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Zusammenfassung

In der vorliegenden Dissertation werden drei zufällige graphentheoretische
Wachstumsmodelle betrachtet. Diese Modelle sind ballistisches Wachstum
auf endlichen Graphen, Boolesche Perkolation auf gerichteten Graphen, sowie
superkritische Galton-Watson-Verzweigungsprozesse mit Emigration.

Für das ballistische Wachstumsmodell auf endlichen Graphen erhalten wir
verschiedene Resultate, die charakterisieren, wie die asymptotische Wachs-
tumsrate von dem zugrundeliegenden Graphen abhängt. Außerdem beweisen
wir, dass die Fluktuationen um diese Wachstumsrate stets durch einen zen-
tralen Grenzwertsatz beschrieben werden.

Im Kontext von Boolescher Perkolation klären wir, für die Graphen Nn
0

und Zn, n ∈ N, wann alle bis auf endlich viele Punkte überdeckt werden. Wir
zeigen auch, dass es für n ≥ 2 unmöglich ist, den gerichteten n-ären Baum
zu überdecken. Zudem präsentieren wir Zusammenhänge zwischen diesem
Perkolationsmodell und dem sogenannten

”
Random Exchange Process“.

Schließlich untersuchen wir, wann superkritische Verzweigungsprozesse
mit Emigration fast sicher aussterben und die erwartete Überlebenszeit end-
lich ist. Wir charakterisieren die Aussterbewahrscheinlichkeit in Abhängigkeit
von der Populationsgröße sowie das asymptotische Wachstum der Population.
Superkritische Verzweigungsprozesse mit Emigration verhalten sich gewisser-
maßen ähnlich wie subkritische Verzweigungsprozesse mit Immigration.
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Summary

In the present thesis, we consider three different random graph-theoretic
growth models. These models are called ballistic deposition on finite graphs,
Boolean percolation on directed graphs, and supercritical Galton-Watson
branching processes with emigration.

For our ballistic deposition model on finite graphs, we obtain various
results, which characterize the relationship between the asymptotic growth
rate and the underyling graph. Moreover, we prove that the fluctuations
around this growth rate always satisfy a central limit theorem.

In the context of Boolean percolation, we clarify under which conditions
all but finitely many points of the graphs Nn

0 and Zn, n ∈ N, are covered. We
also prove, for n ≥ 2, that it is impossible to cover the directed n-ary tree in
this model. Besides, we present connections between this percolation model
and the so-called random exchange process.

Finally, we study under which conditions supercritical branching proces-
ses with emigration become extinct almost surely, and whether the expected
survival time is finite. We investigate the extinction probability in relation to
the population size, and the asymptotic growth of the population. To some
extent, supercritical branching processes with emigration behave similarly to
subcritical branching processes with immigration.
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Notation

Sets, Functions, Vectors

#M Cardinality of the set M
Mn n-fold Cartesian product of the set M
M \N Set complement of N in M
M c Complement of the set M
N Set of all positive natural numbers
N0 Set of all non-negative natural numbers
Z Set of all integers
R Set of all real numbers
1M Indicator function of the set M
log(x) Natural logarithm of x
log+(x) max(0, log(x))
an ∼ bn as n→∞ Two sequences satisfy limn→∞ anb

−1
n = 1

f(t) ∼ g(t) as t→∞ Two functions satisfy limt→∞ f(t)g(t)−1 = 1
ei Vector with 1 in i-th entry and 0 elsewhere
δij Kronecker symbol
1 Identity matrix

Probability Theory

P[A] Probability of the event A
P[A | B] Conditional probability of A given B
E[X] Expectation value of the random variable X
=⇒ Convergence in distribution
N(µ, σ2) Normal distribution with parameters µ and σ2

Var[X] Variance of the random variable X
Cov[X, Y ] Covariance of the random variables X and Y

X
d
= Y X and Y have the same distribution
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Graph Theory

G = (V,E) Graph G with vertex set V and edge set E
A(G) Adjacency matrix of the graph G
∅ Symbol for a root in a graph
Bn(x) Open ball of radius n starting from the vertex x
d(x, y) Distance from vertex x to vertex y in some graph
[x] Closed neighborhood of the vertex x in an undirected graph
deg(x) Degree of the vertex x in an undirected graph
∆G Maximal degree of the undirected graph G
girth(G) Length of the shortest cycle in the undirected graph G
γ(G) Asymptotic growth rate for ballistic deposition on G
Nn

0 Graph with vertex set Nn
0 and all edges, which are of the

form (x, x+ ei), where x ∈ Nn
0 and i = 1, . . . , n

Zn Graph with vertex set Zn and all edges, which are of the
form (x, x+ ei), where x ∈ Nn

0 and i = 1, . . . , n
Dn Infinite directed n-ary tree, where we suppose n ≥ 2
B Butterfly graph
Sn Undirected star graph with exactly n vertices
Cn Undirected circular graph with exactly n vertices
Kn Complete graph with exactly n vertices
Rn Undirected regular graph with exactly n vertices and

∆Rn = n− 2, where we suppose n ≥ 2 is even
Vµ(G) Set of covered vertices in the graph G for the Boolean

percolation model with the probability distribution µ



Introduction

1.1 Motivation

Graph theory is a branch of modern mathematics, which, roughly speaking,
is concerned with aspects of social networks and similar systems.

For us, a graph G is a pair G = (V,E), where V is a non-empty set of
vertices, and E ⊆ V × V is a binary relation, which represents the edges
between vertices. If x, y ∈ V and (x, y) ∈ E, we say that there is an edge
from x to y in G. Depending on the context, the vertices of a graph may
be seen as the people in a social network, the places on a map, or possible
locations for objects, for example in a game.

If the edge set E ⊆ V ×V is symmetric, i.e., (x, y) ∈ E implies (y, x) ∈ E
for all x, y ∈ V , we will say that G is an undirected graph. In this case,
for specifying the edges in G, instead of an ordered pair (x, y), we may also,
equivalently, work with the set {x, y}. Then, instead of a subset of V × V ,
the edge set E will be a subset of the powerset of V . Usually, in the context
of undirected graphs, we will restrict our attention to graphs that do not
contain any loops, i.e., (x, x) /∈ E respectively {x} /∈ E for all x ∈ V .

Although, in general, understanding the properties of a single graph is al-
ready a fascinating and challenging problem, in the following, we will discuss
models in which a graph alters randomly over time. Note that, according to
our definition, a graph G = (V,E) changes if and only if the vertex set V or
the edge set E are modified in some way.

The literature dealing with random graph dynamics is abundant and di-
verse, not least because many models for a single random graph can simul-
taneously be seen as the dynamic evolution of a graph. Prominent examples
include the Erdős-Rényi model or Galton-Watson trees.

The main part of this thesis separately studies three different random
graph-theoretic growth models. While our choice is clearly subjective and
the models differ a lot from each other, as we will explain in this chapter,
they all share a fundamental property. The growth in these models is related
to a Markov chain with time-homogeneous transition probabilities.

1



Chapter 1. Introduction

1.2 Time-Homogeneous Growth of Graphs

Markov processes form an important class of stochastic processes and are
characterized by their limited memory. To put it simply, for a Markov pro-
cess, the next state in the future depends on the current one but not on any
further information from the past. In general, time may be discrete or con-
tinuous, and the state-space of the process may be a countable set or, more
generally, a measurable space. If time is discrete and there are only countably
many states, instead of Markov process, we may also use the term Markov
chain. Famous examples of Markov processes are branching processes, ran-
dom walks, and diffusion processes like Brownian motion.

A Markov process is called time-homogeneous if the probability that the
process transitions from one state into a set of states within some time does
not depend on the start time of this transition. The distribution of a time-
homogeneous Markov process is uniquely determined by its initial condition
and its transition probabilities. For time-homogeneous Markov chains, it suf-
fices to specify, for all possible states, the transition probabilities between two
consecutive moments in time. Typically, this is done by declaring a so-called
transition matrix. While characterizing the long-term behavior of Markov
processes is difficult in general, luckily, for time-homogeneous Markov chains,
there is a relatively simple and widely accepted theory.

Under growth, we understand a time-dependent process, which is mono-
tone increasing with respect to a partial order. In the context of graphs, a
natural order is the subgraph relationship. Therefore, it is tempting to call a
sequence of random graphs (Gn)n∈N0 a time-homogeneous growth process if,
for all n = 0, 1, . . ., the graph Gn is a subgraph of Gn+1 almost surely, and
the sequence (Gn)n≥0 is a time-homogeneous Markov chain.

However, from a conceptual point of view, this rather simplistic definition
of time-homogeneous growth would have two fundamental disadvantages.

Firstly, growth is a process, which relies on a previously existing struc-
ture. In some sense, we, therefore, should rule out the possibility that a new
component in the graph arises, which is not linked to the previous one.

Secondly, the direction, speed, and amount of growth may change over
time. This is especially true for models in the real world. For example, the
growth or decrease of a population may depend on the age of its individuals.

In fact, this second concern may even question whether the theory of time-
homogeneous Markov chains is suitable for modeling real-world phenomena.

2



1.2. Time-Homogeneous Growth of Graphs

We propose the following notion of growth processes, which addresses both
concerns and, in some sense, is a compromise regarding the second one.

Definition 1.1. Let G0 = (V0, E0), G1 = (V1, E1), . . . be a finite or infinite
sequence of random finite graphs. Moreover, let W0 ⊆ V0, W1 ⊆ V1,. . . denote
a sequence of random sets. Then, we call (G0,W0), (G1,W1), . . . a growth
process on G0 if the following conditions hold.

� For all n = 0, 1, . . ., the graph Gn is a subgraph of Gn+1 almost surely.

� Almost surely, for all n = 0, 1, . . . and e ∈ En+1 \En, the initial or the
final vertex of the edge e is contained in Wn.

� Almost surely, for all n = 0, 1, . . . and x ∈ Vn+1 \ Vn, the vertex x is
not isolated in Gn+1.

In this case, for all n = 0, 1, . . ., we will say that the set Wn is an admissible
growth zone for the graph Gn.

If, furthermore, the sequence (G0,W0), (G1,W1), . . . is a Markov chain,
we will call it a Markovian growth process. Moreover, if the transition pro-
babilities of this Markov chain are time-homogeneous, we will refer to this
sequence as a time-homogeneous growth process on G0.

In the following sections, we will explain how the three main models of this
thesis relate to this notion of random growth processes on graphs. However,
let us first give some comments regarding Definition 1.1 at this point.

First of all, in general, there may exist many different choices for the
sequence of growth zones. Even if we impose that these sets are minimal,
they are not unique in general, as we allow the growth of edges between two
vertices, which both already existed before.

Moreover, in Definition 1.1, we let time evolve in discrete steps. But, only
with minor changes, we can adapt our concept to continuous-time models.

Apart from that, we restrict ourselves to sequences of almost surely finite
random graphs. This constraint has the advantage that it is relatively simple
to define what is meant by a random graph and what it exactly means for
the sequence (G0,W0), (G1,W1), . . . to be a Markov process.

Finally, by the first condition in Definition 1.1, for any growth process on
a graph, we know that there exists the limit graph G∞ := (V∞, E∞), where

V∞ :=
⋃
n≥0

Vn, E∞ :=
⋃
n≥0

En.

In general, G∞ is an infinite random graph.

3



Chapter 1. Introduction

1.3 Ballistic Deposition on Finite Graphs

There are different models for ballistic deposition, but they typically allow the
following description. Assume that on some structure consecutively, bricks are
falling from above. The places at which the bricks arrive are supposed to be
random, and two bricks are always glued together when they start to touch
or share a surface. In this way, towers arise and grow randomly. Moreover,
neighboring towers influence and accelerate each other’s growth.

In the present thesis, we will study a version of ballistic deposition, in
which the substrate is given by a deterministic undirected graph G = (V,E).
Suppose that the vertex set V is finite and that the graph G is connected.

Recursively, we now define a time-homogeneous growth process (G0,W0),
(G1,W1), . . . as follows. Set G0 := G, i.e., V0 := V and E0 := E, and W0 := V .
Let n ≥ 0 and assume the pair (Gn,Wn) is defined. Then, uniformly in
the set Wn and independently from the past, we pick a random vertex y.
Subsequently, set Vn+1 := V ∪ {z}, where z /∈ Vn denotes a new vertex,
which is added to the graph, and Wn+1 := (Wn ∪ {z}) \ {y}.

Whenever we replace some y ∈ Wn with a new vertex z ∈ Vn+1 \ Vn to
form Wn+1, we call y and z equivalent. Then, for all n ≥ 0 and x ∈ Wn, there
is always a unique vertex in V , which is equivalent to x. We denote it by x0.

We define En+1 to arise from En by adding the edge (y, z), as well as
all edges of the form (x, z), x ∈ Wn, for which x0 and z0 are neighbors in
G = (V,E), and, moreover, there is no path from x to y in Gn.

y

y′

y0 y′0

z
z′

z0z′0 z0z′0

Figure 1.1: Illustration of the deposition model. The underlying graph G is
depicted in blue. The vertices, which form the growth zone, are red. In the
first step, the vertex y is selected, and in the next step, z gets chosen.
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1.3. Ballistic Deposition on Finite Graphs

Let us briefly explain how we can formally define the height in this ballistic
deposition model. Let x ∈ V , n ∈ N0, and denote by x′ the unique element
of the growth zone Wn, which is equivalent to x. Then, if x = x′, we define
the height of x at time n ≥ 0 as zero. If x ̸= x′, we consider all paths in
Gn, which start in V and end in x′, and do not use any other vertex from
V . Then, we say a path of maximal length in this set is a backbone for x′ at
time n ≥ 0, and the height of x is the number of edges in a backbone.

x

x′

Figure 1.2: As before, the underlying graph is depicted in blue, and the
vertices of the growth zone are red. We assume that x and x′ are equivalent.
A backbone for x′ is indicated by thick edges. The height of x is equal to 5.

Suppose that the height configuration of our deposition model at time
n ≥ 0 is given by (hy)y∈V ∈ NV

0 . Moreover, let x ∈ V and assume that in the
next step, the random element of the growth zone Wn, which gets chosen,
is equivalent to the vertex x. Then, only the height hx is increased, and the
new height of the vertex x is given by

h̃x = 1 +max
y∈[x]

hy, (1.1)

where [x] := {x}∪{y ∈ V | {x, y} ∈ E} ⊆ V denotes the closed neighborhood
of the vertex x in the undirected graph G.

The recurrence relation (1.1) and the resulting time-homogeneous Markov
chain H = (Hn)n≥0 for the height in our deposition process are the starting
point of Chapter 2. Formally, for all x ∈ V , we will write Hx,n for the height
of the vertex x after n deposition or growth events, and for all n ≥ 0, we set
Hn := (Hx,n)x∈V .

5



Chapter 1. Introduction

However, we will work not only with H but also with a corresponding
continuous-time Markov process H̃, which is defined as follows. Assume, for
all x ∈ V , that ξx denotes a Poisson process with unit intensity, and that
the family (ξx)x∈V is independent. Then, for all x ∈ V and t ∈ [0,∞), in the
process H̃, we will update the height of the vertex x at time t according to
equation (1.1) if and only if the process ξx jumps at this moment.

Previously, for the family of circular graphs Cn, n ≥ 1, Atar, Athreya,
and Kang observed in [4], that Kingman’s subadditive ergodic theorem can
be used to deduce a law of large numbers for the height in our continuous-
time deposition process H̃. The same arguments are valid, more generally,
for an undirected graph G, which is finite and connected. In this context, the
law of large numbers holds both for the minimal and maximal height, and in
both cases, we arrive at the same limiting constant γ(G) ∈ (0,∞). We will
refer to γ(G) as the growth rate or growth parameter of the graph G.

In our study, we present many results, which describe how the growth
parameter γ(G) is related to the properties of the graph G. Often, it will be
useful to switch between discrete and continuous time.

The main result of Chapter 2 is the following central limit theorem, which
is contained in Section 2.5.

Theorem 2.8. Let G = (V,E) be an undirected graph, which is both finite
and connected. Then, there exists σ2 = σ2(G) ∈ [0,∞) with

maxx∈V Hx,n − n γ(G)
#V

n1/2
=⇒ N(0, σ2) for n→∞.

The same central limit theorem with the same constant σ2 also holds if we
replace maxx∈V Hx,n with minx∈V Hx,n. Moreover,

σ2(G) = 0 if and only if G is isomorphic to K#V .

In the context of this theorem, a normal distribution with variance σ2 = 0
will be identified with a Dirac law. Furthermore, for all n ∈ N, Kn denotes a
complete graph with exactly n vertices.

Our proof of Theorem 2.8 relies on applying renewal-theoretic arguments
to the surface process (δn)n≥0, which is given by

δn := (δx,n)x∈V , δx,n := Hx,n −min
y∈V

Hy,n, x ∈ V.

6



1.4. Boolean Percolation on Directed Graphs

1.4 Boolean Percolation on Directed Graphs

We propose a model for the spread of rumors through a network in which
each individual invents one rumor. The ranges of these rumors are random,
independent of each other, and obey a common probability law. How many
individuals of the network are influenced by at least one rumor?

Let G = (V,E) be a graph and denote by d : V × V → N0 ∪ {∞} the
metric induced by G, i.e., d(x, y) is the distance from x to y for all x, y ∈ V .
Note that, as G is a directed graph, in general, d(x, y) ̸= d(y, x) for x, y ∈ V .
For all x ∈ V and n ∈ N0, we will write Bn(x) for the open ball of radius n
starting in x. For example, B0(x) = ∅ and B1(x) = {x} for all x ∈ V .

Let µ = (µn)n∈N0 be a probability vector and denote by (Yx)x∈V a family
of i.i.d. random variables, which satisfies P[Yx = n] = µn for all n ≥ 0. In our
interpretation, the random variable Yx will represent the range of the rumor,
which starts to spread from the vertex x ∈ V . More precisely, for all x ∈ V ,
the rumor invented in x spreads to all vertices in BYx(x). Overall, the set of
all vertices, which are influenced by at least one rumor, is given by

Vµ :=
⋃
x∈V

BYx(x).

In Chapter 3, we will study the properties of the random set Vµ for a few
specific choices of G, under the assumption µ0 ∈ (0, 1). Mainly, we will investi-
gate whether the set V \Vµ is finite almost surely. Interestingly, in most of our
cases, this question is related to the limit graph G∞ of a time-homogeneous
growth model. Let us explain this connection.

To simplify our arguments, let n ≥ 2 be a natural number and assume
that the graph G = (V,E) is the infinite directed n-ary tree Dn. Let ∅ denote
the unique root in G, which satisfies d(∅, y) <∞ for all y ∈ V .

Now, we recursively define a time-homogeneous growth process (G0,W0),
(G1,W1), . . . as follows. Initially, we set G0 := (V0, E0), where V0 := {∅} and
E0 := ∅, and W0 := {∅}. Let n ≥ 0 and assume that the pair (Gn,Wn) is
specified. Then, we set

Vn+1 := Vn ∪ {y ∈ V \ Vn | ∃x ∈ Wn : Yx > d(x, y)} ,
En+1 := En ∪ {(x, y) ∈ E | x, y ∈ Vn+1} ,
Wn+1 := Vn+1 \ Vn.

7



Chapter 1. Introduction

3

0

2

3

2

1

3

Figure 1.3: Illustration of the growth process if the underlying graph G is the
infinite directed binary tree. The vertices, which belong to the growth zone,
are depicted in red. The number next to a vertex x denotes the value of Yx.

Let G∞ = (V∞, E∞) denote the limit graph of the growth process (G0,W0),
(G1,W1), . . ., and observe that V∞ ⊆ Vµ ∪ {∅} almost surely since we have
Vn ⊆ Vµ ∪ {∅} almost surely for all n ≥ 0. Consequently, if the set V \ V∞
is finite, then so is the set V \ Vµ. Furthermore, by Kolmogorov’s 0-1 law,
if the sequence of graphs (Gn)n≥0 is strictly growing forever with a positive
probability, then Vµ contains an infinite path almost surely.

The main difference between our percolation model Vµ and the limit graph
V∞ of the growth process (Gn,Wn)n≥0 can be described as follows. In the
percolation model Vµ, every vertex y ∈ V covers itself for Yy ≥ 1. However,
in the limit graph V∞, the occurrence of every y ∈ V is solely determined by
all random variables Yx, for which 0 < d(x, y) <∞.

Observe that, for all n ≥ 2 and G = Dn, we can associate a multitype
branching process (Zn)n≥0 to our percolation model as follows. For every
y ∈ V with d(∅, y) = n ∈ N0, we identify the vertex y with an individual in
the n-th generation of (Zn)n≥0 if x ∈ Vµ for all x ∈ V with 0 ≤ d(x, y) < n.
In this case, the type of y will be defined by

zy := max {Yx − d(x, y) | x ∈ V, d(x, y) <∞} ∈ N.

8



1.4. Boolean Percolation on Directed Graphs

So, we arrive at branching process (Zn)n≥0, which starts with a single indivi-
dual of random type Y∅, provided Y∅ ≥ 1. In general, the type space is infinite.
Hence, we distinguish between global and local extinction of (Zn)n≥0. This
process dies out globally if the entire population vanishes at some moment
and becomes extinct locally if every type only occurs finitely often.

In Chapter 3, we will also discuss connections between our Boolean perco-
lation model and a rather classical Markov chain, which is sometimes called
random exchange process. Let (Yn)n≥0 be a sequence of i.i.d. random varia-
bles, which take values in N0 and satisfy P[Y0 = n] = µn for all n ≥ 0. Then,
we recursively define a random exchange process (Rn)n≥0 by

R0 := Y0, Rn+1 := max{Rn − 1, Yn+1}, n ≥ 0. (1.2)

By construction, the Markov chain (Rn)n≥0 has time-homogeneous transition
probabilities and is irreducible with respect to its state space X ⊆ N0. We
will write P = (Pm,k)m,k∈X for the transition matrix and ρ(P ) for the spectral
radius of (Rn)n≥0. More generally, if A = (Am,k)m,k≥1 is a finite quadratic
matrix, or a matrix with both countably infinite many columns and rows,
and A is nonnegative and irreducible, we define

ρ(A) := lim sup
n→∞

(
An

m,k

)1/n ∈ [0,∞],

and the value of ρ(A) does not depend on the choice of m, k ≥ 1.
Our main result of Chapter 3 reads as follows.

Theorem 3.3. Let n ≥ 2. Then, for any distribution µ, #V c
µ (Dn) = ∞

almost surely. Moreover, the following statements are equivalent.

(A) Almost surely, Vµ(Dn) contains a path of infinite length.

(B) With a positive probability, (Zm)m≥0 will not die out globally.

(C) With a positive probability, (Zm)m≥0 will not die out locally.

(D) ρ(M) > n−1, where M := (Pm,k)m,k∈X\{0}.

Finally, we want to point out that random exchange processes are closely
related to the class of autoregressive processes, which we will encounter in
our study of supercritical branching processes with emigration in Chapter 4.

9



Chapter 1. Introduction

This was observed by Zerner in [98, Section 1], and for the convenience of
the reader, we want to explain this connection in the following.

Let (Un)n≥0 denote a sequence of nonnegative random variables and (Tn)n≥1

a sequence of real-valued variables. Assume that (Un, Tn)n≥1 is i.i.d. and in-
dependent of U0. Then, in generalizing equation (1.2), we define a (random
decrement) exchange process (Rn)n≥0 by

R0 := U0, Rn+1 := max{Rn − Tn+1, Un+1}, n ≥ 0. (1.3)

Again, the process (Rn)n≥0 is a Markov chain with time-homogeneous tran-
sition probabilities. Formally, to arrive at equation (1.2), we may set Tn := 1
for all n ≥ 1 and Un := Yn for all n ≥ 0.

Now, we consider the process (Mn)n≥0 defined by Mn := eRn , n ≥ 0.
Moreover, set An := e−Tn and Bn := eUn for all n ≥ 1. Then, from equation
(1.3), we can deduce the recurrence relation

Mn+1 = max{eRn−Tn+1 , eUn+1} = max{An+1Mn, Bn+1}, n ≥ 0. (1.4)

In particular, (Mn)n≥0 is a time-homogeneous Markov process, and we refer
to it as a max-autoregressive process. For example, by induction, we can
verify the formula

Mn = max
m=0,...,n

An · · ·Am+1Bm, n ≥ 0.

By replacing the maximum in (1.4) with a sum, we arrive at the Markov
process (Xn)n≥0, which is given by X0 := M0 and

Xn+1 := An+1Xn +Bn+1, n ≥ 0. (1.5)

This Markov chain (Xn)n≥0 is called a (random coefficient) first-order auto-
regressive process, and the recurrence relation (1.5) is the so-called random
difference equation. Similar as for (Mn)n≥0, we obtain the representation

Xn =
n∑

m=0

An · · ·Am+1Bm, n ≥ 0.

Observe that, due to the definition of the sequence (An, Bn)n≥1, these random
variables and the process (Xn)n≥0 only attain nonnegative values. However, in
general, one might also consider autoregressive processes, for which this con-
dition is not satisfied. While autoregressive and max-autoregressive processes
differ from each other through their definition, as mentioned by Zerner in [98,
Comments after Proposition 1.1], in the nonnegative case, one might expect
that they behave similarly if the involved distributions are heavy-tailed.

10



1.5. Galton-Watson Branching Processes

1.5 Galton-Watson Branching Processes

Branching processes are a class of stochastic processes, which describe how
the size of populations varies over time. The main assumption is that indivi-
duals independently of each other give birth to a random number of children.
While there are many different models, partly in continuous time or with a
continuous state-space, we will concentrate on a specific version of the clas-
sical Galton-Watson branching process. More precisely, we let time evolve
in discrete steps n = 0, 1, 2, . . ., and assume that there is one underlying
probability distribution on N0, which characterizes the random number of
children of each individual. Between two consecutive generations, each indi-
vidual reproduces and dies, and we allow the occurrence of an emigration
event. The sizes of these emigration events, sometimes called catastrophes,
are assumed to be i.i.d. with respect to time. If at some moment, the number
of migrants exceeds the population size, the population will become extinct.

If the emigration component is absent, we recover the classical Galton-
Watson process. In this case, it is well-known that, unless each individual
almost surely gives birth to exactly one child, the population survives forever
with a positive probability if and only if the process is supercritical, i.e., the
expected number of children of each individual is greater than one.

In Chapter 4, we will study the long-term behavior of supercritical bran-
ching process with emigration if the mean offspring of each individual is
finite. Due to the presence of the emigration component, the population may
become extinct almost surely. We will present various results on the extinc-
tion probabilities of these branching processes and also characterize how fast
these processes grow if they do not die out eventually.

In our study, we allow that, between two consecutive generations, the
reproduction behavior of the individuals and the number of subsequent emi-
grants depend on each other. However, we restrict ourselves to processes
with time-homogeneous transition probabilities. Furthermore, we suppose
that neither reproduction nor emigration dominates each other, i.e., the po-
pulation may become arbitrarily large, but, at the same time, irrespective of
the population size, the process may still become extinct in the future.

As for many versions of the Galton-Watson branching process, we ar-
rive at a representation in the form of a time-homogeneous growth model
(G0,W0), (G1,W1), . . ., by considering the genealogical tree of the populati-
on. The initial graph G0 = (V0, E0) consists of finitely many, deterministic,

11
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isolated vertices, and W0 := V0. Let n ≥ 0 and assume the pair (Gn,Wn)
is defined. To form Gn+1 = (Vn+1, En+1), according to the reproduction dis-
tribution, independently, we add to each vertex in Wn a random number of
children. Then, for example, uniformly in the set of all new vertices, we dele-
te as many vertices as specified by the emigration event. This gives us Vn+1.
The edges, which we subsequently add to get En+1, start in Wn and connect
each parent with all of its children, which have survived the emigration event.
Finally, the new growth zone is Wn+1 := Vn+1 \ Vn.

Figure 1.4: Illustration of a Galton-Watson tree, which starts from a single
individual. The vertices of the growth zone are depicted in red.

Formally, for all n ≥ 0, we may define the size of the n-th generation
in our branching process by Zn := #Wn. Throughout Chapter 4, we will
assume that λ ∈ (1,∞) denotes the mean number of children of an individual.
Besides, we assume that ξ and Y are random variables, which take values in
N0 and represent the offspring distribution of a single individual respectively
the strength of an emigration event between two consecutive generations.
The extinction time of (Zn)n≥0 will be denoted by τ and set equal to +∞ if
the process survives forever.

Arguably the most interesting result of Chapter 4 is the following limit
theorem, which relates the extinction probabilities of (Zn)n≥0 to the strength
of the emigration component Y as the initial population size Z0 = k tends
to infinity.

12
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Theorem 4.4. Assume P[Y > n] is regularly varying for n→∞ with index
α ∈ (0,∞). Then, for all N ∈ Z≥2 ∪ {∞},

lim sup
k→∞

P[τ < N | Z0 = k] P[Y > k]−1 ≤
N−1∑
l=1

λ−αl.

Furthermore, if all exponential moments of ξ are finite, then

lim
k→∞

P[τ < N | Z0 = k] P[Y > k]−1 =
N−1∑
l=1

λ−αl.

Our study of supercritical branching processes with emigration, as well
as many of our results, are strongly motivated by an observation, which
links this branching process model to subcritical autoregressive processes.
More precisely, in Section 4.3, we deduce a duality relation between these
processes in the sense of Siegmund, compare [89], under the assumption that
the number of children of each individual is almost surely constant. For the
convenience of the reader, we, therefore, want to give a brief description of
this duality concept at this point, but without aiming at full generality.

Assume X = (Xn)n≥0 and Y = (Yn)n≥0 are Markov processes with time-
homogeneous transition probabilities and suppose that the state-space of
both processes is [0,∞). Then, with a slight abuse of notation, we say that
X and Y are Siegmund dual if, for all 0 ≤ a, b <∞ and n ∈ N0,

P[Xn ≥ a | X0 = b] = P[Yn ≤ b | Y0 = a]. (1.6)

Observe that, by inserting a = 0, in order for this condition to be satisfied,
it is necessary that the process Y is almost surely absorbed at 0. Obviously,
this assertion is satisfied for our branching process (Zn)n≥0. As we only allow
emigration, but no immigration into the population, the process (Zn)n≥0

cannot be revived upon extinction.
Furthermore, if the duality condition (1.6) is satisfied, by inserting b = 0,

we can relate the probability of eventual absorption of Y in 0 given Y0 = a to
the behavior of the transition probability P[Xn ≥ a | X0 = 0] for n→∞. If
the process X is positive recurrent, under suitable conditions, we may expect
that these probabilities converge towards a stationary solution of X, and thus
have a positive limit, provided a is large enough.

13



Article 1

On the Growth of a Ballistic
Deposition Model on Finite Graphs

Georg Braun

Abstract. We revisit a ballistic deposition process introduced by
Atar et al. in [4]. Let G = (V,E) be a finite connected graph and
choose independently and uniformly vertices in G. If a vertex x ∈ V
gets chosen and the previous height configuration is given by h =
(hy)y∈V ∈ NV

0 , the height hx is replaced with

h̃x := 1 + max
y∈[x]

hy.

For different underlying graphs G, we determine the asymptotic
growth parameter γ(G) of this model. We also present a central
limit theorem for the height fluctuations around γ(G) and a graph-
theoretic reinterpretation of an inequality obtained in [4].

Keywords. ballistic deposition process; random surface; stochastic growth;
random sequential adsorption.

2020 Mathematics Subject Classification. 60C05, 60J10.

2.1 Introduction

Let us start with an informal description of our random growth model.

In a city, there is an exclusive group of skyscraper owners. Once in a whi-
le, an owner decides to heighten his building until it is strictly higher than the
skyscrapers of the group members he disrespects. If his building already achie-
ves this, it will be raised by only one floor. How fast will the skyscrapers grow?
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2.1. Introduction

Ballistic growth models are typically studied on infinite graphs, when they
are believed to belong to the KPZ universality class and, in two dimensions,
exhibit fluctuations of the order t1/3 as the time t goes to infinity (compare,
for example, [80], [22], and [7]). However, exact results of this kind have been
proven only for a few specific models (see, for example, [14] and [13]).

In this article, we restrict our attention to the case of finite underlying
graphs and study the asymptotic growth of a specific deposition model. We
obtain formulas for the asymptotic growth rate in some explicitly solvable
cases and prove a classical central limit theorem for the fluctuations around
this growth rate, which holds for arbitrary graphs. We also present an upper
bound for the asymptotic growth parameter in terms of the spectral radius
of the underlying graph. The proof of this inequality relies on the methods
used by Atar, Athreya, and Kang in [4].

Let G = (V,E) be a connected undirected graph with a finite non-empty
vertex set V and a non-empty edge set E ⊆ {{x, y} | x, y ∈ V, x ̸= y}. The
(closed) neighborhood of a vertex x ∈ V is defined by

[x] := {x} ∪ {y ∈ V | {x, y} ∈ E} .

As time goes by, we successively choose independently and uniformly vertices
in the graph G. If a vertex x ∈ V gets chosen and the previous height of the
process is given by (hy)y∈V ∈ NV

0 , the height hx of x will be replaced by

h̃x := 1 + max
y∈[x]

hy. (2.1)

This rule defines the so-called next nearest neighbor ballistic deposition pro-
cess. In our study of this model, it will be helpful to distinguish between the
following two closely related versions of this process.

On the one hand, we can let the time evolve in discrete steps n = 1, 2, . . .
and always choose exactly one vertex at these time points. Then, the height
of a vertex x ∈ V after n steps will be denoted by Hx,n, and the ballistic
deposition process is H := (Hn)n∈N0 , where Hn := (Hx,n)x∈V , n ≥ 0.

On the other hand, we may choose a family (ξx)x∈V of independent Pois-
son processes and change the height in a vertex x ∈ V at time t ∈ (0,∞)
if and only if the corresponding Poisson process ξx jumps at time t. Unless
explicitly stated otherwise, we will assume that all Poisson processes have
unit intensity. We will write H̃x,t for the height of x ∈ V at time t ∈ [0,∞)
and define H̃t := (H̃x,t)x∈V for t ∈ [0,∞), as well as H̃ := (H̃t)t≥0.
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Article 1. Ballistic Deposition on Finite Graphs

By construction, both H and H̃ are time-homogeneous Markov processes.
Usually, we will assume the initial condition Hx,0 = H̃x,0 = 0 for all x ∈ V ,
which ensures that both processes have the same countable state-space.

In [4], Atar, Athreya, and Kang considered the specific case of a circular
graph G = Cn, which can be defined to have the vertex set {1, . . . , n} and
the edge set {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}}. Then, as explained in [4,
Section 1], Kingman’s subadditive ergodic theorem yields the existence of the
almost sure limit

γ(Cn) := lim
t→∞

t−1max
x∈V

H̃x,t = lim
t→∞

t−1min
x∈V

H̃x,t ∈ (0,∞). (2.2)

In fact, these arguments apply in the same way to a general graph G, and
hence we always define the growth parameter γ(G) by the right-hand side
of equation (2.2). The asymptotic growth of our discrete-time deposition
process is related to γ(G) via

γ(G) = #V lim
n→∞

n−1max
x∈V

Hx,n = #V lim
n→∞

n−1min
x∈V

Hx,n, (2.3)

and these equations again hold almost surely. So, for studying the parameter
γ(G), we can switch from continuous-time to discrete-time or vice versa.

Let us now briefly summarize previous literature results on our model
and mention related works. The main result of [4] is the inequality

3.21 < γ(Cn) < 5.35 for all n ≥ 5. (2.4)

The authors of [4] also claimed that this inequality is satisfied for n = 4.
However, as we will verify in Section 2.4,

γ(C4) = 2 +
2√
3
≈ 3.1547.

This reveals that a minor calculation error has occurred in [4] for n = 4.
Nevertheless, the inequality (2.4) and its proof given in [4] are correct.

In [28], Fleurke, Formentin, and Külske assumed that the vertices of the
graph G are not chosen uniformly, but according to a fixed Markov chain
with state-space V . They proved the existence of the limit γ(G) in this more
general setting and also established a sub-Gaussian concentration inequality
for the maximal height.

In [70], Mountford and Sudbury studied homogeneous isotropic infinite
graphs and related the growth parameter γ(G) to the roughness of the surface.
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In [66], Mansour, Rastegar, and Roitershtein discussed combinatorial pro-
blems related to our model in the case of G = Cn and conjectured that

lim
n→∞

γ(Cn) = 4.

In [79], Penrose and Yukich verified a law of large numbers and a central limit
theorem for the total height of all accepted particles in a ballistic deposition
process on Rd. This result is based on insights on marked Poisson processes,
which also yields information for other random sequential adsorption models.

In [86], Seppäläinen studied a ballistic deposition model on Zn and proved
the existence of a limiting shape, which is related to Eden’s growth model
respectively first passage percolation.

For convenience, let us now briefly explain how this article is organized.
In Section 2.2, we introduce various relevant graph theoretic concepts and

notations. Then, in Section 2.3, we mainly concentrate on the class of star
graphs. We also present an example of non-isomorphic graphs G and H with
γ(G) = γ(H). In Section 2.4, a rather simple probabilistic approach is used
to compute the growth parameter γ(G) in a specific setting. Subsequently,
in Section 2.5, we deduce a central limit theorem for the height fluctuations
around γ(G). Our proof, similar to [28], relies on a suitable renewal structure
in the surface process of our deposition process. In Section 2.6, we give an
upper bound for γ(G) by using spectral graph theory. This result is based on
some modifications of the arguments used in [4]. Finally, in Section 2.7, we
briefly study a ballistic growth model, which arises through alteration of the
deposition rule (2.1).

2.2 Graph-theoretic Preliminaries

The degree of a vertex x ∈ V is deg(x) := #[x]− 1, and the maximal degree
in G is ∆G := maxx∈V deg(x). The graph G is regular if deg(x) = deg(y) for
all x, y ∈ V . A vertex x ∈ V is called dominant in the graph G if [x] = V .

A path of length n in G is a tuple (x1, . . . , xn+1) ∈ V n+1 with {xi, xi+1} ∈
E for all i = 1, . . . , n. If, in addition, x1 = xn+1, n ≥ 1, and xi ̸= xj for all
i, j = 1, . . . , n with i ̸= j, we will call (x1, . . . , xn+1) a cycle in G. The length
of the shortest cycle of a graph G will be denoted by girth(G). If there is no
cycle in G, we set girth(G) := ∞. We define d(x, x) := 0 for all x ∈ V , and,
for vertices x ̸= y, we define d(x, y) to be the length of the shortest path
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from x to y. Note that d is a metric on V . A permutation (x1, . . . , x#V ) of V
will be called non-decreasing if the function k 7→ d(x1, xk) is non-decreasing.

The adjacency matrix of G is denoted by A(G). For all (x, y) ∈ V 2, the
corresponding entry of the matrix A(G) is one, if {x, y} ∈ E, and zero other-
wise. In particular, A(G) is a quadratic matrix of dimension #V . Moreover,
for all n ≥ 1, the entries of A(G)n count the number of paths of length n
between two vertices.

Given two graphs G = (V,E) and G ′ = (V ′, E ′), we say that G is a
subgraph of G ′ if both V ⊆ V ′ and E ⊆ E ′.

Let n ≥ 1. We will write Sn to denote a star graph with n vertices.
Formally, we choose {1, . . . , n} and {{1, 2}, . . . , {1, n}} as vertex, respectively
edge set. Furthermore, we denote by Kn a complete graph with n vertices, in
which there is an edge between any two different vertices. Observe that, for
all n ≥ 1, γ(Kn) = n.

If n ≥ 2 is even, we denote by Rn a regular graph, which consists of
n vertices and satisfies ∆Rn = n − 2. Note that, by these conditions, the
graph Rn is determined uniquely up to an isomorphism. For another graph
R′

n with these properties, choose a vertex x in Rn and a vertex x′ in R′
n

and set φ(x) := x′. Then, by assumption, there are unique vertices y in Rn

and y′ in R′
n, which are not connected to x respectively x′. Set φ(y) := y′.

Then, again choose new vertices in Rn and R′
n and continue the described

procedure. After finitely many steps, we arrive at a graph isomorphism φ
between Rn and R′

n.
Formally, we can assume that the vertex and edge set of Rn is given by

{1, . . . , n} and {{1, 2}, . . . , {1, n−1}, {2, 3}, . . . , {2, n−2}, {2, n}, {3, 4}, . . .}.

S3
S5 K4 C4 ∼= R4 R6

Figure 2.1: Some of the graphs we will study in this article.

By definition of our deposition model, each vertex x interacts with the
growth of the height process only via its (closed) neighborhood [x]. Therefore,
we call vertices x, y ∈ V equivalent in G if [x] = [y]. The graph, which arises
from G by identifying all equivalent vertices, will be denoted by Ĝ and called
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an irreducible graph. Observe that the asymptotic growth in our model does
not change if we replace G by Ĝ and modify the intensity of the underlying
Poisson processes accordingly. More precisely, the intensity of the Poisson
process associated with a vertex x̂ of Ĝ has to equal the number of vertices
in G that have been contracted into x̂.

Also, note that we can reverse this transformation. Assume we are given a
graph with positive integer intensities for all vertices. Then, we can stepwise
choose the vertices with no unit intensity, define a new adjacent vertex with
unit intensity and the same closed neighborhood, and reduce the intensity of
the previously chosen vertex by one. We will use the term vertex cloning for
this procedure. Again note that the order in which the vertices are chosen
does not affect the resulting graph up to an isomorphism.

Example 2.1. For the butterfly graph B, we obtain the following.

G = B

←→ 1 22

Ĝ = S3

Figure 2.2: The height in our ballistic deposition process on the butterfly
graph B is equivalent to the height of a modified deposition model on S3.

All in all, for studying the asymptotic growth in our ballistic deposition
model, the following three settings are essentially the same.

(i) Arbitrary graphs G with unit intensities.
(ii) Arbitrary graphs G with positive integer intensities.

(iii) Irreducible graphs Ĝ with positive integer intensities.

Observe that, when working in the setting (ii), the asymptotic growth rate
changes linearly if we multiply all intensities by a fixed constant. Translating
this into our original setting (i) therefore yields the following construction.

Construction 2.2. For any graph G and n ∈ N, there is a graph H with

γ(H) = n γ(G).

Moreover, we can construct such a graph H by starting with G and then
cloning each vertex exactly n− 1 times.
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Example 2.3. Let us illustrate Construction 2.2 for n = 2 and G = S3.

−→ −→ −→

Figure 2.3: Successively, the vertices of S3 are cloned. Initially, we start with
the dominant vertex, but the order in this procedure does not influence the
resulting graph H up to an isomorphism. We know γ(H) = 2γ(S3).

2.3 On the Sequence of Star Graphs

Let n ≥ 3 and consider the graph Sn. Then, both in discrete and in conti-
nuous time, by stopping our deposition process at the moments at which the
height of the dominant vertex is increased, we arrive at a process with i.i.d.
increments. Hence, we can express γ(Sn) by identifying both the expectation
of these increments and the mean waiting time between consecutive stops.
In discrete-time, the height of the dominant vertex increases after a geome-
trically distributed time waiting time of mean n. From the deposition rule
(2.1) and equation (2.3), we therefore obtain

γ(Sn) =
∞∑
k=0

1

n

(
1− 1

n

)k ∑
r1,...,rn−1≥0

r1+...+rn−1=k

1

(n− 1)k

(
k

r1, . . . , rn−1

) [
1 + max

j
rj

]
,

which can be simplified into

γ(Sn) = 1 +
1

n

∞∑
k=1

an−1,k

nk
, an,k :=

∑
r1,...,rn≥0

r1+...+rn=k

(
k

r1, . . . , rn

)
max

j=1,...,n
rj. (2.5)

In continuous time, the height of the dominant vertex increases after an
exponentially distributed time W of mean one. By using (2.2), we get

γ(Sn) = 1 + E
[

max
j=1,...,n−1

Uj,W

]
, (2.6)

where we assume, for all j ∈ N and λ ∈ (0,∞), that the random variable
Uj,λ is Poisson distributed with mean λ. Moreover, here we suppose that the
family (Uj,λ)j∈N,λ∈(0,∞) is independent itself and independent of W .
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Interestingly, we can determine the exact value of γ(S3) by working di-
rectly with equation (2.5). For all k ≥ 0, we have

a2,2k =
2k∑
l=0

(
2k

l

)
max {l, 2k − l} = 2

2k∑
l=k+1

(
2k

l

)
l + k

(
2k

k

)

= 4k
2k−1∑
l=k

(
2k − 1

l

)
+ k

(
2k

k

)
= k22k + k

(
2k

k

)
.

In the same way, we obtain

a2,2k+1 = 2(2k + 1)
2k∑
l=k

(
2k

k

)
= (2k + 1) 22k + (2k + 1)

(
2k

k

)
.

These two formulas allow us to directly verify the recurrence relation

a2,k = 2
k

k − 1
a2,k−1 + 4

k − 3

k − 2
a2,k−2 − 8 a2,k−3 for all k ≥ 3.

By neglecting the last term in this recursion, or by Stirling’s approximation,
we can verify that the generating function g(s) :=

∑∞
k=3

a2,k
k
sk is finite for

all s ∈ (0, 1) small enough. Moreover, by using the recurrence relation and
inserting a2,0 = 0, a2,1 = 2 and a2,3 = 6, it follows that the generating
function g = g(s) satisfies the differential equation

s·g′(s) = 2s
{
(s · g(s))′ + 9s2

}
+4s4

{
(s−1 · g(s))′ + 3

}
−8s4 {g′(s) + 2 + 6s} .

Using the initial condition g(0) = 0, we obtain, for all s ∈ (0, 1) small enough,

g(s) =
2s2(1 + 6s)− 1 +

√
1− 4s2

2− 4s
.

By monotone convergence, this formula for g(s) is true for all s ∈ [0, 1/2),
and by equation (2.5), we can deduce

γ(S3) = 1 +
1

3

(
2

3
+

6

9

)
+

1

9
· g′
(
1

3

)
= 2 +

1√
5
.
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Remarks. 1. The sequence (a2,k)k≥1 is mentioned in the OEIS under A230137.

2. The series representation (2.5) is hard to work with, in general, but at
least allows rather precise calculations. We obtain, for example,

γ(S4) = 2.72446357391224888 . . . .

We could not find an integer coefficient polynomial, which might have this
value as a root. Hence, we conjecture that γ(S4) is transcendental.

Proposition 2.4. There are non-isomorphic graphs G, H with γ(G) = γ(H).

Proof. For the butterfly graph B, we find by a similar calculation

γ(B) = 1 +
1

5

∞∑
k=1

a2,k

(
2

5

)k

= 1 +
1

5

(
4

5
+

24

25
+

2

5
· g′
(
2

5

))
=

11

3
.

Consequently, by applying Construction 2.2 with n = 3 to B, we obtain a
graph H with γ(H) = 11 = γ(K11), which is not isomorphic to K11.

We have the following combinatorial interpretation for equation (2.5).
Assume there are n bins and m balls. Then we throw the balls independently
of each other in one uniformly chosen bin. Denote by Zn,m the number of
balls in the maximally loaded bin and let Yn be a random variable, which is
independent of (Zn,m)m≥1 and geometrically distributed with mean n. Then,
equation (2.5) reads as

γ(Sn) = 1 + E
[
Zn−1,Yn−1

]
.

Properties of the random variable Zn,m for n, m → ∞ and similar models
have been studied by various authors, see, for example, [25], [82], and [69]. If
the ratio λ := m/n is assumed to be constant for n → ∞, many properties
of Zn,m can be deduced from the Poisson approximation. In [3, Theorem 1],
Anderson proved that, for any λ ∈ (0,∞), there exists an integer sequence
(In)n∈N satisfying

lim
n→∞

P
[

max
j=1,...,n

Uj,λ ∈ {In, In + 1}
]
= 1.

For two sequences (an)n≥1 and (bn)n≥1, we write an ∼ bn for n→∞ to denote
limn→∞ anb

−1
n = 1. In [59], Kimber proved that, for all λ ∈ (0,∞), one can
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2.3. On the Sequence of Star Graphs

choose the sequence (In)n≥0 so that In ∼ log(n){log(log(n))}−1 for n → ∞,
and furthermore

1− P
[

max
j=1,...,n

Uj,λ ∈ {In, In + 1}
]
∼
(
λ log(log(n))

log(n)

)1+Bn

for n→∞,

where (Bn)n≥1 is a sequence, which is dense in [−1/2, 1/2] and, in general,
may depend on λ. In [34], Gonnet used the Poisson approximation to study
the asymptotic expectation value of Zn,m for a constant ratio λ = m/n as
n, m→∞. In [34, Section 4], he verified that, for fixed λ ∈ (0,∞),

fn(λ) := E
[
max

j=1,...,n
Uj,λ

]
∼ log(n)

log(log(n))
for n→∞. (2.7)

Arguably, this result is counterintuitive, since due to the convolution property
of the Poisson distribution, fn(λ) is strictly increasing in λ and one could
expect a linear dependency with respect to λ in (2.7). But, for λ1, λ2 ∈ (0,∞)
with λ1 < λ2, we can verify fn(λ1) ∼ fn(λ2) for n→∞ as follows.

For example, by [60, Proposition 1], for any β > 1, there is N ∈ N with

P[U1,λ1 > n] > e−λ1
λn+1
1

(n+ 1)!
> β e−λ2

λ
⌊βn+1⌋
2

⌊βn+ 1⌋!
≥ P[U1,λ2 > βn] for all n ≥ N.

Consequently, by stochastic dominance, fn(λ2) ≤ N +βfn(λ1) for all n ≥ N ,
provided N ∈ N is large enough. As fn(λ1) → ∞ for n → ∞, by letting
β → 1, we can indeed deduce fn(λ1) ∼ fn(λ2) as n→∞.

Proposition 2.5.

γ(Sn) ∼
log(n)

log(log(n))
as n→∞.

In particular, γ(Sn)→∞ for n→∞.

Proof. The convolution property of the Poisson distribution implies that the
functions fn = fn(λ), n ≥ 1, are both monotone increasing and subadditive.

Let r ∈ (0,∞) and recall equation (2.6). Then, due to monotonicity,

γ(Sn) = 1 +

∫ ∞

0

e−λfn−1(λ) dλ ≥
∫ ∞

r

e−λfn−1(r) dλ = e−rfn−1(r).
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Now, apply (2.7) and let r → 0 to conclude

lim inf
n→∞

γ(Sn)
log(log(n))

log(n)
≥ 1.

On the other hand, for all r ∈ (0,∞), we have the estimate

γ(Sn) ≤ 1 +

∫ r

0

e−λfn−1(r) dλ+

∫ ∞

r

e−λfn−1(λ) dλ

= 1 +
(
1− e−r

)
fn−1(r) + e−r

∫ ∞

0

e−λfn−1(λ+ r) dλ.

Hence, by using the subadditivity of fn−1 and equation (2.6), we obtain

γ(Sn) ≤ 1 + fn−1(r) + e−r

∫ ∞

0

e−λfn−1(λ) dλ ≤ 1 + fn−1(r) + e−rγ(Sn).

By applying (2.7) and letting r →∞, we therefore conclude

lim sup
n→∞

γ(Sn)
log(log(n))

log(n)
≤ 1.

2.4 Calculation of γ(G) for Specific Graphs

Theorem 2.6. Let N ∈ N0, n, m ∈ N. Assume m is even, and N ≥ 1 in
the case of m = 2. Let G = (V,E) denote the graph, which arises from Rm

by executing the following procedure.

(i) Clone each vertex of Rm exactly n− 1 times.
(ii) Add exactly N new vertices x1, . . . , xN to V .
(iii) Add to E all edges of the form {xi, y}, where y ∈ V \ {xi}.

Note that #V = N + nm. Set κ := #V
2n

and τ := (
√
κ2 − 1 − κ + 1)−1.

Then,

γ(G) = #V − n2m

#V
τ

{
τ +

1

2κ

}−1

.

Proof. We define a stochastic process (∆n)n≥0 as follows. If at time n ≥ 0,
the height of one dominant vertex xj, j = 1, . . . , n, is maximal, then set
∆n := 0. Otherwise, there are at most two different vertices that share the
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2.4. Calculation of γ(G) for Specific Graphs

maximal height. If there are two different vertices whose height is maximal,
again ∆n := 0. Finally, assume x ∈ V is the unique vertex of maximal
height and not dominant in G. Then, choose a vertex y ∈ V , whose height is
maximal under all vertices, which are not equivalent to x. Then, we define
∆n := Hx,n −Hy,n.

It is not hard to see that the process (∆n)n≥0 is a time-homogeneous
Markov chain. Assume, for example, that ∆n = m for some n ∈ N and
m ≥ 3. Denote by x be the unique vertex of maximal height and by y the
vertex, whose height is increased in the next step. Then, we know ∆n+1 = 0
if y is dominant. If y is equivalent to x, we can conclude ∆n+1 = m + 1. If
x and y do not share an edge, we know ∆n+1 = m − 1 instead. Finally, if x
and y are connected by an edge, not equivalent, and y is not dominant in G,
then ∆n+1 = 1.

0 1 2 3 4 . . .

N
#V

nm
#V

n
#V

n
#V

n
#V

n
#V

N+n
#V

n(m−2)
#V

n(m−1)
#V

n
#V

n
#V

n
#V

N
#V

n(m−2)
#V

Figure 2.4: Transition probabilities of the Markov chain (∆n)n≥0.

The Markov chain (∆n)n≥0 is positive recurrent and we can calculate its
stationary solution Π = (Π(n))n≥0. From the recurrence relation

Π(n) =
1

2κ
(Π(n− 1) + Π(n+ 1)) for all n ≥ 2,

we deduce the representation

Π(n) = c1

(
κ−
√
κ2 − 1

)n−1

for all n ≥ 1,
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Article 1. Ballistic Deposition on Finite Graphs

where c1 ∈ (0,∞) is a fixed constant. Using the equation

Π(0) =
N

#V
+

Π(1)

2κ
=

N

#V
+

c1
2κ

,

as well as

Π(0) = 1−
∑
n≥1

Π(n) = 1− c1

∞∑
n=0

(
κ−
√
κ2 − 1

)n
= 1− c1τ, (2.8)

we can identify

c1 =

(
1− N

#V

){
τ +

1

2κ

}−1

=
nm

#V

{
τ +

1

2κ

}−1

. (2.9)

Observe that the transitions of (∆n)n≥0 yield information on the growth of
the maximal height in G. Each transition from a state k ̸= 1 to 0 implies that
the maximal height increases by one. The same also holds for all transitions
from a state k to k + 1 and all transitions from k ̸= 2 to 1. On the other
hand, we know that a transition from k ≥ 3 to k − 1 will not increase the
maximal height. For the transitions from 1 to 0 and the transition from 2 to
1, we do not know for sure whether the maximal height increases. However,
independent of the past, the conditional probability for this is N/(N + n)
respectively (m− 2)/(m− 1).

By applying Birkhoff’s ergodic theorem to the snake chain (∆n,∆n+1)n≥0

and using equation (2.3), we obtain the following expression for γ(G).

γ(G) = #V

(
Π(0) +

∑
n≥1

Π(n)
n

#V
+
∑
n≥2

Π(n)
N

#V
+
∑

1≤n ̸=2

Π(n)
n(m− 2)

#V

+Π(1)
N + n

#V

N

N + n
+Π(2)

n(m− 1)

#V

m− 2

m− 1

)

= #V

(
Π(0) +

∑
n≥1

Π(n)
N + n(m− 1)

#V

)
= #V − n (1− Π(0)) .

The claim now follows by inserting (2.8) and (2.9).
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2.5. A Central Limit Theorem around γ(G)

Example 2.7.

G

γ(G) 2 + 1√
5

2 + 2√
3

3 + 1√
3

11
3

(N, n,m) (1, 1, 2) (0, 1, 4) (2, 1, 2) (1, 2, 2)

G

γ(G) 3 + 3√
2 3 + 2

√
21
7

4 + 2√
5

4 + 3√
13

(N, n,m) (0, 1, 6) (1, 1, 4) (2, 2, 2) (1, 3, 2)

2.5 A Central Limit Theorem around γ(G)
In order to state the main result of this section, let us introduce some nota-
tion. We write Zn =⇒ Z for n → ∞ to denote convergence in distribution.
For σ2 ∈ [0,∞) we write N(0, σ2) for the centered normal distribution with
variance σ2. In the case of σ2 = 0, we identify this law with a Dirac measure.

Theorem 2.8. For any graph G = (V,E), there is σ2 = σ2(G) ∈ [0,∞) with

maxx∈V Hx,n − n γ(G)
#V

n1/2
=⇒ N(0, σ2) for n→∞.

The same central limit theorem with the same constant σ2 also holds if we
replace maxx∈V Hx,n with minx∈V Hx,n. Moreover,

σ2(G) = 0 if and only if G is isomorphic to K#V .

The results of this section are based on the study of the surface process
δ = (δn)n≥0, which is defined by

δn := (δx,n)x∈V , δx,n := Hx,n −min
y∈V

Hy,n. (2.10)
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Article 1. Ballistic Deposition on Finite Graphs

The process (δn)n≥0 is a time-homogeneous Markov chain, which can be seen
as follows. Define an equivalence relation on the state-space of (Hn)n≥0 by
identifying two different height vectors if and only if the height difference is
the same for all vertices. Then, the transition probabilities of (Hn)n≥0 from
one equivalence class to another do not depend on the representative of the
former one. So, we obtain a Markov chain on the set of equivalence classes,
which can be identified with (δn)n≥0 after describing each equivalence class
by its unique normalized representative.

By modifying the start height H0 respectively the initial state δ0, we can
ensure that the Markov chain (δn)n≥0 is irreducible and has the state-space

S :=
{
(hx)x∈V ∈ NV

0

∣∣ hx = 0 for a x ∈ V and hy ̸= hz for all {y, z} ∈ E
}
.

We can describe the transition probabilities of (δn)n≥0 in the following way.
Let h = (hx)x∈V ∈ S, y ∈ V , and set my := min{hx | x ̸= y}. Then, we know

P
[
δn+1 = h̃ | δn = h

]
=

1

#V
, h̃x :=


hx −my, x ̸= y

1 + max
z∈[y]

hz −my, x = y
. (2.11)

Observe that, for the transition from h to h̃, there is a unique vertex x ∈ V
with h̃x > hx, and this vertex is given by x = y. In particular, given an h,
the state h̃ in (2.11) is uniquely determined by the choice of y ∈ V and vice
versa, and all non-zero transition probabilities of (δn)n≥0 are given by (2.11).

We will prove Theorem 2.8 by applying renewal arguments to (δn)n≥0 and
making use of a random index central limit theorem. For fixed h ∈ S, we
define the sequence of hitting times of h by

τh1 := inf {n ≥ 0 | δn = h} , τhk+1 := inf
{
n > τhk | δn = h

}
, k ∈ N.

Before starting to analyze the Markov chain (δn)n≥0 formally, let us briefly
mention a simple but rather important observation. Denote by S0 ⊆ S the
set of all h′ ∈ S with maxx∈V h′

x ≤ #V . Let h ∈ S and (x1, . . . , x#V ) be a
non-decreasing permutation of V . Moreover, assume that hx1 = maxy∈V hy.
Then, if δn = h for some n ≥ 0, and in the following steps, the height of the
vertices x1, . . . , x#V are increased one after the other exactly one time per
vertex, it follows that δn+#V ∈ S0. So, we say that (x1, . . . , x#V ) resets h.

Lemma 2.9. Fix G = (V,E). Then, for all h ∈ S, there is an n ∈ N with

P
[
δn = h | δ0 = h̃

]
≥ (#V )−n for all h̃ ∈ S. (2.12)
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2.5. A Central Limit Theorem around γ(G)

Consequently, each random variable τh1 , h ∈ S, has an exponential moment,
which is finite for any initial distribution on S. In particular, the Markov
chain (δn)n≥0 is positive recurrent and has a stationary solution π.

Proof. Let h ∈ S. Since S0 is a finite subset of S, there is an n0 ∈ N such
that, for all h′ ∈ S0, the chain (δn)n≥0 can go from h′ to h in n(h′) ≤ n0 steps.
Set n := n0+#V . Let h̃ ∈ S be given. Choose x1 ∈ V with hx1 = maxy∈V hy

and a non-decreasing permutation (x1, . . . , x#V ) of V . Denote by h′ ∈ S0 the
unique element, which arises when h̃ is reset according to (x1, . . . , x#V ) and
m := n0−n(h′) ∈ N0. Now assume that δ0 = h̃ and, in the first m steps, only
the height of x1 increases. Then we arrive at a state, which again can be reset
according to (x1, . . . , x#V ). Hence, we can go from h̃ to h′ in m+#V steps,
and as (δn)n≥0 may go from h′ to h in n(h′) steps, the claim follows.

The following lemma ensures that the Markov chain (δn)n≥0 contains
enough information about the growth of the process (Hn)n≥0.

Lemma 2.10. There are function g1 : S×S → NV
0 , g2 : S×S → {0, 1} with

g1(δn, δn+1) = Hn+1 −Hn and

g2(δn, δn+1) = max
x∈V

Hx,n+1 −max
y∈V

Hy,n almost surely.

Proof. The main step is to define g1(h, h̃), as, given g1, we can construct g2,
for example, by the formula

g2(h, h̃) :=
∑
x∈V

1(g1(h,h̃))x>0 1max
y∈[x]

hy=max
z∈V

hz .

For the definition of g1, recall the description of the transition probabilities
of (δn)n≥0 given above in (2.11). Each transition of (δn)n≥0 corresponds to an
increase of the value of one uniquely vertex, and clearly, this also holds for
all transitions of our deposition process (Hn)n≥0. By recalling our definition
of (δn)n≥0 in (2.10), it is clear that these two vertices are always the same.
Now, let h, h̃ ∈ S, and y ∈ V be as in (2.11). Then, we can define g1 by

(
g1(h, h̃)

)
x
:=


1 + max

z∈[x]
hz − hx, x = y

0, x ̸= y.
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Our last ingredient for the proof of Theorem 2.8 is a rather simple ine-
quality. For its proof, we use the counterpart of the process (δn)n≥0 in our
continuous-time deposition process. For all t ∈ [0,∞), we define

δ̃t := (δ̃x,t)x∈V , where δ̃x,t := H̃x,t −min
y∈V

H̃y,t, x ∈ V.

Roughly speaking, all previously mentioned arguments and results for (δn)n≥0

also hold for (δ̃t)t≥0 with only minor changes.

Proposition 2.11. Let G = (V,E), G ′ = (V ′, E ′) be two given graphs and
assume that G is a subgraph of G ′. Then γ(G) ≤ γ(G ′), and

γ(G) = γ(G ′) if and only if G = G ′.

Proof. We couple our continuous-time ballistic deposition processes on G
and G ′ by assuming that they share the same underlying Poisson processes
(ξx)x∈V . This directly yields the inequality γ(G) ≤ γ(G ′).

Now assume G ≠ G ′, and let us prove γ(G) < γ(G ′). For this purpose, note
that, by induction over #V , it suffices to consider the following two cases.

(i) V ′ = V and E ′ = E ∪ {{x, y}} for a suitable choice of x, y ∈ V .

(ii) V ′ = V ∪ {x′} for a x′ /∈ V and E ′ = E ∪ {{x, x′}} for a x ∈ V .

It turns out that both cases can be treated roughly in the same way, and
we, therefore, start and mainly concentrate on the case (ii).

To verify (ii), we construct a new growth model on G ′, which evolves asym-
ptotically faster than our deposition model on G and at most as fast as the
deposition process on G ′. For this, let ξx′ be the Poisson process related to the
vertex x′ in the latter one. Moreover, let (δ̃t)t≥0 be the time-continuous sur-
face process of the ballistic deposition on G. Fix h ∈ S with hx = maxy∈V hy

and a non-decreasing permutation (x1, . . . , x#V ) with x1 = x.
Our new growth process on G ′ arises by modifying the deposition rule

(2.1). We will take the possible growth events of the vertex x′ as well as
the influence of x′ on its neighbor x only into account if the current height
fluctuations behave in a specific way. More precisely, the influence of x′ at a
point in time is only taken into account if both the Markov chain (δ̃t)t≥0 is in
the state h, and then, in the following, the first Poisson process, who jumps,
is ξx′ , followed by a jump of ξx1 , ξx2 , and so on until ξx#V

has jumped. After
such an event has occurred, we again neglect the possible growth of x′ or its
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2.5. A Central Limit Theorem around γ(G)

influence on the growth of x = x1 until the next time both (δ̃t)t≥0 is in state
h and, subsequently, the Poisson processes behave accordingly.

By definition, it is clear that the height of our new growth process is
always smaller than in our original ballistic deposition process on G ′ since,
in the latter, the influence of the vertex x′ is always taken into account.

On the other hand, the maximal height in our new process always exceeds
the maximal height of our ballistic deposition on G, since, in this process,
the vertex x′ is always neglected. However, by construction, we know that
the maximal height of our new process at a time t ∈ (0,∞) is always at
least as big as the maximal height in our ballistic deposition on G plus the
number of visits of (δ̃t)t≥0 in h up to time t, which have been followed by the
above-mentioned behavior of the underlying Poisson processes. Since (δ̃t)t≥0

is a positive recurrent Markov chain and irreducible on S, Birkhoff’s ergodic
theorem yields that this second contribution strictly increases the asymptotic
growth rate. Consequently, γ(G) < γ(G ′).

Case (i) can be treated roughly in the same way as (ii). Instead of taking
the growth of the vertex x′ and its influence on x into account only sometimes,
one now has to handle the influence of the edge {x, y} in a similar way.

Proof of Theorem 2.8. By Lemma 2.10, we have the representation

Rn := max
x∈V

Hx,n − n
γ(G)
#V

= max
x∈V

Hx,0 +
n∑

k=1

f(δk−1, δk), n ≥ 0, (2.13)

where f(h, h′) := g2(h, h
′) − γ(G)

#V
. Fix h ∈ S and assume H0 := δ0 := h.

Consider the sequence (Wn)n≥1 defined by

Wn := f
(
δτhn , δτhn+1

)
+ · · ·+ f

(
δτhn+1−1, δτhn+1

)
.

The random variables (Wn)n≥1 are i.i.d. by construction. Besides, since clearly
−1 ≤ f ≤ 1, Lemma 2.9 yields

0 ≤ σ̃2 := E
[
W 2

1

]
≤ E

[
(τh2 − τh1 )

2
]
<∞.

Set Kn := sup{k ∈ N | τhk ≤ n}. We will now verify the following statements.

A) n−1/2 RτhKn
=⇒ N(0, σ2) for n→∞, where σ2 := π(h) σ̃2.

B) n−1/2
∣∣∣Rn −RτhKn

∣∣∣ =⇒ 0 for n→∞.
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Once we have established A) and B), Slutsky’s theorem immediately gives

n−1/2Rn = n−1/2RτhKn
+ n−1/2

(
Rn −RτhKn

)
=⇒ N(0, σ2) for n→∞

and hence verifies the first claim of Theorem 2.8.

To prove A), note that by Kac’s theorem we know τhn ∼ π(h)−1n for
n→∞ almost surely and Kn ∼ π(h)n for n→∞. Moreover, we have

n−1/2RτhKn
= n−1/2

Kn∑
k=1

Wk.

Hence, the claim follows from Anscombe’s theorem, see [41, Theorem 2.3].
To prove B), consider the estimate∣∣∣Rn −RτhKn

∣∣∣ ≤ sup
{∣∣∣Rk −RτhKn

∣∣∣ ; k = τhKn
, τhKn

+ 1, . . . , τhKn+1

}
.

Now, we apply the inequality

|Rk −Rl| ≤ max

{
γ(G)
#V

, 1− γ(G)
#V

}
|k − l| ≤ |k − l|, k, l ≥ 1,

which allows us to deduce

n−1/2
∣∣∣Rn −RτhKn

∣∣∣ ≤ n−1/2
(
τhKn+1 − τhKn

)
.

By the Markov property of (δn)n≥0,
(
τhKn+1− τhKn

)
n≥1

is i.i.d. and B) follows.
Until now, we have verified that, for deterministically chosen initial state h

of H0 respectively δ0, a central limit theorem holds. The following argument
shows that σ2 does not depend on the choice of h and also, that we may
choose a random initial condition.

Consider two ballistic deposition processes on G with different determi-
nistic initial values and couple them by assuming that, with each step, the
height of the same vertex is increased. Then, by our deposition rule (2.1),
the maximal height difference cannot increase over time. So, if a central li-
mit theorem holds for one process, it also holds for the other one. The same
arguments also allow us to extend the central limit theorem to an arbitrary
initial distribution on S.
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Let us now continue with the second claim of Theorem 2.8. We start by
proving it under the assumption δ0 ∼ π. Note that

n−1/2

(
min
x∈V

Hx,n−n
γ(G)
#V

)
= n−1/2

(
max
x∈V

Hx,n−n
γ(G)
#V

)
−
max
x∈V

δx,n

n1/2
. (2.14)

As δ0 ∼ π, we know that the distribution of maxx∈V δx,n does not depend
on n. Therefore, the claim follows by applying Slutsky’s theorem to (2.14)
and using the central limit theorem for the maximal height.

So far, we have verified the central limit theorem for the minimal height
under the assumption δ0 ∼ π. Since π(h) > 0 for all h ∈ S, we conclude as
above that the central limit theorem holds for arbitrary initial distributions.

Let us now prove the last claim of Theorem 2.8. If G is isomorphic to a
complete graph, then clearly σ2 = 0. Assume that G is not isomorphic toK#V .
Recall that we know σ2 = σ̃2π(h) from A). So, we will show σ̃2 = E[W 2

1 ] > 0.
Choose x ∈ V with hx = maxy∈V hy and a non-decreasing permutation

(x1, . . . , x#V ) of V with x1 = x. Denote by h̃ ∈ S the unique state, at which
the chain (δn)n≥0 arrives after starting in h and being reset according to
(x1, . . . , x#V ). As (δn)n≥0 is irreducible, there is a finite path along which
(δn)n≥0 may go from h̃ and h. Let h1, h2, . . . , hN denote the path with h1 =
hN = h, which arises by concatenation. Let M ∈ N be the number of returns
of (δn)n≥0 to h along this path. Then, we know

P [W1 + . . .+WM = c] > 0, where c :=
N−1∑
j=1

f(hj, hj+1).

If c ̸= 0, then clearly σ̃2 > 0 and the claim holds. Therefore, suppose c = 0.
Then, we continue with the construction of another path h′

1, . . . , h
′
N+1 along

which (δn)n≥0 can go from h′
1 := h to h′

N+1 := h. For this purpose, let
h′
1 := h1, and note that the permutation (x1, . . . , x#V ) still resets h′

1. We
define h′

2, . . . , h
′
#V+2 by using the resetting event and note that h′

#V+2 = h̃.

Then, we consider the same path from h̃ to h as before and, therefore, we
can set h′

k := hk−1 for all 1 ≤ k ≤ N + 1. Let M ′ ∈ N be the number of
returns of (δn)n≥0 to h along h′

1, . . . , h
′
N+1. Then, by construction,

P [W1 + · · ·+WM ′ = c′] > 0, where c′ :=
N∑
j=1

f(h′
j, h

′
j+1).
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By construction of our route h′
1, . . . , h

′
n and our assumption c = 0, we have

c′ =
N∑
j=1

f(h′
j, h

′
j+1) =

N−1∑
j=1

f(hj, hj+1) + 1− γ(G)
#V

= 1− γ(G)
#V

.

By Proposition 2.11, γ(G) < γ(K#V ) = #V , and thus we deduce c′ > 0.
Clearly, this implies σ̃2 = E[W 2

1 ] > 0, and consequently σ2 > 0.

Remark. In our proof of Theorem 2.8, we have identified some kind of
renewal structure in form of the Markov chain (δn)n≥0 and the resetting of
its states. In fact, one can also try to prove Theorem 2.8 by imposing the
condition δ0 ∼ π, which guarantees that the process (Rn)n≥0 defined by (2.13)
is stationary. For this approach, one needs to ensure both adequate moment
and mixing conditions, compare [12, Theorem 27.4]. Let Yn := Rn+1 − Rn,
n ≥ 0. Then, −1 ≤ Yn ≤ 1 almost surely, and, by Birkhoff’s ergodic theorem,
Eπ[Yn] = 0. Moreover, equation (2.12) verifies a so-called Doeblin condition
for the Markov chain (δn)n≥0, which implies geometric ergodicity, compare
[64, Chapter 2]. This, in return, yields exponentially fast mixing, see [16,
Theorem 3.7]. Alternatively, one can also use the Dobrushin coefficient of
the Markov chain (δn)n≥0, compare [27, Chapter 3.4].

As a consequence of the central limit theorem for stationary processes,
we can also deduce the representation

σ2 = Varπ[Y
2
1 ] + 2

∞∑
k=2

Covπ[Y1, Yk] ∈ [0,∞).

However, from this formula, it is not clear when σ2 > 0. We were able to
answer this question only by working directly with the Markov chain (δn)n≥0.

Still, it is worth mentioning that above mentioned moment and mixing
conditions of (Yn)n≥0 do not only imply the classical central limit theorem
but also its functional version, compare [48, Corollary 1], as well as a law of
the iterated logarithm, see [83, Theorem 2 and further comment].

2.6 A General Upper Bound for γ(G)
The following estimate is based on the arguments used by Atar, Athreya, and
Kang in [4] to derive the upper bound for γ(Cn) given in (2.4). Our result
holds for arbitrary graphs but is somewhat less sharp, as we have simplified
some of the rather technical arguments from [4] in our more general setting.
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Theorem 2.12. Let G = (V,E) be a given graph and ρ the spectral radius
of A(G) + 1, where 1 denotes the identity matrix with index set V . Then,

γ(G) ≤ e · ρ.

Proof. For all m ∈ N, we define

Tm := inf
{
t > 0 | max

x∈V
H̃x,t = m

}
.

We modify our time-continuous deposition process in the following way. At
time Tm, the height in each vertex is set equal to m. Then the process evolves
as usual until the maximal height again hits a multiple ofm. At this particular
time, the height of each vertex of the graph increases until it is again equal
to the maximal height. By continuing this procedure, we arrive at a model,
which grows at least as fast as our original process. By the law of large
numbers, we, therefore, deduce, for all m ∈ N,

γ(G) ≤ m

E[Tm]
.

Applying Markov’s inequality, for all m ∈ N and a ∈ (0,∞), we find

E[Tm] ≥ am (1− P[Tm ≤ am])

and, consequently,

γ(G) ≤ 1

a (1− P[Tm ≤ am])
. (2.15)

Note that Tm ≤ am if and only if there exist vertices x1, . . . , xm ∈ V and
0 < t1 < . . . < tm ≤ am such that xi+1 ∈ [xi] for all i = 0, . . . ,m − 1 and
in each time interval (ti, ti+1) the height of the vertex xi increases strictly.
The number of tuples (x1, . . . , xm+1) satisfying xi+1 ∈ [xi] for all i = 0, . . . ,m
is ∥(A(G) + 1)m∥, where the norm ∥·∥ is defined as the sum of the absolute
value of all entries. Since A(G) + 1 is a nonnegative irreducible matrix, by
the Perron-Frobenius theorem,

ρ := lim
n→∞

n

√
∥(A(G) + 1)n∥ ∈ (0,∞).

Hence, for all ε > 0, there exists an m0 ∈ N, such that, for all m ≥ m0,

P[Tm ≤ am] ≤ (ρ+ ε)mP [Sm ≤ am] ,
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where Sm =
∑m

k=1Wk for all m ≥ m0 and (Wn)n≥1 denotes a sequence
of i.i.d. exponentially distributed random variables with mean one. For all
λ ∈ (0,∞), by Markov’s inequality,

P[Sm ≤ am] = P [exp(−λSm) > exp(−aλm)] ≤ exp(aλm)E [exp(−λW1)]
m

= exp(aλm) (λ+ 1)−m = exp ((aλ− log(1 + λ))m) .

Minimizing over λ, we deduce that the optimal bound is λ = (1− a)/a and

P[Tm ≤ am] ≤ #V exp (m (1− a+ log(a) + log(ρ+ ε))) .

Choose a := {e(ρ+ ε)}−1 ∈ (0,∞). Then, log(a) = − log(ρ+ε)−1, and thus

P[Tm ≤ am] ≤ #V exp (−am)→ 0 for m→∞.

Inserting this in equation (2.15) and letting m→∞, we deduce

γ(G) ≤ 1

a
= e (ρ+ ε) .

The claim now follows by letting ε→ 0.

Remark. Note that ρ ≤ ∆G+1 and equality holds if and only if G is a regular
graph. By considering the case of a complete graph, we immediately see that
the upper bound in Theorem 2.12 is optimal up to a constant. Hence, one
might ask whether there exists a sequence of regular graphs (Gn)n≥1 satisfying
γ(Gn) ∼ e·∆Gn as n→∞. We want to include a minor result to this question.

Proposition 2.13. Let (Gn)n≥0 be a sequence of regular graphs with ∆Gn →
∞ for n→∞ and girth(Gn) ≥ 5 for all n ∈ N. Then,

lim inf
n→∞

γ(Gn)
∆Gn

≥ 2e− 1

(e− 1)2
≈ 1.506.

Proof. Fix M ∈ N and n0 ∈ N, such that m := ∆Gn + 1 > M for all n ≥ n0.
We construct a random growth model, which evolves slower than our

original one. For simplicity, assume that the first three vertices x1, x2, and
x3, which grow, form a path (x1, x2, x3) in G. Now only take into account the
neighbors of x2 and x3 and, for the time being, neglect the possible growth
of any other vertex. We also neglect the possible growth of x1, x2, and x3.
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Whenever a neighbor x4 of x3 grows, we consider the path (x2, x3, x4) ins-
tead of (x1, x2, x3), we forget about the height of any vertex y /∈ {x2, x3, x4},
and our procedure starts from the beginning. In this case, the maximal height
among the vertices, which we take into account, will increase by one unit.

If a neighbor x′
3 of x2 grows, we memorize its height. Then we will neglect

further growth of x′
3, but, in the future, we will take into account its neigh-

bors, which differ from x2. Then, if a neighbor x′
4 ̸= x2 of x′

3 grows, we will
replace our path (x1, x2, x3) by (x2, x

′
3, x

′
4) and forget about the height of all

vertices y /∈ {x2, x
′
3, x

′
4}. In this case, we again arrive at our initial situation,

and the maximal height among the vertices taken into account increases by
one unit.

All in all, we will memorize the height of up to M neighbors of x2. Once
we have reached this limit, we will not take into account the potential growth
of a neighbor of x2 anymore. As the graph Gn, n ≥ n0, is regular, and
girth(Gn) ≥ 5, by counting the number of neighbors of x2 in our continuous-
time setting, whose heights are higher than x2 and memorized, we obtain a
time-homogeneous Markov process with the following transition rates.

1 2 3 4 . . . M

m 2m 3m 4m 5m Mm

m− 1 m− 2 m− 3 m− 4 m−N

Figure 2.5: The number of memorized heights forms a time-homogeneous
Markov process. We have indicated all transition rates.

Let pm,M(k), k = 1, . . . ,M , denote the invariant probability distribution.
Then, by including the time-scaling induced by the transition rates, we know
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γ(Gn) ≥

(
M−1∑
k=1

pm,M(k) {(k + 1)m− k}+ pm,M(M)Mm

)

·

(
M−1∑
k=1

pm,M(k)
km

km+ (m− k)
+ pm,M(M)

)
.

As n → ∞, we know m = ∆Gn → ∞ and consequently pm,M(k) → pM(k),
where pM(k), k = 1, . . . ,M , denotes the invariant probability of time discrete
Markov chain, whose transition probabilities are as follows.

1 2 3 4 . . . M

1
2

2
3

3
4

4
5

5
6 1

1
2

1
3

1
4

1
5

1
M

Figure 2.6: We arrive at this time-homogeneous Markov chain.

Now, by a simple calculation, we deduce

pM(k) =
1

k! (1 + 1/2 + 1/6 + . . .+ 1/M !)
, k = 1, . . . ,M.

For all M ∈ N, as m = ∆Gn →∞, we have

1

m+ 1

M−1∑
k=1

pm,M(k) {(k + 1)m− k} →
M−1∑
k=1

pM(k) (k + 1) ∈ (0,∞),

M−1∑
k=1

pm,M(k)
km

km+ (m− k)
→

M−1∑
k=1

pM(k)
k

k + 1
.

Therefore, for all M ∈ N, we conclude

lim inf
n→∞

γ(Gn)
∆Gn

≥

(
M−1∑
k=1

pM(k) (k + 1)

)(
M−1∑
k=1

pM(k)
k

k + 1

)
.
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Finally, we let M →∞ and note that

M−1∑
k=1

pM(k) (k + 1)→ 1

e− 1

∞∑
k=1

k + 1

k!
=

2e− 1

e− 1
,

M−1∑
k=1

pM(k)
k

k + 1
→ 1

e− 1

∞∑
k=1

k

(k + 1)!
=

1

e− 1
.

Let us give a simple conclusion of both Proposition 2.5 and Theorem 2.12.

Corollary 2.14. Let (Gn)n∈N be a sequence of graphs. Then,

lim
n→∞

γ(Gn) =∞ if and only if lim
n→∞

∆Gn =∞.

2.7 A Modified Ballistic Deposition Model

For a better understanding of our growth model, it is natural to study ballistic
deposition processes, which arise by modification of the recursion (2.1). The
so-called nearest-neighbor ballistic deposition model is specified by the rule

h̃x := max
y∈[x]

{hy + δxy},

where δxy is the Kronecker symbol. For any graph G, we can define the
asymptotic growth parameter γ̃(G) in this new model in the same way as in
the introduction. A simple coupling argument gives γ̃(G) ≤ γ(G) and

γ(Sn) ≤ γ̃(Sn) + 2 for all n ∈ N.

In particular, we see that Proposition 2.5, Theorem 2.12, and Corollary 2.14
also hold if we replace γ(G) with γ̃(G). However, direct calculations reveal
differences between the growth models. Consider the complete graph Kn with
n ≥ 1 fixed. Then, by counting the number of vertices of maximal height in
the discrete-time deposition model, we obtain the following Markov chain.
Let Π denote the unique invariant distribution. Then, for all k = 2, . . . , n,

Π(k) =
n− (k − 1)

n
Π(k − 1) = Π(1)

k−1∏
l=1

n− l

n
,
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1 2 3 4 . . . n

1
n

2
n

3
n

4
n

5
n 1

n−1
n

n−2
n

n−3
n

n−4
n

1
n

Figure 2.7: Counting the number of vertices of maximal height in Kn results
in a time-homogeneous Markov chain with these transition probabilities.

and, using Π(1) + · · ·+Π(n) = 1, we find

Π(1) =

( n∑
k=1

k−1∏
l=1

n− l

n

)−1

.

By applying Birkhoff’s ergodic theorem, we deduce

γ̃(Kn) = n
n∑

k=1

Π(k)
k

n
=

n∑
k=1

Π(k)k.

For small values of n ≥ 1, we can calculate Π and its expectation γ̃(Kn).

n 1 2 3 4 5

γ̃(Kn) 1 4
3

27
17

128
71

3125
1569

For all n ≥ 1, we find

γ̃(Kn) = n · Π(1) ·
n∑

k=1

kn−k (n− 1)!

(n− k)!
= n · Π(1) = n

en n−n Γ(n+ 1, n)− 1
,

where we have identified Naor’s urn distribution, compare [72, Appendix] and
[50, Section 11.2.12], and inserted [65, Equation 8.8.10]. By a series expansion
of the incomplete gamma function, see, for example, [32, Section 2.3],

Γ(n+ 1, n) ∼ 1

2
Γ(n+ 1) for n→∞.
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This allows us to verify

en n−n Γ(n+ 1, n) ∼ en n−n 1

2
Γ(n+ 1) ∼

√
π

2
n1/2 as n→∞,

and further deduce γ̃(Kn) ∼ (2/π)1/2 n1/2 as n→∞.
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Boolean Percolation on Digraphs and
Random Exchange Processes

Georg Braun

Abstract. We study, in a general graph-theoretic formulation, a
long-range percolation model introduced by Lamperti in [61]. For
various underlying digraphs, we discuss connections between this
model and random exchange processes. We clarify, for all n ∈ N,
under which conditions the lattices Nn

0 and Zn are essentially co-
vered in this model. Moreover, for all n ≥ 2, we establish that it is
impossible to cover the directed n-ary tree in our model.

Keywords. boolean percolation; rumor spread and firework process; infinite
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infinite type branching process; recurrence and transience; spectral radius.
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3.1 Introduction

Percolation theory is a fascinating area of modern probability, which tries
to understand under which conditions infinite components arise in random
structures. In the present article, we study the properties of a Boolean perco-
lation model on directed graphs and relate this model to a classical Markov
chain known as the random exchange process.

Let G = (V,E) be a directed graph with an infinite, countable vertex
set V . For all vertices x, y ∈ V , we denote by d(x, y) ∈ N0 ∪ {∞} the
distance from x to y in G. Note that d : V × V → N0 ∪ {∞} is an extended
quasimetric on V , which is symmetric if and only if the graph G is undirected,
i.e., (x, y) ∈ E implies (y, x) ∈ E for all x, y ∈ V . Moreover, for all x ∈ V
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3.1. Introduction

and n ∈ N0, we denote by Bn(x) the open ball of radius n starting from x,
which is the set of all vertices y ∈ V with d(x, y) < n.

Let µ = (µn)n∈N0 be a probability vector and (Yx)x∈V a family of i.i.d.
random variables satisfying P[Yx = n] = µn for all n ≥ 0. In our percolation
model, every vertex x ∈ V will cover any vertex of BYx(x). Hence, the set of
covered respectively uncovered vertices are

Vµ := Vµ(G) :=
⋃
x∈V

BYx(x) ⊆ V, V c
µ := V c

µ (G) := V \ Vµ(G).

As we are interested in the properties of the random sets Vµ and V c
µ , we will

always assume µ0 ∈ (0, 1), since Vµ = V almost surely in the case of µ0 = 0,
and Vµ = ∅ almost surely for µ0 = 1.

Let x, y ∈ V and V ′ = Vµ or V ′ = V c
µ . Then, if both x and y are contained

in V ′ and connected by a path in G, which uses only vertices from V ′, we
will say that x and y are in the same cluster.

To state our results, we introduce the following notation. Let n ∈ N,
V = Nn

0 or V = Zn, and E be the set of all pairs (x, x + ej), where x ∈ V ,
j = 1, . . . , n, and ej = (δij)i=1,...,n. Then, we denote the resulting graph
G = (V,E) by Nn

0 respectively Zn. Furthermore, for all n ≥ 2, we define the
infinite directed n-ary tree Dn := (Vn, En) by

Vn :=
⋃
m≥0

{1, . . . , n}m, where {1, . . . , n}0 := ∅,

En := {(∅, 1) , . . . , (∅, n)} ∪ {(x, (x, j)) | x ∈ Vn \ {∅}, j = 1, . . . , n} .

Figure 3.1: Illustration of the lattices N2
0 (left) and Z2 (right).

In this article, we will clarify under which conditions the graphs Nn
0 and

Zn are (essentially) covered by a distribution µ, compare Theorem 3.1 and
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Theorem 3.2 below. On the other hand, in Theorem 3.3, we will see that, for
any distribution µ and n ≥ 2, #V c

µ (Dn) =∞ almost surely.
To the best of our knowledge, the present percolation model was first

studied by Lamperti in [61] for G = N0. This research was motivated by
statistical physics and included the following description. At each location
n ∈ N0, there is a fountain, which sprays water to the right and is wetting
the segment from n+1 to n+Yn. As µ0 > 0, with some positive probability,
a fountain fails to operate at all.

Our percolation model and variants of it were studied by various authors,
compare [63], [52], [53], [10], [30], and [51]. For a recent survey, see [51]. At
this point, however, we want to postpone the discussion of how our new
insights and results are related to these articles.

We can interpret our percolation model as the spread of a rumor through a
network, a firework process, or a discrete version of Boolean percolation. This
model was introduced by Gilbert in [33]. First points are chosen randomly in
Rn according to a Poisson point process. Then, in the simplest case, around
these points, the unit sphere is covered. For monographs, which are concerned
with Boolean percolation, see [90], [43], [67], and [84].

In the present article, we also investigate a connection between the above
described graph-theoretic percolation model and a rather classical Markov
chain, which is sometimes called random exchange process. As far as we know,
it was first observed by Zerner in [98, Section 1] that these two stochastic
models are related to each other.

Let (Yn)n≥0 denote a sequence of i.i.d. random variables, which, as before,
are distributed according to µ. Then, we set X0 := Y0 and recursively define

Xn+1 := max{Xn − 1, Yn+1}, n ∈ N0.

To the best of our knowledge, this process (Xn)n≥0 first occurred in a sta-
tistical research article on deepwater exchange of a fjord, see [29]. Later, it
was studied, in more general form, in [46] and [47]. In the following, we call
the Markov chain (Xn)n≥0 a (constant decrement) random exchange process.
By construction, it has time-homogeneous transition probabilities and is ir-
reducible on its state space X , which is equal to N0 if µ is unbounded, and
otherwise takes the form {0, 1, . . . , n0}, where n0 := sup{n ∈ N | µn ̸= 0}.
The transition matrix P associated with (Xn)n≥0 is

P := P µ :=
(
P µ
x,y

)
x,y∈X , where P µ

x,y :=


µy, y ≥ x,∑x−1

z=0 µz, y = x− 1,
0, y ≤ x− 2.
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As (Xn)n≥0 respectively P is irreducible, for all z > 0, Green’s function

G(x, y|z) :=
∞∑
n=0

P n
x,y zn

either converges or diverges simultaneously for all x, y ∈ X , compare [94,
Chapter 1.1]. Therefore, independent of the choice of x, y ∈ X , we can define
the spectral radius of (Xn)n≥0 respectively P by

ρ(P ) := lim sup
n→∞

(
P n
x,y

)1/n ∈ (0, 1].

More generally, if A is an arbitrary irreducible matrix with nonnegative ent-
ries, we can define ρ(A) ∈ [0,∞] exactly in the same way.

Let us now state connections between the set Vµ of covered vertices in our
percolation model and the Markov chain (Xn)n≥0. We start by reformulating
previous results in the following way.

Theorem 3.1. For any law µ, the following statements are equivalent.

(i) Almost surely, #V c
µ (Z) <∞.

(ii) Almost surely, Vµ(Z) = Z.

(iii) The Markov chain (Xn)n≥0 is not positive recurrent.

(iv) The expectation of µ is infinite, i.e.,
∑

n≥0 nµn =∞.

It is not difficult to verify, more generally, that (i) and (ii) are equivalent
if we replace Z by an arbitrary vertex-transitive graph.

By applying the Borel-Cantelli lemma, we can directly verify that (ii)
and (iv) are equivalent statements. This equivalence was also observed, in
a more general form, in [52, Section 2.2] and [10, Section 4]. For any graph
G = (V,E), we have Vµ = V almost surely if and only if∑

x∈V

∑
k≥d(x,y)

µk =∞ for all y ∈ V.

For example, for all n ≥ 1, Vµ(Zn) = Zn almost surely if and only if the n-th
moment of µ diverges. This kind of phenomenon is well-known in the context
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of Boolean percolation models, and, thus, it seems convenient to include some
previous literature results at this point.

In [43], Hall studied Boolean percolation on Rn with spheres of random
i.i.d. radii and proved in [43, Theorem 3.1] that the entire space is almost
surely covered if and only if the n-th moment of the radius distribution
diverges. In [36], Gour established that if the n-th moment of the radius
distribution is finite, there exists a critical value for the intensity of the
underlying Poisson process. Recently, more results on phase transitions were
deduced in [2] and [26]. However, there are also results on other aspects of
Boolean percolation. For example, in [1], it was shown that this model is
noise sensitive, and in [62], the capacity functional was studied.

In [6] and [11], Boolean percolation was studied on [0,∞)n when, instead
of the sphere around a point x, the set x + [0, Rx)

d is occupied, where Rx

is the radius associated which x. The results in [6] characterize under which
conditions the entire space is essentially covered, and interestingly depend on
whether n = 1 or n ≥ 2. In [11], Bezborodov observed, for n = 1 and some
radius distributions, that the covered volume fraction is one, but all clusters
are bounded almost surely.

In [20], Coletti and Grynberg studied a model on Zn, in which first Ber-
noulli percolation with parameter p ∈ (0, 1) is performed, and then, inde-
pendently, around the present points, random i.i.d. balls are covered. Again,
the occupied region is almost surely Zn if and only if the n-th moment of
the radius distribution diverges. For a study of this percolation model on
doubling graphs, also see [21].

Let us return to Theorem 3.1. The equivalence of (iii) and (iv) was first
observed by Helland in [46, Section 3] and also mentioned by Kellerer in [56,
comments after Theorem 2.6]. We can deduce it as follows. Due to the form
of the transition probabilities of the Markov chain (Xn)n≥0, any invariant
measure τ = (τx)x∈X has to satisfy

τx =
x∑

z=0

τzµx + τx+1

x∑
z=0

µz, provided that x, x+ 1 ∈ X .

Solving this recurrence relation yields the representation

τx = τ0

(∑
z≥x

µz

)(
x−1∏
y=0

y∑
z=0

µz

)−1

, x ∈ X . (3.1)
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By a careful look at this formula indeed, it follows that (iii) and (iv) are
equivalent. Moreover, if the distribution µ has a finite expectation, we can
determine the stationary solution of (Xn)n≥0 from (3.1) via normalization.
In Section 3.3, we will present some concrete examples.

For results on positive recurrence of more general exchange processes with
random decrements, the reader may consult [47, Section 2].

Theorem 3.2. For any law µ, the following statements are equivalent.

(a) There exists n ∈ N with #V c
µ (Nn

0 ) <∞ almost surely.

(b) For all n ∈ N, #V c
µ (Nn

0 ) <∞ almost surely.

(c) The Markov chain (Xn)n≥0 is transient.

(d)
∑

m≥0

∏m
k=1

∑k−1
l=0 µl <∞.

Moreover, if one of these conditions is satisfied, then E[#V c
µ (Nn

0 )] < ∞ for
all n ∈ N and there exists α ∈ (0,∞) with E[exp(α#V c

µ (N0))] <∞.

This theorem improves on previous works by revealing that, rather sur-
prisingly, the value of n ∈ N does not influence whether all but finitely many
points of the graph Nn

0 are covered by a distribution µ. In the appendix of
[61], Kesten proved that #V c

µ (N0) <∞ almost surely if and only if condition
(d) in Theorem 3.2 is satisfied. This result was later rediscovered by various
authors, partly in a different and more general form, compare [56, comments
to Proposition 6.6], [52, Theorem 2.1], [30, Theorem 1], and [10, Section 3].

As observed by Zerner in [98, Proposition 1.1] and suggested by our nota-
tion, we can couple the set of covered points Vµ(N0) and the random exchange
process (Xn)n≥0 by using the same sequence of random variables (Yn)n≥0 in
both definitions. Then, by construction,

Vµ(N0) = {n ∈ N0 | ∃k ∈ {0, . . . , n} : Yk > n− k}
=

{
n ∈ N0

∣∣ max0≤k≤n (Yk − (n− k)) > 0
}

= {n ∈ N0 | Xn > 0}.

Consequently, we know that the Markov chain (Xn)n≥0 is transient if and
only if #V c

µ (N0) <∞ almost surely.
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Let n ≥ 2 and consider the infinite directed n-ary tree Dn = (Vn, En).
Then, interestingly, we can associate a multitype branching process (Zm)m≥0

to our percolation model on Dn in the following way.
Let k ∈ N0 and y ∈ Vn with d(∅, y) = k. Then, we identify the vertex y

with an individual of the k-th generation of (Zm)m≥0 if and only if y ∈ Vµ

and y is contained in the same cluster as ∅. In other words, we demand that
all vertices, which form the path from ∅ to y in Dn, are contained in Vµ(Dn).
If this condition is satisfied, we define the type of y by

zy := max {Yx − d(x, y) | x ∈ Vn, d(x, y) <∞} .

By construction, if Y∅ ≥ 1, the branching process (Zn)n≥0 starts with one
individual of type Y∅. However, on the event Y∅ = 0, there are no individuals
at all. For a vertex y ∈ Vn to be identified with an individual in (Zm)n≥0,
necessarily y ∈ Vµ, i.e., there exists x ∈ Vn with Yx > d(x, y). Hence, as
µ0 ∈ (0, 1), the type space of the branching process (Zm)n≥0 is Z = X \ {0}.

We can describe the reproduction in this branching process as follows.
Every individual of type x ≥ 2 has exactly n children, whose types are
independent of each other. For each of them, the probability of type y ∈ Z
is Mx,y := Px,y. On the other hand, an individual of type 1 has n potential
children, which are again independent of each other. For all z ∈ Z, the
probability that a given potential child is born and of type z is M1,z := P1,z.
However, with probability µ0, a potential child is not born.

As the type space Z is infinite in general, we distinguish between the
local and global extinction of (Zm)m≥0. This process dies out globally if, at
some moment, the total number of individuals vanishes. It dies out locally if,
for all z ∈ Z, only finitely many individuals of type z are born. While global
extinction always implies local extinction, the reverse is not true in general
for branching processes with infinitely many types.

Theorem 3.3. Let n ≥ 2. Then, for any distribution µ, #V c
µ (Dn) = ∞

almost surely. Moreover, the following statements are equivalent.

(A) Almost surely, Vµ(Dn) contains a path of infinite length.

(B) With a positive probability, (Zm)m≥0 will not die out globally.

(C) With a positive probability, (Zm)m≥0 will not die out locally.

(D) ρ(M) > n−1, where M := (Mx,y)x,y∈Z .
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Note that, up to multiplication with n ≥ 2, M is the mean matrix of the
branching process (Zm)m≥0. To some degree, this explains why condition (D)
is related to (B) and (C). Also, observe that M arises from the transition
matrix P of the random exchange process (Xn)n≥0 simply by deleting both
the first row and column.

For an introduction to infinite type branching processes, we recommend
Braunsteins’ exposition in [17, Chapter 2] and the references mentioned the-
rein. This presentation also explains the rather well-understood results on
the extinction of finite type branching processes.

We also want to note that the branching processes (Zn)n≥0, which we
consider in the present article, have a mean matrix of upper Hessenberg form.
Recently, Braunsteins and Haupthenne studied the extinction of branching
processes with a lower Hessenberg mean matrix in [18].

3.2 Proof of Theorem 3.2 and Theorem 3.3

Proof of Theorem 3.2. (b)=⇒(a). This implication is clear.

(b)=⇒(c)=⇒(a). From our coupling between Vµ(N0) and (Xn)n≥0, we
know that (Xn)n≥0 is transient if and only if V c

µ (N0) < ∞ almost surely. In
particular, the implications (b)=⇒(c) and (c)=⇒(a) follow.

(d)=⇒(a). By Kolmogorov’s 0-1 law, for any probability distribution µ,
either #V c

µ (N0) < ∞ almost surely or #V c
µ (N0) = ∞ almost surely. By

identifying the expression in (d) with E[#V c
µ (N0)], the implication follows.

Finally, let us assume that condition (a) holds for a distribution µ.

In the first step, we verify that we can restrict ourselves to the case n = 1.
For this, suppose #V c

µ (Nn
0 ) <∞ almost surely for some n ≥ 2. Then, consider

the subgraph G ′ = (V ′, E ′) of Nn
0 , which is induced by the vertex set V ′ of

all (x1, . . . , xn) ∈ Nn
0 with xj = 0 for all j = 2, . . . , n. By construction, G ′ is

isomorphic to N0, and we know that V c
µ (G ′) = V c

µ (Nn
0 ) ∩ V ′ is finite almost

surely. Consequently, #V c
µ (N0) <∞ almost surely.

In the second step, we prove all remaining claims. As 0 < µ0 < 1,

p := P [Vµ(N0) = N] > 0.

Therefore, by the strong Markov property, we know that #V c
µ (N0) is geome-

trically distributed with parameter p. In particular, this random variable has
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a finite exponential moment, and we also deduce (d), i.e.,

E
[
#V c

µ (N0)
]
=
∑
m≥0

qm <∞, where qm := P
[
m ∈ V c

µ (N0)
]
. (3.2)

Let n ∈ N and x = (x1, . . . , xn) ∈ Nn
0 . For all j = 1, . . . , n, let πj denote

the unique path from (x1, . . . , xj−1, 0, xj+1, . . . , xn) to x. Then, for all j =
1, . . . , n, the path πj consists of xj edges in direction ej, and, for all i ̸= j,
the paths πi and πj only share one vertex, which is their endpoint x =
(x1, . . . , xn). So, for the event {x ∈ V c

µ (Nn
0 )} to occur, it is necessary that for

each j = 1, . . . , n there exists no vertex y contained in the path πj such that
Zy > d(y, x). This defines n independent events, whose probabilities can be
described with the sequence (qm)m≥0 defined in (3.2). All in all,

E
[
#V c

µ (Nn
0 )
]

=
∑
x∈Nn

0

P
[
x ∈ V c

µ (Nn
0 )
]
≤

∑
(x1,...,xn)∈Nn

0

n∏
j=1

qxj

=
∑
x1≥0

qx1

∑
x2≥0

qx2 · · ·
∑

xn−1≥0

qxn−1

∑
xn≥0

qxn

= E
[
#V c

µ (N0)
]n

<∞.

In particular, for all n ≥ 2, #V c
µ (Nn

0 ) < ∞ almost surely, and condition (b)
holds. Since we have already verified (b)=⇒(c), this finishes the proof.

Proof of Theorem 3.3. First, we verify that for all n ≥ 2 and any law µ,
#V c

µ (Dn) =∞ almost surely. For this, for all m ∈ N, we set

rm := P
[
∃y ∈ V c

µ (Dn) : d(∅, y) = m
]
.

As 0 < µ0 < 1, we know rm ∈ (0, 1) for all m ∈ N. Moreover, for all
j = 1, . . . , N , we denote by Gj the induced subgraph obtained from Dn by
restricting to all vertices, which can be reached from j ∈ Vn.

Let m ≥ 2. Then, we know that there exists a y ∈ V c
µ (Dn) with d(∅, y) =

m if and only if Y∅ ≤ m and, for some j = 1, . . . , n, there exists a vertex z in
the graph Gj with d(j, z) = m− 1, which is not covered by any other vertex
of Gj. Note that the latter event is independent of Y∅ and that the graphs
G1, . . . ,Gn are isomorphic to Dn. Consequently, for all m ≥ 1, we obtain the
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recurrence relation

rm+1 = (1− (1− rm)
n) F (m+ 1), where F (k) :=

k∑
l=0

µl. (3.3)

Let N ∈ N with F (N) > 1/2. Then, by (3.3), for all m ≥ N ,

rm+1 ≥
(
1− (1− rm)

2
)
F (N) = rm(2− rm)F (N). (3.4)

The map fN : [0, 1] → [0, 1], x 7→ x(2 − x)F (N), is monotone increasing.
Hence, due to the estimate (3.4), iteration of the function fN yields

rm ≥ fm−N
N (rN) for all m ≥ N + 1.

The map fN has the two fixpoints 0 and xN := 2− F (N)−1 ∈ (0, 1]. Hence,
by monotonicity, if rN ≥ xN , then also rm ≥ xN for all m ≥ N . On the other
hand, if rN < xN , then, since fN is concave and f ′

N(0) > 1, fk
N(rN)→ xN for

k →∞. In both cases, we can deduce

lim inf
m→∞

rm ≥ xN = 2− F (N)−1.

As N ∈ N can be chosen arbitrarily large in this argument, it follows that
rm → 1 for m→∞. In particular, V c

µ (Dn) is almost surely non-empty.
By Kolmogorov’s 0-1 law, we know that either #V c

µ (Dn) is finite almost
surely, or this random variable is infinite almost surely. In the first case, due
to our assumption µ0 ∈ (0, 1), it would follow that V c

µ (Dn) is empty with a
positive probability. Hence, we can conclude #V c

µ (Dn) =∞ almost surely.

In the second step of this proof, we now verify that indeed the statements
(A), (B), (C), and (D) are equivalent to each other.

(C)=⇒(B). This implication is clear.
(A)⇐⇒(B). If (A) holds, then, with a positive probability, Vµ(Dn) con-

tains an infinite path starting from the root ∅. On this event, (Zn)n≥0 does not
die out globally, i.e., condition (B) holds. Conversely, if (B) holds, then, with
a positive probability, Vµ(Dn) contains an infinite path. By Kolmogorov’s 0-1
law, (A) follows.

(C)⇐⇒(D). Since the mean matrix M of the branching process (Zn)n≥0 is
irreducible, this equivalence follows from the theory of multitype branching
processes, compare [17, Theorem 9], [31], or [9].
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(B)=⇒(C). Suppose, for some distribution µ, that (Zn)n≥0 dies out lo-
cally almost surely but survives forever with a positive probability. Then, as
(Zn)n≥0 starts with a single individual of random type Y∅, with some positive
probability, (Zn)n≥0 survives forever, and no individuals of type 1 are born.
On this event, we would know that #V c

µ (Dn) <∞, and this is a contradiction
to our first claim. The implication follows.

3.3 Examples

Example 3.4. Let m ∈ N, m ≥ 2, and µ be the uniform distribution on
{0, 1, . . . ,m− 1}. Then, by (3.1), the stationary solution τ of (Xn)n≥0 is

τn =
m!

mm
(m− n)

mn−1

n!
, n ∈ {0, . . . ,m− 1}.

This law τ is a terminating member of the Kemp family of generalized hy-
pergeometric probability distributions, compare [50, Section 2.4.1]. However,
it also naturally arises from Naor’s urn model [72, Appendix], also see [50,
Section 11.2.12]. Assume that there are m balls in an urn, of which one is
red, and the rest are white. In each step, pick one ball, and if it is white,
replace it with a red ball. Continue until the first time T , at which a red ball
gets chosen. Then, the distribution of T is

P[T = n] = (m− 1)! m−n n

(m− n)!
, n ∈ {1, . . . ,m},

and m− T , i.e. the number of tries not needed, has distribution τ .

Example 3.5. Let p ∈ (0, 1) and µ be the geometric distribution with pa-
rameter 1− p. Then, by (3.1), the stationary solution τ of (Xn)n≥0 is

τn = τ0 pn

(
n∏

k=1

(
1− pk

))−1

= τ0
pn

(p; p)n
, n ∈ N0,

where (a; q)n is the q-Pochhammer symbol. By normalisation,

τ0 =

(∑
n≥0

pn

(p; p)n

)−1

=
1

(p; p)∞
= ϕ(p)−1,
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where we have applied the q-binomial theorem, and ϕ denotes Euler’s func-
tion. In [8, Section 4], Benkherouf and Bather discussed, in more general
form, this distribution τ and referred to it as an Euler distribution. For more
information, also see [50, Section 10.8.2].

Example 3.6. Assume that there exists c ∈ (0,∞) and n0 ∈ N with∑
k>n

µk =
c

n
for all n ≥ n0.

Then, as the expectation of µ is infinite, we know that the statements (i)-
(iv) from Theorem 3.1 do hold. Moreover, it follows from the Gaussian ratio
test that the condition (d) in Theorem 3.2 is satisfied if and only if c > 1.
According to [47, Theorem 3.2], for any value of c ∈ (0,∞),

lim
n→∞

P[Xn n−1 ≤ y] = yc(y + 1)−c for all y ∈ (0,∞).

This limit is an inverse Beta distribution with α = c and β = 1.

Example 3.7. Assume that µ = (µn)n≥0 has finite support. Then, (Xn)n≥0

has a stationary solution and ρ(P ) = 1. Moreover, ρ(M) is the spectral radius
and Perron Frobenius eigenvalue of M . As in the proof of Theorem 3.3, we
define, for the case n = 2,

rm := P
[
∃y ∈ V c

µ (D2) : d(∅, y) = m
]
, m ∈ N.

Then, observe that, for all m ≥ n0 := sup{n ∈ N | µn ̸= 0}, the recurrence
relation (3.3) simplifies into

rm+1 = (1− (1− rm)
2) = rm(2− rm).

This recursion is a modified version of the logistic equation. It follows that

rm = 1− exp (−c 2m) for all m ≥ n0,

where c ∈ (0,∞) is a fixed parameter.

Example 3.8. Let n ∈ N, p ∈ (0, 1), µn := p and µ0 := 1 − p. Then, the
matrix M = Mn,p has dimension n and is of the form

Mn,p =



0 0 · · · · · · 0 p
1− p 0 · · · · · · 0 p
0 1− p 0 · · · 0 p
...

. . .
...

...
. . .

...
0 · · · · · · 0 1− p p


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The characteristic polynomial χn,p = χn,p(z) of Mn,p satisfies

χn,p(z) = det(z1n −Mn,p) = zχn−1,p(z)− p(1− p)n−1,

and this recurrence relation can be deduced from a Laplace expansion of the
first row of Mn,p. It follows from ξ1,p(z) = z − p, that

χn,p(z) =
p(1− p)n + (z − 1)zn

p+ z − 1
.

We know that ρ(Mn,p) is the largest zero of this polynomial in (0, 1).
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Georg Braun

Abstract. We study supercritical branching processes under the
influence of an i.i.d. emigration component. We provide conditions
under which the lifetime of the process is finite, respectively, has a
finite expectation. A theorem of Kesten-Stigum type is obtained,
and the extinction probability for a large initial population size is
related to the tail behavior of the emigration.
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4.1 Introduction

Branching processes are a fascinating class of stochastic processes, which
model the evolution of a population under the assumption that different
individuals give independently of each other birth to a random number of
children. Timeless monographs, which present the theory of classical bran-
ching processes, include [44], [5], and [87].

In the present article, we study the consequences of including an i.i.d.
emigration component between consecutive generations in the supercritical
regime. Intuitively speaking, the properties of this model are determined by
the interplay of two opposite effects, namely the explosive nature of super-
critical branching processes and the decrease in the population size caused
by emigration.

Formally, let ((ξn,j)j≥1, Yn)n≥1 denote a sequence of i.i.d. random varia-
bles. Assume that (ξ1,j)j≥1 is i.i.d. and let ξ be an independent copy of the
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family (ξn,j)n,j≥1. Moreover, suppose Y is an independent copy of (Yn)n≥1

and that both ξ and Y only take values in N0. Then, we define a branching
process with emigration (Zn)n≥0 by setting Z0 := k ∈ N and recursively

Zn+1 :=

(
Zn∑
j=1

ξn+1,j − Yn+1

)
+

, n ≥ 0. (4.1)

Throughout this article, we will focus on the supercritical case and, more
precisely, assume that

λ := E[ξ] ∈ (1,∞).

Naturally, our study will concentrate on the extinction time

τ := inf{n ≥ 1 | Zn = 0}, where inf ∅ :=∞.

In Theorem 4.2, we will prove that τ is almost surely finite if and only if
E[log+(Y )] =∞. Moreover, in Theorem 4.3, we show that E[τ ] <∞ if

0 <
∑
n≥1

n∏
m=1

P [Y ≤ r(λ+ ε)m] <∞ for a ε > 0 and an r ∈ (0,∞), (4.2)

and, under some additional assumptions, E[τ ] =∞ provided that

∑
n≥1

n∏
m=1

P
[
Y ≤ rλmm−θ

]
=∞ for some θ ∈ (1,∞), r ∈ (0,∞). (4.3)

The precise statements of all of our results will be given in Section 4.2. In
Theorem 4.4, we relate the behavior of the extinction probabilities

qk := P[τ <∞ | Z0 = k], k ≥ 1,

to the tail behavior of Y as k →∞. We also present a strong limit theorem
for the population size Zn as n→∞, compare Theorem 4.5.

Our study is motivated by a simple observation, which links our model
to subcritical autoregressive processes. We will explain it in Section 4.3. To
the best of our knowledge, this connection has not been investigated in the
literature so far.

While our criteria ensuring E[τ ] < ∞ respectively E[τ ] = ∞ are not
exact, as illustrated by the following example, the gap is quite narrow.
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Example 4.1. Assume that there are c ∈ (0,∞) and n0 ∈ N with

P [Y > n] =
c

log n
for all n ≥ n0.

Then E[log+(Y )] =∞ and hence τ <∞ almost surely. If c > log λ, then, by
Raabe’s test, (4.2) holds. If c ≤ log λ, then, by the Gauss test, (4.3) holds.

Let us end this introduction by trying to give an overview of the literature
dealing with branching processes with emigration.

In [91], Vatutin explored the critical case λ = 1 for Y ≡ 1 and σ2 :=
Var[ξ] ∈ (0,∞). He showed that τ has a regularly varying tail with exponent
−1 − 2/σ2 and, if all moments of ξ are finite, proved that 2Zn/nσ

2, condi-
tioned on being positive, converges weakly to an exponential distribution.
These results were improved by Vinokurov respectively Kaverin in [93] and
[54], and more recently by Denisov, Korshunov, and Wachtel in [24]. The ap-
proach of [24] allows, more generally, a size-dependent offspring distribution
and immigration.

More or less specific models of critical branching processes involving both
immigration and emigration were studied in [71], [97] and [95].

The present article and most of the above literature deals with specific
cases of controlled branching. This model was introduced by Sevastyanov and
Zubkov in [88], who classified eventual extinction for a control function of
linear and polynomial growth. We also refer to the related work by Zubkov
in [99] and [100]. In [96], Yanev generalized this model by assuming random
i.i.d. control functions (φn)n≥1. Roughly speaking, the present article assu-
mes φn(m) := (m− Yn)+, m ∈ N. For a recent monograph on controlled
branching, see [35].

We also want to mention some results for models in continuous time. In
this scenario, the population size changes if exactly one individual gives birth
to a random number of children or if an emigration event, sometimes called
catastrophe, occurs. The case that each individual has either 0 or 2 children
would correspond to a birth-and-death process. In [74] and [76], Pakes gave
results for a catastrophe rate proportional to the population size. Moreover,
Pakes studied this model with a size-independent emigration rate in [75],
[77], and [78]. In the supercritical regime, he related the almost sure eventual
extinction to the condition E[log+(Y )] =∞, see [75, Theorem 2.1 and Corol-
lary 3.1]. This was also verified by Grey in [37], who proved the same result
also for the time-discrete model of our present article under the assumption
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that (ξ1,j)j≥1 and Y1 are independent. However, this independence condition
can be avoided, compare Theorem 4.2 of the present article.

4.2 Preliminaries and Statement of Results

In the following, we usually assume Z0 = k ∈ N, λ ∈ (1,∞), as well as

(H1) There exists a strictly increasing sequence (kn)n≥0 in N, which sa-

tisfies k0 = k and P
[∑kn

j=1 ξ1,k − Y1 = kn+1

]
> 0 for all n ∈ N0,

and

(H2) P
[∑n

j=1 ξ1,j − Y1 ≤ n− 1
]
> 0 for all n ≥ 1.

In some of our results, we will also need Grey’s restriction

(IND) The random variables (ξ1,j)j≥1 and Y1 are independent.

The conditions (H1) and (H2) ensure that neither emigration nor branching
will dominate each other fully for the possibly rather small initial state re-
spectively for a large population size.

If λ > 1, then condition (H1) is always satisfied provided that the initial
population Z0 = k ∈ N is chosen large enough. As similar arguments will
occur in many of our proofs, let us briefly explain how this can be verified.
By truncation of the offspring distribution ξ, also compare Observation 4.13
in Appendix A, we may restrict us to the case λ < ∞. Choose ε > 0 with
λ− ε > 1. Then, by the law of large numbers,

P
[∑k

j=1 ξ1,j > (λ− ε)k
]
→ 0 for k →∞.

In particular, we know that there exists K ∈ N such that this probability
is smaller than 1/2 for all k ≥ K. Moreover, we can choose N ∈ N with
P[Y1 ≥ N ] < 1/2. Then, for all k ≥ K with N < εk, we deduce

P[Z1 > k | Z0 = k] > 0.

So, if λ > 1, then condition (H1) holds if Z0 = k is chosen large enough. On
the other hand, we know that condition (H2) holds, for example, in the case
of P[ξ = 0] > 0, or if the emigration distribution Y is unbounded and (IND).
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Note that (H1) and (H2) are preserved if the value of Z0 = k ≥ 1 is
increased. The state-space of (Zn)n≥0 may be affected by such a modification.
However, this will not cause any problems in our study.

Let us give a final thought behind (H1) and (H2). Consider a modification
of the branching process (Zn)n≥0, in which the population gets revived with
exactly k individuals upon extinction. Then this renewal version of (Zn)n≥0

is a Markov chain, which is irreducible and exhibits an infinite state space
containing 0 if and only if both (H1) and (H2) are satisfied. In [73], Pakes
investigated this revived branching process when the emigration component
is absent but with a more general resetting mechanism upon extinction. Mo-
reover, both the subcritical and critical cases are studied in [73].

Theorem 4.2. τ <∞ almost surely if and only if E[log+(Y )] =∞.

If the process (Zn)n≥0 dies out almost surely, it is natural to ask whether
its expected lifetime is finite or infinite.

Theorem 4.3. Assume E[log+(Y )] =∞.

(I) E[τ ] <∞, provided that there are ε > 0 and r ∈ (0,∞) with

0 <
∑
n≥1

n∏
m=1

P [Y ≤ r(λ+ ε)m] <∞.

(II) E[τ ] =∞, provided that E
[
ξ1+δ

]
<∞ for a δ > 0, (IND), and

∑
n≥1

n∏
m=1

P
[
Y ≤ rλmm−θ

]
=∞ for a θ ∈ (1,∞), r ∈ (0,∞).

If the process (Zn)n≥0 does not become extinct almost surely, one might
try to understand the distribution of τ and the extinction probabilities (qk)k≥1

in case of a large initial population size k ≥ 1. For this, we use Karamata’s
concept of slow and regular variation and assume

(REG) P[Y > t] varies regularly for t→∞ with index α ∈ (0,∞).

For a gentle introduction to slow and regular variation, we refer the reader
to [68]. A measurable function L : [0,∞) → (0,∞) is called slowly varying
for t→∞, if for all c ∈ (0,∞) one has L(ct)/L(t)→ 1 as t→∞. Moreover,
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a measurable function f : [0,∞) → (0,∞) is regularly varying for t → ∞,
if there exists α ∈ R, t0 ∈ [0,∞) and a slowly varying function L satisfying
f(t) = tαL(t) for all t ≥ t0. In this case, the constant α ∈ R is unique, and
−α is called the index of f .

Theorem 4.4. Assume (REG) and let N ∈ Z≥2 ∪ {∞}. Then,

lim sup
k→∞

P[τ < N | Z0 = k] P[Y > k]−1 ≤
N−1∑
l=1

λ−αl.

Furthermore, if all exponential moments of ξ are finite, then

lim
k→∞

P[τ < N | Z0 = k] P[Y > k]−1 =
N−1∑
l=1

λ−αl.

By choosing N =∞ in Theorem 4.4, we, in particular, obtain results on
the extinction probabilities (qk)k≥1 for k →∞.

Besides τ and (qk)k≥1, one can also investigate the asymptotic behavior
of the process (Zn)n≥0 conditioned on its non-extinction. Observe that the
sequence Wn := λ−nZn, n ≥ 0, is a nonnegative supermartingale. Hence, as
in the case without any migration, Doob’s martingale convergence theorem
yields the existence of the almost sure limit

W := lim
n→∞

Wn, and moreover 0 ≤ E[W ] ≤ k.

Theorem 4.5.

(a) P[W > 0] > 0 if and only if

E[ξ log+(ξ)] <∞ and E[log+(Y )] <∞.

Furthermore, in this case, P[W > 0] = P[τ =∞].

(b) Assume P[W > 0] > 0, P[ξ = λ] < 1 and (IND). Then,

P[a < W < b] > 0 for all 0 ≤ a < b ≤ ∞.

The proofs of Theorem 4.2 and Theorem 4.3 are somewhat similar and,
therefore, together contained in Section 4.4. The arguments needed for Theo-
rem 4.4 and Theorem 4.5 are different and slightly more technical, and thus,
are carried out separately in Section 4.5 and Section 4.6.
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4.3 Relation to the Random Difference Equation

In this section, we always assume ξ ≡ λ. Then, (4.1) simplifies into

Zn+1 = (λZn − Yn+1)+, n ≥ 0.

Consider the process
(
Ẑn

)
n≥0

defined by Ẑ0 := Z0 = k and

Ẑn+1 := λẐn − Yn+1, n ≥ 0.

Then, by induction over n ≥ 0, we can verify Zn =
(
Ẑn

)
+
and

Ẑn = λnk −
n∑

j=1

λn−jYj.

Let m ∈ N0. Then, for all n ≥ 0, we know

P[Zn > m] = P
[
Ẑn > m

]
= P

[
λ−nm+

∑n
j=1 λ

−jYj < k
]

(4.4)

= P
[
λ−nm+

∑n
j=1 λ

−(n−j)λ−1Yj < k
]
= P

[
X̂n < k

]
, (4.5)

where (X̂n)n≥0 is the autoregressive process defined by X̂0 := m and

X̂n+1 := λ−1X̂n + λ−1Yn+1, n ≥ 0.

The study of this random difference equation was initiated by Kesten in [57]
in the more general random-coefficient version

Xn+1 := An+1Xn + Yn+1, n ≥ 0,

where the sequence (An, Yn)n≥1 is typically assumed to be i.i.d. and indepen-
dent of X0. The Markov chain (Xn)n≥0 is sometimes called a perpetuity. For
more information on this process, we also refer to the monograph [19] and
the exposition in [49, Chapter 2].

Formally, the equations (4.4) and (4.5) establish that (Zn)n≥0 and (X̂n)n≥0

are dual Markov chains in the sense of Siegmund, compare [89].
In the following, suppose A1 ≥ 0 and Y1 ≥ 0 almost surely. In the con-

tractive case E[logA1] < 0, it is well-known, that the condition

E[log+(Y1)] <∞
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is related to the existence of a stationary solution for (Xn)n≥0, see, for exam-
ple, [92, Theorem 1.6] or [19, Theorem 2.1.3]. This can be explained in the
following way. Assume that Y0 := X0 has the same distribution as Y1. Then,
for fixed n ≥ 1, by exchangeability

Xn =
n∑

j=0

An · · ·Aj+1Yj
d
=

n∑
j=0

A1 · · ·AjYj+1 =: X ′
n,

and X ′
n → X∞ almost surely for n→∞, provided the existence of the limit

X∞ :=
∑
n≥0

A1 · · ·AnYn+1.

If A1 ≡ λ−1 and Y1 ≥ 0, then the limit X∞ is almost surely finite if and only
if E[log+(Y )] <∞, see, for example, Lemma 4.7 in Section 4.4.

Inserting m = 0 into (4.4) and (4.5) gives

P[τ =∞] = lim
n→∞

P[Zn > 0] = lim
n→∞

P
[
X̂n < k

]
= P[X̂∞ < k], (4.6)

where
X̂∞ := λ−1

∑
n≥0

λ−nYn+1.

Consequently, in this way, we can recover the statement of Theorem 4.2.
Furthermore, consider equation (4.6) and the following result, which was
obtained by Grincevičius in [39].

Theorem 4.6 (Grincevičius). Assume P[Y1 > t] varies regularly for t→∞
with index α ∈ (0,∞), E[Aα

1 ] < 1, and E[Aβ
1 ] <∞ for a β > α. Then,

lim
k→∞

P [X∞ > k] P[Y1 > k]−1 =
∞∑
j=0

E[Aα
1 ]

j.

In the specific case ξ ≡ λ and A1 ≡ λ−1, we can apply this theorem to
recover the asymptotic formula for (qk)k≥1 as k →∞ given in Theorem 4.4.

Note that X∞ and X̂∞ differ by the constant λ−1, which explains why the
limit in Theorem 4.4 is λ−α/(1− λ−α) rather than 1/(1− λ−α).

It is worth mentioning that Grey questioned some parts of the original
proof of Theorem 4.6 and gave a new, improved version in [38].
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Finally, note that, in our case, all random variables involved in the defi-
nition of (X̂n)n≥0 are nonnegative and, hence, Kellerer’s theory of recurrence
and transience of order-preserving chains is available, compare [55] and [56].
By again inserting m = 0 into (4.4) and (4.5), we deduce

E[τ ] =
∑
n≥0

P[τ > n] =
∑
n≥0

P[Zn > 0] =
∑
n≥0

P[X̂n < k],

and hence conclude that E[τ ] = ∞ if and only if the process (X̂n)n≥0 is
recurrent. A recent result by Zerner, see [98], states that this rather generally
is the case if and only if there exists b ∈ (0,∞) with

∑
n≥1

n∏
m=1

P[Y1 ≤ bλm] =∞.

Clearly, in the specific case ξ ≡ λ, this result characterizes the finiteness of
E[τ ] exactly and hence more precisely than Theorem 4.3.

Interestingly, Zerner’s criterion does not only apply to general random-
coefficient autoregressive processes but also rather general subcritical bran-
ching processes with immigration. For many of these models, the existence
of a stationary solution is related to a finite logarithmic moment of the im-
migration, compare [45] and [81].

4.4 Proofs of Theorem 4.2 and Theorem 4.3

As a preparation, we start with two simple lemmas.

Lemma 4.7. Let (Un)n≥1 denote a sequence of i.i.d. nonnegative random
variables. Then, almost surely,

lim sup
n→∞

Un

n
=


0, if E[U1] <∞,

∞, if E[U1] =∞.

The proof of Lemma 4.7 follows directly from the Borel-Cantelli lemma,
also see [40, Chapter 6, Proposition 1.1]. Lemma 4.7 is known in the context
of supercritical branching processes with immigration and can be used to
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obtain some of Seneta’s classical results on whether immigration increases
the speed of divergence, also compare [85] and [23, Section 3.1.1].

We will also apply the following concentration estimate, which can be
seen as a weaker but more general form of Chebyshev’s inequality.

Lemma 4.8. Let (Vn)n≥0 denote a sequence of i.i.d. random variables and
Sn :=

∑n
j=1 Vj for all n ≥ 1. Assume E[V1] = 0 and that there is δ ∈ (0, 1]

with c := E
[
|V1|1+δ

]
<∞. Then,

P[|Sn| > t] ≤ 2cnt−1−δ for all n ≥ 1 and t ∈ (0,∞).

Proof. By the Marcinkiewicz-Zygmund inequality, see [40, Chapter 3, Corol-
lary 8.2], we have

E
[
|Sn|1+δ

]
≤ 2cn for all n ≥ 1.

Thus, the claim follows by applying Markov’s inequality.

The branching process, which is obtained from (Zn)n≥0 by neglecting any
emigration, will be denoted by (Z ′

n)n≥0. Formally, we set Z ′
0 := k ≥ 1 and

Z ′
n+1 :=

Z′
n∑

j=1

ξn+1,j, n ≥ 0.

We will also work with the stopping time

τ ′ := inf
{
n ≥ 1 | Z ′

n+1 ≤ Yn+1

}
.

Observe that, by definition, Zn ≤ Z ′
n and τ ≤ τ ′ almost surely.

Proof of Theorem 4.2. First, let E[log+(Y )] =∞. Choose ε > 0 and set

T := inf {n ≥ 1 | Z ′
m ≤ (λ+ ε)m for all m ≥ n} .

Then, for all n ≥ 1, Markov’s inequality gives

P [Z ′
n > (λ+ ε)n] ≤ k

(
1 +

ε

λ

)−n

.

Hence, by the Borel-Cantelli lemma, T < ∞ almost surely. Furthermore,
applying Lemma 4.7 with Un := log+(Yn) gives Yn ≥ (λ + ε)n for infinitely
many n ≥ 1 almost surely. This yields τ ≤ τ ′ <∞ almost surely.
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Secondly, let E[log+(Y )] <∞. By truncation of the offspring distribution,
compare Observation 4.13 from Appendix A, we can assume that the distri-
bution ξ is bounded and σ2 := Var[ξ] ∈ [0,∞). Moreover, as (H1) and (H2)
do hold, we can choose Z0 = k large enough to ensure that these conditions
remain true after truncation.

Fix ε > 0 with λ1 := λ− 2ε > 1 and let λ0 := λ− ε. Then, for all n ≥ 1,
consider the following events

An :=


⌊λn

0 ⌋∑
j=1

ξn+1,j ≥
(
λ− ε

2

)
⌊λn

0⌋

 , Bn :=
{
Yn ≤ λn

1

}
.

For all n ≥ 1, we find by Chebyshev’s inequality

P[Ac
n] ≤ P

∣∣∣∣∣
⌊λn

0 ⌋∑
j=1

ξ1,j − λ⌊λn
0⌋

∣∣∣∣∣ > ε

2
⌊λn

0⌋

 ≤ (ε
2

)−2 σ2

⌊λn
0⌋

.

Since λ0 > 1, due to the Borel-Cantelli lemma, almost surely only finitely
many events Ac

n, n ≥ 1, do occur. On the other hand, by Lemma 4.7, we know
that almost surely all but finitely many events Bn, n ≥ 1, do occur. Also,
note that (An)n≥1 is a sequence of independent events, and so is (Bn)n≥1. All
in all, we can fix n0 ∈ N such that(

λ− ε

2

)
⌊λn

0⌋ − λn
1 ≥

⌊
λn+1
0

⌋
for all n ≥ n0 (4.7)

and

min (P[A],P[B]) >
1

2
, where A :=

⋂
n≥n0

An, B :=
⋂
n≥n0

Bn. (4.8)

Note that the value of n0 does not depend on k. By using (4.8), we find

P[A ∩B] = P[A] + P[B]− P[A ∪B] ≥ P[A] + P[B]− 1 > 0.

Finally, by recalling (H1) and (H2), we can increase Z0 = k to ensure

P[C] > 0, where C := {Zn0 ≥ ⌊λn0
0 ⌋} .

By inserting our construction of the events A and B and using (4.7), an
inductive argument yields Zn ≥ ⌊λn

0⌋ for all n ≥ n0 on the event A ∩B ∩C.
Since the events A ∩B and C are independent by definition,

P[τ =∞] ≥ P[A ∩B ∩ C] = P[A ∩B] P[C] > 0.
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In fact, a careful look at the second part of this proof reveals the following
result, which we need in the proof of Theorem 4.5.

Proposition 4.9. Assume E[log+(Y )] <∞. Then, qk → 0 for k →∞.

The proof of Proposition 4.9 is left to the reader.

Proof of Theorem 4.3. (I). Since τ ≤ τ ′, it suffices to verify E[τ ′] < ∞. Fix
ε > 0 and r ∈ (0,∞) according to the assumption and set

T := inf
{
n ≥ 1 | Z ′

m ≤ r(λ+ ε)m−1 for all m ≥ n
}
,

T̂ := inf {n > T | Yn > r(λ+ ε)n} .

Then, τ ′ ≤ T̂ almost surely by construction, and hence it suffices to prove
E[T̂ ] < ∞. As in the proof of Theorem 4.2, we know T < ∞ almost surely.
For all n ≥ 1, by applying Markov’s inequality, we deduce

P[T = n] ≤ P
[
Z ′

n−1 > r(λ+ ε)n−2
]
≤ λk

r

(
1 +

ε

λ

)−n+2

. (4.9)

Moreover, since ((ξn,j)j≥1), Yn)n≥1 is i.i.d., we know

E
[
T̂
]
=
∑
n≥1

E
[
T̂ | T = n

]
P[T = n] =

∑
n≥1

(E[Tn] + n)P[T = n], (4.10)

where

Tn := inf
{
m ≥ 1 | Yn+m > r(λ+ ε)n+m

}
, n ≥ 1.

For all n ≥ 1, we have

E [Tn] = 1 +
∑
m≥1

P [Tn > m] = 1 +
∑
m≥1

m∏
l=1

P
[
Y ≤ r(λ+ ε)n+l

]
= 1 +

( ∑
m≥n+1

m∏
l=1

P
[
Y ≤ r(λ+ ε)l

])( n∏
l=1

P
[
Y ≤ r(λ+ ε)l

])−1

.

Due to our choice of r ∈ (0,∞), we conclude that 1 ≤ E[Tn] < ∞ for all
n ≥ 1. Note that we can insert this formula for E[Tn] into equation (4.10).
Then, by using the estimate (4.9), we know E[T̂ ] <∞, and the claim follows.
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(II). First, note that by possibly increasing r ∈ (0,∞), we can guarantee that
there exists n0 ∈ N satisfying both rn−θ

0 < 1 and

P [Y ≤ κr] > 0, where κ :=
∏
n≥n0

(
1− rn−θ

)
∈ (0, 1).

Fix r ∈ (0,∞) accordingly. By possible increasing n0, which results in an
increase of κ, and by using our assumption, we can ensure∑

n≥n0

n∏
l=n0

P
[
Y ≤ κrλll−θ

]
=∞. (4.11)

Fix η with (1 + δ)−1 < η < 1. Then, for all n ≥ n0, let

Nn := λn

(
1 +

1

n

) n∏
l=n0

(
1− rl−θ

)
, fn := κληn, gn := κrn−θλn.

By possibly increasing n0 ∈ N and recalling η < 1, for all n ≥ n0,

λ⌊Nn⌋ − ⌈fn⌉ ≥ λn+1

(
1 +

1

n

) n∏
l=n0

(
1− rl−θ

)
− κληnn− 2

≥ λn+1

(
1 +

1

n

) n∏
l=n0

(
1− rl−θ

)
− ληnn2

n∏
l=n0

(
1− rl−θ

)
=

(
λn+1

(
1 +

1

n

)
− ληnn2

) n∏
l=n0

(
1− rl−θ

)
=

(
λn+1 +

λn+1

n+ 1
+

λn+1

n(n+ 1)
− ληnn2

) n∏
l=n0

(
1− rl−θ

)
≥ λn+1

(
1 +

1

n+ 1

) n∏
l=n0

(
1− rl−θ

)
.

Moreover, by possibly increasing n0 ∈ N, we can guarantee gn ≥ n for all
n ≥ n0. So, by inserting the definition of κ, for all n ≥ n0, we get

⌈gn+1⌉ ≤ gn+1 + 1 ≤
(
1 +

1

n+ 1

)
gn+1

< λn+1

(
1 +

1

n+ 1

)( n∏
l=n0

(
1− rl−θ

))
r (n+ 1)−θ.
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By combining the previous two estimates, for all n ≥ n0, we directly find

λ⌊Nn⌋ − ⌈fn⌉ − ⌈gn+1⌉ ≥ Nn+1. (4.12)

For all n ≥ n0, we consider the event

Dn :=

{ ⌊Nn⌋∑
j=1

ξn,j ≥ λ⌊Nn⌋ − ⌈fn⌉

}
.

Since we assume E
[
ξ1+δ

]
<∞, by Lemma 4.8, there is c ∈ (0,∞) with

P [Dc
n] ≤ P

[∣∣∣∣ ⌊Nn⌋∑
j=1

ξ1,j − λ⌊Nn⌋
∣∣∣∣ > ⌈fn⌉

]
≤ 2c⌊Nn⌋
⌊fn⌋1+δ

, for all n ≥ n0.

Recalling our definition of Nn, fn, and η, and noticing that the events Dn,
n ≥ n0, are independent, we obtain

P[D] > 0, where D :=
⋂
n≥n0

Dn.

Consider the stopping time

T := inf {n > n0 | Yn > gn} .

Then, by definition of T and (gn)n≥0, we deduce from (4.11)

E[T ] =
∑
n≥0

P[T > n] = n0 + 1 +
∑

n≥n0+1

n∏
l=n0+1

P
[
Y ≤ κrl−θλl

]
=∞.

Besides, by (H1) and (H2), we may assume that the value of Z0 = k ≥ 1 is
chosen large enough to ensure that

P[C] > 0, where C := {Zn0 ≥ Nn0} .

Note that, by construction, C and D are independent events. All in all, by
(4.12), we can deduce that τ ≥ T on the event B := C ∩ D, which occurs
with a positive probability. Finally, by (IND),

E[τ ] ≥ E[τ1B] ≥ E[T1B] = E[T | B] P[B] = E[T ] P[B] =∞.
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4.5 Proof of Theorem 4.4

For convenience, we split the proof of Theorem 4.4 into smaller parts by
formulating and separately proving the following two lemmas.

Lemma 4.10. Assume (REG). Then,

C := lim sup
k→∞

qk P[Y > k]−1 ≤ λ−α

1− λ−α
.

Lemma 4.11. Assume (REG) and that all exponential moments of ξ are
finite. Moreover, let N ∈ Z≥2 ∪ {∞}. Then,

lim inf
k→∞

P[τ < N | Z0 = k] P[Y > k]−1 ≥
N−1∑
l=1

λ−αl.

Proof of Lemma 4.10. By truncation of the offspring distribution, compare
Observation 4.13 from Appendix A, we may assume that ξ is almost surely
bounded and particularly has finite exponential moments.

Let us verify C < ∞ as a first step. For this, choose ε > 0 with λ0 :=
λ − 2ε > 1 and set λ1 := λ − ε. Then, by Lemma 4.14 from Appendix B,
there are c1, . . . , cN ∈ (0,∞) such that the sequence

x0 := 1, xn+1 :=


λ1xn − λn+1

0 , n ≥ N

λ1xn − cn+1, n ≤ N − 1,

is strictly positive and satisfies xn ≥ cn for a c > 1 and all n ≥ 1. Furthermore,
for all k ≥ 1, we consider the events

Ak,n :=

{ ⌊kxn⌋∑
j=1

ξn+1,j ≥ λ1kxn

}
, n ≥ 0, Ak :=

⋂
n≥0

Ak,n.

For all k ≥ 1, we have

qk = P[τ <∞, Ak | Z0 = k] + P
[
τ <∞, Ac

k | Z0 = k
]
, (4.13)

as well as
P
[
τ <∞, Ac

k | Z0 = k
]
≤
∑
n≥0

P[Ac
k,n].
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By the Cramér-Chernoff method or a sub-Gaussian concentration estimate,
compare [15, Section 2.1 resp. Section 2.2], and by our knowledge concerning
the sequence (xn)n≥0, P[τ <∞, Ac

k | Z0 = k]→ 0 for k →∞ exponentially
fast. Therefore, by applying condition (REG), we deduce

lim
k→∞

P
[
τ <∞, Ac

k | Z0 = k
]
P[Y > k]−1 = 0,

and, by recalling (4.13), we further conclude

C = lim sup
k→∞

P[τ <∞, Ak | Z0 = k] P[Y > k]−1.

Fix k ≥ 1 and let Z0 = k. Then, by construction of Ak and (xn)n≥0,

{τ <∞} ∩ Ak ⊆
N⋃

n=1

{Yn > kcn} ∪
⋃
n>N

{Yn > kλn
0} .

Consequently,

C ≤ lim sup
k→∞

P[Y > k]−1

(
N∑

n=1

P [Yn > cnk] + P

[∑
n>N

Ynλ
−n
0 > k

])
. (4.14)

Note that, on the one hand, due to (REG),

lim
k→∞

N∑
n=1

P [Y > cnk] P[Y > k]−1 =
N∑

n=1

c−α
n <∞,

and on the other hand, by applying Theorem 4.6 with A1 ≡ λ−1
0 ,

lim sup
k→∞

P

[∑
n>N

Ynλ
−n
0 > k

]
P[Y > k]−1 <∞.

All in all, by equation (4.14), we conclude that C <∞.

In the second step, fix 0 < δ < λ1 = λ− ε and set λ2 := λ1− δ. Later, we
will let ε↘ 0 and δ ↘ 0, when λ1 ↗ λ and λ2 ↗ λ. For all k ≥ 1, we define
the events

D1,k := {Y1 > λ1k} , D2,k := {δk ≤ Y1 ≤ λ1k} and D3,k := {Y1 < δk} .
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For every k ≥ 1, given Z0 = k, we can decompose {τ < ∞} by using the
three events D1,k, D2,k, and D3,k. From this decomposition, we obtain

qk ≤ P[D1,k] + P[τ <∞, D2,k | Z0 = k] + P[τ <∞, D3,k | Z0 = k].

Let us introduce the notation qr := q⌊r⌋ for r ∈ (0,∞). Note that the function
r 7→ qr is monotone non-increasing with respect to r, and

P

[
n∑

j=1

ξ1,j ≤
(
λ− ε

2

)
n

]
→ 0 exponentially fast as n→∞,

which can be verified, as in the first step, by the Cramér-Chernoff method
or a sub-Gaussian concentration estimate. By combining these two remarks
with our assumption (REG), for all ε > 0 and δ > 0,

lim sup
k→∞

P[Y > k]−1 P[τ <∞, D2,k | Z0 = k]

= lim sup
k→∞

P[Y > k]−1 P[D2,k] P[τ <∞ | D2,k, Z0 = k]

≤ lim sup
k→∞

P[Y > k]−1 P[Y ≥ δk] q(ε/2)k = 0,

where, for the last step, we have also inserted our knowledge C < ∞. Simi-
larly, we can verify

lim sup
k→∞

P[Y > k]−1 P[τ <∞, D3,k | Z0 = k] ≤ lim sup
k→∞

P[Y > k]−1 qλ2k.

All in all, and again by invoking on (REG),

C = lim sup
k→∞

P[Y > k]−1 qk

≤ lim sup
k→∞

P[Y > k]−1 P[Y > λ1k] + lim sup
k→∞

P[Y > k]−1 qλ2k

= lim sup
k→∞

P[Y > k]−1 P[Y > λ1k] + lim sup
k→∞

P[Y > λ2k] qλ2k

P[Y > k] P[Y > λ2k]

≤ λ−α
1 + Cλ−α

2 .

Letting δ ↘ 0 and ε↘ 0, C ≤ λ−α + Cλ−α, and the claim follows.

Proof of Lemma 4.11. Due to monotonicity, it suffices to prove the claim for
N <∞. Fix ε > 0. For all k ≥ 1 and l = 1, . . . , N − 1, define

Ak,l :=


⌈k(λ+ε)l⌉∑

j=1

ξl,j ≤ k(λ+ ε)l+1

 , Ak :=
N−1⋂
l=1

Ak,l.
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Then, for all l = 1, . . . , N − 1, P[Ac
k,l]→ 0 for k →∞ exponentially fast due

to the Cramér-Chernoff method. Hence, by (REG),

L−
N := lim inf

k→∞
P[τ < N | Z0 = k] P[Y > k]−1

= lim inf
k→∞

P[τ < N, Ak | Z0 = k] P[Y > k]−1.

By inserting the definition of both Ak and (Zn)n≥0, we further obtain

L−
N ≥ lim inf

k→∞
P
[
∃l ∈ {1, . . . , N − 1} : Yl ≥ k(λ+ ε)l, Ak

]
P[Y > k]−1.

Again, we combine (REG) with the fact that for all l = 0, . . . , N−1, P[Ac
k,l]→

0 for k →∞ exponentially fast. This gives us

L−
N ≥ lim inf

k→∞
P
[
∃l ∈ {1, . . . , N − 1} : Yl ≥ k(λ+ ε)l

]
P[Y > k]−1.

Now, by applying the inclusion-exclusion principle, recalling that the se-
quence (Ym)m≥1 is i.i.d. and working with (REG), we obtain

L−
N ≥

N−1∑
l=1

lim
k→∞

P
[
Y1 ≥ k(λ+ ε)l

]
P[Y > k]−1 =

N−1∑
l=1

(λ+ ε)−αl.

The claim now follows by letting ε↘ 0.

Proof of Theorem 4.4. Because of both Lemma 4.10, which covers the case
N =∞, and Lemma 4.11, it suffices to prove that, for fixed 2 ≤ N <∞,

L+
N := lim sup

k→∞
P[τ < N | Z0 = k] ≤

N−1∑
l=1

λ−αl.

As in the proof of Lemma 4.10, we can assume that the offspring distribution
is bounded and, in particular, all exponential moments of ξ are finite. Let us
verify, for arbitrary ε1 ∈ (0, 1) with λ0 := λ− 2ε1 > 1,

L+
N ≤

N−1∑
l=1

λ−αl
0 . (4.15)

Let λ1 := λ− ε1 and define, for all k ≥ 1 and l = 1, . . . , N − 1, the events

Bk,l :=


⌊kλl

1⌋∑
j=1

ξl,j ≥ k
(
λ− ε1

2

)
λl
1

 , Bk :=
N−1⋂
l=1

Bk,l.
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For all l = 1, . . . , N − 1, the Cramér-Chernoff method or a sub-Gaussian
concentration estimate implies that P[Bc

k,l] → 0 for k → ∞ exponentially
fast, and hence

L+
N = lim sup

k→∞
P[τ < N, Bk | Z0 = k] P[Y > k]−1.

Consider the events

Ck :=
{
∃l ∈ {1, . . . , N − 1} : Yl > kλl

0

}
, k ≥ 1.

Then, by (REG),

lim sup
k→∞

P[Ck] P[Y > k]−1 ≤ lim sup
k→∞

N−1∑
l=1

P
[
Yl > kλl

0

]
P[Y > k]−1

=
N−1∑
l=1

lim
k→∞

P
[
Y > kλl

0

]
P[Y > k]−1 =

N−1∑
l=1

λ−αl
0 ,

and hence, in order to obtain the inequality (4.15), it suffices to show

lim
k→∞

P [τ < N, Bk, Cc
k | Z0 = k] P[Y > k]−1 = 0. (4.16)

Let ε2 ∈ (0, 1) and introduce, for all k ≥ 1, the random variable

Rk := #
{
l = 1, . . . , N − 1 | Yl ≥ ε2kλ

l
0

}
.

Then, since (REG) holds and (Ym)m≥1 is i.i.d., we easily obtain

lim sup
k→∞

P [τ < N, Bk, Cc
k, Rk ≥ 2 | Z0 = k] P[Y > k]−1 = 0. (4.17)

For a given ε1 > 0, choose 0 < ε2 < ε1/2. Then, for every k ≥ 1, by inserting
the definition of Bk, Rk, and (Zn)n≥0, we can deduce

P[τ < N, Bk, Rk = 0 | Z0 = k] = 0.

In particular, we obtain

lim sup
k→∞

P [τ < N, Bk, Cc
k, Rk = 0 | Z0 = k] P[Y > k]−1 = 0. (4.18)
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Combining (4.17) and (4.18), in order to verify (4.16), we only need to show

lim sup
k→∞

P [τ < N, Cc
k, Rk = 1 | Z0 = k] P[Y > k]−1 = 0. (4.19)

Let k ≥ 1 and l = 1, . . . , N−1. Then, we introduce events B′
k,l,1, . . . , Bk,l,N−1

by

B′
k,l,r :=


⌊kxr−1⌋∑
j=1

ξr,j ≥ λ1kxr−1

 , r = 1, . . . , N − 1,

where x0 := 1 and

xr+1 := λ1xr − br, br :=


λr
0, r = l

ε2λ
r
0, r ̸= l.

For all k ≥ 1, denote by B′
k the event that all events B

′
k,l,r, l, r = 1, . . . , N−1,

occur. Then, again by the Cramér-Chernoff method or the sub-Gaussian
concentration inequality, we know

lim sup
k→∞

P [τ < N, Cc
k, Rk = 1 | Z0 = k] P[Y > k]−1

= lim sup
k→∞

P [τ < N, B′
k, Cc

k, Rk = 1 | Z0 = k] P[Y > k]−1.

According to Lemma 4.15 from Appendix B, for every ε1 > 0, it is possible
to choose ε2 > 0 small enough to ensure

P [τ < N, B′
k, Cc

k, Rk = 1 | Z0 = k] = 0 for all k ≥ 1,

where we have inserted the definition of the events B′
k and Cc

k, as well as the
definition of the random variable Rk and the process (Zn)n≥0. In particular,
by choosing ε2 > 0 small enough, (4.19) follows.

4.6 Proof of Theorem 4.5

In the following, we will again work with the branching process (Z ′
n)n≥0, but

more generally assume Z ′
0 = k′ ≥ 1 and possibly k ̸= k′. Let q′ ∈ [0, 1) denote

the extinction probability of (Z ′
n)n≥0 given k′ = 1 and recall the existence of

the almost sure martingale limit

W ′ := lim
n→∞

λ−nZ ′
n ∈ [0,∞).
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By the Kesten-Stigum theorem [58], it is known that W ′ = 0 almost surely
if and only if E[ξ log+(ξ)] = ∞. Moreover, if E[ξ log+(ξ)] < ∞, then, given
(Z ′

n)n≥0 survives forever, W ′ > 0 almost surely.
Our main idea is to divide the population into two groups. Then, if the

emigration is weak, it may only affect one of these groups.

Lemma 4.12 (Decomposition). Fix k0 > k with P[Z1 = k0] > 0 and k′ :=

k0 − k. Let Z
(1)
1 := k, Z

(2)
1 := k′, and define, for all n ≥ 1, recursively

Z
(1)
n+1 :=

(
Z

(1)
n∑

j=1

ξn+1,j − Yn+1

)
+

, Z
(2)
n+1 :=

Z
(1)
n +Z

(2)
n∑

j=Z
(1)
n +1

ξn+1,j,

Then, (
Z(1)

n

)
n≥1

d
= (Zn)n≥0,

(
Z(2)

n

)
n≥1

d
= (Z ′

n)n≥0, (4.20)

and if (IND) holds, then the processes
(
Z

(1)
n

)
n≥0

and
(
Z

(2)
n

)
n≥0

are indepen-
dent. Moreover, for all n ≥ 1,

Zn = Z(1)
n + Z(2)

n on the event {Z1 = k0} ∩
{
Z(1)

n > 0
}
, (4.21)

Zn ≥ Z(1)
n + Z(2)

n on the event {Z1 ≥ k0} ∩
{
Z(1)

n > 0
}
. (4.22)

Proof of Lemma 4.12. By construction,
(
Z

(1)
n

)
n≥0

and
(
Z

(2)
n

)
n≥0

are time-
homogeneous Markov chains with the same initial state and transition pro-
babilities as (Zn)n≥0 respectively (Z ′

n)n≥0. Hence, (4.20) holds.

By inserting the definitions of Z
(1)
n and Z

(2)
n , one can straightforwardly

verify both (4.21) and (4.22). The details are therefore omitted.
Finally, assume (IND) and let a1, a2, b1, b2 ∈ N. Then, for all n, m ≥ 1,

P
[
Z

(1)
n+1 = a2, Z

(2)
m+1 = b2 | Z(1)

n = a1, Z
(2)
m = b1

]
= P

[(∑a1
j=1 ξn+1,j − Yn+1

)
+
= a2,

∑a1+b1
j=a1+1 ξm+1,j = b2

]
= P

[(∑a1
j=1 ξn+1,j − Yn+1

)
+
= a2

]
P
[∑a1+b1

j=a1+1 ξm+1,j = b2

]
= P

[
Z

(1)
n+1 = a2 | Z(1)

n = a1
]
P
[
Z

(2)
m+1 = b2 | Z(2)

m = b1
]
.

Hence transitions of
(
Z

(1)
n

)
n≥1

and
(
Z

(2)
n

)
n≥0

are independent, and the claim
follows by recalling that the initial states are chosen constant.

75



Article 3. Supercritical Branching with Emigration

(
Z

(1)
n

)
n≥0

(
Z

(2)
n

)
n≥0

...
...

...

Figure 4.1: Illustration of the decomposition in Lemma 4.12. We divide the
Galton-Watson tree in two groups. Under suitable conditions, the first group
may survive forever even if the whole emigration component is always sub-
tracted from it. On this event, the second group is shielded from emigration,
and the entire population is the superposition of a branching process with
emigration and branching process without migration.

Proof of Theorem 4.5. (a). Let P[W > 0] > 0. Then P[τ = ∞] > 0 and
hence, by Theorem 4.2, we immediately obtain E[log+(Y )] < ∞. Besides,
using Zn ≤ Z ′

n for Z0 = Z ′
0 = k and applying the classical Kesten-Stigum

theorem, see [58], we directly conclude E[ξ log+(ξ)] <∞.
On the contrary, let us assume E[log+(Y )] < ∞ and E[ξ log+(ξ)] < ∞.

Then, due to Theorem 4.2, P[τ =∞] > 0, and hence it suffices to show

P[W > 0] = P[τ =∞].

In order to obtain this claim, we note that {W > 0} ⊆ {τ =∞} and verify

P[W = 0, τ =∞] = 0. (4.23)

By (H1) and (H2), we know {τ =∞} = {Zn →∞} almost surely. Moreover,
W is monotone with respect to Z0 = k. Consequently,

P[W = 0, τ =∞] ≤ lim inf
k→∞

P[W = 0 | Z0 = k] (4.24)

= 1− lim sup
k→∞

P[W > 0 | Z0 = k]. (4.25)

76



4.6. Proof of Theorem 4.5

Choose ε > 0 with λ− ε > 1 and set k0(k) := ⌊(λ− ε)k⌋ for all k ≥ 1. Then,
by the strong law of large numbers,

lim sup
k→∞

P[Z1 ≥ k0(k) | Z0 = k] = 1 (4.26)

and k0(k)− k →∞ for k →∞. Fix k ≥ 1, k0 = k0(k), and assume Z0 = k.
Then, by making use of the notation introduced in Lemma 4.12 and (4.22),

P[W > 0] ≥ P[Z1 ≥ k0] P
[
∀n ≥ 0 : Z(1)

n > 0, lim
n→∞

λ−nZ(2)
n > 0

]
. (4.27)

Recalling (4.20) and Proposition 4.9, we know

P
[
∀n ≥ 0 : Z(1)

n > 0
]
= 1− qk → 1 for k →∞. (4.28)

On the other hand, by (4.20) and the Kesten-Stigum theorem [58],

P
[
lim
n→∞

λ−nZ(2)
n > 0

]
= P [W ′ > 0 | Z ′

0 = k0(k)− k] = 1− (q′)k0(k)−k,

and, since k0(k)− k →∞ for k →∞, we further obtain

lim
k→∞

P
[
lim
n→∞

λ−nZ(2)
n > 0

]
= 1. (4.29)

By combining (4.26), (4.28), and (4.29) with (4.27), we conclude

lim sup
k→∞

P[W > 0 | Z0 = k] = 1,

and hence (4.23) and the claim follows by recalling (4.24) and (4.25).
(b). First, let a = 0. Assume that there exists b ∈ (0,∞) satisfying

P[0 < W < b] = 0 and P[0 < W < b + ε] > 0 for all ε > 0. Then, we choose
ε > 0 and δ > 0 with

b̃ := λ−1(b+ ε) + δ < b. (4.30)

Also, fix k0 > k with P[Z1 = k0] > 0, and again recall the notation from
Lemma 4.12. Then, by the decomposition (4.21) and (4.30),

P[0 < W < b̃]

≥ P [Z1 = k0] P
[
lim
n→∞

λ−nZ(1)
n ∈

(
0, λ−1(b+ ε)

)
, lim

n→∞
λ−nZ(2)

n < δ
]
.
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By using (IND) and Lemma 4.12, we further deduce

P[0 < W < b̃] ≥ P [Z1 = k0] P [0 < W < b+ ε] P [0 < W ′ < λδ] ,

where we assume Z0 = k and Z ′
0 = k0 − k. The first two probabilities on

the right-hand side of this inequality are positive by construction. The third
factor is also positive. This follows, for example, from the fact that W ′ has
a strictly positive Lebesgue density on (0,∞), see, for example, [5, Chapter
1, Part C]. Consequently, P[0 < W < b̃] > 0, which is a contradiction to our
assumptions on b ∈ (0,∞). Hence, the claim is true if a = 0.

For arbitrary a > 0, again fix k0 > k with P[Z1 = k0] > 0 and also
ε > 0 with ε < b− a. Then, by the same arguments as for a = 0, and again
assuming Z0 = k and Z ′

0 = k0 − k, we obtain

P[a < W < b] ≥ P [Z1 = k0] P [0 < W < λε] P [λa < W ′ < λ(b− ε)] .

Since we have verified the claim for a = 0, we know that the second factor on
the right-hand side of this inequality is positive. Our choice of ε implies that
also the third factor is positive. Hence, as for a = 0, we can indeed deduce
P[a < W < b] > 0.

4.7 Appendix A. Truncation of the reproduction law

In some of our proofs, we make use of the following observation.

Observation 4.13 (Truncation of the offspring distribution). Let (Zn)n≥0

denote a branching process with emigration, which is defined recursively by
equation (4.1) under the same assumptions as in the introduction. Moreover,
let λ := E[ξ1,1] ∈ (0,∞] and assume that the distribution of ξ1,1 is unbounded.
Then, for every s ∈ (0,∞), there exists N ∈ N with the following property.
If we define, for all n, j ≥ 1,

ξ̃n,j :=


ξn,j, ξn,j ≤ N

N, ξn,j > N,

as well as Z̃0 := Z0 := k, and, recursively

Z̃n+1 :=

(
Z̃n∑
j=1

ξ̃n+1,j − Yn+1

)
+

, n ≥ 0,
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then we arrive at a branching process with emigration (Z̃n)n≥0, which satisfies
Z̃n ≤ Zn almost surely for all n ≥ 0, has a bounded offspring distribution
and, if λ = ∞, then s < E[ξ̃1,1] < ∞, respectively 0 < λ − E[ξ̃1,1] < s in
case of λ <∞. In particular, if τ̃ denotes the extinction time of the process
(Z̃n)n≥0, then τ ≥ τ̃ almost surely.

Moreover, if the condition (IND) respectively (H2) is satisfied for the pro-
cess (Zn)n≥0, then, by construction, the corresponding condition also holds
for (Z̃n)n≥0. Finally, if λ ∈ (1,∞) and s < λ − 1, then, as for the pro-
cess (Zn)n≥0, we know that the condition (H1) holds for (Z̃n)n≥0 provided
Z0 = Z̃0 = k is chosen large enough.

4.8 Appendix B. Notes on the recursion xn+1 = axn−bn

The following two claims can be proved by elementary arguments. We omit
the details.

Lemma 4.14. Let x0 := 1, a ∈ (1,∞); and ε > 0 with a − ε1 > 1. Then
there exists N ∈ N and c1, . . . , cN ∈ (0,∞) such that for the sequence (xn)n≥0

defined by

xn+1 := axn − bn, where bn :=


(a− ε)n+1, n ≥ N

cn+1, n ≤ N − 1,

there exists c > 1 with xn ≥ cn > 0 for all n ≥ 1.

Lemma 4.15. Let N ∈ N, x0 := 1, a ∈ (1,∞), and ε1 > 0 with a− ε1 > 1.
Then, there exists ε2 > 0 with the following property. For arbitrary l ∈
{1, . . . , N − 1}, the recursion

xn+1 := axn − bn, where bn :=


(a− ε1)

l, n = l,

ε2(a− ε1)
n, n ̸= l,

defines reals x1,. . .,xN with xj ≥ ε1 > 0 for all j = 1, . . . , N .
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36(6), 691–736. MR1797390.

[87] Boris A. Sevastyanov (1974). Verzweigungsprozesse. Volume 34 of
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