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Summary

The gut microbiome is a complex microbial community that inhabits the

gastrointestinal tract comprising archaea, bacteria, viruses and fungi. This community lies at

the interface between our environment and our cells. As such, it plays an important role in

multiple nutritional, physiological and immune processes, including the synthesis of vitamins

and other compounds, the energy harvest from food, and the tight regulation of innate and

adaptive immunity. The gut microbiome is implicated in the pathophysiology of obesity, type

2 diabetes and cardiovascular disease. This is of particular relevance in the context of the

epidemiologic and dietary transition that characterizes westernization, a process in which

low- and middle-income countries shift towards increased consumption of processed foods

and reduced physical activity with a concomitant increase in non-communicable diseases.

This thesis contributes to our understanding of the role of the gut microbiome in

cardiometabolic disease and obesity

In chapter I, studied the gut microbiome of adults from multiple populations to

describe the association between the host's age and sex and the gut microbial diversity using

16S rRNA gene sequencing. I showed that the microbiome diversity increased with age until

40 years of age, and that young, but not middle-aged adult women had higher gut microbial

diversity than men. These observations were robust to the use of antibiotics or the

cardiometabolic health of the subjects. However, the pattern was not universal since it was

not observed in all studied populations.

In chapter II, I described the diversity, ecological distribution and genomic

characteristics of the archaeal order Methanomassiliicoccales, which have potential as

microbiome-based therapeutics. I carried out genomic and phylogenetic comparisons and

confirmed that the Methanomassiliicoccales order forms two large phylogenetic clades. Based

on abundance across host-associated and environmental metagenomes, I showed that the

clades largely differ in environment preference and genomic potential.

Chapter III introduces a modular pipeline that aids with the retrieval of microbial

genomes from public databases, which are then used to create custom databases for several
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metagenome profiler programs. Here I carried out benchmark analyses on synthetic and real

datasets and showed that the use of custom databases result in an increase of mappability of

sequencing reads. Databases created using this pipeline were used in other chapters of this

dissertation.

For chapter IV, I evaluated the functional potential of the gut microbiome of a cohort

of Colombian adults to detect variation in the microbiome associated with obesity or

cardiometabolic health. I used shotgun gut metagenomes from the Colombian cohort to test

the reproducibility of a set of functional characteristics previously reported to be associated

with cardiometabolic conditions in other populations. Using host metadata, I classified

subjects according to their obesity and cardiometabolic status, and identified which

microbiome functions were uniquely associated with each condition. I found that obesity

drives associations of the microbiome with cardiometabolic disease when both are present.

Chapter V describes the retrieval of genomes from the Colombian gut microbiome

using the metagenome sequence data I collected in the previous chapter. I evaluated the

quality of the genome assemblies, performed the taxonomic classification, established their

taxonomic novelty compared to what is currently reported, and annotated functional and

genomic characteristics.

All in all, the works presented in this thesis advance our knowledge of the role of the

gut microbiome in obesity and cardiometabolic disease. I expect this will help guide future

studies that use metagenomics to look into the associations and mechanisms of the

microbiome with these non-communicable conditions.
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Zusammenfassung

Das Darmmikrobiom ist eine komplexe Gemeinschaft von Mikroorganismen, welche

im Gastrointestinaltrakt angesiedelt ist und sich aus Archaeen, Bakterien, Viren und Pilzen

zusammensetzt. Diese Gemeinschaft befindet sich direkt am Übergang von unserer

Außenwelt zu unseren Zellen und übernimmt wichtige Rollen bei ernährungsbezogenen,

physiologischen und immunologischen Prozessen. Zum Beispiel, bei der Synthese von

Vitaminen und anderen Verbindungen, bei der Energiegewinnung aus der Nahrung und bei

der Regulation der angeborenen und erworbenen Immunität. Darüber hinaus wird das

Darmmikrobiom mit pathophysiologischen Prozessen wie Fettleibigkeit, Typ-2-Diabetes und

Herz-Kreislauf-Erkrankungen in Verbindung gebracht. Dies ist von besonderer Bedeutung

im Kontext des epidemiologischen und ernährungsbedingten Wandels, den die

Westernisierung mit sich bringt, ein Prozess, bei dem für Länder mit niedrigem und

mittlerem Einkommen ein erhöhter Konsum von verarbeiteten Lebensmitteln und weniger

körperliche Aktivität festgestellt werden kann, was mit einem Anstieg der Inzidenz nicht

übertragbarer Krankheiten einhergeht. Diese Arbeit trägt zu einem besseren Verständnis der

Rolle des Darmmikrobioms bei kardiometabolischen Erkrankungen und Fettleibigkeit bei.

In Kapitel I untersuchte ich das Darmmikrobiom erwachsener Probanden

verschiedener Populationen auf einen Zusammenhang zwischen Alter, Geschlecht und der

mikrobiellen Vielfalt im Darm mittels 16S rRNA-Gen-Sequenzierung. Ich zeigte eine mit

dem Alter zunehmende Diversität des Mikrobioms bis zu einem Lebensalter von 40 Jahren,

als auch eine höhere Diversität des Darmmikrobioms bei jungen erwachsenen Frauen, jedoch

nicht mittleren Alters, im Gegensatz zu Männern. Diese Erkenntnisse waren unabhängig von

der Antibiotikaeinnahme oder der kardiometabolischen Gesundheit der Probanden.

Allerdings war dieses Muster nicht universell, da es nicht in allen untersuchten Populationen

nachgewiesen wurde.

In Kapitel II habe ich die Vielfalt, die ökologische Verteilung und die genomischen

Merkmale von Archaeen der Ordnung Methanomassiliicoccales beschrieben, welche das

Potential haben, als mikrobiombasierte Therapeutika eingesetzt zu werden. Hierzu habe ich
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genomische und phylogenetische Vergleiche durchgeführt und so bestätigte, dass die

Ordnung der Methanomassiliicoccales zwei große phylogenetische Gruppen beschreibt.

Basierend auf ihrer Abundanz in Metagenomen von Proben die dem Wirt und der Umwelt

entnommen wurden, konnte ich zeigen, dass sich die beiden Gruppen hinsichtlich ihrer

Präferenzen für ihre Umgebungen und in ihrem genomischen Potenzial stark unterscheiden.

In Kapitel III habe ich einen anpassungsfähigen Verarbeitungsablauf vorgestellt, der

beim Abrufen mikrobieller Genome aus öffentlichen Datenbanken hilft, welche dann zur

Erstellung benutzerdefinierter Datenbanken für verschiedene

Metagenomprofiler-Programme verwendet werden können. Im Rahmen einer

Benchmarkanalyse mit synthetischen und realen Datensätzen zeigte ich, dass die Verwendung

benutzerdefinierter Datenbanken zu einer verbesserten Zuordnungsfähigkeit der

Sequenzierungsdaten führt. Datenbanken, welche Mittels dieser Pipeline erstellt wurden,

wurden in anderen Kapiteln dieser Dissertation verwendet.

In Kapitel IV habe ich das funktionelle Potenzial des Darmmikrobioms eines

Kohorts kolumbianischer Erwachsener analysiert, um Variationen im Mikrobiom

aufzudecken, die mit Fettleibigkeit oder kardiometabolischer Gesundheit assoziiert sind. Ich

habe Shotgun-Darm-Metagenome des Kolumbien-Kohorts verwendet, um die

Reproduzierbarkeit einer Reihe von funktionellen Merkmalen zu zeigen, von denen zuvor

berichtet worden war, dass diese mit kardiometabolischen Erkrankungen in anderen

Populationen assoziiert sind. Anhand von Metadaten die für den Wirt erhoben wurden, habe

ich die Probanden aufgrund ihrer Fettleibigkeit und ihres kardiometabolischen Status

klassifiziert und so ermittelt, welche funktionellen Eigenschaften der Mikrobiome eindeutig

mit dem jeweiligen Zustand assoziiert waren. Ich fand heraus, dass Fettleibigkeit zur

Assoziation des Mikrobioms mit kardiometabolischen Erkrankungen führt, wenn beide

Erkrankungen vorhanden sind.

Kapitel V beschreibt die Erstellung von Genomen aus den Metagenom-Sequenzdaten

des Darmmikrobioms der kolumbianischen Kohorte, welche im vorangegangen Kapitel

beschrieben wurden. Ich beurteilte die Qualität der erstellten Genome, vollzog die
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taxonomische Klassifizierung, ermittelte ihre taxonomische Neuheit im Vergleich zu den

derzeit vorliegenden Informationen, und annotierte ihre funktionellen sowie genomischen

Merkmale.

Zusammengefasst, erweitern die vorgestellten Ergebnisse dieser Dissertation unser

Wissen über die Rolle des Darmmikrobioms bei Fettleibigkeit und kardiometabolischen

Erkrankungen. Ich gehe davon aus, dass die hier erlangten Erkenntnisse für künftige Studien

hilfreich sein werden, bei denen Metagenom-Analysen genutzt werden, um die Assoziationen

und Mechanismen des Mikrobioms mit diesen nicht übertragbaren Krankheiten zu

untersuchen.

15



16



Introduction

The human gut microbiome

The gut microbiome is the collection of bacteria, archaea, viruses and fungi that

inhabit the human gastrointestinal tract, together with their theater of activity (Marchesi and

Ravel, 2015). This theater includes the nucleic acids, proteins, lipids and other metabolites

produced by the microbes, plus compounds produced by the host (Berg et al., 2020). The

study of the microorganisms within the human gut has become a flourishing area of

evolutionary, ecological, nutritional, and medical research (Knight et al., 2017; McCarville et

al., 2020; Suzuki and Ley, 2020). The interest in this field has both benefited from and led to

advances in sequencing of nucleic acids (Integrative HMP (iHMP) Research Network

Consortium, 2019); algorithms for the manipulation of biological sequences (Bağcı, Patz and

Huson, 2021) or the analysis of interaction networks (Knight et al., 2018; Beghini et al.,

2021); novel statistical frameworks (Quinn et al., 2018; Morton et al., 2019), machine

learning approaches (Topçuoğlu et al., 2020); and the isolation of as-of-recently uncultured

microorganisms (Forster et al., 2019; Zou et al., 2019). At a more fundamental level, it has

changed the understanding of our relationship with microbes, insofar as we constitute a

metaorganism, whose functioning is intimately linked to the microbial communities that

colonize our bodies (Theis et al., 2016).

The gut microbiome can be understood using two complementary conceptual

frameworks: one ecological and the other physiological. From an ecological perspective, the

microbiome is an ecosystem subject to changes in flows of nutrients (David et al., 2014),

environmental stresses (Janzon et al., 2019) and other evolutionary factors (Ley, Peterson and

Gordon, 2006), where its members establish ecological relations with each other and with

their environment (Banerjee, Schlaeppi and van der Heijden, 2018). The ecological relations

with their environment, the human gut, is what distinguishes a host-associated microbiota

from other microbial communities and bridges the ecological and the physiological
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frameworks. The environment itself is a living organism which establishes relations with the

microbes, favoring ecological niches for commensal species (Suzuki and Ley, 2020) while

avoiding colonization by pathogens (Litvak and Bäumler, 2019), and utilizing compounds

produced by the microbes. Indeed, in the human gut, it is estimated that the microbial

density can reach up to 1011 microbes gram-1, making it the main source of microbial

metabolites in the body (Sender, Fuchs and Milo, 2016). These metabolites include, but are

not limited to, short-chain fatty acids, sphingolipids, methylamines, in addition to antigens

such as flagellin or lipopolysaccharide, which modulate host health. Because of this, the

microbiome can be thought of as a microbial organ, that is, a collection of cells that resides as

a structural unit within the body of the host and that have a common function (Byndloss and

Bäumler, 2018).

The interplay between the gut microbiome, obesity and

cardiometabolic conditions

Obesity is a non-communicable disease that has been increasing at alarming rates

across the world. It is estimated that 2 billion people are overweight (body mass index [BMI]

≥ 25 kg m-2), one third of them being obese (BMI ≥ 30 kg m-2) (Seidell and Halberstadt,

2015). Obesity is considered a risk factor for other major non-communicable conditions,

including type 2 diabetes, cardiovascular disease, coronary heart disease, stroke and multiple

cancers (Grover et al., 2015). Such conditions are, in turn, associated with a decrease in

quality of life and a reduction in life expectancy (Nyberg et al., 2018). The rising incidence of

obesity and associated disorders is not limited to high-income countries; on the contrary, it is

also a major issue in low- and middle-income countries (Dinsa et al., 2012).

The gut microbiome is implicated in the pathophysiology of obesity and the

associated conditions type 2 diabetes and cardiovascular disease. The role of the microbial

community is multifaceted; at the most basic level, the overall diversity of the microbiome (Le

Chatelier et al., 2013; Walters, Xu and Knight, 2014), the abundance of multiple taxa

(Duvallet et al., 2017) and the functions they perform (Armour et al., 2019) differs between
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diseased and healthy individuals. Moreover, the microbiome can influence the host

physiology under such conditions in several ways. First, the gut microbiome is closely

connected to the host diet. Individuals with diets rich in ultra processed foods, fat and sugars

have a microbiota enriched in bile-tolerant and putrefactive microorganisms (García-Vega et

al., 2020). In contrast, subjects whose diets are rich in plant polysaccharides harbor a

microbiome with the ability to degrade dietary fiber and produce short-chain fatty acids

(SCFA). Fiber consumption has been associated with leanness in cross-sectional (Hadrévi,

Søgaard and Christensen, 2017) and intervention studies (Buscemi et al., 2018), and in

murine models the addition of fiber prevented the onset of metabolic syndrome induced by a

high-fat diet (Zou et al., 2018). Relatedly, methanogenic Archaea can increase the energetic

efficiency of primary fermenters by reducing partial pressures of H2 through methanogenesis,

which results in an increased production of SCFA (Horz and Conrads, 2010). SCFAs have a

positive impact on host health (Morrison and Preston, 2016): butyrate is the main energy

source for colonocytes, and evidence from in vitro assays indicate that it influences the

maintenance of the gut barrier by preserving luminal anaerobiosis and promoting the

assembly of tight junction proteins (Kelly et al., 2015). Acetate, propionate and butyrate

regulate the homeostasis of glucose and lipids in the liver (den Besten et al., 2015), and

circulating acetate is negatively correlated with plasma insulin levels (Layden et al., 2012).

Conversely, the microbiome impacts the progression of obesity and cardiometabolic

conditions. A large component of the progression of obesity, diabetes and cardiovascular

disease is linked to various inflammatory processes, both at the systemic level as well as on

particular host tissues. Recent evidence underscores the importance of intestinal

inflammation in the development of obesity (Cox, West and Cripps, 2015). Low-fiber,

high-fat diets (Martinez-Medina et al., 2014; O’Keefe et al., 2015; Statovci et al., 2017) or the

consumption of antibiotics (Palleja et al., 2018), to name a couple, are pro-inflammatory

challenges that favor changes in the metabolism of the gut epithelium from β-oxidation of

butyrate towards anaerobic glycolysis. This causes the gut to lose its hypoxic status (Litvak,

Byndloss and Bäumler, 2018) and results in environmental conditions favorable to facultative
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anaerobes (Shin, Whon and Bae, 2015; Zeng, Inohara and Nuñez, 2017). The expansion of

anaerobes from the family Enterobacteriaceae (phylum Proteobacteria) is considered a

signature of gut epithelial dysfunction (Litvak et al., 2017). Perturbations in the integrity of

the epithelial barrier result in translocation of microbial antigens, such as lipopolysaccharide

(LPS), which promote low-grade inflammation, exacerbating epithelial dysfunction

(Mohammad and Thiemermann, 2020). In turn, increased circulating LPS levels promote a

rise in pro-inflammatory cytokines, inducing a state of low-grade systemic inflammation that

is linked to glucose intolerance and insulin resistance (Ding and Lund, 2011).

A further way in which the microbiome can promote detrimental cardiovascular

health outcomes is the synthesis of methylamines (Zeisel and Warrier, 2017). The utilization

of dietary compounds such as carnitine or choline by various microorganisms results in the

synthesis of trimethylamine (TMA). This compound is absorbed by the host and carried to

the liver by the portal vein, where it is oxidized to trimethylamine N-oxide (TMAO).

Multiple epidemiological and experimental studies indicate that circulating levels of TMAO

are directly related to cardiovascular disease (Brown and Hazen, 2018), and it has been

suggested that TMAO inhibits cholesterol transport and promotes its accumulation in

macrophages, resulting in the formation of atherosclerotic plaques (Geng et al., 2018).

The associations and mechanisms described above are a non-exhaustive list of the

ways in which the microbiome is involved in obesity and cardiometabolic disease. Yet they

serve to illustrate an important characteristic of the microbial community: unlike other

human organs, it can potentially be targeted rapidly and with relative ease by interventions

utilizing pharmacological, nutritional or probiotic elements, or a combination thereof

(Zimmermann et al., 2021). The challenge is to robustly determine associations between the

host phenotypes and microbiome features. This requires access to well-characterized and

data-rich cohorts, as I describe below.
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Confounders and the importance of well-characterized cohorts

Conditions with highly overlapping phenotypes, such as obesity, cardiovascular

disease or diabetes, require a thorough characterization of the subjects. This is not, however,

the only reason why good host data is required for the successful study of the microbiome in

a human cohort. The gut microbiome is a highly plastic ecosystem, and its composition and

structure are influenced by a myriad of host and environmental factors such as diet,

medication usage, physical activity, host genetics, among others. Many of the aforementioned

host parameters are known risk factors for multiple diseases, therefore, it is not uncommon

for these factors to confound the variable or condition studied.

The ultimate goal of cross-sectional studies is to obtain a small group of species or

functions with a robust association to the host’s phenotype. These sets of features can serve as

the source of hypotheses to be evaluated in intervention or mechanistic studies. However, the

identification of causal relationships between specific microbes or functions with disease is

hindered by the low concordance between studies (Duvallet et al., 2017; Armour et al.,

2019). While it cannot be discarded that some links between microbial features and host

physiology might be population-specific or contingent on particular configurations of the

microbiota, the inclusion of known confounders can lessen the risk of obtaining false

positives in cross-sectional population studies (Ghosh et al., 2020; Vujkovic-Cvijin et al.,

2020). In other words, accounting for common confounders might facilitate the comparison

between studies by reducing biases introduced by the confounding variables (Vujkovic-Cvijin

et al., 2020).

Previous studies have pointed out pervasive confounding variables in cohort studies

of the gut microbiome (Vujkovic-Cvijin et al., 2020). Some of these factors are associated

with the structure and composition of the microbiome and represent risk factors of

non-communicable diseases; namely, age (Biagi et al., 2010; Odamaki et al., 2016; Ghosh et

al., 2020) and sex (Markle et al., 2013; Wallis et al., 2017; Sinha et al., 2019) of the host.

Other confounders appear precisely because they are used to treat conditions such as

hypertension or dyslipidemia, and are known to have a direct effect over gut microbes,
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although not all individuals with such conditions are exposed to them. Such is the case of

medications (Maier et al., 2018; Vich Vila et al., 2020) including antibiotics (Forslund et al.,

2013), lipid-lowering medication (Kummen et al., 2020), antidiabetics (Forslund et al., 2015;

de la Cuesta-Zuluaga et al., 2017) or proton pump inhibitors (Jackson et al., 2016). Finally,

geographical origin is linked to the composition of the microbiome even at the regional level,

as has been shown in several populations (He et al., 2018), including the Colombian cohort I

studied in the present thesis (de la Cuesta-Zuluaga et al., 2018).

Therefore, there is the need to include microbiome-associated confounding host

variables in studies that look into the links between host health and physiological, dietary or

epidemiological factors. This necessitates the use of well-phenotyped populations, where the

collected host data allows consideration of the influence of confounding host variables over

the composition of the microbiome while performing statistical analyses. Moreover, as I will

briefly discuss in the ‘Open data as a key element for studying the microbiome’ section of this

introduction, sharing this information in a way that guarantees its accessibility,

interoperability and reusability is key for the advancement of microbiome research as a

collective endeavor (Ryan et al., 2021).

Culture-independent methods to study the gut microbiome

The insights that can be obtained about the role of the microbiome in health and

disease are contingent on the approaches used to study the microbial community.

Culture-based methods are key to understanding the links between microbes and host (Maier

et al., 2018), the interactions between members of the microbiota (Ruaud et al., 2020) and

the mechanisms by which microbial compounds affect host systems (Johnson et al., 2020).

However, culture-based methods fall short when characterizing the complete microbial

community since not all gut microbes are as-of-yet culturable, they are low-throughput, and

do not provide an overview of all members of the community and their relative abundances

(Almeida et al., 2021). Sequencing-based methods are culture-independent and can overcome
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some of these pitfalls, since they can potentially detect a large fraction of the community with

an even-increasing throughput and an ever-decreasing cost (Youngblut and Ley, 2021).

The most widely used culture-independent method to survey microbiomes is the

sequencing of a single marker gene, such as the 16S rRNA gene (Goodrich et al., 2014). After

sample collection, total DNA extracted from the microbial community is used as starting

material. Particular phylogenetically and taxonomically informative regions of the selected

marker are amplified by PCR and then sequenced. Amplicon reads are quality-filtered and

clustered into operational taxonomic units (OTUs) based on sequence identity or denoised

into sequence variants (SVs) based on sequencing error profiles (Bolyen et al., 2019).

Representative sequences from SVs or OTUs are then taxonomically annotated by matching

them against reference databases (de la Cuesta-Zuluaga and Escobar, 2016). In addition, these

markers can be used to infer phylogenies that encompass all detected members of the

community, which in turn allow assessing intra- and inter-sample diversity (Lozupone et al.,

2011). The end result of marker-gene workflows are tables enumerating the abundance of the

members of the microbial community across the sequenced samples. However,

marker-gene-based methods can only provide information about the presence and abundance

of microbes in the microbiota, no inference about the functions they potentially or actually

perform can be directly obtained (Aßhauer et al., 2015).

Alternatively, community DNA can also be used to perform shotgun metagenome

sequencing (hereafter metagenomics), where the genetic material is randomly sequenced

without the use of marker-specific primers. This method has gained popularity in recent years

thanks to the declining costs of sequencing and computational resources (Hillmann et al.,

2018). An advantage of metagenomics over marker-gene sequencing is the greater amount of

information it provides, even at relatively shallow coverages (Nayfach et al., 2015; Hillmann

et al., 2018). This includes information regarding the metabolic potential of the microbial

community (Franzosa et al., 2018), estimation of species-level abundance (Lu et al., 2017)

and the ability of retrieving genomes or gene catalogs (Almeida et al., 2021). Moreover,

metagenomics allows to obtain functional and phylogenetic diversity measures from whole
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genomes and high-quality multi-locus phylogenies, which help to resolve associations

between the microbiome and host phenotypes, as we recently showed (Youngblut, de la

Cuesta-Zuluaga and Ley, 2022).

To obtain the taxonomic and functional profile of the microbiome, shotgun

metagenome reads are mapped against databases of genomes or genes and their abundance is

calculated (Franzosa et al., 2018; Wood, Lu and Langmead, 2019). In any database-dependent

method or step, be it marker gene or metagenomic sequencing, the content of the databases

will heavily influence the final result. Indeed, genomes from many novel microbial taxa have

been recovered in recent years thanks to advances in culturing methods (Forster et al., 2019;

Zou et al., 2019) and metagenome sequencing and assembly (Pasolli et al., 2019), which has

lead to the creation of large collections of Bacteria and Archaea genomes (Parks et al., 2018)

and comprehensive databases that leverage them (de la Cuesta-Zuluaga, Ley and Youngblut,

2020; Youngblut and Ley, 2021), thus reducing the risk of oversights by including the most

up-to-date microbial data. Similar to marker gene sequencing, the end result of metagenomic

profiling workflows are tables of abundances of taxa, genes or metabolic pathways across all

samples.

In addition to functional profiling, metagenomics allows the assembly of whole

genomes. Metagenome-assembled genomes (MAGs) are most commonly generated by

assembling shotgun reads into contigs on a per-sample basis; the contigs are then grouped

into bins according to similarities in k-mer frequency or patterns of sequence coverage across

multiple samples (Sieber et al., 2018). Once binned, the quality of the MAGs is assessed in

terms of completeness and contamination (also called redundancy) according to the presence

of clade-specific single-copy genes (Parks et al., 2015). Quality-filtered MAGs can then be

subjected to taxonomic classification, phylogenetic inference and gene calling (Parks et al.,

2017). As with any large collection of genomes, MAGs can be used to assess the diversity of a

microbiome (Youngblut et al., 2020), to compare diversification patterns of microbes with

their hosts (Suzuki et al., 2021), to expand databases for metagenome profiling (de la

Cuesta-Zuluaga, Ley and Youngblut, 2020; Youngblut and Ley, 2021), to perform

24



comparative genomics analyses of specific taxa (Tett et al., 2019; De Filippis, Pasolli and

Ercolini, 2020), among others. All this with the advantage of not requiring the

microorganisms in pure culture in order to have information about the genetic potential they

encode (Almeida et al., 2019).

Internationalizing microbiome research

As mentioned above, the gut microbiome has broad relevance to the health of the

host. Given the wide variation in the composition of the microbiome between and within

populations, the identification of generalizable associations and mechanistic links between

the microbial community and human health requires the study of diverse human

populations. Yet, there is a very strong bias in the representation of human populations in

repositories of genomic data (Abdill, Adamowicz and Blekhman, 2022). A recent survey of

human microbiome data found that publicly available samples are dominated by highly

developed countries: The United States contributed 40.2% of available 16S rRNA amplicon

sequencing or shotgun metagenome samples while representing only 4.3% of the global

population. Likewise, China and European countries also contribute to the bulk of the

available samples, while countries from the global south, including Southeast Asia, Africa and

Latin America are underrepresented (Abdill, Adamowicz and Blekhman, 2022).

There are still unanswered questions in the field of microbiome science which would

benefit from studying a wide range of populations, including but not limited to: which

characteristics of the gut microbiome are specific to certain populations and which are

universal? Do associations of the microbiome with human health described in subjects from

high-income countries extend to lower- and middle-income countries? How does the

distribution of potentially beneficial microbes vary between countries? (Porras and Brito,

2019). In the absence of studies in these populations, it is not possible to determine how

generalizable the associations between microbiota and host health are.

For this reason, there have been calls for initiatives that identify and include

populations with socioeconomic and environmental factors outside of high-income
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countries, so that a universal understanding of the human microbiome and its effect on host

health can be achieved. Otherwise, the benefits of microbiome research may be extended to

only a fraction of the world's population (Porras and Brito, 2019). As I will describe in the

Outline section of this introduction, the works included in this thesis address questions

regarding the diversity of the gut microbiome, its association with human health, and the

methodological challenges of studying this microbial community, while incorporating data

from multiple populations.

Open data as a key element for studying the microbiome

The phrase 'standing on the shoulders of giants' has become commonplace but that

does not make it any less true. One of the essential elements of science is the use of existing

information to solve new questions. It is now possible, even expected, for data generated as

part of a research project to be made public in a transparent, reproducible and reusable

manner (Wilkinson et al., 2016), especially if such data come from research funded with

public money.

Secondary analyses, in which researchers combine and reanalyze public data in a

manner not planned by the original authors, are valuable for the study of microbiomes

(Pasolli et al., 2016; Duvallet et al., 2017; Armour et al., 2019; Ruaud et al., 2020; Youngblut

et al., 2020). This has been facilitated by centralized repositories of raw high-throughput

DNA sequences, from which microbial and host data can be retrieved and processed. Results

that are robust to reanalysis are more credible, and studies that produce new knowledge from

underutilized data make the practice of science more efficient, particularly in cases where the

generation of new data is not possible (Rajesh et al., 2021) (even though this may upset some

people (Longo and Drazen, 2016)).

Despite this, about one-fifth of microbiome studies do not make public the data they

generated (Eckert et al., 2020). The works included in the present thesis benefited extensively

from a large and diverse amount of genomic and metagenomic data that can be accessed

through various databases. In turn, I have strived to guarantee that the new genome and
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metagenome data I produced as part of my research projects, in addition to the code to

analyze them, are made public in databases and code repositories.

Outline

In chapter I, I present a multi-population study where I described the relationship of

age and sex to gut bacterial diversity in young and middle-aged adults from four geographic

regions: the United States, the United Kingdom, Colombia, and China. I observed that

microbial diversity increased with age yet plateaued at about 40 years, and that young, but not

middle-aged, adult women had higher gut microbial diversity than men. Microbial diversity

was not associated with cardiometabolic health and medication consumption; the observed

patterns remained after adjusting for cardiometabolic parameters in the Colombian cohort

and antibiotic usage in the US and UK cohorts. The aforementioned association of age and

sex with microbial diversity was not evidenced in the Chinese cohort, therefore, its

universality remains an open question.

In chapter II, I carried out a study on the diversity, ecological distribution and

genomic characteristics of the archaeal order Methanomassiliicoccales, lesser-known members

of the human gut microbiota. Microorganisms from this order use methylated amines,

including trimethylamine (TMA), for methane production. TMA is a compound known to

induce atherosclerosis, which makes these taxa potential targets for microbiome-based

interventions. I characterized a Methanomassiliicoccales MAG retrieved from samples of the

TwinsUK cohort and used it, together with publicly available genomes, to perform

phylogenetic analyses and genomic comparisons. I confirmed that the

Methanomassiliicoccales order forms two large phylogenetic clades. Using publicly available

metagenomes from environmental and non-human animal guts, I showed that these clades

differ in their environmental preference, with some exceptions. Host-enriched taxa tended to

have smaller genomes and possessed genes related to bile resistance and aromatic amino acid

precursors. Using publicly available human gut metagenomes, I showed that these taxa were
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absent from multiple populations, yet when present, they were correlated with bacteria

known to produce TMA.

The characterization of microbial communities, such as the one presented in chapter

II, relies heavily on database-dependent methods. The profiling of a metagenome sample

requires, thus, that relevant genomes are included in the databases used. Such was not the case

when my work on Methanomassiliicoccales started. In chapter III, I present Struo, a modular

pipeline to assist the creation of custom databases of genes and genomes for commonly used

metagenome profilers. The custom databases created with Struo provide a substantial

increase in mappability of reads in synthetic and real metagenomic datasets. I employed

databases created with this pipeline to obtain taxonomic and human gut metagenome

samples in the work presented in chapters II and IV.

Chapter IV presents my efforts to assess the functional potential of the gut

microbiome of a sample of community-dwelling Colombian adults. This with the aim of

determining variation uniquely and robustly associated with obesity or cardiometabolic

health by incorporating phenotypic data that help disentangle said conditions. I selected

functional features linked to obesity, cardiovascular disease or type 2 diabetes from published

studies in diverse populations, and tested their replication in the Colombian cohort. I

performed shotgun metagenome sequencing from stool DNA to assess the gut microbiome

of these subjects. Members of this cohort were very well characterized in terms of

biochemical, anthropometric, medication and dietary data, which I sought to include in my

analyses to reduce the effect of possible confounders. Moreover, these data allowed me to

classify subjects according to their obesity and cardiometabolic status, and to determine

which functions were associated with one condition while accounting for the other. Overall, I

found that obesity drives the microbiome associations with cardiometabolic disease when

both conditions are present.

An advantage of shotgun metagenome sequencing over 16S rRNA gene sequencing

is that it allows to obtain functional data and the assembly of genomes of the members of the

community, in addition to providing insights into the taxonomic profile of a microbiome.
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The assembly of novel microbial genomes is of particular relevance for the study of the gut

microbiome of human populations from low- and middle-income countries and other

understudied populations. Thus, in chapter V I present the retrieval of

metagenome-assembled genomes from the gut microbiome of Colombians using the

metagenome sequence data I produced in chapter IV. I assessed the assembly quality,

performed the taxonomic classification of this set of genomes, determined their taxonomic

novelty and annotated functional and genomic features. In each of the chapters of the

present work I relied on publicly available data; I consider it my duty to also contribute to the

scientific community the data that I generated as part of my work. Therefore, I present this

set of MAGs as a data descriptor.
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Chapter I

Age- and Sex-Dependent Patterns of Gut Microbial Diversity in

Human Adults

The content of this chapter has been published as:

de la Cuesta-Zuluaga J, Kelley ST, Chen Y, Escobar JS, Mueller NT, Ley RE, et al.

mSystems. 2019 Jul;4(4).

Available from: http://dx.doi.org/10.1128/mSystems.00261-19

See appendix I

Abstract

Gut microbial diversity changes throughout the human life span and is known to be

associated with host sex. We investigated the association of age, sex, and gut bacterial alpha

diversity in three large cohorts of adults from four geographical regions: subjects from the

United States and United Kingdom in the American Gut Project (AGP) citizen-science

initiative and two independent cohorts of Colombians and Chinese. In three of the four

cohorts, we observed a strong positive association between age and alpha diversity in young

adults that plateaued after age 40 years. We also found sex-dependent differences that were

more pronounced in younger adults than in middle-aged adults, with women having higher

alpha diversity than men. In contrast to the other three cohorts, no association of alpha

diversity with age or sex was observed in the Chinese cohort. The association of alpha

diversity with age and sex remained after adjusting for cardiometabolic parameters in the

Colombian cohort and antibiotic usage in the AGP cohort. We further attempted to predict

the microbiota age in individuals using a machine-learning approach for the men and women

in each cohort. Consistent with our alpha-diversity-based findings, U.S. and U.K. women had

a significantly higher predicted microbiota age than men, with a reduced difference being seen
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above age 40 years. This difference was not observed in the Colombian cohort and was

observed only in middle-aged Chinese adults. Together, our results provide new insights into

the influence of age and sex on the biodiversity of the human gut microbiota during

adulthood while highlighting similarities and differences across diverse cohorts.

Contributions

Project conception and outline: JdlCZ, STK, VGT, JSE, NTM. Project

implementation and coordination: JdlCZ, STK, DM. 16S rRNA amplicon data curation:

JdlCZ, STK, YC, DM. Statistical analyses: JdlCZ, STK, YC. Statistical advice: JSE, NTM,

DM. Machine learning: SH, ADS. Supervision, discussion of analysis and interpretation:

REL, RK, VGT. Manuscript preparation: JdlC, STK. Manuscript review: REL, JSE, NTM,

DM, RK, VGT. Comments: all authors.
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Chapter II

Genomic Insights into Adaptations of Trimethylamine-Utilizing

Methanogens to Diverse Habitats, Including the Human Gut

The content of this chapter has been published as:

de la Cuesta-Zuluaga J, Spector TD, Youngblut ND, Ley RE.

mSystems. 2021 Feb 9;6(1).

Available from: http://dx.doi.org/10.1128/mSystems.00939-20

See appendix II

Abstract

Archaea of the order Methanomassiliicoccales use methylated amines such as

trimethylamine as the substrates for methanogenesis. They form two large phylogenetic

clades and reside in diverse environments, from soil to the human gut. Two genera, one from

each clade, inhabit the human gut: Methanomassiliicoccus, which has one cultured

representative, and “Candidatus Methanomethylophilus,” which has none. Questions

remain regarding their distribution across biomes and human populations, their association

with other taxa in the gut, and whether host genetics correlate with their abundance. To gain

insight into the Methanomassiliicoccales clade, particularly its human-associated members, we

performed a genomic comparison of 72 Methanomassiliicoccales genomes and assessed their

presence in metagenomes derived from the human gut (n = 4,472, representing 22

populations), nonhuman animal gut (n = 145), and nonhost environments (n = 160). Our

analyses showed that all taxa are generalists; they were detected in animal gut and

environmental samples. We confirmed two large clades, one enriched in the gut and the other

enriched in the environment, with notable exceptions. Genomic adaptations to the gut

include genome reduction and genes involved in the shikimate pathway and bile resistance.
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Genomic adaptations differed by clade, not habitat preference, indicating convergent

evolution between the clades. In the human gut, the relative abundance of

Methanomassiliicoccales spp. correlated with trimethylamine-producing bacteria and was

unrelated to host genotype. Our results shed light on the microbial ecology of this group and

may help guide Methanomassiliicoccales-based strategies for trimethylamine mitigation in

cardiovascular disease.

Contributions

Project conception and outline: REL, NDY, TDS. Metagenome assembly: JdlCZ,

NDY. Comparative genomics, phylogenetic analysis and metagenome profiling: JdlCZ.

Public data retrieval: JdlCZ, NDY. Bioinformatics and statistics support: NDY. Supervision,

discussion of analysis and interpretation: REL, NDY. Manuscript preparation: JdlC.

Manuscript review: REL, NDY. Comments: all authors.
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Chapter III

Struo: a pipeline for building custom databases for common

metagenome profilers

The content of this chapter has been published as:

de la Cuesta-Zuluaga J, Ley RE, Youngblut ND.

Bioinformatics. 2020 Apr 1;36(7):2314–5.

Available from: http://dx.doi.org/10.1093/bioinformatics/btz899

See appendix III

Abstract

Taxonomic and functional information from microbial communities can be

efficiently obtained by metagenome profiling, which requires databases of genes and genomes

to which sequence reads are mapped. However, the databases that accompany metagenome

profilers are not updated at a pace that matches the increase in available microbial genomes,

and unifying database content across metagenome profiling tools can be cumbersome. To

address this, we developed Struo, a modular pipeline that automatizes the acquisition of

genomes from public repositories and the construction of custom databases for multiple

metagenome profilers. The use of custom databases that broadly represent the known

microbial diversity by incorporating novel genomes results in a substantial increase in

mappability of reads in synthetic and real metagenome datasets.

Contributions

Project conception and outline: JdlC, NDY. Assessment of genome collections: JdlC.

Pipeline benchmark and statistical analysis: JdlC. Implementation of snakemake workflow:
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NDY. Manuscript preparation: JdlC. Manuscript review: REL, NDY. Comments: all

authors.
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Chapter IV

Obesity is the main driver of functional alterations of the gut

microbiome in cardiometabolic disease

The content of this chapter is yet to be published.

de la Cuesta-Zuluaga J, Youngblut ND, Escobar JS, Ley RE.

In preparation.

See appendix IV

Abstract

The discovery of distinct links between obesity (OB) and the cardiometabolic health

status (CHS) with the gut microbiome is hindered by the overlap between these conditions.

Moreover, differences in study design and covariates used encumber the comparison of study

outcomes. Here, we describe features of gut microbiome function associated independently

with OB or CHS in a cohort of adults; and test for the replication of associations previously

reported for microbiome and OB/CHS. We enrolled 459 deeply-phenotyped Colombians

from whom we obtained 408 gut metagenomes. We measured three OB indices and classified

individuals according to their CHS using blood biochemistry and anthropometric data. We

evaluated the association of 136 KEGG modules and 2 653 orthologs previously linked with

OB, cardiovascular disease or diabetes. Medication use, city, sex and age were included as

covariates. We found that metagenome sequence diversity negatively correlated with OB;

subjects with CHS had lower diversity than healthy subjects with similar OB levels. OB

explained a higher proportion of variance for sequence diversity and functional beta-diversity.

Similarly, more modules and orthologs were uniquely associated with OB than with CHS or

shared by both conditions. The microbiome potential of diseased individuals in both

conditions showed a decreased fermentative ability and an increased response to oxygen.
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Disease-linked features were mainly contributed by members of Proteobacteria. Our results

suggest that OB drives the microbiome associations with CHS when both are present

Contributions

Project conception and outline: JdlCZ, REL, JSE. Sample processing and

metagenome sequencing: JdlCZ. Sequence data processing, host data processing,

metagenome profiling, diversity indices calculation, literature review, selection of features to

include in analysis, statistical analyses: JdlCZ. Bioinformatics support: NDY. Supervision,

discussion of analysis and interpretation: REL, JSE, NDY. Manuscript preparation: JdlC.
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Chapter V

Gut metagenomes and assembled microbial genomes from human

adults from urban cohorts from Colombia, South America

The content of this chapter is yet to be published.

de la Cuesta-Zuluaga J, Youngblut ND, Escobar JS, Ley RE.

In preparation.

See appendix V

Abstract

The human gut microbiome is an important mediator of multiple physiological

processes. The identification of generalizable associations and mechanistic links between this

microbial community and human health requires the study of diverse human populations.

Yet the microbiomes of subjects from low- and middle-income countries are understudied.

Here, we present a set of shotgun gut metagenomes of 459 deeply-phenotyped male and

female adults (18-62 years old) living in geographically distinct urban areas of Colombia

(South America), studied in the context of westernization and the epidemiological transition.

We assembled these metagenomes and retrieved 2 266 medium- and high-quality

metagenome-assembled genomes (MAGs), which we annotated, classified taxonomically, and

compared to large collections of microbial genomes. The metagenomes, MAGs, and

accompanying host data presented here will benefit initiatives looking into the human

microbiome's diversity and its role in westernization, nutrition, obesity and cardiometabolic

disease.
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Project conception and outline: JdlCZ, REL, JSE. Sample processing and

metagenome sequencing: JdlCZ. Sequence data processing, metagenome assembly, genome

quality assessment and taxonomic characterization: JdlCZ. Bioinformatics support: NDY.

Supervision, discussion of analysis and interpretation: REL, JSE, NDY. Manuscript

preparation: JdlC. Manuscript review: REL, JSE, NDY.
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Discussion and outlook

The present dissertation comprises work of various kinds that revolve around a

central theme, namely, the use of culture-independent methods and computational

approaches to study the human gut microbiome in the context of obesity and

cardiometabolic diseases. In this section I will not delve into the details of any particular work

since they are discussed in their corresponding manuscript. Instead, I will discuss their

contribution and shortcomings as a whole.

Contribution of this thesis

The collection of works I present here can be grouped into three broad categories that

are closely intertwined, and which encompass the different tasks a computational biologist

can perform.

First, obtaining biological knowledge about the studied phenomena. The works

presented in chapters I, II and IV aimed to link the composition and diversity of the gut

microbiome, or the genomic potential of certain of its members, to host phenotypes. In

particular, those related to obesity and cardiometabolic health. As such, I described patterns

of microbiota diversity in multiple populations and assessed whether these patterns were

associated with host health; characterized microorganisms that are understudied but have the

potential for establishing interventions to tackle cardiovascular disease; and assessed the

generality of associations between the functional potential of the intestinal microbiome and

non-communicable diseases in an understudied population.

Second, the generation of new data from microbial communities, and the assembly

and characterization of novel microbial genomes. To perform the analyses reported in

chapters II and IV, I had to generate new shotgun metagenome sequences. I then used these

sequence reads to functionally and taxonomically profile the microbiome of the study

participants. Moreover, these sequences also served as the basis for the assembly of microbial

genomes reported in chapters II and V. These data enrich our knowledge of microbial
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diversity, and importantly, are made available to the scientific community for others to use to

answer questions that go beyond the objectives of this dissertation.

Third, the development and benchmarking of tools, which is closely linked to the

generation of new data. Just as the data I generated are publicly available, I made use of data

contributed by other researchers to develop databases that facilitate the study of

microbiomes. In turn, these databases were instrumental in maximizing the microbial

diversity I was able to detect in the analysis of taxonomic and functional profiles, thus

completing the circle.

I expect the results I present in my thesis to help guide and inform future studies, be

them cohort studies that take into account the covariates they measure and how they are

included in the analyses; studies that use metagenomic methods to assess microbial

communities incorporating custom databases to maximize the microorganisms detected;

intervention studies that explore novel mechanisms to treat cardiometabolic disease and

obesity; or in vitro studies that investigate how microbial metabolism may influence host gut

homeostasis.

Pitfalls and shortcomings

As with any scientific endeavor, the works presented in this thesis are not without

limitations. I will briefly address some of them.

Cross-sectional, computational and correlational studies

The manuscript presented in chapter II was desk rejected the first time it was

submitted to a peer-reviewed journal. The only comment from the editor read ‘This

informatics study is correlational’. This sentence did not sit very well with me at first, as it

seemed aggressively obvious and an insufficient argument to reject a manuscript. I still think

it is self-evident, however, I now consider it an assertion worth discussing.

The findings from chapters I, II and IV are derived from cross-sectional data from a

single (chapter IV) or multiple human populations (I and II). Cross-sectional data provides a
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snapshot of the microbiome of a subject at a single point in time; they do not account for the

temporal variability of the microbial community (Vandeputte et al., 2021). The gut

microbiome is a complex and dynamic system that can vary over time as a response to shifts in

diet, consumption of medications or disease progression (Johnson et al., 2019). The temporal

variation on biomarkers of diversity, species, and potential function presented in these

chapters could be assessed by future studies focusing on the response to stimuli of interest,

whether dietary, pharmacological or lifestyle related. Moreover, as the editor correctly pointed

out, the kind of data only allowed me to report associations between the diversity, microbial

and functional features measured and host phenotypes, not to provide causal inference.

Indeed, the computational and correlational nature of these works makes them

hypothesis-proposing rather than hypothesis-testing. This is not a liability, rather it is a

strength. Data exploration is the process of finding correlations and patterns that can later be

tested for causality (Yanai and Lercher, 2020), and while there are some who treat such

approaches with contempt, it is undeniable that computational thinking and methods are

central to current biology (Markowetz, 2017). The aim of this sort of studies is to provide a

selection of taxa, functions or indices that are strongly correlated with the phenotype

evaluated, in other words, to put forward hypotheses. This set can, in turn, inform the design

of hypothesis-testing mechanistic or intervention studies that elucidate how the microbiome

is affecting or being affected by the host.

Impact of medications and other confounders on the gut microbiome

As mentioned in the introduction and discussed in the relevant sections of chapters I,

II and IV, the exclusion of subjects with various conditions such as cancer, neurological

diseases, gastrointestinal diseases, or who consumed antibiotics from the analyses allowed me

to rule out that these diseases were responsible for the observed associations. Likewise, the

inclusion of covariates such as age, sex, and geographic origin, in addition to the consumption

of medications for hypertension, diabetes or dislypidemia allowed me to reduce the potential

for confounding (Forslund et al., 2021). Nevertheless, the growth of commensal
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microorganisms in the gut microbiome is inhibited by drugs with human targets of all

therapeutic classes, as demonstrated by in vitro studies (Maier et al., 2018). Since my analyses

only consider antibiotics, and medications with direct relevance to obesity and

cardiometabolic disease without considering their dosage, I am unable to rule out residual

confounding from other medications and variables not measured or not included in the

analyses (Forslund et al., 2021).

I sought to be judicious with the inclusion of covariates that could influence the

outcome of my statistical analyses. The number and nature of the variables I included

depended on the quality of information available: from the information-rich Colombian

cohort to the relatively poor public data I used to characterize the distribution of

Methanomassiliicoccales in multiple populations. I certainly did the best I could with what I

had at my disposal. I expect that as we gain knowledge about the microbiome, better

controlled studies will be performed, so that the noise introduced by confounding variables is

accounted for, and the associations of the microbiome with the conditions studied are

robustly elucidated.

The limitations of databases and methods that rely on them

Metagenomics involves sequencing the total DNA of a microbial community;

sequencing reads are then mapped against databases of genes and genomes (Beghini et al.,

2021). This allows to simultaneously investigate the taxonomic composition of the

community and the metabolic potential encoded by the microbes present (de la

Cuesta-Zuluaga, Ley and Youngblut, 2020). Similarly, the taxonomic assignment of 16S

rRNA gene amplicons also requires the use of databases against which to contrast the

sequences obtained (de la Cuesta-Zuluaga and Escobar, 2016).

Database dependency influences the ability of different algorithms to identify and

annotate genes or taxa present in a microbial community, and flaws in the databases will

certainly lead to flaws in the assessment of the microbiome (Nasko et al., 2018). The issue is

exacerbated when undescribed microorganisms dominate the community under study. This
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pitfall is currently unavoidable: at some point all analyses require adding a label to the unit of

study, be it a taxonomy to an OTU or a MAG, or a protein name to a predicted CDS. A

database of some sort is thus required to match a name or category with a unit of study.

Fortunately, great strides have been recently made regarding the creation,

maintenance and expansion of public databases of microbial genomes obtained by culture or

metagenomic assembly. The proGenomes database (Mende et al., 2020) and the genome

taxonomy database (GTDB) (Parks et al., 2022) did not exist or were in an incipient state

when I started my PhD. Yet they now comprise hundreds of thousands of bacterial and

archaeal genomes which correspond to tens of thousands of microbial species. These

databases are continuously expanding. For example, the latest release of the GTDB (release

202, as of the writing of this discussion) covers 258 406 genomes belonging to 47 894 species

clusters, as defined by their standardized taxonomic ranking (Parks et al., 2018). These values

represent an increase of 33 % in the number of genomes and 50 % in species clusters

compared to the previous release (release 95) (Australian Centre for Ecogenomics, 2021).

Moreover, the tools that leverage these databases are also under continuous development:

Struo, the pipeline for the creation of custom databases for taxonomic profilers I presented in

chapter III, continued its development under the responsibility of other researchers in the

laboratory (Youngblut and Ley, 2021). Therefore, while the issue of database dependence will

affect microbiome studies for the foreseeable future, its pervasiveness can be alleviated by the

broad and systematic inclusion of novel genomes from the ever expanding public databases.

Metagenomics vs Metatranscriptomics or Metaproteomics

The presence of a gene in the genome of a given taxon does not necessarily imply that

said gene is expressed, therefore, metagenomics can only inform us about the potential of the

microbial community, but not about how much of that potential is fulfilled. To obtain

insights about the activity of the microbial community and how it changes in response to a

given stimulus or condition, the use of metatranscriptomics or metaproteomics is necessary.

These approaches directly measure the transcripts, proteins and metabolites actually
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expressed by the members of the microbiome (Shakya, Lo and Chain, 2019). In this section I

refer to the functional information encoded by the metagenome as the ‘potential profile’.

Conversely, I refer to the information derived from metatranscriptomics or metaproteomics

as the ‘active profile’.

The active profile of the microbiome will vary in a context-dependent manner.

Factors like host genetics and metabolism, immune status or dietary patterns will impact the

activity landscape of the gut microbiome (Tanca et al., 2017). In other words, it only provides

a snapshot of the activity of the community at a specific point in time. Different stimuli can

temporarily influence the activity of the microbial community without altering its structure

(Maurice, Haiser and Turnbaugh, 2013; Franzosa et al., 2014). Changes in the composition

of the potential and taxonomic profile require perturbations of greater duration or intensity.

The information carried by the active and potential profiles differ, since by definition,

the expressed transcripts and proteins correspond to a fraction of what is encoded by the

genomes of the members of the community (Tanca et al., 2017). Certain features can be

missed because they were not expressed at the moment of sampling. Moreover, the

abundance of genes in a metagenome is only moderately correlated with their mRNA

expression (Franzosa et al., 2014) and weakly correlated with the protein levels (Tanca et al.,

2017). It has been suggested that the positive correlation between the potential and active

profiles, that is, that the abundance of a feature in the metagenome is a determinant of its

corresponding expression, indicates that most genes across the majority of microbial genomes

are transcribed at similar, relatively fixed rates (Franzosa et al., 2014).

This pitfall is not exclusive to metagenomics; there are also discrepancies between the

abundance of microbial taxa and their metabolic activity. In particular, there is a large

difference in the abundance of taxa from the phyla Bacteroidetes and Firmicutes and their

respective activity as measured by metaproteomics (Tanca et al., 2017). Thus, this caveat

should also be extended to the taxonomic analysis of microbial communities using 16S

rRNA gene sequencing or shotgun metagenomics.
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Its shortcomings notwithstanding, metagenomics is a useful approach since it

provides a broad overview of the functions the microbiota can perform. The abundance

measurements, in turn, provide reasonable estimations of the functions that are actually

being performed. Moreover, metagenome sequencing allows us to perform ecological and

evolutionary assessments of the microbial community by the use of strain-level taxonomic

profiles and metagenome-assembled genomes. This, however, is beyond the scope of the

present discussion.

Promises and future challenges of microbiome science

Microbiome science has bloomed over the last two decades. Its link with human

development, health, and evolution, together with the potential of manipulating this

microbial community are some of the reasons why it has attracted attention from basic,

applied, and translational science (Clavel et al., 2022).

Nevertheless, a dose of skepticism is needed to ward off hype and its detrimental

effects; this is the most important challenge the field currently faces (Hanage, 2014). The first

step to avoid this, and to which this dissertation contributes, is to employ study designs and

statistical frameworks in cross-sectional studies that narrow down the set of microbial

features to be evaluated in subsequent studies (Vujkovic-Cvijin et al., 2020).

The next challenges stem from the aforementioned robust set of microbial features

linked with the host phenotype. The logical step after the identification of microbial

associations is to elucidate the molecular mechanisms by which the microbes and the

microbial-derived metabolites regulate host physiology; this will provide with insights into

the genetic, biochemical, ecological and evolutionary dynamics at play between hosts and

their microbes (Suzuki and Ley, 2020; Zimmermann et al., 2021). In turn, deeper knowledge

of the mechanisms by which host and microbes interact will contribute to the identification

of targets for intervention and thus, the development of tools to be used in clinical and

nutritional settings. Such tools could include tests for the diagnosis or monitoring of disease

(Schlaberg, 2020), or treatments targeting specific conditions (Sorbara and Pamer, 2022). The

53



implementation of therapeutic tools will also require overcoming diverse regulatory obstacles

(Cordaillat-Simmons, Rouanet and Pot, 2020). For this, the establishment of tractable

methods that allow systematic and controlled tests are required (Mirzayi et al., 2021), so that

the relevant quality, efficacy and safety standards are met (Cordaillat-Simmons, Rouanet and

Pot, 2020)

The present dissertation illustrates how culture-independent methods can be used to

study microbial communities and specific taxa within them. However, the use of isolated

microbes will be key to overcome some of the aforementioned issues, and is itself a challenge

to be faced. The development of high-throughput methods for the cultivation of microbes

(Forster et al., 2019; Zou et al., 2019), together with the establishment of molecular and

bioinformatic workflows that allow their taxonomic classification and functional

characterization will be key (Meyer et al., 2021). Likewise, the deployment of the required

laboratory and computational infrastructure that enables the storage, distribution and

analysis of these materials and data will be crucial (Stephens et al., 2015).

The aforementioned challenges are mostly of technical nature; one must also consider

those related to openness in data sharing and equity in the study of overlooked populations

mentioned in the introduction of this dissertation.

Many challenges lie ahead, however, there are even more interesting research avenues

and novel findings waiting to be discovered. The combination of high-throughput

sequence-based methods with improved culture techniques and novel computational

approaches will certainly lead to insights about the functioning of the microbial community,

its adaptation to living in a host, the metabolic processes it carries out and how it is associated

with multiple human phenotypes in different populations. If the aforementioned hurdles are

overcome, it is not unreasonable to foresee a scenario where microbiome-based applications

are used on a routine basis in clinical and nutritional settings.

There has never been a better time in history to be a microbiologist, a computational

biologist or a combination thereof. I am personally excited for what we will learn about our

relationship with microbes in the years to come.
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Abstract
The discovery of distinct links between obesity (OB) and the

cardiometabolic health status (CHS) with the gut microbiome is hindered by the

overlap between these conditions. Moreover, differences in study design and

covariates used encumber the comparison of study outcomes. Here, we

describe features of gut microbiome function associated independently with OB

or CHS in a cohort of adults; and test for the replication of associations

previously reported for microbiome and OB/CHS. We enrolled 459

deeply-phenotyped Colombians from whom we obtained 408 gut

metagenomes. We measured three OB indices and classified individuals

according to their CHS using blood biochemistry and anthropometric data. We

evaluated the association of 136 KEGG modules and 2 653 orthologs

previously linked with OB, cardiovascular disease or diabetes. Medication use,

city, sex and age were included as covariates. We found that metagenome

sequence diversity negatively correlated with OB; subjects with CHS had lower

diversity than healthy subjects with similar OB levels. OB explained a higher
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proportion of variance for sequence diversity and functional beta-diversity.

Similarly, more modules and orthologs were uniquely associated with OB than

with CHS or shared by both conditions. The microbiome potential of diseased

individuals in both conditions showed a decreased fermentative ability and an

increased response to oxygen. Disease-linked features were mainly contributed

by members of Proteobacteria. Our results suggest that OB drives the

microbiome associations with CHS when both are present.

Introduction
The human gut microbiome, the microbial community colonizing the

gastrointestinal tract, is a major participant in multiple metabolic, nutritional and

immune processes of the host (1). As such, it is involved in the etiology of

obesity (2) (OB), the abnormal or excessive fat accumulation that presents a

risk to health (3). The microbiome also plays a role in the the maintenance of

the cardiometabolic health status (CHS), the presence of factors that increase

the risk of heart disease, stroke and type 2 diabetes (T2D), namely, increased

blood pressure, elevated glucose levels or insulin resistance, excess of fat

around the waist, and abnormal concentrations of triglycerides or

cholesterol(4,5). The incidence of these non-communicable diseases has been

steadily increasing worldwide: as of 2016, 1.9 billion adults were overweight and

650 million were obese (6). Obesity leads to a loss of disease-free years owing

to its associated conditions (7). The gut microbiome has therefore become the

focus of study for the discovery of biomarkers, and the target of therapies or

dietary interventions (8). However, OB and CHS are often confounded, obese

individuals often suffer of other cardiometabolic affections (e.g., T2D,

cardiovascular disease, liver disease), therefore decoupling CHS- and

OB-specific associations with the gut microbiome remains a challenge (9).

At the taxonomic level, the composition of the microbiome shows high

heterogeneity, with dominant species varying between individuals according to

their geographical origin, dietary patterns and disease status, among other

factors (10). This heterogeneity often results in contradictory reports of

correlation of microbial taxa with host phenotypes, which hinders the translation
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of gut microbiome findings across populations (11). Conversely, the potential

metabolic capacity of the gut microbiome is highly conserved across individuals

(12). The metabolic potential encoded by the members of the microbial

community is largely redundant, which results in comparable ecosystem

functioning (12). Despite this redundancy, modest changes in microbial

metabolism can affect the functioning of the microbial community and the

interaction with its host. Indeed, shifts in a small number of key metabolites with

major biological relevance may be sufficient to induce alterations in gut

homeostasis or microbiome functionality (13).

Focusing on the metabolic and signaling functions encoded by the

microbiome might help overcome the contradictory associations commonly

reported at the taxonomic level (11). In the case of OB and CHS, the

identification of gut microbiome functions shared between them would help

uncover disease-specific functional disturbances (9). To achieve this,

well-characterized cohorts with relevant host phenotypic data are required.

Moreover, to identify microbial features uniquely associated with each condition

or shared by both, it is possible to incorporate the results of previous studies

into the analysis of novel cohorts. This way, the set of microbial functions

evaluated is restricted to those that have been reported to be linked to OB or

CHS in different populations (14).

In a previous study of the gut microbiota of a community-dwelling cohort

of Colombian men and women by means of 16S rRNA gene sequencing, we

found that multiple microbial configurations were associated with OB and

related conditions. These configurations were defined as taxonomic profiles

characterized by a high abundance of different consortia of co-abundant

microorganisms (15). In the same cohort, we explored a classification method

that allowed us to differentiate subjects by their cardiometabolic health and

obesity status (5). We observed that microbial species richness negatively

correlated with OB, and that cardiometabolically unhealthy subjects showed

lower microbiome diversity than healthy subjects with similar OB levels (16).

Studying the functional profile of the microbiome would allow the identification of
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a set of genes or pathways that drive the association with a given condition,

even if the microorganisms that encode said features differ.

Here, we studied the functional profile of the gut microbiome of a

well-phenotyped cohort of 459 Colombian men and women from five cities by

means of shotgun metagenome sequencing. To identify microbiome functions

robustly associated with OB and CHS, we selected functional features linked to

obesity, cardiovascular disease or T2D from published studies performed in

diverse populations, and tested for their replication in this Colombian cohort. In

our analyses, we included host variables known to confound host-microbe

associations but that are often overlooked in cross-sectional studies. We also

sought to disentangle microbial features uniquely associated with OB or CHS by

classifying individuals according to both factors and determining which functions

are associated with one condition while accounting for the other. This allowed

us to discriminate between microbiome associations unique to OB or CHS, or

shared by both.

Materials and Methods
Ethics approval

This cross-sectional study was conducted in accordance with the

principles of the Declaration of Helsinki 2013 and had minimal risk according to

the Colombian Ministry of Health (Resolutions 8430 of 1993 and 2378 of 2008).

All the participants were thoroughly informed about the study and procedures

before signing consent forms. Participants were assured of anonymity and

confidentiality. Written informed consent was obtained from all the participants

before beginning the study. The Bioethics Committee of SIU—University of

Antioquia (Medellin, Colombia) reviewed the protocol and the consent forms

and approved the procedures described here (approbation act 14-24-588 dated

28 May 2014).

Study population
We enrolled 459 community-dwelling adults from Colombia, South

America, which has been previously described (15). Briefly, between July and
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November 2014, adult men and women aged 18 to 62 insured by the health

insurance provider EPS Sura were enrolled from five Colombian cities as part of

a cross-sectional study. Underweight participants (BMI < 18.5 kg m-2), pregnant

women and individuals who had consumed antibiotics or antiparasitics in the

three months prior to enrollment were excluded. The consumption of other

medications did not warrant exclusion from the study. We also excluded

subjects diagnosed with any of the following diseases: Alzheimer’s disease,

Parkinson disease or any other neurodegenerative disease; current or recent

cancer (< 1 year); and gastrointestinal diseases (Crohn’s disease, ulcerative

colitis, short bowel syndrome, diverticulosis or celiac disease).

Blood biochemistry, anthropometric evaluation, diet assessment and
medication use

The assessment of host parameters, including the measurement of

clinical variables in blood serum, anthropometric characteristics, blood

pressure, short-chain fatty acids (SCFAs), dietary parameters and medication

use is described in detail elsewhere (15,17,18). Briefly, peripheral venous blood

was used to measure total cholesterol, high density lipoprotein (HDL)

cholesterol, low density lipoprotein (LDL) cholesterol, very low density

lipoprotein (VLDL) cholesterol, triglycerides, fasting glucose, fasting insulin,

glycated hemoglobin (HbA1C), adiponectin, lipopolysaccharide-binding protein

(LBP) and high-sensitivity C-reactive protein (hsCRP). The insulin resistance

index using the homeostasis model assessment (HOMA-IR) was calculated

from fasting insulin and glucose. Trained evaluators measured weight, height,

waist circumference (WC), four skin folds (biceps, triceps, subscapular and

ileocrestal), and systolic and diastolic blood pressures (15). We calculated the

body mass index (BMI) as weight (kg)/height squared (m2); participants were

classified as lean (18.5 ≤ BMI < 25.0 kg m-2), overweight (25.0 ≤ BMI < 30.0 kg

m-2) or obese (BMI ≥ 30.0 kg m-2). Body fat percentage (BF%) was calculated

from the skin folds (19). To quantify calories and diet quality in the habitual diet

of participants, we performed 24-hour dietary recall interviews (17).

Pharmacological treatments were registered by the participants in specific
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questionnaires (15). The SCFAs acids butyrate, propionate, acetate, and the

branched-chain fatty acid isobutyrate were measured from feces using gas

chromatography–mass spectrometry (18).

We classified subjects by their cardiometabolic health status (CHS) (16)

as follows. Participants were considered cardiometabolically unhealthy when

they presented 2 or more of the following conditions: systolic/diastolic blood

pressure ≥ 130/85 mm Hg or consumption of antihypertensive medication;

fasting triglycerides ≥ 150 mg dl-1; HDL > 40 mg/dl (men), > 50 mg dl-1 (women)

or consumption of lipid-lowering medication; fasting glucose ≥ 100 mg dl-1 or

consumption of antidiabetic medication; HOMA-IR > 3, and hsCRP > 3 mg dl-1.

DNA extraction and sequencing
Fecal sample collection was performed by each participant, who kept the

sample refrigerated in household freezers and brought it to a collection center in

each city within 12 h. Upon arrival at the collection center, samples were stored

on dry ice and shipped by courier to the Colombian Institute of Tropical

Medicine (ICMT) in Medellin, Colombia, for DNA extraction (20). We extracted

total DNA from human fecal samples of 430 out of the 459 enrolled subjects

using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany). DNA was

quantified with a NanoDrop spectrophotometer (Nyxor Biotech, Paris, France)

and stored at -80°C.

We prepared shotgun metagenome libraries with a modified Nextera

protocol, as described elsewhere (21). Briefly, we used 1 ng of total fecal DNA

for Nextera Tn5 tagmentation. After purification with Agencourt AMPure XP

beads (Beckman Coulter, Brea, CA, USA), we normalized and pooled the

samples. Next, we performed size selection of the pooled samples using

BluePippin (Sage Sciences, Beverly, MA, USA) to restrict fragment sizes to 400

to 700 bp. Barcoded pools were sequenced using the Illumina HiSeq 3000

platform with 2x150 bp paired-end sequencing. Library preparation and

sequencing was performed at the Max Planck Institute for Biology — Tübingen,

Tübingen, Germany.
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Sequence quality control
We validated raw sequence reads with fqtools v.2.0 (22) and

de-duplicated with the “clumpify” command of bbtools v37.78

(https://jgi.doe.gov/data-and-tools/bbtools/). Adapters were trimmed and read

quality control was performed using the “bbduk” command of bbtools and

skewer v0.2.2 (23). We removed human genome reads in silico by mapping

them to the hg19 assembly with the “bbmap” command of bbtools. Quality

reports for each sample were created with fastqc v0.11.7

(https://github.com/s-andrews/FastQC) and multiQC v1.5a (24). Metagenome

coverage for each sample was estimated using Nonpareil v.3.3.4 (25). Samples

with a sequencing depth < 500 000 reads or a metagenome coverage < 60 %

were discarded from downstream analyses.

Metagenome profiling
Filtered reads were used to obtain the functional profile using HUMANn2

v.2.8.1. (26) prior subsampling to a maximum of 10 million reads per sample

with seqtk v.1.3. We mapped reads against custom databases of archaeal and

bacterial genes and genomes generated using Struo v.0.1.6 (27) based on the

release 89 of the Genome Taxonomy Database (28) (available at

http://ftp.tue.mpg.de/ebio/projects/struo/).

Selection of functional features for analysis
We focused our analyses on a set of protein orthologs or metabolic

modules previously reported to be associated with obesity, T2D and

cardiovascular disease. The selection of features to include was systematized

by retrieving the results of studies reporting analyses of novel populations or

meta-analyses which used similar databases to group functional features, and

that were easily accessible in the original publication. For coarse-level analyses,

we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) modules, as

reported by Jie et al. (29) and Wu et al. (30). For fine-level analyses, we used

KEGG orthogroups as reported by Jie et al. (29) and Armour et al. (14).

Selection was performed in three steps (figure S1A): first, for each study we
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selected features that were consistently associated with diseased subjects or

healthy controls (e.g., by removing features enriched in both lean and diabetic

subjects within the same study). Next, we merged the resulting lists of features

and performed a similar selection of features with consistent associations

across studies. Finally, the shortlisted functional features that were detected in

the Colombian subjects were further filtered to include only those present in at

least 50% of individuals. This resulted in 2 653 KEGG orthologs and 136 KEGG

modules, which were used for further analyses (tables S1 and S2).

Statistical analyses
Statistical analyses were performed using R v.4.0.2 (31) unless stated

otherwise. We adjusted P values for multiple comparisons using the

Benjamini-Hochberg method, with a significance threshold of 0.1.

Transformation of functional feature abundances

Functional profile data was transformed using the centered log-ratio (clr).

For this, we first replaced zero values with pseudocounts in a compositionally

aware manner using the zCompositions v.1.3.4 package of R (32), and used the

propr v.4.2.6 (33) and compositions v.2.0 (34) packages to compute the clr

transformation. Positive clr values imply that the feature is more abundant than

the average feature, conversely, negative values imply that the feature is less

abundant than the average (35).

Validation of covariates

We evaluated the individual association of age, sex, city, socioeconomic

status (according to the official Colombian strata division, from 1 [lowest

income] to 6 [highest income]), and the consumption of medications for

diabetes, hypertension, dyslipidemia and proton pump inhibitors (PPIs) with the

overall composition of the microbiome. For this, we used k-mer-based richness

calculated using Nonpareil for alpha-diversity, and Aitchison’s distance

(Euclidean distance using clr-transformed abundances) calculated using KEGG

module abundances as measure of beta-diversity. For each medication
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category, we performed a 1:3 nearest neighbor propensity score matching

without replacement using the MatchIt v.4.1.0 package of R (36), matching

consumers with non-consumers by age, sex, city and BF%.

We tested differences in alpha-diversity by sex and medication

consumption using Welch’s t-test, ANOVA for city and socioeconomic status,

and Spearman’s rank correlation for age. Next, we assessed multivariate

homogeneity of groups dispersions, and performed a permutational multivariate

analysis of variance (PERMANOVA) on Aitchison distance matrices using the

vegan v.2.5-7 package of R (37). Host factors that were significantly associated

with at least one of the two diversity metrics were selected for inclusion as

covariates in downstream analyses.

Functional diversity analyses

For each sample, we estimated k-mer based sequence richness using

Nonpareil (25). We then performed linear regression analyses to test the

association of BMI, BF% or WC (as continuous variables), and cardiometabolic

status of the subjects with sequence richness after adjusting for age, city, sex

and medication usage. Goodness-of-fit of each model was assessed using

Akaike’s information criterion (AIC), and the proportion of variance was

estimated by means of the adjusted coefficient of determination (R2). Next, we

assessed differences in beta-diversity estimates of functional features by BMI,

BF% or WC (as categorical variables), and cardiometabolic status. For this, we

performed a permutational multivariate analysis of variance (PERMANOVA) on

a matrix of Aitchison’s distances of KEGG modules, as implemented in the

vegan v.2.5-7 package of R (37). The proportion of variance was estimated

using the adjusted coefficient of determination (R2). We calculated the unique

and shared contributions of obesity measures and cardiometabolic status to the

functional beta-diversity by variance partitioning.
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Identification of a set of shared functions between obesity and cardiometabolic

health status, and association of functional features with host parameters

We identified individual functional features (i.e. KEGG modules and

orthologs) uniquely associated with obesity or cardiometabolic status using the

MaAsLin2 v.1.0.0 package (38) on R v.3.6.2. For this, we fitted Gaussian linear

models and assessed each feature’s clr-transformed abundance including both

a measure of obesity (e.g. BMI, WC or BF%) and the cardiometabolic health

status as main effects. We used type II ANOVAs to test for significance. A

functional feature was considered to be uniquely associated with a given

condition if it was significant after regressing out the other condition. Oppositely,

we considered a feature as part of the set of shared functions between OB and

CHS if it was significantly associated with a single condition (e.g. in a model

only including OB) but was non-significant after the other was included in the

model (e.g. in a model including both OB and CHS). All models included age,

sex, city and the consumption of the aforementioned medications as covariates;

other host factors evaluated above were not included. We also performed a

sensitivity analysis by removing all subjects who consumed the medications in

question and repeating the analysis; results were largely consistent with the

main analysis (data not shown).

Next, the association of blocks of related microbial features and host

biochemical and anthropometric parameters was tested using HALLA v.0.8.19

(hierarchical all-against-all association testing;

https://github.com/biobakery/halla). We used matrices of residuals of the

microbial features and host parameters after adjusting each for age, sex, city

and medication consumption. Spearman's rank correlation was used as the

similarity measure and hierarchical clustering was performed with Ward's

method.

Quantification of contributional diversity and abundance of functional features

We used HUMAnN2’s tiered search (26), combined with the

Struo-generated custom databases (27), to quantify the contribution of different

members of the microbial community to the total abundance of the detected
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modules and orthologs. In addition, we used these data to quantify the

contributional diversity of the functional features, measured as the number of

taxa that contributed to its total abundance, that is, the contributional richness

(26). We restricted our analyses to the set that were uniquely associated to any

of the obesity measures, the CHS, or that were shared between conditions. For

each set, we compared the contributional richness between modules associated

with health and disease.

Data and code availability
The metagenomic sequence data will be deposited in the European

Nucleotide Archive upon submission of this manuscript to a preprint server

and/or a peer-reviewed journal. The R notebooks and associated data will be

made available at https://github.com/leylabmpi/Colombian_Cardiometabolic.

Results
Overview of a deeply-characterized human cohort

An overview of the cohort, host and microbial data, and the analyses

performed is provided in figure 1. We carried out a cross-sectional study, in

which we recruited 459 community-dwelling adults living in five large Colombian

cities (15), attempted microbiome sequencing in 430 samples and succeeded in

the shotgun characterization in 408 of them. We enrolled subjects in similar

proportions by body mass index category (BMI: lean, overweight, obese), city of

origin (Bogotá, Medellín, Cali, Barranquilla and Bucaramanga), sex at birth

(man, woman) and age group (18 to 40 and 41 to 62 years).
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Figure 1. Overview of the Colombian cohort, study design, metagenome profiling,
functional feature selection and data analysis. Figure made with BioRender.

We assessed diverse demographic, health-related and dietary

parameters from these subjects, and used DNA from fecal samples for gut

metagenome shotgun analyses. Summary statistics of subjects from the studied

cohort are presented in table 1. After metagenomic library construction,

sequencing, and bioinformatic curation of sequencing reads, we retained 408

samples which had a sequencing depth > 5.0x105 reads (mean ± SD: 6 719 985

reads sample-1 ± 8 960 996) or a metagenome coverage calculated using

Nonpareil > 60% (82.36% ± 8.38).
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Cardiometabolic health
status

Body mass index
category

Overall Healthy Unhealthy P val. Lean Overweight Obese P val.

n 408 153 255 125 161 122

Age

(years) 40.74 (11.11) 38.35 (10.60) 42.18 (11.18) 0.001 39.25 (11.24) 40.39 (11.18) 42.75 (10.68) 0.04

Sex—Woman

(%) 205 (50.2) 84 (54.9) 121 (47.5) 0.175 64 (51.2) 76 (47.2) 65 (53.3) 0.58

City

(%)

0.831 0.677

Barranquilla 80 (19.6) 27 (17.6) 53 (20.8) 20 (16.0) 31 (19.3) 29 (23.8)

Bogotá 77 (18.9) 31 (20.3) 46 (18.0) 22 (17.6) 34 (21.1) 21 (17.2)

Bucaramanga 72 (17.6) 30 (19.6) 42 (16.5) 27 (21.6) 29 (18.0) 16 (13.1)

Cali 88 (21.6) 33 (21.6) 55 (21.6) 27 (21.6) 32 (19.9) 29 (23.8)

Medellín 91 (22.3) 32 (20.9) 59 (23.1) 29 (23.2) 35 (21.7) 27 (22.1)

BMI

(kg/m²) 27.94 (5.00) 25.33 (3.88) 29.51 (4.95) <0.001 22.65 (1.60) 27.45 (1.37) 34.00 (3.59) <0.001

Body fat

(%) 37.18 (5.44) 34.76 (5.70) 38.64 (4.73) <0.001 33.34 (5.01) 36.95 (4.46) 41.43 (3.75) <0.001

Waist

circumference

(cm) 92.87 (13.15) 85.06 (10.28) 97.56 (12.46) <0.001 80.54 (7.51) 91.98 (6.93) 106.69 (10.48) <0.001

Systolic BP

(mm Hg) 124.64 (18.52) 116.92 (16.08) 129.28 (18.37) <0.001 116.93 (17.64) 126.20 (17.72) 130.52 (17.88) <0.001

Diastolic BP

(mm Hg) 80.28 (12.25) 75.27 (11.36) 83.28 (11.80) <0.001 74.82 (11.23) 81.23 (12.05) 84.61 (11.53) <0.001

Medication

usage (%)

Hypertension 71 (17.4) 8 (5.2) 63 (24.7) <0.001 12 (9.6) 25 (15.5) 34 (27.9) 0.001

Diabetes 19 (4.7) 0 (0.0) 19 (7.5) 0.001 3 (2.4) 7 (4.3) 9 (7.4) 0.174

Dyslipidemia 41 (10.0) 2 (1.3) 39 (15.3) <0.001 8 (6.4) 17 (10.6) 16 (13.1) 0.206

PPI 19 (4.7) 5 (3.3) 14 (5.5) 0.43 8 (6.4) 4 (2.5) 7 (5.7) 0.236

Total

cholesterol

(mg/dL) 186.63 (34.80) 182.14 (33.25) 189.33 (35.48) 0.043 183.82 (38.90) 188.09 (33.86) 187.59 (31.54) 0.553
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HDL

(mg/dL) 45.67 (13.71) 53.18 (14.59) 41.17 (10.92) <0.001 50.78 (15.13) 43.68 (12.53) 43.07 (12.28) <0.001

LDL

(mg/dL) 115.44 (30.66) 112.56 (30.16) 117.18 (30.88) 0.141 111.98 (32.13) 119.30 (31.18) 113.86 (27.94) 0.107

Triglycerides

(mg/dL)

147.16

(102.46)

94.99

(39.69)

178.47

(115.14) <0.001

122.26

(111.64)

147.37

(83.70)

172.42

(109.51) 0.001

ApoB

(mg/dL) 96.14 (39.98) 87.05 (27.06) 101.60 (45.20) <0.001 92.44 (30.48) 99.55 (54.14) 95.45 (22.74) 0.322

LpA

(mg/dL) 2.08 (4.00) 2.57 (4.30) 1.79 (3.79) 0.056 2.33 (4.29) 2.40 (4.30) 1.40 (3.14) 0.08

Adiponectin

(μg/ml) 6.65 (3.90) 8.09 (4.36) 5.79 (3.31) <0.001 7.83 (4.28) 6.18 (3.51) 6.06 (3.74) <0.001

Glucose

(mmol/L) 89.78 (22.19) 83.13 (6.24) 93.77 (26.89) <0.001 85.86 (20.75) 87.63 (12.50) 96.65 (30.64) <0.001

HbA1c

(%) 5.56 (0.64) 5.38 (0.29) 5.67 (0.76) <0.001 5.43 (0.48) 5.50 (0.61) 5.78 (0.77) <0.001

Insulin

(μU/ml) 13.52 (9.07) 8.47 (3.12) 16.55 (10.07) <0.001 8.52 (3.99) 12.65 (5.96) 19.79 (12.13) <0.001

HOMA-IR 3.15 (3.19) 1.74 (0.65) 4.00 (3.75) <0.001 1.83 (1.09) 2.75 (1.41) 5.02 (4.97) <0.001

Leptin

(ng/mL) 7.00 (6.28) 5.43 (4.91) 7.94 (6.81) <0.001 4.20 (4.09) 5.98 (5.31) 11.22 (7.13) <0.001

LBP

(μg/ml) 4.48 (1.58) 4.02 (1.49) 4.77 (1.57) <0.001 4.11 (1.61) 4.45 (1.58) 4.92 (1.46) <0.001

hs-CRP

(mg/L) 3.17 (4.61) 1.74 (1.80) 4.03 (5.49) <0.001 1.69 (1.50) 3.23 (5.10) 4.62 (5.52) <0.001

Acetate

(μmol/g) 3.81 (4.85) 3.05 (3.55) 4.27 (5.44) 0.014 3.00 (3.23) 3.20 (5.10) 5.45 (5.49) <0.001

Propionate

(μmol/g) 1.18 (1.97) 0.90 (1.18) 1.36 (2.30) 0.021 0.86 (1.16) 1.17 (2.61) 1.54 (1.56) 0.023

Butyrate

(μmol/g) 0.61 (0.94) 0.47 (0.59) 0.69 (1.09) 0.024 0.49 (0.69) 0.61 (1.23) 0.72 (0.68) 0.157

Isobutyrate

(μmol/g) 0.04 (0.15) 0.03 (0.04) 0.04 (0.18) 0.25 0.03 (0.03) 0.05 (0.23) 0.04 (0.05) 0.454

Table legend in next page
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Table 1. General, anthropometric, health-related and dietary characteristics of subjects
with microbiome data included in the present study (n = 408). Data presented as the mean
(SD) or count (%). BMI: body mass index, HDL: high density lipoprotein cholesterol, LDL: low
density lipoprotein cholesterol, hsCRP: high-sensitivity C-reactive protein, HOMA-IR:
homeostatic model assessment–insulin resistance. P values from ANOVA or Chi-squared test.

The functional redundancy of the microbiome is evidenced by the low
variability of the features detected

To assess the metabolic potential of the gut microbiome of the subjects,

we used centered log-ratio (clr) transformed abundances of 3 303 detected

KEGG orthologs and 301 KEGG modules; this transformation allowed us to

account for the compositional nature of the data. Hereafter, we will refer to

KEGG modules and orthologs as functional features. For visualization, we

grouped the KEGG modules according to their clr-transformed abundance using

hierarchical clustering, and observed that they formed three groups, which

roughly correspond to high, medium and low mean abundances (figure 2A).

Likewise, the clustering of modules closely followed their prevalence and

abundance, as we found a strong positive correlation between these two

variables (Spearman's rho = 0.97, P < 0.001). Overall, we observed little

variation on the abundance of the features across subjects. Features with mean

abundances located on the extremes of the distribution, that is, low and high

mean abundance, showed the smallest standard deviation. Conversely,

features with intermediate prevalence had the highest variance (figure 2B and

C). To test whether these patterns are specific to the Colombian cohort, we

performed a similar analysis on a set of 147 publicly available metagenome

samples from the Human Microbiome Project retrieved using the

CuratedMetagenomeData Bioconductor package (39), and observed

comparable patterns (not shown).
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Figure 2. Functional redundancy of the microbiome is evidenced by high prevalence and
low variance of features across subjects of the Colombian cohort. A) Heatmap of
clr-transformed abundance of KEGG modules across subjects (n = 408). Dendrogram on top
was obtained by hierarchical Ward-linkage clustering based on transformed abundances. Color
bands represent prevalence quartiles of modules and whether they were selected for further
analyses based on literature search. B) Scatter plot of mean transformed abundance and
standard deviation of all modules in the Colombian cohort. Point color represents prevalence
quartiles and shape indicates inclusion for further analyses. C) Scatter plot of mean transformed
abundance and prevalence of all modules in the Colombian cohort. Shape and color same as in
B).

Potential confounding host factors associate with functional diversity of
the microbiome

Multiple host parameters are associated with the structure of the gut

microbiome and cardiometabolic health, including age (40), sex (41),

geographical origin (42), and the consumption of medication for conditions such

as T2D, hypertension, dyslipidemia and PPIs (43–45). Accounting for such

covariates can reduce the risk of identifying spurious correlations (40,44,46),

however, the inclusion of all covariates might result in overfitting of statistical

models. Therefore, before testing the association of CHS or OB with individual

functional features, we selected covariates to include in the linear models. For

this, we validated the association of each of the aforementioned host

parameters, in addition to the total number of medications and the

121



socioeconomic status of the subjects with the overall composition of the

functional profile as measured by alpha- and beta-diversity metrics.

We tested the association of T2D, hypertension, dyslipidemia and PPI

medication by matching subjects consuming and not consuming by age, sex,

city and BF% in a 1:3 ratio for each medication separately (figure S2). We

tested differences in alpha-diversity using a Welch's t-test and observed a

significantly lower metagenome richness in consumers of drugs for T2D

(nconsumers = 19, nnon-consumers = 57, t25.95 = 1.522, P = 0.070), hypertension (nconsumers

= 71, nnon-consumers = 213, t110.74 = 2.186, P = 0.016) and dyslipidemia (nconsumers =

41, nnon-consumers = 123, t58.11 = 2.017, P = 0.024). We did not observe differences

between PPI consumers and non-consumers (nconsumers = 19, nnon-consumers = 57,

t25.20 = 0.031, P = 0.489). We did not observe differences in beta-diversity

between consumers and non-consumers of diabetes (F1,406 = 1.066, R2 = 0.015,

P = 0.341), hypertension (F1,406 = 0.858, R2 = 0.002, P = 0.967), dyslipidemia

(F1,406 = 0.866, R2 = 0.006, P = 0.423) and PPI (F1,406 = 1.021, R2 = 0.013, P =

0.469) medication using PERMANOVA on Aitchison’s distances.

We observed significant differences in beta-diversity by sex using

PERMANOVA (F1,406 = 1.908, R2 = 0.005, P = 0.012), but not in alpha-diversity

using Welch's t-test (nwomen = 205, nmen = 203, t402.99 = -0.56, P = 0.65). We did

not observe a significant correlation between age and alpha-diversity using

Spearman's correlation coefficient (rho = 0.002, P = 0.964), nor in beta-diversity

by age group (n18-40 = 195, n41-60 = 213, F1,406 = 0.791, R2 = 0.002, P = 0.764).

We observed significant differences in alpha-diversity by city using ANOVA

(F4,403 = 8.949, P < 0.001) and beta-diversity using PERMANOVA (F4,403 = 6.154,

R2 = 0.058, P = 0.001). We did not observe differences in alpha- or

beta-diversity by the socioeconomic status of the subjects (ANOVA F5,402 =

0.455, P = 0.809, PERMANOVA F5,402 = 0.976, R2 = 0.012,, P = 0.556) (figure

S2). We did not observe differences in beta-dispersion in any of the factors

tested (P > 0.05), that is, groups within each of the variables showed

homogeneous variance.

Based on their association with functional diversity metrics, we kept the

city of origin and consumption of medications for hypertension, T2D and
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dyslipidemia as covariates to include in downstream statistical models. While

non-significant, we also included PPI consumption and sex; we consider that

the risk of not including these variables, given what is known of their influence

over the microbiome in other populations and conditions outweighs the risk of

overfitting the linear models (47).

Obesity better explains differences in functional richness and
beta-diversity than cardiometabolic health status

We evaluated the association of OB and CHS with metagenome

sequence richness using a k-mer-based diversity index, fitting linear models

adjusting for age, sex, city of origin, and the consumption of medications. We

used body mass index (BMI), waist circumference (WC) and percentage of

body fat (BF%) as measures of obesity. As reported in other cohorts, we

observed that in this population there was a negative association between

k-mer-based sequence diversity and host health. Sequence diversity was

negatively correlated with two obesity measures (BMI adj. P = 0.008, WC adj. P

= 0.009, BF% adj. P = 0.540). Similarly, metabolically healthy individuals had

significantly higher richness than unhealthy individuals (CHS adj. P = 0.092).

Moreover, it was possible to differentiate subjects by their cardiometabolic

status within BMI categories (figure 3 and figure S3). OB measures better

explained differences in sequence richness than CHS. BMI had the lowest

Akaike information criterion (AIC) value and explained the highest proportion of

variance (AIC = 1162.796, Adj. R2 = 0.021), followed by WC (AIC = 1164.281,

Adj. R2 = 0.017). Only BF% (AIC = 1172.110, Adj. R2 = -0.002) was a worse

predictor than CHS (CHS AIC = 1169.153, Adj. R 2 = 0.006).

Next, we assessed the unique and shared contributions of OB and CHS

to the functional diversity of the microbiome by calculating the proportion of

variance attributed to each. For this, we calculated Euclidean distances on

clr-transformed abundances of KEGG modules and calculated the proportion of

variance explained using the adjusted R2 from the PERMANOVA test. We found

that BMI explained a higher total and unique proportion of variance for

functional beta-diversity than CHS (PERMANOVA BMI: total adj. R2 = 0.0045,
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unique adj. R2 = 0.0025, P = 0.0037; CHS: total adj. R2 = 0.0021, unique adj. R2

= 0.00014, P = 0.02). The proportion of variance contributed by both BMI

category and CHS, that is, the variance resulting from the correlation of both

conditions, was higher than the unique proportion contributed by CHS but lower

than that of BMI (shared adj. R2 = 0.0020). We did not observe significant

results for BF% or WC (P > 0.05 in all cases). Similar results were obtained

when the analyses were performed using KEGG ortholog tables.

Figure 3. Metagenome sequence richness is negatively correlated with obesity (A) and
can be further differentiated by including cardiometabolic status of subjects (B). Scatter
plots of sequence richness and BMI, regression lines are shown. This pattern is consistent
when WC or BF% are used (see figure S3)

Literature-based selection of candidate features allows to test robust
associations in a novel population

To narrow down the set of functional features that might be associated

with OB and/or CHS, that is, protein orthologs and metabolic modules to test,

we used data from publicly available studies looking into cardiometabolic

diseases that used the same databases to annotate the microbiome features.

We obtained KEGG orthologs from Jie et al. (2017) (29) and Wu et al. (2020)

(30), and KEGG modules from Jie et al. (2017) (29) and Armour et al. (2019)

(14). We filtered the retrieved data to select functional features that were

consistently associated with disease or with healthy controls within and between

studies (see methods and figure S1). We used these lists of candidate features
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to filter the functional profile data generated for the Colombian cohort. After

removal of functional features present in < 50% of our cohort, 2 653 KEGG

orthologs and 136 KEGG modules were retained for downstream analyses

(tables S1 and S2).

Most differentially-abundant functions negatively correlate with obesity
We sought to identify which of the selected candidate functional features

were uniquely linked with OB or CHS, that is, were associated with one

phenotype while accounting for the influence of the other. For this, we fitted

linear models of the clr-transformed abundance using MaAsLin2 adjusting for

the selected host variables. We considered a feature to be uniquely associated

with a given main effect or condition (e.g. OB) if it had a FDR-adjusted P < 0.1

in models with and without adjusting for the other condition (e.g. CHS).

Conversely, a feature was considered as shared between OB and CHS if it was

significant in a model with a single condition but non-significant after both

conditions were considered.

Only a fraction of the candidate features included in our analyses were

significantly associated with CHS or an OB measure (figure S1B): 67/136

(49.3%) KEGG modules and 1 417/2 653 (53.4%) orthologs were uniquely

associated with one of the conditions or belonged to a set of shared features

between CHS and OB (tables S3 and S4). Most features were uniquely

associated with OB measures and showed a negative correlation with them

(figure 4A), with the exception of BF%, where the set of shared features with

CHS was the largest (figure 4B). Regardless of the OB measure used in the

models, the set of features uniquely associated with CHS was small (figure 4B).

125



Figure 4. Obesity, rather than cardiometabolic health status, drives associations with
functional features of the microbiome. A) Scatterplots of linear regression coefficient of
KEGG module abundance in models including CHS and a measure of OB (BMI: left panel, WC:
center panel, BF%: right panel). Colors represent whether a module is uniquely associated with
OB or CHS, shared or not significant. B) Barplots show the number of KEGG modules
belonging to the unique or shared sets shown in A) for each OB measure. Colors represent the
association with health (i.e, health-associated modules are enriched in lean or
cardiometabolically healthy individuals). C) Upset plot indicates the overlap in KEGG modules
associated with each OB measure.
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Most significant features were positively associated with host health,

independent of the set to which they belonged. In the case of OB-associated

features, their abundance was higher in lean individuals compared to obese; for

CHS-linked features, they were enriched in cardiometabolically healthy

compared to unhealthy subjects (figure 4B). This reflects the actual metabolic

functions in which they are involved. Disease-associated modules and orthologs

evidence a metabolic configuration of the microbial community with increased

capacity of metabolizing sulfur and nitrogen compounds through an increased

abundance of thioredoxins, thiosulfate sulfurtransferases, thioesterases, nitrate

reductases, nitrate/nitrite transporters and sensor proteins, and other nitrogen

regulatory proteins. They are also indicative of a metal acquisition response,

with features related to the synthesis and export of the siderophore

enterobactin, in addition to zinc uptake regulators and manganese/iron transport

systems. Other signatures of the gut of diseased subjects include an increased

tolerance to reactive oxygen species by glutathione-regulated efflux systems

and glutathione transferases; the transport of simple sugars via the PTS

system; the metabolism of choline, glycine betaine and trimethylamine; the

synthesis of lipopolysaccharide and polyamine production; and the degradation

of epithelial cells and the utilization of resulting ethanolamine. Conversely,

health-related features included orthologs and modules involved in microbial

energy and fermentative pathways such as glycolysis, the pentose phosphate

pathway, the bifidobacterium shunt and methanogenesis; acetogenesis and the

production of propionate and succinate; degradation of mucin; the biosynthesis

of vitamins, and degradation of amino acids (tables S3 and S4).

We observed a high overlap between functions uniquely associated with

any of the OB measures (BMI, WC or BF%; figure 4C), as expected given the

positive correlation between them (figure S4). Most features belonging to the

unique sets correlated with at least two of the OB metrics and had a consistent

link with host health (figure 4C).
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Functional features significantly associated with OB or CHS also correlate
with blood pressure and SCFA excretion

Next, we sought to identify groups of correlated host parameters and

microbial functional features. For this, we used Hierarchical All-against-All

Association testing (HAllA) on the set of functional features significantly

associated with OB, CHS or both, and biochemical and dietary variables. Both

data matrices were adjusted for age, sex, city and medication consumption, and

P values were adjusted for multiple comparisons. We found 1 573 correlation

blocks when using KEGG orthologs and 66 blocks when using KEGG modules.

We observed a large overlap between the functions that formed these blocks,

that is, multiple functions were linked to several host parameters. The

association of these features was consistently related to improved or

deteriorated host health.

The set of host variables forming the largest correlation blocks were the

fecal concentration of SCFAs: butyrate, acetate or propionate. Twenty-five

module blocks (comprising 49 modules) and 244 ortholog blocks (comprising

1073 orthologs) significantly correlated with at least one SCFAs (figure 5).

Positively correlated blocks encompassed modules predominantly involved in

simple sugar and osmoprotectant transport systems, including components of

the PTS system, and glutamine, glutathione, thiamine, sn-glycerol-phosphate,

rhamnose, RTX toxin, N-acetylglucosamine and alpha-hemolysin/cyclolysin

transport systems (tables S5 and S6). Conversely, modules comprising

negatively correlated blocks were involved in methanogenesis and the

Wood–Ljungdahl pathway; the citrate cycle, glycolysis and gluconeogenesis;

and the biosynthesis of ascorbate, NAD and several nucleotides and amino

acids (tables S5 and S6). It is worth noting that in our cohort, higher fecal SCFA

levels have been linked to obesity and altered cardiometabolic status (18).
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Figure 5. Functional features of the microbiome form correlation blocks with host
factors, including blood pressure and fecal short chain fatty acid levels. Heatmap showing
the correlations between modules signlificanlty associated with OB measures, CHS or shared
between both. Association blocks were obtained using hierarchical all-against-all association
testing (HAllA) and are demarcated by black borders; significance of individual associations are
denoted by white dots (adj. P < 0.1) and color indicates Spearman's correlation coefficient (rho).

After SCFAs, diastolic and systolic blood pressure were the host factors

with the largest blocks of correlated features; we detected 15 blocks

(comprising 23 modules) and 434 ortholog blocks (comprising 602 orthologs)

correlated with either. Most of these blocks overlapped with the large correlation

blocks formed by SCFAs. The direction of the association was largely the same

as above, with higher abundance of transport of simple sugars and

osmoprotectants linked to increased blood pressure, while the opposite was

true for the abundance of methanogenesis, glycolysis, gluconeogenesis and

associated biosynthesis modules (figure 5). Smaller correlation blocks were

also detected for inflammation measured by hsCRP, HbA1c, HOMA-IR, leptin,

insulin, triglycerides, adiponectin and VLDL.

Disease-associated features are less diverse and mainly contributed by
members of Proteobacteria

The above results indicate a scenario where the loss of gut homeostasis

is driven by obesity, and which is characterized by an increase of microbial

functions related to transport of simple sugars and tolerance to reactive oxygen
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species, where fermentative functions are reduced. This pattern closely follows

the germ-organ theory of non-communicable diseases (48), wherein

inflammation in the gut is linked to a disruption of anaerobiosis in the gut and an

expansion of facultative anaerobes from the phylum Proteobacteria (49).

Therefore, we assessed the contribution of microbial taxa to the functional

profile of the microbiome of Colombians using HUMAnN2’s tiered search,

focusing on members of Proteobacteria.

Figure 6. Proteobacteria are the main contributors to disease-linked modules. A)
Contributional diversity of modules significantly associated with obesity measures, CHS or
shared by both. B) Relative contribution of Proteobacteria taxa to the total module diversity.
Black points and bars represent mean and standard deviations.

We calculated the total contributional diversity of the modules

significantly associated with the OB metrics, CHS or both. We measured the

contributional diversity as the number of taxa identified that contributed to the

total abundance of said module, and compared the values between health- and

disease-linked modules. Overall, we observed that modules associated with

health were more diverse than those associated with disease (figure 6A). For
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example, in the case of modules unique to BMI, 253.43 ± 129.54 taxa

contributed on average to disease-associated modules, whereas 2600.94 ±

1537.17 contributed to health-associated modules across all subjects

(Mann-Whitney U = 4, adj. P < 0.01). Very similar patterns were observed with

other obesity measures, both in uniquely associated or shared modules with

CHS (figure 6A).

Next, we assessed the proportion of the contributional diversity that could

be attributed only to members of the phylum Proteobacteria. The pattern was

opposite to the one described above: Proteobacteria taxa contributed more to

the total abundance of disease-linked modules than to health-associated ones

(figure 6B). In the case of modules uniquely associated to BMI, the mean

contribution of Proteobacteria to disease-linked modules was 58.29 % ± 27.96,

while only of 16.83 % ± 6.49 in the case of health-related modules

(Mann-Whithney U = 204, adj. P < 0.01). This was consistent across obesity

measures and unique or shared sets of modules (figure 6B).

Discussion
The consolidation of microbiome science as a framework to understand

health and disease processes depends on the generalizability of identified links

between the microbiome and host phenotypes across human populations. In

this study, we looked into the functional profile of the gut metagenome of a

deeply-phenotyped cohort from a non-Westernized population, Colombian

adults, and its association with obesity and cardiometabolic health. We

incorporated data from published studies to narrow the set of hypotheses to

test. Our rich data set allowed us to decouple obesity and the cardiometabolic

health status of the subjects while also accounting for several confounding

factors, including age, sex, the city of origin and medication consumption. Our

analyses indicate that alterations to the diversity and composition of the gut

microbiome functional profile are mainly driven by obesity, not by the

cardiometabolic status of the individuals. Nevertheless, the microbiome of

diseased individuals in both conditions left a footprint characterized by a lower

sequence richness, a decreased fermentative ability and an increased response
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to higher levels of oxygen in the gut lumen. Consistent with these findings,

functional features enriched in both diseased states, for obesity and

cardiometabolic status, were mainly contributed by members of the phylum

Proteobacteria, many of which are considered as pathogens or pathobionts

(50). Our results validate in this population the previously reported loss of

beneficial functions and diversity, and emphasize the importance of using

well-characterized cohorts to disentangle overlapping associations of host

phenotypes with the microbiome.

Easily accessible data from large cohorts with host and metagenome

information comparable to those used in the present study are scarce. Thus,

performing a multi-population analysis to decouple the association of the

microbiome with obesity and cardiometabolic status, while controlling

confounding factors, was not feasible. Nevertheless, we were able to

incorporate findings from published studies into our analyses by focusing on a

set of functional features that were previously linked to obesity or

cardiometabolic conditions. This allowed us to assess the robustness and

generalizability of the associations on an understudied population from South

America (51) using a rigorous statistical framework.

Even though only a fraction of the features evaluated were found to be

significantly associated with obesity or cardiometabolic status, our results

underscore the link between these conditions and the gut microbiome through

inflammation, both systemic and epithelial. Multiple inflammatory mechanisms

have been associated with the development of obesity, insulin resistance and

cardiovascular disease (52). Recent evidence underscores the importance of

intestinal inflammation in the development of obesity (53). In murine models, gut

epithelial inflammation precedes and correlates with diet-induced obesity and

insulin resistance, and interactions between the gut microbiome and diet are

required for the induction of inflammation (54). In turn, epithelial inflammation

affects intestinal permeability, allowing the translocation of bacterial antigens

such as lipopolysaccharide (LPS) to circulation, resulting in metabolic

endotoxemia (55). The low-grade systemic inflammation induced by increased
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LPS causes an increase in proinflammatory cytokines, compromising insulin

signaling and culminating in insulin resistance and glucose intolerance (56).

In our cohort, functions associated with adverse health outcomes

indicate that the configuration of the gut microbiome in diseased subjects favors

the growth of facultative anaerobes due to a loss of gut epithelial hypoxia (49). It

has been suggested that the expansion of members of the phylum

Proteobacteria, in particular of the family Enterobacteriaceae, are a signature of

epithelial dysfunction (48,57). Colonocytes utilize microbiome-produced

butyrate as a source of energy by mitochondrial beta-oxidation, depleting

oxygen in the epithelium surface; thus, the gut environment is dominated by

obligate anaerobes, such as bacteria from the phyla Bacteroidota, Firmicutes,

Actinobacteriota or Verrucomicrobiota, and methanogenic archaea from the

phyla Methanobacteriota and Thermoplasmatota (58). These microorganisms

ferment complex carbohydrates that escape host digestion, or utilize its

by-products as energy substrate (59). Gut epithelium disruption by

pro-inflammatory stimuli, such as the use of antibiotics (60) or the consumption

of a low-fiber, high-fat diet (61–63), promotes a shift in the energy metabolism of

colonocytes from beta-oxidation of butyrate towards anaerobic glycolysis, which

requires a higher consumption of glucose and does not result in oxygen

depletion (58). In turn, such conditions present a selective advantage to

facultative anaerobes, thus favoring their expansion (64,65). The expansion of

facultative anaerobes is detrimental to the health of the host, since members of

Proteobacteria are not fiber degraders, and their presence hinders the nutrition

of the host by metabolizing products of microbial fermentation to carbon dioxide

in the presence of oxygen (66,67). Moreover, the disruption of the epithelial

barrier results in translocation of microbial antigens, such as LPS, which

promote low-grade inflammation, exacerbating epithelial dysfunction (68) and

inducing insulin resistance (69).

We observed that functions enriched in both obesity and unhealthy

cardiometabolic status display the hallmarks of the germ-organ theory of

non-communicable disease (48), where obesity-associated inflammation results

in a loss of anaerobiosis in the gut and an expansion of Proteobacteria, which is
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aggravated by the subsequent appearance of cardiometabolic disease. The

enrichment of functions involved in the tolerance to reactive oxygen species,

and the utilization of sulfur and nitrogen in alternative energy metabolism

pathways suggest the loss of the hypoxic status of the gut epithelium (60). This

might be due to a degradation of the gut epithelium, as evidenced by orthologs

involved in the utilization of ethanolamine, derived from the cell membrane of

dead epithelial cells (65,70). Inflammation of the gut epithelium causes an

increase in neutrophyl transmigration to the gut lumen (71), where reactive

oxygen species and iron and zinc sequesters are released (72), hence the

increase in siderophores and zinc transporters we observed in obese subjects.

Moreover, the potential synthesis of beneficial metabolites, such as acetate,

propionate and succinate was reduced, while bacterial antigen biosynthesis,

such as lipopolysaccharide, together with the capacity for metabolizing

trimethylamine (TMA) from trimethylamine-N-oxide (TMAO), choline or glycine

betaine was increased. TMAO can be used by diverse Enterobacteriaceae taxa

as electron acceptor, converting it to TMA in the gut (65,73). In turn, TMA is

absorbed by the host, converted into TMAO in the liver and enters circulation;

TMAO inhibits cholesterol transport and promotes its accumulation in

macrophages, inducing the formation of atherosclerotic plaques (74).

Compared to disease-associated modules, health-associated modules

had a higher contributional diversity, that is, more taxa encoded such functions.

The contribution of members of Proteobacteria to the total abundance of the

studied features was higher for disease- than for health-associated modules

and orthologs. This could help explain the negative correlation we observed

between the database-independent sequence diversity and obesity. We shown

in this cohort that individuals with higher abundance of pathobionts, including

Proteobacteria, had worse obesity and cardiometabolic health outcomes than

subjects with higher counts of consortia that included Ruminococcaceae,

Bacteroidales, Christensenellaceae, Methanobacteriaceae or Akkermansiaceae

(15). Additionally, we observed that the disease-associated modules were

positively correlated with other host parameters such as LBP, a marker of

translocation of bacterial antigens to the host bloodstream (75); hsCRP, a
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marker of systemic inflammation (76); and fecal short chain fatty acids levels

(18,77). All the aforementioned host factors were significantly different by

cardiometabolic status or body mass index categories (table 1). Conversely,

features enriched in healthy subjects highlight the loss of the fermentative

capacity of the microbiome, such as methanogenesis, central energy

metabolism pathways, the production of SCFAs such as acetate and

propionate, and the synthesis of succinate and ascorbate.

We did not observe complete replication of the functional features tested,

that is, not all features reached statistical significance in our tests. There are

multiple non-exclusive explanations for this. First, we used a statistical

framework in which feature abundance was transformed to take into account

the compositional nature of sequencing data. In addition, we accounted for host

factors known to influence the composition of the microbiome; namely, the age,

sex, local geographical origin, and the medication consumption of the subjects.

Incorporating known confounders can reduce the risk of obtaining false

positives in cross-sectional population studies (40,46). In other words,

accounting for common confounders might facilitate the comparison between

studies by ameliorating biases introduced by the confounding variables (46).

Second, some of the non-significant results could be due to differences in the

composition of the microbiome between human populations. Indeed, whether

certain characteristics of the microbiome are universal and other are

population-specific, and which associations of the microbiome with human

health are conserved across populations are still open questions in microbiome

research (78). Lastly, the effect size of the correlation between certain human

phenotypes and the gut microbiome tends to be small. Therefore, some

associations can only be recovered by studying cohorts with even larger sample

size than the one used here (46).

Our study is not without limitations. As discussed above, the inclusion of

host covariates such as age, sex, city of origin and the consumption of certain

medications allowed us to reduce the potential for confounding. Although in vitro

studies demonstrated that drugs with human targets of all therapeutic classes

inhibit the growth of human commensals (79), we only considered medications
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with direct relevance to obesity and cardiometabolic health, with no dosage

information. We are, thus, unable to rule out residual confounding from

variables not measured in our study (47). In addition, our findings are based on

cross-sectional data from a single human population. Therefore, we are only

able to report associations between microbial features and host phenotypes, not

provide causal inference. Finally, the present study used shotgun

metagenomics to assess the functional profile of the microbiome. This approach

does not directly measure the transcripts or proteins expressed by the

microbiota, but rather the genomic potential (80). Thus, the activity of the

community at a specific point in time as a response to the studied conditions

cannot be measured (81,82). Nevertheless, this approach provides useful

information insofar as the abundance of genes in a metagenome is positively

correlated with their mRNA expression (81) and the protein levels (83).

The present study strengthens our understanding of the metabolic

potential of the gut microbiome in obesity and cardiometabolic disease in an

understudied population from a middle-income country (78). The scarcity of

easily accessible datasets with as much information as ours makes the direct

comparison between studies difficult, but does not prevent us from evaluating

the generalizability of previously reported patterns by other means. We expect

that the robust associations we report will serve to inform mechanistic studies of

the role of the microbiome in disease and guide the development of

microbiome-based interventions for personalized nutrition and medicine.
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Supplementary figures

Figure S1. Functional features included in the analyses were a subset of the detected
features, and complete replication was not observed in our analyses. A) Decision tree of
candidate feature selection. KEGG modules and orthologs were included according to their
association with cardiovascular disease, T2D or obesity in multiple studies. B) Alluvial plot
indicating the selection of KEGG modules evaluated using BMI as OB measure, from detection
and selection to significance.
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Figure S2. Host covariables are associated with metagenome sequence richness. A)
UpSet plot of medication usage across all subjects. B) Sequence richness by number of
medications consumed across all subjects (n = 408). P values from ANOVA and the only
significant contrast after Tukey's test. C) to F) Sequence richness by individual medication

147



usage after matching consumers with non-consumers by age, sex, city and BF% in a 1:3 ratio.
C) proton pump inhibitors (n consumers, n non-consumers = 19, 57), D) hypertension (71, 213),
E) dyslipidemia (41, 123), F) diabetes (19, 57). G) and H) Sequence richness by number
socioeconomic level and city across all subjects. P values from ANOVA. I) Scatter plot of
sequence richness by age across all subjects. Regression line, regression coefficient, P value
and 95% confidence interval are shown. J) Sequence richness by sex across all subjects. Black
points and bars represent mean and standard deviations.
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Figure S3. Patterns of metagenome sequence richness are conserved when (A) WC and
(B) BF% are evaluated. Scatter plots of sequence richness for both OB measures, regression
lines are shown.
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Figure S4. Scatter plots showing the association between OB measures and CHS across
all subjects (n = 408). Shapes indicate sex and color the CHS of the individuals.
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Supplementary tables
Supplementary tables are available online as excel spreadsheets at

https://figshare.com/s/38d798ca39eb89e34750. For table legends, see below.

Table S1. List of candidate KEGG modules used in downstream analyses.
The final 136 modules were selected based on literature review and had a

prevalence ≥ 50 % in the Colombian cohort. Feature: KEGG ID. Annotation:

feature description. Enrichment: condition in which the feature is enriched

according to Jie et al. (2017) and Armour et al. (2019). (Controls: healthy

subjects, T2D: type 2 diabetes, Shared: multiple conditions).

Table S2. List of candidate KEGG orthologs used in downstream analyses.
The final 2 653 modules were selected based on literature review and had a

prevalence ≥ 50 % in the Colombian cohort. Feature: KEGG ID. Annotation:

feature description. Enrichment: condition in which the feature is enriched

according to Jie et al. (2017) and Wu et al. (2020). (Controls: healthy subjects,

ACVD: atherosclerotic cardiovascular disease, T2D: type 2 diabetes, Shared:

multiple conditions).

Table S3. KEGG modules uniquely associated with a given OB measure,
CHS or shared by both conditions. Feature: KEGG ID. Annotation: feature

description Health_association: health association direction of feature.

Main_Effect_1: Main effect (OB/CHS) associated with module abundance.

value: reference level. lm_coefficient: coefficient of linear model. raw_P_value:

raw P value. Adj_P_value: P value adjusted for multiple comparisons.

Geometric_mean_abundance: mean abundance in Colombian cohort

Standard_Deviation: standard deviation in Colombian cohort Prevalence:

prevalence in Colombian cohort Main_Effect_2: Main effect (OB/CHS) adjusted

model. Set: feature uniquely associated with OB, CHS or shared.

Table S4. KEGG orthologs uniquely associated with a given OB measure,
CHS or shared by both conditions. Feature: KEGG ID. Annotation: feature
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description Health_association: health association direction of feature.

Main_Effect_1: Main effect (OB/CHS) associated with module abundance.

value: reference level. lm_coefficient: coefficient of linear model. raw_P_value:

raw P value. Adj_P_value: P value adjusted for multiple comparisons.

Geometric_mean_abundance: mean abundance in Colombian cohort

Standard_Deviation: standard deviation in Colombian cohort Prevalence:

prevalence in Colombian cohort Main_Effect_2: Main effect (OB/CHS) adjusted

model. Set: feature uniquely associated with OB, CHS or shared.

Table S5. Correlation blocks of KEGG modules and host parameters
obtained using Hierarchical All-against-All Association testing (HAllA).
Cluster_rank: cluster order based on minimum adjusted P value. Cluster_X:

KEGG modules included in the association block. Cluster_Y: host factors

included in the association block. Best_adjusted_pvalue: minimum P value of all

pairwise correlations of block.

Table S6. Correlation blocks of KEGG orthologs and host parameters
obtained using Hierarchical All-against-All Association testing (HAllA).
Cluster_rank: cluster order based on minimum adjusted P value. Cluster_X:

KEGG orthologs included in the association block. Cluster_Y: host factors

included in the association block. Best_adjusted_pvalue: minimum P value of all

pairwise correlations of block.
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Appendix V: Gut metagenomes and assembled microbial genomes

from human adults from urban cohorts from Colombia, South

America
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Abstract
The human gut microbiome is an important mediator of multiple

physiological processes. The identification of generalizable associations and

mechanistic links between this microbial community and human health requires

the study of diverse human populations. Yet the microbiomes of subjects from

low- and middle-income countries are understudied. Here, we present a set of

shotgun gut metagenomes of 459 deeply-phenotyped men and women (18-62

years old) living in geographically distinct urban areas of Colombia (South

America), studied in the context of westernization and the epidemiological

transition. We assembled these metagenomes and retrieved 2 266 medium-

and high-quality metagenome-assembled genomes (MAGs), which we

annotated, classified taxonomically, and compared to large collections of

microbial genomes. The metagenomes, MAGs, and accompanying host data

presented here will benefit initiatives looking into the human microbiome's
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diversity and its role in westernization, nutrition, obesity and cardiometabolic

disease.

Background & Summary
The study of the human gut microbiome has profoundly transformed the

interpretation of multiple physiological processes, from health and disease to

metabolism and nutrient absorption (1). In recent years, major advances in the

establishment of large collections of microbial genomes have allowed us to gain

insights into the taxonomic and functional repertoire of the intestinal microbial

ecosystem (2).

However, the vast majority of studies from where these collections stem

have been performed in subjects from industrialized countries such as the

United States, China or members of the European Union (3,4). Large-scale

studies from low- and middle-income countries that aimed to describe gut

microbial diversity and its association with human health are sparse (4). The

lack of studies in such populations makes it difficult to determine the generality

of many of the previously reported links between the microbiome and the host.

Therefore, calls for initiatives that encompass populations with socioeconomic

and environmental factors beyond high-income countries have been made, so

that a universal understanding of the human microbiome and its effect on host

health can be achieved (3).

Figure 1. Overview of the population, study design, metagenome assembly workflow and
generated data sets. Figure made with BioRender.
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In the present Data Descriptor, we present a set of shotgun metagenome

samples and metagenome-assembled genomes (MAGs) from the gut of a

cohort of 459 community-dwelling human adults from five cities in Colombia,

South America (figure 1). These subjects were sampled as part of a research

project aimed at characterizing the gut microbiota of a population undergoing

westernization, and to determine variation associated with obesity and

cardiometabolic disease. This cohort has been previously studied using 16S

rRNA gene sequencing in the context of the epidemiological transition (5), the

association with cardiometabolic disease (6), the genetic ancestry (7,8), age

and sex (9), and nutritional patterns of the host (10).

Figure 2. Summary of shotgun metagenome sequencing and metagenome assembly
from 408 successfully sequenced human gut samples. A) Sequencing depth and
metagenome coverage of metagenome samples; dashed lines represent inclusion thresholds
for each parameter. B) Completeness and redundancy of each of the obtained MAGs. Green
points correspond to the 2 266 MAGs above quality cut-off values. C) Waffle plot of taxonomic
classification of the 355 SGBs, colored according to the lowest taxonomic level assigned.
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Each subject provided a stool sample, from which we extracted total

DNA. Shotgun metagenome sequencing was performed using the Illumina

HiSeq 3000 platform. We retained 408 samples which had a sequencing depth

of >5.0x105 reads (mean ± SD 6 719 985 reads/sample ± 8 960 996) or a

metagenome coverage calculated using nonpareil >60 % (mean ± SD 82.36 %

± 8.38) (figure 2A). We performed metagenome assembly and binning on a per

sample basis and retrieved 2 797 MAGs. After removal of low-quality genomes

(completeness < 50 % or contamination ≥ 5 %) and dereplication at 99.9 %

average nucleotide identity (ANI), we retained 2 266 MAGs, with an average (±

standard deviation) completeness and contamination of 85.57 % ± 13.11 and

1.07 % ± 1.04, respectively (figure 2B). Further dereplication at 95 % ANI

resulted in 358 species-level genome bins (SGBs). Downstream analyses of

MAGs usually involve the inference of their phylogenetic relations and the

prediction of the functional information encoded in the genome. We performed

gene calling and annotation using Prokka. The predicted proteome was used to

infer a multilocus phylogeny using PhyloPhlAn.

We used release 202 of the Genome Taxonomy Database (GTDB) to

assign a taxonomic classification to each genome. The set of SGBs comprised

296 known species belonging to 172 genera. A total of 57 SGBs (15.92 %)

lacked a species-level classification and 2 SGBs (0.56 %) lacked genus

classification (figure 2C). We compared our MAGs to the set of representative

genomes of the Unified Human Gut Genomes catalog (UHGG v.1.0). The vast

majority of MAGs corresponded to novel strains of the identified species: 2 132

MAGs had ANI values between 95 % and 99 % to their closest match in the

UHGG. Remarkably, we found that 62 (2.74 %) of our MAGs did not have a

species-level match in the UHGG. Mapping the taxonomic novelty onto the

MAG phylogeny revealed that it tended to group within a few clades. Most novel

MAGs belonged to the orders Coriobacteriales (72 MAGs), Oscillospirales (10

MAGs) and Christensenellales (8 MAGs) (figure 3A).
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Figure 3. Phylogeny and taxonomy of the retrieved 2 266 MAGs. A) Phylogenetic tree built from
multilocus sequence alignment. From innermost to outermost rings, the data mapped onto the
phylogeny are: GTDB r202 phylum-level taxonomic classification; taxonomic novelty of the
MAGs compared to GTDB at the species, genus or family level; presence of a genome with ANI
< 95% at the UHGG catalog v.1.0. The phylogeny was inferred from multiple conserved loci
using PhyloPhlAn. The phylogeny is rooted on the last common ancestor of Archaea and
Bacteria. Scale bar represents the number of amino acid substitutions per site. B) Barplot
showing the number of MAGs classified on each bacterial and archaeal phylum. Colors same as
in A).
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Methods
Ethics approval

This cross-sectional study was conducted in accordance with the

principles of the Declaration of Helsinki 2013 and had minimal risk according to

the Colombian Ministry of Health (Resolutions 8430 of 1993 and 2378 of 2008).

All the participants were thoroughly informed about the study and procedures

before signing consent forms. Participants were assured of anonymity and

confidentiality. Written informed consent was obtained from all the participants

before beginning the study. The Bioethics Committee of SIU—University of

Antioquia (Medellin, Colombia) reviewed the protocol and the consent forms

and approved the procedures described here (approbation act 14-24-588 dated

28 May 2014).

Study population
As part of a cross-sectional study aiming to characterize the gut

microbiota of Colombians, we enrolled a cohort of 459 community-dwelling men

and women, aged 18 to 62, from five Colombian cities, with body mass index

(BMI) ≥ 18.5 kg/m2 and without report of cancer, neurodegenerative or

gastrointestinal disease. For each participant, total DNA extracted from fecal

samples, as well as anthropometric, socioeconomic, biochemical and dietary

information were collected. This information included personal medical history

and medication use; dietary intake and physical activity levels; blood pressure

and several measures of adiposity such as BMI, waist circumference and

percentage of body fat; blood biochemistry parameters, namely, high density

lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, very low

density lipoprotein (VLDL) cholesterol, triglycerides, fasting glucose and insulin,

glycated hemoglobin (HbA1c), leptin, adiponectin and high-sensitive C-reactive

protein. A detailed description of data acquisition can be found elsewhere (6).

DNA extraction and sequencing
Each participant performed a stool sample collection. We extracted total

DNA from 430 fecal samples utilizing the QIAamp DNA Stool Mini Kit (Qiagen).
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We prepared metagenome libraries with a modified Nextera protocol, as

described elsewhere (11). Briefly, we used 1 ng of total stool DNA for Nextera

Tn5 tagmentation. After purification with Agencourt AMPure XP beads

(Beckman Coulter), samples were normalized and pooled. Next, we performed

size selection of the pooled samples using BluePippin (Sage Sciences) to

restrict fragment sizes to 400 to 700 bp. Barcoded pools were sequenced using

the Illumina HiSeq 3000 platform with 2x150 bp paired-end sequencing.

Sequence quality control
Raw sequencing reads were validated using fqtools v.2.0 (12), and the

“clumpify” command of bbtools v37.78

(https://jgi.doe.gov/data-and-tools/bbtools/) was used to deduplicate them. We

removed adapters and performed read quality control with skewer v0.2.2 (13)

and the “bbduk” command of bbtools. To remove human genome reads, we

mapped them to the hg19 assembly using the “bbmap” command of bbtools.

After each step, we generated data quality reports using fastqc v0.11.7

(https://github.com/s-andrews/FastQC) and multiQC v1.5a (14). To estimate the

metagenome coverage, we used Nonpareil v.3.3.4. A total of 408 samples that

had a sequencing depth above 1 million reads or a metagenome coverage over

60 % were retained for downstream analyses.

Metagenome assembly
We performed metagenome assembly following the workflow developed

by Youngblut et al. (15). Briefly, each sample was assembled separately, prior

subsampling to a maximum of 20 million reads per sample using seqtk v.1.3. A

reference-based metagenome assembly was performed using metacompass

v.1.2 (16) based on each sample’s taxonomic profile. We profiled each sample

using centrifuge v.1.0.3 (17) to select reference genomes, which we then

downloaded using ncbi-genome-download v.0.2.1. Reads that did not map to

any reference genome were used for de-novo assembly with metaSPAdes

v.3.12.0 (18). Contigs with a minimum length of 2 000 bp from the

reference-based and de novo assemblies were combined and de-replicated
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using bbtools. To bin contigs, we used MaxBin2 v.2.2.4 and MetaBAT2 v.2.12.1,

each executed with 2 parameter settings for a total of 4 bin collections per

sample. Per-sample binning of contigs was performed, but we utilized reads

from all metagenome samples to calculate differential coverage with Bowtie2

v.2.3.5 (19). The best non-redundant set of contig bins (i.e.

metagenome-assembled genomes; MAGs) was selected with DAS-Tool v.1.1.1

(20) based on estimates of completeness and contamination from CheckM. For

downstream analyses, MAGs from all samples were combined.

We calculated completeness and contamination of each MAG using

CheckM v.1.0.13. MAGs with completeness of <50 % or contamination of ≥5 %

were discarded. Taxonomic classification of the MAGs was obtained using

GTDB-Tk v.0.3.3 (21) against the release 202 of the Genome Taxonomy

Database (GTDB). We used dRep to collapse clonal genomes at an average

nucleotide identity (ANI) of 99.9 %. Using PhyloPhlAn v.0.41 (22), we

constructed a maximum-likelihood phylogenomic tree of all de-replicated MAGs

from a concatenated alignment of multiple universally distributed single copy

marker genes. We assessed the taxonomic novelty of the non-redundant MAGs

against the Unified Human Gut Genomes catalog v.1.0 (UHGG) (2) by

calculating the Average Nucleotide Identity (ANI) between each of our MAGs to

each of the 4 644 representative genomes of the UHGG using FastANI v.1.31

(23). We considered a MAG to be novel if it did not have a species level match

in the UHGG (< 95 % ANI). Gene calling, proteome prediction and annotation

was performed on each genome using Prokka 1.12 (24).

Technical validation
We processed stool samples using sterilized equipment and standard

laboratory procedures following manufacturer instructions. The quality of the

extracted DNA was measured prior to the construction of metagenomic

libraries. Negative extraction and library construction controls were sequenced;

a mock community was included as positive sequencing control. We processed

raw sequencing data to remove host and poor quality reads. We restricted the

metagenome assembly only to samples with adequate sequencing coverage
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and depth. Quality of the MAGs was assessed using CheckM; redundant and

low-quality MAGs were removed from the data set. Whenever possible, we

used up-to-date versions of the databases and software for metagenome

assembly and MAG characterization.

Usage notes
Initiatives to expand the understanding of human-associated microbial

diversity across populations benefit from well-annotated, accessible sequences

that are rich in host data, such as those presented here. This Data Descriptor is

useful to researchers studying the diversity of the human microbiome and the

role it plays in westernization, nutrition, obesity and cardiometabolic disease. As

such, we expect the bulk of the data we generated to contribute to large

cataloguing efforts, such as the GTDB or the UHGG. Likewise, selected

genomes could be utilized to broaden the comprehension of particular clades by

comparative genomics (25).

Data records
The annotated MAGs, the taxonomic classification tables and

phylogenetic tree, as well as summaries of the data described here will be

released upon submission of this manuscript to a preprint server and/or a

peer-reviewed journal. The raw metagenome sequence data, and the 2 266

non-redundant MAGs, will be submitted to the European Nucleotide Archive.

Host anthropometric, biochemical and dietary data that has been made

available as part of previously published works can be found at:

https://github.com/jsescobar/westernization, https://github.com/jsescobar/bsp

and https://github.com/Vidarium/diet_microbiota_MiSalud1.0

Code availability
The code used for processing the data will be made available at

https://github.com/leylabmpi/Colombian_MAGs
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