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Abstract
In cognitive modelling understanding of biological motion by inference of own

sensorimotor skills is extremely valued and is known as a fundamental element

of social intelligence. It has been suggested that a proper Gestalt perception de-

pends on suitably binding visual features, decently adapting the matching per-

spective, and mapping the bound features onto the correct Gestalt templates.

This thesis introduces a generative artificial neural network model, which im-

plements such Gestalt perception mechanisms proposing an algorithmic expla-

nation. The architectural design of the model is an extension, modification and

further investigation of previous work by Fabian Schrodt [102] which relies on

the principle of active inference and predictive coding, coupled with suitable in-

ductive learning and processing biases. At first we train the model to learn suf-

ficiently accurate generative models of dynamic biological, or other harmonic,

motion patterns. Afterwards we scramble the input and vary the perspective

onto it. To be able to properly route the input and adapt the internal perspec-

tive onto a known frame of reference, the suggested modularized architecture

propagates the prediction error back onto a binding matrix which consists of

hidden neural states that determine feature binding, and further back onto per-

spective taking neurons, which rotate and translate the input features. The re-

sulting process ensures that various types of biological motion are inferred upon

observation, resolving the challenges of (I) feature binding into Gestalten, (II)

perspective taking, and (III) behavior interpretation. Ablation studies underline

that, 1. the separation of spatial input encodings into relative positional, direc-

tional, and motion magnitude pathways boost the quality of Gestalt perception,

2. population encodings implicitly enable the parallel testing of alternative in-

terpretation hypotheses and therefore further improve accurate inference, 3. a

temporal predictive processing module of the autoencoder-based compressed

stimuli enables the retrospective inference of the unfolding behavior. I believe

that similar components should be employed in other architectures where tem-

poral bindings of information sources are beneficial. Moreover, given that bind-

ing, perspective taking, and intention interpretation are universal problems in

cognitive science, our introduced mechanisms may be very useful for addressing

similar challenges in other domains beyond biological motion patterns.
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Kurzfassung
Das Verständnis biologischer Bewegungen durch die Rückschlüsse auf die eige-

nen sensomotorische Fähigkeiten gilt als ein grundlegendes Element der sozialen

Intelligenz und ihm wird in der kognitiven Modellierung ein hoher Stellenwert

beigemessen. Es wurde vorgeschlagen, dass eine korrekte Gestaltwahrnehmung

von einer adäquaten Bindung visueller Merkmale, einer sinnvolle Übernahme

der passenden Perspektive und der Zuordnung der gebundenen Merkmale zu

den richtigen Gestaltschablonen abhängt. In dieser Arbeit wird ein generatives

künstliches neuronales Netzwerkmodell vorgestellt, das solche Mechanismen

der Gestaltwahrnehmung implementiert und eine algorithmische Erklärung hi-

erfür vorschlägt. Das architektonische Design des Modells ist eine Erweiterung,

Modifikation und Vertiefung der vorausgegangenen Arbeit von Fabian Schrodt

[102], die auf dem auf dem Prinzip der aktiven Inferenz und der prädiktiven

Kodierung basiert, gekoppelt mit geeigneten induktiven Lern- und Verarbeitung-

sverzerrungen. Zunächst trainieren wir das Modell darauf, ausreichend genaue

generative Modelle von dynamischen biologischen oder anderen harmonischen

Bewegungsmustern zu lernen. Anschließend wird die Eingabe umgeordnet und

ihre Perspektive variiert. Um den Input richtig zu lokalisieren und die interne

Perspektive an ein bekanntes Bezugssystem anpassen zu können, propagiert

die vorgeschlagene modularisierte Architektur den Vorhersagefehler auf eine

Bindungsmatrix zurück, die aus versteckten neuronalen Zuständen besteht, die

die Merkmalsbindung bestimmen. Anschließend wird der Fehler weiter zurück

auf perspektivische Neuronen propagiert, die die Eingangsmerkmale rotieren

und räumlich verschieben. Dieser Prozess ermöglicht, dass verschiedene Arten

von biologischen Bewegungen bei der Beobachtung erschlossen werden können,

wobei die Aufgaben der (I) Merkmalsbindung in Gestalten, (II) Perspektivenübe-

rnahme und (III) Verhaltensinterpretation gelöst werden. Ablationsstudien un-

terstreichen, dass 1. die Trennung der räumlichen Eingangscodierungen in rela-

tive Positions-, Richtungs- und Bewegungsgrößenpfade die Qualität der Gestalt-

wahrnehmung erhöht, 2. Populationskodierungen implizit das parallele Testen

alternativer Interpretationshypothesen ermöglichen und somit die Genauigkeit

der Schlussfolgerungen verbessern, 3. ein zeitlich prädiktives Verarbeitungsmod-

ul der durch einen Autoencoder komprimierten Stimuli ermöglicht die retro-



5

spektive Inferenz des beobachteten Verhaltens. Ich glaube, dass ähnliche Kom-

ponenten auch in anderen Architekturen eingesetzt werden sollten, in denen

zeitliche Verknüpfungen von Informationsquellen von Vorteil sind. Da Bindung,

Perspektivenübernahme und Absichtsinterpretation universelle Probleme in der

Kognitionswissenschaft sind, können die von uns eingeführten Mechanismen zu-

dem sehr nützlich sein, um ähnlichen Herausforderungen in anderen Bereichen

als biologischen Bewegungsmustern anzugehen.
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Chapter 1

Introduction

For many years, the development of humans has been examined within separate

domains by cognitive psychologists. For instance, social cognition, which is al-

ways typified by theory of mind (ToM) tasks, has been explored separately from

visual or motor skills as well as Gestalt Perception, Binding, and Perspective-

Taking. Nevertheless, recent studies have shown that there might be links in

the human brain and cognitive systems fundamental to these distinct skill sets.

In this current study, the claim that social and motor skills are developing to-

gether is examined by exploring key cognitive domains including motor skill,

imitation, and action understanding, all of which contribute, in distinct ways, to

both social and motor behavior. There are suggestions in adult and neuroimag-

ing research asserting a close link between imitation and action understanding,

despite them being somehow independent of ToM and low-level motor con-

trol. Inspired by underlying mechanisms of action understanding in the brain,

we suggest a generative recurrent neural network model, which resolves per-

spective taking, binding, and behavior interpretation problems concurrently by

means of gradient-based inference.

1.1 Biological Background
Mirror neurons refer to the cells that trigger not only observation but also the

execution of actions. While they were initially found in macaque monkey’s pre-

motor area F5, research has determined that they are also present in other brain

6
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areas such as the dorsal premotor cortex, and the lesser parietal lobule (Rizzo-

latti et al. [92]). Concerning human beings, similar cognitive neuroscience evi-

dence regarding mirror neurons’ presence has led to certain researchers’ claims

that mirror neurons play a role in action understanding (Johnson and Demiris

[58]). Nevertheless, the actual meaning of action understanding is something

that has been and continues to be disputed. Consequently, there will be a con-

stant substantial confusion in research concerning both what action understand-

ing as a process means and whether or not mirror neurons have a part to play

in that particular process. Action understanding, however, has been, according

to various scholars such as Gallese, and Fadiga, et al. [37], defined as an indi-

vidual’s ability to comprehend other people’s actions, infer the objective of their

action, and determine the intentions that motivate their actions. According to

this definition, action understanding can be separated into three unique pro-

cesses: identifying the cluster of body parts that play a part in a given action,

its developmental progression, and the label of the individual’s intention (Pel-

legrino et al. [25]). These processes, however, are distinct regarding the level

of generalization that is called for across action facets. In particular, to identify

an action, certain affective features need to be discriminated against based on

the configural linkage between diverse parts of the body. The identification of

objectives and intentions, on the other hand, requires simplification across the

affective facets of the observed actions. According to Cook et al. [22], this is

because an objective such as ”to grasp”, or an intention such as ”in order to eat,”

can be reached through various grip types; significantly, a similar type of grip

can be utilized in achieving numerous other intentions and goals. No one-to-one

binding exists between the configurations of body parts, preferences, and goals;

similar mirror neuronal triggering patterns cannot simultaneously represent the

other’s actions, objectives, and intentions. While this has been recognized in

the cognitive neuroscience literature, scholars such as Arbib [8]; Rizzolatti et al.

[93]; Gallese, and Fadiga, et al. [37], examining neurocognitive mechanisms

fundamental to action understanding, often pay attention to just one of the

three processes previously mentioned; problematically, however, all the three

processes are considered as action understanding.

The non-specific utilization of the concept of “action understanding” has re-
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sulted in, as previously opined, contradicting results about whether or not mir-

ror neurons (or brain areas in human that are considered to contain mirror neu-

rons) play a role in action understanding. According to Johnson and Demiris

[58], some researchers have claimed that the areas of the brain that contain

mirror neurons are accountable for the identification of the intention of others.

In his study, Johnson and Demiris found that interference by constant theta-

burst stimulation of the premotor cortex impaired the precision on a task that

involved an individual’s intention. This task involved participants combining in-

formation about a hand configuration with contextual information to infer the

intentions of the actor. Nevertheless, closer scrutiny of the findings indicated

that participants matched a hand configuration illustrated in a video to that

shown in an image, which was compromised to the exact degree as the intended

task. As Cook et al. [22] assert, if mirror neurons play some part in identify-

ing intentions, the stimulation should have lessened precision on the task that

included the analysis of the intentions to a significant degree than the task that

was purely perceptual. Thus, the findings only offer considerable evidence for

mirror neurons’ involvement in identifying the affective facets of actions.

1.1.1 Visual information Processing

Studies on brain imaging have shown that action observation in human be-

ings activates the inferior frontal gyrus (IFG), the rostral area of the IPL, the

lower zone of the precentral gyrus, and the parietal and occipital visual regions.

The parietal and the frontal mirror neuron areas are somatotopically arranged

(Bruce et al. [14]). The activation of the IFG’s pars opercularis reveals the ob-

servation of the distal mouth and hand actions, while premotor cortex activation

reveals proximal neck and arm movement. Unlike in monkeys, mirror neurons

in human beings trigger even when intransitive (meaningless) trends are being

observed (Oram and Perrett [81]). The observation of necessary actions leads

to the triggering of the temporal and frontal nodes of the MNS; on the other

hand, the word of pointless activities leads to the triggering of simply the frontal

node. The primary function of the mirror neuron system, as earlier discussed, is

action understanding. Every time an individual sees another individual perform

a specific action, the mirror neurons representing the said action’s performance
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are triggered. While performing an imitation, the observed information is trans-

ferred from the eyes to the visual cortex, which is then passed around the mirror

neuron system (MNS) to the motor output to the muscles. Figure 1.1 provides a

schematic view of the corresponding mirror neuron system (MNS) in the human

brain.

Mirror neurons play a significant role in transforming visual observations into

knowledge (Goodale and Milner [42]). Researchers on action observation have

indicated that the inferior prefrontal lobe (IPL), the IFG, and an area within

STS are triggered. Although action observation does not activate the primary

motor cortex (PMC), it is somehow directly involved in action understanding

(Pavlova [86]). Visual hypothesis, the “generate and test” framework, and the

direct-match theory are key theories that explain the spectrum of action under-

standing. The visual theory is grounded on the effector’s visual analysis, the

object, and on the situation in which the action will infer a conclusion on the

meaning of the action. The inferotemporal lobe, STS areas, and visual extra-

striate regions make up the neural substrates (Downing et al. [26]).

On the other hand, the direct-match theory relies on observed mapping actions

on one’s motor depiction of the observed activity. Thus, it comprises a process of

observation-triggered motor depiction, followed by matching this to the motor

depiction generated during simulation. If there is correspondence between both

motor depictions, action understanding results. A rather complicated theory

posited for action understanding is the “generate-test” framework; according

to this theory, action understanding needs to identify an “imaginary” objective

that would create an achievement blueprint in the motor planning system of

the observer (Ulloa and Pineda [117]). This objective is then matched with the

actual action that has been observed. It is acknowledged that if the simulated

motor action and the practical action do not match, another hypothesis is then

generated and later assessed for unity with the effort that was observed. There-

fore, actions are not only understood in terms of their end results but also in

terms of mental states, particularly concerning the objectives that created them

(Grossman et al. [45]).
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Figure 1.1: A sketch of the frontoparietal mirror neuron system (MNS) (red)
in the human brain and its major visual input (yellow) triggered by a gaze cue.
Areas with mirror neuron properties are located at inferior frontal cortex(consist
of posterior IFG and adjacent ventral PMC) as well as in the posterior area (e.g.
rostral part of IPL). Temporal regions (e.g. STS) receive visual information and
provide recognized input for the MNS. This is sent to parietal mirror neurons which
are associated to imitation, sensorimotor integration, and spatial cognition, and
relay it to the lower frontal cortex where the movement becomes correlated with a
target. Figure from [54].

1.2 Cognitive Background
Recognizing and making sense of other people’s actions is called “action under-

standing” which is a challenging task due to the complexity of human behavior

and movements. This task is performed by integrating visual and other sensory

dynamics into the own sensorimotor system (i.e. simulation theory of social

cognition [9, 38]).

1.2.1 Imitation, Social cognition, and Emotional Intelligence

Social cognition can be defined as a group of processes that range from percep-

tion to decision-making. It is fundamental to an individual’s ability to decode
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other people’s behaviors and intentions to organize actions aligning with moral

and social, aside from economic and personal considerations. Its criticality in

day-to-day life reveals the neural intricacy of social processing and the perva-

siveness of social cognition deficits in various pathological situations (Carpenter

et al. [20]). Social cognitive processes can be classified into three main areas

linked with social perception - the affective handling of social cues such as emo-

tional expression and faces, social understanding – the comprehension of other

people’s affective or cognitive states, and social decision-making – planning of

behaviors considering not just one’s objectives, but also those of others (Gallese

et al. [39]).

Imitation, also known as cognitive imitation, refers to a type of social learning

in which one copies another person’s behavior. In biology, the importance of

imitation is on its adaptive value regarding an organism’s survival; in psychol-

ogy, however, the significance is in development and growth of one’s skills in

order to produce more targeted actions (Elsner [29], Meltzoff[72]). The most

significant imitation cases involve behavior that is demonstrated, which the imi-

tator cannot see while performing the said behavior; a good example is a person

scratching his or her head. Imitations of this kind are often considered opaque

imitations since they are not easy to account for without theorizing about cogni-

tive mechanisms, including perspective-taking, which most animals do not have.

In this present study, the types of imitations of concern are social learning and

social influence, which are not considered opaque imitations (Uithol and Paulus

[116]). For example, mechanisms that are species-typical such as contagion and

mimicry; mechanisms that are motivational such as fear transfer, incentive mo-

tivation, and social facilitation; attentional mechanisms that include stimulus

and local enhancement; and affordance learning mechanisms that entail ob-

servational conditioning, imprinting, and understanding how the environment

works (Przyrembel et al. [91]).

Nevertheless, imitation gives rise to a different problem that concerns how the

individual imitating determines the pattern of motor activation that will mimic

the model’s action (Murphy [74]). While this challenge is unique, specialist the-

ories have asserted that a corresponding unique solution exists, which claims the

neurological and functional mechanisms meant for controlling imitation. Those
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general theories have suggested that such a problem can be resolved using ac-

tion control and associative learning tools. Accordingly, this is in agreement with

recent cognitive neuroscience research findings inspired by mirror neurons’ dis-

covery (Gallese and Goldman [38]). As such, imitation seems to be based on

the mechanical stimulation of motor representations by movement observation;

the externally prompted motor representations are then utilized to replicate the

observed behavior. This capacity to imitate hinges on learned perceptual motor

skills (Brass and Heyes [13]). This is how social cognition connects to action un-

derstanding. On the other hand, emotional intelligence specifies an individual’s

ability to utilize, comprehend, and manage his or her emotion in positive ways

that support management of stress, effective communication, sharing in other

people’s pain, as well defusing conflicts and overcoming challenges (Goleman

and Griese [41]). All these – imitation, social cognition, and emotional intel-

ligence - are significant in cognitive neuroscience and psychology because they

facilitate social and human mental health development.

1.2.2 Gestalt Perception

The visual system heavily relies on the organization’s regularities of perceptual

elements to generate transitive depictions of the world. An important illustra-

tion of such a function that has been formalized in the principles of Gestalt

psychology is the affective grouping of simple visual cues such as arcs and lines

into unitary objects, such as shapes and form (Jäkel et al. [59]). Recent studies

on neuroimaging have determined posterior areas in the parietal and tempo-

ral lobes as being neuro-functional associates of Gestalt perception. In addition

to prominent connection on a neuronal degree, the mechanisms are both ex-

traordinarily the same on a behavioral degree depicting both a particular type

of top-down visual dispensation in which individual objects are combined into

a superordinate unit (Gallese, Keysers, et al. [39]). By observing a movement

from a given perspective our brain employs its top-down embodied expectations

in order to detect the respective features and group them to a proper Gestalt

percept.. As argued by Herrmann and Bosch [50], the voxels triggered in global

Gestalt perception must strongly react to configurations within than external to

the range of subitizing. In characterizing automatic attentional capture and the
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associated cognitive processing of visual stimuli that are Gestalt like (Hartmann

[46]), especially at the psychophysiological level using event-associated poten-

tial, it is apparent that Gestalt perception stimuli, when compared to non-Gestalt

ones, are typified by a substantial N2pc together with improved event-associated

potential amplitudes of non-literalized components (Wagemans et al. [120]).

1.2.3 Binding (correspondence) Problem

The determination of any criteria for imitation, social learning, mimicry, or even

copying assumes a binding notion between separate and independent agents.

They are adjudging whether or not a behavior has been socially transmitted

calls for the observer to find a correspondence between the imitator and is be-

ing imitated (Butz and Kutter [19]). If the imitator and the one being imitated

have similar bodies – for instance, they belong to the same species, are of the

same gender, or age – then it would be evident to a human observer to simply

map the body parts that correspond such as the right leg of the one demonstrat-

ing to the right portion of the imitator, and so forth (Nehaniv and Dautenhahn

[75]). Also, an apparent correspondence of actions exists. However, if there are

no obvious corresponding points between the demonstrator and the imitator, a

correspondence problem arises.

The problem of binding (correspondence) is concerned with selecting and as-

sociating different visual facets into the correct combination (Heyes [51]; Butz

and Kutter [19]). In nature, the bodies of many organisms change and grow

over time. Still, those who socially learn can maintain and adapt those ca-

pabilities that have been socially transmitted regardless of the growth above

and changes, whether natural or injurious, to their embodiment (Koffka [64]).

Artificial intelligence agents such as robots and others that socially learn can

face the correspondence problem and benefit from such massiveness to embodi-

ment alterations. The correspondence problem is connected to attention (Treis-

man [114]), which is renowned to be determined by top-down signals from

task requirements together with bottom-up signals derived from salient stimuli

(Buschman and Miller [15]). For recognizing major scene information and their

relations, the visual system leads attention to particular salience cues and binds

them.
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To solve the correspondence problem, other studies, for instance, Nehaniv and

Dautenhahn [75] and Treisman [114], have demonstrated that loose perceptual

synchronization and matching with the demonstrator each led to foster learning

and significantly lower error rates. Recent artificial social learning mechanisms

such as [5], can be utilized in population agents or robots to achieve cultural

transfer in populations of such nature, even heterogeneous ones that comprise

individuals with different embodiments.

1.2.4 Perspective Taking Challenge

Perspective-taking refers to a complicated cognitive process that has a vital role

in social cognition, particularly regarding understanding other people’s perspec-

tives in a given situation (Schrodt et al. [104]). Clearly, there is some level of

a conceptual connection between the cognitive and visual manifestations since

they both involve identifying differing points of view. In this regard, Kessler and

Thomson, [60] considered spatial perspective-taking as an embodied transfor-

mation in which the observer mentally adopts (i.e. rotates and translates) own

body scheme onto an observed person. Studies have indicated that perspective-

taking is a mental skill that develops early on in life; however, the challenge with

it is that, with experience and age, it becomes more flexible and more compli-

cated (Piaget and Inhelder [88]; Meltzoff and Prinz [71]). This means, although

one can clearly recognize or comprehend another person’s thinking in a given

situation, they can either manipulate what they perceived or be manipulated

(Johnson and Demiris [58]). Additionally, it also raises abiding by correspon-

dence challenges about selecting and integrating perceived features in the right

combination.

1.3 Technical Background

The way we efficiently perceive other people is in accordance with our obser-

vation and interpretation after years of evolution. As a result, making machines

understand human behavior is a hallmark of cognition and artificial intelligence.
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1.3.1 Learning models for action understanding

Deep learning and machine learning approaches have experimentally shown

great success regarding learning image representation for specific tasks such

as image captioning, action understating, semantic segmentation, and object

identification (Ji et al. [57]; Nweke et al.[77]). Through convolutional neu-

ral networks, it is possible to capture the premise of the spatial locality of data

structure concerning images via parameter sharing convolutions and through

local invariance-constructing max-pooling neurons (Kleinlein et al. [63]). Un-

derstanding human action is a puzzling time series clustering task that comprises

the prediction of a person’s movement based on sensor data (He et al. [47]; Fu

et al. [36]). Conventionally, it includes deep domain capability and techniques

from signal processing to accurately bring about features from basic information

in order to match the machine learning model.

Deep learning techniques such as recurrent and convolutional neural networks

have recently shown that they can achieve great results by automatically identi-

fying features from raw sensor information. Convolutional neural network mod-

els are a form of deep learning model designed for use with image data (Nweke

et al. [77]; Oniga and Suto [80]; Guyen and Mirza [76]). They are highly ef-

fective in addressing interesting computer vision challenges, particularly when

they are taught for activities such as localizing and identifying elements in im-

ages. Without supervision, they describe images’ contents (Guyen and Mirza

[76]; Layher et al. [65]; Tu et al. [115]). As Ji et al. [57] demonstrates in their

consideration of a completely automated action recognition in an environment

without supervision, CNNs, as deep learning models, are capable of directly act-

ing on raw data inputs, thereby automating the entire feature reconstruction

process. They however argue that models such as CNN are ill-equipped to han-

dle inputs such as 2D. They therefore propose a CNN model that is 3D-based,

which is capable of action recognition. Their proposed model has the capability

of extracting features not only from spatial dimensions, but also from tempo-

ral dimensions through the performance of 3D convolutions; this enables the

capturing of motion data that is encoded in various adjacent frames. This is

possible because the ensuing model generates numerous information channels

from frames of input, with the eventual feature representation being obtained
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by putting together information from all available channels. When applied to

the real-world environment to identify human actions, its accomplishments are

far superior in terms of performance, particularly given the fact that it does not

rely on any handcrafted facets. On the other hand, recurrent neural networks

are a form of deep learning model designed for learning from sequential data.

The extended short-term memory network (LSTM) has remained considered the

most effective form of recurrent neural network model because they have shown

to be effective on sequence prediction problems that are challenging (Fu et al.

[36]; Ma et al. [68]).

Layher et al.’s [65] focus on action recognition with regards to human agents

on the basis of biologically motivated visual architecture of examining expressed

motion, extends coarsely separated streams of sensory processing along diverse

pathways that distinctively handle motion and form data. They show that the

approach they propose aligns with other key pose suggestions in the literature

that chose key pose frames based on the technique explained in past studies.

Furthermore, in comparisons to the training on the complete frames set, depic-

tions that are taught on the key pose frames lead to greater confidence with

regards to cluster assignments. Layher et al. [65] also assert that key pose

depictions illustrate auspicious capabilities for generalization in an evaluation

of cross-dataset. However, none of the studies discussed above are able to

tackle fundamental problems of action understanding (i.e. Feature Binding,

Perspective-Taking, Gestalt Perception) simultaneous to inferring the intention

of the occurring action.

1.4 Goal-directed Action, Kinematic Intention

Basic foundations of homeostatic behavior comprise the interaction with pos-

itive items while avoiding those considered negatives. For the longest time,

kinematic bounds of any actions have been hypothesized to mirror the motor

plan’s content (Wise [122]). Kinematic perpetual of actions can be caught from

various people carrying out a similar undertaking such as, for example, lifting

up a cup from coffee table. Certainly, the kinematic facets of the upper-limb in

the event of actions that are objective-driven have been shown to echo the in-
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tentions of the participant (indicating at or grasping something; fitting or lifting

something; taking to throw) (Rizzolatti and Luppino [94]; Butterfill and Sini-

gaglia [16]). The same is true for the object’s fundamental attributes (weight,

shape, geometry, size, and texture) that the agent intermingles with. After all,

motoric components and social intentions translate into particular kinematic

facets.

Kinematic features associated with goal-focused actions not only mirror motor

planning but are also controlled by intentions. The kinematics of activities di-

rected towards stimuli considered pleasant could indicate facilitation (Hamilton

and Grafton [23]). Consequently, the result of such a nature would be in tan-

dem with the notion that motor plans include the outlays and the rewards of

a particular action (Jacob and Jeannerod [55]). In general, behavior is goal-

directed; thus, as the organization facets of objective-driven actions can be con-

cluded from their movement structures, examining the kinematics of relating to

emotion-loaded stimuli is essential. Esteves et al. [32] measured the kinematics

of the movement of study participants’ wrists in the task in which they were re-

quired to grasp stimuli that were emotion-loaded and carry them towards their

bodies, found that there was an increase in the time-to-peak speed concerning

fetching and moving pleasant stimuli towards one’s body and a decrease when

it came to bringing neutral or unpleasant stimuli. This suggested that resulting

behavior aims to create situations linked with positive rewards, which in turn

indicate that there is easiness in carrying out tasks with pleasant stimuli. Ap-

parently, in reach-for-and-take and bring-towards-body motions, valence stimuli

tend to impact the temporal and not the movement’s spatial kinematic aspects.

1.5 Summary
The primary role of mirror neurons is action understanding and as discussed

above, Binding, Perspective-Taking, Gestalt Perception, and behavior interpreta-

tion abilities are key aspects for having a competent social behavior.

Visual cues from others come in a different perspective than ones own body.

Perspective taking is interpreted as a non-discrete mental transformation aim-

ing at projecting our own perspective into the perspective of an observed person
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[58, 105, 107] through priming corresponding motor simulations [28]. The

binding problem addresses a major brain ability in which individual features

such as motion direction, pattern, color or texture are integrated into one co-

herent entity, that is, a Gestalt [59]. Subsequently, to selectively bind observed

features together, bottom-up saliency cues interact with top-down expectations

in a Bayesian manner [15, 59].

We propose a generative recurrent neural network model, which solves the

aforementioned problems simultaneously using gradient-based inference. More-

over, when the input stimulus is just partially present, the model is still able to

provide biased imaginations and to perform Gestalt perception. The model con-

tains multiple novel components such as a variational autoencoder (VAE for

learning compressed spatial codes) along with a recurrent neural network mod-

ule (a long short-term memory network, i.e. LSTM for learning temporally com-

pressed codes, and to interpret intention).



Chapter 2

Related Mechanisms, Comparisons,
Motivations

Our perception of an observed action is built upon distinct but firmly entangled

cognitive domains that stem from our own embodied experiences. These cog-

nitive domains represent motor, visual and intention-based encodings. In the

vertebrates’ nervous system, the encoding of sensory stimuli often happens via

the combined effort of large population of neurons. These activity patterns have

typically been considered as encoding the stimulus’ value, while computation

has been solemnized based on purpose estimation. Suggestions have in recent

times indicated that neural computation is analogous to a procedure referred

to as Bayesian inference, with population activity arrays depicting improbability

concerning stimuli in the form of probability distributions. Pouget, P. Dayan, et

al. [89] asserts that population codes are becoming valued as representational

devices because there exists a globally accepted basic decoding and encoding

framework whose properties are well understood. Nevertheless, very many ar-

eas of active examination persist. A good example is how continuous attractor

networks are in an ideal world appropriate for implementing necessary compu-

tations with population codes, including approximations of basis function, re-

moval of noise, and the integration of statistically sound cues (Pouget, P. Dayan,

and R. Zemel [90]).

Emphasis has also been on using population codes for more apparent stimulus

19
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representation aspects, such as computational diversity and uncertainty. These

proposals, however, are rather computational than mechanistic, except for the

log-likelihood framework that depicts how filtering motion-energy offers an apt

substrate for computations of statistical nature (Denève and Pouget [24]). Nev-

ertheless, such models can further be developed and refined as propelled by the

inevitable barrage of psychophysical findings demonstrating the sophisticated

way through which observers attain, learn, and handle uncertainty acts.

2.1 Population Coding
Population coding refers to the quantitative study of which representation or

algorithms are used by the human brain to associate together and assess the

messages that different neurons carry (Pouget et al. [89]). The key issue in

cognitive neuroscience concerning population coding concerns how informa-

tion that a neural population carries can be quantified; it also concerns how

to quantify the contribution by each member of the neural population or their

interaction with each other regarding the general information that the consid-

ered neuron groups encode (Olshausen and Field [79]). There is a belief that

neurons encode an animal’s location concerning a global-centered frame of ref-

erence in environments, such as small mazes. An example of such an encoding

is shown in Figure 2.1.

An essential element regarding population coding mechanism is because it is

robust to the extent that damage to one cell cannot result in a catastrophic

influence on the encoded representation (Pouget, P. Dayan, and R. Zemel [90]).

This is because the information is often encoded across numerous cells.

2.2 Neural Dynamic Fields
Dynamic field hypothesis is an established theory for modeling embodied cog-

nition. According to this theory, essential cognitive functions such as memory

formation, attentional processes, formation of grounded depictions, adaptation,

learning, and decision making all stem from neural dynamics (Schöner [101];

Erlhagen and Bicho [30]; Erlhagen and Schöner [31]). The elementary compu-

tation component of this model is the dynamic neural field. Under constraints
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on the dynamics time-scale, the dynamic neural field is computationally equal

to a soft winner-take-all network that is believed to be one of the fundamental

computational entities in neural processing.

Humans and animals are pretty remarkable regarding their ability to develop

behavior in changing and complex environments (Martin, Scholz, et al. [70]).

Their neural systems can resolve complex problems of movement creation and

perception in the real world with adaptability, flexibility, and massiveness that

are far beyond the technical capabilities of any system available today. The prob-

lem of how biological neural networks can continuously cope with the dynamics

and complexities of real-world situations and still achieve their behavioral ob-

jectives is not easy to resolve. Processes including the formation of memory,

adaptation, attention, and learning are all crucial in the biological problem solv-

ing of behavior generation in real-world settings. Neural dynamic fields are es-

sential in the comprehension of how these process are realized by the biological

brains’ neural networks, and it is at the center of understanding cognition in hu-

mans and in the development of cognitive artifact that effectively contend with
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Figure 2.1: Encoded population on 2D pendulum; Encoding result of 16 multivari-
ate Gaussian neurons (red) which are uniformly distributed in an area all around
the input stimulus (green) which is the coordinate of one joint of 2D pendulum at
a given frame. Closer neurons to the observed stimulus have higher activations.
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the constraints in the real world (Sabinasz et al. [97]). Accordingly, dynamic

neural fields have been suggested as a simplified mathematical framework for

neural processing hinged on persistent interactions. These frameworks neglect

individual neurons’ temporal dynamics but rather utilize the averaged firing rate

to transfer information and can create temporal bindings between different con-

ceptual representations, for example, in the spatial arrangement of objects. The

dynamic neural field model proposed by Amari [6] is exciting since it enables a

fully analytical description of pattern formation dynamics under certain simpli-

fying presumptions (Martin et al. [69]).

2.3 Transformer networks
While the convolutional neural networks (CNN) earlier discussed define a re-

markably dominant cluster of models, they are still limited. Notably, this is

because they cannot be spatially invariant to the input data in a productive

way. This apparent limitation of convolutional neural networks results from

them only having a somewhat inadequate, predefined strategy for pooling that

is expected to handle variation in data’s spatial arrangement pattern. Trans-

former networks, particularly spatial transformers, are known for enabling the

network’s input data to be spatially manipulated and subsequently executing

data-dependent affine transformation on them [56].

As a result, they can be incorporated into the existing convolutional architec-

ture, essentially enabling neural networks to actively alter feature maps condi-

tional on the map itself, often without any additional modification of the process

of optimization or any further training supervision.

Basic neural network architectures can be empowered with spatial transfor-

mation ability by making use of spatial transformers (ST). The utilization of

spatial transformer networks, according to Jaderberg et al. [56], leads to the

development of models that learn invariance to scale, translation, more general

warping, and rotation, leading to an unrivaled performance on various bench-

marks and for several clusters of transformations. However, it is essential to

mention that the performance of spatial transformer networks depends on indi-

vidual data samples, with the appropriate behavior acquired during training for
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the said task.

2.4 Attentional Mechanisms

The way we integrate and direct attention for an adequate perception, is af-

fected by our expectations and embodied experiences. In transduction prob-

lems, for instance, machine translation and language modeling, and in sequence

modeling, recurrent neural networks, gated recurrent, and LSTM neural net-

works have mainly been firmly developed as state-of-the-art methodologies.

There has been continued effort to expand the boundaries of decoder-encoder

architectures and recurrent language models. Typically, recurrent models in-

clude computation along with the position of symbols of output and input se-

quences (i.e. sequential computation) and subsequently do not perform well in

terms of computational efficiency and learning duration (Vaswani et al. [118]).

Apparently, this fundamentally sequential nature prohibits parallelization within

training instances that becomes essential at the longer sequence lengths where

memory constraints restrict batching across cases. By utilizing conditional com-

putation and factorization tactics, recent work has achieved significant perfor-

mance enhancements. Nevertheless, the major constraint regarding sequential

analysis persists. The attentional mechanism proposed by Vaswani et al. [118]

is a framework architecture that eschews recurrence and instead relies entirely

on an attention mechanism to infer global dependencies between output and

input. Bring into line the positions to steps in computation results in a series of

hidden states, which are a function of the initial state, and the input for position

(Vaswani et al. [118]).

It allows for substantially more parallelization and can result in a better trans-

lation quality after very little training. The potential of attention-based frame-

works is massive, particularly, if they can be extended to problems that involve

output and input modalities apart from text to examine restricted, local atten-

tion mechanisms to effectively handle outputs and inputs such as audio, video,

and images. It has been hypothesized that with this model, convolutions and

recurrence can entirely be dispensed with (Olah, C. and Carter, [78]).
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2.5 Capsule Networks
The vision of primates, particularly humans, often disregards details that are

considered irrelevant by utilizing a cautiously determined order of fascination

points to make sure that only a tiny part of the optic selection is eventually dealt

with at the highest of resolutions. In trying to comprehend how much of our

understanding concerning scenes emanates from the sequence of fascinations

and how much they are due to a single fascination, using introspection is a

very poor strategy. This is because a single fascination offers much more than

a single observed object and its associated properties. As Sabour et al. [98]

assert, the human multi-layered visual system always results in a parse tree-

like configuration on each fascination. Parse trees are created on the fly by

the dynamic allocation of memory. Sabour et al., however, assert that for one

fixation, a parse tree is made from a fixed multi-layer neural network, the same

way that a sculpture is carved out of a rock. Each layer is subdivided into various

tiny clusters of neurons referred to as capsules, with each node in the parse tree

corresponding to a capsule that is active. A capsule refers to a cluster of neurons

whose trajectory of activity embodies the instantiation bounds of a certain type

of unit, for instance, part of an object or the entire object itself. An active capsule

individually chooses a capsule in a level beyond it to be its originator in the tree

configuration through the repetitious routing method. This iterative process

will address the challenge of allocating fragments to aggregates for advanced

achromatic system levels.

The neurons’ actions in any dynamic capsule embody a given unit’s numerous

features in the image. The elements can comprise various diverse forms of in-

stantiation stricture, including posture (size, position, and alignment), speed,

hue, deformation, albedo, amongst others (Sabour et al., [98]). One signifi-

cant property is the presence of the instantiated unit in the image. A generic

way of representing presence is using a separate logistic entity whose output

relies on the chance that the unit is present. Sabour et al., however, propose

another exciting alternative: the utilization of the entire length of the instantia-

tion parameters’ vector to depict the presence of the unit and force the vector’s

orientation to depict the unit’s properties.

Since a capsule’s output is a vector, it is conceivable to use a dominant active
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routing mechanism to guarantee that the capsule’s output is directed to a suit-

able originator within the advanced layer. In the beginning, the result is routed

to all potential originators but is cut back using coupling coefficients. This rout-

ing based on the agreement is far more efficient, especially when compared with

the primary type of routing implemented by max-pooling, which permits neu-

rons from one layer to disregard all except the most dynamic facet detector in a

local group in the less advanced layer. This dynamic routing mechanism based

on capsule networks is an efficient approach for segmenting highly overlapping

objects.

Capsules utilize neural activities that differ with variation in viewpoints instead

of eliminating the element of interpretation from activities. As a result, they

are advantageous when compared to normalization techniques such as spatial

transformer networks. They can handle multiple varying affine transformations

of different object parts or whole objects simultaneously. Furthermore, they are

also very efficient in handling segmentations, which is another difficult prob-

lem for vision, since the instantiation vector parameters enable them to utilize

routing-by-agreement (Sabour et al. [98]). Additionally, regarding the signifi-

cance of the dynamic routing process, there is backing from biologically plau-

sible frameworks of the visual cortex’s invariant pattern recognition. There-

fore, there are vital representation reasons supporting capsule networks and the

routing-by-agreement mechanism as a better methodology. However, further in-

cremental insights are necessary before it can work exceptionally well in highly

developed technologies.

2.6 Retrospective Inference models

As opposed to feed forward models that have limitations working with sequen-

tial data types, Recurrent neural networks (RNN’s) [96] can process sequences

of structure-like data with any length. Butz et al. [18] suggest a dynamic

adaptive inference process based on a recurrent artificial neural network, which

learns time-based analytical frameworks of dynamic systems. This process is re-

ferred as a Retrospective and Prospective Inference Scheme (REPRISE) process,

which infers the contextual hidden state that best explains its new sensorimotor
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encounters and as associated, context-reliant temporal predictive frameworks,

in retrospect. REPRISE combines learning of hidden state with goal-directed,

active-inference-based control in which the activities of the parametric bias neu-

rons are adapted retrospectively. For this purpose, the input, predictions, and

hidden states are stored for a declared number of previous time steps. This

period of past time steps is referred as tuning horizon. In order to update pa-

rameters of interest at each time step, a prediction error is computed and pro-

jected into the past horizon by means of back-propagation through time [121].

Using these updated parameters, the model then rolls out forward chain based

on adapted hidden state, resulting in a corrected prediction for time step t.

REPRISE provides a neural implementation, first of its kind, that demonstrates

the emergent propensity to group different types of predictably coded sensori-

motor dynamics into solid event codes. Although learning, the algorithm de-

duces established hidden states that tend to oppose discrete sensorimotor dy-

namics. REPRISE, Butz et al. note, is capable of differentiating, the three differ-

ent types of vehicles, and effectively control them in a goal-focused way without

any information regarding the identity of the cars or that three other vehicles

are being offered. This is a remarkable feat that might be suitable for learning

event-focused constructs and event hierarchies; however, there is still a need

for additional work aimed at scaling the system for it to be applicable in more

challenging scenarios.

A similar adaptation approach where gated autoencoder (or restricted Boltz-

mann machine) architectures are learned was employed by Memisevic [73].

According to this study, in many vision tasks such as stereopsis, invariant recog-

nition, motion understanding, and visual odometry, one essential operation is

establishing correspondences between images and between data from other

modalities and pictures. Various recent studies have attempted to examine how

to infer correspondences from data through Spatio-temporal, relational, and bi-

linear variants of deep learning techniques. These techniques utilize multiplica-

tive interactions between features or pixels to represent patterns of correlation

across numerous images. Memisevic, in his review of such work offers an exam-

ination of the part played by multiplicative interactions in learning associated

with the encoding of relations and propose how complex cell and square-pooling
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models can be considered as a way of not only representing multiplicative inter-

actions, but also of encoding relations (Memisevic [73]).

While various past studies have recommended that compositional theories be

sensorimotor-based, achieving it is still somewhat unclear. Sugita et al. [109],

however, suggests a second-order neural network that uses sensorimotor time-

series data to learn compositional structures and tunes parametric bias neurons

in a similar retrospective inference manner as discussed above.

Accordingly, Sugita et al. [109] demonstrate that various setups of second-

order neural networks that have parametric biases can learn to composition-

ally emulate the interactions of objects beyond the interactions that had ini-

tially and particularly trained. This was impossible in previous architectures

of neural networks such as recurrent neural networks (RNN’s) and convolu-

tional neural networks (CNN). These imitation capabilities, Sugita et al. as-

serts, are achieved through the development of self-structured, geometrically

ordered compositional theory structure in parametric biases, and in task-based

Braitenberg-like [12] sensory programming in hidden sensory layers. Second-

order connections are crucial in the accomplishments of such tasks, connections

of such nature are crucial in not only the learning in sensorimotor-based compo-

sitional structures, but also in the learning of Braitenberg-like, behavior-focused

pro-presentations (Tani [110]; Battaglia et al. [11]).

Further, because other neural networks such as recurrent neural networks with

parametric biases have not been able to show similar behavioral generaliza-

tions or compositional encodings in the same manner that second-order multiple

time-scale recurrent neural networks have, it seems like multiplicative, second-

order relations are necessary for learning compositional structure from patterns

in sensorimotor interactions (Tani et al. [111]). However, as posited by Sugita

et al., there are several ways in which this current approach should be refined,

including ensuring that information on distinctness being relayed from internal

reward and motivation signals, and the extension of the model such that it re-

cursively acquires structured interaction concepts. Further, for the system’s scal-

ability to also be fostered to more complex and diverse interactions, the learning

architecture needs to be further modularized and more obvious mechanisms of

attention, goal-directedness, and focus need to be introduced.



28 Related Mechanisms, Comparisons, Motivations

2.7 Summary and Comparisons
Population coding supports having a consistent encoding over a neural popula-

tion and is considered as a fundamental information processing property in our

nervous system. Moreover, it provides a proper encoding even if some neurons

are damaged. Our processing approach is inspired in a similar manner where we

encode the input stimulus by a population of topological neurons with Gaussian

tunings, which yield local responses to particular stimuli within a limited scope.

Neural Dynamic Fields in which different dynamics strive for persistent interac-

tions, can create temporal bindings between various conceptual representations

that are closely related to our possessing strategy.

Transformer network that models affine transformations works similar to our

perspective-taking strategy. Although, they infer the reference frame purely

stimulus driven and by means of a feed-forward procedure.

Attentional mechanisms that selectively process information can be considered

related to our feature-binding adaptation procedure. However, our binding

strategy routes information retrospectively rather than in a feed-forward ap-

proach.

Capsule Networks in which capsules (i.e. cluster of neurons) embody a given

unit’s features in the image, implements a dynamic routing mechanism so as

to segment overlapping objects. This method is closely related to our flexible

binding strategy.

Feed forward models cannot properly deal with sequential data, especially if the

input sequences vary in length. Note that for our model we employ sequential

motion capture data as input in which not only the information in one single

sequence matter, but, moreover, the order in which individual elements occur

within that sequence is vital for an adequate information transmission (Good-

fellow et al. [43]). As in our approach neural codes are constantly attempting

to match sensory inputs with top-down expectations and we require to asso-

ciate observed visual information with the own sensorimotor system, to be able

to solve feature-binding, spatial perspective-taking, and behavior interpretation

problems, we employ similar adaptive retrospective inference processes like the

ones represented in section 2.6. A summary of closely related approaches is
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given in Table 2.1.

Table 2.1: Related Mechanisms

Feed-Forward Retrospective Flexible-Binding Perspective-taking

Transformer Net. ✓ ✗ ✓ ✓

Attention M. ✓ ✗ ✓ ✗

Capsule Net. ✓ ✗ ✓ ✗

Our approach ✓ ✓ ✓ ✓

As opposed to other related approaches discussed in Table 2.1, our proposed

architecture applies gradient-based (retrospective) inference in order to tune

parametric bias neurons, which will be used to establish feature bindings and

adapt the internal perspective onto the observed features.

2.8 Motivations
We introduce a generative neural network model, which employs its own gen-

erated imaginations to solve the Gestalt perception, perspective taking, feature

binding, and behavior interpretation problems. The model is based on the dis-

sertation of Fabian Schrodt [102, 103]. Although, it consists of multiple novel

modules as well as a recurrent artificial neural network module with a differ-

ent strategy for recognizing occurring behavior, and a variational autoencoder

(VAE) for spatial code reconstruction. Additionally, it is easily scalable to other

generic data-types like 2D pendulum and interaction scenarios. Moreover, it

is capable of enabling/disabling population coding and activating/deactivating

additional motion features, which provides adequate infrastructures for differ-

ent use-cases other than biological motion, along with equipping the analysis

with sufficient ablation studies. Following, we address the main characteristics

of our proposed architecture.

• Retrospective Inference; In contrast to other similar works discussed in

Section 2.7, our model uses retrospective latent state inference (i.e. using

gradient descent on convex error functions for optimizing parameters),
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which helps us with efficient calculation of gradients for the model’s adap-

tation purposes (Sugita, Tani, and Butz [109]; Tani et al. [111]; Tani

[110]; Rumelhart, Hinton, and Williams[96]).

• Binding, Perspective-Taking; Retrospective inference of binding matrix

activities has the potential as a universal unit that correctly directs atten-

tion [99, 102]. The same method is used to propagate the prediction error

further back onto perspective taking neurons, which translate and rotate

the input features onto a known frame of reference [105]. As a conse-

quence, the introduced generative neural network architecture is capable

of solving binding, and perspective taking in a similar efficient retrospec-

tive manner.

• Population Coding, Redundant encodings; We will further demonstrate

that in order to obtain encodings that are capable of accurately and ro-

bustly infering the correct hidden motion patterns, population encodings

and redundant relative spatial encodings (i.e. supplementary information

from motion direction, posture, and motion magnitude) are highly useful.

In this respect, the current model is also able to asses the performance on

the raw submodal information (i.e. population encoding is disabled) as

well as on the parts of the input information channels (i.e. just selected

spatial encodings are enabled).

• Spatial Reconstruction; In order to learn compressed representations of

input and as compared to [102], we use a variational autoencoder (VAE)

[62], which learns the parameters of a probability distribution represent-

ing the data rather than learning just a function that represents the data.

VAE samples from it’s learnt distribution and generates new data samples.

VAE does not have limitations of standard autoencoders for generation as

standard AE’s use a latent space for generation which is not continuous

and makes interpolation harder. Note that with AE’s we are simply per-

forming a non-linear extension of PCA. As a consequence, using VAE will

ensure a suitable sampling and data generation and will foster the devel-

opment of more balanced latent state encodings.

• Temporal Prediction; For the purpose of empowering the architecture to
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be able to rely on its own imagination when the bottom-up input is not

available, missing or considered unreliable, we equip the architecture with

a LSTM [53]. Which is a prosperous option for learning time-series se-

quential data that efficiently tackles the vanishing gradient problem [52]

and stores previous time-step information in order to bridge very long time

lags.

• Behavior Interpretation, Code Imagination; Our LSTM-based temporal

predictions generate closed-loop predictions and a consequent behavior

interpretation. In comparison with [102] (where three different temporal

AE was used; one for each submodality), our behavior type inference strat-

egy is different and is explained in Section 3.4. Subsequently, we are able

to feed the VAE with a whole Gestalt, which is a concatenation of individ-

ual submodal encodings, and which uses the corresponding compressed

code as input for the Behavioral module that will result in a smaller num-

ber of trainable weights and consequently a faster inference and Gestalt

Perception. Additionally, even when the input stimulus is only partially

present, the proposed behavioral module can correctly distinguish differ-

ent Gestalt patterns and infer the actual behavior.

• Generalisation; We furthermore enhance previous work by [102] in that

the current architecture is capable of switching between 2D and 3D cases

and is shown to be able to handle other motion patterns (i.e. not just bi-

ological motion). Subsequently, it adapts the distributed topological neu-

rons automatically to efficiently cover areas surrounding the input stimuli.

To confirm the generality of our results, we evaluate binding performance

on other scenarios like a 2D pendulum and an agents chasing scenario.

• Other Investigations; Implementing such a robust model will make us

able to investigate other hallmarks of cognition and intelligence. For in-

stance, what happens to Gestalt perception and intention interpretation if

the observed data is rotated far away from the known perspective? The

achieved observations are reported in Section 4.

• Employed Mechanism for Transformer Networks; Additionally, in Sec-

tion 5.2 we will hypothesize an affine transformation mechanism (similar
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to our retrospective binding strategy) by making use of our applied per-

spective taking process combined with the original work from Jaderberg

et al. [56].

• Successful binding with distractor existence; The model’s performance

will further be validated when different types of distractors that are not

part of the perceived Gestalt are added to the visual input. We will demon-

strate that the proposed adaptive perceptual mechanism will be tuned ac-

cording to its self perceptual experiences and will successfully ignore other

dynamics.

We further expect that our binding approach will be beneficial in other domains,

wherever input information requires to be flexibly bound and correlated to other

data on the fly, fostering overall consistency. Moreover, given that binding, per-

spective taking, and intention interpretation are common universal problems in

cognitive science, our introduced mechanisms may be very useful for addressing

similar challenges in other domains beyond dynamic motion patterns.



Chapter 3

The proposed architecture

As outlined in previous chapters, in addition to Gestalt perception, perspective

taking and behavior interpretation abilities are crucial for a competent social

behavior. In this chapter 1, we propose a generative, autoencoder-based neural

network model, which tackles the challenges of (I) feature binding into Gestal-

ten, (II) perspective taking, and (III) behavior interpretation simultaneously by

making use of retrospective, prediction error-minimizing inference [99, 102].

Additionally, when the input stimulus is not entirely present, the model is still

able to produce biased imaginations and to perform Gestalt perception. The en-

coder part of the architecture is equipped with a rotation matrix and a transition

vector for perspective taking, as well as a binding matrix for flexibly integrating

input features into one Gestalt percept. Respective neural codes are constantly

striving to align sensory inputs with top-down expectations [21] and the param-

eters of these modules are tuned online through retrospective, gradient based

latent state inference [18]. Consequently, the model attempts to integrate all

bottom-up visual cues into a Gestalt from a canonical perspective by mimicking

an approximate top-down inference.

Our proposed modularized architecture infers spatio-temporal relations of vi-

sual features and Gestalt templates (similar to parietal and temporal cortex),

binds input features into Gestalt templates, and performs perspective-taking

(similar to dorsal stream areas and parietal cortex). Therefore, the model can

1Some parts of this chapter is based on my published papers (see publications on 21).

33
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partially be considered to reflect the functionalities of parietal and temporal re-

gions of the mirror neuron system. Moreover, the employed temporal predictive

processing module is closely related to kinematic intentions and frontal-lobe

encodings.

For stimulating a self-grounded Gestalt perception [39], we initially train the

model on a canonical perspective of an ordered set of motion features where

each visual feature corresponds to a location. The said location is represented

by a Cartesian coordinate with respect to a global frame of reference in order

to encode origin and orientation. Eventually, the model learns a generative,

autoencoder-based model of motion patterns, as well as a LSTM-based tempo-

ral prediction of the submodal codes. Next, feature binding and perspective

taking are performed by propagating the reconstruction error back onto the

binding and perspective parameters, where this procedure can be regarded as

specialized parametric bias neurons [109, 110]. Lastly, by making use of a tem-

poral predictive processing module we are able to distinguish different Gestalt

patterns and infer the actual behavior.

Our evaluations demonstrate that it is extremely beneficial (i) to utilize pop-

ulation encodings of the individual features and (ii) to segregate the motion

feature information into relative position, motion direction, and motion magni-

tudes. We assess the model’s capabilities on two dimensional cases such as two

joint pendulum and agent interaction scenarios, as well as on three dimensional

cyclic dynamical motion patterns of different acting subjects (for instance, bas-

ketball playing, dancing, jumping, walking). Additionally, we present further

investigations and provide ablation studies in chapter 4 .

3.1 Sub-Modal Population Encoding
The proposed recurrent neural network architecture (cf. Fig. 3.1) proceeds with

a number of visually perceived salient features and learns a generative model

of compressed embodied action patterns. Each Cartesian input coordinate xi

at time step t refers to a joint location of Acclaim Motion Capture (AMC) data

[2] and will be separated into distinct sub-modalities: relative position, motion

magnitude, and motion direction. (i.e. pi, mi, and di in Fig. 3.1).
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The relative position of a visual feature is dependent on both the choice of

origin and the orientation of the coordinate frame whereas the motion direction

depends only on the orientation but not on the origin. However, unlike the

relative position and motion direction, motion magnitude is totally independent

of perspective.

Accordingly, given a visual input coordinate and its velocity, three distinct types

of submodal information are derived and individually transformed via a trans-

lation bias b and a rotation matrix R, which specify origin and orientation. Sub-

sequently, relative position Pi(t), motion direction di(t) and motion magnitude

mi(t) signals are extracted.

At each point in time t, the following transformations are applied:

Pi(t) = R(t) ·Xi(t) + b(t), (3.1)

determining the relative position Pi(t) of the input feature Xi(t);

mi(t) = ∥R(t) · Vi(t)∥ , (3.2)

where Vt = Xt−Xt−1 is the velocity of each visual feature and mi(t) denotes the

absolute motion magnitude;

di(t) =
R(t) · Vi(t)

mi(t)
, (3.3)

computing the relative motion direction di(t).

A representation of the proposed architecture in a connectivity graph, as well as

the processing pipeline for a single three dimensional visual feature is depicted

in figure 3.1. Following the extraction of relevant submodal information and

projecting them onto a specific visual frame of reference, we encode each sub-

modality individually by one population of topological neurons with Gaussian

tuning curves. Individual Gaussian neuron centers in each submodal population

are evenly distributed in the expected range of the stimulus in accordance to its

range, dimension, and configuration of the perceived submodal stimuli. Such

encodings are analogous to encodings found in the visual cortex and beyond
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Figure 3.1: Our generative, modularized neural network model proceeds with
a visual feature i; Initially, its corresponding Cartesian coordinate, velocity, and
magnitude are calculated. Next, the observed visual features are transformed by
applying possible translation and rotation operations. Afterwards, each input fea-
ture is encoded into redundant posture, motion direction, and magnitude-respective
population codes with 64, 32, and 8 neurons, respectively. Subsequently, a neural
gating matrix selects and assigns the observed feature i to an autoencoder input slot
j, which represents i’s correlated bodily feature. Variational autoencoders attempt
to reconstruct the posture, motion direction, and magnitude patterns. Based on the
VAE’s derived reconstruction loss (squared difference between input Gestalt and its
reconstruction), the parameters of the gating and rotation matrices as well as of
the translation vector are adapted with gradient-based, retrospective inference.
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[89]. Moreover, to evaluate the efficiency of population encoding, we also as-

sess the model’s performance on the raw submodal information, that is, without

population encoding.

The response of α-th neuron associated with the i-th visually observed feature

in a population that encodes the position p is calculated by:

Ṗα,i(t) = (rp)D
p ·N (Pi(t); c

p
α,Σ

p) (3.4)

In the equation above each neuron has a specific center cpα and a response vari-

ance Σp. Furthermore, the density of the multivariate Gaussian distribution at l

with mean µ and a Dp-dimensional diagonal covariance matrix Σ is:

N(l;µ,Σ) =
1√

det(2πΣ)
exp

[
−1

2
(l − µ)TΣ−1(l − µ)

]
(3.5)

The factor (rp)Dp scales the neural activities, dependent on the relative distance

rp between neighboring neurons. The relative distance rp is also used to specify

the diagonal variance entries:

σp = ζp · (rp)2 (3.6)

where ζp ∈ (0, 1] denotes the breadth of the cell tunings.

Likewise, topological neurons’ activations for direction and magnitude sub-

modalities are determined by:

ḋα,i(t) = (rd)D
d ·N

(
di(t); c

d
α,Σ

d
)
, (3.7)

ṁα,i(t) = (rm)D
m ·N (mi(t); c

m
α ,Σ

m) , (3.8)

Posture neurons (Dp = 3; 2 for pendulum) are evenly distributed in a specific

range on a grid. Direction neurons are evenly scattered on the surface of a unit

sphere (Dd = 3; 2 for pendulum), while neurons that encode the motion mag-

nitude of the observed feature are distributed linearly (Dm = 1). Based upon

the motion capture data and the applied skeleton, posture, direction, and mag-

nitude, populations are configured to have 64, 32, and 4 neurons, respectively
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(for 2D pendulum we distributed 8 direction neurons on a unique circle, 16 pos-

ture neurons on a rectangle area around the stimuli, and 4 linear magnitude

neurons. Similarly, for interaction scenario, respective neurons are configured

to automatically and efficiently cover areas surrounding the acting agents).

In sum, processing pathways of our introduced model consist of bottom-up,

perceptual processing, which continuously attempts to adjust sensory inputs to

top-down expectations through online adaptations in order to end up having

suitable spatial predictive encodings.

3.2 Gestalt Perception and Feature Binding
While seeing an unknown motion sequence, interpreting the observed motion

dynamics requires some mechanism to ‘bind’ the information relating the ob-

served features to the respective learned body features and to distinguish it

from other features [113]. The binding problem [114] arises when we select

separate visually observed features and integrate them in a correct order.

We approach this problem by selectively routing respective feature patterns

and motion dynamics, ensuring that rerouted feature patterns match expected

Gestalt dynamics. Choosing the suitable observed features i ∈ {1...N} (i.e. ṗj,

ḋj and ṁj in Fig. 3.1) and allocating them to the correct neural processing path-

way or bodily features j ∈ {1...M}) (i.e. p̈j, d̈j and m̈j in Fig. 3.1) is addressed

by an adaptive connectivity matrix (W : binding matrix), such that:

p̈j(t) =
N∑
i=1

wij(t) · ṗi(t), (3.9)

d̈j(t) =
N∑
i=1

wij(t) · ḋi(t), (3.10)

m̈j(t) =
N∑
i=1

wij(t) · ṁi(t). (3.11)

Population-encoded activations of the i-th observed or unassigned features for

posture, motion direction, and magnitude are represented by ṗj, ḋj, and ṁj,
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respectively. Their relative j-th bodily or assigned features are indicated by p̈j,

d̈j and m̈j.

wij =
1

1 + exp(−wb
ij)
∈ (0, 1) (3.12)

denotes the corresponding assignment strength, while the adaptive parametric

bias neuron activity is represented by wb
ij.

Each set of submodal bodily feature populations is concatenated into a Gestalt

vector gx:

gp(t) = (p̈1(t), p̈2(t), ..., p̈M(t)), (3.13)

gd(t) = (d̈1(t), d̈2(t), ..., d̈M(t)), (3.14)

gm(t) = (m̈1(t), m̈2(t), ..., m̈M(t)), (3.15)

yielding Gestalt vectors for the postural, motion direction, and magnitude sub-

modalities, respectively. A matrix visualisation of the the aforementioned rout-

ing procedure is provided in Figure 3.2.
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Figure 3.2: Population encoded activations of each observed joint (ṗi) are placed
in separate columns (for this example posture submodality was considered). Af-
terwards, a binding matrix W selects the observed features ṗi and assigns them to
their respective bodily features p̈j. In the end, the complete set of perceived bodily
feature populations is joined into a posture Gestalt vector (gp).

For every submodal Gestalt x ∈ {p, d,m}, one variational autoencoder (VAE)

[62] was used in order to learn predictive Gestalt encodings. Thus, the bottom-

up submodal Gestalt vectors gx are passed through the autoencoder, resulting

in generating reconstructions of the Gestalt perceptions. Taken together, the re-
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spective autoencoders learn distributed, predictive encodings of actions for each

submodal Gestalt vector and subsequently they generate posture, motion direc-

tion, and magnitude predictions. Thereby, a sufficiently trained autoencoder

always infers the closest known stimulus pattern based on its self-perceptual, or

embodied experience, even when it observes actions with unknown identity of

the features and perspectives.

After the model has learned, the difference between the Gestalt input to the

variational autoencoder and the reconstructed Gestalt output is to be minimized

by adapting the parametric bias neurons’ activities of the perspective taking and

feature binding modules.

We indicate the relative squared losses by Lp, Ld, and Lm, respectively. We scale

the loss signals by corresponding adaptation factors βp, βd, and βm to balance

the error signal impacts. The particular adaptation of the parametric bias neu-

rons’ activities wb
ij(t) is calculated by typical gradient descent with momentum:

∆wb
ij(t) = − ηf

∂L(t)
∂wb

ij(t)
+ γf (wb

ij(t− 1)− wb
ij(t− 2)), (3.16)

where ηf denotes the learning rate, and γf the momentum; for the feature

binding adaptation procedure, and the loss signal L(t) yields:

L(t) = βpLp(t) + βdLd(t) + βmLm(t) (3.17)

During training, for all i = j the assignment biases wb
ij are set to 1000 (resulting

in wii ≈ 1) and for all i ̸= j to −1000 (resulting in wij ≈ 0), since the assignment

is fixed during self-observations. During testing, all assignment biases are initial-

ized at −5 (which leads to an initial subtle mixture of all possible assignments)

and are updated through time by making use of Eq 3.16.

It should be noted that the ideal assignment strength wij yields an activation of

1 for the bias neuron that connects an observed feature with its respective body

feature, and an activation of 0 otherwise. In that regard, we introduce Feature
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Binding Error (FBE) to evaluate the binding progress over time;

FBE(t) =
M∑
j=1

√√√√(wjj(t)− 1)2 +
N∑

i=1,i ̸=j

wii(t)2. (3.18)

FBE measures the sum of Euclidean distances between the model’s inferred as-

signment and the correct assignment.

3.3 Perspective Taking

Spatial perspective taking allows humans to recognize movement patterns in

the motion of an observed person by mentally adopting their perspective [60]

and therefore, can be considered as a mental transformation process that aligns

the observer’s perspective with a self-centered perspective.

The employed mechanism consists of a translation followed by a rotation of

all visually observed features and is based on [106]. Subsequently, our pro-

posed model learns and applies derived signals by which a mental perspective

should be adopted and thus it accurately attempts to co-adapt the top-down

autoencoder-based reconstructions, and the bottom-up input routing, manifested

in translation- and rotation-based perspective taking and binding, that is, the

fundamental neurocomputational mechanism of perspective-taking and mental

rotation.

Translation encodes the origin of the model’s internal, imagined frame of ref-

erence in addition to the center of rotation. It is determined by 0-initialized

bias neurons ba, which are adapted to minimize the top-down loss signal L(t) by

means of gradient descent with momentum;

∆ba(t) = − ηb
∂L(t)
∂tba(t)

+ γb(ba(t− 1)− ba(t− 2)) (3.19)

where a ∈ {x, y, z} represents the affected axis, γb the momentum term, and

ηb the adaptation rate. It should be noted, however, that motion magnitude

and direction are invariant to translations. Accordingly, the adaptation is deter-

mined by the posture-respective weighted error signals βp∆p
1...M only (cf. also
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Figure 3.1).

Rotation is performed by making use of a neural 3×3 matrix R, which is driven

by three Euler angles αx, αy , and αz, each of which indicates a rotation activa-

tion around a specific Cartesian axis;

R = Rx(αx(t))Ry(αy(t))Rz(αz(t)) (3.20)

is the corresponding connectivity structure. Correspondingly, the respective ma-

trices of activation functions are:

R(αz) =

cos αz −sinαz 0

sinαz cos αz 0

0 0 1

 (3.21)

R(αy) =

 cos αy 0 sinαy

0 1 0

−sinαy 0 cos αy

 (3.22)

R(αx) =

1 0 0

0 cos αx −sinαx

0 sinαx cos αx

 (3.23)

Note that, visuo-spatial perspective-taking is considered to be a mental pro-

cedure that rotates, and translates the observed perspective onto the vantage

points of others (Hegarty and Waller, [49]). Likewise, our proposed architec-

ture imagines the entire visual percept from the perspective of another actor.

Analogous to translation, rotation is represented by zero-initialized bias neu-

rons, which can be adapted online by means of gradient descent. The adaptation

through time follows the rule:

∆αa(t) = − ηr
L(t)

∂rαa(t)
+ γr(αa(t− 1)− αa(t− 2)), (3.24)

where a ∈ {x, y, z}, ηr indicates the adaptation rate, and γr the momentum.

Magnitude is invariant to rotation by nature, and therefore it is not considered

for rotation adaptation. As a result, we consider posture and direction respective
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weighted error signals throughout the rotation adaptation process (i.e. βp∆p
1...M

and βd∆d
1...M).

In order to evaluate the transformation development, we introduce orientation

difference (OD) measure to be

OD(t) =
180

2Π
Acos(

tr(Amodel(t)Adata(t))− 1

2
) in ◦, (3.25)

where Adata is a constant rotation matrix applied to all visual inputs before test-

ing and Amodel is the dynamic, currently inferred rotation matrix. Moreover, we

employ a translation difference (TD) in order to monitor the translation adap-

tation progress over time;

TD(t) =
∥∥bdata(t)− bmodel(t)

∥∥ in cm, (3.26)

However, it is vital to note that the model has no knowledge concerning FBE,

OD nor TD instead it employs its self-generated submodal expectations (em-

bodied imagination) for its adaptation intentions. Additionally, I provided some

important mathematical equations and partial derivatives of the employed Gra-

dient Descent processes in Appendices A and B.

3.4 Temporal Predictive Processing Module

In addition to learning compressed spatial codes of the population encoded

stimuli, our architecture also requires to learn temporal representations that

predict the progress of the developing codes over time. Accordingly, our pro-

posed model adds a recurrent behavioral module (cf. Figure 3.3), which en-

ables the imagination of temporal dynamics (that is, the progress of the multi-

modal Gestalt stimuli whenever it is not present) and the inference of the type

of observed behavior. To interpret the observed action types during testing, the

trained behavioral module will be utilized as an inference mechanism.
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3.5 Behavior Interpretation
A one-hot encoded action type vector is given as input to the behavioral module

during training. Furthermore, as depicted in Figure 3.3, we feed the concate-

nated submodal populations (i.e. whole Gestalt) as input to the variational

autoencoder and train the behavioral module according to the acquired com-

pressed code (latent vector Z).

gwhole(t) = (gp(t), gd(t), gm(t)) (3.27)

The behavioral module contains an LSTM followed by a linear layer. It receives

the latent vector Z in addition to the actual one-hot encoded action as input and

predicts the latent vector at the next time step.

We will further demonstrate that this module has the ability to infer the current

behavior that is being observed, as well as to imagine temporal behavioral dy-

namics when the bottom-up input deemed unreliable or is missing (i.e. Stimulus

Presence factor is turned to zero). During our conducted experiments we repre-

sent Stimulus Presence as the number of time steps the input stimulus is present,

accessible and reliable. As an example, StimulusPresence = 100 indicates that

ZWhole Gestalt
~
gwholegwhole

Behavioral Module
Inference
Mechanism

Mean

Variance

ReLu ReLu

Sigmoid
Encoder Decoder 

Hidden Hidden Reconstructed 
Gestalten

Error

Δ z

Encoded Action Types

Figure 3.3: A behavioral module makes use of its prediction error of the VAE’s
latent vector (Z; which is also referred to as the compressed code) to bias the imag-
ination of submodal codes, in addition to interpret the actual perceived behavior.
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the input stimulus for a particular action is available for the first 100 frames and

during the rest, the model has to employ its own embodied imagination.

Note that, once the Stimulus Presence factor turns to zero, the VAE is not re-

ceiving the input Gestalt any longer. Instead, the behavioral module switches to

closed-loop behavioral processing without input-signal-dependent adaptations

of the latent state Z, which enables the architecture to generate the respective

compressed Gestalt code Z.

Nevertheless, we still utilize the bottom-up submodal populations to compare

the imagined reconstructed Gestalt with the bottom-up input, for adjusting bind-

ing, rotation matrix and translation vector activities. During testing and by the

time when the stimulus is no longer available or when the entire stimuli is not

shown, the trained behavioral module’s temporal prediction enables consistent

imaginations that leads to proper inference of kinematic intentions.

The implemented inference procedure does a Grid search over all possible one-

hot encodings and selects the one that results in smallest mean prediction er-

ror over previous time steps (although also gradient-based inference adapta-

tion procedure may be applied in follow-up studies). Eventually, the respective

imagined Gestalt percept will be employed for the model’s further top-down

perspective taking and feature binding processes.

In sum, the extracted submodal information from the input bodily features will

be separately encoded into populations of topological neurons. Afterwards, the

acquired compressed code will be developed and predicted in accordance with

its corresponding spatial and temporal contingencies (i.e. embodied learning

of submodal spatial codes). The resulting signal will further be used to learn

predictions of succeeding codes. Subsequently, the predictive processing com-

ponent can be seen as a module that provides the driving signal that enables

embodied, intention-specific simulations, and behavior interpretations.

Taken to together, the proposed model attempts to:

1. Learn action patterns of submodal perceptions in compressed, generative

formats.

2. Learn spatio-temporal imagination of submodal compressed codes and ac-
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tion embeddings.

3. Generate embodied expectations in order to bias the simulation of sub-

modal codes.

4. Resolve the feature binding perspective taking challenges, while simulta-

neously interpreting the actual observed behavior.

5. Selectively deactivate parts of the redundant relative spatial encodings,

and the population encodings in order to highlight their significance.



Chapter 4

Experimental Results

In this chapter1, I evaluate the introduced architecture in different scenarios

and provide ablation studies in order to investigate the motivations addressed

in section 2.8. I initially outline the formats of the used data and the properties

of the employed topological parameters. Then the model’s performance will

be examined while it is carrying out feature binding, perspective taking, and

behavior interpretation tasks. In the end, we attempt to explore the proposed

model further by presenting ablation studies and other use cases.

4.1 Data Configurations
To assess the models’ performance we utilized human motion capture data pro-

vided by the Graphics Lab of the Carnegie Mellon University [2]. The employed

3D cyclic and continuous motion capture data is represented in Table 4.1 from

which we selected 15 limbs (out of 30 available limbs in the skeleton files).

A snapshot and a schematic of chosen body joints are illustrated in Figure 4.1

4.2 VAE and LSTM Prediction Errors
For adapting LSTM and VAE modules, TensorFlow and PyTorch libraries of

Python are used. Moreover, feature binding and perspective taking adaptations

1Some parts of this chapter is based on my published papers (see 21).

47
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Table 4.1: Employed data for training and testing of the architecture

Training Testing

Motion Type Subject Nr. Trial Nr. Time Steps Subject Nr. Trial Nr. Time Steps

3D Walking 35 7 1030 5, 12 1, 1 598, 523
3D Jumping Jack 23 15 495 22 16 432
3D Dancing 55 2 1:1000 55 2 1000:2180

(a) Walking Actor (b) Jumping actor

Figure 4.1: Green dots indicate the 15 selected visual inputs from all available
body features of motion capture data. (a) Skeleton data of a walking subject.(b)
Skeleton data of a subject performing jumping jacks.

are obtained by minimizing self-generated prediction errors through gradient

descent. During training the input stimulus is fully accessible by the model and

is perceived from an egocentric viewpoint. The training target is to:

1. Examine the compression quality of the autoencoder for learning action

patterns of submodal perceptions in generative and compressed formats.

2. Evaluate the prediction quality of the LSTM in order to learn spatio-temporal
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imagination of action embeddings and submodal compressed codes.

Note that feature binding and perspective taking adaptations are disabled dur-

ing the model’s training. To identify ideal parameter settings, Grid search was

used and the configured network parameters are listed in Table 4.2. For training

the LSTM a learning rate of 7.10−2 together with 60 cells were used. Further-

more, both LSTM and VAE were adapted using ADAM optimisation algorithm

[61].

Additionally, the raw Cartesian data was fed into another VAE module for mak-

ing the architecture able to assess the influence of population coding. As shown

in Figure 4.2, the model considerably improves its reconstruction error over time

while activating as well as deactivating the population coding.

Although we can not directly compare cases with and without population en-

coding as they have different loss measures, it is conspicuous that learning oc-

curs in both cases. It is also well-noticeable that when applying the population

encoding the respective reconstruction error improvement specifically for pos-

ture and motion direction is much stronger; (see the different ranges of the

y-axes in Figure 4.2).

It is vital to consider that all results described in this chapter demonstrate aver-

ages (and standard deviations where possible) over ten independently trained

neural networks (for 1000 epochs and 1000 time steps), unless stated otherwise.

Table 4.2: Assigned parameters for variational autoencoder’s training

Experiment Learning
Rate Pos

Learning
Rate Dir

Learning
Rate Mag

Opt. Hidden
Size

Latent Size ζp ζd ζm

Motion (pop. coding) 1 · 10−3 8 · 10−4 5 · 10−4 Adam 45 25 0.85 0.85 0.95
Motion (raw data) 1 · 10−3 2 · 10−5 8 · 10−4 Adam 25 10 - - -
Pendulum 1 · 10−2 1 · 10−2 1 · 10−3 Adam 45 25 0.85 0.85 0.95
Experiments 1-6 1 · 10−2 9 · 10−1 1 · 10−2 Adam 20 30 0.85 0.85 0.95

The temporal code imagination error while seeing three different types of ac-

tions (dancing, walking, and jumping) during training is indicated in Figure 4.3

where every 400 time frames a new action was presented to the model.

Note, though, that the final aim of training is not to minimize the reconstruc-

tion error as much as possible but instead its goal is to train the VAE sufficiently
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(a) Training while deactivating the population coding
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(b) Training while activating the population coding

Figure 4.2: Visual spatial reconstruction error (i.e. Binary Cross-Entropy (BCE)
Loss) of magnitude, direction, and posture Gestalt averaged over 10 indepen-
dently trained neural networks up: trained without using the population encoding;
down:trained while using the population encoding.
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Figure 4.3: Depicts the training error; the behavioral module learns to predict the
latent vector Z of the variational autoencoder during training. This will add the
imagination capability to the model during testing and once the stimulus is not
entirely present or deemed to be unreliable.

enough so that its generated error can be exploited to adjust the network’s pa-

rameterization; that are its binding matrix, rotation, and translation values.

Subsequently, we are required to train the LSTM accurate enough such that

its prediction error over the latent vector Z, can be used to interpret the actual

observed behavior during testing.

4.3 Adaptation of Feature Binding
The results reported in the previous section imply that LSTM learns an ade-

quate prediction and VAE learns good encodings. The main question, though, is

whether the resultant loss signals are beneficial in order to perform perspective

taking and feature binding tasks, as well as to interpret the observed behavior.

To evaluate the feature binding ability of the proposed model, perspective tak-

ing is disabled. For each test trial, bias activities of neural feature binding were
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Table 4.3: Architectural hyperparameters used for feature binding adaptations

Experiment 1 Experiment 2 Experiment 3 Experiment 4

No Pop Code With Pop Code With Pop Code 2D Pendulum
βpos= 5 βpos= 6 βpos= 8 βpos= 1
βdir= 1 βdir= 0 βdir= 2 βdir= 8
βmag= 0.125 βmag= 0 βmag= 0.125 βmag= 2
ηf= 1 ηf= 1 ηf= 1 ηf= 0.1
γf= 0.9 γf= 0.9 γf= 0.9 γf= 0.9

reset to -5 (i.e. wb
ij = −5), leading to an assignment strength of wij ≈ 0.0067

and uniform distribution of all value information efficiently over the VAE inputs.

It should be noted, however, that since all elements of the binding matrix were

initialized with the same value, the model has no knowledge concerning the

correct assignments. Consequently, shuffling the order of the observed features

for evaluation intentions is not needed. Architectural hyperparameters chosen

for all experiments are shown in Table 4.3.

The applied gradient-based, retrospective inference procedure denotes the im-

plemented adaptive processes of binding, perspective taking, and Behavior type

inference by attempting to minimize the reconstruction loss over time as much

as possible.

The Feature Binding mechanism starts with assigning very low initial activities

to all elements in the binding matrix W . Then it develops an adaptive assign-

ment of the input features to respective (learned) body features where during

this procedure the top-down Gradient descent based prediction error, which is

generated by VAE, adapts entire activities in the binding matrix. Thereafter, the

translation vector b and the rotation matrix R activities are adapted by back-

propagating the achieved reconstruction error further on. Thereby, the visual

input features are translated and rotated onto a known frame of reference.

Accordingly, the model maps the unknown allocentric view point onto the known

egocentric frame of reference it was already trained on.

Figure 4.4 illustrates that in all encoding cases the feature binding error de-

creases. Additionally, it depicts the resulting confusion (binding) matrix values

at the end of the binding adaptation process (that is, after 1000 time steps).
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Figure 4.4: Feature binding progress and adaptations according to experiments 1
to 3 (see Table 4.3). Each column indicates the outcome of respective experiments.
Upper Row Demonstrates the resulting confusion matrices in which input features
(columns) were assigned to the corresponding body features (rows). Lower Row
Shows the respective feature binding error progress over time.

As can be seen from Figure 4.4, the employed population encoding is highly

effective in decreasing the feature binding error which leads to a more diagonal

binding matrix (experiments 2 and 3) while without population encoding the

confusion matrix does not entirely converge (experiment 1).

The confusion matrix in the left of Figure 4.4 represents experiment 1, in which

the population encoding was disabled. Inside the resulting matrix the thorax

joint is confused with the neck, femur is confused with the hip joint and even

strong confusions can be noticed such as the left clavicle with the left foot.

When providing the posture population encoding, right-left and adjacent limb

confusions remain (cf. middle confusion matrix in Fig. 4.4). Consequently, when

entire motion information is added in population encoded format (cf. right

confusion matrix in Fig. 4.4), barely any confusions remain, denoting full Gestalt

perception.
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In sum, although some feature binding constellations can be found to be simi-

larly efficient, when enabling the population encoding the feature binding error

drops considerably lower. It should be noted, however, that the likelihood of

estimating the correct assignment by chance is practically impossible (i.e. 225

choose 15 leads to 9.1 · 1022 possibilities).

Figure 4.5 shows the progress of feature binding of the model on an observed

actor. The reported results clearly indicate that the VAE is capable of identifying

the correct bindings, especially when population encoding is used and supple-

mentary feature information is provided.

t = 0 t = 20 t = 40

t = 60 t = 400 t = 1000

Figure 4.5: Adapting the feature binding. When population encoding is enabled
and complementary feature information is available the model is able to associate
each input feature to its correct matching body feature as early as ∼400 time steps.
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4.4 Feature Binding with Distractor Existence
To evaluate the models’ reaction to distractor features that do not belong to the

perceived gestalt, two additional points were added to the observed data during

testing. Disabled biological features were selected as dynamic distractors and

two stationary points were used as static distractors.

4.4.1 Two Static Points as Distractor

In the following experiment, the model perceived two extra stationary features.

As shown in Figure 4.6, albeit small confusions exist, the model does not assign

the observed distractors to any bodily features and correctly neglects them.
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Figure 4.6: Adapting the feature binding while two static points were inserted as
distractors. Distractors 1 and 2 are fixed coordinates near hip joint, and above
head joint, respectively.
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4.4.2 Two Rhythmic Input Features as Distractor

In the following experiment, the model was presented with two additional peri-

odically moving distractors. We chose two biological features (distractor 1: right

toe, and distractor 2: left wrist) that were not assigned to any bodily features

throughout the training. These biological distractors mimic motion dynamics of

neighboring joints and produce perceptual ambiguities. As indicated in Figure

4.7, despite existing some minor confusions between distractor 1, right hand,

and right femur as well as between distractor 2, left hand, and left radius, the

model appropriately assigns input features to their corresponding body features.
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Figure 4.7: Adapting the feature binding while two biological input features were
used as distractors. Two disabled observed features (irrelevant features) during
training, were employed as dynamic distractors.

Table 4.4 denotes the duration which took until the respective confusion ma-

trix reaches a sufficently good convergence (i.e. FBE less than 3). As Table
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4.4 implies, the average convergence duration while injecting two biological

distractors took the longest.

Experiment Average Convergence Duration

Without distractors ∼400 time steps
Static distractors ∼650 time steps
Dynamic distractors ∼900 time steps

Table 4.4: Feature Binding duration

Taken together, the proposed model’s performance was more robust to non-

biological distractors that are not part of the perceived gestalt, than to biological

distractor features. The above findings are in agreement with results reported

in other psychometric studies [85] in which Pavlova and Sokolov assessed the

success rate of multiple subjects in detecting a point light walker within a point

light display that included biological distractor features.

4.5 Adaptation of Perspective Taking
To focus on perspective taking, feature binding was disabled. The development

of spatial translation and orientation was assessed, while the confusion matrix

was set to the correct diagonal binding values 2. For this purpose, we make

use of our fully trained model and assess the progress of spatial translation and

orientation parametric biases while the binding matrix is fixed to diagonal.

During testing and before feeding the data into the model, we transform each

trial’s observed data by a constant translation vector followed by a constant ro-

tation matrix. As a consequence, the model observes the data from an unknown

frame of reference with an unknown viewpoint and should transfer it to its

known egocentric perspective, which is derived from the model’s self-perceptual

experiences during training.

Chosen parameters for perspective taking adaptation processes are indicated in

Table 4.5.

2A video of the perspective taking and feature binding adaptation procedures and develop-
ment is available here: https://uni-tuebingen.de/de/206397
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Table 4.5: Hyperparameters used for perspective taking adaptations

Parameter ηr γr ηb γb βpos βdir βmag

Value 1.10−2 9.10−1 8.10−2 9.10−1 8 3 0

Figure 4.8 demonstrates the inference progression of the rotation matrix, when

the input data was rotated by randomly assigned angles (that are, αx, αy, and

αz; corresponding values are shown in the legend). Analogously, Figure 4.9

illustrates the respective dynamic inference progression of the translation vector.

It may be noted that the reported rotation and translation progression results

are obtained based on one of the trained networks (other trained networks had

qualitatively similar results).
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Figure 4.8: Dynamic inference of the rotation matrix; the legend shows the initial
input data rotations over each axis. The model was capable of inferring the orien-
tation of the previously unseen test data.

Based on the reported results for both translation and rotation, the duration to

infer the correct perspective is in accordance with the perspective disturbance

(that is, the duration to infer the correct perspective takes longer when the

perspective is disturbed at a stronger level). Similar findings are reported by

Pavlova and Sokolov [85]. Rather intense rotations of close to 90◦ on all three

axes are hardest. Likewise, extreme translations result in delayed convergence,

as can be expected.
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Figure 4.9: Translation adaptation progress over time; the initial translation bi-
ases assigned to the test set are indicated in the legend (that are, bx, by, and bz).
The model was successfully able to infer the translation of the formerly unseen test
data.

In this respect, Figure 4.10 illustratively shows the development of perspective

taking on an observed actor from an allocentric point of view where the entire

input data was translated and rotated with (bx = 0 , by = 5, bz = 0, Rx = 0◦ ,

Ry = 60◦, Rz = 0◦).

To examine the perspective taking capabilities further, we exemplarily look at

the performance of a case where both translations and rotations are applied to

the input data (we set bx = −2 , by = 2.5, bz = −4, Rx = 25◦ , Ry = 35◦,

Rz = 45◦). Figure 4.11 indicates that also in the case of perspective taking the

population encoding is extremely beneficial. Moreover, Figures 4.10 and 4.11

confirm that rotation and translation distortions can be optimized concurrently.

4.6 Behavioral Module and Ablative Studies
In this section I will provide ablation studies. In order to highlight the signifi-

cance of population encodings and redundant relative spatial encodings, we will

selectively disable population encodings and eliminate parts of the redundant

spatial encodings. Table 4.6 summarizes all of the experiments that were con-
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t = 0 t = 50 t = 100

t = 200 t = 500 t = 1000

Figure 4.10: Adapting the perspective taking; The model accurately processes a
transformation that aligns the observer’s view point with a self-centered, canonical
perspective.

ducted; first investigated experiment contains the most accurate performance

evaluation when all information is available. During other conducted experi-

ments, the bottom-up stimulus activity of each biological motion subsequence is

limited to the first 100 of the 400 time steps.

Experiment 3 measures the perspective taking capability of the model. Within

experiments 4, 5, and 6, we evaluate the model’s feature binding ability by

inferring the binding matrix W activities (that is, assignment’s strength).

Besides, the importance of the redundant relative spatial encodings and the

population encodings for feature binding and action type inference are con-

firmed by experiments 5 and 6.

Employed hyperparameters for training VAE and LSTM modules are described

in Section 4.2 and in Table 4.2. It should be noted, that the input stimuli was
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Figure 4.11: Adapting translation and rotation; Upper-Row: While population
coding is disabled; Lower-Row: While population coding is enabled

Table 4.6: Explored experiments

Exp. no.
Stimulus
Encoding

Stimulus
Presence

FB Perspective

1 pop code always provided provided
2 pop code 100 Frames provided provided
3 pop code 100 Frames provided inferred
4 pop code 100 Frames inferred provided
5 scalar 100 Frames inferred provided
6 posture p. c. 100 Frames inferred provided

always present during training or self perceptual experiences. After an arbitrary

number of frames (here 100) during testing, the Stimulus Presence factor will

become zero. Subsequently, the bottom-up input data is no longer fed into the

VAE which leads to enabling the closed-loop processing where the behavioral

module generates latent states Z.
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Figure 4.12 indicates the code prediction error during testing the model with

experiment four and upon observing three different types of behaviors (dancing,

jumping, walking) listed in Table 4.1 where every 400 time frames a new action

was fed into the model. Additionally, the provided testing action-type sequence
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Figure 4.12: Indicates the consequent prediction error during model’s testing with
experiment four (see Table 4.6).

for experiments presented in Table 4.6 is first Walking afterwards Jumping

followed by Dancing, 400 frames each. In this regard, Figure 4.13 indicates the

output of behavior type inference on a model which is trained on three types of

actions (Dancing, Walking, and Jumping).

The mean inferred action values within every 400 time frames is illustrated by

means of the heat-map-like confusion matrix. As can be seen from Figure 4.13,

the entry in the first, second, and third row of the matrix is correct in the corre-

sponding first, second, and third column, encoding walking, jumping jack, and

dancing action types.

Figure 4.14 describes the results of experiment 2 in which the setting are analo-

gous to experiment 1 except for the Stimulus Presence duration. Throughout the

experiment 2, each action’s input stimulus was provided for the first 100 frames

only (open loop), switching to closed-loop for the remaining 300 frames while
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Figure 4.13: Experiment 1; the model accurately infers the action types during
testing. Based on the given stimulus the first 400 frames, the model predicts
1,0,0:walking as the occurring action type then 0,1,0:Jumping jacks followed by
0,0,1:Dancing.

the input stimulus was no longer present.

As part (b) of Figure 4.14 indicates, the model is able to infer the actual behav-

ior while it relies on its own imagination. As shown in part (a), the two peaks

appear when the data switches to the next action.

4.6.1 Feature Binding and Perspective Taking

Suitable perspective taking and feature binding adaptations facilitate Gestalt

perception and behavior interpretation. Through experiments 4, 5, and 6, per-

spective taking and feature binding adaptation progress were examined relative

to the temporally imagined code Z, after inferring the action type simultane-

ously during the first 100 time steps of each 400 step subsequence. Employed

hyperparameters for feature binding ablation studies are according to given val-

ues for Exp. 3 of Table 4.3 and used architectural parameters for perspective

taking are similar to Table 4.5. The Gestalt perception progress within these ex-

periments is assessed by making use of Feature Binding Error (FBE), Translation
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(b) Inferred action

Figure 4.14: Experiment 2: Evaluating the model’s performance while the input
stimulus is present for 100 time frames at the beginning of each observed stimulus.
(a)Illustrates the consequent LSTM’s prediction error of latent vector Z while (b)
Shows the resulting inferred behavior.

Difference (TD), and Orientation Difference (OD) as described in Sections 3.2

and 3.3.

According to five different initial viewpoints applied during experiment 3, the

adaptation progress of perspective taking is illustrated in Figure 4.15 part (b).

Spatial abilities are known to be iterative and incremental [107]. Hereof, part

(a) of the above figure indicates the fact that the resulting inference becomes

correctly identified once the relative orientation difference converges; attesting

that the initial input data rotations was significantly associated with appropriate

Gestalt perception, that is, the more the observed data is rotated away from a

canonical perspective, the tougher the Gestalt perception (in terms of recogni-

tion time and performance). The above findings are similar to psychological re-

sults reported by Pavlova and Sokolov [85] as well as Shepard and Metzler[108]

where they assessed the orientation specificity and mental rotation of human

subjects.

As can be observed from Figure 4.16, adapting the feature binding and concur-

rently inferring the occurring action type (Experiment 4), as anticipated, makes

it harder for the architecture to detect the actual behavior as long as the feature
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(a) Inferred action
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Figure 4.15: Exp. 3: Rotation adaptation progress while inferring the actual ob-
served intention (a) Indicates the mean inferred behavior over all five rotation tri-
als. (b) Depicts the relative orientation difference progress which is being adapted
toward the model’s perceptual experience during training, where the initial input
data rotations over each axis are demonstrated in the legend.

binding error is still high.

Nevertheless, the proposed model is still capable of inferring the correct feature

binding assignments even when the bottom-up signal is given to the variational

autoencoder (VAE) for only the first 100 time steps.

4.6.2 Ablation Studies

Here I attempt to explore the effectiveness of the population encodings and the

redundant spatial input encodings throughout temporal prediction and Gestalt

perception processes.

During experiment 5, the population encodings was disabled simply after train-

ing the VAE to learn suitable compressions in order to encode the corresponding

scalar values. Within experiment 6, parts of the the modal input were removed,

just the posture submodality was trained and processed while the population

encoding was activated. Feature binding and Gestalt perception development

was examined throughout both experiments.

Based on the results described in Figures 4.16 and 4.17, it is clear that during

experiment 4, where population encodings was activated and information of all
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(c) Binding matrix assignment

Figure 4.16: Exp. 4: (a) Demonstrates the feature binding progress; (b) Indicates
the corresponding inferred behavior, binning the estimates over the first, second,
and third 400 steps. (c) Shows the assignment of observed features to the correct
corresponding bodily features at the end of experiment.
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sub-modalities were fed into the variational autoencoder and subsequently to

our retrospective inference procedure, we achieved better feature binding and

behavior inference results.

Therefore, we can conclude that in order to infer the unfolding behavior em-

ploying the population encoding is extremely beneficial. Similarly, providing

appropriate redundant information by means of separating the observed spa-
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(a) FBE; Exp. 5 (b) Inferred Action
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(c) FBE; Exp. 6 (d) Inferred Action

Figure 4.17: Upper-Row: Experiment 5; population coding is deactivated. Lower-
Row: Experiment 6; magnitude and direction sub-modalities are deactivated (that
is, βpos=8 , βmag=0, βdir=0).
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Table 4.7: Used pendulum data for training and testing the model

Motion-Type Training Testing
2D Pendulum seven cycles

1000 frames
same amount of data
(different cycles)

tial location data into directional, positional, and motion magnitude encodings

is hugely advantageous for a more reliable action type inference. It should be

noted, however, that none of the error measures demonstrated in this chapter

are known to the model. Indeed, these losses are being converged by minimiz-

ing embodied expectation errors and by using of predictive encoding [21].

4.7 Further Investigations

4.7.1 2D Pendulum

In order to ensure the generality of our findings, the feature binding perfor-

mance of the model was assessed based on the pendulum data which we adapted

from animation example of mathplotlib [1]. The two joint pendulum had two

joints with 1.25 and 1 kg mass, and 0.8 and 0.6 meter length, respectively.

The training and testing data basically encode the 2D-pendulum swinging back

and forth for seven cycles with completely loose lower limb and are described

in Table 4.7.

Architectural parameter values used for training LSTM and VAE modules are

represented in Section 4.2 and in Table 4.2. Additionally, hyperparameters

used for feature binding adaptation of 2D pendulum are given in Table 4.3.

Figure 4.18 verifies that even for two joint pendulum data feature binding works

completely robust and effective. As shown by Figure 4.18, although some minor

disruption exist (that is, some latent activity of Joint 2 is added to Joint 1) the

model performs a robust Gestalt perception.
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Figure 4.18: Feature binding development and adaptation based on two jointed
pendulum data

4.7.2 Chasing Scenario

We have additionally scrutinized our model’s performance on other types of

Gestalt perception, as well as social agent interactions (like a group of people

interacting while pursuing a cooperative or competitive task).

For this purpose, we generated chasing agents’ interactions data by making use

of a generative model of social interactions introduced by Salatiello et al. [100].

During the chasing experiment one agent is continuously chasing another agent.

An exemplary scenario of chasing agents’ trajectories is illustrated in part (a) of

Figure 4.19. Once the model has been sufficiently trained (1000 epochs and

10 differently initialized neural networks), we evaluate our binding approach

by assigning each agent to its correct behavior. The averaged feature binding

results over those 10 different trained neural network are shown in parts (b)

and (c) of Figure 4.19 and as can be seen the model is capable of reducing

the feature binding error over time by means of gradient based inference and

establishing a correct binding between chaser and chasee.

Taken together, the results reported in this chapter confirm that the model is

able to correctly bind features into Gestalt templates, and to infer the perspec-

tive of an actor robustly. Moreover, the model adequately ignores the perceived

features that do not belong to those features seen during training which is sim-

ilar to neuroscientific discoveries that assert, mirror neurons merely respond to
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(a) Input Trajectories
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(b) Feature binding error of chasing
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(c) Inferred action of chasing

Figure 4.19: (a) Shows the Trajectories of the two agents during an example chase
scenario (Red:chaser, and Blue:chased); (b) Indicates the relative feature binding
error. (c) Shows the assignment of observed behavior to the correct acting agents.
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perceived movements that are part of the motor repertoire of the observer. Ad-

ditionally, even when the bottom-up input is not available or is not reliable the

models’ embodied imaginations are appropriate for perceptual inferences.

Furthermore, our approach may be suitably applied to other spatio-temporal in-

teraction events, attention-demanding predictions, simulation, forecasting, and

encoding problems [17, 19]. Additionally, an overview of some of the capabili-

ties of the implemented architecture 3 is listed in Appendix C.

3The implemented code and its documentations is available at [4]
https://github.com/CognitiveModeling/Gestalt-Perception ; As of 24.7.2021



Chapter 5

Conclusion and Discussion

The main conclusions of this thesis are drawn together and presented in this

chapter. This thesis primarily aimed to introduce a generative artificial neural

network model which was based on the previous work from [102]. The inspi-

ration behind the introduced architectural design came from predictive coding

[34], active inference [18, 33, 82, 83], and brain’s sub-symbolic information

processing concepts [10, 17, 21, 35].

It is worth remarking here that the neocortex is not a feed-forward architecture

[48]. Consequently, the proposed model in this thesis suggests an architecture

that depends on the interaction of bottom-up saliency cues and top-down ex-

pectations in a Bayesian manner. Such interactions will result in inferring the

respective adaptation parameters over time.

5.1 Observations and Assertions
The outcome of various experiments based on the motivations and hypotheses

outlined in Section 2.8 lead to the following conclusions which will be explained

individually.

• Retrospective Inference

A major aspect of this research as opposed to other similar works reported in

Chapter 2 was retrospective inference of latent states by means of stochastic gra-

dient descent [95], which resulted in the model suitably coping with motion se-

72
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quence data. The gradient-based, retrospective latent state inference approach

[18, 110] fits best with the introduced model, given that in our employed rhyth-

mic action pattern data both individual elements as well as their occurrence

order transmit critical information regarding the perceived input stimuli. Most

notably, the architecture consistently attempts to match the sensory input with

the top-down expectations by making use of an adaptive retrospective inference

procedure as discussed in sections 3.2 and 3.3. Such a procedure adapts para-

metric biases in the past while monitoring the unfolding sensorimotor dynamics.

• Binding, Perspective-Taking

The Perspective Taking challenge arises when the model perceives the input stim-

uli from an unknown allocentric viewpoint and attempts to transfer it to its

known self-centered perspective. This cognitive ability enables humans to men-

tally adopt their spatially observed perspective and subsequently recognize the

corresponding movement patterns [60]. The Feature Binding problem [114]

concerns selecting and integrating distinct visually observed features into their

right order. Selectively routing the motion dynamics and assigning them to

respective neural processing pathways in a way that they match the expected

Gestalt dynamics can be considered as a way to resolve this problem.

As described in Chapter 3, the model uses the top-down reconstruction error

that originates from the VAE to reduce the discrepancy between the observed

and the predicted sensory signals [40]. This approach is in agreement with

predictive coding theory [34] based on which the human brain continuously

predicts the sensory causes forward in time. As presented in Chapter 3, for an

adequate routing of the input features and the adaptation of the perceived per-

spective onto a known reference frame, the proposed modularized architecture

propagated the prediction error back onto a binding matrix, and further back

onto perspective taking neurons, which rotated and translated the observed in-

put to a known perspective. Eventually, the model was able to establish a suit-

able correspondence between input features and bodily features in nearly all

feature binding constellations (see Chapter 4). Furthermore, the transforma-

tion of the observed stimuli onto a known canonical perspective was success-

ful within all investigated perspective taking experiments (see Sections 4.5 and

4.6.1).
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• Population Coding, Redundant encodings

In order to resolve perceptual conflicts and ambiguities within all experiments,

the described population encoding approach was essential. Another critical

component was separating the visually observed input into three distinct mo-

tion modalities (i.e. posture, magnitude, and motion direction) and weighting

the corresponding submodal expectation losses by their respective adaptation

factors. According to the conducted ablative experiments (described in Tables

4.3; 4.6) and their outcomes, population encoding and redundant submodal

components provided constructive information so as to establish the correspon-

dence between the perceived and the known frame of references, as well as to

bind the observed features into Gestalt templates.

• Spatial Reconstruction

For learning the compressed formats of the visually observed stimulus a VAE

module was used, modified from [102], who used a different autoencoder im-

plementation. Instead of learning a function that merely represents the data,

this module made the architecture capable of learning the parameters of a prob-

ability distribution that represented the data (i.e. variance and mean of the

latent space variables).

The employed VAE does not have the standard AE’s drawbacks (e.g. standard

AE’s simply perform a non-linear extension of PCA; their utilized latent space

tends to be not continuous and may result in a harder interpolation while gen-

erating biased data).

The major problem with autoencoders, for generation, is that the latent space

they transform their inputs to and where their encoded vectors lie, may not be

continuous or allow easy interpolation.

The reported results in Section 4.2 demonstrate that the VAE was able to fos-

ter the development of more balanced latent state encodings and to perform a

proper sampling and data generation that supported the architecture in solving

the perspective taking, feature binding and Gestalt perception challenges.

• Temporal Prediction

A temporal predictive processing module was used to learn temporal correla-
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tions of the compressed spatial codes. Based on the reported results in Sec-

tion 4.6, this module was successfully providing the temporal code imagination

whenever the bottom-up input was missing. Additionally, it helped the architec-

ture to store the previous time-steps’ information and subsequently tackle the

vanishing gradient problem.

• Behavior Interpretation

The introduced LSTM-based temporal prediction procedure helped the model to

interpret and understand the unfolding behavior. Compared to [102], the inten-

tion interpretation and Gestalt Perception procedures were significantly faster

as they had lower number of trainable weights. Moreover, the results in Section

4.6 indicate that the model was able to correctly infer various action types.

Once the input stimulus is missing or considered unreliable, the model switches

to closed loop processing and effectively relies on its own embodied simulation

for performing a successful behaviour interpretation (see the corresponding re-

sults of experiments 2 to 6 listed in Table 4.6).

• Successful binding despite distractors

The results reported in Section 4.4 show that the employed adaptive mechanism

was capable of establishing a robust and correct routing from observed features

to their respective body features, effectively ignored other dynamics and dis-

tractors that did not belong to the perceived Gestalt during training. It should

be noted here that the architecture’s performance was more robust to static dis-

tractors than to biological and rhythmic distractors, which is in agreement with

previous psychological study findings[85].

• Generalisation

As compared to [102], the proposed model is able to switch between 2D and

3D visual inputs. Moreover, it automatically distributes the topological Gaussian

neurons around the observed stimulus. The experimentation results shown in

Section 4.7 further support this claim.

• Other Investigations

The model’s performance was further scrutinized on related Gestalt perception

and recognition problems, as well as on social agent interaction patterns. In
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Section 4.7.2, we exemplary investigated the binding performance of the model

while detecting the intention of chasing agents and, as the results indicate, the

model was able to select and assign the corresponding behavior to their respec-

tive actors.

Other exploratory experiments in Sections 4.5 and 4.6.1 show that the more

the visual input is rotated away from a known perspective, the more difficult

and delayed the Gestalt perception and recognition. This is analogous to the

psychometric study results reported by Pavlova and Sokolov [85].

5.2 A Transformation Mechanism
Despite the success of Convolutional Neural Networks (CNN) in certain learn-

ing frameworks [66], they still suffer from not being spatially invariant to the

input data [67]. Jaderberg et al. [56] presented a Spatial Transformer (ST)

architecture, which can be incorporated into various neural network models in

order to provide spatial transformation abilities. Based upon the previous work

by Jaderberg et al. [56], I hypothesize an affine transformation mechanism that

utilizes an adaptation technique similar to the described perspective taking pro-

cedure in Section 3.3, and subsequently resolves the limitations of the previous

feed-forward architecture by computing the gradients efficiently (as outlined

in Section 2.6). For this purpose, parametric bias neurons’ activities will be

adapted retrospectively by making use of back-propagation through time.

Networks that employ ST are able to select the most relevant parts of a distorted

input image (i.e. attention), as well as to transform those selected parts to

a canonical point of view [56]. The Spatial Transformer’s core architecture is

depicted in the Figure 5.1 [56].

Based on the retrospective inference adaptation procedures described in Section

3.3, I propose an affine transformation mechanism in which we aim at using a

similar perspective taking process inside the localisation network of the existing

Spatial Transformer’s framework. Figure 5.2 indicates the same procedure in a

connectivity graph.

The localisation network within the spatial transformers receives the input fea-

ture map U and outputs the transformation parameter θ. Figure 5.2 illus-
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Figure 5.1: A Spatial transformer consists of three major components; 1) A local-
isation network which computes transformation parameters θ in accordance with
the input feature map U , 2) A Grid generator, which uses the predicted transfor-
mation parameters (τθ(G) denotes the spatially generated Grid over V), and 3)
A sampling mechanism that draws samples from the generated Grid and produces
the output feature map V .

trates an alternative localisation network which takes the image’s feature map

U ∈ RH∗W with height H and width W as input and outputs the inferred trans-

lation and rotation activities. As stated by Jaderberg et al. [56], the parameters

of the affine transformation can eventually be used as:

(
xs
i

ysi

)
= τθ (Gi) = Aθ

xt
i

yti

1

 =

[
r11 r12 b1

r21 r22 b2

]xt
i

yti

1

 (5.1)

where r and b elements are the respective parametric bias neurons’ activities for

rotation matrix and translation vector; τθ(G) denotes the spatially generated

Grid; Aθ stands for the affine transformation of the corresponding perspective

taking procedure; (xs
i , y

s
i ) is the source coordinate, and (xt

i, y
t
i) yield the target

coordinate in the output feature map.

As shown in Figure 5.2, every black pixel may be separately encoded with one

population of postural neurons with Gaussian turnings as previously explained

in Section 3.1. Afterwards, the concatenation of all population encoded ac-

tivities across all black pixels would be forwarded as input to the variational

autoencoder. VAE would then learn the spatial representation of input features

in a compressed and generative format.
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Figure 5.2: The proposed localisation network; during training the architecture
will observe a visual input and finds out the respective encoded population of Gaus-
sian neurons for all candidate pixels. Then, a VAE will perceive the concatenation of
population-encoded activities for all black pixels and will learn their corresponding
compressed formats. During testing, the top-down reconstruction error that origi-
nates from the VAE helps the localisation network to transform the distorted digit’s
image back onto its canonical perspective.

As a consequence, when during testing the architecture observes an input digit

that is rotated and translated away from a canonical perspective, VAE generates

biased reconstruction error of the input population. Subsequently, the model

may employ the obtained top-down reconstruction error in order to provide an
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adequate canonical representation of the input stimulus, effectively transferring

it back onto its known, self-centered perspective. Moreover, the above described

mechanism may be extended to 3D or even higher dimensional transformations.

5.3 Future Prospects and Summary
As outlined in Chapter 4, foreseen applications of the proposed architecture are

not only in the area of biological motion interpretation but also in other domains

such as 2D motion recognition tasks (see Section 4.7), as well as interpreting

multiple agents that are interacting with each other (see Section 4.7.2).

Furthermore, given that binding and perspective taking are global problems in

cognitive science, the suggested retrospective inference adaptation mechanisms

can potentially be used as an efficient alternative for solving related challenges.

For instance, in Section 5.2 we proposed a mechanism that employs a trans-

formation procedure similar to our perspective taking approach. Moreover, the

obtained feature binding results justify further usage scenarios such as cases

where information needs to be robustly bound together and assigned to other

on the fly data, for accomplishing overall consistency.

Nevertheless, in follow-up research, several interesting aspects of the proposed

model may be explored further by evaluating other aspects of human cognition

and making use of other available databases like the Facial Expression Database

[84] and the Emotional Body Motion Database [3, 119], which could potentially

give us the ability to explore human facial and emotional expressions while

performing an action (i.e. happiness while acting jumping jacks; laughing while

dancing and so on).

Future studies seeking to use and build upon the methodology introduced in

this thesis can attempt to further explore the proposed model’s effectiveness

while performing the following investigations:

• Understanding the behavior of social actors within complicated scenarios such

as a group of people interacting with each other while pursuing a competitive

or cooperative task.

• As a robust inference mechanism for attention-based architectures [118].
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• Improving the inference of modern object representation learning models

(like the framework introduced by Greff et al.[44]) while observing and in-

terpreting even complex visual scenes.

• As an intermediate visualization stage (for providing a better representation

of the observed scene) within an interactive Virtual Reality (VR) environment.

• Neuroimaging studies that aim at exploring the activation of visual cortex and

mirror neurons during the involvement of feature-binding and perspective-

taking tasks.

Summary

Action understanding is a challenging task due to the complexity of human

movements and behavior. Human cognition has an adaptive nature [7] during

which top-down expectations interact with bottom-up saliency cues [48]. In-

spired by the underlying principles of action understanding in the brain, this the-

sis and its methodological approach contributed to the debates on fundamental

human cognitive challenges which are Gestalt perception, feature binding and

perspective taking. The suggested model was capable of learning compressed

dynamic biological motion or other rhythmic motion patterns according to its

self perceptual experiences. Initially, the model was trained to learn sufficiently

accurate generative models of the observed action patterns. After training, the

model propagated the prediction error back onto a binding matrix, and fur-

ther back onto perspective taking neurons. During this process the model was

pursing the goal to minimize reconstruction errors over time. Consequently,

this adaptation mechanism resulted in correctly routing the input features to

their respective bodily features and also adapting the internal perspective onto

a known reference frame, while properly interpreting the actual observed mo-

tion dynamics. Moreover, the employed gradient-based, retrospective inference

could potentially be used within attention-based architectures. Additionally, ab-

lation studies revealed that the population encodings and complementary spa-

tial encodings enhanced the model’s performance. Eventually, the introduced

architecture aims at providing insights for improving the behavior of intelligent

agents.
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Appendix A

Multivariate Gaussians

As previously outlined in Section 3.1, each individual submodal feature is en-

coded by one population topological Gaussian neurons. Here I provide some

details of the employed encoding approach.

A.1 Basics
The density of a multivariate normal distribution [112] at x with mean m and

variance Σ (i.e. x ∼ (m,Σ)), is calculated by:

p(x) =
1√

det(2πΣ)
exp

[
−1

2
(x−m)TΣ−1(x−m)

]
(A.1)

It should be noted, however, that for a d-dimensional x we have [87]

det(2πΣ) = (2π)ddet(Σ) (A.2)

A.2 Derivation
The first order derivative of the aforementioned density yields [87]:

∂p(x)

∂x
= −p(x)Σ−1(x−m) (A.3)
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Appendix B

Rotation Matrices

As described in Section 3.3, for adapting the visual frame of reference we em-

ployed neural rotation matrix R as formulated in equation 3.20. Here we use

the notation sr = sin(Θr) and cr = cos(Θr) where r ∈ (x, y, z).

B.1 Basics
The resulting rotation matrix R will be:

e0,0 e0,1 e0,2

e1,0 e1,1 e1,2

e2,0 e2,1 e2,2

 =

 cycz −cysz sy

czsxsy + cxsz cxcz − sxsysz −cysx
−cxczsy + sxsz czsx + cxsysz cxcy

 (B.1)

The respective derivative for each rotation angle is then computed by ∂R
∂x

, ∂R
∂y

,

and ∂R
∂z

.

B.2 Rotation Matrix to Euler Angles
In order to determine the resulting Euler angles based on the achieved rotation

matrix [27], at each time step we consider three cases: 1. Θy ∈ (−π
2
, π
2
); and as

a result, we have cy ̸= 0 and subsequently, Euler angles are:

Θx = atan2(−e12, e22),Θy = asin(e02),Θz = atan2(−e01, e00) (B.2)
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2. Θy =
π
2
; and therefore, sy = 1 and cy = 0 which will result in:

Θx +Θz = atan2(e10, e11) (B.3)

3. Θy = −π
2
; which yields sy = −1 and cy = 0

Θz −Θx = atan2(e10, e11) (B.4)

The Algorithm 1 below, indicates the resulting pseudo-code.

Algorithm 1: Rotation Matrix to Euler Angles
Input : Rotation Matrix R
Output: θx, θy, θz

1 R =

e0,0 e0,1 e0,2
e1,0 e1,1 e1,2
e2,0 e2,1 e2,2


2 /* The rotation Matrix is available at each time step */

3 if e02 < +1 then
4 if e02 > −1 then
5 θx ← atan2(−e12, e22)
6 θy ← asin(e02)
7 θz ← atan2(−e01, e00)
8 end if
9 else

10 // In this case e02 = −1
11 θx ← −atan2(e10, e11)
12 θy ← −π

2

13 θz ← 0

14 end if
15 else
16 // In this case e02 = +1

17 θx ← atan2(e10, e11)
18 θy ← π

2

19 θz ← 0

20 end if
21 return θx, θy, θz



Appendix C

Implementation Details

Following Table C.1 lists all functionalities within the implemented framework.

Table C.1: Implemented functionalities

Flag name Functionality

-Train To activate the training mode.
-Test To activate the testing mode.
-FB To enable feature binding during testing.
-PT To enable perspective taking during testing.
-VAE To activate the variational autoencoder.
-N Indicates the number of training or testing sample frames.
-Shuffle Randomly shuffles the input sequence.
-Video To create output videos.
-F Starting frame for video creation.
-E Ending frame while creating the video.
-i Input data file; if 3D: .amc orientations, if 2D: .txt coordinates.
-j Input skeleton; .asf file; just in 3D input cases.
-c Indicates the widths and heights of Gaussian neurons.
-NoPopCode To disable the population encoding of input sequences.
-2D To enable the 2-dimensional pendulum case.
-2DAnim To enable the 2-dimensional two-agents interaction case.
-Stim Reliability Denotes the duration when the input stimulus is still available;

after this time frame the model relies on its own embodied
imagination (that is, closed loop).

-Intention To create video during intention inference processes.
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Here I summarize some of the command lines and their respective use cases:

• Command to receive help and see all flag’s functionalities

python3.7 -m Population_Coding.py -h

• Basic training of the model

python3.7 -m Population_Coding.py -Train -VAE -N130 -iS35T07.amc -jS35T07.asf

• Test with Variational Autoencoder and adapt the feature binding

python3.7 -m Population_Coding.py -Test -VAE -FB -N500 -iS35T07.amc -jS35T07.asf

• Test with Variational Autoencoder and adapt the perspective taking

python3.7 -m Population_Coding.py -Test -VAE -PT -N500 -iS35T07.amc -jS35T07.asf

• Train the model and create variational autoencoder’s reconstructed videos

python3.7 -m Population_Coding.py -Train -VAE -N135 -iS35T07.amc -jS35T07.asf -Video -F28 -E110

• Custom adjustments for feature binding.
The corresponding elements of FBGridList are: [Learning rate, Momentum Rate, pos-
ture adaptation factor, direction adaptation factor, magnitude adaptation factor, all ini-
tial values for binding matrix elements]; This is specially useful while doing the grid-
search for hyperparameter tunings.

python3.7 -m Population_Coding.py -Test -VAE -FB -N785 -iS35T07.amc -jS35T07.asf -FBGrid

-FBGridList=[1,0.9,20,0.1,0.5,-1]

• Custom adjustments for perspective taking.
The corresponding elements of PTGridList are: [data bias(x), data bias(y), data bias(z),
translation learning rate, translation momentum, data rotation(x), data rotation(y),
data rotation(z), rotation learning rate, rotation momentum, posture adaptation factor,
direction adaptation factor].

python3.7 -m Population_Coding.py -Test -PT -N584 -iS35T07.amc -jS35T07.asf -VAE -PTGrid

-PTGridList=[-2,-2,-2,0.01,0.9,15,10,5,0.01,0.9,15,1]

• Custom adjustments for training the variational autoencoder.
corresponding elements of VAETrainGridList are: [direction learning rate, posture learn-
ing rate, magnitude learning rate, latent space size, hidden layer size].
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python3.7 -m Population_Coding.py -Train -VAE -N145 -iS35T07.amc -jS35T07.asf -VAETrainGrid

-VAETrainGridList=[5e-3,5e-4,1e-4,50,200]

• Training the variational autoencoder while deactivating the population coding.

python3.7 -m Population_Coding.py -Train -VAE -N155 -iS35T07.amc -jS35T07.asf -VAE -NoPopCode

-VAETrainGrid -VAETrainGridList=[2e-5,1e-3,4e-3,10,32]

• Testing the feature binding on the trained variational autoencoder while dis-
abling the population coding.

python3.7 -m Population_Coding.py -Test -VAE -N600 -iS35T07.amc -jS35T07.asf -NoPopCode -FB

• Testing the perspective taking on the trained variational autoencoder while de-
activating the population coding.

python3.7 -m Population_Coding.py -Test -VAE -N600 -iS35T07.amc -jS35T07.asf -NoPopCode -PT

-PTGrid -PTGridList=[3,3,3,0.02,0.4,0,0,0,0,0,1,0]

• Creating a video of the binding progress and development over time.

python3.7 -m Population_Coding.py -Test -VAE -N255 -iS35T07.amc -jS35T07.asf -FB -Video -F50

-E100

• Performing the training on 2D two jointed pendulum data.

python3.7 -m Population_Coding.py -Train -VAE -2D -N135 -i2D_Pendulum.txt -VAETrainGrid

-VAETrainGridList=[8e-4,1e-3,5e-3,50,100]

• Testing the feature binding on the trained two jointed pendulum.

python3.7 -m Population_Coding.py -Test -VAE -2D -FB -N1000 -i2Dtest_set.txt -FBGrid

-FBGridList=[0.01,0.15,0.05,20,20,-1]

• Testing the feature binding on the trained 2D Pendulum and creating a video
from confusion matrix progress over time.

python3.7 -m Population_Coding.py -Test -VAE -2D -FB -N100 -i2Dtest_set.txt -Video -F0 -E100

• Testing the temporal imagination ability of the model.
When after some time steps (i.e. -Stim Reliability=200) the bottom up stimulus infor-
mation is missing and the model is not receiving the input data. Then, the model has to
rely on its own imagination biased from its trained temporal autoencoder (which uses
an LSTM-based architecture for its prediction purposes).
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python3.7 -m Population_Coding.py -Test -VAE -N1000 -iS35T07.amc -jS35T07.asf -VAETrainGrid

-VAETrainGridList=[4e-3,7e-4,8e-4,26,36] -Stim_Reliability=200

• Testing the imagination, feature binding, and the perspective taking capabilities
of the model.
The stimulus was available for the first 200 time steps and from then on the model
employs the trained LSTM module to come up with an imagined latent space to be able
to implement efficient perspective taking and feature binding tasks.

python3.7 -m Population_Coding.py -Test -VAE -N1000 -iS35T07.amc -jS35T07.asf -Stim_Reliability=200

-FB -FBGrid -FBGridList=[1,0.9,20,0.1,0.5,-1]

python3.7 -m Population_Coding.py -Test -VAE -N1000 -iS35T07.amc -jS35T07.asf -PT -PTGrid

-Stim_Reliability=100 -PTGridList=[0,5,0,0.8,0.9,0,60,0,0.08,0.9,8,1]

• Training and testing the model on some other non-cyclic/non-standard types of
data.
For instance on the dataset introduced by Salatiello et. al. [100] in which we have two
agents interacting with each other.

python3.7 -m Population_Coding.py -Train -VAE -2D -N800 -iCH02_Tra_RR.csv -jCH02_Tra_BC.csv -2DAnim

-VAETrainGrid -VAETrainGridList=[8e-4,1e-3,5e-3,50,100]

python3.7 -m Population_Coding.py -Test -VAE -2D -N1000 -iCH02_Tra_RR.csv -jCH02_Tra_BC.csv -2DAnim

-FB -FBGrid -FBGridList=[0.1,0.9,10,1,0.5,-2]

• Testing the model’s behavior interpretation capability while visualising the de-
velopment of inferred behaviour or intention.

python3.7 -m Population_Coding.py -Test -VAE -N400 -Stim_Reliability=250 -iS35T07.amc -jS35T07.asf

-Intention
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