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ABSTRACT

Science makes extensive use of simulations to model the world. Statistical inference identifies which
models are consistent with observed phenomena, thus bridging the gap between theory and reality.
However, conventional statistical inference is often inapplicable to detailed simulation models because
their associated likelihood functions are intractable. Simulation-based inference (SBI) addresses this
problem: It allows statistical inference from simulations alone and can thus be used with implicit models,
which lack evaluable likelihoods. This thesis consists of four publications that draw on advances in
machine learning to contribute to the transition away from heuristic approaches towards principled
statistical inference with SBI, which allows to identify data-consistent models. To this end, this thesis
proposes new algorithms, applications to neuroscience, and the first unified benchmark for SBI. Overall,
it shows the potential for fast and flexible likelihood-free algorithms to facilitate scientific discovery in
neuroscience and beyond.

The trade-off between models of neural dynamics that are statistically amenable or mechanistically
plausible was the starting point for the work presented in this thesis. In the first publication, we introduce
an SBI algorithm for sequential neural posterior estimation, which overcomes the drawbacks of an earlier
method. We provide several extensions motivated by challenging problems in neuroscience, including
end-to-end learning of summary statistics for high-dimensional time series data. In the second publi-
cation, we demonstrate its broad applicability to mechanistic models in neuroscience—from the scale
of ion channels, which are the basic building blocks of biophysical neuron models, to network models
of neural dynamics. Our approach overcomes the limitations of heuristic alternatives and narrows the
divide between statistical and mechanistic models. The third publication proposes a novel SBI algorithm
that proceeds by learning an emulator of the simulator. This approach enables the use of active learning
schemes to adaptively acquire new simulations, which allows scaling to problems that are computation-
ally highly expensive. With rapid progress in SBI, the need for a unified benchmark became apparent:
In the fourth publication, we propose the first benchmark for the field to transparently evaluate progress
and to contribute to more efficient and reproducible science.






ZUSAMMENFASSUNG

Die Wissenschaft macht ausgiebig Gebrauch von Simulationen, um die Welt zu modellieren. Statistis-
che Inferenz ermittelt, welche Modelle mit beobachteten Phinomenen iibereinstimmen, wodurch die
Kluft zwischen Theorie und Realitét iiberbriickt wird. Konventionelle statistische Inferenz ist jedoch
oft nicht auf detaillierte Simulationsmodelle anwendbar, da die dazugehorigen Likelihood-Funktionen
unauswertbar sind. Simulations-basierte Inferenz (SBI) adressiert dieses Problem: SBI erméglicht statis-
tische Inferenz alleinig auf Basis von Simulationen und kann daher fiir implizite Modelle verwendet
werden, fiir die es keine auswertbaren Likelihoods gibt. Diese Arbeit besteht aus vier Veroffentlichun-
gen, die sich auf Fortschritte im maschinellen Lernen stiitzen, um zum Ubergang von heuristischen An-
sdtzen zu fundierter statistischer Inferenz mit SBI beizutragen. Damit wird ermoglicht, datenkonsistente
Modelle zu identifizieren. Zu diesem Zweck werden neue Algorithmen, Anwendungen in den Neurowis-
senschaften und der erste einheitliche Benchmark fiir SBI beigetragen. Insgesamt wird das Potenzial fiir
schnelle und flexible likelihood-freie Algorithmen aufgezeigt, die wissenschaftliche Entdeckung in den
Neurowissenschaften und dariiber hinaus erméglichen.

Die Abwiagung zwischen statistisch angemessenen und mechanistisch plausiblen Modellen der neu-
ronalen Dynamik war der Ausgangspunkt fiir die hier vorgestellte Arbeit. In der ersten Veroffentlichung
wird ein SBI-Algorithmus fiir sequenzielle neuronale Posteriorschdtzung vorgestellt, der die Nachteile
einer fritheren Methode {iberwindet. Wir fithren mehrere Erweiterungen ein, die durch schwierige Prob-
leme in der Neurowissenschaft motiviert sind, einschlieSlich des Ende-zu-Ende-Lernens von zusammen-
fassenden Statistiken fiir hochdimensionale Zeitreihendaten. In der zweiten Veréffentlichung demonstri-
eren wir die breite Anwendbarkeit der Methode auf mechanistische Modelle in den Neurowissenschaften
— von der GroBenordnung von Ionenkanilen, die grundlegenden Bausteine biophysikalischer Neuro-
nenmodelle, bis hin zu Netzwerkmodellen neuronaler Dynamik. Unser Ansatz iiberwindet die Grenzen
heuristischer Alternativen und verringert die Kluft zwischen statistischen und mechanistischen Mod-
ellen. In der dritten Veroffentlichung wird ein neuartiger SBI-Algorithmus vorgeschlagen, in welchem ein
Emulator des Simulators gelernt wird. Dieser Ansatz ermoglicht den Einsatz aktiver Lernverfahren zur
adaptiven Durchfiihrung neuer Simulationen, was Skalierung auf Probleme, die hohen Rechenaufwand
erfordern, ermdglicht. Mit den raschen Fortschritten in SBI wurde der Bedarf an einem einheitlichen
Benchmark deutlich: In der vierten Veroffentlichung schlagen wir den ersten Benchmark fiir das Feld
vor, um Fortschritte transparent zu bewerten, und um zu mehr Effizienz und Reproduzierbarkeit in der
Wissenschaft beizutragen.
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CHAPTER 1

INTRODUCTION

1.1 OBSERVATIONS AND MODELS IN NEUROSCIENCE: PAST AND PRESENT

In 1939, Alan Hodgkin and Andrew Huxley made a historical observation: Using an ingenious system of
mirrors, they inserted a micro-electrode made from a fine glass tube and silver wire for electric contact
into the giant nerve fiber of a squid (Loligo forbesii). Placing another electrode in the seawater outside
the nerve, they measured the potential difference across the membrane, obtaining the first intracellular
recording of an action potential (Figure 1.1A).} Across species, information processing in neural systems
relies on transmission of such short, stereotypical ‘spikes’ of electric activity along nerve fibers.2 To put
it figuratively, spikes are the language of our brains, which are composed of a staggering number of
approximately 86 billion neurons connected through ten million kilometers of nerve fibers.® Ultimately,
all our perception, memory, thoughts, and behavior arise from neurons talking to other neurons.

Following wartime duties, Hodgkin and Huxley turned towards creating a model of their observation,
aiming to explain the shape of action potentials. They proposed an equivalent circuit model as an anal-
ogy for nerve cells. In the model, a capacitor serves as a stand-in for the membrane, and three parallel
resistors account for ions flowing across different types of hypothesized channels (Figure 1.1B).* By
1951, they had settled on the equations and constants associated with their circuit model and were hop-
ing to simulate them on one of the earliest digital computers (EDSAC 1) at the University of Cambridge.
Unfortunately, the computer was down for six-month maintenance, and so the differential equations un-
derlying the model were laboriously computed using a hand-operated mechanical calculator (Brunsviga
20) over the course of three weeks.> This was well worth the effort: The Hodgkin-Huxley model, pub-
lished in a series of consecutive papers (Hodgkin & Huxley, 1952a,b,c,d,e) provided the first quantitative
account of the observed action potentials, faithfully reproducing biophysical properties. It is one of the
fundamental breakthroughs in neuroscience, earning its inventors a Nobel Prize in 1963, forever shaping
our mechanistic understanding of the biophysics of neurons.®

Fast-forward to today: Access to digital computers and the use of numerical simulations in neuro-
science are ubiquitous.” Special-purpose simulation software and databases allow detailed specification
of biophysical models, for example, incorporating today’s knowledge of ion channels, the stunning diver-
sity of neural morphologies and cell types, connectomics, and plasticity.® Progressively, more and more
realistic models of mechanisms underlying neural dynamics, on a single neuron and population level,
are formulated. Apart from aiming for such micro- or macroscopic biophysical realism, computer simu-
lations in neuroscience are performed with many different goals in mind. This also includes striving for
realistic behavior, for example, imitating how we remember, learn and make decisions, or realism regard-
ing representations.’ Along with this development, neuroscience is undergoing a data-driven revolution,
with tools of unprecedented resolution for measuring brain dynamics and complex naturalistic behavior
at its disposal: High-density probes and optical tools of today allow parallel recordings of thousands of
neurons. Simultaneously, video and sensor data of behavior can be acquired with extreme precision. !’
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Figure 1.1: Observation and model by Hodgkin and Huxley. A. Hodgkin & Huxley (1939) observed the first intra-
cellular action potentials, which they measured from the squid giant axon: Time, with a 500 Hz signal included for
reference, plotted against the measured potential in mV. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature, Nature, Action potentials recorded from inside a nerve fibre. Hodgkin, A. L.
and Huxley, A. F., 1939. B. In later work, they formulated a model representing the membrane as a electrical circuit
(Hodgkin & Huxley, 1952e): Sodium (Na), potassium (K), and leak (L) conductances g are modeled as inverses
of corresponding resistances (R). Ry, and Ry vary with membrane potential and time. Their model provided the
first quantitative account of the time-course of action potential generation, capturing the essence of the underlying
mechanism, which involves a short influx of sodium ions into the axon, followed by an efflux of potassium. Reprinted
by permission from John Wiley and Sons: Wiley-Blackwell, The Journal of Physiology, A quantitative description of
membrane current and its application to conduction and excitation in nerve. Hodgkin, A. L. and Huxley, A. F., 1952.

1.2 BRIDGING THE GAP BETWEEN REALITY AND THEORY

With these exciting advances comes a significant challenge at the heart of scientific progress: Given
detailed, interpretable models that specify hypothesized cause-effect relationships unfolding over time
in simulations on the one hand, and evermore complex observations on the other—how can we identify
which models are consistent with observed data and knowledge?

Answering this question requires bridging the gap between observations and models. In the big pic-
ture, statistical inference is uniquely poised to serve as the bridge that connects the real world, in which
observations are made, and the theoretical world, of which models are part of (Figure 1.2).!! This way,
statistical inference enables the iteration between theory and practice on which scientific learning and
insight rely.!? As its language, it uses probability, “the logic of uncertainty”.!® Variability and limited
information are inherent to all scientific problems: Fundamentally, we never observe a phenomenon di-
rectly, but only through probes used for measurements, such as a fine glass tube and silver wire in the case
of Hodgkin and Huxley. The phenomenon is embedded in its environment, for example, involving the
experimental preparation. Phenomenon, probe, and environment all interact and affect the observation,
inevitably leading to variability.!* Similarly, we face incomplete knowledge when specifying models and
are commonly confronted with systems that appear stochastic and noisy when observed on a microscopic
scale. For example, for most synapses, a spike arriving at the terminal of an axon triggers neurotrans-
mitter release only about half of the time, and spontaneous release is frequent.!® Statistics offers a way

to make principled decisions in light of uncertainty, no matter what the exact source of uncertainty is.®

Unfortunately, conventional statistical inference often poses prohibitively strict restrictions on which
models can be used. Broadly speaking, identifying data-consistent model configurations requires numer-
ical evaluation of the so-called likelihood function—which captures the relative consistency of any given
model configuration with observations.!” Commonly, however, this is infeasible for practical, computa-
tional, or mathematical reasons, which are detailed in Chapter 2.
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Figure 1.2: Statistical inference bridges the real world, one in which observations are made, with the theoretical
world, inhabited by models. Bridging this gap allows us to draw conclusions, in particular, to answer the question
which models are consistent with observed data and knowledge. Inspired by Kass (2011, Figure 1).

This creates a dilemma: When we design models with statistical considerations in mind, we have
a close feedback loop between data and theory. However, this poses tight constraints on what models
can be used. This strategy often only yields limited insights about underlying causal mechanisms. In
contrast, when we design interpretable mechanistic models predestined for this purpose, for example,
relying on high-fidelity computer simulations, we lose the ability to perform (likelihood-based) statistical
inference. Constraining these models by observed data often poses an extremely difficult challenge.

1.3 DOWNSIDES OF HEURISTIC ALTERNATIVES TO STATISTICAL INFERENCE

We can illustrate a number of different existing approaches to this problem, and their respective limi-
tations, by virtue of a simple but insightful example. Relating back to the beginning, let us assume we
stimulated an axon by supplying a small fluctuating current and counted the resulting number of spikes
in a short time window. We might then ask the question which configurations of a Hodgkin-Huxley
model (Figure 1.1B) are consistent with what we observed. To keep this example simple, we only con-
sider models which differ in sodium and potassium conductances. The standard toolkit of statistical
inference cannot be applied to this example for lack of a tractable likelihood function.!®

An ideal answer to our question is presented in Figure 1.3, showing the probability of obtaining a
given number of spikes when simulating a Hodgkin-Huxley model as the conductances are varied.!? The
answer in this figure was obtained by brute force, that is, the model was simulated over a fine grid of
combinations of the two conductances.?? While this is feasible thanks to modern digital computers, this
strategy quickly reaches its limits. In particular, it is only possible because the number of parameters that
are varied is so low (only two). With each additional free parameter, the computational cost increases
exponentially, rapidly exceeding feasible limits. Computing the results shown in the figure took about
70 hours (about 0.008 years) to complete; varying just one additional parameter at the same resolution
would already take about 8 years to finish, two more 8 000 years, and so forth.?! Note that models in
neuroscience can have tens to hundreds of parameters.?? In addition, individual simulations can take
significantly longer than the ones considered here. This illustrates why brute-force exploration of the
entire model configuration space is usually impossible in practice, and, more generally, how the cost of
simulations places tight constraints on parameter exploration.

Instead, consistent model configurations are commonly searched for either manually, which is highly
laborious and subjective, or using an automated search method.?®> Automated search procedures criti-
cally rely on the definition of their objective function, which measures the agreement between observed
data and simulations.?* In practice, high-dimensional data (for example, acquired by modern electro-
physiological or optical tools) is often reduced to a low number of heuristically chosen features for the
objective. The outcomes of any automatic search procedure will be highly sensitive to these choices. In
addition to purposefully keeping the number of free parameters very low and choosing a fast simulator,
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Figure 1.3: From left to right, this figure shows the estimated probability of a Hodgkin-Huxley model yielding a
given spike count within a short time window with different configurations of potassium and sodium conductances,
Zx and gy, (both in mS/cm?). The results were obtained by simulating over a finely-spaced grid of combinations
of these two parameters. For any given spike count, there are many consistent solutions.

our simple example also side-steps this issue: By specifying upfront that we are only interested in spike
counts, data is one-dimensional, and specifying an objective is straightforward.?

We can illustrate a final issue on this example: Search methods, unlike statistical procedures, do not
quantify the uncertainty in returned solutions and are typically ill-suited to deal with non-uniqueness.
Assume we run a common search algorithm to answer the question which model configurations are
consistent with observing a given number of spikes. As a result, we obtain a ‘best’ solution in the form of
a single pair of values for gy,, gx. Repeating the search, however, we might obtain an entirely different
‘best’ solution.?® Considering Figure 1.3, we see why: There is a large number of consistent model
configurations for any given spike count.

Since we only considered a single feature in our example, this might come as no surprise. However,
reducing the dimensionality of data to few features is not the only way in which non-uniqueness arises:
Having multiple solutions is closely associated with robustness. In neuroscience, this has been widely
acknowledged through the work of Eve Marder and colleagues: Studying the stomatogastric nervous sys-
tems of lobsters (Homarus americanus), they found that the same functional output (a triphasic motor
pattern) can be generated by a large variety of different synaptic strengths and intrinsic neuronal proper-
ties.?” Similar behavior on the level of individual neurons and networks can be achieved by substantially
different parameters through compensatory mechanisms. This ensures robustness, and ultimately sur-
vival, in the face of changing environmental conditions. This deep insight about biology is referred to as
degeneracy.?® The fundamental lesson is that studying a single ‘best’ model to understand the behavior
of a system can be ill-conceived.?’

1.4 STATISTICAL INFERENCE FOR IMPLICIT MODELS: CLASSICAL TECHNIQUES

These considerations and issues bring us back to statistical inference. Generally, statistical inference
offers a principled alternative to the strategies discussed above and allows to infer the entire space of data-
consistent models.>° How can it be applied to mechanistic models with intractable likelihood functions?

As a matter of fact, some statisticians recognized the potential of extending statistical inference to
models without tractable likelihoods decades ago—although they were yet significantly limited by the
speed of computers.3! For example, in 1984, Peter Diggle and Richard Gratton proposed an inference
algorithm for implicit models, which is the name they gave to models with intractable likelihoods.?? They
refer to their algorithm as simulation-based, since it proceeds by simulating outcomes from the model,
which are then used to obtain an estimate of the likelihood. Discussing the potential merits, they write:

Simulation-based methodology for parameter estimation extends the range of models which
can be fitted to a set of data. An immediate consequence is that a scientifically plausible



implicit statistical model need not be ruled out on the grounds of mathematical intractability.
(Diggle & Gratton, 1984, p. 210)

A likewise prescient paper by statistician Donald Rubin published in the same year (Rubin, 1984)

includes a thought experiment describing a rejection-based algorithm which is part of the pre-history of

).33 ABC was developed

t.34

a family of approaches referred to as Approximate Bayesian Computation (ABC
in population genetics around 15 years later and has henceforth found many applications beyond i
Ideas to make statistical inference possible for implicit models have been actively developed over the past
decades. Chapter 2 will go into more detail about some classical techniques and their limitations. For
example, rejection-based statistical methods suffer from similar issues as the brute-force approach—the
so-called curse of dimensionality. This inherently limits their efficiency and scalability—and generally
requires models to only have few free parameters and low-dimensional data. This explains why these

approaches have not found widespread application in neuroscience.

1.5 ADVANCES IN SIMULATION-BASED INFERENCE THROUGH MACHINE LEARNING

So far, we coarsely sketched some progress and developments in neuroscience and statistics. A third and
final area of progress is one that is beginning to increasingly change aspects of our daily lives: machine
learning.®® On a technical level, many of its recent advances are based on deep artificial neural networks,
which have yielded impressive improvements on a huge variety of problems.3® The starting point for this
thesis was to ask how we can draw on advances in machine learning in order to develop efficient and
scalable algorithms for statistical inference with implicit models. This was motivated by the dilemma we
faced regarding the choice between statistically convenient and mechanistic models in neuroscience.

What is particularly exciting about this research question is that the challenges discussed in a neuro-
science context thus far are by no means specific to it. Simulation-based inference is a recent encompassing
term for algorithms performing statistical inference with implicit models.?” One way to appreciate the
breadth of its potential applications is to realize that implicit models are used to simulate processes from
the smallest to the largest scales of what we humans have measured: At the extremes, computerized
simulations are used from particle physics, studying events at subatomic scales, up to simulations of uni-
verse evolution.®® Drug discovery, epidemiology, robotics, economics, and climate science all make use
of complex simulations, to give a few examples beyond my own field of scientific expertise.>® Advances
in simulation-based inference can benefit many domains of science and industry at once—by offering a
principled way to bridge the gap between observations and models.

Since I started working on this question in mid-2016, this research endeavour has gained a lot of
traction and momentum. Retrospecting the progress made over the last couple of years, a recent review
titled “The frontier of simulation-based inference” predicts:

The rapidly advancing frontier means that several domains of science should expect either
a significant improvement in inference quality or the transition from heuristic approaches
to those grounded in statistical terms tied to the underlying mechanistic model. It is not
unreasonable to expect that this transition may have a profound impact on science.
Cranmer et al. (2020, p. 8)

This thesis contributes towards this transition: It is based on four publications, proposing new al-
gorithms for simulation-based inference, applications to neuroscience, and a first unified benchmark.
Overall, it demonstrates the potential of simulation-based inference to facilitate scientific discovery in
neuroscience and beyond.



1.6 OUTLINE OF THIS THESIS

This introduction provides the overall context and motivation for the work presented in this thesis.
Chapter 2 complements it with technical background: I briefly review ‘likelihood-based’ statistical infer-
ence, different reasons for intractable likelihoods, some classical simulation-based approaches, as well as
recent neural network-based inference algorithms. In Chapter 3, each publication is briefly summarized
and discussed. Finally, in Chapter 4, I provide a broader reflection and outlook. Comments and point-
ers to the literature are collected in endnotes appearing before the reference section. Publications are
included in full in Appendix I, II, III, and IV. Appendix V delineates my individual author contributions.



CHAPTER 2

BACKGROUND

This chapter complements the introduction. It provides a concise summary of statistical inference and
introduces relevant notation. Simulators and reasons for the common intractability of likelihoods are
discussed, distinguishing practical, computational, and mathematical reasons. Finally, some classical
approaches to simulation-based inference, their respective drawbacks, and how these are addressed by
recent methods drawing on machine learning are reviewed.

2.1 STATISTICAL INFERENCE

The introduction motivated statistical inference and framed it as bridging two worlds, the real one, in
which data is observed, and a theoretical one, which models are part of (Figure 1.2). Next, we will
introduce relevant mathematical notation for both. The overall perspective on statistical inference in
this section draws on Betancourt (2018, 2019).4°

2.1.1 OBSERVATIONS

Recall from the introduction that we never observe a phenomenon directly, but only through probes used
for measurement. The process of making observations is inherently variable since phenomenon, probe,
and environment all interact. To deal with this stochasticity, we assume probability distributions over
the space of all possible observations, X'. We refer to any particular probability distribution generating
observations as a data generating process. The collection of all possible data generating processes is Py .
When we study a given phenomenon, it is often helpful to think that a particular true (but unknown)
data generating process p exists. We refer to a realization from p} as an observation x, € X'

2.1.2 STATISTICAL MODELS

The true data generating process is unknown to us. We would like to identify data generating processes
that are consistent with observation(s) realized from p}. Searching through the entire space of all data
generating processes Py is infeasible. In practice, we thus restrict ourselves to a subspace M C Py
(Figure 2.1). We equivalently refer to M as the model configuration space, the observational model,
or the statistical model. We associate each data generating process (model configuration) in M with a
vector of parameters @ € ©. Any data generating process in Mg is a conditional probability distribution
p(x]0) that we consider as a possible stand-in for the true data generating process.*!

In the context of this thesis, we are concerned with models that are generative, i.e., models for which
we can generate samples x ~ p(x|0). The dependency on 6 jointly describes phenomenological and non-
phenomenological variables, e.g., biophysical parameters as well as ones related to the measurement
process and environment. When we write x, we refer to a sample generated by a model. When we write
X,, we instead refer to observed data, e.g., data realized from p for which we would like to identify
data-consistent model configurations.
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Px

Figure 2.1: The model configuration space M contains a subset of all data generating processes Py that are con-
sidered for inference. After Betancourt (2019, Figure 2).

M should be rich enough as to contain data generating processes that are sufficiently similar to the
true data generating process for our purposes. Ideally, the true data generating would lie inside M, but
in practice, it usually won’t be contained in it: We cannot capture the entire complexity of the natural
world with our models of it. Consequently, when dealing with observations made in the real world, we
should expect a mismatch relative to the true data generating process. We will return to discussing this
important point in the last chapter.

2.1.3 FREQUENTIST AND BAYESIAN INFERENCE

Statistical inference allows us to answer the question which model configurations are consistent with
observed data. As traditionally conceived, statistical inferences of all kinds rely on numerical evaluation
of the likelihood function. The likelihood function returns a value that increases for consistent model
configurations and decreases for inconsistent ones, i.e., the likelihood function expresses the relative
consistency of each model configuration with the observation x,. Given parameters 0, the likelihood
function evaluates the model p(x|6) at x = x,,. It is thus a function over the parameter space, specifically,

L, (0):0— R*
0 — p(x=1x,10).

Here, whenever we write likelihood, it is short for likelihood function, £, (), as defined above. This
is worth clarifying since the term likelihood (omitting function) is sometimes used more loosely to refer
to the conditional density p(x|6) without fixing x = x,,.

There are two major paradigms in statistics—f{requentist and Bayesian inference—both of which typ-

ically rely on numerical evaluation of the likelihood. We will first turn towards discussing the latter,

which rests on Bayes’ theorem.*?
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Figure 2.2: Through statistical inference, we identify which model configurations are consistent given observed
data. In a Bayesian approach, which is illustrated in this figure, consistency is expressed in terms of probability
distributions. The information contained in the observation updates the prior over model configurations (left),
resulting in the posterior (right). After Betancourt (2019, Figure 4).

Applied to the random variables we introduced, the theorem states that:

likelihood prior
—
p(%,16) p(6)

p(01x,) = .
posterior f de p(X0|9)P(9)

marginal likelihood

We have labeled parts of the equations to refer to them. The posterior distribution, on the left-hand
side, is the inferential outcome—it is the probability distribution over model configurations consistent
with our observation. The right-hand side states that the posterior can be obtained through multiplica-
tion of likelihood and prior terms, divided by the marginal likelihood (also referred to as evidence).**
Conceptually, we can think of Bayesian inference as a learning process, as illustrated in Figure 2.2: Our
prior beliefs about plausible model configurations are expressed as p(6).** Bayes’ theorem tells us how
to update our beliefs about plausible models in light of observations. Combining prior and likelihood,
through which observations enter the equation, posterior beliefs are obtained.

Next, we will briefly discuss frequentist inference, which is the classical, i.e., most widely used ap-
proach for parameter estimation.*> When faced with statistical models that do not allow analytic treat-
ment, a frequentist approach would typically use the maximum likelihood (ML) point estimator,

0y, = argmaxlog L, (0),
0

where the log of the likelihood is taken for numerical reasons.*® Solving for [ . identifies a single model
configuration that is consistent with the observed data, i.e., a ‘best fit’. While frequentist approaches
do allow expressing uncertainty in inferential outcomes, this perspective has a different notion of what
uncertainty means.*” Such differences have caused significant and long-running debates.*® Arguably, the
problem at hand and practical successes should pragmatically guide the choice of inference framework.*
In this thesis, we focus on Bayesian approaches for reasons discussed in the introduction; to explore the
space of all feasible solutions in the presence of degeneracy.
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2.2 IMPLICIT MODELS: REASONS FOR INTRACTABLE LIKELIHOODS

Statistical inferences of all kinds usually rely on numerical evaluation of the likelihood function. However,
in many cases of practical interest, the likelihood either cannot be evaluated numerically at all or doing
so would be prohibitively expensive. Models for which the likelihood is intractable have been dubbed
implicit models; as opposed to prescribed models for which evaluation of the likelihood is possible.>®

As discussed in the introduction, implicit models are ubiquitously used to simulate processes in many
domains of science and industry. In this thesis, we focus on models of the following general mathematical
form, to which we also refer to as simulators (Figure 2.3): A simulator takes in parameters 6 defining
the model configuration. Depending on 6 a series of latent variables z (internal states) are generated.
This can involve a succession, i.e. z;,...,zy, are sampled from distributions that can depend on 6 as
well as previously generated z,. When the simulator terminates, it returns outcomes x ~ p(x|8,z;.y).>!
The likelihood of such a model given an observation x, is:

‘Cxo(e):jdzl:Np(X:Xo:Zl:Nle)- (1)

We also consider a second scenario, in which the simulator output x is a deterministic transformation
of latent variables and parameters, i.e., x = f(z,.y, 8). In this case, we can write the likelihood using a
Dirac delta function as:

L,,(8)= f dzy.y 6(%o — f (21:v, 0))p(21:510). 2

We can distinguish three reasons why above likelihoods may be intractable for a simulator of inter-
est.>? Jointly, all of these reasons motivate the need for methods that can perform inference without
requiring numerical evaluation of the likelihood function, i.e., simulation-based inference.

PRACTICAL REASONS: INACCESSIBLE LATENT VARIABLES

Calculating above likelihoods requires that latent variables of the simulator can be accessed. From a
practical standpoint, this may not the case, e.g., because simulators are implemented in codebases hard
or impossible to interface with (such as legacy or commercial simulators), require specialized hardware,
or are actual physical simulators rather than implemented in code.

COMPUTATIONAL REASONS: INFEASIBLE INTEGRATION DUE TO LATENTS

Considering the scenario where the latents z of the simulator can be accessed, we still face the need to
integrate them out. In other words, given parameters 6 all possible execution traces would be required
for exact evaluation of the likelihood. This commonly renders the likelihood intractable for computa-
tional reasons.>® Note that, in principle, standard inference techniques over the joint posterior p(8, z|x,)
could be performed, followed by marginalizing out z. For example, one might use MCMC to obtain
samples x,z ~ p(0,z|x,), discarding samples of z. However, the joint space is often high-dimensional,
making standard techniques likewise inapplicable.

MATHEMATICAL REASONS: DETERMINISTIC TRANSFORMATIONS

The likelihood in equation (2) poses a third source for intractability, which can occur even if latent
variables are accessible and low-dimensional. For a minimal example, consider the case in which the
outputs of the simulator are a deterministic transformation x = f(z), where z ~ p(z|0), and z is low-
dimensional. The nature of f, rather than the dimensionality of z, may cause intractability: Calculating
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Parameters § —> Simulator , e Outputs x

Figure 2.3: A simulator maps from parameters 6 to outputs x. Outputs can depend both on 8 as well as a sequence
of latent random variables z. This renders the simulator stochastic: even for constant inputs, outputs vary.

the likelihood requires a change of variables from z to x, the tractability of which depends on f. In other
words, the likelihood is not tractable in general in this case.

In the Hodgkin-Huxley example provided in the introduction, we reduced the membrane potential
down to a single number, counting the number of spikes. This f is a non-invertible many-to-one transfor-
mation for which the required change of variable cannot be performed; thus the likelihood is intractable.
In addition, intrinsic noise is added at every time step, so that the latent space z is also high-dimensional
in this example.

As discussed in Papamakarios (2019), one could again attempt to sample from the joint posterior, e.g.,
with MCMC methods for constrained manifolds (Graham & Storkey, 2017), however, the assumptions
that such alternatives make do not hold in general. For example, the MCMC method by Graham &
Storkey (2017) presupposes differentiability.
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2.3 SIMULATION-BASED INFERENCE

Simulation-based inference (SBI) allows statistical inference in light of intractable likelihoods. Over the
last few years, advances in machine learning have sparked rapid developments in the field of simulation-
based inference which attempts to overcome limitations of classical algorithms. First, we discuss two
classical approaches and their respective limitations, rejection-based Approximate Bayesian Computation
and classical Synthetic Likelihood. Next, we will review a subset of new approaches, in particular ones
using neural networks, e.g., for conditional density estimation or classification.

Note that this discussion is deliberately kept short and focused—it is meant to provide relevant con-
text for understanding the publications in this thesis, which propose and benchmark algorithms for
simulation-based inference. A more comprehensive review of SBI is provided by Cranmer et al. (2020),
and details can be found in the respective publications.

2.3.1 REJECTION-BASED APPROXIMATE BAYESIAN COMPUTATION

Approximate Bayesian Computation (ABC) has its roots in population genetics, in the context of which
the classical ABC rejection algorithm has been developed by Tavaré et al. (1997) and Pritchard et al.
(1999), the latter extending it to continuous observations. The classical ABC algorithm is a special case
of an accept-reject method, which proceeds as outlined in Algorithm 1: Parameters are proposed from
the prior and accepted if simulation outcomes fall within a predefined distance to the observation, e.g.,
using the [,-norm ||x— x,,”2 < €. The choice of € trades off posterior accuracy and computational costs.
The posterior is exact only in the limit € — 0, however, the lower ¢, the lower the acceptance rate, i.e.,
the larger the average amount of simulations needed per accepted sample.

Algorithm 1: Rejection ABC (REJ-ABC)

while in simulation budget do
Sample 8’ from p(8)
Simulate data x” from p(x/8”)
if ||x’—xo < e then
| Accept 6’
else
| Reject 8’
end
end
return Accepted samples {6’} from p(0 | Hx’ —Xo” <e)

This is the simplest of all REJ-ABC schemes, which proposes all parameters from the prior, ignoring
any information about which samples were rejected/accepted. There are many REJ-ABC schemes that
make use of more sophisticated sampling schemes. For instance, by using a sequentially refined proposal
distribution, illustrated in Figure 2.4. Such algorithms were, for example, proposed in Beaumont et al.
(2002); Simola et al. (2021); Sisson et al. (2007); Toni et al. (2009)—in these publications, the proposal
is constructed by perturbing previously accepted particles in an importance sampling scheme. These
algorithms can improve acceptance rates but come with additional hyper-parameter choices that their
performance can be sensitive to (number of rounds, € schedule, perturbation kernel).

All REJ-ABC approaches suffer from the curse of dimensionality: With increasing dimensionality of
data, dim(x), obtaining a close match to x, in all dimensions becomes increasingly unlikely. The poste-
rior approximation gets worse in higher dimensions for fixed simulation budget (even when adjusting €),
and computational costs of running REJ-ABC are generally exponential in dim(x).>* The most common
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Figure 2.4: General scheme for rejection ABC algorithms, either proposing all parameters from the prior or using
sequentially refined proposal distributions. After Cranmer et al. (2020, Figure 1).

way to address this problem is dimensionality reduction, i.e., to work with summary statistics (features)
of the data. However, this usually involves a trade-off between dimensionality and information loss, and
one infers the posterior given summary statistics, not the posterior given observations.>®

2.3.2 CLASSICAL SYNTHETIC LIKELIHOOD

Another avenue is to estimate the likelihood function £, () from simulations, to then perform Bayesian
or frequentist inference. An influential variant of such an approach was proposed by Wood (2010),
often referred to as ‘classical’ synthetic likelihood (SL). It assumes that summary statistics of the data,
conditional on parameters 6, follow a multivariate normal distribution, the parameters of which are
estimated by M simulations, so that EAXO(G) = N(X,lltg, 3), where fy = % Zfil x; and 3, =
ﬁ Zﬁ\il(xi — {1y )(x; — {1y )7.%® The frequentist approach proposed by Wood (2010) proceeds by finding
the optimimum of £ via MCMC. Price et al. (2018) extended SL to be used in a Bayesian framework,
in which case the approximate posterior distribution is sampled by MCMC.>” While SL has advantages
over ABC methods, e.g., not relying on distance criteria, classical SL is highly simulation inefficient.”®

2.3.3 NEURAL POSTERIOR ESTIMATION

High-fidelity simulations are often costly to run, can have many parameters, and potentially generate
high-dimensional data. For such problems, classical SBI approaches struggle. Next, we turn towards
alternative approaches drawing on machine learning to broaden the applicability of SBI

One such avenue was opened up by the work of Papamakarios & Murray (2016), who proposed a
novel approach for SBI which targets the posterior directly through neural network-based conditional
density estimation.”® The general idea of neural posterior estimation (NPE) approaches is as follows: A
dataset is generated by proposing parameters from the prior and simulating, yielding a training set D =
{(6,,x,)}_,. This dataset is used to optimize the parameters ¢ of a neural network-based conditional
density estimator q4(60[x), which allows to obtain an estimate of the posterior p(0[x,) = q4(0 x,).5°
This strategy was found to be more simulation efficient than the classical approaches discussed and has
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Figure 2.5: General scheme for posterior estimation algorithms, either proposing all parameters from the prior or
using sequentially refined proposal distributions. After Cranmer et al. (2020, Figure 1).

sequential

the advantage of neither relying on user-defined distance criteria (REJ-ABC, SMC-ABC), nor requiring
MCMC sampling (SL).%!

Simulation efficiency can be further improved by using a sequential version of NPE (SNPE) if we
are interested in performing inference for a given observation x,.°? This involves R training datasets
D) containing parameters from proposals p)(8) and respective simulation outcomes, with 5)(6) =
p(6). In other words, the initial parameters are proposed from the prior, and in following rounds,
sequentially refined proposal distributions are used. As a proposal distribution, commonly the current
posterior estimate is used, i.e., p(0) = p(8x,). This heuristic scheme has been found to be able to
further improve simulation efficiency.%> Importantly, if we train a q¢ using a maximum likelihood loss
and a proposal distribution not equal to the prior, the resulting approximate posterior converges to a
distribution that is proportional to likelihood times proposal distribution. In other words, it converges to
the posterior had the proposal been the prior, also known as the proposal posterior. In order to obtain the
posterior under the prior, different strategies for SNPE have been proposed by Papamakarios & Murray
(2016, SNPE-A), Lueckmann et al. (2017, SNPE-B), and most recently Greenberg et al. (2019, SNPE-C
or APT).

Note that the choice between NPE and SNPE is not just one about simulation efficiency: If we are
interested in performing fast inference for many different observations, we might prefer a single round
algorithm (NPE). After a potentially large one-off cost of generating lots of training data and learning q 4,
inference can be performed for different x, at the speed of milliseconds (a single forward pass through
the neural network)—this is also known as amortized inference.®* The general approach of targeting
the posterior, either in a single round or sequentially, is illustrated in Figure 2.5. In the next chapter we
will discuss (S)NPE in more detail, and consider extensions for and applications to mechanistic models
in neuroscience.
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Figure 2.6: Likelihood estimation approaches that proceed by learning a surrogate or emulator, which is then used
as an estimate of the likelihood function. They can be used in single round, in a sequential manner akin to SNPE,
or with active learning schemes. Active learning can be used in different ways: To target uncertainty in emulator
estimates (global emulators, e.g., for amortized inference) or in posterior estimates (local emulators, for efficient
inference given specific observations). After Cranmer et al. (2020, Figure 1).

2.3.4 NEURAL LIKELIHOOD ESTIMATION

Neural likelihood estimation (NLE) algorithms learn a synthetic likelihood using neural networks.
The general strategy is as follows: A dataset consisting of parameters—proposed from any proposal
distribution, for example, the prior—and associated simulation outcomes is used as the training set
D= {(0n,xn)}’:=1, similar to posterior estimation approaches. It is used to optimize the parameters ¢
of a neural network-based conditional density estimator g, (x|6). Note that the conditioning is opposite
relative to SNPE, a surrogate or emulator of the simulator is learned. An estimate of the likelihood can
be obtained by evaluating at the observation x,, ﬁxo(ﬂ) = q4(Xx =%,|0). With this synthetic likelihood,
samples from the approximate posterior p(6|x,) o< ﬁxo(ﬂ)p(ﬂ) can then for instance be obtained by
MCMC.

In order to improve simulation efficiency, this scheme can likewise be used with a training dataset
that is adaptively built. Unlike sequential neural posterior estimation algorithms, which require taking
the proposal distribution into account, this is no concern for NLE. In Chapter 3, we will discuss two con-
currently published strategies that use NLE in such a way: Papamakarios (2019) proposed a sequential
algorithm in which the current posterior estimate is used in a multi-round algorithm (i.e., similar to
how sequential acquisitions are done for SNPE). In Lueckmann et al. (2019), we used the flexibility in
proposals for actively learning local emulators (for specific x,) and global emulators (allowing amorti-
zation) for inference. Both strategies are illustrated in Figure 2.6 and we discuss them in more detail in
the next chapter.
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2.3.5 NEURAL RATIO ESTIMATION

As a final category of approaches, we will briefly discuss recent ratio estimation approaches for
simulation-based inference. The algorithm proposed by Hermans et al. (2020) falls into this category:
It uses classifiers to estimate ratios of likelihoods which can subsequently be used within an MCMC
sampler.®® In particular, they propose to train a neural network-based classifier #* to distinguish between
samples (0,x) ~ p(x/0)p(0) and ones from the marginal model (8,x) ~ p(0)p(x). An optimal classifier

r approximates the ratio
p(6,x) _ p(x|8) _p(0]x)

p(O)p(x)  p(x)  p(8)’

so that the posterior can be recovered as p(0x,) = 7(6,x%,)p(0). Such neural ratio estimation (NRE) ap-

r(x,0)=

proaches can likewise be employed sequentially, utilizing proposal distributions for simulation efficiency,
see Durkan et al. (2020); Hermans et al. (2020).°® Note that in contrast to the two previous approaches
that we discussed, no conditional density estimator but a classifier is trained. In the next chapter, we
provide quantitative comparisons of classical approaches as well as neural posterior, likelihood, and ratio
estimation strategies.®”
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CHAPTER 3

PUBLICATIONS

This thesis develops and applies new techniques for simulation-based inference. As detailed in the
introduction, it was motivated by wanting to perform statistical inference for mechanistic models in
neuroscience—however, the resulting techniques are generally applicable to any implicit model. In the
following, each of the four publications that are part of this thesis is briefly summarized and discussed.
Full publications and my individual author contributions are in the Appendix.

3.1 FLEXIBLE STATISTICAL INFERENCE FOR MECHANISTIC MODELS OF NEURAL DYNAMICS

Our paper “Flexible statistical inference for mechanistic models of neural dynamics” was presented at
the 30th Conference on Neural Information Processing Systems (NeurIPS) and published in the confer-
ence proceedings (Lueckmann et al., 2017). Its starting point was the work by Papamakarios & Murray
(2016), who proposed a neural network-based algorithm that casts simulation-based inference into a
problem of posterior density estimation, overcoming limitations of classical approaches (for more back-
ground, see Section 2.3.3). We found their algorithm to yield highly promising initial results (Goncalves
etal., 2017) but discovered critical drawbacks in their sequential estimation strategy, which we addressed
in this publication. Simultaneously, we proposed several extensions for neuroscience problems to avoid
unstable regimes of the simulator and to deal with missing data and high-dimensional time series. We
demonstrated the potential of neural posterior estimation to automatically learn features of data rather
than relying on hand-crafted summaries through problem-specific inductive biases.

Specifically, the algorithm we proposed overcomes two limitations of the one by Papamakarios &
Murray (2016). Their sequential algorithm relies on an analytical correction step to account for using
proposal distributions, i.e., the posterior estimate is obtained as p(0[x,) o< p(68)/p(0)q,(61x,). How-
ever, this has two drawbacks: Firstly, using an analytical correction poses constraints on the types of
conditional density estimators and proposals that can be used. Secondly, the analytical correction step
can not necessarily be carried out even if choices are made to make it tractable. In particular, assuming
a uniform prior p(8) o< 1, a Gaussian proposal p(8), and Mixture of Gaussians q, (6 [x), the division re-
quires that the covariance of the proposal is greater than each of the component covariances of g, (8 [x),
i.e., the proposal needs to be wider. Empirically, we found that the post-hoc analytical correction step
can fail in practice, leading the algorithm to terminate early, approximating the posterior with a single
Gaussian from the previous round. In order to address both of these issues we introduced an importance
weighting factor p(6)/p(0) into the loss function, so that no analytical correction is necessary. This
removes constraints on which combinations of proposals, conditional density estimators, and priors can
be used and addresses the issue of early termination.

We contributed a number of extensions motivated by problems we encountered when applying the
algorithm to mechanistic models in neuroscience: 1) We introduced a scheme that can avoid parameter
regimes that yield bad simulation outcomes, e.g., the simulator being numerically unstable and thus
returning meaningless results. Our scheme uses a neural network classifier that can predict bad simula-
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tion outcomes and thus avoids expensive, unnecessary simulations. 2) We proposed a scheme for dealing
with missing features that automatically imputes values as part of the neural network architecture. For
example, a summary feature like spike latency cannot be computed if there are no spikes at all in a time
series. 3) We demonstrated that this approach can be used to automatically learn suitable summary
statistics. For this, we made use of an embedding network prepended to the density estimator. In partic-
ular, we used an RNN architecture with GRU-cells to reduce the dimensionality of time series data. We
applied our algorithms to synthetic data and in-vitro recordings of membrane voltages and compared
our method against classical rejection-based algorithms (SMC-ABC), the approach by Papamakarios &
Murray (2016), as well as a popular genetic algorithm (IBEA, as implemented in Van Geit et al., 2016).

In retrospect, our paper contributed to the lineage of approaches addressing SBI through neural den-
sity estimation of the posterior and provided inspiration and basis for much future work, including the
second publication of this thesis. We originally named the algorithm in Lueckmann et al. (2017) SNPE for
sequential neural posterior estimation. Greenberg et al. (2019) subsequently improved upon our impor-
tance weighting-based loss which can have high variance for some problems, elegantly reparameterizing
it to obtain the posterior via maximization of the estimated proposal posterior. Following this publica-
tion, we decided to jointly refer to sequential neural network-based approaches for posterior estimation
as SNPE approaches (Figure 2.5) and refer to Papamakarios & Murray (2016) as SNPE-A, Lueckmann
et al. (2017) as SNPE-B, and Greenberg et al. (2019) as SNPE-C respectively, when a distinction is nec-
essary (Lueckmann et al., 2021; Papamakarios, 2019). The code for SNPE-B was published as the first
release of the inference toolbox delfi (github.com/mackelab/delfi), which provided the basis for future
research projects, e.g., Gongalves et al. (2020); Greenberg et al. (2019). delfi was the predecessor to
the sbi toolbox (github.com/mackelab/sbi) we introduced in Tejero-Cantero et al. (2020).

3.2 TRAINING DEEP NEURAL DENSITY ESTIMATORS TO IDENTIFY MECHANISTIC MODELS OF
NEURAL DYNAMICS

Our paper “Training deep neural density estimators to identify mechanistic models of neural dynamics”
was published in eLife (Gongalves et al., 2020). An earlier version of this work was made available as
a preprint (Gongalves et al., 2019). Simulations of interpretable mechanistic models, relating causes
to effects, are a core ingredient in the toolkit of computational neuroscience. The status quo in the
field is to use ad-hoc strategies instead of statistical inference when fitting these models to data, e.g.,
tuning parameters by hand, by exhaustive or grid search, or genetic algorithms based on heuristics score
functions (see Chapter 1). Simulation-based inference, called ‘likelihood-free’ inference in the paper,
offers a principled alternative: Using neural conditional density estimation, we can identify the entire
space of data-consistent models. Following our work on SNPE (Lueckmann et al., 2017), this publication
demonstrated the usefulness of (sequential) neural posterior estimation for neuroscience on a diverse
set of mechanistic models, including receptive fields, ion channels, single neuron dynamics, and the
crustacean stomatogastric ganglion (STG). This project, which was a large collaborative effort, revealed
the flexibility and potential of using (S)NPE in neuroscience and overall helped narrow the gap between
mechanistic and statistical approaches.

The subproject I focused on was about ion channel models: Ion channels are the basic building blocks
of many mechanistic models. A huge diversity of different channels types has been described, which
has been analysed and categorized by Podlaski et al. (2017) in the ion channel genealogy (ICG) project.
In Gongalves et al. (2020), we trained a neural posterior estimator to identify consistent models for
many different observations available in the ICG database. We trained a neural posterior estimator on
a subset of 350 channel types, with a million simulations, to infer parameters of a flexible ion channel
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model. Simulations took around 1000 CPU-hours and training the network around 150 CPU-hours.
Once simulation and training finished, the network was able to infer consistent models at the speed of
milliseconds, returning a full posterior in less than 10 ms. This makes it possible to rapidly perform
inference for many different observations once the upfront training cost is paid (amortized inference).

Amortized inference with neural posterior estimation is simple yet highly effective. While our appli-
cation in Gongalves et al. (2020) was intended as a proof-of-principle, it could be extended to the entire
database and made available through an online interface. Similar use-cases are widely found across
sciences—in fact, amortized inference with neural posterior estimation has, e.g., recently been applied
in gravitational physics (Dax et al., 2021).

3.3 LIKELIHOOD-FREE INFERENCE WITH EMULATOR NETWORKS

Our paper “Likelihood-free inference with emulator networks” was presented at the first Symposium on
Advances in Approximate Bayesian Inference (AABI), a continuation of the NeurIPS 2015-17 workshop
series of the same name, and published in its proceedings (Lueckmann et al., 2019). An earlier version
of this work was made available as a preprint (Lueckmann et al., 2018). In it, we proposed a novel,
simulation-efficient algorithm for simulation-based inference. Our algorithm is based on learning an
emulator of the simulator: The emulator can then be used as an evaluable and differentiable stand-in
for the intractable likelihood during inference, or as a fast surrogate model.

In the paper, we demonstrated how our approach of learning emulators allows for highly simulation-
efficient algorithms. We used two different acquisition rules for new simulations that target maximum
variance of the posterior estimate or epistemic uncertainty in the emulator parameters. Depending on
the rule, either a local emulator, which can be used for inference given a fixed observation or a global
emulator for amortized inference is learned. We demonstrated this approach on synthetic examples
and a biophysical neuron model. We found it to allow for efficient inference even on high-dimensional
problems and to compare favorably against BOLFI (Gutmann & Corander, 2016).

In a concurrent publication, Papamakarios et al. (2019) adopted a similar strategy, likewise learning
a conditional density q,4(x|0) to perform simulation-based inference. In contrast to our approach, they
focused on having a flexible emulator, using normalizing flows for g, but acquired new simulations using
the current posterior estimate, as, e.g., done for SNPE. This strategy is not guaranteed to be optimal but
rather a heuristic choice. In addition, it limits inference to a particular observation. On the other hand,
we focused our efforts on acquisition rules which are highly simulation-efficient and also considered
a strategy that can be used for amortized inference. Since our proposed schemes are computationally
expensive, they should be traded-off against the runtime cost of the simulator—whether the use of active
learning is warranted will strongly depend on the problem at hand (see also Durkan et al., 2018).

3.4 BENCHMARKING SIMULATION-BASED INFERENCE

Our paper “Benchmarking Simulation-Based Inference” was presented at The 24th International Con-
ference on Artificial Intelligence and Statistics (AISTATS) and published in the conference proceedings
(Lueckmann et al., 2021). Advances in machine learning have sparked rapid and exciting developments
in the field of simulation-based inference, as discussed in the first two chapters of this thesis. However,
publications introducing new algorithms often compare against a limited subset of other algorithms, use
different tasks, and report different performance metrics. This has made it hard to thoroughly judge the
strengths and weaknesses of new algorithms.

In the paper, we introduced a unified benchmark for quantitative, transparent comparison between
SBI algorithms on the same set of tasks and performance metrics. More specifically, our initial selection



22

of algorithms contained classical approaches (REJ/SMC-ABC and variants using linear regression ad-
justments and semi-automatic summary statistics, classical synthetic likelihood), as well as more recent
approaches based on neural networks (neural posterior, likelihood, and ratio estimation approaches in
sequential and non-sequential variants). Our results showed that the choice of performance metric is
critical, that sequential approaches have higher sample efficiency, and that there is substantial room
for improvement even for state-of-the-art algorithms. Neural network-based approaches generally per-
formed better than classical ones, but there was no uniformly best algorithm across all tasks. Full results
are available through an interactive website at sbi-benchmark.github.io.

Benchmarking is crucial for communicating the state-of-the-art and limitations of algorithms, both
within machine learning and more broadly. It can also contribute to more efficient and reproducible
science, as it allows researchers to directly use reference results and algorithms rather than having to
implement and compute them anew. However, benchmarking in itself has limitations and can lead to
unwanted outcomes. For example, a too narrow focus on scoring good performance on a small set of tasks
and quantitative metrics can bias and skew research. With that in mind, we designed the benchmark
to be extensible with respect to algorithms, tasks, and metrics: we invite researchers to collaborate and
help ensure that strengths and weaknesses of existing and future approaches to SBI are appropriately
evaluated and reported. Our open and extensible framework to facilitate this process is available at
github.com/sbi-benchmark/sbibm.


https://sbi-benchmark.github.io
https://github.com/sbi-benchmark/sbibm
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CHAPTER 4

CONCLUSION

Simulations, as traditionally conceived, are used in a forward direction—we let them run and see what
happens.®® This narrow use was criticized decades ago:

Having gone to the trouble of encoding the requisite knowledge for building a simulation,
one should attempt to derive the maximum benefit from this knowledge. That is, in addition
to “running” a simulation to answer what-if questions, one should be able to utilise the
full range of inferencing, reasoning, and search methods that are available in AL [...] This
natural, though long-overdue, extension of simulation can be referred to as beyond “what-
if.” (Rothenberg, 1989, p. 11)

Despite realizing that such extended usage of simulations would be highly useful—and calling this
long-overdue back in 1989—widely applicable inferencing methods for detailed simulation models have
only been proposed very recently, driven in part by advances in machine learning, statistics, and high-
performance computing: Simulation-based inference enables principled reasoning in the backward or
inverse direction, by virtue of enabling statistical inference for implicit models. This allows us to infer
causes from effects, to reason about grounds on the basis of outcomes (Figure 4.1).%°

Overall, this thesis demonstrates the potential of SBI to greatly improve the quality of insight we can
gain from simulations. This way, SBI might become an essential part of the scientists’ toolkit to facilitate
scientific discovery. What is still needed to fully realize this potential?

Our benchmark empirically shows that impressive progress has been made in the field. However,
it also reveals that scalability towards higher-dimensional problems and the sample efficiency remain
important areas for further improvements. This is also echoed in the recent review by Cranmer et al.
(2020), in which they identify three main directions for recent and future progress: 1) Advances in
machine learning, e.g., density estimation in high dimensions and the incorporation of problem-specific
inductive biases, 2) active learning, to guide where simulations are acquired and thus improve sam-
pling efficiency, and 3) approaches turning black-box inference problems into gray-box ones, i.e., using
additional information about the simulator.

In addition to these central directions for future progress, I want to highlight that we do not only need
scalable and efficient methods but ones that are reliable, robust, and user-friendly. Inference should be
seen as only one step in a workflow, and it should always be followed by critique and refinement.”® In
the problem setting of simulation-based inference, only a subset of established procedures to critique
inferential outcomes is applicable, and developing new diagnostics for SBI is an important avenue for
future work.”! In virtually all practical settings, the true data generating process will not be among the
models we consider.”? How sensitive different SBI algorithms are to model misspecification and how to
thoroughly detect it, is a challenging but important broader issue.”® From a practical perspective, it will
be essential to provide guidance, which algorithm to use when, as well as user-friendly software that
includes informative and easily-interpretable diagnostics.
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simulate

Causes Effects

infer

Figure 4.1: Simulations, as classically conceived, are used to reason in the forward direction. When we simulate,
for instance, using a computer program, we observe effects given underlying causes. Simulation-based inference
enables principled reasoning in the backward or inverse direction: Given outcomes, it allows to infer underlying
grounds to solve problems.

SBI is already increasingly applied in neuroscience. For example, recent uses include applications to
mechanistic models of synaptic release (Schroder et al., 2019), stimulus optimization for retinal neuro-
prosthetics (Oesterle et al., 2020), pyloric network models to study metabolic efficiency (Deistler et al.,
2021), jumping evidence accumulation models for decision-making (Wieschen et al., 2020), neural mass
models of cortical columns (Rodrigues et al., 2021), and cytoarchitecture measurements with diffusion
MRI (Jallais et al., 2021). Beyond neuroscience, SBI finds applications in diverse scientific fields. To name
a few recent examples out of many, this includes using SBI to study particle collisions (Brehmer & Cran-
mer, 2020), bacterial colonization (Jarvenpaé et al., 2019), biochemical reaction networks (Mikelson
& Khammash, 2020), epidemics and pandemics (de Witt et al., 2020; Wood et al., 2020), volcanic er-
ruptions (Pacchiardi et al., 2021), flash flooding (Nourali, 2021), paleodemographic patterns (DiNapoli
et al., 2021), transfer learning in robotics (Marlier et al., 2021; Muratore et al., 2021), cosmological pa-
rameters with weak lensing (Jeffrey et al., 2021), gravitational waves (Dax et al., 2021; Delaunoy et al.,
2020), warm dark matter (Hermans et al., 2021), and X-ray binaries (Huppenkothen & Bachetti, 2021).
I hope that we will see progress in simulation-based inference that is driven hand in hand by problems
in a wide range of natural, engineering, and social sciences. I am looking forward with excitement to
the scientific discoveries that this will enable.
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NOTES

1. Their findings were published in Hodgkin & Huxley (1939). The use of a system of mirrors invented
by Huxley allowed them to simultaneously view the ~ 500 um wide nerve fiber (axon) from both
front and side through a microscope, which was essential to avoid damaging the axon (recounted
in Schwiening, 2012). What was particularly remarkable about the shape of action potentials, and
counter to existing theories at the time, was the observed ‘overshoot’ of the action potential, i.e.,
the crossing of the zero potential.

2. In addition to numerous neuroscience textbooks, a reader interested in the theory of action po-
tentials is referred to Brette (2016): This chapter includes a brief history of ‘excitability theories’,
discussing findings and ideas of the many predecessors to Hodgkin and Huxley that I omitted for
brevity (e.g., Galvani, Matteucci, Du Bois-Reymond, Helmholtz, Nernst and Bernstein). It considers
the question ‘Why do cells spike?’ from a biophysical, functional, and epistemological standpoint.

3. The estimate of 86 billion (86 x 10%) neurons is provided in Azevedo et al. (2009), downward
correcting earlier estimates of 100 billion neurons. The length of 10 million kilometers of fibers in
the human brain is taken from Murre & Sturdy (1995). Equally impressive is the number of synaptic
connections, which is sometimes stated to be 100 trillion (100 x 10'2). However, this number (which
assumes 100 billion neurons with an average of 1 000 connections each) is not typically found in
peer-reviewed literature, see Rose (2018) for discussion. Detailed estimates of densities of neurons,
synapses and axons for the mouse cortex can be found in Braitenberg & Schiiz (1991).

4. An earlier equivalent circuit model of the membrane was proposed in 1907 by Louis Lapicques
(Abbott, 1999; Brunel & Van Rossum, 2007; Lapicque, 1907). Compared to Lapicques’ model,
Hodgkin and Huxley included two channels respectively selective for sodium and potassium ions.
In addition, each channel’s conductance was chosen to depend on the potential difference across the
membrane. A broad perspective on the role of mathematical models in neuroscience, which includes
both these equivalent circuit models and historical context, can be found in Lindsay (2021).

5. These events are recounted in Schwiening (2012). Additional details can, for example, be found in
personal recollections by Hodgkin (1976), or Huxley’s Nobel Lecture, in which he said:

The computations so far described were done by hand. This was a laborious business: a
membrane action took a matter of days to compute, and a propagated action potential
took a matter of weeks. But it was often quite exciting. [...] Very often my expectations
turned out to be wrong, and an important lesson I learnt from these manual computations
was the complete inadequacy of one’s intuition in trying to deal with a system of this
degree of complexity. (Huxley, 1972, pp. 61-64)

6. The mathematical model by Hodgkin & Huxley (1952a,b,c,d,e) provided the first quantitative ac-
count of action potentials. Their work paved the way for many future discoveries, and the underlying
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equations are still used as standard building blocks in simulation software for biophysical models
in neuroscience today. Together with John Eccles, they shared the 1963 Nobel Prize for Physiology
or Medicine “for their discoveries concerning the ionic mechanisms involved in excitation and in-
hibition in the peripheral and central portions of the nerve cell membrane” (Nobel Prize Outreach
AB, 2021). A brief historical account can be found in Schwiening (2012). The legacy of their work
is, for example, discussed in Catterall et al. (2012); Meunier & Segev (2002) from the perspective
of neuroscience, and in Craver (2008); Levy (2014) from the perspective of philosophy of science.
The latter perspective provides a discussion centered around the nature of mechanistic explanation.

. In-depth discussions about the role of simulation in neuroscience can, for example, be found in

Dudai & Evers (2014); Einevoll et al. (2019); Gerstner et al. (2012). A review of common software
and databases used for simulations is provided in Blundell et al. (2018).

. At the time Hodgkin and Huxley published their model, little was known about ion channels. That

sodium and potassium selective channels exist on a molecular level was only shown in the decades to
follow, through the work Bertil Hille, Clay Armstrong, Roderick MacKinnon (2003 Nobel Laureate)
and others (for a retrospective, see Hille et al., 1999). The patch recording technique by Erwin
Neher and Bert Sakmann (Neher & Sakmann, 1976, 1991 Nobel Laureates) allowed measurements
of currents through single ion channels and revealed their extraordinary diversity. Today, large-
scale databases of ion channel models exist, containing over a thousand unique models (Podlaski
et al., 2017). Kandel et al. (2021) can serve as a starting point to read more about the topics that
are cited as having made significant advances.

. In a recent commentary, Kording et al. (2020) characterize computational neuroscience, as the

sub-field of neuroscience that is united by combining mathematical reasoning with computer simu-
lations, whilst highlighting the diversity of underlying goals. In particular, they conducted a survey
asking scientists to specify their modeling goals. Apart from rating their goals in terms of biological
realism (microscopic, macroscopic, behavioral, representational), participants were asked about de-
sired scientific impact (useful, normative, clinically relevant, inspiring experiments) and preferred
style of models (compact, tractable, interpretable, beauty). Interpretability was rated as the most
important goal on average, but overall the survey shows just how variable underlying modeling goals
in computational neuroscience are. I agree with the authors that this diversity should be embraced

and seen as a strength.

For perspectives, see, for example, Gomez-Marin et al. (2014); Paninski & Cunningham (2018);
Urai et al. (2021).

This perspective on statistical inference is laid out in Statistical Inference: The Big Picture (Kass,
2011). Figure 1.2 is inspired by Kass’ big picture, but simplifies it for ease of presentation. One no-
table difference is that Kass draws a distinction between scientific and statistical models (on which
he comments in the end of article). For ease of presentation, I avoid this distinction in the intro-
duction and overall explain concepts such as ‘model’ through examples rather than by definitions.
Acknowledging that defining the term might be useful, the following characterizations can serve
as a working definition: Broadly speaking, a model represents selected parts or aspects of a target
system (Koperski, 2021) and is used as “a stand-in, an imposter, an artificial construct designed
to respond in the same way as the system you would like to understand” (Meent et al., 2018, p.
10). A concise definition can also be found in Rothenberg (1989), who defines modeling as “the
cost-effective use of something in place of something else for some cognitive purpose” (p. 1).

See, e.g., Box (1976), who discusses the iteration between theory and practice and the need for
unhampered feedback.
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This concise definition of probability is taken from Blitzstein & Hwang (2019, p. 1), who write:
“Mathematics is the logic of certainty; probability is the logic of uncertainty.”

See Betancourt (2018) for more details.

Synaptic release probability widely varies between different neuron types (Branco & Staras, 2009).
The statement that this probability is around .5 for most synapses is made in Rusakov et al. (2020).
Regarding spontaneous release, De Schutter writes:

While one needs specific recording methods to study the stochasticity of ionic channels,
any recording method will show that synapses in the central nervous system are noisy
and stochastic. Their probability of transmission can be as low as 10%, and spontaneous
release (i.e., not caused by a spike in the presynaptic neuron) is so frequent that it is
often used to study synaptic properties. (De Schutter, 2001, p. 387)

One could distinguish between different sources of variation, e.g., variation can be inherent to
the phenomenon and be irreducible, which is referred to as ontological or aleatoric uncertainty, or
rather be attributable to imprecise measurements and in principle considered reducible, which is
referred to as epistemic uncertainty (see Hiillermeier & Waegeman, 2021, for a review). However,
here, these distinctions are not going to be primary—no matter what the exact nature of variation
is, it will always be present in observations.

According to Betancourt (2019), on which the discussion of statistical inference in Chapter 2 rests.

The underlying reasons for intractable likelihood functions will be detailed in Chapter 2, once math-
ematical notation has been introduced.

The model used for this example is the same as in Pospischil et al. (2008). In addition to the original
model by Hodgkin and Huxley, this formulation also includes a slow voltage-dependent potassium
current for spike-frequency adaptation, making this a suitable model for hippocampal and cortical
pyramidal cells. Out of 12 total parameters, two were varied. Note that the model is stochastic due
to a time-varying noisy input current. For each run of the model, a period of 120 ms was simulated.
The resulting time series is reduced to a single feature: The number of spikes that occurred during
this time period. See Lueckmann et al. (2019, Appendix F.1) for more details, where we used the
same setup.

For the brute-force approach, a 2D grid with 1 000 linearly spaced points between upper and lower
bounds for each of the two parameters was used, resulting in a million (10002) parameter combina-
tions. The lower and upper bounds were 0.5 and 60 (mS/cm?) for gy,, and 2.5 and 7.5 (mS/cm?)
for gi, respectively. These ranges are roughly in line with the ones used in Pospischil et al. (2008,
Table 1). As compared to Lueckmann et al. (2019), the bounds for gy were chosen slightly smaller
in order to increase grid resolution. For each parameter combination, 100 simulations (runs) were
performed. On the basis of those 100 runs, the probability of obtaining zero, one, two, three, or
four spikes was approximated for each parameter combination. No run produced more than four
spikes. This resulted in 100 million total runs of the model.

Each of the 100 million (10002 x 100 = 10®) runs took about 50 ms on an Intel® Xeon® Gold 6148
CPU (2,40 GHz). The calculation was carried out in parallel on 20 of such cores, thus taking about
10% x 50ms x 1/20 = 108 x 2.5ms = 69.4 hours ~ 0.00792 years to complete. For each additional
free parameter at the same resolution, above equation is multiplied by a factor of 1 000.

To illustrate this point, consider the class of biophysical single neuron models: For this example, we
use the model considered in Pospischil et al. (2008), which has 12 parameters (we only kept two of
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them free to make the brute-force strategy viable). This model ignores all spatial structure. Software
like NEURON (Hines & Carnevale, 1997) or GENESIS (Bower & Beeman, 2012) allows taking the
intricate morphology of neurons into account by dividing them into hundreds of compartments, all
of which have their own dynamics. In addition, the classical Hodgkin-Huxley model does not model
the synapse. See Gerstner et al. (2014) for an introduction to models of dendrites and synapses.
Detailed models taking these aspects into account can thus easily have hundreds of parameters.
Since it is very challenging to constrain models with this many parameters by data, the number of
free parameters is usually kept significantly lower by making simplifying assumptions. For example,
Taylor et al. (2009) consider a multi-compartmental model of lateral pyloric (LP) neurons with 17
free parameters. Hay et al. (2011) and Eyal et al. (2018) use pyramidal cell (PC) models with 22
and 29 free parameters, respectively.

Here, we use ‘automated search method’ to broadly refer to black-box optimization algorithms, i.e.,
algorithms that do not require differentiability of the simulator. In neuroscience, special purpose
search algorithms, e.g., based on genetic algorithms, and software toolboxes for biophysical models
have been developed, see Druckmann et al. (2007); Van Geit et al. (2016), for example.

Depending on the exact algorithm that is used, the objective may be referred to under a different

name, including error, fitness, loss, discrepancy, or distance function.

The objective to be minimized could, for example, be specified as the average absolute deviation
between simulated and observed spike counts (over multiple repeats per model configuration).

For example, we might run an evolutionary/genetic search algorithm, such as covariance matrix
adaptation evolution strategy (Hansen, 2006, CMA-ES). The solution obtained in this example will
depend strongly on where an algorithm is initialized (as well as on internal randomness of the
procedure). Once the objective no longer improves during the exploration of parameter values,
the search terminates. A ‘best’ fit returned by the algorithm corresponds to a point in the solution
subspace depicted in Figure 1.3. To some degree, the non-uniqueness of solutions can be studied
by running a search procedure repeatedly (potentially in parallel), or by studying the sensitivity of
solutions to perturbations. As we will discuss in Chapter 2, statistical inference provides a principled
framework to this issue.

The highly reliable triphasic motor pattern of the crustacean stomatogastric ganglion is the so-called
pyloric rhythm. The sequential firing pattern involves lateral pyloric (LP), pyloric (PY), and pyloric
dilator (PD) neurons. A seminal study by Prinz et al. (2004) constrained three-cell circuit models
by pyloric-rhythm recordings of 99 lobsters (Homarus americanus), revealing that many different
model configurations can yield similar network activity. Follow-up experimental studies, which
considered the same identified neurons across many animals, confirmed that there is significant
animal-to-animal variability in individual neuronal and synaptic properties (Hamood & Marder,
2014). Together with many studies on the single neuron and circuit level, this raises fundamental
open questions concerning robust neuromodulation in all nervous systems (Marder et al., 2014).

Edelman & Gally (2001) discuss the importance of degeneracy for biological systems and highlight
its centrality for evolution. See Mason (2010) for a broader discussion of the history and definition
of the term.

See Golowasch et al. (2002) for an example demonstrating that a single conductance-based neu-
ron model constructed by averaging population parameters can fail to accurately characterise a
system. Marder & Taylor (2011) propose to study ‘population of models’ instead. They acknowl-
edge the drawback of grid or random sampling strategies (which get exponentially more difficult
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with increasing numbers of parameters) and see promise in techniques that “generate populations
of models that conform to a probability distribution that mimics chosen aspects of the biological
distribution” (p. 137).

Throughout this thesis, we mostly adopt a particular statistical paradigm that is known as Bayesian
inference, which is well-suited to infer the entire space of consistent models (the so-called pos-
terior distribution). We will discuss differences to frequentist inference, an alternative paradigm,
in Chapter 2. This introduction avoids the distinction between the two, emphasizing their
commonalities—they are both based on probabilities and usually require computation of likelihood
functions—over their differences. This is inspired by the perspective of Kass (2011).

For example, the simulation models in Diggle & Gratton (1984) were mostly run on a IBM 370/168
mainframe: Introduced in 1973, it had a clock rate of about 12.5 Mhz and cost 2.8 million US$
(not adjusted for inflation), see McCallum (2021). For years to come, the complexity of simulations
and inference procedures was yet significantly limited by the availability of fast and cheap digital
computers. Today, even a 4 US$ microcontroller can be ten times faster (and considerably smaller)
than the IBM 370/168 mainframe (Adams, 2021).

Diggle & Gratton (1984) write “although the idea of using simulation to analyse intractable models
is obviously not new, we are aware of no other systematic investigations along the lines of the present
paper” (p. 195). Earlier references from the 1970s are included in the passage following the quote.

Rubin (1984) includes a thought experiment that describes a likelihood-free rejection sampling al-
gorithm. However, Rubin does not promote using it in a situation where the likelihood is intractable,
and his version presupposes discrete sampling spaces, see Marin et al. (2012).

Pritchard et al. (1999) developed the first proper ABC algorithm in the context of population genet-
ics which is applicable to continuous spaces. For the history of ABC approaches, see Tavaré (2018)
as well.

The term machine learning was coined by Samuel (1959), who used it in the context of his research
on the game of checkers. In it, he predicted: “Programming computers to learn from experience
should eventually eliminate the need for much of this detailed programming effort” (p. 535). A
concise definition of machine learning can, for example, be found in Mitchell (1997, p. 2). Recent
progress in artificial intelligence (AI) is largely based on machine learning algorithms (Winter et al.,
2021). For perspectives on the impact of Al, see, e.g., Bughin et al. (2018); Makridakis (2017);
Mehrabi et al. (2021); Mohamed et al. (2020); Tomasev et al. (2020).

For an overview of deep learning, see LeCun et al. (2015); Schmidhuber (2015).

It is only recently that the term simulation-based inference (SBI) is used more widely. In particular,
Cranmer et al. (2020) make a case for adopting simulation-based inference as an encompassing
name as opposed to using the older and more common one likelihood-free inference (LFI). As re-
viewed in Chapter 2, many SBI algorithms involve likelihood or likelihood ratio estimation, which
is why LFI could be considered “a bit of a misnomer” (Cranmer et al., 2020, p. 1). Approximate
Bayesian Computation (ABC) is the name under which some of the first statistical inference algo-
rithms that have been developed for implicit models are known. However, many SBI techniques may
be used either in a Bayesian or frequentist paradigm, especially if they involve likelihood or like-
lihood ratio estimation. Overall, simulation-based inference is meant to be more inclusive, which
explains its usage in the title of this thesis as well as in Lueckmann et al. (2021). More gener-
ally, readers should be aware of all three acronyms, SBI, LFI, and ABC, since usage varies between
authors and may change over time.
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See Cranmer et al. (2020), or its preprint which includes a figure for illustration
(arXiv:1911.01429v3).

Regarding the examples cited, see, e.g., Duan et al. (2015); Durrant & McCammon (2011); Edwards
(2011); Gourieroux et al. (1993); Mattingly et al. (2012).

Note that this perspective on statistical inference is not universal. For pointers to other perspectives
the reader is referred to Betancourt (2018, 2019). Relative to these writings, the perspective here is
much abridged, and a reader is referred to them for more details. The notation is slightly different—I
adopted it to be consistent with the publications that this thesis is based on.

Note that the parameterization of model configurations is not unique. In other words, there are
generally many equivalent ways of labeling the models in M.

A specific case of Bayes’ theorem was presented in Bayes (1763). Its general form follows from two
fundamental rules of probability, the sum and product rules.

Note that the marginal likelihood is a single number, so that posterior is proportional to likelihood
times prior. This is a fact that many approximate inference procedures exploit since the integral
over all possible parameter configurations is difficult to compute in general. Common approxi-
mate Bayesian inference methods include variational inference and MCMC, see, e.g., Andrieu et al.
(2003); Blei et al. (2017).

The choice of prior distribution is an important point in Bayesian inference, see, e.g., Gelman
et al. (2017); Wagenmakers (2007) for discussion. For practical tips on choosing a prior, see, e.g.,
Stan Developers (2021).

Murphy (2007, p.1) writes, for example: “The frequentist approach to statistics is the most widely
used, and hence is sometimes called the orthodox approach or classical approach.”

In practice, finding ] y usually involves optimization. Since the log function is monotone it does
not change the maximum.

From a Bayesian perspective, uncertainty is expressed in terms of beliefs given the current data in
terms of the posterior distribution. In turn, a frequentist perspective on uncertainty asks “how much
would my estimate change if I had different data?” (Murphy, 2007, p.8). Frequentist statements
about uncertainty are formalized in terms of sampling distributions which hold true in the limit
of many observations. An interested reader can find discussions of the frequentists’ reliance on
asymptotics in Betancourt (2018).

For more background on the Bayesian-Frequentist controversy, Gelman (2008); Senn (2011); Val-
lverdd (2015); Wagenmakers et al. (2008) and references therein can serve as starting points.

Rather than focusing on a Bayesian-Frequentist dichotomy, this introduction means to primarily
emphasize commonalities to all statistical inferences, such as the centrality of the likelihood func-
tion. A pragmatic view, as opposed to one that bases the choice on philosophical grounds, is, e.g.,
advocated by Kass (2011). Similarly, Gelman (2012) writes: “... it would be rash to let philosophical
foundations be a justification for using Bayesian methods.”

The term implicit model was coined by Diggle & Gratton (1984). See Mohamed & Lakshminarayanan
(2017) for a review of the role of implicit models in machine learning.

This description renders the simulator an instance of a probabilistic program, in that it directly
represents a data generating process (Goodman, 2013; van de Meent et al., 2018). Note that we
do not assume any particular language; the simulator could even be physical.

A more in-depth discussion of these three reasons can be found in Papamakarios (2019).
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See, for example, Cranmer et al. (2020).

Regarding these consequences of the curse of dimensionality for REJ-ABC, see Barber et al. (2015);
Blum & Francois (2010); Prangle et al. (2018)

Only in the rare case where sufficient statistics of the data are known, the dimensionality can be
reduced without incurring loss of information. The design of summary statistics is a large topic
within the literature and new techniques continue to be developed, see, e.g., Prangle (2018).

Note that SL is classically performed on summary statistics of the data, i.e., X, and x; have been
reduced to features.

In this case, the target distribution for MCMC is the synthetic likelihood multiplied by the prior.

At every step of the MCMC sampler, M new simulations are performed. In addition, burn-in time
and thinning of chains may be required.

Historically, the approach by Papamakarios & Murray (2016) is related to regression adjustment
approaches for ABC (Beaumont et al., 2002; Blum, 2018), in which a mapping from x to 0, e.g.,
Blum & Francois (2010) used a single-layer neural network to predict mean and variance of 6.
However, instead of considering density estimation as a post-hoc correction step after an REJ-ABC
algorithm, the algorithm by Papamakarios & Murray (2016) does not rely on rejection sampling
and trade-offs associated with the choice of €.

Papamakarios & Murray (2016) used mixture density network (MDN) architecture (Bishop, 1994).
However, posterior estimation as described here can in principle be performed with any kind of
conditional density estimator. Today, conditional normalizing flows are a powerful alternative to
MDNs, see Papamakarios et al. (2021) for a review.

See Papamakarios & Murray (2016) and Lueckmann et al. (2021) for comparisons.

I originally named the algorithm we proposed in Lueckmann et al. (2017) sequential neural poste-
rior estimation (SNPE). Following the publication of Greenberg et al. (2019), we started to instead
use SNPE as an acronym for the class of neural network-based approaches that follow the sequen-
tial posterior estimation strategy outlined in Figure 2.5. When needed, we refer to the version of
Papamakarios & Murray (2016) as SNPE-A, the version of Lueckmann et al. (2017) as SNPE-B,
and the version of Greenberg et al. (2019) as SNPE-C (or APT, for Automatic Posterior Transforma-
tion), see also Papamakarios (2019). I introduced the acronym NPE for the single round version for
Lueckmann et al. (2021).

Regarding comparisons of NPE versus SNPE, see for example Greenberg et al. (2019); Lueckmann
et al. (2021, 2017); Papamakarios & Murray (2016).

Examples of practical use cases for amortized inference through NPE can for example be found in
Dax et al. (2021); Gongalves et al. (2020).

Note that ratio estimation algorithms for SBI were proposed prior to Hermans et al. (2020). Earlier
variants include Cranmer et al. (2015); Dutta et al. (2016); Izbicki et al. (2014); Pham et al. (2014).
Connections to recent methods are e.g. discussed in Durkan et al. (2020); Thomas et al. (2021).

Hermans et al. (2020) call the single round version of their algorithm amortized approximate like-
lihood ratio MCMC (AALR-MCMC). They also introduce a sequential ratio estimation algorithm.
Durkan et al. (2020) shows a close relation between the algorithms of Hermans et al. (2020) and
Greenberg et al. (2019), for which they slightly change the formulation of the loss function of Her-
mans et al. (2020) from binary to multi-class. In Lueckmann et al. (2021), we use the acronyms NRE
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67.

68.

69.

70.

71.

or SNRE for (sequential) neural ratio estimation to refer to the approach introduced by Hermans
et al. (2020) with a multi-class loss (Durkan et al., 2020) in single round or sequential version.

Not all differences between the algorithms are captured well in terms of quantitative comparisons.
Therefore, we also provide some problem-oriented practical advice in Lueckmann et al. (2021).

This statement is based on the following characterization of simulation:

Simulation is a form of modeling whose purpose is usually comprehension, planning,
prediction, and manipulation. It can be defined broadly as a behavioral or phenomeno-
logical approach to modeling; that is, a simulation is an active, behavioral analog of its
referent. The essence of simulation is that it unfolds over time. It models sequences and
(possibly) timing of events in the real world. Simulation is a process in which a model of
any kind is used to imitate (some aspects of) the behavior of its referent. [...] Simulation
is generally used to answer what-if questions. [...] As traditionally conceived, simulation
works only in this “forward” direction: The user “winds it up” and lets it run to see what
happens. (Rothenberg, 1989, p. 8)

All applications in this thesis are concerned with computer simulations, which provide flexible and
effective means for simulation. Note, however, that simulations can also be physical analogs of their
referent. SBI is general enough to be applied in such cases as well.

The importance of backward reasoning is, for example, discussed by Bunge (2019), who writes:

... the hardest problems are likely to be inverse, in that they go from effect to cause, from
goal to means, or from conclusion to premises—as in diagnosing disease from symptoms,
looking for a westward passage from Europe to Asia, and designing public policies to face
social issues. In other words, forward thinking proceeds from premises to conclusions,
whereas backward thinking goes the other way around, that is, in search for groundsl.]
(Bunge, 2019, p. 483)

Statistician George Box advocates a view in which criticism is the step that should naturally follow all
inferential procedures—as an integral part to any statistical workflow: We should carefully validate
inferential outcomes and question whether our assumptions hold true. Ideally, the workflow forms
an open loop in which we continue to refine the model class M or collect additional observations,
as shown in the following diagram (after Blei, 2014; Box, 1976):

Observations

|

Models —_—> Inference —_—> Criticism

There are many different strategies for checking inferential outcomes, e.g., posterior predictive
checks (Box, 1980). For a general overview of strategies and techniques for Bayesian model checking
and refinement, see, for example, the workflow suggested by Gelman et al. (2020) and references
therein. In the simulation-based inference setting, procedures relying on likelihood evaluations
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cannot be used. Moreover, checks such as simulation-based calibration (SBC, Talts et al., 2018) can
be computationally prohibitive, unless the inference algorithm allows for fast inference for many
different observations.

In virtually all practical settings, the true data generating process p; will not be contained in M
since our models, as representations of the world and theoretical entities, will fail to capture the full
complexity of natural phenomena. In other words, some mismatch between the models we identify
through statistical inference and p? is to be expected.

Model mismatch is a crucial caveat of inference in practice: If the model for which inference is
performed does not accurately capture the empirical data of interest, wrong conclusions may be
reached, potentially leading to adverse outcomes. This can have broad implications since the ability
to constrain numerical simulators by data, as well as to capture and report uncertainty, is critical
in scientific disciplines—some of which have a clear societal impact. Mitigating risks of algorithms
that are used in decision-making poses profound challenges. Addressing these challenges will not
only require the development of new methods but also ethical foresight and diverse perspectives
(Mohamed et al., 2020; Tomasev et al., 2020).
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Abstract

Mechanistic models of single-neuron dynamics have been extensively studied in
computational neuroscience. However, identifying which models can quantitatively
reproduce empirically measured data has been challenging. We propose to over-
come this limitation by using likelihood-free inference approaches (also known
as Approximate Bayesian Computation, ABC) to perform full Bayesian inference
on single-neuron models. Our approach builds on recent advances in ABC by
learning a neural network which maps features of the observed data to the poste-
rior distribution over parameters. We learn a Bayesian mixture-density network
approximating the posterior over multiple rounds of adaptively chosen simulations.
Furthermore, we propose an efficient approach for handling missing features and
parameter settings for which the simulator fails, as well as a strategy for automati-
cally learning relevant features using recurrent neural networks. On synthetic data,
our approach efficiently estimates posterior distributions and recovers ground-truth
parameters. On in-vitro recordings of membrane voltages, we recover multivariate
posteriors over biophysical parameters, which yield model-predicted voltage traces
that accurately match empirical data. Our approach will enable neuroscientists to
perform Bayesian inference on complex neuron models without having to design
model-specific algorithms, closing the gap between mechanistic and statistical
approaches to single-neuron modelling.

1 Introduction

Biophysical models of neuronal dynamics are of central importance for understanding the mechanisms
by which neural circuits process information and control behaviour. However, identifying which
models of neural dynamics can (or cannot) reproduce electrophysiological or imaging measurements
of neural activity has been a major challenge [1]. In particular, many models of interest — such as
multi-compartment biophysical models [2], networks of spiking neurons [3] or detailed simulations
of brain activity [4] — have intractable or computationally expensive likelihoods, and statistical
inference has only been possible in selected cases and using model-specific algorithms [5, 6, 7]. Many
models are defined implicitly through simulators, i.e. a set of dynamical equations and possibly a
description of sources of stochasticity [1]. In addition, it is often of interest to identify models which
can reproduce particular features in the data, e.g. a firing rate or response latency, rather than the full
temporal structure of a neural recording.

*Equal contribution
fCurrent primary affiliation: Centre for Cognitive Science, Technical University Darmstadt

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Figure 1: Flexible likelihood-free inference for models of neural dynamics. A. We want to
flexibly and efficiently infer the posterior over model parameters given observed data, on a wide
range of models of neural dynamics. B. Our method approximates the true posterior on @ around the
observed data x,, by performing density estimation on data simulated using a proposal prior. C. We
train a Bayesian mixture-density network (MDN) for posterior density estimation.

In the absence of likelihoods, the standard approach in neuroscience has been to use heuristic
parameter-fitting methods [2, 8, 9]: distance measures are defined on multiple features of interest,
and brute-force search [10, 11] or evolutionary algorithms [2, 9, 12, 13] (neither of which scales to
high-dimensional parameter spaces) are used to minimise the distances between observed and model-
derived features. As it is difficult to trade off distances between different features, the state-of-the-art
methods optimise multiple objectives and leave the final choice of a model to the user [2, 9]. As
this approach is not based on statistical inference, it does not provide estimates of the full posterior
distribution — thus, while this approach has been of great importance for identifying ‘best fitting’
parameters, it does not allow one to identify the full space of parameters that are consistent with data
and prior knowledge, or to incrementally refine and reject models.

Bayesian inference for likelihood-free simulator models, also known as Approximate Bayesian
Computation [14, 15, 16], provides an attractive framework for overcoming these limitations: like
parameter-fitting approaches in neuroscience [2, 8, 9], it is based on comparing summary features
between simulated and empirical data. However, unlike them, it provides a principled framework for
full Bayesian inference and can be used to determine how to trade off goodness-of-fit across summary
statistics. However, to the best of our knowledge, this potential has not been realised yet, and ABC
approaches are not used for linking mechanistic models of neural dynamics with experimental data
(for an exception, see [17]). Here, we propose to use ABC methods for statistical inference of
mechanistic models of single neurons. We argue that ABC approaches based on conditional density
estimation [18, 19] are particularly suited for neuroscience applications.

We present a novel method (Sequential Neural Posterior Estimation, SNPE) in which we sequentially
train a mixture-density network across multiple rounds of adaptively chosen simulations'. Our
approach is directly inspired by prior work [18, 19], but overcomes critical limitations: first, a
flexible mixture-density network trained with an importance-weighted loss function enables us to
use complex proposal distributions and approximate complex posteriors. Second, we represent a full
posterior over network parameters of the density estimator (i.e. a “posterior on posterior-parameters’)
which allows us to take uncertainty into account when adjusting weights. This enables us to perform
‘continual learning’, i.e. to effectively utilise all simulations without explicitly having to store them.
Third, we introduce an approach for efficiently dealing with simulations that return missing values,
or which break altogether — a common situation in neuroscience and many other applications of
simulator-based models — by learning a model that predicts which parameters are likely to lead to
breaking simulations, and using this knowledge to modify the proposal distribution. We demonstrate
the practical effectiveness and importance of these innovations on biophysical models of single
neurons, on simulated and neurophysiological data. Finally, we show how recurrent neural networks
can be used to directly learn relevant features from time-series data.

!Code available at https://github.com/mackelab/delfi
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1.1 Related work using likelihood-free inference for simulator models

Given experimental data x, (e.g. intracellular voltage measurements of a single neuron, or extra-
cellular recordings from a neural population), a model p(x|@) parameterised by 6 (e.g. biophysical
parameters, or connectivity strengths in a network simulation) and a prior distribution p(@), our goal
is to perform statistical inference, i.e. to find the posterior distribution p(8|x = x,). We assume that
the model p(x|@) is only defined through a simulator [14, 15]: we can generate samples x,, ~ x|6
from it, but not evaluate p(x|@) (or its gradients) explicitly. In neural modelling, many models are
defined through specification of a dynamical system with external or intrinsic noise sources or even
through a black-box simulator (e.g. using the NEURON software [20]).

In addition, and in line with parameter-fitting approaches in neuroscience and most ABC techniques
[14, 15, 21], we are often interested in capturing summary statistics of the experimental data (e.g.
firing rate, spike-latency, resting potential of a neuron). Therefore, we can think of x as resulting
from applying a feature function f to the raw simulator output s, x = f(s), with dim(x) < dim(s).

Classical ABC algorithms simulate from multiple parameters, and reject parameter sets which yield
data that are not within a specified distance from the empirically observed features. In their basic
form, proposals are drawn from the prior (‘rejection-ABC’ [22]). More efficient variants make
use of a Markov-Chain Monte-Carlo [23, 24] or Sequential Monte-Carlo (SMC) samplers [25, 26].
Sampling-based ABC approaches require the design of a distance metric on summary features, as
well as a rejection criterion (&), and are exact only in the limit of small £ (i.e. many rejections) [27],
implying strong trade-offs between accuracy and scalability. In SMC-ABC, importance sampling is
used to sequentially sample from more accurate posteriors while ¢ is gradually decreased.

Synthetic-likelihood methods [28, 21, 29] approximate the likelihood p(x|@) using multivariate
Gaussians fitted to repeated simulations given 6 (see [30, 31] for generalisations). While the
Gaussianity assumption is often motivated by the central limit theorem, distributions over features can
in practice be complex and highly non-Gaussian [32]. For example, neural simulations sometimes
result in systematically missing features (e.g. spike latency is undefined if there are no spikes), or
diverging firing rates.

Finally, methods originating from regression correction [33, 18, 19] simulate multiple data x,, from
different 8,, sampled from a proposal distribution (@), and construct a conditional density estimate
q(0|x) by performing a regression from simulated data x,, to 8,,. Evaluating this density model at
the observed data x,, ¢(0|x,) yields an estimate of the posterior distribution. These approaches do
not require parametric assumptions on likelihoods or the choice of a distance function and a tolerance
(¢) on features. Two approaches are used for correcting the mismatch between prior and proposal
distributions: Blum and Frangois [18] proposed the importance weights p(0)/p(8), but restricted
themselves to proposals which were truncated priors (i.e. all importance weights were 0 or 1), and did
not sequentially optimise proposals over multiple rounds. Papamakarios and Murray [19] recently
used stochastic variational inference to optimise the parameters of a mixture-density network, and a
post-hoc division step to correct for the effect of the proposal distribution. While highly effective in
some cases, this closed-form correction step can be numerically unstable and is restricted to Gaussian
and uniform proposals, limiting both the robustness and flexibility of this approach. SNPE builds on
these approaches, but overcomes their limitations by introducing four innovations: a highly flexible
proposal distribution parameterised as a mixture-density network, a Bayesian approach for continual
learning from multiple rounds of simulations, and a classifier for predicting which parameters will
result in aborted simulations or missing features. Fourth, we show how this approach, when applied
to time-series data of single-neuron activity, can automatically learn summary features from data.

2 Methods

2.1 Sequential Neural Posterior Estimation for likelihood-free inference

In SNPE, our goal is to learn the parameters ¢ of a posterior model ¢4 (0|x = f(s)) which, when
evaluated at x,, approximates the true posterior p(6|x,) ~ ¢4(0|x = x,). Given a prior p(6), a
proposal prior p(8), pairs of samples (0,,, x,,) generated from the proposal prior and the simulator,
and a calibration kernel K, the posterior model can be trained by minimising the importance-
weighted log-loss

£08) =~y 30 G K 0 05 16(6, ), m
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as is shown by extending the argument in [19] with importance-weights p(8,,)/p(6,,) and a kernel
K in Appendix A.

Sampling from a proposal prior can be much more effective than sampling from the prior. By
including the importance weights in the loss, the analytical correction step of [19] (i.e. division by
the proposal prior) becomes unnecessary: SNPE directly estimates the posterior density rather than
a conditional density that is reweighted post-hoc. The analytical step of [19] has the advantage of
side-stepping the additional variance brought about by importance-weights, but has the disadvantages
of (1) being restricted to Gaussian proposals, and (2) the division being unstable if the proposal prior
has higher precision than the estimated conditional density.

The calibration kernel K (x, X, ) can be used to calibrate the loss function by focusing it on simulated
data points x which are close to x, [18]. Calibration kernels K- (x, X, ) are to be chosen such that
K, (x,,%,) = 1 and that K, decreases with increasing distance ||x — x,||, given a bandwidth 72.
Here, we only used calibration kernels to exclude bad simulations by assigning them kernel value
zero. An additional use of calibration kernels would be to limit the accuracy of the posterior density
estimation to a region near x,. Choice of the bandwidth implies a bias-variance trade-off [18]. For
the problems we consider here, we assumed our posterior model g4 (6|x) based on a multi-layer
neural network to be sufficiently flexible, such that limiting bandwidth was not necessary.

We sequentially optimise the density estimator g (0|x) = >, . N'(0|p,,, 3y,) by training a mixture-
density network (MDN) [19] with parameters ¢ over multiple ‘rounds’ r with adaptively chosen
proposal priors 5(") (@) (see Fig. 1). We initialise the proposal prior at the prior, 5 (8) = p(8),
and subsequently take the posterior of the previous round as the next proposal prior (Appendix B).
Our approach is not limited to Gaussian proposals, and in particular can utilise multi-modal and
heavy-tailed proposal distributions.

2.2 Training the posterior model with stochastic variational inference

To make efficient use of simulation time, we want the posterior network g4 (€|x) to use all simulations,
including ones from previous rounds. For computational and memory efficiency, it is desirable to
avoid having to store all old samples, or having to train a new model at each round. To achieve this
goal, we perform Bayesian inference on the weights w of the MDN across rounds. We approximate
the distribution over weights as independent Gaussians [34, 35]. Note that the parameters ¢ of this
Bayesian MDN are are means and standard deviations per each weight, i.e., ¢ = {¢,,,, ®.}. As an
extension to the approach of [19], rather than assuming a zero-centred prior over weights, we use
the posterior over weights of the previous round, 1) (W), as a prior for the next round. Using
stochastic variational inference, in each round, we optimise the modified loss

7T¢(7‘) (W)

E(d)( )> =~ X7 Z ~7KT (Xn7 Xo>< log QW(BTL’XTL)>
N & p(1)(8,)

n 2)

1
+ NDKL (7T¢(r) (W) ’ |7T¢(r—1) (W)) .

Here, the distributions 7(w) are approximated by multivariate normals with diagonal covariance. The
continuity penalty ensures that MDN parameters that are already well constrained by previous rounds
are less likely to be updated than parameters with large uncertainty (see Appendix C). In practice,

gradients of the expectation over networks are approximated using the local reparameterisation trick
[36].

2.3 Dealing with bad simulations and bad features, and learning features from time series

Bad simulations: Simulator-based models, and single-neuron models in particular, frequently
generate nonsensical data (which we name ‘bad simulations’), especially in early rounds in which the
relevant region of parameter space has not yet been found. For example, models of neural dynamics
can easily run into self-excitation loops with diverging firing rates [37] (Fig. 4A). We introduce
a feature b(s) = 1 to indicate that s and x correspond to a bad simulation. We set K (x,,,%,) = 0

*While we did not investigate this here, an attractive idea would be to base the kernel of the dis-
tance between x, and x, on the divergence between the associated posteriors, e.g. K;(Xn,Xo) =
exp(—1/7Dxr(¢" 1 (8]x,)[]¢"" " (8]x,))) — in this case, two data would be regarded as similar if the
current estimation of the density network assigns similar posterior distributions to them, which is a natural
measure of similarity in this context.
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whenever b(x,,) = 1 since the density estimator should not spend resources on approximating the
posterior for bad data. With this choice of calibration kernel, bad simulations are ignored when
updating the posterior model — however, this results in inefficient use of simulations.

We propose to learn a model § : @ — [0, 1] to predict the probability that a simulation from @ will
break. While any probabilistic classifier could be used, we train a binary-output neural network with
log-loss on (8,,, b(s,,)). For each proposed 8, we reject @ with probability (@), and do not carry out
the expensive simulation®. The rejections could be incorporated into the importance weights (which
would require estimating the corresponding partition function, or assuming it to be constant across
rounds), but as these rejections do not depend on the data x,,, we interpret them as modifying the
prior: from an initially specified prior p(@), we obtain a modified prior excluding those parameters
which likely will lead to nonsensical simulations. Therefore, the predictive model §(@) does not only
lead to more efficient inference (especially in strongly under-constrained scenarios), but is also useful
in identifying an effective prior — the space of parameters deemed plausible a priori intersected with
the space of parameters for which the simulator is well-behaved.

Bad features: It is frequently observed that individual features of interest for fitting single-neuron
models cannot be evaluated: for example, the spike latency cannot be evaluated if a simulation
does not generate spikes, but the fact that this feature is missing might provide valuable information
(Fig. 4C). SNPE can be extended to handle ‘bad features’ by using a carefully designed posterior
network. For each feature f;(s), we introduce a binary feature m;(s) which indicates whether f;
is missing. We parameterise the input layer of the posterior network with multiplicative terms of
the form h;(s) = fi(s) - (1 — m;(s)) + ¢; - m;(s) where the term ¢; is to be learned. This approach
effectively learns an imputation value c; for each missing feature. For a more expressive model, one
could also include terms which learn interactions across different missing-feature indicators and/or
features, but we did not explore this here.

Learning features: Finally, we point out that using a neural network for posterior estimation yields
a straightforward way of learning relevant features from data [38, 39, 40]. Rather than feeding
summary features f(s) into the network, we directly feed time-series recordings of neural activity
into the network. The first layer of the MDN becomes a recurrent layer instead of a fully-connected
one. By minimising the variational objective (Eq.2), the network learns informative summary features
about posterior densities.

3 Results

While SNPE is in principle applicable to any simulator-based model, we designed it for performing
inference on models of neural dynamics. In our applications, we concentrate on single-neuron models.
We demonstrate the ability of SNPE to recover ground-truth posteriors in Gaussian Mixtures and
Generalised Linear Models (GLMs) [41], and apply SNPE to a Hodgkin-Huxley neuron model and
an autapse model, which can have parameter regimes of unstable behaviour and missing features.

3.1 Statistical inference on simple models

Gaussian mixtures: We first demonstrate the effectiveness of SNPE for inferring the posterior of
mixtures of two Gaussians, for which we can analytically compute true posteriors. We are interested
in the numerical stability of the method (‘robustness’) and the ‘flexibility’ to approximate multi-modal
posteriors. To illustrate the robustness of SNPE, we apply SNPE and the method proposed by [19]
(which we refer to by Conditional Density Estimation for Likelihood-free Inference, CDE-LFI) to
infer the common mean of a mixture of two Gaussians, given samples from the mixture distribution
(Fig. 2A; details in Appendix D.1). Whereas SNPE works robustly across multiple algorithmic
rounds, CDE-LFI can become unstable: its analytical correction requires a division by a Gaussian
which becomes unstable if the precision of the Gaussian does not increase monotonically across
rounds (see 2.1). Constraining the precision-matrix to be non-decreasing fixes the numerical issue,
but leads to biased estimates of the posterior. Second, we apply both SNPE and CDE-LFI to infer
the two means of a mixture of two Gaussians, given samples x from the mixture distribution (Fig.
2B; Appendix D.1). While SNPE can use bi-modal proposals, CDE-LFI cannot, implying reduced
efficiency of proposals on strongly non-Gaussian or multi-modal problems.

3 An alternative approach would be to first learn p(@|b(s) = 0) by applying SNPE to a single feature,
fi(s) = b(s), and to subsequently run SNPE on the full feature-set, but using p(8|b(s) = 0) as prior — however,
this would ‘waste’ simulations for learning p(0]b(s) = 1).
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Figure 2: Inference on simple statistical models. A. Robustness of posterior inference on 1-D
Gaussian Mixtures (GMs). Left: true posterior given observation at x, = 0. Middle: percentage
of completed runs as a function of number of rounds; SNPE is robust. Right: Gaussian proposal
priors tend to underestimate tails of posterior (red). B. Flexibility of posterior inference. Left: True
posterior for 1-D bimodal GM and observation x,. Middle and right: First round proposal priors
(dotted), second round proposal priors (dashed) and estimated posteriors (solid) for CDE-LFI and
SNPE respectively (true posterior red). SNPE allows multi-modal proposals. C, F. Application to
GLM. Posterior means and variances are recovered well by both CDE-LFI and SNPE. For reference,
we approximate the posterior using likelihood-based PG-MCMC. D. Covariance matrices for SNPE
and PG-MCMC. E. Partial view of the posterior for 3 out of 10 parameters (all 10 parameters in
Appendix G). Ground-truth parameters in red. 2-D marginals for SNPE (lines) and PG-MCMC
(histograms). White and yellow contour lines correspond to 68% and 95% of the mass, respectively.

Generalised linear models: Generalised linear models (GLM) are commonly used to model
neural responses to sensory stimuli. For these models, several techniques are available to estimate the
posterior distribution over parameters, making them ideally suited to test SNPE in a single-neuron
model. We evaluated the posterior distribution over the parameters of a GLM using a Pélya-Gamma
sampler (PG-MCMC, [42, 43]) and compared it to the posterior distributions estimated by SNPE
(Appendix D.2 for details). We found a good agreement of the posterior means and variances (Fig.
2C), covariances (Fig. 2D), as well as pairwise marginals (Fig. 2E). We note that, since GLMs have
close-to-Gaussian posteriors, the CDE-LFI method works extremely well on this problem (Fig. 2F).

In summary, SNPE leads to accurate and robust estimation of the posterior in simple models. It works
effectively even on multi-modal posteriors on which CDE-LFI exhibits worse performance. On a
GLM-example with an (almost) Gaussian posterior, the CDE-LFI method works extremely well,
but SNPE yields very similar posterior estimates (see Appendix F for additional comparison with
SMC-ABC).

3.2 Statistical inference on Hodgkin-Huxley neuron models

Simulated data: The Hodgkin-Huxley equations [44] describe the dynamics of a neuron’s mem-
brane potential and ion channels given biophysical parameters (e.g. concentration of sodium and
potassium channels) and an injected input current (Fig. 3A, see Appendix D.3). We applied SNPE
to a Hodgkin-Huxley model with channel kinetics as in [45] and inferred the posterior over 12
biophysical parameters, given 20 voltage features of the simulated data. The true parameter values are
close to the mode of the inferred posterior (Fig. 3B, D), and in a region of high posterior probability.
Samples from the posterior lead to voltage traces that are similar to the original data, supporting the
correctness of the approach (Fig. 3C).
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Figure 3: Application to Hodgkin-Huxley model: A. Simulation of Hodgkin-Huxley model with
current injection. B. Posterior over 3 out of 12 parameters inferred with SNPE (12 parameters in
Appendix G). True parameters have high posterior probabilities (red). C. Traces for the mode (cyan)
of and samples (orange) from the inferred posterior match the original data (blue). D. Comparison
between SNPE and a standard parameter-fitting procedure based on a genetic algorithm, IBEA:
difference between the mode of SNPE or IBEA best parameter set, and the ground-truth parameters,
normalised by the standard deviations obtained by SNPE. E-G. Application to real data from Allen
Cell Type Database. Inference over 12 parameters for cell 464212183. Results presented as in A-C.

Biophysical neuron models are typically fit to data with genetic algorithms applied to the distance
between simulated and measured data-features [2, 8, 9, 46]. We compared the performance of SNPE
with a commonly used genetic algorithm (Indicator Based Evolutionary Algorithm, IBEA, from the
BluePyOpt package [9]), given the same number of model simulations (Fig. 3D). SNPE is comparable
to IBEA in approximating the ground-truth parameters — note that defining an objective measure to
compare the two approaches is difficult, as they both minimise different criteria. However, unlike
IBEA, SNPE also returns a full posterior distribution, i.e. the space of all parameters consistent with
the data, rather than just a ‘best fit’.

In-vitro recordings:  We also applied the approach to in vitro recordings from the mouse visual
cortex (see Appendix D.4, Fig. 3E-G). The posterior mode over 12 parameters of a Hodgkin-Huxley
model leads to a voltage trace which is similar to the data, and the posterior distribution shows the
space of parameters for which the output of the model is preserved. These posteriors could be used to
motivate further experiments for constraining parameters, or to study invariances in the model.

3.3 Dealing with bad simulations and features

Bad simulations: We demonstrate our approach (see Section 2.3) for dealing with ‘bad simulations’
(e.g. for which firing rates diverge) using a simple, two-parameter ‘autapse’ model for which the region
of stability is known. During SNPE, we concurrently train a classifier to predict ‘bad simulations’ and
update the prior accordingly. This approach does not only lead to a more efficient use of simulations,
but also identifies the parameter space for which the simulator is well-defined, information that could
be used for further model analysis (Fig. 4A, B).

Bad features: Many features of interest in neural models, e.g. the latency to first spike after the
injection of a current input, are only well defined in the presence of other features, e.g. the presence
of spikes (Fig. 4C). Given that large parts of the parameter space can lead to non-spiking behaviour,
missing features occur frequently and cannot simply be ignored. We enriched our MDN with an extra
layer which imputes values to the absent features, values which are optimised alongside the rest of
the parameters of the network (Fig. 4D; Appendix E). Such imputation has marginal computational
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Figure 4: Inference on neural dynamics has to deal with diverging simulations and missing
features. A. Firing rate of a model neuron connected to itself (autapse). If the strength of the self-
connection (parameter .J) is bigger than 1, the dynamics are unstable (orange line - bad simulation).
B. Portion of parameter space leading to diverging simulations learned by the classifier (yellow: low
probability of bad simulation, blue: high probability), and comparison with analytically computed
boundaries (white, see Appendix D.5). C. Illustration of a model neuron in two parameter regimes,
spiking (grey trace) and non-spiking (blue). When the neuron does not spike, features that depend on
the presence of spiking, such as the latency to first spike, are not defined. D. Our MDN is augmented
with a multiplicative layer which imputes values for missing features.

cost and grants us the convenience of not having to hand-tune imputation values, or to reject all
simulations for which any individual feature might be missing.

Learning features with recurrent neural networks (RNNs): In neural modelling, it is often
of interest to work with hand-designed features that are thought to be particularly important or
informative for particular analysis questions [2]. For instance, the shape of the action potential is
intimately related to the dynamics of sodium and potassium channels in the Hodgkin-Huxley model.
However, the space of possible features is immense, and given the highly non-linear nature of many of
the neural models in question, it can sometimes be of interest to simply perform statistical inference
without having to hand-design features. Our approach provides a straightforward means of doing that:
we augment the MDN with a RNN which runs along the recorded voltage trace (and stimulus, here a
coloured-noise input) to learn appropriate features to constrain the model parameters. As illustrated in
figure 5B, the first layer of the network, which previously received pre-computed summary statistics
as inputs, is replaced by a recurrent layer that receives full voltage and current traces as inputs. In
order to capture long-term dependencies in the sequence input, we use gated-recurrent units (GRUs)
for the RNN [47]. Since we are using 25 GRU units and only keep the final output of the unrolled
RNN (many-to-one), we introduce a bottleneck. The RNN thus transforms the voltage trace and
stimulus into a set of 25 features, which allow SNPE to recover the posterior over the 12 parameters
(Fig. 5C). As expected, the presence of spikes in the observed data leads to a tighter posterior for
parameters associated to the main ion channels involved in spike generation, En,, Ex, gna and gk.

4 Discussion

Quantitatively linking models of neural dynamics to data is a central problem in computational
neuroscience. We showed that likelihood-free inference is at least as general and efficient as ‘black-
box’ parameter fitting approaches in neuroscience, but provides full statistical inference, suggesting
it to be the method of choice for inference on single-neuron models. We argued that ABC approaches
based on density estimation are particularly useful for neuroscience, and introduced a novel algorithm
(SNPE) for estimating posterior distributions. We can flexibly and robustly estimate posterior
distributions, even when large regions of the parameter space correspond to unstable model behaviour,
or when features of choice are missing. Furthermore, we have extended our approach with RNNs to
automatically define features, thus increasing the potential for better capturing salient aspects of the
data with highly non-linear models. SNPE is therefore equipped to estimate posterior distributions
under common constraints in neural models.

Our approach directly builds on a recent approach for density estimation ABC (CDE-LFI, [19]).
While we found CDE-LFI to work well on problems with unimodal, close-to-Gaussian posteriors and
stable simulators, our approach extends the range of possible applications, and these extensions are
critical for the application to neuron models. A key component of SNPE is the proposal prior, which
guides the sampling on each round of the algorithm. Here, we used the posterior on the previous
round as the proposal for the next one, as in CDE-LFI and in many Sequential-MC approaches. Our
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Figure 5: We can learn informative features using a recurrent mixture-density network (R-
MDN). A. We consider a neuron driven by a colored-noise input current. B. Rather than engineering
summary features to reduce the dimensionality of observations, we provide the complete voltage
trace and input current as input to an R-MDN. The unrolled forward pass is illustrated, where a
many-to-one recurrent network reduces the dimensionality of the inputs (7" time steps long) to a
feature vector of dimensionality /N. C. Our goal is to infer the posterior density for two different
observations: (1) the full 240ms trace shown in panel A; and (2) the initial 60ms of its duration, which
do not show any spike. We show the obtained marginal posterior densities for the two observations,
using a 25-dimensional feature vector learned by the RNN. In the presence of spikes, the posterior
uncertainty gets tighter around the true parameters related to spiking.

method could be extended by alternative approaches to designing proposal priors [48, 49], e.g. by
exploiting the fact that we also represent a posterior over MDN parameters: for example, one could
design proposals that guide sampling towards regions of the parameter space where the uncertainty
about the parameters of the posterior model is highest. We note that, while here we concentrated
on models of single neurons, ABC methods and our approach will also be applicable to models of
populations of neurons. Our approach will enable neuroscientists to perform Bayesian inference on
complex neuron models without having to design model-specific algorithms, closing the gap between
mechanistic and statistical models, and enabling theory-driven data-analysis [50].
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Appendix
A Convergence of the log-loss function

Let K(x,x,) be a kernel. We assume that K > 0 and that K(x,,%,) > 0. Starting from the
marginal

o) = [ p(O(x6)d0
we define a weighted version as follows:
p(x) K (x,%,) 1

PR = R i 2"

where we assume that the denominator is nonzero and finite. By the law of large numbers:

1 en a.s. 0
N En: p(eni K (x, %) 10g ¢ (0 |x2) —><_§Eei K (x,%0) 102 49(01%))5(0)p(xI0)

B
=(—K(x,%0)10g 43 (0]x))p(6)p(x6)
=(—K(x,%,)10g 4 (01%)) p(x)p(6]x)
=27k (=108 44 (01%))p s (x)p(01)
This expression equals

Zk Dx1. (pr (x)p(0]x)||pK (x)40 (0]x)) + const.,

where the constant does not depend on ¢. Assuming that the family g4 is sufficiently flexible to
model the posterior distribution p(6|x), the above quantity is minimised iff the two distributions
agree, ie. iff

p(0]x) = 4¢(0]x)
almost everywhere, where p(x) K (x,x,) # 0.

B Details on algorithm and optimisation

Algorithm 1: Training SNPE

initialise Bayesian MDN with parameters ¢ = {¢,,,, ¢} and K components
initialise proposal prior $(0)") with prior p(8)

initialise prior over network weights 7(?) as A/(w|0, A\~ 1)

repeat

forn=1...Ndo
sample 8,, ~ p(6)")
sample x,, ~ p(x|6,,)

optional: add components to neural network
(re)train Bayesian MDN using Eq.2

set p(0]x = x,)") := qw(0]x,) where w = ¢, ,
P(O)TTD  H(0x = x,)")

until p(6|x = x,,) has converged

The precision of the prior on w is fixed to A = 0.01. We normalise importance weights per round.
For optimisation, we use Adam with proposed default settings [1]. We rescale gradients such that
their combined norm does not exceed a threshold of 0.1 [2].

[1] D Kingma and Ba J. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

[2] I Sutskever, O Vinyals, and Q V Le. Sequence to sequence learning with neural networks. In Adv
in Neur In, 2014.
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C Continual learning through the D, -term

The Dk -term in Eq. 2 implements continual learning. In Bayesian inference calculating the posterior
given r rounds is equivalent to taking the posterior after » — 1 rounds as the prior for round r.
Translating this to variational inference formulation gives Eq. 2.

The Dgp -term is between two Gaussian distributions over weights w:

~\T ~\T— 1 2 — —_
D (@5 (w)|gy " (w)) = 5 |log ;22; (271 00) — d + (1 — p2) T8 (1 — p2) |

where d is the dimension of the space (the number of weights) and the parameters of ¢("~1 are 3,

and p.

A central term in the Dgp above is a quadratic penalty on the change in posterior mean (of MDN
weights) which is weighted by the posterior precision of round » — 1. Thus, given that the posterior
precision 21_1 increases with r, the penalty on the change in means also increases with rounds.

D Details of simulated and neurophysiological data
D.1 Mixture-models

Models SNPE is applied to two distinct mixture-models. The first is a mixture of two Gaussians
with a common mean:

plel6) = aN (210, 03) + (1 - Q)N (29, 03)

The second model is a mixture of two Gaussians, such that
p(z|0) = aN ([0, 07) + (1 — Q)N (2| — 0, 07).

Inference We set « = 0.5,01 = 1,09 = 0.1. The prior is chosen as p(6) ~ U (—10, 10).

For the first model, we run 6 rounds of SNPE and CDE-LFI with 1000 samples per round. We
initialise our SNPE with 2 components.

For the second model we draw 250 samples per round, use 3 rounds, and add a second component to
SNPE after the second round.

D.2 Generalised linear model

Model We simulate the activity of a neuron depending on a single set of covariates. Neural activity
is subdivided in bins and, within each bin ¢, spikes are generated according to a Bernoulli observation

model:
yi ~ Bern(n(v; 8)),

where vzT (3 is the convolution of the white-noise input (represented by v;) and a linear filter with
coefficients 3, and 77(-) = exp(-)/(1 + exp(+)) is the canonical link function for a Bernoulli GLM.

Inference We apply SNPE to a GLM with a 10-dimensional parameter vector 3. As summary
statistics, we use the cross-correlation between input and response, i.e., the sufficient statistics for the
generative model.

A Gaussian prior with mean 0 and covariance ¥g = o(F'F)~! is used, where F encourages
smoothness, by penalizing the second-order differences in the vector of parameters [51]. SNPE is run
for 5 rounds with 5000 GLM simulations each. We only enforce continuity in MDN weights after
round 3, when the proposal distribution converged.

To perform PG-MCMC, the generative model is augmented with latent P6lya-Gamma distributed
random variables w, and samples from w and 3 are drawn according to the iterative scheme described
by Polson and Scott [42]. The set of samples for 3 represents a draw from the posterior distribution of
3 given the data. PG-MCMC procedure uses the same prior as in the SNPE to estimate the posterior.

D.3 Single-compartment Hodgkin-Huxley neuron

Model The single-compartment Hodgkin-Huxley neuron uses channel kinetics as in [45]:

dVv
Cm% = Gleak (Ereak — V) + Gnam’h(Exna — V) + gxn* (Ex — V) + gup(Ex — V) + Ly + o(t),
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where C,,, is membrane capacitance, V' membrane potential, g. density of channels of type ¢ (m, h,
n, p) of the channel gating kinetic variables, E.. reversal potential of ¢, and o (¢) intrinsic neural noise.
The right hand side is composed of a leak current, a Na-current, a K-current, a slow voltage-dependent
K-current responsible for spike-frequency adaptation, and an injected current [;,;. Channel gating
variables have dynamics fully characterised by the neuron membrane potential, once the kinetic
parameters are known.

Inference We illustratet  SNPE in a model with 12 parameters (g, Nas
9K g™ Ereaks Ena, Ex, Vi, 0, kgn1, kgn2, Tmax) (Where kgp1 and kg,2 control the kinetics of
K channel activation, and o is the magnitude of the injected Gaussian noise), and 20 voltage features
(number of spikes, resting potential, 10 lagged auto-correlations, and the first 8 voltage moments).
SNPE is applied to the log absolute value of the parameters (10g |gieax|, 10g |gna|---)-

The prior distribution over the parameters is uniform, and centred around the true parameter values:

1., 3.,

SNPE is run for 5 rounds with 5000 Hodgkin-Huxley simulations each, and we fix the posterior to be
a mixture of two Gaussians.

D.4 Inference in in-vitro recordings from Allen Cell-type database

We apply the approach to in vitro recordings from mouse visual cortex (Allen Cell Type Database),
(illustration on cell 464212183 in Fig. 3E-G), and inferred the posterior over 12 parameters, as for
the application to the simulated data from the Hodgkin-Huxley neuron. We choose the same prior
as in the Hodgkin-Huxley simulated data. SNPE is run for 5 rounds with 5000 Hodgkin-Huxley
simulations each, and we fix the posterior to be a mixture of two Gaussians.

D.5 Autapse

Model The autapse model corresponds to a neuron synapsing onto itself with connection strength
J, time constant 7, injected current [iy; and external white noise source 1, ~ A(0, 1) with (ns, ;) =
6t S

d
Tdf::—r‘i‘JT—l-Iinj—l—UT]t,

Using this formula it can be straightforwardly shown that the system has unstable dynamics if J > 1.

Inference We apply SNPE to infer two parameters of the autapse model (J, 7), where the feature
of interest is the mean across time of the trace. The prior distribution over the parameters is uniform:

J ~U(0,2)

T ~U(-1,2.5),
where the true parameters are (0.75, 1). We note that the prior allows for the time constant 7 to take
negative values: while negative time constants do not make physical sense, we note that these are

mathematically equivalent to positive time constants where the autapse equation has flipped signs.
We draw 1000 samples for each one of 5 rounds.
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E Bad features

When sampling from the prior, many parameters sets can lead the Hodgkin-Huxley model to non-
spiking behaviour, and therefore features that depend on the presence of spiking, such as latency to
first spike, are not defined (Fig. E.1A). In the absence of spiking, the algorithm imputes values to the
undefined features, values which are learned during the MDN training. In Fig. E.1B, the imputed
value for the latency is close to the mean latency, although we have observed this not to be generally
the case.
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Figure E.1: We can impute values to missing features. A. Hodgkin-Huxley simulations with
parameters sampled from the prior, with several parameters sets leading to non-spiking behaviour. B.
Latency to first spike as a function of firing rate, for samples from the posterior distribution. In this
case, the imputed value for the latency (in orange) is close to the mean latency (in green).

F Comparison with Sequential Monte-Carlo ABC

SNPE has been tested on problems with 10 or more parameters, whereas most ABC methods (such
as SMC-ABC [25]) have addressed problems with fewer parameters, since sampling-based methods
require large numbers of simulations. In a GLM with 10 parameters, we observe that our method
consistently performs better than SMC-ABC, even when SMC is given orders of magnitude more
simulations (Fig. F.1).
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Figure F.1: Comparison between SNPE and SMC-ABC in a GLM with 10 parameters. The
reference (PG-MCMC) posterior means and variances A. and covariance B. are recovered well by
SNPE after 25000 simulations, whereas sequential Monte-Carlo ABC performs worse with over
4 x 105 simulations. For the application of the SMC-ABC algorithm, we used 1000 particles and a
sequence of tolerances {¢; }7_o, ¢; = 15 x 0.9".
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Figure G.1: Full posterior inferred for GLM by SNPE. In red, ground-truth parameter values. 2-D
marginals for SNPE (lines) and PG-MCMC (histograms). White and yellow contour lines correspond

respectively to 68% and 95% of the mass for SNPE.
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Abstract Mechanistic modeling in neuroscience aims to explain observed phenomena in terms
of underlying causes. However, determining which model parameters agree with complex and
stochastic neural data presents a significant challenge. We address this challenge with a machine
learning tool which uses deep neural density estimators—trained using model simulations—to carry
out Bayesian inference and retrieve the full space of parameters compatible with raw data or
selected data features. Our method is scalable in parameters and data features and can rapidly
analyze new data after initial training. We demonstrate the power and flexibility of our approach on
receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of
circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and
use these results to derive hypotheses for underlying compensation mechanisms. Our approach will
help close the gap between data-driven and theory-driven models of neural dynamics.

Introduction

New experimental technologies allow us to observe neurons, networks, brain regions, and entire
systems at unprecedented scale and resolution, but using these data to understand how behav-
jor arises from neural processes remains a challenge. To test our understanding of a phenome-
non, we often take to rebuilding it in the form of a computational model that incorporates the
mechanisms we believe to be at play, based on scientific knowledge, intuition, and hypotheses
about the components of a system and the laws governing their relationships. The goal of such
mechanistic models is to investigate whether a proposed mechanism can explain experimental
data, uncover details that may have been missed, inspire new experiments, and eventually pro-
vide insights into the inner workings of an observed neural or behavioral phenomenon
(Herz et al., 2006; Gerstner et al., 2012; O’Leary et al., 2015; Baker et al., 2018). Examples
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eLife digest Computational neuroscientists use mathematical models built on observational
data to investigate what's happening in the brain. Models can simulate brain activity from the
behavior of a single neuron right through to the patterns of collective activity in whole neural
networks. Collecting the experimental data is the first step, then the challenge becomes deciding
which computer models best represent the data and can explain the underlying causes of how the
brain behaves.

Researchers usually find the right model for their data through trial and error. This involves
tweaking a model’s parameters until the model can reproduce the data of interest. But this process
is laborious and not systematic. Moreover, with the ever-increasing complexity of both data and
computer models in neuroscience, the old-school approach of building models is starting to show its
limitations.

Now, Goncalves, Lueckmann, Deistler et al. have designed an algorithm that makes it easier for
researchers to fit mathematical models to experimental data. First, the algorithm trains an artificial
neural network to predict which models are compatible with simulated data. After initial training, the
method can rapidly be applied to either raw experimental data or selected data features. The
algorithm then returns the models that generate the best match.

This newly developed machine learning tool was able to automatically identify models which can
replicate the observed data from a diverse set of neuroscience problems. Importantly, further
experiments showed that this new approach can be scaled up to complex mechanisms, such as how
a neural network in crabs maintains its rhythm of activity. This tool could be applied to a wide range
of computational investigations in neuroscience and other fields of biology, which may help bridge
the gap between ‘data-driven’ and ‘theory-driven’ approaches.

for such a symbiotic relationship between model and experiments range from the now classical
work of Hodgkin and Huxley, 1952, to population models investigating rules of connectivity,
plasticity and network dynamics (van Vreeswijk and Sompolinsky, 1996; Prinz et al., 2004,
Vogels et al., 2005; Potjans and Diesmann, 2014; Litwin-Kumar and Doiron, 2012), network
models of inter-area interactions (Sporns, 2014; Bassett et al., 2018), and models of decision
making (Gold and Shadlen, 2007; Wang, 2008).

A crucial step in building a model is adjusting its free parameters to be consistent with experi-
mental observations. This is essential both for investigating whether the model agrees with reality
and for gaining insight into processes which cannot be measured experimentally. For some models
in neuroscience, it is possible to identify the relevant parameter regimes from careful mathematical
analysis of the model equations. But as the complexity of both neural data and neural models
increases, it becomes very difficult to find well-fitting parameters by inspection, and automated iden-
tification of data-consistent parameters is required.

Furthermore, to understand how a model quantitatively explains data, it is necessary to find not
only the best, but all parameter settings consistent with experimental observations. This is especially
important when modeling neural data, where highly variable observations can lead to broad ranges
of data-consistent parameters. Moreover, many models in biology are inherently robust to some per-
turbations of parameters, but highly sensitive to others (Gutenkunst et al., 2007, O’Leary et al.,
2015), for example because of processes such as homeostastic regulation. For these systems, identi-
fying the full range of data-consistent parameters can reveal how multiple distinct parameter set-
tings give rise to the same model behavior (Foster et al., 1993; Prinz et al., 2004; Achard and De
Schutter, 2006; Alonso and Marder, 2019). Yet, despite the clear benefits of mechanistic models in
providing scientific insight, identifying their parameters given data remains a challenging open prob-
lem that demands new algorithmic strategies.

The gold standard for automated parameter identification is statistical inference, which uses the
likelihood p(x|0) to quantify the match between parameters 6 and data x. Likelihoods can be effi-
ciently computed for purely statistical models commonly used in neuroscience (Truccolo et al.,
2005; Schneidman et al., 2006; Pillow et al., 2008; Yu et al., 2009; Macke et al., 2011;
Cunningham and Yu, 2014; Pandarinath et al., 2018), but are computationally intractable for most
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mechanistic models. Mechanistic models are designed to reflect knowledge about biological mecha-
nisms, and not necessarily to be amenable to efficient inference: many mechanistic models are
defined implicitly through stochastic computer simulations (e.g. a simulation of a network of spiking
neurons), and likelihood calculation would require the ability to integrate over all potential paths
through the simulator code. Similarly, a common goal of mechanistic modeling is to capture selected
summary features of the data (e.g. a certain firing rate, bursting behavior, etc...), not the full dataset
in all its details. The same feature (such as a particular average firing rate) can be produced by infi-
nitely many realizations of the simulated process (such as a time-series of membrane potential). This
makes it impractical to compute likelihoods, as one would have to average over all possible realiza-
tions which produce the same output.

Since the toolkit of (likelihood-based) statistical inference is inaccessible for mechanistic models,
parameters are typically tuned ad-hoc (often through laborious, and subjective, trial-and-error), or
by computationally expensive parameter search: a large set of models is generated, and grid search
(Prinz et al., 2003; Tomm et al., 2011, Stringer et al., 2016) or a genetic algorithm
(Druckmann et al., 2007; Hay et al., 2011; Rossant et al., 2011; Van Geit et al., 2016) is used to
filter out simulations which do not match the data. However, these approaches require the user to
define a heuristic rejection criterion on which simulations to keep (which can be challenging when
observations have many dimensions or multiple units of measurement), and typically end up discard-
ing most simulations. Furthermore, they lack the advantages of statistical inference, which provides
principled approaches for handling variability, quantifying uncertainty, incorporating prior knowl-
edge and integrating multiple data sources. Approximate Bayesian Computation (ABC)
(Beaumont et al., 2002; Marjoram et al., 2003; Sisson et al., 2007) is a parameter-search tech-
nique which aims to perform statistical inference, but still requires definition of a rejection criterion
and struggles in high-dimensional problems. Thus, computational neuroscientists face a dilemma:
either create carefully designed, highly interpretable mechanistic models (but rely on ad-hoc param-
eter tuning), or resort to purely statistical models offering sophisticated parameter inference but lim-
ited mechanistic insight.

Here, we propose a new approach using machine learning to combine the advantages of mecha-
nistic and statistical modeling. We present SNPE (Sequential Neural Posterior Estimation), a tool that
makes it possible to perform Bayesian inference on mechanistic models in neuroscience without
requiring access to likelihoods. SNPE identifies all mechanistic model parameters consistent with
observed experimental data (or summary features). It builds on recent advances in simulation-based
Bayesian inference (Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg et al.,
2019; Cranmer et al., 2020): given observed experimental data (or summary features) x,, and a
mechanistic model with parameters 6, it expresses both prior knowledge and the range of data-com-
patible parameters through probability distributions. SNPE returns a posterior distribution p(6|x,)
which is high for parameters 6 consistent with both the data x, and prior knowledge, but approaches
zero for 6 inconsistent with either (Figure 1).

Similar to parameter search methods, SNPE uses simulations instead of likelihood calculations,
but instead of filtering out simulations, it uses all simulations to train a multilayer artificial neural net-
work to identify admissible parameters (Figure 1). By incorporating modern deep neural networks
for conditional density estimation (Rezende and Mohamed, 2015; Papamakarios et al., 2017), it
can capture the full distribution of parameters consistent with the data, even when this distribution
has multiple peaks or lies on curved manifolds. Critically, SNPE decouples the design of the model
and design of the inference approach, giving the investigator maximal flexibility to design and mod-
ify mechanistic models. Our method makes minimal assumptions about the model or its implementa-
tion, and can for example also be applied to non-differentiable models, such as networks of spiking
neurons. Its only requirement is that one can run model simulations for different parameters, and col-
lect the resulting synthetic data or summary features of interest.

While the theoretical foundations of SNPE were originally developed and tested using simple
inference problems on small models (Papamakarios and Murray, 2016; Lueckmann et al., 2017,
Greenberg et al., 2019), here we show that SNPE can scale to complex mechanistic models in neu-
roscience, provide an accessible and powerful implementation, and develop validation and visualiza-
tion techniques for exploring the derived posteriors. We illustrate SNPE using mechanistic models
expressing key neuroscientific concepts: beginning with a simple neural encoding problem with a
known solution, we progress to more complex data types, large datasets and many-parameter
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Figure 1. Goal: algorithmically identify mechanistic models which are consistent with data. Our algorithm (SNPE) takes three inputs: a candidate
mechanistic model, prior knowledge or constraints on model parameters, and data (or summary statistics). SNPE proceeds by (1) sampling parameters
from the prior and simulating synthetic datasets from these parameters, and (2) using a deep density estimation neural network to learn the
(probabilistic) association between data (or data features) and underlying parameters, that is to learn statistical inference from simulated data. (3) This
density estimation network is then applied to empirical data to derive the full space of parameters consistent with the data and the prior, that is, the
posterior distribution. High posterior probability is assigned to parameters which are consistent with both the data and the prior, low probability to
inconsistent parameters. (4) If needed, an initial estimate of the posterior can be used to adaptively guide further simulations to produce data-

consistent results.

models inaccessible to previous methods. We estimate visual receptive fields using many data fea-
tures, demonstrate rapid inference of ion channel properties from high-throughput voltage-clamp
protocols, and show how Hodgkin-Huxley models are more tightly constrained by increasing num-
bers of data features. Finally, we showcase the power of SNPE by using it to identify the parameters
of a network model which can explain an experimentally observed pyloric rhythm in the stomatogas-
tric ganglion (Prinz et al., 2004)-in contrast to previous approaches, SNPE allows us to search over
the full space of both single-neuron and synaptic parameters, allowing us to study the geometry of
the parameter space, as well as to provide new hypotheses for which compensation mechanisms
might be at play.

Results

Training neural networks to perform Bayesian inference without
likelihood evaluations

SNPE performs Bayesian inference on mechanistic models using only model-simulations, without
requiring likelihood evaluations. It requires three inputs: a model (i.e. computer code to simulate
data from parameters), prior knowledge or constraints on parameters, and data (outputs from the
model or the real system it describes, Figure 1). SNPE runs simulations for a range of parameter val-
ues, and trains an artificial neural network to map any simulation result onto a range of possible
parameters. Importantly, a network trained to maximize log-probability (of parameters given simula-
tion results) will learn to approximate the posterior distribution as given by Bayes rule
(Papamakarios and Murray, 2016) (see Materials and methods for details, Figure 1). After training
on simulated data with known model parameters, SNPE can perform Bayesian inference of unknown
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parameters for empirical data. This approach to Bayesian inference never requires evaluating likeli-
hoods. SNPE's efficiency can be further improved by using the running estimate of the posterior dis-
tribution to guide further simulations toward data-compatible regions of the parameter space
(Papamakarios and Murray, 2016; Lueckmann et al., 2017, Greenberg et al., 2019). Below, we
apply SNPE to a range of stochastic models in neuroscience.

Estimating stimulus-selectivity in linear-nonlinear encoding models

We first illustrate SNPE on linear-nonlinear (LN) encoding models, a special case of generalized lin-
ear models (GLMs). These are simple, commonly used phenomenological models for which likeli-
hood-based parameter estimation is feasible (Brown et al., 1998; Paninski, 2004; Pillow, 2007,
Gerwinn et al., 2010; Polson et al., 2013; Pillow and Scott, 2012), and which can be used to vali-
date the accuracy of our approach, before applying SNPE to more complex models for which the
likelihood is unavailable. We will show that SNPE returns the correct posterior distribution over
parameters, that it can cope with high-dimensional observation data, that it can recover multiple sol-
utions to parameter inference problems, and that it is substantially more simulation efficient than
conventional rejection-based ABC methods.

An LN model describes how a neuron'’s firing rate is modulated by a sensory stimulus through a
linear filter 6, often referred to as the receptive field (Pillow et al., 2005; Chichilnisky, 2001). We
first considered a model of a retinal ganglion cell (RGC) driven by full-field flicker (Figure 2a). A sta-
tistic that is often used to characterize such a neuron is the spike-triggered average (STA)
(Figure 2a, right). We therefore used the STA, as well as the firing rate of the neuron, as input x, to
SNPE. (Note that, in the limit of infinite data, and for white noise stimuli, the STA will converge to
the receptive field [Paninski, 2004]}-for finite, and non-white data, the two will in general be differ-
ent.) Starting with random receptive fields 6§, we generated synthetic spike trains and calculated
STAs from them (Figure 2b). We then trained a neural conditional density estimator to recover the
receptive fields from the STAs and firing rates (Figure 2c). This allowed us to estimate the posterior
distribution over receptive fields, that is to estimate which receptive fields are consistent with the
data (and prior) (Figure 2c). For LN models, likelihood-based inference is possible, allowing us to
validate the SNPE posterior by comparing it to a reference posterior obtained via Markov Chain
Monte Carlo (MCMC) sampling (Polson et al., 2013; Pillow and Scott, 2012). We found that SNPE
accurately estimates the posterior distribution (Appendix 1—figure 1 and Appendix 1—figure 2),
and substantially outperforms Sequential Monte Carlo (SMC) ABC methods (Sisson et al., 2007,
Beaumont et al., 2009; Figure 2d). If SNPE works correctly, its posterior mean filter will match that
of the reference posterior — however, it is not to be expected that either of them precisely matches
the ground-truth filter (Figure 2c and Appendix 1—figure 1): In the presence of finite sampling and
stochasticity, multiple different filters could have plausibly given rise to the observed data. A prop-
erly inferred posterior will reflect this uncertainty, and include the true filters as one of many plausi-
ble explanations of the data (but not necessarily as the ‘mean’ of all plausible explanations)
(Appendix 1—figure 2). Increasing the number of Bernoulli samples in the observed data leads to
progressively tighter posteriors, with posterior samples closer to the true filter (Appendix 1—figure
3). Furthermore, SNPE closely agrees with the MCMC reference solution in all these cases, further
emphasizing the correctness of the posteriors inferred with SNPE.

As a more challenging problem, we inferred the receptive field of a neuron in primary visual cor-
tex (V1) (Niell and Stryker, 2008; Dyballa et al., 2018). Using a model composed of a bias (related
to the spontaneous firing rate) and a Gabor function with eight parameters (Jones and Palmer,
1987) describing the receptive field’s location, shape and strength, we simulated responses to 5 min
random noise movies of 41 x 41 pixels, such that the STA is high-dimensional, with a total of 1681
dimensions (Figure 2e). This problem admits multiple solutions (as e.g. rotating the receptive field
by 180°). As a result, the posterior distribution has multiple peaks (‘modes’). Starting from a simula-
tion result x, with known parameters, we used SNPE to estimate the posterior distribution p(6|x,).
To deal with the high-dimensional data x, in this problem, we used a convolutional neural network
(CNN), as this architecture excels at learning relevant features from image data (Krizhevsky et al.,
2012; Simonyan and Zisserman, 2015). To deal with the multiple peaks in the posterior, we fed the
CNN'’s output into a mixture density network (MDN) (Bishop, 1994), which can learn to assign prob-
ability distributions with multiple peaks as a function of its inputs (details in Materials and methods).
Using this strategy, SNPE was able to infer a posterior distribution that tightly enclosed the ground
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Figure 2. Estimating receptive fields in linear-nonlinear models of single neurons with statistical inference. (a) Schematic of a time-varying stimulus,
associated observed spike train and resulting spike-triggered average (STA) (b) Sequential Neural Posterior Estimation (SNPE) proceeds by first
randomly generating simulated receptive fields 6, and using the mechanistic model (here an LN model) to generate simulated spike trains and
simulated STAs. (c) These simulated STAs and receptive fields are then used to train a deep neural density estimator to identify the distribution of
receptive fields consistent with a given observed STA x,. (d) Relative error in posterior estimation of SNPE and alternative methods (mean and 95% Cl;
0 corresponds to perfect estimation, one to prior-level, details in Materials and methods). (e) Example of spatial receptive field. We simulated
responses and an STA of an LN-model with oriented receptive field. (f) We used SNPE to recover the distribution of receptive-field parameters.
Univariate and pairwise marginals for four parameters of the spatial filter (MCMC, yellow histograms; SNPE, blue lines; ground truth, green; full
posterior in Appendix 1—figure 4). Non-identifiabilities of the Gabor parameterization lead to multimodal posteriors. (g) Average correlation (& SD)
between ground-truth receptive field and receptive field samples from posteriors inferred with SMC-ABC, SNPE, and MCMC (which provides an upper
Figure 2 continued on next page
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bound given the inherent stochasticity of the data). (h) Posterior samples from SNPE posterior (SNPE, blue) compared to ground-truth receptive field
(green; see panel (e)), overlaid on STA. (i) Posterior samples for V1 data; full posterior in Appendix 1—figure 6.

truth simulation parameters which generated the original simulated data x,, and matched a refer-
ence MCMC posterior (Figure 2f, posterior over all parameters in Appendix 1—figure 4). For this
challenging estimation problem with high-dimensional summary features, an SMC-ABC algorithm
with the same simulation-budget failed to identify the correct receptive fields (Figure 2g) and poste-
rior distributions (Appendix 1—figure 5). We also applied this approach to electrophysiological
data from a V1 cell (Dyballa et al., 2018), identifying a sine-shaped Gabor receptive field consistent
with the original spike-triggered average (Figure 2i; posterior distribution in Appendix 1—figure 6).

Functional diversity of ion channels: efficient high-throughput inference
We next show how SNPE can be efficiently applied to estimation problems in which we want to iden-
tify a large number of models for different observations in a database. We considered a flexible
model of ion channels (Destexhe and Huguenard, 2000), which we here refer to as the Omnimodel.
This model uses eight parameters to describe how the dynamics of currents through non-inactivating
potassium channels depend on membrane voltage (Figure 3a). For various choices of its parameters
6, it can capture 350 specific models in publications describing this channel type, cataloged in the
lonChannelGenealogy (ICG) database (Podlaski et al., 2017). We aimed to identify these ion chan-
nel parameters 6 for each ICG model, based on 11 features of the model’s response to a sequence
of five noisy voltage clamp protocols, resulting in a total of 55 different characteristic features per
model (Figure 3b, see Materials and methods for details).

Because this model's output is a typical format for functional characterization of ion channels
both in simulations (Podlaski et al., 2017) and in high-throughput electrophysiological experiments
(Dunlop et al., 2008; Suk et al., 2019, Ranjan et al., 2019), the ability to rapidly infer different
parameters for many separate experiments is advantageous. Existing fitting approaches based on
numerical optimization (Destexhe and Huguenard, 2000; Ranjan et al., 2019) must repeat all com-
putations anew for a new experiment or data point (Figure 3c). However, for SNPE the only heavy
computational tasks are carrying out simulations to generate training data, and training the neural
network. We therefore reasoned that by training a network once using a large number of simula-
tions, we could subsequently carry out rapid ‘amortized’ parameter inference on new data using a
single pass through the network (Figure 3d; Speiser et al., 2017, Webb et al., 2018). To test this
idea, we used SNPE to train a neural network to infer the posterior from any data x. To generate
training data, we carried out 1 million Omnimodel simulations, with parameters randomly chosen
across ranges large enough to capture the models in the ICG database (Podlaski et al., 2017).
SNPE was run using a single round, that is, it learned to perform inference for all data from the prior
(rather than a specific observed datum). Generating these simulations took around 1000 CPU-hours
and training the network 150 CPU-hours, but afterwards a full posterior distribution could be
inferred for new data in less than 10 ms.

As a first test, SNPE was run on simulation data, generated by a previously published model of a
non-inactivating potassium channel (McTavish et al., 2012; Figure 3b). Simulations of the Omnimo-
del using parameter sets sampled from the obtained posterior distribution (Figure 3e) closely
resembled the input data on which the SNPE-based inference had been carried out, while simula-
tions using ‘outlier’ parameter sets with low probability under the posterior generated current
responses that were markedly different from the data x, (Figure 3f). Taking advantage of SNPE's
capability for rapid amortized inference, we further evaluated its performance on all 350 non-inacti-
vating potassium channel models in ICG. In each case, we carried out a simulation to generate initial
data from the original ICG model, used SNPE to calculate the posterior given the Omnimodel, and
then generated a new simulation x using parameters sampled from the posterior (Figure 3f). This
resulted in high correlation between the original ICG model response and the Omnimodel response,
in every case (>0.98 for more than 90% of models, see Appendix 1—figure 7). However, this
approach was not able to capture all traces perfectly, as for example it failed to capture the shape
of the onset of the bottom right model in Figure 3g. Additional analysis of this example revealed
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Figure 3. Inference on a database of ion-channel models. (a) We perform inference over the parameters of non-inactivating potassium channel models.
Channel kinetics are described by steady-state activation curves, 4., and time-constant curves, 7 y.. (b) Observation generated from a channel
model from ICG database: normalized current responses to three (out of five) voltage-clamp protocols (action potentials, activation, and ramping).
Details in Podlaski et al., 2017. (c) Classical approach to parameter identification: inference is optimized on each datum separately, requiring new
computations for each new datum. (d) Amortized inference: an inference network is learned which can be applied to multiple data, enabling rapid
inference on new data. (e) Posterior distribution over eight model parameters, 6, to 3. Ground truth parameters in green, high-probability parameters
Figure 3 continued on next page
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in purple, low-probability parameters in magenta. (f) Traces obtained by sampling from the posterior in (e). Purple: traces sampled from posterior,
that is, with high posterior probability. Magenta: trace from parameters with low probability. (g) Observations (green) and traces generated by posterior
samples (purple) for four models from the database.

that this example is not a failure of SNPE, but rather a limitation of the Omnimodel: in particular,
directly fitting the steady-state activation and time-constant curves on this specific example yielded
no further quantitative or qualitative improvement, suggesting that the limitation is in the model,
not the fit. Thus, SNPE can be used to reveal limitations of candidate models and aid the develop-
ment of more verisimilar mechanistic models.

Calculating the posterior for all 350 ICG models took only a few seconds, and was fully auto-
mated, that is, did not require user interactions. These results show how SNPE allows fast and accu-
rate identification of biophysical model parameters on new data, and how SNPE can be deployed
for applications requiring rapid automated inference, such as high-throughput screening-assays,
closed-loop paradigms (e.g. for adaptive experimental manipulations or stimulus-selection
[Kleinegesse and Gutmann, 2019]), or interactive software tools.

Hodgkin-Huxley model: stronger constraints from additional data
features

The Hodgkin-Huxley (HH) model (Hodgkin and Huxley, 1952) of action potential generation
through ion channel dynamics is a highly influential mechanistic model in neuroscience. A number of
algorithms have been proposed for fitting HH models to electrophysiological data (Prinz et al.,
2003; Huys et al., 2006; Pospischil et al., 2008; Rossant et al., 2011; Meliza et al., 2014;
Van Geit et al., 2016; Ben-Shalom et al., 2019), but (with the exception of Daly et al., 2015) these
approaches do not attempt to estimate the full posterior. Given the central importance of the HH
model in neuroscience, we sought to test how SNPE would cope with this challenging non-linear
model.

As previous approaches for HH models concentrated on reproducing specified features (e.g. the
number of spikes, [Pospischil et al., 2008]), we also sought to determine how various features pro-
vide different constraints. We considered the problem of inferring eight biophysical parameters in a
HH single-compartment model, describing voltage-dependent sodium and potassium conductances
and other intrinsic membrane properties, including neural noise, making the model stochastic by
nature (Figure 4a, left). We simulated the neuron’s voltage response to the injection of a square
wave of depolarizing current, and defined the model output x used for inference as the number of
evoked action potentials along with six additional features of the voltage response (Figure 4a, right,
details in Materials and methods). We first applied SNPE to observed data x, created by simulation
from the model, calculating the posterior distribution using all seven features in the observed data
(Figure 4b). The posterior contained the ground truth parameters in a high probability-region, as in
previous applications, indicating the consistency of parameter identification. The variance of the pos-
terior was narrower for some parameters than for others, indicating that the seven data features con-
strain some parameters strongly (such as the potassium conductance), but others only weakly (such
as the adaptation time constant). Additional simulations with parameters sampled from the posterior
closely resembled the observed data x,, in terms of both the raw membrane voltage over time and
the seven data features (Figure 4c, purple and green). Parameters with low posterior probability
(outliers) generated simulations that markedly differed from x, (Figure 4c, magenta).

Genetic algorithms are commonly used to fit parameters of deterministic biophysical models
(Druckmann et al., 2007, Hay et al., 2011; Van Geit et al., 2016, Gouwens et al., 2018). While
genetic algorithms can also return multiple data-compatible parameters, they do not perform infer-
ence (i.e. find the posterior distribution), and their outputs depend strongly on user-defined good-
ness-of-fit criteria. When comparing a state-of-the-art genetic algorithm (Indicator Based
Evolutionary Algorithm, IBEA, [Bleuler et al., 2003; Zitzler and Kiinzli, 2004, Van Geit et al.,
2016)) to SNPE, we found that the parameter-settings favored by IBEA produced simulations whose
summary features were as similar to the observed data as those obtained by SNPE high-probability
samples (Appendix 1—figure 10). However, high-scoring IBEA parameters were concentrated in
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Figure 4. Inference for single compartment Hodgkin-Huxley model. (a) Circuit diagram describing the Hodgkin-Huxley model (left), and simulated
voltage-trace given a current input (right). Three out of 7 voltage features are depicted: (1) number of spikes, (2) mean resting potential, and (3)
standard deviation of the pre-stimulus resting potential. (b) Inferred posterior for 8 parameters given seven voltage features. Ground truth parameters
in green, high-probability parameters in purple, low-probability parameters in magenta. (c) Traces (left) and associated features f (right) for the desired
output (observation), the mode of the inferred posterior, and a sample with low posterior probability. The voltage features are: number of spikes sp,
mean resting potential rpor, standard deviation of the resting potential o, and the first four voltage moments, mean m;, standard deviation m,
skewness mj and kurtosis m4. Each value plotted is the mean feature + standard deviation across 100 simulations with the same parameter set. Each
feature is normalized by aprior, the standard deviation of the respective feature of simulations sampled from the prior. (d) Partial view of the inferred
posteriors (4 out of 8 parameters) given 1, 4 and 7 features (full posteriors over eight parameters in Appendix 1—figure 8). (e) Traces for posterior
modes given 1, 4 and 7 features. Increasing the number of features leads to posterior traces that are closer to the observed data. (f) Observations from
Allen Cell Types Database (green) and corresponding mode samples (purple). Posteriors in Appendix 1—figure 9.

Gongalves, Lueckmann, Deistler, et al. eLife 2020;9:56261. DOI: https://doi.org/10.7554/eLife.56261 10 of 45



APPENDIX II

77

ELlfe Research article

Computational and Systems Biology | Neuroscience

small regions of the posterior, that is, IBEA did not identify the full space of data-compatible
models.

To investigate how individual data features constrain parameters, we compared SNPE-estimated
posteriors based (1) solely on the spike count, (2) on the spike count and three voltage-features, or
(3) on all 7 features of x,. As more features were taken into account, the posterior became narrower
and centered more closely on the ground truth parameters (Figure 4d, Appendix 1—figure 8). Pos-
terior simulations matched the observed data only in those features that had been used for inference
(e.g. applying SNPE to spike counts alone identified parameters that generated the correct number
of spikes, but for which spike timing and subthreshold voltage time course were off, Figure 4e). For
some parameters, such as the potassium conductance, providing more data features brought the
peak of the posterior (the posterior mode) closer to the ground truth and also decreased uncer-
tainty. For other parameters, such as Vr, a parameter adjusting the spike threshold
(Pospischil et al., 2008), the peak of the posterior was already close to the correct value with spike
counts alone, but adding additional features reduced uncertainty. While SNPE can be used to study
the effect of additional data features in reducing parameter uncertainty, this would not be the case
for methods that only return a single best-guess estimate of parameters. These results show that
SNPE can reveal how information from multiple data features imposes collective constraints on chan-
nel and membrane properties in the HH model.

We also inferred HH parameters for eight in vitro recordings from the Allen Cell Types database
using the same current-clamp stimulation protocol as in our model (Allen Institute for Brain Sci-
ence, 2016; Teeter et al., 2018; Figure 4f, Appendix 1—figure 9). In each case, simulations based
on the SNPE-inferred posterior closely resembled the original data (Figure 4f). We note that while
inferred parameters differed across recordings, some parameters (the spike threshold, the density of
sodium channels, the membrane reversal potential and the density of potassium channels) were con-
sistently more strongly constrained than others (the intrinsic neural noise, the adaptation time con-
stant, the density of slow voltage-dependent channels and the leak conductance) (Appendix 1—
figure 9). Overall, these results suggest that the electrophysiological responses measured by this
current-clamp protocol can be approximated by a single-compartment HH model, and that SNPE
can identify the admissible parameters.

Crustacean stomatogastric ganglion: sensitivity to perturbations

We next aimed to demonstrate how the full posterior distribution obtained with SNPE can lead to
novel scientific insights. To do so, we used the pyloric network of the stomatogastric ganglion (STG)
of the crab Cancer borealis, a well-characterized neural circuit producing rhythmic activity. In this cir-
cuit, similar network activity can arise from vastly different sets of membrane and synaptic conduc-
tances (Prinz et al., 2004). We first investigated whether data-consistent sets of membrane and
synaptic conductances are connected in parameter space, as has been demonstrated for single neu-
rons (Taylor et al., 2006), and, second, which compensation mechanisms between parameters of
this circuit allow the neural system to maintain its activity despite parameter variations. While this
model has been studied extensively, answering these questions requires characterizing
higher dimensional parameter spaces than those accessed previously. We demonstrate how SNPE
can be used to identify the posterior distribution over both membrane and synaptic conductances of
the STG (31 parameters total) and how the full posterior distribution can be used to study the above
questions at the circuit level.

For some biological systems, multiple parameter sets give rise to the same system behavior
(Prinz et al., 2004; Marder and Goaillard, 2006; Gutierrez et al., 2013; Fisher et al., 2013,
Marder et al., 2015; Alonso and Marder, 2019). In particular, neural systems can be robust to spe-
cific perturbations of parameters (O’Leary et al., 2014; Marder et al., 2015; O’Leary and Marder,
2016), yet highly sensitive to others, properties referred to as sloppiness and stiffness
(Goldman et al., 2001; Gutenkunst et al., 2007, Machta et al., 2013; O’Leary et al., 2015). We
studied how perturbations affect model output using a model (Prinz et al., 2004) and data
(Haddad and Marder, 2018) of the pyloric rhythm in the crustacean stomatogastric ganglion (STG).
This model describes a triphasic motor pattern generated by a well-characterized circuit (Figure 5a).
The circuit consists of two electrically coupled pacemaker neurons (anterior burster and pyloric dila-
tor, AB/PD), modeled as a single neuron, as well as two types of follower neurons (lateral pyloric (LP)
and pyloric (PY)), all connected through inhibitory synapses (details in Materials and methods). Eight
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membrane conductances are included for each modeled neuron, along with seven synaptic conduc-
tances, for a total of 31 parameters. This model has been used to demonstrate that virtually indistin-
guishable activity can arise from vastly different membrane and synaptic conductances in the STG
(Prinz et al., 2004; Alonso and Marder, 2019). Here, we build on these studies and extend the
model to include intrinsic neural noise on each neuron (see Materials and methods).

We applied SNPE to an extracellular recording from the STG of the crab Cancer borealis
(Haddad and Marder, 2018) which exhibited pyloric activity (Figure 5b), and inferred the posterior
distribution over all 31 parameters based on 18 salient features of the voltage traces, including cycle
period, phase delays, phase gaps, and burst durations (features in Figure 5B, posterior in Figure 5c,
posterior over all parameters in Appendix 1—figure 11, details in Materials and methods). Consis-
tent with previous reports, the posterior distribution has high probability over extended value ranges
for many membrane and synaptic conductances. To verify that parameter settings across these
extended ranges are indeed capable of generating the experimentally observed network activity, we
sampled two sets of membrane and synaptic conductances from the posterior distribution. These
two samples have widely disparate parameters from each other (Figure 5¢, purple dots, details in
Materials and methods), but both exhibit activity highly similar to the experimental observation
(Figure 5d, top left and top right).

We then investigated the geometry of the parameter space producing these rhythms
(Achard and De Schutter, 2006; Alonso and Marder, 2019). First, we wanted to identify direc-
tions of sloppiness, and we were interested in whether parameter settings producing pyloric
rhythms form a single connected region, as has been shown for single neurons (Taylor et al.,
2006), or whether they lie on separate ‘islands’. Starting from the two parameter settings show-
ing similar activity above, we examined whether they were connected by searching for a path
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Figure 5. Identifying network models underlying an experimentally observed pyloric rhythm in the crustacean stomatogastric ganglion. (a) Simplified
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circuit diagram of the pyloric network from the stomatogastric ganglion. Thin connections are fast glutamatergic, thick connections are slow cholinergic.
(b) Extracellular recordings from nerves of pyloric motor neurons of the crab Cancer borealis (Haddad and Marder, 2018). Numbers indicate some of
the used summary features, namely cycle period (1), phase delays (2), phase gaps (3), and burst durations (4) (see Materials and methods for details). (c)
Posterior over 24 membrane and seven synaptic conductances given the experimental observation shown in panel b (eight parameters shown, full
posterior in Appendix 1—figure 11). Two high-probability parameter sets in purple. Inset: magnified marginal posterior for the synaptic strengths AB
to LP neuron vs. PD to LP neuron. (d) Identifying directions of sloppiness and stiffness. Two samples from the posterior both show similar network
activity as the experimental observation (top left and top right), but have very different parameters (purple dots in panel c). Along the high-probability
path between these samples, network activity is preserved (trace 1). When perturbing the parameters orthogonally off the path, network activity
changes abruptly and becomes non-pyloric (trace 2).
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through parameter space along which pyloric activity was maintained. To do this, we algorithmi-
cally identified a path lying only in regions of high posterior probability (Figure 5¢, white,
details in Materials and methods). Along the path, network output was tightly preserved, despite
a substantial variation of the parameters (voltage trace 1 in Figure 5d, Appendix 1—figure 12).
Second, we inspected directions of stiffness by perturbing parameters off the path. We applied
perturbations that yield maximal drops in posterior probability (see Materials and methods for
details), and found that the network quickly produced non-pyloric activity (voltage trace 2,
Figure 5d; Goldman et al., 2001). Note that, while parameter set 2 seems to lie in regions of
high probability when inspecting pairwise marginals, it in fact has low probability under the full
posterior distribution (Appendix 1—figure 13). In identifying these paths and perturbations, we
exploited the fact that SNPE provides a differentiable estimate of the posterior, as opposed to
parameter search methods which provide only discrete samples.

Overall, these results show that the pyloric network can be robust to specific perturbations in
parameter space, but sensitive to others, and that one can interpolate between disparate solutions
while preserving network activity. This analysis demonstrates the flexibility of SNPE in capturing
complex posterior distributions, and shows how the differentiable posterior can be used to study
directions of sloppiness and stiffness.

Predicting compensation mechanisms from posterior distributions
Experimental and computational studies have shown that stable neural activity can be maintained
despite variable circuit parameters (Prinz et al., 2004; Marder and Taylor, 2011; O’Leary, 2018).
This behavior can emerge from two sources (Marder and Taylor, 2011): either, the variation of a
certain parameter barely influences network activity at all, or alternatively, variations of several
parameters influence network activity, but their effects compensate for one another. Here, we inves-
tigated these possibilities by using the posterior distribution over membrane and synaptic conduc-
tances of the STG.

We began by drawing samples from the posterior and inspecting their pairwise histograms (i.e.
the pairwise marginals, Figure 6a, posterior over all parameters in Appendix 1—figure 11). Consis-
tent with previously reported results (Taylor et al., 2009), many parameters seem only weakly con-
strained and only weakly correlated (Figure 6b). However, this observation does not imply that the
parameters of the network do not have to be finely tuned: pairwise marginals are averages over
many network configurations, where all other parameters may take on diverse values, which could
disguise that each individual configuration is finely tuned. Indeed, when we sampled parameters
independently from their posterior histograms, the resulting circuit configurations rarely produced
pyloric activity, indicating that parameters have to be tuned relative to each other (Appendix 1—fig-
ure 14). This analysis also illustrates that the (common) approach of independently setting parame-
ters can be problematic: although each parameter individually is in a realistic range, the network as
a whole is not (Golowasch et al., 2002). Finally, it shows the importance of identifying the full poste-
rior distribution, which is far more informative than just finding individual parameters and assigning
error bars.

In order to investigate the need for tuning between pairs of parameters, we held all but two
parameters constant at a given consistent circuit configuration (sampled from the posterior), and
observed the network activity across different values of the remaining pair of parameters. We can
do so by calculating the conditional posterior distribution (details in Materials and methods), and do
not have to generate additional simulations (as would be required by parameter search methods).
Doing so has a simple interpretation: when all but two parameters are fixed, what values of the
remaining two parameters can then lead to the desired network activity? We found that the desired
pattern of pyloric activity can emerge only from narrowly tuned and often highly correlated combina-
tions of the remaining two parameters, showing how these parameters can compensate for one
another (Figure 6c). When repeating this analysis across multiple network configurations, we found
that these ‘conditional correlations’ are often preserved (Figure 6¢, left and right). This demon-
strates that pairs of parameters can compensate for each other in a similar way, independently of
the values taken by other parameters. This observation about compensation could be interpreted as
an instance of modularity, a widespread underlying principle of biological robustness
(Kitano, 2004).
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Figure 6. Predicting compensation mechanisms in the stomatogastric ganglion. (a) Inferred posterior. We show a subset of parameters which are
weakly constrained (full posterior in Appendix 1—figure 11). Pyloric activity can emerge from a wide range of maximal membrane conductances, as
the 1D and 2D posterior marginals cover almost the entire extent of the prior. (b) Correlation matrix, based on the samples shown in panel (a). Almost
all correlations are weak. Ordering of membrane and synaptic conductances as in Appendix 1—figure 11. (c) Conditional distributions given a
particular circuit configuration: for the plots on the diagonal, we keep all but one parameter fixed. For plots above the diagonal, we keep all but two
parameters fixed. The remaining parameter(s) are narrowly tuned; tuning across parameters is often highly correlated. When conditioning on a different
parameter setting (right plot), the conditional posteriors change, but correlations are often maintained. (d) Conditional correlation matrix, averaged
over 500 conditional distributions like the ones shown in panel (c). Black squares highlight parameter-pairs within the same model neuron. (e)
Consistency with experimental observations. Top: maximal conductance of the fast transient potassium current and the maximal conductance of the
hyperpolarization current are positively correlated for all three neurons. This has also been experimentally observed in the PD and the LP neuron
(MacLean et al., 2005). Bottom: the maximal conductance of the hyperpolarization current of the postsynaptic neuron can compensate the strength of
the synaptic input, as experimentally observed in the PD and the LP neuron (Grashow et al., 2010; Marder, 2011). The boxplots indicate the
maximum, 75% quantile, median, 25% quantile, and minimum across 500 conditional correlations for different parameter pairs. Face color indicates
mean correlation using the colorbar shown in panel (b).

We calculated conditional correlations for each parameter pair using 500 different circuit configu-
rations sampled from the posterior (Figure 6d). Compared to correlations based on the pairwise
marginals (Figure 6b), these conditional correlations were substantially stronger. They were particu-
larly strong across membrane conductances of the same neuron, but primarily weak across different
neurons (black boxes in Figure 6d).

Finally, we tested whether the conditional correlations were in line with experimental observa-
tions. For the PD and the LP neuron, it has been reported that overexpression of the fast transient
potassium current (/) leads to a compensating increase of the hyperpolarization current (Iy), sug-
gesting a positive correlation between these two currents (MacLean et al., 2003; MacLean et al.,
2005). These results are qualitatively consistent with the positive conditional correlations between
the maximal conductances of I, and Iy for all three model neurons (Figure 6e top). In addition,
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using the dynamic clamp, it has been shown that diverse combinations of the synaptic input strength
and the maximal conductance of Iy lead to similar activity in the LP and the PD neuron
(Grashow et al., 2010; Marder, 2011). Consistent with these findings, the non-zero conditional cor-
relations reveal that there can indeed be compensation mechanisms between the synaptic strength
and the maximal conductance of Iy of the postsynaptic neuron (Figure ée bottom).

Overall, we showed how SNPE can be used to study parameter dependencies, and how the pos-
terior distribution can be used to efficiently explore potential compensation mechanisms. We found
that our method can predict compensation mechanisms which are qualitatively consistent with
experimental studies. We emphasize that these findings would not have been possible with a direct
grid-search over all parameters: defining a grid in a 31-dimensional parameter space would require
more than 23! > 2 billion simulations, even if one were to use the coarsest-possible grid with only
two values per dimension.

Discussion

How can we build models which give insights into the causal mechanisms underlying neural or
behavioral dynamics? The cycle of building mechanistic models, generating predictions, comparing
them to empirical data, and rejecting or refining models has been of crucial importance in the empir-
ical sciences. However, a key challenge has been the difficulty of identifying mechanistic models
which can quantitatively capture observed phenomena. We suggest that a generally applicable tool
to constrain mechanistic models by data would expedite progress in neuroscience. While many con-
siderations should go into designing a model that is appropriate for a given question and level of
description (Herz et al., 2006; Brette, 2015; Gerstner et al., 2012; O’Leary et al., 2015), the ques-
tion of whether and how one can perform statistical inference should not compromise model design.
In our tool, SNPE, the process of model building and parameter inference are entirely decoupled.
SNPE can be applied to any simulation-based model (requiring neither model nor summary features
to be differentiable) and gives full flexibility on defining a prior. We illustrated the power of our
approach on a diverse set of applications, highlighting the potential of SNPE to rapidly identify
data-compatible mechanistic models, to investigate which data-features effectively constrain param-
eters, and to reveal shortcomings of candidate-models.

Finally, we used a model of the stomatogastric ganglion to show how SNPE can identify complex,
high-dimensional parameter landscapes of neural systems. We analyzed the geometrical structure of
the parameter landscape and confirmed that circuit configurations need to be finely tuned, even if
individual parameters can take on a broad range of values. We showed that different configurations
are connected in parameter space, and provided hypotheses for compensation mechanisms. These
analyses were made possible by SNPE's ability to estimate full parameter posteriors, rather than just
constraints on individual parameters, as is common in many statistical parameter-identification
approaches.

Related work

SNPE builds on recent advances in machine learning and in particular in density-estimation
approaches to likelihood-free inference (Papamakarios and Murray, 2016; Le et al., 2017a;
Lueckmann et al., 2017, Chan et al., 2018; Greenberg et al., 2019, reviewed in Cranmer et al.,
2020). We here scaled these approaches to canonical mechanistic models of neural dynamics and
provided methods and software-tools for inference, visualization, and analysis of the resulting poste-
riors (e.g. the high-probability paths and conditional correlations presented here).

The idea of learning inference networks on simulated data can be traced back to regression-
adjustment methods in ABC (Beaumont et al., 2002; Blum and Francois, 2010). Papamakarios and
Murray, 2016 first proposed to use expressive conditional density estimators in the form of deep
neural networks (Bishop, 1994, Papamakarios et al., 2017), and to optimize them sequentially over
multiple rounds with cost-functions derived from Bayesian inference principles. Compared to com-
monly used rejection-based ABC methods (Rubin, 1984; Pritchard et al., 1999), such as MCMC-
ABC (Marjoram et al., 2003), SMC-ABC (Sisson et al., 2007; Liepe et al., 2014), Bayesian-Optimi-
zation ABC (Gutmann and Corander, 2016), or ensemble methods (Britton et al., 2013;
Lawson et al., 2018), SNPE approaches do not require one to define a distance function in data
space. In addition, by leveraging the ability of neural networks to learn informative features, they
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enable scaling to problems with high-dimensional observations, as are common in neuroscience and
other fields in biology. We have illustrated this capability in the context of receptive field estimation,
where a convolutional neural network extracts summary features from a 1681 dimensional spike-trig-
gered average. Alternative likelihood-free approaches include synthetic likelihood methods
(Wood, 2010; Costa et al, 2013, Wilkinson, 2014, Meeds and Welling, 2014
Papamakarios et al., 2019a; Lueckmann et al., 2019; Durkan et al., 2018), moment-based approx-
imations of the posterior (Barthelmé and Chopin, 2014; Schréder et al., 2019), inference compila-
tion (Le et al., 2017b; Casado et al., 2017), and density-ratio estimation (Hermans et al., 2020).
For some mechanistic models in neuroscience (e.g. for integrate-and-fire neurons), likelihoods can
be computed via stochastic numerical approximations (Chen, 2003; Huys and Paninski, 2009,
Meliza et al., 2014) or model-specific analytical approaches (Huys et al., 2006; Hertag et al., 2012,
Pozzorini et al., 2015; Ladenbauer et al., 2018; René€ et al., 2020).

How big is the advance brought by SNPE relative to ‘conventional’ brute-force approaches that
aim to exhaustively explore parameter space? A fundamental difference from grid search
approaches that have been applied to neuroscientific models (Prinz et al., 2003; Caplan et al.,
2014; Stringer et al., 2016) is that SNPE can perform Bayesian inference for stochastic models,
whereas previous approaches identified parameters whose deterministic model-outputs were heuris-
tically ‘close’ to empirical data. Depending on the goal of the analysis, either approach might be
preferable. SNPE, and Bayesian inference more generally, is derived for stochastic models. SNPE
can, in principle, also be applied to deterministic models, but a rigorous mathematical interpretation
or empirical evaluation in this regime is beyond the scope of this study. SNPE also differs conceptu-
ally and quantitatively from rejection-ABC, in which random parameters are accepted or rejected
based on a distance-criterion. SNPE uses all simulations during training instead of rejecting some,
learns to identify data features informative about model parameters rather than relying on the user
to choose the correct data features and distance metric, and performs considerably better than
rejection-ABC, in particular for problems with high-dimensional observations (Figure 2). Another
advantage over grid search and rejection-ABC is that SNPE can ‘amortize’ inference of parameter
posteriors, so that one can quickly perform inference on new data, or explore compensation mecha-
nisms, without having to carry out new simulations, or repeatedly search a simulation database. We
should still note that SNPE can require the generation of large sets of simulations, which can be
viewed as a brute-force step, emphasising that one of the main strengths of SNPE over conventional
brute-force approaches relies on the processing of these simulations via deep neural density
estimators.

Our approach is already finding its first applications in neuroscience—for example, Oesterle et al.,
2020 have used a variant of SNPE to constrain biophysical models of retinal neurons, with the goal
of optimizing stimulation approaches for neuroprosthetics. Concurrently with our work,
Bittner et al., 2019 developed an alternative approach to parameter identification for mechanistic
models and showed how it can be used to characterize neural population models which exhibit spe-
cific emergent computational properties. Both studies differ in their methodology and domain of
applicability (see descriptions of underlying algorithms in our prior work [Lueckmann et al., 2017;
Greenberg et al., 2019] and theirs [Loaiza-Ganem et al., 2017]), as well in the focus of their neuro-
scientific contributions. Both approaches share the overall goal of using deep probabilistic inference
tools to build more interpretable models of neural data. These complementary and concurrent
advances will expedite the cycle of building, adjusting and selecting mechanistic models in
neuroscience.

Finally, a complementary approach to mechanistic modeling is to pursue purely phenomenologi-
cal models, which are designed to have favorable statistical and computational properties: these
data-driven models can be efficiently fit to neural data (Brown et al., 1998; Truccolo et al., 2005;
Pillow, 2007; Pillow et al., 2008; Schneidman et al., 2006; Macke et al., 2011; Yu et al., 2009;
Pandarinath et al., 2018; Cunningham and Yu, 2014) or to implement desired computations
(Sussillo and Abbott, 2009). Although tremendously useful for a quantitative characterization of
neural dynamics, these models typically have a large number of parameters, which rarely correspond
to physically measurable or mechanistically interpretable quantities, and thus it can be challenging
to derive mechanistic insights or causal hypotheses from them (but see e.g. Mante et al., 2013;
Sussillo and Barak, 2013; Maheswaranathan et al., 2019).
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Use of summary features

When fitting mechanistic models to data, it is common to target summary features to isolate specific
behaviors, rather than the full data. For example, the spike shape is known to constrain sodium and
potassium conductances (Druckmann et al., 2007; Pospischil et al., 2008; Hay et al., 2011). When
modeling population dynamics, it is often desirable to achieve realistic firing rates, rate-correlations
and response nonlinearities (Rubin et al., 2015; Bittner et al., 2019), or specified oscillations
(Prinz et al., 2004). In models of decision making, one is often interested in reproducing psychomet-
ric functions or reaction-time distributions (Ratcliff and McKoon, 2008). Choice of summary features
might also be guided by known limitations of either the model or the measurement approach, or
necessitated by the fact that published data are only available in summarized form. Several methods
have been proposed to automatically construct informative summary features (Blum et al., 2013;
Jiang et al., 2017, Izbicki et al., 2019). SNPE can be applied to, and might benefit from the use of
summary features, but it also makes use of the ability of neural networks to automatically learn infor-
mative features in high-dimensional data. Thus, SNPE can also be applied directly to raw data (e.g.
using recurrent neural networks [Lueckmann et al., 2017]), or to high-dimensional summary features
which are challenging for ABC approaches (Figure 2). In all cases, care is needed when interpreting
models fit to summary features, as choice of features can influence the results (Blum et al., 2013;
Jiang et al., 2017, Izbicki et al., 2019).

Applicability and limitations

A key advantage of SNPE is its general applicability: it can be applied whenever one has a simulator
that allows to stochastically generate model outputs from specific parameters. Furthermore, it can
be applied in a fully ‘black-box manner’, that is, does not require access to the internal workings of
the simulator, its model equations, likelihoods or gradients. It does not impose any other limitations
on the model or the summary features, and in particular does not require them to be differentiable.
However, it also has limitations which we enumerate below.

First, current implementations of SNPE scale well to high-dimensional observations (~1000s
of dimensions, also see Greenberg et al., 2019), but scaling SNPE to even higher-dimensional
parameter spaces (above 30) is challenging (note that previous approaches were generally limited
to less than 10 dimensions). Given that the difficulty of estimating full posteriors scales exponentially
with dimensionality, this is an inherent challenge for all approaches that aim at full inference (in con-
trast to just identifying a single, or a few heuristically chosen parameter fits).

Second, while it is a long-term goal for these approaches to be made fully automatic, our current
implementation still requires choices by the user: as described in Materials and methods, one needs
to choose the type of the density estimation network, and specify settings related to network-opti-
mization, and the number of simulations and inference rounds. These settings depend on the com-
plexity of the relation between summary features and model parameters, and the number of
simulations that can be afforded. In the documentation accompanying our code-package, we pro-
vide examples and guidance. For small-scale problems, we have found SNPE to be robust to these
settings. However, for challenging, high-dimensional applications, SNPE might currently require sub-
stantial user interaction.

Third, the power of SNPE crucially rests on the ability of deep neural networks to perform density
estimation. While deep nets have had ample empirical success, we still have an incomplete under-
standing of their limitations, in particular in cases where the mapping between data and parameters
might not be smooth (e.g. near phase transitions).

Fourth, when applying SNPE (or any other model-identification approach), validation of the
results is of crucial importance, both to assess the accuracy of the inference procedure, as well as to
identify possible limitations of the mechanistic model itself. In the example applications, we used
several procedures for assessing the quality of the inferred posteriors. One common ingredient of
these approaches is to sample from the inferred model, and search for systematic differences
between observed and simulated data, e.g. to perform posterior predictive checks (Cook et al.,
2006; Talts et al., 2018; Liepe et al., 2014; Lueckmann et al., 2017, Greenberg et al., 2019,
Figure 2g, Figure 3f,g, Figure 4c, and Figure 5d). These approaches allow one to detect ‘failures’
of SNPE, that is, cases in which samples from the posterior do not reproduce the data. However,
when diagnosing any Bayesian inference approach, it is challenging to rigorously rule out the
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possibility that additional parameter-settings (e.g. in an isolated ‘island’) would also explain the
data. Thus, it is good practice to use multiple initializations of SNPE, and/or a large number of simu-
lations in the initial round. There are challenges and opportunities ahead in further scaling and auto-
mating simulation-based inference approaches. However, in its current form, SNPE will be a
powerful tool for quantitatively evaluating mechanistic hypotheses on neural data, and for designing
better models of neural dynamics.

Materials and methods

Code availability

Code implementing SNPE based on Theano, is available at http://www.mackelab.org/delfi/. An
extended toolbox based on PyTorch is available at http://www.mackelab.org/sbi/ (Tejero-
Cantero et al., 2020).

Simulation-based inference
To perform Bayesian parameter identification with SNPE, three types of input need to be specified:

1. A mechanistic model. The model only needs to be specified through a simulator, that is that
one can generate a simulation result x for any parameters 6. We do not assume access to the
likelihood p(x|0) or the equations or internals of the code defining the model, nor do we
require the model to be differentiable. This is in contrast to many alternative approaches
(including Bittner et al., 2019), which require the model to be differentiable and to be imple-
mented in a software code that is amenable to automatic differentiation packages. Finally,
SNPE can both deal with inputs x which resemble ‘raw’ outputs of the model, or summary fea-
tures calculated from data.

2. Observed data x, of the same form as the results x produced by model simulations.

3. A prior distribution p(f) describing the range of possible parameters. p(6) could consist of
upper and lower bounds for each parameter, or a more complex distribution incorporating
mechanistic first principles or knowledge gained from previous inference procedures on other
data. In our applications, we chose priors deemed reasonable or informed by previous studies
(see Materials and methods), although setting such priors is an open problem in itself, and out-
side of the scope of this study.

For each problem, our goal was to estimate the posterior distribution p(6|x,). To do this, we used
SNPE (Papamakarios and Murray, 2016; Lueckmann et al., 2017, Greenberg et al., 2019). Setting
up the inference procedure required three design choices:

1. A network architecture, including number of layers, units per layer, layer type (feedforward or
convolutional), activation function and skip connections.

2. A parametric family of probability densities ¢,(0) to represent inferred posteriors, to be used
as conditional density estimator. We used either a mixture of Gaussians (MoG) or a masked
autoregressive flow (MAF) (Papamakarios et al., 2017). In the former case, the number of
components K must be specified; in the latter the number of MADES (Masked Autoencoder
for Distribution Estimation) nyaprs. Both choices are able to represent richly structured, and
multimodal posterior distributions (more details on neural density estimation below).

3. A simulation budget, that is, number of rounds R and simulations per round N,. The required
number of simulations depends on both the dimensionality and complexity of the function
between summary statistics and model parameters. While the number of parameters and sum-
mary-features can easily be determined, it can be hard to determine how ‘complex’ (or nonlin-
ear) this mapping is. This makes it difficult to give general guidelines on how many simulations
will be required. A practical approach is to choose a simulation-budget based on the computa-
tional cost of the simulation, inspect the results (e.g. with posterior predictive checks), and add
more simulations when it seems necessary.

We emphasize that SNPE is highly modular, that is, that the the inputs (data, the prior over
parameter, the mechanistic model), and algorithmic components (network architecture, probability
density, optimization approach) can all be modified and chosen independently. This allows neuro-
scientists to work with models which are designed with mechanistic principles—and not convenience
of inference—in mind. Furthermore, it allows SNPE to benefit from advances in more flexible density
estimators, more powerful network architectures, or optimization strategies.
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With the problem and inference settings specified, SNPE adjusts the network weights ¢ based on
simulation results, so that p(0|x) ~gr(x¢)(#) for any x. In the first round of SNPE, simulation parame-
ters are drawn from the prior p(6). If a single round of inference is not sufficient, SNPE can be run in
multiple rounds, in which samples are drawn from the version of gp(, 4)(f) at the beginning of the
round. After the last round, gr(,¢) is returned as the inferred posterior on parameters 6 given
observed data x,. If SNPE is only run for a single round, then the generated samples only depend on
the prior, but not on x,: in this case, the inference network is applicable to any data (covered by the
prior ranges), and can be used for rapid amortized inference.

SNPE learns the correct network weights ¢ by minimizing the objective function 25 £(6;,%;) where
the simulation with parameters 6; produced result x;. For the first round of SNPE
L(0;,%;) = —10g gF(x, 4), While in subsequent rounds a different loss function accounts for the fact that
simulation parameters were not sampled from the prior. Different choices of the loss function for
later rounds result in SNPE-A (Papamakarios and Murray, 2016), SNPE-B (Lueckmann et al., 2017)
or SNPE-C algorithm (Greenberg et al., 2019). To optimize the networks, we used ADAM with
default settings (Kingma and Ba, 2014).

The details of the algorithm are below:

Input: simulator with (implicit) density p(x|6), observed data x,, prior p(6), density family gy,
neural network F(x, ¢), number of rounds , simulation count for each round N,

randomly initialize ¢
p1(0) := p(0)
N:=0
for r=1to Rdo
fori=1...N, do
sample Oy~ p(6)

simulate Xy ~p(X|Oy+i)

N —N-+N,
N
train ¢ «—g ZE(H/,XJ)

=1
Pr(0) = qr(x,4)(0)
return qF(x,.$) (6)

Bayesian inference without likelihood-evaluations with SNPE
In Papamakarios and Murray, 2016, it was shown that the procedure described above (i.e. sample
from the prior, train a flexible density estimator by minimizing the log-loss
L(0;,%;) = — 3,108 qrx.4)(0))) can be used to perform Bayesian inference without likelihood
evaluations.

For the multi-round case, in which samples are no longer drawn from the prior, but adaptively
generated from a (generally more focused) proposal distribution, the loss function needs to be mod-
ified. Different variants of SNPE differ in how exactly this is done:

e SNPE-A minimizes the same loss function as in the first round, but applies a post-hoc analytical
correction (Papamakarios and Murray, 2016)

e SNPE-B minimizes an importance-weighted loss function, directly approximating the posterior
and therefore not requiring a post-hoc correction (Lueckmann et al., 2017)

¢ SNPE-C avoids importance weights (which can have high variance), by either calculating nor-
malization constants in closed-form or using a classifier-based loss (Greenberg et al., 2019)

Neural density estimation
As described above, SNPE approximates the posterior distribution with flexible neural density esti-
mators: either a mixture density network (MDN) or a masked autoregressive flow (MAF). Below, we
provide a few more details about these density estimators, how we chose their respective architec-
tures, and when to choose one or the other.

The MDN outputs the parameters of a mixture of Gaussians (i.e. mixture weights, and for each
component of the mixture, the mean vector and covariance entries). Thus, for an MDN composed of
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K components, we chose an architecture with at least as many units per layer as
K(1+ Ny + Np(Ng +1)/2) — 1, where Ny is the number of parameters to infer, to ensure enough flexi-
bility to approximate well the parameters of the mixture of Gaussians. For example, when inferring
the parameters of the Hodgkin-Huxley model given in vitro recordings from mouse cortex (Allen Cell
Types Database, https://celltypes.brain-map.org/data), we infer the posterior over eight parameters
with a mixture of two Gaussians, and the MDN needs at least 89 units per layer. Across applications,
we found two layers to be sufficient to appropriately approximate the posterior distribution.

MAF is a specific type of normalizing flow, which is a highly flexible density estimator
(Rezende and Mohamed, 2015; Papamakarios et al., 2017; Papamakarios et al., 2019b). Normal-
izing flows consist of a stack of bijections which transform a simple distribution (usually a multivariate
Gaussian distribution) into the target distribution. Each bijection is parameterized by a specific type
of neural network (for MAF: a Masked Autoencoder for Distribution Estimation, or MADE). In our
experiments, five stacked bijections are enough to approximate even complex posterior distribu-
tions. Depending on the size of the parameter and data space, each neural network had between
[50,50] and [100,100,100] hidden units.

When using SNPE in a single-round, we generally found superior performance for MAFs as com-
pared to MDNs. When running inference across multiple rounds, training MAFs leads to additional
challenges which might impede the quality of inference (Greenberg et al., 2019; Durkan et al.,
2020).

Linear-nonlinear encoding models

We used a Linear-Nonlinear (LN) encoding model (a special case of a generalized linear model,
GLM, [Brown et al., 1998; Paninski, 2004; Truccolo et al., 2005; Pillow, 2007; Pillow et al., 2008;
Gerwinn et al., 2010)) to simulate the activity of a neuron in response to a univariate time-varying
stimulus. Neural activity z; was subdivided in 7 = 100 bins and, within each bin i, spikes were gener-
ated according to a Bernoulli observation model,

zi~Bern(n(v, f+B)),

where v; is a vector of white noise inputs between time bins i —8 and i, f a length-9 linear filter, B is
the bias, and 7(-) =exp(-)/(1+exp(-)) is the canonical inverse link function for a Bernoulli GLM. As
summary features, we used the total number of spikes N and the spike-triggered average 4 Vz,
where V= [v;,vs,...,v7] is the so-called design matrix of size 9 x T. We note that the spike-triggered
sum Vz constitutes sufficient statistics for this GLM, that is that selecting the STA and N together as
summary features does not lead to loss of model relevant information over the full input-output
dataset {V,z}. We used a Gaussian prior with zero mean and covariance matrix 3 =o2(F' F)™},
where F encourages smoothness by penalizing the second-order differences in the vector of parame-
ters (De Nicolao et al., 1997).

For inference, we used a single round of 10,000 simulations, and the posterior was approximated
with a Gaussian distribution (8 € R'?,x € R!?). We used a feedforward neural network with two hid-
den layers of 50 units each. We used a Polya Gamma Markov Chain Monte Carlo sampling scheme
(Polson et al., 2013) to estimate a reference posterior.

In Figure 2d, we compare the performance of SNPE with two classical ABC algorithms, rejection
ABC and Sequential Monte Carlo ABC as a function of the number of simulations. We report the rel-
ative error in Kullback-Leibler divergence, which is defined as:

Dy (pucuc (01x) || p(0]x))

Dt (pucuc(8]x) || p(8)) ° o

and which ranges between 0 (perfect recovery of the posterior) and 1 (estimated posterior no better
than the prior). Here, pycuc(0]x) is the ground-truth posterior estimated via Markov Chain Monte
Carlo sampling, p(f|x) is the estimated posterior via SNPE, rejection ABC or Sequential Monte Carlo
ABC, and p(0) is the prior.

For the spatial receptive field model of a cell in primary visual cortex, we simulated the activity of
a neuron depending on an image-valued stimulus. Neural activity was subdivided in bins of length
At = 0.025s and within each bin i, spikes were generated according to a Poisson observation model,
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z;~Poiss(n(v] h +B)),

where v; is the vectorized white noise stimulus at time bin i, k a 41 x 41 linear filter, B is the bias,
and 7(-) =exp(-) is the canonical inverse link function for a Poisson GLM. The receptive field k is con-
strained to be a Gabor filter:

2.2

XQ;#) cos(2mf — )
o

= (gx —x) costp— (g, —y)sintp

= (gx—x)sinv+ (g, —y) cosy

_ V2log22" 41

- 2af 2v—1’

h(gv8y) =gexp (*

Y
'
y

where (gy,g) is a regular grid of 41 x 41 positions spanning the 2D image-valued stimulus. The

parameters of the Gabor are gain g, spatial frequency f, aspect-ratio r, width w, phase ¢ (between 0

and 7), angle v (between 0 and 27) and location x,y (assumed within the stimulated area, scaled to

be between —1 and 1). Bounded parameters were transformed with a log-, or logit-transform, to

yield unconstrained parameters. After applying SNPE, we back-transformed both the parameters

and the estimated posteriors in closed form, as shown in Figure 2. We did not transform the bias .
We used a factorizing Gaussian prior for the vector of transformed Gabor parameters

[logg, logf, logr, logw, oz (), loa(¥), L-11(x), L11(¥) ],

where transforms I, (X) =log(X/(2m —X)), lo2-(X) =log(X/(m—X)), 1-11(X)=log((X+1)/(1—-X))
ensured the assumed ranges for the Gabor parameters ¢,1,x,y. Our Gaussian prior had zero mean
and standard deviations [0.5,0.5,0.5,0.5,1.9,1.78,1.78,1.78]. We note that a Gaussian prior on a logit-
transformed random variable logitX with zero mean and standard deviation around 1.78 is close to a
uniform prior over the original variable X. For the bias B, we used a Gaussian prior with mean —0.57
and variance 1.63, which approximately corresponds to an exponential prior exp(8)~Exp(A) with rate
A =1 on the baseline firing rate exp(8) in absence of any stimulus.

The ground-truth parameters for the demonstration in Figure 2 were chosen to give an asymp-
totic firing rate of 1 Hz for 5 min stimulation, resulting in 299 spikes, and a signal-to-noise ratio of
—12dB.

As summary features, we used the total number of spikes N and the spike-triggered average
%Vz, where V = [v,v,,...,vr] is the stimulation video of length T = 300/Ar = 12000. As for the GLM
with a temporal filter, the spike-triggered sum Vz constitutes sufficient statistics for this GLM.

For inference, we applied SNPE-A with in total two rounds: an initial round serves to first roughly
identify the relevant region of parameter space. Here we used a Gaussian distribution to approxi-
mate the posterior from 100,000 simulations. A second round then used a mixture of eight Gaussian
components to estimate the exact shape of the posterior from another 100,000 simulations
(0 € R°,x € R'*®2). We used a convolutional network with five convolutional layers with 16 to 32 con-
volutional filters followed by two fully connected layers with 50 units each. The total number of
spikes N within a simulated experiment was passed as an additional input directly to the fully-con-
nected layers of the network. Similar to the previous GLM, this model has a tractable likelihood, so
we use MCMC to obtain a reference posterior.

We applied this approach to extracelullar recordings from primary visual cortex of alert mice
obtained using silicon microelectrodes in response to colored-noise visual stimulation. Experimental
methods are described in Dyballa et al., 2018.

Comparison with Sequential Monte Carlo (SMC) ABC

In order to illustrate the competitive performance of SNPE, we obtained a posterior estimate with a
classical ABC method, Sequential Monte Carlo (SMC) ABC (Sisson et al., 2007, Beaumont et al.,
2009). Likelihood-free inference methods from the ABC family require a distance function d(x,,x)
between observed data x, and possible simulation outputs x to characterize dissimilarity between
simulations and data. A common choice is the (scaled) Euclidean distance d(x,,x) = ||x — x,||,. The
Euclidean distance here was computed over 1681 summary features given by the spike-triggered
average (one per pixel) and a single summary feature given by the ‘spike count’. To ensure that the
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distance measure was sensitive to differences in both STA and spike count, we scaled the summary
feature ‘spike count’ to account for about 20% of the average total distance (other values did not
yield better results). The other 80% were computed from the remaining 1681 summary features
given by spike-triggered averages.

To showcase how this situation is challenging for ABC approaches, we generated 10,000 input-
output pairs (6;,x;) ~p(x|0)p(#) with the prior and simulator used above, and illustrate the 10 STAs
and spike counts with closest d(x,,x;) in Appendix 1—figure 5a. Spike counts were comparable to
the observed data (299 spikes), but STAs were noise-dominated and the 10 ‘closest’ underlying
receptive fields (orange contours) showed substantial variability in location and shape of the recep-
tive field. If even the ‘closest’ samples do not show any visible receptive field, then there is little
hope that even an appropriately chosen acceptance threshold will yield a good approximation to
the posterior. These findings were also reflected in the results from SMC-ABC with a total simulation
budget of 10° simulations (Appendix 1—figure 5b). The estimated posterior marginals for ‘bias’
and ‘gain’ parameters show that the parameters related to the firing rate were constrained by the
data x,, but marginals of parameters related to shape and location of the receptive field did not dif-
fer from the prior, highlighting that SMC-ABC was not able to identify the posterior distribution. The
low correlations between the ground-truth receptive field and receptive fields sampled from SMC-
ABC posterior further highlight the failure of SMC-ABC to infer the ground-truth posterior (Appen-
dix 1—figure 5c). Further comparisons of neural-density estimation approaches with ABC-methods
can be found in the studies describing the underlying machine-learning methodologies
(Papamakarios and Murray, 2016; Lueckmann et al., 2019; Greenberg et al., 2019).

lon channel models
We simulated non-inactivating potassium channel currents subject to voltage-clamp protocols as:

Ix = gxm(V — Ex),

where Vis the membrane potential, gk is the density of potassium channels, Ex is the reversal poten-
tial of potassium, and m is the gating variable for potassium channel activation. m is modeled
according to the first-order kinetic equation

dm _me(V)—m
dt (V)

where my(V) is the steady-state activation, and 7,,(V) the respective time constant. We used a gen-
eral formulation of m,(V) and 7,,(V) (Destexhe and Huguenard, 2000), where the steady-state acti-
vation curve has two parameters (slope and offset) and the time constant curve has six parameters,
amounting to a total of 8 parameters (6, to 6s):

1

mw(V) = 1 +e—6|V+€:

2u(V) b

- o105 (V=03)+06(V=03)*] | [0 (V—=03)+05(V-03)?]

Since this model can be used to describe the dynamics of a wide variety of channel models, we
refer to it as Omnimodel.

We modeled responses of the Omnimodel to a set of five noisy voltage-clamp protocols
(Podlaski et al., 2017): as described in Podlaski et al., 2017, the original voltage-clamp protocols
correspond to standard protocols of activation, inactivation, deactivation, ramp and action potential,
to which we added Gaussian noise with zero mean and standard deviation 0.5 mV. Current
responses were reduced to 55 summary features (11 per protocol). Summary features were coeffi-
cients to basis functions derived via Principal Components Analysis (PCA) (10 per protocol) plus a lin-
ear offset (one per protocol) found via least-squares fitting. PCA basis functions were found by
simulating responses of the non-inactivating potassium channel models to the five voltage-clamp
protocols and reducing responses to each protocol to 10 dimensions (explaining 99.9% of the
variance).
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To amortize inference on the model, we specified a wide uniform prior over the parameters:
0, € U(0,1),0, € U(—10.,10.), 03 € U(—120.,120.),6, € U(0.,2000), 05 € U(0.,0.5), 05 € U(0,0.05),
07 € U(0.,0.5), 05 € U(0,0.05).

For inference, we trained a shared inference network in a single round of 10° simulations gener-
ated by sampling from the prior (6 € R®,x € R*). The density estimator was a masked autoregressive
flow (MAF) (Papamakarios et al., 2017) with five MADES with [250,250] hidden units each.

We evaluated performance on 350 non-inactivating potassium ion channels selected from lon-
ChannelGenealogy (ICG) by calculating the correlation coefficient between traces generated by the
original model and traces from the Omnimodel using the posterior mode (Appendix 1—figure 7).

Single-compartment Hodgkin—-Huxley neurons
We simulated a single-compartment Hodgkin—Huxley type neuron with channel kinetics as in
Pospischil et al., 2008,

dv _ _ _
Cngr =81(E=V) + gnam h(Exa — V) + gxn* (Ex — V) + gup(Ex — V) + Jnj + o (1)
dg  q-(V)—q
— ="=———= qg<{m,h,n,p},
p V) q € {m,h,n,p},

where V is the membrane potential, C,, is the membrane capacitance, g is the leak conductance, E;
is the membrane reversal potential, g. is the density of channels of type c (Na*, K*, M), E, is the
reversal potential of ¢, (m, h, n, p) are the respective channel gating kinetic variables, and on() is
the intrinsic neural Gaussian noise. The right hand side of the voltage dynamics is composed of a
leak current, a voltage-dependent Na* current, a delayed-rectifier K* current, a slow voltage-depen-
dent K* current responsible for spike-frequency adaptation, and an injected current ;. Channel gat-
ing variables ¢ have dynamics fully characterized by the neuron membrane potential V, given the
respective steady-state g, (V) and time constant 7,(V) (details in Pospischil et al., 2008). Two addi-
tional parameters are implicit in the functions ¢..(V) and 7,(V): V; adjusts the spike threshold
through me, he, N, T, T @and 7,; Tiax scales the time constant of adaptation through 7,(V) (details
in Pospischil et al., 2008). We set Ex, =53 mV and Ex = —107 mV, similar to the values used for sim-
ulations in Allen Cell Types Database (http://help.brain-map.org/download/attachments/8323525/
BiophysModelPeri.pdf).

We applied SNPE to infer the posterior over eight parameters (gxa, 8x, &, &\, Tmax, Vr, O, E1),
given seven voltage features (number of spikes, mean resting potential, standard deviation of the
resting potential, and the first four voltage moments, mean, standard deviation, skewness and
kurtosis).

The prior distribution over the parameters was uniform,

ﬂNu(plowaphigh) )

where piy =[0.5,107,1074,107*,50,40,10*,35] and puz = [80,15,0.6,0.6,3000,90,0.15,100]. These
ranges are similar to the ones obtained in Pospischil et al., 2008, when fitting the above model to a
set of electrophysiological recordings.

For inference in simulated data, we used a single round of 100,000 simulations (9 € R®,x € R7).
The density estimator was a masked autoregressive flow (MAF) (Papamakarios et al., 2017) with
five MADES with [50,50] hidden units each.

For the inference on in vitro recordings from mouse cortex (Allen Cell Types Database, https://
celltypes.brain-map.org/data), we selected eight recordings corresponding to spiny neurons with at
least 10 spikes during the current-clamp stimulation. The respective cell identities and sweeps are:
(518290966,57), (509881736,39), (566517779,46), (567399060,38), (569469018,44), (532571720,42),
(555060623,34), (534524026,29). For each recording, SNPE-B was run for two rounds with 125,000
Hodgkin—-Huxley simulations each, and the posterior was approximated by a mixture of two Gaus-
sians. In this case, the density estimator was composed of two fully connected layers of 100 units
each.
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Comparison with genetic algorithm

We compared SNPE posterior with a state-of-the-art genetic algorithm (Indicator Based Evolutionary
Algorithm IBEA, [Bleuler et al., 2003; Zitzler and Kiinzli, 2004] from the BluePyOpt package
[Van Geit et al., 2016]), in the context of the Hodgkin-Huxley model with 8 parameters and seven
features (Appendix 1—figure 10). For each Hodgkin-Huxley model simulation i and summary fea-
ture j, we used the following objective score:

gj

where x;; is the value of summary feature j for simulation i, x,; is the observed summary feature j, and
o is the standard deviation of the summary feature j computed across 1000 previously simulated
datasets. IBEA outputs the hall-of-fame, which corresponds to the 10 parameter sets with the lowest
sum of objectives Zj €;. We ran IBEA with 100 generations and an offspring size of 1000 individuals,
corresponding to a total of 100,000 simulations.

Circuit model of the crustacean stomatogastric ganglion

We used extracellular nerve recordings made from the stomatogastric motor neurons that principally
comprise the triphasic pyloric rhythm in the crab Cancer borealis (Haddad and Marder, 2018). The
preparations were decentralized, that is, the axons of the descending modulatory inputs were sev-
ered. The data was recorded at a temperature of 11°C. See Haddad and Marder, 2018 for full
experimental details.

We simulated the circuit model of the crustacean stomatogastric ganglion by adapting a model
described in Prinz et al., 2004. The model is composed of three single-compartment neurons, AB/
PD, LP, and PD, where the electrically coupled AB and PD neurons are modeled as a single neuron.
Each of the model neurons contains eight currents, a Na* current Ix,, a fast and a slow transient
Ca?* current Ic,r and Ig,s, a transient K current Iy, a Ca2+—dependent K* current Ixc,, a delayed
rectifier K* current Ixq, a hyperpolarization-activated inward current Iy, and a leak current Ji. In
addition, the model contains seven synapses. As in Prinz et al., 2004, these synapses were simu-
lated using a standard model of synaptic dynamics (Abbott and Marder, 1998). The synaptic input
current into the neurons is given by I = gis(Vyost — Es), Where g is the maximal synapse conduc-
tance, Vo the membrane potential of the postsynaptic neuron, and E; the reversal potential of the
synapse. The evolution of the activation variable s is given by

@ _ E(vplc) —s
T
with
1 1=5(Vire
5(Vpre) and 7 :M4

T e (Vi — Vo) /0) k-

Here, V,. is the membrane potential of the presynaptic neuron, Vy, is the half-activation voltage
of the synapse, & sets the slope of the activation curve, and k_ is the rate constant for transmitter-
receptor dissociation rate.

As in Prinz et al., 2004, two types of synapses were modeled since AB, LP, and PY are glutama-
tergic neurons whereas PD is cholinergic. We set E; = —70 mV and k- = 1/40 ms for all glutamater-
gic synapses and E; = —80 mV and k- = 1/100 ms for all cholinergic synapses. For both synapse
types, we set Vi, = =35 mV and § =5 mV.

For each set of membrane and synaptic conductances, we numerically simulated the rhythm for
10 s with a step size of 0.025 ms. At each time step, each neuron received Gaussian noise with mean
zero and standard deviation 0.001 mV.ms %5,

We applied SNPE to infer the posterior over 24 membrane parameters and 7 synaptic parame-
ters, that is, 31 parameters in total. The seven synaptic parameters were the maximal conductances
gs of all synapses in the circuit, each of which was varied uniformly in logarithmic domain from 0.01nS
to 1000nS, with the exception of the synapse from AB to LP, which was varied uniformly in logarith-
mic domain from 0.0InS to 10000nS. The membrane parameters were the maximal membrane
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conductances for each of the neurons. The membrane conductances were varied over an extended
range of previously reported values (Prinz et al., 2004), which led us to the uniform prior bounds
Plow = [0,0,0,0,0,25,0,0/mScm 2 and pyign = [500,7.5,8,60, 15, 150,0.2,0.01]mScm 2 for the maximal
membrane conductances of the AB neuron, piy = [0,0,2,10,0,0,0,0.01lmSem™ and
Phigh = [200,2.5, 12,60, 10, 125, 0.06,0.04)mScm ™ for the maximal membrane conductances of the LP
neuron, and pioy = [0,0,0,30,0, 50, 0,0jmScm > and Phigh = [600,12.5,4,60, 5,150, 0.06, 0.04)mScm 2 for
the maximal membrane conductances of the PY neuron. The order of the membrane currents was:
[Na, CaT, CaS, A, KCa, Kd, H, leak].

We used the 15 summary features proposed by Prinz et al., 2004, and extended them by three
additional features. The features proposed by Prinz et al., 2004 are 15 salient features of the pyloric
rhythm, namely: cycle period T (s), AB/PD burst duration dRB (s), LP burst duration @>;, (s), PY burst
duration dby (s), gap AB/PD end to LP start A 1p (), gap LP end to PY start Af%,_py (s), delay AB/
PD start to LP start Ary;_; (s), delay LP start to PY start A5} _py (s), AB/PD duty cycle dap, LP duty
cycle dip, PY duty cycle dpy, phase gap AB/PD end to LP start A¢,z_1p, phase gap LP end to PY
start A¢;p_py, LP start phase ¢;p, and PY start phase ¢py. Note that several of these values are only
defined if each neuron produces rhythmic bursting behavior. In addition, for each of the three neu-
rons, we used one feature that describes the maximal duration of its voltage being above —30 mV.
We did this as we observed plateaus at around —10 mV during the onset of bursts, and wanted to
distinguish such traces from others. If the maximal duration was below 5 ms, we set this feature to 5
ms. To extract the summary features from the observed experimental data, we first found spikes by
searching for local maxima above a hand-picked voltage threshold, and then extracted the 15 above
described features. We set the additional 3 features to 5 ms.

We used SNPE to infer the posterior distribution over the 18 summary features from experimental
data. For inference, we used a single round with 18.5 million samples, out of which 174,000 samples
contain bursts in all neurons. We therefore used these 174,000 samples with well defined summary
features for training the inference network (9 € R*!,x € R'®). The density estimator was a masked
autoregressive flow (MAF) (Papamakarios et al., 2017) with five MADES with [100,100,100] hidden
units each. The synaptic conductances were transformed into logarithmic space before training and
for the entire analysis.

Previous approaches for fitting the STG circuit (Prinz et al., 2004) first fit individual neuron fea-
tures and reduce the number of possible neuron models (Prinz et al., 2003), and then fit the whole
circuit model. While powerful, this approach both requires the availability of single-neuron data, and
cannot give access to potential compensation mechanisms between single-neuron and synaptic
parameters. Unlike Prinz et al., 2004, we apply SNPE to directly identify the full 31 dimensional
parameter space without requiring experimental measurements of each individual neuron in the cir-
cuit. Despite the high-dimensional parameter space, SNPE can identify the posterior distribution
using 18 million samples, whereas a direct application of a full-grid method would require 4.65 - 10!
samples to fill the 31 dimensional parameter space on a grid with five values per dimension.

Finding paths in the posterior

In order to find directions of robust network output, we searched for a path of high posterior proba-
bility. First, as in Prinz et al., 2004, we aimed to find two similar model outputs with disparate
parameters. To do so, we sampled from the posterior and searched for two parameter sets whose
summary features were within 0.1 standard deviations of all 174,000 samples from the observed
experimental data, but that had strongly disparate parameters from each other. In the following, we
denote the obtained parameter sets by 6, and 6,.

Second, in order to identify whether network output can be maintained along a continuous path
between these two samples, we searched for a connection in parameter space lying in regions of
high posterior probability. To do so, we considered the connection between the samples as a path
and minimized the following path integral:

Ly) = / ~Log(pux(¥(5) %)) [17(5) 1 ds. @)
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To minimize this term, we parameterized the path y(s) using sinusoidal basis-functions with coeffi-
cients a, :

Ef:] ay g - sin(7ks)

y(s) = : +

K ang - sin(arks) Zzﬁlﬂl ay - sin® (ks)

ZfiKH @y - sin? (wks)

+(1—s)- 0, +s6,

These basis functions are defined such that, for any coefficients a,, the start and end points of
the path are exactly the two parameter sets defined above:

y(0)=6,  y(1)=6,

With this formulation, we have framed the problem of finding the path as an unconstrained opti-
mization problem over the parameters a, ;. We can therefore minimize the path integral £ using gra-
dient descent over a,;. For numerical simulations, we approximated the integral in Equation 2 as a
sum over 80 points along the path and use two basis functions for each of the 31 dimensions, that is,
K=2.

In order to demonstrate the sensitivity of the pyloric network, we aimed to find a path along
which the circuit output quickly breaks down. For this, we picked a starting point along the high-
probability path and then minimized the posterior probability. In addition, we enforced that the
orthogonal path lies within an orthogonal disk to the high-probability path, leading to the following
constrained optimization problem:

ngnlog(p(0|x)) st. n'A0=0
where n is the tangent vector along the path of high probability. This optimization problem can be
solved using the gradient projection method (Rosen, 1960):

o P(V1og(p(0]x)))
V(Vog(p(61x)))P(VIog(p(61x)

with projection matrix P =1 —-nn" and 1 indicating the identity matrix. Each gradient update is a
step along the orthogonal path. We let the optimization run until the distance along the path is 1/27
of the distance along the high-probability path.

Identifying conditional correlations

In order to investigate compensation mechanisms in the STG, we compared marginal and condi-
tional correlations. For the marginal correlation matrix in Figure 6b, we calculated the Pearson cor-
relation coefficient based on 1.26 million samples from the posterior distribution p(d|x). To find the
two-dimensional conditional distribution for any pair of parameters, we fixed all other parameters to
values taken from an arbitrary posterior sample, and varied the remaining two on an evenly spaced
grid with 50 points along each dimension, covering the entire prior space. We evaluated the poste-
rior distribution at every value on this grid. We then calculated the conditional correlation as the
Pearson correlation coefficient over this distribution. For the 1-dimensional conditional distribution,
we varied only one parameter and kept all others fixed. Lastly, in Figure éd, we sampled 500 param-
eter sets from the posterior, computed the respective conditional posteriors and conditional correla-
tion matrices, and took the average over the conditional correlation matrices.
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Appendix 1—figure 1. Comparison between SNPE-estimated posterior and reference posterior

(obtained via MCMC) on LN model. (a) Posterior mean + one standard deviation of temporal filter

(receptive field) from SNPE posterior (SNPE, blue) and reference posterior (MCMC, yellow). (b) Full

covariance matrices from SNPE posterior (left) and reference (MCMC, right).
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Appendix 1—figure 2. Full posterior for LN model. In green, ground-truth parameters. Marginals
(blue lines) and 2D marginals for SNPE (contour lines correspond to 95% of the mass) and MCMC
(yellow histograms).
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Appendix 1—figure 3. LN model with additional data. With additional data, posterior samples
cluster more tightly around the true filter. From left to right and top to bottom, SNPE (blue) and
MCMC (yellow, for reference) are applied to observations with more independent Bernoulli trials,
leading to progressively tighter posteriors and posterior samples closer to the true filter (which is
the same across panels). Mean + one standard deviation is shown. Note that SNPE closely agrees
with the MCMC reference solution in all cases (a-d).
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Appendix 1—figure 4. Full posterior for Gabor GLM receptive field model. SNPE posterior
estimate (blue lines) compared to reference posterior (MCMC, histograms). Ground-truth
parameters used to simulate the data in green. We depict the distributions over the original
receptive field parameters, whereas we estimate the posterior as a Gaussian mixture over
transformed parameters, see Materials and methods for details. We find that a (back-transformed)
Gaussian mixture with four components approximates the posterior well in this case.

Gongalves, Lueckmann, Deistler, et al. eLife 2020;9:e56261. DOI: https://doi.org/10.7554/eLife.56261 36 of 45



APPENDIX II 103

ELlfe Research article Computational and Systems Biology | Neuroscience

329 spikes 321 spikes 311 spikes 294 spikes 308 spikes

b
| ——
-25 25
log freq
| ——
-89 8.9
c
logit angle
W sMC-ABC
s SNPE
MCMC -25 25
o o AN. . .
—
£ -25 25
5 log width
]
—

logit x,

>~

-8.9
logity,

o
©

correlations

Appendix 1—figure 5. SMC-ABC posterior estimate for Gabor GLM receptive field model. (a)
Spike-triggered averages (STAs) and spike counts with closest distance to the observed data out of
10000 simulations with parameters sampled from the prior. Spike counts are comparable to the
observed data (299 spikes), but receptive fields (contours) are not well constrained. (b) Results for
SMC-ABC with a total of 10° simulations. Histograms of 1000 particles (orange) returned in the final
iteration of SMC-ABC, compared to prior (red contour lines) and ground-truth parameters (green).
Distributions over (log-/logit-)transformed parameters, axis limits scaled to mean + 3 standard
deviations of the prior. (¢) Correlations between ground-truth receptive field and receptive fields
sampled from SMC-ABC posterior (orange), SNPE posterior (blue), reference MCMC posterior
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(yellow) and prior (red). The SNPE-estimated receptive fields are almost as good as those of the
reference posterior, the SMC-ABC estimated ones no better than the prior.
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Appendix 1—figure 6. Full posterior for Gabor LN receptive field model on V1 recordings. We
depict the distributions over the receptive field parameters, derived from the Gaussian mixture over
transformed-parameters (see Materials and methods for details).
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Appendix 1—figure 7. Summary results on 350 ICG channel models, and comparison with direct
fits. We generate predictions either with the posterior mode (blue) or with parameters obtained by
directly fitting steady-state activation and time-constant curves (yellow). We calculate the correlation
coefficient (CC) between observation and prediction. The distribution of CCs is similar for both
approaches.
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Appendix 1—figure 8. Full posteriors for Hodgkin-Huxley model for 1, 4, and 7 features. Images
show the pairwise marginals for 7 features. Each contour line corresponds to 68% density mass for a

different inferred posterior. Light blue corresponds to 1 feature and dark blue to 7 features. Ground
truth parameters in green.
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Appendix 1—figure 9. Full posteriors for Hodgkin-Huxley model on 8 different recordings from
Allen Cell Type Database. Images show the pairwise marginals for 7 features. Each contour line
corresponds to 68% density mass for a different inferred posterior.
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Appendix 1—figure 10. Comparison between SNPE posterior and IBEA samples for Hodgkin-Hux-
ley model with 8 parameters and 7 features. (a) Full SNPE posterior distribution. Ground truth
parameters in green and IBEA 10 parameters with highest fitness (‘hall-of-fame’) in orange. (b) Blue
contour line corresponds to 68% density mass for SNPE posterior. Light orange corresponds to IBEA
sampled parameters with lowest IBEA fitness and dark orange to IBEA sampled parameters with
highest IBEA fitness. This plot shows that, in general, SNPE and IBEA can return very different
answers~— this is not surprising, as both algorithms have different objectives, but this highlights that
genetic algorithms do not in general perform statistical inference. (c) Traces for samples with high
probability under SNPE posterior (purple), and for samples with high fitness under IBEA objective
(hall-of-fame; orange traces). (d) Features for the desired output (observation), the mode of the
inferred posterior (purple) and the best sample under IBEA objective (orange). Each voltage feature
is normalized by oprior, the standard deviation of the respective feature of simulations sampled

from the prior.
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Appendix 1—figure 11. Full posterior for the stomatogastric ganglion over 24 membrane and 7
synaptic conductances. The first 24 dimensions depict membrane conductances (top left), the last 7
depict synaptic conductances (bottom right). All synaptic conductances are logarithmically spaced.
Between two samples from the posterior with high posterior probability (purple dots), there is a
path of high posterior probability (white).
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Appendix 1—figure 12. |dentifying directions of sloppiness and stiffness in the pyloric network of
the crustacean stomatogastric ganglion. (a) Minimal and maximal values of all summary statistics
along the path lying in regions of high posterior probability, sampled at 20 evenly spaced points.
Summary statistics change only little. The summary statistics are z-scored with the mean and
standard deviation of 170,000 bursting samples in the created dataset. (b) Summary statistics
sampled at 20 evenly spaced points along the orthogonal path. The summary statistics show
stronger changes than in panel a and, in particular, often could not be defined because neurons
bursted irregularly, as indicated by an ‘x’ above barplots. (c) Minimal and maximal values of the
circuit parameters along the path lying in regions of high posterior probability. Both membrane
conductances (left) and synaptic conductances (right) vary over large ranges. Axes as in panel (d). (d)
Circuit parameters along the orthogonal path. The difference between the minimal and maximal
value is much smaller than in panel (c).
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Appendix 1—figure 13. Posterior probability along high probability and orthogonal path. Along
the path that was optimized to lie in regions of high posterior probability (purple), the posterior
probability remains relatively constant. Along the orthogonal path (pink), optimized to quickly
reduce posterior probability, the probability quickly drops. The start and end points as well as the
points labeled 1 and 2 correspond to the points shown in Figure 5c.
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Appendix 1—figure 14. Evaluating circuit configurations in which parameters have been sampled
independently. (a) Factorized posterior, that is, posterior obtained by sampling each parameter
independently from the associated marginals. Many of the pairwise marginals look similar to the full
posterior shown in Appendix 1—figure 11, as the posterior correlations are low. (b) Samples from
the factorized posterior— only a minority of these samples produce pyloric activity, highlighting the
significance of the posterior correlations between parameters. (c) Left: summary features for 500
samples from the posterior. Boxplot for samples where all summary features are well-defined (80%
of all samples). Right: summary features for 500 samples from the factorized posterior. Only 23% of
these samples have well-defined summary features. The summary features from the factorized
posterior have higher variation than the posterior ones. Summary features are z-scored using the
mean and standard deviation of all samples in our training dataset obtained from prior samples. The
boxplots indicate the maximum, 75% quantile, median, 25% quantile, and minimum. The green ‘x’
indicates the value of the experimental data (the observation, shown in Figure 5b).
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Abstract

Approximate Bayesian Computation (ABC) provides methods for Bayesian inference in
simulation-based models which do not permit tractable likelihoods. We present a new ABC
method which uses probabilistic neural emulator networks to learn synthetic likelihoods
on simulated data — both ‘local’ emulators which approximate the likelihood for specific
observed data, as well as ‘global” ones which are applicable to a range of data. Simulations
are chosen adaptively using an acquisition function which takes into account uncertainty
about either the posterior distribution of interest, or the parameters of the emulator. Our
approach does not rely on user-defined rejection thresholds or distance functions. We
illustrate inference with emulator networks on synthetic examples and on a biophysical
neuron model, and show that emulators allow accurate and efficient inference even on
problems which are challenging for conventional ABC approaches.

1. Introduction

Many areas of science and engineering make extensive use of complex, stochastic, numerical
simulations to describe the structure and dynamics of the processes being investigated
(Karabatsos and Leisen, 2017). A key challenge in simulation-based science is linking
simulation models to empirical data: Bayesian inference provides a general and powerful
framework for identifying the set of parameters which are consistent both with empirical
data and prior knowledge. One of the key quantities required for statistical inference, the
likelihood of observed data given parameters, £(6) = p(x,|0), is typically intractable for
simulation-based models, rendering conventional statistical approaches inapplicable.
Approximate Bayesian Computation (ABC) aims to close this gap (Beaumont et al.,
2002), but classical algorithms (Pritchard et al., 1999; Marjoram et al., 2003) scale poorly to
high-dimensional non-Gaussian data, and require ad-hoc choices (i.e., rejection thresholds,
distance functions and summary statistics) which can significantly affect both computational
efficiency and accuracy. In synthetic likelihood approaches to ABC (Wood, 2010; Ong et al.,
2016; Price et al., 2018), one instead uses density estimation to approximate the likelihood
p(s(X,)|0) on summary statistics s(-) of simulated data. A recent proposal by Jarvenpéé et al.
(2017), Gutmann and Corander (2016) uses a Gaussian process (GP) to approximate the

1. Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical Univer-
sity of Munich, Germany

2. Neural Systems Analysis, Research Center caesar, an associate of the Max Planck Society, Bonn, Germany

3. Uber AI Labs, Uber Technologies, Inc., San Francisco, CA

4. Part of this work was done while J.H.M was at the Centre for Cognitive Science, Technische Universitat
Darmstadt, Germany
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Figure 1: Likelihood-free inference with emulator networks. Our goal is to perform
approximate Bayesian inference on simulator-models, i.e. models from which we
can generate samples, but for which we can not evaluate likelihoods. We learn
a tractable probabilistic emulator ¢(x|@; ¢) approximating the simulator p(x|@).
The emulator then serves as a synthetic likelihood to obtain an approximate
posterior. To train the emulator using a low number of simulations, we use active
learning to select informative samples: The acquisition rule is either based on the
current posterior estimate (if observed data x, is given, ‘local’ learning), or on our
uncertainty about the weights of the emulator network (‘global’ learning).

distribution of the discrepancy d(s(x), s(X,)) as a function of 8, and Bayesian Optimization
to propose new parameters. While this approach can be very effective even with a small
number of simulations, it still requires summary statistics, choice of a distance function d(-, -),
and relies on assuming a homoscedastic GP.

The goal of this paper is to scale synthetic-likelihood methods to multivariate and
(potentially) non-Gaussian, heteroscedastic data. We use neural-network based conditional
density estimators (which we call ‘emulator networks’, inspired by classical work on emulation
methods; Kennedy and O’Hagan, 2002), to develop likelihood-free inference algorithms which
are efficient, flexible, and scale to high-dimensional observations. Our approach does not
require the user to specify rejection thresholds or distance functions, or to restrict oneself to
a small number of summary statistics.

2. Likelihood-free inference with emulator networks

Our goal is to obtain an approximation to the true posterior p(€|x,) of a black-box simulator
model, i.e. models from which we can generate samples x ~ p(x|@), but for which we cannot
evaluate likelihoods £(8). To solve this task, we learn a synthetic likelihood function £(8) by
training a conditional density estimator on simulated data. We actively propose parameters
for simulations, since simulations are often the dominant cost in ABC: Therefore, we want to
keep the number of calls to the simulator as low as possible (Fig. 1).

Core to our approach is an emulator ¢(x|0; @), a conditional density estimator with
parameters ¢ that approximates the simulator p(x|@). Having collected an initial simulated
dataset D, e.g. by repeatedly drawing from the prior p(0) and simulating data, the emulator
is trained. We actively select new locations 6" for which to simulate new data points
D* = {(6*,x*)} to keep the number of calls to the (potentially computationally expensive)
simulator low. D* is appended to the dataset, the emulator is updated, and the active learning
loop repeats. The emulator defines a synthetic likelihood function £(8) = ¢(x = x,|0; ¢)



APPENDIX III 115

that we use to find an approximate posterior, which is proportional to p(0|x,) := £(0)p(8).
This approach is summarized in Appendix A in form of an algorithm.

Thus, our approach requires (1) an emulator, i.e., a flexible conditional density estimator,
(2) an approach for learning the emulator on simulated data and expressing our uncertainty
about its parameters, (3) an acquisition rule for proposing new sampling locations, and (4)
an inference procedure for obtaining the posterior distribution from the synthetic likelihood
and the prior. We will describe these steps in the following.

2.1. Choice of emulator

We use neural network based emulators ¢(x|0; ¢): parameters 6 are given as inputs to
the network, and the network is trained to approximate p(x|@). In contrast to traditional
synthetic likelihood approaches (Wood, 2010), we are not restricted to using a (multivariate)
normal distribution to approximate the conditional density p(x|@). The output form of
the emulator is chosen according to our knowledge regarding the conditional density of the
simulator. In our second example application, we e.g. model x|@ as a binomial distribution
over 8-bit integer pixel values, and in the third example we model a categorical distribution. If
the noise model of the simulation process is unknown, flexible conditional density estimators
such as conditional autoregressive models (Oord et al., 2016; Papamakarios et al., 2018) can
be readily used in our approach.

2.2. Inference on the parameters of the emulator

We use probabilistic neural networks, i.e. we represent uncertainty about the parameters
¢ of the emulator q(x|@;¢). We then use these uncertainties to guide the acquisition of
training data for the emulator using active learning (as discussed in the next section).

In the Bayesian framework, uncertainty is represented through the posterior distribution.
Multiple approaches for estimating the posterior distributions over neural network parameters
have been proposed, including MCMC methods to draw samples from the full posterior
(Welling and Teh, 2011; Chen et al., 2014) and variational methods, e.g. using factorising
posteriors (Blundell et al., 2015) or normalizing flows (Louizos and Welling, 2017). Finally,
deep ensemble approaches (Lakshminarayanan et al., 2017) represent predictive distributions
through ensembles of networks. They have the advantage of not requiring the choice of a
functional form of the approximation, and are simple to set up.

Our approach can be applied with any method that represents uncertainty over network
parameters. In our experiments, we use deep ensembles to represent uncertainty about ¢, as
we found them to combine simplicity with good empirical performance. Instead of training
a single emulator network and inferring its posterior distribution, we train an ensemble
of M networks with parameters {¢,,}M_,. From here on, we treat ¢,, as if they were
samples from p(¢|D), the posterior over network parameters given data. (In practice, these
samples will describe local maxima of the posterior.) The posterior-predictive distribution is
approximated by Egp[q(x]6, d)] ~ 17 Yn_; a(x(6; b,y,).

Networks are trained supervised with data D = {(Gn,xn)}iv: During training, the

I
parameters of the networks are optimized subject to the loss — Z%[:l Zﬁle log ¢(x,,|0n; @,,)
w.r.t. ¢ (a proper scoring rule as discussed in Lakshminarayanan et al., 2017). Networks in

the ensemble are initialized differently, and data points are randomly shuffled during training.
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2.3. Acquisition rules

We use active learning to selectively acquire new samples. We distinguish between two
scenarios: In the first, we have particular observed data x, available, and train a local
emulator which approximates the likelihood near x,. This approach requires learning a new
emulator for each new observed data x,.

We also consider a second scenario, in which we learn a global emulator — which approxi-
mates p(x|@) globally. Learning a global emulator is more challenging and may potentially
require more flexible density estimators. However, once the emulator is learned, we can
readily approximate the likelihood for any x,, therefore amortizing the cost of learning the
emulator.

The two scenarios call for different acquisition functions for proposing new samples, which
we will discuss next.

2.3.1. ACQUISITIONS FOR LOCAL EMULATOR LEARNING

With given x,, we want to learn a local emulator that allows us to derive a good approximation
to the (unnormalized) posterior p(6[x,) oc Egyp [a(x = %,|6; $)]p(0).

As we are interested in increasing our certainty about the posterior, we target its variance,
Vopl[P(0|%0, @)], where V4 p denotes that we take the variance with respect to the posterior
over network weights given data D. Thus, we use an acquisition rule which targets the region
of maximum variance in the predicted (unnormalized) posterior,

6" = arg max Vyp[p(6]xo, )] = arg maxlog p(6) + log v VenlL(0)]. (1)

We approximate Vg p with the sample variance across ¢, drawn from the posterior over
networks. We refer to this rule as the MazVar rule (Jarvenpaa et al., 2017). We optimize
this acquisition rule by using gradient descent, making use of automatic differentiation to
take gradients with respect to @ through the synthetic likelihood specified by the emulator.

2.3.2. ACQUISITIONS FOR GLOBAL EMULATOR LEARNING

A global emulator may be used to do inference once x, becomes available. Here, the goal
for active learning is to bring the emulator ¢(x|0; ¢) close to the simulator p(x|0) for all s
using as few runs of the simulator as possible. We use a rule based on information theory
from the active learning literature (Houlsby et al., 2011; Gal et al., 2017; Depeweg et al.,
2017). We refer to the rule

0" = argmaxI[x, ¢|0, D] = arg max H[x|6, D] — Eyp [H[x|6, ¢]] (2)
0 0

as the maximum mutual information rule (MazMI). See Appendix B for details.

2.4. Deriving the posterior distribution from the emulator

Once we have learned the emulator, we use Hamiltonian Monte Carlo (HMC, Neal, 2010) to
draw samples from our approximate posterior, using the emulator-based synthetic likelihood.
We generate samples of @ drawn from the distribution p(6]x,) = Egp[q(%,|60)]p(#). In
practice, we sample 8 from each ensemble member individually and use the union of all
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Figure 2: Inference on simulator with Gaussian noise. a. Data is generated from
x ~ N (x| f(0),X) with cubic non-linearity. We illustrate posterior inference p(6|x,)
given x, = 2 (red line at x,). b. In 1-D, emulator-based inference with MazVar
acquisitions leads to faster convergence to true posterior than uniform sampling, or
BOLFI. Total variation (TV) is measured between true and approximate posteriors.
100 acquisitions starting from Njpitiag = 10 initial points. Lines are means and
SEMs from 20 runs. c. Same problem, but x and @ € R?, non-linearity applied
point-wise, starting from Njitia1 = 25 points.

samples as a draw from the approximate posterior. We could also obtain the posterior
through variational inference, but here prefer to retain full flexibility in the shape of the
inferred posterior.

3. Results

We demonstrate likelihood-free inference with emulator networks on three examples: i) we
show that emulators are competitive with state-of-the-art on an example with Gaussian
observations; ii) we demonstrate the ability of emulators to work with high-dimensional
observations while learning to amortize the simulator; iii) we show an application from
neuroscience, and infer the posterior over parameters of a biophysical neuron model.

i) Low-dimensional example: Simulator with Gaussian observations

We first demonstrate emulator networks on a non-linear model between parameters and
data, corrupted by additive Gaussian observation noise: data is generated according to
x; ~ N(-|f(0),X), i = 1...n, where f(0) is cubic in 8, X is fixed, and 6 is distributed
uniformly (see Appendix D for complete specification). The goal is to approximate the
posterior p(@|X,) from a small number of draws from the generative model (Fig. 2a). We
parameterize ¢(x|€; ¢) using a Gaussian distribution whose mean and precision are the
output of a neural network with one hidden layer consisting of 10 tanh units.

We will compare our method to BOLFI (Bayesian Optimization for Likelihood-free
Inference, Gutmann and Corander, 2016), an ABC method which — given a user-specified
discrepancy measure — learns a GP that models the distribution of discrepancies between
summary statistics of x and x,. Jarvenpéd et al. (2017) proposed multiple acquisition rules
for BOLFI. The most principled (but also most costly) rule minimizes the expected integrated
variance (EzpIntVar) of the approximate posterior after acquiring new data. BOLFI is a
state-of-the-art method for simulation-efficient likelihood-free inference, and substantially
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Figure 3: Inferring location and contrast of a blob. a. Two sample images from the
generative model. Parameters are the spatial position and the contrast of the blob.
b. Acquiring samples using the MazMI rule yield to faster emulator learning than
samples acquired uniformly in the parameter space. Performances are reported
as log-likelihood of held-out test data. 200 acquisitions starting from Nipitia1 = 50
initial points. Lines are means and SEMs from 20 runs.

more efficient than classical rejection-based methods such as rejection-ABC (Pritchard et al.,
1999), MCMC-ABC (Marjoram et al., 2003), SMC-ABC (Sisson et al., 2007).

We use the total variation (TV) between true and approximate posterior (evaluated using
numerical integration) to quantify performance as a function of the number of acquisitions.
The emulator is trained on an initial dataset and updated after each new acquisition. We
find that emulators with MaxzVar sampling work better than uniform sampling (Fig. 2b).
Both BOLFT rules (EzpIntVar and MazVar) exhibit very similar performance, but require
higher number of simulations than emulators to reach low TV values. On a 2-dimensional
version of the problem, the qualitative ordering is the same, but the differences between
methods are greater (Fig. 2c). We did additional runs of BOLFI MazVar to confirm that it
eventually converges towards the correct posterior. However, convergence is slow and the
quality of the inferred posterior depends strongly on the choice of the threshold parameter
used in BOLFI (see Appendix G).

ii) High-dimensional observations: Inferring the location and contrast of a blob

We show that our method can be applied to estimation problems with high-dimensional
observations without having to resort to using summary statistics. We model the rendering
of a blob on a 2D image, and learn a global emulator for the forward model.

The forward model takes as inputs three parameters (zof, Yo and ) — which encode
horizontal and vertical displacement, and contrast of the blob — and returns per-pixels
activation probabilities p;;. The value of each pixel v;; is then generated according to a
binomial distribution with total count 255 (8-bits gray-scale image) and probability p;;,
resulting in a 32 x 32 pixel image (Fig. 3a). In this application, we use a multi-layer neural
network whose output is, for each pixel, the mean parameter of the binomial distribution
(see Appendix E for further details).

Using the MaxzMI rule to acquire new test points in parameters space results in faster
learning of the emulator, compared to uniform random acquisitions. Eventually, both rules
converge towards the log-likelihood of the held-out test set, indicating successful global
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Figure 4: Hodgkin-Huxley model. a. Example trace from differential equations describ-
ing the model. b. Posterior inferred for number of spikes as a function of two
biophysical parameters. Panels show posteriors for a given number of spikes. The
largest panel shows the posterior given three spikes. As a posterior predictive
check, we overlay white transparent markers on top of the posteriors where a
simulation produced the given number of spikes (and no marker otherwise).

emulation of the forward model (Fig. 3b). We show posteriors distributions and samples
in Appendix H. Since alternative approaches for likelihood-free inference (e.g. BOLFI) do
not allow one to globally approximate a simulator, no performance benchmark against these
methods was performed.

iii) Scientific application: Hodgkin-Huxley model

As an example of a scientific application, we use the Hodgkin-Huxley model (Hodgkin and
Huxley, 1952) which describes the evolution of membrane potential in neurons (Fig. 4a).
Fitting single- and multi-compartment Hodgkin-Huxley models to neurophysiological data is
a central problem in neuroscience, and typically addressed using non-Bayesian approaches
based on evolutionary optimization (Druckmann et al., 2007; Van Geit et al., 2016). In
contrast to the previous examples, we do not model the raw data x, but summary features
derived from them. While this is often done out of necessity, calculating the posterior relative
to summary statistics can be of scientific interest (Cornebise and Girolami, 2012). This is
indeed the case when fitting biophysical models in neuroscience, which is typically performed
with carefully chosen summary statistics representing properties of interest.

Here, we chose to model the number of action potentials (or spikes) in response to a
step-current input, and we are interested in the set of parameters that are consistent with
the observed number of action potentials. The conditional density of the emulator networks
becomes a categorical distribution with 6 classes, modelling the probabilities of exactly 0,
1, ...4 spikes, and 5 or more spikes (which never occurred under the parameter ranges we
explored). Model parameters € are the ion-channel conductances gn, and gk, controlling the
shape and frequency of the spikes (further details in Appendix F).

We trained emulator networks using MazMI to infer the posterior probabilities over @
generating a given number of observed spikes — the acquisition surface is shown in Appendix I.
Resulting posterior distributions are shown in Fig. 4b, along with a posterior predictive check
showing that the mapping between parameters and summary features was learned correctly.
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4. Discussion

We presented an approach for performing statistical inference on simulation-based models
which do not permit tractable likelihood. We learn an ‘emulator network’, i.e. a probabilistic
model that is consistent with the simulation, and for which likelihoods are tractable. The
likelihoods of the emulator can then be plugged into any Bayesian inference approach (as in
synthetic likelihood approaches Wood, 2010; Ong et al., 2016, 2018) to calculate the posterior.
Active learning can be used to adaptively suggest new samples to reduce the number of
calls to the simulator. We discussed two acquisition functions for learning ‘local” and ‘global’
emulators, we showed that our approach scales to high-dimensional observation spaces, does
not require user-defined distance functions or acceptance thresholds, and is not limited to
Gaussian observations — all of which are challenging for conventional ABC approaches.

Our approach uses density estimation to approximate the likelihood. A complementary
use of density-estimation in ABC is to directly target the posterior distribution (Papamakarios
and Murray, 2017; Lueckmann et al., 2018; Le et al., 2017; Izbicki et al., 2018). This approach
can be very useful — however, one advantage of likelihood-based approaches is that they allow
one to apply the same synthetic likelihood to multiple priors (without having to retrain), or
to pool information from multiple observations (by multiplying the corresponding synthetic
likelihoods). More technically, posterior density estimation gives less flexibility in proposing
samples — in order to yield the correct posterior, samples have to be drawn from the prior,
or approaches such as importance-weighting (Lueckmann et al., 2018) or other post-hoc
corrections (Papamakarios and Murray, 2017) have to be applied. We discuss additional
related work published concurrently with this manuscript in Appendix C.

There are multiple ways in which our approach can be improved further: First, one could
use alternative, and more expressive neural-network based density estimators, e.g. ones
based on normalizing flows (Papamakarios et al., 2018). Second, one could use Bayesian
posterior estimation (rather than ensembles) to capture parameter uncertainty, and/or use
variational inference (rather than HMC) to derive an estimate of the posterior from the
synthetic likelihood provided by the emulator. Third, we presented two acquisition functions
(one for local and one for global estimation) — it is likely that the approach can be made
more simulation-efficient by using different, and more sophisticated acquisition functions.
In particular, our MaxVar rule targets the parameters with maximal uncertainty, but does
not try to predict whether that uncertainty will be effectively reduced. However, evaluating
acquisition functions like FzpIntVar can be computationally expensive — it will be useful to
develop approaches which are sensitive to the relative cost of simulations and proposals, and
adaptively adjust the acquisition function used.

Numerical simulations make it possible to model complex phenomena from first principles,
and are indispensable tools in many fields in engineering and science. The advent of powerful
approaches for statistical inference in simulation-based models (Brehmer et al., 2018) is
opening up exciting opportunities for closing the gap between mechanistic, simulation-based
and statistical approaches to modelling complex systems. Our Bayesian methodology based
on emulators provides a fast, effective surrogate model for the intractable likelihood implied
by the simulator, and the active-learning based rules lead to bounded-rational decisions
about which simulations to run. In combination, they form a rigorous and resource-efficient
basis for data analysis with simulators in the loop.
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Appendix A.

Algorithm 1: ABC via active learning to learn a synthetic likelihood

Input : p(0), p(x|0), x, // prior, stochastic simulator, observed data
Output: p(0|x,) // approximate posterior

D — DNinitial — {(an’xn)}Ninitial ~ p(X, 0) // 071 ~ p(e)’ Xp N~ p(X’Gn)

n=1
do
Train emulator ¢(x|0; ¢) on D
Find 6* as the maximum of an acquisition function
Acquire new data point D* = {(6*,x*)} by simulating for 6* // x*|0* ~ p(x]0%)
D+ DUD
while not converged

Find (6|x,) using the synthetic likelihood £(8) = ¢(x,|0; ¢)
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Appendix B. Acquisition rule for global emulator learning

For global emulator learning, we use a rule based on information theory from the active
learning literature that maximizes information gain (Houlsby et al., 2011; Gal et al., 2017;
Depeweg et al., 2017). We refer to the rule

0" = arg max [[x, ¢|0, D]
0

=argmaxH[x|0,D] —  Eyp[H[x|6, ]| ®)
entropy expected conditional entropy

as the maximum mutual information rule (MazMI).
The first term is the entropy of the data under the posterior-predictive distribution
implied by the emulator:

|9, D] =~ [ p(x16, D) nj(x(6, D), (1)
where p(x|@, D) is obtained by marginalizing out the emulator’s parameters w.r.t. p(¢|D):

P(x/6, D) = / 1(x16. &)p($|D)de. (5)

The expected conditional entropy, Egp [H[X|9, ¢]] , is the average entropy of the output x
for a particular choice of inputs @ and emulator parameters ¢, under the posterior distribution
of emulator parameters p(¢|D). Again, we treat ensemble members ¢,,, as if they were draws
from p(¢|D). Houlsby et al. refer to this rule as Bayesian Active Learning by Disagreement
(BALD): we query parameters 6 where the posterior predictive is very uncertain about the
output (entropy is high), but the emulator, conditioned on the value of its parameters ¢, is
on average quite certain about the model output (conditional entropy low on average).

For many distributions closed-form expressions of H[X|0, q,’)] are available, but this is
in general not true for the entropy of the marginal predictive distribution p(x|@, D). To
overcome this problem, we derived an upper-bound approximation to the entropy term based
on the law of total variance: if we characterize the marginal distribution only in terms of
its (co)variance $p(0), then H[x|0,D] < iln[(2me)V|(Ep(0))|]. Using the law of total
(co)variance, we get

Yp(0|D) = Cov[x|0] = E¢|D[Cov[x|9, d)]] + Cov¢|D[JE[x|0, (;b]], (6)

where all expectations can be approximated by samples drawn from p(¢|D).

Note that the density of the forward model, p(x|0), does not appear in this rule. By
using the upper-bound, we can use gradient-based optimization to find 8*. Alternatively,
entropies could be approximated using sample, which, however, would be slower.
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Appendix C. Additional related work

Papamakarios et al. (2018), concurrently and independently to our approach (Lueckmann
et al., 2018, an earlier preprint version of this work), proposed learning synthetic likelihoods
using neural density estimators for likelihood-free inference: They use Masked Autoregressive
Flows as synthetic likelihoods and report state-of-the-art performance compared to methods
that directly target the posterior. Like our approach, the density estimator is trained on
sequentially chosen simulations. Rather than using acquisition functions that take into
account uncertainty to guide sampling, they draw samples from the current estimate of the
posterior. Their approach corresponds to an alternative way of learning a local emulator.

The recent workshop paper of Durkan et al. (2018) compares Papamakarios et al. (2018)
and our approach on three toy problems learning local emulators. On these toy-problems,
both methods are similarly efficient (and more efficient than methods directly targeting the
posterior), however, the wallclock time of our method is substantially higher, because of
the additional cost of evaluating the acquisition function. Whether this additional cost is
warranted on a given problem will depend both on any additional gain brought about by the
active selection of samples, as well as the cost of the simulator. For expensive simulation costs,
additional computational budget should be spent to carefully decide for which parameters to
simulate.
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Appendix D. Gaussian simulator example

D.1. Model

Data is generated independently according to x; ~ N (:|f(0),X), i = 1...n, where n = 10,
£(8) = (1.5 6+ 0.5)3/200, By = 0.1, By; = 0 for i # j, X = 250'x) = 2, and 6 is

distributed uniformly in [—8, 8] where p is the dimensionality of tﬁe problem.

This problem is inspired by the Gaussian example studied in Jarvenpéa et al. (2017),
where f was chosen as f(0) = 6. We introduce a nonlinearity in f, since our method with
uniform acquisitions would otherwise trivially generalize across the space — we observed that
a neural network with the right amount of ReLu units can learn the linear mapping perfectly,

independently of where the training samples are acquired.

D.2. Evaluation

We evaluate our method and BOLFI (Jarvenpéé et al., 2017) on this problem in 1D and
2D. In 1D, algorithms start with Ninitiat = 10 initial samples, in 2D with Njpitia = 25, and
make 100 acquisitions after each of which we evaluate how well the ground truth posterior is
recovered.

As performance metric, we calculate total variation (TV) between p(6|x,) and p(€|x,),

defined as )
5/

D.3. Network architecture and training

p(0]x,) — p(0]x,)|d6.

Emulator networks model a normal distribution as output, so that the outputs of the network
parametrise mean and covariance (Cholesky factor of the covariance matrix). Neural networks
have one hidden layer consisting of 10 tanh units. We train an ensemble of M = 50 networks
using Adam (Kingma and Ba, 2014) with default parameters (81 = 0.9, 52 = 0.999) for SGD,
and a learning rate of 0.01.

D.4. BOLFI

BOLFT requires choice of a distance function: We use the the Mahalanobis distance

Ao = ((R—%)"S (% - %))/,

in line with the distance function used for the Gaussian example studied in Jarvenpéaa
et al. (2017). We use the implementation provided by the authors (Lintusaari et al., 2017).
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Appendix E. Image example
E.1. Model

Images are generated according to:
Iy ~ Bin(-|255, pay)
N
Pay = 0.9 —0.8 exp70'5(”y/‘72)
Toy = (37 - xof‘f)2 + (Z/ - yoff)27
where z and y are coordinates in the image, and Bin(+|n, p) is the binomial distribution.
Model parameters are xog and yof, which respectively determine the horizontal and the
vertical offset of the blob, 7, defining its contrast, and 2, determining the width.
For our experiments, we use images of size 32 x 32 pixels. We choose uniform priors in

the range [—16, 16] for zog and yog, and a uniform prior in the range [0.25,5] for v. We fix o
to 2.

E.2. Evaluation

We evaluate different acquisition methods by keeping track of the log-likelihood of a test set
consisting of 5000 parameters-image pairs over the course of acquisitions (starting from an
initial sample of size Nipitial = 50).

E.3. Network architecture and training

Emulator networks model a binomial distribution as output. Neural networks have two hidden
layers (200 units each) with ReLu activation functions. We train an ensemble of M = 25
networks using Adam (Kingma and Ba, 2014) with default parameters (81 = 0.9, 2 = 0.999)
for SGD with a learning rate of 0.001.
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Appendix F. Hodgkin-Huxley example
F.1. Model

The dynamic equations describing the evolution of the membrane potential and of the gating
variables of the neuron are taken from Pospischil et al. (2008):

Cmv = _(Ilcak + INa + IK + IM + Iext)
= gleak<Eleak - V) + gNam3h(ENa - V)"’
+gxn* (Bx — V) + gup(Bx — V) + Lin(1),

where C,, is membrane capacitance, V the membrane potential, I. are ionic currents
(¢ = {Na,K,M}) and I[;,(t) is an externally applied current which we can imagine as the sum
of a static bias Ip,s and a time-varying zero-mean noise signal £(¢). In, and Ik shape the up-
and down-stroke phases of the action potential (spike), Iy is responsible for spike-frequency
adaptation, and [,y is a leak current describing the passive properties of the cell membrane.
Each current is in turn expressed as the product of a maximum conductance (g.) and
the voltage difference between the membrane potential and the reversal potential for that
current(E,.), possibly modulated by zero or more ‘gating’ variables (m, h, n, p).
Each z € {m, h,n,p} evolves according to first order kinetics in the form:

'—#ac -
T = Tx(V)( oo(V) )

We provide a step current as input.
In our example application, free model parameters are gn, and gx. We model uniform
priors over these parameters: gn, is between 0.5 and 60 and gk is between 0.5 and 10.

F.2. Evaluation

We evaluate the posterior obtained through the emulator after t = 250 acquisitions, starting
from an initial sample size Nijitial = 30. As posterior predictive check, we span a grid over
the parameter space and compare simulator outputs to the posterior.

F.3. Network architecture and training

Emulator networks model a categorical distribution with K = 6 classes as output. Neural
networks have two hidden layer (200 units each) with a ReLu activation functions. We
train an ensemble of M = 25 networks using Adam (Kingma and Ba, 2014) with default
parameters (1 = 0.9, B2 = 0.999) for SGD with a learning rate of 0.001.
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Appendix G. BOLFI convergence
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Figure 5: Convergence of BOLFI MaxVar. In the manuscript, we show performance up
to 100 acquisitions (indicated by the dotted line). With additional acquisitions,
BOLFI converges. The quality of the inferred posterior strongly depends on the
value of the threshold hyperparameter used in BOLFI.
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Appendix H. Posteriors and samples for image example
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Figure 6: Posteriors and samples for image example. a. Observed image. b. Inferred
posteriors. c. Posterior samples. d. Another observation, with posteriors in e.

and samples in f.
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Appendix I. MaxMI acquisition for Hodgkin-Huxley model

Figure 7: Acquistion surface for MaxMI rule on Hodgkin-Huxley example. Indi-
vidual panels show the acquisition surface over 8 as additional samples have been
acquired. The acquisition rule proposes datapoints at the decision boundaries of
the posterior.
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Abstract

Recent advances in probabilistic modelling
have led to a large number of simulation-based
inference algorithms which do not require nu-
merical evaluation of likelihoods. However,
a public benchmark with appropriate perfor-
mance metrics for such ‘likelihood-free’ al-
gorithms has been lacking. This has made
it difficult to compare algorithms and iden-
tify their strengths and weaknesses. We set
out to fill this gap: We provide a bench-
mark with inference tasks and suitable perfor-
mance metrics, with an initial selection of algo-
rithms including recent approaches employing
neural networks and classical Approximate
Bayesian Computation methods. We found
that the choice of performance metric is criti-
cal, that even state-of-the-art algorithms have
substantial room for improvement, and that
sequential estimation improves sample effi-
ciency. Neural network-based approaches gen-
erally exhibit better performance, but there
is no uniformly best algorithm. We provide
practical advice and highlight the potential
of the benchmark to diagnose problems and
improve algorithms. The results can be ex-
plored interactively on a companion website.
All code is open source, making it possible
to contribute further benchmark tasks and
inference algorithms.

1 Introduction

Many domains of science, engineering, and economics
make extensive use of models implemented as stochastic
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numerical simulators (Gourieroux et al., 1993; Ratmann
et al., 2007; Alsing et al., 2018; Brehmer et al., 2018;
Karabatsos and Leisen, 2018; Gongalves et al., 2020).
A key challenge when studying and validating such
simulation-based models is the statistical identifica-
tion of parameters which are consistent with observed
data. In many cases, calculation of the likelihood is
intractable or impractical, rendering conventional ap-
proaches inapplicable. The goal of simulation-based in-
ference (SBI), also known as ‘likelihood-free inference’,
is to perform Bayesian inference without requiring nu-
merical evaluation of the likelihood function (Sisson
et al., 2018; Cranmer et al., 2020). In SBI, it is gen-
erally not required that the simulator is differentiable,
nor that one has access to its internal random variables.

In recent years, several new SBI algorithms have been
developed (e.g., Gutmann and Corander, 2016; Papa-
makarios and Murray, 2016; Lueckmann et al., 2017;
Chan et al., 2018; Greenberg et al., 2019; Papamakarios
et al., 2019b; Prangle, 2019; Brehmer et al., 2020; Her-
mans et al., 2020; Jarvenpéd et al., 2020; Picchini et al.,
2020; Rodrigues et al., 2020; Thomas et al., 2020), en-
ergized, in part, by advances in probabilistic machine
learning (Rezende and Mohamed, 2015; Papamakarios
et al., 2017, 2019a). Despite—or possibly because—of
these rapid and exciting developments, it is currently
difficult to assess how different approaches relate to
each other theoretically and empirically: First, different
studies often use different tasks and metrics for com-
parison, and comprehensive comparisons on multiple
tasks and simulation budgets are rare. Second, some
commonly employed metrics might not be appropriate
or might be biased through the choice of hyperparam-
eters. Third, the absence of a benchmark has made
it necessary to reimplement tasks and algorithms for
each new study. This practice is wasteful, and makes
it hard to rapidly evaluate the potential of new al-
gorithms. Overall, it is difficult to discern the most
promising approaches and decide on which algorithm
to use when. These problems are exacerbated by the
interdisciplinary nature of research on SBI, which has
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led to independent development and co-existence of
closely-related algorithms in different disciplines.

There are many exciting challenges and opportunities
ahead, such as the scaling of these algorithms to high-
dimensional data, active selection of simulations, and
gray-box settings, as outlined in Cranmer et al. (2020).
To tackle such challenges, researchers will need an ex-
tensible framework to compare existing algorithms and
test novel ideas. Carefully curated, a benchmark frame-
work will make it easier for researchers to enter SBI
research, and will fuel the development of new algo-
rithms through community involvement, exchange of
expertise and collaboration. Furthermore, benchmark-
ing results could help practitioners to decide which
algorithm to use on a given problem of interest, and
thereby contribute to the dissemination of SBI.

The catalyzing effect of benchmarks has been evident,
e.g., in computer vision (Russakovsky et al., 2015),
speech recognition (Hirsch and Pearce, 2000; Wang
et al., 2018), reinforcement learning (Bellemare et al.,
2013; Duan et al., 2016), Bayesian deep learning (Filos
et al., 2019; Wenzel et al., 2020), and many other fields
drawing on machine learning. Open benchmarks can
be an important component of transparent and repro-
ducible computational research. Surprisingly, a bench-
mark framework for SBI has been lacking, possibly due
to the challenging endeavor of designing benchmarking
tasks and defining suitable performance metrics.

Here, we begin to address this challenge, and provide
a benchmark framework for SBI to allow rapid and
transparent comparisons of current and future SBI al-
gorithms: First, we selected a set of initial algorithms
representing distinct approaches to SBI (Fig. 1; Cran-
mer et al., 2020). Second, we analyzed multiple perfor-
mance metrics which have been used in the SBI litera-
ture. Third, we implemented ten tasks including tasks
popular in the field. The shortcomings of commonly
used metrics led us to focus on tasks for which a likeli-
hood can be evaluated, which allowed us to calculate
reference (‘ground-truth’) posteriors. These reference
posteriors are made available to allow rapid evalua-
tion of SBI algorithms. Code for the framework is
available at github.com/sbi-benchmark/sbibm and
we maintain an interactive version of all results at
sbi-benchmark.github.io.

The full potential of the benchmark will be real-
ized when it is populated with additional community-
contributed algorithms and tasks. However, our initial
version already provides useful insights: 1) the choice
of performance metric is critical; 2) the performance of
the algorithms on some tasks leaves substantial room
for improvement; 3) sequential estimation generally
improves sample efficiency; 4) for small and moderate

simulation budgets, neural-network based approaches
outperform classical ABC algorithms, confirming re-
cent progress in the field; and 5) there is no algorithm
to rule them all. The performance ranking of algo-
rithms is task-dependent, pointing to a need for better
guidance or automated procedures for choosing which
algorithm to use when. We highlight examples of how
the benchmark can be used to diagnose shortcomings of
algorithms and facilitate improvements. We end with
a discussion of the limitations of the benchmark.

2 Benchmark

The benchmark consists of a set of algorithms, per-
formance metrics and tasks. Given a prior p(€) over
parameters 6, a simulator to sample x ~ p(x|0) and
an observation x,, an algorithm returns an approxi-
mate posterior ¢(0|x,), or samples from it, @ ~ ¢q. The
approximate solution is tested, according to a perfor-
mance metric, against a reference posterior p(8|x,).

2.1 Algorithms

Following the classification introduced in the review by
Cranmer et al. (2020), we selected algorithms address-
ing SBI in four distinct ways, as schematically depicted
in Fig. 1. An important difference between algorithms
is how new simulations are acquired: Sequential algo-
rithms adaptively choose informative simulations to
increase sample efficiency. While crucial for expen-
sive simulators, it can require non-trivial algorithmic
steps and hyperparameter choices. To evaluate whether
the potential is realized empirically and justifies the
algorithmic burden, we included sequential and non-
sequential counterparts for algorithms of each category.

Keeping our initial selection focused allowed us to care-
fully consider implementation details and hyperparam-
eters: We extensively explored performance and sen-
sitivity to different choices in more than 10k runs, all
results and details of which can be found in Appendix H.
Our selection is briefly described below, full algorithm
details are in Appendix A.

REJ-ABC and SMC-ABC. Approximate Bayesian
Computation (ABC, Sisson et al., 2018) is centered
around the idea of Monte Carlo rejection sampling
(Tavaré et al., 1997; Pritchard et al., 1999). Parameters
0 are sampled from a proposal distribution, simulation
outcomes x are compared with observed data x,, and
are accepted or rejected depending on a (user-specified)
distance function and rejection criterion. While rejec-
tion ABC (REJ-ABC) uses the prior as a proposal
distribution, the efficiency can be improved by using
sequentially refined proposal distributions (SMC-ABC,
Beaumont et al., 2002; Marjoram and Tavaré, 2006;
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Figure 1: Overview of algorithms. We compare algorithms belonging to four distinct approaches to SBI:
Classical ABC approaches as well as model-based approaches approximating likelihoods, posteriors, or density
ratios. We contrast algorithms that use the prior distribution to propose parameters against ones that sequentially
adapt the proposal. Classification and schemes following Cranmer et al. (2020).

Sisson et al., 2007; Toni et al., 2009; Beaumont et al.,
2009). We implemented REJ-ABC with quantile-based
rejection and used the scheme of Beaumont et al. (2009)
for SMC-ABC. We extensively varied hyperparameters
and compared the implementation of an ABC-toolbox
(Klinger et al., 2018) against our own (Appendix H).
We investigated linear regression adjustment (Blum and
Frangois, 2010) and the summary statistics approach
by Prangle et al. (2014) (Suppl. Fig. 1).

and SNLE. Likelihood estimation (or ‘synthetic
likelihood’) algorithms learn an approximation to the
intractable likelihood, for an overview see Drovandi
et al. (2018). While early incarnations focused on
Gaussian approximations (SL; Wood, 2010), recent
versions utilize deep neural networks (Papamakarios
et al., 2019b; Lueckmann et al., 2019) to approximate a
density over x, followed by MCMC to obtain posterior
samples. Since we primarily focused on these latter
versions, we refer to them as neural likelihood esti-
mation ( ) algorithms, and denote the sequential
variant with proposals as SNLE. In particular, we used
the scheme proposed by Papamakarios et al. (2019b)
which uses masked autoregressive flows (MAFs, Pa-
pamakarios et al., 2017) for density estimation. We
improved MCMC sampling for (S) and compared
MAFs against Neural Spline Flows (NSFs; Durkan
et al., 2019), see Appendix H.

NPE and SNPE. Instead of approximating the like-
lihood, these approaches directly target the posterior.
Their origins date back to regression adjustment ap-
proaches (Blum and Frangois, 2010). Modern variants
(Papamakarios and Murray, 2016; Lueckmann et al.,
2017; Greenberg et al., 2019) use neural networks for
density estimation (approximating a density over ).
Here, we used the recent algorithmic approach proposed
by Greenberg et al. (2019) for sequential acquisitions.
We report performance using NSFs for density estima-
tion, which outperformed MAFs (Appendix H).

and . Ratio Estimation approaches to
SBI use classifiers to approximate density ratios (Izbicki
et al., 2014; Pham et al., 2014; Cranmer et al., 2015;
Dutta et al., 2016; Durkan et al., 2020; Thomas et al.,
2020). Here, we used the recent approach proposed by
Hermans et al. (2020) as implemented in Durkan et al.
(2020): A neural network-based classifier approximates
probability ratios and MCMC is used to obtain samples
from the posterior. denotes the sequential vari-
ant of neural ratio estimation ( ). In Appendix H we
compare different classifier architectures for (5)

In addition, we benchmarked Random Forest ABC
(RF-ABC; Raynal et al., 2019), a recent ABC variant,
and Synthetic Likelihood (SL; Wood, 2010), mentioned
above. However, RF-ABC only targets individual pa-
rameters (i.e. assumes posteriors to factorize), and SL
requires new simulations for every MCMC step, thus
requiring orders of magnitude more simulations than
other algorithms. Therefore, we report results for these
algorithms separately, in Suppl. Fig. 2 and Suppl. Fig.
3, respectively.

Algorithms can be grouped with respect to how their
output is represented: 1) some return samples from
the posterior, 8 ~ ¢(0]x,) (REJ-ABC, SMC-ABC); 2)
others return samples and allow evaluation of unnor-
malized posteriors §(0|x,) ((S) , (9) ); and 3)
for some, the posterior density ¢(0]x,) can be evaluated
and sampled directly, without MCMC ((S)NPE). As
discussed below, these properties constrain the metrics
that can be used for comparison.

2.2 Performance metrics

Choice of a suitable performance metric is central to
any benchmark. As the goal of SBI algorithms is to
perform full inference, the ‘gold standard’ would be
to quantify the similarity between the true posterior
and the inferred one with a suitable distance (or di-
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vergence) measure on probability distributions. This
would require both access to the ground-truth posterior,
and a reliable means of estimating similarity between
(potentially) richly structured distributions. Several
performance metrics have been used in past research,
depending on the constraints imposed by knowledge
about ground-truth and the inference algorithm (see
Table 1). In real-world applications, typically only the
observation x, is known. However, in a benchmarking
setting, it is reasonable to assume that one has at least
access to the ground-truth parameters 6,. There are
two commonly used metrics which only require 8, and
X,, but suffer severe drawbacks for our purposes:

Probability 6,. The negative log probability
of true parameters averaged over different (0,,%,),
—E[log q(0,|x,)], has been used extensively in the liter-
ature (Papamakarios and Murray, 2016; Durkan et al.,
2018; Greenberg et al., 2019; Papamakarios et al., 2019b;
Durkan et al., 2020; Hermans et al., 2020). Its appeal
lies in the fact that one does not need access to the
ground-truth posterior. However, using it only for a
small set of (0,,%,) is highly problematic: It is only a
valid performance measure if averaged over a large set of
observations sampled from the prior (Talts et al., 2018,
detailed discussion including connection to simulation-
based calibration in Appendix M). For reliable results,
one would require inference for hundreds of x, which
is only feasible if inference is rapid (amortized) and
the density ¢ can be evaluated directly (among the
algorithms used here this applies only to NPE).

Posterior-Predictive Checks (PPCs). As the
name implies, PPCs should be considered a mere check
rather than a metric, although the median distance be-
tween predictive samples and x, has been reported in
the SBI literature (Papamakarios et al., 2019b; Green-
berg et al., 2019; Durkan et al., 2020). A failure mode
of such a metric is that an algorithm obtaining a good
MAP point estimate, could perfectly pass this check
even if the estimated posterior is poor. Empirically, we
found median-distances (MEDDIST) to be in disagree-
ment with other metrics (see Results).

The shortcomings of these commonly-used metrics led
us to focus on tasks for which it is possible to get sam-
ples from ground-truth posterior @ ~ p, thus allowing
us to use metrics based on two-sample tests:

Maximum Mean Discrepancy (MMD). MMD
(Gretton et al., 2012; Sutherland et al., 2017) is a
kernel-based 2-sample test. Recent papers (Papamakar-
ios et al., 2019b; Greenberg et al., 2019; Hermans et al.,
2020) reported MMD using translation-invariant Gaus-
sian kernels with length scales determined by the me-
dian heuristic (Ramdas et al., 2015). We empirically
found that MMD can be sensitive to hyperparameter

choices, in particular on posteriors with multiple modes
and length scales (see Results and Liu et al., 2020).

Classifier 2-Sample Tests (C2ST). C2STs (Fried-
man, 2004; Lopez-Paz and Oquab, 2017) train a classi-
fier to discriminate samples from the true and inferred
posteriors, which makes them simple to apply and easy
to interpret. Therefore, we prefer to report and com-
pare algorithms in terms of accuracy in classification-
based tests. In the context of SBI, C2ST has e.g. been
used in Gutmann et al. (2018); Dalmasso et al. (2020).

Other metrics that could be used include:

Kernelized Stein Discrepancy (KSD). KSD (Liu
et al., 2016; Chwialkowski et al., 2016) is a 1-sample test,
which require access to Vg p(8]x,) rather than samples
from p (p is the unnormalized posterior). Like MMD,
current estimators use translation-invariant kernels.

f-Divergences. Divergences such as Total Variation
(TV) divergence and KL divergences can only be com-
puted when the densities of true and approximate pos-
teriors can be evaluated (Table 1). Thus, we did not
use f-divergences for the benchmark.

Full discussion and details of metrics in Appendix M.

2.3 Tasks

The preceding considerations guided our selection of
inference tasks: We focused on tasks for which reference
posterior samples @ ~ p can be obtained, to allow
calculation of 2-sample tests. We focused on eight
purely statistical problems and two problems relevant
in applied domains, with diverse dimensionalities of
parameters and data (details in Appendix T):

Gaussian Linear/Gaussian Linear Uniform. We
included two versions of simple, linear, 10-d Gaussian
models, in which the parameter 6 is the mean, and the
covariance is fixed. The first version has a Gaussian
(conjugate) prior, the second one a uniform prior. These
tasks allow us to test how algorithms deal with trivial
scaling of dimensionality, as well as truncated support.

SLCP/SLCP Distractors. A challenging inference
task designed to have a simple likelihood and a complex
posterior (Papamakarios et al., 2019b; Greenberg et al.,
2019): The prior is uniform over five parameters 6
and the data are a set of four two-dimensional points
sampled from a Gaussian likelihood whose mean and
variance are nonlinear functions of . This induces a
complex posterior with four symmetrical modes and
vertical cut-offs. We included a second version with
92 additional, non-informative outputs (distractors) to
test the ability to detect informative features.

Bernoulli GLM/Bernoulli GLM Raw. 10-
parameter Generalized Linear Model (GLM) with
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Table 1: Applicability of metrics given knowledge about ground truth and algorithm. Whether a
metric can be used depends on both what is known about the ground-truth of an inference task and what an
algorithm returns: Information about ground truth can vary between just having observed data x, (typical setting
in practice), knowing the generating parameter 68,, having posterior samples, gradients, or being able to evaluate
the true posterior p. Tilde denotes unnormalized distributions. Access to information is cumulative.

Ground truth —

|l Algorithm x, 0, 0~p Vp(6]x,) p(0]x,)
0~ q 1 1 1,3 1,3, 4 1,3, 4
i(0]x.) 1 1 1,3 1,34 1,34
4(6]x.) 1 1,2 1,23 1,23 4 1,2,3,4,5

1 = PPCs, 2 = Probability 8y, 3 = 2-sample tests, 4 = 1-sample tests, 5 = f-divergences.

Bernoulli observations. Inference was either performed
on sufficient statistics (10-d) or raw data (100-d).

Gaussian Mixture. This inference task, introduced
by Sisson et al. (2007), has become common in the
ABC literature (Beaumont et al., 2009; Toni et al.,
2009; Simola et al., 2020). It consists of a mixture of
two two-dimensional Gaussian distributions, one with
much broader covariance than the other.

Two Moons. A two-dimensional task with a poste-
rior that exhibits both global (bimodality) and local
(crescent shape) structure (Greenberg et al., 2019) to
illustrate how algorithms deal with multimodality.

SIR. Dynamical systems represent paradigmatic use
cases for SBI. SIR is an influential epidemiological
model describing the dynamics of the number of indi-
viduals in three possible states: susceptible S, infectious
1, and recovered or deceased, R. We infer the contact
rate § and the mean recovery rate «y, given observed
infection counts I at 10 evenly-spaced time points.

Lotka-Volterra. An influential model in ecology de-
scribing the dynamics of two interacting species, widely
used in SBI studies. We infer four parameters 6 related
to species interaction, given the number of individuals
in both populations at 10 evenly-spaced points in time.

2.4 Experimental Setup

For each task, we sampled 10 sets of true parameters
from the prior and generated corresponding observa-
tions (0,,X,)1:10- For each observation, we generated
10k samples from the reference posterior. Some refer-
ence posteriors required a customised (likelihood-based)
approach (Appendix B).

In SBI, it is typically assumed that total computation
cost is dominated by simulation time. We therefore
report performance at different simulation budgets.

For each observation, each algorithm was run with a
simulation budget ranging from 1k to 100k simulations.

For each run, we calculated metrics described above.
To estimate C2ST accuracy, we trained a multilayer
perceptron to tell apart approximate and reference pos-
terior samples and performed five-fold cross-validation.
We used two hidden layers, each with 10 times as many
ReLu units as the dimensionality of the data. We also
measured and report runtimes (Appendix R).

2.5 Software

Code. All code is released publicly at
github.com/sbi-benchmark/sbibm. Our frame-
work includes tasks, reference posteriors, metrics,
plotting, and infrastructure tooling and is designed to
be 1) easily extensible, 2) used with external toolboxes
implementing algorithms. All tasks are implemented
as probabilistic programs in Pyro (Bingham et al.,
2019), so that likelihoods and gradients for reference
posteriors can be extracted automatically. To make
this possible for tasks that use ODEs, we developed
a new interface between DifferentialEquations.jl
(Rackauckas and Nie, 2017; Bezanson et al., 2017) and
PyTorch (Paszke et al., 2019). In addition, specifying
simulators in a probabilistic programming language
has the advantage that ‘gray-box’ algorithms (Brehmer
et al., 2020; Cranmer et al., 2020) can be added in the
future. We here evaluated algorithms implemented
in pyABC (Klinger et al., 2018), pyabcranger (Collin
et al., 2020), and sbi (Tejero-Cantero et al., 2020).
See Appendix B for details and existing SBI toolboxes.

Reproducibility. Instructions to reproduce experi-
ments on cloud-based infrastructure are in Appendix B.

Website. Along with the code, we provide a web
interface which allows interactive exploration of all the
results (sbi-benchmark.github.io; Appendix W).
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Figure 2: Performance on Two Moons according to various metrics. Best possible performance would be
0.5 for C2ST, 0 for MMD? and MEDDIST. Results for 10 observations each, means and 95% confidence intervals.

3 Results

Based on the comparison of the performance across all

tasks, we highlight the following main points:

We first consider empirical results on a single task, Two
Moons, according to different metrics, which illustrate
the following important insight:

#1: Choice of performance metric is key. While
C2ST results on Two Moons show that performance
increases with higher simulation budgets and that se-
quential algorithms outperform non-sequential ones for
low to medium budgets, these results were not reflected
in MMD and MEDDIST (Fig. 2): In our analyses, we
found MMD to be sensitive to hyperparameter choices,
in particular on tasks with complex posterior struc-
ture. When using the commonly employed median
heuristic to set the kernel length scale on a task with
multi-modal posteriors (like Two Moons), MMD had
difficulty discerning markedly different posteriors. This
can be ‘fixed’” by using hyperparameters adapted to the
task (Suppl. Fig. 4). As discussed above, the median
distance (though commonly used) can be ‘gamed’ by
a good point estimate even if the estimated posterior
is poor and is thus not a suitable performance metric.
Computation of KSD showed numerical problems on
Two Moons, due to the gradient calculation.

#4:

niques.

#2: These are not solved problems. C2ST uses
an interpretable scale (1 to 0.5), which makes it possible
to conclude that, for several tasks, no algorithm could
solve them with the specified budget (e.g., SLCP, Lotka-
Volterra). This highlights that our problems—though
conceptually simple—are challenging, and there is room
for development of more powerful algorithms.

#3: Sequential estimation improves sample ef-
ficiency. Our results show that sequential algorithms
outperform non-sequential ones (Fig. 3). The differ-
ence was small on simple tasks (i.e. linear Gaussian
cases), yet pronounced on most others. However, we
also found these methods to exhibit diminishing re-
turns as the simulation budget grows, which points to
an opportunity for future improvements.

Density or ratio estimation-based al-
gorithms generally outperform classical tech-
REJ-ABC and SMC-ABC were generally
outperformed by more recent techniques which use
neural networks for density- or ratio-estimation, and
which can therefore efficiently interpolate between dif-

ferent simulations (Fig. 3). Without such model-based

We assessed relationships between metrics empirically
via the correlations across tasks (Suppl. Fig. 5). As
discussed above, the log-probability of ground-truth
parameters can be problematic when averaged over
too few observations (e.g., 10, as is common in the
literature): indeed, this metric had a correlation of
only 0.3 with C2ST on Two Moons and 0.6 on the
SLCP task. Based on these considerations, we used
C2ST for reporting performance (Fig. 3; results for
MMD, KSD and median distance on the website).

interpolation, even a simple 10-d Gaussian task can be
challenging. However, classical rejection-based meth-
ods have a computational footprint that is orders of
magnitudes smaller, as no network training is involved
(Appendix R). Thus, on low-dimensional problems and
for cheap simulators, these methods can still be com-
petitive. See Suppl. Fig. 1 for results with additional
ABC variants (Blum and Frangois, 2010; Prangle et al.,
2014) and Suppl. Fig. 2 for results on RF-ABC.
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Figure 3: Performance on other benchmark tasks. Classification accuracy (C2ST) of REJ-ABC, SMC-ABC,

, SNLE, NPE, SNPE,

#5: No one algorithm to rule them all. Al-
though sequential density or ratio estimation-based
algorithms performed better than their non-sequential
counterparts, there was no clear-cut answer as to which
sequential method (SNLE, SNRE, and SNPE) should
be preferred. To some degree, this is to be expected:
these algorithms have distinct strengths that can play
out differently depending on the problem structure (see
discussions e.g., in Greenberg et al., 2019; Durkan et al.,
2018, 2020). However, this has not been shown system-
atically before. We formulate some practical guidelines
for choosing appropriate algorithms in Box 1.

7#6: The benchmark can be used to diagnose
implementation issues and improve algorithms.
For example, (S) and (5) rely on MCMC sam-
pling to compute posteriors, and this sampling step
can limit the performance. Access to a reference pos-

, SNRE for 10 observations each, means and 95% confidence intervals.

terior can help identify and improve such issues: We
found that single chains initialized by sampling from
the prior with axis-aligned slice sampling (as intro-
duced in Papamakarios et al., 2019b) frequently got
stuck in single modes. Based on this observation, we
changed the MCMC strategy (details in Appendix A),
which, though simple, yielded significant performance
and speed improvements on the benchmark tasks. Sim-
ilarly, (S) and (5) improved by transforming
parameters to be unbounded: Without transforma-
tions, runs on some tasks can get stuck during MCMC
sampling (e.g., Lotka-Volterra). While this is com-
mon advice for MCMC (Hogg and Foreman-Mackey,
2018), it has been lacking in code and papers of SBI
approaches.

We used the benchmark to systematically compare
hyperparameters: For example, as density estimators
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Do we need the Bayesian posterior, or is a point estimate sufficient?

Our focus was on SBI algorithms that target the Bayesian posterior. If one only aims for a single estimate,
optimization methods (e.g. Rios and Sahinidis, 2013; Shahriari et al., 2015) might be more efficient.

Is the simulator really ‘black-box’?

The SBI algorithms presented in the benchmark can be applied to any ‘black-box’ simulator. However,
if the likelihood is available, methods exploiting it (e.g. MCMC, variational inference) will generally be
more efficient. Similarly, if one has access to the internal random numbers, probabilistic programming
approaches (Le et al., 2017; Baydin et al., 2019; Wood et al., 2020) might be preferable. If additional
quantities that characterize the latent process are available, i.e., the simulator is ‘gray-box’, they can be
used to augment training data and improve inference (Brehmer et al., 2020; Cranmer et al., 2020).

What domain knowledge do we have about the problem?

For any practical application of SBI, it is worth thinking carefully about domain knowledge. First,
knowledge about plausible parameters should inform the choice of the prior. Second, domain knowledge
can help design appropriate distance functions or summary statistics required for classical ABC algorithms.
When using model-based approaches, domain knowledge can potentially be built into the SBI algorithm
itself, for example, by incorporating neural network layers with appropriate inductive biases or invariances.

Do we have, or can we learn summary statistics?

Summary statistics are especially important when facing problems with high-dimensional data: It is
important to point out that the posterior given summary statistics p(6|s(x,)) is only equivalent to p(0|x,)
if the summary statistics are sufficient. The problem at hand can guide the manual design of summary
statistics that are regarded particularly important or informative. Alternatively, many automatic approaches
exist (e.g., Prangle et al., 2014; Charnock et al., 2018; Dinev and Gutmann, 2018) and this is an active
area of research (e.g., Chen et al. 2021 recently proposed an approach to learn approximately sufficient
statistics for SMC-ABC and (S) )- (S)NPE and (S) can directly reduce high-dimensional data as
part of their network architectures.

Do we have low-dimensional data and parameters, and a cheap simulator?

If both the parameters and the data (or suitable summary-statistics thereof) are low-dimensional, and
a very large number of simulations can be generated, model-free algorithms such as classical ABC can
be competitive. These have the benefit of adding little computational overhead. Conversely, for limited
simulation budgets and/or higher dimensionalities, approaches that train a model of the likelihood, posterior,
or likelihood ratio will generally be preferable.

Are simulations expensive? Can we simulate online?

For time-intensive and complex simulators, it can be beneficial to use sequential methods to increase sample
efficiency: We found that sequential schemes generally outperformed non-sequential ones. While we focused
on simple strategies which use the previous estimate of the posterior to propose new parameters, more
sophisticated schemes (e.g., Gutmann and Corander, 2016; Lueckmann et al., 2019; Jarvenpé et al., 2019)
may increase sample efficiency if only few simulations can be obtained. For some applications, inference is
performed on a fixed dataset, and one cannot resort to sequential algorithms.

Do we want to carry out inference once, or repeatedly?

To perform SBI separately for different data points (i.e. compute p(6|x1),p(0|x2),...), methods that allow
‘amortization’ (NPLE) are likely preferable. While and allow amortisation of the neural network,
MCMC sampling is required, which takes additional time. Conversely, if we want to run SBI conditioned
on many i.i.d. data (e.g. p(@]x1,X2,...)) methods based on likelihood or ratio estimation ( , ), or
NPE with exchangeable neural networks (Chan et al., 2018) would be appropriate.

Box 1: Practitioners’ advice for applying SBI algorithms. Based on our current results and understanding,
we provide advice to practitioners seeking to apply SBI. There is no one-fits-all solution—which algorithm to use
in practice will depend on the problem at hand. For additional advice. see Cranmer et al. (2020).
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for (5) and (S)NPE, we used NSFs (Durkan et al.,
2020) which were developed after these algorithms were
published. This revealed that higher capacity density
estimators were beneficial for posterior but not likeli-
hood estimation (detailed analysis in Appendix H).

These examples show how the benchmark makes it
possible to diagnose problems and improve algorithms.

4 Limitations

Our benchmark, in its current form, has several limi-
tations. First, the algorithms considered here do not
cover the entire spectrum of SBI algorithms: We did
not include sequential algorithms using active learning
or Bayesian Optimization (Gutmann and Corander,
2016; Jéarvenpad et al., 2019; Lueckmann et al., 2019;
Aushev et al., 2020), or ‘gray-box’ algorithms, which
use additional information about or from the simula-
tor (e.g., Baydin et al., 2019; Brehmer et al., 2020).
We focused on approaches using neural networks for
density estimation and did not compare to alternatives
using Gaussian Processes (e.g., Meeds and Welling,
2014; Wilkinson, 2014). There are many other algo-
rithms which the benchmark is currently lacking (e.g.,
Nott et al., 2014; Ong et al., 2018; Clarté et al., 2020;
Prangle, 2019; Priddle et al., 2019; Picchini et al., 2020;
Radev et al., 2020; Rodrigues et al., 2020). Keeping
our initial selection small allowed us to carefully investi-
gate hyperparameter choices. We focused on sequential
algorithms with less sophisticated acquisition schemes
and the black-box scenario, since we think these are
important baselines for future comparisons.

Second, the tasks we considered do not cover the vari-
ety of possible challenges. Notably, while we have tasks
with high dimensional data with and without structure,
we have not included tasks with high-dimensional spa-
tial structure, e.g., images. Such tasks would require
algorithms that automatically learn summary statistics
while exploring the structure of the data (e.g., Dinev
and Gutmann, 2018; Greenberg et al., 2019; Hermans
et al., 2020; Chen et al., 2021), an active research area.

Third, while we extensively investigated tuning choices
and compared implementations, the results might nev-
ertheless reflect our own areas of expertise.

Fourth, in line with common practice in SBI, results
presented in the paper focused on performance as a
function of the number of simulation calls. It is impor-
tant to remember that differences in computation time
can be substantial (see Appendix R): For example,
(S)ABC was much faster than approaches requiring
network training. Overall, sequential neural algorithms
exhibited longest runtimes.

Fifth, for reasons described above, we focused on prob-

lems for which reference posteriors can be computed.
This raises the question of how insights on these prob-
lems will generalize to ‘real-world’” simulators. Notably,
even these simple problems already identify clear dif-
ferences between, and limitations of, different SBI ap-
proaches. Since it is not possible to rigorously compare
the performance of different algorithms directly on ‘real-
world’ simulators due to the lack of appropriate metrics,
we see the benchmark as a necessary stepping stone
towards the development of (potentially automated)
selection strategies for practical problems.

Sixth, in practice, the choice of algorithm can depend
on aspects that are difficult to quantify: It will depend
on the available information about a problem, the in-
ference goal, and the speed of the simulator, among
other considerations. We included some practical con-
siderations and recommendations in Box 1.

Finally, benchmarking is an important tool, but not
an end in itself—for example, conceptually new ideas
might initially not yield competitive results but only
reveal their true value later. Conversely, ‘overfitting’
on benchmarks can lead to the illusion of progress,
and result in an undue focus on small implementation
details which might not generalize beyond it. It would
certainly be possible to cheat on this benchmark: In
particular, as the simulators are available, one could use
samples (or even likelihoods) to excessively tune hyper-
parameters for each task. This would hardly transfer to
practice where such tuning is usually impossible (lack of
metrics and expensive simulators). Therefore, we care-
fully compared choices and selected hyperparameters
performing best across tasks (Appendix H).

5 Discussion

Quantitatively evaluating, comparing and improving
algorithms through benchmarking is at the core of
progress in machine learning. We here provided an
initial benchmark for simulation-based inference. If
used sensibly, it will be an important tool for clari-
fying and expediting progress in SBI. We hope that
the current results on multiple widely-used algorithms
already provide insights into the state of the field, assist
researchers with algorithm development, and that our
recommendations for practitioners will help them in
selecting appropriate algorithms.

We believe that the full potential of the benchmark
will be revealed as more researchers participate and
contribute. To facilitate this process, and allow users
to quickly explore and compare algorithms, we are
providing precomputed reference posteriors, a website
(sbi-benchmark.github.io), and open-source code
(github.com/sbi-benchmark/sbibm).
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A Algorithms

A.1 Rejection Approximate Bayesian Computation (REJ-ABC)

Algorithm 1: Rejection ABC

while in simulation budget do
Sample 8" from p(0)
Simulate data x’ from p(x|@’)
if d(x/,x,) < € then

| Accept 6’
else

| Reject 6
end

end
return Accepted samples {6’} from p(0|d(x,x,) < €)

Classical Approximate Bayesian Computation (ABC) is based on Monte Carlo rejection sampling (Tavaré et al.,
1997; Pritchard et al., 1999): In rejection ABC, the evaluation of the likelihood is replaced by a comparison
between observed data x, and simulated data x, based on a distance measure d(x,%,). Samples 6 from the
approximate posterior are obtained by collecting simulation parameters that result in simulated data that is close
to the observed data.

More formally, given observed data x,, a prior p(@) over parameters of simulation-based model p(x|0), a distance
measure d(X, X, ) and an acceptance threshold e, rejection ABC obtains parameter samples 8 from the approximate
posterior as outlined in Algorithm 1.

In theory, rejection ABC obtains samples from the true posterior p(0|x,) in the limit € — 0 and N — oo, where
N is the simulation budget. In practice, its accuracy depends on the trade-off between simulation budget and
the rejection criterion e. Rejection ABC suffers from the curse of dimensionality, i.e., with linear increase in the
dimensionality of x, an exponential increase in simulation budget is required to maintain accurate results.

For the benchmark, we did not use a fixed e-threshold, but quantile-based rejection. Depending on the simulation
budget (1k, 10k, 100k), we used a quantile of (0.1, 0.01, or, 0.001), so that REJ-ABC returned 100 samples with
smallest distance to x, in each of these cases (see Appendix H for different hyperparameter choices). In order to
compute metrics on 10k samples, we sampled from a KDE fitted on the accepted parameters (details about KDE
resampling in Appendix H). REJ-ABC requires the choice of the distance measure d(x,X,): here we used the
lo-norm.
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A.2 Sequential Monte Carlo Approximate Bayesian Computation (SMC-ABC)

Algorithm 2: Population Monte Carlo ABC (ABC-PMC) as in Beaumont et al. (2009)

Set schedule € (including initial €p), population indicator ¢ = 0, and population size N
Initialize weights Wy = 1/N uniformly
Sample initial population {98)} using rejection sampling with €

while in simulation budget do
Increase population indicator ¢t = ¢+ 1
Set particle indicator ¢ = 0
while i < N do
Sample @' from previous population {0,@1} with weights {Wt(i)l};
Perturb 8’: 8" ~ K;(6]|0")
Simulate data z from p(x|8")
if d(x”,x,) < €& then
(i) _ g i p(6;")
Set 8;,’ = 60" and W} = N Wi K010 )
Increase particle indicator i =1 + 1
else
| reject 8”
end

end

Normalize weights so that ), th =1
end

return Weighted samples {0?)} from p(0|d(x,%,) <€)

Sequential Monte Carlo Approximate Bayesian Computation (SMC-ABC) algorithms (Beaumont et al., 2002;
Marjoram and Tavaré, 2006; Sisson et al., 2007; Toni et al., 2009) are an extension of the classical rejection ABC
approach, inspired by importance sampling and sequential Monte Carlo sampling. Central to SMC-ABC is the
idea to approach the final set of samples from the approximate posterior by constructing a series of intermediate
sets of samples slowly approaching the final set through perturbations.

Several variants have been developed (e.g., Sisson et al., 2007; Beaumont et al., 2009; Toni et al., 2009; Simola
et al., 2020). Here, we used the scheme ABC-PMC scheme of Beaumont et al. (2009) and refer to it as SMC-ABC
in the manuscript. More formally, the description of the ABC-PMC algorithm is as follows: Given observed data
X,, a prior p(@) over parameters of a simulation-based model p(x|0), a distance measure d(x,X,), a schedule
of acceptance thresholds ¢;, and a kernel K(0|@') to perturb intermediate samples, weighted samples of the
approximate posterior are obtained as described in Algorithm 2.

SMC-ABC can improve the sampling efficiency compared to REJ-ABC and avoids severe inefficiencies due to a
mismatch between initial sampling and the target distribution. However, it comes with more hyperparameters
that can require careful tuning to the problem at hand, e.g., the choice of distance measure, kernel, and e-schedule.
Like, REJ-ABC, SMC-ABC suffers from the curse of dimensionality.

For the benchmark, we considered the popular toolbox pyABC (Klinger et al., 2018). Additionally, to fully
understand the details of the SMC-ABC approach, we also implemented our own version. In the main paper we
report results obtained with our implementation because it yielded slightly better results. A careful comparison
of the two approaches, and the optimization of hyperparameters like e-schedule, population size and perturbation
kernel variance across different tasks are shown in Appendix H. After optimization, the crucial parameters of
SMC-ABC were set to: lo-norm as distance metric, quantile-based epsilon decay with 0.2 quantile, population size
100 for simulation budgets 1k and 10k, population size 1000 for simulation budget 100k, Gaussian perturbation
kernel with empirical covariance from previous population scaled by 0.5. We obtained 10k samples required for
calculation of metrics as follows: If a population is not complete within the simulation budget we completed it
with accepted particles from the last population and recalculated all weights. We then fitted a KDE on all those
particles and sampled 10k samples from the KDE.
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A.3 Neural Likelihood Estimation ( )

Algorithm 3: Single round Neural Likelihood as in Papamakarios et al. (2019b)

Set D = {}
forn=1: N do
Sample 8,, ~ p(0)
Simulate x,, ~ p(x|0,,)
Add (8.,,,%,) to D
end
Train ¢ (x|0) on D
return Samples from p(0]x,) x gy (%0|0)p(8) via MCMC; gy (x|0)

Likelihood estimation approaches to SBI use density estimation to approximate the likelihood p(x,|0). After
learning a surrogate gy (¢ denoting the parameters of the estimator) for the likelihood function, one can
for example use Markov Chain Monte Carlo (MCMC) based sampling algorithms to obtain samples from the
approximate posterior p(0|x,). This idea dates back to using Gaussian approximations of the likelihood (Wood,
2010; Drovandi et al., 2018), and more recently, was extended to density estimation with neural networks
(Papamakarios et al., 2019b; Lueckmann et al., 2019).

We refer to the single-round version of the (sequential) neural likelihood approach by Papamakarios et al. (2019b)
as , and outline it in Algorithm 3: Given a set of samples {0,,, X, }1.ny obtained by sampling 0,, ~ p(0)
from the prior and simulating x,, ~ p(x|6,,), we train a conditional neural density estimator gy (x|0) modelling
the conditional of data given parameters on the set {0,,x,}1.n. Training proceeds by maximizing the log
likelihood 3, log gy (x]@). Given enough simulations, a sufficiently flexible conditional neural density estimator
approximates the likelihood in the support of the prior p(@) (Papamakarios et al., 2019b). Once gy, is trained,
samples from the approximate posterior p(0]x,) are obtained using MCMC sampling based on the approximate
likelihood p(x,|@) and the prior p(0).

For MCMC sampling, Papamakarios et al. (2019b) suggest to use Slice Sampling (Neal, 2003) with a single chain.
However, we observed that the accuracy of the obtained posterior samples can be substantially improved by
changing the Slice Sampling scheme as follows: 1) Instead of a single chain, we used 100 parallel MCMC chains;
2) for initialization of the chains, we sampled 10k candidate parameters from the prior, evaluated them under
the unnormalized approximate posterior, and used these values as weights to resample initial locations; 3) we
transformed parameters to be unbounded as suggested e.g. in Bingham et al. (2019); Carpenter et al. (2017); Hogg
and Foreman-Mackey (2018). In addition, we reimplemented the slice sampler to allow vectorized evaluations of
the likelihood, which yielded significant computational speed-ups.

For the benchmark, we used as density estimator a Masked Autoregressive Flow (MAF, Papamakarios et al., 2017)
with five flow transforms, each with two blocks and 50 hidden units, tanh non-linearity and batch normalization
after each layer. For the MCMC step, we used the scheme as outlined above with 250 warm-up steps and ten-fold
thinning, to obtain 10k samples from the approximate posterior (1k samples from each chain). In Appendix H we
show results for all tasks obtained with a Neural Spline Flow (NSF, Durkan et al., 2019) for density estimation,
using five flow transforms, two residual blocks of 50 hidden units each, ReLU non-linearity, and 10 bins.
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A.4 Sequential Neural Likelihood Estimation (SNLE)

Algorithm 4: Sequential Neural Likelihood as in Papamakarios et al. (2019b)
Set po(0]x,) = p(8) and D = {}
forr = 1: R do
forn=1:N do
Sample 6,, ~ p,_1(0|x,) with MCMC
Simulate x,, ~ p(x|6,,)
Add (0,,,x,) to D
end
(Re-)train ¢y (x|0) on D
Set 5,(8]%,) ox 4y(%,|8)p(6)
end
return Samples from p(0|x,) x gy (x,|0)p(0) via MCMC; g (x/6)

Sequential Neural Likelihood estimation (SNLE or SNL, Papamakarios et al., 2019b) extends the neural likelihood
estimation approach described in the previous section to be sequential.

The idea behind sequential SBI algorithms is based on the following intuition: If for a particular inference problem,
there is only a single x, one is interested in, then simulating data using parameters from the entire prior space
might be inefficient, leading to a training set D that contains training data (6,x) which carries little information
about the posterior p(0|x,). Instead, to increase sample efficiency, one may draw training data points from a
proposal distribution 5(0), ideally obtaining 8 for which x is close to x,. One candidate that has been commonly
used in the literature for such a proposal is the approximate posterior distribution itself.

SNLE is a multi-round version of , where in each round new training samples are drawn from a proposal
p(0). The proposal is chosen to be the posterior estimate at x, from the previous round p(6|x,) and its samples
are obtained using MCMC. The proposal controls where gy (x|@) is learned most accurately. Thus, by iterating
over multiple rounds, a good approximation to the posterior can be learned more efficiently than by sampling all
training data from the prior. SNLE is summarized in Algorithm 4.

For the benchmark, we used as density estimator a Masked Autoregressive Flow (Papamakarios et al., 2017), and
MCMC to obtain posterior samples after every round, both with the same settings as described for . The
simulation budget was equally split across 10 rounds. In Appendix H, we show results for all tasks obtained with
a Neural Spline Flow (NSF, Durkan et al., 2019) for density estimation, using five flow transforms, two residual
blocks of 50 hidden units each, ReLU non-linearity, and 10 bins.
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A.5 Neural Posterior Estimation (NPLE)

Algorithm 5: Single round Neural Posterior Estimation as in Papamakarios and Murray (2016)
for j=1: N do

Sample 6; ~ p(@)

Simulate x; ~ p(x|0;)
end

. N
¢« argminy ; —log gr(x;,¢)(6;)

Set p(0]%0) = qr(x,,4)(0)
return Samples from H(0]X,); qp(x,4)(0)

NPE uses conditional density estimation to directly estimate the posterior. This idea dates back to regression
adjustment approaches (Blum and Frangois, 2010) and was extended to density estimators using neural networks
(Papamakarios and Murray, 2016) more recently.

As outlined in Algorithm 5, the approach is as follows: Given a prior over parameters p(@) and a simulator, a set
of training data points (0,x) is generated. This training data is used to learn the parameters 1 of a conditional
density estimator gy (0|z) using a neural network F(x, ¢), i.e., 9 = F(x, ¢). The loss function is given by the
negative log probability —log g (0]x). If the density estimator ¢ is flexible enough and training data is infinite,
this loss function leads to perfect recovery of the ground-truth posterior (Papamakarios and Murray, 2016).

For the benchmark, we used the approach by Papamakarios and Murray (2016) with a Neural Spline Flow (NSF,
Durkan et al., 2019) as density estimator, using five flow transforms, two residual blocks of 50 hidden units
each, ReLU non-linearity, and 10 bins. We sampled 10k samples from the approximate posterior ¢p(x,,4)(8). In
Appendix H, we compare NSFs to Masked Autoregressive Flows (MAFs, Papamakarios et al., 2017), as used in
Greenberg et al. (2019); Durkan et al. (2020), with five flow transforms, each with two blocks and 50 hidden
units, tanh non-linearity and batch normalization after each layer.
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A.6 Sequential Neural Posterior Estimation (SNPE)

Algorithm 6: Sequential Neural Posterior Estimation with atomic proposals (Greenberg et al., 2019)
Set 71(0) = p(0)

c+ 0

forr=1: R do

for j=1: N do

c+—c+1

Sample 0. ~ p,.(0)

Simulate x. ~ p(x|0.)

end

Vi (©) = {

(]\6/1)71 lfe = {Obweblv"'aebM} and 1 S bl < bQ <. < b]\[ S C
0 otherwise

¢ + argming Eg v, (e) [29]6@ —log Gx;,¢(0;)

Set Pr+1(0) := qr(x,,4)(0)
end
return Samples from pr(0]Xo); ¢r(z,¢)(0)

Sequential Neural Posterior Estimation SNPE is the sequential analog of NP, and meant to increase sample
efficiency (see also subsection A.4). When the posterior is targeted directly, using a proposal distribution 5(8)
different from the prior requires a correction step—without it, the posterior under the proposal distribution would
be inferred (Papamakarios and Murray, 2016). This so-called proposal posterior is denoted by p(6|x):

p(6)p(x)

p(0)p(x)’

where p(x) = [, (8)p(x|0). Note that for 5(8) = p(6), it directly follows that p(8]x) = p(6]x).

There have been three different approaches to this correction step so far, leading to three versions of SNPE
(Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019). All three algorithms have in

common that they train a neural network F(x, @) to learn the parameters of a family of densities g, to estimate
the posterior. They differ in what is targeted by ¢, and which loss is used for F'.

p(0]x) = p(6]x)

SNPE-A (Papamakarios and Murray, 2016) trains F' to target the proposal posterior p(8]x) by minimizing the
log likelihood loss — ", 10g gy (0r|xy), and then post-hoc solves for p(@|x). The analytical post-hoc step places
restrictions on gy, the proposal, and prior. Papamakarios and Murray (2016) used Gaussian mixture density
networks, single Gaussians proposals, and Gaussian or uniform priors. SNPE-B (Lueckmann et al., 2017) trains
F with the importance weighted loss — 3, %
post-hoc correction, removing restrictions with respect to gy, the proposal, and prior. However, the importance
weights can have high variance during training, leading to inaccurate inference for some tasks (Greenberg et al.,
2019). SNPE-C (APT) (Greenberg et al., 2019) alleviates this issue by reparameterizing the problem such that it
can infer the posterior by maximizing an estimated proposal posterior. It trains F' to approximate p(@|x) with
qr(x,0)(0), using a loss defined on the approximate proposal posterior gx,¢(0). Greenberg et al. (2019) introduce
‘atomic’ proposals to allow for arbitrary choices of the density estimator, e.g., flows (Papamakarios et al., 2019a):
The loss on gx,¢(0) is calculated as the expectation over proposal sets © sampled from a so-called ‘hyperproposal’
V(0) as outlined in Algorithm 6 (see Greenberg et al., 2019, for full details).

log g (0 ]%5,) to directly recover p(6@|x) without the need for

For the benchmark, we used the approach by Greenberg et al. (2019) with ‘atomic’ proposals and referred to it as
SNPE. As density estimator, we used a Neural Spline Flow (Durkan et al., 2019) with the same settings as for
NPE. For the ‘atomic’ proposals, we used M = 10 atoms (larger M was too demanding in terms of memory).
The simulation budget was equally split across 10 rounds and for the final round, we obtained 10k samples from
the approximate posterior pr(0|x,). In Appendix H, we compare NSFs to Masked Autoregressive Flows (MAFs,
Papamakarios et al., 2017), as used in Greenberg et al. (2019); Durkan et al. (2020), with five flow transforms,
each with two blocks and 50 hidden units, tanh non-linearity and batch normalization after each layer.
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A.7 Neural Ratio Estimation ( )

Algorithm 7: Single round Neural Ratio Estimation as in Hermans et al. (2020)

Set optimization criterion [ (e.g., BCE)
for j=1: N do
Sample 6; ~ p(@)
Sample 6 ~ p()
Simulate x; ~ p(x|0;)
end
¢ «+ argminl(dg(xn, 0,), 1) + 1(dp(xy,6.,),0)
Parameterize dg(x, 0)
return Samples from p(6|x,) via MCMC; dg(x, 0)

Neural ratio estimation ( ) uses neural-network based classifiers to approximate the posterior p(0|x,). While
neural-network based approaches described in the previous sections use density estimation to either estimate the
likelihood ((S) ) or the posterior ((S)NPE), NRE algorithms ((5) ) use classtfication to estimate a ratio
of likelihoods. The ratio can then be used for posterior evaluation or MCMC-based sampling.

Likelihood ratio estimation can be used for SBI because it allows to perform MCMC without evaluating the
intractable likelihood. In MCMC, the transition probability from a current parameter 8, to a proposed parameter
0’ depends on the posterior ratio and in turn on the likelihood ratio between the two parameters:

p(O'x) _ p(0)p(x|6")/p(x) _ p(8)p(x[6)

pOux) — p(0)p(x(600)/p(x)  p(0.)p(x(6:)

p(x]0")
p(x0:)
obtain samples from the posterior, even if evaluating p(x|@) is intractable.

Therefore, given a ratio estimator r(x|0’,0;) = learned from simulations, one can perform MCMC to

Hermans et al. (2020) proposed the following approach for MCMC with classifiers to approximate density ratios:
A classifier is trained to distinguish samples from an arbitrary (0,x) ~ p(x|0)p(0) and samples from the marginal
model (0,x) ~ p(@)p(x). This results in a likelihood-to-evidence estimator that needs to be trained only once to
be evaluated for any 6. The training of the classifier dg(x, @) proceeds by minimizing the binary cross-entropy loss
(BCE), as outlined in Algorithm 7. Once the classifier dg(x, 8) is parameterized, it can be used to perform MCMC
to obtain samples from the posterior. The authors name their approach Amortized Approximate Likelihood Ratio
MCMC (AALR-MCMC): It is amortized because once the likelihood ratio estimator is trained, it is possible to
run MCMC for any x ~ p(x).

Earlier ratio estimation algorithms for SBI (e.g., Izbicki et al., 2014; Pham et al., 2014; Cranmer et al., 2015; Dutta
et al., 2016) and their connections to recent methods are discussed in Thomas et al. (2020), as well as in Durkan
et al. (2020). AALR-MCMC is closely related to LFIRE (Dutta et al., 2016) but trains an amortized classifier
rather than a separate one per posterior evaluation. Durkan et al. (2020) showed that the loss of AALR-MCMC
is closely related to the atomic SNPE-C/APT approach of Greenberg et al. (2019) (SNPE) and that both can be
combined in a unified framework. Durkan et al. (2020) changed the formulation of the loss function for training
the classifier from binary to multi-class.

For the benchmark, we used neural ratio estimation ( ) as formulated by Durkan et al. (2020) and implemented
in the sbi toolbox (Tejero-Cantero et al., 2020). As a classifier, we used a residual network architecture (ResNet)
with two hidden layers of 50 units and ReLU non-linearity, trained with Adam (Kingma and Ba, 2015). Following
the notation of Durkan et al. (2020), we used K = 10 as the size of the contrasting set. For the MCMC step,
we followed the same procedure as described for , i.e., using Slice Sampling with 100 chains, to obtain 10k
samples from each approximate posterior. In Appendix H, we show results for all tasks obtained with a multi-layer
perceptron (MLP) architecture with two hidden layers of 50 ReLu units, and batch normalization.
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A.8 Sequential Neural Ratio Estimation ( )

Algorithm 8: Sequential Neural Ratio Estimation as in Hermans et al. (2020)

Set optimization criterion ! (e.g., BCE)

Set p(0) = p(0)

forr=1:R do

for j=1: N do
Sample 6, ~ p(@) (via dp, and MCMC)
Sample 8 ~ p(8) (via dy and MCMC)
Simulate x; ~ p(x|60;)

end

¢ < argminl(I'n,0,),1) + l(dy(x,, 6.,),0);

Parameterize dg(x, 0)

end

return Samples from p(0|x,) via MCMC; dg(x, 6)

Sequential Neural Ratio Estimation ( ) is the sequential version of , and meant to increase sample
efficiency, at the cost of needing to train new classifiers for different x,.

A sequential version of neural ratio estimation was proposed by Hermans et al. (2020). As with other sequential
algorithms, the idea is to replace the prior by a proposal distribution p(@) that is focused on x, in the sense
that the sampled parameters @ result in simulated data x that are informative about x,. The proposal for the
next round is the posterior estimate from the previous round. The ratio estimator then becomes 7(x, ) and is
refined over rounds by training the underlying classifier with positive examples (x,80) ~ p(x|0)p(0) and negative
examples (x,0) ~ p(x)p(0). Exact posterior evaluation is not possible anymore, but samples can be obtained as
before via MCMC. These steps are outlined in Algorithm 8.

For the benchmark, we used as formulated by Durkan et al. (2020) and implemented in the sbi toolbox
(Tejero-Cantero et al., 2020). The classifier had the same architecture as described for . For the MCMC step,
we followed the same procedure as described for . The simulation budget was equally split across 10 rounds.
In Appendix H, we show results for all tasks obtained with a multi-layer perceptron (MLP) architecture with two
hidden layers of 50 ReLu units, and batch normalization.
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A.9 Random Forest Approximate Bayesian Computation (RF-ABC)

Algorithm 9: Random Forest ABC (RF-ABC) as in Raynal et al. (2019)

Set D = {} Set simulation budget N
Set number of trees B
Set minimum node size N,,iy,
forn=1:N do
Sample 8,, ~ p(0)
Simulate x,, ~ p(x|6,)
Add (8,,,%,) to D
end
Run random forest regression of x on 8 using D, B and N,
return N samples {B(i)} and associated weights {w(?} for drawing approximate posterior samples

Random forest Approximate Bayesian Computation (RF-ABC, Pudlo et al., 2016; Raynal et al., 2019) is a more
recently developed ABC algorithm based on a regression approach. Similar to previous regression approaches to
ABC (Beaumont et al., 2002; Blum and Frangois, 2010), RF-ABC aims at improving classical ABC inference
(REJ-ABC, SMC-ABC) in the setting of high-dimensional data.

The idea of the RF-ABC algorithm is to use random forests (RF, Breiman, 2001) to run a non-parametric
regression of a set of potential summary statistics of the data on the corresponding parameters. That is, the RF
regression is trained on data simulated from the model, such that the covariates are the summary statistics and
the response variable is a parameter. For a detailed description of the algorithm, we refer to Raynal et al. (2019).

The only hyperparameters for the RF-ABC algorithm are the number of trees and the minimum node size for the
RF regression. Following Raynal et al. (2019), we chose the default of 500 trees and a minimum of 5 nodes. The
output of the algorithm is a RF weight for each of the simulated parameters. This set of weights can be used to
calculate posterior quantiles or to obtain an approximate posterior density as described in Raynal et al. (2019).
We obtained 10k posterior samples for the benchmark by using the random forest weights to sample from the
simulated parameters. We used the implementation in the abcranger toolbox Collin et al. (2020).

One important property of RF-ABC is that it can only be applied in the unidimensional setting, i.e., for 1-D
dimensional parameter spaces, or for multidimensional parameters spaces with the assumption that the posterior
factorizes over parameters (thus ignoring potential posterior correlations). This assumptions holds only for a few
tasks in our benchmark (Gaussian Linear, Gaussian Linear Uniform, Gaussian Mixture). Due to this inherent
limitation, we report RF-ABC in the supplement (see Suppl. Fig. 2).
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A.10 Synthetic Likelihood (SL)

Algorithm 10: Synthetic Likelihood algorithm as in Wood (2010)

Set number of simulations per step M
Set number of MCMC steps T'
fort=1:T do
Get new candidate 6; from MCMC scheme
Set Dy = {}
form=1:M do
Simulate x,, ~ p(x|0:)
Add (Ot,xm) to Dt
end

Use D; to estimate mean and covariance of a Gaussian approximation of the likelihood ﬁ(xo|0t)
Perform the next MCMC step using L(x,|6;)
end

return N samples {§(} from MCMC chain

The Synthetic Likelihood (SL) approach circumvents the evaluation of the intractable likelihood by estimating a
synthetic one from simulated data or summary statistics. This approach was introduced by Wood (2010). Its
main motivation is that the classical ABC approach of comparing simulated and observed data with a distance
metric can be problematic if parts of the differences are entirely noise-driven. Wood (2010) instead approximated
the distribution of the summary statistics (the likelihood) of a nonlinear ecological dynamic system as a Gaussian
distribution, thereby capturing the underlying noise as well. The approximation of the likelihood can then be
used to obtain posterior sampling via Markov Chain Monte Carlo (MCMC) (Wood, 2010).

The SL approach can be seen as the predecessor of the (S) approaches: They replaced the Gaussian
approximation of the likelihood with a much more flexible one that uses neural networks and normalizing flows
(see A.3). Moreover, there are modern approaches from the classical ABC field that further developed SL using a
Gaussian approximation (e.g., Drovandi et al., 2018; Priddle et al., 2019).

For the benchmark, we implemented our own version of the algorithm proposed by Wood (2010). We used Slice
Sampling MCMC (Neal, 2003) and estimated the Gaussian likelihood from 100 samples at each sampling step. To
ensure a positive definite covariance matrix, we added a small value ¢ to the diagonal of the estimated covariance
matrix for some of the tasks. In particular, we used ¢ = 0.01 for SIR and Bernoulli GLM Raw tasks, and we
tried without success € = [0,0.01, 0.1, 1.0] for Lotka-Volterra and SLCP with distractors. For all remaining tasks,
we set e = 0. For Slice Sampling, we used a single chain initialized with sequential importance sampling (SIR)
as described for , 1k warm-up steps and no thinning, in order to keep the number of required simulations
tractable. This resulted in an overall simulation budget on the order of 10® to 10° simulations per run in order to
generate 10k posterior samples, as new simulations are required for every MCMC step.

The high simulation budget makes it problematic to directly compare SL and other other algorithms in the
benchmark. Therefore, we report SL in the supplement (see Suppl. Fig. 3).
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B Benchmark

B.1 Reference posteriors

We generated 10k reference posterior samples for each observation. For the Gaussian Linear task, reference
samples were obtained by using the analytic solution for the true posterior. Similarly, for Gaussian Linear Uniform
and Gaussian Mixture, the analytic solution was used, combined with an additional rejection step, in order to
account for the bounded support of the posterior due to the use of a uniform prior. For the Two Moons task, we
devised a custom scheme based on the model equations, which samples both modes and rejects samples outside
the prior bounds.

For SLCP, SIR, and Lotka-Volterra, we devised a likelihood-based procedure to ensure obtaining a valid set of
reference posterior samples: First, we either used Sampling/Importance Resampling (Rubin, 1988) (for SLCP,
SIR) or Slice Sampling MCMC (Neal, 2003) (for Lotka-Volterra) to obtain a set of 10k proposal samples from
the unnormalized posterior f(0) = p(0|x,) = p(x,|0)p(0). We used these proposal samples to train a density
estimator, for which we used a neural spline flow (NSF) (Durkan et al., 2019). Next, we created a mixture
composed of the NSF and the prior with weights 0.9 and 0.1, respectively, as a proposal distribution ¢(0)
for rejection sampling (Martino et al., 2018). Rejection sampling relies on finding a constant M such that
7(0) < Mg(0) for all values of 8: To find this constant, we initialized M = 1, sampled 8 ~ ¢(80), and updated
M =1.2f(0)/9(0) if f(0)/g(0) > M. This loop stopped only after at least 100k samples without updating
M were reached. We then used M, f, and g to generate 10k reference posterior samples. We found that the
NSF-based proposal distribution resulted in high acceptance rates. We used this custom scheme rather than
relying on MCMC directly, since we found that standard MCMC approaches (Slice Sampling, HMC, and NUTS)
all struggled with multi-modal posteriors and wanted to avoid bias in the reference samples, e.g. due to correlations
in MCMC chains.

As a sanity check, we ran this scheme twice on all tasks and observation and found that the resulting reference
posterior samples were indistinguishable in terms of C2ST.

B.2 Code

We provide sbibm, a benchmarking framework that implements all tasks, reference posteriors, different metrics
and tooling to run and analyse benchmark results at scale. The framework is available at:

github.com/sbi-benchmark/sbibm

We make benchmarking new algorithms maximally easy by providing an open, modular framework for integration
with SBI toolboxes. We here evaluated algorithms implemented in pyABC (Klinger et al., 2018), pyabcranger
(Collin et al., 2020), and sbi (Tejero-Cantero et al., 2020). We emphasize that the goal of sbibm is orthogonal
to any toolbox: It could easily be used with other toolboxes, or even be used to compare results for the same
algorithm implemented by different ones. There are currently several SBI toolboxes available or under active
development. elfi (Lintusaari et al., 2018) is a general purpose toolbox, including ABC algorithms as well as
BOLFI (Gutmann and Corander, 2016). There are many toolboxes for ABC algorithms, e.g., abcpy (Dutta et al.,
2017), astroABC (Jennings and Madigan, 2017), CosmoABC (Ishida et al., 2015), see also Kousathanas et al. (2018)
for an overview. carl (Louppe et al., 2016) implements the algorithm by Cranmer et al. (2015). hypothesis
(Hermans, 2019), and pydelfi (Alsing, 2019) are SBI toolboxes under development.

B.3 Reproducibility

To ensure reproducibility of our results, we publicly released all code including instructions on how to run the
benchmark on cloud-based infrastructure.
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Figure 1: Additional ABC results with linear regression adjustment (LRA) and semi-automatic
summary-statistics (SASS). We ran ABC with post-hoc LRA (Beaumont et al., 2002; Blum, 2018). On some
tasks, this led to an improvement relative to versions without post-hoc adjustment. On Two Moons (bimodal
posterior), linear adjustment decreased performance. We implemented our own SASS (Prangle et al., 2014b) with
a third order polynomial feature expansion, and observed similar performance as with the implementation in
abepy toolbox (Dutta et al., 2017).
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Figure 2: RF-ABC results. Results for RF-ABC (as described in A.9) compared to REJ-ABC and SMC-ABC
on all benchmark tasks, using C2ST. Note that RF-ABC predicts each parameter individually, i.e. effectively
assumes the posterior to be factorized— this is only appropriate for the Gaussian Linear, Gaussian Linear Uniform,
and Gaussian Mixture tasks. On other tasks, the posterior deviates markedly from being factorized, and therefore
it is to be expected that RF-ABC performance is limited, even when using many samples. Each data point
corresponds to the mean and 95% confidence interval across 10 observations.
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Figure 3: SL results. Results for SL compared to and SNLE on benchmark tasks in terms of C2ST. Note
that SL performs simulations at every MCMC step to approximate a Gaussian likelihood (see A.10 for details),
and therefore it does not produce sensible results with the simulation budgets of other algorithms (between 1k
and 100k), . In our experiments, SL required on the order of 108 to 10° simulations. For the SLCP Distractors
and Lotka-Volterra stable estimation of covariances was not possible, which is why these tasks were omitted
(details in A.10). We do not report SL results in the main paper, given the huge difference in simulation budget.
Each data point corresponds to the mean and 95% confidence interval across 10 observations.
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REJ-ABC on Two Moons NLE on Two Moons
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Figure 4: MMD on Two Moons. When using MMD with the median heuristic (as commonly done, including
in SBI papers), MMD is slightly lower for the posterior obtained by REJ-ABC (left, blue samples), than for
SNLE samples (right, green samples): 0.00729 (REJ-ABC) versus 0.00772 ( ). This is at odds with the visual
impression of the quality of the fit (reference samples in gray) as well as C2ST results: A classifier performed
near chance level (.502) for SNLE samples while being able to tell apart REJ-ABC samples from the reference
with accuracy 0.794. When manually choosing a length scale on the median distance of a single crescent (i.e.,
0.09 instead of 1.78), MMD results were in agreement with C2ST results: 0.00738 (REJ-ABC) versus 0.00035
(SNLE), i.e., they also suggested a better fit for SNLE. In the main paper, we prefer to report C2ST because we
found it less sensitive to hyperparameters: reliance on the commonly used median heuristic can be problematic
on tasks with complex posterior structure, e.g., multi-modality in Two Moons, as demonstrated here. We refer
the interested reader to Liu et al. (2020) for further illustrative examples of where MMD with Gaussian kernels
can have limited power. We also want to point out that new kernel-based two sample tests are being actively
developed which might make them easier to use on such problems in the future.
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Figure 5: Correlations between metrics for all tasks. NLTP is the negative log probability of true parameters.
Note that calculation of KSD was numerically unstable when calculating gradients for SLCP Distractors and Two
Moons, resulting in correlation of zero for these tasks.
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H Hyperparameter Choices

In this section, we address two central questions for any benchmark: (1) how hyperparameters are chosen and (2)
how sensitive results are to the respective choices.

Rather than tuning hyperparameters on a per-task basis, we changed hyperparameters on multiple or all tasks at
once and selected configurations that worked best across tasks. We wanted to avoid overfitting on individual
benchmark tasks and were instead interested in settings that can generalize across multiple tasks. In practice,
tuning an algorithm on a given task would typically be impossible, due to the lack of suitable metrics that can be
computed without reference posteriors as well as high computational demands that SBI tasks often have.

To find good general settings, we performed more than 10 000 individual runs. We explored hyperparameter
choices that have not been previously reported, and revealed substantial improvements. The benchmark offers
the possibility to systematically compare different choices and design better and more robust SBI algorithms.

H.1 REJ-ABC

Classical ABC algorithms have crucial hyperparameters, most importantly, the distance metric and acceptance
tolerance €. We used our own implementation of REJ-ABC as it is straightforward to implement (see A.1). The
distance metric was fixed to be the ly-norm for all tasks and we varied different acceptance tolerances € across
tasks on which REJ-ABC performed sufficiently well. Our implementation of REJ-ABC is quantile based, i.e,.
we select a quantile of the samples with the smallest distance to the observed data, which implicitly defines an
€. The 10k samples needed for the comparison to the reference posterior samples are then resampled from the
selected samples. In order to check whether this resampling significantly impaired performance, we alternatively
fit a KDE in order to obtain 10k samples.

Below, we show results for different schedules of quantiles for each simulation budget, e.g., a schedule of 0.1,
0.01, 0.001 corresponds to the 10, 1 and 0.1 percent quantile, or the top 100 samples for each simulation budget.
Across tasks and budgets the 0.1, 0.01, 0.001 quantile schedule performed best (Fig. 6). Performance showed
improvement by the KDE fit, especially on the Gaussian tasks. We therefore report the version using the top 100
samples and KDE in the main paper.



168 APPENDIX IV

@ Gaussian Linear / B Gaussian Linear Uniform

REJ-ABC 10 REJ-ABC 100 REJ-ABC 100 KDE REJ-ABC 1000 REJ-ABC 1000 KDE
1.0 o—o0—0 o—o—0 .\.\. ——
0.9 0\,\.
Z 0.8
0.7
© 06
0.5
@ SLCP / H SLCP Distractors
1.0  #———8——=n —a—s o—r » o—— —s—3p
0.9
5 0.8
0.7
© 06
0.5
@ Bernoulli GLM / B Bernoulli GLM Raw
1.0 o—o—0 o——o—10 O—C—— O—oO—q I
- 0.9
Q 0.8
0.7
© 06
0.5
Gaussian Mixture
1.0 o ——eo—9
0.9 '\,\.
2 0.8 .\.\. .\’\' \\
0.7
© 06
0.5
Two Moons
1.0
09 T—e—0 '\*\. ‘\'\,
0 08
N 07
© 06
0.5
SIR
1.0 *——o—o o\‘ o\‘\‘ o\\
0.9
Z’ 0.8 \\.
0.7
© 06
0.5
Lotka-Volterra
1.0 o——o—20 o———o—20 o——>o—0 o——o—0 o——>o—20
0.9
2 0.8
0.7
© 0.6
0.5
o < » o < P < 0 ® < » o < 0
e & @& & & & & & & @& & @& @2 @& @

Number of Simulations

Figure 6: Hyperparameter selection for REJ-ABC. C2ST performance of different percentile schedules
across simulation budgets (columns) for all tasks (rows). Top label for each plot column: number of samples
retained, and optional KDE. Across tasks and budgets, the schedule of 0.1, 0.01, 0.001 percentiles, which
corresponds to the top 100 samples closest to the observation, performed best. Each data point corresponds to
the mean and 95% confidence interval across 10 observations.
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H.2 SMC-ABC

SMC-ABC has several hyperparameters including the population size, the perturbation kernel, the epsilon
schedule and the distance metric. In order to ensure that we report the best possible SMC-ABC results for a fair
comparison, we sweeped over three hyperparameters that are especially critical: the population size, the quantile
used to select the epsilon from the distances of the particles of the previous population, and the scaling factor of
the covariance of the Gaussian perturbation kernel. The remaining hyperparameters were fixed to values common
in the literature: Gaussian perturbation kernel and [2-norm distance metric.

Additionally, we compared our implementation against one from the popular pyABC toolbox (Klinger et al.,
2018) to which we refer as versions A and B respectively. We sweeped over these hyperparameters and optionally
added a post-hoc KDE fit for drawing the samples needed for two-sample based performance metrics.

Overall, the parameter setting with a population size of 100, a kernel covariance scale of 0.5, and an epsilon
quantile 0.2 performed best. Although the results of the two different implementations were qualitatively very
similar (compare Fig. 7 and Fig. 8, respectively), version A was slightly better on the Gaussian tasks. Although
we tried to match the implementations and the exact settings, there are small differences between the two,
which might explain the difference in the results: Implementation B constructs the Gaussian perturbation kernel
using kernel density estimation on the weighted samples of the previous population, whereas A constructs it
using the mean and covariance estimated from samples from the previous population. The latter could be
advantageous in case of a Gaussian-like (high-dimensional) posterior (Gaussian Mixture and Gaussian linear
task) and disadvantageous in a non-Gaussian-like posteriors (e.g., Two Moons). We decided to report results for
SMC-ABC in the main paper using implementation A (ours) with population size 100 for simulation budgets
1k and 10k, and population size 1000 for simulation budget 100k, a kernel covariance scale of 0.5, and epsilon
quantile 0.2. This choice of kernel covariance scale is different from recommendations in the literature (Sisson
et al., 2007; Beaumont et al., 2009). We only found very small performance differences for different scales and
note that our choice is in line with the recommendation of the pyABC toolbox (pyABC API Documentation, 2020),
i.e., using a scale between 0 and 1. Performance showed improvement by the KDE fit, especially on the Gaussian
tasks. We therefore report the version with KDE in the main paper.



170 APPENDIX IV

@ Gaussian Linear / B Gaussian Linear Uniform

w w w w w w
g g 8 4 g 8 2 < o 2 2 2
= = = x = X N N 10 @ @ o~ o~ [ e @ ©
B e S S S S S S-S SN S S BT SV SV
S S S B N N N & o o © © o o © o © o o o
o o o o o o o o o o o o o o o o o o o o o o o o
S 2 ¢ 8 8 8 2 8 2 & &8 & &8 &8 2 & 2 8 e 8 g g8 8 8
1.0 wmw e [ 22 ] an [ 2] jstatal [ "™ [ 99 [ ™
oo R T TR TR T R TTRTTRTRTR TR
—
gOB
0.7
00.6
0.5
@ SLCP / M SLCP Distractors
10 #E8 pgy HEE pgy BN pygy THE gy UES pyy BEE puy FHY Ny BEY mEy UES mEy FEY Ny TR muy EU BBy
. 09
QOB
0.7
© ob
0.5
@ Bernoulli GLM / M Bernoulli GLM Raw
1.0 wms - paE BEE [ 22 ] - |22 ] g g »ag -y -2-F) [ 22 ]
&048
0.7
© 06
0.5
Gaussian Mixture
1.0
0.9
- L Q
08 e . \ .\.. \.\ \\ \\
8 o7 R S . .
0.6
0.5

Two Moons

NSRRI LR RRR AR
ANEHESERSENRRRARERRRERS

Lotka-Volterra

C2ST
[SY=Y=Y=Y=PN
(%))

C2sT

10 ooe 00 000 009 000 009 000 009 000 000 000 000 009 000 000 000 000 000 000 000 000 000 000 00O
0.9
% 08
o~
S 07
0.6
05
b o m e o b oo oo b oo B w0 wo B won oo w e oo oo 0o oo oo w0 80 oo 0o e
O OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 O
©22202222202222222222022222202222220222222222222¢222

Number of Simulations

Figure 7: Hyperparameter selection for SMI(C-ABC with our implementation. Top label for each plot
column: population size, kernel covariance scale, epsilon quantile/epsilon-decay parameter, and optional KDE.
Each data point corresponds to the mean and 95% confidence interval across 10 observations.
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Figure 8: Hyperparameter selection for SMIC-ABC. with pyABC implementation. Top label for each
plot column: population size, kernel covariance scale, epsilon quantile/epsilon-decay parameter, and optional
KDE. Each data point corresponds to the mean and 95% confidence interval across 10 observations.
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H.3 MCMC for (S) and (S)

(S) and (9) both rely on MCMC sampling, which has several hyperparameters. In line with Papamakarios
et al. (2019b) and Durkan et al. (2020), we used Slice Sampling (Neal, 2003). However, we modified the MCMC
schemes used in these papers and obtained significant improvements in performance and speed.

Number of chains and initialization. While Papamakarios et al. (2019b); Durkan et al. (2020) used a single
chain with axis-aligned updates, we found that on tasks with multi-modal posteriors, it can be essential to run
multiple MCMC chains in order to sample all modes. Performance on Two Moons, for example, was poor with
a single chain, since usually only one of the crescent shapes was sampled. Rather than initialising chains by
drawing initial locations from the prior, we found the resampling scheme as described in A.3 to work better for
initialisation, and used 100 chains instead of a single one.

Transformation of variables. When implementing MCMC, it is common advice to transform problems to
have unbounded support (Hogg and Foreman-Mackey, 2018), although this has not been discussed in SBI papers
or implemented in accompanying code. We found that without this transformation, MCMC sampling could get
stuck in endless loops, e.g., on the Lotka-Volterra task. Apart from the transformation to unbounded space, we
found z-scoring of parameters and data to be crucial for some tasks.

Vectorization of MCMC sampling. We reimplemented Slice Sampling so that all chains could perform
likelihood evaluations in parallel. Evaluating likelihoods, e.g., in the case of (S) , requires passes through a
flow-based density estimator, which is significantly faster when batched. This allowed us to sample all chains in
parallel rather than sequentially and yielded huge speed-ups: For example, SNLE on Gaussian Linear took more
than 36 hours on average for 100k simulations without vectorization, and less than 2 hours with vectorization.

H.4 Density estimator for (S)

Approaches based on neural networks (NN) tend to have many hyperparameters, including the concrete type of
NN architecture and hyperparameters for training. We strove to keep our choices close to Durkan et al. (2020),
which are the defaults in the toolbox we used (sbi, Tejero-Cantero et al., 2020).

While Papamakarios et al. (2019b); Durkan et al. (2020) used Masked Autoregressive Flows (MAFs, Papamakarios
et al., 2017) for density estimation, we explored how results change when using Neural Spline Flows (NSFs,
Durkan et al., 2019) for density estimation. These results are shown in Fig. 9.
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Figure 9: Density estimator selection for (S) . Performance of (S) in terms of C2ST across tasks

using MAFs or NSFs for density estimation. Considering all tasks, NSFs generally performed worse, e.g., using
NSFs significantly reduced performance on SIR and Lotka-Volterra, indicating that the added flexibility of NSFs
was not needed for (S) . We thus reported performance using MAFs in the main paper. Each data point
corresponds to the mean and 95% confidence interval across 10 observations.
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H.5 Density estimator for (S)NPE

We performed the analogous experiments for (S)NPE as for (S) : Here, we found NSFs to increase performance
relative to MAFs (Fig. 10). When directly estimating the posterior distribution, especially on tasks with complex
multi-modal structure like Two Moons or SLCP, the additional flexibility offered by NSFs improved performance.
With NSFs, artifacts from density transformation that were visible e.g. in Two Moons posteriors, vanished. To
our knowledge, results on (S)NPLE with NSFs have not been previously published.
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Figure 10: Density estimator selection for (S)INPE. Performance of (S)NPE in terms of C2ST across tasks
using MAFs or NSFs for density estimation. Considering all tasks, NSFs generally performed better, especially on
Gaussian Mixture, Two Moons, and SIR. We thus reported performance using NSFs in the main paper. Each
data point corresponds to the mean and 95% confidence interval across 10 observations.
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H.6 Classifier choice for (S)

For (S) , we compared two different choices of classifier architectures: an MLP and a ResNet architecture, as
described in A.7. While results were similar for most tasks (Fig. 11), we decided to use the ResNet architecture
in the main paper due to the better performance on Two Moons and SIR for low to medium simulation budgets.
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Figure 11: Classifier architecture for (S) . Performance of (5) in terms of C2ST across tasks using

MLPs or ResNets for classification. Considering all tasks, ResNets generally performed better, especially on Two
Moons and SIR. We thus reported performance using ResNets in the main paper. Each data point corresponds to
the mean and 95% confidence interval across 10 observations.
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M Metrics

M.1 Negative log probability of 8, (NLTP)

In simulation-based inference, the average negative log likelihood of true parameters —E[log q(6,|x,)] (NLTP) is
commonly reported as a performance metric in the literature (Papamakarios and Murray, 2016; Durkan et al.,
2018; Papamakarios et al., 2019b; Greenberg et al., 2019; Hermans et al., 2020; Durkan et al., 2020). An attractive
property of this metric is that the access to the ground-truth posterior is not required.

It is important to point out, however, that calculating this metric on a single or small number of pairs (0,,%,) is
problematic. To illustrate the issue, consider the following example (as discussed in Talts et al. (2018)): Consider
0 ~ N(0,12),2]0 ~ N(0,12), and a single pair (8,,%,) with 6, = 0 and an implausible (but possible) z, = 2.1.
In this case, the true posterior is A/(#]1.05,0.52) under which the 6, has low probability since it is more than two
standard deviations away from the posterior mean. If an algorithm fitted a wrong posterior, e.g., by overestimating
the standard deviation as 1 instead of 0.5, the probability of 6, under the estimated posterior would be higher
than under the true posterior.

Therefore, a large number of pairs (68,,X,) should be used. Indeed, in the limit of infinite number of pairs (8,,%,),
the metric converges to a Dk,

Eo,~p(8)Ex,~p(xi6,) [ — 108 4(00%,)]
= B, mp(x),00~p(601x.) | — 108 0(80]%0)]
= By mp(30).0,~p(615,) | — 108 4(00[%0) + 108 p(8,[%0)] — Exx, mp(sc).0,~p(B1,) [ 108 P(85[%0)]
= Ex,wpi) DKL (P(0]%0)[|(0]%0)) + Exx, px) H(p(6]x,))

The first term in the final equation is the average Dgi1, between true and approximate posteriors over all
observations x, that can be generated when sampling parameters 6, from the prior. The second term, the entropy
term, would be the same for all algorithms compared.

In the context of this benchmark, we decided against using the probability of 8, as a metric: For all algorithms
that are not amortized (all but one), evaluating posteriors at different x, would require rerunning inference. As
the computational requirements for running the benchmark at 10 observations per task are already high, running
tasks for hundreds of observations would become prohibitively expensive.

M.2 Simulation-based calibration (SBC)

In simulation-based calibration (SBC), samples 8’ are drawn from the data-averaged posterior, i.e., the posterior
obtained by running inference for many observations. When the posterior approximation is exact, 8’ is distributed
according to the prior (Talts et al., 2018).

Let us briefly illustrate this: In SBC, we draw 8 ~ p(8),x ~ p(x|0), 8’ ~ ¢(8'|x), which implies a joint distribution
7(0,%,0") = p(0)p(x|0)q(6'|x). The marginal 7(8') is then:

m(0') = // p(x]0)q(6'|x) dx d6 = // (6,x)q(6'|x) dx d6 = /p(x) q(0'|x) dx

If the approximate posterior is the true posterior, the marginal on 6’ is equal to the prior: If ¢(8’|x) = p(&’|x),
then 7(0") = [ p(x, 0')dx = p(@’), i.e., one can set up a consistency test that is based on the distribution of 6’
samples Talts et al. (2018) do this by using frequentist tests per dimension.

Note that SBC as described above is merely a consistency check. For example, if the approximate posterior were
the prior, a calibration test as described above would not be able to detect this. This is a realistic failure mode in
simulation-based inference. It could happen with rejection ABC in the limit € — oo, or when learned summary
statistics have no information about 6. One way around this is issue is proposed in Prangle et al. (2014a), who
propose to restrict observations to a subset of all possible X'.

SBC is similar to the average negative log likelihood of true parameters described above, in that inference needs
to be carried out for many observations generated by sampling from the prior. Running inference for hundreds of
observations would become prohibitively expensive in terms of compute for most algorithms, which is why we do
not rely on SBC in the benchmark.
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M.3 Median distance (MEDDIST)

Posterior predictive checks (PPCs) use the posterior predictive distribution to predict new data, X' ~ p(x'|x,) =
J p(x'|0)q(0]x,) dB. The observed data x, should look plausible under the posterior predictive distribution
(Gelman et al. (2004), chapter 6). A particular PPC, used for example in Papamakarios et al. (2019b); Greenberg
et al. (2019); Durkan et al. (2020), is to assess the median L2 distance between N’ posterior predictive samples x’
and x,. The median is used since the mean would be more sensitive to outliers.

In the benchmark, we refer to this metric as median distance (MEDDIST) and drew N’ = 10000 samples from
each posterior predictive distribution to compute it. In contrast with other metrics considered here, the median
distance is computed in the space of data x and requires additional simulations (which could be expensive,
depending on the simulator). The median distance should be considered a mere check rather than a metric and it
does not necessarily test the structure of the estimated posterior.

M.4 Maximum Mean Discrepancy (MMD)

Maximum Mean Discrepancy (MMD) is an Integral Probability Metric (IPM). Linear and quadratic time estimates
for using MMD as a two-sample test were derived in Gretton et al. (2012). MMD has been commonly used in the
SBI literature with Gaussian kernels (Papamakarios et al., 2019b; Greenberg et al., 2019; Hermans et al., 2020),
setting a single length-scale hyperparameter by using a median heuristic (Ramdas et al., 2015). We follow the
same procedure, i.e., use Gaussian kernels with length-scale determined by the median heuristic on reference
samples. MMDs are calculated using 10k samples from reference and approximate posteriors.

If simple kernels are used to compare distributions with complex, multimodal structure, distinct distributions can
be mapped to nearby mean embeddings, resulting in low test power. On SLCP and Two Moons, for example, we
found a translation-invariant kernel to be limiting, since it cannot adapt to the local structure (see Suppl. Fig. 4).
This is reflected in the low correlation of MMD and C2ST (Suppl. Fig. 5). We emphasize that these issues are
strictly related to simple kernels with hyperparameters commonly used in the literature. Posteriors of the Two
Moons task have a structure similar to the blobs example of Liu et al. (2020), who argue for using learned kernels
to overcome the aforementioned problem.

M.5 Classifier-based tests (C2ST)

In classifier-based testing, a classifier is trained to distinguish samples of the true posterior p(0|x,) from samples
of the estimated posterior ¢(0|x,). If the samples are indistinguishable, the classification performance should be
at chance level, 0.5. Practical use and properties of classifier-based 2-sample testing (C2ST) are discussed in
Lopez-Paz and Oquab (2017) (see Gutmann et al., 2018; Dalmasso et al., 2020, for examples in the context of
SBI).

To compute C2ST, we trained a two-layer neural network with 10 times as many ReLLU units as the dimensionality
of parameters, and optimize with Adam (Kingma and Ba, 2015). Classifiers were trained on 10k z-scored samples
from reference and approximate posterior each. Classification accuracy was reported using 5-fold cross-validation.

M.6 Kernelized Stein Discrepancy (KSD)

Kernelized Stein Discrepancy (KSD) is a 1-sample goodness-of-fit test proposed independently by Chwialkowski
et al. (2016) and Liu et al. (2016). KSD tests samples from algorithms against the gradient of unnormalized true
posterior density, Vg p(0]x,). We used KSD with Gaussian kernels, setting the length-scale through the median
heuristic, and 10k samples from each algorithm.
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R Runtimes

In applications of SBI, simulations are commonly assumed to be the dominant cost. In order to make the
benchmark feasible at this scale, we focused on simple simulators and optimized runtimes, e.g. we developed
a new package bridging DifferentialEquations.jl (Rackauckas and Nie, 2017; Bezanson et al., 2017) and
PyTorch (Paszke et al., 2019) so that generating simulations for all implemented tasks is extremely fast. This
differs from many cases in practice, where the runtime costs for an algorithm are often negligible compared to the
cost of simulations. Having said that, algorithms show significant differences in runtime costs, which we measured
and report here.

We recorded runtimes for all algorithms on all tasks. In principle, runtimes could be reduced by employing
multi-CPU architectures, however, we decided for the single CPU setup to accurately compare runtimes across all
algorithms and tasks. We did not employ GPUs for training neural-networks (NN). This is because the type of
NNs used in the algorithms currently in the benchmark do not benefit much from GPU versus CPU training (e.g.,
no CNN architecture, rather shallow and narrow networks). In fact, running SNPE on SLCP using a GeForce
GTX 1080 showed slightly longer runtimes than on CPU, due to the added overhead resulting from copying data
back and forth to the device. Therefore, it was more economical and comparable to run the benchmark on CPUs.

All neural network-based algorithms were run on single 3.6 GHz CPU cores of AWS C5-instances. ABC algorithms
were run on single CPU cores of an internal cluster with 2.4 GHz CPUs. We observed a difference in runtimes of
less than 100ms when running ABC algorithms on the same hardware as used for neural network-based algorithms.

Figure 12 shows the recorded runtimes in minutes. We observed short runtimes for REJ-ABC and SMC-ABC, as
these do not require NN training or MCMC. The sequential versions of all three NN-based algorithms yielded
longer runtimes than the non-sequential versions because these involve 10 rounds of NN training. Among the
sequential algorithms, SNPE showed the longest runtimes. Runtimes with MAFs instead of NSFs tend to be faster,
e.g. the difference between MAFs and NSFs using SNPE on SLCP at 100k simulations was about 50 minutes on
average. We also emphasize that the speed of (S) reported here was only obtained after vectorizing MCMC
sampling. Without vectorization, runtime on the Gaussian Linear for SNLE was more than 36 hours instead of
less than 2 hours (see Appendix H).
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Figure 12: Runtime on benchmark tasks. Runtime of REJ-ABC, SMC-ABC, , SNLE, NPE, SNPE,

, SNRE in minutes, for 10 observations each, means and 95% confidence intervals. Each run was allocated a
single CPU core, see Appendix R for details.
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T Tasks

T.1 Gaussian Linear

Inference of the mean of a 10-d Gaussian model, in which the covariance is fixed. The (conjugate) prior is
Gaussian:

Prior N(0,0.101)
Simulator x|0 ~ N(x|lmg =60,S =0.101)
Dimensionality 6 ¢ R'?, x ¢ R!?

T.2 Gaussian Linear Uniform
Inference of the mean of a 10-d Gaussian model, in which the covariance is fixed. The prior is uniform:

Prior Uu(-1,1)
Simulator x|0 ~ N (xjmg =0,S =0.101)
Dimensionality 6 ¢ R!%,x ¢ R0

T.3 SLCP
A challenging inference task designed to have a simple likelihood and a complex posterior. The prior is uniform

over five parameters 6 and the data are a set of four two-dimensional points sampled from a Gaussian likelihood
whose mean and variance are nonlinear functions of 8:

Prior Uu(-3,3)
Simulator x|0 = (x1,...,X4), X; ~ N (mg, Sg),
2 .
where mg = b1 , Se = il po152 , 81 = 03,80 = 0% p=tanh b5
0> ps1sa S5

Dimensionality 6 € R®,x € R®
References Papamakarios et al. (2019b); Greenberg et al. (2019); Hermans et al. (2020)
Durkan et al. (2020)

T.4 SLCP with Distractors

This task is similar to T.3, with the difference that we add uninformative dimensions (distractors) to the
observation:

Prior Uu(-3,3)
Simulator x|0 = (x1,...,X100), X = p(y), where p re-orders the dimensions of y with a fixed random
permutation,
Y181 ~ N(mg, Sp), Yi(9:100] ~ % 2?21 ta(p, Zi)
where mg = b1 ,Se = st ps152 , 81 = 03,89 = 02 p = tanh 05,
05 ps182  s2

ul~ N(0,15%1), E;-’k ~ N(0,9), for j >k, E;-,j = 3¢®, where a ~ N(0,1), E;‘k = 0 otherwi
Dimensionality 6 € R® x ¢ R
References Greenberg et al. (2019)
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T.5 Bernoulli GLM

Inference of a 10-parameter Generalized linear model (GLM) with Bernoulli observations, and Gaussian prior
with covariance matrix which encourages smoothness by penalizing the second-order differences in the vector of
parameters (De Nicolao et al., 1997). The observations are the sufficient statistics for this GLM:

Prior B~ N(0,2), f ~N(0,(F'F)™1),

Fiio=1Fi1=-2 F=1+ /55 Fij=0otherwise, 1 <i,j <9
Simulator x|0 = (x1,...,X10), X1 = Z;‘F 2iy X2:10 = X%VZ’

z ~ Bern(n(v; f + B)), n(-) = exp(-)/(1 + exp(-)),

frozen input between time bins ¢ — 8 and i: v; ~ N (0,1I), V = [v1,ve, ..., v7]
Dimensionality 0 c R x c R

Fixed parameters Duration of task 7' = 100.

References Lueckmann et al. (2017); Gongalves et al. (2020)

T.6 Bernoulli GLM Raw

This task is similar to T.5, the sole difference being that the observations are not the sufficient statistics for the
Bernoulli GLM process but the raw observations:

Prior B~ N(0,2), f ~ N(0,(F'F)™1),
Fiio=1F,; 1=-2F;;=1+,/5 F;; =0 otherwise 1 <i,j <9
Simulator x|0 = (x1,...,X100), ; ~ Bern(n(v; £ + B)), n(-) = exp(-)/(1 + exp(-))
frozen input between time bins i — 8 and i: v; ~ N(0,1),
Dimensionality 0 c R0 x c R100

Fixed parameters Duration of task 7' = 100.

T.7 Gaussian Mixture

This task is common in the ABC literature. It consists of inferring the common mean of a mixture of two
two-dimensional Gaussian distributions, one with much broader covariance than the other:

Prior U(-10,10)

Simulator x|0 ~ 0.5 N(xjmg = 0,S =I)+ 0.5 N (xjmg = 6,S =0.01 ©T)

Dimensionality 6 € R? x € R?

References Sisson et al. (2007); Beaumont et al. (2009); Toni et al. (2009); Simola et al. (2020)
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T.8 Two Moons

A two-dimensional task with a posterior that exhibits both global (bimodality) and local (crescent shape) structure
to illustrate how algorithms deal with multimodality:

Prior Uu(-1,1)

Simulator x|0 = rcos(a) +0.25 + 1601+ 021/ V2 , where o ~ U(—7/2,7/2), r ~ N(0.1,0.012)
rsin(a) (=61 +62)/V2

Dimensionality 6 € R? x ¢ R?

References Greenberg et al. (2019)

T.9 SIR

The SIR model is an epidemiological model describing the dynamics of the number of individuals in three possible
states: susceptible S, infectious I, and recovered or deceased R.

The SIR task consists in inferring the contact rate § and the mean recovery rate ~, given a sampled number of
individuals in the infectious group I in 10 evenly-spaced points in time:

Prior B ~ LogNormal(log(0.4),0.5) v ~ LogNormal(log(1/8),0.2)
Simulator x|0 = (z1,...,210), z; ~ B(1000, %), where I is simulated from
i = -t
@ =B8N -l
G =1
Dimensionality 0 c R? x ¢ R0

Fixed parameters Population size N = 1000000 and duration of task 7" = 160.
Initial conditions: (S(0),1(0), R(0)) = (N —1,1,0)
References Kermack and McKendrick (1927)

T.10 Lotka-Volterra

This is an influential model in ecology describing the dynamics of two interacting species, most commonly prey
and predator interactions. Our task consists in the inference of four parameters 6 related to species interaction,
given 20 summary statistics consisting of the number of individuals in both populations in 10 evenly-spaced
points in time:

Prior a ~ LogNormal(—0.125,0.5), 8 ~ LogNormal(—3,0.5),
v ~ LogNormal(—0.125,0.5), § ~ LogNormal(—3, 0.5)
Simulator x|0 = (X1, ...,X10), X1,; ~ LogNormal(log(X),0.1), x2 ; ~ LogNormal(log(Y"),0.1),

X and Y are simulated from

X — 0 X — BXY

dt
X — Y +6XY
Dimensionality 0 c R* x ¢ R

Fixed parameters Duration of task 7' = 20. Initial conditions: (X (0),Y(0)) = (30,1)
References Lotka (1920)
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W Website

The companion website (sbi-benchmark.github.io) allows interactive comparisons in terms of all metrics. It
also allows inspection of posterior samples of all runs, which we found insightful when choosing hyperparameters
and diagnosing implementation issues. Two screenshots are provided in Fig. 13.
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Figure 13: Screenshots from the companion website. Top: Classification accuracy (C2ST) for a subset of
sequential algorithms on the SLCP task. Bottom: SNLE posterior on SLCP for xf,l) at 100k simulations.
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