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Zusammenfassung

In der vorliegenden Dissertation werden drei zuféllige graphentheoretische
Wachstumsmodelle betrachtet. Diese Modelle sind ballistisches Wachstum
auf endlichen Graphen, Boolesche Perkolation auf gerichteten Graphen, sowie
superkritische Galton-Watson-Verzweigungsprozesse mit Emigration.

Fiir das ballistische Wachstumsmodell auf endlichen Graphen erhalten wir
verschiedene Resultate, die charakterisieren, wie die asymptotische Wachs-
tumsrate von dem zugrundeliegenden Graphen abhéngt. Aulerdem beweisen
wir, dass die Fluktuationen um diese Wachstumsrate stets durch einen zen-
tralen Grenzwertsatz beschrieben werden.

Im Kontext von Boolescher Perkolation kléren wir, fiir die Graphen Nf
und Z", n € N, wann alle bis auf endlich viele Punkte iiberdeckt werden. Wir
zeigen auch, dass es fiir n > 2 unmoglich ist, den gerichteten n-dren Baum
zu iiberdecken. Zudem présentieren wir Zusammenhéinge zwischen diesem
Perkolationsmodell und dem sogenannten ,,Random Exchange Process*.

Schlieilich untersuchen wir, wann superkritische Verzweigungsprozesse
mit Emigration fast sicher aussterben und die erwartete Uberlebenszeit end-
lich ist. Wir charakterisieren die Aussterbewahrscheinlichkeit in Abhéngigkeit
von der Populationsgrofie sowie das asymptotische Wachstum der Population.
Superkritische Verzweigungsprozesse mit Emigration verhalten sich gewisser-
mafen dhnlich wie subkritische Verzweigungsprozesse mit Immigration.



Summary

In the present thesis, we consider three different random graph-theoretic
growth models. These models are called ballistic deposition on finite graphs,
Boolean percolation on directed graphs, and supercritical Galton-Watson
branching processes with emigration.

For our ballistic deposition model on finite graphs, we obtain various
results, which characterize the relationship between the asymptotic growth
rate and the underyling graph. Moreover, we prove that the fluctuations
around this growth rate always satisfy a central limit theorem.

In the context of Boolean percolation, we clarify under which conditions
all but finitely many points of the graphs N} and Z", n € N, are covered. We
also prove, for n > 2, that it is impossible to cover the directed n-ary tree in
this model. Besides, we present connections between this percolation model
and the so-called random exchange process.

Finally, we study under which conditions supercritical branching proces-
ses with emigration become extinct almost surely, and whether the expected
survival time is finite. We investigate the extinction probability in relation to
the population size, and the asymptotic growth of the population. To some
extent, supercritical branching processes with emigration behave similarly to
subcritical branching processes with immigration.
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Probability Theory
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Graph Theory
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Graph G with vertex set V' and edge set F

Adjacency matrix of the graph G

Symbol for a root in a graph

Open ball of radius n starting from the vertex x
Distance from vertex x to vertex y in some graph
Closed neighborhood of the vertex z in an undirected graph
Degree of the vertex x in an undirected graph

Maximal degree of the undirected graph G

Length of the shortest cycle in the undirected graph G
Asymptotic growth rate for ballistic deposition on G
Graph with vertex set Nj and all edges, which are of the

form (z,x + ¢;), where x € N and i =1,...,n
Graph with vertex set Z™ and all edges, which are of the
form (z,x +¢;), where x e Ny and i =1,...,n

Infinite directed n-ary tree, where we suppose n > 2
Butterfly graph

Undirected star graph with exactly n vertices
Undirected circular graph with exactly n vertices
Complete graph with exactly n vertices

Undirected regular graph with exactly n vertices and
AR, =n — 2, where we suppose n > 2 is even

Set of covered vertices in the graph G for the Boolean
percolation model with the probability distribution g



Introduction

1.1 Motivation

Graph theory is a branch of modern mathematics, which, roughly speaking,
is concerned with aspects of social networks and similar systems.

For us, a graph G is a pair G = (V, E), where V is a non-empty set of
vertices, and ¥ C V x V is a binary relation, which represents the edges
between vertices. If x, y € V and (z,y) € E, we say that there is an edge
from z to y in G. Depending on the context, the vertices of a graph may
be seen as the people in a social network, the places on a map, or possible
locations for objects, for example in a game.

If the edge set E C V x V is symmetric, i.e., (x,y) € E implies (y,z) € E
for all x, y € V, we will say that G is an undirected graph. In this case,
for specifying the edges in G, instead of an ordered pair (z,y), we may also,
equivalently, work with the set {z,y}. Then, instead of a subset of V' x V|
the edge set F will be a subset of the powerset of V. Usually, in the context
of undirected graphs, we will restrict our attention to graphs that do not
contain any loops, i.e., (z,z) ¢ E respectively {z} ¢ E for all z € V.

Although, in general, understanding the properties of a single graph is al-
ready a fascinating and challenging problem, in the following, we will discuss
models in which a graph alters randomly over time. Note that, according to
our definition, a graph G = (V, E)) changes if and only if the vertex set V' or
the edge set E are modified in some way.

The literature dealing with random graph dynamics is abundant and di-
verse, not least because many models for a single random graph can simul-
taneously be seen as the dynamic evolution of a graph. Prominent examples
include the Erdds-Rényi model or Galton-Watson trees.

The main part of this thesis separately studies three different random
graph-theoretic growth models. While our choice is clearly subjective and
the models differ a lot from each other, as we will explain in this chapter,
they all share a fundamental property. The growth in these models is related
to a Markov chain with time-homogeneous transition probabilities.



Chapter 1. Introduction

1.2 Time-Homogeneous Growth of Graphs

Markov processes form an important class of stochastic processes and are
characterized by their limited memory. To put it simply, for a Markov pro-
cess, the next state in the future depends on the current one but not on any
further information from the past. In general, time may be discrete or con-
tinuous, and the state-space of the process may be a countable set or, more
generally, a measurable space. If time is discrete and there are only countably
many states, instead of Markov process, we may also use the term Markov
chain. Famous examples of Markov processes are branching processes, ran-
dom walks, and diffusion processes like Brownian motion.

A Markov process is called time-homogeneous if the probability that the
process transitions from one state into a set of states within some time does
not depend on the start time of this transition. The distribution of a time-
homogeneous Markov process is uniquely determined by its initial condition
and its transition probabilities. For time-homogeneous Markov chains, it suf-
fices to specify, for all possible states, the transition probabilities between two
consecutive moments in time. Typically, this is done by declaring a so-called
transition matrix. While characterizing the long-term behavior of Markov
processes is difficult in general, luckily, for time-homogeneous Markov chains,
there is a relatively simple and widely accepted theory.

Under growth, we understand a time-dependent process, which is mono-
tone increasing with respect to a partial order. In the context of graphs, a
natural order is the subgraph relationship. Therefore, it is tempting to call a
sequence of random graphs (G, )nen, @ time-homogeneous growth process if,
for all n = 0, 1, ..., the graph G, is a subgraph of G, ; almost surely, and
the sequence (G,,),>0 is a time-homogeneous Markov chain.

However, from a conceptual point of view, this rather simplistic definition
of time-homogeneous growth would have two fundamental disadvantages.

Firstly, growth is a process, which relies on a previously existing struc-
ture. In some sense, we, therefore, should rule out the possibility that a new
component in the graph arises, which is not linked to the previous one.

Secondly, the direction, speed, and amount of growth may change over
time. This is especially true for models in the real world. For example, the
growth or decrease of a population may depend on the age of its individuals.

In fact, this second concern may even question whether the theory of time-
homogeneous Markov chains is suitable for modeling real-world phenomena.



1.2. Time-Homogeneous Growth of Graphs

We propose the following notion of growth processes, which addresses both
concerns and, in some sense, is a compromise regarding the second one.

Definition 1.1. Let Gy = (Vo, Eo), G1 = (V4, E1), ... be a finite or infinite
sequence of random finite graphs. Moreover, let Wy C Vy, W1 C Vi,... denote
a sequence of random sets. Then, we call (Go, Wo), (G1,W1), ... a growth
process on Gy if the following conditions hold.

e Foralln=0,1, ..., the graph G, is a subgraph of G,1 almost surely.

e Almost surely, for alln =0, 1, ... and e € E,,1\ E,, the initial or the
final vertex of the edge e is contained in W,.

o Almost surely, for allmn =0, 1, ... and x € V41 \ V,, the vertex = is
not isolated in Gp1.

In this case, for alln =0, 1, ..., we will say that the set W,, is an admissible
growth zone for the graph G,.

If, furthermore, the sequence (Go, Wy), (G1,Wh), ... is a Markov chain,
we will call 1t a Markovian growth process. Moreover, if the transition pro-
babilities of this Markov chain are time-homogeneous, we will refer to this
sequence as a time-homogeneous growth process on Gy.

In the following sections, we will explain how the three main models of this
thesis relate to this notion of random growth processes on graphs. However,
let us first give some comments regarding Definition 1.1 at this point.

First of all, in general, there may exist many different choices for the
sequence of growth zones. Even if we impose that these sets are minimal,
they are not unique in general, as we allow the growth of edges between two
vertices, which both already existed before.

Moreover, in Definition 1.1, we let time evolve in discrete steps. But, only
with minor changes, we can adapt our concept to continuous-time models.

Apart from that, we restrict ourselves to sequences of almost surely finite
random graphs. This constraint has the advantage that it is relatively simple
to define what is meant by a random graph and what it exactly means for
the sequence (Go, Wy), (G1, W1), ... to be a Markov process.

Finally, by the first condition in Definition 1.1, for any growth process on
a graph, we know that there exists the limit graph G, := (V., Fw ), where

Ve = U Vi, Ey = U E,.
n>0 n>0

In general, G, is an infinite random graph.
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1.3 Ballistic Deposition on Finite Graphs

There are different models for ballistic deposition, but they typically allow the
following description. Assume that on some structure consecutively, bricks are
falling from above. The places at which the bricks arrive are supposed to be
random, and two bricks are always glued together when they start to touch
or share a surface. In this way, towers arise and grow randomly. Moreover,
neighboring towers influence and accelerate each other’s growth.

In the present thesis, we will study a version of ballistic deposition, in
which the substrate is given by a deterministic undirected graph G = (V| E).
Suppose that the vertex set V is finite and that the graph G is connected.

Recursively, we now define a time-homogeneous growth process (Gy, W),
(G, Wh), ... as follows. Set Gy := G, i.e,, Vy:=V and Ey := E,and W := V.
Let n > 0 and assume the pair (G,, W,) is defined. Then, uniformly in
the set W, and independently from the past, we pick a random vertex y.
Subsequently, set V11 := V U {2z}, where z ¢ V,, denotes a new vertex,
which is added to the graph, and W, := (W,, U{z}) \ {y}.

Whenever we replace some y € W,, with a new vertex z € V,,.1 \ V,, to
form W,,;1, we call y and z equivalent. Then, for all n > 0 and x € W,,, there
is always a unique vertex in V', which is equivalent to x. We denote it by xg.

We define E, 1 to arise from E, by adding the edge (y, z), as well as
all edges of the form (z,z), z € W, for which xy and z, are neighbors in
G = (V, E), and, moreover, there is no path from x to y in G,.

y I
® , 92

)

Yo Yo 2 2

Figure 1.1: Ilustration of the deposition model. The underlying graph G is
depicted in blue. The vertices, which form the growth zone, are red. In the
first step, the vertex y is selected, and in the next step, z gets chosen.



1.3. Ballistic Deposition on Finite Graphs

Let us briefly explain how we can formally define the height in this ballistic
deposition model. Let € V', n € Ny, and denote by 2z’ the unique element
of the growth zone W,,, which is equivalent to z. Then, if x = 2/, we define
the height of x at time n > 0 as zero. If x # 2/, we consider all paths in
G,, which start in V' and end in 2/, and do not use any other vertex from
V. Then, we say a path of maximal length in this set is a backbone for 2’ at
time n > 0, and the height of x is the number of edges in a backbone.

X

Figure 1.2: As before, the underlying graph is depicted in blue, and the
vertices of the growth zone are red. We assume that x and z’ are equivalent.
A backbone for 2’ is indicated by thick edges. The height of x is equal to 5.

Suppose that the height configuration of our deposition model at time
n > 0 is given by (h,),ev € Ny . Moreover, let z € V' and assume that in the
next step, the random element of the growth zone W,,, which gets chosen,
is equivalent to the vertex x. Then, only the height A, is increased, and the
new height of the vertex x is given by

h, =1+ maxh,, (1.1)
yela]

where [z] := {z}U{y € V |{z,y} € E} C V denotes the closed neighborhood

of the vertex x in the undirected graph G.

The recurrence relation (1.1) and the resulting time-homogeneous Markov
chain H = (H,),>0 for the height in our deposition process are the starting
point of Chapter 2. Formally, for all z € V', we will write H,,, for the height
of the vertex x after n deposition or growth events, and for all n > 0, we set

Hn = (Hx,n)xev-
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However, we will work not only with H but also with a corresponding
continuous-time Markov process H, which is defined as follows. Assume, for
all x € V, that &, denotes a Poisson process with unit intensity, and that
the family (&,).ev is independent. Then, for all z € V and ¢ € [0, 00), in the
process H, we will update the height of the vertex z at time ¢ according to
equation (1.1) if and only if the process &, jumps at this moment.

Previously, for the family of circular graphs C,, n > 1, Atar, Athreya,
and Kang observed in [4], that Kingman’s subadditive ergodic theorem can
be used to deduce a law of large numbers for the height in our continuous-
time deposition process H. The same arguments are valid, more generally,
for an undirected graph G, which is finite and connected. In this context, the
law of large numbers holds both for the minimal and maximal height, and in
both cases, we arrive at the same limiting constant v(G) € (0,00). We will
refer to v(G) as the growth rate or growth parameter of the graph G.

In our study, we present many results, which describe how the growth
parameter y(G) is related to the properties of the graph G. Often, it will be
useful to switch between discrete and continuous time.

The main result of Chapter 2 is the following central limit theorem, which
is contained in Section 2.5.

Theorem 2.8. Let G = (V, E) be an undirected graph, which is both finite
and connected. Then, there exists 0% = 02(G) € [0, 00) with

maXgevy Hx,n — N 4y

nl/2

= N(0,0%) forn — oo.

The same central limit theorem with the same constant o* also holds if we
replace max,cy Hy p, with mingey H, . Moreover,

0%(G) =0 if and only if G is isomorphic to Kyy.

In the context of this theorem, a normal distribution with variance o2 = 0
will be identified with a Dirac law. Furthermore, for all n € N, IC,, denotes a
complete graph with exactly n vertices.

Our proof of Theorem 2.8 relies on applying renewal-theoretic arguments
to the surface process (9, ),>0, which is given by

On = (Ozn) pey 5 Opm = Hyp — IyIél‘I/l H,, zeV.



1.4. Boolean Percolation on Directed Graphs

1.4 Boolean Percolation on Directed Graphs

We propose a model for the spread of rumors through a network in which
each individual invents one rumor. The ranges of these rumors are random,
independent of each other, and obey a common probability law. How many
individuals of the network are influenced by at least one rumor?

Let G = (V, E) be a graph and denote by d : V x V — Ny U {co} the
metric induced by G, i.e., d(x,y) is the distance from z to y for all x, y € V.
Note that, as G is a directed graph, in general, d(z,y) # d(y,z) for z, y € V.
For all z € V and n € Ny, we will write B,(z) for the open ball of radius n
starting in 2. For example, By(z) = () and By(z) = {z} for all z € V.

Let gt = (fn)nen, be a probability vector and denote by (Y, )zey a family
of i.i.d. random variables, which satisfies P[Y, = n] = u, for all n > 0. In our
interpretation, the random variable Y, will represent the range of the rumor,
which starts to spread from the vertex x € V. More precisely, for all z € V,
the rumor invented in z spreads to all vertices in By, (z). Overall, the set of
all vertices, which are influenced by at least one rumor, is given by

V= By, (2).

zeV

In Chapter 3, we will study the properties of the random set V), for a few
specific choices of G, under the assumption py € (0, 1). Mainly, we will investi-
gate whether the set V'\ V,, is finite almost surely. Interestingly, in most of our
cases, this question is related to the limit graph G, of a time-homogeneous
growth model. Let us explain this connection.

To simplify our arguments, let n > 2 be a natural number and assume
that the graph G = (V, E) is the infinite directed n-ary tree D,,. Let () denote
the unique root in G, which satisfies d((),y) < oo for all y € V.

Now, we recursively define a time-homogeneous growth process (Gy, W),
(G1, W1), ... as follows. Initially, we set Gy := (Vj, Ey), where V; := {0} and
Ey := 0, and Wy := {(0}. Let n > 0 and assume that the pair (G,, W,) is
specified. Then, we set

Vo1 =V, U{y e VAV, | Tz e W, : Y, > d(z,y)},
Evoi=E,U{(z,y) e E |z, ye Von},
Wn+l = Vn—i—l \ Vn
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Figure 1.3: lllustration of the growth process if the underlying graph G is the
infinite directed binary tree. The vertices, which belong to the growth zone,
are depicted in red. The number next to a vertex x denotes the value of Y.

Let Goo = (Vao, E) denote the limit graph of the growth process (Go, Wo),
(G1,W1), ..., and observe that Vo, C V,, U {0} almost surely since we have
V., €V, U {0} almost surely for all n > 0. Consequently, if the set V' \ Vi
is finite, then so is the set V' \ V,,. Furthermore, by Kolmogorov’s 0-1 law,
if the sequence of graphs (G, ),>o is strictly growing forever with a positive
probability, then V,, contains an infinite path almost surely.

The main difference between our percolation model V,, and the limit graph
Vo of the growth process (G, W,,)n>0 can be described as follows. In the
percolation model V,,, every vertex y € V' covers itself for Y, > 1. However,
in the limit graph V., the occurrence of every y € V is solely determined by
all random variables Y, for which 0 < d(x,y) < oo.

Observe that, for all n > 2 and G = D,,, we can associate a multitype
branching process (Z,),>0 to our percolation model as follows. For every
y € V with d(0,y) = n € Ny, we identify the vertex y with an individual in
the n-th generation of (Z,),>o if z € V,, for all z € V with 0 < d(z,y) < n.
In this case, the type of y will be defined by

zy i=max{Y, —d(z,y) |z €V, d(z,y) < oo} € N.
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So, we arrive at branching process (Z,),>0, which starts with a single indivi-
dual of random type Yy, provided Y > 1. In general, the type space is infinite.
Hence, we distinguish between global and local extinction of (Z,),>0. This
process dies out globally if the entire population vanishes at some moment
and becomes extinct locally if every type only occurs finitely often.

In Chapter 3, we will also discuss connections between our Boolean perco-
lation model and a rather classical Markov chain, which is sometimes called
random exchange process. Let (Y,,),>0 be a sequence of i.i.d. random varia-
bles, which take values in Ny and satisfy P[Yy = n| = u,, for all n > 0. Then,
we recursively define a random exchange process (R,,)n>0 by

RO = }/b? Rn+1 = maX{Rn - ]-7 Yn+1}7 n Z 0 (12)

By construction, the Markov chain (R,,),>¢ has time-homogeneous transition
probabilities and is irreducible with respect to its state space X C Nj. We
will write P = (P, k) m kex for the transition matrix and p(P) for the spectral
radius of (R,)n>0. More generally, if A = (A, x)mi>1 Is a finite quadratic
matrix, or a matrix with both countably infinite many columns and rows,
and A is nonnegative and irreducible, we define

p(A) := limsup (A,’f%k)l/n € [0, oo,

n—o0

and the value of p(A) does not depend on the choice of m, k > 1.
Our main result of Chapter 3 reads as follows.

Theorem 3.3. Let n > 2. Then, for any distribution p, #Vi(D,) = oo
almost surely. Moreover, the following statements are equivalent.

(A)  Almost surely, V,,(D,,) contains a path of infinite length.
(B)  With a positive probability, (Z,,)m>o0 will not die out globally.
(C)  With a positive probability, (Z,,)m>0 will not die out locally.
(D) p(M) >n~t, where M := (P k) mkex\{0}-
Finally, we want to point out that random exchange processes are closely

related to the class of autoregressive processes, which we will encounter in
our study of supercritical branching processes with emigration in Chapter 4.
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This was observed by Zerner in [98, Section 1], and for the convenience of
the reader, we want to explain this connection in the following.

Let (U,)n>0 denote a sequence of nonnegative random variables and (75,),>1
a sequence of real-valued variables. Assume that (U,,T},),>1 is i.i.d. and in-
dependent of Uy. Then, in generalizing equation (1.2), we define a (random
decrement) exchange process (R, ),>0 by

Ry := Uy, Rn+1 = max{Rn — Tn+17 Un+1}7 n > 0. (1~3)

Again, the process (R,,),>0 is @ Markov chain with time-homogeneous tran-
sition probabilities. Formally, to arrive at equation (1.2), we may set T, := 1
forallm > 1 and U, :=Y,, for all n > 0.

Now, we consider the process (M,),>o defined by M, := efi", n > 0.
Moreover, set A, := e~ and B,, := eY» for all n > 1. Then, from equation
(1.3), we can deduce the recurrence relation

M,y = max{efin=Tm+1 eUnitd — max{A, 1 M,, B,1}, n>0. (14)

In particular, (M,),>o is a time-homogeneous Markov process, and we refer
to it as a max-autoregressive process. For example, by induction, we can
verify the formula

M, = max Ap- - Api1Bn, n>0.

m=0,...,n

By replacing the maximum in (1.4) with a sum, we arrive at the Markov
process (X,)n>0, which is given by X, := Mj and

XTL+1 . An+1Xn + Bn_;’_l, n Z 0. (15)

This Markov chain (X,,),>¢ is called a (random coefficient) first-order auto-
regressive process, and the recurrence relation (1.5) is the so-called random
difference equation. Similar as for (M,),>0, we obtain the representation

Xo=Y Ay ApiBn, 120,
m=0

Observe that, due to the definition of the sequence (A,,, B,,)n>1, these random
variables and the process (X, ),>0 only attain nonnegative values. However, in
general, one might also consider autoregressive processes, for which this con-
dition is not satisfied. While autoregressive and max-autoregressive processes
differ from each other through their definition, as mentioned by Zerner in [98,
Comments after Proposition 1.1], in the nonnegative case, one might expect
that they behave similarly if the involved distributions are heavy-tailed.

10



1.5. Galton-Watson Branching Processes

1.5 Galton-Watson Branching Processes

Branching processes are a class of stochastic processes, which describe how
the size of populations varies over time. The main assumption is that indivi-
duals independently of each other give birth to a random number of children.
While there are many different models, partly in continuous time or with a
continuous state-space, we will concentrate on a specific version of the clas-
sical Galton-Watson branching process. More precisely, we let time evolve
in discrete steps n = 0, 1, 2, ..., and assume that there is one underlying
probability distribution on Ny, which characterizes the random number of
children of each individual. Between two consecutive generations, each indi-
vidual reproduces and dies, and we allow the occurrence of an emigration
event. The sizes of these emigration events, sometimes called catastrophes,
are assumed to be i.i.d. with respect to time. If at some moment, the number
of migrants exceeds the population size, the population will become extinct.

If the emigration component is absent, we recover the classical Galton-
Watson process. In this case, it is well-known that, unless each individual
almost surely gives birth to exactly one child, the population survives forever
with a positive probability if and only if the process is supercritical, i.e., the
expected number of children of each individual is greater than one.

In Chapter 4, we will study the long-term behavior of supercritical bran-
ching process with emigration if the mean offspring of each individual is
finite. Due to the presence of the emigration component, the population may
become extinct almost surely. We will present various results on the extinc-
tion probabilities of these branching processes and also characterize how fast
these processes grow if they do not die out eventually.

In our study, we allow that, between two consecutive generations, the
reproduction behavior of the individuals and the number of subsequent emi-
grants depend on each other. However, we restrict ourselves to processes
with time-homogeneous transition probabilities. Furthermore, we suppose
that neither reproduction nor emigration dominates each other, i.e., the po-
pulation may become arbitrarily large, but, at the same time, irrespective of
the population size, the process may still become extinct in the future.

As for many versions of the Galton-Watson branching process, we ar-
rive at a representation in the form of a time-homogeneous growth model
(Go, Wo), (G1,W1), ..., by considering the genealogical tree of the populati-
on. The initial graph Gy = (Vy, Ey) consists of finitely many, deterministic,

11
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isolated vertices, and Wy := Vj. Let n > 0 and assume the pair (G,, W)
is defined. To form G,11 = (Vy41, Eny1), according to the reproduction dis-
tribution, independently, we add to each vertex in W,, a random number of
children. Then, for example, uniformly in the set of all new vertices, we dele-
te as many vertices as specified by the emigration event. This gives us V,,11.
The edges, which we subsequently add to get F,, .1, start in W,, and connect
each parent with all of its children, which have survived the emigration event.
Finally, the new growth zone is W,,11 := V11 \ Vj..

Figure 1.4: Illustration of a Galton-Watson tree, which starts from a single
individual. The vertices of the growth zone are depicted in red.

Formally, for all n > 0, we may define the size of the n-th generation
in our branching process by Z, := #W,. Throughout Chapter 4, we will
assume that A € (1, 00) denotes the mean number of children of an individual.
Besides, we assume that £ and Y are random variables, which take values in
Ny and represent the offspring distribution of a single individual respectively
the strength of an emigration event between two consecutive generations.
The extinction time of (Z,,),>0 will be denoted by 7 and set equal to +oo if
the process survives forever.

Arguably the most interesting result of Chapter 4 is the following limit
theorem, which relates the extinction probabilities of (Z,,),>¢ to the strength
of the emigration component Y as the initial population size Z, = k tends
to infinity.

12
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Theorem 4.4. Assume P[Y > n] is regularly varying for n — oo with index
€ (0,00). Then, for all N € Z>y U {0},

N—
limsup Plr < N | Zo = k| P[Y > k|~ Z

k—o0

Furthermore, if all exponential moments of & are finite, then

lim Plr <N | Zy=k PY > k|~ Z)\al

k—o0

Our study of supercritical branching processes with emigration, as well
as many of our results, are strongly motivated by an observation, which
links this branching process model to subcritical autoregressive processes.
More precisely, in Section 4.3, we deduce a duality relation between these
processes in the sense of Siegmund, compare [89], under the assumption that
the number of children of each individual is almost surely constant. For the
convenience of the reader, we, therefore, want to give a brief description of
this duality concept at this point, but without aiming at full generality.

Assume X = (X,,)n>0 and Y = (Y},),>0 are Markov processes with time-
homogeneous transition probabilities and suppose that the state-space of
both processes is [0,00). Then, with a slight abuse of notation, we say that
X and Y are Siegmund dual if, for all 0 < a, b < co and n € Ny,

P[X, >a| Xo=b =P, <b|Y=a]. (1.6)

Observe that, by inserting a = 0, in order for this condition to be satisfied,
it is necessary that the process Y is almost surely absorbed at 0. Obviously,
this assertion is satisfied for our branching process (Z,,),>0. As we only allow
emigration, but no immigration into the population, the process (Z,),>0
cannot be revived upon extinction.

Furthermore, if the duality condition (1.6) is satisfied, by inserting b = 0,
we can relate the probability of eventual absorption of Y in 0 given Yy = a to
the behavior of the transition probability P[X,, > a | Xy = 0] for n — oco. If
the process X is positive recurrent, under suitable conditions, we may expect
that these probabilities converge towards a stationary solution of X, and thus
have a positive limit, provided «a is large enough.

13



Article 1

On the Growth of a Ballistic
Deposition Model on Finite Graphs

GEORG BRAUN

Abstract. We revisit a ballistic deposition process introduced by
Atar et al. in [4]. Let G = (V, E) be a finite connected graph and
choose independently and uniformly vertices in G. If a vertex z € V/
gets chosen and the previous height configuration is given by h =
(hy)yev € NV, the height h, is replaced with

hy =14 maxh,.
y€la]

For different underlying graphs G, we determine the asymptotic
growth parameter 7(G) of this model. We also present a central
limit theorem for the height fluctuations around +(G) and a graph-
theoretic reinterpretation of an inequality obtained in [4].

Keywords. ballistic deposition process; random surface; stochastic growth;
random sequential adsorption.

2020 Mathematics Subject Classification. 60C05, 60J10.

2.1 Introduction

Let us start with an informal description of our random growth model.

In a city, there is an exclusive group of skyscraper owners. Once in a whi-
le, an owner decides to heighten his building until it is strictly higher than the
skyscrapers of the group members he disrespects. If his building already achie-
ves this, it will be raised by only one floor. How fast will the skyscrapers grow?

14
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Ballistic growth models are typically studied on infinite graphs, when they
are believed to belong to the KPZ universality class and, in two dimensions,
exhibit fluctuations of the order ¢!/ as the time ¢ goes to infinity (compare,
for example, [80], [22], and [7]). However, exact results of this kind have been
proven only for a few specific models (see, for example, [14] and [13]).

In this article, we restrict our attention to the case of finite underlying
graphs and study the asymptotic growth of a specific deposition model. We
obtain formulas for the asymptotic growth rate in some explicitly solvable
cases and prove a classical central limit theorem for the fluctuations around
this growth rate, which holds for arbitrary graphs. We also present an upper
bound for the asymptotic growth parameter in terms of the spectral radius
of the underlying graph. The proof of this inequality relies on the methods
used by Atar, Athreya, and Kang in [4].

Let G = (V, E) be a connected undirected graph with a finite non-empty
vertex set V' and a non-empty edge set E C {{x,y} |,y € V, = # y}. The
(closed) neighborhood of a vertex x € V' is defined by

7] :={z}U{y eV [{z,y} € E}.

As time goes by, we successively choose independently and uniformly vertices
in the graph G. If a vertex x € V' gets chosen and the previous height of the
process is given by (h,),ev € Ny, the height h, of z will be replaced by

hy =1+ max h,. (2.1)
y€lz]

This rule defines the so-called next nearest neighbor ballistic deposition pro-
cess. In our study of this model, it will be helpful to distinguish between the
following two closely related versions of this process.

On the one hand, we can let the time evolve in discrete stepsn =1,2,...
and always choose exactly one vertex at these time points. Then, the height
of a vertex x € V after n steps will be denoted by H,,, and the ballistic
deposition process is H := (H,)nen,, where H, := (Hy»n)zev, n > 0.

On the other hand, we may choose a family (&,),cy of independent Pois-
son processes and change the height in a vertex x € V at time t € (0, 00)
if and only if the corresponding Poisson process &, jumps at time ¢. Unless
explicitly stated otherwise, we will assume that all Poisson processes have
unit intensity. We will write ﬁx,t for the height of € V at time ¢ € [0, 00)
and define H, := (F[M)xev for t € [0, 00), as well as H:= ([:[t)tzo-
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Article 1. Ballistic Deposition on Finite Graphs

By construction, both H and H are time-homogeneous Markov processes.
Usually, we will assume the initial condition H, o = F[w =0forall z eV,
which ensures that both processes have the same countable state-space.

In [4], Atar, Athreya, and Kang considered the specific case of a circular
graph G = C,,, which can be defined to have the vertex set {1,...,n} and
the edge set {{1,2},{2,3},...,{n — 1,n},{n,1}}. Then, as explained in [4,
Section 1], Kingman’s subadditive ergodic theorem yields the existence of the
almost sure limit

v(Cy) = lim t ' max H,, = lim t' min H,, € (0, 00). (2.2)

= t—o0 eV t—o0 zeV
In fact, these arguments apply in the same way to a general graph G, and
hence we always define the growth parameter v(G) by the right-hand side
of equation (2.2). The asymptotic growth of our discrete-time deposition
process is related to v(G) via
Y(G) = #V lim n 'max H,,, = #V lim n~! min H, ,, (2.3)
n—o0 zeV n—o0 zeV

and these equations again hold almost surely. So, for studying the parameter
~v(G), we can switch from continuous-time to discrete-time or vice versa.

Let us now briefly summarize previous literature results on our model
and mention related works. The main result of [4] is the inequality

3.21 < v(C,) < 5.35 forall n >5. (2.4)

The authors of [4] also claimed that this inequality is satisfied for n = 4.
However, as we will verify in Section 2.4,

2
Cy) =2+ — ~ 3.1547.
7( 4) \/g

This reveals that a minor calculation error has occurred in [4] for n = 4.
Nevertheless, the inequality (2.4) and its proof given in [4] are correct.

In [28], Fleurke, Formentin, and Kiilske assumed that the vertices of the
graph G are not chosen uniformly, but according to a fixed Markov chain
with state-space V. They proved the existence of the limit v(G) in this more
general setting and also established a sub-Gaussian concentration inequality
for the maximal height.

In [70], Mountford and Sudbury studied homogeneous isotropic infinite
graphs and related the growth parameter v(G) to the roughness of the surface.
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In [66], Mansour, Rastegar, and Roitershtein discussed combinatorial pro-
blems related to our model in the case of G = C,, and conjectured that

lim v(C,) = 4.
n—o0

In [79], Penrose and Yukich verified a law of large numbers and a central limit
theorem for the total height of all accepted particles in a ballistic deposition
process on R?. This result is based on insights on marked Poisson processes,
which also yields information for other random sequential adsorption models.

In [86], Seppilainen studied a ballistic deposition model on Z" and proved
the existence of a limiting shape, which is related to Eden’s growth model
respectively first passage percolation.

For convenience, let us now briefly explain how this article is organized.

In Section 2.2, we introduce various relevant graph theoretic concepts and
notations. Then, in Section 2.3, we mainly concentrate on the class of star
graphs. We also present an example of non-isomorphic graphs G and ‘H with
v(G) = v(H). In Section 2.4, a rather simple probabilistic approach is used
to compute the growth parameter v(G) in a specific setting. Subsequently,
in Section 2.5, we deduce a central limit theorem for the height fluctuations
around v(G). Our proof, similar to [28], relies on a suitable renewal structure
in the surface process of our deposition process. In Section 2.6, we give an
upper bound for v(G) by using spectral graph theory. This result is based on
some modifications of the arguments used in [4]. Finally, in Section 2.7, we
briefly study a ballistic growth model, which arises through alteration of the
deposition rule (2.1).

2.2 Graph-theoretic Preliminaries

The degree of a vertex x € V' is deg(z) := #[z] — 1, and the maximal degree
in G is AG := max,cy deg(x). The graph G is regular if deg(z) = deg(y) for
all z, y € V. A vertex x € V is called dominant in the graph G if [z] = V.
A path of length n in G is a tuple (z1,...,Z,1) € V" with {z;, 7,41} €
E for all i = 1,...,n. If, in addition, ; = 2,41, n > 1, and z; # x; for all
i,7=1,...,n with i # j, we will call (z1,...,2,41) a cycle in G. The length
of the shortest cycle of a graph G will be denoted by girth(G). If there is no
cycle in G, we set girth(G) := co. We define d(z,z) := 0 for all x € V, and,
for vertices x # y, we define d(x,y) to be the length of the shortest path
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from x to y. Note that d is a metric on V. A permutation (z1,...,z4y) of V
will be called non-decreasing if the function k — d(z1, x;) is non-decreasing.

The adjacency matrix of G is denoted by A(G). For all (z,y) € V2, the
corresponding entry of the matrix A(G) is one, if {z,y} € E, and zero other-
wise. In particular, A(G) is a quadratic matrix of dimension #V . Moreover,
for all n > 1, the entries of A(G)"™ count the number of paths of length n
between two vertices.

Given two graphs G = (V,E) and ' = (V',E’), we say that G is a
subgraph of G" if both V C V' and E C E'.

Let n > 1. We will write §,, to denote a star graph with n vertices.
Formally, we choose {1,...,n} and {{1,2},...,{1,n}} as vertex, respectively
edge set. Furthermore, we denote by IC,, a complete graph with n vertices, in
which there is an edge between any two different vertices. Observe that, for
alln > 1, v(KC,,) = n.

If n > 2 is even, we denote by R, a regular graph, which consists of
n vertices and satisfies AR, = n — 2. Note that, by these conditions, the
graph R,, is determined uniquely up to an isomorphism. For another graph
R! with these properties, choose a vertex = in R, and a vertex z’ in R,
and set ¢(x) := 2’. Then, by assumption, there are unique vertices y in R,,
and ¢ in R/, which are not connected to x respectively x’. Set ¢(y) := v/
Then, again choose new vertices in R,, and R/, and continue the described
procedure. After finitely many steps, we arrive at a graph isomorphism ¢
between R,, and R,.

Formally, we can assume that the vertex and edge set of R,, is given by

(1,....nyand {{1,2},... . {L.n—1},{2,3},.... {2,n—2}, {2.n}, {3,4},...}.

S3 {

85 IC4 C4 = 72'4 R6

Figure 2.1: Some of the graphs we will study in this article.

By definition of our deposition model, each vertex x interacts with the
growth of the height process only via its (closed) neighborhood [z]. Therefore,
we call vertices z, y € V equivalent in G if [z] = [y]. The graph, which arises
from G by identifying all equivalent vertices, will be denoted by G and called
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an irreducible graph. Observe that the asymptotic growth in our model does
not change if we replace G by G and modify the intensity of the underlying
Poisson processes accordingly. More precisely, the intensity of the Poisson
process associated with a vertex z of G has to equal the number of vertices
in G that have been contracted into z.

Also, note that we can reverse this transformation. Assume we are given a
graph with positive integer intensities for all vertices. Then, we can stepwise
choose the vertices with no unit intensity, define a new adjacent vertex with
unit intensity and the same closed neighborhood, and reduce the intensity of
the previously chosen vertex by one. We will use the term vertex cloning for
this procedure. Again note that the order in which the vertices are chosen
does not affect the resulting graph up to an isomorphism.

Example 2.1. For the butterfly graph B, we obtain the following.

II > 21 2
G=~B G=3;

Figure 2.2: The height in our ballistic deposition process on the butterfly
graph B is equivalent to the height of a modified deposition model on Ss.

All in all, for studying the asymptotic growth in our ballistic deposition
model, the following three settings are essentially the same.

(i)  Arbitrary graphs G with unit intensities.
(ii)  Arbitrary graphs G with positive integer intensities.
(iii) Irreducible graphs G with positive integer intensities.

Observe that, when working in the setting (ii), the asymptotic growth rate
changes linearly if we multiply all intensities by a fixed constant. Translating
this into our original setting (i) therefore yields the following construction.

Construction 2.2. For any graph G and n € N, there is a graph H with

(M) =n~(9).

Moreover, we can construct such a graph H by starting with G and then
cloning each vertex exactly n — 1 times.
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Example 2.3. Let us illustrate Construction 2.2 for n = 2 and G = S3.

0—0—0—>‘q>'—> —

Figure 2.3: Successively, the vertices of S3 are cloned. Initially, we start with
the dominant vertex, but the order in this procedure does not influence the
resulting graph H up to an isomorphism. We know v(H) = 2v(Ss).

2.3 On the Sequence of Star Graphs

Let n > 3 and consider the graph S,,. Then, both in discrete and in conti-
nuous time, by stopping our deposition process at the moments at which the
height of the dominant vertex is increased, we arrive at a process with i.i.d.
increments. Hence, we can express v(S,,) by identifying both the expectation
of these increments and the mean waiting time between consecutive stops.
In discrete-time, the height of the dominant vertex increases after a geome-
trically distributed time waiting time of mean n. From the deposition rule
(2.1) and equation (2.3), we therefore obtain

o0

1 1\* 1 k
SET SE FRIEA L I 14 masry]
7( ) n ( n) (n— 1)k (7"1,...,7"711> +mjaxrj
k=0 T1yeeeyn—1>0
ri+..+rn_1=k

which can be simplified into

1 = Ap—1k k
Y(Sn) =1+ - Z ok Un e = Z (Tl . ) jg%z?(nrj. (2.5)
k=1 T1yes, >0 yrrenlin FRE)

In continuous time, the height of the dominant vertex increases after an
exponentially distributed time W of mean one. By using (2.2), we get

]:17“'7”_

Y(S,) =1+E { max Uj,Wl : (2.6)
where we assume, for all 7 € N and A € (0,00), that the random variable
Uj.» is Poisson distributed with mean A. Moreover, here we suppose that the

family (Ujx)jenae(0,00) 18 independent itself and independent of W.
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Interestingly, we can determine the exact value of v(S3) by working di-
rectly with equation (2.5). For all £ > 0, we have

2% 2%
2k 2k 2k
a2,2k:§ <l>max{l,2k—l}:2 E (Z)H—k(k)

1=0 I=k+1
2%—1
2k —1 2k 2k
= 4k k = k2% + k .
2 (M) 1) = ()
1=k
In the same way, we obtain

2k

pok1 =22k +1)) (2:> = (2k+1)2% + (2k + 1) (2:)

1=k
These two formulas allow us to directly verify the recurrence relation

k—3
Qg g—1 + 4 9 ag g2 — 8 o k—3 for all k > 3.

k
k—1

2k = 2

By neglecting the last term in this recursion, or by Stirling’s approximation,
we can verify that the generating function g(s) := > =, %T”‘Sk is finite for
all s € (0,1) small enough. Moreover, by using the recurrence relation and
inserting aso = 0, az; = 2 and az3 = 6, it follows that the generating

function g = g(s) satisfies the differential equation
s-g'(s) =2s{(s-g(s)) + 95 }+4s* {(s7" - g(s)) + 3} =85 {¢'(s) + 2 + 6s} .
Using the initial condition g(0) = 0, we obtain, for all s € (0, 1) small enough,

25%(1+ 6s) — 1 + /1 — 452

2 —4s

g(s) =

By monotone convergence, this formula for g(s) is true for all s € [0,1/2),
and by equation (2.5), we can deduce

172 6 1 1 1
—l4+- (242 )+=-¢d(=)=2+—.
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Remarks. 1. The sequence (ag)x>1 is mentioned in the OELS under A230137.

2. The series representation (2.5) is hard to work with, in general, but at
least allows rather precise calculations. We obtain, for example,

V(Sy) = 2.72446357391224888 . . . .

We could not find an integer coefficient polynomial, which might have this
value as a root. Hence, we conjecture that v(S,) is transcendental.

Proposition 2.4. There are non-isomorphic graphs G, H with v(G) = v(H).

Proof. For the butterfly graph B, we find by a similar calculation

1 2\ F 1/4 24 2 2 11
B =1+- ) o242 20 0(2)) = 2
1(B) +5;a2”‘(5) +5(5+25+5 J (5)) 3

Consequently, by applying Construction 2.2 with n = 3 to B, we obtain a
graph H with v(H) = 11 = (K41), which is not isomorphic to ;. O

We have the following combinatorial interpretation for equation (2.5).
Assume there are n bins and m balls. Then we throw the balls independently
of each other in one uniformly chosen bin. Denote by Z, ,, the number of
balls in the maximally loaded bin and let Y,, be a random variable, which is
independent of (Z,,,,)m>1 and geometrically distributed with mean n. Then,
equation (2.5) reads as

’Y(Sn) =1 + E [Zn—l,Yan .

Properties of the random variable Z,, ,, for n, m — oo and similar models
have been studied by various authors, see, for example, [25], [82], and [69]. If
the ratio A := m/n is assumed to be constant for n — oo, many properties
of Z,, m can be deduced from the Poisson approximation. In [3, Theorem 1],
Anderson proved that, for any A € (0, 00), there exists an integer sequence
(In)nen satisfying

lim P max Ui € {ln, I, +1}| = 1.
j= n

n—o0

Ay

For two sequences (ay,),>1 and (by,),>1, we write a,, ~ b, for n — oo to denote
lim,, 00 axb, ' = 1. In [59], Kimber proved that, for all A € (0,00), one can
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choose the sequence (I,,),>0 so that I,, ~ log(n){log(log(n))}~* for n — oo,
and furthermore

Alog(log(n)) 1+Bn
1-P jg}axﬂ Uj,/\ € {Iny In + 1}] ~ (W for n — o0,

where (B,,),>1 is a sequence, which is dense in [-1/2,1/2] and, in general,
may depend on A. In [34], Gonnet used the Poisson approximation to study
the asymptotic expectation value of Z,,, for a constant ratio A\ = m/n as
n, m — 0o. In [34, Section 4], he verified that, for fixed A € (0, 00),

. log(n)
log(log(n))

Arguably, this result is counterintuitive, since due to the convolution property
of the Poisson distribution, f,(\) is strictly increasing in A and one could
expect a linear dependency with respect to A in (2.7). But, for A, Ay € (0, 00)
with A} < Ag, we can verify f, (A1) ~ fn.(A2) for n — oo as follows.

For example, by [60, Proposition 1], for any g > 1, there is N € N with

fon(A) :=E [ max Uj,,\} for n — oo. (2.7)

A+
(n+1)!

|Bn + 1]!

Consequently, by stochastic dominance, f,,(A2) < N+ Sf, (A1) for alln > N,
provided N € N is large enough. As f,(\;) — oo for n — oo, by letting
B — 1, we can indeed deduce f,, (A1) ~ fn(A2) as n — oc.

-\

P[Ur, > n] > e > fBe > P[Uy, > Bn] for all n > N.

Proposition 2.5.

1
) og(n) as m — oo.

" log(log(n))

In particular, v(S,) — oo for n — oc.

Y(Sn

Proof. The convolution property of the Poisson distribution implies that the
functions f,, = f,(A\), n > 1, are both monotone increasing and subadditive.
Let r € (0,00) and recall equation (2.6). Then, due to monotonicity,

Y(Sn) =1+ / N e fu1(A) dX > / T Faa(r) dX = e fu i (7).

0 T
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Now, apply (2.7) and let 7 — 0 to conclude

liminf ~(S,) —log(log(n))

> 1.
n—»00 log(n) -

On the other hand, for all r € (0, 00), we have the estimate

S <1+ / "M () dA+ / T ) da

0 r

1 (L e ) fas(r) L / e (A7) A
0
Hence, by using the subadditivity of f,,_; and equation (2.6), we obtain

Y(Sn) <1+ fua(r)+e™ /oo e M fuct(N) AN < 1T+ fuoi(r) + e y(Sy).
0

By applying (2.7) and letting r — oo, we therefore conclude

limsup v(S,) log(log(n))

<1 0
n—00 log(n) —

2.4 Calculation of 7(G) for Specific Graphs

Theorem 2.6. Let N € Ny, n, m € N. Assume m is even, and N > 1 in
the case of m = 2. Let G = (V, E) denote the graph, which arises from R,
by executing the following procedure.

(i)  Clone each vertex of R, exactly n — 1 times.
(ii) Add exactly N new vertices xy,...,xx to V.
(ili) Add to E all edges of the form {x;,y}, where y € V \ {x;}.

Note that #V = N + nm. Set k = % and 7 = (VK2—1—k+1)7L.
Then,

n’m 1)
=H#V — — )
10 =#v -2 fr o)
Proof. We define a stochastic process (A,,),>o as follows. If at time n > 0,
the height of one dominant vertex z;, j = 1,...,n, is maximal, then set

A, := 0. Otherwise, there are at most two different vertices that share the
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2.4. Calculation of v(G) for Specific Graphs

maximal height. If there are two different vertices whose height is maximal,
again A, := 0. Finally, assume xz € V is the unique vertex of maximal
height and not dominant in G. Then, choose a vertex y € V', whose height is
maximal under all vertices, which are not equivalent to x. Then, we define
A, =H,,— Hy .

It is not hard to see that the process (A,)n>0 is a time-homogeneous
Markov chain. Assume, for example, that A, = m for some n € N and
m > 3. Denote by = be the unique vertex of maximal height and by y the
vertex, whose height is increased in the next step. Then, we know A,,; =0
if y is dominant. If y is equivalent to x, we can conclude A, ; = m + 1. If
x and y do not share an edge, we know A, ;1 = m — 1 instead. Finally, if x
and y are connected by an edge, not equivalent, and y is not dominant in G,
then A, = 1.

N
#V
0 G2
N4n
\F/
n(m—2)

Figure 2.4: Transition probabilities of the Markov chain (A,),>0.
The Markov chain (A,,),>0 is positive recurrent and we can calculate its
stationary solution II = (II(n)),»,. From the recurrence relation

M(n) = i (M(n—1)+T(n+1)) foral n>2,

we deduce the representation

n—1
II(n) = <li — VK2 — 1> for all n > 1,
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where ¢; € (0,00) is a fixed constant. Using the equation

N (1) N ¢

I1(0) =
(0) #V 2K #V
as well as
0)=1-Y 0 =1-e; Y (x- 52—1)71:1—(;17, (2.8)
n>1 n=0

we can identify

e (E ) i e

Observe that the transitions of (A,),>o yield information on the growth of
the maximal height in G. Each transition from a state k& # 1 to 0 implies that
the maximal height increases by one. The same also holds for all transitions
from a state k to £+ 1 and all transitions from k£ # 2 to 1. On the other
hand, we know that a transition from k& > 3 to k — 1 will not increase the
maximal height. For the transitions from 1 to 0 and the transition from 2 to
1, we do not know for sure whether the maximal height increases. However,
independent of the past, the conditional probability for this is N/(N + n)
respectively (m — 2)/(m —1).

By applying Birkhoft’s ergodic theorem to the snake chain (A, Ay t1)n>0
and using equation (2.3), we obtain the following expression for v(G).

¥(G) = #V <H<0> 2 1) 5y Z R dD ORI )

n>1 1<n#2

+H(1)N+n N 0 n(m—l)m—2>

v Nin PO T

:#v< )+ 1) N+" 1)):#V—n(1—H(O)).

n>1

The claim now follows by inserting (2.8) and (2.9). O
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2.5. A Central Limit Theorem around v(G)

Example 2.7.
¢ | — | L U X
v(G) 2+ 2+ % 3+ 4
(N,n,m) | (1,1,2) (0,1,4) (2,1,2) (1,2,2)
: X
v(G) 3+ 75 3 4 2421 4+ % 4+
(N,n,m) | (0,1,6) (1,1,4) (2,2,2) (1,3,2)

2.5 A Central Limit Theorem around 7(G)

In order to state the main result of this section, let us introduce some nota-
tion. We write Z,, = Z for n — oo to denote convergence in distribution.
For 02 € [0,00) we write N(0,0?) for the centered normal distribution with
variance o2, In the case of 02 = 0, we identify this law with a Dirac measure.
Theorem 2.8. For any graph G = (V, E), there is 0% = 0%(G) € [0, 00) with
maxgzey Hyp — 1 %

nl/2

— N(0,0%) forn — cc.

The same central limit theorem with the same constant o* also holds if we
replace max,ecy H, ,, with mingey H, . Moreover,

0*(G) =0 if and only if G is isomorphic to Kyy.

The results of this section are based on the study of the surface process
0 = (85)n>0, which is defined by

On = (Oz.n) ey » Oz 1= Hyp — gg‘l} Hyp. (2.10)
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The process (0,)n>0 is a time-homogeneous Markov chain, which can be seen
as follows. Define an equivalence relation on the state-space of (H,,)n>0 by
identifying two different height vectors if and only if the height difference is
the same for all vertices. Then, the transition probabilities of (H,),>¢ from
one equivalence class to another do not depend on the representative of the
former one. So, we obtain a Markov chain on the set of equivalence classes,
which can be identified with (,),>0 after describing each equivalence class
by its unique normalized representative.

By modifying the start height Hy respectively the initial state dy, we can
ensure that the Markov chain (9,,),>0 is irreducible and has the state-space

S = {(hx)xe\/ e Ny ’ hy =0 foraxz eV and h, # h, for all {y, z} € E}

We can describe the transition probabilities of (,,),>0 in the following way.
Let h = (hy)zev € S,y € V, and set my, := min{h, |  # y}. Then, we know

1 hz_myv ZL’?éy
Plopi1 =h| 6, =h] = —, hy:= . (2.11
[ +1 | } #V 1+mﬁ[t>]<hz—my, T=vy ( )
zZE|Y

Observe that, for the transition from h to h, there is a unique vertex z € V.
with A, > hg, and this vertex is given by z = y. In particular, given an h,
the state h in (2.11) is uniquely determined by the choice of y € V' and vice
versa, and all non-zero transition probabilities of (d,,),>0 are given by (2.11).

We will prove Theorem 2.8 by applying renewal arguments to (d,),>0 and
making use of a random index central limit theorem. For fixed h € S, we
define the sequence of hitting times of h by

o i=inf{n>010,=h}, Ty =inf{n>7 |6, =n}, keN

Before starting to analyze the Markov chain (4,,),>¢ formally, let us briefly
mention a simple but rather important observation. Denote by Sy C S the
set of all b’ € S with max,ey h), < #V. Let h € S and (xy,...,24y) be a
non-decreasing permutation of V. Moreover, assume that h,, = maxycy h,.
Then, if §,, = h for some n > 0, and in the following steps, the height of the
vertices x1,...,xyy are increased one after the other exactly one time per
vertex, it follows that d,+4y € Sp. So, we say that (zi,...,2xy) resets h.

Lemma 2.9. Fiz G = (V, E). Then, for all h € S, there is an n € N with

Pls, =h|d = iL] > (#V)™ forallh e S. (2.12)
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2.5. A Central Limit Theorem around v(G)

Consequently, each random variable 7', h € S, has an exponential moment,
which is finite for any initial distribution on S. In particular, the Markov
chain (8,)n>0 s positive recurrent and has a stationary solution .

Proof. Let h € S. Since Sy is a finite subset of S, there is an nyg € N such
that, for all i’ € Sy, the chain (9,,),>0 can go from A’ to h in n(h') < ng steps.
Set n :=ng+ #V. Let h € S be given. Choose x1 € V with h,, = max,cy h,
and a non-decreasing permutation (z1, ..., x4y ) of V. Denote by h' € Sy the
unique element, which arises when & is reset according to (1,...,24v) and
m :=ng—n(h') € Nyg. Now assume that §y = h and, in the first m steps, only
the height of x; increases. Then we arrive at a state, which again can be reset
according to (xy,...,xxy). Hence, we can go from hto W inm + #V steps,
and as (0, )n>0 may go from A’ to h in n(h') steps, the claim follows. O

The following lemma ensures that the Markov chain (d,),>¢ contains
enough information about the growth of the process (Hy,)n>o0-

Lemma 2.10. There are function g, : S xS — NV, g2 : Sx S — {0, 1} with

910, 0ps1) = Hyo1 — H,  and

G2(Ony Opt1) = max Hy ,y1 — max Hy,, almost surely.
zeV yev

Proof. The main step is to define g;(h, iL), as, given g;, we can construct gs,
for example, by the formula

ga(h, h) := ; Lguhia>0 Lmas hy=mah.

For the definition of gy, recall the description of the transition probabilities
of (0,)n>0 given above in (2.11). Each transition of (d,,),>¢ corresponds to an
increase of the value of one uniquely vertex, and clearly, this also holds for
all transitions of our deposition process (H,),>o. By recalling our definition
of (6n)n>0 in (2.10), it is clear that these two vertices are always the same.
Now, let h, h € S, and y € V be as in (2.11). Then, we can define g; by

1+ maxh, —h,, z=1y

~ . z€|x]

0, x #y.
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Our last ingredient for the proof of Theorem 2.8 is a rather simple ine-
quality. For its proof, we use the counterpart of the process (d,),>0 in our
continuous-time deposition process. For all ¢ € [0, 00), we define

St = (0pt)zev, where 0, := Hy ¢ — mi‘g ]:IW, xeV.
ye
Roughly speaking, all previously mentioned arguments and results for (0n)n>0
also hold for (d;)¢>p with only minor changes.

Proposition 2.11. Let G = (V, E), G' = (V' E') be two given graphs and
assume that G is a subgraph of G'. Then v(G) < ~v(G'), and

Y(G) =~v(G") ifand onlyif G=G'

Proof. We couple our continuous-time ballistic deposition processes on G
and G’ by assuming that they share the same underlying Poisson processes
(&2)zev- This directly yields the inequality v(G) < v(G').

Now assume G # G’, and let us prove v(G) < v(G’). For this purpose, note
that, by induction over #V, it suffices to consider the following two cases.

(i) V'=V and E' = EU{{z,y}} for a suitable choice of z, y € V.

(ii)) V'=Vu{a}foraz’ ¢V and ' = EU{{z,2'}} forazeV.

It turns out that both cases can be treated roughly in the same way, and
we, therefore, start and mainly concentrate on the case (ii).

To verify (ii), we construct a new growth model on G’, which evolves asym-
ptotically faster than our deposition model on G and at most as fast as the
deposition process on G’. For this, let &, be the Poisson process related to the
vertex 2’ in the latter one. Moreover, let (St>t20 be the time-continuous sur-
face process of the ballistic deposition on G. Fix h € S with h, = maxycy h,
and a non-decreasing permutation (xq,...,zxy) with z; = z.

Our new growth process on G’ arises by modifying the deposition rule
(2.1). We will take the possible growth events of the vertex a2’ as well as
the influence of 2’ on its neighbor x only into account if the current height
fluctuations behave in a specific way. More precisely, the influence of 2’ at a
point in time is only taken into account if both the Markov chain (0; )¢ is in
the state h, and then, in the following, the first Poisson process, who jumps,
is £, followed by a jump of &;,, &,, and so on until &, has jumped. After
such an event has occurred, we again neglect the possible growth of x’ or its
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2.5. A Central Limit Theorem around v(G)

influence on the growth of x = x; until the next time both (St)tzo is in state
h and, subsequently, the Poisson processes behave accordingly.

By definition, it is clear that the height of our new growth process is
always smaller than in our original ballistic deposition process on G’ since,
in the latter, the influence of the vertex 2’ is always taken into account.

On the other hand, the maximal height in our new process always exceeds
the maximal height of our ballistic deposition on G, since, in this process,
the vertex x’ is always neglected. However, by construction, we know that
the maximal height of our new process at a time ¢ € (0,00) is always at
least as big as the maximal height in our ballistic deposition on G plus the
number of visits of (gt)tzo in h up to time ¢, which have been followed by the
above-mentioned behavior of the underlying Poisson processes. Since (5~t)t20
is a positive recurrent Markov chain and irreducible on S, Birkhoff’s ergodic
theorem yields that this second contribution strictly increases the asymptotic
growth rate. Consequently, v(G) < v(G').

Case (i) can be treated roughly in the same way as (ii). Instead of taking
the growth of the vertex x’ and its influence on x into account only sometimes,
one now has to handle the influence of the edge {z,y} in a similar way. O

Proof of Theorem 2.8. By Lemma 2.10, we have the representation

1(9)
R, : —Iglea‘iinn— #V —IQT:laXHmo-F;f (0k_1,0x), m >0, (2.13)
where f(h,h') := ga2(h,h') — #V) Fix h € S and assume Hj := Jp := h.

Consider the sequence (W,,),>1 defined by
Wy = f (67'#’5724‘1) -t f( g =D 0r +1>

The random variables (IV,,),,>1 are i.i.d. by construction. Besides, since clearly
—1 < f <1, Lemma 2.9 yields

0< 5 —E[W2] <E[(r} — )] < oc.
Set K, :=sup{k € N | 7 < n}. We will now verify the following statements.

A) 072 Ry = N(0,0%) for n — oo, where 0% = (h) 5.

B) nl/? = 0 for n — oo.

Ry~ Ry
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Once we have established A) and B), Slutsky’s theorem immediately gives

n 2R, = n_l/zRTIh( +n1/2 (Rn — R ) — N(0,0%) for n — oo

and hence verifies the first claim of Theorem 2.8.

h

To prove A), note that by Kac’s theorem we know 7/ ~ m(h)~'n for

n — oo almost surely and K,, ~ w(h)n for n — oo. Moreover, we have

K'IL

n_l/zRTﬁn — 12 Z Wi.
k=1

Hence, the claim follows from Anscombe’s theorem, see [41, Theorem 2.3].
To prove B), consider the estimate

’Rn—RTIién gsup{‘Rk—RT}l{n : k:Tﬁn,Tﬁn+1,...,T}’<n+l}.
Now, we apply the inequality
yRk—Rl|gmaX{7(g) | 7(g>}|k—zyg|k—5|, k> 1,

ol
which allows us to deduce

e < (el )

Ry~ Ry

By the Markov property of (0n)n>0, (T4, 11— T#, ), -, is Li.d. and B) follows.

Until now, we have verified that, for deterministically chosen initial state h
of Hy respectively dy, a central limit theorem holds. The following argument
shows that o2 does not depend on the choice of h and also, that we may
choose a random initial condition.

Consider two ballistic deposition processes on G with different determi-
nistic initial values and couple them by assuming that, with each step, the
height of the same vertex is increased. Then, by our deposition rule (2.1),
the maximal height difference cannot increase over time. So, if a central li-
mit theorem holds for one process, it also holds for the other one. The same
arguments also allow us to extend the central limit theorem to an arbitrary
initial distribution on S.
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Let us now continue with the second claim of Theorem 2.8. We start by
proving it under the assumption J, ~ 7. Note that

max 0y,
~1/2 W\ _ i _ G) e
n (grél‘ngxn #V n I;lea‘iiHmm n#v Yo (2.14)

As 9y ~ m, we know that the distribution of max,ey 9, does not depend
on n. Therefore, the claim follows by applying Slutsky’s theorem to (2.14)
and using the central limit theorem for the maximal height.

So far, we have verified the central limit theorem for the minimal height
under the assumption dy ~ 7. Since w(h) > 0 for all h € S, we conclude as
above that the central limit theorem holds for arbitrary initial distributions.

Let us now prove the last claim of Theorem 2.8. If G is isomorphic to a
complete graph, then clearly 0? = 0. Assume that G is not isomorphic to Kyv.
Recall that we know o = 2w (h) from A). So, we will show % = E[IW] > 0.

Choose z € V with h, = maxycy h, and a non-decreasing permutation
(1,...,xpv) of V with z; = x. Denote by h € S the unique state, at which
the chain (d,),>0 arrives after starting in h and being reset according to
(x1,...,xpv). As (0,)n>0 is irreducible, there is a finite path along which
(0n)n>0 may go from h and h. Let hq, ho, ..., hy denote the path with hy =
hx = h, which arises by concatenation. Let M € N be the number of returns
of (0,)n>0 to h along this path. Then, we know

PWy+...+ Wy =c >0, Wherec—Zf hjt1).

If ¢ # 0, then clearly 52 > 0 and the claim holds. Therefore, suppose ¢ = 0.
Then, we continue with the construction of another path hf, ..., hiy,, along
which (d,)p>0 can go from b} := h to Ay, := h. For this purpose, let
hi = hi, and note that the permutation (zi,...,xxy) still resets h}. We
define hy, ..., hiyy 5 by using the resetting event and note that hly, ., = h.
Then, we consider the same path from h to h as before and, therefore, we
can set hj = hy_; for all 1 < k < N + 1. Let M" € N be the number of
returns of (6,)n>0 to h along hi, ..., hy, ;. Then, by construction,

PW,+--+ Wy =] >0, where ¢ Zf o ]+1
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By construction of our route Af,..., ., and our assumption ¢ = 0, we have

-1

N
=S K Z G, (9)
o j=1 f hj’ h]H j=1 f JH +1 #V a #V

By Proposition 2.11, v(G) < v(Kxv) = #V, and thus We deduce ¢ > 0.
Clearly, this implies 6% = E[W{] > 0, and consequently o2 > 0. O

Remark. In our proof of Theorem 2.8, we have identified some kind of
renewal structure in form of the Markov chain (,),>0 and the resetting of
its states. In fact, one can also try to prove Theorem 2.8 by imposing the
condition ¢y ~ 7, which guarantees that the process (R,,),>0 defined by (2.13)
is stationary. For this approach, one needs to ensure both adequate moment
and mixing conditions, compare [12, Theorem 27.4]. Let Y,, := R,11 — Ry,
n > 0. Then, —1 <Y,, < 1 almost surely, and, by Birkhoff’s ergodic theorem,
E.[Y,] = 0. Moreover, equation (2.12) verifies a so-called Doeblin condition
for the Markov chain (d,),>0, which implies geometric ergodicity, compare
[64, Chapter 2]. This, in return, yields exponentially fast mixing, see [16,
Theorem 3.7]. Alternatively, one can also use the Dobrushin coefficient of
the Markov chain (d,,),>0, compare [27, Chapter 3.4].

As a consequence of the central limit theorem for stationary processes,
we can also deduce the representation

0% = Var.[Y7] + 2~ Cov.[V3,Y;] € [0, 00).

However, from this formula, it is not clear when % > 0. We were able to
answer this question only by working directly with the Markov chain (,,),>o0-

Still, it is worth mentioning that above mentioned moment and mixing
conditions of (Y},),>0 do not only imply the classical central limit theorem
but also its functional version, compare [48, Corollary 1], as well as a law of
the iterated logarithm, see [83, Theorem 2 and further comment].

2.6 A General Upper Bound for ~(G)

The following estimate is based on the arguments used by Atar, Athreya, and
Kang in [4] to derive the upper bound for v(C,) given in (2.4). Our result
holds for arbitrary graphs but is somewhat less sharp, as we have simplified
some of the rather technical arguments from [4] in our more general setting.
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Theorem 2.12. Let G = (V, E) be a given graph and p the spectral radius
of A(G) + 1, where 1 denotes the identity matriz with index set V. Then,

(G) <e-p.

Proof. For all m € N, we define
T, = inf {t >0 | maxﬁxyt = m}.
zeV

We modify our time-continuous deposition process in the following way. At
time T,,, the height in each vertex is set equal to m. Then the process evolves
as usual until the maximal height again hits a multiple of m. At this particular
time, the height of each vertex of the graph increases until it is again equal
to the maximal height. By continuing this procedure, we arrive at a model,
which grows at least as fast as our original process. By the law of large
numbers, we, therefore, deduce, for all m € N,

m

"9 < g7y

Applying Markov’s inequality, for all m € N and a € (0, 00), we find
E[T,] > am (1 — P[T,, < am])

and, consequently,

1
< . 2.15
19) = a(l—P[T,, <am)) (2.15)
Note that T}, < am if and only if there exist vertices z1,...,x,, € V and

0<t; <...<ty <amsuch that x;;; € [x;] for alli = 0,...,m — 1 and
in each time interval (¢;,t;11) the height of the vertex z; increases strictly.
The number of tuples (x1, ..., Zyy1) satistying @, 41 € [x;] foralli =0,...,m
is ||(A(G) +1)™||, where the norm ||-|| is defined as the sum of the absolute
value of all entries. Since A(G) + 1 is a nonnegative irreducible matrix, by
the Perron-Frobenius theorem,

= 1im {/[I(A(G) +1)"| € (0, 00).

Hence, for all £ > 0, there exists an mg € N, such that, for all m > my,

PT,, <am] < (p+¢e)"P[S, < am],
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where S,, = Y -, Wy for all m > mg and (W,),>1 denotes a sequence
of i.i.d. exponentially distributed random variables with mean one. For all
A € (0,00), by Markov’s inequality,

P[S,, < am] = P[exp(—AS,,) > exp(—aim)] < exp(aAm)E [exp(—AW7)]™
= exp(adm) (A +1)"" = exp ((aX — log(1 + X)) m).

Minimizing over A, we deduce that the optimal bound is A = (1 — a)/a and
PT,, <am] < #Vexp(m (1l —a+log(a) +log(p+¢))).
Choose a := {e(p+¢)} " € (0,00). Then, log(a) = —log(p+¢)—1, and thus
P[T,, <am] < #Vexp(—am) — 0 for m — oo.

Inserting this in equation (2.15) and letting m — oo, we deduce

SN

YG) < -=elpte).

The claim now follows by letting e — 0. O

Remark. Note that p < AG+1 and equality holds if and only if G is a regular
graph. By considering the case of a complete graph, we immediately see that
the upper bound in Theorem 2.12 is optimal up to a constant. Hence, one
might ask whether there exists a sequence of regular graphs (G,,),>1 satisfying
v(Gn) ~ e-AG, asn — co. We want to include a minor result to this question.

Proposition 2.13. Let (G,)n>0 be a sequence of regular graphs with AG,, —
oo for n — oo and girth(G,) > 5 for all n € N. Then,

.. .G 2e—1 _
hrrlrigolf AG, > (e 1) ~ 1.506.

Proof. Fix M € N and ny € N, such that m := AG, +1 > M for all n > ny.
We construct a random growth model, which evolves slower than our
original one. For simplicity, assume that the first three vertices x1, x5, and
x3, which grow, form a path (z1, x9, z3) in G. Now only take into account the
neighbors of x5 and x3 and, for the time being, neglect the possible growth
of any other vertex. We also neglect the possible growth of z, x5, and x3.
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Whenever a neighbor z4 of x3 grows, we consider the path (zq, x3,z4) ins-
tead of (x1, z9, x3), we forget about the height of any vertex y ¢ {z2, x5, x4},
and our procedure starts from the beginning. In this case, the maximal height
among the vertices, which we take into account, will increase by one unit.

If a neighbor z% of x5 grows, we memorize its height. Then we will neglect
further growth of 2%, but, in the future, we will take into account its neigh-
bors, which differ from z5. Then, if a neighbor 2y # x5 of x} grows, we will
replace our path (z1, xa, x3) by (22, 2%, 2)) and forget about the height of all
vertices y ¢ {xo, 2%, 2 }. In this case, we again arrive at our initial situation,
and the maximal height among the vertices taken into account increases by
one unit.

All in all,; we will memorize the height of up to M neighbors of z5. Once
we have reached this limit, we will not take into account the potential growth
of a neighbor of x5 anymore. As the graph G,, n > ng, is regular, and
girth(G,) > 5, by counting the number of neighbors of x5 in our continuous-
time setting, whose heights are higher than x; and memorized, we obtain a
time-homogeneous Markov process with the following transition rates.

2m 3m 4m 5m Mm
m
G p 3 4 M
N2 2 A4
m—1 m — 2 m—3 m—4 m— N

Figure 2.5: The number of memorized heights forms a time-homogeneous
Markov process. We have indicated all transition rates.

Let ppm(k), k=1,..., M, denote the invariant probability distribution.
Then, by including the time-scaling induced by the transition rates, we know
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V(Gn) 2 (Z Py (k) {(k+1)m — k} +pm7M(M)Mm>

pmy km
: (Z PmM(k)m +pm,M(M)> :

k=1

As n — oo, we know m = AG, — oo and consequently pp, ar(k) — par(k),
where pys(k), k =1,..., M, denotes the invariant probability of time discrete
Markov chain, whose transition probabilities are as follows.

Figure 2.6: We arrive at this time-homogeneous Markov chain.

Now, by a simple calculation, we deduce

1

k) = k=1,...,M.
pulh) = AT 2 /6t /M) A
For all M € N, as m = AG,, — oo, we have
M—-1
mHmeM k+1)m_k}_>;pM(k) (k+1) € (0,00),
M— M—-1
km k
mo (k) —————— k)——-.
;p >km+(m—k)—>ZpM( it

Therefore, for all M € N, we conclude

hyrlgg}f7 <ZpM > (Z_:pM(MkL—l—l) :
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Finally, we let M — oo and note that

le AT k1 21
par (K e—1 K e—1
k=1 k=1
M-1 00
1 k 1
= . O
par(k Z1(k+1)! e—1

— k—l—l e—lk:

Let us give a simple conclusion of both Proposition 2.5 and Theorem 2.12.

Corollary 2.14. Let (G,)nen be a sequence of graphs. Then,

hm y(gn) = if and only if lim AG, = o
n—oo

2.7 A Modified Ballistic Deposition Model

For a better understanding of our growth model, it is natural to study ballistic
deposition processes, which arise by modification of the recursion (2.1). The
so-called nearest-neighbor ballistic deposition model is specified by the rule

By = max {hy, + 0.y},

Y€z

where 4., is the Kronecker symbol. For any graph G, we can define the
asymptotic growth parameter (G) in this new model in the same way as in
the introduction. A simple coupling argument gives 4(G) < v(G) and

Y(Sn) <A(S,) +2 forallneN.

In particular, we see that Proposition 2.5, Theorem 2.12, and Corollary 2.14
also hold if we replace v(G) with 4(G). However, direct calculations reveal
differences between the growth models. Consider the complete graph KC,, with
n > 1 fixed. Then, by counting the number of vertices of maximal height in
the discrete-time deposition model, we obtain the following Markov chain.

Let II denote the unique invariant distribution. Then, for all k = 2,...,n,
k—1
— (k-1 —1
(k) = n-(k-1) (k—1) = 1(1) ] 2=,
n n

=1
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2
n

1
1 2 3 4 n

Figure 2.7: Counting the number of vertices of maximal height in IC,, results
in a time-homogeneous Markov chain with these transition probabilities.

and, using II(1) + --- +II(n) = 1, we find

By applying Birkhoft’s ergodic theorem, we deduce
R n k n
F(Ka)=n>_ (k) = > (k).
k=1 k=1

For small values of n > 1, we can calculate IT and its expectation J(/C,,).

n 1 2 3 4 5
~ 4 27 128 3125
F(Kn) 1 3 o T 1569

For all n > 1, we find

n

F(Kn) =n-11(1) - Z kn=F

k=

(n—1)! B n
(n—k)! =n-1) = enn " T(n+1,n)—1

where we have identified Naor’s urn distribution, compare [72, Appendix] and
[50, Section 11.2.12], and inserted [65, Equation 8.8.10]. By a series expansion
of the incomplete gamma function, see, for example, [32, Section 2.3],

1
I'(n+1,n) ~ 3 I'(n+1) for n — oo.
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2.7. A Modified Ballistic Deposition Model

This allows us to verify

1
e"n " In+1,n)~e"n" 3 F'n+1)~ \/gnl/2 as n — 0o,

and further deduce 5(K,,) ~ (2/7)/2? n'/? as n — oo.
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Article 2

Boolean Percolation on Digraphs and
Random Exchange Processes

GEORG BRAUN

Abstract. We study, in a general graph-theoretic formulation, a
long-range percolation model introduced by Lamperti in [61]. For
various underlying digraphs, we discuss connections between this
model and random exchange processes. We clarify, for all n € N,
under which conditions the lattices Nj and Z" are essentially co-
vered in this model. Moreover, for all n > 2, we establish that it is
impossible to cover the directed n-ary tree in our model.

Keywords. boolean percolation; rumor spread and firework process; infinite
paths in random graphs; long-range percolation; random exchange process;
infinite type branching process; recurrence and transience; spectral radius.
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3.1 Introduction

Percolation theory is a fascinating area of modern probability, which tries
to understand under which conditions infinite components arise in random
structures. In the present article, we study the properties of a Boolean perco-
lation model on directed graphs and relate this model to a classical Markov
chain known as the random exchange process.

Let G = (V, E) be a directed graph with an infinite, countable vertex
set V. For all vertices z, y € V, we denote by d(z,y) € No U {oo} the
distance from x to y in G. Note that d : V x V' — Ny U {co} is an extended
quasimetric on V', which is symmetric if and only if the graph G is undirected,
ie., (z,y) € E implies (y,x) € FE for all z, y € V. Moreover, for all z € V
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3.1. Introduction

and n € Ny, we denote by B,(z) the open ball of radius n starting from =z,
which is the set of all vertices y € V' with d(z,y) < n.

Let pt = (pn)nen, be a probability vector and (Y, ).ey a family of i.i.d.
random variables satisfying P[Y, = n| = p, for all n > 0. In our percolation
model, every vertex x € V will cover any vertex of By, (x). Hence, the set of
covered respectively uncovered vertices are

V,=Vu(G) =) Br(x) SV, Vi=VIiAG) =V \Vu(G)

zeV

As we are interested in the properties of the random sets V, and Vi, we will
always assume i € (0, 1), since V,, = V almost surely in the case of yy =0,
and V,, = () almost surely for uo = 1.

Let 7,y € V.and V' =V, or V' = V. Then, if both = and y are contained
in V’ and connected by a path in G, which uses only vertices from V', we
will say that x and y are in the same cluster.

To state our results, we introduce the following notation. Let n € N,
V =Nj or V =7Z", and E be the set of all pairs (z,z + ¢;), where z € V,
j=1,...,n, and e; = (d;j)i=1,..n. Then, we denote the resulting graph
G = (V, E) by N respectively Z". Furthermore, for all n > 2, we define the
infinite directed n-ary tree D,, := (V,,, E,) by

V, = U {1,...,n}™, where {1,...,n}° =0,

m>0

E,={0,1),...,0,n)}U{(z,(x,5) |z €V, \{0}, =1,...,n}.

) ) ) ,(\ ) )
(/ N N ) \/ \/
) ) ) ,(\ ) )
(/ N N ) \/ \/
) ) ) >() ) )
(/ N\ N L/

RN
Figure 3.1: Tllustration of the lattices N (left) and Z? (right).

In this article, we will clarify under which conditions the graphs Njj and
Z™ are (essentially) covered by a distribution u, compare Theorem 3.1 and
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Theorem 3.2 below. On the other hand, in Theorem 3.3, we will see that, for
any distribution g and n > 2, #V;#(D,) = oo almost surely.

To the best of our knowledge, the present percolation model was first
studied by Lamperti in [61] for G = Ny. This research was motivated by
statistical physics and included the following description. At each location
n € Ny, there is a fountain, which sprays water to the right and is wetting
the segment from n+1 to n+Y,. As ug > 0, with some positive probability,
a fountain fails to operate at all.

Our percolation model and variants of it were studied by various authors,
compare [63], [52], [53], [10], [30], and [51]. For a recent survey, see [51]. At
this point, however, we want to postpone the discussion of how our new
insights and results are related to these articles.

We can interpret our percolation model as the spread of a rumor through a
network, a firework process, or a discrete version of Boolean percolation. This
model was introduced by Gilbert in [33]. First points are chosen randomly in
R™ according to a Poisson point process. Then, in the simplest case, around
these points, the unit sphere is covered. For monographs, which are concerned
with Boolean percolation, see [90], [43], [67], and [84].

In the present article, we also investigate a connection between the above
described graph-theoretic percolation model and a rather classical Markov
chain, which is sometimes called random exchange process. As far as we know,
it was first observed by Zerner in [98, Section 1] that these two stochastic
models are related to each other.

Let (Y,,)n>0 denote a sequence of i.i.d. random variables, which, as before,
are distributed according to p. Then, we set X := Y, and recursively define

Xn+1 = maX{Xn — 17 Yn+1}, n e NO.

To the best of our knowledge, this process (X,,)n>0 first occurred in a sta-
tistical research article on deepwater exchange of a fjord, see [29]. Later, it
was studied, in more general form, in [46] and [47]. In the following, we call
the Markov chain (X,,),>0 a (constant decrement) random exchange process.
By construction, it has time-homogeneous transition probabilities and is ir-
reducible on its state space X', which is equal to Ny if ¢ is unbounded, and
otherwise takes the form {0,1,...,ng}, where ng := sup{n € N | p, # 0}.
The transition matrix P associated with (X,,),>0 is

,Uya 1 y 2 $,
P .= Pr.= (Pﬁy)m,yeX , where P =4¢ > " ., y=x-—1,
0, y<z—2.
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As (X,)n>0 respectively P is irreducible, for all z > 0, Green’s function

G(z,y|z) = ZPﬁy 2"
n=0

either converges or diverges simultaneously for all z, y € X, compare [94,
Chapter 1.1]. Therefore, independent of the choice of z, y € X', we can define
the spectral radius of (X,,),>0 respectively P by

p(P) := lim sup (ng)l/n € (0,1].

n—oo

More generally, if A is an arbitrary irreducible matrix with nonnegative ent-
ries, we can define p(A) € [0, 00| exactly in the same way.

Let us now state connections between the set V), of covered vertices in our
percolation model and the Markov chain (X,,),>o. We start by reformulating
previous results in the following way.

Theorem 3.1. For any law pu, the following statements are equivalent.

(i)  Almost surely, #V:(Z) < oc.
(i) Almost surely, V,(Z) = Z.
(iii) The Markov chain (X, )n>0 s not positive recurrent.

(iv)  The expectation of pu is infinite, i.e., 3 oMy = 00,

It is not difficult to verify, more generally, that (i) and (ii) are equivalent
if we replace Z by an arbitrary vertex-transitive graph.

By apply