabilitation training induces muscular fatigue.
The final chapter presents complementary work on enhancing existing Brain-Machine
interface therapies. Sensory feedback to the patient is improved by way of displaying
a virtual representation of an exoskeleton for training of movements of hand and arm.
Furthermore, a rehabilitation training was embedded in a gamified environment for ma-
ximizing immersion and motivation of the patient.
The biomarkers presented in these studies could serve as building blocks for modeling
neurorehabilitation and to track and visualize recovery in such enriched training environ-
ments. The transition of this research to new or improved modern therapeutic approaches
in clinical practice could serve millions of stroke victims.
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Kurzfassung
Schlaganfälle kommen jährlich millionenfach und weltweit vor. Die Patienten leiden fast
immer unter verschiedensten Behinderungen, und mehr als die Hälfte entwickelt chroni-
sche Lähmungen. Für diese Gruppe der Patienten gibt es keine wirksame standardisierte
Therapie. Die Vorgänge im Gehirn der Patienten, die ihre Bewegungsfähigkeit nach dem
Schlaganfall wieder verbessern, versteht man auch nach Jahrzehnten der Forschung nur
teilweise. Das Finden, Beobachten und Überwachen von neurophysiologischen Korre-
laten des Erholungsvorgangs könnte helfen, die Gehirnaktivität vor und während einer
solchen Behandlung besser zu verstehen. Durch die Entdeckung solcher “Biomarker”
und davon abgeleiteter Vorhersagemodelle könnten neuartige Therapien entwickelt und
gezieltere klinische Studien entworfen werden.
In dieser Dissertation werden mehrere Analysen von neurophysiologischen Daten der
Gehirn- und Muskelaktivität von Gesunden und schwerst gelähmten chronischen Schlag-
anfallpatienten vorgestellt. Das Potential verschiedener Biomarker wird auf Basis die-
ser Daten bewertet. Zunächst wurde die Desynchronisierung des Sensorimotorischen
Rhythmus’ untersucht. Die Gehirnaktivität von chronisch gelähmten Schlaganfallpati-
enten wurde während der Ausführung von Bewegungen des gelähmten Arms analysiert.
Es ergab sich eine Korrelation zwischen der Erholung der Bewegungsfähigkeit und dem
Verlauf der Desynchronisierung des Sensorimotorischen Rhythmus’ sowie dessen Late-
ralisation zwischen beiden Hemisphären. Die Position der Läsion scheint zudem einen
Einfluss auf die Stärke der Desynchronisierung zu haben. Außerdem gab es beim Ver-
gleich von Schlaganfallpatienten und Gesunden Unterschiede in der individuellen domi-
nanten Frequenz des Rhythmus’. In einer weiteren Analyse wurde die Gehirnaktivität in
niedrigen Frequenzen des Aktivitätsspektrums untersucht. Diese erhöhte sich bei den Pa-
tienten über der Läsion, was Ergebnisse früherer Arbeiten mit Tiermodellen und weniger
stark gelähmten Schlaganfallpatienten bestätigt. Darüberhinaus wird eine Vorgehenswei-
se für die Analyse von kohärenten Oszillationen im Gehirn während der Ausführung von
Bewegungen vorgestellt. Erste Ergebnisse zeigen, dass sich die Verbindungen innerhalb
der beschädigten Gehirnhälfte und zwischen den beiden Gehirnhälften mit der Therapie
verstärken. Zuletzt wird ein Experiment vorgestellt, worin die möglichen Effekte der in-
tensiven robotischen Therapie auf die Muskelaktivität der Patienten untersucht werden.
Die Ergebnisse zeigten keinen ermüdenden Effekt des Trainings auf die Muskeln.
Im letzten Kapitel werden weiterführende Arbeiten für die Erweiterung von bereits exis-
tierenden Brain-Machine interface-Therapien vorgestellt. Ein virtuelles Exoskelett wur-
de zur Verbesserung des visuellen Feedbacks, das die Patienten während des Bewegungs-
training mit dem Roboter erhalten, implementiert. Außerdem wurde hier ein umfassen-
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Kurzfassung

des Training in eine “gamifizierte” Rehabilitationsumgebung integriert, um die Immer-
sion und damit die Motivation der Patienten zu erhöhen.
Die hier vorgestellten Biomarker könnten als Bausteine für Modelle von Neuroreha-
bilitation dienen und den Trainingsfortschritt der Patienten in solchen neuartigen Re-
habilitationsumgebungen beobachtbar und visualisierbar machen. Die Übertragung der
hier vorgestellten Forschungsergebnisse in neue oder verbesserte moderne Behandlungs-
methoden könnten Millionen von Schlaganfallpatienten helfen, in Zukunft ihre Bewe-
gungsfähigkeit wiederzuerlangen.
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Chapter 1

Synopsis

1.1 Introduction

1.1.1 Stroke

Stroke remains common: it is the second leading cause of death globally (Feigin et al.,
2016b). The cerebrovascular attack occurs when oxygen and nutrient supply of parts of
the brain are disturbed. The most common causes are obstructed blood vessels (ischemia:
80% of patients) or internal brain bleeding (hemorrhage: 15% of patients) (WHO, 2001).
In 2017 there were 1.5 M stroke cases out of which 438000 people died with the insult.
There are 9 M stroke survivors currently living in Europe (Luengo-Fernandez et al.,
2019). They suffer from disabilities spanning a wide range of body functions, including
paralysis, sensory disturbances and difficulties with cognition and articulation, depend-
ing on location and severity of the lesion (WHO, 2001; NIH Fact Sheet authors, 2020).
As the lack of blood causes cell death within minutes, emergency care for stroke vic-
tims is imperative. Implementation of stroke units across Europe is underway increasing
quality and overall access (Stevens et al., 2017). Despite the improvement in immediate
response, the disabilities impact the patients’ lives. The most common deficit, contralat-
eral upper limb paresis, is seen in 80% of the patients and remains after discharge from
acute care in almost 30% of those patients with mild to moderate symptoms. Of pa-
tients with complete acute paralysis only 5% regain functional use of their arm (Hatem
et al., 2016). The motor deficit remains in nearly two-thirds of patients after discharge
(Crichton et al., 2016). At home, they need assistance for carrying out activities of their
daily lives. Many cannot return to work, and their participation in society is limited.
Secondary diseases such as depression occur in almost 40% of these patients (Stevens
et al., 2017). Their overall quality of life is greatly limited. As so many are affected this
is not only a great number of dire individual fates but it entails a serious health problem
of global magnitude and high economic impact on societies. Healthcare costs directly
related to stroke were BC 20 in Europe. Indirect costs, including loss of productivity and
those borne by the families and communities of the patients, are estimated to amount to
BC 25 (Stevens et al., 2017). Projections indicate that costs will increase in the years to
come. Application of rehabilitation regimes that help victims regain independence and
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mitigate the economic burden are thus imperative.

1.1.2 Motor neurorehabilitation after stroke
The ability of the brain to reorganize is the foundation of rehabilitative efforts after
stroke. Various processes occur at different times and on multiple levels in the cen-
tral nervous system after stroke. They entail changes in strength of existing synaptic
connections and formation of new synapses. These processes, referred to as “homeo-
static” and “hebbian” synaptic learning, both contribute to changing the brain state after
the insult in order to promote repair. As long as some pathways for routing sensory input
and motor output remain lost function can shift into new circuits, in most cases struc-
turally close to the lesion (Murphy and Corbett, 2009). This reorganization of the brain
is likely to be promoted by basic principles of motor learning: Reduction of kinematic
and dynamic error and variation guided by sensory input (Krakauer, 2006). Integration
of these principles into rehabilitation schemes has been shown to help patients improve
their motor function (Chan et al., 2006). Physical therapy in different forms such as
neuro-developmental treatment (NDT, also known as Bobath approach) is the traditional
approach to rehabilitation for stroke patients, in all stages of stroke. Extensions have
been proposed based on theories of motor learning after stroke. Among these are mirror
therapy, constraint-induced movement therapy and high-intensity and high-quality indi-
vidualized movement therapy aiming at improving performance during day-to-day tasks
(Taub et al., 1994; Ward et al., 2019). Increased intensity and engaging practice of mo-
tor skills increase retention and generalization (Krakauer, 2006). The dose of upper-limb
motor training in currently applied therapy regimes is low (Lang et al., 2009). Therefore,
therapies using upper-limb robots have emerged. These motorized exoskeletons could
help increase repetitions of the movements that patients train during rehabilitation. They
can be used in different modes: (1) rendering the patient completely passive (robot moves
the limb of the patient), (2) on an assistance-as-needed basis (e.g. patient tries to move
and robot supports arm to mitigate effects of gravity), (3) resistive (patient tries to move
and robot tries to hinder certain movements) or (4) including both arms of the patient
in the paradigm (e.g. mirroring the movement of the unaffected limb) (Irastorza-Landa
et al., 2021). However, randomized controlled trials have not confirmed the potential of
this approach to rehabilitation of chronic stroke patients (Lo et al., 2010; Rodgers et al.,
2019).

1.1.3 Brain-Machine interfaces for upper-limb motor rehabilitation
The second pillar of improvement of motor skills is engagement in the task. Increased
engagement can be achieved by way of enhancing the feedback the patient receives and
enriching the training environment. The latter goal was one of the research foci of
this thesis and background, and current efforts are presented in more detail in chapter
7. Severely impaired patients with limited or no residual upper-limb movement cannot

2
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benefit from most of the established rehabilitation methodologies. For this patient group
especially, but not exclusively, enhanced feedback and guidance play an important role
for rehabilitation. In order to elicit neuroplastic changes in the central nervous system
(essentially reinforcing connections between neurons) volition needs to be followed by
an observable action. In the case of severely paralyzed patients, volition is never fol-
lowed by action because the damage to the motor pathways caused by the stroke was
so severe that commands do not reach the muscles and contractions are not triggered.
An emerging approach provides a tool to (re-)implement a closed loop between the will
to move and the actual movement: Brain-Machine interfaces (BMI). They register brain
signals and interpret the activity. Once the intention to move is detected, an effector
is triggered that acts upon the limb of the patient. Such action could be the movement
of a robotic orthosis or targeted electrical stimulation of a group of muscles. As the
limb moves with the exoskeleton or the muscles contract due to the electrical stimula-
tion, the proprioceptive afferent feedback is sent from the limb to the brain. Adopting
the perspective of the brain, the activity in cells representing the intention to move is
followed by sensory feedback of an actual movement. Action follows volition, leading
to neuroplastic changes. Early works which employed decoding of movement intention
non-invasively in humans for the purpose of assisting (in the case of paraplegia) and re-
habilitation of stroke patients were published only in the first decade of the 21st century
(reviewed in Birbaumer and Cohen (2007)). More studies underlining the potential of the
technology to produce changes even in the chronic stage of stroke have been published.
In the first randomized controlled trial with a BMI for upper-limb motor rehabilitation
small significant reduction of impairment was produced in this patient group (Ramos-
Murguialday et al., 2013). The success was replicated by other researchers (Ang et al.,
2014; Ono et al., 2014; Leeb et al., 2016; Mokienko et al., 2016; Kim et al., 2016; Leeb
et al., 2016; Frolov et al., 2017). Many studies have been published to date, employing a
similar methodology. Most use electromagnetic measures of brain activity such as Elec-
troencephalography (EEG) (López-Larraz et al., 2018b). However, some also propose
potential ameliorations for improving feedback. Among these are combinations of ef-
fectors (e.g. exoskeleton and stimulation) or combinations of EEG with other measures
of brain activity or nervous system activity such as Electromyography (EMG) (Sarasola-
Sanz et al., 2017).

1.1.4 Electroencephalography and brain rhythms
EEG is widely applied in clinical practice and research. It measures variations of electri-
cal potentials from within the brain summed on the scalp. Pyramidal cells have unique
properties in the context of EEG. Their apical dendrites are long and perpendicular to
the surface of the cortex, they are located in the upper layers of the cortex and many of
these cells are aligned in parallel to each other. Excitatory input far away from the soma
of the cells creates extracellular negativity. The excitatory potential spreads along the
membrane of the dendrite and causes an efflux of positive charge closer to the soma. The
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extracellular space around the cell body becomes positive. A vertical dipole is created.
Inhibitory input at the far end of the apical dendrite produces a dipole with the opposite
effect. Similar activity of thousands or millions of these neurons (perpendicular to the
scalp) will sum up to the waves measured in the EEG over time. The more afferents of
pyramidal neurons evoke postsynaptic potentials synchronously, the larger the amplitude
of the wave measured in the EEG. Such highly synchronized activity has been observed
at various frequencies and locations during different mental states. These synchronized
waves have been classified into brain rhythms, visible during sleep (δ and θ waves, 0.5 –
3.5 Hz and 4 – 7.5 Hz) or during the awake resting state (α and β waves, 8 – 13 Hz and
13 – 30 Hz) (Kirschstein and Köhling, 2009). Beside various potential connections of
these rhythms to psychological concepts such as mental workload and attention, the latter
are of specific interest for Brain-Machine interfaces. The rhythm in the alpha frequency
range, if localized around the motor cortex, is termed sensorimotor rhythm (SMR) and
plays an important role in decoding motor intention (Pfurtscheller and Lopes da Silva,
1999; Klimesch et al., 2007).

In comparison to other invasive and non-invasive measures of brain-activity utilisa-
tion of EEG is inexpensive and not restricted to a specific environment. These are the
reasons why it is so widely used in clinical practice and research, which, in turn, made
the technique a logical choice for the research focus of this study: Neurophysiological
biomarkers of stroke and neurorehabilitation in chronic severe stroke.

1.2 Biomarkers
Biomarkers, short for “biological markers”, are defined as indirect measures of processes
in the human body that could be used as indicators of certain states (e.g. of a disease)
(Boyd et al., 2017). They are in essence accurately and reproducibly measurable medical
signs on a functional, physiological, biochemical, cellular or molecular scale (Strimbu
and Tavel, 2010; WHO, 1993).

For clinical therapies the outcome is paramount, that is, in the case of acute stroke, sur-
vival of the patient and then improvement of function. In clinical studies the endpoints
have been oriented at the outcome of treatments: For example, the question if a new treat-
ment approach is effective (i.e. improves function or not) is always measured on motor
scales that relate to clinical practice such as ARAT or the WOLF test (for rehabilitation
of paralysis after stroke) (Carroll, 1965; Wolf et al., 2001). They reflect motor improve-
ment of the patient and are easily applicable in clinical practice. However, in stroke these
might not be the optimal measures because clinical trials for new treatment approaches,
specifically in severe chronic stroke, do only achieve small changes on clinical scales
(López-Larraz et al., 2018a). Moreover, Krakauer and Carmichael point out that in se-
veral studies on chronic stroke there are some patients who do not improve and very few
who improve many points on the clinical scales. It is unknown if these patients are just
statistical outliers or if they stem from a different distribution (Krakauer and Carmichael,
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2017, p. 184). Other markers that reflect processes in the central nervous system might
be better suited to indicate changes of disease state, understand these changes and pro-
vide a finer granularity of state differences. For example, many severely paralyzed stroke
patients cannot actively extend their fingers but still show some voluntary residual mus-
cle activity (Ramos-Murguialday and Birbaumer, 2015). Clinical scales measuring arm
function would exhibit low or no scores in this case. However, a biomarker based on
EMG activity could uncover some activity, thus provide more insight and guide subse-
quent actions: Inclusion in a study on stroke rehabilitation that employs EMG activity or
pursuit of a specific treatment pathway.

Clinical practice and research alike would benefit from the use of biomarkers. Stroke
is heterogeneous in terms of the location and volume of the damage to the brain, which
leads to diverse cognitive and behavioural deficits. With an increase of a priori insight
through introduction of biomarkers, clinical trials could benefit from informed stratifica-
tion of patients. Study design would be more focused and efficient and thus outcomes
would likely be more easily interpretable (Strimbu and Tavel, 2010). For clinical prac-
tice biomarkers could inform triage and help patients and therapists set appropriate goals
and choose optimal rehabilitation pathways, including type of training, dose and inten-
sity (Boyd et al., 2017). Furthermore, research and clinical practice could both benefit
from collection of (easily obtainable) objective measures at multiple time-points during
a treatment.

1.2.1 Electrophysiological biomarkers of motor deficits after stroke
Stroke victims often suffer from multiple repercussions of the damage to the brain:
Among these are sleep deficits and increased daytime sleepiness, aphasia, depression,
attention deficits, cognition deficits, neglect, language and coordination deficits, all of
which are targeted during rehabilitation and could benefit from biomarkers, as has been
pointed out by Boyd and colleagues (Boyd et al., 2017). In the present work, there is
a focus on motor deficits as for many patients they are the most severe factor limiting
participation. There is a variety of measures employing different techniques. Clinical
measures of function such as ARAT and the WOLF motor test are widely applied in
clinical practice. The Fugl-Meyer scale, which measures impairment, is more elaborate
and is mainly administered in clinical trials (Fugl-Meyer et al., 1975). The scale predicts
long-term outcome of treatment better than demographic and structural markers (Coupar
et al., 2011). Neuroimaging biomarkers are generally more difficult to obtain because
of the complexity of the technology involved. With MRI (T1-weighted) structure and
integrity of the cortex are measured and can hint at the potential damage, but there is
not necessarily a good correlation between lesion volume and location and the paraly-
sis and motor outcome after rehabilitation (Coupar et al., 2011). However, integrity of
white matter pathways (using DTI) is an indicator of motor performance and is a better
predictor of motor outcome than lesion volume alone (Stinear et al., 2017). Functional
MRI provides measures of focal and network activity of the cortex during rest, volun-
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tary or passive movements. There are indications that activity more similar to that of
healthy controls implies better motor performance (Stinear et al., 2017). Furthermore,
laterality of activity between the brain hemispheres might predict motor performance
(Ramos-Murguialday et al., 2013).

Combination of non-invasive brain stimulation and myoelectric activity as biomarkers
have been investigated, too. During measurement of Motor Evoked Potentials (MEPs)
the brain (the motor cortex) is stimulated non-invasively using a strong magnetic field
(Transcranial Magnetic Stimulation – TMS), and the response of the limb muscles is
captured with EMG. If the forced activation command travels from the cortex to the
muscle, a contraction is triggered. In those patients that show an MEP the motor outcome
after rehabilitation is better than in those who do not (Stinear et al., 2017).

The use of EEG in clinical practice is common, and data of many patients is poten-
tially available. However, the utilisation of biomarkers for replacing more expensive
(resonance imaging) or augmenting less specific (functional clinical scales) markers has
not yet had a breakthrough in clinical practice. In research, there is increasing evidence
that various features that are captured by the EEG correlate with the acute state of impair-
ment of the patient and with recovery in different stages. These features include Sensory
Evoked Potentials (SEPs), cortical oscillatory signals, measures of functional connecti-
vity such as coherence and measures of interhemispheric balance of brain activity. First
reviews that focus on the potential of these features as biomarkers were published in the
last decade (Finnigan and van Putten, 2013; Rabiller et al., 2015; Tedesco Triccas et al.,
2019). In addition to the overview that they provide, table 1.1 lists current research on
electromagnetic biomarkers of stroke investigating the aforementioned features in cross-
sectional and longitudinal studies at different stages of stroke and with varying degrees
of impairment.

Reference
Study design
/ measured
time points

Time since
stroke

No. of
stroke

patients

Severity of
the impairment

Measures
used

Platz et al. (2002) Cross-
sectional

acute, suba-
cute

9 moderate,
mild

Spectral analysis

Gerloff et al.
(2006)

Cross-
sectional

chronic 11 moderate,
mild

Cortico-cortical
connectivity,
spectral analy-
sis, TMS for
cortico-spinal
integrity

Kaiser et al.
(2012)

Cross-
sectional

subacute 29 ESS: mean
69

Spectral analysis
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Pellegrino et al.
(2012)

Cross-
sectional

chronic 7 NIHSS:
mean 8.4

Spectral analysis,
interhemispheric
coherence during
rest

Ono et al. (2014)
*

Longitu-
dinal

subacute,
chronic

12 severe Spectral analysis

Tangwiriyasakul
et al. (2014)

Longitu-
dinal

acute 8 severe, mo-
derate, mild

Spectral analysis

Nicolo et al.
(2015)

Longitu-
dinal

acute 24 NIHSS
mean 13

Connectivity

Pichiorri et al.
(2015) *

Longitu-
dinal

subacute 28 moderate,
mild

Spectral analysis,
connectivity

Wu et al. (2015) Longitu-
dinal

chronic 12 moderate,
mild

Connectivity

Park et al. (2016) Cross-
sectional

subacute 9 severe, mo-
derate, mild

Spectral analysis

Wu et al. (2016) Cross-
sectional

acute
(ER/ICU)

24 NIHSS 1 to
19

Partial least
squares models,
Spectral analysis

Chen et al. (2017) Cross-
sectional

acute,
subacute,
chronic

37 severe, mo-
derate, mild

Connectivity,
predictive mod-
elling

Philips et al.
(2017)

Longitu-
dinal

chronic 30 severe, mo-
derate, mild

Connectivity

Pichiorri et al.
(2017)

Cross-
sectional

subacute 30 severe, mo-
derate, mild

Connectivity,
TMS for mea-
surment of
cortico-spinal
tract integrity

Thibaut et al.
(2017)

Cross-
sectional

chronic 55 moderate,
mild

Spectral ana-
lysis, TMS for
measurement of
motor threshold

Biasiucci et al.
(2018) *

Longitu-
dinal

chronic 27 severe, mo-
derate

Connectivity

Mane et al.
(2019) *

Longitu-
dinal

chronic 19 moderate Spectral analysis,
connectivity

Saes et al. (2019) Cross-
sectional

chronic 21 severe, mo-
derate, mild

Spectral analysis
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Krauth et al.
(2019)

Longitu-
dinal

acute, suba-
cute

4 severe, mo-
derate, mild

Cortico-muscular
coherence

Bönstrup et al.
(2019)

Longitu-
dinal

acute, suba-
cute

33 severe, mo-
derate, mild

Spectral analysis

Table 1.1: List of current works investigating features of the EEG with the potential to
be used as biomarkers

This overview illustrates the increase of research of biomarkers in this field in the last
decade. The longitudinal studies are clinical studies on rehabilitation approaches, often
including a neural control paradigm (i.e. a BMI), in which electrophysiological markers
can be correlated with behaviour (marked with a * in the table). In acute patients, there
are indications that ipsilesional loss of power (i.e. interhemispheric imbalance of power)
is an indicator of poor outcome (Finnigan and van Putten, 2013). Furthermore, changes
of relative power during movement (sensorimotor desynchronization) correlated with re-
covery (Tangwiriyasakul et al., 2014). There are indications that laterality of relative
power correlates with impairment (Kaiser et al., 2012). Recent works expanded inves-
tigations to lower frequencies (δ and θ ) and found correlations to motor impairment,
too (Bönstrup et al., 2019). Connectivity measures such as coherence, mainly in the
beta frequency, correlate with recovery (Nicolo et al., 2015; Chen et al., 2017). More
specifically, coherence in the primary motor cortex over the lesion and the rest of the
cortex predicted recovery until the subacute stage (Wu et al., 2016). One study found
that resting-state coherence in the higher β band correlated best with motor performance
(Pellegrino et al., 2012).

Similar investigations have been performed with patients in the chronic stage. How-
ever, many included only a small number of subjects and mixed different degrees of
impairment severity, which is likely to confound correlations. The group of patients with
severe chronic upper-limb impairment is especially dependent on the development of a
biomarker different from the ones in use today, because these patients do not show the
ability to actively extend some or all of their upper-limb joints, which means that clinical
scores do not capture potential improvement. No improvement (on a clinical scale and
of function) implies in most health systems of the world that the patients do not receive
sufficient (if any) therapy any more. This neglect in the chronic phase leads to cessation
of application of any therapeutic tools.

Establishing biomarkers that predict outcome in these patients reliably, that track re-
covery with finer granularity and that can be captured using inexpensive electrophysio-
logical techniques is not trivial but necessary to overcome disregard of this patient group.

8



1.3 Objectives and overview

1.3 Objectives and overview
This thesis has two main objectives: (1) Exploring the potential of electromagnetic bi-
omarkers for predicting outcome and tracking recovery in this specific subgroup of pa-
tients and (2) advancing the state-of-the art of rehabilitation paradigms employing neural
control by enhancing the feedback to the patients.

The first objective was pursued by investigating various features of the EEG in two
unique datasets of severely impaired chronic stroke patients. The efforts are arranged
into five chapters and grouped by electromagnetic features of the neurophysiological
signals, the aptitude of which as biomarker for stroke and/or recovery is discussed.

Chapter 2: Desynchronization of the Sensorimotor Rhythm Two studies are pre-
sented in this chapter. They both focus on relative power of the sensorimotor motor
rhythm during movements. The publication “Brain oscillatory activity as a biomarker of
motor recovery in chronic stroke” (Ray et al., 2020) investigated how movement-related
desynchronization of sensorimotor oscillations track recovery during the course of a re-
habilitation intervention based on BMI. The results emphasize the importance of latera-
lization of sensorimotor brain activity. The peer-reviewed conference paper “Movement-
related brain oscillations vary with lesion location in severely paralyzed chronic stroke
patients” (Ray et al., 2017) focussed on the relation between the location of the lesion
and the strength of desynchronization of oscillations.

Chapter 3: Spectral characteristics of the Sensorimotor Rhythm A previous con-
ference publication, investigating the stability of sensorimotor oscillations over the course
of a rehabilitation intervention, was a precursor to the study presented here (Ray et al.,
2018). Results indicated notable differences in the central peak frequency of the senso-
rimotor oscillations between subgroups of stroke patients. The chapter ”Sensorimotor
oscillations in severe chronic stroke” describes a more concise processing pipeline to
automatically parametrize broad-spectrum oscillations. These parameters are shown de-
scriptively, their aptitude as biomarkers for stroke is evaluated and they are compared to
those of a healthy population. This study pooled data from five datasets in order to create
a larger data basis.

Chapter 4: Low-frequency oscillatory brain activity Studies in animal models of
stroke and human stroke victims have only recently indicated that low-frequency oscil-
lations, i.e. oscillations between 3 and 5 Hz, could serve as a biomarker for recovery in
stroke and even as a target for rehabilitation. The chapter ”Low frequency oscillations
in upper limb motor recovery in severe chronic stroke” investigated a chronically and
severely impaired population and found dualities to previous studies. The most impor-
tant finding is that low-frequency oscillations increase from before to after an interven-
tion, which adds to current knowledge. However, correlations with clinical measures of
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impairment are less clear and need further investigation.

Chapter 5: Coherent brain oscillations This chapter describes the effort to extract
various connectivity measures from the brain activity of stroke patients and to investi-
gate their potential as biomarkers for stroke and motor recovery. The study was initially
based on numerous previous studies that indicated correlations between recovery and
connectivity measures. The approach that has been proposed in literature is parametric.
The connections between different areas of the brain are modelled as a multivariate au-
toregressive process. However, the implementation of the chosen approach proved to be
challenging and had some methodological drawbacks. The merit of the work presented
in the chapter lies in exploring a non-parametric approach for deriving meaningful con-
nectivity measures using a statistical threshold for significant coherence values between
different sources. This methodology has not been widely used before but has several
advantages over the parametric approach.

The second objective was pursued within the framework of a comprehensive pilot
study where a hybrid electroencephalographic and electromyographic interface (hBMI)
for training of severely impaired patients was created, advancing the state of the art
of neural interfaces for rehabilitation. The chapters present works carried out towards
increasing engagement in the training by enhancing feedback to the patient.

Chapter 6: Muscle fatigue in stroke rehabilitation using neural interfaces This
chapter presents the peer-reviewed conference paper “Electromyographic indices of mus-
cle fatigue of a severely paralyzed chronic stroke patient undergoing upper limb motor
rehabilitation” (Ray et al., 2019). It is well-known that dose and intensity have an ef-
fect on motor learning. Increasing the intensity for rehabilitation training for impaired
patients whose limbs have not been used in a long time could lead to effects such as
muscular fatigue. As has been reported in a healthy population, fatigued muscles exhibit
electromagnetic signals different from rested ones. If the signals captured from a muscle
change due to fatigue this could have implications for decoding in the context of inter-
ventions based on hBMIs that exploit EMG. The study presented shows a methodology
for comparing muscle activity of chronically impaired stroke patients and of a healthy
population for training tasks used in a very specific setting.

Chapter 7: Increasing engagement - Enhancing feedback The chapter presents two
complementary projects on enhancing existing Brain-Machine interface therapies.

Section 7.3: Improving visuo-proprioceptive feedback: Interactive 3D visualiza-
tion of the orthosis In the study on the hBMI (Dataset 2, section 1.3.1, see below) the
patients were asked to move the exoskeleton that was connected to their arm towards
individual previously specified targets on the experimental table using their brain acti-
vity and residual muscle activity. Steering the system to the exact position proved to be
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challenging as the patients hat do memorize the target position. To solve this issue a
virtual three-dimensional representation of the exoskeleton and the target positions was
developed and used in the experiments with the patients. The section describes the im-
plementation and features of this software.

Section 7.4: Improving immersion and training motivation: The AMoRSA setup
The AMoRSA setup is an augmentation of the hBMI system. It includes a gaming en-
vironment with which the patients can interact. Patients shape a virtual garden to their
liking while performing the tasks of the rehabilitation training. The section motivates
this project and provides details on the implementation.
The dissertation is concluded by a short chapter that provides auxiliary information sup-
porting repeatability of the results obtained and providing meta-data on the work. It
comprises a description of the general structure of the code produced for the analyses,
which is partly publicly available and some details on the implementation of algorithms
employed. Moreover, the software development project “Multicam” is introduced, which
allows recording audio and video of experiments from multiple points of view and can be
triggered programmatically over the network. Its main purpose is to integrate functional-
ity for recording experimental sessions in the laboratory into the experimental software.

1.3.1 Datasets

This section provides a summary of the nature and origin of the data analyzed for this
work. Both are unique datasets of chronic stroke patients undergoing a rehabilitation
intervention. The specifics of the portion of the datasets analyzed is presented in detail
in each chapter and the studies.

Dataset 1: BMI in chronic stroke This comprehensive study was conducted by one
of the advisors of this thesis, Dr. Ramos-Murguialday. It was published as Ramos-
Murguialday et al. (2013) and was the first randomized controlled trial showing motor
improvement of the upper limb of severely impaired chronic stroke patients after BMI
rehabilitation training. Patients used their brain activity to drive a robotic exoskeleton
that was connected to their arm. The orthosis initiated a one-dimensional movement
on a pre-defined trajectory (extending the arm and/or extending the fingers) once the
patients exhibited the “desired” brain activity. In the rehabilitation period they trained
approximately two hours per weekday for four weeks in a row. The dataset comprises a
plethora of clinical scales, self-reports, questionnaires, structural and functional imaging
data, electroencephalographic and electromyographic recordings and kinematics. Most
of the measures were recorded at multiple time-points (before, immediately before, after
and sixth months after the intervention). Kinematics, EEG and EMG were registered
continuously during the intervention. The focus of this thesis are electromagnetic bio-
markers and their correlation to clinical scales. That is why the four main components
of all analyses were: the Fugl-Meyer scale (FMA), resting-state EEG, EEG and EMG
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of self-paced finger extension attempts of the healthy and the paretic hand and EEG and
EMG during control of the exoskeleton. The clinical scale, the resting-state EEG and
EEG and EMG of the finger movements were recorded in screening sessions before and
after the intervention.
The clinical scale was recorded according to the manual (Fugl-Meyer et al., 1975). The
scale measures the degree of impairment by asking the patient to perform various move-
ments of isolated joints. If the movement is perfect (similar to a completely healthy
limb) two points are added to the score. If there is some imperfect movement one point
is added. If there is no movement no points are added. The lower the sum of scores
the greater the impairment (more information on the movements can be found in section
2.6.6).
The resting-state EEG was recorded while the patients kept there eyes open and focused
on a marker on a screen or on the wall for two minutes or more. They refrained from any
movement during that time. This paradigm is necessary for assessing spontaneous brain
activity, e.g. oscillatory activity or connectivity between different centers in the brain.
Parts of the analyses also include resting-state data that was recorded in the same manner
but in multiple shorter intervals in alternation with the finger extension task.
EEG and EMG activity during finger extension (attempts) was recorded while patients
were asked to try to actively extend and release their fingers after an audiovisual cue.
The task was repeated for both hands (paretic and unaffected).
EEG and EMG activity during control of the exoskeleton was recorded continuously in
the rehabilitation period. Relative power differences between resting (not trying to move)
and movement (trying to move the paretic arm/hand) triggered the movement of the or-
thosis. In each repetition the patients rested around 4 seconds, they were then cued to
prepare for the movement. Subsequently, a cue prompted them to try to move and they
could control the exoskeleton for 5 seconds. Then the cycle repeated.
More information on the neurophysiological recordings can be found in section 8.1.6.

Dataset 2: Hybrid EEG-EMG BMI in chronic stroke The data of this comprehen-
sive study are comparable to the ones described before in dataset 1. The main publication
presenting this study is in preparation. There were screenings before and after a reha-
bilitation period. During the intervention patients trained with the system over a period
of four weeks in similar fashion (there was a break of two weeks after ten days of trai-
ning). However, there are some notable differences: The exoskeleton used here enabled
the patients to control seven degrees of freedom including two-dimensional reaching and
finger movements. The study evaluated an enhanced decoding strategy that included
EMG activity from 14 muscles for high-dimensional control. Conditions such as EEG
during sleep and TMS priming were added to the paradigm in order to answer additional
research questions.

The clinical scales, resting-state EEG, EEG and EMG during finger extension and
EEG and EMG during hybrid control of the exoskeleton were recorded the same way as
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in the previously described study. It is noteworthy, though, that the EEG signals were
sampled from twice the number of channels, and activity of 14 muscles of the paretic arm
were included instead of only four. Section 7.2 provides more details on the procedures.

1.4 Results and discussion

Almost one third of stroke patients show long-lasting severe paralysis. In therapy these
patients are largely neglected since they do not benefit from current approaches to re-
habilitation due to their severe impairment. However, according to recent research this
patient group has the potential to improve (López-Larraz et al., 2018a). Even though the
total number of patients included in those trials is small, there is variety in the outcomes.
Some patients improve many points on clinical scales while others show no improvement
(see Ramos-Murguialday et al. (2013) as an example). Changes that are meaningful for
activities of the daily lives of the patients have not been achieved yet for the severely
paralyzed. Clinical scores do not uncover the differences between those who benefit and
those who do not. The studies presented in chapters 2 through 6 present puzzle pieces of
the bigger picture hidden beyond the coarseness of the clinical scales.

All of the studies on EEG focused on the analysis of the frequency domain. They are
categorized below by the features investigated. Results are presented in summary and the
implications discussed. The last publication focussed on electromyography and is also
presented and discussed briefly here.

1.4.1 Event-related Desynchronization – Relative power changes of
the Sensorimotor Rhythm during movement

Event-related Desynchronization (ERD) is a change of ongoing EEG activity that is spe-
cific to the alpha frequency range. During wakeful resting an oscillation with power
considerably larger than the underlying noise floor of the EEG is measurable. During
planning and execution of movements, foremost of the limbs, the power of this oscillation
over the contralateral motor areas is reduced (Pfurtscheller and Lopes da Silva, 1999).
The reason for this phenomenon is synchronous activity of hundreds of thousands of
cortical cells, mainly triggered by a feedback loop with thalamic afferents and efferents
(Steriade et al., 1990). Synchronous membrane potentials are summed to the recorded
gross potentials in the EEG. As soon as more specific activity of subgroups of cells takes
place, for example during execution of a limb movement, less cells fire in synchrony and
the power of the summed potential in the EEG is reduced (hence the term Event-related
Desynchronization). The relative change of power between the resting condition and
the activity condition is expressed as percentage. ERD was a major research focus two
decades ago. In the last decade, several studies investigated the effect of stroke on ERD.
Early after stroke ERD is reduced over the lesion and progresses towards normal activity
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during recovery (Tangwiriyasakul et al., 2014). In subacute patients with mild to mo-
derate impairment motor improvements were also accompanied by an increase of ERD
(Platz et al., 2002), and patients with severe motor deficits showed higher probability for
motor improvements with increased ERD (Pichiorri et al., 2015). A first characterization
of ERD in chronic stroke has been attempted (Kaiser et al., 2012). These studies indi-
cated that recruitment of more cells specific to the task during spontaneous recovery or
rehabilitation training is measurable by ERD. These results encouraged the two investi-
gations. The aim of Study 1 (Ray et al., 2020) was to generalize the previous discoveries
to the chronically and severely paralyzed. We analyzed the evolution of ERD throughout
a BMI-based rehabilitation intervention (Dataset 1, section 1.3.1). We found a significant
correlation between the change of ERD and motor improvement. Most importantly, we
showed that the initial ability to desynchronize (relative to the median of the group of
patients analyzed) modulated this correlation: In those patients who had a stronger ERD
in the beginning, increase of the ERD was accompanied by motor improvement. In the
patients with relatively weaker initial ERD, the opposite was the case: weakening of the
ERD was accompanied by motor improvement. At first this result partly contradicted
our hypothesis that stronger ERD would indicate better motor improvement. However,
inclusion of the unaffected hemisphere in the analysis revealed that those patients who
reduced their ERD and still improved reduced contralesional ERD even more. This dis-
covery supports the importance of the lateral (im)balance of brain activation, also found
with resonance imaging (Ramos-Murguialday et al., 2013).

Imaging studies have also indicated that the location and volume of the lesion corre-
lates with function after stroke (Lindenberg et al., 2010; Pineiro et al., 2000). In study
2 (Ray et al., 2017) we investigated how the generation of ERD during movement is
influenced by the location of the lesion. Stratification of the patients was carried out
by separating those with damage to the motor cortex from those with only subcortical
lesions. Due to the relatively low number of patients compared to the heterogeneity of
the lesion volumes this is a coarse separation. However, the results showed a trend to-
wards weaker average ERD (mean difference: 16 percentage points) in the group with
inclusion of the motor cortex in the lesion. The reason might be that due to the damage
to cortex there are less cells contributing to the synchronous activity. The difference be-
tween synchronous and desynchronized activity is thus smaller, leading to lower average
ERD.

These studies showed that ERD is an interesting candidate for a biomarker of stroke
and recovery. The results have implications for the design of BMI interventions based on
ERD (most are). Firstly, initial ERD could inform the course of the intervention: either
strengthening ipsilesional ERD or increasing interhemispheric imbalance of the ERD
towards the lesion. Secondly, ERD could be used to track recovery. Thirdly, even though
location of the lesion did not influence the results of the first study, the observations of
the second study should be considered for the stratification of patients in future studies
as ERD might be an indicator of cortex integrity.
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1.4.2 Parameterization of the Sensorimotor Rhythm during resting

Characteristics of the SMR have been investigated since the inception of human EEG
recordings. The average peak frequency of the SMR for humans was determined, and
later also the stability of the peak frequency for individuals over time (Kuhlman, 1978).
Studies also found an average slowing of the rhythm with age (Scally et al., 2018).

Despite the abundance of research, characterization of the sensorimotor rhythm was
still lacking in chronic stroke patients. In the chronic stroke patients peak center fre-
quency and absolute power of the sensorimotor rhythm might differ between patients
depending on factors such as lesion location and progress in the rehabilitation training.
Preliminary results were presented at FENS 2018 (Ray et al., 2018). Study 3 is an ex-
tension and completion of this work, using a more advanced methodology. The chap-
ter presents a pipeline for fully automatic analysis and comparison of characteristics of
the SMR within and between patients: Peak center frequency and absolute power. The
pipeline is employed to extract these characteristics from data of chronically impaired
stroke patients and healthy volunteers (Dataset 1 and 2, section 1.3.1 and additional
datasets).

The processing pipeline employs an algorithm for fitting of fractal noise and gaussian
bell curves to model the noise and the peaks of the EEG power spectrum. The center
frequency of the SMR was parametrized in all patients (and healthy volunteers). There
was no statistical difference of center frequency between hemispheres, which confirms
the observation of “mirrored” oscillation characteristics present in healthy subjects. Si-
milarly, the absolute power of the SMR was not different either. Moreover, there was no
significant change of the center frequency or the power from before to after the interven-
tion.

These results confirm what has been found in healthy populations: In stroke, the (de-
terministically identified) peak center frequency of the SMR is stable within subject and
over time. This is particularly interesting in the context of BMI-based interventions. In
these studies control frequencies are often chosen based on the individual frequency of
the SMR. The present study shows that the SMR does not change due to the intervention
and does not need to be adapted. Moreover, decisions about the SMR of the hemisphere
of the lesion (such as the choice of the individual feedback band in a BMI-based inter-
vention) can be sanity-checked by comparison to the unaffected hemisphere.

Another interesting result of the study was that the peak center frequency and the
absolute power of the SMR were significantly lower in stroke patients than in healthy
volunteers. The control-group was not age-matched, but due to the large age range in the
stroke group “age” could be ruled out as the only factor for this effect. The damage to the
thalamocortical circuits could, after all, have had an influence on the EEG, as quantified
by the generally lower peak center frequency.
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1.4.3 Low frequency oscillations in upper limb motor recovery in
severe chronic stroke

Low frequency oscillations (LFO) have been shown to be disturbed after stroke and to
reappear with recovery. The works of Ramanathan and colleagues and Bönstrup and col-
leagues presented evidence that low frequency oscillations could serve as a biomarker of
stroke and recovery (of motor function) (Ramanathan et al., 2018; Bönstrup et al., 2019).
Their investigations focused on animal models and acute and subacute stroke patients,
respectively. In the present study (chapter 4) LFOs increased significantly from before to
after a BMI-based intervention in severely paralyzed chronic stroke patients. Bönstrup
et al. correlated the mean power of the LFOs with clinical scales and found weak corre-
lations. In the analysis presented, no correlation between LFOs and motor recovery was
found. However, I show that it is the group of patients receiving contingent feedback
who contributes most to the pre-post difference of LFOs. These patients were also the
ones who improved their motor function with the intervention. This observation hints at
an effect of the intervention. A correlation with impairment might thus be observed in a
larger cohort.
In those patients with lower initial LFO a larger difference of LFO from before to after
the intervention was observed. This larger “repairing” effect could be an indication of
LFO being an indicator of the damage to the motor networks (which is under debate).

The study of Ramanathan et al is a great example of how investigation of biomar-
kers could increase understanding of recovery processes after stroke (Ramanathan et al.,
2018). Furthermore, in their study LFOs were exploited as a target for electrical brain
stimulation. LFOs can thus directly be used to induce (or boost) recovery. Together with
the works of Bönstrup and colleagues (Bönstrup et al., 2019) the results presented in
chapter 4 are encouraging for biomarker research in human stroke victims.

1.4.4 Coherent oscillations - Brain connectivity in chronic stroke
Brain function relies on localized and large-scale activity of neurons in ensembles and
networks. The concept of connectivity is an umbrella term comprising all measures that
capture the interaction within these networks (Horwitz, 2003). Unilateral limb move-
ments rest upon a complex network of inhibitory connections between and excitatory
connections within the hemispheres that is disrupted after stroke. Recent studies have
shown that connectivity features extracted from EEG recordings predict motor recovery
in the acute, subacute and even in the chronic phase to some extent (Nicolo et al., 2015;
Pichiorri et al., 2015; Pellegrino et al., 2012). Functional changes due to lesions have also
been described (Aerts et al., 2016). These findings motivated the present study which
aimed at describing connectivity within the brain under the stroke pathophysiology in the
chronic patients. A method that allows assessment of directional communication within
networks of nodes (i.e. EEG channels) was implemented together with an appropriate
estimator for a critical value (i.e. a significance threshold). Partial Directed Coherence
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as presented by Baccalá and colleagues relies on modelling the data as an autoregressive
process (Baccalá and Sameshima, 2001). If the model order is unknown, which is the
case in real-world EEG data, noise can lead to spikes in coherence, which might lead to
false conclusions about connections between nodes. Schelter and colleagues proposed a
significance threshold for Partial Directed Coherence that is derived from the statistical
properties of the auto-regressive model (Schelter et al., 2005).

This combination of methods was implemented and used on Dataset 1 (section 1.3.1).
Connectivity was assessed in the longitudinal data of patients activating an exoskeleton
with their brain activity to move their paretic arm in a total of 17 training sessions.

The results were encouraging at first. In parts, however, the results remained obscure:
in cases in which the unit of the EEG data was different (mV instead of V) the algo-
rithm failed and could not provide proper estimation of the significance threshold. This
shifted the focus of the study towards methodological exploration. First, the method for
computing the significance threshold was assessed using example data from the original
paper. Different implementations in Python and Matlab were compared. The example of
the original paper of Schelter and colleagues could not be replicated exactly, no matter
the method. This called the applicability of the method into question and encouraged the
implementation of a different approach that does not depend on modelling the data as
autoregressive process. It was described in the paper of Dhamala et al (Dhamala et al.,
2008). The noise covariance matrix and transfer function necessary for arriving at Par-
tial Directed Coherence values are derived directly from the spectrally transformed data.
This methodology is less widely used but comparison to the parametric method using
the same example data confirmed its validity. The nature of the EEG data enables com-
parison of two conditions such as “movement” and “no movement”. The significance
threshold for the PDC obtained was computed by comparing these conditions using per-
muation clustering (Maris and Oostenveld, 2007).

The first results are in line with previous findings. Connectivity increased within the
hemisphere of the lesion in the higher β band and the communication of the hemisphere
of the lesion and the healthy hemisphere increased, too.

These results encourage further investigation that should address the following points:

1. The general structure of the nodes in the system: which brain areas communi-
cate with each other? How does communication change from before to after the
intervention?

2. Quantification and statistical testing of these changes

3. Comparison between the patients and healthy volunteers to underline the signifi-
cance of the changes found
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1.4.5 Fatigued muscles during chronic stroke rehabilitation training

Intensive exercise such as weight lifting fatigues muscles. The causes are a smaller
amount of recruited motor units in the nervous system, an accumulation of metabo-
lites and altered conduction velocity of fibers in the muscle. It is well known that these
changes influence amplitude and spectrum of the EMG (González-Izal et al., 2012). In
rehabilitation employing classification of myoelectric signals and hBMI studies (such
as the one described as Dataset 2, section 1.3.1) the decoding and subsequent orthotic
control rely on accurate extraction of features from EMG. Changes of these features due
to fatigued muscles could have detrimental effects on performance. The phenomenon
might emerge particularly in severely paralyzed patients who are not able to move there
limbs. Lack of use weakens muscles and causes them to get fatigued more easily when
exercising.

In Study 6 (Ray et al., 2019) a framework for comparing myoelectric measures of
stroke patients with those of healthy volunteers was created. The focus lay on a very
specific task type. In the hBMI study (Dataset 2, cf. section 1.3.1) and in many other
studies stroke patients performed forward reaching movements. When reaching a target
centered in front of them, they extend the elbow using combined contractions of various
muscles. One major contributor to this movement is the Deltoidus Anterior muscle on
the shoulder.

Healthy volunteers would normally not become fatigued while performing the rea-
ching movement. Therefore, an apparatus was designed and built that allowed perfor-
ming controlled forward elbow extension with an opposing force. Healthy volunteers
were asked to use the apparatus until they could not extend their elbow any more while
EMG was measured form the Deltoidus muscle. Evaluation showed that the apparatus
induced fatigue in most subjects. We applied two myoelectric measures of muscle fa-
tigue to the data recorded: Mean spectral frequency (Bigland-Ritchie et al., 1981) and
the Dimitrov Spectral Index (Dimitrov et al., 2006). We did not find a significant aver-
age difference of these EMG measures compared at the beginning and at the end of the
fatiguing session. However, for half of the subjects, regression over the fatigue indices
computed for each individual contraction showed an overall linear decrease. This finding
shows that the setup can induce muscle fatigue and that the methodology of analysis cap-
tures fatigue even though the contractions are dynamic and the muscle under observation
is small.

After testing the EMG measures on healthy participants, the fatigue indices were com-
puted for four patients. Each movement with the exoskeleton was analyzed and averaged
over multiple sessions. Two of the patients showed an average increased mean spectral
frequency and the other two did not show any change. This might indicate that the ex-
perimental setup is in fact not inducing fatigue. On the contrary, the increase indicates
that the muscles of the patients might even be more activated after the training.

Due to the pilot nature of this study it is not possible to generalize the findings. How-
ever, the likelihood of muscle fatigue disturbing the hBMI setup can be considered low
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since there was no patient showing muscle fatigue. So far, in the hBMI study (dataset 2,
cf. section 1.3.1) no obvious changes of the EMG activity and subsequent detrimental
effects were observed (analysis pending). With the framework developed for the present
study such effects can be tested in the future.

1.4.6 Increasing engagement - enhancing feedback
Researchers and clinicians seek to build enriched rehabilitation environments that inte-
grate different technologies and principles of motor learning to optimize rehabilitation
outcome. Increasing engagement of the patient, i.e. focus on the task as well as long-
term motivation and enhancing the feedback to the patients, are two aspects of building
enriched rehabilitation paradigms that have been implemented and investigated here. En-
hanced visual feedback to the patients using the interactive 3D visualization of the exo-
skeleton turned out to be crucial for the patient. With this additional perspective on the
exercise their sensory feedback was improved and it was easier for them to control the
movements they had to perform to successfully reach the targets. Observation of the
patients during the experiments showed that they relied on the visual feedback during
the training. Their subjective feedback confirmed the usefulness and necessity of the 3D
visualization.

In the AMoRSA project a repetitive and demanding rehabilitation training paradigm
was successfully integrated into a gaming environment. The training system was tested
on five patients and their subjective feedback confirmed that the game was engaging and
motivated them to train more.

The response of the patients using both systems underlines the immediate benefit of
enhanced feedback and supports the positive effect of gaming principles on motivation.
However, during the AMoRSA project the importance of careful planning and thought
for integrating rehabilitation into a game also became clear. Understanding (patho-)
physiology and psychology of the patients is paramount.

The work is a foundation for future projects where other markers of rehabilitation
(e.g. those presented in chapters 2,4,5 and 6) could be integrated to track and visualize
the otherwise abstract progress.

1.5 Conclusions
The five studies on EEG data all underline the importance of laterality of brain acti-
vity. The study on the evolution of the ERD shows that the relation of brain activity of
both hemispheres correlates with recovery. Reduction of the ERD on the contralesional
hemisphere was accompanied by an increase of motor function. The analysis of the
Low-frequency oscillations uncovered power differences between hemispheres. Only on
the hemisphere of the lesion LFO power was smaller during movement attempts of the
paretic limb before the intervention than after the intervention. Moreover, more balanced
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laterality of LFO power was an indicator of better motor impairment. The connectivity
analysis is inherently suited to assess lateral variations of brain activity. The pilot results
presented show that lateralized activity within the hemisphere of the lesion and from one
hemisphere to the other changes throughout the intervention. Increased intrahemispheric
connectivity in the higher β band follow previous reports. Increased connectivity to-
wards the healthy hemisphere indicates more communication from the lesion. The SMR
analysis showed no hemispheric imbalance of peak center frequency or the power of the
rhythm during rest.

Both studies on ERD underlined the heterogeneity of stroke. The cross-sectional
study showed a tendency of lesion volume and lesion size influencing the magnitude
of the ERD. The longitudinal analysis revealed that patients exhibit different strate-
gies: Some improve while strengthening their ERD and some improve while weakening
desynchronization. More detailed stratification could even reveal other strategies. The
study on SMR adds to these discoveries, showing that there is an effect on the peak cen-
tral frequency of the rhythm that is not exclusively attributable to age but also to stroke.
The three studies support the idea of individualized treatments (and more effective stra-
tification of clinical trials). In the study on LFOs the patients in the group receiving
contingent feedback were identified as main contributors to the pre-post difference of
LFO power. These were the patients who benefitted from the intervention as they im-
proved their motor function. However, there was no correlation between LFO power and
recovery. Just as the three other studies, this one also calls for an extension and validation
of the results in larger cohorts.

Kim and colleagues have recently argued that analysis of brain networks is becoming
state-of-the-art for models of stroke and recovery using biomarkers (Kim et al., 2016).
The results presented in the Coherence analysis are only a first step but they are pro-
mising. The study compared the non-parametric approach to the widely used parametric
approaches and showed in the application to the comprehensive stroke dataset (Dataset 1,
cf. section 1.3.1) that the method is readily applicable. The use of non-proprietal open-
source software improves comparability of studies employing the technique and paves
the way towards further improvements (of methodology and performance). One of the
merits of the work is the presentation of the data-driven threshold estimation based on
experimental conditions. This approach is applicable to similar experiments using EEG.

Correlation of potential biomarkers with clinical scales could be assessed. Some
measures correlated well (ERD progression and laterality), others did not. However, that
does not mean that there is no connection of the measures to recovery. Other works have
shown that increase of LFO is accompanying spontaneous recovery in early stages of
stroke and moderate to mild cases. The mismatch between these findings and the ones
presented here calls for further validation in a larger cohort. After all, neurophysiologi-
cal markers have the potential to improve prediction of outcome when combined with
clinical scales (Kim et al., 2016).

Implementation of the two neurorehabilitation projects, the three-dimensional visu-
alization of the exoskeleton and the rehabilitation gaming environment of AMoRSA,
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underline the importance of feedback tailored to the patient in BMI-based interven-
tions. The investigation of the characteristics of the SMR showed that stroke has an
effect on both hemispheres and slows the sensorimotor rhythm, but the rhythm itself is
stable over time. This means that the feedback on the SMR (e.g. as a control signal for an
exoskeleton) needs to be tailored to the patient at the beginning of the intervention. The
rhythm recorded from the healthy hemisphere could support selection of the appropriate
frequency range.
The interventions might cause muscle fatigue in some patients. The extent remains un-
clear. With the work presented here a framework is available for assessing these effects
in the recordings of the ongoing rehabilitation training without further effort. If muscle
fatigue is detected in patients, the training could be modified automatically, for example
by increasing the duration of break times.
The combination of the biomarkers explored here and the rehabilitation gaming envi-
ronment could provide a way of giving the patient feedback (and prospect) while there
is no or only little observable change of behavior. Neurophysiological changes could be
integrated in the game as distinct elements or graphs and make abstract progress tangible.

Observation and responses of the patients using the gaming rehabilitation environ-
ment confirmed that enhanced feedback and carefully designed virtual worlds lead
to immersion and motivation to take part in and carry on the demanding and repetitive
training exercises.

1.6 Outlook
The reward of the research efforts on neurophysiological biomarkers will be two-fold:
Knowledge about the mechanisms of plasticity and neurorehabilitation will be gained
and models of the processes will be created. The insights will help stratify patients for
further clinical studies and they will also inform treatment pathways in the future.

There are two levels at which modelling of rehabilitation research develops: Simple
(regression) models relating individual markers or sets of markers to clinical outcome
and models of actual neurorehabilitation that provide dynamic and potentially more ac-
curate predictions.
Despite the simplicity, the regression models already have prognostic value for strati-
fication in clinical studies and might even prove helpful in the future for choosing the
appropriate course of intervention. The number of (clinical) studies on biomarkers is
increasing and consequently more data is becoming available (Tedesco Triccas et al.,
2019). The biomarker candidates in these studies, just as the ones under investigation in
this thesis, can be correlated with clinical outcome. In addition to potential prognostic
ability regressions such as presented here might raise questions on the processes going
on during rehabilitation, just as we have seen here: Patients use two strategies when
modulating the ERD. What is the physiological reason behind that?

The data of comprehensive studies such as Dataset 1 and Dataset 2 will be pooled
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in the future to include regressions of combinations of electrophysiological biomarkers
and clinical / behavioral markers. As an example, in a study of our work group on
Dataset 1 we used a linear combination of several markers for a prognostic regression
model (Figueiredo, Ray et al, unpublished). In the model the five best predictors of
motor improvement were (1) feedback group (experimental group or sham group), (2)
interhemispheric connectivity from the lesion to the healthy hemisphere in the θ band,
(3) connectivity between the SMR band and the muscle activity and (4 & 5) connectivity
from both hemispheres to the muscle activity. The model was tested in a permutation test
and performed significantly better than chance (in terms of root-mean-squared error).
Correlation between predicted and actual Fugl-Meyer scores was r2 = 0.38.

It is clear that all the models presented need to be validated on new data and with
larger datasets than currently done in order to decrease false positive or random cor-
relations and to uncover effects of potentially influential unknown variables. There
are initiatives in the field that aim at pooling similar data of BMI-based stroke reha-
bilitation for validation of previous findings such as the Enigma data sharing initiative
(http://enigma.ini.usc.edu/ongoing/enigma-stroke-recovery/).

The prognostic potential and clinical validity of electrophysiological biomarkers, name-
ly the Motor Evoked Potential, has recently been shown by Stinear and colleagues (Stin-
ear et al., 2017). Figure 1.1 shows a flow chart of the algorithm, which predicted motor
outcome for patients with 75% accuracy. Their report shows that biomarkers can already
be introduced to clinical practice and could help decrease application of functional MRI,
which is costly and strenuous for the patients (Stinear et al., 2017).

The second level of developments will move modelling beyond regression and prog-
nosis. Models of neurorehabilitation will not only contribute to understanding the
processes in the brain of patients undergoing rehabilitation treatment. They also aim
at providing causal mappings of brain plasticity in neural networks and the behavioral
change due to rehabilitation. The models are dynamic and have internal states that have
biological or functional meaning. In their enlightening work Reinkensmeyer and col-
leagues state that such models of neurorehabilitation consist of three building blocks
(Reinkensmeyer et al., 2016):

1. a quantitative description of sensorimotor activity of the patients (such as the
biomarker candidates described here)

2. a computational model of plasticity that explains recovery

3. a quantitative description of the behavioral change

The authors argue that these models would help understand and predict outcome of
rehabilitation interventions more quickly than with the current trial-and-error-based ap-
proach. They summarize various modelling approaches as examples. In one of these
models the production of force in the wrist was modelled by an artificial neural network
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Figure 1.1: The PREP2 algorithm predicts uper limb functional outcome (excellent,
good, limited, poor) at 3 months post stroke. SAFE is a clinical scale that is administered
first. The path within the flow chart unfolds depending on the demographic marker age
and the electrophysiological biomarker MEP (Taken from Stinear et al. (2017) [ Licensed
under CC-BY 3.0 https://creativecommons.org/licenses/by/3.0/ ])
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of corticospinal cells (those that remained after a stroke), which was based on observa-
tions from experiments with primates. The basic assumption is that output force is pro-
portional to the summed firing rate of corticospinal cells. The cells fired randomly, and
activation patterns that produced force were strengthened (as in a reinforcement learning
paradigm). This single learning mechanism alone was able to predict features of stroke
recovery such as a dose-response curve, the influence of the strength of impairment and
the influence of the timing of administration of a certain dose. Other models predicted
the spontaneous use of the paretic arm in a bimanual task as a function of the dose or
predict decay of (re-) learned motor control over time using kinematic data from robotic
interventions (Reinkensmeyer et al., 2016). With increased understanding of the patho-
physiology of stroke and the increased amount of available data from BMI-based trials,
models can be devised that provide a basis for stratification and choice of treatment path-
ways. These models could even pave the way towards completely new approaches to
rehabilitation training.

The AMoRSA project showed that integration of a very complex rehabilitation
training into a gaming environment is feasible. This research project is only a small
piece of a whole sector that is changing: motor rehabilitation will be integrated into
virtual environments and serious games in the future. Companies are forming all over
the world and new approaches are being tested. Gamification of rehabilitation follows
ubiquitous gamification in many other areas. The majority of smartphone apps contain
at least a few gamified elements. A great example are health apps with step counters.
Simply displaying a discrepancy between a movement goal (y number of steps) and the
objectively measured state (x number of steps) motivates hundreds of thousands of people
daily to walk a little bit further or to climb stairs instead of taking the elevator.
For the rehabilitation sector and especially including BMI more and more studies and
even real-world applications and therapies are launched. The data acquired there will
help understanding pathophysiology and psychology of the stroke patients and allow
researchers and health entrepreneurs improve treatments.

When more data leads to better understanding the enhanced rehabilitation environ-
ments can be enriched and progress can be monitored and visualized using neurophy-
siological biomarkers. At the same time patient models and disease models improve
predictions and inform treatment pathways.

In the context of these developments in the field the results of this work are very
encouraging and research will hopefully thrive for the benefit of the victims of stroke.

1.7 List of scientific publications and contributions
Parts of chapters 2 and 6 were taken from peer-reviewed publications as shown below
and as stated at the beginning of the respective chapter.

1. Ray, A. M.; López-Larraz, E.; Figueiredo, T. C.; Birbaumer, N. & Ramos-Mur-
guialday, A.: Movement-related brain oscillations vary with lesion location in
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severely paralyzed chronic stroke patients, Published in the proceedings of the
39th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 2017, pp. 1664-1667 (peer-reviewed)

2. Ray, A. M.; Maillot, A.; Helmhold, F.; Jaser Mahmoud, W.; López-Larraz, E.
& Ramos-Murguialday, A.: Electromyographic indices of muscle fatigue of a
severely paralyzed chronic stroke patient undergoing upper limb motor rehabi-
litation, Published in the proceedings of the 9th Annual International IEEE EMBS
Conference on Neural Engineering, 2019, DOI 10.1109/NER.2019.8717165 (peer-
reviewed)

3. Ray, A. M.; Figueiredo, T. D. C.; López-Larraz, E.; Birbaumer, N. & Ramos-
Murguialday, A.: Brain oscillatory activity as a biomarker of motor recovery in
chronic stroke, Human Brain Mapping, 2020, 41, 1296-1308

All analyses presented in this work have been performed by me and it was I who wrote
all texts. However, the domain of this work, neural interfaces for stroke rehabilitation, is
inherently interdisciplinary. Conducting the studies and obtaining the results presented
here could only be realized by collaboration and concentrated effort of a team of sci-
entists with experience in neuroscience, physiotherapy, informatics, physics, biomedical
engineering and psychology. Any contributions of others are disclosed in section 8.2.
Please note that I used the pronoun ”we” throughout most of the dissertation, referring
to me and the team who played a part in the realization of the respective study. This is
in accordance with the scientific writing style used in journal publications and it reflects
the interdisciplinary nature of the work.
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Chapter 2

Desynchronization of the Sensorimotor
Rhythm

The greatest part of this chapter has been published in a peer-reviewed journal paper as
(Ray et al., 2020). Section 2.5 presents the results and conclusions of a peer-reviewed
conference paper published as Ray et al. (2017). The material presented in section 2.6
provides additional information on procedures, data and results in this chapter. The
contents of this section are taken from the supporting information of the publications.
For disclosure of contributions see section 8.2.

2.1 Introduction

Changes in sensorimotor brain oscillations involved in planning and execution of move-
ments were used as control signals for the BMI in the studies cited in the synopsis (chap-
ter 1). The sensorimotor rhythm (SMR) is an oscillation within the alpha frequency
range of the EEG during a motionless resting state over the central-parietal brain re-
gions. Movement planning, imagination and execution lead to its suppression. In the
present work, we investigated EEG brain oscillations of the alpha frequency, ranging
from 8 to 12 Hz, over the motor cortex, and we termed them “alpha oscillations”.

Alpha brain oscillations have been evaluated as markers of ischaemia and predictors of
clinical outcome in acute patients (Finnigan and van Putten, 2013; Rabiller et al., 2015).
Desynchronization in the alpha frequency range has also been investigated as a marker
of stroke and a predictor of recovery in the same patient group. Tangwiriyasakul and
colleagues showed that the recovery of motor function was accompanied by an increase
of alpha desynchronization on the ipsilesional side (Tangwiriyasakul et al., 2014). In
subacute patients presenting mild to moderate motor deficits recovery lead to a similar
increase of alpha desynchronization on the affected hemisphere (Platz et al., 2002). Fur-
thermore, first attempts investigated correlations of alpha desynchronization with motor
improvements in chronically impaired patients (Kaiser et al., 2012). In a controlled
study, a group of subacute patients with severe deficits used motor imagery, guided by
a brain-computer interface, in addition to their regular physiotherapeutic rehabilitation

27



Chapter 2 Desynchronization of the Sensorimotor Rhythm

protocol. They showed a higher probability for motor improvements with increased al-
pha desynchronization (Pichiorri et al., 2015).

In the present work, we investigated what changes in the oscillatory activity of the
brain a proprioceptive BMI coupled with physiotherapy produces over the course of a
training intervention and if these correlate with recovery in severely paralyzed chronic
stroke patients. We hypothesized that functional motor improvements are accompanied
by an ipsilesional increase and a contralesional decrease in alpha desynchronization in-
dicating reorganization of compensatory brain activity from the contralesional to the
ipsilesional hemisphere. We intend to establish alpha oscillatory activity as a biomarker
of motor impairment and as a building block of statistical models of stroke neurorehabi-
litation. Furthermore, the potential influence of the location of the lesion in the brain on
alpha desynchronization is explored in section 2.5.

2.2 Methods

2.2.1 Data
The analysis presented in this chapter was performed on the data of dataset 1 recorded
during the movements of the exoskeleton (section 1.3.1). Patients were randomly divided
into an experimental group (n=16) and a control group (n=14). In both groups, electric
brain activity was recorded using electroencephalography (EEG). Changes in the sensori-
motor rhythm (SMR) of the ipsilesional hemisphere during movement attempts of fingers
and arm were contingently translated into movement of the arm and hand orthosis only
in the experimental group. Decrease of the power of the SMR with respect to baseline
led to movement of the arm or the hand and a relative increase stopped the movement. In
the control group, the setup was similar but the movements executed by the robot were
independent of brain activity. The movements were triggered randomly but the period of
time the orthosis was moving was approximately equivalent to that of the experimental
group. Both groups received identical physiotherapy after the BMI training.

The individual SMR frequency was obtained from EEG recorded in a calibration ses-
sion on the day before the training. The power of the EEG signal while the patients rested
and while they were trying to open and close the paretic hand was compared. The fre-
quency range showing the maximum variance between the two conditions as measured
by the coefficient of determination was defined as individual SMR frequency. The most
discriminative electrodes in the central-parietal region were selected.

2.2.2 Movement-related features of the EEG power spectrum
Movement planning, imagination and execution lead to suppression of brain oscillatory
activity over the motor cortex. It has been shown that stroke patients can (re-) learn to
voluntarily modulate this rhythm to control movements of their paretic limbs by way of
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robotic orthoses (Buch et al., 2008; Ramos-Murguialday et al., 2013). The phenomenon
is often defined as µ rhythm or as sensorimotor rhythm (SMR). There are various works
describing the effect within the alpha frequency range of the EEG (Klimesch et al., 2007;
Kuhlman, 1978; Pfurtscheller and Lopes da Silva, 1999). Similar synchronization and
desynchronization effects have been reported with other functional relevance in the beta
frequency range (van Wijk et al., 2012). Peak frequency and amplitude of the SMR
vary between individuals but movement-related desynchronization in healthy popula-
tions spreads across the whole alpha range (Pfurtscheller, 2003). As alpha oscillations
may also constitute indicators of underlying processes not related to movements it may
be difficult to discern alpha central oscillations from genuine sensorimotor oscillatory
activity in patients involved in visuo-proprioceptive motor tasks (Klimesch et al., 2007).
However, since firstly, significant power decreases in healthy subjects during execution
of a BMI lasting several seconds have mainly been found in the alpha frequency range
(Ramos-Murguialday and Birbaumer, 2015) and, secondly, the SMR frequency (defined
as the frequency range with the largest difference between movement attempts of the
paralyzed limb and resting state) in the original trial, were also centered in the alpha fre-
quency band (mean 10.6 Hz ± 4.8) we focused our analysis on the progression of alpha
desynchronization. Furthermore, to disentangle effects of individualized SMR values
used for BMI interventions from the general alpha band, we also evaluated the progres-
sion of desynchronization in the individual SMR frequency. More information can be
found in section 2.6.5.

Nevertheless, recent work has identified beta oscillations as potential therapeutic target
for stroke rehabilitation because these oscillations are involved in cortical disinhibition
and have been suggested as the rhythm connecting brain and muscles (Mima et al., 2001;
Naros and Gharabaghi, 2015; Rossiter et al., 2014; Ward et al., 2019). Therefore, we also
analyzed the progression of desynchronization in the beta frequency band (12 to 25 Hz)
(see section 2.6.5).

A previous work of our group on a similar dataset involving movement attempts in
chronic stroke showed the adverse influence of low frequency (1 to 4) and high fre-
quency (30 to 48 Hz, i.e. γ band) artifacts on time-frequency analysis of movement-
related desynchronization and classification of EEG signals (López-Larraz et al., 2018b).
Therefore, γ oscillations (30 to 48 Hz) were not considered in the present analysis.

Event-related desynchronisation (ERD) was calculated following Pfurtscheller and
colleagues (Pfurtscheller and Lopes da Silva, 1999) as the proportional decrease of EEG
power in a movement attempt interval, M, relative to a reference interval, R:

ERD =
M−R

R
x100% (2.1)

ERD over the sensorimotor cortex was extracted from both hemispheres separately
using the EEG signal of the electrodes C3, Cp3, P3 and C4, Cp4, P4, respectively, and
within the alpha frequency band (8-12 Hz). The power spectral density was computed
using Welch’s method and the mean power of that frequency range was extracted. Fur-
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thermore, the EEG power was averaged over the three channels on each hemisphere. No
additional spatial filters were used. Mean ERD was computed as described in equation
(1) over all trials of each session using the EEG data of the last 4 seconds of the inter-trial
interval as reference R and the EEG data of the movement attempt phase as M.

It is important to note that a larger relative difference between neural activity during
rest (synchronized, larger EEG power) and action (desynchronized, smaller EEG power)
is represented by a numerically smaller, more negative ERD value (Eq. 1) and vice-versa.
We thus report “strong” ERD when the ERD values are more negative and “weak” ERD
when they are less negative.

Works on brain oscillatory biomarkers of stroke rehabilitation were often limited to
predicting behavioral changes by brain activity measured before and after spontaneous
recovery or intervention (Stinear, 2017). Here, a comparison of ERD during movement
attempts of the upper limb without the afferent input of the orthosis before and after the
intervention indeed did not reveal a generalized change of ERD. For each patient a pre
measurement and a post measurement involving movement attempts of the paretic arm
without the orthosis were performed. The patients were asked to perform up to 85 rep-
etitions of 3s of resting and 4s of movement attempts. The EEG data was preprocessed
and the mean ERD of each patient before and after the intervention (pre and post) was
computed. A difference of the ERD values between groups and time points could not be
found (see section 2.6.4). In the present work, however, we make use of the large amount
of longitudinal neurophysiological data gathered during dozens of training sessions to
infer on the relationship of progression of changes of brain activity and behavioral im-
provements. All the analysis was performed using EEG and EMG data acquired during
the interventional sessions, in which the patients tried to move their paretic limb avoiding
compensatory movements and the limb moved according to the brain-controlled robotic
orthosis. During the intervention proprioceptive feedback usually lead to an increased
SMR desynchronization.

2.2.3 Artifact detection
Even though the participants were instructed to minimize movements of head and body
during the recordings, contamination of the EEG by movement artefacts could not be
completely prevented as the experiment involved movements of the body. Detection and
rejection of artefacts in the data were carried out using a fully automated process (fig.
2.1). First, artefacts caused by eye movements were removed from the EEG signal by
way of extracting the independent components representing these artefacts identified in
the EOG (Halder et al., 2007). Then, trials contaminated by cranial muscle artefacts were
detected. The EEG signal of all channels was filtered between 110 Hz and 140 Hz and
the signal in each channel was z-scored and the z-values were averaged per sample. A
threshold of 4 standard deviations was applied to remove trials containing artefacts. Af-
terwards, a similar procedure was performed on the broadband EEG signal with a thresh-
old of 20 standard deviations to remove trials containing offset artefacts. The fieldtrip
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Figure 2.1: Schematics of the data acquisition phase and the offline analysis for EEG and
EMG. Neurophysiological data was acquired using a 16 channel EEG cap and 4 bipolar
EMG electrodes on each arm. EEG data were cleaned from eye movement artifacts
and trials containing other artifacts (e.g., cranial EMG, head movements, and so on).
EMG data were analyzed to detect compensatory muscle contractions on the healthy
upper limb and on the paretic side during resting intervals to identify these trials as
contaminated because the muscle activity is a sign of undesired EEG activity. Only data
free of artifacts were used for the final analysis of EEG oscillatory activity.

toolbox was used for rejection of EEG artefacts (Oostenveld et al., 2010). Finally, the
EMG activity was analyzed. The Waveform length of the EMG was computed (Ramos-
Murguialday et al., 2013). Muscle contractions were identified by the Waveform length
exceeding 3 standard deviations of the data. Any such arm or hand movement during the
rest period or movements of the healthy limb during the phase of the movement attempt
led to removal of the trial from the analysis.

A session was excluded from the analysis if less than 10% (16 trials) of all trials
remained. If half of the total number of sessions of a patient were removed, the subject
was excluded from the analysis. Table 2.1 shows a summary of the rejection procedure.
Descriptive statistics on the rejection of trials and an overview of the number of trials,
sessions and subjects removed is presented in 2.6.1.
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To further improve interpretability and generalizability the R function dfbetas was
used to investigate the linear models for influential data. The function computes the
standardized difference of parameter estimates between a regression model based on the
full data and a model from which a subset of potentially influential data is removed.

Dfbetas is defined as:

D f betaspZ =
bZ−b−bZ

se(b−bZ)
(2.2)

where the denomiator is the difference between the slope estimate of one of the pre-
dictors (Z). The first term (bZ) is the estimate using the full sample and the second term
(b−pZ) is the estimate after excluding a patient (p). The value is normalized by dividing
the standard error of the second term (Van der Meer et al., 2010). Here, one out of all
subject is left out in each iteration. A DFBETAS value is computed for each parameter
in the model. For the linear model the parameter “slope” of the data of the α-band was
strongly influenced by subject 12 (see description of the modeling procedure in the next
section). Removing the subject would change the slope coefficient of the model almost
one order of magnitude more than removing the next most influential data point. More-
over, the inspection of the mean power values of the EEG revealed that this patient had,
on average, larger power during the movement phase than during the resting period in all
training sessions except one (fig. 2.2). This might indicate that the patient consistently
synchronized the SMR during movement attempts or produced SMR synchronization
due to an unfiltered artifact (e.g. subtle contractions of the neck or face muscles). On
top of that, the patient was part of the control group, which received sham feedback. In
the first three sessions, this patient received contingent negative feedback because of a
technical issue. In this type of feedback the robot moved whenever the patients did not
desynchronize or synchronized their ipsilesional SMR. Synchronization thus could have
been rewarded in this patient in the beginning of the intervention. We thus conclude that
the patient was not able to and did not learn to produce the desired SMR desynchroniza-
tion throughout the course of the intervention, which would explain the odd coefficients
of the linear mixed model.

We considered the patient an outlier and decided to remove this subject from the ana-
lysis.

The rigorous rejection procedure led to a final pool of 22 subjects. This conservative
procedure facilitates interpretability of the results.

2.2.4 Statistical modeling

In order to model the cross-sectional response (the clinical outcome measure ∆cFMA)
with the longitudinal predictors (progression of the ERD across training sessions) we
employed a two-stage modeling process. First, the individual time courses of the ERD
of all patients were modelled using a linear mixed-effects model. In the second step,
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Subject ID
Total

number of
sessions

Number
of sessions
removed

Total
number
of trials

Number
of trials
removed

Feedback
group

Was the
subject

part of the
analysis?

1 16 4 2731 2296 C+ yes
2 17 10 2828 2617 Sham no
3 19 5 3188 2619 Sham yes
4 16 2 2680 1913 Sham yes
5 16 7 2570 2102 C+ yes
6 19 18 2978 2908 Sham no
7 17 6 3401 2845 C+ yes
8 16 8 2553 1870 C+ yes
9 17 1 3430 2139 C+ yes

10 19 3 3158 2466 C+ yes
11 16 2 2766 2146 C+ yes
12 18 9 2920 2544 Sham yes
13 17 2 3003 1948 Sham yes
14 17 11 2889 2688 C+ no
15 17 14 2405 2252 C+ no
16 11 1 1780 1524 Sham yes
17 12 7 1926 1800 Sham no
18 17 16 2540 2419 C+ no
19 18 4 2776 2307 C+ yes
20 18 0 2998 1856 C+ yes
21 16 5 2555 1554 C+ yes
22 19 4 3184 1910 Sham yes
23 15 6 2500 2225 C+ yes
24 19 15 2820 2628 Sham no
25 16 5 2624 2219 Sham yes
26 17 3 2666 2097 C+ yes
27 18 0 2700 2018 Sham yes
28 17 1 2902 1813 Sham yes
29 18 5 3236 2848 C+ yes
30 18 7 2850 1777 Sham yes

Table 2.1: the total number training sessions and the total number of movement attempt
trials carried out in the whole training per patient. Moreover, the number of trials and the
number of sessions that have been removed from the analysis during the preprocessing
are shown. The rightmost two columns indicate the feedback group the patients belonged
to and whether or not they were included in the analysis.
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Chapter 2 Desynchronization of the Sensorimotor Rhythm

Figure 2.2: Averaged event-related desynchronization / synchronization in the sessions
remaining after the preprocessing (re-indexed from 0 to 8) on both hemispheres of subject
12. The subject only desynchronized in one of the nine sessions.

the coefficients of these modelled time courses were used to predict each patients’ motor
improvement (fig. 2.3).

Linear mixed-effects models are suited for describing longitudinal physiological data
because (1) they allow to reflect individual differences of intercepts and slopes with re-
spect to population means; (2) data may be modelled even though measurements are
unequally timed; (3) the number of measurements per subject is not required to be equal
(Lang et al., 2016) (Verbeke and Molenbergs (2001) provide a thorough description of
linear mixed models). Shetty and co-workers showed that estimating the value of the
explanatory variable(s) with a linear-mixed model (LMEM) approach leads to the best
regression parameters for predicting a clinical outcome (Shetty et al., 2009).

Using this approach, in the first step of modeling a LMEM is constructed to estimate
two coefficients per patient which describe the initial state and the progression of the
ERD of each patient throughout the course of the intervention. The response variable
(ERD) is thus modelled by a general intercept (representing the mean initial ERD value
of all patients) and the general change over time (mean unit change of the ERD per BCI-
training session of all patients) as fixed effects. Both intercept and change over time may
vary for each patient, and are therefore also introduced as random effects in the linear
mixed model. The model thus yields two coefficients per patient: the individual progres-
sion of the ERD over time (the individual model slope), and the subject-specific initial
value of the ERD (the individual model intercept). In the second step of the procedure a
linear regression model (LM) is constructed that predicts the change of the clinical out-
come (∆cFMA) by the patients’ individual dynamics of the ERD, which are represented
by the coefficients modeled in the first step of the procedure. From this model an infe-
rence can be made if and how the initial state of the ERD of each patient, the progression
of the ERD throughout the training and the interaction between these two factors predict
the motor improvement. Please also see listings 10 and 11 for implementation details in
R.
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Figure 2.3: The two-step modeling approach for describing the relationship be-
tween brain activity (session-wise mean ERD) and the clinical outcome (cFMA).
Step (A): Longitudinal modeling and coefficient extraction. First, the coefficients “in-
tercept” and “slope” are extracted from a linear mixed-effects model for each pa-
tient. The linear mixed model provides the best (least squares) estimates of
these coefficients. As the initial ERD values and their progression vary for
each patient, the factors time and subject are considered as random effects in
the model. Therefore, the two coefficients represent the patient-specific esti-
mated initial value and the progression of the ERD throughout the intervention.
Step (B): Two-dimensional visualization of the interaction in the model. The extracted
coefficients of (A) are used in a linear model predicting the clinical outcome (cFMA).
The model includes an interaction term. The model thus can capture modulation of the
outcome variable by both independent variables. One of the variables might predict
the outcome variable depending on the other independent variable. Here, for exam-
ple, large Fugl-Meyer values are predicted by large slopes if the intercept is large, too.
Step (C): Visualization for interpretation. The median of the intercept values is used to
form cross-sections of the data that are visualized in separate panels to increase inter-
pretability of the linear model.
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To assess the interhemispheric asymmetry of brain activation during recovery, the la-
terality coefficient is often used (Kaiser et al., 2012; Pivik et al., 1993; Tangwiriyasakul
et al., 2014; van Putten, 2007). The sign of the coefficient represents the laterality of the
desynchronization, i.e. which of the hemispheres is more active during a certain con-
dition such as the movement of the paretic arm. In order to assess the progression of
the asymmetry of the interhemispheric oscillatory activity of the brain, we expanded the
laterality coefficient to encompass the temporal component (training progression). The
progressive laterality coefficient (pLC) is computed as:

pLCERD = SH−SL (2.3)

The change (i.e. slope) of the ERD for each patient, was extracted from the LMEM
from the data of both hemispheres (healthy hemisphere: SH , hemisphere of the lesion:
SL) and subtracted from each other to form the pLC. This measure describes the pro-
gression of the asymmetry of the desynchronization between both hemispheres over the
course of the training. It may reveal if the change of desynchronization throughout the
intervention was stronger on one hemisphere than on the other. The values of the pLCERD
were correlated with the primary clinical outcome ∆cFMA to investigate the relevance
of progressive brain activity asymmetry for motor improvement.

2.3 Results

2.3.1 Prediction of ∆cFMA from contralateral (ipsilesional) EEG
The linear models for the ERD in the alpha frequency range were constructed, each
predicting ∆cFMA using the coefficients extracted from the corresponding linear mixed
effects model: the progression of the ERD throughout the intervention sessions and the
initial ERD magnitude. An interaction term was included in the LM to investigate if
the initial ERD modulated the progression of the oscillatory activity. An F-test of the
regression equation was significant: F(2,18) = 6.96, p = 0.0026 and an adjusted r2 =
0.46.

In linear models with interaction terms two independent variables might exert an effect
on the dependent variable. They might also modulate each other. In order to understand
and interpret the interaction the data is usually separated into smaller subsets (Aiken and
West, 1991). One variable is “fixed” and defines these subsets while the other variable is
investigated independently within each subset. This procedure allows to observe whether
the value of the “fixed” variable influences the “free” variable depending on the subset
or not. If the “fixed” variable is categorical the subsets are naturally defined. However,
here, the variable of interest, initial ERD, is a continuous variable and the separation is
defined based on prior knowledge and the characteristics of the data (Aiken and West,
1991). Given the amount of data points a division into few subsets is the best choice.
Furthermore, even though there is no standardized definition, “strong initial ERD” and
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“weak initial ERD” may be meaningful for the interpretation. For these reasons, we split
the data into equal subsets at the median. The procedure supports intuitive visualization
of the linear model (Breheny and Burchett, 2016). Moreover, it facilitates interpretation
of the analysis of the brain activity on the healthy hemisphere because we saw that the ip-
silesional brain activity of the patients is modulated differently in the subgroups. We thus
show the correlation of the progression of ERD and ∆cFMA for two subgroups present-
ing relatively strong and relatively weak initial ERD (higher and lower than the median).
The median value of the initial ERD is -29.96 (fig. 2.4). Those patients presenting a
relatively strong ERD at the beginning of the intervention (fig. 2.4, panel on the left)
improved if their ERD progressively increased throughout the training. In contrast, those
patients whose ERD was already relatively weak at the beginning of the intervention
(fig. 2.4, panel on the right) improved if their ERD progressively decreased throughout
the training.

These relationships are also reflected in visualization of time-frequency representa-
tions. Here, time-frequency plots of two patients of the subgroup with relatively strong
and two patients of the subgroup with relatively weak initial desynchronization are shown.
The chosen subjects represent the extremes of the modeled ERD progression (fig. 2.5).
The plots show the time-frequency representation of an early and a late session (fig. 2.6).
The sessions that are plotted here reflect the modeled progression of the ERD. Plots of
other sessions might not reflect the modeled progression because the ERD values vary
around the slope of the model. The plots were created using Morlet wavelets for the
time-frequency decomposition with a resolution of 0.5 Hz from 2 Hz to 36 Hz. The data
of the instruction phase of the trials were disregarded and is shown here in light grey. It is
important to note that the ERD/S values for the plots were obtained using time-frequency
decomposition with Morlet wavelets rather than Welch’s method, which has been used
to obtain the ERD/S values for the statistical tests. Furthermore, the ERD/S values were
computed using the full last four seconds of the rest period as baseline. Here, the base-
line period was truncated by 250 ms at the beginning and at the end to alleviate potential
aliasing effects of the wavelets.

It is noteworthy that four patients of the control group presented a negative change of
their cFMA score regardless of their ERD progression throughout the intervention (four
squares below the zero line in fig. 2.4).

The progression of the ERD in the beta frequency range (11 – 25 Hz) and the in-
dividual SMR frequency were also analyzed in the same way as the data of the alpha
frequency range to complement the analysis. The results and plots are presented in sec-
tion 2.6.5. In summary, the F-test of the regression equation of the model of the β band
was not significant. The linear model for the individual SMR frequency was signifi-
cant (F(3,18) = 3.475, p = 0.038). The fit was lower than that of the model for alpha:
r2 = 0.26.
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Figure 2.4: Linear model predicting the improvement of motor function (∆cFMA)
on the hemisphere of the lesion by the initial ERD and the progression of the ERD
of the alpha frequency range on the ipsilesional hemisphere over sessions: Adjusted
r2 = 0.46;F(3,18) = 6.96, p = .0026. For improved visualization of the effect of both
explanatory variables in the model the patients are separated into two cross-sections
showing relatively strong ERD (left panel) and a second group showing relatively weak
initial ERD (panel on the right). For the patients showing strong ERD the inverse linear
relationship of the variables suggests that the more these patients increase their ERD the
larger the improvement. For the patients showing a relatively weaker ERD at the begin-
ning of the training, the opposite relationship is apparent.

Figure 2.5: The time-frequency plots in figure 2.6 are presented for the patients marked
here. This figure is otherwise identical to figure 2.4.
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(a) Patient 18: Alpha desynchronization is stronger
in the late session (sessions 1 and 16 out of 18 re-
tained sessions presented)

(b) Patient 19: Alpha desynchronization is weaker
in the late session (sessions 1 and 11 out of 11 re-
tained sessions presented)

(c) Patient 24: Alpha desynchronization is weaker
in the late session (sessions 1 and 11 out of 14 re-
tained sessions presented)

(d) Patient 3: Alpha desynchronization did not
change on average (sessions 2 and 8 out of 9 re-
tained sessions presented)

Figure 2.6: Activity from all channels of interest on the hemisphere of the lesion has
been averaged (i.e. average of channels C3, CP3, P3 or average of channels C4, CP4,
P4). The duration of the Rest period is four seconds. The duration of the Move period
is five seconds. The Instruct period has been disregarded in the analysis and is shown in
light grey. The grey dashed lines mark the interval that was used to compute the baseline
for ERD/S. The rectangle with the grey outline in the Move period shows the time and
frequency range that was used to compute the ERD/S values.
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2.3.2 Prediction of ∆cFMA from ipsilateral (contralesional) EEG
We examined how the progression of the ERD of the healthy hemisphere relates to the
clinical improvement depending on the initial ERD of the lesioned hemisphere. Knowing
that the initial ERD on the ipsilesional hemisphere interacts with the ERD progression
patients were again separated into the same two subgroups accordingly (relatively strong
and relatively weak ipsilesional ERD). The progression of the ERD on the healthy hemi-
sphere during movements of the paretic arm and hand were modeled for both subgroups.
These linear models predicted the change of the clinical outcome measure ∆cFMA. For
the subgroup showing relatively weak ERD at the beginning of the intervention on the
ipsilesional hemisphere the model showed a significant positive linear relationship: Ad-
justed r2 = 0.47;F(1,9) = 9.05, p = 0.0148. For the other subgroup, the patients show-
ing relatively strong initial ERD, however, the F-test for the regression equation was not
significant: Adjusted r2 =−0.11;F(1,9) = 0.0072, p = 0.93 (fig. 2.7).

In summary, the patients presenting a relatively weak ipsilesional ERD at the begin-
ning of the intervention, presented a larger motor improvement if their ERD decreased
on the healthy hemisphere (i.e. activating their contralesional hemisphere less) during
paretic hand movements using the BMI.

2.3.3 Prediction of ∆cFMA from interhemispheric asymmetry of
brain activation

To investigate the interhemispheric asymmetry during motor recovery, the progressive
laterality coefficient pLC was used to predict the clinical change ∆cFMA. The F-test
for this linear regression equation was significant: F(0,20) = 9.11, p = 0.007 with an
adjusted r2 = 0.28 (fig. 2.8). The analysis thus demonstrated that the patients who pro-
gressively produce more ipsilesional relative to contralesional brain oscillatory activity
(stronger desynchronization) in the alpha band during the course of training improved
motor function.

Since the model predicting change on the Fugl-Meyer scale from the ERD of the
contralateral/ipsilesional hemisphere was significant for the individual SMR frequency,
we also analyzed the interhemispheric asymmetry in this frequency band. The results
and plots are shown in section 2.6.5. In summary, the F-test for this linear regression was
not significant but showed a trend (F(0,20) = 3.76, p = 0.067). The fit of the model to
the data was low: r2 = 0.1161.

2.4 Discussion and conclusions
We investigated how the brain oscillatory activity of severely impaired chronic stroke
patients changes throughout a brain-controlled robotic intervention for motor rehabili-
tation of the upper limb and how it relates to the functional motor improvement. We
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Figure 2.7: Linear model predicting the improvement of motor function (∆cFMA) by
the progression of the ERD of the alpha frequency range on the healthy hemisphere
over all sessions for the patients showing relatively weak initial ERD on the ipsilesional
hemisphere: Adjusted r2 = 0.45;F(1,9) = 9.05, p = .015. Better recovery was achieved
when the ERD on the healthy hemisphere decreased in the course of the training
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Figure 2.8: Relationship between improvement and interhemispheric difference of
changes of the ERD in the α band. Relationship between improvement and interhemi-
spheric difference of changes of the ERD in the α band: Adjusted r2 = 0.279;F(1,20) =
9.11, p = .0068. Values on the x-axis express the difference between the progression of
the ERD on the healthy hemisphere and the ipsilesional side. Positive values on this axis
indicate that throughout the training patients exhibited stronger ipsilesional ERD, nega-
tive values indicate a stronger ERD on the healthy hemisphere. The regression indicates
that the larger a difference towards the hemisphere of the lesion is found the better the
motor improvement.
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found that dynamics of event-related desynchronization in the alpha frequency range
(ERD) significantly correlate with motor improvement. Most notably, patients showing
a relatively strong ERD on the side of the lesion at the beginning of the intervention im-
proved when progressively increasing ERD during movements of the paretic arm in the
course of the intervention. Patients showing a relatively weak ERD on the affected hemi-
sphere improved when progressively decreasing ERD. Furthermore, we found larger mo-
tor improvements in patients with a progressively larger ERD on the hemisphere of the
lesion as compared to concomitant ERD on the healthy hemisphere. The results indi-
cate that the patients might have used two strategies to gain control over the orthoses
to link brain oscillatory activity and upper limb movement. Their success rebalancing
ipsi-/contralesional activity plays an important role in impairment reduction.

Considering that the proprioceptive feedback was initiated based on the individual
SMR ERD, patients who could elicit a strong ERD at the beginning could learn to con-
trol the robotic orthosis BMI more easily. We show that a strong ERD on the ipsilesional
side during movement attempts of the paretic limb and a subsequent further increase of
the ERD was linked to recovery whereas a strong ERD on the healthy hemisphere was
not. The results indicate that generating a strong ERD on the hemisphere of the lesion
may suffice to regain control of the paretic limb via BMI and to reduce motor impairment.
It was indicated that patients without transfer of ERD from the contra- to the ipsilesional
hemisphere do not improve as predicted by the concept of learned non-use (Daly and
Wolpaw, 2008). A linear relationship between the relative progressions of the ERD on
both hemispheres was observed. The modeling presented, links greater improvement of
motor function to stronger ERD on the affected hemisphere than on the healthy hemi-
sphere during BMI intervention. Patients with weak ERD during movement attempts
of the paretic arm at the beginning of the intervention improved if they showed pro-
gressively reduced ERD on the hemisphere of the lesion and an even more pronounced
progressive reduction of desynchronization on the healthy hemisphere. One additional
explanation to the learned non-use model of rehabilitation for this phenomenon is that
when having acquired proficiency in performing the motor task, reduced ERD repre-
sents more efficient inhibition of systems that are not task-relevant on the ipsilesional
side (Klimesch et al., 2007; Taub et al., 1994). Moreover, a connection between alpha
synchronization of the EEG and focalized suppression of areas involved in generation
of movements irrelevant to the task is assumed (Klimesch et al., 2007; Pfurtscheller and
Lopes da Silva, 1999). The reduction of desynchronization on the healthy hemisphere
as compared to the affected hemisphere indicates less recruitment of the healthy hemi-
sphere during the course of the training as predicted by the model of learned non-use
(Taub et al., 1994). Experiments have shown that interhemispheric inhibition from the
healthy to the affected hemisphere is associated with deficient motor recovery (Murase
et al., 2004). Concordant with this interpretation the increased desynchronization of the
healthy hemisphere is associated with poorer recovery (Kaiser et al., 2012).

The stratification of the patients into two subgroups (relatively strong and weak ERD)
after investigating the linear model paved the way to a concise interpretation of the re-
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sults obtained. Learning to control a BMI involving proprioceptive feedback modulates
desynchronization of the SMR (Ramos-Murguialday et al., 2012)). The group receiving
sham feedback might have had a lower or no effect of the practice on the modulation
of their SMR. Nevertheless, random correct feedback was sometimes administered, be-
cause the orthoses might have also moved while patients correctly produced ERD and
both groups received identical physiotherapy after BMI training. Since almost all pa-
tients showed some behavioral change, we assumed that the neurophysiological data
could explain these changes, which was the main goal of this investigation. The num-
ber of patients analyzed did not allow for a robust analysis including stratification by
feedback group. There was no difference in number of trials rejected due to EEG or
EMG artifacts between the feedback groups. For these reasons we collapsed the analysis
across both feedback groups. The oscillatory signature of recovery was our target. A
study with a larger number of participants than presented here could potentially uncover
whether or not there are differences of the progression of alpha ERD throughout the trai-
ning depending on if the patients received correct or sham feedback. Behavioral effects
of the feedback group have already been investigated in the primary analysis (Ramos-
Murguialday et al., 2013). Moreover, for generalizing it is important to reduce variance
in the data caused by noise. Previous work of our group clearly showed the adverse ef-
fects of artifacts on the analysis of EEG power where gamma band activity overshadowed
activity in the lower bands and suggested ways to avoid or minimize their influence on
BMI control and posterior analyses (López-Larraz et al., 2018b). We ensured robustness
of the results presented by way of employing the conservative fully automatic rejection
procedure.

The longitudinal analysis of the desynchronization of beta oscillation does not allow
concise interpretation because the model is not significant. An explanation could be that
beta desynchronization is not upheld throughout the whole trial, as has been shown in a
healthy population (Ramos-Murguialday and Birbaumer, 2015). There, significant beta
desynchronization only occurred in the beginning of the movement period of the trials.
In the present analysis the spectral activity was computed over the whole movement
period of trials. Furthermore, we might not be able to capture the dynamics of beta
oscillations in terms of linear modeling of desynchronization. More complex metrics
such coherence might be more suited (Nicolo et al., 2015). The longitudinal analysis of
the individual SMR frequency band shows weaker fits of the model than the analysis of
the α band. An explanation might be that this analysis included some patients that were
rewarded for SMR desynchronization in the beta frequency range during the intervention
(cf. table 2.3). In healthy populations significant power decreases during execution of a
BMI task lasting several seconds have mainly been found in the alpha frequency range
(Ramos-Murguialday and Birbaumer, 2015) and movement-related activity is known to
spread across the whole alpha range (Pfurtscheller and Lopes da Silva, 1999). This
result underlines the potential of alpha desynchronization as a biomarker as it explains
the variance of the changes in the Fugl-Meyer scores better than the other frequency
ranges.
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Alpha ERD was also evaluated in the pre and post assessments of the trial. The patients
performed repeated movement attempts of their paralyzed arm. We found no difference
of alpha ERD between the pre and the post assessment and between groups (section
2.6.4). The fact that alpha ERD did not change from pre to post despite the behavioral
changes could be attributed to the lack of proprioceptive feedback in the assessment and
the difference in the task (one is controlling the hand open/close movements of an ortho-
sis by way of modulation of their SMR and the other one is a natural attempt to open and
close the hand). Since the patients only performed movement attempts and they did not
use the exoskeleton that provided them with proprioceptive input (their hands were com-
pletely paralyzed) during the pre and post assessments, the sensorimotor activity differs,
as this type of feedback influences the modulation of brain rhythms (Ramos-Murguialday
and Birbaumer, 2015). Furthermore, the classifier used in the BMI rewarded differences
from the inter-trial interval (considered as rest) and the task (attempt to move to down-
regulate the SMR power and move the orthosis) SMR power using the last 15 seconds of
data for both cases to create the two data distributions (more information can be found in
the Supplementary information of the original trial (Ramos-Murguialday et al., 2013)).
Therefore, they could efficiently move the orthosis by either increasing power during
inter trial interval, decreasing power during BMI task or both, to decrease variability of
the distributions. This fact allowed each patient to choose their own strategy implicitly.
These reasons and their initial ERD modulation ability make a general pre-post compar-
ison of ERD values complicated without the use of a robotic orthosis. Probably a stra-
tification of this comparison should be done, and unfortunately, the number of patients
in the present work limits that comparison and does not allow drawing any conclusion.
Due to these results, it might be difficult to generalize or use alpha as biomarker if the
screening is not executed with a brain-controlled orthosis. This finding suggests inves-
tigation of alpha ERD in pre- and post-assessments of movement-attempts that include
proprioceptive feedback in future trials, as passive movements modulate desynchroniza-
tion (Ramos-Murguialday and Birbaumer, 2015). Inclusion of passive movements via
orthoses could be a complementary measure for assessment of ERD with proprioceptive
feedback (as has been already suggested using electrical stimulation, e.g. in Cho et al.
(2011)) that would need to be tested in future trials.

Even smallest improvements on the Fugl-Meyer scale could mean a relevant behav-
ioral change especially in these severely chronically paralyzed patients, in which no
spontaneous behavioral improvements are expected. The FMA changes are particularly
meaningful for modeling and they are preserved in the long-term (Ramos-Murguialday
et al., 2019). The test-retest reliability of the Fugl-Meyer test is very high (Platz et al.,
2005), but its sensitivity especially in severe patients might not be sufficient. There-
fore, several measures were taken to ensure that the changes in the original study are
adequately captured. Firstly, the assessors were blinded to group allocation to avoid
a potential retest bias. If there had been a general repetition effect all patients should
have improved, which is not the case. Secondly, the mean of both baseline Fugl-Meyer
assessments was used to measure improvement (Whitall et al., 2010). Statistical analy-
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Chapter 2 Desynchronization of the Sensorimotor Rhythm

sis of the Fugl-Meyer values of arm and hand of the two baseline assessments for the
present cohort showed that the distributions are not different (Wilcoxon signed-rank test:
p = 0.30). This underlines that the test-retest reliability of the Fugl-Meyer assessment is
high in our sample. Thirdly, the assessment focused only on the upper limb motor scores
of arm and hand without coordination and speed, and without scores related to reflexes,
further reducing variability (Crow and Harmeling-van der Wel, 2008). Further trials with
longer treatment duration or refined methods should boost the behavioral effects to skills
of functional relevance. To better understand our results, we repeated the statistical mo-
deling for the arm and hand motor skills separately and observed significant models only
for the arm part. This was expected, as most patients had larger motor improvement in
the proximal part of the arm. This larger variability in the arm scores is explained by the
progression of the ERD in the α band, confirming the results obtained with the combined
arm and hand Fugl-Meyer scores. The hand scores alone could not be explained by the
linear model, probably because of the lower variability of motor improvement scores
(section 2.6.4). In this case, the large impairment of our patients (part of the inclusion
criteria) and the low sensitivity and ordinal origin of the Fugl-Meyer scale limits our
modeling. However, trials in acute or low-to-mild-to-severe patients, and/or longer and
refined trials might also increase recovery of hand limb motor skills, which then might
also be explainable by ERD progression.

Although cortical integrity is reflected in oscillations of the sensorimotor network
measured by ERD, the cortical or subcortical location of the lesion was not a confounder
of the modeling procedure (Park et al., 2016; Ray et al., 2017). Firstly, inclusion of the
lesion location as factor did not affect the predictive power of the linear mixed models.
A likelihood ratio test of a model comparison of a model with and a model without the
factor lesion location did not show a significant difference (χ2 = 4.25, p = 0.12). Se-
condly, linear mixed models allow for individual variations of intercept and slope of the
progression of the ERD. That is why the relative individual change of ERD through-
out the training can be compared between patients with different lesion characteristics.
Moreover, in the patients with mixed lesions (subcortical and cortical) damage of the
precentral gyrus and the postcentral gyrus did not lead to differences in expression of
alpha ERD during the pre measurement (section 2.6.7).

Linear mixed-effects models are suited for describing physiological data because they
acknowledge individual deviations from the population mean and account for unequal
number and unequal spacing of data points (Lang et al., 2016). However, each model
is a simplification of the data. Learning processes in Neurofeedback have also been
described with much higher orders (Gunkelman and Johnstone, 2005). The model co-
efficients provide the best description of the data in a least squares sense and the linear
mixed model including subject-specific slopes describes the data significantly better than
a model not allowing deviation from the general slope. A likelihood ratio test of a model
comparison shows a significant difference (χ2 = 6.57, p = 0.038). However, even with
the flexibility that linear-mixed effects models allow, assuming linear progression of the
ERD values could be an oversimplified description of the true time course. Moreover, the
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2.4 Discussion and conclusions

two-staged linear modeling employed in the present work could introduce further sim-
plification due to the second modeling step, which might blur the results. On the other
hand, linear models allow for the description of the underlying processes with only a few
parameters, which is an advantage for intuitive interpretation and quantitative compari-
son of the models and necessary for the two-stage analysis employed here.
Four patients of the control group showed a decline of their motor function regard-
less of the dynamics of their ERD throughout the intervention (four squares below the
zero line in fig. 2.4). It has been suggested that the contingency of brain-activity and
visuo-proprioceptive feedback is key to cortical reorganization and recovery (Ramos-
Murguialday et al., 2013). Non-contingent feedback interfered with learning and thus
could worsen motor impairment (e.g. reinforcing maladaptive synergies), which could
happen with open-loop control of body actuators (e.g. robotics and electromagnetic sti-
mulation) or during physiotherapy.
The present results in severe chronic stroke indicate that EEG oscillatory activity can
predict recovery of these patients and links its progression to functional motor recov-
ery, and therefore mark it as a promising biotarget for rehabilitation interventions. In
heterogeneous conditions such as stroke, biomarkers could play an important role in in-
forming treatment pathways (informed patients stratification). Mane et al have recently
shown that the predictive power of EEG-based markers may be specific to the interven-
tion methodology (Mane et al., 2019). Studies of oscillatory brain activity during motor
imagery and movement of the paretic hand of moderately to severely affected chronic
stroke patients (Kaiser et al., 2012) as well as subacute patients of mild to moderate
(Platz et al., 2002) and severe impairment (Pichiorri et al., 2015) support our findings
suggesting that the level of impairment is negatively correlated to the desynchronization
of alpha oscillations on the ipsilesional hemisphere. Moreover, an increase of ipsilesional
ERD was observed after spontaneous recovery in acute stroke (Tangwiriyasakul et al.,
2014) with concomitant lack of ERD on the healthy hemisphere, which indicates our
results might generalize those of acute and sub-acute stroke patients. The sensorimotor
ERD magnitude has also been shown to correlate with recovery in spinal cord patients
(López-Larraz et al., 2015), supporting the validity of this metric as a viable and easily
obtainable biomarker of clinical progress in patients suffering from motor impairments
and as a measure of brain plasticity (Takemi et al., 2015). Moreover, the presence of
alpha oscillations at cortical sites of the sensorimotor systems reflects the intact balance
of thalamic circuits, particularly reticular thalamic recurrent inhibition of thalamocor-
tical afferents (Steriade et al., 1990). Lack of these oscillations in relaxed wakefulness
and sleep thus does not allow the excitatory blockade of inhibitory reticular-thalamic and
centro-thalamic circuits at the ipsilesional thalamo-cortical system. Reappearance of the
delicate excitatory-inhibitory balance in the thalamocortical circuits after stroke in the
course of a learning process directly targeting this oscillatory mechanism, clearly sup-
ports the neurophsyiosological logic of Brain-Machine interface strategies (Birbaumer
and Cohen, 2007; Birbaumer et al., 1990).

It is important to emphasize that models as the one presented here only show corre-
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Lesion type Sex Age (years) Time since
stroke (months) Lesion side cFMA score

LM 8M/5F 53.7±13.2 58.4±50.5 9R/4L 11.2±7.8
LS 10M/7F 53.7±11.2 73.1±65.6 8R/9L 12.9±9.7

Table 2.2: Patient demographics for the patients investigated in the study on ERD and
lesion location

lations to outcome variables, which do not allow causal inference. However, our results
constitute a building block of more generalizable statistical models of the process of
motor recovery in chronic stroke. As pointed out in the synopsis, quantitative statis-
tical comparison of performance of different markers and different combinations and
sequences of markers employing more data could eventually yield the optimal procedure
and best outcome for the individual patient.

2.5 Lesion location

Previous works have shown that location and volume of the lesion might be indicators
of function after stroke. ERD magnitude has been shown to be lower in stroke patients
as compared to healthy individuals (Tangwiriyasakul et al., 2014; Park et al., 2016).
These differences in brain oscillations can also be observed in stroke patients suffering
from moderate or mild paralysis presenting different grades lesions severity (Park et al.,
2016).

EEG recordings of 30 patients undergoing the BMI training described above (Dataset
1, section 1.3.1) were preprocessed. Only the data of the first training session was con-
sidered here, as no between-group effects of the training were expected on the first day
of the intervention. The artifact rejection did not lead to exclusion of any subject (as data
only from one session was considered).

The Event-related desynchronization was computed as in equation (2.1) in the alpha
and beta frequency range.

The patients were stratified into two groups depending on lesion location: patients
with lesions involving the primary motor cortex and the primary sensorimotor cortex
were assigned to group LM (n=13) and the rest to group LS (n=17) (table 2.2). For the
statistical evaluations non-parametric tests were used. As the samples were independent
a Wilcoxon rank-sum test was used for the comparison between the two groups to assess
the mean difference in ERD values between them using a significance level of 0.05. The
effect size was computed using the rank-biserial correlation (Wendt, 1972).
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2.5 Lesion location

2.5.1 Results

The mean±SD of the alpha-ERD values of the patients suffering from a lesion that ex-
tends to the primary motor cortex (LM) was −17.0± 22.6. For the other patients (LS),
the values were lower on average with mean±SD of −32.9± 18.4. When performing
the Wilcoxon rank-sum test, which resulted in U = 155 and p = 0.065, we did not find
enough evidence to conclude that the observed difference of the ERD values in the al-
pha range is statistically significant. The effect size, of r = 0.40, however, is moderate.
Those patients suffering from a lesion that extends to the primary motor cortex (LM)
tendentially show a lower activation on average (i.e. less negative ERD magnitude) than
the patients that do not have their primary motor cortex affected (LS) (fig. 2.9a). The
mean±SD of the beta-ERD values was −15.6± 16.0 for group LM and −25.4± 17.6
for the patients whose primary motor cortex was not affected (LS). The same type of
statistical test was applied to the ERD values of the β band of the two groups. It did not
show a statistically significant difference with U = 148 and p = 0.1227. The effect size,
however, was moderate with r = 0.34. We thus conclude that at least a similar tendency
of lower average activation (i.e. less negative ERD magnitude) in the β band can be
observed for patients with inclusion of the motor cortex (fig. 2.9b).

2.5.2 Discussion

There were no significant differences of the ERD magnitude of the two groups of pa-
tients. The results only show a tendency towards ERD as a measure of relative EEG
power being less pronounced if the motor cortex is affected by the lesion but production
of ERD is not generally impeded.

It has long been known that ERD is an electrophysiological correlate of ongoing cor-
tical processing of sensory information and generation of motor behavior (Niedermeyer
and Lopes da Silva, 2005). Patients with motor deficit due to stroke exhibit less pro-
nounced ERD as compared to healthy controls (Tangwiriyasakul et al., 2014; Park et al.,
2016). Motor output and control of movements of these patients are reduced. Their
limb strength and their ability to control and direct movements of the paralyzed limb are
lower than in a healthy population (Broetz et al., 2014). Lesion volume and location, on
the other hand, have shown to be correlated with behavioral outcome in imaging studies
(Lindenberg et al., 2010; Pineiro et al., 2000). Our findings point in the direction of clo-
sing the argumentational loop: inclusion of the primary motor cortex in the lesion might
also be correlated with less pronounced ERD. As ERD of the α band potentially repre-
sents a biomarker of the excitability of cortical and spinal levels (Takemi et al., 2015;
López-Larraz et al., 2015), less ERD due to involvement of the primary motor cortex in
the lesion could imply impeded progress in a rehabilitation scenario.

The results show a certain degree of heterogeneity of ERD generation between patients
that might depend on the location of the lesion, i.e. the inclusion of the sensorimotor cor-
tex in the lesion, among other factors. For this reason, they support the idea of designing
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(a) Boxplot showing how the values of the alpha-
ERD magnitude differ between the two groups of
lesion locations. Those patients suffering from an
involvement of the motor cortex show less nega-
tive alpha-ERD magnitude on average than those
patients whose motor cortex is not touched by the
lesion. The mean values of the alpha-ERD magni-
tude of each patient are overlayed as blue circles.
They are randomly jittered around the vertical cen-
ter of the boxes to increase clarity. The difference
is not statistically significant, when employing a
Wilcoxon rank-sum test.

(b) Boxplot showing how the values of the beta-
ERD magnitude differ between the two groups of
lesion locations. Those patients suffering from
an involvement of the motor cortex show slightly
less negative beta-ERD magnitude on average than
those patients whose motor cortex is not touched
by the lesion. The mean values of the beta-ERD
magnitude of each patient are overlayed as blue cir-
cles. They are randomly jittered around the vertical
center of the boxes to increase clarity. The differ-
ence is not statistically significant, when employ-
ing a Wilcoxon rank-sum test.

Figure 2.9: Distributions of ERD values in the two groups in the two frequency bands
under investigation.
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2.6 Materials

intervention schemes that are better tuned to the individual characteristic of the stroke
of the patient, which could increase efficiency of the rehabilitation intervention. SMR-
based classifiers driving a rehabilitation robot could be adjusted to the less pronounced
ERD signals of patients showing lesions that extend to the motor cortex, e.g. by increas-
ing the sensitivity and thus allowing more subtle changes in the signal to produce larger
effects in the control of the robot.

2.6 Materials
This section presents auxiliary information for the analyses presented in this chapter.

2.6.1 Rejection procedure
In the following supporting information on the rejection procedure during preprocessing
of the data analyzed in this chapter is presented.

Figures 2.10 to 2.13 show the number of trials that were removed from each training
session of each patient and the percentage of trials remaining.

2.6.2 Descriptive statistics on rejection
The following figures show descriptive statistics on the number of rejected trials. Figure
2.14a shows the distribution of the total number of trials. Figure 2.14b shows the dis-
tribution of the total number of rejected trials. Figure 2.15 shows the distribution of the
percentage of trials remaining per session.

2.6.3 Descriptive statistics on reasons for rejection
The following figures show descriptive statistics on the number of rejected trials. Fi-
gure 2.16 shows the distribution of the total number of trials showing EEG artifacts.
Figure 2.17a shows the distribution of the total number of trials showing ipsilateral EMG
artifacts and figure 2.17b shows the distribution of the total number of trials showing
ipsilateral or bilateral EMG artifacts.

2.6.4 Pre and post comparison of primary outcome measures with
the new cohort

In this section pre and post comparisons of the primary outcome measures are shown for
completeness. Only the 23 subjects used in the main analysis were considered.

Figure 2.18 shows the comparison of mean event-related desynchronization (ERD)
during the pre measurement and the post measurement. At these two time points subjects
were seated and they performed cued opening attempts of the paretic hand and resting
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Figure 2.10: The number of trials that have been removed in each training session for
each patient (contingent positive feedback group). The subplots on the top show the
total number of trials (full circles) and the number of trials rejected (empty circles) per
session. The bottom subplots show the percentage of trials remaining after the rejection
procedure. The globally defined minimum number of trials necessary for a session to
remain in the analysis is 15. The sessions having less than 15 ”good” trials remaining
have been rejected. Rejection is indicated by empty hexagons. The percentage threshold
for trial rejection varies between sessions because of the total number of trials varies per
session.
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Figure 2.11: (continued)
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Figure 2.12: The figure shows the number of trials that have been removed in each trai-
ning session for each patient (Sham feedback group). The subplots on the top show the
total number of trials (full circles) and the number of trials rejected (empty circles) per
session. The bottom subplots show the percentage of trials remaining after the rejection
procedure. The globally defined minimum number of trials necessary for a session to
remain in the analysis is 15. The sessions having less than 15 ”good” trials remaining
have been rejected. Rejection is indicated by empty hexagons. The percentage threshold
for trial rejection varies between sessions because of the total number of trials varies per
session.
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Figure 2.13: (continued)

(a) The violin plot displays median and first and
third quartile of the data and a density estimation
of the distributions of the data. There is no dif-
ference between the groups in the total number of
trials. There are two Sham patients who had only
11 sessions in total which explains the bottom tail
of the plot on the right.

(b) The violin plot displays median and first and
third quartile of the data and a density estimation
of the distributions of the number of rejected trials
of both groups.

Figure 2.14: Distributions of trials and rejected trials per group.
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Figure 2.15: The box plot indicates that there is no difference in the percentage of trials
remaining per session after preprocessing between the feedback groups. This is con-
firmed by the result of a t-test: t =−1.19, p = 0.84.

Figure 2.16: The box plot shows the distribution of the total number of trials per sub-
ject with artifacts in the EEG. A t-test does not show a difference between groups:
t =−1.79, p = 0.44.
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(a) The box plot shows the distribution of the total
number of trials removed per subject with artifacts
caused by movements of the unaffacted arm during
movement attempts of the paralyzed arm. There is
no difference between groups.

(b) The box plot shows the distribution of the total
number of trials per subject with artifacts caused
by movements of any arm during the rest period.
There is no difference between groups.

Figure 2.17: Distribution of trials rejected because of EMG artifacts.

in randomized order. Data acquisition and processing was the same as for the main
analysis. However, there was no minimum number of trials remaining after the analysis
and no subject was removed. In an additional preprocessing step ERD values below -100
and above 100 were considered artifacts and were discarded (mean±sd 3.6 ± 2.6 trials
per subject contained such values).

Figure 2.19 shows the comparison of the difference of the modified Fugl-Meyer as-
sessment scores from pre to post stratified by feedback group. A t-test reveals a trend
towards a difference between groups (t = 2.05, p = 0.057).

Figure 2.18: Comparison of alpha ERD values of patients in the two feedback groups
during pre and post assessments
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Figure 2.19: Comparison of the difference of the modified Fugl-Meyer assessment scores
from pre to post by feedback group

2.6.5 Progression of desynchronization in other frequency ranges
than alpha

In the following the main analysis is repeated on data of the β and the individual µ

frequency band.

Beta frequency range

The linear model for the ERD in the beta frequency range (11 - 25 Hz) was constructed
in the same way as the model of the ERD in the alpha frequency range presented above.
∆cFMA is predicted by the coefficients extracted from the corresponding linear mixed
effects model: the progression of the ERD throughout the intervention sessions and the
initial ERD magnitude. An interaction term was included in the LM to investigate if
the initial ERD correlated with the progression of the oscillatory activity. The F-test
of the regression equation was not significant and the fit of the model was very low:
F(3,18) = 1.23, p = 0.3278 and an adjusted r2 = 0.032. Figure 2.20 shows the linear
model predicting the improvement of motor function (∆cFMA) on the hemisphere of the
lesion.

µ frequency range

The linear model for the ERD in the individual SMR frequency range (µ) was con-
structed in the same way as the model of the ERD in the alpha frequency range presented
above. ∆cFMA is predicted by the coefficients extracted from the corresponding linear
mixed effects model: the progression of the ERD throughout the intervention sessions
and the initial ERD magnitude. An interaction term was included in the LM to inves-
tigate if the initial ERD correlated with the progression of the oscillatory activity (fig.
2.21). Table 2.3 shows the frequency range selected for each subject for control of the
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Figure 2.20: Linear model predicting the improvement of motor function (∆cFMA) by
the initial ERD and the progression of the ERD of the beta frequency range on the ip-
silesional hemisphere over sessions. For improved visualization of the effects of both
explanatory variables in the model the patients are separated into two cross-sections
showing relatively strong initial ERD (left panel) and a second group showing relatively
weak initial ERD (panel on the right). The F-test of the regression equation was not
significant.
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Figure 2.21: Linear model predicting the improvement of motor function (∆cFMA) by
the initial ERD and the progression of the ERD of the individual SMR frequency range
on the ipsilesional hemisphere over sessions. For improved visualization of the effects of
both explanatory variables in the model the patients are separated into two cross-sections
showing relatively strong initial ERD (left panel) and a second group showing relatively
weak initial ERD (panel on the right).

exoskeleton. The F-test of the regression equation was significant: F(3,18) = 3.475,
p = 0.038 and an adjusted r2 = 0.26.

The analysis of the interhemispheric asymmetry in the SMR frequency investigated
if the progressive laterality coefficient predicts the clinical change ∆cFMA (fig. 2.22).
The F-test for this linear regression equation was not significant but revealed a trend.
However, the fit of the equation is low. F(1,20) = 3.76, p = 0.067 and an adjusted
r2 = 0.1161.

2.6.6 Progression of desynchronization of alpha oscillations with
breakdown of FMA scores

Breakdown of the Fugl-Meyer assessment

The Fugl-Meyer Assessment evaluates impairments in sensorimotor function. Here,
the scale was modified to exclude coordination, reflexes and speed. These measures
introduce variability since the patients could not actively extend their fingers (Ramos-
Murguialday et al., 2013).

The evaluation took into account the motor skills of upper arm and forearm. 15 items
were tested with a maximum score of 30 points. Furthermore, the motor skills of hand
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Subject ID Frequency range of the individual µ

1 5.5 - 8.5 Hz
2 8.5 - 11.5 Hz
3 14.5 - 17.5 Hz
4 8.5 - 11.5 Hz
6 11.5 - 14.5 Hz
7 14.5 - 17.5 Hz
8 5.5 - 8.5 Hz
9 5.5 - 8.5 Hz

10 8.5 - 11.5 Hz
12 23.5 - 26.5 Hz
15 8.5 - 11.5 Hz
18 8.5 - 11.5 Hz
19 5.5 - 8.5 Hz
20 8.5 - 11.5 Hz
21 8.5 - 11.5 Hz
22 17.5 - 20.5 Hz
24 8.5 - 11.5 Hz
25 8.5 - 11.5 Hz
26 5.5 - 8.5 Hz
27 8.5 - 11.5 Hz
28 5.5 - 8.5 Hz
29 8.5 - 11.5 Hz

Average 9.6 ± 4.8 Hz
Table 2.3: Frequency ranges of the individual SMR
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Figure 2.22: Relationship between improvement and interhemispheric difference of
changes of the ERD in the individual SMR-band. Values on the x-axis express the differ-
ence between the progression of the ERD on the healthy hemisphere and the ipsilesional
side. Positive values on this axis indicate that throughout the training patients exhibited
stronger ipsilesional ERD, negative values indicate a stronger ERD on the healthy hemi-
sphere. The regression indicates that the larger a difference towards the hemisphere of
the lesion is found the better the motor improvement.
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and fingers were tested comprising 12 items with a maximum score of 24 points. The
total maximum score was 54 points.

The movements of the arm test The following 15 movements were assessed:

• Movements 1 ot 6: Synergies of the flexors (”touch the ipsilateral ear“):

– elevation

– shoulder retraction, abduction, external rotation

– forearm supination

• Movements 7 to 9: Synergies of the extensors (”touch the contralateral knee“):

– shoulder adduction, internal rotation

– elbow extension

– forearm pronation

• Movement 10: ”Move the hand to lumbar spine“

• Movement 11: Shoulder flexion 0-90°

• Movement 12. Pro/supination while elbow is in flexion

• Movement 13: Shoulder abduction 0-90°

• Movement 14: Shoulder flexion 90-180°

• Movement 15: Pro/supination while elbow is in extension

The movements of the hand test The following twelve movements were assessed:

• Movement 1: Stabilitby of the wrist in 15° extension while elbow is at 90°

• Movement 2: Stability of the wrist in flexion and extension while elbow is at 90°

• Movement 3: Stability of the wrist in 15° extension while elbow is at 0°

• Movement 4: Flexion/extension of the wrist while elbow is at 0°

• Movement 5: Circumduction of the wrist

• Movement 6: Flexion of the fingers

• Movement 7: Extension of the fingers

• Movement 8: Grasping against resistance with metacarpophalangeal joints of digit
two and flexion of the proximal interphalangeal joints
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Figure 2.23: Distribution of the changes of the scores of the FMA from pre to post sepa-
rated into arm and hand subsections

• Movement 9: Grasping of a scrap of paper

• Movement 10: Grasping of a pencil

• Movement 11: Grasping of a cylinder

• Movement 12: Grasping of a tennis ball

Improvement in arm and hand The figure shows that the range of improved points on
the arm subscore of the Fugl-Meyer assessment is greater than that of the hand subscore
(fig. 2.23 ).

Statistical modeling

The statistical modeling analysis described above was repeated with a breakdown of the
Fugl-Meyer assessment into arm subscores and hand subscores.

The linear models for the ERD in the alpha frequency predicted the change in the arm
scores of the Fugl-Meyer assessment (∆FMAarm, fig. 2.24) but not for the hand scores
(∆FMAhand , fig. 2.25). For the arm scores the F-test of the regression equation was
significant: F(3,18) = 5.15, p = 0.0096 and an adjusted r2 = 0.37. The F-test of the
regression equation of the hand scores was not significant: F(3,18) = 0.59, p = 0.6293
and an adjusted r2 =−0.06.

Linear models predicting both FMA subscores from the contralesional hemisphere
were constructed. Only the F-test for the regression of the arm subscores for those sub-
jects with relatively weak initial ERD was significant: F(0,9) = 6.4, p = 0.032 and an
adjusted r2 = 0.35 (fig. 2.26).
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Figure 2.24: Linear model predicting the improvement of motor function (∆FMAarm)
by the initial ERD and the progression of the ERD of the alpha frequency range on
the ipsilesional hemisphere over sessions. For improved visualization of the effects of
both explanatory variables in the model the patients are separated into two cross-sections
showing relatively strong ERD (left panel) and a second group showing relatively weak
initial ERD (panel on the right).

2.6.7 Lesion characteristics: Involvement of the pre/postcentral
gyrus

The precentral and the postcentral gyrus are the locations of the primary motor cortex
and the primary somatosensory cortex. Previous works showed that cortical integrity is
reflected in oscillations of the sensorimotor network measured by ERD if stroke patients
with damaged cortex are compared to patients with subcortical lesions (Park et al. (2016)
and section 2.5).

Of those subjects who had cortical involvement of the stroke there were eight with
and one without involvement of the precentral gyrus. The same numbers apply to the
subjects regarding the postcentral gyrus. There were seven subjects who had both gyri
affected and only two who did not (fig. 2.27).
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Figure 2.25: Linear model predicting the improvement of motor function (∆FMAhand)
by the initial ERD and the progression of the ERD of the alpha frequency range on
the ipsilesional hemisphere over sessions. For improved visualization of the effects of
both explanatory variables in the model the patients are separated into two cross-sections
showing relatively strong ERD (left panel) and a second group showing relatively weak
initial ERD (panel on the right).
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Figure 2.26: Linear model predicting the improvement of motor function (∆FMAarm)
by the progression of the ERD of the alpha frequency range on the healthy hemisphere
over all sessions for the patients showing relatively weak initial ERD on the ipsilesional
hemisphere. Better recovery was achieved when the ERD on the healthy hemisphere
decreased in the course of the training.

67



Chapter 2 Desynchronization of the Sensorimotor Rhythm

Figure 2.27: There is no difference of the alpha-ERD over the lesion between those
subjects with cortical involvement in which the pre/postcentral gyrus is affected by the
lesion and those in which it is not. Please note, however, that there are only two subjects
in the left distribution.
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Chapter 3

Sensorimotor oscillations in severe
chronic stroke

3.1 Introduction
Stroke causes focal perturbations in brain function that influence local properties of sen-
sorimotor oscillations (SMR). This rhythm oscillates in the alpha frequency range of
the EEG and has the largest amplitude over central-parietal brain regions during rest-
ing. SMR is extensively used in studies on movement-related Brain-Machine interfaces.
Moreover, it was shown to be a measure of cortical excitability (Takemi et al., 2015).

In acute stroke power and ability to modulate the rhythm are reduced but increase over
time (Tangwiriyasakul et al., 2014). Similarly, modulation of the SMR power is related
with motor recovery in chronic stroke and location and extent of the lesion influence
SMR power, as was shown in chapter 2 and Ray et al. (2020, 2017); Wijngaarden et al.
(2016). Not only is the power of the rhythm reduced, but the frequency of the oscillations
in the alpha range of the EEG are slowed in acute stroke as compared to a healthy pop-
ulation (Wijngaarden et al., 2016). The oscillations are generated in a loop connecting
cortex and thalamic structures (Steriade et al., 1990). The interactions between the in-
volved structures are complex. Any disturbance within this system leads to a disturbance
of the oscillations visible on the cortex (Hughes and Crunelli, 2005). During wakeful-
ness thalamic relay cells usually fire every 100 ms ( 10 Hz). If feedback from the cortex
is reduced, the hyperpolarized relay cells are less likely to fire because of inhibition from
the reticular thalamic nucleus (Jones, 2002). This leads to slower re-occurring signals
from the thalamus to the cortex.

Slowing of SMR oscillations has been reported in stroke patients in the acute phase
(Dubovik et al., 2012; Wijngaarden et al., 2016). These findings indicate that assump-
tions on peak center frequency and power derived from healthy populations are not di-
rectly transferable to stroke patients, especially not to those with severe paresis and in
the chronic state. Their cortico-thalamic-spinal networks are anatomically and function-
ally compromised and stabilized after a long period of time. Moreover, it is unclear how
SMR changes are affecting interhemispheric networks.

Current approaches to effective treatment of chronic stroke encompass intensive neu-
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rorehabilitation approaches (Ward et al., 2019) and approaches exploiting different pro-
perties of oscillations related to motor activity, like Brain-Machine interfaces (BCI)
(Ramos-Murguialday et al., 2013) or closed-loop brain stimulation (Ziemann et al.,
2018).

In order to uncover some of the remaining unclarity of the characteristics of SMR
in chronic stroke, we present an investigation of peak center frequency and power of the
sensorimotor oscillations in a large cohort of chronically and severely impaired stroke pa-
tients (n = 41) and compare them to a younger group of healthy volunteers. Furthermore,
we extend the analysis to a comparison of these properties to the effects of a BCI-based
intervention. We employ a fully automatic, deterministic methodology for extracting
these parameters of the SMR from electroencephalographic (EEG) resting-state data.

3.2 Methods
This study pooled data from multiple previously published and ongoing studies. Overall,
data of 41 patients was considered (table 3.1). All of them had a singular cortical or sub-
cortical stroke and were chronically and severely impaired. Only three showed limited
residual hand movements. All the others were not able to voluntarily extend their hand.
30 of the patients took part in a previously published study. Half of these patients had the
motor cortex included in the lesion, the other half had a subcortical stroke. Detailed ex-
clusion and inclusion criteria are provided elsewhere (Ramos-Murguialday et al., 2013).
Data from the other eleven patients was recorded in two ongoing studies. A total of 36 of
the patients took part in a rehabilitation intervention based on Brain-Machine interfaces
that aimed at improving motor skills and capabilities of the paralyzed upper limb. 30 of
the patients were part of the study presented in 2013 (Ramos-Murguialday et al. (2013),
dataset 1 in section 1.3.1) and six patients were part of an ongoing study with the same
aims and a similar protocol (unpublished, dataset 2 in section 1.3.1). All of these patients
received a battery of clinical, behavioral and neurophysiological assessment tests before
and after the intervention. The primary clinical outcome measure was the modified Fugl-
Meyer assessment with a maximum score of 54. This test comprises the sum of the arm
and hand motor scores excluding scores related to coordination, speed and reflexes. The
assessment was performed at the post test and two tests prior to the intervention. The
mean of both baseline FMA values was used to calculate the difference between the val-
ues of the pre intervention and the post intervention measurement.
The remaining five patients were not part of these interventional studies. Their data is
thus not considered for assessing the correlations between oscillation parameters and
motor improvement.

Data of 55 healthy volunteers (table 3.1) were recorded in two studies, of which one is
yet to be published, whereas the other has already been published (Bolinger et al., 2019).

The participants performed two minutes of resting-state EEG recordings in total before
the intervention and after the intervention, where applicable. They were instructed not
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Study Number of
participants

Type of
participants

Age
(mean ± sd years) Sex Exclu-

ded

Stroke motor
intervention

(upper limb) I
30

Chronic
severe stroke 53.5 +/- 12.1

12 F
18 M 3

Stroke motor
intervention

(upper limb) II
6

Chronic
severe stroke 55.5 +/- 9.7

2 F
4 M 0

Stroke motor study
(lower limb) 3

Chronic
severe stroke 65.3 +/- 11.6 3 M 2

Stroke motor study,
no intervention 2

Chronic
severe stroke 65 and 70 years

1 F
1 M 1

Healthy
participants I 30

Healthy
volunteers 24 +/- 3.1

16 F
20 M 6

Healthy
participants II 25

Healthy
volunteers 27.4 +/- 4.6

7 F
22 M 0

Table 3.1: Demographics of participants considered in this investigation. The last column
shows the number of subjects excluded from the analysis per study due to the model fit
criterion.

to move and to focus their attention on a cross mark on the wall or on a screen. Some of
the healthy volunteers only performed 30 seconds of continuous resting-state EEG.

3.2.1 Neurophysiological recordings and data analysis

EEG data was recorded from between 8 and 32 electrodes. However, for the present
analysis only the electrodes directly above the motor cortex, i.e. C3 and C4, were con-
sidered. The EEG data from these channels were filtered at 0.1 Hz and 48 Hz and ocular
artifacts were removed using linear regression between the EEG and the vertical and
horizontal EOG, which was also recorded (Schlögl et al., 2007). Subsequently the con-
tinuous recordings were split into epochs of four seconds. Artifacts in the gamma (30
to 48 Hz) and the delta (1 to 4 Hz) frequency band related to motion and cranial mus-
cle activity were discarded from the EEG data using a statistical methodology presented
previously (López-Larraz et al., 2018b). Each epoch containing artifacts, which were de-
fined by mean EEG power in the central channels C3 and C4 larger than three standard
deviations of the mean of the EEG power, was rejected. This procedure was performed
twice (yielding a new rejection threshold the second time).

The EEG data free of artifacts was filtered spatially using a Laplacian derivation as
described by Perrin and colleagues (Perrin et al., 1978, 1989; Yilmaz et al., 2015),
thus reducing the impact of volume conduction and improving spatial resolution. Using
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the surface Laplacian filter also attenuated influence of occipital alpha oscillations on
the sensorimotor oscillations. The implementation used is available in the open source
MNE-python toolbox (Gramfort et al., 2013).

The final step of the processing procedure was the parameterization of the oscilla-
tions using the “Fitting Oscillations & One-Over F” algorithm (“FOOOF”). The toolbox
is freely available for python (from https://fooof-tools.github.io/fooof/) (Haller et al.,
2018). The FOOOF algorithm first fits an exponential function against the power spec-
trum of the EEG to parameterize the aperiodic noise underlying the spectrum. After-
wards multiple gaussian models are fit against the power spectrum in order to parame-
terize the oscillations that protrude from the noise floor as bell-shaped peaks. The pa-
rameters of the power spectrum obtained are intercept and exponent of the fractal noise,
the central frequency of a peak, as well as its width and power (i.e. the vertical distance
between the aperiodic component and the central point of the peak). A maximum of two
peaks were searched within a frequency range of four to 25 Hz (theta, alpha and beta
frequencies). That way, alpha and beta peaks or even secondary peaks in the alpha range
could be captured. The accepted width was between 1 and 8 Hz as the beta peaks are
usually wider than the alpha peaks.

Figures 3.1 and 3.2 show examples of parameterized oscillations.

Exclusion of subjects

The signal that was modelled with FOOOF was correlated with the original signal after
estimation of the parameters of the aperiodic and periodic components. If the model fit
was lower then a strong correlation of r2 = 0.6 for the patients and r2 = 0.7 for the healthy
participants, the subject was excluded from further analysis, assuming that the low model
fit would result in wrong estimations of periodic parameters (i.e. the oscillations). In
fact, more than 75% of the models of the patients were in the range of 80% correlation
or higher (fig. 3.3).

Out of the 36 patients participating in the interventional studies, three were removed
from the analysis due to low model fit and one of them was removed due to technical
issues with the resting-state recording (see table 3.1).

Out of the five patients not taking part in the interventional studies three were removed
due to low model fit.
In addition to that two subjects of the interventional studies were removed due to a tech-
nical issue with the post recording. One further subject was removed due to artifact
rejection leading to only a few trials remaining in the post recording.

Out of the 55 healthy volunteers six were removed due to low model fit, which might
have been attributable to the short duration of the recording. All six patients only
recorded 30 seconds of resting-state EEG.
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(a) Automatic peak detection between 5 and 25 Hz. The oscillation in the alpha range is correctly modeled
(line in light red). On the unaffected hemisphere there is also a smaller peak in the beta range. The dashed
line represents the modeled non-oscillatory component.

(b) Automatic peak detection between 5 and 25 Hz. There are two peaks within the alpha range.

Figure 3.1: Examples of oscillations parameterized automatically with FOOOF.
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Figure 3.2: Examples of oscillations parameterized automatically with FOOOF (contin-
ued). Automatic peak detection between 5 and 25 Hz. The sensorimotor oscillation is so
slow that it is in the theta range.

Figure 3.3: Distribution of model fit according to the hemisphere. There is no difference
between hemispheres. The great majority of patients showed a high model fit.
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(a) Occurrences of all possible combinations of lo-
cations of the major peaks (there was no subject
with only a peak in the theta range).

(b) Distributions of center frequencies of peaks
within the alpha range on both hemispheres. There
is no difference.

Figure 3.4: Peak locations in different frequency bands and peak center frequencies
within the alpha range

3.3 Results

3.3.1 Estimated parameters of the oscillations

The peaks of the oscillations directly above the motor cortices of both hemispheres were
parameterized. Out of all the peaks found for all subjects 15% were in the theta range,
59% were in the alpha range and 26% were in the beta range. The great majority of
patients showed alpha peaks (only 4 did not) (fig. 3.4a). More than 1/3rd of patients
did show one peak only in the alpha range, 1/4th presented peaks in alpha and beta
and 1/5th in alpha and theta. If a secondary peak was found within the alpha range the
one with lower power was discarded (n=5 patients showed a secondary peak in the alpha
frequency range: 8.34 Hz± 0.52 mean± SD). The alpha peaks found on the hemisphere
of the lesion were centered at 9.63 ± 1.06 Hz (fig. 3.4b) and on the contralesional
hemisphere were located at 9.76 ± 0.91. There is no significant difference of the means
(p > 0.05) (fig. 3.4b). The difference in power of the peaks on both hemispheres was
not significantly different either (independent sample t-test: p > 0.05).

Since the majority of the patient group underwent a neurofeedback intervention based
on ipsilesional EEG SMR, we analyzed specifically if the alpha peaks changed over time
but no significant difference was found in the frequency or amplitude of the peaks in
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the lesion hemisphere. The peak frequency of the oscillations on the hemisphere of the
lesion did not change from before to after the treatment: 9.71 ± 1.04 Hz (before) and
9.79 ± 1.23 Hz (after) (paired sample t-test: p > 0.05). The power of the oscillation did
not change, either (paired sample t-test: p > 0.05).

The 30 patients taking part in the published Brain-Machine interface study (Dataset
1, section 1.3.1) were stratified according to involvement of the motor cortex in the le-
sion. Expert-segmented MRI images of the damaged brain areas are available for these
patients. The type of the lesion was not a predictor of peak center frequency nor of peak
power (independent sample t-tests: p > 0.05).

3.3.2 Correlation of oscillations and impairment

Peak center frequency of the SMR did not correlate with motor function before the in-
tervention and neither did it predict improvement (fig. 3.5a). SMR peak power did not
correlate significantly either. However, a DFBETA test revealed an influential outlier (re-
moval of this subject would change the intercept and the slope of the model one order of
magnitude more than the next most influential subject, cf. 2.2.3). Removing this outlier
yielded a significant model (F : 4.6; p = 0.04). The correlation, however, is very small
(r2 = 0.17) (fig. 3.5b). No correlation between individual interhemispheric differences
of sensorimotor peak frequency and peak power and motor function were found when
trying to predict the Fugl-Meyer values before the intervention using an ordinary least
squares regression (F-test: p > 0.05).

Descriptive analysis shows that the combination of the frequency band of occurrence
of the major peaks did not have a systematic influence on motor improvement (fig. 3.6).
However, the patients with only beta peaks show no improvement.

3.3.3 Comparison of oscillations in stroke patients and healthy
participants

We compared the sensorimotor oscillations of the patients under investigation here with
a younger healthy control group. Since there were no differences of the peak center
frequency between hemispheres in either of the two groups, we considered peaks from
both sides of the brain in one comparison. Secondary peaks in the alpha frequency
range have been removed in the patients (n=5) and the healthy population (n=12). The
mean sensorimotor peak center frequency in the patients was 9.67 ± 0.97 Hz and in the
healthy participants it was 10.43 ± 0.93 Hz (fig. 3.7). The difference was significant
(independent samples t-test: p < 0.0001).

Moreover, the power of the sensorimotor oscillations was significantly higher in the
healthy participants (0.64 ± 0.33 a.u.) than in the patients (0.51 ± 0.26 a.u.): p =
0.01. The groups were not age-matched. However, the patients who participated in this
investigation had a large age range from just below 30 years to 75 years. We correlated
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(a) The correlation between peak center frequency
and motor impairment cFMA.

(b) The correlation between peak power and motor
impairment cFMA.

Figure 3.5: Regressions assessing the correlations between metrics of the sensorimotor
rhythm and motor impairment before the intervention.

sensorimotor oscillation peak frequency in the patients with their age. There was neither
a correlation for the peak frequency on the hemisphere of the lesion nor the unaffected
hemisphere (fig. 3.8).

3.4 Discussion
In the present work we investigated SMR peak center frequency and power in chronically
and severely impaired stroke patients during resting-state. We found that the oscillations
are slowed as compared to a younger group of healthy volunteers. SMR peak center
frequency did not differ between hemispheres in the patient cohort and it did not change
from before to after the interventions. There was a small correlation between power of
the SMR and initial impairment.

Our results confirm previous work indicating that these slower rhythms persist in the
chronic stage of stroke. For one patient the rhythms were so slow that their center fre-
quency was in the theta range (cf. fig. 3.2). We suspected lesions involving the cortex
caused oscillations slower than those only affecting subcortical structures. However, the
location of the lesion, which we could investigate for the patients that took part in the
published interventional study, did not correlate with the SMR peak center frequency
over the lesion. Any damage to the thalamocortical loop might influence SMR oscil-
lations. Investigation of more subgroups in a larger cohort of chronic stroke patients
with more detailed identification of damaged structures would help further investigations.
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Figure 3.6: Peak band combinations and motor improvement.
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Figure 3.7: Difference of alpha peak center frequency between the healthy participants
and the stroke victims.
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Figure 3.8: There is no correlation between age of the stroke patients and the sensorimo-
tor peak center frequency
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Furthermore, the current mental and psychological state of the subject might modulate
peak center frequencies of the brain rhythms. A transition to sleep leads to a slowing
of the oscillations, too (Ribary et al., 2014). The resting-state data was recorded at the
beginning of the experiments, when the patients were generally not tired or exhausted
and great care was taken by the experimenters to observe signs of sleepiness, as some
chronic stroke patients show signs of increased daytime fatigue in general.

The oscillations in the stroke victims are more than 1 Hz slower than in the healthy
volunteers. Previous works have reported effects of age on brain rhythms: The older
the subject, the slower the rhythm (Scally et al., 2018). The average age difference
between the groups we compared was 30 years and the observed difference of peak
center frequency could thus be attributable to age alone. However, the age-range within
the patient cohort of our study is large (30 to 76 years). Therefore, an effect of age on
the oscillations should have also become apparent in this data. However, we show that
age is not correlated to the peak frequency in the stroke patients. For younger subjects
the peak center oscillations clearly discriminate stroke victims from healthy persons.
The disturbance of the thalamocortical loop caused by the stroke might have a stronger
slowing effect on the oscillations than age alone. Interestingly, there was no difference of
the center frequency between hemispheres in the stroke patients. The perturbation caused
by the lesion somehow “transcends” to the unaffected hemisphere, probably through
thalamic and transcallosal circuits.

Power of the SMR might be a direct indicator of the degree of damage to the system
involved in generating the SMR. This system is part of a larger system that generates limb
movements and processes sensory input from the periphery (Scott, 2004). The positive
correlation of power of the SMR and the initial motor impairment thus could simply
reflect this direct connection: More damage leads to larger motor impairment and at the
same time hinders the expression of the rhythm on the cortex.

All our findings in this study are relevant for interventions where an appropriate in-
dividual frequency band for feedback or control is chosen prior to the training, such
as Brain-Machine interface training. Firstly, inclusion of the EEG of the healthy hemi-
sphere could inform the choice of this band, since there is no interhemispheric difference.
Secondly, the findings underline the necessity of choosing the individual SMR prior to
interventions, supporting previous works, where individual alpha center frequency (Pi-
chiorri et al., 2015) or the individual frequency exhibiting the largest difference of SMR
modulation (Ramos-Murguialday et al., 2013) have been used throughout the interven-
tion. Such interventions also depend on the stability of the SMR peak center frequency
(if no adaptive method is used compensating for potential changes of SMR properties).
Our results show that the peak center frequency of the SMR in chronic stroke patients is
stable from before to after the intervention. This is in line with findings in a healthy pop-
ulation where the peak center frequency of the sensorimotor oscillations did not change
in recordings carried out on multiple days (Kuhlman, 1978). Interventions exploiting
peak center frequency thus do need not to use a methodology that adapts to physiologi-
cal changes the SMR peak frequency throughout an intervention.
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Chapter 4

Low frequency oscillations in upper
limb motor recovery in severe chronic
stroke

4.1 Introduction

Recent work identified low-frequency oscillations of the cortex in rodent stroke models
as marker for the degree of spontaneous recovery of motor skills of limb movements.
Targeted electrical cortical stimulation triggered by these oscillations improved accuracy
of reaching and grasping movements (Ramanathan et al., 2018). The existence of these
markers of recovery has been confirmed in a longitudinal study on human stroke vic-
tims in the acute and subacute phase (Bönstrup et al., 2019). In that work the power
of oscillatory activity in the upper delta and lower theta range at motor cortical sites
around the onsets of upper-limb movements was diminished immediately after the insult
as compared to healthy controls and reappeared with recovery.

It is not known whether this normalization occurs only in the acute and subacute phase
as part of spontaneous recovery or if it can be induced and is generalizable to recovery
in the chronic state, especially in the severely impaired.

We conducted a longitudinal investigation of low-frequency oscillations time-locked
to the onset of hand movements in chronically severely paralyzed stroke patients who
underwent an intervention of four weeks employing brain-machine interface training
and adjuvant physiotherapy. The main effects (motor improvement) have already been
published (Ramos-Murguialday et al., 2013). In this chapter the brain activity of 28
chronically and severely paralyzed stroke patients was investigated while attempting to
execute hand opening and closing (cf. dataset 1: section 1.3.1). We compared the os-
cillatory brain activity generated while executing the same movements of the unaffected
limb and correlated the low-frequency oscillations and motor recovery.
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4.2 Methods
Data of 28 patients of dataset 1 (section 1.3.1) was analyzed in the following. The sub-
set of data used for this analysis comprised movement attempts of the paretic arm and
movements of the healthy arm. The patients opened (or tried to open) their hands at their
own pace after a cue.

The full dataset contained EEG data of 30 chronic and severely impaired stroke pa-
tients. However, after preprocessing for the present analysis, two subjects had to be
excluded due to technical issues with either the pre or the post recording. In two other
subjects the preprocessing procedure removed too many trials of the pre recording such
that instead of using the second baseline measurement (“Pre2”), the first baseline mea-
surement was used (“Pre1”).
In two subjects the occipital channel Oz was not recorded and they are not included in
figure 4.12.

4.2.1 Neurophysiological data analysis
For the EEG processing we followed the procedure previously presented by our group,
which is especially suited for combined EEG and electromygraphic (EMG) recordings
involving limb movements (López-Larraz et al., 2018b). After filtering the EEG data at
0.1 Hz and 48 Hz ocular artifacts were removed using linear regression between the EEG
and the EOG (vertical and horizontal) activities (Schlögl et al., 2007). The EMG data
was filtered at 20 Hz and the waveform length feature was computed in 200 ms windows
with a sliding step of 20 ms (Ramos-Murguialday et al., 2010). The average waveform
length of the resting state interval was used to compute a threshold of three standard devi-
ations from the mean. Those trials presenting a waveform length larger than the threshold
were discarded. Subsequently, the threshold was recomputed with the remaining trials.
The new threshold represents activation of a muscle if the threshold was exceeded 200
ms or more. Trials with muscle activation of the limb not cued were discarded.

Artifacts related to motion and cranial muscle activity were discarded from the EEG
data in a similar statistical way, based on the gamma frequency band (30 to 48 Hz). In
preparation for the further analyses on low-frequency oscillations, it is especially impor-
tant to identify artifacts in low spectral bands (delta: 1 to 4 Hz). The mean power of
the EEG in these bands was computed to define the rejection threshold as three standard
deviations during the resting interval of the trials. Trials containing such artifacts in the
resting interval were removed. The procedure was repeated, and a second threshold was
computed similarly. Trials in which mean EEG power exceeded the new threshold in
either the resting period or the movement (attempt) period were removed, too. Two pa-
tients of the experimental group had to be removed due to data quality issues with the
post recording. The final pool of patients was 28, out of which exactly half were part of
the experimental group in the original clinical trial.

The subsequent analysis of the EEG data was carried out following parameters and

84



4.2 Methods

procedures from Bönstrup et al (Bönstrup et al., 2019). In that work source localization
was used to identify motor cortical sources of activity. In the case of our data, source
localization was not applicable because of the limited amount of EEG channels avail-
able. Instead, we carried out a sensor-space analysis. After the careful artifact rejection
procedure a time-frequency representation was computed directly from the data of the
two channels above the motor hand cortices (C3 and C4). We used multiple Hanning
tapers with a time-window length of 5/frequency within a spectral band of 1 and 22 Hz.
The implementation used is available in the open source MNE python toolbox (Gramfort
et al., 2013).

Since our patient cohort presented severe paresis, a gripping task with force mea-
surement was not applicable because the patients did not present active finger extension
before brain computer interface treatment and only some, limited flexion. Moreover,
only a few patients showed consistent task-related EMG activation in the hand extensors
and flexors in the pre-assessments. The onset latency of the movements of the paretic
limb could thus not be extracted reliably. However, for the control condition (opening
and closing of the unaffected hand), the onsets were clearly detectable.

Figures 4.1 shows the distributions of the median latencies of the EMG onset after
the audiovisual cue at the pre measurement. EMG data of all electrodes of the unaf-
fected limb were highpass-filtered at 10 Hz and the onset of the movement was precisely
detected in each trial using the AGLRamp method (Werner et al., 2001). For the move-
ments of the healthy hand, onsets could be detected in all patients and they ranged from
408 ms to 985 ms. For the movement attempts of the paretic hand, the EMG channels
of the hand extensor muscles and flexor muscles and the electrodes on biceps and triceps
were used for detecting movement onsets. However, they could be detected only in 10
out of 28 subjects. The mean onset latency for these patients was 1.2 s (twice as long
as the latency on the healthy hand). One reason for this larger latency might be that
the patients took longer to activate the appropriate muscles due to the pathophysiology.
However, another reason might simply be that the detected EMG onsets come from a
flexion movement rather than the extension (the task was self-paced opening and closing
attempts). Since there were so few subjects with detectable EMG onsets and their origin
was not certain, the individual average onset of the healthy side was used for computing
the low-frequency power time-courses.

Bönstrup and colleagues used the audiovisual cue as anchor point for their analysis of
chronically impaired patients. As the generation of low frequency oscillations is assumed
to be a top-down process whose timing of initiation is important for the investigation at
hand (and not the actual muscle contraction) We think that using the control condition
with the healthy limb is a much better estimator of the initiation of the LFO power phe-
nomena of interest than the paralyzed limb. Therefore, the “EMG onset” (i.e. ramping
up of the EMG activity) of activity of both hands was defined as the onset of the mus-
cle contraction of the unaffected hand. The onset latency was averaged across trials for
each subject individually. These averaged EMG onsets of the unaffected hand were used
as ”EMG onset” for movements of the unaffected limb and for movement attempts of
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(a) Unaffected side. The mean value of the onset
was 665 ms.

(b) Paretic side. The mean value of the onsets was
1.2s

Figure 4.1: Distributions of the median latencies of the EMG onsets across trials.

the paretic limb. In the following, ”EMG onset” always means this individual average
latency with respect to the imperative cue.

Bönstrup and colleagues showed that the power in the low frequency oscillations of
interest starts to ramp up 200 ms before the onset of the EMG (Bönstrup et al., 2019). We
thus averaged the power of the low frequency range of interest from 3 to 5 Hz in the EEG
channel over the motor cortex of both hemispheres (central spatially filtered electrodes
C3 and C4) from 200 ms before EMG onset to 400 ms after. The averaged EEG power
was baseline corrected using the mean power of -2500 to -500 ms of the resting interval
with respect to the audiovisual cue. This procedure yielded the task-related power:
LFOT R.

4.2.2 Statistical analyses
In order to asses statistical difference of the averaged time-courses of task-related power
between the pre and post measurements a permutation clustering test was performed
(Maris and Oostenveld, 2007). First, t-values are computed for each sample of the differ-
ence between the pre and post power time-courses. These are thresholded and clustered.
The sum of the t-values in each cluster is the test statistic used for the permutation test
where the conditions (pre and post) are randomly flipped for each sample. This procedure
yields a distribution of summed t-values that is used for testing of statistical significance
of individual clusters (i.e. temporally adjacent samples of power values).
We used paired sample t-tests for comparing the mean difference of the averaged task-
related power at the pre and the post measurement.
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Ordinary linear regression was used to correlate changes of the average task-related
power and motor improvement as well as to predict initial LFOT R and the change of
LFOT R.

4.3 Results

4.3.1 Time-course of task-related LFO power LFOT R

We investigated the time-course of task-related LFO power (LFOT R) during hand open-
ing and closing attempts of the paretic limb and during hand opening and closing of the
healthy limb on both hemispheres in all subjects (fig. 4.2). A comparison from before
(pre) to after (post) the intervention revealed significant changes only on the hemisphere
of the lesion during movements of the paretic limb (cluster threshold: p < 0.05). There
are two significantly different clusters between -892 ms to 454 ms and 784 ms to 1000
ms with respect to the EMG onset in (fig. 4.2 upper right).

The time-frequency dynamics of the activity in the central channels (C3/4 depending
on lesion location) show a similar pattern (fig. 4.3). The temporo-spectral area (time/fre-
quency range) of interest (-200 ms to 400 ms between 3 to 5 Hz) is marked by a black
rectangle. The overall activity is similar during movements of both limbs and on both
hemispheres. The strongest activity during movement attempts of the paretic limb are
visible around movement onset. During movements of the unaffected limb the activity
seems to diminish slightly quicker after the EMG onset. In all panels activity can also
be seen prior to the black rectangle (the onset of the LFO ramp derived from previous
reports) and also in higher frequency bands. The decrease of power in the higher ranges
(9 Hz) before EMG onset indicates movement-related desynchronization.

4.3.2 Comparison of mean LFOT R on both hemispheres during hand
opening/closing of either limb

Investigation of averaged LFOT R confirms that there is a pre-post difference during
movement attempts of the paretic limb on the hemisphere of the lesion (fig. 4.4) (paired
samples t-test, corrected for two comparisons, p = 0.03). Testing the difference be-
tween LFOT R on the two hemispheres during movement (attempts) of the respective
contralateral limb did not reveal any difference (paired samples t-test, corrected for two
comparisons, p > 0.05).

Patients with distinct types of lesions took part in the study, which were matched
in numbers. All patients presented involvement of subcortical structures. Half of the
patients, however, had an additional involvement of the cortex. We stratified the patients
into these two groups in order to investigate if lesion type had an effect on LFOT R (fig.
4.5). There was no pre-post difference in either of the groups (independent samples
t-test: p > 0.05, corrected for multiple comparisons).
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Chapter 4 Low frequency oscillations in upper limb motor recovery in severe chronic stroke

Figure 4.2: Time-course of the task-related power LFOT R around the individual move-
ment onset (mean± standard error) in the central channel (C3 or C4, depending on lesion
side) at the pre measurement and the post measurement on both hemispheres during both
movement types for all subjects. The thick line represents significant difference between
pre and post.
The latency ranges of the presentation of the audiovisual cue are shown for pre and post
(whiskers mark 5 and 95 percentiles of the cue latency with respect to to the EMG onset
of the healthy limb).
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Figure 4.3: Time-frequency plots of LFO power on both hemispheres during both move-
ments in the central channels (C3 and C4, depending on lesion side). The black rectan-
gle marks the time-period of interest around movement onset and the bands of the low
frequency oscillations under investigation. There is an increase in LFO power around
movement onset during movement of the paretic limb that is stronger at the post mea-
surement. There is no difference between pre and post during movements of the healthy
limb.
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Figure 4.4: Average LFO on both hemispheres during movement attempts of the paretic
limb and movements of the healthy limb including all subjects. The difference of the
average LFOT R on the hemisphere of the lesion from pre to post is significant.
Furthermore, there is no difference between LFOT R at pre during movements of the
healthy limb on the unaffected hemisphere and movement attempts of the paretic limb
on the hemisphere of the lesion.
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Figure 4.5: Average LFOT R on the hemisphere of the lesion during movement (attempts)
of the paretic limb. Neither of the two subgroups stratified by lesion types increased
power significantly from before to after the intervention. There is no statistical difference
between LFOT R of the two subgroups at either measurement.

4.3.3 Initial LFO power predicts change of LFO power
LFOs are an indicator of functioning of the motor circuit, which includes thalamocortical
activity. It has been argued that paresis and recovery are functions of network plasticity
rather than local effects of the damaged motor cortex (Ramanathan et al., 2018). The
disrupted network may impair synchronization of populations of neurons involved in
generating LFOs. However, as presented above, there are pre-post differences of the
oscillations just as previous works showed that all patients increased LFOT R from the
acute to the subacute stage following motor recovery (Bönstrup et al., 2019). The ques-
tion thus remained how the reduced power of the LFO prior to activation of presumed
repair mechanisms due the intervention is related to the change of the LFO power. As
LFO power might represent a measure of how disturbed motor circuits are, the inter-
vention could yield larger influence on networks expressing low LFO power than those
showing larger LFO power. Indeed, we found a low negative correlation between initial
LFOT R and the power change (fig. 4.6).

4.3.4 Effect of the intervention on LFOT R

The pre-post differences we show here suggest that the intervention had a general effect
on LFOT R. We hypothesized that the effect is larger in the group receiving proprio-
ceptive feedback linked to oscillatory activity (experimental group, C+). These subjects
were those showing significant motor improvement. We investigated the time-course
of task-related LFO power (LFOT R) during hand opening and closing attempts of the
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Figure 4.6: Prediction of the change of LFO power from pre to post by the initial LFO
power. There is a significant negative correlation. The subjects showing a smaller LFO
power show a larger increase from before to after the intervention.

paretic limb on the hemisphere of the lesion and during hand opening and closing of the
healthy limb on the unaffected hemisphere (fig. 4.7). The subjects were stratified by
feedback group. A comparison from before (pre) to after (post) the intervention revealed
significant changes only on the hemisphere of the lesion during movement attempts of
the paretic limb (cluster threshold: p < 0.05) in the experimental group. We also found a
significantly different cluster in the control group but it is outside the time-period around
EMG onset and within the window of cue presentation. It might be attributable to an
effect of the cue: for example, habituation at post.

We also show the difference between averaged LFOT R of both groups at the pre and
the post screening during movement attempts of the paralyzed limb (fig. 4.8). Statistical
tests reveal no difference between the power distributions at either measurement. How-
ever, there is a trend towards a difference of power increase from the pre measurement to
the post measurement in the C+-group, only (paired samples t-test: p< 0.1, corrected for
multiple comparisons), which is not present in the Sham-group. There is no difference
between the feedback groups at post.

4.3.5 There is no correlation of average LFOT R and motor
improvement

Previous work reported weak correlations between LFOT R and motor improvement in a
less severe and acute/subacute population (Bönstrup et al., 2019). We tested if LFOT R
correlates with motor impairment before and after the intervention. There is no correla-
tion (F-test: p > 0.05 in all six regressions) (fig. 4.9). Furthermore, we tested if there
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Figure 4.7: Time-course of the task-related power LFOT R around the individual move-
ment onset (mean ± standard error) in the central channel (C3 or C4, depending on
lesion side) at pre and at post on both hemispheres during the limb movement (attempts)
stratified by feedback group. The thick line represents significant difference between pre
and post. Only the experimental group shows a significant increase in task-related LFO
power from pre to post during movements of the paretic limb. The Sham group shows
significant activation only outside of the period of interest, which could be related to the
presentation of the cue. The latency ranges of the presentation of the audiovisual cue are
shown for pre and post (whiskers mark the 5 and the 95 percentiles of the cue latency
with respect to the EMG onset of the healthy limb).
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Figure 4.8: Average LFOT R on the hemisphere of the lesion during movement (attempts)
of the paretic limb. Only the experimental group (C+) shows a trend towards increase of
LFO power from pre to post.

is a correlation between the differences of LFOT R and motor impairment from before to
after the intervention. Figure 4.10 shows that in the severe and chronic patient population
under investigation there is no such correlation.

Other investigations on this dataset such as the change of event-related desynchroniza-
tion and fMRI showed the importance of bilateral balance of movement-related brain
activity (Ray et al. (2020); Ramos-Murguialday et al. (2013), and chapter 7). As previ-
ously shown here we saw that LFO power during movements of the paretic limb on the
hemisphere of the lesion became more similar to the contralesional activity at post. We
computed the difference of LFOT R between the two hemispheres to describe the change
of the bilateral balance of LFOT R from pre to post during movements of the paretic limb
(fig. 4.11). Negative values represent stronger LFO power on the unaffected hemisphere
and vice versa. A value of zero would represent a perfect bihemispheric balance. In the
upper panel the laterality change is shown in relation to the motor improvement. The
Gaussian distribution around 0 (balanced power) is slightly skewed towards the unaf-
fected hemisphere at post. The patients around the center (balanced LFO power) show
the largest motor improvements. Those in the extremes show lower improvements.

4.4 Discussion
We show that bouts of LFO activity occur at motor cortical areas in chronically severely
impaired stroke victims before and at onset of upper-limb movement (attempts). We
found a significant increase of LFO power from before to after the intervention on the
hemisphere of the lesion during movement attempts of the paretic limb that is not present

94



4.4 Discussion

Figure 4.9: Linear relation between the task-related LFO power at pre and at post and
motor impairment at pre and post. There is no significant correlation.

Figure 4.10: Linear relation between the change of task-related LFO power from pre to
post and motor improvement in all subjects and stratified by feedback group. There is no
significant correlation.
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Figure 4.11: Distribution of the change of task-related LFO power from pre to post vs.
motor improvement for all patients (stratified by group).

on the unaffected hemisphere. The main contributors to this increase were the patients
in the experimental group who received contingent feedback and improved. This finding
suggests that the intervention based on brain-computer interfaces might induce an effect
through change of LFO power.

Previous studies have sparked interest in low-frequency oscillations in human stroke
victims. Low-frequency oscillations are involved in the control of different parameters
of movements such as speed, trajectory and velocity (Bansal et al., 2011; Mollazadeh
et al., 2011). Particularly the work of Ramanathan and colleagues supports a mechanis-
tic role of LFOs for motor control as it links diminished LFOs and their re-emergence
with skilled reaching in rodent stroke models (Ramanathan et al., 2018). Bönstrup and
colleagues showed similar spatiotemporal dynamics of LFO power in healthy humans
and acute and subacute stroke victims and linked changes in power to spontaneous mo-
tor recovery (Bönstrup et al., 2019). The data presented here is the first demonstration
that the mentioned results can be partially generalized to chronic stroke patients with
severe paralysis.

4.4.1 Movement-related LFOs in chronic stroke

In the present work we show a significant increase of task-related power of low-frequency
oscillations before and at onset of movement attempts of the paralyzed limb. We used
the report of Bönstrup and colleagues as reference and focused our investigation on sim-
ilar spectral and temporal ranges and spatial regions. The time frame for investigating
LFOT R was thus from -200 ms and +400 ms with respect to the onset of the EMG. We
found an increase of LFO activity (3 Hz to 5 Hz) well preceding motor onset during
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movements of both limbs on both hemispheres on the electrodes over the motor cortex.
The similarity of the LFO power time-courses to those previously reported in healthy
humans and stroke patients confirms that this activity persists in chronic stroke, even in
patients with severe hand paresis. The latency of the audiovisual cues prompting the
patients to perform the movements ranges from almost a second to half a second before
the onset of the EMG. This large variation is evidence that the observed time-course of
the LFO power is related to the movement onset and not to the sensory input from the
imperative cues, which suggests an intrinsic (top-down) origin of the LFO dynamics.
LFOs seem to contribute to setting a brain-state preparing the movement and sensorimo-
tor integration (Bönstrup et al., 2019; Cruikshank et al., 2012).

In a time-frequency analysis we showed activity in temporal relation to the EMG on-
set. The temporo-spectral area of main interest (around movement onset and between 3
to 5 Hz, as suggested by Bönstrup and colleagues) shows major activity, especially dur-
ing movements of the paretic limb. The overall pattern of spectral activity resembles that
shown in previous works, especially the increase and decrease of low-frequency power in
relation to the EMG onset and the decreased activity at higher frequencies (9 Hz) during
the movement (Bönstrup et al., 2019; Ramanathan et al., 2018). Since we show a larger
time window before and after EMG onset we see activity around 5 Hz just before the on-
set of LFOT R ramp-up (left end of black box in fig. 4.3). Moreover, the activity during
movements of the unaffected limb diminishes quicker than during movement attempts
of the paretic limb. We contemplate two potential explanations: Firstly, the EMG onsets
of the movements of the unaffected limb are precisely timed. Those of the paretic limb
are estimated from the individual average latency of movements of the unaffected limb
of each patient. This might lead to temporal blurring of the true onsets, which in turn
eves out power in the low frequencies when averaging across all subjects. Secondly, the
fixed ratio between frequency and time during computation of the time-frequency rep-
resentation leads to lower temporal (higher spectral) resolution in the lower frequencies
and lower spectral (higher temporal) resolution in the higher frequencies. We did not
adjust the time-window and frequency range of interest for the averaged comparisons
of LFOT R to encompass the observed differences for the benefit of making our results
comparable to those of the previous works.

Bönstrup et al found a propagation of LFOs from posterior to anterior locations, which
they interpreted as a further argument for LFOs as a top-down rather than a bottom-up
process. In an analysis of four channels at frontal, central, posterior and occipital sites
we found a similar pattern (fig. 4.12).

4.4.2 Differences of LFOs due to interhemispheric balance and
cortical integrity

The previous studies cited above have reported that LFOs were significantly diminished
comparing acute stroke patients and healthy controls. Here, we add to this comparison
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Figure 4.12: Average time-courses of LFO power at frontal (F3/4), central (C3/C4), pos-
terior (C3/C4) occipital (Oz) sites.

by also showing within-subject differences during movements of the ipsilateral and con-
tralateral limb on either hemisphere. We did not find a significant difference of average
LFOT R between the hemisphere of the lesion and the healthy hemisphere during the re-
spective contralateral movement. However, while the time-courses of the activity during
movements of the unaffected limb are smooth and steady between pre and post, the ones
on the hemisphere of the lesion during paretic movement attempts are not. Inter-subject
differences might be one reason. Nevertheless, the difference between pre and post,
which is not present during movements of the unaffected limb (on both hemispheres),
might stem from processes in networks unique to movements of the paretic limb on the
hemisphere of the lesion.

It would be interesting to compare this observation to bi-hemispheric data in acute
patients to see if a similar activation pattern is also visible on the hemisphere of the lesion
during movements of the healthy limb. The re-emergence or increase of the LFOs after
the intervention, or the difference between pre and post, might be a marker of plasticity
due to the training in the chronically paralyzed stroke patients.
Our analysis based on the type of the lesion (subcortical or subcortical and cortical),
suggests that the latter is not a factor that influences LFOT R in the different conditions.
However, the number of patients in the groups is small and interpretation of this result
has to be cautious.

Investigation of the change of the bihemispheric balance of LFO power during move-
ment attempts of the paretic limb showed a Gaussian distribution around 0 (balanced
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power) slightly skewed towards the unaffected hemisphere at post. The patients around
the center (balanced LFO power) show the largest motor improvements. Those in the ex-
tremes show lower improvements. This observation is in line with the plots of the LFO
time courses where we saw that LFO power is similar on both hemispheres during the
movement of the healthy limb.

4.4.3 Influence of the intervention on low-frequency oscillations
The patients of the experimental group (C+) (who received contingent proprioceptive
feedback during the intervention during the self-induced - by increased event related
desynchronization of the ipsilesional brain - movement of the orthosis) contributed most
to the changes of LFO power. The control group (sham) did not show significantly dif-
ferent LFO power during the time and frequency range of interest. It has been previously
reported that LFO re-emergence accompanied recovery. Moreover, the magnitude of the
LFO power increase was found to be higher in patients with more recovery (Bönstrup
et al., 2019). Interestingly, our finding suggests the contingency of feedback as the fac-
tor that differentiates patients which had significantly different LFO power time-courses
before and after the intervention on average and those that did not. The random feedback
that the sham group received might have not led to any or minimal changes in the brain
circuits responsible for generation of movement-related LFOs. The contingent feedback
that the other patients received, on the other hand, might have led to plastic changes
within the networks generating LFOs preparing movements of the paretic limb. Influ-
ence of the intervention on other oscillations in this dataset has been investigated before
(Ray et al. (2020), chapter 2). The C+ patients were also those who improved motor
function most in the original trial (Ramos-Murguialday et al., 2013).

From the perspective of LFOs as a biomarker, it is worthwhile noting that the initial
low-frequency oscillations predict their change throughout the intervention. Those pa-
tients with lower initial LFO power have more potential for increasing LFOs throughout
the intervention. If LFO power is an indicator of the damage to the motor networks,
which is still under debate, the intervention might yield a larger “repairing” effect on the
network for those patients with lower LFO power. However, the results presented must
be interpreted cautiously because the correlation found is weak.

4.4.4 Limitations and methodological differences
One goal of the present work was to generalize previous findings in human acute and
subacute stroke to chronic stroke. Therefore, we tried to employ similar methodology
and parameters as Bönstrup and colleagues where applicable.

One methodological difference is the use of a cued self-paced hand opening and clo-
sing task instead of a gripping task. None of the patients participating in this study could
actively extend the hand, and most of them were not able to reliably generate EMG ac-
tivity related to the hand movement before intervention. A gripping task was thus not
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applicable, and neither was calculation of a precise movement onset in the EMG of the
paralyzed limb possible. Even though some of the participants might have been able
to forcefully flex fingers, a gripping task would not have been optimal. Some patients
can indeed flex their fingers but are not able release the force quickly due to spastic
muscle tone. The movement chosen here was extension (or more precisely, extension
attempts) followed by flexion of the fingers (and repeated in a self-paced rhythm for
five seconds). This design allows for comparison between the patients because none of
them could actually perform the first type of movement. However, despite the use of a
different movement type comparison to the study by Bönstrup and colleagues and Ra-
manathan and colleagues is still valid since many properties of movements are subsumed
and reflected in low-frequency oscillations (Bansal et al., 2011; Mollazadeh et al., 2011).
Furthermore, our protocol could be potentially generalized to the less impaired patients.

In addition to the movements the patients tried to perform with their paretic hand, they
performed them with their healthy hand in a separate condition. Movement onsets on the
unaffected side were similar for all patients and the shape and range of the time-course
of LFO power proved to be very similar to results presented before (Bönstrup et al.,
2019). On the other hand, EMG onsets of movements of the paretic side were detected
much later (if possible at all). Instead of resorting to the cue as defining anchor-point for
computation of LFO power we mirrored the mean EMG onset latency from the healthy
arm of each individual to the paretic movement attempts.

Another methodological difference is the use of sensor-space data instead of localized
sources. The availability of only 16 EEG channels limits the applicability of source-
localization algorithms. We limit our main analysis to only one sensor directly over the
motor cortex. Due to the direct computation of LFOT R through time-frequency represen-
tations of the data avoiding distortion of the data by application of filters and appropriate
baseline correction we believe that the results are comprehensible and comparable.

4.4.5 Concluding remark
LFOT R can be an interesting biomarker of stroke and recovery, as argued in the work
of Bönstrup and colleagues despite the correlations reported in that work not being par-
ticularly strong. Nonetheless, we show here that the intervention had an effect on low-
frequency oscillations. The power was increased at post. This work adds to the very
interesting predecessors that LFOs also change in chronic patients (with severe pare-
sis). A similar investigation in a larger cohort might shed more light on this effect and
correlations to recovery might yet be uncovered in this patient group.
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Chapter 5

Coherent oscillations in stroke

5.1 Introduction

Brain function relies on localized and large-scale activity of neurons in ensembles and
networks. The concept of connectivity is an umbrella term comprising all measures that
capture the interaction within these networks. It can be measured using various recording
modalities on different scales in space and time (Horwitz, 2003). The correlation of EEG
signals from different brain sites in the frequency domain is termed coherence and is a
common basis for electromagnetic connectivity measures of interaction of different brain
areas.

Unilateral limb movements rest upon a complex network of inhibititory connections
between and excitatory connections within the hemispheres that is disrupted after stroke.
Studies employing various imaging techniques such as FMRI (Grefkes et al., 2008;
Rehme et al., 2011; Wu et al., 2011; Pellegrino et al., 2012) and stimulation techniques
such as TMS (Murase et al., 2004) show that multiple mechanisms are involved in mo-
tor deficit after stroke. Inter- and intrahemispheric networks play a role and changes of
these networks could promote recovery. Interventions such as bilateral movement the-
rapy (Cauraugh and Summers, 2005) and bihemispheric brain stimulation (Lindenberg
et al., 2010) point in this direction and were already shown to induce limited recovery in
chronic stroke patients with residual movement.

Recent studies have shown that connectivity features extracted from EEG recordings
predict motor recovery in the acute, subacute and even in the chronic phase to some
extent (Nicolo et al., 2015; Pichiorri et al., 2015; Pellegrino et al., 2012). Functional
changes due to lesions have been described (Aerts et al., 2016). Further exploration of
connectivity mechanisms in the chronically and severely impaired is still lacking and
might shed some light on the processes of functional recovery in these patients.

This chapter presents the effort to extract neurophysiological connectivity measures
from brain activity of the chronically and severely impaired. The patients analyzed all
underwent a BMI-based rehabilitation training (Dataset 1, section 1.3.1). The training
rewarded ipsilesional desynchronization of the sensorimotor rhythm while they tried to
move their paretic limb. The training produced functional recovery and an ipsilesional
increase in brain-activity, as shown by fMRI (Ramos-Murguialday et al., 2013). The
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goal of the analysis was to better understand and predict rehabilitation outcome. The
hypothesis was that the proprioceptive neurofeedback is associated with a decrease in
effective connectivity towards the lesion. That means that the unaffected hemisphere
carries less inhibition towards the hemisphere of the lesion during movement attempts,
which would lead to higher ipsilesion activation. Furthermore, connectivity is key to
sensorimotor integration during learning and performance of a motor task (Schoffelen
et al., 2005; Womelsdorf and Fries, 2006). Motor improvement reflects learning. We
thus hypothesized that measures of brain connectivity correlate with motor recovery.

5.2 The parametric approach

5.2.1 Methodology

Connectivity can be assessed using different imaging techniques and is most frequently
used with fMRI, MEG and EEG. For electromagnetic signals, there is a plethora of con-
nectivity metrics with different characteristics. Dynamic Causal Modelling, Phase Lock-
ing Value and Partial Directed Coherence are popular examples that all have different
characteristics (Sakkalis, 2011). The focus of this investigation were unilateral limb
movements, which depend on directed influences from one hemisphere to the other. The
Phase Locking Value assesses the synchronization of the phase of two signals, which is
inherently non-directional. Dynamic Causal Modelling would allow for assessment of
direction. However, it also requires the definition of model parameters for describing the
neural physiology. This is difficult in the case of stroke where the lesion has disrupted
communication within the brain on all scales.

Partial Directed Coherence

Partial Directed Coherence (PDC) is a data-driven approach that enables observation of
directional interactions among brain regions (Baccalá and Sameshima, 2001). It does
not depend on a neurophysiological model and choice of appropriate parameters and it
accounts for volume conduction by taking the influence of all signals under considera-
tion. PDC essentially measures covariation of time-series based on frequency domain
testing of Granger causality, a method from econometrics. A time-series x is defined to
“Granger-cause” another series y if the knowledge of the past values of x improves pre-
diction of y. The series y on the other hand does not necessarily “Granger-cause” x. PDC
extends previous directed coherence measures to more than two sources and is defined
as (Baccalá and Sameshima, 2001):

PDCi j( f ) =
Āi j( f )√

(∑k |Ak j( f )|)2
(5.1)
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This formulation is based on the description of the EEG activity as a multivariate
autoregressive process (MVAR). The matrix in the numerator is

Ā = I−A( f ) (5.2)

The matrix Ar is the matrix of coefficients of the multivariate autoregressive process
for timelag r. Each entry of that matrix ai j represents the interaction effect of source j at
time lag n− r onto i at the final time lag n (the time lag under observation). In order to
arrive at the function A( f ) all coefficients ai j are fourier-transformed and the coefficient
matrices are summed over all time lags as in

A( f ) =
p

∑
r=1

Are−i2π f r (5.3)

The āi are entries of Ā. The numerator is the “outflow” from channel j to the “sink”
channel i. The denominator normalizes the fraction by the total outflow to all sinks k.
The values of PDC are within a range of 0 and 1.

Threshold for statistical significance for PDC

We saw in equation (5.1) that PDC relies on the choice of an appropriate model order.
In high-dimensional and complex data such as EEG the optimal model order is unknown
and high orders might be required to describe the interactions of the multivariate process
adequately. However, with increasing model order, larger variability is introduced and
detection of causal influences becomes more difficult. Small real influences could be
overshadowed by larger random noise and noise could be mistaken for influence. For
this reason, Schelter and colleagues have discussed statistical properties of PDC. They
showed that PDC yields (random) values of up to 0.15 for an autoregressive process
using model order 200 where the real order is only 2. The discussion and this example
motivated the presentation of a method for deriving a significance level of PDC. The
method is tested on simulated and real data (Schelter et al., 2005).

The statistical properties of PDC are derived from the estimates of the MVAR coeffi-
cients. The α-significance level for PDC is approximated by√

Ĉi j( f )χ2
1,1−α

N ∑k(|Āk j( f )|2)
(5.4)

The Ĉi j represent the noise and the covariance of the MVAR process. The χ2
1,1−α

is the
1−α quantile of a χ2-distribution. N is the number of data points available for estimating
the process and the Āk j( f ) are the estimates of the MVAR coefficients. The variable j
is the source and i the sink of brain activity currently investigated. The k are all sinks.
The main argument brought about by Schelter and colleagues is that commonly used
estimates of the MVAR coefficients (such as least squares) are normally distributed. The
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sum of their squares is then χ2-distributed with one degree of freedom, which defines the
critical value used in formula (5.4). The derivation of this formula is quite elaborate and
not trivial but sufficiently well described for implementation. The reader is thus kindly
referred to the original paper for detailed explanation of all steps and the mathematical
proof (Schelter et al., 2005).

5.2.2 Application of the parametric approach
The methodology described above has been implemented using Matlab and the FieldTrip
open source toolbox (MATLAB, 2020; Oostenveld et al., 2010). The analysis was run on
Dataset 1, which comprises longitudinal data of patients activating an exoskeleton with
their brain activity to move their paretic arm.

Methods

The following preprocessing was applied to the data of Dataset 1 which was recorded
during the intervention (movements of the orthosis) (section 1.3.1). The EEG and EMG
channels were high-pass filtered (2 Hz EEG, 10 Hz EMG), notch filtered to remove
power line noise and epoched according to the task periods of rest (last 4 seconds of the
inter-trial-interval) and movement attempt and BMI control (5 seconds). Additionally,
the EMG signals were low-pass filtered (3Hz) and rectified in order to get the envelope
of the signal. Eye movement artifacts detected with two EOG channels (vertical and
horizontal) were removed from the EEG using linear regression (Schlögl et al., 2007).
Muscle activity on the unaffected limb during movement attempt of the paretic arm could
influence the brain activity patterns that we wanted to analyze. Hence, trials in which the
waveform length extracted from the EMG signal at any location on the nonparetic arm
exceeded the baseline EMG threshold (mean EMG during movement preparation phase)
by three standard deviations during a period of 250 milliseconds or more were regarded
as contaminated by compensatory movement and rejected from posterior analysis. Both
EMG and EEG signals were downsampled to 100 Hz.

Cortical connectivity patterns were analyzed in three discrete frequency bands (θ : 3-7
Hz, µ: the individually specified sensorimotor band and the β -band: 14-30 Hz). The
analysis of θ corticocortical connectivity was motivated by earlier studies that reported
changes in θ intrahemispheric inhibition associated with recovery in stroke patients (Ni-
colo et al., 2015). The analysis of the β band on the other hand aimed at studying
descending corticomuscular pathways that were previously reported to be impaired after
hemiplegic stroke (Nielsen and Conway, 2008; Mima et al., 2001). The analysis of the
SMR was based on the assumption that frequency bands used during the proprioceptive
BMI control of the robotic orthoses might result in connectivity changes in those same
frequency bands.

Coherence between channels was assessed by first estimating the EEG activity as a
multivariate autoregressive process with model order 15, which has been found suffi-
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cient for this application and sampling frequency (Florian and Pfurtscheller, 1995). Af-
terwards, several cortical connectivity metrics were computed based on PDC (fig. 5.1).
The first connectivity metric represented the connectivity of the whole network for which
PDC was computed in all EEG channels. Moreover, connectivity within the hemispheres
and between hemispheres was computed, only including the channels over the motor ar-
eas. For all the measures the number of significant connections between channels within
each frequency band was counted to quantify the strength of connectivity. The signifi-
cance was assessed using the approach of Schelter et al as briefly described above.

Results and challenges

The main finding of the (unpublished) study was a decrease of connectivity within the
contralesional hemisphere over the course of the training (Multilevel analysis: p < 0.05;
Marginal r2 = 0.007; Conditional r2 = 0.403). This effect may contribute to the hypoth-
esized disinhibition of the ipsilesional motor cortex during movement attempts.

After completing the analysis on the longitudinal data (movement attempts during
training), I used the same pipeline to analyze data of the pre and post measurements
of Dataset 1. The patients were asked to open and close their hand as cued. EEG was
recorded while they performed the task but they were not connected to a brain-machine
interface. The hypothesis was that the changes found during the training would also be
visible in the post test.

Inclusion of this additional data lead to surprising and unclear results. The units of the
data were different than those of the data of the training (mV instead of V). The scale
does not matter for estimation of the MVAR coefficients since the parameter estimates
and noise covariance are also scaled. However, this was not the case as the covariance
of the noise seemed to depend on the order of magnitude of the input data in the MVAR
estimator of the Fieldtrip toolbox. This lead to a propagation of errors and caused a
mismatch between the coherence values and the significance threshold values computed.

This discovery firstly called the results obtained so far in question. Furthermore, it mo-
tivated a closer investigation of the significance threshold method proposed by (Schelter
et al., 2005), which is described in the next section.

Example

The following equation system defines a multivariate autoregressive process as presented
in (Schelter et al., 2005). Figure 5.2 shows the structure of the process.
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Figure 5.1: Connectivity metrics assessed in the analysis using PDC in pairs of channels.
A) All channels in the network. B) Channels within one hemisphere (restricted to motor
areas). C) All connections from one towards to other hemisphere (restricted to motor
areas)
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Figure 5.2: Flow chart of the nodes and their influence onto each other within the simu-
lated system. (taken from Schelter et al. (2005))

x1(t) = 0.6x1(t−1)+0.65x2(t−2)+ ε1(t)
x2(t) = 0.5x2(t−1)−0.3x2(t−2)−0.3x3(t−4)+0.6x4(t−1)+ ε2(t)
x3(t) = 0.8x3(t−1)−0.7x3(t−2)−0.1x5(t−3)+ ε3(t)
x4(t) = 0.5x4(t−1)+0.9x3(t−2)+0.4x5(t−2)+ ε4(t)
x5(t) = 0.7x5(t−1)−0.5x5(t−2)−0.2x3(t−1)+ ε5(t) (Ex1)

Figure 5.3 shows a matrix of figure panels of the original publication. The panels
on the diagonal show the power spectral density of the individual components (auto-
spectra). The other panels show the spectra of PDC of the component identified by the
column j on the component identified by the row i. The plots illustrate the strength of
directed influence in each frequency band from one node ( j) to the other (i).

The peaks in the auto-spectra reflect the number of upstream nodes influencing the cur-
rent node. The PDC spectra correctly reveal which nodes influence which other nodes.
It is noteworthy that the captured influence is exclusively direct. Indirect influence, e.g.
from node 3 to node 1 via node 2 is disregarded by PDC, a feature that is valuable for
the analysis of activity of brain networks.

In the following I show that the results of the examples obtained and presented by
Schelter and colleagues cannot be replicated. I generated 50000 samples of data from
the MVAR process (eq. (Ex1)) using python (generated with the code in listing 12). The
data is evaluated three times: (1) with the known coefficients of the data in python (fig.
5.5), (2) with the Matlab pipeline used in the analysis presented above and the correct
model order (fig. 5.4) and (3) with the python VAR function (estimation of MVAR
coefficients of the statsmodels toolbox using the correct model order) (fig. 5.6). All
approaches yield similar results. However, none of them exactly reflects the example
presented in the original paper.

The structure of influences is generally captured. There is one exception, which is a
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Figure 5.3: Matrix of auto-spectra and Partial Directed Coherence of the MVAR process
of equation (Ex1) (taken from Schelter et al. (2005))
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Figure 5.4: Matrix of auto-spectra and Partial Directed Coherence of the MVAR process
of equation (Ex1). Evaluated in python with the known coefficients (exact reproduction)
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Figure 5.5: Matrix of auto-spectra and Partial Directed Coherence of the MVAR process.
Evaluated using the MVAR estimation procedure of Fieldtrip in Matlab.
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Figure 5.6: Matrix of auto-spectra and Partial Directed Coherence of the MVAR. Evalu-
ated using the VAR estimation procedure of Python Statsmodels.
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missing double peak at 0.4 Hz showing the influence of node 4 onto node 2. Furthermore,
the peaks in the auto-spectra are not exactly reproduced. In node 4, for example, the
original figure shows two distinct peaks that are missing in all other estimations.

The reason for the failed exact replication of the example in the paper could be a small
mistake in the equation system provided (mismatch between the equation system de-
scribing the MVAR process and the estimation of the process). Schelter and colleagues
did not provide details on how the MVAR was estimated for their examples. There might
be a difference in their method and the methods used here. However, it is unlikely that
two widely used MVAR estimation procedures (Matlab Fieldtrip and Python Statsmo-
dels) both contain errors leading to the observed difference. Despite the differences, the
example can be largely reproduced and the example data can be used for evaluating the
method of computing the significance threshold.

In the next exemplary analysis I tried to validate the implementation for the compu-
tation of the significance threshold. Schelter et al present a model of order 200 fitted to
the MVAR process described in equation (Ex1). The model order is much greater than
the actual order of four. Therefore, the spectra are noisy (fig. 5.7). The significance
threshold is shown in the panels of the PDC spectra.

In the analysis of coherence presented above the proposed method was implemented in
Matlab following the algorithm described in the original paper precisely. I implemented
the algorithm again in Python for validation of function and comparison of performance
and plotted the resulting PDC spectra (fig. 5.8).

Again, the results of Schelter et al could not be reproduced exactly. The structure of
node influences in the original MVAR process is largely captured by the PDC and the
auto-spectra are comparable with the exception of node 4. The significance threshold
estimation showed (grey lines) is similar to the ones in the original paper in the lower
frequency ranges and captures the characteristic dip around 0.19 Hz (seen in fig. 5.7 and
fig. 5.8, e.g. in node 3). More importantly, though, the significance threshold ramped
up in all PDC spectra towards the higher ranges of the frequency bands considered. The
reason for this behavior remained unclear. A potential culprit is the inversion operation
that might introduce small numerical errors but this is speculation.

In summary, the replication study presented here called the applicability of the whole
parametric pipeline in question and showed two main disadvantages. Firstly, the esti-
mation of the MVAR process is dependent on a good choice of model order, which is
difficult. If the order is too low, some dynamics of the signal might be missed. If the
model is too high noise might be amplified (Sakkalis, 2011).

Secondly, the computation of the significance level was not reliable. Moreover, the sig-
nificance level is pointwise, so some random crossings will occur, especially with high
model order. This is seen in the examples of the original paper (fig. 5.7, e.g. node 5 on
node 2). On top of that, the computational demand of the approach should not be under-
estimated. It proved to be substantial because some operations of the algorithm functions
used four nested for-loops (O(n4), where n = max(number o f nodes, model order)).
Optimization techniques such as just-in-time-compilation for the python code improved
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Figure 5.7: Matrix of auto-spectra and Partial Directed Coherence of the MVAR process
of equation (Ex1). Model order is 200. The grey lines represent the frequency-dependent
significance threshold of PDC (taken from Schelter et al. (2005)).
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Figure 5.8: Matrix of auto-spectra and Partial Directed Coherence of the MVAR pro-
cess. Model order is 200. The grey lines represent the frequency-dependent significance
threshold of PDC as computed with my implementation of the algorithm of Schelter et
al.
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performance (see listing 14 for an example).
These disadvantages motivated the implementation and application of a different ap-

proach to the problem of assessing connectivity during movement in chronic stroke: A
non-parametric approach.

5.3 The non-parametric approach
The key quantity of multivariate spectral analysis is the spectral matrix that relates the
spectra of different channels. This matrix is the source for deriving power and coher-
ence. In the parametric approach, as we have seen in the previous section, the data is
described as a multivariate autoregressive process. The model transfer function and the
noise covariance matrix are obtained from the model and used for deriving coherence.
The non-parametric approach employs Fourier transforms of the data directly, which
yields the spectral matrix. In order to derive coherence, the spectral matrix is factor-
ized for obtaining the transfer function and the noise covariance matrix (Dhamala et al.,
2008).

The methodology is briefly described in the next section. It follows a publication of
Dhamala, Rangarajan and Ding (Dhamala et al., 2008).

5.3.1 Methodology

PDC derived from the Cross Spectral Matrix

The cross spectral matrix is computed from the data using either Multitapers or Wavelets.
The multitaper spectral and cross-spectral method provides smooth estimation of spectral
density (Dhamala et al., 2008).

The estimate of the cross-spectrum between two channels l and m at frequency f is:

Slm( f ) =
∆

K

K

∑
k=1
{

n

∑
s=1

ws(k)xlse−i2π f s∆}{
n

∑
t=1

wt(k)xmtei2π f t∆} (5.5)

The time-series of the two channels are multiplied by orthogonal tapers w and the
result is Fourier transformed. These transforms are then cross-multiplied and averaged
over tapers K of length n. The procedure is repeated for multiple realizations (i.e. trials)
and averaged over these, too. Repetition for all channel combinations yields the cross-
spectral matrix S( f ).

In the next step the noise-covariance matrix and the transfer function needed for com-
putation of PDC are derived by factorization of the spectral matrix such that

S( f ) = H( f )ΣHH( f ) (5.6)

where H is a minimum-phase transfer function and Σ is the noise covariance matrix.

115



Chapter 5 Coherent oscillations in stroke

These quantities can be used in the formulation of the PDC, where the total power of a
channel is put into relation to the intrinsic power (i.e. the total power minus the causal
contribution of the other channel).

The equations are taken from the publication and for more details the reader is referred
to (Dhamala et al., 2008). For the analyses performed in the following, a readily avail-
able implementation was used. The open-source toolbox Spectral Connectivity follows
the methodolgy of Dhamala and colleagues. For spectral matrix factorization the nu-
merically stable algorithm of Wilson is implemented in the toolbox (Eden and Kramer,
2020).

I validated the implementation of Eden and Kramer using the autoregressive process
shown above.

Example

Figure 5.9 shows the auto-spectra and the PDC spectra of the example process given by
equation (5.5). The spectra were estimated using the implementation of Eden and Kramer
of the non-parametric methodology proposed by Dhamala and colleagues. The result is
similar to the ones obtained before using the parametric approach. The auto-spectra
are even closer to the ones originally shown by Schelter et al than with the Matlab and
Python implementation shown above.

Significance threshold

The final step of the methodology is computation of a significance threshold for PDC.
Instead of deriving the threshold from the properties of the distribution of the estimates
of the MVAR coefficients, significance is evaluated comparing two different conditions.
In the EEG data of interest (Dataset 1) two appropriate conditions are available for com-
parison: Each movement attempt of the paretic limb is preceded by an inter-trial interval
during which the patients did not have a specific task. Significant PDC in adjacent fre-
quency bins during the movement attempt is thus defined as a significant difference to a
“PDC noise floor” computed on the unspecific condition. This comparison is carried out
using a permutation clustering procedure (Maris and Oostenveld, 2007). The difference
of PDC is expressed in terms of t-values (i.e. the difference relative to the variation across
all trials) (fig. 5.10b). PDC is computed twice for each trial: Once for the movement
period and once for the period before the audiovisual cue in which the patients did not
have a specific task other than avoiding movements. PDC computed in the first part of
the trial is considered random, since no task was given. These t-values are thresholded at
the 95-percentile of the distribution of all differences of the sample under investigation.
The remaining frequency bins are clustered if they are located in adjacent bins. The sum
of the t-values in the largest cluster is the test statistic used for the permutation test with
1000 repetitions where the labels of the condition (PDCmov and PDCnotask) are randomly
flipped for each sample. The procedure yields a distribution of summed t-values that is
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Figure 5.9: Matrix of auto-spectra and Partial Directed Coherence of the MVAR process.
Evaluated using the non-parametric approach.
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used for testing if the actual PDC value of the movement attempts are above the noise
floor (i.e. above the 90-percentile of the t-distribution). The frequency bins within the
clusters that fit this criterion are considered statistically significant clusters showing Par-
tial Direct Coherence in the direction of the channel pairs, e.g. from channel C3 towards
channel C4 (fig. 5.10c).

Compared to the parametric approach this methodology depends on larger computa-
tional resources because of the spectral matrix factorization and the permutation cluster-
ing. However, these resources are readily available nowadays and the advantages of not
having to guess the model order and having a more reliable significance threshold make
up for the increased computation time.

5.4 Application of the non-parametric approach to
Dataset 1

After validation of the non-parametric approach using the examples the methodology was
used in the data of Dataset 1 that was recorded at the pre and post screening: Opening
(attempts) of the patients’ hands. Preprocessing of the EEG data was performed similarly
to section 5.2.2. The main purpose of this investigation was to describe changes of three
connectivity measures during movement attempts of the paretic limb of the patients from
pre to post intervention. Figure 5.11 shows the connectivity metrics evaluated here.

Figure 5.12 shows the extracted PDC and the significant PDC values obtained using
the non-parametric methodology. In the multi panel plot each row of panels represents
one connectivity measure and the columns represent the conditions pre and post. The
panels show PDC in the frequency bins from 0.1 to 50 Hz for the channel combination
of interest (e.g. Directed Coherence from channel C3 to channel P3). The thick parts of
the lines mark all those frequency bins within which PDC is significant.

5.4.1 Results

The significant PDC values were extracted and counted. The resulting histogram is
shown in figure 5.13. Both the alpha and beta frequency ranges are well represented.
There are also some clusters in a lower range (θ , from 3 to 6 Hz). The number of sig-
nificant clusters in the higher β band within hemisphere (fig. 5.13, panel on the left) has
increased from the pre measurement to the post measurement, which is in line with pre-
vious works, where the association of connectivity in the β band (Nicolo et al., 2015) or
more specifically the high β band (Pellegrino et al., 2012; Wu et al., 2015, 2016) and mo-
tor recovery have been reported. All frequency bands contribute to interhemispheric con-
nections, however, the α frequency range shows the largest number of clusters (fig.5.13,
panels in the middle and on the right). The overall number of interhemispheric connec-
tions towards the healthy hemisphere increased during movement attempts of the paretic
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Figure 5.10: Procedure of parameter-free computation of Partial Directed Coherence and
significance test
a) Time frequency transforms of data of each channel in the pairing for obtaining the
cross spectral density matrix, from which the frequency domain Granger causality (i.e.
Partial Directed Coherence) feature is computed for the two periods in the trials
b) Permutation clustering is applied to the difference between PDC during movement
attempts and during the “notask” period. This procedure yields a threshold above which
clusters of frequency bins are considered non-random contributors to PDC from one
channel to the other
c) Significant clusters that are obtained after permutation clustering and subsequent
thresholding
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Figure 5.11: Connectivity metrics
Connectivity is quantified by three metrics:
a) Intrahemispheric connectivity within the hemisphere of the lesion is the number of
channel pairs showing significant PDC divided by the total number of channel pairings
(n = 6).
b) Interhemispheric connectivity is quantified by the number of channel pairs showing
significant PDC from one hemisphere to the other divided by the total number of channel
pairings (n = 9).
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Figure 5.12: PDC and significant PDC values at pre and post for each channel pair of the
connectivity measures for a representative subject. PDC was extracted between 0.1 and
50 Hz.
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Figure 5.13: Histograms of frequencies that were part of significant clusters of partial
direct coherence during attempted movement of the paretic limb (in all patients).The
columns represent the three connectivity measures.
Each bar represents the number of frequency bins that were part of any significant cluster
between two channels. The grey bars mark the number of bins at pre. The light green bars
mark the number of bins at post. The dark green color represents the overlay between
both conditions.

limb from the pre to the post measurement. The ratio of the contributions of the bands,
α and upper β seems to stay similar for both. The largest increase of the number of
significant clusters is in the α frequency range and in the high β range (fig. 5.13, panel
on the right). This finding could mean that communication from the hemisphere of the
lesion inscreases, indicating inhibition carried towards the healthy hemisphere and thus
facilitating movements of the paretic limb controlled by the ipsilesional hemisphere.

5.4.2 Concluding remark

After discovering the pitfalls of the method that was implemented in section 5.2 the main
focus of this work was implementing and testing a different valid approach for extracting
(directed) connectivity measures while being able to assess significance of the strength of
the connections. The first descriptive results obtained with the non-parametric process-
ing pipeline encourage future research. Firstly, the general structure of the connections
between the nodes (i.e. the channels) should be described at pre and post and potential

122



5.4 Application of the non-parametric approach to Dataset 1

changes investigated. Secondly, potential changes should be quantified and tested statis-
tically. Finally, a comparison between these patients and healthy volunteers performing
the same task would underline significance of the changes found.
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Chapter 6

Electromyographic indices of muscle
fatigue in chronic stroke
This chapter was published as (Ray et al., 2019) (peer-reviewed four-page conference
paper). Additional data has been recorded between publication and completion of this
thesis. The results and conclusions of the paper have been updated accordingly in this
chapter. Furthermore, some additional details on the experimental procedures have been
added. For disclosure of contributions see section 8.2.

6.1 Introduction
Millions of stroke survivors live with chronically limited motor function or complete
paralysis and depend on assistance (Feigin et al., 2016a). Training based on Brain-
Machine interfaces is an effective technique promoting motor recovery in these patients
(Ramos-Murguialday et al., 2013). Recent works aim at increasing the efficacy of these
approaches by way of including non-invasive electromyographic signals (EMG) in the
methodology. Decoding of (residual) muscle activity allows for controlling a rehabilita-
tion exoskeleton in multiple degrees of freedom (Sarasola-Sanz et al., 2017).

There are diverse non-physiological and physiological factors influencing the EMG
signal and consequently the decoding and quality of the sensory feedback to the patient.
A contingent link between neurophysiological signals and the proprioceptive and visual
feedback, however, is key for the efficacy of rehabilitation. Muscle fatigue might have a
detrimental effect on the EMG decoding accuracy and thus might diminish the quality of
the feedback loop. This influence has been considered since the earliest works of BMI-
based approaches that combine EEG and EMG for control of an exoskeleton (Enoka and
Duchateau, 2008). None of the available works, however, have studied muscle fatigue
within a rehabilitation framework for severely paralyzed chronic stroke victims.

Muscle fatigue is a physiological factor that changes the surface EMG signal during
muscle contraction. The phenomenon is defined as exercise-induced reduction of the
ability of a muscle to produce force (González-Izal et al., 2012). Muscle fatigue may
arise on the level of the nervous system, comprising all factors that lead to reduction
of the numbers of recruited motor units. It may also arise on the level of the muscles.
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During fatiguing contractions biological changes such as increases in metabolite concen-
trations and altered conduction velocity of the muscle fibers occur. Amplitude and power
spectrum of the EMG are influenced by these changes (Sarasola Sanz et al., 2015).

In the following, muscle fatigue in the Deltoid Anterior muscle during forward rea-
ching is characterized. This movement is part of a rehabilitation intervention for chronic
stroke patients with severe paralysis of the upper-limb. The change of EMG indices of
muscle fatigue during performance of the specific movement used for the rehabilitation
training in nine healthy subjects and four severely impaired chronic stroke patient is de-
scribed. Subsequently, we investigate if the EMG activity of fatigued muscles of the
healthy volunteers and the patients changes when performing the movement.

6.2 Methods

6.2.1 Rehabilitation environment

The rehabilitation environment comprises a set of neurophysiological sensors and a re-
habilitation robot with 7 degrees of freedom that enables the patients to perform semi-
functional multi-joint movements with arm and hand (for more details cf. Sarasola Sanz
et al. (2015), section 7.2 and 1.3.1). There are multiple movement targets, a screen and
a loudspeaker for presentation of stimuli. In this investigation the focus is on frontal
reaching movements of the arm (fig. 1a). This type of movement consists of shoulder
forward flexion and horizontal adduction as well as elbow extension. Besides Pectoralis
Major and the Triceps, the most prominent muscle involved in successful performance
of this movement within the training is the Deltoid Anterior muscle.

6.2.2 Muscle fatigue during dynamic contractions

Preparatory experiments confirmed that muscle fatigue indices of the EMG can be mea-
sured and quantified during dynamic contractions of the Biceps, replicating findings of
others (Rogers and MacIsaac, 2013), (Komi and Tesch, 1979). The healthy volunteers
were standing upright and held a dumbbell in their hands (approx. weight 4 Kg). The
movement started with the elbow joint in a 90° angle. The lower arm was thus par-
allel to the floor. Then they initiated self-paced biceps contractions lifting the weight
towards their shoulders and back to the starting position. The movement was repeated
until exhaution (i.e. the participants could not lift the dumbbell to the shoulders any-
more). Muscle activity was recorded from the biceps for data analysis. The movements
were also recorded on video for later assessment of posture (compensatory movements),
facial expression (indicator of exhaution) and quality of the weight lifting. Since the
movements were uncued a moving average on the EMG amplitude was used to deter-
mine the beginning of a contraction (troughs in fig. 6.1).
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Figure 6.1: A sequence of single dynamic biceps contractions. A moving average filter
was used to automatically determine the beginning of a contraction.

6.2.3 Inducing muscle fatigue during reaching movements

In order to investigate muscle fatigue during the rehabilitation exercise, a dynamic frontal
reaching movement, a muscle-fatigue apparatus was designed (fig. 6.2). The nine healthy
subjects (3 female, 6 male; age 26.8± 2.4, all right-handed, no neuromuscular disorders)
performed ten repetitions of the reaching movement with the rehabilitation robot using
their left arm. Afterwards they performed reaching movements using the fatiguing appa-
ratus in a predefined frequency until they could not perform the movement anymore or
until the maximum experimental time of 25 minutes was reached. The reaching move-
ments with the rehabilitation robot were repeated immediately after muscle exhaustion
to avoid recovery.

The chronically impaired patients presented very limited or no active arm and no ac-
tive finger extension (Age: 52 ± 9, 1 female, 3 male, Fugl-Meyer score of arm and hand
skills: 9.9 ± 2.9, time since stroke: 53 ± 98 months, locations of lesion: 2 L, 2 R).
They underwent a Brain-Machine interface-based rehabilitation intervention in which
they trained different multi-joint movements with their paretic left arm using a rehabili-
tation exoskeleton for 1 hour per session (cf. Ramos-Murguialday et al. (2013), Sarasola-
Sanz et al. (2017) and section 7.2 as well as 1.3.1). Despite not being able to exert any
arm or hand movement they produced residual EMG activity that was used to control
the robot together with brain activity. The intervention consisted of twenty sessions of
training. Before and after each training session the patients performed a compliant move-
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Figure 6.2: Experimental setup for the healthy subjects. (a) Frontal reaching movements
with the rehabilitation exoskeleton. (b) Similar frontal reaching movement using the fa-
tiguing apparatus. The moving block had to be pushed until maximum elongation of
the arm using a handle against the force of a strong rubber band that pulled the block
backwards. Maximum elongation was measured before and controlled by the experi-
menter during the experiment using a ruler attached to the apparatus. The frequency of
the pushing movements was individually tuned to ensure challenging timing. The chair
and seating position were fixed to avoid trunk movements.

ment session. During this part of the training the robot moved fully automatically to the
predefined targets. The patients were asked to concentrate on the movement and try to
actively follow it. Residual muscle activity for the specific movement of interest was
thus recorded despite the complete paralysis.

In both cases the muscle activity of the main extensors and flexors of the arm was
recorded using Bipolar EMG electrodes and a 16 channel Brain Products BrainAmp ExG
amplifier system. The data were sampled at 1000 Hz. The movements in all experiments
were cued by an auditory stimulus.

The EMG signal was filtered between 3 Hz and 250 Hz for the analysis. In the analysis
of the data acquired during the fatiguing session the contractions of the Deltoid Anterior
during each forward reaching movement were extracted automatically by finding the
minima of a moving average of the rectified EMG signal (fig. 6.1). If no contraction
was found the respective session was discarded from the analysis. For quantification of
muscle fatigue two established markers were used. Firstly, the mean frequency of the
spectrum: Fmean (equation (6.1)).

Fmean =

∫ f 2
f 1 f ·PS( f ) ·d f∫ f 2

f 1 PS( f ) ·d f
(6.1)

This index represents spectral parameters that reflect changes in conduction velocities
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Figure 6.3: A sequence of fatiguing dynamic biceps contractions. The mean frequency
of the muscle activity spectrum decreases linearly in two recordings of the same subject
on different days (yellow and blue circles)

of muscle fibers, which lead to alterations of the waveforms of motor unit action poten-
tials (Bigland-Ritchie et al., 1981). Secondly, the Dimitrov spectral fatigue index FInsm5
(Dimitrov et al., 2006) was used, which emphasizes increases in low frequencies and
the decrease in high frequencies by employing moments -1 and 5 of the spectrum. This
metric reflects increased negative after-potentials of motor units and increased duration
of propagation of intracellular action potentials during fatigue (equation (6.2)).

Fmean =

∫ f 2
f 1 f−1 ·PS( f ) ·d f∫ f 2
f 1 f 5 ·PS( f ) ·d f

(6.2)

All the results of the fatigue measures are presented as the percentage of decrease of
the fatigue index from the pre to post.

6.3 Results

6.3.1 Dynamic fatiguing biceps contractions

Figure 6.3 shows mean frequency values of single dynamic biceps contractions of a
healthy volunteer over time. Each circle represents one contraction. Blue and yellow
circles are from two repetitions of the experiment on different days. Both recordings
show a linear decrease of the mean frequency feature, indicating an increase of fatigue
contraction by contraction. This increased fatigue is stable over multiple recording ses-
sions.
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Figure 6.4: Time Frequency plot of EMG activity in subject 4 (representative healthy
subject) before and after the fatiguing session. The color axis is in arbitrary units repre-
senting power in both plots.

Subject Fmean FInsm5
1 4.4% -20.6%
2 -10.9% 49.4%
3 -6.9% 35.7%
4 -11.9% 77.3%
5 -1.7% 9%
6 -1.5% - 8.5%
7 -0.8% 2.8%
8 -4.1% 0.6%
9 9.4% -37.1%

Mean -2.3% 12.1%
Table 6.1: Deltoid Anterior fatigue in healthy participants

6.3.2 Deltoid Anterior fatigue in the healthy participants

Fig. 6.4 shows a time-frequency plot of activations of the Deltoid Anterior muscle during
the frontal reaching movements of a representative healthy participant (subject 4). The
belly of the power spectrum of the EMG activity, which is common in dynamic contrac-
tions, is clearly visible before (PRE) and after (POST) using the fatiguing apparatus. The
percentage change of the two fatigue indices for all patients are shown in table 6.1.

The difference of the means from zero was tested using a one-sided t-test. For Fmean:
t =−1.0; d f = 8; p = 0.34 and FInsm5: t =−1.0; d f = 8, p = 0.34. Even though both
measures indicated fatigue in the majority of the healthy subjects, i.e. a reduction in
Fmean and an increase of FInsm5, the test did not reveal a clear difference of the means
from zero for either index.

To further investigate fatigue in the Deltoid Anterior muscle and to understand the dif-
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Figure 6.5: Regressions of Fmean of the EMG power spectrum per contraction. The four
participants show a decrease of the fatigue index indicating induced muscular fatigue.

ferences between subjects the EMG of the dynamic contractions recorded during use of
the fatiguing apparatus was analyzed. After segmenting the contractions we computed
the fatigue indices for each segment. The figures show the evolution of the Fmean in-
dex of the healthy volunteers. Half of the subjects showed a continuous decrease of the
mean frequency of the spectrum, indicating increasing muscle fatigue (fig. 6.5). The
other subjects do not show a similar linear decrease (fig. 6.6). Two of those subjects
were exceptionally well trained and did not reach a self-reported state of fatigue after the
maximum duration of the session of 20 minutes (around 500 contractions). Another ex-
planation of not reaching (self-reported) fatigue could have been exertion of involuntary
compensatory movements with the shoulder or the trunk that could not be prevented by
instruction or detected by the experimenter.

6.3.3 Deltoid Anterior fatigue in the patients

Fig. 6.7 shows a representative time-frequency plot of activations of the Deltoid Ante-
rior muscle during the compliant frontal reaching movements of the patient in one of the
sessions of patient P2. The patient shown was not able to elicit activity in the Deltoid
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Figure 6.6: Regressions of Fmean of the EMG power spectrum per contraction. The five
participants show no change of the fatiuge index indicating no muscular fatigue.
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Figure 6.7: Time Frequency plot of EMG activity in the stroke patient before and after
the training session; compliant movement (0s is the movement onset). The color axis is
in arbitrary units representing power in both plots.

Anterior muscle in every trial exactly after the auditory cue because of the paralysis. For
this reason the zero line is aligned to the movement onsets, which were manually deter-
mined for each repetition. In the plot the activity is stretched along the time axis more
than in the healthy participants because the compliant reaching movements the patient
performed had a longer duration than the reaching movements the healthy participants
performed. The bandwidth of the spectrum, however, is similar.

Figure 6.8 shows fatigue as measured by the Mean Frequency of Spectrum index for
each of the patients. The distribution of the fatigue index of each session is shown before
the training (light grey) and after (dark grey). Patients P1 and P2 show an increase of the
fatigue index after the session. P3 and P4 do not show a difference.

6.4 Discussion and conclusions

In this study we investigated how EMG features of muscle fatigue develop and progress
in the setting of a semi-functional multi-joint movement within a rehabilitation paradigm
for chronic stroke patients with severe paralysis of the upper-limb.

The Deltoid Anterior muscle is recruited during forward reaching movements as in-
vestigated here. Moreover, many paralyzed stroke patients show relatively more control
in proximal than in distal muscles. Hence, the investigation was focused on this muscle
in the present work. We found that fatigue could be induced and tracked using common
EMG indices in healthy individuals during dynamic biceps contractions. These findings
were transferred into a fatiguing task as closely related to the movements of the reha-
bilitation paradigm as possible. In the test with healthy participants muscle fatigue was
induced using the fatiguing apparatus. The statistical test did not reveal a general sim-
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Figure 6.8: Distribution of the fatigue index measurements of each session before and
after the training. The fatigue index is directly derived from the mean spectrum and
normalized to a range of 0 to 100 in order to be comparable between subjects.

ilar change in all participants. Some participants, however, showed a distinct reduction
in the mean frequency of the EMG power spectrum from the pre measurement to the
post measurement. These subjects also showed a linear reduction of this fatigue feature
during the fatiguing session, which is an effect that has been observed before (Komi and
Tesch, 1979). In some participants the changes of the fatigue features in the Deltoid An-
terior muscle were very small and thus a significant mean change for all subjects was not
found. Even though elongation of the arm, repetition speed of the fatiguing movement
and the strength of the rubber band were controlled, the subjects might have used com-
pensatory strategies for completing the task unintentionally, e.g. using the trunk for the
beginning of the movement and thus relieving the Deltoid Muscle. Such movements are
hard to control in the described setting that required a lot of force. Monitoring trunk and
neck muscles as well as contralateral muscles could help to further increase the number
of controlled factors. Moreover, the different levels of fitness of the participants may
have influenced the results as trained muscles recover more quickly and they may have
partially recovered during the backwards movement of the fatiguing exercise or when
switching from the fatiguing apparatus to the exoskeleton for the post measurement,
which, however, only took a few seconds. The setup for the healthy participants could
be further enhanced by stratifying subjects according to their level of fitness and adjust-
ing the amount of resistance of the device accordingly. Furthermore, ways to constrain
shoulder movements could be devised in order to limit compensatory movements and
force fatigue in the target muscles.

In the severely paralyzed stroke patients the fatigue features did not show a consistent
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pattern. On average, patient P1 and P2 showed a relative increase of the mean frequency
index, which would indicate no or even less muscle fatigue. A reason for this effect
could be that the training session actually activated the muscles of the patients rather
than fatiguing them. The dimitrov index showed a similar anti-correlated pattern (not
shown here).

Judging from the time-frequency plots, the bandwidth of the EMG power spectrum is
similar to the one of the healthy participants, ranging from around 10 Hz to between 150
and 200 Hz. This indicates that comparison of muscle activity between both populations
is possible, even though EMG amplitudes are much lower in the stroke patient.

The investigation of muscle fatigue in the stroke patients was performed under the
assumption that the training task is fatiguing for the patient since he cannot perform
the task normally and the Deltoid Anterior muscle is weak and easily fatiguable due to
prolonged non-use. In the training the patient is forced to activate the muscle to trigger
the movement of the exoskeleton. However, it may have been the case that the task
was not fatiguing for the patient at the peripheral (i.e. the muscle) level. It has been
shown some decades ago that healthy individuals with higher percentage of slow-twitch
fibers (ST) show smaller changes in the EMG spectrum (Komi and Tesch, 1979). In
paretic muscles of stroke survivors an increased number of slow twitch muscle fibers is
innervated (Riley and Bilodeau, 2002). On top of that, it has been shown that the number
of slow-twitch fibers is generally increased in the elderly (Campbell et al., 1973). The
muscles of the patients might thus be less susceptible to fatigue and may express less
changes in the EMG spectrum.

We conclude from this investigation that if fatigue in the Deltoid Anterior muscle is
induced during forward reaching movements within the described rehabilitation frame-
work in healthy participants the measured EMG activity is altered. In the stroke patients
no clear evidence was found that the fatigue features in the same muscles during a similar
movement alter the EMG activity in a consistent way. The present experimental results
of the measurement with the stroke patients thus hint at no or a negligible influence of
the movements performed in the training on EMG fatigue features which might rule out
the influence of this factor on EMG decoding. On the contrary, the training might even
have a positive (”activating”) effect on the muscle activation. Further recordings of data
of paralyzed stroke patients and investigation of potentially more sensitive EMG indices
of muscle fatigue may provide more evidence toward either direction. Another merit of
this work is the provision of a device and methodology to induce fatigue during dynamic
forward reaching movements, often used in rehabilitation exercises.
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Chapter 7

Increasing engagement and enhancing
feedback

7.1 Introduction

Learning a motor skill requires the trainee to perform a movement, integrate feedback
from various senses and use the feedback to improve the movement, i.e. reduce er-
rors of movement kinematics (speed and geometry) and movement dynamics (forces)
(Krakauer, 2006). This process entails three levels of learning: Hebbian learning, super-
vised learning and unsupervised learning. On the physiological Hebbian level connec-
tions between neurons are strengthened depending on their contingent activity. Super-
vised learning takes place on a higher cognitive level. It requires feedback on errors or
potential for optimizing the task. In contrast, reinforcement learning does not necessarily
punish errors but rewards optimal movements (Reinkensmeyer et al., 2016).

There is an ongoing debate if in chronic stroke patients motor learning can actually
lead to reversal of the impairment or does only entail compensation (i.e. learning of
alternative strategies to achieve a movement goal) (Krakauer and Carmichael, 2017).
The main goals of the studies from which the data was analyzed in this thesis (Dataset 1
and Dataset 2) were to explore a new kind of enhanced sensory feedback to the patient
supporting learning on all three levels: Brain-Machine interfaces. The principle is that
the intention to move (thought), which does not reach the muscle any more (in adequate
strength) after stroke, is reconnected to the movement (action) via external pathways. In
the studies under investigation modulation of the Sensorimotor Rhythm is detected via
EEG and translated into movements of an exoskeleton that moves the arm of the patient.
The sensation of the arm moving travels back to the brain via undamaged afferent sensory
pathways (proprioception, vision). The second study (Dataset 2) improved the feedback
by including an additional modality: the muscle activity. The exoskeleton used in that
study is able to move in seven degrees of freedom. The effects on the training are two-
fold: Firstly, the feedback to the patients is enriched. Secondly, they are more engaged
in the task. Both effects support motor learning (Krakauer, 2006; Blank et al., 2014).

In the next section I provide an introduction to the setup and movements performed in
the hBMI study followed by a description of the development of a software program for
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improving the visual feedback to the patient in the study. The last section focusses on
the AMoRSA project, which targeted increased engagement in the training and long-term
motivation.

7.2 The Hybrid BMI study and setup
This pilot study was conducted at the Institute of Medical Psychology and Behavioral
Neurobiology in Tübingen from 2016 to 2019. The goal was to implement and test a
novel BMI-based neurorehabilitation training paradigm for stroke patients with chronic
severe upper-limb paresis. The patients were seated and an exoskeleton was donned
on their paralyzed arm and hand. The exoskeleton, built by Tecnalia, San Sebastián,
Spain, allows movements in 7 degrees of freedom (xy-plane, xy-yaw, wrist angle, an-
gle of thumb, index finger and the remaining three fingers together). It was designed
for this experiment. The robot operates on a mat on a table with QR-codes for precise
location (fig. 7.1). The patients control the movements of the robot using their brain ac-
tivity and residual muscle activity. These neurophysiological signals are captured using
32 EEG channels and 14 bipolar EMG electrodes. A python-based laboratory program
acquires, preprocesses and interprets the signals and connects a control system for the
experimenter, the exoskeleton and a visualization program (see next section). Kinemat-
ics of the exoskeleton were controlled via two components: an assistive component and
a component controlled by the patient. Speed and trajectory of the assistive component
were derived by computing the speed of the robot following an ideal trajectory towards a
defined target. This speed was linearly combined with mappings of the patient’s muscle
activity to the velocity of the appropriate degrees of freedom. However, the exoskeleton
was only activated whenever the EEG classifier detected the intention to move in the
brain. Thus, a biologically-inspired control flow was established. More details on the
technical implementation can be found in the conference publication of our work group
(Sarasola-Sanz et al., 2017).

The training consisted of two phases. In each of them the patients practised in ten
training sessions on consecutive days with exception of the weekends. Before and af-
ter each phase screening sessions took place. In these sessions the state of the patient
was characterized: The behavioral state (the degree of paralysis) on multiple clinical
scales, extent and volume of the lesion in the MRI, the neurophysiological state using
EEG, EMG and MEP assessments and the psychological state using questionnaires. In
the sessions the individual control parameters for the training sessions were determined.
These comprised the individual sensorimotor frequency band being most discriminative
of the two experimental conditions Resting and Movement. Moreover, the range of mo-
tion and the locations for the four movement targets were set (fig. 7.2). The targets were
defined in all seven degrees of freedom and resembled movements that are relevant for
day-to-day activities. The three forward movements were given a color that marked the
approximate xy goal position on the experimental table and were also used as auditory
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Figure 7.1: The experimental table seen from above. The subject is seated in the experi-
mental chair. The exoskeleton is donned to arm and hand of the subject. It moves on the
mat with the QR codes. The colored panels indicate the goal positions of the movements.
EEG and EMG sensors are not attached in this figure for clarity.
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Figure 7.2: Target position Grün zeigen: The arm is extended towards the green target
panel in the center. The index finger and the thumb are extended and the three other
fingers are flexed. The wrist is rotated such that the plain spanned by the palm of the
hand forms a 90° angle with the experimental table.

cue. The backward origin position did not have an associated color. If we assume a pare-
sis of the right limb, the target Rot greifen was associated with a movement towards the
left while pronating the wrist and grasping (i.e. trying to clench the fingers into fist). The
target Grün zeigen was central and as far away from the patient as he or she could ex-
tend the arm. The patients were also asked to extend their index finger and thumb while
flexing all other fingers. The target Blau öffnen was a movement towards the right side
of the body while extending all fingers and supinating the wrist. After each movement
or a timeout the patients had to move back to the origin position, a comfortable position
of the robot just beside the torso in which all muscles were able to relax (vice versa if
paresis affected the other side of the body).

A training session consisted of various measurements: EEG recordings during rest
before the training and movements compliant with the movements of the exoskeleton (the
exoskeleton moved automatically and the patient tried to follow the movement without
influencing the trajectory) before and after the training. The training itself entailed a
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series of runs in which all three movement targets were announced in random order and
the task of the patients was to move the exoskeleton towards these targets using their
brain and muscle activity and after reaching the goal (or a timeout when not reaching the
goal) moving back to the origin.

7.3 Improving visuo-proprioceptive feedback:
Interactive 3D visualization of the orthosis

During the training the patients face two potential challenges. Firstly, the movements
of the fingers could be very subtle, which might hamper proprioception. Patients have
reduced distal sensation and thus rely more on their vision. However, viewing the hand is
not always possible in all positions during the movements. The view might be obstructed
by the motors of the robot in certain positions and angles and the patients cannot move
freely because of the constraints imposed by the EEG recording (fig. 7.3). Secondly,
each movement that the patients train has a goal position defined in seven dimensions
(all degrees of freedom). This position is defined individually for each patient. Even
though the robot supports the patients in moving towards the target, it proved challenging
for them to remember the multi-dimensional goal position. This could have negative
psychological effects because the patients might get frustrated when not receiving the
reward (“movement fully completed”) repeatedly. For learning this could have a negative
effect, too. The patients might just not activate the desired muscles because they are
simply not able to tell where to go.

In order to overcome both problems I developed a program that enables patients to
locate the movement target exactly. Moreover, the distance to the target in all degrees of
freedom is also visualized.

The patients have a large screen in front of them at the far end of the rehabilitation ta-
ble. The display shows two virtual three-dimensional representations of the exoskeleton
(fig. 7.3).

The experimental control computer sends information on the current task to the visual-
ization program. The target that is currently active will be displayed at the given location
and yaw in the virtual space and the desired rotation of the wrist DOF and angles of
thumb and fingers. The exoskeleton glows in the color of the real-world target (one of
red, green or blue). The second exoskeleton visible represents location and angles of the
real exoskeleton. Whenever the intention to move is detected the movement trajectory
and angular velocities decoded from the neurophysiological signals are sent to the real
exoskeleton and to the virtual one in real-time at an update frequency of 20 Hz. The
real exoskeleton and the virtual one move contingently. While the patients move the two
exoskeletons they can try to match location and angles of the virtual exoskeleton they
control and the virtual target (fig. 7.3, 7.4).

The visual design is sparse on purpose. It does not show many details or special ef-
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Figure 7.3: Full experimental setup. The exoskeleton is donned to hand and arm of the
subject. EMG and EEG electrodes are attached. The visual feedback is shown on the
screen at the far end of the experimental table. The subject is trying to perform the
movement towards target Blau öffnen.
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Figure 7.4: Screenshot of the visualization that the patients see on the experimental
screen. The grey exoskeleton model is a representation of the actual state of the real
exoskeleton. The green model is the the representation of the target (Grün zeigen). The
subjects are able to reach the goals in all DOFs more precisely with the help of this
visualization.
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fects in order not to distract the patients. Their main focus should be on proprioception
of their real hand throughout the training. The display is also concrete in the sense that
it depicts reality as closely as possible (i.e. an exoskeleton moving). Another possibility
would have been to show a virtual hand moving or other more abstract representations
of trajectories and angles. However, the intention was to reduce the need for abstrac-
tion, which would have introduced an unnecessary (and possibly detrimental) layer of
cognition for the sensory integration task at hand.

The feedback of the patients was collected informally and was positive overall. All pa-
tients who participated had the impression that the visual guidance helped them operate
the system.

7.3.1 Technical details

The 3D visualization is programmed entirely in python using the Panda3D open-source
engine developed at Carnegie Mellon University, Pittsburgh, PA, USA. It is lightweight
and cross-platform by default. Software built with the engine can be packaged into a
single file executed in a runtime environment. Deployment is thus user-friendly both for
developers and end-users.

Once the program is running interaction takes place via a TCP interface that allows
invoking all commands programmatically. An unlimited number of virtual exoskeletons
can be spawned and individually controlled, including all DOFs and appearance. Each
representation is linked to a unique string identifier that is passed on to the invoking
program (e.g. the experimentation computer). This identifier is used to steer and remove
the exoskeleton from the scene via simple chained string commands (see section 8.1.10
for details on the commands). Furthermore, the virtual robots can also be added, removed
and controlled by the user directly using the keyboard.

Due to the simple interface the program can be integrated into any laboratory environ-
ment and controlled via TCP packages locally or via the network. On top of that, the
system can be used for instruction, e.g. for showing the patients the target movements
virtually and simulation of movements, e.g. for playback of previously recorded trajec-
tories and angular velocities. These can be included in videos for scientific publications,
presentations and other demonstrations.

7.4 Improving immersion and training motivation: The
AMoRSA setup

The work presented in this section is multidisciplinary and could only be realized by col-
laboration. For disclosure of contributions see section 8.2.

Engagement in the training task and long-term motivation lead to high repetition rates
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which are essential for the success of training. In chronic stroke patients progress is
very slow. The results of the first BMI study (Dataset 1) show that after four weeks
of training there is motor improvement measurable in terms of clinical scales but the
changes are too small to have large impact on day-to-day activities (Ramos-Murguialday
et al., 2013). During the training the patients might not experience any immediate effects,
even though there are neurophysiological changes such as of muscle activity, the ERD
(e.g. chapter 2), brain connectivity (e.g. chapter 5) and low-frequency oscillations (e.g.
chapter 4). As shown in this thesis these evolve throughout the intervention. Therefore,
they could potentially be used to give patients feedback during the training, especially
when behavioral effects are not visible.

The AMoRSA project was initiated to tackle the issue of engagement and motivation.
In that project a serious game was to be embedded in the rehabilitation environment of
the hBMI study. A serious game, actually a tautology - “serious fun”, aims primarily at
teaching and training through mechanisms of play rather than recreation (Zyda, 2005).
Serious games have become popular in health, military, education and also in companies
for in-house training or to guide transformation processes (Susi et al., 2007).

In medical applications serious games could facilitate immersion, which would help
patients to be virtually transferred out of clinical settings into a more enjoyable envi-
ronment. Their sensations could be refocussed from pain and discomfort towards more
pleasant feelings mediated by the game. Mechanisms of games such as winning points,
shaping environments, defeating opponents, collaboration, experience of a story and ex-
ploration of virtual worlds not only lead to immersion but also to a shift of focus: The
player concentrates on the task they are trying to achieve. Serious games blend these
mechanisms with the learning or training target and while the user plays they learn and
train the superordinate task. Furthermore, the progress in the game is related to the
progress in the task, e.g. a therapy. Thus the gaming environment provides long-term
feedback of the progress in the real-world. This could help the patient, for example,
establish a sense of achievement and keep up motivation.

7.4.1 The game design
The theme of the game of AMoRSA is a virtual ethereal garden. At the beginning of the
game (the therapy) the garden is completely empty (7.5). The patients can navigate their
avatar to various spots within the garden by performing a movement of the rehabilitation
training. They can plant trees and flowers or place decorative items (7.6).

These items cost points that the patients earn by performing the training movements.
The patient announces the movement they would like to perform to the therapist. The
therapist activates the target accordingly. The interaction between therapist and patient
is important. The therapist can give the patient instructions and feedback but they also
control the “weight of the targets”, i.e. how many points the patient gets for performing
one of the movements (7.7). The therapist can give the patients more points for more
difficult movements, thus motivating the patient to train that task more often. Moreover,
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Figure 7.5: The ethereal garden in an empty state at the beginning of the game. The
glowing green globe is the avatar of the subject.
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Figure 7.6: The matrix of plants and decorative elements the patients can choose at a
specific position in the garden. The active garden position is marked by glowing green
energy fields. The numbers next to the elements show the points (in-game currency) they
need to be able to place the element.
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Figure 7.7: The interface for the therapists: The position of the circle in the ”Fokus”
triangle specifies the ratio of points for the successful performance of each trained move-
ment. The trained movements are represented by the three birds. If the circle is moved
towards the swan, for example, these movements would be rewarded by relatively more
points than movements towards the other targets. The ”Schwierigkeitsgrad” reduces the
overall amount of points received for any movement.

the patients receive bonus points for performing the task well, e.g. reaching the goal
position very quickly or with a smooth trajectory.

In the light of the insights from the previously presented 3D visualization project se-
veral elements have been included providing real-time feedback to the patient such as a
distance marker and expansion and retraction of the avatar while performing the move-
ment in order to give them immediate feedback (7.8).

The feedback to the patients is thus enhanced during the task. In addition to that the
virtual environment also gives the patients an intuitive perception of progress. Every
movement that they performed counts and is reflected in the plants and the decoration.
The game was balanced such that the garden could only be completely explored and filled
after several weeks of daily training. And even after that the garden could be shaped
further by replacing items. There are hundreds of possible combinations of items. In
the case of severely paralyzed chronic stroke patients, where progress is little and mostly
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Figure 7.8: The patient has chosen planting (upper left corner) and a decorative element
(upper right corner) and initiated a movement towards the peacock target. The peacock
will yield a reward of 8 points plus potential bonus points for good performance. The
green arrow in the lower center of the screen points towards the goal position. It is
surrounded by a gray and green circle that displays the distance to the target position and
angles. With great distance the circle is mainly grey and while getting closer, the circle
becomes green. The avatar has expanded (sizzling white lines over the bridge), which
also conveys a sense of distance to the target.
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Figure 7.9: A stroke patient playing the AMoRSA game in the final setup of the game.
The ethereal garden that is almost fully explored.

invisible in the beginning, the long-term feedback visualized as the garden can also help
to carry them over periods of frustration (7.9).

The merit of this work is two-fold. Firstly, the existing rehabilitation paradigm was
combined with a serious game. A questionnaire and interviews with patients and thera-
pists helped understand the needs of the patients. They were carefully taken into consid-
eration and a game concept was derived together with aspects of demographics and the
pathophysiology. The age of the patients and mixed gender ratio and respective prefer-
ences encouraged a virtual world that did not have fantastic elements (e.g. a fairy-tale
world or a science ficition-world). Moreover, the pathophysiology of severe stroke and
the concentration necessary for performing the training tasks demanded a game that was
not fast-paced, e.g. no activity dependent on reaction time. Psychologically, a virtual
world supporting creation rather than destruction (e.g. a shooter game) would support
the rehabilitation process. These premises lead to the concept of game based around the
creation of a garden. A virtual world the patients certainly could identify themselves
with. The theme is purely creative and positive as elements are only added but nothing
is destroyed. Furthermore, the garden theme does not distract the patients from their
actual task. Secondly, the technological integration of the game into the laboratory en-
vironment was designed and implemented. This included design of interfaces between
acquisition hardware (EEG and EMG), actuators (the exoskeleton), the game, the exper-
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imentation interface and the therapists interface. Furthermore, new programs, extensions
of existing code and a database were implemented for representing the game logic in the
experimentation interface.

The subjective feedback of five patients who played the game was positive. They liked
the theme and enjoyed playing the game. They reported finding the game more attractive
than just the rehabilitation training. All of the patients playing the game underestimated
the actual playing time by more than 20 minutes. Their perceived playing time was much
shorter, which underlines the impact of the immersive effect.
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Chapter 8

Materials, contributions and meta
information

8.1 Materials
This section provides additional materials and supporting information for the thesis.
First, the general ogranization of the code and implementation procedures are described.
Afterwards, details of specific parts of the code are shown and finally, the software de-
velopment project Multicam is explained. Due to data privacy regulations not all of the
code produced for the analyses in this thesis can be made publicly available because
various parts of most analyses directly refer to identifiers and demographic information
that potentially could lead to de-pseudonymization of the participants. Nonetheless, the
intention for writing this section was to provide enough information for the reader to
understand how the code was implemented for repeating the analyses.

8.1.1 Introduction to the code implemented for the analyses
For the final versions of the analyses presented only open source software was used.
This guarantees that other researchers can easily reimplement and reproduce scientific
evaluations. At the beginning of the PhD project (i.e. chapter 2) Matlab was used as a
framework (MATLAB, 2020). The code of the analyses was based on the widely used
Fieldtrip toolbox, which is also open source (Oostenveld et al., 2010). Soon after starting
the analyses, it became clear that Matlab is a suboptimal framework for neuroscientific
analyses. It is bulky and proprietary. One always needs to be connected to the internet
(or be able to reach Mathworks’ registration server). Distributed computing does not
work out of the box. I decided to switch to Python for all other implementations (i.e.
chapters 3 through 6 and partly chapter 7) (Van Rossum and Drake, 2009). The MNE
toolbox is an excellent collection of neuroscientific tools accessible in Python (Gramfort
et al., 2013). It is open source software that is actively maintained and continues to be
expanded. The features include opening and managing practically all data formats of
neural recordings, time-frequency decomposition, connectivity analysis, preprocessing
and filtering, a vast set of visualization tools and many more features.
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Figure 8.1: Flow chart of the ”processing tree” of an analysis performed on the data (this
example refers to the analysis in chapter 4)

The methodology for implementing the analyses presented here is based upon the
following four components:

1. Analysis plan and data flow

2. Configuration of analysis parameters and meta parameters

3. Implementation and organization of the analysis code

4. Running and logging the analysis

8.1.2 Planning of an analysis and data flow
Each analysis, especially those as complex as some presented here, consists of one or
more series of processing steps that conceptually span a “processing tree”. At the root of
the tree lie the source data and the leafs represent various results, such as tables, statistical
tests or plots. For planning my analyses and for visualizing the steps taken I generated
flow charts such as figure 8.1.

In the flow charts the analysis starts at the top with the name of the analysis and the
source data files. Each data file is represented by a rhombus. The rectangles represent
the processing steps. The connections between these elements, the arrows, represent the
flow of data and the sequence of steps. The example shows the analysis performed and
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Figure 8.2: Flow chart of the ”processing tree” of steps of data preprocessing performed
on the raw data.

presented in chapter 4. There are two levels of source data included. The left branch
focusses on the EEG data and the branch on the right focusses on the EMG. Each pro-
cessing step is implemented in its own Jupyter Notebook file (see below), the name of
which is noted in the corresponding rectangle (Project Jupyter, 2020). The target direc-
tory of the resulting data is also noted in the flow chart. After multiple processing steps
the two separate branches are joined and the analysis continues until it yields the desired
results, such as the “TFR data for publication”. In the example processing of the data
began with data that had already been preprocessed. The full processing pipeline actu-
ally starts with the raw data (fig. 8.2) of the experiments, e.g. Dataset 1 (section 1.3.1).
The data comprises continuous recordings of EEG and EMG in the data format of the
acquisition system. The preprocessing routines check the raw data and apply corrections
were applicable. These comprise technical problems with the recording, such as broken
EEG channels, or mislabelled EMG channels, for example. The corrected raw data is
then transformed into the general data format of the MNE toolbox. Afterwards, the data
is broken up into smaller components, so-called epochs. These units of the data con-
tain neurophysiological data recorded during specific behavioral states such as periods
of resting or periods of movement. The last step before starting the actual analysis is a
basic preprocessing step where band-pass filters and a notch filter are applied.

8.1.3 Configuration of analysis parameters and meta parameters
The analysis often comprises many parameters that define the procedures such as the
period used for baseline correction of the EEG or the lower and upper bound of a band-
pass filter. In all analyses these settings are stored in a configuration file based on the
YAML markup language (Yaml, 2020). The advantage of this configuration language is
the easy integration into python code and human readability. Listing 1 shows a shortened
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example of a configuration file. The configuration has three main sections: “meta”,
“script” and “processing”. The first section contains meta information about the analysis,
such as a machine readable name and description (which is important for automated
logging). The script section contains information about the data flow, such as the source
folder of the data and target folder for the plots. The processing section defines the actual
parameters for the analysis such as the names of the EEG channels to be processed and
the frequencies of interest for the analysis. Defining these parameters in a separate file
has obvious advantages. There is no need for including (“hard coding”) such values in the
code, which helps reducing mistakes. Moreover, this procedure also supports modularity
of the code as it can be used directly with different sets of parameters. For explorational
analyses, for example, various sets of parameters can be evaluated without changing a
single line of code.

8.1.4 Implementation and organization of the analysis code
The code for the analyses was usually organized in separate Jupyter Notebook files for
each block in the analysis pipeline. Jupyter Notebook is an ideal choice for these kinds of
analyses as it enables meaningful encapsulations of pieces of code. These “cells” can be
run separately. The output (text and figures) is shown and stored directly in the browser
and the code can be documented using markdown (including Latex for mathematical
formulae). Jupyter Notebook runs in the browser. The execution of the code, however,
can be run locally or remotely. The GIT version control system was used with all code
in order to keep track of changes and for storing the code in a central repository.

Listings 2 through 8 show the code of the standard preprocessing pipeline for EEG
data of the work group that was used in most analyses (López-Larraz et al., 2018b).

The code for the analyses and projects presented here was written in Python to the
greatest part. Some aspects were also written in Linux Shell script, YAML and Matlab.
The Python modules pymatreader and oct2py were used to build a bridge between Python
and Matlab. In some cases data from older analyses, which were implemented in Matlab,
had to be included using these modules.

8.1.5 Performing analysis and logging
The analysis was mostly run on a computation cluster at the Center for Integrative Neu-
rosciences at the University of Tübingen. A jupyter notebook daemon was activated
on that cluster and ports were forwarded to the local computer using SSH. The Jupyter
Notebooks could then be accessed, programmed and run via the local web browser. The
execution, however, took place on the cluster with direct (and fast) access to the data
and much larger computational power. Parts of the analyses were very demanding, es-
pecially the permutation tests that have been used in the analyses presented in chapters
4 and 5. Mathematical computations had to be repeated 1000 times per experimental
unit of interest, which could easily amount to more than 4m computations (e.g. 1000
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meta:

- name: analysis_description

description: Full pipeline for the LFO analysis (v1.3)

data: lfo_standard_pipeline

script:

- name: source_root_folder

description: Root folder of the source files

data: /.../preprocessed_prepost/data

- name: target_plots_folder

description: Root folder for the result files and plots

data: /.../standard/plots

processing:

- name: eeg

description: Configuration of the EEG filtering

data: {

highpass: 1,

lowpass: 22,

channels: [4,5,6,7,10,11],

channels_for_plots: ['C3','C4','CP3','CP4','P4','P3'],

fs: 500

}

- name: analysis

description: Items related to defining analysis and output

(with respect to estimated EMG onset)↪→

data: {

period_of_interest_plot_start: -1,

period_of_interest_plot_end: 1,

period_of_interest_mean_start: -0.2,

period_of_interest_mean_end: 0.4,

frequencies_of_interest_l: 3,

frequencies_of_interest_u: 5,

decim: 1

}

Listing 1: Example configuration file (shortened for clarity). The three sections meta,
script and processing contain information and definitions for logging, loading and
saving data and processing the data, respectively
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### Function definition for preprocessing EEG data for the

coherence analysis (part 1)↪→

# Custom packages

import config_utils as cu # Utilities for reading configuration

files↪→

import subject_info_utils as siu # Utilities for retrieving

demographic data on subjects↪→

# Toolset of the workgroup

import tools

# External packages

import mne

import os

import numpy as np

import datetime

def process(subject, measurement, condition, cfg, pat_info,

run_emg_rejection, slogger):↪→

"""

Processes an epoched fif file using the RamosLAB pipeline

and stores the result as a fif file.↪→

Arguments:

subject (string): The pseudonym of the patient

measurement (string): One of pre2 or post1 (the

measurements before and after the intervention)↪→

condition (string): The behavioral state of the patient

(performing a movement of the healthy arm, a movement

attempt of the paretic arm or being at rest)

↪→

↪→

cfg (dict): Configuration dictionary

pat_info (dict): The patient information (a YAML file

containing all demographic and other data of the patients)↪→

run_emg_rejection (bool): Determines if rejection of

trials is also based on the EMG activity↪→

slogger (object): Instance of the logging mechanism

"""

Listing 2: Example of a processing script used in many analyses presented: The
general processing pipeline for EEG data.
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### Function definition for preprocessing EEG data for the

coherence analysis (part 2)↪→

# Open the source file (based on the configuration and using

MNE)↪→

try:

source_dir = "{}/{}/{}/{}".format(cu.val(cfg['script'],

'source_root_folder'), subject, measurement, condition)↪→

source_file = os.listdir(source_dir)[0]

epochs = mne.read_epochs("{}/{}".format(source_dir,

source_file))↪→

except FileNotFoundError as e:

print("Could not find file: {}".format(e))

return

# Retrieve information on the patient

_, channels_healthy_arm, channels_paralyzed_arm =

siu.get_feedback_channels(subject, pat_info)↪→

lesion_side = siu.get_lesion_side(subject, pat_info)

# Pipeline preparation

eeg_channels_for_filter =

['C3','C4','P3','P4','T7','T8','F3','F4','Cz']↪→

try:

# Filter EEG

pick_eeg = mne.pick_types(epochs.info, eeg=True)

epochs.filter(cu.val(cfg['processing'],'eeg')['highpass'],

cu.val(cfg['processing'], 'eeg')['lowpass'],

picks=pick_eeg)

↪→

↪→

# Filter EMG

pick_emg = mne.pick_types(epochs.info, emg=True)

epochs.filter(cu.val(cfg['processing'],'emg')['highpass'],

None, picks=pick_emg)↪→

# Correct for EOG artifacts

slogger.write_entry(datetime.now(), 'INFO', source_file,

'Started EOG artifact correction')↪→

data_eeg_corrected, surrogate_EOG_used =

tools.correct_for_eog_artifacts_epochs(epochs)↪→

Listing 3: Example of a processing script used in many analyses presented (contin-
ued)
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### Function definition for preprocessing EEG data for the

coherence analysis (part 3)↪→

# Replace EEG data with filtered data in current epochs array

chan_idc_emg = mne.pick_types(epochs.info,emg=True)

chan_idc_eeg = mne.pick_types(epochs.info,eeg=True)

chan_idc_eog = mne.pick_types(epochs.info,eog=True)

chan_idc_misc = mne.pick_types(epochs.info,misc=True)

all_types = []

all_types.extend(chan_idc_eeg)

all_types.extend(chan_idc_emg)

all_types.extend(chan_idc_eog)

all_types.extend(chan_idc_misc)

# Create new array with filtered EEG/EMG/EOG

if surrogate_EOG_used:

args = (data_eeg_corrected, epochs.get_data()[:,

chan_idc_emg, :])↪→

slogger.write_entry(datetime.now(), 'INFO', source_file,

'Used frontal channels for artifact correction')↪→

# Prepare creation of new info dict. Misc channels are

ignored↪→

ch_names = []

ch_names.extend(list(np.array(

epochs.info['ch_names'])[chan_idc_eeg]))

ch_names.extend(list(

np.array(epochs.info['ch_names'])[chan_idc_emg]))

ch_types = []

ch_types.extend(['eeg' for i in range(len(chan_idc_eeg))])

ch_types.extend(['emg' for i in range(len(chan_idc_emg))])

Listing 4: Example of a processing script used in many analyses presented (contin-
ued)
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### Function definition for preprocessing EEG data for the

coherence analysis (part 4)↪→

# (If proper EOG channels are present) Create new array with

filtered EEG/EMG/EOG↪→

else:

data_eog = epochs.get_data()[:, chan_idc_eog, :]

args = (data_eeg_corrected, epochs.get_data()[:,

chan_idc_emg, :], data_eog)↪→

slogger.write_entry(datetime.now(), 'INFO', source_file,

'Used EOG channels for artifact correction')↪→

# Prepare creation of new info dict. Misc channels are

ignored↪→

ch_names = []

ch_names.extend(list(

np.array(epochs.info['ch_names'])[chan_idc_eeg]))

ch_names.extend(list(

np.array(epochs.info['ch_names'])[chan_idc_emg]))

ch_names.extend(list(

np.array(epochs.info['ch_names'])[chan_idc_eog]))

ch_types = []

ch_types.extend(['eeg' for i in range(len(chan_idc_eeg))])

ch_types.extend(['emg' for i in range(len(chan_idc_emg))])

ch_types.extend(['eog' for i in range(len(chan_idc_eog))])

new_info = mne.create_info(ch_names=ch_names, ch_types=ch_types,

sfreq=epochs.info['sfreq'])↪→

data_all_channels = np.concatenate(args, axis=1)

epochs_out = mne.EpochsArray(data=data_all_channels,

info=new_info, events=epochs.events,

tmin=cu.val(cfg['processing'],

'timing_dict')['t_start_trial'])

↪→

↪→

↪→

epochs_out.set_montage(

mne.channels.make_standard_montage("standard_1020"))

# Log errors (on ValueError and OSError exception) [omitted for

brevity]↪→

Listing 5: Example of a processing script used in many analyses presented (contin-
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### Function definition for preprocessing EEG data for the

coherence analysis (part 5)↪→

# Continue preprocessing if at least one epoch remains

if len(epochs_out) > 0:

if run_emg_rejection:

# Run EMG rejection

try:

drop_log = tools.rejection_emg(

epochs_out,

channels_paralyzed_arm,

channels_healthy_arm,

cu.val(cfg['processing'], 'emg')['winsize'],

cu.val(cfg['processing'], 'emg')['winstep'],

cu.val(cfg['processing'], 'timing_dict'),

cu.val(cfg['processing'],

'emg')['stdthreshold_artifacts'],↪→

cu.val(cfg['processing'],

'emg')['stdthreshold_movements'],↪→

cu.val(cfg['processing'],

'emg')['threshold_rejection_duration'],↪→

active_condition = condition

)

# Log dropped trials

tools.store_drop_logs(drop_log, cu.val(cfg['script'],

'target_root_folder') + '/drop_logs/',

"{}-{}".format(subject, fuid), 1,

len(epochs_out),

np.hstack([channels_paralyzed_arm,

channels_healthy_arm]))

↪→

↪→

↪→

↪→

↪→

# Log errors (on ValueError and OSError exception) [omitted for

brevity]↪→

Listing 6: Example of a processing script used in many analyses presented (contin-
ued)
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### Function definition for preprocessing EEG data for the

coherence analysis (part 6)↪→

# Run EEG rejection

if len(epochs_out) > 0:

try:

slogger.write_entry(datetime.now(), 'INFO', source_file,

'Started EEG rejection')↪→

drop_log = tools.rejection_eeg(

epochs_out,

eeg_channels_for_filter,

cu.val(cfg['processing'],'eeg')['f_delta'],

cu.val(cfg['processing'],'eeg')['f_gamma'],

cu.val(cfg['processing'],'timing_dict'),

cu.val(cfg['processing'],'eeg')['stdthreshold'],

)

tools.store_drop_logs(drop_log, cu.val(cfg['script'],

'target_root_folder')+'/drop_logs/',

"{}-{}".format(subject, fuid), 1, len(epochs_out),

np.hstack([channels_paralyzed_arm,

channels_healthy_arm]))

↪→

↪→

↪→

↪→

# Log errors (on ValueError and OSError exception) [omitted for

brevity]↪→

else:

slogger.write_entry(datetime.now(), 'ERROR', source_file,

'All epochs rejected due to EMG')↪→

Listing 7: Example of a processing script used in many analyses presented (contin-
ued)
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### Function definition for preprocessing EEG data for the

coherence analysis (part 7)↪→

# Save preprocessed data

target_folder = cu.val(cfg['script'], 'target_root_folder')

out_folder = "{}/data/{}/{}/{}".format(target_folder,

subject, measurement, condition)↪→

if not os.path.isdir(out_folder):

os.makedirs(out_folder)

fname_out = "{}/{}_{}-epo.fif".format(out_folder, subject,

fuid)↪→

epochs_out.save(fname_out)

slogger.write_entry(datetime.now(), 'FILE', source_file,

'Created file')↪→

# If all epochs have been dropped by the preprocessing

procedure --> log↪→

else:

slogger.write_entry(datetime.now(), 'WARNING', source_file,

'No epochs remained in current session')↪→

Listing 8: Example of a processing script used in many analyses presented (contin-
ued)
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permutations * 68 trials * 2 measurements * 30 subjects). I used two approaches to
distributed computing in the analyses. At first, the Torque framework was used. The
Torque server accept jobs submitted via the qsub command and distributes the work-
load among the available cores and balances fairly among different users. In the later
stages of the analysis a framework based on an implementation of a message queue on
Redis was used because it could be integrated into the existing python code more easily.
RQ allows easy management of workers and failed jobs via a network interface. Both
run directly from docker containers which reduces effort for the implementation of the
approach on a distributed cluster. Listing 9 shows the typical pipeline in a Jupyter Note-
book to run an analysis on the cluster using RQ. In cell [1] the necessary modules are
loaded; “rl prepost” contains the process that performs the actual analysis. After loading
of necessary demographic information and configuration details (cell [1]) and instantia-
tion of the logger in cell [2], the task queue that accepts processing jobs is initialized in
cell [3]. Cell [4] specifies which conditions, measurements and subjects are to be pro-
cessed. The job “rl prepost.process” is dispatched to the job queue in cell [5] using the
input parameters explained in listing 2.

In complex analyses such as the one on coherence presentend in chapter 5 the pipeline
creates many intermediate results and files that are stored and loaded again in later pro-
cessing steps. In this analysis these are thousands of files. In order to keep track of all
files created I developed a logging mechanism (“slogger” in the above listings). The
instance of slogger is called whenever a file is written to disk. For each file a unique
identifier is generated that is added to the filename on disk. The creation of the file is
logged in an Sqlite database. There are also other events that are logged in the database
such as the starting time of execution of a specific part of the code (e.g. for determining
computation time afterwards or errors during computations). Each entry contains the
following fields:

• Datetime: The date and time (of the server) of creation of a file / entry

• Caller: The name of the script calling the logger

• Level: The “severity” level of the information, such as INFO, FILE, WARNING,
ERROR

• Context: The context of the computation, usually the source file of the data being
processed

• Content: The description of the event being logged

• Comment: A comment string

• Config: The configuration dictionary used for the computation

• Fuid: The unique file identifier generated for the output file
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# CELL 1: Imports [ommited for brevity]

# Load config and patient information

pat_info = subject_info_utils.load_subject_info(

'.../data/subjects_data_v191204.yaml')

cfg = config_utils.load_config(

'config_coherence_pre-post_preprocessing.yml')

# CELL 2: Instantiate and initialize log

slogger = log_utils.Slogger('preprocess_prepost_RL',

'.../slogging/slogging.db', cfg)↪→

slogger.init_config(datetime.now())

# CELL 3: Initialize task queue

q_jobs = rq.Queue(name='jobs', connection=redis.Redis())

# CELL 4: Configure dispatching

conditions = ['paretic', 'rest', 'healthy']

measurements = ['pre1', 'pre2', 'post1', 'post2']

subjects = subject_info_utils.get_all_subjects(pat_info)

# CELL 5: Dispatch the jobs

for sub in subjects:

for cond in conditions:

for time in measurements:

q_jobs.enqueue(rl_prepost.process, sub, time, cond,

cfg, pat_info, True, slogger)↪→

Listing 9: Example for a Jupyter notebook used to run part of an analysis on the comput-
ing cluster.
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This logging procedure allows the user to recheck the “genesis” of each file after the
analysis has completed. During the analysis this approach is helpful in order to track
errors. However, one of the weaknesses of the methodology was that if too many jobs
tried to access the sqlite file at the same time slogger would block execution and thus slow
down the computation. Implementation of an SQL-based server with higher performance
would mitigate this problem.

8.1.6 Details on the neurophysiological recordings of Dataset 1
(section 1.3.1)

Partly taken from Ray et al. (2020) and Ramos-Murguialday et al. (2013)
The EEG signals of the patients were sampled from the sixteen EEG channels (FP3,

FP4, Fz, F3, F4, C3, C4, Cz, CP3, CP4, P3, P4, Pz, T7, T8, Oz) at 500 Hz. EMG data
was recorded from four channels on each arm (forearm – flexor and extensor, upper-
arm – biceps and triceps). The amplifier was a BrainAmp 32 by Brain Products GmbH,
Munich, Germany. The ground electrode was placed at AFz and the reference at FCz.
Furthermore, EOG electrodes for detection of vertical and horizontal eye movements
were used.

Patients underwent a total of 17 ± 1.85 training sessions. Each session comprised
11 trial runs (totalling 165±19.5 trials). Upon hearing an auditory cue, patients had 2
seconds to get ready to try to move the paretic limb. Another auditory cue announced the
beginning of a 5 second period, in which the patients could control the robotic exoskel-
eton using their brain signals. After this period a random inter-trial interval of between
5 and 7 seconds followed before the presentation of the next “ready” cue. All cues were
auditory. The arm orthosis was a ReoGo rehabilitation robot (Motorika, Cesarea, Israel).
We used a robotic orthotic system developed in-house to exert hand movements.

The neurophysiological recordings at the pre and post screenings were structured si-
milarly. After a break of between 4 and 5 seconds the patients were cued to open their
healthy hand, to try to open their paretic hand or to rest and relax all muscles. They had
5 seconds to perform and repeat the movement at their own pace. Afterwards the next
break of 3 to 4 seconds was announced. The order of the trials was random and there
were at minimum 17 repetitions of each trial type.

8.1.7 Implementation details of section 2.2.4

Listing 10 shows the R code that models longitudinal relative power. The dependent
variable relative power in alpha (lesion alpha relative) is predicted by time (Session)
and subject (Subject). This prediction assumes correlated random intercept and slope,
which means that the slope can vary with the intercept. For this reason the formula
contains the intercept term (”1 + Session”) twice.
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# Fit linear mixed effects models

lmem.alpha_lesion = lmer(lesion_alpha_relative ~ 1 + Session +

(1 + Session | Subject),data=mydata)↪→

# Retrieve coefficients from linear mixed model

cf.alpha_lesion = coef(lmem.alpha_lesion)$Subject

# Aggregate delta_fma and add to coefficients table (change of

the clinical scale from pre to post)↪→

cf.alpha_lesion$delta_arm = aggregate(delta_arm ~ Subject,

mydata, mean)$delta_arm↪→

cf.alpha_lesion$delta_hand = aggregate(delta_hand ~ Subject,

mydata, mean)$delta_hand↪→

cf.alpha_lesion$delta_combined = aggregate(delta_combined ~

Subject, mydata, mean)$delta_combined↪→

Listing 10: Mixed effects modeling for the longitudinal event-related power data and
retrieval of the modeled coefficients.

Listing 11 shows the R code that models the coefficients that are extracted from the lin-
ear mixed-effects model. The dependent variable change of impairment (delta combined)
is predicted by time (Session) and initial relative alpha power (Intercept). Session and
Intercept might interact, meaning that the progression of power over the course of the
training might vary with the initial power.

# Fit linear model from coefficients

lin_m.alpha_lesion <- lm(delta_combined ~ Session * Intercept,

data=cf.alpha_lesion)↪→

Listing 11: Linear modeling of the coefficients extracted before relating the progres-
sion of relative alpha power throughout the training and the change of the clinical
scale.
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8.1.8 Implementation details of section 5.2
Generation of data for the MVAR process

Listings 12 and 13 show the code with which the data used in the examples in section
5.2 was generated.

Implementation details on the significance threshold paradigm

Listing 14 shows an example of an expensive computation necessary for arriving at the
significance threshold of the parametric approach. This code is not making extensive use
of numpy vectorization. However, it is optimized for use with the numba module which
compiles the code just-in-time and speeds up computation that way.

8.1.9 The Multicam project
Multicam is a combination of specific computer hardware and software that enables
recording of video and audio from multiple webcams. I started the Multicam project
after having performed several experimental sessions of the hBMI study (see dataset 2 in
section 1.3.1 and section 7.2). The intention of the work group was to record all experi-
ments performed with patients on video. This is particularly useful to check unexpected
events in the data during analysis and to confirm and prove that the subjects were actually
performing the tasks that they were asked to do in retrospect.

The goal of this project was to have a plug-and-play solution for recording audio and
video from multiple sources such as webcams using a graphical user interface and a
programmatic interface.

Hardware

The core of the Multicam system is an Odroid XU4 single-board computer. It is housed
in a self-made case that leaves enough room for a 3,5 “ hard disk drive and openings for
the connectors for webcams, the network and other devices (fig. 8.3 and fig. 8.4). The
Odroid single-board computer is powerful enough to capture h264-compressed video
from up to four webcams at 720p resolution.

Software

The operating system used is ARCH Linux (on ARM) in a very basic configuration. It
provides access to the harddisk and starts the Multicam daemon on bootup.

The Multicam software is implemented in Google’s GO language, which is ideally
suited for network applications (The Google Go Project, 2020). The webcams are con-
figured and controlled via GStreamer (The GStreamer Project, 2021). The software im-
plements its own task queue that accepts tasks (such as “Start recording on webcam 2”)
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### Generate samples of a multivariate auto-regressive process

# Imports [omitted for brevity]

# Definitions of the MVAR process

max_t = 4 # the model order

n_vecs = 5 # the number of the equations in the equation system

N = 50000 # the number of samples

# Generate normally distributed random variables

x = np.concatenate([np.random.normal(0, 1, (n_vecs,max_t)),

np.zeros((n_vecs, N-max_t))], 1)↪→

# Generate noise with identity covariance

noise = np.random.multivariate_normal(np.zeros(n_vecs),

np.identity(n_vecs), N).T↪→

# The coefficients of the equation system defined in the paper

by Schelter and colleagues↪→

original_coefs = np.array([

[[ 0.6 , 0. , 0. , 0. , 0. ],

[ 0. , 0.5 , 0. , 0.6 , 0. ],

[ 0. , 0. , 0.8 , 0. , 0. ],

[ 0. , 0. , 0. , 0.5 , 0. ],

[ 0. , 0. , 0.2 , 0. , 0.7 ]],

[[ 0. , 0.65, 0. , 0. , 0. ],

[ 0. , -0.3 , 0. , 0. , 0. ],

[ 0. , 0. , -0.7 , 0. , 0. ],

[ 0. , 0. , 0.9 , 0. , 0. ],

[ 0. , 0. , 0. , 0. , -0.5 ]],

[[ 0. , 0. , 0. , 0. , 0. ],

[ 0. , 0. , 0. , 0. , 0. ],

[ 0. , 0. , 0. , 0. , -0.1 ],

[ 0. , 0. , 0. , 0. , 0. ],

[ 0. , 0. , 0. , 0. , 0. ]],

[[ 0. , 0. , 0. , 0. , 0. ],

[ 0. , 0. , -0.3 , 0. , 0. ],

[ 0. , 0. , 0. , 0. , 0. ],

[ 0. , 0. , 0. , 0. , 0. ],

[ 0. , 0. , 0. , 0. , 0. ]]])

Listing 12: Generation of the data defined by the MVAR process.
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### Generate samples of a multivariate auto-regressive process

# Compute a solution

for t in range(max_t, N):

x[0,t] = .6 * x[0,t-1] + .65 * x[1,t-2] + noise[0,t]

x[1,t] = .5 * x[1,t-1] - .3 * x[1,t-2] - .3 * x[2,t-4] + .6 *

x[3,t-1] + noise[1,t]↪→

x[2,t] = .8 * x[2,t-1] - .7 * x[2,t-2] - .1 * x[4,t-3] +

noise[2,t]↪→

x[3,t] = .5 * x[3,t-1] + .9 * x[2,t-2] + .4 * x[4,t-2] +

noise[3,t]↪→

x[4,t] = .7 * x[4,t-1] - .5 * x[4,t-2] - .2 * x[2,t-1] +

noise[4,t]↪→

Listing 13: Generation of the data defined by the MVAR process (continued).

Figure 8.3: Case of the Multicam system. There are several connectors in the back such
as DC power, Ethernet and USB. The back plate is removable in case the harddisk needs
to be replaced.
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jit(nopython=True)

def compute_matrix_C_ineff(H,p,nchan,SIGMA,N,f_ix):

""" Compute the matrix Cij for a given frequency bin

(Schelter et al eq. 13)↪→

This is the inefficient non-vectorized version

optimized for just-in-time compilation with Numba↪→

Arguments:

H (numpy ndarray): The matrix H

p (int): The order of the VAR model

nchan (int): Number of channels (i.e. number of

vectors in the AR model)↪→

SIGMA (numpy ndarray): The covariance of the noise

of the VAR model at time lag 0↪→

N: (int): The number of data points in the original

data↪→

f_ix (int): The index of the frequency bin of

interest↪→

Returns:

Numpy ndarray: The matrix Cij for a given frequency

bin↪→

"""

C = np.zeros((nchan, nchan))

for ch1 in range(nchan):

for ch2 in range(nchan):

B = np.zeros((p, p))

for k in range(p):

for l in range(p):

B[k,l] = H[ch2+k*nchan, ch2+l*nchan]

*(np.cos((k+1) * f_ix) * np.cos((l+1) *

f_ix) + np.sin((k+1) * f_ix) *

np.sin((l+1) * f_ix))

↪→

↪→

↪→

C[ch1,ch2] = SIGMA[ch1, ch1] * np.sum(B)

return C

Listing 14: Computation of matrix C for retrieving the significance threshold using
the parametric approach
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Figure 8.4: Interior of the case of the Multicam system. The harddisk is housed below
the Odroid XU4 (right side).

from a TCP/IP command interface and via HTTP requests. Furthermore, I implemented
a webserver that serves the user interface via the network and relays requests to the task
queue (fig. 8.5).

The first section displays status information of the server such as date and time and free
disk space. The second section shows captured images of the active webcams and the
the names of the microphones that are active. In the third section the user can configure
the system. For example, cameras and microphones can be included in the recording,
the recording directory can be changed and the ID or name of the subject can be added.
The current settings are displayed via the green bars below the cameras and in the list of
microphones. The bars indicate which devices will be active during the recording. The
last section allows the user to control the system manually. Here, the recording can be
started or stopped and triggers can be sent to the server. These triggers are stored in a
subtitle file that is displayed when the corresponding video is played back after recording.
This functionality is useful for noting events during the experiment in the video file.

Once the recording is set up, it may be started manually or programmatically from any
other application. In our experiments the recording was set up via the user interface and
it was initiated by the experimental software. The experimental software can also send
trigger information to the Multicam server directly in order to capture events down to a
precision of 100 ms (such as cues being displayed to the patients).

All software was compiled into an image that can be readily copied to an SD card and
that runs immediately on an Odroid XU4 computer.
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Figure 8.5: Screenshot of the user interface of the Multicam Server
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The software is freely available on Github: www.github.com/ramoslab/multicam.
Multicam was used throughout the hBMI experiment (dataset 2) and during other ex-

periments of our work group. It is a great tool complementing the usual documentation
and protocols of each experiment.

8.1.10 Interactive 3D visualization of the orthosis
This is the specification of the protocol for sending commands to the interactive 3D
visualization through the TCP connection (see chapter 7). All commands are strings. All
commands have to end with two colons. Commands may be chained in one string.

Example

This is a valid command sent via TCP:
“ADDEXO EXOSTATIC 1,0,20::TOGGLEMAT RIGHT::ROTATECAMERA 120::”
The command would create a new static exoskeleton at x position 1 and y position 0

rotated by 20 degrees. Afterwards it would flip the configuration of the mat towards the
right and rotate the camera by 120 degrees.

Command list

ADDEXO
Add a new exosekeleton.
Command structure:
ADDEXO EXOTYPE HANDEDNESS PARAMETERS
Parameters:

• Exotype - String that specifies the type of the exo to be added

• Handedness - String (either ”left” or ”right”) that specifies the type of arm that
should be added

• Parameters - Parameters needed by that exo type

DELETE
Delete an exoskeleton.
Command structure:
DELETE EXOID
Parameters:

• Exoid - Id of the exo to be removed

DATA
Send data to the exoskeletons.
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Command structure:
DATA EXOID PARAMETERS
Parameters:

• Exoid - The unique Id of the exo

• Parameters - Parameters of the degrees of freedom, like for the EXOSTATIC type:
BaseXpos,BaseYpos,BaseHeading,PronoRoll,IndexHeading,GroupHeading,ThumbHeading

SETCOLORBASE
Set the color of an exosekeleton.
Command structure:
SETCOLORBASE EXOID TARGET COLOR
Parameters:

• Exoid - The unique id of the exo

• Target - The part of the base to be colored. One of ”BASE” or ”ARMREST”

• Color - An RGB color in the format red,green,blue (values from 0 to 1)

SETCOLORHAND
Set the color of an exoskeleton.
Command structure:
SETCOLORHAND EXOID TARGET COLOR
Parameters:

• Exoid - The unique id of the exo

• Target - The part of the hand to be colored. One of ”SUPPRO” (Pronation/supina-
tion arc), ”THUMB”, ”FINGERGROUP”, or ”INDEX”.

• Color - An RGB color in the format red,green,blue (values from 0 to 1)

TOGGLETRANSPARENCY
Toggle transparency of an exoskeleton.
Command structure:
TOGGLETRANSPARENCY EXOID
Parameters:

• Exoid - The unique id of the exo

TOGGLEMAT
Add or change the orientation of the mat (for experiments with left or right hand).
Command structure:
TOGGLEMAT SIDE
Parameters:
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• Side - Specifies which hand is being trained (’LEFT’ or ’RIGHT’)

SETBGCOLOR
Set the color of the background.
Command structure:
SETBGCOLOR COLOR
Parameters:

• Color - An RGB color in the format red,green,blue (values from 0 to 1)

ROTATECAMERA
Rotate the camera by some degrees around the center of the mat.
Command structure:
ROTATECAMERA ANGLE
Parameters:

• Angle - An angle in degrees

EXIT
End visualisation (close Panda3D).
Command structure:
EXIT

LOADCONFIG
Load a configuration profile file (.yml). The configuration profile can be used to set
initial positions and angles of the DOFs of the exoskeleton, e.g. to individualize the vi-
sualization for the patients.
Command structure:
LOADCONFIG FILENAME
Parameters:

• Filename - The filename (without the file ending after the ”.”) of the calibration
profile

SETCONFIG
Assign the current configuration profile to an exosekeleton.
Command structure:
SETCONFIG EXOID
Parameters:

• Exoid - The unique id of an existing exo
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Exotypes

This section describes the different types of exoskeleton models available in the 3D vi-
sualisation.
EXOSTATIC
An exosekeleton that stays at a static position.
Parameters: List of positions and parameters, separated by commas.

• x-Position of the base,

• y-Position of the base,

• heading of the base,

• roll of the pronation module,

• heading of the index finger,

• heading of the finger group,

• heading of the thumb

Explanation:
This exoskeleton stays at the specified position until it is removed from the scene or the
program ends. It can be used for specifying the target position the patients have to reach.
EXOKEYBOARD
An exo that is controlled by the keyboard
Parameters: - none -
Explanation: Focus the window that shows the 3D visualisation (e.g. move the mouse
to the window that shows the feedback and click). All keyboard controlled exoskeletons
are controlled by the keyboard. Arrow keys control heading and movement direction of
the base. Pronation and supination are controlled by ”r” and ”f”, index, finger group and
the thumb are controlled by ”q” and ”a”, ”w” and ”s” and ”e” and ”r”, respectively.
The function keys ”F8” through ”F12” have functionality, too. ”F8” toggles the mat,
”F9” adds a keyboard-controlled BASE, ”F10” and ”F11” add keyboard-controlled EXOs
for left and right hand configuration. ”F12” removes the exos and bases in the opposite
order of their creation.
The ”Escape” button exits the visualization.
EXOREALTIME
An exoskeleton that listens to data coming from a tcp connection.
Parameters: Depending on the plant type (exoseletons with hand or base only) there are
7 or 3 parameters to initialize the realtime exoskeleton.
For the exo with hand these parameters are:

• x-Position of the base,
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• y-Position of the base,

• heading of the base,

• roll of the pronation module,

• heading of the index finger,

• heading of the finger group,

• heading of the thumb

For the exo with the base only these parameters are:

• x-Position of the base,

• y-Position of the base,

• heading of the base

Explanation: This exoskeleton is initialised with the specified values and controlled
via tcp using the DATA command.

8.2 Contributions
This section provides detailed information on the contributions others have made to parts
of this thesis.

8.2.1 Chapter 2
A great part of this chapter has been published in a peer-reviewed journal publication
with contributions of co-authors as detailed below.

Title: Brain oscillatory activity as a biomarker of motor recovery in chronic stroke
Status: published as Ray et al. (2020). Contributions: Table 8.1.

Author Author po-
sition

Scientific
ideas

Data gene-
ration

Analysis
and inter-
pretation

Paper wri-
ting

Andreas
Ray

1 50% 0% 70% 80%

Thiago
Figueiredo

2 10% 0% 10% 5%
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Eduardo
López-
Larraz

3 10% 0% 5% 0%

Niels
Birbaumer

4 10% 20% 5% 5%

Ander
Ramos-
Murguialday

last 20% 80% 10% 10%

Table 8.1: Contributions to the scientific publication

Parts of section 2.5 have been published in a peer-reviewed conference paper with
contributions of co-authors as detailed below.

Title: Movement-related brain oscillations vary with lesion location in severely pa-
ralyzed chronic stroke patients Status: published as: Ray et al. (2017). Contribu-
tions: Table 8.2.

Author Author po-
sition

Scientific
ideas

Data gene-
ration

Analysis
and inter-
pretation

Paper wri-
ting

Andreas
Ray

1 50% 0% 80% 80%

Eduardo
López-
Larraz

2 10% 0% 5% 10%

Thiago
Figueiredo

3 10% 0% 5% 5%

Niels
Birbaumer

4 10% 20% 5% 0%

Ander
Ramos-
Murguialday

last 20% 80% 5% 5%

Table 8.2: Contributions to the scientific publication

8.2.2 Chapter 3

Data from multiple studies and experiments was pooled in order to produce the re-
sults. Apart from me, Dr. Ander Ramos-Murguialday, Carlos Bibián-Nogueras, Florian
Helmhold, Ainhoa Insausti Delgado, Dr. Elaina Bolinger and Prof. Dr. Niels Birbaumer
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contributed to data generation.

8.2.3 Chapter 4
My colleagues Dr. Ander Ramos-Murguialday, Prof. Dr. Niels Birbaumer, Carlos-
Bibián Nogueras and Florian Helmhold supported analysis and interpretation in various
discussions and review of the chapter.

8.2.4 Chapter 5
My colleagues Dr. Ander Ramos-Murguialday and Dr. Thiago Da Cruz Figueiredo
contributed to developing the scientific ideas of this chapter. Both researchers also con-
tributed to drafting the introduction. The first part of the analysis (section 5.2) was at
first developed by Dr. Figueiredo and me and later I continued the work on my own.

8.2.5 Chapter 6
Parts of this paper have been published as a peer-reviewed conference paper with contri-
butions of co-authors as detailed below.

Title: Electromyographic indices of muscle fatigue of a severely paralyzed chronic
stroke patient undergoing upper limb motor rehabilitation Status: published as
Ray et al. (2019). Contributions: Table 8.3.

Author Author po-
sition

Scientific
ideas

Data gene-
ration

Analysis
and inter-
pretation

Paper wri-
ting

Andreas
Ray

1 50% 40% 55% 85%

Aurélien
Maillot

2 20% 50% 30% 5%

Wala Jaser
Mahmoud

3 10% 10% 5% 0%

Eduardo
López-
Larraz

4 0% 0% 5% 5%

Ander
Ramos-
Murguialday

last 20% 0% 5% 5%

Table 8.3: Contributions to the scientific publication
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8.2.6 Chapter 7, section 7.4
Andreas Ray designed and implemented a survey for patients, caregivers and therapists,
contributed to the development of the the game concept, software implementation and
database design. He also collected / recorded experimental data. Florian Helmhold
contributed to software implementation, database design, data collection and the devel-
opment of the game concept. Dr. Ander Ramos-Murguialday was the project leader.
Promotion Software GmbH contributed to the development of the game concept and
implemented the game and the therapist’s interface.

8.3 Descriptive statistics on the thesis
Even though this dissertation spans a proud number of pages and the efforts disembogued
in some interesting publications it is merely a brief summary of all the thought processes,
discussions, hours of recording neurophysiological data in the laboratory and tens of
thousands of lines of code produced during the almost six years of its creation. Here, as
final section of the dissertation, I would like to present descriptive statistics of the “meta
data” to put the pages written into the perspective of the amount of work behind them.

182



8.3 Descriptive statistics on the thesis

8.3.1 Hours of neurophysiological data produced and analyzed

Figure 8.6: Hours of neurophysiological data processed per analysis

Figure 8.7: I was directly involved in or responsible for recording approximately 250
hours of neurophysiological data during 350 hours of experiments run in our laboratory.
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8.3.2 Lines of code written

Figure 8.8: Total lines of code written for the analysis and programming projects pre-
sented in this thesis (including code of discarded analyses).

Figure 8.9: Lines of code written for the analyses and programming projects presented
in this thesis in languages other than python.
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8.3.3 Travel

Figure 8.10: Distance traveled to conferences and scientific meetings related to this the-
sis.

Figure 8.11: Countries visited for conferences and scientific meetings related to this the-
sis.

8.3.4 Supervision

Figure 8.12: I supervised three students doing their Bachelor’s or Master’s thesis.
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Abbreviations

ARAT Action Research Arm Test
BMI Brain-Machine interface
cFMA The combined Fugl-Meyer score (a subset of the full Fugl-Meyer

test only taking into account arm and hand movements)
∆cFMA Difference of the combined Fugl-Meyer score from before to after

an intervention
DOF Degrees of freedom
DTI Diffusion tensor imaging
EEG Electroencephalography
EMG Eletromyography
ER Emergency Room
ERD Event-related Desynchronization
FMA Fugl-Meyer Assessment
hBMI Hybrid encephalographic and electromyographic Brain-Machine

interface
ICU Intensive Care Unit
LM Linear model
MEG Magnetoencephalography
MEP Motor evoked potential
MRI Magnetic resonance imaging
MVAR Multivariate Autoregressive Model
NIHSS National Institute of Health Stroke Scale
PDC Partical Directed Coherence
pLC Progressive laterality coefficient
SAFE Shoulder abduction and finger extension (stroke scale)
SEP Sensory evoked potential
SMR Sensorimotor Rhythm
TCP Transmission Control Protocol
TMS Transcranial Magnetic stimulation
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Ray, A., Helmhold, F., Bibian, C., López-Larraz, E., and Ramos-Murguailday, A.
(2021). Springer Handbook of Neuroengineering, chapter Neural control of body
actuators for upper limb rehabilitation in stroke patients. Springer. (forthcoming).

Jones, E. G. (2002). Thalamic circuitry and thalamocortical synchrony. Philosophical
transactions of the Royal Society London B, 357, 1659–1673.

Kaiser, V., Daly, I., Pichiorri, F., Mattia, D., Müller-Putz, G. R., and Neuper, C. (2012).
Relationship between electrical brain responses to motor imagery and motor impair-
ment in stroke. Stroke, 43, 2735–2740.

Kim, T., Kim, S., and Lee, B. (2016). Effects of actioobservational training plus brain-
computer interface-based functional electrical stimulation on paretic arm motor re-
covery in patient with stroke: A randomized controlled trial. Occupational Therapy
International, 23, 39–47.
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