Learning robust control policies for real
robots

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultat
der Eberhard Karls Universitdt Tiibingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
M.Sc. Miroslav Bogdanovic
aus Belgrad, Serbien

Tiibingen
2021

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultat
der Eberhard Karls Universitat Tiibingen.

Tag der miindlichen Qualifikation: 14.01.2022

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter: Prof. Dr. Ludovic Righetti
2. Berichterstatter: Prof. Dr. Martin V. Butz

Abstract

In this thesis we deal with the problem of using deep reinforcement learn-
ing to generate robust policies for real robots. We identify three key issues
that need to be tackled in order to make progress along these lines. How to
perform exploration in robotic tasks, with discontinuities in the environment
and sparse rewards. How to ensure policies trained in simulation transfer
well to real systems. How to build policies that are robust to environment
variability we encounter in the real world.

We aim to tackle these issues through three papers that are part of this
thesis. In the first one, we present an approach for learning an exploration
process based on data from previously solved tasks to aid in solving new
ones. In the second, we show how learning variable gain policies can produce
better performing solutions on contact sensitive tasks, as well as propose a
way to regularize these policies to enable direct transfer to real systems and
improve their interpretability. In the final work, we propose a two-stage
approach that goes from simple demonstrations to robust adaptive behaviors

that can be directly deployed on real systems.

Contents
1 Overview of publications

2 Introduction
2.1 Deep reinforcement learning in robotics
2.2 Problemsof exploration
2.3 Transferring policies from simulation to real systems
2.4 Building robust policies o oo L
2.5 Thesisoverview

3 Individual paper contributions
3.1 Learning to explore in motion and interaction tasks
3.2 Learning variable impedance control for contact sensitive tasks . .
3.3 Model-free reinforcement learning for robust locomotion using tra-
jectory optimization for exploration

4 Simplifying assumptions and hardware details
4.1 Simplifying assumptions Lo Lo
4.2 Robothardware

5 Resolving exploration issues
5.1 Prior knowledge from simplertasks

6 Building transferable policies
6.1 Learning structured controllaws

7 Achieving robustness on real robots
7.1 Environment variability during training
7.2 Learning variable gain policies
7.3 Time-dependent demonstrations and robustness

8 Discussion and future work
8.1 Utilizing learned exploration models
8.2 Learning with alternate controllaws
8.3 Accounting for even more environment variability
8.4 Goal conditioned policies L.

9 Concluding remarks

10 References

A Accepted publications

B Submitted manuscripts

11

13
13
14

15
15

17
17

19
19
20
21

23
23
23
24
24
25
26
29

45

1 Overview of publications

This thesis encompasses work from three separate papers, two accepted pub-
lications and one submitted manuscript. We list the papers below and detail
individual contributions in each work.

Accepted publications

Learning to explore in motion and interaction tasks [BR19]

Miroslav Bogdanovic, Ludovic Righetti

Published at 2019 IEEE/RS] International Conference on Intelligent Robots and Sys-
tems (IROS)

Accompanying video available at https://youtu.be/1TX4ZdlYgXE.

* Author contributions: M.B., and L.R. designed research; M.B. performed
numerical simulations; M.B. analyzed results; M.B. wrote the paper with
support of L.R.

Learning variable impedance control for contact sensitive tasks [BKR20]
Miroslav Bogdanovic, Majid Khadiv, Ludovic Righetti

Published in IEEE Robotics and Automation Letters (RA-L)

Accompanying video available at https://youtu.be/AQuuQ-h4dBM.

* Author contributions: M.B., M.K., and L.R. designed research; M.B. per-
formed numerical simulations; M.B. performed hardware experiments with
contributions from M.K.; M.B. analyzed results; M.B. wrote the paper with
support of L.R. and M.K.

Submitted manuscripts

Model-free reinforcement learning for robust locomotion using trajectory op-
timization for exploration [BKR21]

Miroslav Bogdanovic, Majid Khadiv, Ludovic Righetti

Submitted to IEEE Robotics and Automation Letters (RA-L)

Accompanying video available at https://youtu.be/IDPJzpVzLIk.

* Author contributions: M.B., M.K,, and L.R. designed research; M.B. per-
formed numerical simulations; M.B. performed hardware experiments with
contributions from M.K.; M.B. analyzed results; M.B. wrote the paper with
support of M.K. and L.R.

https://youtu.be/lTX4ZdlYgXE
https://youtu.be/AQuuQ-h4dBM
https://youtu.be/lDPJzpVzLIk

2 Introduction

2.1 Deep reinforcement learning in robotics

One of the overarching goals in the field of robotics is designing controllers
that will allow robots to act in unstructured, real world environments. This
is something that has repeatedly proven challenging for classical control ap-
proaches. Successfully being able to act in the real world usually requires ex-
tensive engineering to account for the variety that occurs in real world environ-
ments.

Deep reinforcement learning (DRL) seems very well suited for this task. In
recent years, it has shown major successes across varied application areas and
the idea of being able to train control policies in simulation to account for var-
ious aspects it could encounter in the real world seems attractive. Despite this,
successes of DRL in robotics remain limited.

There has been a range of approaches showing impressive emergent behav-
ior in simulation on robotic problems. Legged robots have been shown to learn
to navigate complex environments with little guidance [HTS*17, PBYVDP17] or
perform highly dynamic acrobatic maneuvers based only on simple demonstra-
tions [PALvdP18]. However, achieving the same on physical robots has proven
difficult.

Works such as [LFDA16] and [ABC*20] show impressive results for learning
manipulation behaviors directly taking image data as input. However, the actual
tasks performed in those works remain simple and the majority of complexity is
limited to learning the vision aspect of the task.

One of the most impressive recent results has been [LHW*20]. There, policies
trained exclusively in simulation enable a quadruped robot to robustly navigate
highly uneven real world terrain. However, even that work is limited to compar-
atively slow motions and needs to utilize a highly structured control to be able to
achieve those results.

There are several difficulties that are holding back DRL applications in robotics.
We identify three key issues that prevent us from generating robust policies for
real robots using DRL and throughout this thesis we aim to address each one.
Firstly, the problem of exploration — how do we find good solutions in the first
place in complex, discontinous environments with sparse reward signals. Sec-
ond, how do we ensure that the policies trained in simulation preserve their per-
formance when deployed on the real system. Third, how do we generate policies
that are robust to the extensive variability that we can observe in real world en-
vironments.

2.2 Problems of exploration

Exploration is a key issue in almost any application of reinforcement learn-
ing. It is a particular issue in robotic tasks where there are discontinuities in the
environment (arising from contact interactions) and the reward functions are of-
ten sparse. With the increase in the number of degrees of freedom of the system,

moving from simple single-leg systems to bipeds, quadrupeds and even full hu-
manoid robots, it becomes more and more difficult to find even nominal solutions
for most tasks.

One of the simplest approaches to improve exploration on control tasks has
been to adapt the exploration process to produce trajectories more correlated
in time. The idea behind it being that independently sampled controls at each
timestep produce control signals that are not appropriate for most robotic tasks
[Waw15]. An example of this approach can be seen in the Deep Deterministic Pol-
icy Gradient algorithm (DDPG, [LHP*15]), which uses an Ornstein-Uhlenbeck
process [UO30] to generate time-correlated noise to use for exploration.

An often used method to circumvent exploration issues, with long history of
applications in robotics, is to exploit demonstrations [ACVB09]. One promising
way of utilizing demonstrations has been to train policies in simulation to track
a demonstration trajectory as well as possible [PALvdP18, PCZ*20]. Rather than
just learning to imitate exactly the controls given by the demonstration, these
approaches enable finding of solutions even when the demonstrations are not
perfect and behavior needs to be adapted at certain points. Alternatively, there
are approaches that try to learn the residual control with respect to the demon-
stration [TZC*18]. While potentially simpler, this type of approach produces a
time-dependent final policy. This is in conflict with the goal of using reinforce-
ment learning methods to build adaptive policies, as timing of the behavior is
fixed and cannot be adapted.

Another key element in dealing with exploration issues in robotic tasks is the
choice of action space for the policy to act in. While directly controlling joint
torques for the robot might give the most freedom to the policy, it often makes
exploration very difficult. Approaches utilizing PD control to control desired po-
sitions for each joint instead have been shown to be less likely to get stuck in
local minima [PvdP17]. There is still a lot of work in finding what is the best
parametrization to be used for different robotic tasks, in order to gain most ben-
efits in exploration by encoding strong structure, without sacrificing the ability
to represent a diverse range of behaviors.

In this thesis, we will propose a new method for learning an exploration pro-
cess based on data from previously solved tasks to aid in solving new, more com-
plicated ones. Additionally, we will see how we can utilize demonstrations to aid
in exploration while being able to adapt behavior away from what was demon-
strated in order to account for environment uncertainty.

2.3 Transferring policies from simulation to real systems

In finding policies that will perform well on a real robotic system, the best
approach would be to perform entire training on that same hardware. However,
learning on real robots is expensive and potentially dangerous. The number of
samples needed for finding policies for even the simplest tasks using reinforce-
ment learning approaches can easily equal days or even weeks of training on the
real system. This is ignoring practical aspects that such continuous running of
a robotic system would entail. Apart from rare cases, like solving manipulation

problems with access to an array of robotic arms, doing the entire learning pro-
cess on the real system like this is implausible.

Additionally, executing exploratory behaviors directly on hardware is inher-
ently dangerous and can easily result in breaking the robot. A lot of guardrails
need to be put in place to enable safe learning and it is difficult to make a good
tradeoff between safety and giving enough freedom for the learning to happen.

For these reasons a wide range of reinforcement learning approaches relies
on doing majority or entirety of the learning process in simulation and only then
deploying those policies to real systems. Issue that needs to be addressed when
utilizing those approaches is the discrepancy between simulation and the real
world. Even the best simulators we have access to do not exactly mirror reality,
especially when dealing with contact interactions. Simply performing training in
simulation and expecting it to directly work on the real system is going to fail on
all but most simple examples. Additionally, most precise available simulators are
often not going to be used, as the goal of using the simulator is to significantly
speed up training, so we are going to be limited to even less fidelity. Finally,
even with very precise simulations, if we give the algorithm access to exact state
information we can easily end up with incredibly fragile policies that exploit the
noiseless deterministic nature of the simulation.

A direct approach to resolving this issue by trying to identify aspects of the
system that are not well modeled inside the simulation. Usually, kinematics of
the robot is something that we know with high precision. The element that is not
as certain is the actuation model. It has been shown that learning this part of the
system and replacing those elements of the simulation with the learned model
improves the transfer of the policy to the real system [HLD*19].

Another, widely used approach for dealing with this issue has been domain
randomization [TFR*17]. In particular, an aspect that proves key for transfer
of policies learned in simulation to the real system is dynamics randomization
[PAZA18], where the parameters of the robot are randomized. Instead of solving
the problem for one specific model of the robot, which might not exactly match
reality, learning is performed in such a way that the resulting policy performs the
task on a range of slightly different robot models. This diversity makes it more
likely to capture aspects of the real system and for the policies to retain their
performance when deployed on those systems.

In addition to the previously discussed effects on exploration, the choice of
action space also makes an impact on how well the policies can be transferred to
real systems. In particular, imposing structure to the control of the robot makes
it more likely for what is learned in simulation to be applicable in the real world.
For example, utilizing PD control builds in feedback on the desired next position
in the learned control policies, allowing it to account for some discrepancies be-
tween simulation and the real world and enabling the desired motion given by
the policy to still be properly tracked.

Rather than relying on approaches such as domain randomization, in this the-
sis we focus on regularizing the trained policies to produce desired joint trajec-
tories that can be effectively tracked by the closed-loop controller. We propose a
novel regularization approach that we utilize across multiple works to produce

policies that can be successfully deployed to real systems without any additional
training.

2.4 Building robust policies

Creating policies that are robust to varied range of environments the robot
can act in is one of the main reasons for applying deep reinforcement learning
methods to robotics problems.

A predominant way for achieving these robustness characteristics when per-
forming training in simulation is to vary the environment the policy is acting in
during training in some way [HTS"17]. These approaches have produced com-
plex emergent behaviors in simulation, with robots learning to balance over un-
even terrain or jump over obstacles and gaps.

Particularly fruitful direction of research has been how to perform these ran-
domizations of the environment. While we would like to be robust to significant
variability in the environment, starting training with sampling from such diverse
set might lead to the reinforcement learning algorithm failing to converge. One
approach that has been showing potential in dealing with this is usage of cur-
riculums of environments of increasing complexity [HTS*17, YTL18, WLCS19,
XLKvdP20]. This way the complexity can increase slowly, potentially taking into
account current performance of the policy, so that the reinforcement learning
algorithm always receives the right difficulty of the problem to solve.

For a lot of these approaches however there is a gap between what we see
in simulation and the types of behaviors we know are possible on real systems.
There has been some application of this general approach recently with actual
deployments to real systems [LHW*20]. However, that work has both been lim-
ited to slower motions as well as having prior structure imposed on the policy.
Being uncertain about a location of a contact is a significantly easier complication
to deal with in a case when the robot has no flight phase and the endeffector can
slowly move until it encounters contact. It becomes more difficult when the robot
motion has a flight phase, contact is encountered at high velocity and needs to be
prepared for.

A large amount of work however remains to be done in this area, in partic-
ular related to building policies that will be robust when deployed on real sys-
tems. The way to structure the learning process as well as which aspect of the
environment to randomize are key to achieve policies that can act in real world
environments.

Building robust policies for real robots is a key focus of this thesis. We ex-
amine the influence of the choice of action space on the robustness of learned
policies and propose training variable gain policies in order to find better per-
forming policies in the presence of contact uncertainties. We examine how to
structure environments the robot is acting in during training and how to com-
bine randomization of aspects of the environment with specific reward terms to
produce robust behavior that carries over to real systems. Finally, we propose a
two-stage method, where we utilize demonstrations to aid in learning, but are
still able to fully adapt the policies in order to find truly robust solutions.

2.5 Thesis overview

This thesis covers work from three separate papers, addressing overlapping
subsets of the three issues presented above. In Chapter 3 we first give an overview
of the contributions of each paper. We then go over simplifying assumptions we
make across our work and give details of the robot hardware used in Chapter 4.
We then group topics from different papers based on the three key issues they are
dealing with as follows:

1. Learning to explore in motion and interaction tasks [BR19] — This paper
presents a way of learning how to explore when performing reinforcement
learning on robotic tasks, based on data from a set of simpler tasks. We
cover this in Chapter 5.1.

2. Learning variable impedance control for contact sensitive tasks [BKR20]
— This work is concerned with the choice of action space for producing ro-
bust policies in contact sensitive tasks. In particular, it proposes learning
variable gain policies to improve performance on these tasks, we cover this
in Chapter 7.2. It also introduces aspects that we reuse in the next pa-
per. First, a way to regularize the policies being learned to impose physical
meaning to them and ensure their effective transfer to real systems, which
we address in Chapter 6.1. Second, which aspects of the environment need
to be randomized and in which way to ensure high level of robustness of
policies when deployed to real systems, covered in Chapter 7.1.

3. Model-free reinforcement learning for robust locomotion using trajec-
tory optimization for exploration [BKR21] - In this work we propose a
two-stage approach for building robust policies starting from simple demon-
strations. We cover the conflict between tracking time-based trajectories
and being robust to variable environment conditions and how our approach
resolves this in Chapter 7.3.

After, we discuss where the overall research has led us to and what next steps
can be taken along those directions in Chapter 8. Finally, we give concluding
remarks for the thesis in Chapter 9.

10

3 Individual paper contributions

3.1 Learning to explore in motion and interaction tasks

In this paper, we show how we can utilize data from previously solved tasks to
build an exploration model that can improve learning of new, more complicated
ones. We examine the performance of the approach in simulation, on a set of
manipulation tasks of increasing complexity. We show how using the proposed
approach improves both learning speed and reliability of finding solutions in
new tasks. We also demonstrate how this method can be used in incremental
solving of a set of tasks with increasing complexity, by using the solutions of
each new task to expand the capability of the exploration model.

This work, while preliminary, shows an interesting potential for the design
of robot-centric exploration strategies. While, for example, utilizing demonstra-
tions to aid in learning can be simpler, approaches like the one we propose should
find their place in more complex tasks, where good demonstrations are hard to
come by and we need an alternative way to bootstrap learning.

3.2 Learning variable impedance control for contact sensitive
tasks

There are two key contributions we make in this work. The first one is the
proposed regularization scheme driving the policies to output joint trajectories
that can be well tracked by the PD controller. This allows us to produce policies
that can be deployed on real systems without need for dynamics randomization
during training. It also allows us to produce policies that are more interpretable,
with each output having its original physical meaning.

Our second contribution is the use of variable gain policies that can be learned
using the above regularization scheme. We show how we can find better solu-
tions more reliably utilizing this control structure on both fixed and floating base
robots. We also show how this performance carries over to the real system.

Overall, we see no degradation in learning performance from increase in the
number of outputs of the policy in the case of variable gain control. We are
also able to avoid the issue of having many combinations of outputs resulting in
the same behavior, by having the regularization scheme incentivize those with
proper physical meaning. These aspects combined make it reasonable to use
more complicated control structures when applying deep reinforcement learn-
ing in robotic tasks and have potential to be extended to other control schemes
appropriate for specific tasks.

3.3 Model-free reinforcement learning for robust locomotion us-
ing trajectory optimization for exploration

The final paper in this thesis goes furthest in the overarching task of achieving
robust behavior on real robots. The general approach presented there allows us

11

to go from single demonstration trajectories to robust policies that we can deploy
on real robots without the need for any additional training.

The main advantage of the approach is its simplicity and generality. We only
require a single demonstration trajectory for a given task. While we utilize tra-
jectory optimization methods to arrive at those trajectories in our work, the ap-
proach is agnostic to the source of the demonstration. This trajectory only needs
to encode some basic behavior on the task. It does not need to optimize any as-
pect of the performance, as that can be later done in the second stage of training.
It only needs to give us a hint of the kinematic motion needed to complete the
task. We do not even make use of the actions from the demonstration, just of the
sequence of states. This makes it so that we can easily use a different controller
during training than what was used for generating the demonstrations.

On the other side, as using demonstrations allows us to overcome exploration
issues for the most part, the task reward we give in the second stage can be kept
quite simple. We can have it encode directly the aspect of the task we are inter-
ested in optimizing, without the need for any extensive reward shaping.

Using this approach we are able to produce highly robust behavior on a real
quadruped robot for dynamic hopping and bounding tasks. The behavior is ro-
bust to a wide range of environment variability (like uneven and soft ground) as
well as external perturbations (pushes during execution). As a result of general-
ity and simplicity of the approach we are hopeful that it can be further extended
to a wide range of tasks and to different robotic systems.

12

4 Simplifying assumptions and hardware details

Before examining specific contributions we make on each of the three key
issues described, we give details on the simplifications we make to be able to
focus on those issues. Additionally, we give specifics of the hardware used that is
key for enabling this type of work.

4.1 Simplifying assumptions

Overall we do not make any use of high-dimensional observations, like vision
or touch sensor data, as part of the policy input. Instead, we generally restrict
ourselves to direct measurements of the robot state (joints and base state). Addi-
tionally, we do not make any observations of the environment and instead aim to
be robust to a set of variable environment configurations.

We make these simplifications to be able to focus on the behavioral aspect of
the policies and in particular the interactions of the robot with the environment.
Deep reinforcement learning approaches that learn direct mapping from high
dimensional sensory data to controls have shown impressive results [LFDA16,
ABC*20]. However, most of the complexity in those approaches remains in the
observational part of the system.

In our work, we focus on how the policy acts in the environment, the interac-
tions of the robot with the world and how we can create robust policies than can
act in a variable, uncertain environment. Simplifications we make are crucial to
be able to examine these aspects. However, there should be nothing preventing
all the results presented here from being utilized as parts of a more complicated
system, utilizing diverse sets of complex observations.

We also do not use any extended state history in the input to the policies or
use policies with any internal memory. The one exception is the recurrent neural
network based exploration model in [BR19]. But even in that work, the policies
that are trained using that exploration model have no memory and are only based
on the current state.

Policies with some memory capabilities have been used in robotic tasks, mostly
in combination with domain randomization [PAZA18]. In those cases, the policy
having access to longer state history or internal memory can allow it to implicitly
identify either dynamics parameters or some aspects of the environment and act
accordingly. We do not randomize robot parameters in our works and instead
rely on imposing structure to the policies to ensure effective transfer to real sys-
tems. This removes one reason for having memory in the policies, as with a single
instance of robot dynamics there is nothing to identify in that respect.

On the other hand, as for the environment variability, we explicitly do not
want the policies to be able to identify specific aspects of the current configura-
tion. Instead, we want them to be robust to a range of environment configurations
that can be encountered. This adds more robustness into the policies, as they are
able to account for environment changing during execution of the policy. For ex-
ample, hopping policies in [BKR20] being able to continue hopping as the ground

13

height changes or policies in [BKR21] being able to deal with uneven ground and
external pushes.

4.2 Robot hardware

(a) One-leg hopper (b) 8-DoF quadruped

Figure 1: Two hardware platforms used in this work. Images taken from
[GMK*20].

Another key element for the success of the work covered in this thesis that
cannot be disregarded is the hardware used for experiments. For all real hard-
ware experiments we used lab-built robots based on the Open Dynamic Robot
Initiative (ODRI) architecture [GMK™20]. It represents a simple, low-cost frame-
work for building a range of robots with widely available parts.

Common hardware design between different robots allowed us to quickly
move between them, reusing results and knowledge gained from working on one
when moving to the next. The hopping experiments on a single leg setup used in
[BKR20] provided a starting point for performing a more difficult task of robust
hopping on a quadruped robot in [BKR21]. This also gives hope for the work
presented here to be used on other robots based on the same design, with the two
currently available ones being a 12-DoF quadruped and a 6-DoF biped.

Additionally, the hardware platform proved very well suited for deploying re-
inforcement learning policies to real systems. Safety is one of the main concerns
in evaluating policies learned in simulation on real systems. Potential for expen-
sive hardware failures can make such work exceedingly difficult. The platform
we used proved robust and durable, with failures rarely resulting in hardware
breaking. More importantly, with the modular 3D printed design of the robots,
in the cases of parts of the robot breaking, repair procedure was simple and quick.

Finally, the open source aspect of the hardware framework and relative sim-
plicity of reproducing it should aid in the reproducibility of the presented results,
something that is often a key difficulty in robotics research.

14

5 Resolving exploration issues

In each work that is part of this thesis we approach exploration in a differ-
ent way. In [BKR20] we examine comparatively simpler tasks for which policies
can be learned from scratch, without any special approach for exploration. In
[BKR21] we use demonstrations to bootstrap learning and then focus on dealing
with issues that arise when learning to imitate given trajectories. In [BR19] on
the other hand we deal exclusively with the problem of exploration.

5.1 Prior knowledge from simpler tasks

Most approaches to resolving exploration issues rely on prior knowledge in
some form. In [BR19] we examine how we can use knowledge gained from solv-
ing a set of tasks on a robotic system to aid us in solving new, potentially more
complicated tasks that share some characteristics with the original ones. For ex-
ample, if we know how to solve a task where we use a robotic arm to exert a force
on a specified point on a flat surface and a task where we do circular motion of
the endeffector in free space, can this aid us in solving a task where we are asked
to exert a force on a table while performing a circular motion?

Our proposed approach uses data collected from previously solved tasks to
build an exploration model, one that can be used to generate random behaviors
with characteristics seen in those tasks. When solving a new task, we then rely
on samples from this model to explore rather than relying on random noise. We
propose that utilizing these samples of more sensible behavior would improve
exploration and allow us to find solutions to new tasks faster and more reliably.

The key concept we rely on in building this exploration model is estimating
the combined distribution over actions arising from all the previously seen tasks
at some point during an episode. In a sense, determining at some point which
actions make sense based on what we have done previously and which do not.
First, we examine this combined distribution over actions when conditioned on a
current state of the system. For each action, we take the sum of probabilities for
that action from each available policy, weighed by the likelihood of occurrence of
the state in that task:

N
nipxp(alsy) = %Zf"i(st)ni(atlst) (1)
i=1

To formulate it in another way, if we take a collection of (state, action) pairs from
execution of all these tasks, we evaluate which actions are taken when the sys-
tem is in state s; in this combined dataset. We could now use samples from this
distribution to explore, rather than relying on random noise.

The issue with this approach is that it will often prove uninformative, as it
fails to capture any correlations across time. Conditioned only on a single state,
a wide range of actions might be plausible across the examined set of tasks. Gen-
erating trajectories by taking consecutive samples from this distribution would
result in behaviors similar to those seen when performing exploration using ran-

15

dom noise. We would not observe any coherent exploratory motions of the system
we are trying to achieve.

This is why we aim to estimate the same distribution over actions, but instead
conditioned on a longer history of preceding states:

N
1
Texp(aglS—k+1,---,S¢) = 7 E Vi(st—K+1:-~-:St)ni(at|st—K+1'-'-'St) (2)
i=1

This way we preserve all the key correlations across time. Sampling from this
model gives us trajectories that smoothly continue the behavior preceeding the
current state — they continue moving in a similar direction or continue applying
force if in contact.

One additional benefit from utilizing this approach is that it allows us to build
a curriculum of more and more complex tasks on a system. As the data used to
train the exploration model can come from any source, it can also come from
policies trained from previous application of the same approach. With this we
can take the simplest tasks we already know how to solve (moving a robotic arm
to a point in space), train an exploration model on that data and use it to solve
a next set of tasks (moving the arm along a trajectory or going to a surface and
applying a force) and then train a new model using the combined data to help
on an even more complex task (performing a motion while applying a force).
The approach is also modular, as we can choose the data containing the types of
behaviors we will have on a new task in training an exploration model, making it
more suited for the particular thing we currently care about.

16

6 Building transferable policies

Throughout our work we do not rely on approaches such as dynamics ran-
domization to ensure transferability of learned policies to real systems. Here we
show how instead we structure the policies to make them inherently transferable.

6.1 Learning structured control laws

When learning control policies for robotic tasks using reinforcement learning
we often have the policy output parameters for a specific controller, rather than
directly outputting control torques for each joint. Most commonly, we use a PD
controller and have a policy give desired positions (and potentially velocities) for
the controller. The expectation when we do this is that the policy will output a
trajectory of desired positions in time, that is then properly tracked by the con-
troller. Unfortunately, just by structuring the control like this there is nothing to
ensure that that is what actually happens. What we often see in practice is that
the policy can output highly non-smooth signals, which when put through the
control law results in success on the relevant task. We cannot however success-
fully deploy these policies on real robots as any differences between simulation
and the real world cause a control output like this to produce completely differ-
ent behavior resulting in task failure and potentially even being unsafe.

What we want is a way to ensure that the policy outputs a trajectory that can
be tracked by the controller as much as possible. In [BKR20] we propose a way
of achieving this, by adding a new reward term during training. We design this
reward term to penalize the difference between the desired position value given
by the policy at timestep t and the actually achieved position and timestep ¢ + 1:

e = —k||ales — a1’ 3)

This drives the policy to produce desired position values that can actually be
tracked well by the PD controller.

The effect of the proposed reward term is particularly interesting when com-
bined with the variable gain control law. With the variable gain control we have
the reinforcement learning policy output both the desired joint positions and the
values of the gains for the PD controller to track these desired positions. For
simplicity, we will look only at the P part of the control law here:

T= KP(S)(qdes(S) - q) (4)

With the reward term forcing the policy to output trajectory that is actually
tracked, this leaves a free term Kp(s) to ensure that this tracking is actually per-
formed. What this results in, as we show in [BKR20], is that the gains go low
when the robot is performing free space motion and not a lot of torque is needed
to track the trajectory, but go high in contact when that is needed to ensure that
the trajectory is tracked properly.

We can also compare our approach to simply having a reward term incen-
tivizing smooth outputs of the policy, which is sometimes used in dealing with

17

the same issue of noisy outputs. Rather than driving policy towards any smooth
trajectory equally, the reward term we propose biases it towards the one that can
be realized on the system — one that is in agreement with the physics of the sys-
tem. It also gives no penalty for any case of outputs that can be well tracked,
allowing for fast motions if the system allows for it.

We can see how the addition of this reward term changes the resulting policy
output in Fig. 5 in [BKR20]. We can observe how the tracking of the outputted
trajectory improves and how in the case of variable gain control this results in
more sensible values for control gains — going down to ensure soft contact and
increasing to allow force application when in contact. In the same work we also
note how addition of this reward term allows hopping policies to successfully
be deployed to the real system, with no dynamics randomization during training
and no additional training on the real system.

18

7 Achieving robustness on real robots

Our main approach for finding policies that will provide robust behavior on
real systems is to introduce variability in the environment during training for
the policies to learn to account for. Below, we will first cover general aspects of
how we introduce these variabilities and specific aspects we aim to achieve by
doing so. Next, we discuss how the choice of action space, in particular learning
variable gain policies, can make it easier for us to find policies robust to these
uncertainties. Finally, we deal with the issue of how we can still generate fully
robust policies while utilizing demonstration trajectories to bootstrap the initial
learning process.

7.1 Environment variability during training

The main way we aim to achieve robust policies is to introduce variability
during training for the policies to learn to account for. What is randomized and
how proves to be key in actually achieving robustness on real robots with this
approach.

The most important variability we introduce during training is that of contact
location. That, combined with a reward for soft contact transitions, proves to be
key in finding policies that interact well with the environment and that can be-
cause of it be deployed on physical systems. It also illustrates one of the benefits
of the reinforcement learning approaches in these types of tasks. We can find
emergent behaviors that are sometimes difficult to predict. For example, with
the above defined setup of uncertain contact location and requirement for soft
contact transition the expectation would be for the policy to be soft in prepara-
tion for contact and to absorb the contact when it happens. While these aspects
are crucial and they are achieved with this type of training, what we additionally
observe is lifting of the foot throughout the range of locations where the con-
tact could perceivably happen. This reduces the impact velocity and additionally
contributes to the contact transition being smooth.

Other important aspect in the search for generally robust policies is that we do
not need to randomize exactly the specific aspects we expect to be variable in the
real world environment. We can observe this best on the quadruped behaviors
in [BKR21]. The main randomization we perform in that work is still that of
contact location. However, we simply randomize the vertical position of a flat
ground surface, resulting in same ground height under each foot. In addition to
that, we randomize the initial state of the robot base, where we change the height
and angle we start the motion from during training.

These two aspects in combination produce more than simply robustness to
specific variability in those two values. When deploying trained policies to the
real robot, we observed that the behaviors exhibit significant robustness to un-
even and soft ground, as well as external pushes, none of which they were ex-
plicitly trained for. Having not been explicitly trained for it the policies do not
account for this type of variability right away. They do not adapt the leg con-
figuration to account for different contact height for each foot, something that

19

could allow the base to potentially stay perfectly horizontal throughout the mo-
tion. External pushes are also not absorbed, which could reduce the perturbation
they cause. What happens is that the perturbation causes the base configuration
to go off the nominal trajectory, however what the training has produced is robust
recovery behavior for such cases. With the randomization of the initial base con-
figuration, the state the base ends up in is not novel for the policy and it knows
what to do to go from there back to the nominal motion cycle. In combination,
these two aspects, soft contact transitions and robust recovery behaviors, produce
highly robust motions on the real system with no additional training required.

7.2 Learning variable gain policies

Across the works included in this thesis, a key interest we have is building
policies that interact with the environment. One of the key elements of this is the
ability of the policy to smoothly go in and out of contact, particularly when there
is uncertainty in contact locations.

Simplest way of having the reinforcement learning policy controlling the sys-
tem is by having it directly output desired torque values for each joint.

T =1(s) (5)

This approach imposes no structure to the solution, which has its benefits, but
also drawbacks. All other control structures that can be imposed would still re-
sult in torque being some function of the system state, and direct torque control
can in theory learn to replicate any of these more complicated control laws. How-
ever, this might require a much more complicated function to be learned.

Other commonly used approach is employing PD control with fixed, pre-
tuned gain values:

7 = Kp(qqes(s) —q) —Kpq (6)

This structure makes exploration easier and it has been shown that it makes the
learning problem easier [PvdP17]. However, it is a bad choice for controlling the
interactions with the environment, where even small deviations in the environ-
ment can result in large forces being applied and even potential damage to the
system.

As an alternative to both of these approaches we propose using variable-gain
control, where the policy controls both the desired position for each joint and
corresponding gain values:

T= KP(S)(qdes(s)_q)_KDq (7)

Benefits of using a variable gain control law are maybe best seen in the exam-
ple shown in Fig. 9 in [BKR20]. There we examine a task of performing a circular
motion on a table while applying a specified force to it. What is shown are forces
applied to the table when different control laws are used. Unlike direct torque
control or PD control with fixed gains, variable gain control is able to preserve
contact throughout the motion. The other two control schemes either lose con-
tact at various points or perform repeated impacts to the table trying to stay in

20

contact. Utilizing variable gain control makes solving the task well simpler, as
gains can be reduced appropriately so that the contact behavior such as this is
simple for the policy to learn.

7.3 Time-dependent demonstrations and robustness

In our work with variable gain policies, we performed all the learning from
scratch, which was viable for comparatively simpler setups used in that work.
Moving to more complex tasks, we need to utilize some approach to circumvent
the exploration issues that arise. We already presented one way to approach the
problem utilizing knowledge from simpler tasks we know how to solve (5.1). As
an alternative, in our approach in [BKR21], we utilize demonstration trajectories
to resolve the same issues.

Learning to track demonstration trajectories as well as possible inside the
simulation has proven effective in learning complex control policies [PALvdP18,
PCZ*20]. It proved equally effective in the tasks we examine in [BKR21]. When
demonstration trajectories are readily available it is a simple and general way to
generate policies performing some nominal behavior on a task.

What we are concerned in our work is what happens if we want these policies
to be robust to a wide range of environment parameters. It turns out that having
a policy try to track a time-based demonstration trajectory during training while
accounting for significant environment uncertainties is not effective. We can ex-
amine this on an example task. Let us look at a problem where a robot is trying to
learn how to hop in an environment where ground location is uncertain (similar
to the setup we have in [BR19]). We assume we have access to a demonstration
trajectory of a hopping behavior with some nominal ground position and that we
are trying to reproduce that behavior as close as possible.

With different ground locations, the contact of robot with the ground will
happen sooner or later than it is expected in the demonstration trajectory. This
causes desynchronization between the policy and the trajectory it is trying to
track. The policy now needs to wait for the demonstration (if the contact hap-
pened sooner than expected) or to speed up the motion to catch up with the
demonstration (if contact happened later). Neither of which results in a smooth
adaptive behavior we desire. Being locked into the timing of the demonstration
trajectory makes proper adaptation to varied environment conditions hard and
sometimes even impossible.

This is the problem we tackle in [BKR21]. We would like to be able to use
demonstrations as a simple and general way to avoid exploration issues in com-
plex tasks, while being able to freely adapt the behavior (in particular the timing
of it) to account for environment uncertaities. We achieve this with a two-stage
approach. In the first stage, we try to imitate the demonstration trajectory in
simulation as well as possible to get a nominal policy for the task to bootstrap
learning. In the second stage, we perform further training of this policy, but fully
eliminate the imitation reward and replace it with a direct time-indepent task
reward. At the same time, we introduce variability in the environment that the
policy is now able to account for without conflict with the reward for tracking

21

the demonstration.

This proves to be a simple and powerful approach for learning highly robust
policies for dynamic tasks, that can crucially successfully be deployed on real
systems. When analyzing data from the execution of learned policies on the real
system, we see exactly the kind of adaptation of timing to account for environ-
ment variability. The hopping policy for the quadruped robot when initialized by
dropping the robot from different heights, lands softly regardless of the height
and smoothly transitions to nominal behavior through several hops. ([BKR21],
Fig. 3)

22

8 Discussion and future work

8.1 Utilizing learned exploration models

Our work on learning exploration models showed promising results, however
it only scratched the surface on research in this direction. One topic that def-
initely deserves more attention is how we use the trained models to learn on a
new task, in particular how we make tradeoffs between exploration and exploita-
tion. While the simple approach we use in our work proves effective, it should
be possible to explicitly combine the distributions over action space arising from
the exploration model and the current distribution from the policy being learned.
This would require a change to the reinforcement learning algorithm being used
as the one we employ (DDPG, [LHP*15]) uses a deterministic policy and there-
fore does not provide us with the required probability distribution.

8.2 Learning with alternate control laws

The regularization term we propose in [BKR20] is in fact quite general and
not restricted to just learning with the control laws presented in that work. In
particular, an interesting control law to take into account is a PD control law
with an additional feedforward term:

T(S) = KP(qdes(s)_q)+KD(qdes(s)_q)+TFF(S) (8)

The idea behind a control law like this is to have the feedforward part, Tgg(s), re-
alize the nominal motion, while the feedback part, Kp(qges(s)—q)+Kp(qges(s)—4),
handles disturbances and ensures that the desired trajectory is tracked. However,
by just having a policy with these three outputs, qges(S), ddes(S), Trr(s), there is
nothing to ensure that this is the case. In fact, in the case of a control law with a
complex structure such as this one, the output we get becomes even more chaotic,
with practically no interpretability and no chance of transferring to the real sys-
tem.

We can apply our proposed regularization scheme to this control law with
two separate reward terms. First one being the same as we have used in previous
work, penalizing the difference between desired joint position at timestep t and
actual position at timestep f + 1:

Tre :_k”qfies_qu—l”2 (9)

The second would be an equivalent one for joint velocities, penalizing different
between desired value at timestep t and actual value at timestep ¢ + 1:

vt :_k”q:les_qt-l—ln2 (10)

Now, we have three policy outputs (qges(S), qdes(s) and Tpp(s)) and a regular-
ization terms on two of them (desired position and velocity). This leaves the
feedforward torque term free to actually enable that the trajectory is tracked.

23

Our initial experiments in simulation with control laws such as this one showed
potential. We were able to learn structured policies with proper tracking for
both position and velocity, with the feedforward term increasing during contact
phases to enable proper tracking.

8.3 Accounting for even more environment variability

One straightforward extension to the work we propose in [BKR21] is train-
ing policies to account for even more environment variability. For example, we
expect even better performance of hopping and bounding policies we showed
in that work if they would have been explicitly trained to account for uneven
ground. It would be interesting to see how far we can push the uncertainties and
if and how the policy could account for them.

However, from our initial experiments applying this amount of uncertainty
from the start of the second stage of training results in the RL algorithm failing
to find a solution. The policy fails in an overwhelming percent of the new random
environment and the training cannot proceed.

One approach that shows potential for resolving this is using curriculums
of environments of increasing complexity during the second stage of the train-
ing. Curriculum learning has been shown to aid in learning of challenging tasks
[XLKvdP20]. There is still work to be done on how best to extend and adapt
the difficulties during training, but these types of approaches seem like the exact
thing needed to take our proposed approach further.

8.4 Goal conditioned policies

Generally, the policies we have used across our work have been designed to
solve one specific instance of one task. For example, we had a policies that ap-
plied force to a point on a table, which worked for one specific, pre-defined point
or hopping policies, performing continuous hopping with some specific height.
The main issue with this is that if we want to solve a different instance of the
same task we would need to repeat the entire training.

A simple solution for this issue would be an addition of an input to the policy
for selecting or parametrizing task goal or some other aspect of the motion. This
however comes into conflict with the approach we have been utilizing of employ-
ing demonstrations to aid in learning. We would now require a new demonstra-
tion for each task configuration which, depending on the source of the demon-
strations, could easily prove infeasible.

One hopeful aspect for the approach we propose is that we can generate a
wider range of behaviors from a single demonstration. For example, attaining
different hopping height or different bounding cycles. With this there is some
hope that we can start from one or a small number of demonstrations, for some
select task configurations, and through the second stage of the training adapt
them to cover the full possible range of task instances.

24

9 Concluding remarks

Deep reinforcement learning has great potential in many different robotic ap-
plications. Training control policies to account for a wide set of potential envi-
ronment configurations can allow us to learn robust behaviors, able to recover
from wide range of perturbations and succeed in completing the tasks. With
this type of approach we can find policies that not only immediately respond to
any perturbations, but even adapt behavior in advance to account for different
possibilities.

In this thesis we dealt with several issues that need to be addressed for this
to become reality. Exploration is likely to remain one of the dominant problems
when attempting to find policies for difficult robotic tasks. While it is an issue
in most reinforcement learning applications, it is particularly present in robotics,
due to discontinuities in the environment and often sparse rewards. Employing
demonstrations to circumvent these issues has proven successful in various tasks
and it allows us to explore other aspects needed for solving the overarching prob-
lem. However, it is likely that more structured approaches for exploration will
be needed for the most complex tasks. There are reasons to be hopeful about
work in this direction. There is a lot of structure encoded in the physics of the
robot, environment and their interaction and we should be able to exploit some
aspects of that to vastly reduce the search space of policies, like we attempt to do
in [BR19].

Another aspect that is proving to be crucial is how we structure the control
law that the reinforcement learning policies are utilizing. This is particularly im-
portant when we are concerned with deploying learned policies on real systems.
While a lot of tasks could in theory be done with policies directly controlling the
desired torques for the robot, alternative parametrizations have the potential to
make learning much easier without sacrificing any expressivity. Even more than
that these control laws give us some additional structure apart from just what
can be learned in simulation, as well as allowing for much better interpretabil-
ity of what the learned policies are actually doing — something that is a key in
long term robotic research. In our work we addressed a general way of enabling
proper learning of structured control laws. What exact control law should be
used for what problem is a difficult question, likely without a simple answer, but
research in this direction is well positioned and likely to provide fruitfull results.

Finally, something we spent a lot of time on in this thesis is generating policies
that are robust to variable environments. Basic approach of training policies on a
varied set of environment configurations has shown a lot of early success, but it is
also the aspect where there is most work left to be done. What and how precisely
is randomized and how the training of the policies is structured to be able to find
policies robust to it are key questions with a lot of room for future research.

25

10 References

[ABC*20]

[ACVB09]

[BKR20]

[BKR21]

[BR19]

[GMK*20]

[HLD*19]

[HTS*17]

[LFDA16]

[LHP*15]

OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej,
Rafal Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron,
Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dex-
terous in-hand manipulation. The International Journal of Robotics
Research, 39(1):3-20, 2020.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett
Browning. A survey of robot learning from demonstration. Robotics
and autonomous systems, 57(5):469-483, 2009.

Miroslav Bogdanovic, Majid Khadiv, and Ludovic Righetti. Learn-
ing variable impedance control for contact sensitive tasks. IEEE
Robotics and Automation Letters, 5(4):6129-6136, 2020.

Miroslav Bogdanovic, Majid Khadiv, and Ludovic Righetti. Model-
free reinforcement learning for robust locomotion using trajectory
optimization for exploration. Manuscript submitted for publica-
tion, 2021.

Miroslav Bogdanovic and Ludovic Righetti. Learning to explore
in motion and interaction tasks. In 2019 IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), pages 2686—
2692. IEEE, 2019.

F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wiithrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, J. Fiene,
A. Badri-Sprowitz, and L. Righetti. An open torque-controlled
modular robot architecture for legged locomotion research. IEEE
Robotics and Automation Letters, 5(2):3650-3657, 2020.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso,
Vassilios Tsounis, Vladlen Koltun, and Marco Hutter. Learning ag-
ile and dynamic motor skills for legged robots. Science Robotics,
4(26), 2019.

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh
Merel, Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami,
et al. Emergence of locomotion behaviours in rich environments.
arXiv preprint arXiv:1707.02286, 2017.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel.
End-to-end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334-1373, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nico-
las Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wier-
stra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

26

[LHW*20]

[PALvdP18]

[PAZA18]

[PBYVDP17]

[PCZ*+20]

[PvdP17]

[TFR*17]

[TZC*18]

[UO30]

[Waw15]

[WLCS19]

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun,
and Marco Hutter. Learning quadrupedal locomotion over chal-
lenging terrain. Science robotics, 5(47), 2020.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de
Panne. Deepmimic: Example-guided deep reinforcement learn-
ing of physics-based character skills. ACM Transactions on Graphics
(TOG), 37(4):1-14, 2018.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and
Pieter Abbeel. Sim-to-real transfer of robotic control with dynam-
ics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pages 3803-3810. IEEE, 2018.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van
De Panne. Deeploco: Dynamic locomotion skills using hierarchical
deep reinforcement learning. ACM Transactions on Graphics (TOG),
36(4):1-13, 2017.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie
Tan, and Sergey Levine. Learning agile robotic locomotion skills
by imitating animals. arXiv preprint arXiv:2004.00784, 2020.

Xue Bin Peng and Michiel van de Panne. Learning locomotion skills
using deeprl: Does the choice of action space matter? In Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 1-13, 2017.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech
Zaremba, and Pieter Abbeel. Domain randomization for transfer-
ring deep neural networks from simulation to the real world. In
2017 IEEE/RS] international conference on intelligent robots and sys-
tems (IROS), pages 23-30. IEEE, 2017.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai,
Danijar Hafner, Steven Bohez, and Vincent Vanhoucke. Sim-
to-real: Learning agile locomotion for quadruped robots. arXiv
preprint arXiv:1804.10332, 2018.

George E Uhlenbeck and Leonard S Ornstein. On the theory of the
brownian motion. Physical review, 36(5):823, 1930.

Pawel Wawrzynski. Control policy with autocorrelated noise in re-
inforcement learning for robotics. International Journal of Machine
Learning and Computing, 5(2):91, 2015.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired
open-ended trailblazer (poet): Endlessly generating increasingly
complex and diverse learning environments and their solutions.

arXiv preprint arXiv:1901.01753, 2019.

27

[XLKvdP20] Zhaoming Xie, Hung Yu Ling, Nam Hee Kim, and Michiel van de

[YTL18]

Panne. Allsteps: Curriculum-driven learning of stepping stone
skills. In Computer Graphics Forum, volume 39, pages 213-224.
Wiley Online Library, 2020.

Wenhao Yu, Greg Turk, and C Karen Liu. Learning symmetric
and low-energy locomotion. ACM Transactions on Graphics (TOG),
37(4):1-12, 2018.

28

A Accepted publications

29

Learning to Explore in Motion and Interaction Tasks

Miroslav Bogdanovic! and Ludovic Righetti'»?

Abstract—Model free reinforcement learning suffers from
the high sampling complexity inherent to robotic manipulation
or locomotion tasks. Most successful approaches typically
use random sampling strategies which leads to slow policy
convergence. In this paper we present a novel approach for
efficient exploration that leverages previously learned tasks.
We exploit the fact that the same system is used across many
tasks and build a generative model for exploration based
on data from previously solved tasks to improve learning
new tasks. The approach also enables continuous learning of
improved exploration strategies as novel tasks are learned.
Extensive simulations on a robot manipulator performing a
variety of motion and contact interaction tasks demonstrate
the capabilities of the approach. In particular, our experiments
suggest that the exploration strategy can more than double
learning speed, especially when rewards are sparse. Moreover,
the algorithm is robust to task variations and parameter tuning,
making it beneficial for complex robotic problems.

I. INTRODUCTION

Deep reinforcement learning has attracted a lot of attention
for robotic applications where full robot models can be
difficult to identify, especially for contact dynamics, and
lead to computationally challenging planning and control
problems. In particular, it can be successful in producing
robust behaviors with ability to handle uncertainties in the
environment and quickly adapt to changes [1].

However, these algorithms suffer from several important
issues that can limit their applicability. The most salient
issue is related to sampling efficiency and exploration strate-
gies. Indeed, exploration strategies required to generate new
samples are often limited to simple noise models, which
can drastically increase the number of required samples
for policy convergence. This problem is especially acute
in robotics, due to difficulties in obtaining large amounts
of training data, discontinuities in the interactions with the
environment, as well as complex, multi-part, potentially
sparse reward functions. Quite often algorithms suffer from
local minimums and flat surfaces in the reward space. In this
work, we investigate a novel exploration strategy to alleviate
these issues by leveraging previously learned tasks to better
explore when learning novel ones.

One attempt to tackle the issue of exploration when
applying deep reinforcement learning in robotics problems

Control
Tiibingen,

'Movement Generation and
Institute for Intelligent Systems,
first.]astname @tuebingen.mpg.de

2Tandon School of Engineering, New York University, USA.

This work was supported by New York University, the Max-Planck
Society and the European Unions Horizon 2020 research and innovation
program (grant agreement No 780684 and European Research Councils
grant No 637935).

group, Max-Planck
Germany. Email:

has been made in [2], by proposing the application of cor-
related noise. Correlated noise, more specifically Ornstein-
Uhlenbeck (OU) process [3], is also used to improve explo-
ration in [4]. While this exploration strategy can in theory
explore the state space more rapidly, it tends to create very
high changes in the control sequence while it would be
preferable in robotic applications to have smoother motions
with proper velocity profiles.

Exploration in reinforcement learning has been explored in
more general settings. [5], for example, proposes exploration
in the space of the parameters of the policy instead of the
space of actions. Other approaches base exploration on some
measure of novelty while moving through the state space,
as is the case in research on intrinsic motivation [6], [7],
[8]. These approaches mostly try to explore novel regions
of the state space, but do not necessarily use knowledge
from previously learned tasks. In this paper, we take a
complementary approach where we leverage these previous
tasks to generate better exploration strategies for novel ones.

Transfer learning, which seeks to exploit knowledge from
previously learned tasks to accelerate learning new tasks is
also relevant to our problem. In [9], authors propose learning
a “distilled” policy from several tasks capturing the common
behavior among them and constraining the individual policies
to be close to it. The exploration process we learn bears
some resemblance to this shared policy, the key difference
being that in continuous action spaces, which is the setup
we investigate, having such distribution only be dependent
on the current state does not prove informative enough as we
explain in detail in Section II-A. In [10], low level control on
a locomotion system is learned and used to solve high level
tasks. However, it requires that this type of separation exist
as well as enough knowledge about it to be able to design
a two-level structure with capability of learning it. Auxiliary
tasks can also be used to improve learning when rewards
are sparse, as in [11], however this requires an ad-hoc setup
to define these tasks and how they should be interleaved
with the main task to be learned. Our approach does not
setup auxiliary tasks but still assumes that a set of tasks
of increasing complexity is available. Our work also bears
some connection to research on motion primitives [12], [13].
While we do not explicitly try to directly extract any motion
primitive, the exploration process we learn can be thought
of as generating basic action primitives.

In this work, we present a novel exploration strategy
for deep reinforcement learning. We propose to learn a
generative model of basic action primitives capturing the
motion patterns seen in previously learned tasks. Exten-
sive experiments on a set of simulated motion and contact

interaction tasks for a robot manipulator demonstrate the
capabilities of the approach. In particular, our approach
shows significant learning speed-up compared to other state
of the art algorithms, especially for tasks with sparse reward.
We also show that the algorithm is robust to parameter
changes and task variations, reducing the need for parameter
tuning.

II. PROPOSED APPROACH

Our goal in this work is to use the knowledge we gain in
solving several tasks with a given robot to facilitate learning
new tasks for the same robot. In all the tasks we discuss
in the paper we use the same robot and vary the tasks
and the environments, with increasing complexity. More
specifically, we want a method that uses good behaviors
learned from previous tasks to help the exploration process
when learning a new task. Our idea is to learn a function
that generates random behaviors that resemble behaviors seen
in previous tasks. In the following, we first describe our
approach to build a model that generates random behaviors
that retain similar characteristics as the behaviors learned in
the previous tasks.

A. Learning the exploration model

We start by presenting a simple example illustrating the
requirements for our approach and the difficulties inherent to
learning good exploration strategies from previous tasks. In
particular, we want to explain why longer trajectories need to
be taken into account to learn proper exploration strategies.
We consider a point mass moving in the plane with a fixed
velocity magnitude. The control input consists in choosing a
direction of motion, independently at each state. The desired
task is to reach a desired location (B) from a randomly
selected starting point in the plane (A) as shown in Figure
1(a).

We collect successful policies 7; for many instances of
such tasks (i.e. for different goal positions). We then choose
an arbitrary state s and evaluate the actions that all the
different policies would take at that state a; = 7;(s) (Figure
1(b)). Considering that for each policy, the random goal
positions can be distributed anywhere around the chosen state
s, we can expect that given enough policies, we will be able
to find a policy that would move in any chosen direction.
Therefore, if we were to calculate a combined distribution
7. over the action space arising from all the policies:

me(a|s) = mia]s), (1)

we would likely find a uniform distribution (i.e. no
preferred direction of motion) which would be completely
uninformative (Figure 1(c)). This illustrates that we cannot
naively combine previous actions at a given state because the
resulting distribution is likely to be of little interest to create
sensible exploratory motions.

However, if we condition such distribution on a longer
history of preceding states si., then there will exist only
a few policies with a similar state history when arriving at

the state (Figure 1(d)) and it is likely that their subsequent
actions would be very similar. The combined probability
distribution over actions:

me(a] sie) = plsia | m)mila | s1), @)

where p(s1; | m;) is the weighting factor equal to the
probability of the policy 7; resulting in a state trajectory si.¢,
will be much more focused (Figure 1(e)). Taking consecutive
samples from such a distribution would now result in a
behavior with the characteristics of the original policies and
would be significantly more useful for what we are trying to
achieve.

We propose in the following to learn a combined proba-
bility distribution of a diverse set of policies conditioned on
trajectories (or sequences) of preceding states. To represent
this learned exploration model (LEP), we use a recurrent
network, more specifically a Long Short Term Memory
(LSTM, [14]) network. We start by collecting trajectories
{(s1.7,a1.7);} from all the available policies. We note here
that we only need trajectories and not the full policies
for training the model, so our approach could work even
if that is all we have access to (for example as a result
of doing trajectory optimization [15], [16] or learning by
demonstration [17]).

Importantly, we do not train our model on the full length
of the collected trajectories, as we are interested in general
basic characteristics of good behaviors, not behaviors that
solve specific tasks. On longer time scales the characteristic
associated to solving a specific task would become dominant,
leading our network to overfit to solutions to individual tasks.
Because of that we limit trajectory samples to a shorter
timescale h and randomly sample sections of the trajectories
of length h to build the training dataset.

The function approximated by the LEP network takes as
input a history of robot states and outputs a distribution
over the corresponding sequence of actions. We use diagonal
Gaussian distribution as the output and train the network to
maximize the log likelihood of the action sequences given
the corresponding states (in the same way as in, for example,

[18]).

B. Reinforcement learning with an exploration function

We now describe how the exploration model can be
included in a reinforcement learning algorithm. In our exper-
iments, we use Deep Deterministic Policy Gradient (DDPG,
[4]), but any off-policy algorithm with independent noise
could be used instead. DDPG is an actor-critic method that
simultaneously learns a state-action value function Q(s,a)
and a deterministic policy 7(s) that optimizes it:

m(s) = argmax Q(s, a) 3)

By keeping a constant estimate of the action with the
largest () value for each state it avoids the problem that
arises in continuous action spaces, where calculating this
value online requires solving an optimization problem.

plaction)

S plaction)

(a) (b) (c)

action action

(d) (e)

Fig. 1: Point mass example illustrating our approach (cf. Section II-A for details): (a) Task: moving from one point to another;
(b) Policy trajectories conditioned on the selected state; (¢) Combined action distribution conditioned on the selected state;
(d) Policy trajectories conditioned on a state history; (¢) Combined action distribution conditioned on a state history.

The full algorithm consists of interchanging steps of:

1) Gathering data by executing the current policy in the
environment with an added output of an external noise
process N:

at:’/T(St)-f—G

e~ N

2) Taking random samples from the gathered data and
updating the value of the) function using the Bellman
equation and the policy 7 corresponding to the gradient
of the current () function estimate with respect to the
action.

“

As we have seen, DDPG explores the spaces by adding
exploration noise to an existing deterministic policy (Equa-
tion 4). We replace the exploration noise in DDPG with the
output of the LEP (a generative model for motions with good
properties). With that, the action that is taken at each time
step during training is equal to the sum of current output of
the deterministic policy and a sample from the exploration
model:

ar = m(s¢) + €Lpp Q)

We reset the internal state of the LSTM network to its
initial value every h steps, matching the sequence length it
has been trained on. Thereby, the action distribution of the
exploration is conditioned on the past ¢ mod h states, where
t is the current time step:

erep ~ prLep(a| s,

6
t, =t—tmodh ©

Apart from this, we keep all the other aspects of the
training exactly as they are in [4], including not reducing
the exploration noise as the training progresses.

Remark 1: Note that while our model might produce
sensible behaviors for the system there is no guarantee that
the sum with output of the current policy will do the same.
However, this simple approach works very well in practice.
The DDPG policy is initialized to produce output values
close to zero at the beginning of the training. Because of
that, the initial samples in our case will for the most part
be pure samples from the generative exploration model. As

¥

A
Task 1

A

Task 2

Task 3 Task 4

Fig. 2: Tllustration of the four tasks tested in the experiments.

the policy changes during learning this might no longer be
the case, but as we will later see in our experiments, the
algorithm shows no trouble finely converging to the desired
behavior.

C. Continuous learning

One more aspect of our approach is its ability to be
continuously applied, enabling solving of more and more
complex tasks each time. As we have stated, we can use
data from any source in training of the exploration model.
This also includes policies resulting from applications of
some previously trained exploration model of the same type.
This way we can train the model on the data available to
us initially, use it to learn on a new task, add the data from
these new policies to our training set and then repeat the
process. We can keep doing this as many times as necessary
to get to a point where we can solve some complex task we
are interested in.

III. EXPERIMENTAL SETUP

In this section we describe the experimental setup used to
evaluate the performance of the approach.

A. Environment

We test the algorithm on a simulated KUKA LWR, a 7-
DoF robotic arm. We choose tasks of increasing complexity
and in particular tasks involving contact interactions with
a table. All our experiments are implemented using the
Bullet physics simulator. We keep the state and action spaces
same across all the tasks. The state space consist of joint
position, joint velocities and measured 3D contact forces at

the end-effector, for a total of 17 dimensions. The action
space consists of torques applied to each joint, which is 7
control dimensions. We also add gravity compensation to the
torque command as it is automatically added by the on-board
controllers on the real KUKA LWR robot.

B. Motion and contact interaction tasks

Each of our different tasks is characterized completely by
the defined reward function (and the presence or absence
of the table in the environment, which we add in tasks
with interaction aspects). We test four types of tasks of
increasing complexity: a reaching task, a contact task, a
periodic motion and a periodic motion while interacting with
the table. We describe the tasks and the cost functions in
detail in the following. Note that our cost functions are
rather straightforward and do not specially seek to facilitate
learning.

1) Task 1: Reaching a desired target: This task consists of
getting the end-effector to a desired position and orientation
in space. The reward function consists of two parts: the
distance to the goal and the orientation error. In this task,
the desired orientation always points straight down and we
only vary the desired goal position.

2) Task 2: Stationary force application: The goal of this
task is to apply a desired normal force on a desired location
on the table. The reward function in this case will consists of
three parts, the same two costs used in Task 1 for the position
and orientation of the end-effector and a cost measuring
the error between the desired and measured normal contact
forces and adding a constant bonus term whenever the end-
effector is in contact with the table to incentivize contact
behaviors. Note that the contact cost is sparse as most robot
configurations lead to no contacts.

3) Task 3: Periodic motion along a closed curve: Here
we require the end-effector to move along a given circular
path in space (while keeping a specified orientation). The
reward function has three parts, based on position, velocity
and orientation of the end-effector. The reward is based on
the distance to the circle (as opposed to a fixed target location
as in Task 1) and desired velocity based on the tangential
velocity vector that the end-effector should have on the point
on the circle currently closest to it. The orientation reward
is kept the same as in previous tasks.

4) Task 4: Periodic motion with contact force regulation:
Combining aspects of all the previous tasks, here the goal
is to move along a given circular trajectory on the surface
of the table while applying a constant normal force to it.
Reward function is a combination of the trajectory reward
given in Task 3 and the force reward used in Task 2.

C. Defining success during learning

It is not sufficient to find a high reward policy, we also
need to check that the robot is indeed achieving the desired
task. For each task, we empirically define a reward value for
which we consider the task solved. In order to find this value,
we analyzed many instances of the behavior on the task. We
determine the value such that all behaviors with higher scores

perform all the aspects of the task in a satisfactory way. For
example, in Task 4, we make sure that policies performing
only three out of the four aspects of the behavior we desire
(moving along the trajectory without making contact with
the table, applying force while being stationary on a single
point on a trajectory, etc.) never reach this threshold for the
cumulative reward.

IV. RESULTS

We now present the results of our simulations. In particu-
lar, we demonstrate how tasks involving complex contact
interactions can be learned efficiently with our approach.
We also systematically compare the results with other state
of the art reinforcement learning algorithms and test the
robustness of the approach to random initialization. In all
of our experiment, we compare our method with the normal
DDPG algorithm and with an on-policy reinforcement algo-
rithm, Proximal Policy Optimization (PPO) [19]. For both
these algorithms, we use the implementations from OpenAl
Baselines [20].

A. Same task type for training and testing

First, we evaluate how our method performs when it is
trained on the same type of tasks it is later tested on. We
investigate this behavior with the reaching task (Task 1),
which is the simplest of all tasks. To generate the initial
policies to train the exploration model we use PPO. The
reason to use this algorithm instead of DDPG is that the
vanilla DDPG (e.g. without a good exploration strategy)
did not produce policies as good as PPO for this simple
experiment. All subsequent training and improvement of the
exploration model are done using data generated by our
approach on previous tasks. We use 100 policies trained on
instances of the task with varying goal positions for this
initial data collection.

We generate new instances of the same task with different
goal locations and compare the performance of our approach
(DDPG + LEP) with DDPG and PPO. We explore vari-
ous noise setups for DDPG (Gaussian noise and Ornstein-
Uhlenbeck processes, with a range of values for the vari-
ance), as well as different subsequence lengths for training
of the LEP. We present results for the best configuration for
each algorithm averaged over 6 different goal positions in
Figure 3.

We notice that all the algorithms converge to a good
behavior (above the gray line), which is expected for this
simple task. PPO, being an on-policy algorithm, converges
noticeably slower than the other two. While standard DDPG
implementation and the one using our exploration process
both converge relatively quickly, the average for our ap-
proach reaches the desired task value more than two times
faster than the one using standard noise and has a visibly
higher percentage of satisfactory solutions at the end. While
for this task the comparison can be biased as our RNN was
trained on other instances of the same task (i.e. other desired
positions), it is important to notice that our approach does
not exhibit bias towards goal positions seen in the training

a =
e e —— S R
D 600 ; :
g i \
; a]
[} d 1 1 1
£ 400 : | :
S . . :
- 1 1 1
i | —PPO — DDPG+LEP | 1
2001 | . '
| — DDPG — Task success | |
0 500 1000 1500 2000 2500 3000

Training episodes

Fig. 3: Learning results of the best performing policies for
Task 1: average cumulative reward (bold lines) and variance
(shaded area) across all task instances. Our method (green)
converges more than twice faster than the other algorithms
(vertical dashed lines).

1500 i A<
2 f
©
S i
3 10001 :
2]
g :
@0 1 1
S 5007 /_’_ —PPO — DDPGHLEP |
i — DDPG — Task success |
0 500 1000 1500 2000 2500 3000

Training episodes

Fig. 4: Learning results of the best performing policies for
Task 2: average cumulative reward (bold lines) and variance
(shaded area) across all task instances. Our method (green)
converges more than twice faster than DDPG (vertical dashed
lines), PPO is not able to find a solution.

set and manages to converge to the desired target with as
good or better accuracy than the other two methods.

B. Application to a new task and dealing with sparse reward

Next, we investigate how our approach performs on a
previously unseen task. We are also interested in how the
approach deals with a sparse reward signal. We first use Task
2 with the same exploration process trained in the previous
experiment, using data from policies reaching random points
in space. We expect that our exploration model contains
more informative motions for the end-effector resulting in
a speedup in learning despite the very different nature of
the tasks the RNN was trained on. Indeed, this task contains
a reaching component which was seen before and a contact
regulation component that was not seen in Task 1. As before,
we compare our approach with regular DDPG and PPO. The
results, again averaged over 6 different task instances, are
shown in Figure 4.

Unlike the previous set of experiments, in this task PPO
is not capable of finding a policy that achieves the desired
behavior. The reward information about force interaction
in this case is very sparse and is only present when the
end-effector is in contact with the table. Even though the
position part of the reward guides the policy to such states,
a broader exploration is then required to find rewarding types
of interaction. PPO, lacking this, fails to find solutions for the
task and optimizes only for the position and orientation parts
of the reward. The other two approaches both converge to

2500 . .
: :
: .

- : : =
2 2000 Y
% 1]
2 1500 P
© 1 1
g P
21000 1 | |
0 —PPO — DDPG+LEP i |
500 — DDPG — Task success ! !

0 1000 2000 3000 4000 5000 6000 7000

Training episodes

Fig. 5: Learning results of the best performing policies for
Task 3: average cumulative reward (bold lines) and variance
(shaded area) across all task instances. Our method (green)
converges slightly slower that the normal DDPG (vertical
dashed lines), PPO is not able to find a solution.

satisfactory behaviors, but again our methods does so more
than twice as fast as the normal DDPG algorithm.

We repeat this experiment with Task 3 requiring a motion
along a closed curve in free space. This task requires a
periodic motion, which is inherently different than reaching
motions in terms of expected position and velocity profiles.
It is therefore an inherently more difficult task for our explo-
ration model, but one with a non-sparse reward, providing
guiding information throughout the state space. Here we
vary the circle radius and center for each new task instance.
Results, in this case averaged over 18 different instances, are
shown in Figure 5.

Our approach and DDPG take a significantly longer time
to converge than in the previous tasks. While PPO never
reaches the threshold for which we consider that the appro-
priate behavior is achieved, its final behavior is not very far
from being acceptable. We notice that all three algorithms
converge similarly, with the normal DDPG being initially
slower. This experiment suggests that for tasks that require
very different movement profiles than the movements our
exploration model was trained on, our exploration method
will not necessarily significantly improve convergence, yet it
is still not detrimental to the learning process, which is an
important aspect to afford generalization to other tasks.

From these two experiments we can see that, as expected,
the advantage for using our approach comes when the reward
information is sparse and simple exploration is no longer
sufficient, however the required basic movement profiles
need to share similar characteristics in order to benefit from
a significant speedup.

C. Complex interaction task and continuous learning

In the last experiment, we would like to demonstrate
other important aspects of our approach: that it can scale
to significantly more complex tasks and that the exploration
model can be extended with previously learned motions,
allowing continuous learning of richer exploration strategies
as we discussed in Section II-C. To do so, we update our
exploration model by training it with a combination of data
from Task 2 and Task 3. We collect 100 policies from each
of the two tasks.

For testing we use Task 4, which requires concurrent force

8000 | i
o ' 1
= eSS NN A S ORE
% 6000 1 i :
= 1 1
g 4000 { i :
k2]] i
I.IQJ- 20004 /_/_/_/-T’_—'T—.—‘
: :
0 2000 4000 6000 8000 10000

Training episodes

— PPO
—— DDPG
—— DDPG+LEP
—— Task success

2000 4000 6000 8000 10000
Episode reward

Fig. 6: Learning results of the best performing policies for
Task 4. (Top) average cumulative reward (bold lines) and
variance (shaded area) across all task instances. (Bottom)
Final reward distribution.

8000

Episode reward
N B (2}
o o o
o o o
o o o

0 2000 4000 6000 8000 10000

Training episodes
— PPO
—— DDPG
—— DDPG+LEP
Task success
2000 4000 6000 8000 10000

Episode reward

Fig. 7: Robustness to parametrization results for Task 4.
(Top) average cumulative reward (bold lines) and variance
(shaded area) across all task instances and all parametriza-
tions. (Bottom) Final reward distribution.

regulation and motion along a circular path on the table and
contains aspects from all previously encountered tasks. It
means that we could decompose the task as a combination
of all previous three tasks (Task 1 to reach the table, and
Task 2 and 3 to perform the motion on the table). First, we
compare our approach with other algorithms in the same way
as before. We still use the best performing parametrizations
of each algorithm to compare the results and in this case
use 50 different task instances for the comparison (Figure
6). With the table interaction aspect again present, PPO
fails to find satisfactory solutions. Both standard DDPG
and the one using our exploration process do converge,
but with our method doing so almost twice as fast. In
addition to the learning curves, Figure 6 also shows the full

distributions of the cumulative rewards for the policies for
all three algorithms at the end of learning. This figure clearly
suggests that our approach both has a higher percentage
of satisfactory solutions as well as practically no policies
with really bad scores. This is in contrast with PPO which
finds mostly poorly performing policies and DDPG that has
a more elongated distribution of results: for certain task
instances it finds solutions but fails to do so for others. These
results additionally support that our approach can speed-
up learning but more importantly, it suggests that learning
performance becomes more consistent and repeatable across
task instances.

D. Robustness

Finally, we would like to demonstrate robustness and the
lack of need for tuning parameters in our approach. This
is especially important because oftentimes reinforcement
learning algorithms are very sensitive to parameter tuning
and the same experiments with random initial conditions for
the system can lead to very different results [21].

In all previous experiments, we presented results using the
best parametrization for each algorithm (between different
noise parameters for standard DDPG and different subse-
quence lengths used for training the LEP). Now we present
results for learning Task 4 for all the parametrization we
tested, without making any such choices. The results are
presented in Figure 7. The difference between each algorithm
is very clear. The results for our method are only slightly
worse than those we presented for the best parameter con-
figuration, demonstrating its robustness to parametrization.
The average policy performance at the end of the training
especially is only slightly affected. Without any tuning our
method still produces a majority of satisfactory policies for
this complex task. That is not the case with either standard
DDPG or PPO. DDPG becomes significantly worse in this
evaluation, with the average not reaching satisfactory value
at the completion of the training. PPO was already not
performing the tasks with the best parametrization. These
results support the idea that our exploration strategy can not
only speed-up learning, but also improve the robustness of
the algorithms to parameter tuning, which can be a significant
gain when deploying such algorithms on novel tasks and
robots.

V. DISCUSSION

The goal of learning the exploration process is to make the
behaviors needed to solve a new task more likely to occur
during exploration. This is done in an effort to speed up
learning, as well as to achieve complex behaviors that might
otherwise be missed. In the absence of exploration capable
of doing so, we are usually forced to add guiding terms to
reward functions to lead the policies in desired direction dur-
ing training. Such terms not only require additional tuning,
but are also not representative of actual aspects we would
like to achieve. As tasks become more and more complex,
with many-part reward functions, the process of adding this
guiding information becomes untenable. This is why we aim

to relieve some of this effort by having a good exploration
process, freeing up the reward function to just encode the
task at hand.

Some of the main questions to be considered when using
an approach like the one we present in this work are related
to ways in which data from one task can be useful in solving
a different one. Here, that is reflected in the choices we make
in selecting data to train the exploration process, as well as
more generally how we structure a curriculum of tasks with
a goal of generating more and more complex behaviors on
the system.

First, it is worth pointing out that using all the data we
have access to, even if it is extensive and varied, might not
necessarily be a bad idea. Barring issues with the model not
being able to fit the data correctly, the only downside would
be that our model encodes a wider distribution, covering
behaviors that might not be directly useful for the current
task. In that case, some of the exploratory behavior might
not be relevant, but that should not prevent us from gaining
benefits from the rest of it.

In the same way having too much data might not cause
issues, lacking data for some part of the behavior needed
to solve the task might not be detrimental either. Using
an exploration model trained only on behavior needed for
one aspect of the task will not necessarily prevent us from
learning how to solve all the other aspects as well. For
example, as can be seen in Figure 4, using an exploration
process trained only using free space motions causes no
issues in learning on a task where force also needs to be
applied. What is more, learning is significantly faster on the
new task than it is with the standard methods.

Taking the two previous points into account we still want
to make the best choices we can in building an exploration
process with a goal of solving a new task. For achieving
that we should take a look at what kind of motion and
interaction behavior is expected in the new task and choose
already known tasks exhibiting some parts of that behavior.
The goal being to decompose the task into as many elements
that are already contained in some of the known policies.
The same idea applies when building an entire curriculum
of tasks to solve on a system, where we should start from
the ones easiest to solve and slowly add new aspects as we
progress in generating more and more complex behaviors.

VI. CONCLUSION

In this paper, we presented a novel approach to learn an
exploration process for reinforcement learning using previ-
ously learned tasks. The system is built such that as novel
tasks are learned, the exploration model can be improved and
facilitate learning more complex tasks. This is particularly
useful for robotics problems where such hierarchy of tasks
(from simple to complex) naturally arises. In our future
work we intend to demonstrate the learned policies on a real
robot and extend the approach to more complex manipulation
tasks.

(1]

[3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17

[18]

[19]

[20]

[21]

REFERENCES

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.
P. Wawrzynski, “Control policy with autocorrelated noise in reinforce-
ment learning for robotics,” International Journal of Machine Learning
and Computing, vol. 5, no. 2, p. 91, 2015.

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion,” Phys. Rev., vol. 36, pp. 823-841, Sep 1930. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRev.36.823

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” CoRR, vol. abs/1509.02971, 2015. [Online].
Available: http://arxiv.org/abs/1509.02971

M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen,
X. Chen, T. Asfour, P. Abbeel, and M. Andrychowicz, “Parameter
space noise for exploration,” CoRR, vol. abs/1706.01905, 2017.
[Online]. Available: http://arxiv.org/abs/1706.01905

A. G. Barto, “Intrinsically motivated learning of hierarchical collec-
tions of skills,” International Conference on Developmental Learning
and Epigenetic Robotic, pp. 112-119, 2004.

A. Laversanne-Finot, A. Péré, and P.-Y. Oudeyer, “Curiosity driven
exploration of learned disentangled goal spaces,” arXiv preprint
arXiv:1807.01521, 2018.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-Driven
Exploration by Self-Supervised Prediction,” IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops,
vol. 2017-July, pp. 488489, 2017.

Y. W. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick,
R. Hadsell, N. Heess, and R. Pascanu, “Distral: Robust multitask
reinforcement learning,” CoRR, vol. abs/1707.04175, 2017. [Online].
Available: http://arxiv.org/abs/1707.04175

N. Heess, G. Wayne, Y. Tassa, T. P. Lillicrap, M. A. Riedmiller,
and D. Silver, “Learning and transfer of modulated locomotor
controllers,” CoRR, vol. abs/1610.05182, 2016. [Online]. Available:
http://arxiv.org/abs/1610.05182

M. A. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave,
T. V. de Wiele, V. Mnih, N. Heess, and J. T. Springenberg,
“Learning by playing - solving sparse reward tasks from
scratch,” CoRR, vol. abs/1802.10567, 2018. [Online]. Available:
http://arxiv.org/abs/1802.10567

S. Schaal, “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics,” in Adaptive motion of
animals and machines. Springer, 2006, pp. 261-280.

A. J. Tjspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328-373, 2013.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

I. Mordatch, Z. Popovi¢, and E. Todorov, “Contact-Invariant Opti-
mization for Hand Manipulation,” in Eurographics/ ACM SIGGRAPH
Symposium on Computer Animation, 2012, pp. 1-8.

B. Ponton, A. Herzog, A. Del Prete, S. Schaal, and L. Righetti, “On
Time Optimization of Centroidal Momentum Dynamics,” in 2018
1IEEE International Conference on Robotics and Automation (ICRA).
Brisbane, Australia: IEEE, May 2018, pp. 5776-5782. [Online].
Available: https://arxiv.org/abs/1709.09265

A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” Springer handbook of robotics, pp. 1371-
1394, 2008.

A. Graves, “Generating sequences with recurrent neural
networks,” CoRR, vol. abs/1308.0850, 2013. [Online]. Available:
http://arxiv.org/abs/1308.0850

J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization algorithms,”
CoRR, vol. abs/1707.06347, 2017. [Online]. Available:

http://arxiv.org/abs/1707.06347

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,”
https://github.com/openai/baselines, 2017.

C. Colas, O. Sigaud, and P.-Y. Oudeyer, “How many random seeds?
statistical power analysis in deep reinforcement learning experiments,”
arXiv preprint arXiv:1806.08295, 2018.

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020 1

Learning Variable Impedance Control for Contact
Sensitive Tasks

Miroslav Bogdanovic!, Majid Khadiv! and Ludovic Righetti!-?

Abstract—Reinforcement learning algorithms have shown
great success in solving different problems ranging from playing
video games to robotics. However, they struggle to solve delicate
robotic problems, especially those involving contact interactions.
Though in principle a policy directly outputting joint torques
should be able to learn to perform these tasks, in practice
we see that it has difficulty to robustly solve the problem
without any given structure in the action space. In this paper,
we investigate how the choice of action space can give robust
performance in presence of contact uncertainties. We propose
learning a policy giving as output impedance and desired position
in joint space and compare the performance of that approach to
torque and position control under different contact uncertainties.
Furthermore, we propose an additional reward term designed to
regularize these variable impedance control policies, giving them
interpretability and facilitating their transfer to real systems. We
present extensive experiments in simulation of both floating and
fixed-base systems in tasks involving contact uncertainties, as
well as results for running the learned policies on a real system
(accompanying videos can be seen here).

Index Terms—Reinforcement Learning;
Impedance Control; Motion Control.

Compliance and

I. INTRODUCTION

ANY interesting robotic applications necessitate com-

plex physical interactions with the environment. During
locomotion, intermittent contacts and force modulation enable
the robot to keep balance and move forward. Multi-contact
interactions are also central to the efficient manipulation of
objects. Establishing and breaking contact is especially hard
because it causes a switch in the dynamics of the system
which can rapidly lead to failures if not controlled properly.
Unforeseen changes in the contacts location and properties
(friction, stiffness, etc) can also dramatically degrade the
robot behavior and remain a fundamental challenge in robotic
manipulation and locomotion.

Deep reinforcement learning has shown a lot of promise
in recent years for robotic applications. However, in an effort
to learn end-to-end policies the focus has often been on the
complexity in the observation part of the task, specifically
vision, and not necessarily on the physical interaction part

Manuscript received: February 24, 2020; Revised June, 1, 2020; Accepted
July 2, 2020.

This paper was recommended for publication by Editor Dongheui Lee
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by New York University, the European Union’s Horizon 2020
research and innovation program (grant agreement No 780684 and European
Research Council’s grant No 637935) and a Google Faculty Research Award.

IMax-Planck Institute for Intelligent Systems, Tiibingen, Germany
{mbogdanovic, mkhadiv, lrighetti}Q@tue.mpg.de

2Tandon School of Engineering, New York University, USA

Digital Object Identifier (DOI): see top of this page.

of the problem. One important aspect, that we investigate in
the paper, relates to the choice of a policy parametrization
that affords efficient learning of policies robust to contact
uncertainties.

It was shown that position control with fixed pre-tuned gains
can have better learning performance than pure torque outputs
[1], and such policies have been successfully transferred to
physical robots interacting with the environment [2]. These
results are achieved by guiding properly the exploration us-
ing desired position and stabilizing the system around that
using pre-tuned feedback gains. However, previous work has
demonstrated the importance of some form of force control
when learning interaction tasks, either explicitly [3] or by
learning time-varying control gains [4], [5], [6], [7], state-
varying feedforward and feedback gains [8], or unified motion
and gains varying strategy [9], [10], [11].

Recent results [11], [12] suggest that learning impedance
schedules in task space can significantly speed up learning
of manipulation tasks. The operational space representation
used in those works has the advantage of abstracting the
robot kinematics, but with the potential drawback of fixing
the redundancy resolution scheme which can limit the range
of possible behaviors. Indeed, the ability to vary nullspace res-
olution schemes is critical to enable the concurrent execution
of several tasks necessary to achieve complex behaviors, e.g.
avoiding an obstacle while reaching for an object or taking
a step while maintaining balance [13], [14]. One can also
argue that methods that require solving an inverse problem
suffer from numerical instability near singularity, or rule out a
significant space of possible motions achievable without pre-
defining a task-space. Moreover, there is evidence that the best
choice for a task-space may vary across and within tasks [15].
For these reasons, in this paper we focus on joint space policy
learning despite potential training speedup that can be achieved
by doing the same in a predefined task space.

The main goal of this paper is to investigate the effect of
policy parametrization on reinforcement learning for robotic
tasks involving complex contact interactions and hard impacts.
We provide empirical evidence that control policies concur-
rently generating desired positions and joint impedance tend
to produce more robust behaviors. We present both extensive
numerical simulations and real hardware experiments. In par-
ticular, we find that the resulting policies are robust to various
types of contact uncertainties (friction, stiffness and contact
location). Additionally, we propose a reward term regularizing
these variable gain policies and giving them interpretability,
allowing for direct transfer to a real robot. We perform an
extensive analysis on two very different systems: a single-

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

leg hopper (floating-base) creating intermittent contacts with
hard impacts on the ground and a manipulator (fixed-base)
performing a delicate force control task. In both cases we show
that variable gain control outperforms a wide range of learned
fixed gain or direct torque control policies, especially in the
presence of contact uncertainty.

II. CONTROL POLICY PARAMETRIZATION

In this work, we compare several ways to parameterize
control policies when using reinforcement learning in robotics
tasks. For each examined control parametrization we represent
the policy with a neural network. The inputs of the network
stay the same in each case (the state of the system, &), while
the output corresponds to the parameters of the individual
controller (torque, desired positions, gain parameters, etc).
Based on these parameters the controller produces the torque,
T, that is then applied to the system. We now present each of
the controller parametrization that will be examined.

Direct torque control. In the first parametrization, the
neural network directly outputs desired torque commands
(Figure 1(a)) and the resulting control law is simply:

T =7(§) (1)

This parametrization imposes no structure, which provides
some benefits. As there is no imposed structure, any control
that is a function of the variables present in the state can
be expressed using this parametrization, given that the neural
network is capable of approximating it. Additionally, such
control parametrization may have a more direct control of
interaction forces than position controllers and may provide
benefits in that respect, at least in static contact situations.

However, having no imposed structure also has several
downsides. With this parametrization, the function to be
learned may be unnecessarily complex. For example, for a
motion task, the policy needs to learn something akin to PD
control as well as a part that generates desired positions, all
inside one function. This representation does not explicitly
separate the feedback (how to correct from errors) from the
feedforward (what is the desired behavior) pathways. Further,
small variations in commanded torques can lead to very
different movements and therefore to different task costs. This
will also raise issues for generating meaningful exploration,
which might be more difficult than doing the same in the space
of desired joint positions.

Fixed gain PD control. The second parametrization con-
siders a PD controller with fixed gains. In this case, the policy
outputs desired joint positions and torques are computed using
a PD controller with some pre-defined gains (Figure 1(b)). The
control law is then

T = Kp(qdes(§) —q) — Kaq 2

Again, there are positive and negative aspects to such a
parametrization. It is often easier to find solutions in this
setup [1], due to a simpler action space to explore and a
policy easier to encode. Indeed, small variations in desired
positions lead to small variations in task execution, at least in

contact-free motions. It is in fact, as we will also see in our
experiments later, the best choice for tasks involving only free
space motions.

On the other side, achieving a desired behavior in interaction
with the environment becomes more difficult, especially when
uncertainties are present, even when the gains are well tuned
for the specific task. The policy can to some extent control
the interaction with the environment by changing desired joint
positions, but as we will see later, finding such solutions
becomes increasingly difficult.

Variable gain PD control. The last parametrization is a PD
controller with variable gains, i.e. the policy modulates both
the desired position and impedance of each joint (Figure 1(c)).
The control law is written as

T = Kp(£)(qaes(§) — q) — Ka(§)d (3)

Note: In our experiments, we use a single output to control
both K}, and K4 by imposing a fixed relationship between
damping and stiffness, similar to the scaling of critical damp-
ing. The neural network outputs the K, gain and Ky is varied
with the square root of that value.

In contrast to the previous two controllers, we have intro-
duced an extra degree of freedom (the gain modulation) for
each joint. In theory, this added degree of freedom allows
for an explicit separation between the feedforward path, i.e.
the desired behavior encoded in the desired position, and the
feedback path, i.e. the response to unforeseen events encoded
in the feedback gain.

This parametrization will preserve the ease of exploration
characteristic of PD control with fixed gains. Moreover, with
additional control dimensions to use, the functions the policy
needs to learn may become even simpler than in the pure
position control case. Finally, key to contact sensitive tasks
we are particularly interested in, the policy has finer control
over contact interactions with the environment. Robustness
to environment uncertainty might be easier to encode in the
feedback path while preserving the feedforward one to encode
the ideal, unperturbed, behavior.

An obvious drawback is that we doubled the size of the
action space the policy is acting in. But, as we will see later,
this rarely causes loss in learning performance.

Remark: Both fixed and variable gain PD control we discuss
in this work are different than the ones commonly used in
robotics, where the control follows a predefined time-based
trajectory [2]. All controllers we examine are state-based
without any notion of time, and as such are capable of handling
uncertainty in contact location and time.

ITII. EVALUATION PROCEDURE

Evaluation goals. In our evaluations we focus on setups
where proper interaction with the environment is crucial for
task success. In contact sensitive problems, planning and
optimization-based approaches often struggle and reinforce-
ment learning has the potential to generate solutions which
cannot be easily found otherwise.

BOGDANOVIC et al.: LEARNING VARIABLE IMPEDANCE CONTROL FOR CONTACT SENSITIVE TASKS 3

Qdes

state

t3)

state T

(€)

(a) Direct torque control

(b) Fixed gain PD control

state

(€)

(c) Variable gain PD control

qdes KP/KD

Fig. 1: Structures for the three control policies used.

N
s

(a) (b) ©

Fig. 2: Evaluation environments used: A floating-base system:
a hopper jumping on a surface in simulation (a) and on real
hardware (b); A fixed-base system: a manipulator interacting
with the environment in simulation (c).

A central aspect of this work is to evaluate how controller
parametrizations influence task performance in presence of
different contact uncertainties in the environment. This is an
important aspect in order to generate motions that can transfer
to real physical systems. To be able to successfully transfer
policies from simulation to real systems we need to find
solutions that are capable of handling variation in critical
environment parameters. Therefore, the parametrization best
able to find solutions in such cases is more likely to produce
good results when applied on the physical system.

Evaluation environments. To study these aspects, we use
two different environments, a single leg hopper which is a
floating-base system and a manipulator fixed to the ground.
We seek to show that our results are consistent across two very
different environments, with contact interactions of completely
different nature. The manipulation task requires fine interac-
tion while the hopping task requires soft, reactive landing and
quick force exertion. Both contain movements that alternate
between free-space motions and contact interaction phases.
The simulations are implemented in the PyBullet simulator
[16]. We also show direct transfer of the learned policy for
the hopping environment to the real system.

Reinforcement learning algorithm. For training the con-
trol policies we use Deep Deterministic Policy Gradient
(DDPG, [17]). We chose an off-policy algorithm to reduce
the issue of local minima, especially present here arising from
combination of learning to control in joint space, disconti-
nuities in the dynamics arising from contact interaction, and
complex, multi-part reward functions. However, we do not
make use of any particularities of DDPG in our approach. We

therefore expect that the results we present here will remain
consistent when using other learning algorithms.

IV. CONTROLLING A FLOATING-BASE SYSTEM
A. Task description

Setup. The first setup we use in our evaluations consists of
a floating-base robot hopper with a two degrees of freedom
leg [18] and a solid surface beneath it. We restrict the base to
only move along the Z-axis which eliminates the falling down
effect while still capturing the base motion and intermittent
contacts during continuous jumping.

Task. The task is to achieve stable periodic hopping mo-
tions. We penalize hard impacts on the ground, as it is not
something that would be acceptable on the real system. We
are interested in motions where the system smoothly lands
and pushes off, without any discontinuities in its velocity. To
produce policies that are robust to contact switch uncertainty
we randomly change ground surface height during episode ex-
ecution in a range between —5 cm and 5 cm. This corresponds
to ground variations of 31% of the total hopper height in the
fully stretched configuration (32 cm).

We set the state of the system to consist of the joint positions
and velocities for the two leg joints as well as position and
velocity of the base. We do not explicitly provide to the system
any information about contact.

Reward function design. To generate hopping motions we
intentionally keep the reward function as simple as possible.
The main part of the reward is based on the height of the robot
base at every timestep, with an increase for values that cannot
be reached without leaving the ground. This term, on its own,
is enough to produce consistent hopping motions. However,
regardless of the controller design, policies trained on such a
reward produce exactly the excessive impacts on the ground
we are looking to avoid. In order to prevent impact forces
that can produce damage on the real system we penalize large
forces applied to the robot. Finally, to avoid high frequency
control command we introduce a torque smoothness penalty.

Even though in this case we are dealing with a comparably
simple system, this reward design creates a challenging learn-
ing problem. It is relatively easy for policies to get stuck in
a local minima where the system is just held upright with its
leg fully extended and not reach any hopping motion in their
exploration. The addition of the large force penalty makes the
problem even more difficult as initial hopping motions found
during training are bound to result in penalty for bad landings
larger than the reward received for jumping.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

(a) Final training scores (all variants)

1.5 S o
o opas 35 w .
S 104 1 % e
X : . 3 TR
© 0.5 > 4T e S 58 N
S g0 bR Lt A I o S O
© ..2.. .
o o . -
8 T @ Direct torque control -
g @® Fixed gain PD control . © .
~1.04 @® Variable gain PD control . .
T T T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100
Control / K, gain value for fixed gain control
(b) Average learning curves
1.5
—— Direct torque control
"g —— Fixed gain PD control (K, = 5)
kY L0 —— variable gain PD control
s
S 054
1
(5}
o
je}
@ 0.0
o
i
—-0.5 T T T T T T T T T
0 1 2 3 4 5 6 7 8
Training episodes (x10%)
(c) Final training scores (only those > 1000 shown)
°
1.5
o ®
o
1.4 %
Z .?
o [/
s 1.3 op® ::30
z .\}.- oe®
L Se0
o 1.2 og 00 Oog0®
2 - <
5111 oge® *
% °
1.0

T T
Fixed gain PD control (K, = 5) Variable gain PD control

Fig. 3: Results for training in simulation on the hopping
environment: (a) Final training scores for all controller
parametrizations. For the fixed gain policy results are shown
for a wide range of gain values; (b) Averaged learning curves
for the three controller parametrizations. Results are averaged
over 100 training instances for each parametrization; (c) Closer
look at the best performing policies at the end of the training
(only those with score greater than 1000).

B. Simulation results

Quantitative comparison. We run several training in-
stances for each of the three controller parametrization. For
fixed gains control we examine performance over a range of
different gains. In Figure 3(a) we show final scores at the end
of each training. We can see that direct torque control policies
completely fail to achieve the task. For fixed gain control we
can observe a drop in performance when gains are too low and
when they are too high, with a medium value of K, = 5.0
having the best average performance.

For reliably comparing fixed and variable gain control
on this task we repeat the experiment using 100 training
instances for each controller parametrization, using the best
performing gain value for fixed gains control. In Figure 3(b)
we present learning curves averaged over all the experiments
for each controller parametrization. We can see that average
performance of variable gain control exceeds that of fixed gain

one, a result of more of those policies converging to adequate
solutions as well as doing so faster.

Being more likely to converge is important, as it allows us
to find policies we can use in a limited number of training
runs. However, at the end we are always going to pick the
best performing policy to deploy on the real system. We
are therefore interested in understanding how good the best
policies are. In Figure 3(c) we show the individual final
performances from the previous experiment for all the policies
above a score of 1000. Here we can see that it is not only
the case that the variable gain policies are more likely to
converge or that they do so faster on average, but that they
find solutions strictly better than any that are found with the
fixed gain parametrization.

Qualitative analysis. In Figure 4 we show sample of be-
havior of the best performing variable gain policy. Examining
the gain profiles, we can note that they go to lowest possible
value in advance of making contact, before spiking up to allow
the system to first slow down, and then push itself off the
ground. The torque values stay close to zero except during
landing and push-off when they go to maximum values that
can be exerted. The contact interaction is such that the impact
is absorbed and the force is smoothly applied to first slow
down and then accelerate the system upwards, without losing
contact at any point.

C. Experiments on the real system

Transferring policies to real systems. When learning in
simulation the policies can learn to exploit idealized rigid-body
dynamics. Indeed, simulations do not include robot flexibility
or difficult to model dynamic effects such as Coulomb friction,
drive train dynamics, etc. Furthermore, they typically assume
infinite bandwidth control authority, without any delays, which
is known to be an issue to compute optimal policies [19],
[2]. As a result, optimized policies can quickly change control
outputs which results in very good behavior in simulation but
excites the dynamics of the real robot in problematic ways,
for example creating unwanted and possibly destabilizing
oscillations in the motion. This is an effect that we observed
in our initial experiments.

An approach often taken in sim-to-real research is to ran-
domize robot parameters in the simulation to capture various
types of unmodeled dynamics [20]. However, there is no
guarantee that this randomization will capture the unmodeled
dynamics of interest since the simulation does not explicitly
capture this dynamics. Further, dynamic randomization might
prevent finding appropriate solutions that could transfer to the
real robot by generating samples that do not apply to the
real robot. In this paper, we explore a different approach that
exploits our control parametrization.

Trajectory tracking reward term. To address the afore-
mentioned issue, we introduce an additional reward term
during learning of the policies in simulation, which aims to
force the policy to generate desired positions that can be
effectively tracked. The reward term penalizes the difference
between the desired position given by the policy at time step

BOGDANOVIC et al.: LEARNING VARIABLE IMPEDANCE CONTROL FOR CON

TACT SENSITIVE TASKS

1.0
w1 T PiTy PiT
0.0 T F (D rD i el T T T T F (D Fg o (D T T T
0.0 —<\/ //\/\ — Hip deswgd poswt\‘o.n
721'8 \f —— Knee desired position
. N D RN e
- _"'—'T";"'T::::Q{ _,J —— Hip torque [Nm]
,22: ; j‘ﬁ———_—__ah] —— Knee torque [Nm]
50
o l\,\/\\ —— Ground force [N]

T T
0.0 0.2 0.4

T T
0.8 1.0 1.4

Timel[s]

Fig. 4: Example of a learned behavior of the variable gain policy in simulation. The gains are at minimum just before landing

and then increase quickly to enable push-off.

a) Variable gain control without trajectory tracking reward term

term

b) Variable gain control with trajectory tracking reward

2 Hip position] 04 K4 BN Hip position 7
’”~
actual e <Y actual
04 —=— desired o4 (X4 TS —=—desired
[T T T T T [
0 ﬁ\ Knee position —4 4 Knee position
S<T actual S actual
2 ——~ desired 6 o\ M —==desired
T T T T T T T T T T T [
10 A 10 A
—— Hip gain —— Hip gain
57 \ —— Knee gain 57 —— Knee gain
T T T T T - T T T T T T T
c) Fixed gain control without trajectory tracking reward term d) Fixed gain control with trajectory tracking reward term
01 v<=— Hip position 1 Hip position
actual = actual
—2 —== desired o, === desired
T T ' 0 t— =T T T T '
o - Knee position 01 = D Knee position
,’ 1 77 -\ ’ V-
- \ actual N N S actual
] NN 22 === desired |2 === desired
O T T T T T " T T T T T "
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time[s] Time[s]

Fig. 5: Effect of introduction of the trajectory tracking reward term on outputs of fixed and variable gain policies: (a), (b)

Comparing the effect on resulting trajectory and gains for the
trajectory in the case of fixed gain policy.

t, q%., and the actual position achieved in the next time step
t+1, ¢t as follows:
Ty = —k ||q§es - qt—HH2

With this reward term, we favor desired joint positions
that can be tracked by the closed loop system in simulation.
Without such a reward term, the variable gain policy can
make a choice between various desired position and gain pairs
that results in the same applied torque at each time step.
For example, instead of generating desired positions that can
be meaningfully executed, it can just give desired position
values far from the actual robot trajectory with smaller gains
to achieve the same torques and therefore the same behavior.
However, this would lead to behaviors that could be very sensi-
tive to variations in the dynamics. As an additional benefit, this
term forces the policy output to remain interpretable as desired
position and feedback gains, clearly separating feedback and
feedforward control paths.

variable gain policy; (c), (d) Comparing the effect on resulting

We should note the difference between this term and a term
penalizing desired positions that move away from the current
state of the system. In the second case any desired position
different than the current one receives some penalty and the
system is incentivized not to move. With the reward term
we propose here if the position is reached in the next time
step, zero penalty is given. Even in the case when the desired
position is not reached, penalty is only given on the remaining
distance to it. Only the desired values that cannot be reached
are penalized, all motions where the trajectory can be tracked
receive zero penalty.

In order to evaluate the effect of this addition to the reward
on the resulting policies, we repeat the training process de-
scribed previously with the trajectory tracking penalty enabled
for both fixed and variable gain policies. We find that the best
scoring policies for both these controller parametrizations still
generate hopping with similar performance.

The outputs of both policies, with and without trajectory

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

Y (b) e (d) (e
Fig. 6: Example of a variable gain policy behavior on the

real system: (a) Push-off position on the ground; (b) Pushing
off the ground; (c) Reaching maximum height; (d) Getting
into position in preparation for the landing; (e) Landing and
starting the cycle again.

0.75

m
H
H

HH

o
o
o
1
H

Jump height [m]

- Ground offset
I +5cm
I baseline
0.60 T -5em

=

T T T T T
K, =2.0 Kp,=3.0 K, =4.0 Kp,=5.0 Variable gain

Fig. 7: Jumping heights for fixed and variable gain policies
deployed on the real system. We use three ground positions
where the baseline is the normal ground height and the other
two (—5cm, 5cm) are the ends of the range over which the
policies are trained.

tracking reward, are shown in Figure 5. We can see that before
adding this penalty term the variable gain policy gives desired
position output far from the current trajectory when realizing
the force needed to push off from the ground. However, when
training with this new reward term the desired positions for
both joints track the actual trajectory more closely. We can
see that this also results in interpretable gain results — going
as low as possible before contact and then spiking up to realize
the force that is needed. On the other hand the output of
the fixed gains policy practically does not change at all (the
plots differ as a result of the opposite knee orientation found
between the two solutions). When gains are fixed, the only
manner to control a desired contact force is to go off the
trajectory with the desired position values. On the other hand,
the resulting force can be controlled by varying the gains in
the other parametrization.

Evaluating policies on the real system. We evaluated the
best performing policies in simulation for each gain value for
the fixed gain controller and the one best performing variable
gain policy. Torque control did not produce any sensible policy
worth evaluating on the real system. For the fixed gain policies,
having position gain values of K}, = 1.0 was insufficient for
hopping so that is omitted from the following comparison.
Gain values of K, = 6.0 and higher resulted in unstable
behavior so those are omitted as well.

Apart from this, the transfer of policies trained in simulation

in the way we described to the real system is very robust.
Out of the 6 policies we evaluated all succeeded in reasonable
jumping performance, for many consecutive jumps, on the first
try. The achieved jump heights are presented in Figure 7.

Importantly, the variable gain policy outperforms all of the
fixed gain ones, i.e. it is the policy that saw the least decrease
in performance. Moreover, the resulting jumping height is
higher than what was demonstrated using model-based control
in [18]. It is in fact the highest jumping we were able to
generate on this platform to date. Also, even though its gains
can, and do, go as high as K, = 10.0 it shows none of the
instability present in the fixed gain policies with those same
gain values. The reason for this being that it increases the
gains to maximum values only when necessary (e.g. during
push-off). Indeed, the maximum admissible gains in contact
will always be larger than during the flying phase due to
the changing reflected inertia at the joints in loaded/unloaded
conditions.

V. CONTROLLING A FIXED-BASE SYSTEM
A. Task description

Setup. We use a simulation of a 7 degree of freedom KUKA
LWR manipulator (Figure 2(a)). In all the simulations, gravity
is compensated with a feedforward term, which is the default
behavior on the real robot.

Task. The task we are interested in consists of doing a
circular motion with the endeffector touching a table in front
of it, while applying a desired constant vertical force. This
task is relevant for many applications that require sliding
contacts, such as cleaning a surface, using a tool on an object,
etc. Tasks involving sliding contacts are especially difficult
to optimize in general. The task is designed such that the
robot starts from a random initial position. It should be able
to reach the table, establish a safe contact and exert a desired
vertical force. We consider three types of uncertainties for
the table: stiffness (i.e. how soft is the contact), friction,
and height. These uncertainties are relevant for real-world
applications as changes in contact properties and location can
easily destabilize controllers and lead to failures. Moreover
contact stiffness and friction cannot be known precisely before
interaction in an unknown environment.

For this task, the states of the system consist in the positions
and velocities of all 7 joints of the arm, as well as the total
force measured by the endeffector.

Reward function design. To learn a policy for achieving
the desired task we define a reward function consisting of
several parts (1-5). We use two terms to drive the circular
motion along a desired trajectory: (1) the current distance from
the endeffector to the closest point on the circle and (2) the
difference between the current velocity vector and the desired
tangential velocity on the closest point on the trajectory so as
to achieve a motion with constant angular velocity. The three
other terms are: (3) a reward based on the orientation of the
endeffector, (4) a constant reward for any interaction between
the endeffector and the table and a further reward based on the
difference with desired contact force and (5) a penalty term

BOGDANOVIC et al.: LEARNING VARIABLE IMPEDANCE CONTROL FOR CONTACT SENSITIVE TASKS 7

for any interaction between the table and any part of the robot
other than the endeffector.

While the reward function might seem complex, each term
directly encodes one aspect of the task and we pay particular
attention not to incentivize any specific behavior in solving
it. The apparent complexity is precisely the result of this, as
we use multiple terms to define the circular motion along the
trajectory, instead of simply having one specific point to track,
explicitly to ensure time-invariance of the resulting policies.

B. Simulation results

Quantitative comparison. We examine the robustness of
our approach to variability present in the environment. We
consider in three separate simulations uncertainties on table
height, friction, and stiffness. For each of the three variables
we define a possible range of values and uniformly sample
a new environment in each episode during training. We vary
the table height in a 20 cm range from 0.8m to 1.0m and
Coulomb friction coefficients in a range from 0 (no friction)
to 1. We also vary the rigidity of the surface (which can easily
influence the stability of a controller) with stiffness values
from 50 N/m to 500 N /m.

We perform each policy training for a fixed, predefined
number of episodes. For each controller we repeat the training
6 times, with different circular trajectories to track. In Figure 8
we present the combined results, showing the mean and stan-
dard deviation for the learning curves across these individual
trainings.

We can see that variable gain control outperforms both
of the other two parametrizations. Splitting the control into
motion and impedance parts makes it crucially easier for a
good behavior to be found. One control term can handle the
circular motion, while the other, depending on the experiment,
can manage contact location uncertainty or compensate for
unknown friction of the surface.

Qualitative analysis on contact transition. Further com-
parison between different cases in Figure 8 reveals that the
performance gap between the variable gain policies and the
other two (fixed gains and direct torque) is more obvious when
there is uncertainty in the contact location. Since the dynamics
of the system changes before and after contact, transition
between the two modes (i.e. free motion vs. in-contact) has
a critical impact on the task achievement. Hence, the policy
that is able to tolerate uncertainty in the mode transition can
outperform other ones drastically. To investigate qualitatively
the behaviour of different policies in this case, we plotted
the corresponding normal interaction forces (Figure 9) for a
representative experiment. We can clearly see that the applied
force from variable gain policy is smooth without loosing
contact. On the other hand, direct torque control looses contact
frequently and the fixed gains policy generates forces with
high frequency oscillations. The variable gain policy leads to
smoother contact forces which could be realistically applied
on a real robot.

VI. DISCUSSION

Trajectory tracking term. The trajectory tracking term was
crucial in our sim-to-real transfer, as it prevents the policy

from varying the desired position with a high frequency. In
other words, the policy is incentivized to change the desired
position in a way that is consistent with the system dynamics
and constraints (as much as it does not degrade achieving
the desired task). As a side benefit, the trajectory tracking
term also gives interpretability to the output of the policy,
i.e. the sequence of desired positions over time can be seen
as the desired feasible trajectory and the multiplier to the
error replicates the feedback gains. As a result, if we have
a variable gain policy, we can find a desired trajectory and an
optimal set of feedback gains for that desired trajectory. This
interpretability can yield insight about the optimal impedance
modulation for contact-rich tasks, which is still an open
problem in the field.

Action space parametrization alternatives. When propos-
ing any new structure in the action space of the policy, in
addition to standard considerations on the control side, we
suggest to take into account two additional factors from the
learning perspective. First, good exploration is critical for fast
convergence and to avoid getting stuck in undesired local
minima. This is where position control based policies come
ahead of direct torque control, but they in no way completely
solve the problem and there is further research to pursue in that
area. Second, if we entirely decouple the feedback path from
the feedforward one (e.g. 7 = 7¢f(&) — Kp(§)x — Kq(§)D),
the learned policy may realize the entire control through a
single term, mostly ignoring the other one (our experiments
with such control law formulations resulted in precisely that
type of behavior). This would also strip the control law terms
of any physical meaning we tried to impose. When using any
such control law in a policy learning setting, where the same
behavior can be produced by different combinations of control
terms, there needs to be something incentivizing one choice
over another. Only then can the individual terms have the
intended physical meaning, giving us the interpretability we
desire.

Stability of variable impedance policy. Varying impedance
as a function of state can cause instability of the control. As
discussed in [21], reasonable varying stiffness profiles show
no destabilization tendencies. In this paper, first we found a
range of joint stiffness and damping that does not cause any
instability on the real system for a wide range of motions. Then
we let the policy find a state-dependent impedance within this
range. With this strategy, we never experienced any instability
when we applied the learned policy directly on the real robot.

VII. CONCLUSION

In this paper, we have investigated the effect of action
space representation on the performance and robustness in
contact-rich tasks in the presence of uncertainties. On both a
floating-base hopping task and a fixed-base table wiping one
we demonstrate that variable impedance control allows us to
find better performing policies and to do so more reliably. Ad-
ditionally, we showed how we can use a regularization term to
impose the original physical meaning to desired trajectory and
impedance, giving interpretability to these policies. Finally, we

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

a) Table height variation

b) Surface friction variation

c) Surface stiffness variation

8 - . .

~ 77 1 1

g

%67]]

£ 54 b 7

2

L

o 41 - .

°

Ie]

2 34 - .

UCJL —— Direct torque control
24 - - —— Fixed gain PD control

—— Varible gain PD control
1= T T T T T — T T T T T T — T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 25 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0

Fig. 8: Robustness evaluations for the fixed-base setup

Training episodes (x10%)

friction (b), and table surface stiffness (c).

Interaction force [N]

. Results for environments with varying table height (a), table surface

50
—— Direct torque control
=== Desired force
04 o v
T
50 1] ~
—— Fixed gain PD control
=== Desired force
0 v
T T T T
50
—— Varible gain PD control
===~ Desired force
F E——]

Time [s]

Fig. 9: Table force interactions during circle tracking task for learned policies for different controllers.

demonstrated how the policies can then directly be deployed

on

(1]

(2]

(3]

(4]

[5]

(6]

(7]

(8l

(91

[10]

a real system, preserving performance and robustness.

REFERENCES

X. B. Peng and M. van de Panne, “Learning locomotion skills using
deeprl: Does the choice of action space matter?,” in Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
p. 12, ACM, 2017.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal, “Learning
force control policies for compliant manipulation,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 4639—
4644, 1IEEE, 2011.

J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 820-833, 2011.

F. Stulp, J. Buchli, A. Ellmer, M. Mistry, E. A. Theodorou, and S. Schaal,
“Model-free reinforcement learning of impedance control in stochastic
environments,” IEEE Transactions on Autonomous Mental Development,
vol. 4, no. 4, pp. 330-341, 2012.

K. Kronander and A. Billard, “Learning compliant manipulation through
kinesthetic and tactile human-robot interaction,” IEEE transactions on
haptics, vol. 7, no. 3, pp. 367-380, 2013.

J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar,
and P. Abbeel, “Reinforcement learning on variable impedance controller
for high-precision robotic assembly,” arXiv preprint arXiv:1903.01066,
2019.

E. Gribovskaya, A. Kheddar, and A. Billard, “Motion learning and
adaptive impedance for robot control during physical interaction with
humans,” in 2011 IEEE International Conference on Robotics and
Automation, pp. 4326-4332, IEEE, 2011.

S. M. Khansari-Zadeh and O. Khatib, “Learning potential functions
from human demonstrations with encapsulated dynamic and compliant
behaviors,” Autonomous Robots, vol. 41, no. 1, pp. 45-69, 2017.

J. Viereck, J. Kozolinsky, A. Herzog, and L. Righetti, “Learning a
structured neural network policy for a hopping task,” IEEE Robotics
and Automation Letters, vol. 3, no. 4, pp. 4092-4099, 2018.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. Martin-Martin, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and
A. Garg, “Variable impedance control in end-effector space: An action
space for reinforcement learning in contact-rich tasks,” arXiv preprint
arXiv:1906.08880, 2019.

P. Varin, L. Grossman, and S. Kuindersma, “A comparison of action
spaces for learning manipulation tasks,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6015-6021,
Nov 2019.

L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Soueres, and J.-Y.
Fourquet, “Dynamic whole-body motion generation under rigid contacts
and other unilateral constraints,” IEEE Transactions on Robotics, vol. 29,
no. 2, pp. 346-362, 2013.

A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and
L. Righetti, “Momentum control with hierarchical inverse dynamics
on a torque-controlled humanoid,” Autonomous Robots, vol. 40, no. 3,
pp. 473-491, 2016.

J. Silvério, L. Rozo, S. Calinon, and D. G. Caldwell, “Learning biman-
ual end-effector poses from demonstrations using task-parameterized
dynamical systems,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 464-470, IEEE, 2015.

E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” GitHub repository,
2016.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2015.

F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wiithrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, J. Fiene,
A. Badri-Sprowitz, and L. Righetti, “An open torque-controlled modular
robot architecture for legged locomotion research,” IEEE Robotics and
Automation Letters, 2020. Early access.

R. Grandia, F. Farshidian, A. Dosovitskiy, R. Ranftl, and M. Hutter,
“Frequency-aware model predictive control,” IEEE Robotics and Au-
tomation Letters, vol. 4, no. 2, pp. 1517-1524, 2019.

X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” in 20/8 IEEE
international conference on robotics and automation (ICRA), pp. 1-8,
IEEE, 2018.

K. Kronander and A. Billard, “Stability considerations for variable
impedance control,” IEEE Transactions on Robotics, vol. 32, no. 5,
pp. 1298-1305, 2016.

B Submitted manuscripts

45

Model-free Reinforcement Learning for Robust Locomotion Using
Trajectory Optimization for Exploration

Miroslav Bogdanovic!, Majid Khadiv! and Ludovic Righetti!:?

Abstract—1In this work we present a general, two-stage
reinforcement learning approach for going from a single demon-
stration trajectory to a robust policy that can be deployed on
hardware without any additional training. The demonstration
is used in the first stage as a starting point to facilitate initial
exploration. In the second stage, the relevant task reward
is optimized directly and a policy robust to environment
uncertainties is computed. We demonstrate and examine in
detail performance and robustness of our approach on highly
dynamic hopping and bounding tasks on a real quadruped
robot.

I. INTRODUCTION

Deep reinforcement learning (DRL) has recently shown
great promises to control complex robotic tasks, e.g. object
manipulation [1], quadrupedal [2] and bipedal [3] locomo-
tion. However, exploration remains a serious challenge in
RL, especially for legged locomotion control, mainly due
to the sparse rewards in problems with contact as well as
the inherent under-actuation and instability of legged robots.
Furthermore, to successfully transfer learned control policies
to real robots, there is still no consensus among researchers
about the choice of the action space [4] and what (and how)
to randomize [5] in the training procedure to generate robust
policies.

Trajectory optimization (TO) is a powerful tool for gen-
erating stable motions for complex and highly constrained
systems such as legged robot [6], [7], [8]. However, re-
planning trajectories through a model predictive control
(MPC) scheme is still a challenge, because the computation
time for solving a high-dimensional non-linear program in
real-time is highly expensive. Furthermore, apart from recent
works explicitly taking into account contact uncertainty to
design robust control policies [9], [10], the inclusion of
robustness objectives in trajectory optimization can quickly
end up in problems that cannot be solved in real time for
high-dimensional systems in multi-contact scenarios.

In this work, we propose a general approach allowing
for the generation of robust policies starting from a single
demonstration. The main idea is to use TO to generate
trajectories for different tasks that are then used for explo-
ration for DRL. The approach allows us to generate policies

IMax-Planck Institute for Intelligent Systems, Tiibingen, Germany
{mbogdanovic, mkhadiv}@tue.mpg.de

2Tandon School of Engineering, New York University,
{ludovic.righetti@nyu.edu

This work was supported by New York University, the European
Union’s Horizon 2020 research and innovation program (grant agreement
780684) and the National Science Foundation (grants 1825993, 1932187
and 1925079).

USA

robust to environmental, and particularly contact transition,
uncertainties.

It is crucial to highlight that simply trying to optimize the
policy to track the demonstration as well as possible is highly
problematic in the presence of environmental uncertainties.
As an example, let us say we want to produce a hopping
policy that can account for large uncertainty in ground height.
Instead of just going directly into a baseline hopping motion
after making contact with the ground, the policy would need
to force itself to get back into phase with the demonstration
to have any luck to complete the task. This might not even
be possible as the policy would also need to have some
information about the current phase of the demonstration
trajectory — which, without having time in the input state,
might not be possible. Hence, losing the time dependence
from the demonstration trajectories in the final feedback
policy is the key in our approach to provide robustness with
respect to contact timing uncertainties.

A. Related work

Demonstrations have long been used in dealing with
exploration issues in reinforcement learning for robotic tasks
[11], [12], [13]. Recently, demonstrations have been used as
one of the main ingredients to learn complicated locomotion
behaviors in a DRL setting [14], [15]. In these works, a
policy is trained using reinforcement learning to reproduce
a given demonstration trajectory as well as possible in
simulation. In [15], those policies are transferred to the real
system relying on domain randomization methods. The main
difference between those works and our approach is that
we do not restrict ourselves to tracking a demonstration
trajectory. Instead, we only use the demonstration to avoid
exploration issues and get a reasonable initial policy. Then,
we continue training with a time-independent, direct task
reward instead of the reward for tracking the demonstration
trajectory. This gives the policy the freedom to optimize
directly for task performance instead of having to reproduce
the demonstration. Additionally, it allows for better recovery
behaviors, as the policy is able to adapt the timing of the
motion to environmental changes.

Several contributions have used reinforcement learning to
compute policies in simulation before deploying them on
a real quadruped robot [2], [16]. However, these results are
typically limited to not very dynamic behaviors. Additionally,
in [16], strong prior structure is imposed on a policy by hav-
ing it output foot position residuals and motion frequencies,
instead of directly doing control in joint space. These kinds
of approaches become less feasible in building truly robust

policies for dynamic tasks, with fast contact transitions and
longer flight phases.

B. Contributions

We propose a two-stage method for computing robust
adaptive policies for real robots starting from a single demon-
stration trajectory. The approach allows the policy to find a
robust solution without being hindered by the time-depended
aspect of the demonstration trajectory or be biased by it in
general.

We use this approach to produce highly dynamic motions
on a quadruped robot. By training the control policy to
handle varied initial conditions, as well as contact locations
and timings, we produce robust policies with smooth contact
switching behavior at high speed. Additionally, trained poli-
cies prove robust to elements they have not been explicitly
trained for, like uneven terrain, soft terrain or external
perturbations.

For each task, the procedure starts from a single demon-
stration trajectory which does not even need to be fully
physically realizable. We further show how we can use this
single demonstration to produce a varied set of policies for
the real robot.

II. TWO-STAGE ALGORITHM

Our proposed algorithm proceeds in two stages as shown
in Fig. 1. In the first one we train a policy to track a time-
based demonstration trajectory as well as possible inside a
physical simulation. In the second stage we further adapt
the resulting policy, making it now optimize for a time-
independent task reward instead. We also introduce variabil-
ity in the environment and further reward terms to regularize
the behavior in this stage. As a final result we get a robust
policy that can be directly deployed on the real system
without any additional training.

A. Stage 1: Learning a policy to track a given trajectory

Initial demonstration. We assume we have access to
a demonstration trajectory showing general kinematic mo-
tion required for completing the task, while not necessarily
being fully physically realizable. In this work we use the
trajectory optimization algorithm proposed in [8] to compute
such demonstrations. This approach is general and does not
consider any simplification in the dynamics or kinematics,
hence it is capable of generating a variety of different gaits
for legged robots. It is important to emphasize that any
other trajectory optimization algorithm can be used in our
approach, as long as it provides a set of full-body trajectories.

In order to utilize such demonstration trajectories it is not
sufficient to simply learn to reproduce actions taken in the
trajectory. The policy needs to learn when to go off the
trajectory in order to complete the task. With our proposed
approach the actions taken in the demonstration are never
used, which among other things gives us freedom in the
choice of how to parametrize the controller we are trying
to learn.

Controller parametrization Throughout this work we use
PD control in joint space to control the robots. The policy
outputs the desired joint positions at each step and uses fixed
P and D gains. Throughout all our stages of training we have
an additional term incentivizing the policy to output values
for desired joint positions that are actually tracked as well
as possible. Specifically, we penalize the difference between
the value given for the desired position by the policy at step
t and the actual position achieved at next step ¢ + 1:

. "’IL .. 2
ru = =k |t - @t || W

This has been the crucial aspect in our previous work
[17] for direct policy transfer to real robot without domain
randomization of robot parameters.

Training procedure. We use Proximal Policy Optimiza-
tion (PPO) [18] to optimize the policies, but we do not have
many requirements in the choice of algorithm. As we use
the provided demonstration to resolve exploration issues, we
do not need a, potentially off-policy, reinforcement learning
algorithm with strong characteristics in this regard. We in-
stead choose an on-policy algorithm with good convergence
properties.

In this stage, the optimized reward consists of two parts: a
part for tracking the time-based demonstration and the above-
defined regularization term that is a part of the controller
parametrization:

Ts1 =Tt + Tt

base

T4 = kg1 exp (— ko || Xgemes —

Xbase ”)

ktig exp (— ktMHXZ‘;;‘iO o)'(baseH)
s exp (= o[z, © ")
b b (2)
B exp (= Baasllwling, — "))
kig exp (— kerollaiome — qj"i"tH)

. joint

ey exp (= ka7, — /™)

74 as defined in (1),

where xb5¢ is the position of the robot base, qb““ the base

quaternion, w®®**¢ the base angular velocity and q’°""* the
joint positions. ky;1, ..., k12 represent individual weight and
scale constacts for each term. We mark difference between
two quaternions with &.

Following [14], we make two further design choices that
prove to be vital in making the training robustly work:

1) We initialize each episode at a randomly chosen point
on the demonstration trajectory.

2) We terminate episodes early if the robot enters states
that are not likely to be recoverable (based for example
on tilt angle of the robot base) or just not conducive
for learning (for example knees of the robot making
contact with the ground).

Output. In the first stage, we aim to produce a policy that
provides some nominal behavior on the task in simulation.

Tracking
reward

Nominal task
behavior

Potentially
non-physical

Simple task
reward

Regularization
rewards

Robust behavior
optimizing task
reward

Deployment on
real robot with no
additional training

Fig. 1: Schematic of our proposed framework. We start with a single demonstration (which need not be physically realizable
in simulation) and try in the first stage to learn a policy to track the demonstration trajectory that produces successfully
nominal behavior in simulation. To enable transfer to the real robot, the second stage starts with the resulting policy from the
first stage and tries to robustify the policy by randomizing contact and to optimize for performance by replacing demonstration
tracking reward with task reward. We directly apply the output policy from the second stage to the robot without any domain

randomization of robot parameters.

However, in our experiments, these policies failed to transfer
to the real robot. They remain static, cause shaky behavior on
the robot, or resulted in motions with severe impacts (exam-
ples in the accompanying video). To solve these problems,
we need an additional stage of training that generates robust
policies in simulation that transfer to the real robot.

B. Stage 2: Generating robust time-independent policy

To modify policies such that they are successfully trans-
ferable to the real robot, We continue training starting from
the policies outputted from the first stage, introducing the
following changes in the training procedure:

Initialization. We replace initialization on the demon-
strated trajectories with initialization in a wider range of
states. This allows us to better cover the range of states
the policy might observe when deployed on the real system,
allowing it to learn how to recover and continue the motion
in those cases.

Environment uncertainties. We introduce uncertainties
in the environment in order to produce more robust motions
when deployed on the real system. In this work, we are
mainly concerned with randomization of the contact surface
heights.

Time-independent task reward. We replace the time-
based demonstration tracking reward with a time indepen-
dent, direct task reward. We have already noted the issues
that can arise while trying to account for environment uncer-
tainties while tracking a time-based demonstration trajectory.
The policy is locked into trying to follow the specific time
schedule regardless of the environment, whereas adapting it
would produce much better recovery behavior. Switching to
a time-independent reward, directly defining the task helps
us deal with this.

Switching to this task reward has additional benefits. It
allows us to directly optimize desirable aspects of the task,

whereas the demonstration only needs to give us some
nominal behavior on the task. The policy is free to change
the behavior in a way that is needed to perform the task in
the best possible way, without being penalized for not doing
it in the same way as in the demonstration. We can also, as
we will see later, produce varied behavior starting from a
single demonstration by adapting this task reward.

Regularization rewards. Finally, we add additional re-
ward terms in this stage to further regularize the behavior of
the learned policies. We aim to incentivize desirable aspects
of policies in the tasks, like torque smoothness and smooth
contact transitions.

III. EVALUATION
A. Tasks setup

We evaluate our approach on two different dynamic tasks
on a quadruped robot: hopping and bounding. In both cases
we start from a basic demonstration trajectory that gives ba-
sic shape of the motion without necessarily being physically
realizable. Starting from that we apply our two-step training
procedure in simulation to produce robust policies that we
then test on a real robot.

We perform experiments on the open-source torque-
controlled quadruped robot, Solo8 [19] (see Fig. 2), which
is capable of very dynamic behaviors. For simulating the
system we use PyBullet [20].

We use exactly the same training procedure in both cases,
with the only differences arising from the need to allow for
base rotation around one axis in the bounding task. This is
a particular benefit of the approach we present here — for a
new task we only need a single new demonstration trajectory
and a single simple reward term defining the task.

Stage 1 — Early termination. The only aspect in the
first stage of training specific to the chosen tasks is how we
perform early termination. We perform early stopping here

based on the current tilt of the robot base (we increase the
range appropriately for the bounding task), as well as when
any part of the robot that is not the foot touches the ground.

Stage 2 - Initialization. As noted in the method descrip-
tion, in the second stage of training we introduce a wider
range of initialization states. In the two tasks we examine
here, this consists of randomizing the initial height of the
base of the robot, tilt of the base around x- and y-axis and
randomness in the initial joint configuration. We preserve the
early termination criteria from stage 1, only extending the
range of allowed base tilt angles with the way it is increased
in the initialization.

Stage 2 — Environment uncertainties. We also introduce
uncertainties in the training environment. We randomize
the ground position up and down in the range of [—5cm,
5cm] (approximately 20% of the robot leg length). We also
randomize the ground surface friction coefficient in the range
[0.5,1.0]. While we restrict ourselves only to this limited
set of initial state and environment randomizations, as we
will see in the later evaluations, this produces policies that
are quite robust as they can also handle uneven ground or
external perturbations.

Stage 2 — Reward structure (hopping task). By using
a demonstration trajectory to deal with exploration issues,
we can define the individual task rewards to be very simple,
without the need for any reward shaping.

For the hopping task we use the following reward

Ts2hp = Thp + Tps +Tet + s + Tt (3)

We use the 7, reward term to define the task

khpzbase’
Thp =
0, otherwise.

base base base
if Zmin < % < Zmaz> (4)

The reward at each timestep is proportional to the current
height of the robot base (zb%€), with constant weight ky,,. It
is clipped to zero bellow a certain threshold (z%%¢), one
that the robot can reach without leaving the ground. We
additionally clip the value of this reward to be zero above a

certain height threshold (229¢) to incentivize lower hops.

max

We also introduce several reward terms to incentivize
different desirable aspects in the resulting behavior. They
reward the base to be close to its horizontal default posture
(rps) and smooth contact transitions (r.;) and torque smooth-
ness (rgs).

We reward the policy for being static in all the base
dimensions (positions (xbase, ybase) and Euler angles (02“56,
055, 62%5¢)) except the one the motion is performed on (z-
axis in this case). With k1, ..., kps10 being weight and scale

constants.

base |2
Tps = kps1 €Xp (*kpSQ‘.’L' |)

psS exp (s 4|ybase|2)
bpss exp (—hpscl 0277 5)
pg7 exp (9base|)

kpso €xp (—]{jp510|9127ase|2)

This term is crucial as it drives the policy to stay at the
default posture as much as possible. Without it the policy
could perform the task well in the simulation while always
being close to falling over — which would likely happen when
it was transferred to the real system.

The second key reward term asks for smooth contact
transition (7.¢)

Ffoot

4 foot . 4 foot
_kCt Z Fz ’ if Z Fz limit>® 6
=1 =1 ()

Tet =
0, otherwise.

We do so by simply penalizing any contact force values
(Fif 9y above a certain threshold (ﬂ{szt) to penalize im-
pact, with k.; being a constant weight. Without this term
we would have the feet hitting the surface hard on each
landing — this is precisely what we observe in policies from
stage 1 where this reward term is not present. This is not
the kind of behavior desired on the real system and these
impacts can cause actual damage to the robot. These types
of policies also transfer less well between simulation and
real world. They can learn to perform the task well in
simulation by generating hard impacts, but doing so exploits
the weaknesses of the contact model in simulation, resulting
in a poor performance when transferred to the real system.
Smooth contact transitions enable a better transition between
simulation and the real system and so the policies where
incentivize those end up transferring to the real system much
better.

The third reward term (r;s) prevents the policy to ask
for a very quick change in the desired torque which is not
realizable on the real robot with limited control bandwidth

i =~k exp (ke 7)) =Tt = 1DI) @)

with 7 being the joint torque and k.51 and k5o weight and
scale constants respectively.

Final reward term r;; is the same one we use in the first
stage of training (as defined in (1)).

Stage 2 — Reward structure (bounding task). For the
bounding task, we only make changes to the parts of the
reward defining the task:

Ts2bn = Ton + Teec + Tps et + s + T (8)

We define the task reward here in two parts, 73, and
Tee. Thn rewards the policy for being close to the path the
demonstration takes in the [2%**¢, 6**¢] space

ba,se’ 6; _ gzase)” (9)

Ton = —kin miin||(zi —z

(a) Hopping on a surface comprised of a soft mattress and small blocks

(b) Hopping with push recovery

FYYP Y PY

(c) Bounding on a surface comprised of a soft mattress and small blocks

(d) Bounding with push recovery

Fig. 2: Examples of the robustness tests carried out on the quadruped robot Solo8.

with ky,, being a constant weight. We do this with no concept
of time in this case, by just taking the distance to the closest
point. This gives the policy freedom to do this motion slower
or faster, with different amplitude.

The second part of the task reward in this case, .., is
related to the contact state

kee, only front two legs in contact,

o = kee, only back two legs in contact, (10)
kee, o0 legs in contact,
0, otherwise.

with k.. being a constant reward. It incentivizes the policy
to, when making contact with the ground, only do so with
front or back legs at the same time. Without anything to
incentivize the policy to do this, we have observed stage 1
policies reproducing the bounding motion while keeping all
feet in contact with the ground. This reward part ensures
appropriate contact states with flight phases in between.

We keep the other reward terms, ones used to incentivize
desired aspects of the behavior, the same as in the hopping
task (ry4 as defined in (1), 7, 745 as defined in (7)). The
one change we make is to the reward incentivizing the robot
base staying close to the default posture, 7,4

Tps = Kps1 €XP (_kps2|mbase|2)
By exp (—psaly")
kpss exp (—kl,56|92ase|2)

kps7 XD (—k,,sgwg“ﬂ?)

an

We do not reward staying at default posture in the 02‘”6
direction in this case, as that is the angle the robot is moving
around while bounding.

B. Hopping task results

Figure 3 shows results when we drop the real robot from
different heights to start the motion. We show the base height
and estimated contact force for one of the legs in time. As we
do not have force sensors in the feet, we estimate the contact
forces based on the torques the robot applies, using Fif oot —
(S;JT)~1 S; 7, where S; and J; are the joint selection matrix
of the leg 7 and Jacobian of the foot i, respectively. Note
that this estimation ignores the energy dissipated through
damping of the robot structure and drive system. We further
align the plots based on the later part of the motion — the
stable cycle the robot gets into.

First, we can note that regardless of the drop height the
robot goes into the same stable hopping cycle. What is more,
it does so very quickly, as we can see all the individual
rollouts matching after only two hops. We can also note here
the benefits of time independence of the policy. It is what
allows us to be able to start the motion from this large range
of initial heights. It is also what enables this fast stabilization,
as we can see that the two initial hops are on a different cycle
— one needed to stabilize the motion properly.

This test also allows us to show the general quality of
contact interaction we are able to achieve with this approach.
We can see that the impact forces, even on the highest
drop (1 m height), barely go over the force values for the
stable hopping cycle (50 cm height). This is purely learned
behavior, as a result of impact penalties introduced in stage

-
o
S

0.75

0.50

0.25

Base Z-axis position [m]

o
]

20

Estimated contact force [N] o

T T T T
0 1 2 3 4 5 6
Time [s]

Fig. 3: Hopping experiments started from different initial heights. The top figure shows that after dropping the robot from
a set of different heights ranging between 0.3-1 m, the robot quickly goes back to the nominal behavior which is hopping
with the maximum height of 0.5 m. The bottom figure shows that, dropping from different initial heights, the robot is able

to adapt its landing such that the impact forces remain very low and almost invisible in the estimated force.

2 of the training. It is not present in the demonstration and
when we test stage 1 on the real system high impact forces
are generated and the policies are very fragile. The general
character of the smooth contact transition can also be well
observed in the accompanying video.

In addition, the resulting behavior shows robustness to
uneven terrain and external pushes, without ever being
explicitly trained for either. The robot is able to recover
from significant tilt of the base arising from either external
push or landing on an uneven surface (Fig. 2a, 2b). More
extensive examples of recovery behavior can be seen in the
accompanying video.

Finally, we demonstrate the variety of robust behaviors
that can be optimized from the same demonstration by
doing repeated trainings with hopping reward being clipped
at some maximum height — giving a value of zero above
it. With this simple change in the task reward, starting
from one demonstration, we can produce hopping behaviors
at different heights. Examples of this can be seen in the
accompanying video.

C. Bounding task results

In Fig. 4 we show results for a test where we drop the
robot from different angles to start the motion. We perform
the same test for two different final stage 2 policies for this
task. We can see that the policies can handle a wide range
of initial base angles — around 35 degrees in both directions.
What is more, as was the case with the hopping task, we can
see that here as well all the initialization end up in the same
stable motion cycle.

The bounding motion also exhibits similar robustness to
uneven terrain and external perturbations as the hopping
motion (Fig. 2c, 2d). Same as with the hopping task, the
policies rely on their knowledge of how to handle a varied
set of base states to recover from anything that arises from
these conditions even through it was not explicitly trained
on them.

In this task, we would also like to demonstrate variety of
behaviors we can generate from one single demonstration.
Unlike in the hopping task, where we made simple changes
in the task reward to achieve this, here we instead give more
freedom to the task reward and examine variety of produced
behaviors. As noted in the task reward definition, the policy
has the freedom to produce slower or faster bounds with
smaller or larger amplitudes. As seen in the accompanying
video we arrive at a variety of bounding behaviors in this
way, starting from the same initial demonstration trajectory.

IV. DISCUSSION

Simplicity and generality of the approach. One of the
main benefits of the approach we presented is its generality
and simplicity in applying it to new tasks. The only elements
needed for each new task, as can be seen from the two task
we presented here, are a single demonstration trajectory and
a direct straightforward task reward.

The trajectory we use does not need to be perfect or even
fully physically realizable, it only needs to provide the rough
trajectory needed to complete the task in some basic way. It
does not need to provide ideal performance on the task, as
we can optimize for task performance in the later stage of
training. It also only needs to provide us with a sequence of
states, and not necessarily actions, which is simpler in some
cases where it is not trivial to calculate the exact forces to
realize motion, like it is actually the case in the trajectory
optimization we use here.

As for the task reward, reward shaping is not needed, as
the demonstration resolves any exploration issues that could
occur as a result of sparse reward signal. We can, as we
do here, just directly reward the aspect of the task we care
about. We keep reward terms other than the task reward as
general as possible, encoding characteristics of general good
behavior of the robot and we expect those to be kept the
same across a varied range of tasks.

0.2

0.0

—0.2

Base Y-axis angle [rad]

—0.4 1

—0.6

0.0

—0.2

Base Y-axis angle [rad]

~0.4

—0.6

T T
0.30 0.35 0.40 0.45
Base height [m]

Fig. 4: Two different bounding behaviors on the robot with
different initial conditions. Starting with a wide range of
initial angles for the base in y-direction (roughly between -35
to 35 deg), the robot quickly converges back to the desired
behavior.

Reinforcement learning perspective. From the reinforce-
ment learning perspective our approach presents a simple and
effective way to deal with exploration issues in robotic tasks.
We also remove the trajectory tracking reward in the second
stage of our training, so, as seen in our experiments, we are
able to change the policy away from exact behavior defined
in the demonstration.

Trajectory optimization perspective. From the trajectory
optimization perspective, our approach proposes a systematic
way to consider different types of uncertainty and find a
robust control policy for robotic tasks, especially those with
contact. We believe this is a practical way to combine
the strength of trajectory optimization and reinforcement
learning for continuous control problems; 1) Trajectory op-
timization is used to generate a desired behavior efficiently
to achieve the task at hand 2) different types of realistic
uncertainties are easily added to the simulation, e.g. contact
timing uncertainty, and RL is used to produce a robust
feedback policy.

V. CONCLUSION

In this work, we presented a general approach for going
from trajectories gained by doing trajectory optimization to
robust learned policies on a real robot. We showed how we

can start from a single, not necessarily physically realizable,
trajectory and arrive at a robust policy that can be directly
deployed on a real robot, without any need for additional
training. Through extensive tests on a real quadruped robot
we demonstrated significant robustness in the behaviors
produced by our approach. Importantly, we do so in setups,
uneven ground and external pushes, for which the robot was
not explicitly trained for. All this gives hope that approach
like this could be used across varied robotic tasks to simply
generate robust policies to be used on real hardware, bridging
the gap between trajectory optimization and reinforcement
learning in such tasks.

REFERENCES

[1] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, et al., “Qt-
opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,” arXiv preprint arXiv:1806.10293, 2018.

[2] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[3] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. Panne, “Learning
locomotion skills for cassie: Iterative design and sim-to-real,” in
Conference on Robot Learning, pp. 317-329, PMLR, 2020.

[4] X. B. Peng and M. van de Panne, “Learning locomotion skills using
deeprl: Does the choice of action space matter?,” in Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
p. 12, ACM, 2017.

[5] Z. Xie, X. Da, M. van de Panne, B. Babich, and A. Garg, “Dynamics
randomization revisited: A case study for quadrupedal locomotion,”
2021.

[6] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560-1567, 2018.

[7] J. Carpentier and N. Mansard, “Multicontact locomotion of legged
robots,” IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1441-
1460, 2018.

[8] B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multi-
contact pattern generation with sequential convex approximations of
the centroidal dynamics,” IEEE Transactions on Robotics, pp. 1-19,
2021.

[9]1 A. Aydinoglu, V. M. Preciado, and M. Posa, “Stabilization of com-
plementarity systems via contact-aware controllers,” arXiv preprint
arXiv:2008.02104, 2020.

[10] B. Hammoud, M. Khadiv, and L. Righetti, “Impedance optimization
for uncertain contact interactions through risk sensitive optimal con-
trol,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4766—
4773, 2021.

[11] S. Schaal et al., “Learning from demonstration,” Advances in neural
information processing systems, pp. 1040-1046, 1997.

[12] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor land-
scapes for learning motor primitives,” tech. rep., 2002.

[13] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural networks, vol. 21, no. 4, pp. 682-697, 2008.

[14] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based char-
acter skills,” ACM Transactions on Graphics (TOG), vol. 37, no. 4,
pp. 1-14, 2018.

[15] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” arXiv
preprint arXiv:2004.00784, 2020.

[16] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, 2020.

[17] M. Bogdanovic, M. Khadiv, and L. Righetti, “Learning variable
impedance control for contact sensitive tasks,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6129-6136, 2020.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[19]

[20]

F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wiithrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, et al.,
“An open torque-controlled modular robot architecture for legged
locomotion research,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 3650-3657, 2020.

E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning.” http://pybullet.org,
2016-2020.

	Overview of publications
	Introduction
	Deep reinforcement learning in robotics
	Problems of exploration
	Transferring policies from simulation to real systems
	Building robust policies
	Thesis overview

	Individual paper contributions
	Learning to explore in motion and interaction tasks
	Learning variable impedance control for contact sensitive tasks
	Model-free reinforcement learning for robust locomotion using trajectory optimization for exploration

	Simplifying assumptions and hardware details
	Simplifying assumptions
	Robot hardware

	Resolving exploration issues
	Prior knowledge from simpler tasks

	Building transferable policies
	Learning structured control laws

	Achieving robustness on real robots
	Environment variability during training
	Learning variable gain policies
	Time-dependent demonstrations and robustness

	Discussion and future work
	Utilizing learned exploration models
	Learning with alternate control laws
	Accounting for even more environment variability
	Goal conditioned policies

	Concluding remarks
	References
	Accepted publications
	Submitted manuscripts

