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Summary

The gut microbiome is a complex microbial community that inhabits the
gastrointestinal tract comprising archaea, bacteria, viruses and fungi. This community lies at
the interface between our environment and our cells. As such, it plays an important role in
multiple nutritional, physiological and immune processes, including the synthesis of vitamins
and other compounds, the energy harvest from food, and the tight regulation of innate and
adaptive immunity. The gut microbiome is implicated in the pathophysiology of obesity, type
2 diabetes and cardiovascular disease. This is of particular relevance in the context of the
epidemiologic and dietary transition that characterizes westernization, a process in which
low- and middle-income countries shift towards increased consumption of processed foods
and reduced physical activity with a concomitant increase in non-communicable diseases.
This thesis contributes to our understanding of the role of the gut microbiome in
cardiometabolic disease and obesity

In chapter I, studied the gut microbiome of adults from multiple populations to
describe the association between the host's age and sex and the gut microbial diversity using
16S rRNA gene sequencing. I showed that the microbiome diversity increased with age until
40 years of age, and that young, but not middle-aged adult women had higher gut microbial
diversity than men. These observations were robust to the use of antibiotics or the
cardiometabolic health of the subjects. However, the pattern was not universal since it was
not observed in all studied populations.

In chapter II, I described the diversity, ecological distribution and genomic
characteristics of the archaeal order Methanomassiliicoccales, which have potential as
microbiome-based therapeutics. I carried out genomic and phylogenetic comparisons and
confirmed that the Methanomassiliicoccales order forms two large phylogenetic clades. Based
on abundance across host-associated and environmental metagenomes, I showed that the
clades largely differ in environment preference and genomic potential.

Chapter III introduces a modular pipeline that aids with the retrieval of microbial

genomes from public databases, which are then used to create custom databases for several
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metagenome profiler programs. Here I carried out benchmark analyses on synthetic and real
datasets and showed that the use of custom databases result in an increase of mappability of
sequencing reads. Databases created using this pipeline were used in other chapters of this
dissertation.

For chapter IV, I evaluated the functional potential of the gut microbiome of a cohort
of Colombian adults to detect variation in the microbiome associated with obesity or
cardiometabolic health. I used shotgun gut metagenomes from the Colombian cohort to test
the reproducibility of a set of functional characteristics previously reported to be associated
with cardiometabolic conditions in other populations. Using host metadata, I classified
subjects according to their obesity and cardiometabolic status, and identified which
microbiome functions were uniquely associated with each condition. I found that obesity
drives associations of the microbiome with cardiometabolic disease when both are present.

Chapter V describes the retrieval of genomes from the Colombian gut microbiome
using the metagenome sequence data I collected in the previous chapter. I evaluated the
quality of the genome assemblies, performed the taxonomic classification, established their
taxonomic novelty compared to what is currently reported, and annotated functional and
genomic characteristics.

All in all, the works presented in this thesis advance our knowledge of the role of the
gut microbiome in obesity and cardiometabolic disease. I expect this will help guide future
studies that use metagenomics to look into the associations and mechanisms of the

microbiome with these non-communicable conditions.
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Zusammenfassung

Das Darmmikrobiom ist eine komplexe Gemeinschaft von Mikroorganismen, welche
im Gastrointestinaltrakt angesiedelt ist und sich aus Archaeen, Bakterien, Viren und Pilzen
zusammensetzt. Diese Gemeinschaft befindet sich direkt am Ubergang von unserer
Aufenwelt zu unseren Zellen und tibernimmt wichtige Rollen bei ernihrungsbezogenen,
physiologischen und immunologischen Prozessen. Zum Beispiel, bei der Synthese von
Vitaminen und anderen Verbindungen, bei der Energiegewinnung aus der Nahrung und bei
der Regulation der angeborenen und erworbenen Immunitit. Dartiber hinaus wird das
Darmmikrobiom mit pathophysiologischen Prozessen wie Fettleibigkeit, Typ-2-Diabetes und
Herz-Kreislauf-Erkrankungen in Verbindung gebracht. Dies ist von besonderer Bedeutung
im Kontext des epidemiologischen und ernihrungsbedingten Wandels, den die
Westernisierung mit sich bringt, ein Prozess, bei dem fiir Linder mit niedrigem und
mittlerem Einkommen ein erh6hter Konsum von verarbeiteten Lebensmitteln und weniger
korperliche Aktivitit festgestellt werden kann, was mit einem Anstieg der Inzidenz nicht
bertragbarer Krankheiten einhergeht. Diese Arbeit trigt zu einem besseren Verstindnis der
Rolle des Darmmikrobioms bei kardiometabolischen Erkrankungen und Fettleibigkeit bei.

In Kapitel I untersuchte ich das Darmmikrobiom erwachsener Probanden
verschiedener Populationen auf einen Zusammenhang zwischen Alter, Geschlecht und der
mikrobiellen Vielfalt im Darm mittels 16S rRNA-Gen-Sequenzierung. Ich zeigte eine mit
dem Alter zunehmende Diversitit des Mikrobioms bis zu einem Lebensalter von 40 Jahren,
als auch eine hohere Diversitit des Darmmikrobioms bei jungen erwachsenen Frauen, jedoch
nicht mittleren Alters, im Gegensatz zu Minnern. Diese Erkenntnisse waren unabhingig von
der Antibiotikaeinnahme oder der kardiometabolischen Gesundheit der Probanden.
Allerdings war dieses Muster nicht universell, da es nicht in allen untersuchten Populationen
nachgewiesen wurde.

In Kapitel II habe ich die Vielfalt, die dkologische Verteilung und die genomischen
Merkmale von Archacen der Ordnung Methanomassiliicoccales beschrieben, welche das

Potential haben, als mikrobiombasierte Therapeutika eingesetzt zu werden. Hierzu habe ich

13



genomische und phylogenetische Vergleiche durchgefithrt und so bestitigte, dass die
Ordnung der Methanomassiliicoccales zwei grofie phylogenetische Gruppen beschreibt.
Basierend auf ihrer Abundanz in Metagenomen von Proben die dem Wirt und der Umwelt
entnommen wurden, konnte ich zeigen, dass sich die beiden Gruppen hinsichtlich ihrer
Priferenzen fur ihre Umgebungen und in ihrem genomischen Potenzial stark unterscheiden.

In Kapitel III habe ich einen anpassungsfihigen Verarbeitungsablauf vorgestellt, der
beim Abrufen mikrobieller Genome aus 6ffentlichen Datenbanken hilft, welche dann zur
Erstellung benutzerdefinierter Datenbanken fir verschiedene
Metagenomprofiler-Programme  verwendet werden konnen. Im Rahmen einer
Benchmarkanalyse mit synthetischen und realen Datensitzen zeigte ich, dass die Verwendung
benutzerdefinierter Datenbanken zu einer verbesserten Zuordnungsfihigkeit der
Sequenzierungsdaten fithrt. Datenbanken, welche Mittels dieser Pipeline erstellt wurden,
wurden in anderen Kapiteln dieser Dissertation verwendet.

In Kapitel IV habe ich das funktionelle Potenzial des Darmmikrobioms eines
Kohorts kolumbianischer Erwachsener analysiert, um Variationen im Mikrobiom
aufzudecken, die mit Fettleibigkeit oder kardiometabolischer Gesundheit assoziiert sind. Ich
habe Shotgun-Darm-Metagenome des Kolumbien-Kohorts verwendet, um die
Reproduzierbarkeit einer Reihe von funktionellen Merkmalen zu zeigen, von denen zuvor
berichtet worden war, dass diese mit kardiometabolischen Erkrankungen in anderen
Populationen assoziiert sind. Anhand von Metadaten die fiir den Wirt erhoben wurden, habe
ich die Probanden aufgrund ihrer Fettleibigkeit und ihres kardiometabolischen Status
klassifiziert und so ermittelt, welche funktionellen Eigenschaften der Mikrobiome eindeutig
mit dem jeweiligen Zustand assoziiert waren. Ich fand heraus, dass Fettleibigkeit zur
Assoziation des Mikrobioms mit kardiometabolischen Erkrankungen fithrt, wenn beide
Erkrankungen vorhanden sind.

Kapitel V beschreibt die Erstellung von Genomen aus den Metagenom-Sequenzdaten
des Darmmikrobioms der kolumbianischen Kohorte, welche im vorangegangen Kapitel

beschrieben wurden. Ich beurteilte die Qualitit der erstellten Genome, vollzog die
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taxonomische Klassifizierung, ermittelte ihre taxonomische Neuheit im Vergleich zu den
derzeit vorliegenden Informationen, und annotierte ihre funktionellen sowie genomischen
Merkmale.

Zusammengefasst, erweitern die vorgestellten Ergebnisse dieser Dissertation unser
Wissen tiber die Rolle des Darmmikrobioms bei Fettleibigkeit und kardiometabolischen
Erkrankungen. Ich gehe davon aus, dass die hier erlangten Erkenntnisse fiir kiinftige Studien
hilfreich sein werden, bei denen Metagenom-Analysen genutzt werden, um die Assoziationen
und Mechanismen des Mikrobioms mit diesen nicht iibertragbaren Krankheiten zu

untersuchen.
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Introduction

The human gut microbiome

The gut microbiome is the collection of bacteria, archaea, viruses and fungi that
inhabit the human gastrointestinal tract, together with their theater of activity (Marchesi and
Ravel, 2015). This theater includes the nucleic acids, proteins, lipids and other metabolites
produced by the microbes, plus compounds produced by the host (Berg ez 4/., 2020). The
study of the microorganisms within the human gut has become a flourishing area of
evolutionary, ecological, nutritional, and medical research (Knight ez 4/., 2017; McCarville e
al., 2020; Suzuki and Ley, 2020). The interest in this field has both benefited from and led to
advances in sequencing of nucleic acids (Integrative HMP (iHMP) Research Network
Consortium, 2019); algorithms for the manipulation of biological sequences (Bagci, Patz and
Huson, 2021) or the analysis of interaction networks (Knight ez 4/., 2018; Beghini ez al.,
2021); novel statistical frameworks (Quinn ez al., 2018; Morton et al., 2019), machine
learning approaches (Topguoglu ez al., 2020); and the isolation of as-of-recently uncultured
microorganisms (Forster et al., 2019; Zou et al., 2019). At a more fundamental level, it has
changed the understanding of our relationship with microbes, insofar as we constitute a
metaorganism, whose functioning is intimately linked to the microbial communities that
colonize our bodies (Theis ez /., 2016).

The gut microbiome can be understood using two complementary conceptual
frameworks: one ecological and the other physiological. From an ecological perspective, the
microbiome is an ecosystem subject to changes in flows of nutrients (David ez al., 2014),
environmental stresses (Janzon et 4l., 2019) and other evolutionary factors (Ley, Peterson and
Gordon, 2006), where its members establish ecological relations with each other and with
their environment (Banerjee, Schlaeppi and van der Heijden, 2018). The ecological relations
with their environment, the human gut, is what distinguishes a host-associated microbiota

from other microbial communities and bridges the ecological and the physiological
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frameworks. The environment itself is a living organism which establishes relations with the
microbes, favoring ecological niches for commensal species (Suzuki and Ley, 2020) while
avoiding colonization by pathogens (Litvak and Biumler, 2019), and utilizing compounds
produced by the microbes. Indeed, in the human gut, it is estimated that the microbial
density can reach up to 10" microbes gram'l, making it the main source of microbial
metabolites in the body (Sender, Fuchs and Milo, 2016). These metabolites include, but are
not limited to, short-chain fatty acids, sphingolipids, methylamines, in addition to antigens
such as flagellin or lipopolysaccharide, which modulate host health. Because of this, the
microbiome can be thought of as a microbial organ, that is, a collection of cells that resides as
a structural unit within the body of the host and that have a common function (Byndloss and

Biumler, 2018).

The interplay between the gut microbiome, obesity and

cardiometabolic conditions

Obesity is a non-communicable disease that has been increasing at alarming rates
across the world. It is estimated that 2 billion people are overweight (body mass index [BMI]
> 25 kg m?), one third of them being obese (BMI = 30 kg m”) (Seidell and Halberstadt,
2015). Obesity is considered a risk factor for other major non-communicable conditions,
including type 2 diabetes, cardiovascular disease, coronary heart disease, stroke and multiple
cancers (Grover et al., 2015). Such conditions are, in turn, associated with a decrease in
quality of life and a reduction in life expectancy (Nyberg ez 4/., 2018). The rising incidence of
obesity and associated disorders is not limited to high-income countries; on the contrary, it is
also a major issue in low- and middle-income countries (Dinsa ez a/., 2012).

The gut microbiome is implicated in the pathophysiology of obesity and the
associated conditions type 2 diabetes and cardiovascular disease. The role of the microbial
community is multifaceted; at the most basic level, the overall diversity of the microbiome (Le
Chatelier e al., 2013; Walters, Xu and Knight, 2014), the abundance of multiple taxa

(Duvallet ez al., 2017) and the functions they perform (Armour ez al., 2019) differs between

18



diseased and healthy individuals. Moreover, the microbiome can influence the host
physiology under such conditions in several ways. First, the gut microbiome is closely
connected to the host diet. Individuals with diets rich in ultra processed foods, fat and sugars
have a microbiota enriched in bile-tolerant and putrefactive microorganisms (Garcia-Vega ez
al., 2020). In contrast, subjects whose diets are rich in plant polysaccharides harbor a
microbiome with the ability to degrade dietary fiber and produce short-chain fatty acids
(SCFA). Fiber consumption has been associated with leanness in cross-sectional (Hadrévi,
Segaard and Christensen, 2017) and intervention studies (Buscemi ez 4/., 2018), and in
murine models the addition of fiber prevented the onset of metabolic syndrome induced by a
high-fat diet (Zou et al., 2018). Relatedly, methanogenic Archaea can increase the energetic
efficiency of primary fermenters by reducing partial pressures of H, through methanogenesis,
which results in an increased production of SCFA (Horz and Conrads, 2010). SCFAs have a
positive impact on host health (Morrison and Preston, 2016): butyrate is the main energy
source for colonocytes, and evidence from 7z vitro assays indicate that it influences the
maintenance of the gut barrier by preserving luminal anaerobiosis and promoting the
assembly of tight junction proteins (Kelly ez 4/., 2015). Acetate, propionate and butyrate
regulate the homeostasis of glucose and lipids in the liver (den Besten ez 4/., 2015), and
circulating acetate is negatively correlated with plasma insulin levels (Layden ez 4/., 2012).
Conversely, the microbiome impacts the progression of obesity and cardiometabolic
conditions. A large component of the progression of obesity, diabetes and cardiovascular
disease is linked to various inflammatory processes, both at the systemic level as well as on
particular host tissues. Recent evidence underscores the importance of intestinal
inflammation in the development of obesity (Cox, West and Cripps, 2015). Low-fiber,
high-fat diets (Martinez-Medina et al., 2014; O’Keefe e al., 2015; Statovci et al., 2017) or the
consumption of antibiotics (Palleja ez al., 2018), to name a couple, are pro-inflammatory
challenges that favor changes in the metabolism of the gut epithelium from B-oxidation of
butyrate towards anaerobic glycolysis. This causes the gut to lose its hypoxic status (Litvak,

Byndloss and Baumler, 2018) and results in environmental conditions favorable to facultative
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anaerobes (Shin, Whon and Bae, 2015; Zeng, Inohara and Nuiiez, 2017). The expansion of
anaerobes from the family Enterobacteriaceae (phylum Proteobacteria) is considered a
signature of gut epithelial dysfunction (Litvak ez al., 2017). Perturbations in the integrity of
the epithelial barrier result in translocation of microbial antigens, such as lipopolysaccharide
(LPS), which promote low-grade inflammation, exacerbating epithelial dysfunction
(Mohammad and Thiemermann, 2020). In turn, increased circulating LPS levels promote a
rise in pro-inflammatory cytokines, inducing a state of low-grade systemic inflammation that
is linked to glucose intolerance and insulin resistance (Ding and Lund, 2011).

A further way in which the microbiome can promote detrimental cardiovascular
health outcomes is the synthesis of methylamines (Zeisel and Warrier, 2017). The utilization
of dietary compounds such as carnitine or choline by various microorganisms results in the
synthesis of trimethylamine (TMA). This compound is absorbed by the host and carried to
the liver by the portal vein, where it is oxidized to trimethylamine N-oxide (TMAO).
Multiple epidemiological and experimental studies indicate that circulating levels of TMAO
are directly related to cardiovascular disease (Brown and Hazen, 2018), and it has been
suggested that TMAO inhibits cholesterol transport and promotes its accumulation in
macrophages, resulting in the formation of atherosclerotic plaques (Geng et 4/., 2018).

The associations and mechanisms described above are a non-exhaustive list of the
ways in which the microbiome is involved in obesity and cardiometabolic disease. Yet they
serve to illustrate an important characteristic of the microbial community: unlike other
human organs, it can potentially be targeted rapidly and with relative ease by interventions
utilizing pharmacological, nutritional or probiotic elements, or a combination thereof
(Zimmermann et al., 2021). The challenge is to robustly determine associations between the
host phenotypes and microbiome features. This requires access to well-characterized and

data-rich cohorts, as I describe below.
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Confounders and the importance of well-characterized cohorts

Conditions with highly overlapping phenotypes, such as obesity, cardiovascular
disease or diabetes, require a thorough characterization of the subjects. This is not, however,
the only reason why good host data is required for the successful study of the microbiome in
a human cohort. The gut microbiome is a highly plastic ecosystem, and its composition and
structure are influenced by a myriad of host and environmental factors such as diet,
medication usage, physical activity, host genetics, among others. Many of the aforementioned
host parameters are known risk factors for multiple diseases, therefore, it is not uncommon
for these factors to confound the variable or condition studied.

The ultimate goal of cross-sectional studies is to obtain a small group of species or
functions with a robust association to the host’s phenotype. These sets of features can serve as
the source of hypotheses to be evaluated in intervention or mechanistic studies. However, the
identification of causal relationships between specific microbes or functions with disease is
hindered by the low concordance between studies (Duvallet ez al., 2017; Armour ez al.,
2019). While it cannot be discarded that some links between microbial features and host
physiology might be population-specific or contingent on particular configurations of the
microbiota, the inclusion of known confounders can lessen the risk of obtaining false
positives in cross-sectional population studies (Ghosh ez 4l., 2020; Vujkovic-Cvijin et al.,
2020). In other words, accounting for common confounders might facilitate the comparison
between studies by reducing biases introduced by the confounding variables (Vujkovic-Cvijin
et al., 2020).

Previous studies have pointed out pervasive confounding variables in cohort studies
of the gut microbiome (Vujkovic-Cvijin ez al., 2020). Some of these factors are associated
with the structure and composition of the microbiome and represent risk factors of
non-communicable diseases; namely, age (Biagi ez 4/., 2010; Odamaki ez a/., 2016; Ghosh ez
al., 2020) and sex (Markle er al., 2013; Wallis ez al., 2017; Sinha ez al., 2019) of the host.
Other confounders appear precisely because they are used to treat conditions such as

hypertension or dyslipidemia, and are known to have a direct effect over gut microbes,
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although not all individuals with such conditions are exposed to them. Such is the case of
medications (Maier ez al., 2018; Vich Vila ez /., 2020) including antibiotics (Forslund ez al.,
2013), lipid-lowering medication (Kummen ez al., 2020), antidiabetics (Forslund ez 4/., 2015;
de la Cuesta-Zuluaga et al., 2017) or proton pump inhibitors (Jackson ez 4/., 2016). Finally,
geographical origin is linked to the composition of the microbiome even at the regional level,
as has been shown in several populations (He ez 4/., 2018), including the Colombian cohort I
studied in the present thesis (de la Cuesta-Zuluaga ez 4/., 2018).

Therefore, there is the need to include microbiome-associated confounding host
variables in studies that look into the links between host health and physiological, dietary or
epidemiological factors. This necessitates the use of well-phenotyped populations, where the
collected host data allows consideration of the influence of confounding host variables over
the composition of the microbiome while performing statistical analyses. Moreover, as I will
briefly discuss in the ‘Open data as a key element for studying the microbiome’ section of this
introduction, sharing this information in a way that guarantees its accessibility,
interoperability and reusability is key for the advancement of microbiome research as a

collective endeavor (Ryan ez /., 2021).

Culture—independent methods to study the gut microbiome

The insights that can be obtained about the role of the microbiome in health and
disease are contingent on the approaches used to study the microbial community.
Culture-based methods are key to understanding the links between microbes and host (Maier
et al., 2018), the interactions between members of the microbiota (Ruaud ez 4/., 2020) and
the mechanisms by which microbial compounds affect host systems (Johnson ez 4/., 2020).
However, culture-based methods fall short when characterizing the complete microbial
community since not all gut microbes are as-of-yet culturable, they are low-throughput, and
do not provide an overview of all members of the community and their relative abundances

(Almeida et al., 2021). Sequencing-based methods are culture-independent and can overcome
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some of these pitfalls, since they can potentially detect a large fraction of the community with
an even-increasing throughput and an ever-decreasing cost (Youngblut and Ley, 2021).

The most widely used culture-independent method to survey microbiomes is the
sequencing of a single marker gene, such as the 165 rRNA gene (Goodrich ez al., 2014). After
sample collection, total DNA extracted from the microbial community is used as starting
material. Particular phylogenetically and taxonomically informative regions of the selected
marker are amplified by PCR and then sequenced. Amplicon reads are quality-filtered and
clustered into operational taxonomic units (OTUs) based on sequence identity or denoised
into sequence variants (SVs) based on sequencing error profiles (Bolyen ez al., 2019).
Representative sequences from SVs or OTUs are then taxonomically annotated by matching
them against reference databases (de la Cuesta-Zuluaga and Escobar, 2016). In addition, these
markers can be used to infer phylogenies that encompass all detected members of the
community, which in turn allow assessing intra- and inter-sample diversity (Lozupone ez al.,
2011). The end result of marker-gene workflows are tables enumerating the abundance of the
members of the microbial community across the sequenced samples. However,
marker-gene-based methods can only provide information about the presence and abundance
of microbes in the microbiota, no inference about the functions they potentially or actually
perform can be directly obtained (AfShauer ez /., 2015).

Alternatively, community DNA can also be used to perform shotgun metagenome
sequencing (hereafter metagenomics), where the genetic material is randomly sequenced
without the use of marker-specific primers. This method has gained popularity in recent years
thanks to the declining costs of sequencing and computational resources (Hillmann ez 4.,
2018). An advantage of metagenomics over marker-gene sequencing is the greater amount of
information it provides, even at relatively shallow coverages (Nayfach ez 4/., 2015; Hillmann
et al., 2018). This includes information regarding the metabolic potential of the microbial
community (Franzosa ez al., 2018), estimation of species-level abundance (Lu ez 4/., 2017)
and the ability of retrieving genomes or gene catalogs (Almeida ez al., 2021). Moreover,

metagenomics allows to obtain functional and phylogenetic diversity measures from whole
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genomes and high-quality multi-locus phylogenies, which help to resolve associations
between the microbiome and host phenotypes, as we recently showed (Youngblut, de la
Cuesta-Zuluaga and Ley, 2022).

To obtain the taxonomic and functional profile of the microbiome, shotgun
metagenome reads are mapped against databases of genomes or genes and their abundance is
calculated (Franzosa ez al., 2018; Wood, Lu and Langmead, 2019). In any database-dependent
method or step, be it marker gene or metagenomic sequencing, the content of the databases
will heavily influence the final result. Indeed, genomes from many novel microbial taxa have
been recovered in recent years thanks to advances in culturing methods (Forster ez al., 2019;
Zou et al., 2019) and metagenome sequencing and assembly (Pasolli ez 4/., 2019), which has
lead to the creation of large collections of Bacteria and Archaea genomes (Parks ez 4/., 2018)
and comprehensive databases that leverage them (de la Cuesta-Zuluaga, Ley and Youngblut,
2020; Youngblut and Ley, 2021), thus reducing the risk of oversights by including the most
up-to-date microbial data. Similar to marker gene sequencing, the end result of metagenomic
profiling workflows are tables of abundances of taxa, genes or metabolic pathways across all
samples.

In addition to functional profiling, metagenomics allows the assembly of whole
genomes. Metagenome-assembled genomes (MAGs) are most commonly generated by
assembling shotgun reads into contigs on a per-sample basis; the contigs are then grouped
into bins according to similarities in k-mer frequency or patterns of sequence coverage across
multiple samples (Sieber ez /., 2018). Once binned, the quality of the MAGs is assessed in
terms of completeness and contamination (also called redundancy) according to the presence
of clade-specific single-copy genes (Parks er 4/., 2015). Quality-filtered MAGs can then be
subjected to taxonomic classification, phylogenetic inference and gene calling (Parks ez 4.,
2017). As with any large collection of genomes, MAGs can be used to assess the diversity of a
microbiome (Youngblut ez al., 2020), to compare diversification patterns of microbes with
their hosts (Suzuki ez al, 2021), to expand databases for metagenome profiling (de la

Cuesta-Zuluaga, Ley and Youngblut, 2020; Youngblut and Ley, 2021), to perform
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comparative genomics analyses of specific taxa (Tett ez 4/., 2019; De Filippis, Pasolli and
Ercolini, 2020), among others. All this with the advantage of not requiring the

microorganisms in pure culture in order to have information about the genetic potential they

encode (Almeida ez 4l., 2019).

Internationalizing microbiome research

As mentioned above, the gut microbiome has broad relevance to the health of the
host. Given the wide variation in the composition of the microbiome between and within
populations, the identification of generalizable associations and mechanistic links between
the microbial community and human health requires the study of diverse human
populations. Yet, there is a very strong bias in the representation of human populations in
repositories of genomic data (Abdill, Adamowicz and Blekhman, 2022). A recent survey of
human microbiome data found that publicly available samples are dominated by highly
developed countries: The United States contributed 40.2% of available 16S rRNA amplicon
sequencing or shotgun metagenome samples while representing only 4.3% of the global
population. Likewise, China and European countries also contribute to the bulk of the
available samples, while countries from the global south, including Southeast Asia, Africa and
Latin America are underrepresented (Abdill, Adamowicz and Blekhman, 2022).

There are still unanswered questions in the field of microbiome science which would
benefit from studying a wide range of populations, including but not limited to: which
characteristics of the gut microbiome are specific to certain populations and which are
universal? Do associations of the microbiome with human health described in subjects from
high-income countries extend to lower- and middle-income countries? How does the
distribution of potentially beneficial microbes vary between countries? (Porras and Brito,
2019). In the absence of studies in these populations, it is not possible to determine how
generalizable the associations between microbiota and host health are.

For this reason, there have been calls for initiatives that identify and include

populations with socioeconomic and environmental factors outside of high-income
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countries, so that a universal understanding of the human microbiome and its effect on host
health can be achieved. Otherwise, the benefits of microbiome research may be extended to
only a fraction of the world's population (Porras and Brito, 2019). As I will describe in the
Outline section of this introduction, the works included in this thesis address questions
regarding the diversity of the gut microbiome, its association with human health, and the
methodological challenges of studying this microbial community, while incorporating data

from multiple populations.

Open data as a key element for studying the microbiome

The phrase 'standing on the shoulders of giants' has become commonplace but that
does not make it any less true. One of the essential elements of science is the use of existing
information to solve new questions. It is now possible, even expected, for data generated as
part of a research project to be made public in a transparent, reproducible and reusable
manner (Wilkinson ez 4l., 2016), especially if such data come from research funded with
public money.

Secondary analyses, in which researchers combine and reanalyze public data in a
manner not planned by the original authors, are valuable for the study of microbiomes
(Pasolli ez al., 2016; Duvallet ez al., 2017; Armour et al., 2019; Ruaud et al., 2020; Youngblut
et al., 2020). This has been facilitated by centralized repositories of raw high-throughput
DNA sequences, from which microbial and host data can be retrieved and processed. Results
that are robust to reanalysis are more credible, and studies that produce new knowledge from
underutilized data make the practice of science more efficient, particularly in cases where the
generation of new data is not possible (Rajesh ez /., 2021) (even though this may upset some
people (Longo and Drazen, 2016)).

Despite this, about one-fifth of microbiome studies do not make public the data they
generated (Eckert e 4/., 2020). The works included in the present thesis benefited extensively
from a large and diverse amount of genomic and metagenomic data that can be accessed

through various databases. In turn, I have strived to guarantee that the new genome and
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metagenome data I produced as part of my research projects, in addition to the code to

analyze them, are made public in databases and code repositories.

Outline

In chapter L, I present a multi-population study where I described the relationship of
age and sex to gut bacterial diversity in young and middle-aged adults from four geographic
regions: the United States, the United Kingdom, Colombia, and China. I observed that
microbial diversity increased with age yet plateaued at about 40 years, and that young, but not
middle-aged, adult women had higher gut microbial diversity than men. Microbial diversity
was not associated with cardiometabolic health and medication consumption; the observed
patterns remained after adjusting for cardiometabolic parameters in the Colombian cohort
and antibiotic usage in the US and UK cohorts. The aforementioned association of age and
sex with microbial diversity was not evidenced in the Chinese cohort, therefore, its
universality remains an open question.

In chapter II, I carried out a study on the diversity, ecological distribution and
genomic characteristics of the archaeal order Methanomassiliicoccales, lesser-known members
of the human gut microbiota. Microorganisms from this order use methylated amines,
including trimethylamine (TMA), for methane production. TMA is a compound known to
induce atherosclerosis, which makes these taxa potential targets for microbiome-based
interventions. I characterized a Methanomassiliicoccales MAG retrieved from samples of the
TwinsUK cohort and used it, together with publicly available genomes, to perform
phylogenetic  analyses and genomic comparisons. I confirmed that the
Methanomassiliicoccales order forms two large phylogenetic clades. Using publicly available
metagenomes from environmental and non-human animal guts, I showed that these clades
differ in their environmental preference, with some exceptions. Host-enriched taxa tended to
have smaller genomes and possessed genes related to bile resistance and aromatic amino acid

precursors. Using publicly available human gut metagenomes, I showed that these taxa were
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absent from multiple populations, yet when present, they were correlated with bacteria
known to produce TMA.

The characterization of microbial communities, such as the one presented in chapter
I1, relies heavily on database-dependent methods. The profiling of a metagenome sample
requires, thus, that relevant genomes are included in the databases used. Such was not the case
when my work on Methanomassiliicoccales started. In chapter III, I present Struo, a modular
pipeline to assist the creation of custom databases of genes and genomes for commonly used
metagenome profilers. The custom databases created with Struo provide a substantial
increase in mappability of reads in synthetic and real metagenomic datasets. I employed
databases created with this pipeline to obtain taxonomic and human gut metagenome
samples in the work presented in chapters IT and IV.

Chapter IV presents my efforts to assess the functional potential of the gut
microbiome of a sample of community-dwelling Colombian adults. This with the aim of
determining variation uniquely and robustly associated with obesity or cardiometabolic
health by incorporating phenotypic data that help disentangle said conditions. I selected
functional features linked to obesity, cardiovascular disease or type 2 diabetes from published
studies in diverse populations, and tested their replication in the Colombian cohort. I
performed shotgun metagenome sequencing from stool DNA to assess the gut microbiome
of these subjects. Members of this cohort were very well characterized in terms of
biochemical, anthropometric, medication and dietary data, which I sought to include in my
analyses to reduce the effect of possible confounders. Moreover, these data allowed me to
classify subjects according to their obesity and cardiometabolic status, and to determine
which functions were associated with one condition while accounting for the other. Overall, I
found that obesity drives the microbiome associations with cardiometabolic disease when
both conditions are present.

An advantage of shotgun metagenome sequencing over 16S rRNA gene sequencing
is that it allows to obtain functional data and the assembly of genomes of the members of the

community, in addition to providing insights into the taxonomic profile of a microbiome.
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The assembly of novel microbial genomes is of particular relevance for the study of the gut
microbiome of human populations from low- and middle-income countries and other
understudied populations. Thus, in chapter V I present the retrieval of
metagenome-assembled genomes from the gut microbiome of Colombians using the
metagenome sequence data I produced in chapter IV. I assessed the assembly quality,
performed the taxonomic classification of this set of genomes, determined their taxonomic
novelty and annotated functional and genomic features. In each of the chapters of the
present work I relied on publicly available data; I consider it my duty to also contribute to the
scientific community the data that I generated as part of my work. Therefore, I present this

set of MAGs as a data descriptor.
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Chapter I

Age- and Sex-Dependent Patterns of Gut Microbial Diversity in

Human Adults

The content of this chapter has been published as:

de la Cuesta-Zuluaga J, Kelley ST, Chen Y, Escobar JS, Mueller NT, Ley RE, et al.
mSystems. 2019 Jul;4(4).
Available from: http://dx.doi.org/10.1128/mSystems.00261-19

See appendix I

Abstract

Gut microbial diversity changes throughout the human life span and is known to be
associated with host sex. We investigated the association of age, sex, and gut bacterial alpha
diversity in three large cohorts of adults from four geographical regions: subjects from the
United States and United Kingdom in the American Gut Project (AGP) citizen-science
initiative and two independent cohorts of Colombians and Chinese. In three of the four
cohorts, we observed a strong positive association between age and alpha diversity in young
adults that plateaued after age 40 years. We also found sex-dependent differences that were
more pronounced in younger adults than in middle-aged adults, with women having higher
alpha diversity than men. In contrast to the other three cohorts, no association of alpha
diversity with age or sex was observed in the Chinese cohort. The association of alpha
diversity with age and sex remained after adjusting for cardiometabolic parameters in the
Colombian cohort and antibiotic usage in the AGP cohort. We further attempted to predict
the microbiota age in individuals using a machine-learning approach for the men and women
in each cohort. Consistent with our alpha-diversity-based findings, U.S. and U.K. women had

a significantly higher predicted microbiota age than men, with a reduced difference being seen
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above age 40 years. This difference was not observed in the Colombian cohort and was
observed only in middle-aged Chinese adults. Together, our results provide new insights into
the influence of age and sex on the biodiversity of the human gut microbiota during

adulthood while highlighting similarities and differences across diverse cohorts.

Contributions

Project conception and outline: JdICZ, STK, VGT, JSE, NTM. Project
implementation and coordination: JdICZ, STK, DM. 16S rRNA amplicon data curation:
JdICZ, STK, YC, DM. Statistical analyses: JdICZ, STK, YC. Statistical advice: JSE, NTM,
DM. Machine learning: SH, ADS. Supervision, discussion of analysis and interpretation:
REL, RK, VGT. Manuscript preparation: JdIC, STK. Manuscript review: REL, JSE, NTM,
DM, RK, VGT. Comments: all authors.
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Chapter II

Genomic Insights into Adaptations of Trimethylamine-Utilizing

Methanogens to Diverse Habitats, Including the Human Gut

The content of this chapter has been published as:

de la Cuesta-Zuluaga J, Spector TD, Youngblut ND, Ley RE.
mSystems. 2021 Feb 9;6(1).
Available from: http://dx.doi.org/10.1128/mSystems.00939-20

See appendix 1T

Abstract

Archaea of the order Methanomassiliicoccales use methylated amines such as
trimethylamine as the substrates for methanogenesis. They form two large phylogenetic
clades and reside in diverse environments, from soil to the human gut. Two genera, one from
each clade, inhabit the human gut: Methanomassiliicoccus, which has one cultured
representative, and “Candidatus Methanomethylophilus,” which has none. Questions
remain regarding their distribution across biomes and human populations, their association
with other taxa in the gut, and whether host genetics correlate with their abundance. To gain
insight into the Methanomassiliicoccales clade, particularly its human-associated members, we
performed a genomic comparison of 72 Methanomassiliicoccales genomes and assessed their
presence in metagenomes derived from the human gut (n = 4,472, representing 22
populations), nonhuman animal gut (n = 145), and nonhost environments (n = 160). Our
analyses showed that all taxa are generalists; they were detected in animal gut and
environmental samples. We confirmed two large clades, one enriched in the gut and the other
enriched in the environment, with notable exceptions. Genomic adaptations to the gut

include genome reduction and genes involved in the shikimate pathway and bile resistance.
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Genomic adaptations differed by clade, not habitat preference, indicating convergent
evolution between the clades. In the human gut, the relative abundance of
Methanomassiliicoccales spp. correlated with trimethylamine-producing bacteria and was
unrelated to host genotype. Our results shed light on the microbial ecology of this group and
may help guide Methanomassiliicoccales-based strategies for trimethylamine mitigation in

cardiovascular disease.

Contributions

Project conception and outline: REL, NDY, TDS. Metagenome assembly: JdICZ,
NDY. Comparative genomics, phylogenetic analysis and metagenome profiling: JdICZ.
Public data retrieval: JdICZ, NDY. Bioinformatics and statistics support: NDY. Supervision,
discussion of analysis and interpretation: REL, NDY. Manuscript preparation: JdIC.

Manuscript review: REL, NDY. Comments: all authors.
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Chapter III

Struo: a pipeline for building custom databases for common

metagenome proﬁlers

The content of this chapter has been published as:

de la Cuesta-Zuluaga J, Ley RE, Youngblut ND.
Bioinformatics. 2020 Apr 1;36(7):2314-5.
Available from: http://dx.doi.org/10.1093/bioinformatics/btz899

See appendix 111

Abstract

Taxonomic and functional information from microbial communities can be
efficiently obtained by metagenome profiling, which requires databases of genes and genomes
to which sequence reads are mapped. However, the databases that accompany metagenome
profilers are not updated at a pace that matches the increase in available microbial genomes,
and unifying database content across metagenome profiling tools can be cumbersome. To
address this, we developed Struo, a modular pipeline that automatizes the acquisition of
genomes from public repositories and the construction of custom databases for multiple
metagenome profilers. The use of custom databases that broadly represent the known
microbial diversity by incorporating novel genomes results in a substantial increase in

mappability of reads in synthetic and real metagenome datasets.
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Project conception and outline: JdIC, NDY. Assessment of genome collections: JdIC.

Pipeline benchmark and statistical analysis: JdIC. Implementation of snakemake workflow:
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NDY. Manuscript preparation: JdIC. Manuscript review: REL, NDY. Comments: all

authors.
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Chapter IV

Obesity is the main driver of functional alterations of the gut

microbiome in cardiometabolic disease

The content of this chapter is yet to be published.

de la Cuesta-Zuluaga J, Youngblut ND, Escobar JS, Ley RE.
In preparation.

See appendix IV

Abstract

The discovery of distinct links between obesity (OB) and the cardiometabolic health
status (CHS) with the gut microbiome is hindered by the overlap between these conditions.
Moreover, differences in study design and covariates used encumber the comparison of study
outcomes. Here, we describe features of gut microbiome function associated independently
with OB or CHS in a cohort of adults; and test for the replication of associations previously
reported for microbiome and OB/CHS. We enrolled 459 deeply-phenotyped Colombians
from whom we obtained 408 gut metagenomes. We measured three OB indices and classified
individuals according to their CHS using blood biochemistry and anthropometric data. We
evaluated the association of 136 KEGG modules and 2 653 orthologs previously linked with
OB, cardiovascular disease or diabetes. Medication use, city, sex and age were included as
covariates. We found that metagenome sequence diversity negatively correlated with OB;
subjects with CHS had lower diversity than healthy subjects with similar OB levels. OB
explained a higher proportion of variance for sequence diversity and functional beta-diversity.
Similarly, more modules and orthologs were uniquely associated with OB than with CHS or
shared by both conditions. The microbiome potential of diseased individuals in both

conditions showed a decreased fermentative ability and an increased response to oxygen.
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Disease-linked features were mainly contributed by members of Proteobacteria. Our results

suggest that OB drives the microbiome associations with CHS when both are present

Contributions

Project conception and outline: JdICZ, REL, JSE. Sample processing and
metagenome sequencing: JdICZ. Sequence data processing, host data processing,
metagenome profiling, diversity indices calculation, literature review, selection of features to
include in analysis, statistical analyses: JdICZ. Bioinformatics support: NDY. Supervision,

discussion of analysis and interpretation: REL, JSE, NDY. Manuscript preparation: JdIC.
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Chapter V

Gut metagenomes and assembled microbial genomes from human

adults from urban cohorts from Colombia, South America

The content of this chapter is yet to be published.

de la Cuesta-Zuluaga J, Youngblut ND, Escobar JS, Ley RE.
In preparation.

See appendix V-

Abstract

The human gut microbiome is an important mediator of multiple physiological
processes. The identification of generalizable associations and mechanistic links between this
microbial community and human health requires the study of diverse human populations.
Yet the microbiomes of subjects from low- and middle-income countries are understudied.
Here, we present a set of shotgun gut metagenomes of 459 deeply-phenotyped male and
female adults (18-62 years old) living in geographically distinct urban areas of Colombia
(South America), studied in the context of westernization and the epidemiological transition.
We assembled these metagenomes and retrieved 2 266 medium- and high-quality
metagenome-assembled genomes (MAGs), which we annotated, classified taxonomically, and
compared to large collections of microbial genomes. The metagenomes, MAGs, and
accompanying host data presented here will benefit initiatives looking into the human
microbiome's diversity and its role in westernization, nutrition, obesity and cardiometabolic

disease.
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Supervision, discussion of analysis and interpretation: REL, JSE, NDY. Manuscript

preparation: JdIC. Manuscript review: REL, JSE, NDY.
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Discussion and outlook

The present dissertation comprises work of various kinds that revolve around a
central theme, namely, the use of culture-independent methods and computational
approaches to study the human gut microbiome in the context of obesity and
cardiometabolic diseases. In this section I will not delve into the details of any particular work
since they are discussed in their corresponding manuscript. Instead, I will discuss their

contribution and shortcomings as a whole.

Contribution of this thesis

The collection of works I present here can be grouped into three broad categories that
are closely intertwined, and which encompass the different tasks a computational biologist
can perform.

First, obtaining biological knowledge about the studied phenomena. The works
presented in chapters I, II and IV aimed to link the composition and diversity of the gut
microbiome, or the genomic potential of certain of its members, to host phenotypes. In
particular, those related to obesity and cardiometabolic health. As such, I described patterns
of microbiota diversity in multiple populations and assessed whether these patterns were
associated with host health; characterized microorganisms that are understudied but have the
potential for establishing interventions to tackle cardiovascular disease; and assessed the
generality of associations between the functional potential of the intestinal microbiome and
non-communicable diseases in an understudied population.

Second, the generation of new data from microbial communities, and the assembly
and characterization of novel microbial genomes. To perform the analyses reported in
chapters II and IV, I had to generate new shotgun metagenome sequences. I then used these
sequence reads to functionally and taxonomically profile the microbiome of the study
participants. Moreover, these sequences also served as the basis for the assembly of microbial

genomes reported in chapters II and V. These data enrich our knowledge of microbial
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diversity, and importantly, are made available to the scientific community for others to use to
answer questions that go beyond the objectives of this dissertation.

Third, the development and benchmarking of tools, which is closely linked to the
generation of new data. Just as the data I generated are publicly available, I made use of data
contributed by other researchers to develop databases that facilitate the study of
microbiomes. In turn, these databases were instrumental in maximizing the microbial
diversity I was able to detect in the analysis of taxonomic and functional profiles, thus
completing the circle.

I expect the results I present in my thesis to help guide and inform future studies, be
them cohort studies that take into account the covariates they measure and how they are
included in the analyses; studies that use metagenomic methods to assess microbial
communities incorporating custom databases to maximize the microorganisms detected;
intervention studies that explore novel mechanisms to treat cardiometabolic disease and
obesity; or 7z vitro studies that investigate how microbial metabolism may influence host gut

homeostasis.

Pitfalls and shortcomings

As with any scientific endeavor, the works presented in this thesis are not without

limitations. I will briefly address some of them.

Cross-sectional, computational and correlational studies

The manuscript presented in chapter II was desk rejected the first time it was
submitted to a peer-reviewed journal. The only comment from the editor read ‘This
informatics study is corvelational’. This sentence did not sit very well with me at first, as it
seemed aggressively obvious and an insufficient argument to reject a manuscript. I still think
it is self-evident, however, I now consider it an assertion worth discussing.

The findings from chapters I, IT and IV are derived from cross-sectional data from a

single (chapter IV) or multiple human populations (I and II). Cross-sectional data provides a
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snapshot of the microbiome of a subject at a single point in time; they do not account for the
temporal variability of the microbial community (Vandeputte er al, 2021). The gut
microbiome is a complex and dynamic system that can vary over time as a response to shifts in
diet, consumption of medications or disease progression (Johnson ez al., 2019). The temporal
variation on biomarkers of diversity, species, and potential function presented in these
chapters could be assessed by future studies focusing on the response to stimuli of interest,
whether dietary, pharmacological or lifestyle related. Moreover, as the editor correctly pointed
out, the kind of data only allowed me to report associations between the diversity, microbial
and functional features measured and host phenotypes, not to provide causal inference.
Indeed, the computational and correlational nature of these works makes them
hypothesis-proposing rather than hypothesis-testing. This is not a liability, rather it is a
strength. Data exploration is the process of finding correlations and patterns that can later be
tested for causality (Yanai and Lercher, 2020), and while there are some who treat such
approaches with contempt, it is undeniable that computational thinking and methods are
central to current biology (Markowetz, 2017). The aim of this sort of studies is to provide a
selection of taxa, functions or indices that are strongly correlated with the phenotype
evaluated, in other words, to put forward hypotheses. This set can, in turn, inform the design
of hypothesis-testing mechanistic or intervention studies that elucidate how the microbiome

is affecting or being affected by the host.

Impact of medications and other confounders on the gut microbiome

As mentioned in the introduction and discussed in the relevant sections of chapters I,
II and IV, the exclusion of subjects with various conditions such as cancer, neurological
diseases, gastrointestinal diseases, or who consumed antibiotics from the analyses allowed me
to rule out that these diseases were responsible for the observed associations. Likewise, the
inclusion of covariates such as age, sex, and geographic origin, in addition to the consumption
of medications for hypertension, diabetes or dislypidemia allowed me to reduce the potential

for confounding (Forslund ez 4l., 2021). Nevertheless, the growth of commensal
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microorganisms in the gut microbiome is inhibited by drugs with human targets of all
therapeutic classes, as demonstrated by 7z vitro studies (Maier ez al., 2018). Since my analyses
only consider antibiotics, and medications with direct relevance to obesity and
cardiometabolic disease without considering their dosage, I am unable to rule out residual
confounding from other medications and variables not measured or not included in the
analyses (Forslund ez 4/., 2021).

I sought to be judicious with the inclusion of covariates that could influence the
outcome of my statistical analyses. The number and nature of the variables I included
depended on the quality of information available: from the information-rich Colombian
cohort to the relatively poor public data I used to characterize the distribution of
Methanomassiliicoccales in multiple populations. I certainly did the best I could with whatI
had at my disposal. I expect that as we gain knowledge about the microbiome, better
controlled studies will be performed, so that the noise introduced by confounding variables is
accounted for, and the associations of the microbiome with the conditions studied are

robustly elucidated.

The limitations of databases and methods that rely on them

Metagenomics involves sequencing the total DNA of a microbial community;
sequencing reads are then mapped against databases of genes and genomes (Beghini ez al.,
2021). This allows to simultaneously investigate the taxonomic composition of the
community and the metabolic potential encoded by the microbes present (de la
Cuesta-Zuluaga, Ley and Youngblut, 2020). Similarly, the taxonomic assignment of 16S
rRNA gene amplicons also requires the use of databases against which to contrast the
sequences obtained (de la Cuesta-Zuluaga and Escobar, 2016).

Database dependency influences the ability of different algorithms to identify and
annotate genes or taxa present in a microbial community, and flaws in the databases will
certainly lead to flaws in the assessment of the microbiome (Nasko ez al., 2018). The issue is

exacerbated when undescribed microorganisms dominate the community under study. This
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pitfall is currently unavoidable: at some point all analyses require adding a label to the unit of
study, be it a taxonomy to an OTU or a MAG, or a protein name to a predicted CDS. A
database of some sort is thus required to match a name or category with a unit of study.
Fortunately, great strides have been recently made regarding the creation,
maintenance and expansion of public databases of microbial genomes obtained by culture or
metagenomic assembly. The proGenomes database (Mende ez a/., 2020) and the genome
taxonomy database (GTDB) (Parks ez a/., 2022) did not exist or were in an incipient state
when I started my PhD. Yet they now comprise hundreds of thousands of bacterial and
archaeal genomes which correspond to tens of thousands of microbial species. These
databases are continuously expanding. For example, the latest release of the GTDB (release
202, as of the writing of this discussion) covers 258 406 genomes belonging to 47 894 species
clusters, as defined by their standardized taxonomic ranking (Parks ez 4/., 2018). These values
represent an increase of 33 % in the number of genomes and 50 % in species clusters
compared to the previous release (release 95) (Australian Centre for Ecogenomics, 2021).
Moreover, the tools that leverage these databases are also under continuous development:
Struo, the pipeline for the creation of custom databases for taxonomic profilers I presented in
chapter III, continued its development under the responsibility of other researchers in the
laboratory (Youngblut and Ley, 2021). Therefore, while the issue of database dependence will
affect microbiome studies for the foreseeable future, its pervasiveness can be alleviated by the

broad and systematic inclusion of novel genomes from the ever expanding public databases.

Metagenomics vs Metatranscriptomics or Metaproteomics

The presence of a gene in the genome of a given taxon does not necessarily imply that
said gene is expressed, therefore, metagenomics can only inform us about the potential of the
microbial community, but not about how much of that potential is fulfilled. To obtain
insights about the activity of the microbial community and how it changes in response to a
given stimulus or condition, the use of metatranscriptomics or metaproteomics is necessary.

These approaches directly measure the transcripts, proteins and metabolites actually
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expressed by the members of the microbiome (Shakya, Lo and Chain, 2019). In this section I
refer to the functional information encoded by the metagenome as the ‘potential profile’.
Conversely, I refer to the information derived from metatranscriptomics or metaproteomics
as the ‘active profile’.

The active profile of the microbiome will vary in a context-dependent manner.
Factors like host genetics and metabolism, immune status or dietary patterns will impact the
activity landscape of the gut microbiome (Tanca ez 4/., 2017). In other words, it only provides
a snapshot of the activity of the community at a specific point in time. Different stimuli can
temporarily influence the activity of the microbial community without altering its structure
(Maurice, Haiser and Turnbaugh, 2013; Franzosa ez al., 2014). Changes in the composition
of the potential and taxonomic profile require perturbations of greater duration or intensity.

The information carried by the active and potential profiles differ, since by definition,
the expressed transcripts and proteins correspond to a fraction of what is encoded by the
genomes of the members of the community (Tanca ez 4/., 2017). Certain features can be
missed because they were not expressed at the moment of sampling. Moreover, the
abundance of genes in a metagenome is only moderately correlated with their mRNA
expression (Franzosa et al., 2014) and weakly correlated with the protein levels (Tanca et al.,
2017). It has been suggested that the positive correlation between the potential and active
profiles, that is, that the abundance of a feature in the metagenome is a determinant of its
corresponding expression, indicates that most genes across the majority of microbial genomes
are transcribed at similar, relatively fixed rates (Franzosa ez 4l., 2014).

This pitfall is not exclusive to metagenomics; there are also discrepancies between the
abundance of microbial taxa and their metabolic activity. In particular, there is a large
difference in the abundance of taxa from the phyla Bacteroidetes and Firmicutes and their
respective activity as measured by metaproteomics (Tanca et 4/., 2017). Thus, this caveat
should also be extended to the taxonomic analysis of microbial communities using 16S

rRNA gene sequencing or shotgun metagenomics.
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Its shortcomings notwithstanding, metagenomics is a useful approach since it
provides a broad overview of the functions the microbiota can perform. The abundance
measurements, in turn, provide reasonable estimations of the functions that are actually
being performed. Moreover, metagenome sequencing allows us to perform ecological and
evolutionary assessments of the microbial community by the use of strain-level taxonomic
profiles and metagenome-assembled genomes. This, however, is beyond the scope of the

present discussion.

Promises and future challenges of microbiome science

Microbiome science has bloomed over the last two decades. Its link with human
development, health, and evolution, together with the potential of manipulating this
microbial community are some of the reasons why it has attracted attention from basic,
applied, and translational science (Clavel ez 4/., 2022).

Nevertheless, a dose of skepticism is needed to ward off hype and its detrimental
effects; this is the most important challenge the field currently faces (Hanage, 2014). The first
step to avoid this, and to which this dissertation contributes, is to employ study designs and
statistical frameworks in cross-sectional studies that narrow down the set of microbial
features to be evaluated in subsequent studies (Vujkovic-Cvijin ez /., 2020).

The next challenges stem from the aforementioned robust set of microbial features
linked with the host phenotype. The logical step after the identification of microbial
associations is to elucidate the molecular mechanisms by which the microbes and the
microbial-derived metabolites regulate host physiology; this will provide with insights into
the genetic, biochemical, ecological and evolutionary dynamics at play between hosts and
their microbes (Suzuki and Ley, 2020; Zimmermann et 4/., 2021). In turn, deeper knowledge
of the mechanisms by which host and microbes interact will contribute to the identification
of targets for intervention and thus, the development of tools to be used in clinical and
nutritional settings. Such tools could include tests for the diagnosis or monitoring of disease

(Schlaberg, 2020), or treatments targeting specific conditions (Sorbara and Pamer, 2022). The
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implementation of therapeutic tools will also require overcoming diverse regulatory obstacles
(Cordaillat-Simmons, Rouanet and Pot, 2020). For this, the establishment of tractable
methods that allow systematic and controlled tests are required (Mirzayi ez 4/., 2021), so that
the relevant quality, efficacy and safety standards are met (Cordaillat-Simmons, Rouanet and
Pot, 2020)

The present dissertation illustrates how culture-independent methods can be used to
study microbial communities and specific taxa within them. However, the use of isolated
microbes will be key to overcome some of the aforementioned issues, and is itself a challenge
to be faced. The development of high-throughput methods for the cultivation of microbes
(Forster et al., 2019; Zou et al., 2019), together with the establishment of molecular and
bioinformatic workflows that allow their taxonomic classification and functional
characterization will be key (Meyer ez al., 2021). Likewise, the deployment of the required
laboratory and computational infrastructure that enables the storage, distribution and
analysis of these materials and data will be crucial (Stephens ez al., 2015).

The aforementioned challenges are mostly of technical nature; one must also consider
those related to openness in data sharing and equity in the study of overlooked populations
mentioned in the introduction of this dissertation.

Many challenges lie ahead, however, there are even more interesting research avenues
and novel findings waiting to be discovered. The combination of high-throughput
sequence-based methods with improved culture techniques and novel computational
approaches will certainly lead to insights about the functioning of the microbial community,
its adaptation to living in a host, the metabolic processes it carries out and how it is associated
with multiple human phenotypes in different populations. If the aforementioned hurdles are
overcome, it is not unreasonable to foresee a scenario where microbiome-based applications
are used on a routine basis in clinical and nutritional settings.

There has never been a better time in history to be a microbiologist, a computational

biologist or a combination thereof. I am personally excited for what we will learn about our

relationship with microbes in the years to come.
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ABSTRACT Gut microbial diversity changes throughout the human life span and is
known to be associated with host sex. We investigated the association of age, sex,
and gut bacterial alpha diversity in three large cohorts of adults from four geo-
graphical regions: subjects from the United States and United Kingdom in the Amer-
ican Gut Project (AGP) citizen-science initiative and two independent cohorts of Co-
lombians and Chinese. In three of the four cohorts, we observed a strong positive
association between age and alpha diversity in young adults that plateaued after
age 40 years. We also found sex-dependent differences that were more pronounced
in younger adults than in middle-aged adults, with women having higher alpha di-
versity than men. In contrast to the other three cohorts, no association of alpha di-
versity with age or sex was observed in the Chinese cohort. The association of alpha
diversity with age and sex remained after adjusting for cardiometabolic parameters
in the Colombian cohort and antibiotic usage in the AGP cohort. We further at-
tempted to predict the microbiota age in individuals using a machine-learning ap-
proach for the men and women in each cohort. Consistent with our alpha-diversity-
based findings, U.S. and UK. women had a significantly higher predicted microbiota
age than men, with a reduced difference being seen above age 40 years. This differ-
ence was not observed in the Colombian cohort and was observed only in middle-
aged Chinese adults. Together, our results provide new insights into the influence of
age and sex on the biodiversity of the human gut microbiota during adulthood
while highlighting similarities and differences across diverse cohorts.

IMPORTANCE Microorganisms in the human gut play a role in health and disease,
and in adults higher gut biodiversity has been linked to better health. Since gut mi-
croorganisms may be pivotal in the development of microbial therapies, understand-
ing the factors that shape gut biodiversity is of utmost interest. We performed large-
scale analyses of the relationship of age and sex to gut bacterial diversity in adult
cohorts from four geographic regions: the United States, the United Kingdom, Co-
lombia, and China. In the US, UK, and Colombian cohorts, bacterial biodiversity
correlated positively with age in young adults but plateaued at about age 40 years,
with no positive association being found in middle-aged adults. Young, but not
middle-aged, adult women had higher gut bacterial diversity than men, a pattern
confirmed via supervised machine learning. Interestingly, in the Chinese cohort, min-
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imal associations were observed between gut biodiversity and age or sex. Our re-
sults highlight the patterns of adult gut biodiversity and provide a framework for fu-
ture research.

KEYWORDS 165 rRNA amplicon, age, diversity, microbiome, sex

he human gut microbiota is a highly diverse ecosystem that is extremely variable

among individuals (1). This microbial community may play a key role in human
health and disease (2). Since the gut microbiota may be pivotal to the development of
microbial therapies, understanding the factors that shape overall gut microbiota bio-
diversity over the different human life stages is of utmost interest.

There is increasing evidence suggesting that host genes, gene expression patterns,
environmental exposures (including medication and diet), and lifestyle factors play an
important role in delimiting the boundaries of microbial diversity in the gut (3, 4). While
a detailed longitudinal study of the interplay of each of these factors would be
scientifically, logistically, and financially challenging, the chronological age of the host
may be conceived of as a proxy variable that represents the accumulation of these
effects for a given individual. Several studies have reported a positive correlation
between age and gut microbiota alpha diversity from birth to adulthood (5-8). Like-
wise, it has been shown that alpha diversity is maintained in old age, until comorbidi-
ties contribute to its decline (9). Another intriguing host-associated pattern identified in
humans and rodents is the link between the gut microbiota and biological sex. Several
studies have reported that women have higher microbial diversity than men and that
sex differences in microbial composition emerge after puberty (8, 10-13). These differ-
ences may contribute to the sexual dimorphism of autoimmune (12, 14, 15) and
neuroimmune (16, 17) diseases. Therefore, it is key to consider the impact of age and
sex differences in different human populations to adequately discriminate changes
and variations in the microbiome of individuals.

To better understand how the age and sex of the host relate to the diversity of the
gut microbiota during adulthood, we explored the association of these factors using
data from individuals in three cross-sectional studies from four geographical origins,
including the citizen-science American Gut Project (AGP), comprised of individuals from
the United States and the United Kingdom (4); a cohort of individuals from China (18);
and a study of community-dwelling adults from Colombia (19).

RESULTS

The basic characteristics of the individuals from the four cohorts, stratified by sex
and age group, are summarized in Table 1. We defined adults as individuals between
20 and 69 years of age and divided the age groups by the middle point of this range
(i.e., 45 years); subjects above 70 years of age were excluded from the analysis.

To assess changes in alpha diversity with age during adulthood, we fit a simple
linear regression model and a regression model with linear splines, in which the model
is fit as two consecutive segments (20 to 45 years and 46 to 69 years; see Fig. S1in the
supplemental material). We then evaluated the goodness of fit of each model using the
Akaike information criterion (AIC), which indicated that changes in alpha diversity are
better explained by distinguishing between young adults (20 to 45 years of age) and
middle-aged adults (46 to 69 years of age). In the US., UK, and Colombian cohorts, we
observed a positive but nonlinear association between alpha-diversity measures and
age in both women and men. Loess curves fit independently by sex showed an
inflection point after 40 years of age in each of these cohorts (Fig. 1A to C). In contrast,
we did not observe such a pattern in the Chinese cohort, in which alpha diversity
displayed a slight decrease with age (Fig. 1D).

Next, for each population, we fit linear regression models to examine associations of
microbial diversity, age, and sex in each age group separately. In both the U.S. and UK.
cohorts, we observed a positive relationship between microbial richness and age for
both sexes in young adults (adjusted P value [P-adjust], <<0.001 for the U.S. cohort and
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TABLE 1 General characteristics of the participants of the included cohorts®

1@9 stems’

Young adults (ages 20-45 yr)

Middle-aged adults (ages 46-69 yr)®

Cohort and characteristic Women Men Women Men
AGP, U.5.
MNo. of subjects 627 644 734 583
Age (yr) 3460 (6.79) 3376 (6.61) 56.13 (6.37) 57.13 (6.47)
SV richness 113.80 (33.04) 110.95 (31.51) 120.40 (0.89) 119.0 (0.78)
Shannon index 4.87 (0.83) 483 (0.80) 4.98 (0.89) 5.01 (0.78)
AGP, U.S. antibiotic consumers
MNo. of subjects 136 83 147 91
Age (yr) 33.0 (7.75) 58.07 (6.56) 34.71 (6.87) 58.35 (6.52)
SV richness 100.38 (27.61) 97.80 (31.85) 107.07 (30.06) 108.71 (30.11)
Shannon index 4.64 (0.74) 470 (0.83) 4.72 (0.80) 483 (0.85)
AGP, U.K.
MNo. of subjects 195 173 344 224
Age (yr) 35.90 (6.02) 3640 (6.32) 56.45 (6.68) 57.75 (6.85)
SV richness 132.0 (31.69) 122.60 (32.38) 14230 (36.27) 139.10 (36.23)
Shannon index 5.27 (0.69) 5.05 (0.92) 5.36 (0.83) 5.29 (0.80)
Chinese
MNo. of subjects 946 670 1,826 1,521
Age (yr) 35.16 (6.73) 34.88 (7.07) 56.6 (6.59) 57.36 (6.75)
SV richness 101.80 (27.90) 9966 (26.48) 99.41 (28.67) 1014 (28.50)
Shannon index 4.47 (0.85) 440 (0.84) 4.36 (0.93) 435 (0.95)
Colombian
MNo. of subjects 143 133 83 78
Age (yr) 33.83 (7.21) 3421 (6.98) 52.48 (4.14) 52.90 (4.42)
SV richness 12041 (30.21) 110.71 (31.06) 123.33 (32.75) 116.13 (33.95)
Shannon index 4.60 (1.05) 448 (1.12) 4.73 (0.99) 445 (1.13)
Cardiometabolic risk scale —1.14 (3.07) 064 (3.67) —0.36 (3.06) 1.39 (2.71)

“\alues are given as the mean (SD).
EThe ages of the Colombian individuals ranged from 20 to 62 years.

<.0.001 for the UK. cohort), but not in middle-aged adults (P-adjust, 0.474 for the U.S.
cohort and 0.216 for the U.K. cohort) (Fig. 1A and B). In addition, after accounting for
age, differences in sequence variant (SV) richness tended to be higher in young adults
(for the U.S. cohort, difference between men and women [A,,.. — women] = —3.3 and
P-adjust = 0.134; for the UK. cohort, A, .. _ women = —9.84 and P-adjust = 0.024)
than in middle-aged adults (for the U.S. cohort, A, ., — women = — 1.3 and P-adjust =
0.484: for the UK. cohort, A —3.7 and P-adjust = 0.270). Similar results
were observed when we assessed taxon evenness using the Shannon index (Fig.
§2). Similar to the U.S. and U.K. cohorts from the AGP, we identified a positive
relationship between richness and age in the Colombian cohort in young adults of
both sexes (P-adjust = 0.008) but not in middle-aged adults (P-adjust = 0.722)
(Fig. 1C). Likewise, there was a difference in overall SV richness between the sexes
in young adults (A, eh — women = —10.0; P-adjust = 0.024) but not in middle-aged
adults (A en — women = —7-3; P-adjust = 0.225). In contrast to the US., UK, and
Colombian cohorts, we observed no association between microbiota alpha diversity
and age in young-adult or middle-aged-adult Chinese (P-adjust > 0.1 for both
comparisons) (Fig. 1D). Men in the Chinese cohort tended to have lower SV richness

men — women

than women as young adults, yet the difference was not significant (for young
adults, A, .n - women = —2.14 and P-adjust = 0.194; for middle-aged adults,
A = 2.04 and P-adjust = 0.107). We did not find evidence of an interac-
tion between age and sex on microbial diversity in the studied cohorts for young or

men — women

middle-aged adults with either of the diversity measures, after correcting for multiple
comparisons (P-adjust > 0.15 in all cases). In all cohorts apart from the Chinese, the
proportion of variance in alpha diversity explained by age and sex was moderate, yet
it was consistently higher in younger adults than in middle-aged adults (Table 51).

July/August 2019 Volume 4 Issue 4 e00261-19

72

msystems.asm.org 3

1s9n6 Aq 6102 ‘v1 Aey uo /Biowse swaisAswy/:diy woly pepeojumoq



de la Cuesta-Zuluaga et al.

A
200
o
3
c 150
=
©
o i
< 100
w
501
20 40 60
Age
B 250
» 200
w
g
E 150 A
r
2 1001
501
20 40 60
Age
C 200l
2 :
@ 1501 1 ',
(=}
i)
S
¥ 100
>
w
501
20 40 60
Age
D
3001
o
w
1]
£ 2001
©
r
>
» 100
20 40 60

FIG 1 Gut microbiota richness is nonlinearly associated with age and differs between women and men in
multiple populations: United States (n = 2,588) (A), United Kingdom (n = 936) (B), Colombia (n = 437) (C), and
China (n =4,963) (D). (Left) Sequence variant (SV) richness in adults ages 20 to 69 years (the age of the
Colombians ranged from 20 to 62 years); lines indicate the relationship of richness with age after Loess
smoothing for women and men separately. (Right) SV richness in young (age, 20 to 45 years) and middle-aged
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(age, 46 to 69 years) adults; lines indicate the linear regression fit for women and men separately.

Given that gut microbial diversity may be affected by factors such as antibiotic use
or the cardiometabolic health of the host, we replicated the above-described analyses
in cohorts in which we observed the patterns, making use of publicly available
metadata. To test whether the consumption of antibiotics modified the observed
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FIG 2 Antibiotic consumption has a limited association with the patterns of alpha diversity in U.5. adults that had
consumed antibiotics 6 months prior to enrollment (n = 457). (A) SV richness; (B) Shannon index. (Left) Alpha-
diversity metrics in women and men ages 20 to 62 years; lines indicate the relationships of richness with age after
Loess smoothing. (Right) Alpha-diversity metrics in young (age, 20 to 45 years) and middle-aged (age, 46 to 69

years) adults; lines indicate the linear regression fit for women and men separately.

pattern, we performed the above-described analyses on a set of 457 individuals (283
women and 174 men) from the U.S. cohort of the AGP that reported having consumed
antibiotics in the 6 months prior to enrollment. We observed a lower SV richness in
these individuals than in those that did not consume antibiotics (Table 1). Among the
participants that consumed antibiotics in the past 6 months, we observed a similar
tendency for alpha diversity to increase in the younger group and plateau in middle-
aged individuals, with women having higher diversity than men, although there was a
lack of statistical significance (Fig. 2). Likewise, we replicated the analyses in the
Colombian cohort after introducing a composite measure of the cardiometabolic health
of the subjects as a covariate into the linear models; after we adjusted the analyses for
the cardiometabolic health score, the observed patterns were similar (Fig. 3).

To examine whether similar age- and sex-associated patterns would be observed
when analyzing the relative taxon abundance in the gut microbiota, rather than using
only alpha-diversity measures, we used a supervised machine-learning approach to
compare the composition of the gut microbiota of the subjects of the different
populations. We subdivided each cohort by sex, determined the SVs shared by both
groups, and used their relative abundances and the chronological age at the time of
sample collection of the host to fit a random forest (RF) regression model. Two models
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FIG 3 Adjusting alpha diversity by cardiometabolic health does not affect the observed patterns in
Colombian adults (n = 437). (A) Residuals of SV richness; (B) residuals of the Shannon index. (Left)
Adjusted alpha-diversity metrics in women and men ages 20 to 62 years; lines indicate the relationships
of richness with age after Loess smoothing. (Right) Adjusted alpha-diversity metrics in young (age, 20 to
45 years) and middle-aged (age, 46 to 62 years) adults; lines indicate the linear regression fit for women
and men separately.

were built for women and men aged 20 to 69 years; each was trained using the data
for one sex and tested on the other. For each subject, we calculated the relative
microbiota age as the difference between its microbiota age and the microbiota age of
the interpolated spline fit of an individual of the opposite sex at the same chronological
age. Our results from random forest regressions indicated that the composition of the
gut microbiota explained a low to moderate proportion of variance in chronological
age, which varied by population and sex (Table S2).

We used 1,494 shared SVs between women and men to build the RF model of the
U.S. cohort (Fig. 4A). We found that men exhibited a lower relative microbiota age than
women (in the women-to-men model, the difference between women and men
[A,amen — men] = 0.81 years; P-adjust < 0.001, Wilcoxon rank-sum test; Fig. 4B, top),
suggesting that sex is associated with the adult gut microbial aging process. To validate
this finding, we also trained an RF model in the men and then applied it to the women
(Fig. 4A, bottom); we found that women had a higher microbiota age (in the men-to-
women model, A, en - men = 1.0 years and P-adjust << 0.001; Fig. 4B, bottom). To
establish whether these trends were present in different age groups, we then examined
the sex-dependent association of microbiota age in young and middle-aged adults
separately. In the young-adult group, we selected the 1,311 shared SVs between both
sexes to build the RF model for women and then applied it to predict the microbiota
age of men. We found that young women exhibited a slightly higher relative micro-
biota age than men (A, men — men = 0.32 years, P-adjust < 0.001; Fig. 4C and D, top).
Similar results were observed when we assessed the microbiota age in the middle-
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aged-adult group, in which we used the 1,601 shared SVs between sexes to build
the RF model as described above. The microbiota age was higher in women than
in men (A, men — men — 0.48 years, P-adjust < 0.001; Fig. 4C and D, top). Further-
more, such sex differences in microbiota age were not affected when we applied
the men's model to women (Fig. 4C and D, bottom). Likewise, in the U.K. cohort,
we found that the microbiota age was higher in women than in men (women-
to-men model, A, nen — men = 0.51 years and P-adjust = 0.002; men-to-women
model, A, men — men = 0.96 years and P-adjust < 0.001; Fig. 4E and F), using 1,613
SVs found in either the women's or men’s microbiota for building and apply-
ing RF models. In addition, we observed significant or borderline significant dif-
ferences in relative microbiota age between sexes in young adults (women-to-men
model, A, omen — men = 0.15years and P-adjust = 0.186; men-to-women model,
A omen — men — 0.36 years and P-adjust = 0.028; Fig. 4G and H) and middle-aged adults
(women-to-men model, A, nen — men = 041 years and P-adjust << 0.001; men-to-
women model, A, nen - men = 0.25 years and P-adjust < 0.091; Fig. 4G and H). In
the Colombian cohort, we used 1,074 SVs shared between sexes to build the RF
model; similar yet nonsignificant trends were observed between microbiota age
and sex in the nonstratified analyses (women-to-men model, A, en - men =
0.38 years and P-adjust = 0.173; men-to-women model, A, en — men = 3.06—05 years
and P-adjust = 0.9; Fig. 4l and J) and in the young-adult group (women-to-men model,
A omen — men = 0.18 years and P-adjust = 0.189; men-to-women model, A, en — men =
0.02 years and P-adjust =0.292; Fig. 4K and L) and the middle-aged-adult group
(women-to-men model, A, omen — men = 0.27 years and P-adjust = 0.186; men-to-
women model, A, men — men = 0.27 years and P-adjust = 0.873; Fig. 4K and L). We used
1,279 SVs shared between sexes to build the RF models in the Chinese cohort. The
association between microbiota age and sex was not consistent when we cross-tested
the models (women-to-men model, A, men — men = —0.07 years and P-adjust = 0.468;
men-to-women model, &, ,1en — men = 045 years and P-adjust << 0.001; Fig. 4M and N).
We did not observe significant associations in the young-adult group (women-to-
men model, A, en - men = 0.09 years and P-adjust = 0.183; men-to-women model,
A, omen — men = —0.17 years and P-adjust = 0.028; Fig. 40 and P), whereas in the
middle-aged-adult group, we observed sex-dependent differences in microbiota age,
and such differences tended to be consistent in the cross-application of the models
(women-to-men model, A, en - men = 0.08 years and P-adjust = 0.059; men-to-
women model, A, en — men = 0.31 years and P-adjust < 0.01; Fig. 40 and P).

Next, from the RF model trained on each sex to predict age from gut microbial
composition, we determined the number of SVs that minimized the 10-fold cross-
validation error of the models. We found that the error of the simplified models
increased sharply when less than 500 SVs were used (Fig. S3). Finally, we obtained the
taxonomic classification of the 500 SVs with the highest RF importance score in at least
one of the models (Table $3). Overall, we found that SVs belonging to the families
Ruminococcaceae, Bifidobacteriaceae, Lachnospiraceae, Clostridiaceae, and Christensenel-
laceae consistently had high RF importance scores, although the values differed
between populations and within populations between men and women.

DISCUSSION
In this study, we analyzed the association of gut microbial alpha diversity with age
and sex in three large cross-sectional cohorts encompassing four geographically dis-

FIG 4 Legend (Continued)

first set of panels (A, E, |, M) shows the microbiota age of women (orange) or men (blue), as calculated by a random forest
(RF) model trained on the female (top scatter plots) or male (bottom scatter plots) subsets; lines indicate the spline fit. The
second set of panels (B, F, J, N) shows the relative microbiota age (the difference of microbiota age of the interpolated
spline fit based on the training data and microbiota age predicted in either training or test data) in women and men,
which was derived from either an RF model trained on women and tested on men (top box plot) or an RF model trained
on men and tested on women (bottom box plot). The third (C, G, K, O) and fourth (D, H, L, P) sets show results of analyses

similar to those for the first two but are stratified by age group.
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tinct community-dwelling adult populations. Our analyses indicate that age is positively
associated with gut bacterial diversity in men and women, with greater diversity being
seen in women than in men. Notably, this association occurs in young but not
middle-aged adults. Consistent with these findings, the predicted microbiota age
varied based on sex, with stronger associations being seen in young adults. It is worth
underscoring that while we did not observe these patterns in all studied cohorts, it was
widespread and robust to technical differences, and the alpha-diversity shifts were not
modified by the cardiometabolic health of the host or the antibiotic consumption in the
cohorts for which this information was available. These findings provide new insights
into the development of the human gut microbiome in adulthood according to both
age and sex and emphasize the importance of including chronological age and sex as
covariates in analyses of the human gut microbiota.

While the most dramatic change in gut microbiota diversity occurs in early child-
hood (7, 8), its increase in adulthood has also been reported (20, 21). In the cohorts in
which the pattern was present, we observed an increase in alpha-diversity measures in
young adults; however, this trend halted at about age 40 years (Fig. 1 and Fig. S1 in the
supplemental material). This finding agrees with a previous report, in which no signif-
icant differences in alpha diversity were found between middle-aged adults and
septuagenarians (21). The diversity of the gut microbiota continues changing after the
seventh decade of life; it has been shown that centenarians have a higher alpha
diversity than middle-aged adults, though it remains unknown whether this is the
cause or the effect of healthy aging (20-22). However, gut microbiota diversity in the
elderly can differ according to their community residence setting, as community
dwellers have been shown to have a higher diversity than individuals in long-term
residential care (23, 24).

Interestingly, the relationship between age and diversity was also linked with sex.
Multiple studies have reported differences in the diversity and composition of the gut
microbiota between female and male mice, which appear to be associated with a sex
bias in the incidence of specific diseases, such as type 1 diabetes (12, 15), rheumatoid
arthritis (14), and anxiety (25); sex-by-diet interactions have also been reported (26).
While differences in alpha diversity between males and females were reported in
humans and mice, we showed that the association between sex and alpha diversity was
stronger in young adults than in middle-aged adults. In agreement with our results, no
differences in alpha diversity were observed between women and men in a recent
study in which the mean age of the participants was 60 years (27).

One of the most intriguing findings was the difference in gut microbiota richness
between the sexes in young adults. This sex-dependent discrepancy suggests that
women may enter adulthood with a more diverse gut microbiota, which plateaus at the
same levels in both sexes by approximately age 40 years. The microbiota age models
of young adults (ages 20 to 45 years) can explain about 2.5% more of the variance of
chronologic age than those of middle-age adults. The establishment of different
microbial communities in males and females may be mediated by sex hormones:
female mice show a significant increase in alpha diversity during puberty (28), and
differences in the composition of the microbiota increase with age but are eliminated
by male castration (15). While little is known about the maturation of the human gut
microbiota during puberty, we speculate that the differential hormonal milieu between
women and men and the earlier timing of puberty in women may result in a more rapid
diversification of the gut microbiota in women and that men only achieve the same
level of diversification by middle age. Since our findings are based on cross-sectional
data, future longitudinal studies are needed to disentangle age and birth cohort effects
and the impact of factors such as steroid hormonal levels, pubertal transition, contra-
ceptives, and lifestyle that may vary throughout life. Future research should also
investigate specific microbial changes that may influence time-dependent sex differ-
ences on the biodiversity of the human gut microbiome.

While 3 of the 4 cohorts had an association between age, sex, and microbial alpha
diversity, the Chinese cohort did not (Fig. 1 and Fig. 51), indicating that these associ-
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ations are a widespread feature of the human gut microbiota whose universality
remains an open question. The overall alpha diversity of this cohort, as measured by SV
richness and the Shannon index, was lower than that of the other three cohorts. We
also note that the exclusion criteria for this population were not the same as those for
the populations in the other studies, with only a 1-month antibiotic exclusion and no
stated exclusion of participants with diabetes or inflammatory bowel disease (18).

The striking similarity among the U.S,, UK., and Colombian cohorts with regard to
age- and sex-dependent associations with microbial biodiversity arose despite the
different geographical origins, sample sizes, and collection protocols of the studies.
Moreover, we also found no apparent association of antibiotic use (US. or UK. cohort;
Fig. 2) or cardiometabolic health (Colombian cohort; Fig. 3) on the patterns observed
in these cohorts, suggesting that the influence of age and sex on the microbiota may
be similar in other ethnic and cultural groups beyond the influence of cardiometabolic
disease and antibiotic consumption. Nevertheless, similar large-scale population stud-
ies should be performed or reanalyzed to determine the extent to which our results are
generalizable to other populations, particularly in light of the findings for the Chinese
cohort. Indeed, the contrast between the UK. U.S., and Colombian cohorts and the
Chinese cohort highlights the power of using large data sets and comparative analyses
across cohorts to uncover subtle patterns and reveal novel insights not discernible in
smaller studies. This is of critical importance, given the plausibility of population-
specific disease signatures of the microbiome (18).

MATERIALS AND METHODS

Cohort description. Fecal samples were obtained from individuals in three independent cohorts from
four geographical locations. (i) The AGP data set is composed of two cohorts with individuals from the United
Kingdom (539 women and 397 men) and the United States (1,361 women and 1,227 men) (Table 1) consisting
of healthy participants with a self-reported age of between 20 and 69 years, a body mass index (BMI) of
between 18.5 and 30 kg/m2 and no history of inflammatory bowel disease, diabetes, or antibiotic use in the
past year. (i) A cohort of Chinese individuals comprised 2,772 women and 2,191 men aged 20 to 69 years with
a BMI ranging from 18.5 to 30 kg/m? and no antibiotic consumption reported 1 month prior to fecal sample
collection; pregnant women and hospitalized, disabled, or critically ill individuals were not included in the
study. (iii) A cohort of community-dwelling Colombians (226 women and 211 men) consisted of individuals
20 to 62 years of age enrolled in similar proportions according to BMI, city of residence, and age range (20 to
40 and 41 to 62 years); underweight participants, pregnant women, individuals who had consumed antibiotics
or antiparasitics in the 3 months prior to enrollment, and individuals diagnosed with neurodegenerative
diseases, current or recent cancer (<1 year), and gastrointestinal diseases were excluded. Details on the data
acquisition, quality assessment, and processing of fecal samples from these three cohorts were previously
described (4, 18, 19).

165 rRNA gene sequence processing. The amplicon sequences of all three cohorts were uniformly
processed following the same procedures previously described (4). Briefly, the V4 hypervariable region
of the 165 rRNA gene was sequenced with the lllumina MiSeq platform. Raw sequences were clustered
into sequence variants (SV) with deblur denoising (29) using the QIIME 2 package (30). Sequence counts
were rarefied to 1,250 reads per sample across all samples to mitigate uneven sequencing depth.
Downstream analyses in the Chinese cohort were replicated using a rarefaction depth of 5,000 reads per
sample, and 3,600 reads per sample were used in the Colombian cohort, to exclude the effect of
rarefaction depth on alpha-diversity estimation (data not shown). Note, however, that the sample
collection and DNA extraction methods differed between the studies.

Statistical analyses. SV richness and the Shannon index were calculated using QIME 2, and
statistical analyses were performed using R (v.3.4.3) software. The association of age and alpha diversity
was measured with and without separate age groups by fitting linear models with linear splines (Ispline
[v.1.0] package of R) with a knot at the midpoint of the age range (45 years of age)] and simple linear
models, respectively. We assessed the goodness of fit of these models by means of the Akaike
information criterion (AIC). Next, scatter plots of each alpha-diversity metric according to age were
constructed, and then separate Loess curves for women and men were fit using the ggplot2 (v.3.0)
package of R. Given the nonlinear association observed between alpha diversity and age, we subdivided
the data sets into two separate age groups, 20 to 45 years (young adult) and 46 to 69 years (middle-aged
adult), which were then used to fit linear models to test the associations of age (as a continuous variable)
and alpha-diversity measures, stratified by sex; P values were adjusted for multiple comparisons using the
Benjamini-Hochberg method (31).

Additionally, to account for the possible influence of participant antibiotic usage or cardiometabolic
health on the observed associations, we conducted the following sensitivity analyses. For the former, we
carried out the analyses using a separate group of individuals of the AGP cohort from the United States
who had consumed antibiotics during the 6 months prior to their enrollment (283 women and 174 men).
For the latter, we performed the analyses by adjusting the linear models for cardiometabolic risk in the
Colombian cohort using a risk measure, which we termed the cardiometabolic risk scale (32). This was
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calculated using the sum of the z-scores of log-transformed waist circumference, triglyceride levels,
insulin levels, diastolic blood pressure, and high-sensitivity C reactive protein levels; positive values of the
score are associated with increased cardiometabolic health risk.

Random forest (RF) regression was used to regress the relative abundances of SVs in the gut
microbiota of healthy women and men against their chronological age in each data set (randomForest
R package of R) using the following parameters: ntree = 18,000 and mtry = p/3, where p is the number
of input features (SVs). The microbiota age model was first trained on the training data set of female
adults and was then applied to test the set of male adults, and vice versa. A smoothing spline function
was fit between the microbiota age and the chronological age of the hosts for calculation of the relative
microbiota age of the adults in the test sets to which the sparse model was applied. For a particular
sample, the relative microbiota age was calculated as the difference between the microbiota age of a
focal adult and the microbiota age of the interpolated spline fit of healthy female/male adults at the
same chronological age. We further employed the Wilcoxon rank-sum test to compare the relative
microbiota age between female and male groups in each data set. To determine the sex difference in
microbiota age, we subdivided the data sets into the aforementioned age groups and repeated the
analyses as described above in all age segments.

Data availability. Processed SV tables are publicly available via the Qiita QIIME database (Colombian
study, accession number 11993; AGP study, accession number 10317; China study, accession number
11757). The code and data required to reproduce the statistical analyses are available at https://github
.com/jacodela/microbio_aDiv.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https:/doi.org/10.1128/
mSystems.00261-19.
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ABSTRACT Archaea of the order Methanomassiliicoccales use methylated amines such
as trimethylamine as the substrates for methanogenesis. They form two large phyloge-
netic clades and reside in diverse environments, from soil to the human gut. Two gen-
era, one from each clade, inhabit the human gut: Methanomassiliicoccus, which has one
cultured representative, and “Candidatus Methanomethylophilus,” which has none.
Questions remain regarding their distribution across biomes and human popula-
tions, their association with other taxa in the gut, and whether host genetics corre-
late with their abundance. To gain insight into the Methanomassiliicoccales clade,
particularly its human-associated members, we performed a genomic comparison
of 72 Methanomassiliicoccales genomes and assessed their presence in metage-
nomes derived from the human gut (n =4,472, representing 22 populations), non-
human animal gut (n=145), and nonhost environments (n=160). Our analyses
showed that all taxa are generalists; they were detected in animal gut and environ-
mental samples. We confirmed two large clades, one enriched in the gut and the
other enriched in the environment, with notable exceptions. Genomic adaptations
to the gut include genome reduction and genes involved in the shikimate pathway
and bile resistance. Genomic adaptations differed by clade, not habitat preference,
indicating convergent evolution between the cdades. In the human gut, the relative
abundance of Methanomassiliicoccales spp. correlated with trimethylamine-producing
bacteria and was unrelated to host genotype. Our results shed light on the microbial
ecology of this group and may help guide Methanomassiliicoccales-based strategies for
trimethylamine mitigation in cardiovascular disease.

IMPORTANCE Methanomassiliicoccales are less-known members of the human gut
archaesome. Members of this order use methylated amines, including trimethyl-
amine, in methane production. This group has only one cultured representative;
how its members adapted to inhabit the mammalian gut and how they interact
with other microbes is largely unknown. Using bicinformatics methods applied to
DNA from a wide range of samples, we profiled the abundances of these Archaea
spp. in environmental and host-associated microbial communities. We observed
two groups of Methanomassiliicoccales, one largely host associated and one largely
found in environmental samples, with some exceptions. When host associated,
these Archaea have smaller genomes and possess genes related to bile resistance
and aromatic amino acid precursors. We did not detect Methanomassiliicoccales in
all human populations tested, but when present, they were correlated with bacte-
ria known to produce trimethylamine. Due to their metabolism of trimethylamine,
these intriguing Archaea may form the basis of novel therapies for cardiovascular
disease.

KEYWORDS Methanomassiliicoccales, archaea, comparative genomics, human gut,
metagenomes, microbiome
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rchaea spp. generally make up a tenth or less of the biomass of the human gut

microbiota; however, they are widely prevalent and occupy a unique metabolic
niche, utilizing byproducts of bacterial metabolism as the substrates for methanogene-
sis (1). Members of Methanobacteriales are the dominant species of the human gut
archaesome (1, 2). These include Methanobrevibacter smithii, which uses CO,, formate
and H, as the substrates for methane production (3), and Methanasphaera stadtmanae,
which consumes methanol and H, (4). Through methanogenesis, Archaea decrease
partial pressures of H,, potentially increasing the energetic efficiency of primary fer-
menters and the production of short-chain fatty acids (5).

A second archaeal lineage, the order Methanomassiliicoccales, is also found within the
human gut, yet its members are less well characterized than those of Methanobacteriales.
Members of this order, including human-derived Methanomassiliicoccus luminyensis,
“Candidatus Methanomassiliicoccus intestinalis,” and "Candidatus Methanomethylophilus
alvus,” perform H,-dependent methylotrophic methanogenesis for their sole energy
source (6-8). Their genomes encode several methyltransferases and associated pro-
teins that reduce methylamines, methanol, and methylated sulfides to methane (9).
Studies based on 165 rRNA and mcrA gene diversity analysis indicate that the order
Methanomassiliicoccales is made up of two large clades, which mostly group species
that have either a free-living (FL) or host-associated (HA) lifestyle (10, 11). Based on
analyses of the genomes from three human-derived species from both clades, Borrel
et al. (9) suggested that each clade colonized the mammalian gut independently.
Members of the HA clade, including the human-associated "Ca. M. alvus,” might be
expected to show adaptations similar to those of other methanogens from the gut
microbiota (12, 13). How members of the FL clade, including the human-associated
M. luminyensis and “Ca. M. intestinalis,” have converged on the gut niche remains to
be explored.

A better understanding of the ecology of Methanomassiliicoccales may be of interest
to human health, as they can utilize mono-, di-, and trimethylamine (TMA) as the sub-
strates for methanogenesis in the gut (14). TMA, a byproduct of bacterial metabolism of
carnitine, choline, and other compounds, is transformed in the liver into trimethylamine
N-oxide (TMAO) (15). Circulating TMAO inhibits cholesterol transport and promotes its
accumulation in macrophages, inducing the formation of atherosclerotic plaques (16).
Decreasing TMA levels in the gut and reducing circulating TMAO levels have been pro-
posed as a therapeutic strategy for cardiovascular disease (17). One way to use the gut
microbiome to this end would be to boost levels of Methanomassiliicoccales (18). To ac-
complish this goal requires a deeper understanding of its ecology.

Here, we conducted a comparative analysis of 71 Methanomassiliicoccales genomes,
together with an additional metagenome-assembled genome (MAG) corresponding to
a strain of "Ca. M. alvus” that we retrieved by metagenome assembly of gut samples
from subjects of the United Kingdom Adult Twin Registry (TwinsUK) cohort (19). We
used 305 publicly available metagenomes to assess the prevalence of taxa across vari-
ous habitat types. While the two large clades grouping host-associated (HA) and free-
living (FL) taxa are generally enriched in host-associated and environmental metage-
nomes, a few exceptions stand out. Our results showed that the repertoire of adhesion
proteins encoded by the genomes of taxa from each clade tended to differ. Genes
involved in bile resistance and the shikimate pathway are likely involved in the adapta-
tion to the gut environment of members of the HA clade, but not for the FL clade.
Thus, gut-adapted members converged on life in the gut using different genomic
adaptations. Methanomassiliicoccales genera present in the human gut positively corre-
late with TMA-producing bacteria.

RESULTS

Genome-based phylogeny confirms two large Methanomassiliicoccales clades.
Based on whole-genome phylogenetic analysis, the order Methanomassiliicoccales
forms two clades with robust support (Fig. 1). This phylogeny is in agreement with
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FIG 1 The order Methanomassiliicoccales forms two large clades that loosely follow the source of isolation. Maximum-likelihood phylogeny of concatenated

single-copy marker genes. The gray triangle corresponds to Thermoplasma acidophilum, Picrophilus oshimae, Feroplasma acidarmanus, Acidiplasma
aeolicum, and Cuniculiplasma divulgatum, which are outgroup taxa from class Thermoplasmata. Black circles indicate bootstrap values of =80 (of 1,000
bootstrap permutations), branch color represents the clade, and the scale bar represents the number of amino acid substitutions per site. Colored strips
show the source of isolation of each of the included genomes and the general category to which the source belongs. Bar plots show the genome
abundance enrichment in gut metagenome samples compared to environmental samples, calculated using DESeq2; dots indicate taxa with significant
enrichment in either host or environmental biomes (adj. P < 0.05). Mmassiliicoccaceae, Methanomassiliicocceae; Mmassiliicoccus, Methanomassiliicoccus;
Mplasma, Methanoplasma; Mmethylophilus, Methanomethylophilus; Mmassiliicoccales, Methanomassiliicoccales.

previously reported phylogenies based on 165 rRNA and mcrA genes (10, 20, 21). A third
distal clade was formed by two closely related MAGs generated in a recent massive meta-
genome assembly effort (22), which we labeled extemal (EX) (Fig. 1). We use the terminol-
ogy of Borrel et al. (23), as follows: the clade including Methanomassiliicoccus is labeled
free living (FL), and the clade containing “Candidatus Methanomethylophilus” is labeled
host associated (HA).

As observed previously (10), the reported source of the genomes was not always
consistent with the clade in which it was grouped. For instance, while publicly avail-
able genomes ariginally retrieved from human, baboon, elephant, and cow gastroin-
testinal tracts were related to “"Candidatus Methanomethylophilus” (HA), this clade also
contained MAGs derived from digestors and reactors (Fig. 1) reportedly not treating
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animal waste (see Table S1A in the supplemental material). Moreover, MAGs retrieved
from pit mud of solid-state fermentation reactors used for the production of Chinese
liguor were present in both the HA and FL clades (Table S1A). Similarly, “Ca. M. intesti-
nalis” Issoire-Mx1, M. luminyensis B10, and Methanomassiliicoccales archaeon RumEn
M1, all retrieved from mammal hosts, grouped in the FL clade.

Abundance of Methanomassiliicoccales clades differs in gastrointestinal and
environmental samples. We assessed the abundance of species-level representative
Methanomassiliicoccales taxa in publicly available metagenomes that included 145
samples from gastrointestinal tracts of nonhuman animals, such as cats, pigs, elks,
cows, mice, white-throated woodrats, trout, chickens, and geese, and 160 environmen-
tal samples from sediment, ice, and diverse water and soil sources (Table S1B).

Taxa from all three clades were detected in a wide range of metagenomes from
environmental and gut origin. We observed differences in environmental preference
by clade. Abundance of taxa from clade EX was highest in environmental metage-
nomes (0.001% = 0.0012%) (Fig. 1). These were also detected in gut samples
(0.0002% = 0.0005%), albeit with a very low abundance, and in in fecal (0.0003% =+
0.0005), large intestine (0.0001% * 0.0002%), and stomach (0.0009% = 0.0006%)
metagenomes (Fig. 2). Given their low abundances, further analysis is focused on the
FL and HA clades.

The aggregated abundance of clades FL and HA differed across biomes (Fig. 2). In
agreement with their names, HA clade members were more abundant in host-associ-
ated samples, and FL in non-host-associated samples (Fig. 2). The prevalence and
abundance of Methanomassiliicoccales taxa varied across animal hosts, yet the overall
abundance patterns were consistent across hosts and sample types (see Fig. 52 in the
supplemental material).

The combined abundance of members of clade FL was higher in samples from envi-
ronmental biomes (0.01% * 0.008%), although nonzero abundances were observed in
digestive system metagenomes (0.008% = 0.015%), with some samples containing lev-
els comparable to that of clade HA (Fig. 2).

The mean abundance of clade HA in aggregate was higher in metagenomes from
gut samples (0.014% =+ 0.03%) compared to those from environmental biomes
(0.004% =+ 0.008%). However, among the environmental biomes, nonzero abundances
of clade HA were detected in freshwater (0.002% = 0.003%), marine (0.006% =
0.011%), saline and alkaline (0.002% = 0.002%), and soil (0.004% * 0.003%) samples.

We further validated the differences in clade abundances across biomes by generat-
ing a dendrogram of Methanomassiliicoccales taxa using the DESeq2-based log fold
change of individual taxa on gut versus environmental biomes (i.e., the effect size of
the test as a measure of enrichment on a given environment). We then compared the
structure of this dendrogram with that of the phylogenomic tree and found that they
were positively correlated (cophenetic correlation =0.67; P < 0.01).

Overall, we observed a low abundance of individual Methanomassiliicoccales taxa
across all samples, ranging from 0 to 0.15% (Fig. 2 and Fig. 51). Their prevalence across
hosts differed; they were prevalent in animals such as elks, pigs, poultry, and cattle,
while in others, such as trout and geese, they were largely absent (see Fig. 53 in the
supplemental material). The enrichment analysis of individual taxa from clade FL from
diverse biomes showed that while most were significantly enriched in environmental
metagenomes (adjusted [adj.] P < 0.1), some taxa showed the opposite enrichment. M.
luminyensis and Methanomassiliicoccus sp. UBA386 were not significantly enriched in
gut or environmental biomes. “Ca. M. intestinalis” Issoire-Mx1, Methanomassiliicoccales
archaeon RumEn M1, and Methanomassiliicoccus sp. UBA6 were significantly enriched
in gut biomes (Fig. 1), although they were also present in multiple environmental bio-
mes (fig. S1).

When assessed on a per-taxon basis, the vast majority of clade HA taxa were signifi-
cantly enriched in gut samples (adj. P<<0.1), with the exception of "Candidatus
Methanoplasma termitum.” which was highly abundantin soil samples from grasslands
and water samples from intertidal zones (Fig. 1).
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FIG 2 Methanomassiliicoccales clades are widespread but not abundant across a range of environments and animal hosts.
Combined abundance of representative genomes of the EX (purple), FL (green), and HA (orange) clades in metagenome
samples from diverse biomes, as follows: stomach (n=12), foregut (n = 23), large intestine (n = 66), fecal (n = 44), desert
(n = 4), sand (n = 12), grasslands (n = 8), permafrost (n = 22), sediment (n = 31), coastal (n = 28), intertidal zone (n = 25),
lentic (n = 6), groundwater (n = 3), saline (n = 2), hypersaline (n = 9), and ice (n = 10). Abundances were calculated for
individual genomes using KrakenUniq and aggregated by clade. The y axis is in logarithmic scale; black points indicate

mean relative abundance in percentage, and black bars indicate standard deviation.

Genome characteristics and core genes functions differ between Methanomassilii-
coccales clades. Given the tendency of clades FL and HA to be enriched in environmen-
tal or animal metagenomes, respectively, we searched for genes and genome features
linked to putative adaptations of Methanomassiliicoccales to an animal gut. For this, we
compared 72 genomes from Methanomassiliicoccales taxa retrieved from humans, non-
human animals, and environmental sources.

We observed that genomes were more similar to others closely located on the phy-
logeny in terms of genome GC content, genome length and total gene count (local in-
dicator of phylogenetic association [LIPA] adj. P<< 0.01 in all cases) (Fig. 3). To deter-
mine whether these features differed between clades, while accounting for the
autocorrelation due to evolutionary history, we performed a phylogenetic analysis of
variance (ANOVA). Clade FL taxa had significantly larger genomes (mean * standard
deviation [SD], 1,985.1 + 245.1 kb) than either clade HA (1,318.3 + 187.3 kb) or clade
EX (1,872.2 + 173.8 kb) (phylogenetic ANOVA adj. P=0.028). In accordance with this,
clade FL also had the highest gene count (FL, 2,153.1 == 233.7 genes; HA, 1377.7 = 187.7
genes; EX, 1,567.0 = 90.5 genes; adj. P=0.025). While this was nonsignificant, clades HA
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FIG 3 Genome characteristics and adhesion proteins of Methanomassiliicoccales reflect division of the order into clades. Note that members of clade FL not
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biome enrichment analysis. Heatmaps show genome features, including genome GC content ("GC%," range, 41.26% to 62.74%), genome length (“Length,”
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domain (YadA; 0, 1), fibronectin type lll (FN3; 0, 20) domains, bacterial Ig-like domains (Ig-like; 0, 12), ankyrin repeats (ANK; 0, 3), Sel1-containing proteins
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and EX taxa tended to have a lower GC content than clade FL taxa (FL, 59.1% =+ 4.8%;
HA, 55.8% = 2.8%; EX, 54.4% * 0.5%; adj. P=06).
To compare gene presence and absence across clades, we performed a pangenome

analysis. After identification of orthologous gene clusters based on sequence similarity
using panX software, we obtained 13,695 clusters, of which 7,312 were present at least
once in clade FL, 6,592 in clade HA, and 1,833 in clade EX. A large proportion of gene

January/February 2021

Volume 6 Issue 1

e00935-20

89

msystems.asm.org 6

159n6 Ag 1202 ‘6 Areniga4 uo /610 wse swaisAswy/:dyy woly pepeojumoq



Insights into Methanomassiliicoccales in the Human Gut

0l &
i Mmassiliicoccus sp. UBA6 | Clade
5 4 Mmassiliicoccus luminyensis B10 o EX
: ca. Methanoplasma termitum e FL
¥ o
) A e + * HA
g : N
[1s]
S # |
o ca. Mmassiliicoccus intestinalis Issoire I;1t<1-ﬂ— Qutlier
Q
o *  FL-Gut
-5 Mmassilicoccus sp. UBA386
A FL-Mon-significant
Mmassiliicoccales archaeon RumEn M1 s HA-Environmental
-10 + Mo
-10 [} 10 20

PC1 (22.40%)

FIG 4 Ordination of gene content of Methanomassiliicoccales group taxa by phylogenetic clade rather
than by biome enrichment. Principal-component analysis of the gene cluster presence of taxa from
clades FL (green), HA (orange), and EX (purple). Highlighted points correspond to outliers, namely,
taxa either not significantly enriched in environmental or gut biomes or with enrichment opposite to
expectation given their clade.

clusters were of unknown function according to the clusters of orthologous genes
(COG) functional classification (38.4% * 4.3%); gene clusters of unknown function
tended to be detected in one or two genomes (see Fig. S4A in the supplemental
material).

Prindpal component analysis (PCA) of gene cluster presence/absence differentiated clades
along principal component 1 (PC1) (Fig. 4). We defined outlier taxa as FL taxa enriched in
gut biomes (Methanomassiliicoccales archaeon RumEn M1, Methanomassiliicoccus sp.
UBA®6, “Ca. M. intestinalis” Issoire-Mx1, M. luminyensis B10, and Methanomassiliicoccus sp.
UBA386) and the HA taxon enriched in non-host biomes ("Ca. M. termitum”). Outliers
mostly clustered with their close relatives, not with the taxa enriched in the same biome
(Fig. 4), with the exception of “Ca. M. intestinalis” Issoire-Mx 1, which did not cluster with ei-
ther clade.

Gene clusters enriched in clade HA evidence adaptation to the gut environment.
Because of the small number of genomes that cluster within clade EX, and because
these are largely absent from animal-associated samples, subsequent analyses focus
on comparisons between clades FL and HA.

To identify gene clusters potentially involved in the adaptation of members of
Clade HA to a host environment, we compared the gene cluster content between
clades. The gene cluster frequency spectrum shows many clusters present in few
genomes; 7,990 (58.3%) gene clusters were singletons, and 2,002 (14.6%) were double-
tons (Fig. S4A and B). After removing rare gene clusters by filtering those with near-
zero variance, we included 2,937 clusters, which we then used to perform in phyloge-
netic ANOVA. Results reveal 14 gene clusters significantly enriched in HA compared to
FL (adj. P< 0.1 in all cases) (Table 1). Three gene clusters are involved in detoxification
and xenobiotic metabolism, namely, those encoding bile acid: sodium symporter, bleo-
mycin resistance protein and HAD superfamily hydrolase. Two clusters are related to
shikimate or chorismate metabolism, namely, those encoding chorismate mutase |l
and prephenate dehydratase. Other annotated clusters include the small unit of exonu-
clease VI, Holliday junction resolvase Hjc, nitrogen regulatory protein Pll, xylose isom-
erase-like protein, and metal-binding domain containing protein; four had poor or no
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TABLE 1 InterPro, eggNOG, and Prokka annotations of gene clusters significantly enriched in clade HA compared to clade FL

Prokka
InterPro NOG accession COG gene
accession no. InterPro annotation no. category® name  Prokka annotation
IPRO02657 Bile acid:sodium symporter/arsenical resistance protein Acr3 COGO385@N0G 5 Hypothetical protein
IPRO29068 Glyoxalase/bleomycin resistance protein/dihydroxybiphenyl - X Hypothetical protein
dioxygenase
IPRO06357 HAD superfamily hydrolase, subfamily I1A COG0647@NOG G gph Glyceraldehyde 3-phosphate
phosphatase
IPRO02701 Chorismate mutase Il, prokaryotic-type COG1605@N0G E aroQ Chorismate mutase
IPRO01086 Prephenate dehydratase COGD077@N0G E pheA Prephenate dehydratase
IPRO03761 Exonuclease VII, small subunit COG1722@NOG L xseB Exodeoxyribonuclease 7
small subunit
IPRO02732 Holliday junction resolvase Hijc C0G1591@N0G L rutD Putative aminoacrylate
hydrolase RutD
IPRO15867 Nitrogen regulatory protein PII/ATP phosphoribosyltransferase, C0G3323@NOG S Hypothetical protein
C-terminal
IPRO13022 Xylose isomerase-like, TIM barrel domain 11IHC@NOG L Hypothetical protein
IPRO19271 Protein of unknown function DUF2284, metal-binding 11RTN@NOG 5 Hypothetical protein

2C0G functional classification descriptions: E, amino acid transport and metabolism; L, replication, recombination, and repair; G, carbohydrate transport and metabolism; S,

function unknown; X, no annotation retrieved.

annotation (Table 1). Similar results were obtained when we performed this analysis
without outlier taxa and when biome enrichment was used as independent variable
(not shown), further indicating that genomic adaptations differ by clade, not habitat
preference. Likewise, 89 clusters were enriched in clade FL compared to HA; these are
presented in Table STE.

Genomic adaptations to the gut of members of the FL clade. To determine
whether outlier taxa belonging to clade FL had similar adaptations to the gut to those
of members of clade HA, we explored gene dusters that were present in these outliers
and in clade HA but were rare in other members of clade FL. We selected gene clusters
present in the core genome of clade HA (i.e,, present in at least 40 taxa or 80% of this
clade, see Text S1 in the supplemental material) and present in less than half of the FL
taxa. A total of 15 gene clusters were obtained, most of them encoded by only one of
the outlier taxa. Two gene clusters, ferrous iron transport proteins A and B (InterPro
accession numbers IPR030389 and IPR007167), were present in three of the outliers (M.
luminyensis, “Ca. M. intestinalis” Issoire-Mx1, and Methanomassiliicoccales archaeon
RumEn M1). Other clusters detected in more than one outlier included an uncharacter-
ized membrane protein (InterPro number IPR005182, in Methanomassiliicoccus sp. UBA6
and Methanomassiliicoccales archaeon RumEn M1), a putative nickel-responsive regula-
tor (InterPro number IPR0O14864, in M. luminyensis B10 and Methanomassiliicoccus sp.
UBA386), and an ABC transporter (InterPro number IPR037294, in M. luminyensis B10
and Methanomassiliicoccus sp. UBA386). The remaining gene clusters, detected once,
corresponded to transcriptional regulators or proteins of unknown function.

The repertoire of adhesion proteins tended to differ between clades HA and
FL. We compared between FL and HA clades two large groups of membrane proteins
involved in adhesion, namely eukaryote-like proteins (ELPs), a series of protein families
involved in microbial adherence to the host (24), and adhesin-like proteins (ALPs), a
class of proteins hypothesized to be involved in the microbe-microbe interactions of
Methanobacteriales in the gut (13). We aggregated the counts of gene clusters annotated
as the ALP and ELP classes and performed phylogenetic ANOVA. This analysis showed a
trend toward differing repertoires of adhesion proteins by clade (Fig. 3), although we did
not observe significant differences in the frequency of these factors (adj. P> 0.1 in all
cases). Taxa from clade HA tended to have higher mean counts of tetratricopeptide
repeats (TPR) (mean = SD counts: HA, 16.30 + 6.56, and FL. 9.55 = 1.70), Sel1-containing
repeats (Sel1) (HA, 9.32 = 569, and FL, 0.35 + 1.35), Listeria-Bacteroides repeats (List-Bact)
(HA, 3.68 = 3.76, and FL, 1.65 = 5.78), and leucine-rich repeats (LRR) (HA, 1.5+ 2.15, and
FL, 1.1 = 2.02) than FL taxa. Conversely, adhesin-like proteins (ALPs) (FL, 2.25 * 1.48, and
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FIG 5 Methanomassiliicoccales are rare members of the human gut microbiota. Scatterplots of the genera (A) "Ca.
Methanomethylophilus” and (B) Methanomassiliicoccus show that their prevalence and mean abundance is low across most
studies and populations (35 data sets) with subjects (n=4,472) from Austria (AUT), China (CHN), Denmark (DNK), Ethiopia
(ETH), Fijo (FJI), Great Britain (GBR), Ghana (GHA), Israel (ISR), Madagascar (MDG), Mongolia (MNG), The Netherlands (NDL), El

Salvador (SLV), Sweden (SWE), Tanzania (TZA), and the United States (USA).

HA, 0.14 + 0.61), Ig-like domains (FL, 155+ 1.32, and HA, 020+ 0.53) and fibronectin
type Il (FN3) domains (FL, 4.55 = 5.09, and HA, 0.32 = 0.62) tended to be more abundant
in the genomes of members of clade FL. We did not detect invasion protein B (lalB) in
any of the analyzed genomes.

Hierarchical clustering based on the presence or absence of adhesion factors largely
grouped Methanomassiliicoccales taxa by clade (see Fig. S5 in the supplemental mate-
rial). Additionally, all adhesion factors, with the exceptions of ankyrin repeats (ANK) and
the Yersinia adhesin A-like domain (YadA), showed a significant phylogenetic signal (adj.
P < 0.05 in all cases), further highlighting that closely related taxa had similar counts.

Interestingly, outlier taxa from clade FL had gene counts of several of the adhesion
factors higher than the mean of their own clade and more characteristic of clade HA. In
some cases, the gene counts were higher than the mean for clade HA. These included
Listeria-Bacteroides repeats (gene cluster counts: M. luminyensis, 2; "Ca. M. intestinalis”
Issoire-Mx1, 26; Methanomassiliicoccales archaeon RumEn M1, 2), Sell repeats (M. lumi-
nyensis, 1; "Ca. M. intestinalis” Issoire-Mx1, 6), and leucine-rich repeats (M. luminyensis,
5; "Ca. M. intestinalis” |ssoire-Mx1, 7).

Methanomassiliicoccales taxa cooccur with each other, with other Archaea, and
with TMA-producing bacteria in the human gut. We characterized the distribution of
Methanemassiliicoccales spp. across a collection of human gut metagenomes derived
from 34 studies. Together, the combined 4,472 samples represented people from 22
countries, resulting in 35 unique data sets (i.e, study-country combinations). Across
the whole set, we detected just two genera, Methanomassiliicoccus (clade FL) and "Ca.
Methanomethylophilus” (clade HA), both rare members of the human gut microbiota
(Fig. 5). “Ca. Methanomethylophilus” was detectable in 19 out of 35 data sets; in these
19 data sets, it had a prevalence ranging from 0.5% to 41.7%, and mean abundance
ranged from 4.8 x 10~ %% to 2.2 x 10~ 2%. Similarly, Methanomassiliicoccus was detecta-
ble in 22 of the 35 data sets; in the 22 data sets, it had a prevalence range of 1% to
25.7% and a mean abundance range of 1.5 x 10~%% to 1.0 x 10~ 2% (Table S1D).
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FIG 6 Coabundance networks of Methanomassiliicoccus (green node, dark edges) and “Ca.
Methanomethylophilus” (orange node, light edges) in the human gut largely overlap. Both
Methanomassiliicoccales genera are significantly coabundant (cyan edge). Their abundances are also
coordinated with those of another archaeon (blue node) and TMA-producing bacterial taxa (red
nodes).

We tested associations of these two genera with age, sex, and Westernization status
of the subjects using linear mixed models that included the data set and country as ran-
dom effects. Subjects from non-Westernized countries had a significantly higher preva-
lence of “Ca. Methanomethylophilus” (mean prevalence * SD: non-Westernized = 8.9% =+
28.5%, Westernized = 1.1% * 10.3%; adj. P = 0.002). Westernized individuals were more
likely to harbor higher prevalences of Methanomassiliicoccus, although differences were
not significant (non-Westernized =3.9% = 19.4%, Westernized, 5.0% = 21.7%; adj. P >
0.1). The age and sex of the individuals did not explain variance in the prevalence or
abundance of either genus (adj. P>= 0.1 in all cases).

To identify other microbial taxa positively associated with members of Methanomassilii-
coccales in the human gut, we calculated a network of positively associated microorgan-
isms (i.e, coabundant taxa) across samples (rho = 0.1 in all cases) (25). In addition, we
determined which taxa were present with members of Methanomassiliicoccales at a
greater prevalence than that expected by chance (i.e., cooccurring taxa) relative to a per-
muted null model (26). Results showed that both “Ca. Methanomethylophilus” and
Methanomassiliicoccus were part of the same coabundance network, together with a third
archaeal genus, Methanoculleus (order Methanomicrobiales). We did not find evidence of
positive or negative abundance associations of either Methanomassiliicoccales genus with
Methanobrevibacter. Coocurrence analysis showed a random association pattern between
these taxa (P = 0.05 for both “Ca. Methanomethylophilus” and Methanomassiliicoccus),
indicating that their ecological niches do not overlap that of Methanobrevibacter.

Analysis of the combined network of “Ca. Methanomethylophilus” and Methano-
massiliicoccus revealed a large overlap between taxa associated with either genus (Fig. 6
and Table S1F): out of 119 taxa in the network, 86 (72.3%) were associated with both.
Moreover, 51 taxa (42.9%) also had a significant positive cooccurrence pattern with both
genera (adj. P<< 0.05 in all cases). Most bacterial members of this network had low rela-
tive abundances; only Bacteroides and Parabacteroides had a mean relative abundance
above 1% (range, 22.7% to 0.0005%). Interestingly, they included taxa that can poten-
tially produce TMA, since their genomes contain genes encoding enzymes involved in its
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synthesis; these taxa included Bacteroides, Campylobacter, Yokenella, Mobiluncus, Proteus,
Providencia, and Edwardsiella (27).

Abundance of Methanomassiliicoccales species is not concordant in monozygotic
or dizygotic human twins. To evaluate whether host genetics influences the abun-
dance of Methanomassiliicoccales in the human gut, we compared the intraclass correla-
tion coefficient (ICC) of their abundances at the genus level using a set of 153 monozy-
gotic (MZ) and 200 dizygotic (DZ) twin pairs from the TwinsUK cohort. As a control, we
first compared the mean ICC across all taxa between MZ and DZ twins and found that
ICC,,, (0.1) was significantly higher than ICC, (0.03) (P < 0.01). In addition, we assessed
the ICC values of bacterial (Christensenella, Faecalibacterium, and Bifidobacterium) and
archaeal (Methanobrevibacter) genera, and consistently found a higher correlation for
MZ compared to DZ twins (Table S1G). We were only able to assess ICC values of
Methanomassiliicoccus, as it was the only Methanomassiliicoccales taxon detected in
the twins with a prevalence (8.64%) above the 5% cutoff (see Materials and
Methods). We did not detect a significant concordance between the abundances of
Methanomassiliicoccus in MZ (ICC,,; = 0.004; adj. P=0.59) or in DZ twins (ICC,, =
0.017; adj. P=0.71). Given the low abundance of Methanomassiliicoccales taxa, we
performed a sensitivity analysis using samples with a high sequencing depth (=12
million reads/sample); however, we did not observe differences in the abundance
and prevalence of the Methanomassiliicoccales genera or in the ICC estimates (data
not shown).

DISCUSSION

While the source of the members of the Methanomassiliicoccales has been noted in
previous surveys of single markers such as 165 rRNA and mecrA genes (10, 11), here, we
searched metagenomes from host-associated and environmental samples for their rel-
ative abundances. Overall, the HA taxa were enriched in host-associated samples and
the FL taxa were enriched in environmental samples; intriguingly, all taxa, regardless of
clade, were detected in both biomes. This suggests that members of the order
Methanemassiliicoccales are generalists with an overall habitat preference according to
clade, although there were some exceptions to the general pattern. We show that
members of Methanomassiliicoccales use many of the same adaptations to the gut as
other methanogens. These adaptations include genome reduction and genes involved
in the shikimate pathway and bile resistance. In addition, gut-enriched taxa tend to
have a distinct repertoire of genes encoding adhesion factors. We observed that
potential adaptations to the gut differed by clade, not preferred habitat, indicating
convergence on a shared niche through different genomic solutions. In the human
gut, Methanomassiliicoccales taxa correlated with TMA-producing bacteria, rather than
host genetics or other host factors.

For members of the HA clade, adaptations to life in the gut included an enrichment
of genes involved in bile acid transport, efflux pumps, and hydrolases, which play a
role in tolerance to these compounds in the gastrointestinal tract (28). This adaptation
is also shared with other members of the gut microbiota, including Methanobacteriales
taxa; Methanobrevibacter smithii and Methanosphaera stadtmanae are resistant to bile
salts (3, 4). Other gene clusters with known functions enriched in clade HA are involved
in metabolism of shikimate and chorismate. The shikimate pathway is involved in the
synthesis of aromatic amino acids in plants and microbes, but it is absent in mammals.
Shikimate metabolism is carried out by archaeal (29) and bacterial (30, 31) members of
the animal gut microbiota and was reported as one of the most conserved metabolic
modules in a large-scale gene catalogue from the human gut (32). In turn, aromatic
amino acids can be transformed by the gut microbiota into active metabolites, which
are involved in diverse physiological processes (33) and conditions such as cardiovas-
cular disease (34). Indeed, plasma concentrations of microbial derivatives of tryptophan
have even been shown to negatively correlate with atherosclerosis (35). It remains to be
elucidated whether Methanomassiliicoccales are involved in human health through the
metabolism of aromatic amino acids and associated compounds.
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We observed that each clade tended to encode different adhesion factors,
although without statistical significance. These factors are involved in the mainte-
nance of syntrophic relationships of the methanogens with bacterial (12, 36) or eu-
karyotic (37) microorganisms. Two groups of adhesion factors, proteins containing
Sell domains and Listeria-Bacteroides repeats, have been previously studied in
Methanomassiliicoccales taxa retrieved from the gut (9, 23). Our assessment of these
factors in the broader context of the order Methanomassiliicoccales showed that
these two groups are more likely to be higher in clade HA than clade FL taxa, with
the exception of the outlier taxa. Indeed, the repertoire of ELPs and ALPs was similar
between species inhabiting the gut, regardless of their clade. This emphasizes the
potential involvement of these proteins in the adaptation to the intestinal environ-
ment, although the exact mechanisms are yet to be elucidated.

In contrast, members of clade FL appear to be generalists that colonized the animal
gut independently from the HA clade. It has been previously noted that M. luminyensis,
an outlier from clade FL, could have a facultative association to the animal gut. It pos-
sesses genes involved in nitrogen fixation, oxidative stress (9), and mercury methyla-
tion (23), which are common in soil microorganisms but rare in members of the gut
microbiota (38). In accordance with this, we observed that members of clade FL are
widespread and abundant in soil, water, and gut metagenomes, with a preference for
environmental biomes. Similarities in ELP content between gut-dwelling taxa from
both clades indicate that interaction with the host or other members of the gut micro-
biota might be a key factor in the adaptation of these methanogens.

Analysis of the gene content of outlier taxa from clade FL showed that they tended
to be more similar to members of their own clade than to taxa from clade HA, with the
exception of “Ca. M. intestinalis” Issoire-Mx1, which was distinct from either clade FL and
HA. In addition, there was little overlap in gene clusters commonly observed in clade HA
and outlier taxa from clade FL, with the exception of the adhesion factors discussed
above. These observations support the hypothesis that colonization of animal guts by
members of Methanomassiliicoccales occurred in two independent events (9, 23), and
suggests that there is not one solution to life in the gut for these archaea, as members
from two clades seem to have solved the problem with a different set of adaptations.

Characterization of the abundance of Methanomassiliicoccales taxa across human
populations showed members of this group are rare in the microbiota of healthy
adults. We did not detect them in all the studied populations, and, when detected,
they had low prevalence and abundance. Our extensive analysis of human gut samples
corroborates estimates of Methanomassiliicoccales prevalence (up to 11%) (23, 39, 40)
and mean abundance (below 1%) (23, 41). Differences in Methanomassiliicoccales car-
riage between Westernized and non-Westernized populations remain to be explained,
and may be due to diet. While Westernized diets are richer in TMA precursors than
non-Western diets (42), intake varies across populations (43).

Our analysis allowed us to assess whether Archaea in the human gut are mutually
exclusive. We observed positive correlations of “Ca. Methanomethylophilus” and
Methanomassiliicoccus with each other and with Methanoculleus, another rare archaeal
member of the gut microbiota (45). We did not find evidence of association between
members of Methanomassiliicoccales and Methanobrevibacter, positive or otherwise,
confirming the previous report that these methanogens are not mutually exclusive
(39); abundance of H, in the gut, together with differences in other substrate utiliza-
tion, might result in nonoverlapping niches (46).

While genus Methanobrevibacter was consistently found to have a moderate herit-
ability in the TwinsUK (19, 39, 47) and other cohorts (48, 49), this was not the case for
members of Methanomassiliicoccales. Similarly to humans, methane production (50)
and abundance of Methanobrevibacter (51) are also heritable in bovine cattle, but
Methanomassiliicoccales taxa are not (51). Thus, host genetics might be linked to partic-
ular taxa and methanogenesis pathways, not to all Archaea or to methane production
as a whole.
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Genera "Ca. Methanomethylophilus” and Methanomassiliicoccus cooccur with TMA-
producing bacteria (27), further supporting their potential use as a way of targeting in-
testinal TMA (52). The exact nature of the ecological relationships each of these taxa
establishes with other members of the microbiome remains to be elucidated. In a facili-
tation scenario between the methanogens and H, and TMA producers, freely available
TMA and H, required for methylotrophic methanogenesis could be utilized by
Methanomassiliicoccales taxa (53) without cost to the producer. Alternatively, the
methanogens could establish syntrophic interactions with other microorganisms,
whereby the consumption of these metabolites is also beneficial to the producer (53).

The present study extends our understanding of the order Methanomassiliicoccales
by revealing genomic adaptations to life in the gut by members of both clades that
make up this group. Furthermore, the positive correlation between the relative abun-
dances of these TMA-utilizing Archaea with TMA-producing bacteria in the gut is a first
step toward understanding how they may be harnessed for therapeutic management
of gut TMA levels in the context of cardiovascular disease.

MATERIALS AND METHODS

For a detailed description of the methods, see Text S1 in the supplemental material.

Genome annotation and phylogenomic tree reconstruction. We used 71 substantially complete
genomes (completeness, =70%) with low contamination (contamination, <<5%) retrieved from the NCBI
Assembly database (https://www.ncbi.nim.nih.gov/assembly), plus an additional high-quality metage-
nome-assembled genome (MAG) corresponding to “Candidatus Methanomethylophilus alvus.” Gene
calling was performed using Prokka (54). A maximum-likelihood phylogenomic tree was constructed
using PhyloPhlAn (55) with the 72 Methanomassiliicoccales genomes plus members of the order
Thermoplasmatales as an outgroup. We used interactive Tree Of Life (iTOL) (56) to visualize the tree.

Abundance of Methanomassiliicoccales in environmental and animal gastrointestinal metagenomes.
We retrieved 305 publicly available gastrointestinal and environmental metagenome samples (57) (see
Table S1B in the supplemental material). To avoid multiple mapping of reads, we dereplicated the 72
genomes at a species level (95% average nucleotide identity [ANI]) using dRep (58), resulting in 29 repre-
sentative genomes. We quantified the abundance of dereplicated Methanomassiliicoccales genomes in
the metagenomes using KrakenUnig (59). We estimated the enrichment of each representative
Methanomassiliicoccales taxon in host or environmental metagenomes using DESeq2 with the Wald test
(60) on sequence counts and classifying metagenome samples as either host derived or environmental.

Comparative genomics. We grouped the predicted genes into gene clusters using panX (61) and
used InterProScan (62) and eggNOG-mapper (63) for annotation. Phylogenetic signal of genome charac-
teristics and gene cluster presence was tested using the phylosignal R package with the local indicator
of phylogenetic association (LIPA) (64). The R package micropan (65) was used to create a pangenome
principal-component analysis (PCA). We performed phylogenetic ANOVA using the R package phytools
(66) to determine clusters enriched in clades FL or HA. We adjusted P values for multiple comparisons
with the Benjamini-Hochberg method. Due to the exploratory nature of this work, tests were considered
significant if they had an adjusted P value (adj. P) of <<0.1; a false-discovery-rate-adjusted P value cutoff
of 0.1 implies that 10% of significant tests will result in false-positives. In cases where adjusting P values
was not necessary, raw P values are provided.

We assessed the presence of eukaryote-like proteins (ELPs) (24) by combining the counts of gene
clusters classified as Sel1-containing proteins (Sel1), Listeria-Bacteroides repeat-containing proteins (List-
Bact), tetratricopeptide repeats (TPR), ankyrin repeats (ANK), leucine-rich repeats (LRR), fibronectin type
Il (FN3) domains, laminin G domains, bacterial Ig-like domains, Yersinia adhesin A-like domain (YadA),
TadE-like domain, or invasion protein B (lalB). Likewise, we characterized the presence of parallel beta-
helix-repeat-containing proteins, also known as adhesin-like proteins (ALPs).

Characterization of Methanomassiliicoccales distribution across human populations. We
retrieved and quality controlled 4,472 publicly available human gut metagenomes from 34 independent
studies (Table S1C). Reads were classified using Kraken (67) and Bracken (68) with custom databases
(69). Taxa with <100 reads in a given sample were considered absent. To determine the cooccurrence
patterns of Methanomassiliicoccales in the human gut, we used the cooccur package (26); to determine
their coabundance patterns, we calculated the proportionality of taxa abundance (rho) with the propr R
package (70). The Ime4 and ImerTest R packages (71) were used to fit linear mixed effects models to test
differences of Methanomassiliicoccales genera abundance by Westernization status, age, and gender. We
employed binomial linear mixed models to test differences in genera prevalence. Lists of potential TMA
(27, 72, 73) and methanol (74) (see Text S1 in the supplemental materials) producers were compiled
from the available literature.

Heritability of Methanomassiliicoccales taxa was assessed by comparing relative abundances of taxa
within 153 monozygotic (MZ) and 200 dizygotic (DZ) twin pairs from the United Kingdom Adult Twin
Registry (TwinsUK) (19, 39, 75). Absolute read counts were transformed using the Yeo-Johnsan transfor-
mation and adjusted by body mass index (BMI), sex, and sequencing depth (19, 39). We calculated the
intraclass correlation coefficient (ICC) in MZ and DZ twins with the irr R package, and adjusted P values
using the Benjamini-Hochberg method. We compared the mean ICC across all taxa between MZ and DZ
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twins using the Mann-Whitney test and by assessing the ICC of taxa previously reported as heritable
(Methanobrevibacter, Faecalibacterium, Christensenella, and Bifidobacterium) (39, 48).
Data availability. The raw sequence data are available from the European Nucleotide Archive under
study accession number PRJIEB40256. Jupyter notebooks are available at httpsy/github.com/leylabmpi/
Methanomassilii. The "Candidatus Methanomethylophilus” MAG generated here can be found at http:/
ftp.tue.mpg.de/ebio/projects/Mmassilii/.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, DOCX file, 0.02 MB.

FIGS1, TIF file, 2 MB.
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FIG S5, TIF file, 0.9 MB.

TABLE 51, XLSX file, 0.2 MB.

ACKNOWLEDGMENTS
This work was supported by the Max Planck Society. The study also received support
from the National Institute for Health Research (NIHR) BioResource Clinical Research
Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation
Trust and King's College London. We thank EMBO and the organizers and participants
of the Bioinformatics and Genome Analyses course held at the Fondazione Edmund
Mach in San Michele all'Adige, Italy, for sponsoring the attendance of J.D.L.C.-Z. and for
their feedback.
We are also grateful to Daphne Welter, Jessica Sutter, and Albane Ruaud for the
fruitful discussions and comments.

We declare no competing interests.

REFERENCES

]

w

wn

=~

oo

o

January/February 2021

. Borrel G, Brugere J-F, Gribaldo S, Schmitz RA, Moissl-Eichinger C. 2020.

The host-associated archaeome. Nat Rev Microbiol 18:622-636. https://
doi.org/10.1038/s41579-020-0407-y.

. Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA. 2018.

Archaea are interactive components of complex microbiomes. Trends
Microbiol 26:70-85. https://doi.org/10.1016/j.tim.2017.07.004.

. Miller TL, Wolin MJ. 1982. Enumeration of Methanobrevibacter smithii in

hurman feces. Arch Microbiol 131:14-18. https://doi.org/10.1007/BF00451492.
Miller TL, Wolin NJ. 1985. Methanosphaera stadtmaniae gen. nov., sp.
nov.: a species that forms methane by reducing methanol with hydrogen.
Arch Microbiol 141:116-122. hutps://doi.org/10.1007/BF00423270.

. Horz H-P, Conrads G. 2010. The discussion goes on: what is the role of Eur-

yarchaeota in humans? Archaea 2010:967271. https://doi.org/10.1155/
2010/967271.

Borrel G, Harris HMB, Tottey W, Mihajlovski A, Parisot N, Peyretaillade E,
Peyret P, Gribaldo S, O'Toole PW, Brugére J-F. 2012. Genome sequence of
“Candidatus Methanomethylophilus alvus” Mx1201, a methanogenic
archaeon from the human gut belonging to a seventh order of methano-
gens. J Bacteriol 194:6944-6945. https://doi.org/10.1128/JB.01867-12.

. Borrel G, Harris HMB, Parisot N, Gaci N, Tottey W, Mihajlovski A, Deane J,

Gribaldo S, Bardot O, Peyretaillade E, Peyret P, O'Toole PW, Brugére J-F.
2013. Genome sequence of “Candidatus Methanomassiliicoccus intestina-
lis" Issoire-Mx1, a third thermoplasmatales-related methanogenic archaeon
from human feces. Genome Announc 1:e00453-13.

. Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M. 2012. Methano-

massiliicoccus luminyensis gen. nov., sp. nov, a methanogenic archaeon
isolated from human faeces. Int J Syst Evol Microbiol 62:1902-1907.
https://doi.org/10.1099/ij5.0.033712-0.

Borrel G, Parisot N, Harris HMB, Peyretaillade E, Gaci N, Tottey W, Bardot
0, Raymann K, Gribaldo S, Peyret P, O'Toole PW, Brugére J-F. 2014. Com-
parative genomics highlights the unique biclogy of Methanomassiliicoc-
cales, a Thermoplasmatales-related seventh order of methanogenic arch-
aea that encodes pyrrolysine. BMC Genomics 15:679. https:/doi.org/10
.1186/1471-2164-15-679.

Volume 6 Issuel e00939-20

97

10.

Sollinger A, Schwab C, Weinmaier T, Loy A, Tveit AT, Schleper C, Urich T.
2016. Phylogenetic and genomic analysis of Methanomassiliicoccales in
wetlands and animal intestinal tracts reveals clade-specific habitat prefer-
ences. FEMS Microbiol Ecol 92:fiv149. https://doi.org/10.1093/femsec/
fiv149.

. Speth DR, Orphan VJ. 2018. Metabolic marker gene mining provides

insight in global diversity and, coupled with targeted genome recon-
struction, sheds further light on metabolic potential of the. Peer) 6:¢5614.
https://doi.org/10.7717/peerj.5614.

. Samuel B5, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R,

Latreille P, Kim K, Wilson RK, Gordon JI. 2007. Genomic and metabolic adap-
tations of Methanobrevibacter smithii to the human gut. Proc Matl Acad 5ci
US A 104:10643-10648. https://doi.org/10.1073/pnas.0704189104.

. Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A, Goodfellow J,

Zaneveld JR, McDonald DT, Goodrich JA, Heath AC, Knight R, Gordon JI.
2011. Pan-genome of the dominant human gut-associated archaeon,
Methanobrevibacter smithii, studied in twins. Proc Natl Acad SciU S A 108
Suppl 1:4599-4606. httpsy//doi.org/10.1073/pnas.1000071108.

. Sollinger A, Urich T. 2019. Methylotrophic methanogens everywhere—

physiology and ecology of novel players in global methane cycling. Bio-
chem Soc Trans 47:1895-1907. https://doi.org/10.1042/B5T20180565.

. Brown JM, Hazen SL. 2018. Microbial modulation of cardiovascular disease.

Nat Rev Microbiol 16:171-181. https://doi.org/10.1038/nrmicro.2017.149.

. Geng J, Yang C, Wang B, Zhang X, Hu T, Gu Y, Li J. 2018. Trimethylamine

N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK path-
way. Biomed Pharmacother 97:941-947. https://doi.org/10.1016/j.biopha
2017.11.016.

. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y,

Zamanian-Daryoush M, Culley MK, DiDonato AJ, Fu X, Hazen JE, Krajcik D,
DiDonato JA, Lusis AJ, Hazen SL. 2015. Non-lethal Inhibition of gut micro-
bial trimethylamine production for the treatment of atherosclerosis. Cell
163:1585-1595. https://doi.org/10.1016/j.cell.2015.11.055.

. Brugére J-F, Borrel G, Gaci N, Tottey W, OToole PW, Malpuech-Brugére C.

2014. Archaebiotics: proposed therapeutic use of archaea to prevent

msystems.asm.org 14

1s9nb Aq 120z ‘6 Areniga4 uo /610 wse swaisAswy/:diy wol) papeojumoq



Insights into Methanomassiliicoccales in the Human Gut

20.

2

22,

23.

24,

25,

26.

27.

28.

29,

30.

3

32,

33

34,

35.

36.

37.

January/February 2021

trimethylaminuria and cardiovascular disease. Gut Microbes 5:5-10.
https://doi.org/10.4161/gmic.26749.

Xie H, Guo R, Zhong H, Feng Q, Lan Z, Qin B, Ward KJ, Jackson MA, Xia Y,
Chen X, Chen B, Xia H, Xu C, Li F, Xu X, Al-Aama JY, Yang H, Wang J,
Kristiansen K, Wang J, Steves CJ, Bell JT, Li J, Spector TD, Jia H. 2016. Shot-
gun metagenomics of 250 adult twins reveals genetic and environmental
impacts on the gut microbiome. Cell Syst 3:572-584.e3. https.//doi.org/
10.1016/j.cels.2016.10.004.

Paul K, Nonoh JO, Mikulski L, Brune A. 2012. “Methanoplasmatales,”
Thermoplasmatales-related archaea in termite guts and other environ-
ments, are the seventh order of methanogens. Appl Environ Microbiol
78:8245-8253. https://doi.org/10.1128/AEM.02193-12.

. Borrel G, O'Toole PW, Harris HMB, Peyret P, Brugére J-F, Gribaldo S. 2013.

Phylogenomic data support a seventh order of methylotrophic methano-
gens and provide insights into the evolution of methanogenesis. Genome
Biol Evol 5:1769-1780. httpsy//doi.org/10.1093/gbe/evt128.

Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN,
Hugenholtz P, Tyson GW. 2017. Recovery of nearly 8,000 metagenome-
assembled genomes substantially expands the tree of life. Nat Microbiol
2:1533-1542. hups://dol.org/10.1038/541564-017-0012-7.

Borrel G, McCann A, Deane J, Neto MC, Lynch DB, Brugére J-F, O'Toole
PW. 2017. Genomics and metagenomics of trimethylamine-utilizing Arch-
aea in the human gut microbiome. ISME J 11:2059-2074. https://doi.org/
10.1038/ismej.2017.72.

Alex A, Antunes A. 2018. Genus-wide comparison of Pseudovibrio bacterial
genomes reveal diverse adaptations to different marine invertebrate hosts.
PLoS One 13:20194368. https://doi.org/10.1371/journal.pone.0194368.
Quinn TP, Erb |, Richardson MF, Crowley TM. 2018. Understanding
sequencing data as compositions: an outlook and review. Bioinformatics
34:2870-2878. https://doi.org/10.1093/bioinformatics/bty175.

Griffith DM, Veech JA, Marsh CJ. 2016. cooccur: probabilistic species co-
occurrence analysis in R. J Stat Softw 69:1-17.

Fennema D, Phillips IR, Shephard EA. 2016. Trimethylamine and trimethyl-
amine N-oxide, a flavin-containing monooxygenase 3 (FMO3)}-mediated
host-microbiome metabolic axis implicated in health and disease. Drug
Metab Dispos 44:1839-1850. https://doi.org/10.1124/dmd.116.070615.
Begley M, Gahan CGM, Hill C. 2005. The interaction between bacteria and
bile. FEMS Microbiol Rev 29:625-651. https://doi.org/10.1016/j femsre
.2004.09.003.

Hovey R, Lentes S, Ehrenreich A, Salmon K, Saba K, Gottschalk G, Gunsalus
RP, Deppenmeier U. 2005. DNA microarray analysis of Methanosarcinag
mazei Go1 reveals adaptation to different methanogenic substrates. Mol
Genet Genomics 273:225-239. https://dol.org/10.1007/500438-005-1126-9.
Kamke J, Kittelmann S, Soni P, Li Y, Tavendale M, Ganesh S, Janssen PH,
Shi W, Froula J, Rubin EM, Attwood GT. 2016. Rumen metagenome and
metatranscriptome analyses of low methane yield sheep reveals a Shar-
pea-enriched microbiome characterised by lactic acid formation and uti-
lisation. Microbiome 4:56. https://doi.org/10.1186/s40168-016-0201-2.

. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M.

2013. Bacteria as vitamin suppliers to their host: a gut microbiota per-
spective. Curr Opin Biotechnol 24:160-168. https://doi.org/10.1016/j
.copbio.2012.08.005.

Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard
KS, Sakharova E, Parks DH, Hugenholtz P, Segata N, Kyrpides NC, Finn RD.
2020. A unified catalog of 204,938 reference genomes from the human
gut microbiome. Nat Biotechnol 490:55.

Lin R, Liu W, Piao M, Zhu H. 2017. A review of the relationship between the
gut microbiota and amino acid metabolism. Amino Acids 49:2083-2090.
https://doi.org/10.1007/s00726-017-2493-3.

Liu Y, Hou Y, Wang G, Zheng X, Hao H. 2020. Gut microbial metabolites of
aromatic amino acids as signals in host-microbe interplay. Trends Endo-
crinol Metab 31:818-834. https://doi.org/10.1016/j.tem.2020.02.012.
Cason CA, Dolan KT, Sharma G, Tao M, Kulkarni R, Helenowski I1B, Doane
BM, Avram MJ, McDermott MM, Chang EB, Ozaki CK, Ho KJ. 2018. Plasma
microbiome-modulated indole- and phenyl-derived metabolites associ-
ate with advanced atherosclerosis and postoperative outcomes. J Vasc
Surg 68:1552-1562.e7. httpsy//doi.org/10.1016/j.jvs.2017.09.029.

Ruaud A, Esquivel-Elizondo S, de la Cuesta-Zuluaga J, Waters JL, Angenent
LT, Youngblut ND, Ley RE. 2020. Syntrophy via interspecies H2 transfer
between and underlies their global cooccumrence in the human gut. mBio
11:203235-19. https://doi.org/10.1128/mBio.03235-19.

Ng F, Kittelmann S, Patchett ML, Attwood GT, Janssen PH, Rakonjac J,
Gagic D. 2016. An adhesin from hydrogen-utilizing rumen methanogen
Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-
e00939-20

Volume 6 Issue 1

98

38.

39,

41,

42,

43.

47.

49,

50.

51.

52,

53.

54

55.

56.

j@ stems’

producing microorganisms. Environ Microbiol 18:3010-3021. httpsy//doi
0org/10.1111/1462-2920.13155.

Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, Palumbo
AV, Somenahally AC, Elias DA. 2015. Global prevalence and distribution of
genes and microorganisms involved in mercury methylation. Sci Adv 1:
e1500675. https://doi.org/10.1126/sciadv.1500675.

Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R,
Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley
RE. 2014. Human genetics shape the gut microbiome. Cell 159:789-799.
https://doi.org/10.1016/j.cell. 2014.09.053.

. Dridi B, Henry M, Richet H, Raoult D, Drancourt M. 2012. Age-related prev-

alence of Methanomassiliicoccus luminyensis in the human gut micro-
biome. APMIS 120:773-777. https://doi.crg/10.1111/j.1600-0463.2012
.02899.x.

Vanderhaeghen S, Lacroix C, Schwab C. 2015. Methanogen communities
in stools of humans of different age and health status and co-occurrence
with bacteria. FEMS Microbiol Lett 362:fnv092. https://doi.org/10.1093/
fernsle/fnv092.

Zeisel SH, Mar M-H, Howe JC, Holden JM. 2003. Concentrations of chol-
ine-containing compounds and betaine in common foods. J Nutr
133:1302-1307. https://doi.org/10.1093/jn/133.5.1302.

Wiedeman AM, Barr Sl, Green TJ, Xu Z, Innis SM, Kitts DD. 2018. Dietary
choline intake: current state of knowledge across the life cycle. Nutrients
10:1513. https://doi.org/10.3390/nu10101513.

. Reference deleted.
45,

Horz H-P. 2015. Archaeal lineages within the human microbiome: absent,
rare or elusive? Life (Basel) 5:1333-1345. https://doi.org/10.3390/life5021333.

. Feldewert C, Lang K, Brune A.2020. The hydrogen threshold of obligately

methyl-reducing methanogens. FEMS Microbiol Lett 367 fnaal37. https://
doi.org/10.1093/femsle/fnaa137.
Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C,
Spector TD, Bell JT, Clark AG, Ley RE. 2016. Genetic determinants of the
gut microbiome in UK twins. Cell Host Microbe 19:731-743. https://doi
org/10.1016/j.chom.2016.04.017.

. Goodrich JK, Davenport ER, Clark AG, Ley RE. 2017. The relationship

between the human genome and microbiome comes into view. Annu
Rev Genet 51:413-433. httpsy//doi.org/10.1146/annurev-genet-110711
-155532.

Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J,
Demirkan A, Le Roy Cl, Raygoza Garay JA, Finnicum CT, Liu X, Zhernakova
DV, Bonder MJ, Hansen TH, Frost F, Rithlemann MC, Turpin W, Moon J-Y,
Kim H-N, Lill K, Barkan E, Shah SA, Fornage M, Szopinska-Tokov J, Wallen
ZD, Borisevich D, Agreus L, Andreasson A, Bang C, Bedrani L, Bell JT,
Bisgaard H, Boehnke M, Boomsma DI, Burk RD, Claringbould A, Croitoru K,
Davies GE, van Duijn CM, Duijts L, Falony G, Fu J, van der Graaf A, Hansen T,
Homuth G, Hughes DA, ljzerman RG, Jackson MA, Jaddoe VWV, Joossens
M, Jergensen T, Keszthelyi D, Knight R, Laakso M, Laudes M, et al. 2020.
Genetics of human gut microbiome composition. bioRxiv https://doiorg/
10.1101/2020.06.26.173724.

Roehe R, Dewhurst RJ, Duthie C-A, Rooke JA, McKain N, Ross DW, Hyslop
11, Waterhouse A, Freeman TC, Watson M, Wallace RJ. 2016. Bovine host
genetic variation influences rumen microbial methane production with
best selection criterion for low methane emitting and efficiently feed con-
verting hosts based on metagenomic gene abundance. PLoS Genet 12:
e1005846. https://doi.org/10.1371/journal.pgen.1005846.

Difford GF, Plichta DR, Levendahl P, Lassen J, Noel 5J, Hejberg O, Wright
A-DG, Zhu Z, Kristensen L, Nielsen HB, Guldbrandtsen B, Sahana G. 2018.
Host genetics and the rumen microbiome jointly associate with methane
emissions in dairy cows. PLoS Genet 14:e1007580. httpsy//doiorg/10
1371/journal.pgen.1007580.

Hania WB, Ballet N, Vandeckerkove P, Ollivier B, OToole PW, Brugére J-F.
2017. Archaebiotics: archaea as pharmabiotics for treating chronic dis-
ease in humans? p 42-62. In Sghaier H, Najjari A, Ghedira K (ed), Archaea:
new biocatalysts, novel pharmaceuticals and various biotechnological
applications. InTech Open, London, UK.

Douglas AE. 2020. The microbial exometabolome: ecological resource
and architect of microbial communities. Philos Trans R Soc Lond B Biol Sci
375:20190250. https://doiorg/10.1098/rsth.2019.0250.

Seemann T.2014. Prokka: rapid prokaryotic genome annotation. Bioinfor-
matics 30:2068-2069. https://doi.org/10.1093/bicinformatics/btu153.
Segata N, Bornigen D, Morgan XC, Huttenhower C. 2013. PhyloPhlAn is a
new method for improved phylogenetic and taxonomic placement of
microbes. Nat Commun 4:2304. https://doi.org/10.1038/ncomms3304.
Letunic |, Bork P. 2016. Interactive Tree Of Life (iTOL) v3: an online tool for

msystems.asm.org 15

duy woly papeojumoqg

1s9nb6 Aq 120z ‘6 Areniqa4 uo /610 wse swaisAswy/



dela Cuesta-Zuluaga et al.

57.

58.

59,

6

62.

63.

January/February 2021

the display and annotation of phylogenetic and other trees. Nucleic Acids
Res 44:W242-W245. https://doi.org/10.1093/nar/gkw290.

Mitchell AL, Scheremetjew M, Denise H, Potter S, Tarkowska A, Qureshi M,
Salazar GA, Pesseat S, Boland MA, Hunter FMI, Ten Hoopen P, Alako B,
Amid C, Wilkinson DJ, Curtis TP, Cochrane G, Finn RD. 2018. EBI metage-
nomics in 2017: enriching the analysis of microbial communities, from
sequence reads to assemblies. Nucleic Acids Res 46:0726-D735. https://
doi.org/10.1093/nar/gkx967.

Olm MR, Brown CT, Brooks B, Banfield JF. 2017. dRep: a tool for fast and
accurate genomic comparisons that enables improved genome recovery
from metagenomes through de-replication. ISME J 11:2864-2868. https://
doi.org/10.1038/ismej.2017.126.

Breitwieser FP, Baker DN, Salzberg SL. 2018. KrakenUniq: confident and
fast metagenomics classification using unique k-mer counts. Genome
Biol 19:198. https://doi.org/10.1186/513059-018-1568-0.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.
https://doi.org/10.1186/s13059-014-0550-8.

. Ding W, Baumdicker F, Neher RA. 2018. panX: pan-genome analysis and

exploration. Nucleic Acids Res 46:e5. https://doi.org/10.1093/nar/gkx977.
Finn RD, Attwood TK, Babbitt PC, Baternan A, Bork P, Bridge AJ, Chang H-Y,
Dosztanyi Z, El-Gebali 5, Fraser M, Gough J, Haft D, Holliday GL, Huang H,
Huang X, Letunic |, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA,
Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter 5C,
Rawlings ND, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist
C, Sillitoe |, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto
SCE, Wu CH, Xenarios |, Yeh L-5, Young S-Y, Mitchell AL. 2017. InterPro in
2017-beyond protein family and domain annotations. Nucleic Acids Res 45:
D190-D199. https://doi.org/10.1093/nar/gkw1107.

Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von
Mering C, Bork P. 2017. Fast genome-wide functional annotation through
orthology assignment by eggNOG-mapper. Mol Biol Evol 34:2115-2122.
https://doi.org/10.1093/molbev/msx148.

Keck F, Rimet F, Bouchez A, Franc A. 2016. phylosignal: an R package to

Volume 6 Issuel e00939-20

99

65.

67.

69,

70.

71,

72,

74,

75.

j@ stems’

measure, test, and explore the phylogenetic signal. Ecol Evol 6:2774-2780.
httpsy//doi.org/10.1002/ece3.2051.

Snipen L, Liland KH. 2015. micropan: an R-package for microbial pan-
genomics. BMC Bicinformatics 16:79. https://doi.org/10.1186/s12859-015
-0517-0.

. Revell L. 2012, phytools: an R package for phylogenetic comparative

biology (and other things). Methods Ecol Evol 3:217-223. https://doi.org/
10.1111/).2041-210X.2011.00169.x.

Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with
Kraken 2. Genome Biol 20:257. https://doi.org/10.1186/513059-019-1891-0.

. Lu J, Breitwieser FP, Thielen P, Salzberg SL. 2017. Bracken: estimating spe-

cies abundance in metagenomics data. Peer) Computer Science 3:2104.
https://doi.org/10.7717/peerj-cs.104.

de la Cuesta-Zuluaga J, Ley RE, Youngblut ND. 2020. Struo: a pipeline for
building custom databases for common metagenome profilers. Bioinfor-
matics 36:2314-2315. https://doi.org/10.1093/bicinformatics/btz899.
Quinn TP, Richardson MF, Lovell D, Crowley TM. 2017. propr: an R-package
for identifying proportionally abundant features using compositional data
analysis. Sc Rep 7:16252. https://doi.org/10.1038/541598-017-16520-0.
Bates D, Machler M, Bolker B, Walker 5. 2015. Fitting linear mixed-effects
models using Ime4. J Stat Softw 67:1-48.

Rath S, Heidrich B, Pieper DH, Vital M. 2017. Uncovering the trimethyl-
amine-producing bacteria of the human gut microbiota. Microbiome
5:54. https://doi.org/10.1186/540168-017-0271-9.

. Rath S, Rud T, Pieper DH, Vital M. 2019. Potential TMA-producing bacteria

are ubiquitously found in Mammalia. Front Microbiol 10:2966. https://doi
0rg/10.3389/fmicb.2019.02966.

Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. 2015. Meta-
bolic methanol: molecular pathways and physiological roles. Physiol Rev
95:603-644. https://dol.org/10.1152/physrev.00034.2014.

Visconti A, Le Roy Cl, Rosa F, Rossi N, Martin TC, Mohney RP, Li W, de
Rinaldis E, Bell JT, Venter JC, Nelson KE, Spector TD, Falchi M. 2019. Inter-
play between the human gut microbiome and host metabolism. Nat
Commun 10:4505. https://doi.org/10.1038/s41467-019-12476-z.

msystems.asm.org 16

1s9nb Aq 120z ‘6 Areniga4 uo /610 wse swaisAswy/:diy wol) papeojumoq



100



Appendix III: Struo - a pipeline for building custom databases for

common metagenome proﬁlers

101



Bioinfarmatics, 36(7), 2020, 2314-2315

doi: 10.1093/bioinformatics/btz899

Advance Access Publication Date: 28 November 2019
Applications Note

Databases and ontologies
Struo: a pipeline for building custom databases for
common metagenome profilers

Jacobo de la Cuesta-Zuluaga, Ruth E. Ley and Nicholas D. Youngblut @ *

Department of Microbiome Science. Max Planck Institute for Developmental Biology, Tiibingen 72076, Germany

*To whom correspondence should be addressed.
Associate Editor: Peter Robinson

Received on September 24, 2019; revised on November 18, 2019; editorial decision on November 24, 2019; ac cepted on November 26, 2013

Abstract

Summary: Taxonomic and functional information from microbial communities can be efficiently obtained by meta-
genome profiling, which requires databases of genes and genomes to which sequence reads are mapped. However,
the databases that accompany metagenome profilers are not updated at a pace that matches the increase in avail-
able microbial genomes, and unifying database content across metagenome profiling tools can be cumbersome. To
address this, we developed Struo, a modular pipeline that automatizes the acquisition of genomes from public repo-
sitories and the construction of custom databases for multiple metagenome profilers. The use of custom databases
that broadly represent the known microbial diversity by incorporating novel genomes results in a substantial in-
crease in mappability of reads in synthetic and real metagenome datasets.

Availability and implementation: Source code available for download at https://github.com/leylabmpi/Struo.

Custom genome taxonomy database databases available at http:/ftp.tue.mpg.de/ebio/projects/struo/.

Contact: nicholas.youngblut@tuebingen.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1Introduction

Advances in metagenome sequencing and culturing methods have
led to the recovery of thousands of genomes from as-of-yet uncul-
tured microorganisms (Pasolli et al., 2019). In turn, these genomes
can be used to obtain comprehensive taxonomic and functional
data from microbiomes by metagenome profiling, where reads
from shotgun metagenome sequencing are mapped to databases of
genes or genomes. A successful exploration of the diversity present
in a microbial community depends on the selected database, the
content of which will heavily influence the outcome of the profil-
ing (Nasko et al., 2018). Databases used as defaults in metage-
nome profilers are often not updated at a pace that reflects the
increase in microbial genomics data or might not suit the particu-
lar needs of researchers, who may wish to expand the existing
databases with their genomes of interest. Whereas up-to-date data-
bases customized to match the question at hand would improve
metagenome analysis, their creation is cumbersome due to the
complexity and high computational requirements of retrieving ap-
propriate genomes, and of configuring and executing the software.
Thus, many metagenomic analyses fail to include the most up-to-
date microbial data, leading to oversights. We address this prob-
lem with the development of Struo (from the Latin: ‘I build® or ‘1
gather’), an automated and modular pipeline that assists in the re-
trieval of genomes and in the construction of databases for
Kraken2 (Wood and Salzberg, 2014), Bracken2 (Lu et al., 2017)
and HUMANN2 (Franzosa et al., 2018).

2 Results

Struo uses the workflow engine Snakemake (Késter and Rahmann,
2012) and the Conda package manager to install the required soft-
ware and build databases in a reproducible manner on Unix-based
high-performance compute clusters (Fig. 1A). By default, the pipe-
line uses the genome taxonomy database (GTDB; Parks et al., 2018)
to retrieve taxonomic classifications and assembly statistics of 127
318 publicly available genomes (v.03-RS86), which are then filtered
by completeness and contamination to retain medium and high
quality representative genomes. This results in 21 276 non-
redundant genomes that broadly encompass known microbial diver-
sity. Users can also provide their own genome files in fasta format or
a list of NCBI assembly 1Ds as input, making Struo compatible with
other collections of curated genomes. Kraken2 and Bracken2 are the
taxonomic profilers currently supported; they require genome
sequences in fasta format with their corresponding NCBI taxID.
HUMANR? is the functional profiler implemented, which requires
gene and protein sequence calling, annotation and clustering to cre-
ate  nucleotide and amino acid sequence databases (see
Supplementary Methods).

We compared the mappability of reads from synthetic and real
metagenomes between the default databases included with the sup-
ported profilers (RefSeq Bacteria and Archaea for Kraken2/
Bracken2 and ChocoPhlAn for HUMANN2) and custom databases
created with proGenomes and GTDB. We used five simulated com-
munities (CAMI High Complexity test dataset) rarefied at 5 million
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Fig. 1. (A} Struo’s workflow encompasses the steps from genome download to database construction. The use of custom databases created using the proGenomes or GTDB col-
lections of genomes increased the mappahility of reads from 250 human gut metagenomes compared with the default databases of Kraken2 (B}, Bracken2 (C) and HUMANR2
after nucleotide search (D} but not after translated search (E). Black points indicate mean proportion of mapped reads; black bars indicate standard deviation

reads per sample (Sczyrba et al., 2017), and 250 human gut metage-
nomes rarefied at 2 million reads per sample (Xie et al., 2016).
Kraken2 was executed using default parameters; for Bracken, we fil-
tered reads assigned to taxa with <100 hits. In both the real and
simulated datasets, the use of custom databases resulted in more
mapped reads compared with the default databases. The proportion
of reads mapped by Kraken2 was highest when using the GTDB-
derived database (Fig. 1B and Supplementary Fig. STA), with similar
results observed on the number of reads kept by Bracken2 (Fig. 1C
and Supplementary Fig. S1B). We did not observe differences in
mappability of reads in the functional profile obtained with
HUMANN2 between ChocoPhlAn or the custom databases after nu-
cleotide or translated searches in the synthetic dataset
(Supplementary Fig. S1C and D), which can be explained by the
presence of the genomes that comprise the simulated metagenomes
in public repositories; however, we observed an increase in the per-
centage of mapped reads after nucleotide search in the human gut
metagenomes  (Fig. 1D). This is particularly important for
HUMANR2, which first maps reads against the nucleotide database,
allowing to quantify the contribution of different microbial species
to the abundance of the detected gene families.

3 Conclusion

A careful yet broad selection of genomes to be included in data-
bases for metagenome profiling can shed light on the so-called
microbial dark matter, allowing to study the contribution of
otherwise inaccessible microbial species (Pasolli et al., 2019). We
expect Struo, and the databases we provide, to enable a greater
community of researchers to engage in a more comprehensive
analysis of microbial communities, an imperative step in the
study of the hidden microbial diversity (Thomas and Segata,
2019).
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Abstract

The discovery of distinct links between obesity (OB) and the
cardiometabolic health status (CHS) with the gut microbiome is hindered by the
overlap between these conditions. Moreover, differences in study design and
covariates used encumber the comparison of study outcomes. Here, we
describe features of gut microbiome function associated independently with OB
or CHS in a cohort of adults; and test for the replication of associations
previously reported for microbiome and OB/CHS. We enrolled 459
deeply-phenotyped Colombians from whom we obtained 408 gut
metagenomes. We measured three OB indices and classified individuals
according to their CHS using blood biochemistry and anthropometric data. We
evaluated the association of 136 KEGG modules and 2 653 orthologs
previously linked with OB, cardiovascular disease or diabetes. Medication use,
city, sex and age were included as covariates. We found that metagenome
sequence diversity negatively correlated with OB; subjects with CHS had lower

diversity than healthy subjects with similar OB levels. OB explained a higher
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proportion of variance for sequence diversity and functional beta-diversity.
Similarly, more modules and orthologs were uniquely associated with OB than
with CHS or shared by both conditions. The microbiome potential of diseased
individuals in both conditions showed a decreased fermentative ability and an
increased response to oxygen. Disease-linked features were mainly contributed
by members of Proteobacteria. Our results suggest that OB drives the

microbiome associations with CHS when both are present.

Introduction

The human gut microbiome, the microbial community colonizing the
gastrointestinal tract, is a major participant in multiple metabolic, nutritional and
immune processes of the host (1). As such, it is involved in the etiology of
obesity (2) (OB), the abnormal or excessive fat accumulation that presents a
risk to health (3). The microbiome also plays a role in the the maintenance of
the cardiometabolic health status (CHS), the presence of factors that increase
the risk of heart disease, stroke and type 2 diabetes (T2D), namely, increased
blood pressure, elevated glucose levels or insulin resistance, excess of fat
around the waist, and abnormal concentrations of triglycerides or
cholesterol(4,5). The incidence of these non-communicable diseases has been
steadily increasing worldwide: as of 2016, 1.9 billion adults were overweight and
650 million were obese (6). Obesity leads to a loss of disease-free years owing
to its associated conditions (7). The gut microbiome has therefore become the
focus of study for the discovery of biomarkers, and the target of therapies or
dietary interventions (8). However, OB and CHS are often confounded, obese
individuals often suffer of other cardiometabolic affections (e.g., T2D,
cardiovascular disease, liver disease), therefore decoupling CHS- and
OB-specific associations with the gut microbiome remains a challenge (9).

At the taxonomic level, the composition of the microbiome shows high
heterogeneity, with dominant species varying between individuals according to
their geographical origin, dietary patterns and disease status, among other
factors (10). This heterogeneity often results in contradictory reports of

correlation of microbial taxa with host phenotypes, which hinders the translation

107



of gut microbiome findings across populations (11). Conversely, the potential
metabolic capacity of the gut microbiome is highly conserved across individuals
(12). The metabolic potential encoded by the members of the microbial
community is largely redundant, which results in comparable ecosystem
functioning (12). Despite this redundancy, modest changes in microbial
metabolism can affect the functioning of the microbial community and the
interaction with its host. Indeed, shifts in a small number of key metabolites with
major biological relevance may be sufficient to induce alterations in gut
homeostasis or microbiome functionality (13).

Focusing on the metabolic and signaling functions encoded by the
microbiome might help overcome the contradictory associations commonly
reported at the taxonomic level (11). In the case of OB and CHS, the
identification of gut microbiome functions shared between them would help
uncover disease-specific functional disturbances (9). To achieve this,
well-characterized cohorts with relevant host phenotypic data are required.
Moreover, to identify microbial features uniquely associated with each condition
or shared by both, it is possible to incorporate the results of previous studies
into the analysis of novel cohorts. This way, the set of microbial functions
evaluated is restricted to those that have been reported to be linked to OB or
CHS in different populations (14).

In a previous study of the gut microbiota of a community-dwelling cohort
of Colombian men and women by means of 16S rRNA gene sequencing, we
found that multiple microbial configurations were associated with OB and
related conditions. These configurations were defined as taxonomic profiles
characterized by a high abundance of different consortia of co-abundant
microorganisms (15). In the same cohort, we explored a classification method
that allowed us to differentiate subjects by their cardiometabolic health and
obesity status (5). We observed that microbial species richness negatively
correlated with OB, and that cardiometabolically unhealthy subjects showed
lower microbiome diversity than healthy subjects with similar OB levels (16).

Studying the functional profile of the microbiome would allow the identification of
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a set of genes or pathways that drive the association with a given condition,
even if the microorganisms that encode said features differ.

Here, we studied the functional profile of the gut microbiome of a
well-phenotyped cohort of 459 Colombian men and women from five cities by
means of shotgun metagenome sequencing. To identify microbiome functions
robustly associated with OB and CHS, we selected functional features linked to
obesity, cardiovascular disease or T2D from published studies performed in
diverse populations, and tested for their replication in this Colombian cohort. In
our analyses, we included host variables known to confound host-microbe
associations but that are often overlooked in cross-sectional studies. We also
sought to disentangle microbial features uniquely associated with OB or CHS by
classifying individuals according to both factors and determining which functions
are associated with one condition while accounting for the other. This allowed
us to discriminate between microbiome associations unique to OB or CHS, or
shared by both.

Materials and Methods

Ethics approval

This cross-sectional study was conducted in accordance with the
principles of the Declaration of Helsinki 2013 and had minimal risk according to
the Colombian Ministry of Health (Resolutions 8430 of 1993 and 2378 of 2008).
All the participants were thoroughly informed about the study and procedures
before signing consent forms. Participants were assured of anonymity and
confidentiality. Written informed consent was obtained from all the participants
before beginning the study. The Bioethics Committee of SIU—University of
Antioquia (Medellin, Colombia) reviewed the protocol and the consent forms
and approved the procedures described here (approbation act 14-24-588 dated
28 May 2014).

Study population

We enrolled 459 community-dwelling adults from Colombia, South

America, which has been previously described (15). Briefly, between July and
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November 2014, adult men and women aged 18 to 62 insured by the health
insurance provider EPS Sura were enrolled from five Colombian cities as part of
a cross-sectional study. Underweight participants (BMI < 18.5 kg m), pregnant
women and individuals who had consumed antibiotics or antiparasitics in the
three months prior to enrollment were excluded. The consumption of other
medications did not warrant exclusion from the study. We also excluded
subjects diagnosed with any of the following diseases: Alzheimer’s disease,
Parkinson disease or any other neurodegenerative disease; current or recent
cancer (< 1 year); and gastrointestinal diseases (Crohn’s disease, ulcerative

colitis, short bowel syndrome, diverticulosis or celiac disease).

Blood biochemistry, anthropometric evaluation, diet assessment and
medication use

The assessment of host parameters, including the measurement of
clinical variables in blood serum, anthropometric characteristics, blood
pressure, short-chain fatty acids (SCFAs), dietary parameters and medication
use is described in detail elsewhere (15,17,18). Briefly, peripheral venous blood
was used to measure total cholesterol, high density lipoprotein (HDL)
cholesterol, low density lipoprotein (LDL) cholesterol, very low density
lipoprotein (VLDL) cholesterol, triglycerides, fasting glucose, fasting insulin,
glycated hemoglobin (HbA1C), adiponectin, lipopolysaccharide-binding protein
(LBP) and high-sensitivity C-reactive protein (hsCRP). The insulin resistance
index using the homeostasis model assessment (HOMA-IR) was calculated
from fasting insulin and glucose. Trained evaluators measured weight, height,
waist circumference (WC), four skin folds (biceps, triceps, subscapular and
ileocrestal), and systolic and diastolic blood pressures (15). We calculated the
body mass index (BMI) as weight (kg)/height squared (m?); participants were
classified as lean (18.5 < BMI < 25.0 kg m?), overweight (25.0 < BMI < 30.0 kg
m2) or obese (BMI 2 30.0 kg m?). Body fat percentage (BF%) was calculated
from the skin folds (19). To quantify calories and diet quality in the habitual diet
of participants, we performed 24-hour dietary recall interviews (17).

Pharmacological treatments were registered by the participants in specific
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questionnaires (15). The SCFAs acids butyrate, propionate, acetate, and the
branched-chain fatty acid isobutyrate were measured from feces using gas
chromatography—mass spectrometry (18).

We classified subjects by their cardiometabolic health status (CHS) (16)
as follows. Participants were considered cardiometabolically unhealthy when
they presented 2 or more of the following conditions: systolic/diastolic blood
pressure = 130/85 mm Hg or consumption of antihypertensive medication;
fasting triglycerides > 150 mg dI''; HDL > 40 mg/dl (men), > 50 mg dI"' (women)
or consumption of lipid-lowering medication; fasting glucose > 100 mg dI"' or
consumption of antidiabetic medication; HOMA-IR > 3, and hsCRP > 3 mg dI"".

DNA extraction and sequencing

Fecal sample collection was performed by each participant, who kept the
sample refrigerated in household freezers and brought it to a collection center in
each city within 12 h. Upon arrival at the collection center, samples were stored
on dry ice and shipped by courier to the Colombian Institute of Tropical
Medicine (ICMT) in Medellin, Colombia, for DNA extraction (20). We extracted
total DNA from human fecal samples of 430 out of the 459 enrolled subjects
using the QlIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany). DNA was
quantified with a NanoDrop spectrophotometer (Nyxor Biotech, Paris, France)
and stored at -80°C.

We prepared shotgun metagenome libraries with a modified Nextera
protocol, as described elsewhere (21). Briefly, we used 1 ng of total fecal DNA
for Nextera Tn5 tagmentation. After purification with Agencourt AMPure XP
beads (Beckman Coulter, Brea, CA, USA), we normalized and pooled the
samples. Next, we performed size selection of the pooled samples using
BluePippin (Sage Sciences, Beverly, MA, USA) to restrict fragment sizes to 400
to 700 bp. Barcoded pools were sequenced using the lllumina HiSeq 3000
platform with 2x150 bp paired-end sequencing. Library preparation and
sequencing was performed at the Max Planck Institute for Biology — Tubingen,

Tldbingen, Germany.
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Sequence quality control

We validated raw sequence reads with fqtools v.2.0 (22) and
de-duplicated with the  “clumpify’” command of bbtools v37.78
(https://jgi.doe.gov/data-and-tools/bbtools/). Adapters were trimmed and read
quality control was performed using the “bbduk” command of bbtools and
skewer v0.2.2 (23). We removed human genome reads in silico by mapping
them to the hg19 assembly with the “bbmap” command of bbtools. Quality
reports for each sample were created with fastqgc v0.11.7
(https://github.com/s-andrews/FastQC) and multiQC v1.5a (24). Metagenome
coverage for each sample was estimated using Nonpareil v.3.3.4 (25). Samples
with a sequencing depth < 500 000 reads or a metagenome coverage < 60 %

were discarded from downstream analyses.

Metagenome profiling

Filtered reads were used to obtain the functional profile using HUMANN2
v.2.8.1. (26) prior subsampling to a maximum of 10 million reads per sample
with seqtk v.1.3. We mapped reads against custom databases of archaeal and
bacterial genes and genomes generated using Struo v.0.1.6 (27) based on the
release 89 of the Genome Taxonomy Database (28) (available at

http://ftp.tue.mpg.de/ebio/projects/struo/).

Selection of functional features for analysis

We focused our analyses on a set of protein orthologs or metabolic
modules previously reported to be associated with obesity, T2D and
cardiovascular disease. The selection of features to include was systematized
by retrieving the results of studies reporting analyses of novel populations or
meta-analyses which used similar databases to group functional features, and
that were easily accessible in the original publication. For coarse-level analyses,
we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) modules, as
reported by Jie et al. (29) and Wu et al. (30). For fine-level analyses, we used
KEGG orthogroups as reported by Jie et al. (29) and Armour et al. (14).

Selection was performed in three steps (figure S1A): first, for each study we
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selected features that were consistently associated with diseased subjects or
healthy controls (e.g., by removing features enriched in both lean and diabetic
subjects within the same study). Next, we merged the resulting lists of features
and performed a similar selection of features with consistent associations
across studies. Finally, the shortlisted functional features that were detected in
the Colombian subjects were further filtered to include only those present in at
least 50% of individuals. This resulted in 2 653 KEGG orthologs and 136 KEGG

modules, which were used for further analyses (tables S1 and S2).

Statistical analyses
Statistical analyses were performed using R v.4.0.2 (31) unless stated
otherwise. We adjusted P values for multiple comparisons using the

Benjamini-Hochberg method, with a significance threshold of 0.1.

Transformation of functional feature abundances

Functional profile data was transformed using the centered log-ratio (clr).
For this, we first replaced zero values with pseudocounts in a compositionally
aware manner using the zCompositions v.1.3.4 package of R (32), and used the
propr v.4.2.6 (33) and compositions v.2.0 (34) packages to compute the cir
transformation. Positive clr values imply that the feature is more abundant than
the average feature, conversely, negative values imply that the feature is less

abundant than the average (35).

Validation of covariates

We evaluated the individual association of age, sex, city, socioeconomic
status (according to the official Colombian strata division, from 1 [lowest
income] to 6 [highest income]), and the consumption of medications for
diabetes, hypertension, dyslipidemia and proton pump inhibitors (PPIs) with the
overall composition of the microbiome. For this, we used k-mer-based richness
calculated using Nonpareil for alpha-diversity, and Aitchison’s distance
(Euclidean distance using clr-transformed abundances) calculated using KEGG

module abundances as measure of beta-diversity. For each medication
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category, we performed a 1:3 nearest neighbor propensity score matching
without replacement using the Matchlt v.4.1.0 package of R (36), matching
consumers with non-consumers by age, sex, city and BF%.

We tested differences in alpha-diversity by sex and medication
consumption using Welch'’s t-test, ANOVA for city and socioeconomic status,
and Spearman’s rank correlation for age. Next, we assessed multivariate
homogeneity of groups dispersions, and performed a permutational multivariate
analysis of variance (PERMANOVA) on Aitchison distance matrices using the
vegan v.2.5-7 package of R (37). Host factors that were significantly associated
with at least one of the two diversity metrics were selected for inclusion as

covariates in downstream analyses.

Functional diversity analyses

For each sample, we estimated k-mer based sequence richness using
Nonpareil (25). We then performed linear regression analyses to test the
association of BMI, BF% or WC (as continuous variables), and cardiometabolic
status of the subjects with sequence richness after adjusting for age, city, sex
and medication usage. Goodness-of-fit of each model was assessed using
Akaike’s information criterion (AIC), and the proportion of variance was
estimated by means of the adjusted coefficient of determination (R?). Next, we
assessed differences in beta-diversity estimates of functional features by BMI,
BF% or WC (as categorical variables), and cardiometabolic status. For this, we
performed a permutational multivariate analysis of variance (PERMANOVA) on
a matrix of Aitchison’s distances of KEGG modules, as implemented in the
vegan v.2.5-7 package of R (37). The proportion of variance was estimated
using the adjusted coefficient of determination (R?). We calculated the unique
and shared contributions of obesity measures and cardiometabolic status to the

functional beta-diversity by variance partitioning.
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Identification of a set of shared functions between obesity and cardiometabolic
health status, and association of functional features with host parameters

We identified individual functional features (i.e. KEGG modules and
orthologs) uniquely associated with obesity or cardiometabolic status using the
MaAsLin2 v.1.0.0 package (38) on R v.3.6.2. For this, we fitted Gaussian linear
models and assessed each feature’s clr-transformed abundance including both
a measure of obesity (e.g. BMI, WC or BF%) and the cardiometabolic health
status as main effects. We used type Il ANOVAs to test for significance. A
functional feature was considered to be uniquely associated with a given
condition if it was significant after regressing out the other condition. Oppositely,
we considered a feature as part of the set of shared functions between OB and
CHS if it was significantly associated with a single condition (e.g. in a model
only including OB) but was non-significant after the other was included in the
model (e.g. in a model including both OB and CHS). All models included age,
sex, city and the consumption of the aforementioned medications as covariates;
other host factors evaluated above were not included. We also performed a
sensitivity analysis by removing all subjects who consumed the medications in
question and repeating the analysis; results were largely consistent with the
main analysis (data not shown).

Next, the association of blocks of related microbial features and host
biochemical and anthropometric parameters was tested using HALLA v.0.8.19
(hierarchical all-against-all association testing;
https://github.com/biobakery/halla). We used matrices of residuals of the
microbial features and host parameters after adjusting each for age, sex, city
and medication consumption. Spearman's rank correlation was used as the
similarity measure and hierarchical clustering was performed with Ward's

method.

Quantification of contributional diversity and abundance of functional features
We used HUMANN2's tiered search (26), combined with the
Struo-generated custom databases (27), to quantify the contribution of different

members of the microbial community to the total abundance of the detected
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modules and orthologs. In addition, we used these data to quantify the
contributional diversity of the functional features, measured as the number of
taxa that contributed to its total abundance, that is, the contributional richness
(26). We restricted our analyses to the set that were uniquely associated to any
of the obesity measures, the CHS, or that were shared between conditions. For
each set, we compared the contributional richness between modules associated

with health and disease.

Data and code availability

The metagenomic sequence data will be deposited in the European
Nucleotide Archive upon submission of this manuscript to a preprint server
and/or a peer-reviewed journal. The R notebooks and associated data will be

made available at https://github.com/leylabmpi/Colombian_Cardiometabolic.

Results

Overview of a deeply-characterized human cohort

An overview of the cohort, host and microbial data, and the analyses
performed is provided in figure 1. We carried out a cross-sectional study, in
which we recruited 459 community-dwelling adults living in five large Colombian
cities (15), attempted microbiome sequencing in 430 samples and succeeded in
the shotgun characterization in 408 of them. We enrolled subjects in similar
proportions by body mass index category (BMI: lean, overweight, obese), city of
origin (Bogota, Medellin, Cali, Barranquilla and Bucaramanga), sex at birth

(man, woman) and age group (18 to 40 and 41 to 62 years).
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Figure 1. Overview of the Colombian cohort, study design, metagenome profiling,

functional feature selection and data analysis. Figure made with BioRender.

We assessed diverse demographic,

health-related and dietary

parameters from these subjects, and used DNA from fecal samples for gut

metagenome shotgun analyses. Summary statistics of subjects from the studied

cohort are presented in table 1. After metagenomic library construction,

sequencing, and bioinformatic curation of sequencing reads, we retained 408

samples which had a sequencing depth > 5.0x10° reads (mean + SD: 6 719 985

reads sample”’ + 8 960 996) or a metagenome coverage calculated using
Nonpareil > 60% (82.36% + 8.38).
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Cardiometabolic health

Body mass index

status category

Overall Healthy Unhealthy P val. |Lean Overweight Obese P val.
n 408 153 255 125 161 122
Age
(years) 40.74 (11.11)| 38.35(10.60) 42.18(11.18) 0.001| 39.25(11.24) 40.39 (11.18) 42.75(10.68) 0.04
Sex—Woman
(%) 205 (50.2) 84 (54.9) 121 (47.5) 0.175 64 (51.2) 76 (47.2) 65(53.3) 0.58
City
(%)
Barranquilla 80 (19.6) 27 (17.6) 53 (20.8) 20 (16.0) 31(19.3) 29 (23.8)
Bogota 77 (18.9) 31(20.3) 46 (18.0) 0.831 22 (17.6) 34 (21.1) 21(17.2) 0677
Bucaramanga 72 (17.6) 30 (19.6) 42 (16.5) 27 (21.6) 29 (18.0) 16 (13.1)
Cali 88 (21.6) 33 (21.6) 55 (21.6) 27 (21.6) 32 (19.9) 29 (23.8)
Medellin 91 (22.3) 32 (20.9) 59 (23.1) 29 (23.2) 35(21.7) 27 (22.1)
BMI
(kg/m?) 27.94 (5.00)| 25.33(3.88) 29.51(4.95) <0.001| 22.65(1.60) 27.45(1.37) 34.00(3.59) <0.001
Body fat
(%) 37.18 (5.44)| 34.76 (5.70) 38.64 (4.73) <0.001| 33.34(5.01) 36.95(4.46) 41.43(3.75) <0.001
Waist
circumference
(cm) 92.87 (13.15)| 85.06 (10.28) 97.56 (12.46) <0.001| 80.54 (7.51) 91.98 (6.93) 106.69 (10.48) <0.001
Systolic BP
(mm Hg) 124.64 (18.52)| 116.92 (16.08) 129.28 (18.37) <0.001]116.93 (17.64) 126.20 (17.72) 130.52 (17.88) <0.001
Diastolic BP
(mm Hg) 80.28 (12.25)| 75.27 (11.36) 83.28 (11.80) <0.001| 74.82(11.23) 81.23(12.05) 84.61 (11.53) <0.001
Medication
usage (%)
Hypertension 71 (17.4) 8(5.2) 63 (24.7) <0.001 12 (9.6) 25 (15.5) 34 (27.9) 0.001
Diabetes 19 (4.7) 0(0.0) 19 (7.5) 0.001 3(2.4) 7 (4.3) 9(74) 0.174
Dyslipidemia 41 (10.0) 2(1.3) 39 (15.3) <0.001 8 (6.4) 17 (10.6) 16 (13.1) 0.206
PPI 19 (4.7) 5(3.3) 14 (5.5) 0.43 8 (6.4) 4 (2.5) 7(5.7) 0.236
Total
cholesterol
(mg/dL) 186.63 (34.80)|182.14 (33.25) 189.33 (35.48) 0.043]183.82 (38.90) 188.09 (33.86) 187.59 (31.54) 0.553
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HDL

(mg/dL) 45.67 (13.71)| 53.18 (14.59) 41.17 (10.92) <0.001| 50.78 (15.13) 43.68 (12.53) 43.07 (12.28) <0.001
LDL

(mg/dL) 115.44 (30.66) | 112.56 (30.16) 117.18 (30.88) 0.141] 111.98 (32.13) 119.30 (31.18) 113.86 (27.94) 0.107
Triglycerides 147.16 94.99 178.47 122.26 147.37 172.42
(mg/dL) (102.46) (39.69) (115.14) <0.001 (111.64) (83.70) (109.51) 0.001
ApoB

(mg/dL) 96.14 (39.98)| 87.05 (27.06) 101.60 (45.20) <0.001| 92.44 (30.48) 99.55 (54.14) 95.45(22.74) 0.322
LpA

(mg/dL) 2.08 (4.00) 2.57 (4.30) 1.79 (3.79) 0.056 2.33 (4.29) 2.40 (4.30) 1.40 (3.14) 0.08
Adiponectin

(pug/ml) 6.65 (3.90) 8.09 (4.36) 5.79 (3.31) <0.001 7.83 (4.28) 6.18 (3.51) 6.06 (3.74) <0.001
Glucose

(mmol/L) 89.78 (22.19)| 83.13(6.24) 93.77 (26.89) <0.001| 85.86 (20.75) 87.63 (12.50) 96.65 (30.64) <0.001
HbA1c

(%) 5.56 (0.64) 5.38 (0.29) 5.67 (0.76) <0.001 5.43 (0.48) 5.50 (0.61) 5.78 (0.77) <0.001
Insulin

(MU/ml) 13.52 (9.07) 8.47 (3.12) 16.55(10.07) <0.001 8.52(3.99) 12.65(5.96) 19.79 (12.13) <0.001
HOMA-IR 3.15(3.19) 1.74 (0.65) 4.00 (3.75) <0.001 1.83 (1.09) 2.75 (1.41) 5.02 (4.97) <0.001
Leptin

(ng/mL) 7.00 (6.28) 5.43 (4.91) 7.94 (6.81) <0.001 4.20 (4.09) 5.98 (5.31) 11.22 (7.13) <0.001
LBP

(pug/ml) 4.48 (1.58) 4.02 (1.49) 4.77 (1.57) <0.001 4.11 (1.61) 4.45 (1.58) 4.92 (1.46) <0.001
hs-CRP

(mg/L) 3.17 (4.61) 1.74 (1.80) 4.03 (5.49) <0.001 1.69 (1.50) 3.23 (5.10) 4.62 (5.52) <0.001
Acetate

(umol/g) 3.81 (4.85) 3.05 (3.55) 4.27 (5.44) 0.014 3.00 (3.23) 3.20 (5.10) 5.45 (5.49) <0.001
Propionate

(umol/g) 1.18 (1.97) 0.90 (1.18) 1.36 (2.30) 0.021 0.86 (1.16) 1.17 (2.61) 1.54 (1.56) 0.023
Butyrate

(umol/g) 0.61 (0.94) 0.47 (0.59) 0.69 (1.09) 0.024 0.49 (0.69) 0.61 (1.23) 0.72 (0.68) 0.157
Isobutyrate

(umol/g) 0.04 (0.15) 0.03 (0.04) 0.04 (0.18) 0.25 0.03 (0.03) 0.05 (0.23) 0.04 (0.05) 0.454

Table legend in next page
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Table 1. General, anthropometric, health-related and dietary characteristics of subjects
with microbiome data included in the present study (n = 408). Data presented as the mean
(SD) or count (%). BMI: body mass index, HDL: high density lipoprotein cholesterol, LDL: low
density lipoprotein cholesterol, hsCRP: high-sensitivity C-reactive protein, HOMA-IR:
homeostatic model assessment—insulin resistance. P values from ANOVA or Chi-squared test.

The functional redundancy of the microbiome is evidenced by the low
variability of the features detected

To assess the metabolic potential of the gut microbiome of the subjects,
we used centered log-ratio (clr) transformed abundances of 3 303 detected
KEGG orthologs and 301 KEGG modules; this transformation allowed us to
account for the compositional nature of the data. Hereafter, we will refer to
KEGG modules and orthologs as functional features. For visualization, we
grouped the KEGG modules according to their clr-transformed abundance using
hierarchical clustering, and observed that they formed three groups, which
roughly correspond to high, medium and low mean abundances (figure 2A).
Likewise, the clustering of modules closely followed their prevalence and
abundance, as we found a strong positive correlation between these two
variables (Spearman's rho = 0.97, P < 0.001). Overall, we observed little
variation on the abundance of the features across subjects. Features with mean
abundances located on the extremes of the distribution, that is, low and high
mean abundance, showed the smallest standard deviation. Conversely,
features with intermediate prevalence had the highest variance (figure 2B and
C). To test whether these patterns are specific to the Colombian cohort, we
performed a similar analysis on a set of 147 publicly available metagenome
samples from the Human Microbiome Project retrieved using the
CuratedMetagenomeData Bioconductor package (39), and observed

comparable patterns (not shown).
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Figure 2. Functional redundancy of the microbiome is evidenced by high prevalence and
low variance of features across subjects of the Colombian cohort. A) Heatmap of
clr-transformed abundance of KEGG modules across subjects (n = 408). Dendrogram on top
was obtained by hierarchical Ward-linkage clustering based on transformed abundances. Color
bands represent prevalence quartiles of modules and whether they were selected for further
analyses based on literature search. B) Scatter plot of mean transformed abundance and
standard deviation of all modules in the Colombian cohort. Point color represents prevalence
quartiles and shape indicates inclusion for further analyses. C) Scatter plot of mean transformed
abundance and prevalence of all modules in the Colombian cohort. Shape and color same as in
B).

Potential confounding host factors associate with functional diversity of
the microbiome

Multiple host parameters are associated with the structure of the gut
microbiome and cardiometabolic health, including age (40), sex (41),
geographical origin (42), and the consumption of medication for conditions such
as T2D, hypertension, dyslipidemia and PPIs (43-45). Accounting for such
covariates can reduce the risk of identifying spurious correlations (40,44,46),
however, the inclusion of all covariates might result in overfitting of statistical
models. Therefore, before testing the association of CHS or OB with individual
functional features, we selected covariates to include in the linear models. For
this, we validated the association of each of the aforementioned host

parameters, in addition to the total number of medications and the
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socioeconomic status of the subjects with the overall composition of the
functional profile as measured by alpha- and beta-diversity metrics.

We tested the association of T2D, hypertension, dyslipidemia and PPI
medication by matching subjects consuming and not consuming by age, sex,
city and BF% in a 1:3 ratio for each medication separately (figure S2). We
tested differences in alpha-diversity using a Welch's t-test and observed a
significantly lower metagenome richness in consumers of drugs for T2D
(Neonsumers = 19, Nnon-consumers = 97, ta505 = 1.522, P = 0.070), hypertension (Neonsumers
= 71, Nnon-consumers = 213, t11074 = 2.186, P = 0.016) and dyslipidemia (Nconsumers =
41, Npon-consumers = 123, tsg11 = 2.017, P = 0.024). We did not observe differences
between PPI consumers and non-consumers (Ngonsumers = 19, Nnon-consumers = 97,
tis00 = 0.031, P = 0.489). We did not observe differences in beta-diversity
between consumers and non-consumers of diabetes (F 4 = 1.066, R> = 0.015,
P = 0.341), hypertension (F, 4 = 0.858, R? = 0.002, P = 0.967), dyslipidemia
(F1406 = 0.866, R = 0.006, P = 0.423) and PPI (F; 4 = 1.021, R> = 0.013, P =
0.469) medication using PERMANOVA on Aitchison’s distances.

We observed significant differences in beta-diversity by sex using
PERMANOVA (F, 46 = 1.908, R? = 0.005, P = 0.012), but not in alpha-diversity
using Welch's t-test (Nyomen = 205, Npen = 203, tig99 = -0.56, P = 0.65). We did
not observe a significant correlation between age and alpha-diversity using
Spearman's correlation coefficient (rho = 0.002, P = 0.964), nor in beta-diversity
by age group (N4 = 195, N0 = 213, Fi406 = 0.791, R? = 0.002, P = 0.764).
We observed significant differences in alpha-diversity by city using ANOVA
(F4.403 = 8.949, P < 0.001) and beta-diversity using PERMANOVA (F, 403 = 6.154,
R? = 0.058, P = 0.001). We did not observe differences in alpha- or
beta-diversity by the socioeconomic status of the subjects (ANOVA F54p, =
0.455, P = 0.809, PERMANOVA F;,, = 0.976, R? = 0.012, P = 0.556) (figure
S2). We did not observe differences in beta-dispersion in any of the factors
tested (P > 0.05), that is, groups within each of the variables showed
homogeneous variance.

Based on their association with functional diversity metrics, we kept the

city of origin and consumption of medications for hypertension, T2D and
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dyslipidemia as covariates to include in downstream statistical models. While
non-significant, we also included PPI consumption and sex; we consider that
the risk of not including these variables, given what is known of their influence
over the microbiome in other populations and conditions outweighs the risk of

overfitting the linear models (47).

Obesity better explains differences in functional richness and
beta-diversity than cardiometabolic health status

We evaluated the association of OB and CHS with metagenome
sequence richness using a k-mer-based diversity index, fitting linear models
adjusting for age, sex, city of origin, and the consumption of medications. We
used body mass index (BMI), waist circumference (WC) and percentage of
body fat (BF%) as measures of obesity. As reported in other cohorts, we
observed that in this population there was a negative association between
k-mer-based sequence diversity and host health. Sequence diversity was
negatively correlated with two obesity measures (BMI adj. P = 0.008, WC adj. P
= 0.009, BF% adj. P = 0.540). Similarly, metabolically healthy individuals had
significantly higher richness than unhealthy individuals (CHS adj. P = 0.092).
Moreover, it was possible to differentiate subjects by their cardiometabolic
status within BMI categories (figure 3 and figure S3). OB measures better
explained differences in sequence richness than CHS. BMI had the lowest
Akaike information criterion (AIC) value and explained the highest proportion of
variance (AIC = 1162.796, Adj. R? = 0.021), followed by WC (AIC = 1164.281,
Adj. R? = 0.017). Only BF% (AIC = 1172.110, Adj. R? = -0.002) was a worse
predictor than CHS (CHS AIC = 1169.153, Adj. R?=0.006).

Next, we assessed the unique and shared contributions of OB and CHS
to the functional diversity of the microbiome by calculating the proportion of
variance attributed to each. For this, we calculated Euclidean distances on
clr-transformed abundances of KEGG modules and calculated the proportion of
variance explained using the adjusted R? from the PERMANOVA test. We found
that BMI explained a higher total and unique proportion of variance for
functional beta-diversity than CHS (PERMANOVA BMI: total adj. R? = 0.0045,

123



unique adj. R? = 0.0025, P = 0.0037; CHS: total adj. R?> = 0.0021, unique adj. R?
= 0.00014, P = 0.02). The proportion of variance contributed by both BMI
category and CHS, that is, the variance resulting from the correlation of both
conditions, was higher than the unique proportion contributed by CHS but lower
than that of BMI (shared adj. R? = 0.0020). We did not observe significant
results for BF% or WC (P > 0.05 in all cases). Similar results were obtained

when the analyses were performed using KEGG ortholog tables.
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Figure 3. Metagenome sequence richness is negatively correlated with obesity (A) and
can be further differentiated by including cardiometabolic status of subjects (B). Scatter
plots of sequence richness and BMI, regression lines are shown. This pattern is consistent
when WC or BF% are used (see figure S3)

Literature-based selection of candidate features allows to test robust
associations in a novel population

To narrow down the set of functional features that might be associated
with OB and/or CHS, that is, protein orthologs and metabolic modules to test,
we used data from publicly available studies looking into cardiometabolic
diseases that used the same databases to annotate the microbiome features.
We obtained KEGG orthologs from Jie et al. (2017) (29) and Wu et al. (2020)
(30), and KEGG modules from Jie et al. (2017) (29) and Armour et al. (2019)
(14). We filtered the retrieved data to select functional features that were
consistently associated with disease or with healthy controls within and between

studies (see methods and figure S1). We used these lists of candidate features
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to filter the functional profile data generated for the Colombian cohort. After
removal of functional features present in < 50% of our cohort, 2 653 KEGG
orthologs and 136 KEGG modules were retained for downstream analyses
(tables S1 and S2).

Most differentially-abundant functions negatively correlate with obesity

We sought to identify which of the selected candidate functional features
were uniquely linked with OB or CHS, that is, were associated with one
phenotype while accounting for the influence of the other. For this, we fitted
linear models of the clr-transformed abundance using MaAsLin2 adjusting for
the selected host variables. We considered a feature to be uniquely associated
with a given main effect or condition (e.g. OB) if it had a FDR-adjusted P < 0.1
in models with and without adjusting for the other condition (e.g. CHS).
Conversely, a feature was considered as shared between OB and CHS if it was
significant in a model with a single condition but non-significant after both
conditions were considered.

Only a fraction of the candidate features included in our analyses were
significantly associated with CHS or an OB measure (figure S1B): 67/136
(49.3%) KEGG modules and 1 417/2 653 (53.4%) orthologs were uniquely
associated with one of the conditions or belonged to a set of shared features
between CHS and OB (tables S3 and S4). Most features were uniquely
associated with OB measures and showed a negative correlation with them
(figure 4A), with the exception of BF%, where the set of shared features with
CHS was the largest (figure 4B). Regardless of the OB measure used in the

models, the set of features uniquely associated with CHS was small (figure 4B).
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Figure 4. Obesity, rather than cardiometabolic health status, drives associations with
functional features of the microbiome. A) Scatterplots of linear regression coefficient of
KEGG module abundance in models including CHS and a measure of OB (BMI: left panel, WC:
center panel, BF%: right panel). Colors represent whether a module is uniquely associated with
OB or CHS, shared or not significant. B) Barplots show the number of KEGG modules
belonging to the unique or shared sets shown in A) for each OB measure. Colors represent the
association with health (i.e, health-associated modules are enriched in lean or
cardiometabolically healthy individuals). C) Upset plot indicates the overlap in KEGG modules
associated with each OB measure.
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Most significant features were positively associated with host health,
independent of the set to which they belonged. In the case of OB-associated
features, their abundance was higher in lean individuals compared to obese; for
CHS-linked features, they were enriched in cardiometabolically healthy
compared to unhealthy subjects (figure 4B). This reflects the actual metabolic
functions in which they are involved. Disease-associated modules and orthologs
evidence a metabolic configuration of the microbial community with increased
capacity of metabolizing sulfur and nitrogen compounds through an increased
abundance of thioredoxins, thiosulfate sulfurtransferases, thioesterases, nitrate
reductases, nitrate/nitrite transporters and sensor proteins, and other nitrogen
regulatory proteins. They are also indicative of a metal acquisition response,
with features related to the synthesis and export of the siderophore
enterobactin, in addition to zinc uptake regulators and manganese/iron transport
systems. Other signatures of the gut of diseased subjects include an increased
tolerance to reactive oxygen species by glutathione-regulated efflux systems
and glutathione transferases; the transport of simple sugars via the PTS
system; the metabolism of choline, glycine betaine and trimethylamine; the
synthesis of lipopolysaccharide and polyamine production; and the degradation
of epithelial cells and the utilization of resulting ethanolamine. Conversely,
health-related features included orthologs and modules involved in microbial
energy and fermentative pathways such as glycolysis, the pentose phosphate
pathway, the bifidobacterium shunt and methanogenesis; acetogenesis and the
production of propionate and succinate; degradation of mucin; the biosynthesis
of vitamins, and degradation of amino acids (tables S3 and S4).

We observed a high overlap between functions uniquely associated with
any of the OB measures (BMI, WC or BF%; figure 4C), as expected given the
positive correlation between them (figure S4). Most features belonging to the
unique sets correlated with at least two of the OB metrics and had a consistent
link with host health (figure 4C).
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Functional features significantly associated with OB or CHS also correlate
with blood pressure and SCFA excretion

Next, we sought to identify groups of correlated host parameters and
microbial functional features. For this, we used Hierarchical All-against-All
Association testing (HAIIA) on the set of functional features significantly
associated with OB, CHS or both, and biochemical and dietary variables. Both
data matrices were adjusted for age, sex, city and medication consumption, and
P values were adjusted for multiple comparisons. We found 1 573 correlation
blocks when using KEGG orthologs and 66 blocks when using KEGG modules.
We observed a large overlap between the functions that formed these blocks,
that is, multiple functions were linked to several host parameters. The
association of these features was consistently related to improved or
deteriorated host health.

The set of host variables forming the largest correlation blocks were the
fecal concentration of SCFAs: butyrate, acetate or propionate. Twenty-five
module blocks (comprising 49 modules) and 244 ortholog blocks (comprising
1073 orthologs) significantly correlated with at least one SCFAs (figure 5).
Positively correlated blocks encompassed modules predominantly involved in
simple sugar and osmoprotectant transport systems, including components of
the PTS system, and glutamine, glutathione, thiamine, sn-glycerol-phosphate,
rhamnose, RTX toxin, N-acetylglucosamine and alpha-hemolysin/cyclolysin
transport systems (tables S5 and S6). Conversely, modules comprising
negatively correlated blocks were involved in methanogenesis and the
Wood-Ljungdahl pathway; the citrate cycle, glycolysis and gluconeogenesis;
and the biosynthesis of ascorbate, NAD and several nucleotides and amino
acids (tables S5 and S6). It is worth noting that in our cohort, higher fecal SCFA

levels have been linked to obesity and altered cardiometabolic status (18).
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Figure 5. Functional features of the microbiome form correlation blocks with host
factors, including blood pressure and fecal short chain fatty acid levels. Heatmap showing
the correlations between modules signlificanlty associated with OB measures, CHS or shared
between both. Association blocks were obtained using hierarchical all-against-all association
testing (HAIIA) and are demarcated by black borders; significance of individual associations are
denoted by white dots (adj. P < 0.1) and color indicates Spearman's correlation coefficient (rho).

After SCFAs, diastolic and systolic blood pressure were the host factors
with the largest blocks of correlated features; we detected 15 blocks
(comprising 23 modules) and 434 ortholog blocks (comprising 602 orthologs)
correlated with either. Most of these blocks overlapped with the large correlation
blocks formed by SCFAs. The direction of the association was largely the same
as above, with higher abundance of transport of simple sugars and
osmoprotectants linked to increased blood pressure, while the opposite was
true for the abundance of methanogenesis, glycolysis, gluconeogenesis and
associated biosynthesis modules (figure 5). Smaller correlation blocks were
also detected for inflammation measured by hsCRP, HbA1c, HOMA-IR, leptin,

insulin, triglycerides, adiponectin and VLDL.

Disease-associated features are less diverse and mainly contributed by
members of Proteobacteria

The above results indicate a scenario where the loss of gut homeostasis
is driven by obesity, and which is characterized by an increase of microbial

functions related to transport of simple sugars and tolerance to reactive oxygen
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species, where fermentative functions are reduced. This pattern closely follows

the germ-organ theory of non-communicable diseases (48), wherein
inflammation in the gut is linked to a disruption of anaerobiosis in the gut and an
expansion of facultative anaerobes from the phylum Proteobacteria (49).
Therefore, we assessed the contribution of microbial taxa to the functional
profile of the microbiome of Colombians using HUMANNZ2’s tiered search,

focusing on members of Proteobacteria.
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Figure 6. Proteobacteria are the main contributors to disease-linked modules. A)
Contributional diversity of modules significantly associated with obesity measures, CHS or
shared by both. B) Relative contribution of Proteobacteria taxa to the total module diversity.
Black points and bars represent mean and standard deviations.

the total

significantly associated with the OB metrics, CHS or both. We measured the

We calculated contributional diversity of the modules
contributional diversity as the number of taxa identified that contributed to the
total abundance of said module, and compared the values between health- and
disease-linked modules. Overall, we observed that modules associated with

health were more diverse than those associated with disease (figure 6A). For
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example, in the case of modules unique to BMI, 253.43 + 129.54 taxa
contributed on average to disease-associated modules, whereas 2600.94 +
1537.17 contributed to health-associated modules across all subjects
(Mann-Whitney U = 4, adj. P < 0.01). Very similar patterns were observed with
other obesity measures, both in uniquely associated or shared modules with
CHS (figure 6A).

Next, we assessed the proportion of the contributional diversity that could
be attributed only to members of the phylum Proteobacteria. The pattern was
opposite to the one described above: Proteobacteria taxa contributed more to
the total abundance of disease-linked modules than to health-associated ones
(figure 6B). In the case of modules uniquely associated to BMI, the mean
contribution of Proteobacteria to disease-linked modules was 58.29 % + 27.96,
while only of 16.83 % * 6.49 in the case of health-related modules
(Mann-Whithney U = 204, adj. P < 0.01). This was consistent across obesity

measures and unique or shared sets of modules (figure 6B).

Discussion

The consolidation of microbiome science as a framework to understand
health and disease processes depends on the generalizability of identified links
between the microbiome and host phenotypes across human populations. In
this study, we looked into the functional profile of the gut metagenome of a
deeply-phenotyped cohort from a non-Westernized population, Colombian
adults, and its association with obesity and cardiometabolic health. We
incorporated data from published studies to narrow the set of hypotheses to
test. Our rich data set allowed us to decouple obesity and the cardiometabolic
health status of the subjects while also accounting for several confounding
factors, including age, sex, the city of origin and medication consumption. Our
analyses indicate that alterations to the diversity and composition of the gut
microbiome functional profile are mainly driven by obesity, not by the
cardiometabolic status of the individuals. Nevertheless, the microbiome of
diseased individuals in both conditions left a footprint characterized by a lower

sequence richness, a decreased fermentative ability and an increased response
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to higher levels of oxygen in the gut lumen. Consistent with these findings,
functional features enriched in both diseased states, for obesity and
cardiometabolic status, were mainly contributed by members of the phylum
Proteobacteria, many of which are considered as pathogens or pathobionts
(50). Our results validate in this population the previously reported loss of
beneficial functions and diversity, and emphasize the importance of using
well-characterized cohorts to disentangle overlapping associations of host
phenotypes with the microbiome.

Easily accessible data from large cohorts with host and metagenome
information comparable to those used in the present study are scarce. Thus,
performing a multi-population analysis to decouple the association of the
microbiome with obesity and cardiometabolic status, while controlling
confounding factors, was not feasible. Nevertheless, we were able to
incorporate findings from published studies into our analyses by focusing on a
set of functional features that were previously linked to obesity or
cardiometabolic conditions. This allowed us to assess the robustness and
generalizability of the associations on an understudied population from South
America (51) using a rigorous statistical framework.

Even though only a fraction of the features evaluated were found to be
significantly associated with obesity or cardiometabolic status, our results
underscore the link between these conditions and the gut microbiome through
inflammation, both systemic and epithelial. Multiple inflammatory mechanisms
have been associated with the development of obesity, insulin resistance and
cardiovascular disease (52). Recent evidence underscores the importance of
intestinal inflammation in the development of obesity (53). In murine models, gut
epithelial inflammation precedes and correlates with diet-induced obesity and
insulin resistance, and interactions between the gut microbiome and diet are
required for the induction of inflammation (54). In turn, epithelial inflammation
affects intestinal permeability, allowing the translocation of bacterial antigens
such as lipopolysaccharide (LPS) to circulation, resulting in metabolic

endotoxemia (55). The low-grade systemic inflammation induced by increased
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LPS causes an increase in proinflammatory cytokines, compromising insulin
signaling and culminating in insulin resistance and glucose intolerance (56).

In our cohort, functions associated with adverse health outcomes
indicate that the configuration of the gut microbiome in diseased subjects favors
the growth of facultative anaerobes due to a loss of gut epithelial hypoxia (49). It
has been suggested that the expansion of members of the phylum
Proteobacteria, in particular of the family Enterobacteriaceae, are a signature of
epithelial dysfunction (48,57). Colonocytes utilize microbiome-produced
butyrate as a source of energy by mitochondrial beta-oxidation, depleting
oxygen in the epithelium surface; thus, the gut environment is dominated by
obligate anaerobes, such as bacteria from the phyla Bacteroidota, Firmicutes,
Actinobacteriota or Verrucomicrobiota, and methanogenic archaea from the
phyla Methanobacteriota and Thermoplasmatota (68). These microorganisms
ferment complex carbohydrates that escape host digestion, or utilize its
by-products as energy substrate (59). Gut epithelium disruption by
pro-inflammatory stimuli, such as the use of antibiotics (60) or the consumption
of a low-fiber, high-fat diet (61-63), promotes a shift in the energy metabolism of
colonocytes from beta-oxidation of butyrate towards anaerobic glycolysis, which
requires a higher consumption of glucose and does not result in oxygen
depletion (58). In turn, such conditions present a selective advantage to
facultative anaerobes, thus favoring their expansion (64,65). The expansion of
facultative anaerobes is detrimental to the health of the host, since members of
Proteobacteria are not fiber degraders, and their presence hinders the nutrition
of the host by metabolizing products of microbial fermentation to carbon dioxide
in the presence of oxygen (66,67). Moreover, the disruption of the epithelial
barrier results in translocation of microbial antigens, such as LPS, which
promote low-grade inflammation, exacerbating epithelial dysfunction (68) and
inducing insulin resistance (69).

We observed that functions enriched in both obesity and unhealthy
cardiometabolic status display the hallmarks of the germ-organ theory of
non-communicable disease (48), where obesity-associated inflammation results

in a loss of anaerobiosis in the gut and an expansion of Proteobacteria, which is
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aggravated by the subsequent appearance of cardiometabolic disease. The
enrichment of functions involved in the tolerance to reactive oxygen species,
and the utilization of sulfur and nitrogen in alternative energy metabolism
pathways suggest the loss of the hypoxic status of the gut epithelium (60). This
might be due to a degradation of the gut epithelium, as evidenced by orthologs
involved in the utilization of ethanolamine, derived from the cell membrane of
dead epithelial cells (65,70). Inflammation of the gut epithelium causes an
increase in neutrophyl transmigration to the gut lumen (71), where reactive
oxygen species and iron and zinc sequesters are released (72), hence the
increase in siderophores and zinc transporters we observed in obese subjects.
Moreover, the potential synthesis of beneficial metabolites, such as acetate,
propionate and succinate was reduced, while bacterial antigen biosynthesis,
such as lipopolysaccharide, together with the capacity for metabolizing
trimethylamine (TMA) from trimethylamine-N-oxide (TMAQ), choline or glycine
betaine was increased. TMAO can be used by diverse Enterobacteriaceae taxa
as electron acceptor, converting it to TMA in the gut (65,73). In turn, TMA is
absorbed by the host, converted into TMAO in the liver and enters circulation;
TMAO inhibits cholesterol transport and promotes its accumulation in
macrophages, inducing the formation of atherosclerotic plaques (74).

Compared to disease-associated modules, health-associated modules
had a higher contributional diversity, that is, more taxa encoded such functions.
The contribution of members of Proteobacteria to the total abundance of the
studied features was higher for disease- than for health-associated modules
and orthologs. This could help explain the negative correlation we observed
between the database-independent sequence diversity and obesity. We shown
in this cohort that individuals with higher abundance of pathobionts, including
Proteobacteria, had worse obesity and cardiometabolic health outcomes than
subjects with higher counts of consortia that included Ruminococcaceae,
Bacteroidales, Christensenellaceae, Methanobacteriaceae or Akkermansiaceae
(15). Additionally, we observed that the disease-associated modules were
positively correlated with other host parameters such as LBP, a marker of

translocation of bacterial antigens to the host bloodstream (75); hsCRP, a
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marker of systemic inflammation (76); and fecal short chain fatty acids levels
(18,77). All the aforementioned host factors were significantly different by
cardiometabolic status or body mass index categories (table 1). Conversely,
features enriched in healthy subjects highlight the loss of the fermentative
capacity of the microbiome, such as methanogenesis, central energy
metabolism pathways, the production of SCFAs such as acetate and
propionate, and the synthesis of succinate and ascorbate.

We did not observe complete replication of the functional features tested,
that is, not all features reached statistical significance in our tests. There are
multiple non-exclusive explanations for this. First, we used a statistical
framework in which feature abundance was transformed to take into account
the compositional nature of sequencing data. In addition, we accounted for host
factors known to influence the composition of the microbiome; namely, the age,
sex, local geographical origin, and the medication consumption of the subjects.
Incorporating known confounders can reduce the risk of obtaining false
positives in cross-sectional population studies (40,46). In other words,
accounting for common confounders might facilitate the comparison between
studies by ameliorating biases introduced by the confounding variables (46).
Second, some of the non-significant results could be due to differences in the
composition of the microbiome between human populations. Indeed, whether
certain characteristics of the microbiome are universal and other are
population-specific, and which associations of the microbiome with human
health are conserved across populations are still open questions in microbiome
research (78). Lastly, the effect size of the correlation between certain human
phenotypes and the gut microbiome tends to be small. Therefore, some
associations can only be recovered by studying cohorts with even larger sample
size than the one used here (46).

Our study is not without limitations. As discussed above, the inclusion of
host covariates such as age, sex, city of origin and the consumption of certain
medications allowed us to reduce the potential for confounding. Although in vitro
studies demonstrated that drugs with human targets of all therapeutic classes

inhibit the growth of human commensals (79), we only considered medications
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with direct relevance to obesity and cardiometabolic health, with no dosage
information. We are, thus, unable to rule out residual confounding from
variables not measured in our study (47). In addition, our findings are based on
cross-sectional data from a single human population. Therefore, we are only
able to report associations between microbial features and host phenotypes, not
provide causal inference. Finally, the present study used shotgun
metagenomics to assess the functional profile of the microbiome. This approach
does not directly measure the transcripts or proteins expressed by the
microbiota, but rather the genomic potential (80). Thus, the activity of the
community at a specific point in time as a response to the studied conditions
cannot be measured (81,82). Nevertheless, this approach provides useful
information insofar as the abundance of genes in a metagenome is positively
correlated with their mMRNA expression (81) and the protein levels (83).

The present study strengthens our understanding of the metabolic
potential of the gut microbiome in obesity and cardiometabolic disease in an
understudied population from a middle-income country (78). The scarcity of
easily accessible datasets with as much information as ours makes the direct
comparison between studies difficult, but does not prevent us from evaluating
the generalizability of previously reported patterns by other means. We expect
that the robust associations we report will serve to inform mechanistic studies of
the role of the microbiome in disease and guide the development of

microbiome-based interventions for personalized nutrition and medicine.
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Figure S1. Functional features included in the analyses were a subset of the detected
features, and complete replication was not observed in our analyses. A) Decision tree of
candidate feature selection. KEGG modules and orthologs were included according to their
association with cardiovascular disease, T2D or obesity in multiple studies. B) Alluvial plot

indicating the selection of KEGG modules evaluated using BMI as OB measure, from detection
and selection to significance.
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Figure S2. Host covariables are associated with metagenome sequence richness. A)
UpSet plot of medication usage across all subjects. B) Sequence richness by number of
medications consumed across all subjects (n = 408). P values from ANOVA and the only
significant contrast after Tukey's test. C) to F) Sequence richness by individual medication
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usage after matching consumers with non-consumers by age, sex, city and BF% in a 1:3 ratio.
C) proton pump inhibitors (n consumers, n non-consumers = 19, 57), D) hypertension (71, 213),
E) dyslipidemia (41, 123), F) diabetes (19, 57). G) and H) Sequence richness by number
socioeconomic level and city across all subjects. P values from ANOVA. |) Scatter plot of
sequence richness by age across all subjects. Regression line, regression coefficient, P value
and 95% confidence interval are shown. J) Sequence richness by sex across all subjects. Black
points and bars represent mean and standard deviations.
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149



A 140
120

o
= 100

40

BMI

40

30

20

20

40

50

C 140
120

1)

= 100

80

20

BF%

40

50

Unhealthy
Healthy

Figure S4. Scatter plots showing the association between OB measures and CHS across

all subjects (n = 408). Shapes indicate sex and color the CHS of the individuals.

150



Supplementary tables

Supplementary tables are available online as excel spreadsheets at
https://figshare.com/s/38d798ca39eb89e34750. For table legends, see below.

Table S1. List of candidate KEGG modules used in downstream analyses.
The final 136 modules were selected based on literature review and had a
prevalence = 50 % in the Colombian cohort. Feature: KEGG ID. Annotation:
feature description. Enrichment: condition in which the feature is enriched
according to Jie et al. (2017) and Armour et al. (2019). (Controls: healthy
subjects, T2D: type 2 diabetes, Shared: multiple conditions).

Table S2. List of candidate KEGG orthologs used in downstream analyses.
The final 2 653 modules were selected based on literature review and had a
prevalence = 50 % in the Colombian cohort. Feature: KEGG ID. Annotation:
feature description. Enrichment: condition in which the feature is enriched
according to Jie et al. (2017) and Wu et al. (2020). (Controls: healthy subjects,
ACVD: atherosclerotic cardiovascular disease, T2D: type 2 diabetes, Shared:

multiple conditions).

Table S3. KEGG modules uniquely associated with a given OB measure,
CHS or shared by both conditions. Feature: KEGG ID. Annotation: feature
description Health_association: health association direction of feature.
Main_Effect_1: Main effect (OB/CHS) associated with module abundance.
value: reference level. Im_coefficient: coefficient of linear model. raw_P_value:
raw P value. Adj P _value: P value adjusted for multiple comparisons.
Geometric_mean_abundance: mean abundance in Colombian cohort
Standard_Deviation: standard deviation in Colombian cohort Prevalence:
prevalence in Colombian cohort Main_Effect_2: Main effect (OB/CHS) adjusted

model. Set: feature uniquely associated with OB, CHS or shared.

Table S4. KEGG orthologs uniquely associated with a given OB measure,
CHS or shared by both conditions. Feature: KEGG ID. Annotation: feature
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description Health_association: health association direction of feature.
Main_Effect_1: Main effect (OB/CHS) associated with module abundance.
value: reference level. Im_coefficient: coefficient of linear model. raw_P_value:
raw P value. Adj P value: P value adjusted for multiple comparisons.
Geometric_mean_abundance: mean abundance in Colombian cohort
Standard_Deviation: standard deviation in Colombian cohort Prevalence:
prevalence in Colombian cohort Main_Effect 2: Main effect (OB/CHS) adjusted

model. Set: feature uniquely associated with OB, CHS or shared.

Table S5. Correlation blocks of KEGG modules and host parameters
obtained using Hierarchical All-against-All Association testing (HAIIA).

Cluster_rank: cluster order based on minimum adjusted P value. Cluster_X:
KEGG modules included in the association block. Cluster Y: host factors
included in the association block. Best_adjusted_pvalue: minimum P value of all

pairwise correlations of block.

Table S6. Correlation blocks of KEGG orthologs and host parameters
obtained using Hierarchical All-against-All Association testing (HAIIA).
Cluster_rank: cluster order based on minimum adjusted P value. Cluster_X:
KEGG orthologs included in the association block. Cluster_Y: host factors
included in the association block. Best_adjusted_pvalue: minimum P value of all

pairwise correlations of block.
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Abstract

The human gut microbiome is an important mediator of multiple
physiological processes. The identification of generalizable associations and
mechanistic links between this microbial community and human health requires
the study of diverse human populations. Yet the microbiomes of subjects from
low- and middle-income countries are understudied. Here, we present a set of
shotgun gut metagenomes of 459 deeply-phenotyped men and women (18-62
years old) living in geographically distinct urban areas of Colombia (South
America), studied in the context of westernization and the epidemiological
transition. We assembled these metagenomes and retrieved 2 266 medium-
and high-quality metagenome-assembled genomes (MAGs), which we
annotated, classified taxonomically, and compared to large collections of
microbial genomes. The metagenomes, MAGs, and accompanying host data

presented here will benefit initiatives looking into the human microbiome's
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diversity and its role in westernization, nutrition, obesity and cardiometabolic

disease.

Background & Summary

The study of the human gut microbiome has profoundly transformed the
interpretation of multiple physiological processes, from health and disease to
metabolism and nutrient absorption (1). In recent years, major advances in the
establishment of large collections of microbial genomes have allowed us to gain
insights into the taxonomic and functional repertoire of the intestinal microbial
ecosystem (2).

However, the vast majority of studies from where these collections stem
have been performed in subjects from industrialized countries such as the
United States, China or members of the European Union (3,4). Large-scale
studies from low- and middle-income countries that aimed to describe gut
microbial diversity and its association with human health are sparse (4). The
lack of studies in such populations makes it difficult to determine the generality
of many of the previously reported links between the microbiome and the host.
Therefore, calls for initiatives that encompass populations with socioeconomic
and environmental factors beyond high-income countries have been made, so
that a universal understanding of the human microbiome and its effect on host

health can be achieved (3).
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Figure 1. Overview of the population, study design, metagenome assembly workflow and
generated data sets. Figure made with BioRender.
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In the present Data Descriptor, we present a set of shotgun metagenome
samples and metagenome-assembled genomes (MAGs) from the gut of a
cohort of 459 community-dwelling human adults from five cities in Colombia,
South America (figure 1). These subjects were sampled as part of a research
project aimed at characterizing the gut microbiota of a population undergoing
westernization, and to determine variation associated with obesity and
cardiometabolic disease. This cohort has been previously studied using 16S
rRNA gene sequencing in the context of the epidemiological transition (5), the
association with cardiometabolic disease (6), the genetic ancestry (7,8), age

and sex (9), and nutritional patterns of the host (10).
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Figure 2. Summary of shotgun metagenome sequencing and metagenome assembly
from 408 successfully sequenced human gut samples. A) Sequencing depth and
metagenome coverage of metagenome samples; dashed lines represent inclusion thresholds
for each parameter. B) Completeness and redundancy of each of the obtained MAGs. Green
points correspond to the 2 266 MAGs above quality cut-off values. C) Waffle plot of taxonomic
classification of the 355 SGBs, colored according to the lowest taxonomic level assigned.
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Each subject provided a stool sample, from which we extracted total
DNA. Shotgun metagenome sequencing was performed using the lllumina
HiSeq 3000 platform. We retained 408 samples which had a sequencing depth
of >5.0x10° reads (mean + SD 6 719 985 reads/sample + 8 960 996) or a
metagenome coverage calculated using nonpareil >60 % (mean + SD 82.36 %
1 8.38) (figure 2A). We performed metagenome assembly and binning on a per
sample basis and retrieved 2 797 MAGs. After removal of low-quality genomes
(completeness < 50 % or contamination = 5 %) and dereplication at 99.9 %
average nucleotide identity (ANI), we retained 2 266 MAGs, with an average (+
standard deviation) completeness and contamination of 85.57 % + 13.11 and
1.07 % * 1.04, respectively (figure 2B). Further dereplication at 95 % ANI
resulted in 358 species-level genome bins (SGBs). Downstream analyses of
MAGs usually involve the inference of their phylogenetic relations and the
prediction of the functional information encoded in the genome. We performed
gene calling and annotation using Prokka. The predicted proteome was used to
infer a multilocus phylogeny using PhyloPhlAn.

We used release 202 of the Genome Taxonomy Database (GTDB) to
assign a taxonomic classification to each genome. The set of SGBs comprised
296 known species belonging to 172 genera. A total of 57 SGBs (15.92 %)
lacked a species-level classification and 2 SGBs (0.56 %) lacked genus
classification (figure 2C). We compared our MAGs to the set of representative
genomes of the Unified Human Gut Genomes catalog (UHGG v.1.0). The vast
majority of MAGs corresponded to novel strains of the identified species: 2 132
MAGs had ANI values between 95 % and 99 % to their closest match in the
UHGG. Remarkably, we found that 62 (2.74 %) of our MAGs did not have a
species-level match in the UHGG. Mapping the taxonomic novelty onto the
MAG phylogeny revealed that it tended to group within a few clades. Most novel
MAGs belonged to the orders Coriobacteriales (72 MAGs), Oscillospirales (10
MAGs) and Christensenellales (8 MAGs) (figure 3A).
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Figure 3. Phylogeny and taxonomy of the retrieved 2 266 MAGs. A) Phylogenetic tree built from
multilocus sequence alignment. From innermost to outermost rings, the data mapped onto the
phylogeny are: GTDB r202 phylum-level taxonomic classification; taxonomic novelty of the
MAGs compared to GTDB at the species, genus or family level; presence of a genome with ANI
< 95% at the UHGG catalog v.1.0. The phylogeny was inferred from multiple conserved loci
using PhyloPhlAn. The phylogeny is rooted on the last common ancestor of Archaea and
Bacteria. Scale bar represents the number of amino acid substitutions per site. B) Barplot
showing the number of MAGs classified on each bacterial and archaeal phylum. Colors same as
in A).
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Methods
Ethics approval

This cross-sectional study was conducted in accordance with the
principles of the Declaration of Helsinki 2013 and had minimal risk according to
the Colombian Ministry of Health (Resolutions 8430 of 1993 and 2378 of 2008).
All the participants were thoroughly informed about the study and procedures
before signing consent forms. Participants were assured of anonymity and
confidentiality. Written informed consent was obtained from all the participants
before beginning the study. The Bioethics Committee of SIU—University of
Antioquia (Medellin, Colombia) reviewed the protocol and the consent forms
and approved the procedures described here (approbation act 14-24-588 dated
28 May 2014).

Study population

As part of a cross-sectional study aiming to characterize the gut
microbiota of Colombians, we enrolled a cohort of 459 community-dwelling men
and women, aged 18 to 62, from five Colombian cities, with body mass index
(BMI) > 18.5 kg/m? and without report of cancer, neurodegenerative or
gastrointestinal disease. For each participant, total DNA extracted from fecal
samples, as well as anthropometric, socioeconomic, biochemical and dietary
information were collected. This information included personal medical history
and medication use; dietary intake and physical activity levels; blood pressure
and several measures of adiposity such as BMI, waist circumference and
percentage of body fat; blood biochemistry parameters, namely, high density
lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, very low
density lipoprotein (VLDL) cholesterol, triglycerides, fasting glucose and insulin,
glycated hemoglobin (HbA1c), leptin, adiponectin and high-sensitive C-reactive

protein. A detailed description of data acquisition can be found elsewhere (6).
DNA extraction and sequencing

Each participant performed a stool sample collection. We extracted total
DNA from 430 fecal samples utilizing the QlAamp DNA Stool Mini Kit (Qiagen).
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We prepared metagenome libraries with a modified Nextera protocol, as
described elsewhere (11). Briefly, we used 1 ng of total stool DNA for Nextera
Tn5 tagmentation. After purification with Agencourt AMPure XP beads
(Beckman Coulter), samples were normalized and pooled. Next, we performed
size selection of the pooled samples using BluePippin (Sage Sciences) to
restrict fragment sizes to 400 to 700 bp. Barcoded pools were sequenced using

the lllumina HiSeq 3000 platform with 2x150 bp paired-end sequencing.

Sequence quality control

Raw sequencing reads were validated using fqtools v.2.0 (12), and the
“clumpify” command of bbtools v37.78
(https://jgi.doe.gov/data-and-tools/bbtools/) was used to deduplicate them. We
removed adapters and performed read quality control with skewer v0.2.2 (13)
and the “bbduk” command of bbtools. To remove human genome reads, we
mapped them to the hg19 assembly using the “bbmap” command of bbtools.
After each step, we generated data quality reports using fastqc v0.11.7
(https://github.com/s-andrews/FastQC) and multiQC v1.5a (14). To estimate the
metagenome coverage, we used Nonpareil v.3.3.4. A total of 408 samples that
had a sequencing depth above 1 million reads or a metagenome coverage over

60 % were retained for downstream analyses.

Metagenome assembly

We performed metagenome assembly following the workflow developed
by Youngblut et al. (15). Briefly, each sample was assembled separately, prior
subsampling to a maximum of 20 million reads per sample using seqtk v.1.3. A
reference-based metagenome assembly was performed using metacompass
v.1.2 (16) based on each sample’s taxonomic profile. We profiled each sample
using centrifuge v.1.0.3 (17) to select reference genomes, which we then
downloaded using ncbi-genome-download v.0.2.1. Reads that did not map to
any reference genome were used for de-novo assembly with metaSPAdes
v.3.12.0 (18). Contigs with a minimum length of 2 000 bp from the

reference-based and de novo assemblies were combined and de-replicated
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using bbtools. To bin contigs, we used MaxBin2 v.2.2.4 and MetaBAT2 v.2.12.1,
each executed with 2 parameter settings for a total of 4 bin collections per
sample. Per-sample binning of contigs was performed, but we utilized reads
from all metagenome samples to calculate differential coverage with Bowtie2
v.2.3.5 (19). The best non-redundant set of contig bins (i.e.
metagenome-assembled genomes; MAGs) was selected with DAS-Tool v.1.1.1
(20) based on estimates of completeness and contamination from CheckM. For
downstream analyses, MAGs from all samples were combined.

We calculated completeness and contamination of each MAG using
CheckM v.1.0.13. MAGs with completeness of <50 % or contamination of =5 %
were discarded. Taxonomic classification of the MAGs was obtained using
GTDB-Tk v.0.3.3 (21) against the release 202 of the Genome Taxonomy
Database (GTDB). We used dRep to collapse clonal genomes at an average
nucleotide identity (ANI) of 99.9 %. Using PhyloPhlAn v.0.41 (22), we
constructed a maximume-likelihood phylogenomic tree of all de-replicated MAGs
from a concatenated alignment of multiple universally distributed single copy
marker genes. We assessed the taxonomic novelty of the non-redundant MAGs
against the Unified Human Gut Genomes catalog v.1.0 (UHGG) (2) by
calculating the Average Nucleotide Identity (ANI) between each of our MAGs to
each of the 4 644 representative genomes of the UHGG using FastANI v.1.31
(23). We considered a MAG to be novel if it did not have a species level match
in the UHGG (< 95 % ANI). Gene calling, proteome prediction and annotation

was performed on each genome using Prokka 1.12 (24).

Technical validation

We processed stool samples using sterilized equipment and standard
laboratory procedures following manufacturer instructions. The quality of the
extracted DNA was measured prior to the construction of metagenomic
libraries. Negative extraction and library construction controls were sequenced;
a mock community was included as positive sequencing control. We processed
raw sequencing data to remove host and poor quality reads. We restricted the

metagenome assembly only to samples with adequate sequencing coverage
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and depth. Quality of the MAGs was assessed using CheckM; redundant and
low-quality MAGs were removed from the data set. Whenever possible, we
used up-to-date versions of the databases and software for metagenome

assembly and MAG characterization.

Usage notes

Initiatives to expand the understanding of human-associated microbial
diversity across populations benefit from well-annotated, accessible sequences
that are rich in host data, such as those presented here. This Data Descriptor is
useful to researchers studying the diversity of the human microbiome and the
role it plays in westernization, nutrition, obesity and cardiometabolic disease. As
such, we expect the bulk of the data we generated to contribute to large
cataloguing efforts, such as the GTDB or the UHGG. Likewise, selected
genomes could be utilized to broaden the comprehension of particular clades by

comparative genomics (25).

Data records

The annotated MAGs, the taxonomic classification tables and
phylogenetic tree, as well as summaries of the data described here will be
released upon submission of this manuscript to a preprint server and/or a
peer-reviewed journal. The raw metagenome sequence data, and the 2 266
non-redundant MAGs, will be submitted to the European Nucleotide Archive.

Host anthropometric, biochemical and dietary data that has been made
available as part of previously published works can be found at:
https://github.com/jsescobar/westernization,  https://github.com/jsescobar/bsp
and https://github.com/Vidarium/diet_microbiota_MiSalud1.0

Code availability

The code used for processing the data will be made available at

https://github.com/leylabmpi/Colombian_MAGs
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