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Chapter 1

Introduction

This thesis applies computational approaches opened up by the use of tropical
geometry to enumerative questions in algebraic geometry.

A degeneration of algebraic counting problems to tropical geometry produces
new concepts and computational approaches. The challenge is to find methods
to lift the results in the degeneration back to the original problem. This thesis
contributes towards the fundamental research in this area by investigating two
geometric counting problems via tropical geometry.

The first part of this thesis closes a research gap on the recovery of the classical
count of 4, 8, 16 or 28 real bitangents to smooth quartic curves by Plücker and
Zeuthen [Plü39, Zeu73] from tropical geometry. Building on [LM20, CM21], we
develop methods to produce an understanding of the global lifting of tropical
bitangents over R, and further over other Henselian fields. Moreover, we establish
a computational tool in polymake for the investigation of tropical bitangents and
their lifting behavior [GP], and present results of analyses using this tool. This is
joint work with Marta Panizzut [GP21a, GP21b].

The second part of this thesis explores the question of tropically counting binodal
surfaces. We exploit tropical floor plans, a recent enumerative tool from tropical
geometry [MMSS22]. We prove that tropical floor plans recover the algebraic
counts of plane curves, while for surfaces the current technique is not sufficient
to asymptotically recover the second order term. To improve the approach for
surfaces, we provide a classification of the smallest examples of polytopes that can
appear as Newton polytopes of a binodal surface together with instructions how to
use them for tropical counting. This investigation is of computational nature and is
aided by functions [Gei22] written for OSCAR. Furthermore, we extend the definition
of tropical floor plans that contains the newly found cases. Additionally, we show
that these smallest cases contribute to the third order term of the asymptotic count.
This research is joint work with Madeline Brandt [BG21].
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Chapter 1 Introduction

Figure 1.1: The curve V (25 +x+x2 +25x3 +23y+xy+23x2y+22y2 +22xy2 +23y3)
and its tropicalization under the 2-adic valuation.

1.1 Tropical enumerative geometry

What is tropical geometry?
Tropical geometry connects and combines methods from many different areas of
mathematics, such as algebraic geometry, combinatorics and polyhedral geometry.
It can be viewed as a linear degeneration of algebraic geometry towards polyhedral
combinatorics.

Tropical geometry is a relatively young branch of mathematics. Its beginnings can
be traced back to the 1970s and 1980s where different fundamental ideas appeared:
The introduction of the logarithmic limit-set of algebraic varieties by Bergman
[Ber71], Viro’s patchworking method [Vir84], amoebas of Laurent polynomials by
Gelfand, Kapronov and Zelevinsky [GKZ94], Maslov’s dequantization [KM97], as
well as work by Bieri and Groves on characters induced by valuations [BG84]. The
name "tropical" goes back to a suggestion by Christian Choffurt to Imre Simon who
pioneered the use of the min-plus algebra for optimization theory [Sim88]. Another
of the suggested names for tropical varieties was "logarithmic limit sets", which
emphasizes the view of tropical geometry as a degeneration of algebraic geometry.
Algebraic geometry is concentrated on solving polynomial equations. Its main

objects of study are algebraic varieties, which are zero sets of polynomials. Its
challenges include the solvability of polynomials over different (not necessarily
algebraically closed) fields. Tropical varieties can be regarded as degenerations of
algebraic varieties. They are balanced polyhedral complexes, in particular they are
piecewise linear. See Figure 1.1 for an example. In the degeneration process, called
tropicalization, we lose some information. Still some data is preserved, like the
dimension and even, using an adapted tropical notion, the degree. One advantage of
the degeneration is that new methods from polyhedral geometry and combinatorics
can be applied to the tropical object.

The results gained by tropical methods can be moved back to the algebraic setting

2



1.1 Tropical enumerative geometry

via the concept of lifting, sometimes also called realizability. The relationship

Algebraic
Geometry

Tropical Geometry
(Polyhedral Geometry
& Combinatorics)

lifting

tropicalization

Figure 1.2: The relationship between algebraic and tropical geometry

between algebraic and tropical geometry as depicted in Figure 1.2 is a give and
take: We will see many examples of how to obtain results in algebraic geometry
via tropical geometry in the following. But it is also possible to gain results in
combinatorics from algebraic geometry [AHK18].
Tropical geometry has established itself as a theory on its own, concerned also

with abstract tropical varieties, of which not all can be realized as tropicalizations
of algebraic varieties. This thesis is focused on embedded tropical geometry, where
tropical varieties arise from tropicalization. The interplay between coordinate
changes and tropicalization is at the core of tropical modification theory, on which
the results in [LM20], which are foundational for Part I of this thesis, are based.

Tropical geometry has many applications, both in- and outside of mathematics,
such as in economy [BK19, TY19] or machine learning [ZNL18, MCT21]. Inside of
pure mathematics, its areas of application cover, but are not limited to, arithmetic
geometry [KRZB16], topology and geometry of moduli spaces [ACP15, CGP21,
RSS14], and elimination theory [ST08]. The list of references given here is by
far not complete. Another area of successful application of tropical methods in
mathematics is enumerative geometry.

What is enumerative geometry?
Enumerative geometry is concerned with solving counting problems, like enumerat-
ing the number of geometric objects that satisfy certain conditions. Mathematicians
have been interested in these kind of problems since ancient Greece. One example
are the rings of Apollonius. Apollonius of Perga (262 B.C. - 190 B.C.) stated and
solved the still memorable question of how many circles are tangent to three given
circles, see Figure 1.3. Though the original solution was lost, a later report passed
down his result stating that there are 8 circles tangent to three given circles.
Counting problems can be stated for different areas in geometry. In algebraic

geometry, the typical enumerative question focuses on the number of algebraic
varieties of a fixed dimension and type (e.g. a fixed number of nodal singularities)
that pass through a certain number of given points in a generic distribution.
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Chapter 1 Introduction

Figure 1.3: An example of Apollonius’ problem: The three given circles are depicted
in black, one circle tangent to all three is shown in red.

A prominent example for this are the Gromov-Witten invariants of the complex
projective plane P2

C, which count the number of irreducible plane curves of degree
d and genus g satisfying generic point conditions. Dropping the irreducibility
requirement, these numbers are sometimes called the multicomponent Gromov-
Witten invariants of P2

C. A simple example is the number of lines through 2 points
in general position, which is one. The numbers of conics through 5 points is still
relatively simple to determine; see Figure 1.4. For higher degree curves the problem
quickly becomes more involved.
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Figure 1.4: Five points in general position determine a conic curve.

Of course, there also exist other counting problems in algebraic geometry that
count varieties satisfying other counting conditions.These can be inclusions of lower
dimensional varieties (for curves these are always points), or tangency conditions.
An interesting such problem concerns the number of lines on a smooth cubic surface
[Cay49, Sal49]. This problem is connected in one of the so called "mathematical
trinities" by Vladimir Arnold [Arn99] together with two other enumerative problems:
the number of (real) bitangents to a quartic curve and the number of tritangents to
a space sextic. A space sextic is a curve in P3 of genus 4 and degree 6 that arises
as the complete intersection of a quadric and a cubic surface.

Why tropical enumerative geometry?
In the past, it has become apparent that tropical geometry provides powerful
tools to tackle algebraic enumerative questions and that these methods open

4



1.1 Tropical enumerative geometry

new approaches. A remarkable example is the ground-breaking Correspondence
Theorem by Mikhalkin [Mik05] stating that the Gromov-Witten invariants can be
recovered via tropical techniques. Over time, various tropical tools with different
advantages have been developed for counting curves [GM07, BM07], and many new
results in this area have been obtained [BBLdM18, BM07, BM09, FM10, GS18,
GK08, IKS03].

The fascinating thing about using tropical geometry to solve algebraic counting
problems is that despite the loss of information during the degeneration, we can
recover the algebraic count by applying appropriate lifting multiplicities.
As described above, we can go from an algebraic variety to a tropical variety

via tropicalization. The way back is not unique. We call elements in the fiber
of tropicalization lifts of the tropical variety over a fixed field. This fiber is in
general infinite. When counting algebraic objects we always have conditions that
our algebraic variety has to satisfy. We can tropicalize these conditions too and
obtain a tropical translation of the counting problem. To recover the algebraic
count from the tropical one, we fix a lift of the conditions (e.g. a lift of the point
conditions) and intersect this with the fiber of tropicalization of the tropical variety.
If our choices are generic, this gives us a finite number, the lifting multiplicity.
We can now define lifting multiplicities for any base field on the algebraic side

and only consider one tropical situation. This is an especially noteworthy property
of tropical geometry: tropical methods work independent of the starting fields on
the algebraic side. This allows simultaneous results for different fields. For the
Gromov-Witten invariants, the tropical methods, counted with adapted multiplicity,
recover the Welschinger invariants, which are the analogue of the Gromov-Witten
invariants over R [IKS03].

How does mathematical software come into play?
In recent years, computational methods took a more prominent role in the proof
of fascinating results in tropical and algebraic geometry. Tropical geometry de-
generates algebraic questions into piecewise linear problems, and allows the use
of polyhedral geometry via the duality. As in polyhedral geometry problems are
often discrete, it enables a computational approach in these cases.
Among the noteworthy software in the areas of commutative algebra, tropical,

polyhedral and algebraic geometry there are (with different focuses) Macaulay2 [GS],
Singular [DGPS21], gfan [Jen], polymake [GJ00] and its database polyDB, [Paf17]
and last but no least the relatively young but growing computer algebra software
OSCAR [osc].

As computations in research increase, it is more and more important to make writ-
ten code, software and computationally obtained data available to other researchers
in order to ensure reproducibility. In this connection we want to mention the
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Chapter 1 Introduction

FAIR data principle1 which stands for four important aspects when using software
for mathematical research: Findable, Accessible, Interoperable and Reusable. In
both projects on which this thesis is based, we strove to adhere to these principles.
With this in mind, we want to refer to the Mathematical Research Data Initiative
MaRDI [MaR] which is the newly established consortia initiative of mathematical
science. This has already lead to the building of mathematical repositories like the
MathRepo2 of the MPI MiS in Leipzig [FG22] where we consider publishing the
code produced for Part II of this thesis.
This thesis considers tropical enumerative problems and applies computational

methods, mainly using polymake and OSCAR, for their investigation and solution.

1.2 Topics and results
The two parts of the thesis are dedicated to two different counting problems
via tropical geometry: the enumeration of bitangents to quartic curves and the
enumeration of multi-nodal surfaces. Here we give an overview of the main results
and their impact for further research. A detailed overview of the structure of the
thesis with a summary of the content of each chapter can be found in Section 1.3.

1.2.1 Part I
One of the so called "mathematical trinities" by Vladimir Arnold [Arn99] connects
three enumerative problems - 27 lines on a cubic surface, 28 bitangents to a plane
quartic curve, 120 tritangents of a space sextic. These enumerative questions
are also interesting from the tropical point of view. When tropicalizing algebraic
enumerative questions, we often observe a superabundance phenomenon, i.e., we
tropically see more objects than algebraically.
For example, a tropical smooth cubic surface can contain infinitely many

lines [Vig10], while an algebraic cubic surface contains exactly 27 [Cay49]. For
cubic surfaces, there has been a lot of work on understanding this situation tropi-
cally by classifying the lines into families and investigating their lifting behavior
[PV22, Gei20, BS15, BK12]. Particularly to mention in this context is the work
of Joswig et al. on the computational investigation of the unimodular secondary
fan of cubic surfaces [JPS20], and the polymake extensions a-tint [Ham14] and
CubicSurfaces [JPS] for computing lines in tropical cubic surfaces. However, the
realizability problem of lines on cubic surfaces is not completely solved yet.
Something similar happens when we consider the question of 28 bitangents to

a quartic curve tropically. A tropical smooth quartic curve can have infinitely
1https://www.go-fair.org/fair-principles/
2https://mathrepo.mis.mpg.de/
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Figure 1.5: A real quartic curve with 28 real bitangents

many tropical bitangents [BLM+16] that can be grouped in 7 (possibly infinite)
equivalence classes. Each of these give rise to 4 bitangent lines to a complex quartic
curve [CJ17, LM20], thus recovering the count 28 = 7 ·4 by Plücker [Plü34]. One is
also interested in the numbers of solutions over non-algebraically closed fields like R.
To keep to the mathematical trinity discussed above, we consider the following
three examples: For real cubic surfaces it is known that they contain either 3, 9,
15 or 27 real lines [Seg42]. For real smooth quartic curves it is a result by Plücker
and Zeuthen [Plü39, Zeu73] that there are either 4, 8, 16 or 28 real bitangents. For
space sextics the situation is more involved: the number of real tritangents depends
on the genus g and the number s of ovals, which are closed loops in the real part of
the curve, and on whether the sextic curve separates the quadric surface in which
it is contained into more than one component [Kra98]. Furthermore, a space sextic
with 5 ovals can have between 84 and 120 totally real tritangents and any integer
in this interval is possible [KRSNS18].

As described above, tropical geometry allows - by counting with different multi-
plicities - the investigation over different base fields. Thus, it provides the option of
solving such enumerative questions (real and complex) simultaneously, additionally
providing tools for other valued fields. This motivates the investigation of such
enumerative questions with tropical geometry.
In the case of bitangents to quartic curves, Cueto and Markwig [CM21] de-

termined the real lifting conditions of tropical bitangents and proved that each
equivalence class lifts to either 0 or 4 bitangents to a real quartic curve. However,
there was still a research gap in tropically recovering the full count of 4, 8, 16 or
28 real bitangents classically proven by Plücker and Zeuthen [Plü39, Zeu73], as
the methods on the tropical side were not developed far enough to produce these
numbers.

Question 1.2.1. Can the tropical counting methods be extended in such a way
that we can prove that for any tropicalized quartic of the 7 tropical bitangent
classes only 1, 2, 4 or 7 can lift over R?

7
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This question is answered by the joint work with Marta Panizzut in the preprints
[GP21a, GP21b], on which Part I of this thesis is based. We develop methods to
produce an understanding of the global lifting of all 7 tropical bitangent classes
over R. We hope that our results can be adapted in the future to count real
tritangents of space sextics and bitangents of quartics over other fields.
Our work builds on the classification of all shapes of bitangent classes together

with their real lifting conditions from [CM21].
A bitangent shape is the collection of all equivalent bitangent lines in the dual

tropical plane; it is a connected polyhedral complex. Tropical plane curves are dual
to a subdivision of its Newton polygon. Figure 1.6 shows the bitangent shapes to a
tropical quartic curve and its dual subdivision. We say two curves have the same
combinatorial type if they they have the same dual subdivision.

As the shapes of the bitangent classes change for different edge lengths of a fixed
combinatorial type of the tropical quartic, we introduce the notion of deformation
classes that collect the deforming shapes and classify them. This classification is
the first main result and the cornerstone in the proofs of the following theorems in
this part of the thesis.

Theorem 4.2.3. There are 24 deformation classes of tropical bitangent classes
to generic smooth tropical quartic curves up to S3-symmetry. Representatives for
each class are depicted in Figure 4.39.

The deformation classes are defined by their dual deformation motifs, which
are sets of triangles in the dual subdivision of the tropical quartic curve that are
determined by the bitangent shapes in the deformation class and their tangencies
to the quartic. For an example of a tropical quartic curve with its 7 bitangent
classes and a dual deformation motif consider Figure 1.6.
As mentioned above, the shapes of the bitangent classes change for different

edge lengths of a tropical quartic with fixed dual subdivision. The real lifting
conditions have been determined per bitangent shape in [CM21]. Hence, a priori
we could obtain different numbers of real lifts for two tropical quartics with the
same combinatorial type.

Using the concept of deformation classes and dual motifs, we can prove that this is
not the case. More precisely, we are able to prove an even stronger statement: that
we do not need to know the appearing bitangent shapes to a tropical quartic, but
that the dual subdivision is already enough to determine the real lifting behavior.

Theorem 5.1.4. The real lifting conditions of tropical bitangent classes only
depend on the dual subdivision of the smooth tropical quartic curve.

This second main result has an interesting corollary which has high impact for
future research as it extends the statement to Henselian fields.
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Figure 1.6: A smooth tropical quartic curve with its 7 bitangent classes and its dual
subdivision. The thickly drawn edges in the subdivision form the dual deformation
motif of the bitangent class at the bottom left side.

Corollary 5.1.5. The lifting conditions of tropical bitangent classes over a Henselian
field with residue characteristic 6= 2 and 2-divisible value group only depend on the
dual subdivision of the smooth tropical quartic curve.

It follows that the problem of tropically counting the number of real bitangents
is a discrete counting problem and allows a computational proof. We reuse the
data computed for a different research project in [BJMS15]. This data provides
us with a list of the 1278 S3-representatives of the unimodular subdivisions of
quartic curves. To recover the count, we implement an algorithmic search for the
dual deformation motifs in polymake (Algorithm 1). By adding the real lifting
conditions from [CM21] (which are sign conditions on the coefficents) for each
deformation class as data, the program can run over all possible sign vectors and
evaluate the lifting conditions (Algorithm 2).

Theorem 5.2.2. Let Γ be a generic tropicalization of a smooth quartic plane curve
V (f) defined over a real closed complete non-Archimedean valued field. Either 1,
2, 4 or 7 of its bitangent classes admit a lift to 4 real bitangents to V (f) each.

To make our results reproducible and the developed code accessible to other
researchers, we implemented the extension TropicalQuarticCurves [GP] to the
mathematical software polymake. The extension allows users to compute infor-
mation about the associated tropical bitangents and their real lifting behavior for
tropical smooth quartics. Moreover, the data of the 1278 triangulations together
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with the properties with respect to the tropical bitangents are available on the
polymake database polyDB [Paf17].

We are confident that our software and the stored data will be useful for future
research in the area of tropical bitangents. Not only do they make the computation
of examples much more accessible, but the code can be adapted to count arithmetic
multiplicities of tropical bitangents [MSP22]. Moreover, the classification of the
deformation motifs provides first steps to find bitangents for higher degree curves.
And as the lifting conditions are stored independent of the base field, it is possible to
already use the code for investigating the lifting of bitangents over other Henselian
fields, using the statement of Corollary 5.1.5.

After an introduction of the extension TropicalQuarticCurves and the database
collection in Section 6.1, Chapter 6 shows how the software can be used for further
research: We analyze the distribution of orbit sizes (Theorem 6.2.1) and possible
numbers of real bitangents (Theorem 6.2.3).

If we fix 28 lines as our bitangents in algebraic geometry, there is a unique quartic
curve that has those lines as its bitangents [CS03]. It is therefore a natural question
- which we have been asked at numerous occasions in conferences or discussions -
whether the tropical seven bitangent classes uniquely determine a tropical quartic.

We obtain the following combinatorial version of the statement that bitangents
determine the curve.

Theorem 6.2.5. The combinatorial type of a tropical quartic curve is determined
by its 7 dual deformation motifs.

We follow up on this question by asking whether we can improve on this result
by fixing more data. In Section 6.2, we consider one example in detail and find that
the bitangent shapes and their positions are not enough to fix even the skeleton of
the tropical curve. However, we observe that by adding the tropicalized tangency
points, we can recover the skeleton of the tropical quartic curve from its bitangents.
It is instinctive to ask whether this is true in general, so we pose the following open
problem:

Problem 6.2.8. Is it in general possible to determine the skeleton of a smooth
tropical quartic curve from its bitangent shapes and the tropical tangency points
of its realizable representatives?

Another related research question is concerned with computing arithmetic mul-
tiplicities of (tropical) bitangents [LV21, MSP22]. As mentioned above, this is
a possible application of the extension TropicalQuarticCurves. However, to
determine arithmetic multiplicities of tropical bitangents, it is important to be able
to know exactly which shape appears for a bitangent class and a chosen tropical
coefficient vector [MSP22]. Our analysis of the deformation of the shapes for the
classification in Theorem 4.2.3 already yields the following result.
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Theorem 6.3.1. For a given unimodular triangulation T of 4∆2 we can subdivide
the associated secondary cone Σ(T ) by hyperplanes, such that for each chamber
the bitangent shapes of the corresponding quartic curves are constant.

These hyperplanes can be computed for a given deformation class using the
polymake extension and they are stored in the database collection for the represen-
tatives.

The last subsection of this part of the thesis, Section 6.3.2, is independent work of
the author that is not part of the joint project with Marta Panizzut. It investigates
the areas of non-genericity in secondary cones for generic triangulations. The
computations of the lifting conditions in [CM21] build on modifications of the
tropical quartic. For this a genericity assumption is necessary, as the excluded
cases are not yet understood. One of these conditions concerns the lattice length
of certain edges of the quartic curve (Remark 3.3.2). For some triangulations there
are lower-dimensional areas in the secondary cone, for which the corresponding
quartic curves are non-generic. We identify these areas as half-hyperplanes in
Proposition 6.3.4 and give their description in Table 6.5.
As the lifting conditions are understood for the complement of these half-

hyperplanes in the interior of the secondary cone, we hope that it is possible
to determine the lifting conditions from that. This in its turn might help to
understand the lifting conditions for the cases where the triangulation already
determines a violation of the genericity constraint.

1.2.2 Part II
We have seen in the first part of the introduction that tropical geometry offers a
powerful toolkit for the enumeration of plane curves.

A natural generalization of the counting problem of plane curves is the counting
of multi-nodal surfaces using tropical methods. Tropical singular surfaces were
first investigated in [MMS12]. More results on tropically counting singular surfaces
have been developed in the following years [MMS18, MMSS22, Sin22, BG20]. In
[MMSS22], the authors developed a new counting tool for surfaces: tropical floor
plans. They proved that asymptotically, i.e., for degree d� δ where δ is the number
of nodes, tropical floor plans recover the highest order term of the polynomial

NP3
δ,C(d) = 4δd3δ

δ! −
3·4δ
δ! d

3δ−1 +O(d3δ−2)

describing the count. Tropical floor plans can be viewed as a tool to break down the
information encoded in the dual subdivision to lower dimensional varieties by using
the combinatorics induced by point conditions in Mikhalkin position [MMSS22]. In
the case of surfaces, this leads to the much better understood case of plane curves.
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Figure 1.7: A tropical floor plan of a tropical singular surface of degree 2

Figure 1.7 depicts the tropical floor plan of a tropical surface of degree 2 with one
node. Considering the additionally displayed picture of the tropical surface, one
can find the curves from the floor plan in the picture of the surface. This example
shows why the phrase "floor plan" is fitting.
The results in Part II are joint work with Madeline Brandt [BG21].
In Section 8.1, we show that the tropical floor plans for plane curves, also defined

in [MMSS22], can be generalized to recover the multicomponent Gromov-Witten
invariants of P2

C.

Theorem 8.1.7. The number of tropical floor plans of degree d with δ nodes
counted with complex multiplicity equals the Gromov-Witten number Nd,g of
curves with genus g = (d−1)(d−2)

2 −δ and degree d passing through 3d−1+g general
points:

Nfloor(d,g) =Nd,g.

This motivates the use of tropical floor plans not only for the asymptotic counting
of surfaces but also for recovering the count for concrete examples.

However, for tropical surfaces the situation is much more involved than for curves.
Nevertheless, Part II of this thesis presents first results of an investigation on how
to use tropical floor plans to count multi-nodal tropical surfaces.
When using tropical floor plans for counting, we choose the point conditions in

Mikhalkin position which is algebraically and tropically generic and allows us (for
one-nodal surfaces) to assume that the subdivision is floor decomposed [BBLdM18,
BM09, MMSS22]. Tropical floor plans now break down the information encoded
in the subdivision to lower dimensional varieties by use of this decomposition.
If the nodes in the tropical surface are far enough apart, it is possible to

asymptotically count δ-nodal surfaces of degree d via this concept [MMSS22] as
mentioned above. After generalizing the methods of floor plans to nodes closer
together but still tropically separated, Madeline Brandt and I achieved the following
count:

Theorem ([BG20, Theorem 1.3]). Of the 280 complex binodal cubic surfaces, 214
tropicalize to tropical surfaces with separated nodes.
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This implies that tropical floor plans which only enumerate separated nodes are
not sufficient for recovering the full complex count. We want to improve this count
and ask the following questions.

Question 1.2.2. 1. Are separated nodes enough to recover the second order
term of NP3

δ,C(d)?

2. Which polytope complexes hide unseparated nodes?

3. How can we use tropical floor plans to count multi-nodal surfaces with
unseparated nodes?

For the purpose of answering (1), we introduce artificial δ-nodal floor plans in
Section 8.2 that simulate how many surfaces there would be if the nodes did not
interact at all. We prove that the number of artificial floor plans Iδ(d) is always
at least the number of tropical floor plans counting separated nodes, and use the
count of artificial floor plans to produce an upper bound for the number of surfaces
with separated nodes for bi- and trinodal surfaces.

Theorem 8.2.6. For δ = 2,3 the number of surfaces with separated nodes is at
most:

I2(d) = 8d6− 168
5 d5 +O(d4), I3(d) = 32

3 d
9− 1341

35 d8 +O(d7).

Consequently, surfaces with separated nodes are insufficient to asymptotically
count binodal and trinodal surfaces up to two degrees. Hence, it is necessary to
understand how two nodes on a surface give rise to non-separated nodes under
tropicalization and how to count these with tropical floor plans (Question 1.2.2 (2)
and (3)).
The main goal of Chapters 9 and 10 is to lay a foundation towards answering

these questions.
We call polytopes that can be Newton polytopes of binodal surfaces binodal

polytopes. Investigating small examples, we find a lower bound the for the number
of lattice points of binodal polytopes.

Lemma 9.1.9. Let Ω be a 3-dimensional binodal polytope. Then |Ω∩Z3| ≥ 6.

We use the classification of polytopes with 6 lattice points by Blanco and Santos
[BS16b] to discover all those polytopes that could appear in the dual subdivision
of a binodal surface. Since these are infinite polytope families, we can only check
for finitely many polytopes whether they are truly the support of a binodal surface.
We obtain the following conjecture.

13



Chapter 1 Introduction

Conjecture 9.2.8. There are 6 families of binodal polytopes with 6 lattice points
and of width 1 up to integral unimodular affine transformations (Definition 9.2.2).
They are depicted in Figure 9.1.

We prove that in these cases the two nodes tropicalize to the same vertex of the
tropical surface.

Proposition 9.1.10. Let Ω be a binodal polytope with 6 lattice points, and let S
be a binodal surface over C{{t}} with Newton polytope Ω. Then trop(S) is a fan
and both nodes tropicalize to the vertex of the fan.

For each of the 6 binodal polytope families we compute all lattice paths. Building
on computations with OSCAR code [Gei22] (see Algorithms 9 and 10 and the
functions in Appendix B.2), we further state conjectures on their multiplicities.
These computations are expensive, so they only yield solutions for small input.

The conjectures are written down individually for each polytope in dependence
of the parameters of the polytope family and can be found here:

• Polytope family with number 8: Conjecture 9.4.4,
• Polytope family with number 10: Conjecture 9.4.9,
• Polytope family with number 13: Conjecture 9.4.13,
• Polytope family with number 14: Conjecture 9.4.17,
• Polytope family with number 20: Conjecture 9.4.21,
• Polytope family with number 21: Conjecture 9.4.24,

where the numbering of the polytope families comes from the list extracted from
the classification in [BS16b].

In the next step, we investigate which of these polytopes can appear in the dual
subdivision of a surface of degree d passing through n=

(
d+3

3

)
− δ−1 points where

δ = 2.

Theorem 10.1.6. Of the binodal polytopes with 6 lattice points of width 1 only
polytopes of the families with numbers 10, 13 and 20 (see Figure 1.8) can appear
in the dual subdivision of a binodal floor decomposed surface of degree d through
n points in Mikhalkin position. They can only appear if d > 4.

To determine the contribution of these surfaces to the count, we ascertain the
possible lattice paths, which encode the point conditions in the dual subdivision
and compute their multiplicities via hyperplane sections of the binodal variety
using the same algorithms and code as for the data foundation of the conjectures
above.
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Family 10 Family 13 Family 20

10

5

3

2

4(
0 0 0 0 1 1
0 0 1 1 0 a
0 1 0 1 0 b

) (
0 0 0 0 1 1
0 1 1 2 0 a
0 0 1 0 0 b

) (
0 0 0 1 1 1
1 1 2 0 1 1
0 1 0 a 0 1

)
gcd(a,b) = 1, 0 < b < a, 3 ≤ a gcd(a,b) = 1,0 < b < a, 5 ≤ a + b 3 < a

Figure 1.8: The three binodal polytope families that can appear in the dual
subdivision of a degree d surface through points in Mikhalkin position.

Conjecture 10.2.2. Let S be a floor decomposed, tropical binodal surface of
degree d passing through points in Mikhalkin position such that the dual subdivision
contains one of the binodal polytopes

Ω̃(10)
I (a), Ω̃(10)

II (a), Ω̃(10)
III (a), Ω̃(13)

I (a), Ω̃(13)
II (a), Ω̃(20)(a),

and only unimodular simplices everywhere else. Then the complex lifting multiplicity
of S is given by

multC(S) =
a−3 for Ω̃(20)(a); and for Ω̃(13)

I (a), Ω̃(13)
II (a) if a odd,

a−2 else.

Conjecture 10.2.2 is verified using [Gei22] for polytope family 10 when 3≤ a≤ 7,
for family 13 when 4≤ a≤ 9, and for family 20 when a≤ 7.

Building on the proof of Theorem 10.1.6, we extend the definition of tropical
floor plans to contain the binodal polytopes.

As final step of this thesis, we prove that up to d ≤ 7 the binodal polytopes
contribute 1

4d
4 +O(d3) to the third-highest term of the polynomial NP3

2,C(d). For
d > 7 this result relies on conjectured multiplicities of the binodal polytopes.

Conjecture 10.2.5. Assuming Conjecture 10.2.2 is true, it follows that floor
decomposed tropical degree d surfaces with a binodal polytope with 6 vertices and
width 1 in the dual subdivision contribute 1

4d
4 +O(d3) surfaces to the count of

binodal degree d surfaces NP3
2,C(d). So, they contribute to the third highest term of

the polynomial NP3
2,C(d).
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1.3 Structure of content
This section gives a short overview over the content and structure of the thesis to
allow a specific lookup of topics.

Chapter 2 contains some background on polyhedral (Section 2.1) and tropical
geometry (Section 2.2). This background adheres to both parts of the thesis. The
main references for this chapter are [Tho06, GKZ94, MS15, RGST05].

Part I
This part is concerned with tropical bitangents to tropical quartic curves. Chap-
ters 4, 5 and most of Chapter 6 are based on the preprints [GP21a, GP21b] which
are joint work with Marta Panizzut.

In Chapter 3, we recapitulate definitions and results on tropical bitangents from
[BJMS15, BLM+16, LM20, CM21]. This contains skeleta and leaves of tropical
quartic curves and the action of S3 on a tropical quartic curve (Section 3.1), tropical
bitangent classes and shapes (Section 3.2) and their lifting behaviors (Section 3.3).

In Chapter 4, we introduce deformation classes of tropical bitangents (Sec-
tion 4.1) and classify them up to S3 equivalence (Section 4.2), thus proving Theo-
rem 4.2.3.

In Chapter 5, we investigate the lifting behavior of deformation classes. In
Section 5.1, we prove that the lifting conditions for bitangent shapes as determined
in [CM21] are the same for all shapes collected together in the same deformation
class, not only over R, Theorem 5.1.4, but also over arbitrary Henselian fields with
residue characteristic 6= 2 and 2-divisible value group; see Corollary 5.1.5.
We use the result for R in Section 5.2 to prove in Theorem 5.2.2 the count of

Plücker and Zeuthen [Plü34, Plü39, Zeu73] of the possible numbers of real bitan-
gents (4, 8, 16 and 28) for tropically smooth generic quartic curves.

In Chapter 6, the polymake extension TropicalQuarticCurves and database
entry Tropical:QuarticCurves are introduced (Section 6.1).
Section 6.2 shows the results of data analyses on the distribution of orbit sizes

(Theorem 6.2.1), numbers of possible real bitangents (Theorem 6.2.3), and numbers
of sign vectors of decidable lifting for a non-generic bitangent shape (C) (Prob-
lem 6.2.4 and Table 6.3). It further contains an investigation of the question whether
the tropical bitangents determine the tropical quartic curve: Theorem 6.2.5 proves
that the combinatorial type of a tropical quartic curve is determined by its dual
deformation motifs. From there, we work along an example towards Problem 6.2.8
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stating whether the skeleton of a tropical quartic curve is in general determined by
its bitangent shapes and their tropical tangency points.
Section 6.3 classifies the hyperplanes that determine the deformation between

the bitangent shapes for each deformation class (Theorem 6.3.1) and the lower
dimensional areas in generic secondary cones for which the corresponding tropical
quartic curve is not generic (Proposition 6.3.4).

Part II
This part is concerned with the enumeration of multi-nodal surfaces via tropical
floor plans continuing the research from the joint article [BG20] with Madeline
Brandt. Chapters 8-10 are based on the preprint [BG21] which is joint work with
Madeline Brandt.

In Chapter 7, we introduce results of the research on tropical singular surfaces
(Section 7.1) and go over definitions from counting surfaces and curves, especially
lattice paths (Section 7.2), and introduce tropical floor plans (Section 7.3). The
main references for this chapter are [MMS12, MMS18, MMSS22, BG20].

Chapter 8 contains two independent sections on tropical floor plans. In Sec-
tion 8.1, we prove Theorem 8.1.7, which states that tropical floor plans can
be extended to successfully count plane curves and recover the multicomponent
Gromov-Witten invariants.

In Section 8.2, we investigate how tropical floor plans for surfaces with separated
nodes contribute to the asymptotic count and prove that unseparated nodes are
necessary to recover the second order term of the asymptotic count of binodal and
trinodal surfaces; see Theorem 8.2.6.

In Chapter 9, we take a first step in the search for polytopes that encode
unseparated nodes. We start in Section 9.1 with the definitions of binodal varieties
and first requirements for polytopes that encode two isolated singularities, like
Lemma 9.1.9 and Proposition 9.1.10.
In Section 9.2, we identify all lattice polytopes with 6 lattice points of width 1

that can be binodal by using a classification of Blanco and Santos [BS16b]. We
first exclude those polytopes that cannot be binodal (Propositions 9.2.4 and 9.2.5).
Remaining are 6 infinite families, for which we can only verify the claim, that these
indeed are binodal, for small parameter values; see Conjecture 9.2.8.
In Section 9.3, we investigate lattice paths for dual subdivisions of binodal

surfaces (Section 9.3.1) and how to compute their multiplicities (Section 9.3.2).
These results are used in Section 9.4 where we identify all lattice paths for each of

the binodal polytope families found in Section 9.2 (Propositions 9.4.3, 9.4.8, 9.4.12,
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9.4.16, 9.4.20, 9.4.23) and pose conjectures for the lattice path multiplicities, which
we verify for small values using code in OSCAR (Conjectures 9.4.4, 9.4.9, 9.4.13,
9.4.17, 9.4.21, 9.4.24).
Section 9.5 illustrates the application of the results of the previous sections by

two counting examples.

Chapter 10 is concerned with applying the previous results to the counting
of binodal degree d surfaces. Section 10.1 examines which binodal polytopes
can appear for floor decomposed surfaces of degree d passing through points in
Mikhalkin position (Theorem 10.1.6).
Section 10.2 describes how to count these using tropical floor plans (Conjec-

tures 10.2.5 and 10.2.2, Definition 10.2.1).

Appendix A collects first results of the investigation which lattice polytopes
with 6 lattice points and width 2 or 3, as classified in [BS16b], can be binodal.

Appendix B.1 contains additional functions not bundled in the extension
TropicalQuarticCurves which were used for the proof of Theorem 5.2.2 and the
analyses described in Section 6.2.

Appendix B.2 presents the OSCAR functions from [Gei22] written for the com-
putations in Part II: computing the binodal variety and its degree, the multiplicities
of lattice paths, and the dimension of the singular locus of a given surface.

1.4 Open questions
The results of this thesis and the developed methods lay the foundation for more
interesting research in this area. We collect new questions arising from the contribu-
tions of this thesis, as well as some remaining open problems, for future investigation.

Part I: Tropical Bitangents to plane quartic curves

1. Which numbers do we see for the lifting of bitangents over other Henselian
fields? By [CM21] and Corollary 5.1.5, we can conclude that it will be
multiples of 4, but will we see the same collection of numbers as over R?

2. What are the lifting conditions for bitangent shape (C) if the tropical quartic
is not generic?

3. Is it in general possible to determine the skeleton of a smooth tropical quartic
curve from its bitangent shapes and the tropical tangency points of its
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realizable representatives such that the only remaining edge length changes
correspond to the pulling of generalized leafs?
If yes, does every tropical quartic in such a family allow a lift with 28 real
bitangents? These questions are stated in Problem 6.2.8.

4. Real lifts of bitangents on a tropically smooth quartic curve are totally
real [CM21]. Since there are quartics with real but not totally real bitangents,
we know that these quartics are not tropically smooth. By [LL18], non-smooth
tropical quartic curves have 7 bitangent classes counted with multiplicity. We
ask:
What are the (real) lifting conditions of tropical bitangents of not smooth
tropical quartic curves?
An answer to this question could give rise to a complete tropical proof of the
count by Plücker and Zeuthen.

5. After a projection, the tritangent planes of a space sextic can be consid-
ered as bidegree-(1,1) curves and the space sextic as a bidegree-(3,3) curve.
Thus, classifying tropical tritangent shapes and determining their real lifting
conditions is similar to the situation of bitangents to quartic curves.
Can the techniques of tropical bitangents to quartics be adapted to the
situation of tritangent planes of a space sextic?

Part II: Towards tropically counting binodal surfaces

1. We are still missing 66 surfaces from the count of binodal cubic surfaces.
These surfaces must contain unseparated nodes, which are encoded via binodal
polytopes with 7 or more vertices in their dual subdivisions. These polytopes
could have width 1 or width greater than 1, in which case we expect them to
be subdivided into width 1 polytopes. This question extends to understanding
unseparated nodes in more generality.

2. At this time, we do not know how to prove Conjecture 10.2.2. This would re-
quire a technique for symbolic computation with Gröbner bases for polynomial
ideals with parameters in the exponents, or other methods.

3. We did not investigate the contribution of the binodal polytopes determined
in this paper with respect to a count over R, but this could be an interesting
direction of future research.

4. There are finitely many polytopes with 6 lattice points of width 2 or 3,
classified by [BS16b]. They are displayed in Appendix A together with the
dimension and degree of their generalized binodal varieties as far as they
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could be computed. Due to the larger values of the vertices this was not
possible for all of them. Which of these polytopes are binodal?

5. Do multi-nodal surfaces through points in Mikhalkin position always have
floor decomposed dual subdivisions?

6. Initial computations indicate that the binodal polytopes studied in Chapter 9
are also Newton polytopes of cuspidal surfaces. For these polytopes, the cusp
would tropicalize to the vertex of the tropical surface. So, these polytopes
could contribute to a count of cuspidal tropical surfaces using methods similar
to the ones used in this paper.
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Chapter 2

Preliminaries
Tropical geometry is connected to many areas in mathematics. Its definitions rely
partially on polyhedral geometry. In this chapter, we introduce tropical geometry
with a focus on the interplay with objects from polyhedral geometry. We give a short
overview of some basics of polyhedral and tropical geometry. Standard definitions
of tropical and polyhedral objects that will be used in further chapters are collected.
This chapter provides an introduction, but it can also be used as a reference chapter.
The main references for this chapter are [Tho06, GKZ94, MS15, RGST05].

The chapter is structured as follows: Section 2.1 recalls some definitions from
polyhedral geometry. In Section 2.2, a very brief introduction to tropical geom-
etry is given, highlighting three different aspects: tropical algebraic geometry
(Section 2.2.1), tropicalization of algebraic varieties and the realizability ques-
tion (Section 2.2.2), and the duality connecting tropical and polyhedral geometry
(Section 2.2.3).

2.1 Basics of polyhedral geometry
As the name suggests, polyhedral geometry is concerned with the study of polyhedral
objects, like polytopes or polyhedral complexes, their combinatorics and geometry.
In this brief summary of some of the basics of polyhedral geometry, we define,
among others, (balanced) polyhedral complexes, normal fans, (regular) subdivisions
and triangulations the secondary fan and dual polyhedral complexes.
The main references for this section are [Tho06, Chapters 4, 7, 8], [GKZ94,

Chapter 7] and [MS15, Section 2.3, Chapter 3].

Definition 2.1.1. A polyhedral complex C in Rn is a finite collection of polyhedra
in Rn satisfying the following conditions:

(a) ∅ ∈ C

(b) If P ∈ C and F a face of P , then F ∈ C

(c) For P,Q ∈ C it holds that P ∩Q is a face of both P and Q.
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We call an element of C a d-cell if it is a polyhedron of dimension d.
The k-skeleton of C is the polyhedral complex consisting of all cells of C of

dimension ≤ k. We set
dim(C) := max

Q∈C
{dim(Q)}.

A polyhedral complex is called pure dimensional if all cells maximal with respect
to inclusion have the same dimension. The support |C| of C is the set

|C|= {x ∈ Rn : ∃P ∈ C such that x ∈ P}.

A subcomplex C′ of a polyhedral complex C is a polyhedral complex such that every
cell of C′ is a cell of C. We write C′ ⊂ C.

Definition 2.1.2. If all the polyhedra in a polyhedral complex are cones, the
complex is called a polyhedral fan. Since we do not consider any other sort of fan
in this thesis, a fan will always mean a polyhedral fan.

Definition 2.1.3 ([MS15, Definition 2.3.6]). Consider a cell σ of a polyhedral
complex C in Rn. The star of σ in C is a fan in Rn with its cones indexed by the
cells τ ∈ C that contain σ as a face. The star of σ ∈ C is denoted starC(σ).

More descriptively: the star at a cell σ of a polyhedral complex C is the fan that
can be seen when looking locally at C around σ. We need this definition to be
able to define balanced polyhedral complexes, which will resurface in Sections 2.2.1
and 2.2.3 in the context of tropical varieties.

Definition 2.1.4. Let C be a rational fan in Rn, pure of dimension d. Fix weights
m(σ) ∈N for all cones σ of dimension d. Given a cone τ ∈ C of dimension d−1, let
L be the linear space parallel to τ . Thus, L is a (d−1)-dimensional subspace of
Rn. Since τ is a rational cone, the abelian group LZ = L∩Zn is free of rank d−1,
with N(τ) = Zn/LZ ∼= Zn−d+1. For each σ ∈ C with τ * σ, the set (σ+L)/L is a
one-dimensional cone in N(τ)⊗ZR. Let vσ be the first lattice point on this ray.
The fan C is balanced at τ if ∑

m(σ)vσ = 0.
The fan C is balanced if it is balanced at all τ ∈ C with dim(τ) = d−1.

If C is a pure polyhedral complex of dimension d with weights m(σ) ∈ N on each
d-dimensional cell in C, then for each τ ∈ C the fan starC(τ) inherits a weighting
function m.

The polyhedral complex C is balanced if the fan starC(τ) is balanced for all τ ∈ C
with dim(τ) = d−1.

Given a polyhedron there is a natural way to obtain an associated polyhedral
fan.

24



2.1 Basics of polyhedral geometry

Definition 2.1.5. Let P ⊂ Rn be a polyhedron. The outer normal cone NP (F )
of a face F of P is the cone consisting of the outer normal vectors to the face F .
The polyhedral fan consisting of the outer normal cones of every face of P is called
outer normal fan of P , denoted NP .

Remark 2.1.6. The inner normal cone is defined analogously by the inner normal
vectors. We can obtain the inner normal fan from the outer normal fan, by
multiplying the cones with −1.
In the following we consider polytopes, which are bounded polyhedra.

Definition 2.1.7. Let P be a polytope. A subdivision of P is a polyhedral complex
S with support P . As the union of all maximal cells (with respect to inclusion)
has to be P , the complex S is of pure dimension dim(P ).
A subdivision is called a triangulation if all the maximal elements of S are

simplices.
If P is a lattice polytope and S is a subdivision such that every element of S is

a lattice polytope, we call the subdivision a lattice subdivision.
If a lattice subdivision consists only of simplices of minimal lattice volume, it is

called a unimodular triangulation.

Since we will only consider lattice subdivisions in this thesis, subdivision and
triangulation will always refer to subdivisions in which every element is a lattice
polytope resp. lattice simplex.

Definition 2.1.8. Let A⊂ Rn be a finite set and P = conv(A). A lifting function
is a function α : A→ R and the corresponding lifted polytope is defined as

P̃α := conv{(v,α(v)) | v ∈A} ⊂ Rn+1.

Projecting the upper faces of P̃α to Rn by deleting the last coordinate, we obtain a
collection of subpolytopes of P . Those polytopes form a polyhedral complex with
support P , i.e., the lifting function α induces a subdivision Sα of P .
A subdivision that arises in this way is called regular.
Fixing an order of the elements in A, the image of a lifting function α can be

written as a vector (α1, . . . ,αN ) ∈ RN , where N = |A|. This vector will be called
weight vector.

For a lattice polytope the regular subdivision induced by α is a lattice subdivision.

Definition 2.1.9. We say that all points are visible in a regular lattice subdivision
of P induced by a lifting function α if for every lattice point v of the polytope P ,
the point (v,α(v)) is contained in an upper face of the lifted polytope P̃α.
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In particular for a unimodular triangulation always all points are visible.
For a given regular subdivision S there is an associated cone, the secondary cone,

which parametrizes all lifting functions that give rise to S.
Definition 2.1.10 ([GKZ94, Definition 1.4 & Proposition 1.5]). For a given regular
subdivision S of conv(A), we define the secondary cone to S as

Σ(S) = {α : A→ R | Sα = S} ⊂ RN .

The cone Σ(S) is an open cone in RN . If S is a regular unimodular triangulation,
then the secondary cone is full dimensional, i.e., dim(Σ(S)) =N .

The collection of secondary cones forms a fan called the secondary fan of conv(A).
Sometimes we will consider secondary cones modulo (1, . . . ,1)R, because two

lifting functions α1,α2 : A→ R that satisfy

α1(A) = (α1(a1), . . . ,α1(aN ))
= (α2(a1), . . . ,α2(aN )) +µ · (1, . . . ,1) = α2(A) +µ · (1, . . . ,1)

induce the same lifted polytope up to a translation by µ in the last coordinate of
every lattice point. For more, see Definition 2.1.14.

We will only consider the following definitions for lattice polytopes, even though
they hold more generally.
Definition 2.1.11 ([GKZ94, Chapter 7 1.D]). Let Q be a lattice polytope in Rm,
n= |Q∩Zm|. The GKZ-vector of a triangulation T is the vector

ϕT := (volT (pi) | i ∈ {0, . . . ,n}),

where pi are the lattice points of P in a fixed order and

volT (pi) =
∑

∆ simplex in T
pi∈∆

euclidean volume(∆).

Definition 2.1.12 ([GKZ94, Chapter 7.D, Definition 1.6]). Let Q be a lattice
polytope in Rm, n = |Q∩Zm|. The secondary polytope P(Q) is the convex hull
conv{ϕT } in the space Rm of the GKZ-vectors for all the triangulations T of Q.

The secondary polytope contains much data about the regular subdivisions of a
lattice polytope.
Theorem 2.1.13 ([GKZ94, Chapter 7.D, Theorem 1.7]). Let Q be a lattice polytope.
(a) The vertices of the secondary polytope P(Q) are precisely the GKZ-vectors of

the regular triangulations of Q.
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(b) For a regular triangulation T of Q we have ϕT 6= ϕT ′ for any other triangu-
lation T ′ of Q.

(c) The secondary fan of Q coincides with the (outer) normal fan of the secondary
polytope P(Q) of Q.

There are algorithmic methods to compute all triangulations of a given point
configuration and by that obtaining the GKZ-vectors, the secondary polytope and
the secondary fan. They are implemented in different software, like Gfan [Jen],
TOPCOM [Ram02] and MPTOPCOM [JJK20, JJK18].

We can assign a dual polyhedral complex to a polytope with a regular subdivision:

Definition 2.1.14. Let P be an n-dimensional polytope in Rn, ω ∈ RN a weight
vector, where N = |P ∩Zn|. Recall, the lifted polytope is P̃ω = {(vi,ωi) : vi ∈
P ∩Zn, i= 1, . . . ,N}.
Let π : Rn+1→ Rn be the projection to the first n coordinates.
By Definition 2.1.8 we know that the subdivision induced by the weights ω

consists of the projection of the upper faces of P̃ω to Rn. Any polytope in the
subdivision of P is of the form π(F ), where F is an upper face of P̃ω, i.e., for some
v ∈ Rn+1 with last coordinate positive:

F = facev(P̃ω) := {x ∈ P̃ω | v ·x≥ v ·y ∀y ∈ P̃ω}.

LetN (F ) be the (outer) normal cone to F , i.e., N (F ) = {v∈Rn+1 : facev(P̃ω) =F}.
By restricting the projection π to the intersection of N (F ) with the plane xn+1 = 1
and denoting this by π̃, we obtain the set π̃(N (F )) := {w ∈ Rn | (w,1) ∈N (F )}.
As F ranges over all upper faces of P̃ω the sets π̃(N (F )) form a polyhedral complex
in Rn. This is the dual polyhedral complex to the subdivision of P induced by ω.
A translation of the lifted polytope in the direction of the (n+ 1)th-coordinate

will give the same dual polyhedral complex. Hence, we sometimes consider the
weight vector in the quotient space ω ∈ RN/(1, . . . ,1)R.

As we see from this definition there is a correspondence between the polytopes
that are elements of the subdivision and the cells of the dual polyhedral complex.

Corollary 2.1.15. Let P ⊂ Rn be a n-dimensional polytope with weight vector ω
and lifted polytope P̃ω ⊂ Rn+1. There is a one-to-one correspondence between the
elements of the subdivision of P induced by ω and the cells of the dual polyhedral
complex: For a polytope F in the subdivision of P its dual cell in the dual polyhedral
complex is given by F∨ := π̃(N (F )) = {w ∈Rn | (w,1) ∈N (F )}. The map F 7→ F∨

is a bijection and it is inclusion reversing. For elements Q, R of the subdivision,
we know:

(i) If Q is a face of R, then R∨ is a face of Q∨.
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Figure 2.1: A regular subdivision and its dual polyhedral complex

(ii) The affine linear subspaces Aff(Q) and Aff(Q∨) are orthogonal in Rn.

(iii) Q is contained in a facet of P if and only if Q∨ is an unbounded cell.

(iv) If dim(Q) = k, the dual cell Q∨ has dimension n−k.

2.2 Brief introduction to tropical geometry
This section gives a brief overview of tropical geometry, but it can also be used as a
reference section. In this introduction, we focus on the case of tropical codimension 1
varieties, i.e., tropical plane curves and hypersurfaces, since these are the main
objects this thesis deals with. An extensive and detailed introduction to tropical
geometry can be found in [MS15].
We present three different aspects of tropical geometry: tropical algebraic ge-

ometry (Section 2.2.1), tropical geometry as a shadow of algebraic geometry by
tropicalization (Section 2.2.2), and the duality between tropical and polyhedral
geometry (Section 2.2.3).

There are two conventions with different advantages in tropical geometry: min-
andmax-convention. See Remark 2.2.21. This thesis adheres to themax-convention
unless explicitly stated otherwise.

2.2.1 Tropical algebraic geometry
Tropical algebraic geometry is concerned with similar questions as algebraic geome-
try, with the difference that instead of polynomials we consider tropical polynomials.
In this section we introduce the tropical semifield, which is the base of tropical
arithmetic, and tropical polynomials. The show ideas of what tropical algebraic
geometry is concerned with and to give the foundations for Part I of this thesis, we
present foundational results of tropical intersection of plane curves.
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(a) V (x⊕ y⊕ 0), a non-degenerate
tropical line

(b) V (x⊕y), a degenerate tropical
line

Figure 2.2: A degenerate and a non-degenerate tropical line in R2. In this thesis
tropical lines will always be non-degenerate.

Definition 2.2.1. The tropical semifield (R∪{−∞},⊕ ,�) is the set R∪{−∞}
together with the operations x⊕y = max{x,y} and x�y = x+y, where −∞ is the
neutral element of addition, and we have x� (−∞) :=−∞ ∀x ∈ R∪{−∞}.
A tropical (Laurent) monomial is a finite tropical product of variables xi with

integer coefficients ui ∈ Z

x�u = x�u1
1 · · ·x�unn =

n∑
i=1

uixi = u ·x.

A tropical (Laurent) polynomial is a finite tropical linear combination of tropical
monomials with coefficients λu in the tropical semiring

f =
⊕

u∈Zn
λu�x�u.

The tropical hypersurface Trop(V (f)) is defined as

Trop(V (f)) = {a ∈ Rn | the maximum in f(a) is achieved at least twice}.

In particular, a tropical plane curve is given as the tropical hypersurface of a
tropical polynomial in two variables.

In this thesis, we will always assume that tropical lines in R2 are non-degenerate.
This means that each tropical plane line consists of three rays in the directions −e1,
−e2 and e1 + e2 given by the standard basis of R2 joined together in one vertex.
See Figure 2.2 for a picture of a non-degenerate tropical line and a degenerate
tropical line.
By [MS15, Structure Theorem for Tropical Varieties, Theorem 3.3.5], tropical

varieties are balanced weighted polyhedral complexes (Definition 2.1.4). For plane
tropical curves this means, that for each edge e there is an associated weight m(e),
also called multiplicity, such that each vertex t of the curve satisfies the following
balancing condition: ∑

e incident edge to t
m(e)v(e) = 0,
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where v(e)∈Z2 is the primitive direction vector of e, i.e., the integer direction vector
of the edge e with smallest absolute value of the coordinates. The information
on the correct multiplicity for the tropical plane curve is stored in its tropical
polynomial and can be extracted by using the duality explained in Section 2.2.3.
See Lemma 2.2.15 and Example 2.2.16.

Definition 2.2.2 ([RGST05]). Two tropical plane curves C, D intersect transver-
sally if their intersection consists only of finitely many points that are not vertices
of C or D. Otherwise they intersect non-transversally.

Definition 2.2.3 ([RGST05], intersection multiplicity). For two tropical plane
curves C, D intersecting transversally, the intersection multiplicity in a point
p ∈ C ∩D is defined as follows: Since p is not a vertex of C or D it is contained in
exactly one edge in C and D each. Let u1 ∈ Z2 be the primitive direction vector of
the edge in C that contains p, and u2 ∈ Z2 the primitive direction vector of the
edge in D that contains p. The intersection multiplicity of C and D in p is:

(C ·D)p = |det(u1,u2)| ·m1 ·m2,

where m1 resp. m2 is the multiplicity of the edge of C resp. D that contains p.
The intersection multiplicity of the two curves is computed via:

C ·D =
∑

p∈C∩D
(C ·D)p.

If two curves intersect non-transversally, the intersection multiplicity cannot be
computed as above. For this we need the stable intersection principle. Let Cεv
denote the tropical curve C+ εv where v ∈ R2 is an arbitrary vector and ε ∈ R is
small. Thus, Cεv is a tropical plane curve nearby the original curve C.

Theorem 2.2.4 ([MS15, Theorem 1.3.3]). The limit of the point configuration
Cεv ∩Dεw is independent of the choice of perturbations v,w ∈ R2. It is a well-
defined multiset of c ·d points contained in the intersection C ∩D with c= deg(C),
d= deg(D).

Definition 2.2.5 ([RGST05], stable intersection). Let C,D be two tropical plane
curves. The stable intersection of C and D is the multiset of points

C ∩stD = lim
ε→0

(Cεv ∩Dεw),

where v,w ∈ R2 are generic vectors.
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2.2.2 Tropicalization of algebraic varieties
Tropical geometry can be considered as a combinatorial shadow or a linear degen-
eration of algebraic variety. In this section we formalize these notions. The main
reference is [MS15].

Definition 2.2.6. Let K be a field and let K∗ denote the non-zero elements of K.
A non-Archimedean valuation on K is a function val :K→R∪∞ that satisfies the
following conditions:

(a) val(a) =∞ if and only if a= 0.

(b) val(ab) = val(a) + val(b) for all a,b ∈K.

(c) val(a+ b)≥min{val(a),val(b)} for all a,b ∈K.

As we will not consider any other type of valuation in this thesis, a valuation will
always be a non-Archimedean valuation.

Since only 0 maps to ∞, we can identify a valuation with its restriction K∗→R.
Thus the image of a valuation is an additive subgroup of R.

A valuation is called trivial if val(a) = 0 for all a ∈ K∗. Every field can be
equipped with a trivial valuation.
We call (K, val) a valued field if K is a field and val a valuation on K.

Remark 2.2.7. Throughout this work, we will assume that 1 ∈ im(val) for any given
non-trivial valuation val on K. This is no severe restriction, since for any λ ∈ R>0
the map (λ ·val) :K∗→ R is also a valuation. Thus, we can always assume that
Z⊂ im(val) for a non-trivial valuation. If the field K is algebraically closed, the
image of a non-trivial valuation on K contains Q and is thus dense in R.

Definition 2.2.8. Let (K,val) be a valued field K and let R := {a ∈K|val(a)≥ 0}
be the associated valuation ring with maximal ideal m = {a ∈K|val(a)> 0}. The
quotient k :=R/m is called the residue field.
The map res : R→ k, a 7→ a+m is called the residue map. It can be extended

to R[x]→ k[x] by f(x) =∑n
i=0aix

i ∈R[x] 7→ res(f)(x) =∑n
i=0 res(ai)xi ∈ k[x].

A valued field is called Henselian if it satisfies the following property: For every
f(x) ∈ R[x] such that res(f)(x) has a simple root a ∈ k, there exists an element
r ∈R such that res(r) = a and f(r) = 0.

In this work, we will only consider Henselian fields with a 2-divisible value group.
An example of a Henselian valued field for which the image of the valuation is
dense in R is the field of Puiseux series over C or R.
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Example 2.2.9. The field of Puiseux series K{{t}} with coefficients in K ∈ {R,C} is
defined as the set of all formal power series

c(t) = c1t
a1 + c2t

a2 + c3t
a3 + · · · ,

where a1 < a2 < a3 < · · · are elements in Q with a common denominator and
cj ∈K\{0} for all indices j.
It has a natural non-trivial valuation given by

val : K{{t}}∗→ R, c(t) 7→ a1,

where a1 is the lowest exponent of t appearing in the series c(t).
The residue map is given by res :K{{t}}→K, c(t) 7→ c1, where c1 is the coefficient

of the term with the smallest exponent of t appearing in the series c(t). It can be
shown that K{{t}} is Henselian.
Furthermore, it can be proven that the field of Puiseux series over C is alge-

braically closed.

Definition 2.2.10. Let (K, val) be a valued field and F = ∑
u∈Nn auxu ∈K[x]

a polynomial in n variables x = (x1, . . . ,xn). There is a canonical way, called
tropicalization, to degenerate F to a tropical polynomial:

Trop(F ) =
⊕

u∈Nn
−val(au)�x�u

= max
u∈Nn

{−val(au) +u ·x}.

The following theorem shows that there are different ways how to view or compute
the tropicalization of an algebraic variety.

Theorem 2.2.11 ([MS15, Theorem 3.2.3], Fundamental Theorem of Tropical
Algebraic Geometry). Let K be an algebraically closed field with a nontrivial
valuation, let I be an ideal in K[x±1 , . . . ,x±n ] and length X = V (I) be its variety in
the algebraic torus Tn ∼= (K∗)n. Then the following three subsets of Rn coincide

1. the tropical variety Trop(X) := ⋂
F∈I Trop(V (F )),

2. the closure of the set of coordinatewise valuations of points in X

val(X) = {(val(y1), . . . ,val(yn)) : (y1, . . . ,yn) ∈X}.

Furthermore, if X is irreducible and w ∈ (im(val))n∩Trop(X), then the set

{y ∈X : val(y) = w}
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is Zariski dense in the classical variety X.
Note that for the tropicalization of a hypersurface V (I) with I = 〈F 〉, we do

not need to take the intersection over the tropicalization of all polynomials in I to
obtain the tropical hypersurface, but that Trop(V (I)) = Trop(V (F )).
Definition 2.2.12. An algebraic variety X = V (I) is called a lift of a tropical
variety Y , if Trop(X) = Y .

For two tropical varieties Y,Y ′ satisfying some relative relation, e.g. Y ′ ⊂ Y ,
with a fixed lift X for one of them, we are interested in the relative realizability, i.e.
the answer to the question of whether there exists an algebraic variety X ′ a lift
of Y ′ such that the pair X,X ′ satisfies the same relative relation as the tropical
varieties, and if yes, how many there are. This number is then called the lifting
multiplicity.

One example for this is the lifting multiplicity of tropical bitangents as explained
in Definition 3.3.1.

Another example is a tropical hypersurface X satisfying point conditions in Rn.
For a fixed set of lifts of these points in Kn, we can ask for the number of lifts of X
that satisfy these point conditions, the lifting multiplicity. This is the foundation
for the work in Part II. See Section 7.2 for point conditions on tropical surfaces.

2.2.3 Duality between tropical and polyhedral geometry
The duality between cells of tropical hypersurfaces and subdivisions of polytopes is
an important concept in tropical geometry. We introduce the Newton polytope
and see that tropical hypersurfaces are balanced polyhedral complexes. This
section further provides examples how the duality can be used to determine curves
or surfaces. We conclude with an explanation of how to switch between the
two different conventions (min- and max-convention) in tropical geometry. The
definitions in this chapter and in the following are using max-convention unless
explicitly stated otherwise.
Definition 2.2.13. For a tropical polynomial f = ⊕

uλu � x�u, the Newton
polytope Nf is defined as the lattice polytope

Nf = conv{u|λu 6=∞}.

Let n be the number of variables in f . The tropical coefficients λu of f induce a
lifting function of Nf ∩Zn to R and thus induce a regular subdivision of Nf as
described in Definition 2.1.8. The subdivision induced by the coefficients λu will
be denoted by Sλu . In this setting we can write the secondary cone of S as

Σ(S) = {λ ∈ R|Nf∩Z
n||Sλ = S}.
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Figure 2.3: A tropical curve with its multiplicities and primitive direction vectors.
It is a balanced polyhedral complex.

Proposition 2.2.14 ([MS15, Proposition 3.1.6]). Let f ∈K[x±1 , . . . ,x±n ] be a Lau-
rent polynomial. The tropical hypersurface Trop(V (f)) is the support of a polyhedral
complex of pure dimension n−1 in Rn.
It is the (n−1)-skeleton of the polyhedral complex dual to the subdivision of the
Newton polytope of f = ∑

u∈Zn cuxu given by the weights val(cu) on the lattice
points in Newt(f).

As already mentioned in Section 2.2.1 tropical varieties are balanced weighted
polyhedral complexes. In the proposition above, we see how a tropical hypersur-
face arises as a polyhedral complex. The following lemma explains how to get
the multiplicities for the balancing condition (Definition 2.1.4) from the tropical
polynomial.

Lemma 2.2.15 ([MS15, Proposition 3.3.2 and Lemma 3.4.6]). Let F =∑
auxu ∈

K[x±1 , . . . ,x±n ], let S be the regular subdivision of the Newton polytopes Nf induced
by (−val(cu)). Let C be the polyhedral complex supported on Trop(V (F )) dual to S.

The multiplicity of a maximal cell σ of C is the lattice length of the edge e(σ)
of S dual to σ and with these multiplicities Trop(V (F )) is a balanced polyhedral
complex.

We illustrate this for a plane curve in the following example.
Example 2.2.16. Consider the polynomial f = 0⊕ (−2)�x⊕x�y⊕x2. It’s Newton
polytope Nf is the triangle with lattice points (0,0), (1,0), (1,1) and (2,0). The
dual subdivision is the trivial subdivision. Therefore, we have two edges of lattice
length 1 and one edge of lattice length 2.
The maximal cells of the polyhedral complex supporting V (f) are the three

rays dual to the edges of Nf . Figure 2.3 shows Nf , the tropical curve V (f), the
primitive direction vectors and the multiplicities.

Definition 2.2.17. A tropical hypersurface Trop(V (f))⊂ Rn has degree d if its
Newton polytope is

d∆n := conv{0,d · ei|i= 1,...,n} ⊂ Rn.
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Definition 2.2.18. A tropical hypersurface Trop(V (f)) is smooth if the regular
subdivision of Nf induced by the coefficients of Trop(f) is a unimodular triangula-
tion.

In the case of a smooth hypersurface all multiplicities of the maximal cells in the
polyhedral complex are one. For a tropical plane curve this means that all edges
have weight one.
The name smooth for tropical surfaces dual to unimodular triangulations is

justified by [MS15, Proposition 4.5.1] proving that for a Laurent polynomial f
inducing a regular unimodular triangulation of its Newton polytope the hypersurface
V (f)⊂ (K∗)n is smooth.
For a tropical polynomial f with coefficients λu, the subdivision Sλu of Nf is

dual to the tropical hypersurface Trop(V (f)) via an inclusion reversing bijection.
This duality comes from the duality described in Corollary 2.1.15. The notation ·∨
as used in Corollary 2.1.15 will from now on not only refer to the dual element in
the polyhedral complex, but also the other way round.

Example 2.2.19. For a tropical plane curve the duality means especially:

subdivision ←→ tropical curve C,
2−dimensional cell Q←→ Vertex v,

Edge E←→ Edge e,
Vertex V ←→ connected region V ∨ of R2 \C.

The duality can be used to compute the tropical curve from the subdivision and
vice versa. Starting with the subdivision and the weight vector (λu) that induces
the subdivision, we construct the tropical curve as follows: The edges of the tropical
curve are outward orthogonal to the edges in the subdivision. A vertex of the curve
is dual to a 2-dimensional cells conv{(i0,j0), . . . ,(ik,jk)} in the subdivision and the
coordinates of the vertex in the plane can be computed by solving

λi0,j0 + i0x+ j0y = ...= λik,jk + ikx+ jky.

Example 2.2.20. For a tropical surface S, we can also use the duality to describe
the vertices and edges of the surface, or equivalently the 3-dimensional regions of
R3 \S. Let Ω be the Newton polytope of S. The computation of the vertices of
S from the subdivision of Ω induced by the weight vector to S is analogous to
the 2-dimensional case described above. As the computation of the 3-dimensional
regions R3 \S for a non-trivial subdivision is a collection of the computations for
smaller polytopes with the trivial subdivision, we will only illustrate the case of
the trivial subdivision here. Also, this is the case used in the investigations in the
Chapters 9 and 10.
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Since we are in the trivial valuation case, we can assume all weights to be zero.
Thus, the unique vertex of S is at (0,0,0). Let ωi0 , . . . ,ωin denote the vertices
of Ω. Each vertex is dual to a 3-dimensional region of R3 \S. Note that in the
trivial valuation case the regions of R3 \S are open 3-dimensional cones. The cone
dual to a vertex is generated by the outer normal vectors of the facets of Ω that
contain the vertex. We use this to compute the rays that span the region ω∨ij . The
cone spanned by these rays added to the vertex dual to the polytope (here (0,0,0))
defines the region. With a non-trivial valuation, we might obtain a polyhedron
which is not a cone if some of the rays meet other vertices of the surface.

We illustrate the computation for one example. Let

Ω = conv
{0

0
0

 ,
0

1
1

 ,
0

1
2

 ,
0

2
1

 ,
1

0
0

 ,
1

3
1

}.
The vertices of this polytope are

ω0 =

0
0
0

 , ω2 =

0
1
2

 , ω3 =

0
2
1

 , ω4 =

1
0
0

 , ω5 =

1
3
1

 .

We compute the region dual to the first vertex ω0 = (0,0,0). First we need to
determine to which facets ω0 belongs: These are ω0,ω2,ω3, ω0,ω2,ω4, ω0,ω3,ω5 and
ω0,ω4,ω5. Since ω0 is the origin, we can compute the outer normal vector of one
of these facets by computing the cross product of the other two vertices spanning
the facet and taking care to have the correct signs such that the resulting vector is
pointing outwards. Hence, the cone ω∨0 is given by the positive hull of the rays:

ω2×ω3 =

0
1
2

×
0

2
1

=

−3
0
0

 ,

ω4×ω2 =

1
0
0

×
0

1
2

=

 0
−2
1

 ,

ω3×ω5 =

0
2
1

×
1

3
1

=

−1
1
−2

 ,

ω5×ω4 =

1
3
1

×
1

0
0

=

 0
1
−3

 .
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For a proof of the duality as described in Examples 2.2.19 and 2.2.20, and for
further details, see [MS15].
Remark 2.2.21. There exist two parallel conventions with regard to tropical arith-
metic: The tropical semifield can also be defined as (R∪{∞},⊕ ,�) with ⊕= min
and �= +. This min-convention is used in [MS15].

The two conventions have different advantages. The difference in working with the
min- and max-convention lies particularly in the tropicalization of a polynomial
and the duality. The tropicalization of a polynomial f = ∑

u cuxu in the min-
convention is given by substituting + 7→min, · 7→+ and cu 7→ val(cu). With respect
to the duality the difference to the max-convention are:

1. To obtain the dual subdivision of the Newton Polytope in the min-convention
we use the lower faces instead of the upper faces. See Definition 2.1.8. Since
the max-convention uses cu 7→ −val(cu), this yields the same subdivision for
the tropicalization of a fixed polynomial for both conventions; see next item.

2. The secondary fan to the subdivisions coming from projecting the lower
faces is the inner normal fan of the secondary polytope. To switch from the
projection of the lower faces to the projection of the upper faces, we have
to multiply with (−1): If a weight vector w induces a subdivision S via the
lower faces, then −w induces the same subdivision via the projection of the
upper faces. See Remark 2.1.6.

3. When constructing the dual polyhedral complex to the subdivision as in
Definition 2.1.14, the inner normal fan is used. This means that for example
for plane curves the direction of the edges is inwards orthogonal to the edges
in the dual subdivision.

In this thesis we will use the max-convention unless explicitly stated otherwise.
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Part I

Tropical bitangents to plane quartic curves
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Chapter 3

Preliminaries
In this chapter, we present the state of the art on tropical bitangents of plane
quartics. We first introduce tropical plane quartic curves and their triangulations in
Section 3.1, [BLM+16, BJMS15]. Then, in Section 3.2 we define tropical bitangents,
their equivalence classes and shapes according to [LM20, CM21]. In Section 3.3,
the results of [LM20, CM21] with respect to the complex and real lifting behavior
of tropical bitangent classes are given.

Notation 3.0.1. In Part I of this thesis let KR be a real closed complete non-
archimedean valued field, and let K be its algebraic closure. As an example keep
the fields of Puiseux series R{{t}} and C{{t}} in mind (Example 2.2.9).

3.1 Tropical quartic curves
In this section, we introduce tropical quartic curves, the action of the permutation
group S3 on the dual subdivision, and recall the definition of the skeleton and of
generalized leaves. Main references for this section are [BLM+16, BJMS15].

Definition 3.1.1. A plane quartic curve V (f) is the zero set of a polynomial of
degree four

f(x,y) = a00 +a10x+a01y+a20x
2 +a11xy+a02y

2 +a30x
3 +a21x

2y (3.1)
+a12xy

2 +a03y
3 +a40x

4 +a31x
3y+a22x

2y2 +a13xy
3 +a04y

4.

We say a tropical plane curve is a tropical quartic curve if its Newton polygon is
the 4-dilated 2-dimensional simplex 4∆2.

For a smooth tropical quartic curve the dual subdivision is a unimodular tri-
angulation of 4∆2 in which every lattice point is a vertex of the subdivision; see
Definition 2.2.18. Since the |4∆2∩Z2| = 15 lattice points pij correspond to the
monomials xiyi of a polynomial f defining a lift of the tropical quartic, this implies
in particular that for any lift the coefficients aij are all non-zero.
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Notation 3.1.2. We write pij for the lattice point (i,j) in 4∆2. The valuations
of the coefficients of the polynomial f will be denoted λij = val(aij). Thus, the
tropicalization of V (f) is given by the tropical polynomial with coefficients −λij .
The subdivision induced by (−λij) will be denoted T(−λij) or T if there is no danger
of confusion. The notation ·∨ is used to refer to the dual of an edge or triangles of
the subdivision T in the tropical curve Γ, and vice versa. We direct the reader to
Corollary 2.1.15, Proposition 2.2.14 and Example 2.2.19 for some background on
this duality. The secondary cone (Definition 2.1.10) of a subdivision T of 4∆2 is a
relative open cone in R15 denoted by Σ(T ). The tropical quartic curve defined by
a point c ∈ Σ(T ) as its coefficients will be written as Γc. The order of coordinates
in Σ(T )⊂ R15 is given by the order of the monomials in Equation (3.1).

Let S3 denote the permutation group on 3 elements. Consider a homogenized
quartic polynomial

fhom(x,y,z) = a004z
4 +a103xz

3 +a013yz
3 +a202x

2z2 +a112xyz
2 +a022y

2z2

+a301x
3z+a211x

2yz+a121xy
2z+a031y

3z+a400x
4 +a310x

3y

+a220x
2y2 +a130xy

3 +a040y
4,

where aijk = aij and k = 4− i− j. An element σ ∈ S3 acts on the indices of the
coefficients aijk by permuting their order. For example σ = (xy) ∈ S3 acts via
σ(aijk) = ajik by switching the index entry belonging to the x-exponent with the
second index that corresponds to the y-exponent. Thus, the image of fhom under
σ = (xy) is

σ(fhom(x,y,z)) = a004z
4 +a013xz

3 +a103yz
3 +a022x

2z2 +a112xyz
2 +a202y

2z2

+a031x
3z+a121x

2yz+a211xy
2z+a301y

3z+a040x
4 +a130x

3y

+a220x
2y2 +a310xy

3 +a400y
4.

In the same way does S3 act on Trop(f). As the dual subdivision of the Newton
polytope is induced by the coefficients −λij =−val(aij), this means that S3 also
acts on the subdivision. The action of S3 on the subdivisions of the Newton
polytope corresponds to the group of rotations and reflections along axes through a
vertex of 4∆2 and the midpoint of the opposite boundary edge. This is visualized
in Figure 3.1. An example of the action of S3 on a unimodular triangulation of
4∆2 is depicted in Figure 3.2.

Definition 3.1.3. We say that two tropical quartic curves have the same combina-
torial type, if the they have the same dual subdivision, i.e. their coefficient vectors
are in the same secondary cone.
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(xy) : λij 7→ λji (xz) : λij 7→ λ4−i−j,j

Figure 3.1: Actions of generators of S3 on the dual subdivision induced by (λij).

y (xy)

Figure 3.2: Action of σ = (xy) ∈ S3 on a unimodular subdivision of 4∆2. The
subdivision on the left side is symmetric with respect to (xz).

Two subdivisions T ,T ′ of (the lattice point of) 4∆2 are symmetric or equivalent
up to S3 if there exists σ ∈ S3 such that T = σ(T ′).

Recall that a subdivision is regular, if it can be induced by a lifting function; see
Definition 2.1.8.

Theorem 3.1.4 ([BJMS15]). There exist exactly 1279 unimodular triangulations
of 4∆2 up to S3 symmetry, of these exactly 1278 are regular.

This means, that there are 1278 different combinatorial types of tropical smooth
quartic curves. We can sort these into four different classes: honeycomb, Mickey
Mouse, one-bridge and two-bridge by the shape of their skeleta [BJMS15], [BLM+16,
Remark 2.4]. The four types are depicted in Figure 3.3.

Definition 3.1.5 ([BJMS15, BLM+16]). Considering a tropical plane curve as a
graph. We call an edge a generalized leaf if the edge is not part of a loop and one
of the two graphs obtained from cutting the edge is a tree.
The skeleton of a smooth plane tropical curve is the subgraph obtained by

contracting all the leaf edges.

Figure 3.4 shows the skeleton and the leaves of an exemplary quartic curve.
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(a) Honeycomb (b) Mickey Mouse (c) One-Bridge (d) Two-Bridge

Figure 3.3: The four types of skeleta of tropical quartic curves

Figure 3.4: Skeleton and generalized leaves of a tropical quartic curve. The
generalized leaves are depicted green and dashed. The skeleton, in black solid edges,
is of type two-bridge.
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3.2 Tropical bitangent lines
We recall the definition of tropical bitangents and collect what is known about them
following [BLM+16, LM20, CM21]. After introducing tropical bitangent classes,
we review the classification of bitangent shapes and their dual subcomplexes in
the subdivision up to S3-action. In Chapter 4, we will refine this classification by
introducing deformation classes.

Definition 3.2.1 ([BLM+16, Definition 3.1]). A tropical line Λ is bitangent to a
smooth tropical plane quartic curve Γ if their intersection Λ∩Γ has two components
with stable intersection multiplicity 2, or one component with stable intersection
multiplicity 4.

Recall that the stable intersection of plane curves was introduced in Defini-
tion 2.2.5. The definition of intersection multiplicity can be found in Definition 2.2.3.
In this thesis we will only consider non-degenerate lines as tropical bitangents.

A superabundance phenomenon appears for tropical quartic curves and their
bitangents: contrary to the classical algebraic situation a smooth tropical quartic
curve can have infinitely many bitangent lines. Figure 3.5 shows a smooth tropical
quartic curve with infinitely many tropical bitangent lines: The horizontal ray of
every tropical line with vertex in the gray square meets the tropical quartic in the
same edge with direction (−1,2) thus giving intersection multiplicity 2. Similarly
the vertical ray of every tropical line with vertex in the gray square meets the
tropical quartic in the same edge with direction (2,− 1) providing intersection
multiplicity 2. Thus every tropical line with vertex in the gray square is bitangent
to the quartic.

Theorem 3.2.2 ([BLM+16, Theorem 3.9 ]). Every smooth tropical plane quartic
curve Γ admits precisely 7 bitangent lines up to equivalence.

By [BLM+16, Definition 3.8] two bitangents are equivalent if they correspond
to linearly equivalent theta characteristics. Descriptively, this means that two
bitangents are equivalent if they can be continuously translated into each other
while preserving the bitangency [BLM+16].

Definition 3.2.3 ([CM21, Definition 3.1]). Given a tropical bitangent line Λ to a
generic tropical smooth plane quartic Γ, its tropical bitangent class is the connected
components of the subset of R2 containing the vertices of all tropical bitangent
lines linearly equivalent to Λ. The shape of a tropical bitangent class refines each
class by coloring those points belonging to the tropical quartic Γ.

The bitangent classes are connected polyhedral complexes [CM21, Corollary 3.3].
Formally they live in the dual plane R∨. Standard duality identifies a non-degenerate
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(−1, 2)

(2,−1)

Figure 3.5: Example of a tropical smooth quartic curve with infinitely many
bitangent lines: Every tropical line with vertex in the gray square is bitangent to
the curve.

tropical line in R2 with the negative of its vertex as point in the dual plane R∨.
However, for improved visualization the tropical quartic curve and its bitangent
classes will be drawn on the same plane, i.e., we abandon the minus sign in front
of the coordinates in the identification with the dual plane. Thus, the bitangent
classes are min-tropical sets [CM21, Theorem 1.1]
The classification up to S3-symmetry of the bitangent shapes by [CM21] is

depicted in Figure 3.6.
By [CM21, Corollary 4.12], the existence of a bitangent shape representative for

a tropical quartic curve partially determines its dual subdivision. Figure 3.7 shows
the summary of the determined parts of the subdivision for S3-representatives of
each shape as in [CM21, Figure 8].
In Figure 3.7, the same color coding as in [CM21] is used: Solid edges have to

appear in the triangulations. Dotted edges represent possible edges of which one
has to occur in the triangulation. Vertices colored in black are vertices that always
must be present, while the colored vertices either have to form a triangle with an
edge of the same color or are endpoints of dotted edges of the same color. The
colors encode different types of tangencies, see [CM21, Remark 4.13].

Definition 3.2.4. A bitangent shape and its corresponding subcomplex in the
triangulation are in identity position if they are in position as in Figures 3.6 and 3.7.
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3.2 Tropical bitangent lines

Figure 3.6: Shapes of bitangent classes to tropical smooth quartics. The black
numbers above the vertices indicate the lifting representatives in each class and
their lifting multiplicities. Red vertices or line segments are contained in the quartic
curve, a red vertex filled with white coincides with a vertex of the quartic curve.
Figure taken from [CM21, Figure 6].

Figure 3.7: The dual subcomplexes of all the bitangent classes. The color coding is
explained in [CM21, Remark 4.13]. Figure taken from [CM21, Figure 8].
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Notation 3.2.5. For a given tropical quartic curve, not all bitangent shapes might
be in identity position. We indicate the element in S3 that acted on the shape
in identity position to bring it in the form in which it appears for the quartic by
adding the permutation to the index of the shape. An example is illustrated in
Figure 3.8. Figure 3.8c shows a tropical smooth quartic curve with two bitangent
classes of shape (B). The dual parts in the subdivision are depicted in Figure 3.8a
and 3.8b. We see that the dual part in Figure 3.8a is identity position, so we
label the bitangent class in Figure 3.8c with (B). However, the dual subdivision in
Figure 3.8b is not in identity position. Letting σ = (xz y) = (xy z)−1 act on the
three triangles determined by the bitangent class, we observe that it is moved to
identity position. So this bitangent class is labeled (B)(xyz) as its subcomplex is
the image of the identity position under (xy z).

(a) Triangles to
(B) in identity
position.

(b) Triangles to
(B) after action
of (xyz).

(B)

(B)(x y z)

(c) Bitangent classes to the curve

Figure 3.8: Tropical smooth quartic curve with two bitangent classes of shape (B),
one in identity position, one the image of (xy z) ∈ S3.
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3.3 Lifting tropical bitangent lines

3.3 Lifting tropical bitangent lines
The question of relative realizability was introduced in Definition 2.2.12. It is at
the core of applying tropical geometry to algebraic problems. In this section we go
over the results from [LM20, CM21] on lifting smooth tropical quartics and their
tropical bitangents. After introducing the lifting multiplicity, we recall important
genericity constraints for the tropical quartic curve from [LM20, CM21] to which
we will adhere for the rest of Part I. Finally, we review the real lifting conditions
determined in [CM21], on which the main results of Chapter 5 rely, and the position
of the tropicalization of tangency points.

Definition 3.3.1 ([CM21, Definition 2.8]). Let K be the algebraic closure of a real
closed, complete non-Archimedean valued field. Let Λ be a tropical bitangent to a
tropical smooth quartic curve Γ with tangency points P and P ′. We say Λ lifts
over K if there exists a bitangent L to V (f) defined over K with tangency points p
and p′ such that

Trop(V (f)) = Γ, Trop(L) = Λ, Trop(p) = P, and Trop(p′) = P ′.

Such a tropical bitangent Λ will also be called realizable.
The lifting multiplicity of Λ is the number of such bitangent triples (L,p,p′).

Remark 3.3.2 (Genericity constraints, [CM21, Remark 2.1]). The work in the
following chapters of this thesis builds on the results in [LM20, CM21]. Their
computations of the lifting conditions make certain genericity constraints on the
tropical quartic Γ necessary.
As remarked earlier, we assume the tropical quartic curve Γ to be smooth and

the tropical bitangent lines to be non-degenerate. Further we assume the following
conditions:

(i) if Γ contains a vertex v adjacent to three bounded edges with directions −e1,
−e2 and e1 + e2, then the shortest of these edges is unique;

(ii) A lift V (f) of Γ has no hyperflexes, i.e., no bitangent for which the two
tangency points coincide;

(iii) the coefficients of f , with V (f) a lift of Γ, are generic enough to guarantee
that if the tangencies occur in the relative interior of the same end of Λ, then
the local systems defined by these two points are inconsistent.

These conditions are necessary to ensure that the computational lifting techniques
in [LM20] are valid. Condition (i) will be particularly relevant in our analysis of
the lifting conditions of shape (C).
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In the remainder of this thesis, we will only consider tropical smooth quartic
curves that are generic by this conditions.

Theorem 3.3.3 ([LM20, Theorem 4.1]). Let Γ be a generic tropical smooth quartic
curve. The sum of the complex lifting multiplicities over the bitangents in the same
equivalence class is always 4, and every partition of 4 except 3+1 appears for some
bitangent shape as the sum of the complex lifting multiplicities of its representatives.

The small numbers in Figure 3.6 for each bitangent shape indicate the represen-
tatives that lift and its corresponding complex lifting multiplicity.
The local complex lifting multiplicity at each tangency point as computed

by [LM20] can be 1 or 2. As not every polynomial equation of degree 2 has real
solutions, we are interested in the number of real lifts, that is, the lifting multiplicity
when V (f) and ` are defined over KR.

Theorem 3.3.4 ([CM21, Theorem 1.2]). Let Γ be a generic tropicalization of a
smooth plane quartic V (f) defined over a real closed complete non-Archimedean
valued field KR. Then a bitangent class of a given shape has either zero or exactly
four lifts to real bitangents to V (f).

Furthermore, for an S3-representative of each bitangent shape, Cueto and Mark-
wig determined the conditions for the bitangent class to have four lifts to real
bitangents, [CM21, Table 1]. These are conditions on the signs sij of the coefficients
aij of a real lift f of the tropical quartic curve. They are summarized in Table 3.1.

Notation 3.3.5. The parameters i, j,k,v,u used in the real lifting conditions
in Table 3.1 are used to parametrize the position of certain vertices in the dual
bitangent motif.
Consider for example shape (A): the signs s1v, s1,v+1 belong to the coefficients

corresponding to the vertices p1v, p1,v+1, which form the red edge in the dual
bitangent motif, while the signs su1,su+1,1 belong to the coefficients corresponding
to the vertices pu1, pu+1,1, which form the green edge in the dual bitangent motif
of shape (A). The sign s0i the corresponds to the lattice point p0i, which forms a
triangle with the red edge p1vp1,v+1. Analogously the sign sj0 is associated to the
lattice point pj0 which forms a triangle with the green edge pu1pu+1,1.
For some bitangent shapes like shape (B) the green edge is fixed, however, the

vertex on the boundary forming a vertex with the edge is still free to be chosen.
Thus, for some shapes there is only a parameter i or j but no v or u.

The parameter k only appears for shapes for which the dual bitangent motif in
identity position offers a choice between vertices on the diagonal boundary edge of
4∆2. The sign sk,4−k corresponds to the lattice point pk,4−k which forms a blue
edge in the dual bitangent motif with p11. Note that k ∈ {0,2,4}.
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3.3 Lifting tropical bitangent lines

Shape Lifting conditions
(A) (−s1vs1,v+1)is0is22 > 0 and (−su1su+1,1)jsj0s22 > 0
(B) (−s1vs1,v+1)i+1s0is21 > 0 and (−s21)j+1sj31s1vs1,v+1sj0 > 0
(C) (−s11s12)is0is20 > 0 and (−s21s12)ksk,4−ks20 > 0 if j = 2

(−s11)i+1si12s21s0isj0>0 and (−s21)k+1sk12s11sk,4−ksj0>0 if j = 1,3
(H),(H’) (−s1vs1,v+1)i+1s0is21 > 0 and −s21s1vs1,v+1s40 > 0
(M) (−s1vs1,v+1)i+1s0is21 > 0 and s31s1vs1,v+1s30 > 0
(D) (−s10s11)is0is22 > 0

(E),(F),(J) (−s1vs1,v+1)is0is20 > 0
(G) (−s10s11)is0isk,4−k > 0

(I),(N) −s10s11s01sk,4−k > 0
(K),(T),(T’),
(T”), (U),
(U’),(V)

s00sk,4−k > 0

(L),(O),(P) −s10s11s01s22 > 0
(L’),(Q),(Q’),

(R),(S) s00s22 > 0
rest no conditions

Table 3.1: The real lifting conditions of the bitangent shapes in their identity
positions as determined in [CM21, Table 11].
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The following example illustrates how the real lifting conditions can be computed.
Example 3.3.6. Consider the quartic polynomial

f(x,y) = t14 +x+ t13y+ t4x2 +xy+ t14y2 + t9x3 + tx2y (3.2)
+ t4xy2 + t16y3 + t15x4 + t4x3y+x2y2 + t9xy3 + t19y4 ∈ R{{t}}.

Its tropicalization and the dual triangulation are depicted in Figure 3.9.
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(a) Dual subdivision

(A)

(A)

(A)(E)(y z)

(E)(y z)

(D)(I)

(b) The tropicalized curve Trop(f) and its 7 bitangent classes.

Figure 3.9: The tropicalization of the quartic curve V (f) in Equation (3.2), with
its 7 tropical bitangent classes and its dual subdivision.

The 7 bitangent shapes are illustrated in Figure 3.9b. The bitangent classes
of shape (A), (D) and (I) are in identity position, the two bitangent classes of
shape (E) are in the image of (y z). The sign conditions for the bitangent shapes
in identity position can be read off of Table 3.1.

For this we need to find the correct values for the parameters i, j,u,v,k according
to Notation 3.3.5, we will do this exemplary with the lowest bitangent class of
shape (A) in Figure 3.9b. The dual bitangent motif contains the two triangles
(p10p11p01), (p10p11p22) corresponding to the bounded horizontal edge the bitangent
intersects. From this we see (p10p11p01) = (p1vp1,v+1p0i), so v = 0, i= 1. The two
triangles corresponding to the vertical bounded edge intersected by the bitangent
are (p21p31p10), (p21p31p22), so we conclude u= 2, j = 1.

For the sign conditions of the two bitangent classes of shape (E)(y z), we need to
apply (y z)−1 = (y z) to the triangulation, read the sign conditions off Table 3.1 and
then apply (y z) back on the indices. We demonstrate this for the higher bitangent
shape of shape (E)(y z). The dual bitangent motif to the shape as given consists
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3.3 Lifting tropical bitangent lines

shape lifting conditions cond. satisfied number of lifts

(A) s04s22 > 0 no 0(−s21s31)s10s22 > 0

(A) s04s22 > 0 no 0(−s21s31)s10s22 > 0

(A) (−s10s11)s01s22 > 0 no 0(−s21s31)s10s22 > 0
(D) (−s10s11)s01s22 > 0 no 0

(E)(y z) s04s22 > 0 yes 4
(E)(y z) s04s22 > 0 yes 4
(I) −s10s11s01s04 > 0 no 0

Table 3.2: Real lifting conditions of the bitangent classes of Trop(f) and the
corresponding numbers of real bitangents to V (f).

of the triangles (p04p12p13), (p12p13p22) and the edge (p10p22). After applying
(y z)−1 = (y z), the dual bitangent motif consists of the triangles: (p00p11p10),
(p11p10p20) and the edge (p13p20). Thus, we are in the case that p1v = p10, p1,v+1 =
p11 and p0i = p00. Hence, the lifting condition is

(−s10s11)0s00s20 > 0.

Applying (y z) back on the indices of the real lifting condition we obtain:

(−s13s12)0s04s22 = s04s22 > 0.

Table 3.2 shows the real lifting conditions for the 7 bitangent classes by their
shapes (classes with the same shape are ordered by their appearance in Figure 3.9b
top to bottom). We see that the quartic polynomial f from above has exactly 8
real bitangent lines.

For two algebraic curves C1 and C2 that do not share a component, we know that
Trop(C1∩C2)⊂ Trop(C1)∩Trop(C2). If the intersection of the tropical curves is
not transversal, we know this inclusion to be strict.

Definition 3.3.7. Let Γ = Trop(V (F )) be a tropical quartic curve and Λ = Trop(L)
a realizable bitangent line to Γ, i.e., L is a bitangent to V (f). The tropicalization
of a tangency point of L to V (f) will be called tropical tangency point.

Proposition 3.3.8 ([LM20, Section 2.2]). Let Γ be a tropical quartic curve and Λ
a realizable tropical line intersecting Γ non-transversally. The following describes
the position of the tropical tangency points.
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1. If Λ meets Γ in a line segment with stable intersection of multiplicity 2, the
tropicalization of a tangency point has to be the midpoint of the line segment.

2. If a connected component of Λ∩Γ consists of a vertex and 3 edges in the
standard directions, the total intersection multiplicity equals 4 and we can
have two points of tangency. If the minimal lattice lengths of the three
adjacent edges is µ1, the two points of tangency appear on the other two edges
at distance (µ−µ1)/2 from the vertex, where µ is the lattice length of the
corresponding edge.

t

(a)

t

(b)

3

2

1

t1
t2

(c)

t

(d)

Figure 3.10: The different positions of tropical tangency points depending on
the intersection. Figures 3.10a and 3.10b illustrate case (1) in Proposition 3.3.8,
Figure 3.10c illustrates case (2) in Proposition 3.3.8, and Figure 3.10d illustrates a
transversal intersection.
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Chapter 4

Deformation classes of tropical bitangents
Tropical quartic curves can be described via the secondary fan (Definition 2.1.10).
Each combinatorial type T corresponds to a secondary cone and the choice of edge
lengths for the tropical curve together with its position in the plane corresponds to
the choice of a weight vector in the cone Σ(T )/(1, . . . ,1)R; recall Definition 2.1.14.
However, the shapes of the 7 bitangent classes do not always remain constant
within a secondary cone. In other words, when choosing different weight vectors
that induce the same unimodular triangulation, we can observe different bitangent
shapes for the tropical quartic curves induced by the weight vectors.
The aim of this chapter is to understand how the bitangent shapes deform

when we fix a combinatorial type of the quartic curve. To this purpose we first
define deformation classes of tropical bitangents to quartic curves and their dual
deformation motifs. This terminology is inspired by [PV22].
In Section 4.2, we present the first main theorem of this thesis: A full clas-

sification of the deformation classes of tropical bitangents, Theorem 4.2.3, and
give an extensive proof of the classification. All dual deformation motifs up to
S3-equivalence can be found in Figure 4.39.

This classification is a preparation for the second main result, which is presented
in Chapter 5. There we investigate the lifting conditions of deformation classes
and obtain that the lifting conditions are constant on the cones of the secondary
fan corresponding to generic, smooth tropical quartic curves; see Theorem 5.1.4.
The results are joint work with Marta Panizzut [GP21b].

4.1 Deformations of bitangent shapes
When considering different examples of tropical quartic curves and their bitangent
classes, one observes that different shapes appear for different choices of edge
lengths for the same combinatorial type of the quartic; see Example 4.1.1. This
motivated the introduction of deformation classes.
The terminology of bitangent motifs and deformation motifs is inspired by the

one used in [PV22, JPS20] for the classification of families of tropical lines on
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tropical smooth cubic surfaces.
This section is based on joint work with Marta Panizzut [GP21b].
For a subdivision T that contains a subcomplex as in Figure 3.7, i.e., a subcomplex

determined by a bitangent shape, it is not necessary that for every curve with
coefficient vector c ∈ Σ(T ) the bitangent shape will appear. These subcomplexes
are only a necessary condition for the appearance of the bitangent shape. The
bitangent shapes depend additionally on the edge lengths of the tropical curve,
that are determined by c ∈ Σ(T ). This is illustrated in Example 4.1.1. However,
it is always possible to find a coefficient vector in Σ(T ) such that the bitangent
shape will appear for the induced curve if its determined part is contained in
the subdivision. This is not trivial and will be explained in Chapter 4, while
Section 6.3.1 shows how to find a fitting coefficient vector.
Example 4.1.1. Figure 4.1 shows a unimodular triangulation and three tropical
curves of this combinatorial type with different edge lengths. We observe, that the
bitangent classes deform their shape with the change of the edge lengths of the
quartic. The colored edges in the triangulation T in Figure 4.1a correspond to the
shapes (B), (M) and (B)(y z) from the classification in Figure 3.6. Let a denote
the coefficient vector of an algebraic curve of degree 4 with entries ordered as in
Equation (3.1). Then we conclude from Figure 4.1 that for each of the three shapes
(B), (M) and (B)(y z) there exist coefficient vectors in Σ(T ) that induce the shape.
Examples are given in the table below. These coefficient vectors correspond to the
curves in Figure 4.1.

(a) Trian-
gulation T (b) Shape (B) (c) Shape (M) (d) Shape (B)(y z)

Figure 4.1: The dual triangulation does not fix the shapes of the bitangent classes,
since they can change when choosing different edge lengths for the curve.

Shape coefficient in Σ(T )
(B) λ1 = (13,0,0,−15,10,−15,−32,0,−11,−34,−84,−51,−41,−57,−77)
(M) λ2 = (12,0,0,−14,10,−14,−30,0,−10,−32,−81,−50,−40,−55,−74)

(B)(y z) λ3 = (11,0,0,−13,11,−13,−28,2,−8,−30,−81,−50,−40,−55,−74)
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The change of bitangent shapes for different choices of coefficients in the sec-
ondary cone motivates the definition of deformation classes, which roughly group
together all those shapes that can deform into each other.
Note, that it is not obvious that the three bitangent classes for each choice

of edge lengths have the same real lifting behavior. The lifting conditions were
computed per shape in identity position. Here we observe a change from shape (B)
over shape (M) to shape (B)(y z). Theorem 5.1.4 states that these changes actually
have no impact on the real lifting behavior of the bitangent class. This is the main
result of Section 5.1.

Definition 4.1.2. Let Γ be a tropical smooth quartic curve with dual triangulation
T , and let B be a bitangent class of Γ of a fixed shape. The dual bitangent motif
of (Γ,B) is the subcomplex of T that is fully determined by the shape of B. Dual
bitangent motifs are classified in [CM21, Figure 8].

Definition 4.1.3. Given a tropical quartic Γc with dual triangulation T , c ∈Σ(T ),
and a tropical bitangent class B, we say that a tropical bitangent class B′ is in the
same deformation class as B if the following conditions are satisfied:

. There exists Γc′ with c′ ∈ Σ(T ) having B′ as one of its bitangent classes.

. There is a continuous deformation from Γc to Γc′ given by a path in the
secondary cone Σ(T ) from c to c′ that induces B to change to B′.

We use the notation Bω to indicate the deformation of B in Γω for ω in the path.
Given a unimodular triangulation T of 4∆2 and a dual quartic curve Γ, let D be
the deformation class of one of its seven bitangent classes. The dual deformation
motif of (T ,D) is the union of the dual bitangent motifs of all shapes belonging to
bitangent classes in D.

We label deformation classes using the letters of the shapes of tropical bitangents.
If the class contains the image of shapes under the action of an element σ ∈ S3, we
use the notation +σ. For instance, in Example 4.1.1 we have seen a deformation
between the shapes (B), (M) and (B)(y z). This indeed forms a deformation class
and since shape (M) is symmetric with respect to (y z) ∈ S3 this class will be
denoted (B M)+(y z).

Corollary 4.1.4. Each smooth tropical quartic Γ has 7 distinct deformation classes
which only depend on the dual triangulation T of Γ.

This follows directly from the definition. Changing the coefficients defining Γ in
the secondary cone Σ(T ) induces a variation in the shapes of the tropical bitangents
within the deformation class.
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(a) no (A) (b) no (E) (c) no (G) (d) no (G), (I), (N), (K),
(U), (U’), (T), (T’), (T”), (V)

(e) no (G), (I), (N) (f) no (G), (K), (U), (U’),
(T), (T’), (T”), (V)

(g) no (T”)

Figure 4.2: These bitangent motifs appear in the condensed classification in Fig-
ure 3.7 of the bitangent shapes but they do not lead to the shapes under which
they are listed.

4.2 Classification
This section contains a full classification of the deformation classes of tropical
bitangents, which is the first main result of Part I. The proof of the classification
takes place in three steps: first we sort through the set of bitangent motifs from
[CM21], then we classify all deformation classes that contain only one shape and
can thus be viewed as constant, before we classify all remaining deformations of
bitangent shapes. The section is based on joint work with Marta Panizzut [GP21b].

Proposition 4.2.1. The bitangent motifs depicted in Figure 4.2 are each part of a
different bitangent motif such that they do not lead to the bitangent shape under
which they can be found in Figure 3.7.

The summary of the dual bitangent motifs by [CM21] as shown in Figure 3.7 is
very condensed, and, as a consequence, for some figures with dotted edges not all
combinations lead to the assigned bitangent shape.

Proof. We prove the claim by going through the different bitangent motifs from
Figure 4.2.

(4.2a) This bitangent motifs appears when in the picture to (A) in Figure 3.7 the red
and green edges p10p11 and p01p11 are chosen. Shape (A) appears in identity
position when the tropical line intersects the quartic non-transversally in
a bounded edge (dual to the red resp. green edge) with its horizontal and
vertical ray. However, we observe that in the configuration in Figure 4.2a
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.3: The parts of the quartic curve dual to the bitangent motifs from
Figure 4.2

the horizontal bounded edge dual to the red edge in the motif will always be
right of the vertical bounded edge dual to the green edge in the triangulation.
Therefore, an intersection with a tropical line as described above is not
possible. This is illustrated in Figure 4.3a. Instead this bitangent motif will
give rise to a bitangent class of shape (P) or (S) depending on its completion
in the lower left corner.

(4.2b) When we choose the red edge p12p13 together with the blue edge p20p13 in
Figure 3.7 for (E), we obtain the picture from Figure 4.2b. The edge p20p12
exists because of the unimodularity of the triangulation. Thus, we see a dual
picture as in Figure 4.3b. We observe, that the bitangent class will intersect
the quartic in every possible completion of the triangulation. Therefore, shape
(E) will never appear for this bitangent motif. Depending on the completion
in the leftmost column and the edge lengths of the dual curve, the dual
subdivision leads to bitangent shapes (D), (L), (L’), (O), (Q), (Q’) or (R).

(4.2c) The smoothness of the quartic curve leads to a unique completion of the
triangulation around the triangle p01p11p04. The dual picture, i.e., the dual
part of the quaric curve, is depicted in Figure 4.3c. As we see in the dual
picture, the dual motif induces a bitangent shape (II). This is independent of
edge lengths and the remaining not fixed triangulation.

(4.2d) The constellation depicted in Figure 4.2d is a possible completion of dual
motif of shape (G) or, depending on the choice of the red lattice point with
x-coordinate zero, of the shapes (I), (N), (K), (U), (U’), (T), (T’), (T”) or
(V). However, the existence of this triangle in the subdivision leads instead to
bitangent shapes (D), (L), (L’), (O), (Q), (Q’), (R), (S) or (P) depending on
the completion of the triangulation and the edge lengths of the quartic. This
is due to the fact, that the triangle p10p11p22 is dual to a part of the curve
as shown in Figure 4.3d. We see, that there is always, independent of edge
lengths or the surrounding curve, a bounded line segment of the bitangent
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class that does not lie on the curve. This excludes the shapes (G), (I), (N),
(K), (U), (U’), (T), (T’), (T”) and (V).

(4.2e) The bitangent motif shown in Figure 4.2e is a possible completion of the
bitangent motifs of shapes (G), (I) and (N). Similar to the case before, an
observation of the curve in Figure 4.3e dual to the bitangent motif yields
that the bitangent class in question always contains a bounded line segment
not contained in the quartic curve. Hence, the bitangent motif does not
induce shapes (G), (I) or (N). Depending on the completion of the unimodular
triangulation and the edge lengths of the quartic, we instead observe bitangent
shapes (D), (L), (O) or (P).

(4.2f) The triangles shown in Figure 4.2f is a possible completion of the bitangent
motifs of shapes (G), (K), (U), (U’), (T), (T’), (T”) and (V). The part of the
quartic curve dual to the triangles is illustrated in Figure 4.3f. As before, we
see that independent of the edge lengths of the quartic curve the bitangent
class will contain a line segment that does not lie on the curve. Thus, it
follows that the bitangent motif does not induce the shapes (G), (K), (U),
(U’), (T), (T’), (T”) and (V). Instead, depending on the completion of the
unimodular triangulation and the edge lengths, the triangles lead to bitangent
shapes (D), (L’), (Q), (Q’), (R) or (S).

(4.2g) When the triangle neighboring the edge (p00p11) in the triangulation is given
by (p00p11p12) (up to S3-symmetry) as shown in Figure 4.2g, the bitangent
shape (T”) cannot appear for the dual quartic curve. The reason is, that
for shape (T”) the two vertices bounding the line segment of the bitangent
class contained in (p00p11)∨ have to coincide with vertices of the quartic.
However, as Figure 4.3g illustrates for the case of (p11p22) as blue edge
in the triangulation, shape (T”) is not possible. For the case of (p11p40)
as blue edge in the triangulation, a similar picture can be drawn. The
summarizing argument for this case is, that the y-coordinate of (p00p11p12)∨
by the triangulation always has to be at least as large as the y-coordinate
of the upper vertex of the edge (p11p22)∨ resp. (p11p40)∨. So the the vertex
(p00p11p12)∨ can never be part of the bitangent class. Thus, shape (T”)
cannot occur for this possible completion of its dual bitangent motif.

To exclude these cases and avoid confusion, we will adapt a less condensed way
of notating the dual bitangent motifs.
We will now classify all deformation classes that consist of only one bitangent

shape.
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(A) (B) (C) (D) (E) (G)

(H) (P) (S) (T) (W) (II)

Figure 4.4: Dual bitangent motifs of bitangent classes with constant shape in their
deformation class.

Proposition 4.2.2. Let Γ be a tropical smooth quartic curve dual to a triangulation
T of 4∆2. Let B be a bitangent class of Γ with dual bitangent motif belonging to
the collection in Figure 4.4, modulo S3-symmetry. Then the shape of B is constant
in its deformation class, in other words, the deformation class of B is constant.

Proof. The proof is structured by a case distinction. For each case the combinatorial
structure induced on the curve by the dual bitangent motif makes a change of the
two tangencies by different edge lengths impossible. Thus, the shape of the bitangent
class is fully determined by its dual deformation motif. The argumentation for each
case contains a picture of the dual deformation motif and the relevant dual part of
the tropical quartic curve. If the dual bitangent motif offers different choices of
triangles, the tropical curve is illustrated only for one of them.

Deformation class (A)

(a) Dual deformation motif (A) (b) Example of bitangent shape (A)
with the relevant parts of the curve

Figure 4.5: Deformation class (A)

When applying duality, we observe from the dual bitangent motifs that the
horizontal bounded edge dual to the red edge in the triangulation will always
be completely contained in the area with x-coordinate smaller, and y-coordinate
larger than appears in the vertical bounded edge dual to the green edge in the
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triangulation. This relative behavior of the two line segments is determined by the
combinatorics of the triangulation and cannot be changed by the edge lengths of
the quartic. Therefore, both line segments uniquely define a tropical bitangent line
of shape (A).

Deformation class (B)

(a) Dual deformation motif (B) (b) Example of bitangent shape (B)
with the relevant parts of the curve

Figure 4.6: Deformation class (B)

A bitangent class of shape (B) intersects the quartic non transversally with its
horizontal and vertical ray. The edge of the quartic intersecting with the horizontal
ray is contained in the bitangent and it is dual to a red edge in the dual bitangent
motif. This tangency has to be persevered by any deformation of the shape. The
intersection of the vertical ray with the bounded edge of Γ dual to the green edge
in the dual bitangent motif in Figure 4.6 is such that the vertex of the bitangent
line is contained in the interior of the edge of Γ. By changing the edge lengths of
the quartic, this vertex could move onto another adjacent edge of Γ, thus changing
the shape of the bitangent class. We claim that this cannot happen when the green
edge forms a triangle with p00, p10, or p20, which are the only allowed lattice points
by the bitangent motif.
Denote the two vertices of the green vertical bounded edge in the quartic curve
by (a,b1) and (a,b2), with b1 < b2. Let c be the y-coordinate of the red horizontal
bounded edge of the quartic. For all the possible choices of vertices for the green
and red triangle in the subdivision, we observe that the vertices (a,b1) and (a,b2)
always satisfy b1 < c < b2. Therefore, the bitangent shape cannot deform.

Deformation class (C)

Let Γ be a tropical quartic curve with a bitangent class of shape (C). This implies
that the quartic contains a vertex v which is incident to three bounded edges of
direction −e1, −e2 and e1 + e2. The bitangent class consists of one single tropical
line with vertex v. Changes in the edge lengths of the quartic have no influence on
the existence of v and thus do not interfere with the actual shape of the bitangent
class.
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(a) Dual deformation motif (C) (b) Example of bitangent shape (C)
with the relevant parts of the curve

Figure 4.7: Deformation class (C)

Deformation class (D)

(a) Dual deformation motif (D) (b) Example of bitangent shape (D)
with the relevant parts of the curve

Figure 4.8: Deformation class (D)

We consider the dual bitangent motif depicted in Figure 4.8 where the red edge
forms a triangle with p02, p03 or p04. In each case, changing the edge lengths of
Γ cannot deform the shape of the bitangent class because the slopes of the edges
adjacent to the bounded horizontal edge p10p11∨ have to be lower than 1 by the
triangulation. Thus, the vertex of Γ dual to the triangle formed by the red edge
p10p11 with one of the red vertices must have a y-coordinate such that a diagonal
line through (p12p11p22)∨ cannot meet the vertex bounding p10p11∨ at the left side.

Deformation class (E)

(a) Dual deformation motif (E) (b) Example of bitangent shape (E)
with the relevant parts of the curve

Figure 4.9: Deformation class (E)
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We consider the dual bitangent motif shown in Figure 4.9. We observe that by
the unimodularity of the triangulation we know the two triangles with edge p20p13.
By Proposition 4.2.1 we know that the edge (p12p13)∨ cannot be responsible for the
non-transversal intersection of multiplicity 2 of the bitangent lines with the quartic.
The bitangent class is determined by the intersection of a vertical ray passing
through the edge (p10p11)∨, resp. (p11p12)∨, with diagonal rays passing through
the vertices of (p20p13)∨. It follows, that independent of the edge lengths of the
quartic, the bitangent class can never intersect with the quartic curve. Moreover,
it will always consist of a bounded line segment.

Deformation class (G)

(a) Dual deformation motif (G) (b) Example of bitangent shape (G)
with the relevant parts of the curve

Figure 4.10: Deformation class (G)

Considering the dual bitangent motifs shown in Figure 4.10, we see that there
are three possible options for the red edge to form a triangle except for the case
that the blue edge is p11p04, see Proposition 4.2.2. For each case, varying the
edge lengths of the quartic only changes the position of the bitangent class on the
horizontal bounded edge (p10p11)∨ of Γ. The bitangent class cannot extend because
of the slopes of the adjacent edges to the vertices of (p10p11)∨ and (p11p22)∨. For
an illustration see Figure 4.10. This figure only shows the situation for one of the
choices for the blue edge. The other cases are analogous.

Deformation class (H)

Figure 4.11 shows the dual bitangent motif and the part of the quartic curve
determined by it. The two tangencies are given by a non transversal intersection
of the horizontal ray of the tropical line with the bounded edge (p11p12)∨, and a
transversal intersection of the horizontal ray of the line with (p21p40)∨. We observe
that edge length changes have no impact on this bitangent shape independently of
the choice of completion for the unimodular triangulation.
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(a) Dual deformation motif (H) (b) Example of bitangent shape (H)
with the relevant parts of the curve

Figure 4.11: Deformation class (H)

Deformation class (P)

(a) Dual deformation motif (P) (b) Example of bitangent shape (P)
with the relevant parts of the curve

Figure 4.12: Deformation class (P)

Let Γ be a tropical quartic curve containing in its subdivision the triangles as in
Figure 4.12. Then the dual edges in Γ lead to a bitangent class of shape (P). Any
change in the edge lengths of Γ does not interfere with the relative position of the
edges determined by the dual bitangent motif, since the edges are all connected
and form a cycle. Hence, the bitangent shape (P) is itself independent of edge
length changes.

Deformation class (S)

(a) Dual deformation motif (S) (b) Example of bitangent shape (S)
with the relevant parts of the curve

Figure 4.13: Deformation class (S)

Consider the bitangent motif in Figure 4.13 and the part of the tropical quartic
curve Γ dual to the depicted triangles. Any change in the edge lengths of Γ does
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not interfere with the relative position of those edges, since they are connected and
form a cycle. As the bitangent motif induces the bitangent shape (S), it follows
that its deformation class is constant and consists only of the shape (S).

Deformation class (T)

(a) Dual deformation motif (T) (b) Example of bitangent shape (T)
with the relevant parts of the curve

Figure 4.14: Deformation class (T)

The dual bitangent motif in Figure 4.14 fixes connected edges of the quartic
curve that form a cycle. Due to the fixed directions of the edges, the relative
positions of the two blue edges (p00p11)∨ and (p11p22)∨ cannot be changed by
edge length changes. It follows that bitangent shape (T) cannot deform and thus
forms a constant deformation class. This is independent of the choice on how to
unimodularly complete the subdivision in Figure 4.14.

Deformation class (W)

(a) Dual deformation motif (W) (b) Example of bitangent shape (W)
with the relevant parts of the curve

Figure 4.15: Deformation class (W)

Figure 4.15 shows a dual bitangent motif of shape (W). The difference to the
other dual bitangent motifs to shape (W) is that no deformations of the shape
are possible. In Figure 4.15 we also see the part of the quartic curve that is dual
to the bitangent motif. We observe that the area for which the diagonal ray of
the tropical line intersects (p20p13)∨ and the horizontal ray of the tropical line at
the same time intersects (p20p03)∨ will always be a parallelogram that does not
intersect the quartic. As this is independent of the edge lengths of the quartic
curve, the dual bitangent motif defines the constant deformation class (W).
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Deformation class (II)

(a) Dual deformation motif (II) (b) Example of bitangent shape (II)
with the relevant parts of the curve

Figure 4.16: Deformation class (II)

In Figure 4.16 we see the dual bitangent motif of shape (II) and the part of the
quartic curve it determines. We observe that the bitangents in the unbounded
2-dimensional cell have only one intersection point with the quartic curve of
multiplicity 4. This intersection behavior is independent of the edge lengths of Γ.
The bounded line segment of the bitangent class is contained in the quartic curve
and its existence is independent of the edge lengths. Moreover, we observe that
by the triangulation the vertex (p00p11p12)∨ of the quartic curve will always have
smaller x-coordinate than the right vertex of (p12p13)∨. Therefore, shape (II)
cannot be deformed.

The following theorem states the full classification of the deformation classes.
This is the first main result of Part I.

Theorem 4.2.3. There are 24 deformation classes of tropical bitangent classes to
generic smooth tropical quartic curves modulo S3-symmetry. Orbit representatives
of their dual deformation motifs are summarized in Figure 4.39.

Proof. Proposition 4.2.2 covered the cases of the constant deformation classes. To
prove the statement we need a classification of the remaining cases of deformation
classes. This will be done by a comprehensive case distinction of the remaining
dual bitangent motifs and an investigation of the deformation possibilities of the
corresponding shapes. By transitiveness of the deformation of bitangent shapes it
is sufficient to structure the case distinction by going through the dual bitangent
motifs in alphabetical order. The proof is organized in sections that cover the
different cases. Each part is titled by the deformation class it classifies.

Deformation class (B H’ H)

Figure 4.17 shows a possible completion of the dual bitangent motif of shape (B)
from Figure 3.7, which is not covered by Proposition 4.2.2. We observe that the
dual bitangent motifs to shapes (H’) and (H) from Figure 3.7 are contained in
Figure 4.17.
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Figure 4.17: Dual deformation motif (B H’ H)

The two tangencies are given as follows: The first tangency is a non-transversal
intersection with (p11p12)∨ resp. (p12p13)∨. The second tangency depends on the
relative position of the edges (p1vp1,v+1)∨ with v ∈ {1,2} and (p21p31)∨ determined
by the edge lengths of the quartic curve.

Let a := (ax,ay) := (p1vp1,v+1p21)∨, and let b := (bx,by) := (p21p31p40)∨. In the fol-
lowing we investigate how the different relative positions, illustrated in Figure 4.18,
give rise to different shapes. We distinguish three cases:

• ay > by: Due to the remaining options in the triangulation, the upper vertex
of (p21p31)∨ has always y coordinate larger than a. Thus, in this case the
vertex of the bitangent must lie on the relative interior of the edge (p21p31)∨.
We see shape (B) and the second tangency is given by a non-transversal
intersection of the vertical ray with (p21p31)∨.

• ay = by: The vertex of the bitangent coincides with the vertex (p21p31p40)∨.
We see shape (H’) and the second tangency is given by the stable intersection
of the vertical ray with the the curve.

• ay < by: A horizontal line passing through (p11p12)∨ resp. (p12p13)∨ will have
to intersect (p21p40)∨. Thus, we see shape (H) and the second tangency is
given by the intersection of the vertical ray with (p21p40)∨.

a
b

(B) (H’) (H)

Figure 4.18: Example of deformation of shapes in deformation class (B H’ H).

Figure 4.18 illustrates the deformation of the shapes for p12p13 as red edge in
the dual deformation motif. Similar pictures can be drawn for p11p12.
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Figure 4.19: Dual deformation motif (B H’ H)+(y z)

Deformation class (B H’ H)+(y z)

Figure 4.19 depicts the remaining unimodular completion for the choice of the
triangle formed with the green edge (p21p31). Note that the triangles in Figure 4.19
contain the dual bitangent motifs of shapes (H’) and (H) as well as (H)(y z) and
(B)(y z). The tangencies appear in a similar way to the case (B H’ H). The first (and
by changes of edge lengths fixed) tangency is the non-transversal intersection on
(p1vp1,v+1)∨ with v ∈ {0,1,2}. The second tangency depends on the relative position
of the edge (p1vp1,v+1)∨ to the edges (p21p31)∨, (p21p40)∨ and (p21p30)∨. Let
a := (ax,ay) := (p1vp1,v+1p21)∨, b1 := (b1x,b1y) := (p21p31p40)∨, and b2 := (b2x,b2y) :=
(p21p30p40)∨; see Figure 4.20. By the slope of the edge (p21p40)∨ we have b1y > b2y.
Differently to (B H’ H), the case b2y ≥ ay is possible.

• ay > b1y: Analogous to the case of deformation class (B H’ H), the vertex
of the bitangent line has to be lying on the edge (p21p31)∨. We observe
shape (B).

• ay = b1y: This is the same situation as in the case of deformation class
(B H’ H). The vertex of the bitangent coincides with (p21p31p40)∨, we see
shape (H’).

• b1y <ay <b2y: As for (B H’ H), the horizontal ray passing through (p1vp1,v+1)∨
has to intersect the edge (p21p40)∨. This leads to a bitangent shape (H).

• ay = b2y: Different from the case for (B H’ H), the combinatorics of the curve
allows to move the vertex (p21p30p40)∨ above the edge (p1vp1,v+1)∨. When
they align horizontally, we observe a picture symmetric to the case ay = b1y
by (y z). We see shape (H’)(y z).

• ay < b2y: When the vertex (p21p30p40)∨ is above the edge (p1vp1,v+1)∨, a
horizontal ray through (p1vp1,v+1)∨ has to intersect the edge (p21p30)∨. The
lower vertex of this edge must have y-coordinate smaller than ay due to the
triangulation. As the edge (p21p30)∨ is of the same direction as the diagonal
ray of a bitangent line, we get a second non-transversal intersection and the
bitangent shape (B)(yz).
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a
b1

b2

(B) (H’) (H) (H’)(y z) (B)(y z)

Figure 4.20: Example of deformation of shapes in deformation class (B H’ H)+(y z)

Figure 4.20 illustrates the deformation behavior for an exemplary subdivision
with the red edge chosen as p12p13. Analogous pictures can be drawn for the options
p10p11 and p11p12.

Deformation class (B M)+(y z)

Figure 4.21: Dual deformation motif (B M)+(y z)

Figure 4.21 shows the last choice of the dual bitangent motif of shape (B). We
notice, that the dual bitangent motif of shapes (M) and (B)(y z) are contained. The
first tangency is as in the cases before given by the non-transversal intersection of
the horizontal ray with (p1vp1,v+1)∨ for v ∈ {0,1,2}. The second tangency is again
dependent on the relative position of (p1vp1,v+1)∨ to (p21p31)∨ and (p21p30)∨ which
is determined by the edge lengths of the quartic. Let a := (ax,ay) := (p1vp1,v+1p21)∨,
and let b := (bx,by) := (p21p31p30)∨. An illustration can be found in Figure 4.22.

• ay > by: An investigation of the options for completing the subdivision
unimodularly yields that a will always be smaller than the y-coordinate of
the upper vertex of (p21p31)∨. Hence, the vertex of the bitangent is contained
in the interior of the edge (p21p31)∨. We see shape (B).

• ay = by: In this case the edges (p1vp1,v+1)∨ and (p30p31)∨ align horizontally.
Therefore, we obtain an infinite family of bitangent lines with vertex on the
ray of direction e1 starting at (p21p30p31)∨. This is shape (M).

• ay < by: This case is symmetric to ay > by by (y z). The lower vertex of
(p21p30)∨ has always y-coordinate smaller than ay. Therefore, the vertex of
the bitangent line is contained in the relative interior of (p21p30)∨ and the
second tangency is given as the non-transversal intersection of the diagonal
ray with (p21p30)∨. This is shape (B)(yz).
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a
b

(B) (M) (B)(y z)

Figure 4.22: Example of deformation of shapes in deformation class (B M)+(y z)

In Figure 4.22 we see an illustration of the deformation between the shapes or
the choice of p12p13 as the red edge. Analogous examples can be made for p10p11
and p11p12.

Deformation class (D L’ Q)

Figure 4.23 shows in the leftmost picture a first case of a possible completion of
the dual bitangent motif (D) that is not covered by Proposition 4.2.2. Note, that
the dual bitangent motifs of the shapes (L’) and (Q) are contained.

Dual deformation
motif (D L’ Q)

a

b

(D) (L’) (Q)

Figure 4.23: Example of deformation of shapes in deformation class (D L’ Q)

The intersection of the diagonal ray of a tropical line with edge (p11p22)∨ resp.
of the vertical ray with the edge (p22p10)∨ provides the first tangency. Due to
the combinatorics, they can not occur together for one tropical line. For the
bitangents in the class whose vertical ray intersects with the edge (p22p10)∨, the
second tangency is given by a non-transversal intersection of the horizontal ray
with (p10p11)∨. This part of the bitangent shape is independent of any edge length
changes. If the first tangency is given by the transversal intersection of the diagonal
ray with edge (p11p22)∨, the second tangency depends on the relative position of
the vertices a := (ax,ay) := (p00p10p11)∨ and b := (bx,by) := (p11p12p22)∨ as depicted
in Figure 4.23.

• ax−ay < bx− by: In this case the diagonal ray of the tropical line through
the vertex (p11p12p22)∨ meets the horizontal edge (p10p11)∨ in its relative
interior. Thus, the bitangent shape is (D).

71



Chapter 4 Deformation classes of tropical bitangents

• ax−ay = bx− by: In this case the two vertices (p00p10p11)∨ and (p11p12p22)∨
lie on a diagonal ray. Hence, in addition to the bounded edge of the bitangent
shape, we obtain an infinite diagonal ray. This is shape (L’).

• ax−ay > bx−by: In this case a diagonal ray can intersect both edges (p00p11)∨
and (p11p22)∨. This gives shape (Q). By the slopes of the edges determined
by the dual motif, the bitangent class can never reach the vertex (p00p11p12)∨.

Deformation class (D L’ Q Q’ R)

The situation induced by the dual bitangent motif in Figure 4.24 is very similar to
the situation for deformation clas (D L’ Q). We observe again, that the triangulation
contains the dual bitangent motifs of the shapes (D), (L’), (Q), (Q’) and (R).

Dual deformation motif
(D L’ Q Q’ R)

a1
a2

b

(D) (L’)

(Q) (Q’) (R)

Figure 4.24: Example of deformation of shapes in deformation class (D L’ Q Q’ R)

We see the same two options for the first tangency as for deformation class
(D L’ Q). Also as before the second tangency depends on the edge lengths of the quar-
tic, i.e., on the relative position of the vertices a1 := (a1x,a1y) := (p00p10p11)∨resp.
a2 := (a2x,a2y) := (p00p01p11)∨to b := (bx,by) := (p11p12p22)∨ as depicted in Fig-
ure 4.24.

• a2x−a2y < bx− by: Shape (D)

as for (D L’ Q)• a2x−a2y = bx− by: Shape (L’)

• a2x−a2y > bx− by > a1x−a1y: Shape (Q)

• bx− by = a1x−a1y: In contrast to the case for deformation class (D L’ Q) the
different combinatorial type allows a diagonal alignment of the (p11p12p22)∨
with the right vertex of (p00p11)∨. This is shape (Q’).
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• a1x−a1y > bx−by: By the dual subdivision, the upper vertex of (p01p11)∨ has
to have larger y-coordinate than the diagonal ray through vertex (p11p12p22)
at x-coordinate a1x. Thus the diagonal ray through vertex (p11p12p22) meets
the vertical edge (p01p11)∨. This is shape (R).

Figure 4.24 illustrates this deformation between the shapes.

Deformation class (D L O)

Figure 4.25 shows the last remaining option for the completion of the bitangent
motif of shape (D). We observe that this coincides with the dual bitangent motifs
of shape (L) and (O). There are many similarities with the dual deformation motif
of deformation classes (D L’ Q) and (D L’ Q Q’ R), e.g. the first tangency is given
either by an intersection of the diagonal ray with (p11p22)∨, or of the vertical ray
with (p10p22)∨. The second intersection depends on the relative position of the

Dual deformation
motif (D L O)

a

b

(D) (L) (O)

Figure 4.25: Example of deformation of shapes in deformation class (D L O)

vertex a := (ax,ay) := (p10p01p11)∨ to the vertex b := (bx,by) := (p11p22p12)∨; see
Figure 4.25.

• bx−by >ax−ay: Analogous to (D L’ Q) and (D L’ Q Q’ R). We see shape (D).

• bx−by = ax−ay: In this case the vertices (p11p22p12)∨ and (p10p01p11)∨ lie on
a diagonal ray. Hence, in addition to the bounded edge of the bitangent shape,
we obtain an infinite diagonal ray containing the bounded edge (p10p01)∨ of
the quartic. This is shape (L).

• bx−by < ax−ay: By the dual subdivision, the upper vertex of (p01p11)∨ must
have larger y-coordinate than the diagonal ray through vertex (p11p12p22)
at x-coordinate ax. This is analogous to the argument for (R) in the case
of deformation class (D L’ Q Q’ R). Thus, the diagonal ray through vertex
(p11p12p22) meets the vertical edge (p01p11)∨. This is shape (O).
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Deformation class (E F J)

In Figure 3.7 the dual bitangent motif of shape (E) had two different choices for the
blue edge. The first case lead to a constant deformation class, see Proposition 4.2.2.
Here, we investigate the second case. We notice that the dual bitangent motif
coincides with the dual bitangent motif of shape (F) and that by unimodularity
it extends to the dual bitangent motif of shape (J), both in identity position.
The horizontal bounded edge (p1vp1,v+1)∨ provides the first tangency via a non-
transversal intersection with the horizontal ray of the tropical bitangent.

Dual deformation
motif (E F J)

a

b

(E) (J) (F)

Figure 4.26: Example of deformation of shapes in deformation class (E F J)

Let a := (ax,ay) := (p1vp1,v+1p20)∨ and b := (bx,by) := (p20p30p31)∨; see Fig-
ure 4.26. By the triangulation we can conclude, that ay has to be smaller than
the y-coordinate of (p20p21p31)∨. Therefore, independent of the edge lengths of
the quartic a tropical line can always non-transversally intersect its horizontal ray
with (p1vp1,v+1)∨ and transversally intersect its diagonal ray with (p20p31)∨. Other
options depend on the relative position of (p1vp1,v+1p20)∨ = a and (p20p31p30)∨ = b.

• ay < by: In this case the horizontal ray through (p1vp1,v+1)∨ and the diagonal
rays through (p20p21p31)∨ and (p20−p30p31)∨ intersect outside of the quartic
curve and form a bounded line segment. This is shape (E).

• ay = by: In this case the two horizontally bounded edges are aligned. As the
non-transversal intersection with (p20p31)∨ also give a tangency, the bitangent
class is an infinite ray containing (p20p31)∨. This is shape (J).

• ay > by: In this case, the bitangent class is bounded by the edge (p20p31)∨.
This is shape (F).

We cannot obtain another shape because different x-coordinates of the edge
(p1vp1,v+1)∨ and of (p20p31p21)∨ do not influence the shape. Figure 4.26 illus-
trates the deformation in the case of p12p13 as vertical red edge. The other two
cases are analogous.
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Figure 4.27: Dual deformation motifs of (G I N)+(xy)

Deformation class (G I N)+(xy)

Figure 4.27 shows a completion of the dual bitangent motif of shape (G) from
Figure 3.7 that is not covered by Proposition 4.2.2. We observe that it coincides
with the dual bitangent motifs of shapes (I), (N), (I)(xy) and (G)(xy). For this
deformation class we have two options. As the argument is analogous for the two
cases, we will only consider the case with blue edge (p11p22) in the motif. It is
portrayed in Figure 4.28. The case with with blue edge (p11p04) is illustrated in
Figure 4.29.

Independent of the edge lengths of the quartic curve, the transversal intersection
of the diagonal ray of a tropical line with the blue edge (p11p22)∨ (resp. (p11p04)∨)
yields a tangency. Moreover, the x-coordinate of (p11p22p21)∨ is at least as large
as the x-coordinate of the right vertex of (p10p11)∨, and the y-coordinate of
o (p11p22p21)∨ is always smaller than the y-coordinate of the upper vertex of
(p01p11)∨. Therefore, the diagonal ray through (p11p22p21)∨ will always intersect
with (p10p11)∨ or with (p01p11)∨. This second tangency depends on the relative
position of (p11p22)∨ (resp. (p11p04)∨) to the vertex (p10p01p11)∨.
Let a := (ax,ay) := (p10p01p11)∨ and let b1 := (b1x,b1y) := (p11p21p22)∨, b2 :=

(b2x,b2y) := (p11p12p22)∨; see Figure 4.28. The following argument works exactly
the same when choosing the other triangulation, that is when b1 := (p11p12p04)∨
and b2 := (p11p03p04)∨. By the direction of (p11p22)∨ (resp. (p11p04)∨) we always
have b2x− b2y < b1x− b1y.

• ax− ay < b2x− b2y: In this case, the diagonal ray through (11p12p22)∨ in-
tersects with (p10p11)∨. Thus, the second tangency is given by the non-
transversal intersection of the horizontal ray with (p10p11)∨. This is shape (G).

• ax−ay = b2x− b2y: In this case, the diagonal ray through (p11p12p22)∨ aligns
with (p10p01p11)∨. Thus, in addition to the bounded line segment contained
in (p10p11)∨ the bitangent class consists of an infinite ray passing through
(p10p01)∨. This is shape (I).

• b1x−b1y >ax−ay >b2x−b2y: In this case, the diagonal ray through (p11p12p22)∨
intersects with (p01p11)∨. Thus, in addition to the part of the bitangent class
defined in case (I) we get a second bounded line segment contained in (p01p11)∨.
This is shape (N).
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• ax−ay = b1x−b1y: Now, the diagonal ray through the right vertex of (p11p22)∨
no longer intersects the relative interior of (p10p11)∨. Instead, the diagonal
ray through (p11p22p21)∨ aligns with (p10p01p11)∨. Since the diagonal ray
through (11p12p22)∨ still intersects with (p01p11)∨, we see shape (I)(xy).

• ax−ay > b1x− b1y: In this situation, the diagonal ray through (p11p22p21)∨
intersects the relative interior of (p01p11)∨. So the bitangent class consists of
a bounded line segment contained in the relative interior of (p01p11)∨. This
is shape (G)(xy).

Figure 4.28 depicts the case given by choosing the blue edge p11p22. The situation
is similar if we choose the other blue edge p11p04, as illustrated in Figure 4.29.

a

b2

b1

(G) (I) (N) (I)(xy) (G)(xy)

Figure 4.28: Example of deformation of shapes in deformation class (G I N)+(xy)
with one tangency given by p11p22.

a

b2
b1

(G) (I) (N) (I)(xy) (G)(xy)

Figure 4.29: Example of deformation of shapes in deformation class (G I N)+(xy)
with one tangency given by p11p04.

Deformation class (G K U T T’)

Figure 4.30 shows another choice of the dual bitangent motif of shape (G) not
covered by the previous investigations. This contains the dual bitangent motifs of
the shapes (K), (U), (T) and (T’). It also contains the dual bitangent motif of shape
(T”), but it follows from Proposition 4.2.1 that (T”) cannot appear. Similarly to
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Figure 4.30: Dual deformation motifs of (G K U T T’)

deformation class (G I N)+(xy), we have to distinguish two cases. As the argument
for both cases is analogous, we only consider the case with blue edge (p11p22)∨ in
detail. Similar to the deformation class (G I N)+(xy) the transversal intersection
of the diagonal ray of a tropical line with (p11p22)∨ (resp. (p11p40)∨) provides the
first tangency. The second tangency depends on the relative position of (p11p22)∨
to the vertex (p00p10p11)∨.

Let a := (ax,ay) := (p00p10p11)∨, b1 := (b1x,b1y) := (p11p12p22)∨ and b2 := (b2x,b2y) :=
(p11p21p22)∨ as illustrated in Figure 4.32. By the triangulation we know: b1x−b1y >
b2x− b2y.

• ax−ay < b2x− b2y: The diagonal rays through (p11p12p22)∨ and (p11p21p22)∨
both intersect the relative interior of (p10p11)∨. We observe shape (G).

• ax−ay = b2x− b2y: The diagonal ray through (p11p12p22)∨ passes through
(p00p10p11)∨ while the diagonal ray through (p11p21p22)∨ still intersects the
relative interior of (p10p11)∨. Since the adjacent edge to (p00p10p11)∨ is of
direction (1,−1) the bitangent class contains in addition to the bounded line
segment contained in (p10p11)∨ an infinite ray starting from (p00p10p11)∨ in
direction (−1,−1). This is shape (K).

• b1x− b1y > ax−ay > b2x− b2y: The diagonal ray through (p11p21p22)∨ still
intersects the relative interior of (p10p11)∨. However, the diagonal ray through
(p11p12p22)∨ passes now through the relative interior of the edge (p00p11)∨ at
(s1,s2). Thus, there exists an unbounded 2-cell in the bitangent class defined
by (p10p11)∨ and the diagonal rays through (p00p10p11)∨ and (s1,s2). This is
shape (U).

• ax−ay = b1x− b1y: In this situation, the diagonal ray through (p11p21p22)∨
aligns with the vertex (p00p10p11)∨, while the diagonal ray through (p11p12p22)∨
passes through the relative interior of the edge (p00p11)∨ at (s1,s2). Thus,
the bounded line segment of the bitangent class vanishes, leaving the 2-
dimensional cell bounded in 3 directions by by (p10p11)∨ and the diagonal
rays through (p00p10p11)∨ and (s1,s2). This is shape (T’).

• ax−ay > b1x−b1y: Both diagonal rays through (p11p21p22)∨ and (p11p12p22)∨
intersect the relative interior of the edge (p00p11)∨. This is shape (T).
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We can deduce from the triangulation, that the y-coordinate of vertex (p00p11p12)∨
will always be at least as large as the y-coordinate of the upper vertex of (p11p22)∨
(resp. (p11p40)∨). Hence, the list of deformations above is complete.

Figure 4.31 depicts the described deformation of the bitangent shapes for the
case p11p22 as blue edge in the dual motif. The analogous situation for the blue
edge p11p40 in the dual motif is depicted in Figure 4.32.

a

b2

b1

(G) (K) (U) (T’) (T)

Figure 4.31: Example of deformation of shapes in deformation class (G K U T T’)
with one tangency given by p11p40.

a

b1

b2

(G) (K) (U) (T’) (T)

Figure 4.32: Example of deformation of shapes in deformation class (G K U T T’)
with one tangency given by p11p22.

Deformation class (G K U U’ T T’ T” V)+(xy)

Figure 4.33: Dual deformation motifs of (G K U U’ T T’ T” V)+(xy)

Figure 4.33 shows the remaining possible completion of the dual bitangent motif
of shape (G). Please note, that it contains the dual bitangent motifs of shapes (K),
(U), (U’), (T), (T’), (T”) and (V) and their images under (xy) ∈ S3. We have to
distinguish two cases depending on whether the edge p11p22 or the edge p11p04 is
contained. The argument for both cases is similar which is why we only consider
the case for p11p22 in detail.
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Let a1 := (a1x,a1y) := (p00p10p11)∨, a2 := (a2x,a2y) := (p00p01p11)∨, b1 := (b1x,b1y) :=
(p11p21p22)∨, and b2 := (b2x,b2y) := (p11p12p22)∨ as depicted in Figure 4.34. By the
triangulation we know

b1x− b1y > b2x− b2y and a1x−a1y > a2x−a2y.

• a1x−a1y < b2x− b2y: Shape (G)


as for
(G K U T T’)

• a1x−a1y = b2x− b2y: Shape (K)

• b1x− b1y > a1x−a1y > b2x− b2y > a2x−a2y: Shape (U)

• b1x− b1y = a1x−a1y > b2x− b2y > a2x−a2y: Shape (T’)

• a1x−a1y > b1x− b1y > b2x− b2y > a2x−a2y: Shape (T)

• b1x− b1y > a1x− a1y > b2x− b2y = a2x− a2y: In this case the diagonal ray
through b2 = (p11p12p22)∨ aligns with the vertex a2 = (p00p01p11)∨. The
remaining inequalities are as before for shape (U), such that the difference is
only that here the edge (p00p11)∨ including its vertices is completely contained
in the bitangent class. This is shape (U’).

• b1x− b1y = a1x− a1y > b2x− b2y = a2x− a2y: As for shape (U’) we have
that the diagonal ray through b2 = (p11p12p22)∨ aligns with the vertex a2 =
(p00p01p11)∨. However, the diagonal ray through b1 = (p11p21p22)∨ no longer
intersects the relative interior of the edge (p10p11)∨ but aligns with the vertex
a1 = (p00p10p11)∨. We see shape (T”).

• b1x−b1y > a1x−a1y > a2x−a2y > b2x−b2y: In this case the diagonal through
vertex b1 := (p11p21p22)∨ intersects the relative interior of (p10p11)∨ and
the diagonal ray through b2 = (p11p12p22)∨ intersects the relative interior of
(p01p11)∨. The intersection in both cases has to be in the relative interior,
as diagonal rays passing through b1 = (p11p21p22)∨ and b2 = (p11p12p22)∨ can
never meet the upper vertex of (p01p11)∨ or the right vertex of (p10p11)∨.
This is shape (V).

• a1x−a1y > b1x−b1y > b2x−b2y = a2x−a2y: Shape (T’)(xy).


symmetric by
(xy) ∈ S3 to
the first five
cases

• a1x−a1y = b1x− b1y > a2x−a2y > b2x− b2y: Shape (U’)(xy).

• a1x−a1y > b1x− b1y > a2x−a2y > b2x− b2y: Shape (U)(xy).

• b1x− b1y = a2x−a2y: Shape (K)(xy).

• a2x−a2y > b1x− b1y: Shape (G)(xy).
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As diagonal rays passing through b1 = (p11p21p22)∨ and b2 = (p11p12p22)∨ can never
meet the upper vertex of (p01p11)∨ or the right vertex of (p10p11)∨, the above
list describes all possible deformations. Figure 4.34 shows the deformation of the
shapes. As done for the deformation classes (G I N)+(xy) and (G K U T T’), an
analogous picture can be drawn for p11p04.

a1

a2

b2

b1

(G) (K) (U) (U’) (T’) (T”) (T)

(V) (T’)(xy) (U’)(xy) (U)(xy) (K)(xy) (G)(xy)

Figure 4.34: Example of the deformations of shapes in deformation class (G K U
U’ T T’ T” V)+(xy)

Deformation class (W X Y EE GG)

Figure 4.35: Dual deformation motif of (W X Y EE GG)

Figure 4.35 shows the dual bitangent motifs of shapes (W), (X)(xz), (Y)(xz),
(EE) and (GG). We will prove that these shapes form a deformation class, see
Figure 4.36, and that there are no further deformation possible.

Consider the vertices a1 := (a1x,a1y) := (p10p01p11)∨, a2 := (a2x,a2y) := (p01p20p11)∨,
b1 := (b1x,b1y) := (p20p13p21)∨, and b2 := (b2x,b2y) := (p20p13p12)∨. We know from
the triangulation that

b1x− b1y > b2x− b2y,
a1x−a1y > a2x−a2y,

b2x− b2y > a2x−a2y,
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b1y > b2y > a2y > a1y.

Therefore, in every case one of the tangencies is given by the transversal intersection
of the diagonal ray of the tropical line with the edge (p20p13)∨. We note that
due to its position and slope, (p20p13)∨ never intersects the the bitangent class.
The second tangency can always be given by the transversal intersection of the
horizontal ray with (p01p20)∨. As the intersection of the diagonal rays from the
vertices of (p20p13)∨ with the horizontal rays from the vertices of (p01p20)∨ always
lead to a 2-dimensional bounded cell, we conclude that any bitangent shape in this
deformation class will always contain a 2-dimensional bounded cell. Depending
on the relative positions of the vertex (p10p01p20)∨ = a to the edge (p20p13)∨,
other tangency intersections are possible for elements in the bitangent class. It
is recommended to consider Figure 4.38 when reading the remaining part of the
proof.

• a1x− a1y < b2x− b2y: In this case, the area bounded by the diagonal rays
through the vertices (p20p13p12)∨ and (p20p13p21)∨ and the horizontal rays
through the vertices (p10p01p20)∨ and (p01p20p11)∨ forms a parallelogram that
does not intersect the quartic curve. This is shape (W).

• a1x−a1y = b2x− b2y: Here the diagonal ray through b2 = (p20p13p12)∨ aligns
with a1 = (p10p01p20)∨. Thus, the bitangent class extends from the paral-
lelogram to a parallelogram together with the infinite diagonal ray starting
at a1 = (p10p01p20)∨ in direction (−1,− 1) containing the edge (p10p01)∨
completely. This is shape (X)xz.

• b2x− b2y < a1x−a1y < b1x− b1y: In this case, the diagonal ray through b2 =
(p20p13p12)∨ intersects the relative interior of the egde (p01p20)∨. Since the
diagonal ray through b1 = (p20p13p21)∨ still passes right of a1 = (p10p01p20)∨,
we keep the three vertices of the bitangent class outside of the quartic curve
and the infinite diagonal ray starting at a1 = (p10p01p20)∨ in direction (−1,−1)
containing the edge (p10p01)∨ completely. The bitangent class additionally
contains the part of the edge (p01p20)∨ from the vertex a1 = (p10p01p20)∨ till
the intersection of the edge with the diagonal ray through b2 = (p20p13p12)∨.
This is shape (Y)xz.

• a1x−a1y = b1x− b1y: In this case, the diagonal ray through b1 = (p20p13p21)∨
aligns with a1 = (p10p01p20)∨. We obtain a trapezoid with one edge part of
the edge (p01p20)∨ from the quartic curve, together with the infinite diagonal
ray starting at a1 = (p10p01p20)∨ in direction (−1,−1) containing the edge
(p10p01)∨ completely. This is shape (EE).

81



Chapter 4 Deformation classes of tropical bitangents

• a1x−a1y > b1x− b1y: In this case, the diagonal ray through b1 = (p20p13p21)∨
intersects the relative interior of the edge (p01p20)∨. Thus, the infinite ray is
no longer part of the bitangent class, and we obtain a trapezoid with one edge
contained in the edge (p01p20)∨ from the quartic curve. This is shape (GG).

As the argument above covers all possible cases for the given dual motif, we
conclude that the list of deformations is complete. Figure 4.36 shows the deformation
of the shapes.

b2
b1

a1

a2

(W) (X)(xz) (Y)(xz) (EE) (GG)

Figure 4.36: Example of the deformations of shapes in deformation class
(W X Y EE GG).

Deformation class (W ... HH)+(xz)

Figure 4.37: Dual deformation motif of (W ... HH)

Figure 4.37 shows the dual bitangent motif of the shapes (W), (X), (Y), (Z)
and (AA) to (HH) and their images under (xz) ∈ S3. The tangencies are given
by transversal intersections with the edges (p20p31)∨ and (p20p01)∨. However,
depending on their relative positions given by the edge lengths of the quartic there
are different additional options for tangencies given by non-transversal intersections
of the horizontal resp. diagonal ray of the tropical line with the edge (p30p31)∨
resp. (p10p01)∨. Let a1 := (a1x,a1y) := (p10p01p20)∨, a2 := (a2x,a2y) := (p20p01p11)∨,
b1 := (b1x,b1y) := (p20p31p30)∨, and b2 := (b2x,b2y) := (p20p31p21)∨.
By the triangulation we know that the following inequalities always have to be

satisfied:

b1x− b1y > b2x− b2y > a2x−a2y,
}

(4.1)
a1x−a1y > a2x−a2y,
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b2y > b1y,
}

(4.2)
b2y > a2y > a1y,

b1x > b2x > a2x > a1x. (4.3)

These data imply, that the the edges (p20p13)∨ and (p01p20)∨ are, for any choice
of edge lengths of the quartic curve, positioned in a way that ensures that the
intersection of diagonal rays through b1 and b2 with horizontal auxiliary lines
through a1 and a2 will always form a bounded 2-dimensional cell that might
additionally be bounded by some edges of the quartic curve. Hence, any shapes
appearing in this deformation class must contain a bounded 2-dimensional cell.
Since (W), (X), (Y), (Z) and (AA) to (HH) and their images under (xz) are the
only shapes that satisfy this condition and have dual bitangent motif contained in
Figure 4.37, it only remains to prove that they and their images under (xz) indeed
do appear.
We prove this by considering all the possible relative positions of the diagonal

rays through the relevant vertices a1, a2, b1, b2 given by the inequalities α,β,γ,δ,
and ε:

α : b1x− b1y > b2x− b2y > a1x−a1y > a2x−a2y,
β : b1x− b1y > b2x− b2y = a1x−a1y > a2x−a2y,
γ : b1x− b1y > a1x−a1y > b2x− b2y > a2x−a2y,
δ : b1x− b1y = a1x−a1y > b2x− b2y > a2x−a2y,
ε : a1x−a1y > b1x− b1y > b2x− b2y > a2x−a2y,

together with the possible relative positions of the horizontal rays through the
vertices a1, a2, b1, b2 given by the inequalities I, II, III, IV, and V:

I : b2y > b1y > a2y > a1y,
II : b2y > b1y = a2y > a1y,
III : b2y > a2y > b1y > a1y,
IV : b2y > a2y > b1y = a1y,
V : b2y > a2y > a1y > b1y.

The Equations (4.1) and (4.2) show that the above lists are all the possible
inequalities that can appear. We now consider all possible combinations of these,
which provides a full list of all possible relative positions of the edges (p20p13)∨ and
(p01p20)∨ that are relevant for the bitangent shapes. Table 4.1 summarizes which
shapes appear for which combinations of the inequalities out of {α,β,γ,δ,ε} and
{I, II, III, IV, V}.
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α β γ δ ε
I (W) (X)(xz) (Y)(xz) (GG) (EE)

II (X) (Z) (AA)(xz) (HH) (FF)

III (Y) (AA) (BB) (DD) (CC)

IV (GG)(xz) (HH)(xz) (DD)(xz) x x

V (EE)(xz) (FF)(xz) (CC)(xz) x x

Table 4.1: The bitangent shapes induced by the different relative positions of
the edges (p20p13)∨ and (p01p20)∨ given by the inequalities {α,β,γ,δ,ε} and
{I,II,III,IV,V}.

Table 4.1 contains no shapes for the combinations (IV,δ), (IV,ε), (V,δ) and
(V,ε), because these can never appear:

(IV,δ) By IV we have b1y = a1y and by δ we have b1x−b1y = a1x−a1y. This implies
a1x = b1x which contradicts Equation (4.3).

(IV,ε) By IV we have b1y = a1y and by ε we have a1x−a1y > b1x−b1y. This implies
a1x > b1x which contradicts Equation (4.3).

(V,δ) By V we have a1y > b1y and by δ we have b1x− b1y = a1x−a1y. This implies
a1x > b1x which contradicts Equation (4.3).

(V,ε) By V we have a1y > b1y and by ε we have a1x−a1y > b1x− b1y. This implies
a1x > b1x which contradicts Equation (4.3).

Figure 4.38 confirms the statement from the Table 4.1 by illustrating all the
deformations of the shapes. Since we checked all dual bitangent motifs and their
possible completions, the classification is complete.

Remark 4.2.4. Note that in the proof the conditions for the deformation of the
shapes are determined for every deformation class and that the areas of deformation
are described via linear inequalities. These facts will be used for the proof of
Theorem 6.3.1 in Section 6.3.1.
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b2
b1

a1

a2

(W) (X) (Y) (Z)

(AA) (BB) (CC) (DD)

(EE) (FF) (GG) (HH)

(X)(xz) (Y)(xz) (AA)(xz) (CC)(xz)

(DD)(xz) (EE)(xz) (FF)(xz) (GG)(xz)

(HH)(xz)

Figure 4.38: Example of deformation of shapes in deformation class (W ...
HH)+(xz)
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Chapter 5

Tropical count of real bitangents to
tropically smooth quartics
The definition and classification of deformation classes of tropical bitangents in
Chapter 4 raise the question how the real lifting conditions of different bitangent
shapes inside a deformation class behave. This chapter answers this question in
Theorem 5.1.4 and uses the result to provide a tropical count of the numbers of
real bitangents to real quartic curves in Theorem 5.2.2.
The identification of the real lifting behavior of deformation classes in Theo-

rem 5.1.4 is the second main result of Part I. It turns out that the lifting conditions
are the same for every bitangent shape in a deformation class, not only over R
but also over arbitrary Henselian fields with residue field k of char(k) 6= 2 and
2-divisible value group, Corollary 5.1.5.

Since the lifting conditions can be computed directly from the dual triangulation,
this enables a computational count of the number of real bitangents to tropically
smooth algebraic quartic curves. In joint work with Marta Panizzut, we developed
the polymake extension TropicalQuarticCurves motivated by the computational
proof of Theorem 5.2.2. The extension is introduced in detail in Section 6.1: The
properties which the extension allows to compute are illustrated with code snippets
and examples in Section 6.1. Section 6.2 shows applications of the code that exceed
the proof of Theorem 5.2.2. Moreover, the developed software will be useful for
future research in the area, for example to investigate the lifting conditions over
Henselian fields or to study arithmetic multiplicities of tropical bitangents [MSP22].
The results in this chapter build on the preprints [GP21b, GP21a] which are

joint work with Marta Panizzut.

5.1 Real lifting conditions of deformation classes
The aim of this section is to prove that the real lifting conditions as determined
for the bitangent shapes in [CM21] are constant for each deformation class. This
is shown in Theorem 5.1.4. For this we consider deformation class (C) separately,
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and then go through every deformation class one by one and check the real lifting
conditions of the bitangent shapes in the deformation class.
By Theorem 5.1.4, the different shapes collected in one deformation class have

the same real lifting conditions, so we can speak of the real lifting conditions
of deformation classes. Moreover, this imprints the fact that the real lifting
conditions of the bitangent classes of a tropical quartic curve only depend on its
dual subdivision.

In Corollary 5.1.5, we obtain that not only the lifting conditions over R depend
only on the deformation classes, but that this result holds more generally for
arbitrary Henselian fields with non-Archimedean valuation and residue field k of
char(k) 6= 2 and 2-divisible value group (Definition 2.2.8).
The results in this section make it possible to recover a tropical count of the

number of real bitangents in Section 5.2. This section is based on [GP21b] which
is joint work with Marta Panizzut.

Remark 5.1.1. For constant deformation classes it seems at first glance clear that
the real lifting conditions do not change. However, for deformation class (C) we
observe a special situation, which is impossible for the other constant deformation
classes: For shape (C) the identity position depends on the edge lengths of the
quartic. We recall the specific genericity constraint from (i) in Remark 3.3.2 that
is of relevance in this situation: If the tropical quartic curve contains a vertex
v adjacent to three bounded edges with directions −e1, −e2 and e1 + e2, then
there exists a unique shortest edge. Bitangent shape (C) consists of one point that
coincides with a vertex v as described above. Cueto and Marking chose the edge
with direction −e2 as shortest edge. We denote this as the identity position for
shape (C), since the real lifting conditions for shape (C) were computed in [CM21]
under this assumption.

Any generic tropical quartic having a bitangent class of shape (C) at a vertex v,
but with different edge lengths, can be brought into this position by applying an
action of S3. This changes the dual subdivision accordingly. As consequence, it
also changes the formula for the real lifting conditions of (C).

We take a close look at this situation in the following example.

Example 5.1.2. We consider the two smooth tropical quartic curves shown in
Figures 5.1b and 5.1c dual to the triangulation T in Figure 5.1a. These quartic
curves have a bitangent class of shape (C). We denote with λ1, λ2 and λ3 the
lattice lengths of the edges adjacent to the vertex that forms the bitangent class
of shape (C) with direction −e2 , −e1 and e1 + e2, respectively. For the tropical
curve in Figure 5.1b, these lengths satisfy what we call the identity case of the
genericity condition: λ1 < λ2 ≤ λ3. We substitute i = 2, j = 1, k = 2 in the real
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5.1 Real lifting conditions of deformation classes

lifting condition for (C) in Table 3.1 obtaining

− s11s21s02s10 > 0 and − s21s11s22s10 > 0. (5.1)

(a) Triangulation T

(b) Generic curve in iden-
tity position.

(c) Generic curve not in
identity position.

Figure 5.1: Smooth tropical quartic with bitangent class of shape (C)

By choosing a different weight vector in Σ(T ), we can deform the edge lengths
such that they satisfy λ2 < λ1 ≤ λ3. This is the case for the quartic curve in
Figure 5.1c. For this tropical quartic curve the bitangent class of shape (C) is
no longer in identity position. In order to apply the lifting formula, we need to
apply the action of (xy) to switch the lengths λ1 and λ2, inducing also an action
on the triangulation T . The image of the curve and of T under (xy) is depicted in
Figure 5.2. Now, we have to substitute i= 1, j = 2, k = 2 in the lifting conditions
for shape (C) obtaining

−s11s12s01s20 > 0 and s22s20 > 0.

(a) Image of the triangula-
tion in Figure 5.1a under
(xy).

(b) Image of the quartic curve in Figure 5.1c
under (xy).

Figure 5.2: The (xy)-transformation of the tropical curve in Figure 5.1c and its
dual triangulation.
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Chapter 5 Tropical count of real bitangents to tropically smooth quartics

We then deduce the lifting conditions for the original quartic with λ2 < λ1 ≤ λ3
by applying (xy)−1 = (xy):

− s11s21s10s02 > 0 and s22s02 > 0. (5.2)

The second inequalities in (5.1) and (5.2) are different. However, we observe
that the first inequality −s11s21s10s02 > 0 is true if and only if s02 =−s11s21s10.
Substituting this equation into the second inequality, we see that the real lifting
conditions are equivalent.

Proposition 5.1.3. Let Γ be a smooth tropical plane quartic curve with dual
triangulation T generic and a bitangent class B of shape (C). For every c ∈ Σ(T )
inducing a generic quartic curve the real lifting conditions of Bc in Γc are equivalent.

Proof. We fix the following notation, see also Figure 5.3:

• i is the y-coordinate of the vertex p0i, which forms a triangle with the (red)
edge p11p12,

• j is the x-coordinate of the vertex pj0, which forms a triangle with the (green)
edge p11p21,

• k is the x-coordinate of the vertex pk,4−k, which forms a triangle with the
(pink) edge p12p21.

Figure 5.3: The dual deformation motif to shape (C) in identity position

We compute the real lifting conditions of shape (C) for a bitangent class not
in identity position. Suppose that Γc has a unique shortest edge among λ1, λ2,
λ3. Then there exists σ ∈ S3 such that for σ(Γ) the lattice lengths of the edges
adjacent to σ(B) satisfy λ1 < λ2 ≤ λ3. This corresponds to σ(B) being in identity
position. We can then determine the real lifting condition for σ(B) using Table 3.1
and the parameters from σ(T ). In order to do this, we first need to look at the
images of the three lattice points p0i, pj0 and pk,4−k under σ. Their images will lie
in the boundary of 4∆2: σ(p0i),σ(pj0),σ(pk,4−k) ∈ {p0̃i,pj̃0,pk̃,4−k̃}. Secondly, we
substitute the values of the tilde indices into the lifting conditions, and then apply
σ−1 to obtain the real lifting conditions of B = σ−1(σ(B)) in Γ = σ−1(σ(Γ)). Finally,
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5.1 Real lifting conditions of deformation classes

we have to compare the lifting conditions of the bitangent class B of shape (C)
in Γ with the ones of Bc of shape (C) in Γc where c ∈ Σ(T ) such that the dual
deformation motif of (Γc,Bc) is in identity position and Γc satisfies λ1 < λ2 ≤ λ3.
If the conditions are equivalent, we have proven that the real lifting conditions do
not change. Since S3 is generated by (xy) and (xz), it suffices to check the cases
λ2 < λ1 ≤ λ3 and λ3 < λ2 ≤ λ1.
If the tropical quartic satisfies λ2 < λ1 ≤ λ3, we apply σ = (xy) to obtain a

generic representative of the identity position. Now, σ(p0i) = pi0 and σ(pj0) = p0j
and σ(pk,4−k) = p4−k,k, so we have to substitute

i 7→ j,

j 7→ i,

k 7→ 4−k

in the real lifting conditions in Table 3.1. Here the values of i, j, k are as in the
quartic we started with. Thus, the real lifting conditions for σ(B) are

if i= 1,3 (−s11)j+1sj12s21s0jsi0 > 0 (−s21)4−k+1s4−k
12 s11s4−k,ksi0 > 0,

if i= 2 (−s11s12)js0js20 > 0 (−s12s21)4−ks4−k,ks20 > 0.

We now apply (xy)−1 = (xy). Note that this acts on the indices of the signs but
not on the exponents. We obtain the conditions

if i= 1,3 (−s11)j+1sj21s12sj0s0i > 0 (−s12)4−k+1s4−k
21 s11sk,4−ks0i > 0,

if i= 2 (−s11s21)jsj0s02 > 0 (−s21s12)4−ksk,4−ks02 > 0.

Now, we suppose that we have a quartic for which we can, by edge length changes,
switch between the cases λ1 < λ2 ≤ λ3 and λ2 < λ1 ≤ λ3. For such a quartic the
dual triangulation must satisfy i, j ∈ {1,2,3}, otherwise the genericity condition is
not satisfied. We compare the real lifting conditions for the different cases after
simplifying some exponents:

λ1 < λ2 ≤ λ3 λ2 < λ1 ≤ λ3
i, j ∈ 1,3 s12s21s0isj0 > 0 s21s12sj0s0i > 0

(−s21)k+1sk12s11sk,4−ksj0 > 0 (−s12)k+1sk21s11sk,4−ks0i > 0
i= j = 2 s02s20 > 0 s20s02 > 0

(−s12s21)ksk,4−ks20 > 0 (−s21s12)ksk,4−ks02 > 0
j = 2, i ∈ {1,3} −s11s12s0is20 > 0 −s11s12s20s0i > 0

(−s12s21)ksk,4−ks20 > 0 (−s12)k+1sk21s11sk,4−ks0i > 0
j ∈ {1,3}, i= 2 −s11s21s02sj0 > 0 −s11s21sj0s02 > 0

(−s21)k+1sk12s11sk,4−ksj0 > 0 (−s21s12)ksk,4−ks02 > 0
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Chapter 5 Tropical count of real bitangents to tropically smooth quartics

We see that in each case the first inequalities are the same. The second inequalities
differ, but it can be shown that they are equivalent by taking the first inequalities
into account. We go through the four cases:

• i, j ∈ {1,3}: From the first inequality s12s21s0isj0 > 0, which coincides for
the two different edge lengths, we can conclude that sj0 = s12s21s0i. We
substitute this in the second inequality of the case λ1 < λ2 ≤ λ3 and obtain

0< (−s21)k+1sk12s11sk,4−ksj0 = (−s21)k+1sk12s11sk,4−ks12s21s0i

= (−s21)k+2sk+1
12 s11sk,4−ks0i

which coincides with the second inequality of λ2 < λ1 ≤ λ3 since the parity
of k and k+ 2 are the same.

• i = j = 2: From the first inequality s02s20 > 0, which coincides for the two
different edge lengths, it follows that s02 = s20. We substitute this in the
second inequality of the case λ1 < λ2 ≤ λ3 and obtain

0< (−s12s21)ksk,4−ks20 = (−s12s21)ksk,4−ks02,

which coincides with the second inequality of λ2 < λ1 ≤ λ3.

• j = 2, i ∈ {1,3}: From the first inequality −s11s12s0is20 > 0, which coincides
for the two different edge lengths, it follows s20 =−s11s12s0i. We substitute
this in the second inequality of the case λ1 < λ2 ≤ λ3 and obtain

0< (−s12s21)ksk,4−ks20 = (−s12s21)ksk,4−k · (−1)s11s12s0i

= (−s12)k+1(s21)ksk,4−ks11s0i.

This is the second inequality of λ2 < λ1 ≤ λ3.

• j ∈ {1,3}, i= 2: From the first inequality −s11s21s02sj0 > 0, which coincides
for the two different edge lengths, it follows that sj0 = −s11s21s02. We
substitute this in the second inequality of the case λ1 < λ2 ≤ λ3 and obtain

0< (−s21)k+1sk12s11sk,4−ksj0 = (−s21)k+1sk12s11sk,4−k · (−1)s11s21s02

= (−s21)k+2sk12s11sk,4−ks11s02,

which coincides with the second inequality of λ2 < λ1 ≤ λ3.

It follows that for the edge length change between λ1 < λ2 ≤ λ3 and λ2 < λ1 ≤ λ3
the real lifting conditions for shape (C) do not change.
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The last step to complete the proof is to consider Γ such that λ1 < λ3 ≤ λ2.
To obtain the real lifting conditions for (C), we have to apply σ = (xz) to the
subdivision and the curve to obtain a generic representative of the identity position.
We apply σ to the lattice points p0i, pj0 and pk,4−k to obtain the values that we
have to substitute in the real lifting conditions for σ(B) and we obtain

i 7→ 4−k,
j 7→ 4− j,
k 7→ 4− i.

So the lifting conditions for σ(B) are given as:

if 4− j = 1,3 : (−s11)4−k+1s4−k
12 s21s0,4−ks4−j,0 > 0

(−s21)4−i+1s4−i
12 s11s4−i,is4−j,0 > 0,

if 4− j = 2 : (−s11s12)4−ks0,4−ks20 > 0
(−s12s21)4−is4−i,is20 > 0.

Applying (xz)−1 = (xz) to the indices in these inequalities gives the real lifting
conditions of B when λ1 < λ3 ≤ λ2:

if j = 1,3 (−s21)k+1sk12s11sk,4−ksj0 > 0 (−s11)i+1si12s21s0isj0 > 0,
if j = 2 (−s21s12)ksk,4−ks20 > 0 (−s12s11)is0is20 > 0.

Now we have to prove that changing the edge lengths between the two cases
λ1 < λ2 ≤ λ3 and λ1 < λ3 ≤ λ2 does not change the lifting conditions:

λ1 < λ2 ≤ λ3 λ1 < λ3 ≤ λ2
j ∈ {1,3} (−s11)i+1si12s21s0isj0 > 0 (−s21)k+1sk12s11sk,4−ksj0 > 0

(−s21)k+1sk12s11sk,4−ksj0 > 0 (−s11)i+1si12s21s0isj0 > 0
j = 2 (−s11s12)is0is20 > 0 (−s21s12)ksk,4−ks20 > 0

(−s12s21)ksk,4−ks20 > 0 (−s12s11)is0is20 > 0

We observe that for any choice of j the first lifting condition for λ1 < λ2 ≤ λ3
coincides with the second lifting condition for λ1 < λ3 ≤ λ2, while the second lifting
condition for λ1 < λ2 ≤ λ3 coincides with the first lifting condition for λ1 < λ3 ≤ λ2.
Since (xy) and (xz) generates S3, it follows that for any generic quartic curve
with shape (C) the real lifting conditions are independent of the edge lengths as
long as there exists a unique shortest edge adjacent to the vertex contained in
shape (C).
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Now we can prove the second main result of Part I:

Theorem 5.1.4. Let Γ be a generic tropical smooth quartic curve with dual
triangulation T , and let B be a tropical bitangent class. For every c ∈ Σ(T ), the
real lifting conditions of Bc in Γc are independent on the shape of the bitangent
class.

In other words: real lifting conditions of tropical bitangent classes to Γ only
depend on the dual subdivision T of Γ.

The real lifting conditions for each deformation class are summarized in Table 5.1.

Proof. For deformation class (C) the claim is proven in Propostion 5.1.3. The
remaining constant deformation classes are not bound on the genericity constraint
connected to the edge lengths of the quartic and thus only contain one shape of one
fixed position with respect to S3. It follows directly that their real lifting conditions
are fixed for the whole deformation class.

The shapes in the deformation classes (W X Y EE GG) and (W . . . HH)+(xz)
all have trivial real lifting conditions, meaning they always lift, so we do not need
to consider these two deformation classes. We go through the remaining ones and
for each compare the lifting conditions of the different shapes.

Deformation class (B H’ H)

First, remark that the shapes in this deformation class are all in the image of the
same permutation σ ∈ S3 which we here assume to be σ = id.
We recall the notation used in [CM21] to connect the real lifting conditions

to the dual bitangent motifs: the sign s0i corresponds to the monomial given by
the lattice point p0i forming a triangle with the red edge (p1vp1,v+1) in the dual
bitangent motif, which is the same for all three shapes. The sign sj0 corresponds
to the monomial given by the lattice point pj0 that forms a triangle with the green
edge (p21p31) in the dual bitangent motif of shape (B).

Shape real lifting condition
(B) (−s1vs1,v+1)i+1s0is21 > 0 and (−s21)j+1sj31s1vs1,v+1sj0 > 0

(H),(H’) (−s1vs1,v+1)i+1s0is21 > 0 and −s21s1vs1,v+1s40 > 0

From the dual bitangent motif we conclude that pj0 = p40.
Substituting j = 4 in the real lifting conditions for (B), we
obtain the same lifting conditions as for shapes (H) and
(H’). The remaining parameters v and i are determined by
the triangulation and are therefore the same for all three
shapes.
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Deformation class (B H’ H)+(y z)

For the explanation of the parameters i, j and v, we refer to the paragraph on
deformation class (B H’ H).

Shape real lifting condition
(B) (−s1vs1,v+1)i+1s0is21 > 0 and (−s21)j+1sj31s1vs1,v+1sj0 > 0

(H),(H’) (−s1vs1,v+1)i+1s0is21 > 0 and −s21s1vs1,v+1s40 > 0

We note that in this deformation class the shape (H)(y z) is (in general) not equal to
the bitangent shape (H) after permutation with (y z). Instead, the dual bitangent
motifs to both the shapes (H) and (H)(y z) are equal. So the dual bitangent motif
to (y z)−1(H)(y z) has real lifting conditions

(−s1,3−vs1,2−v)4−i+1s0,4−is21 > 0 and − s21s1,3−vs1,2−vs40 > 0.

Applying (y z) onto these conditions, we obtain the same real lifting conditions as
we see for shape (H) in this deformation class. The exact same holds for shapes
(H’) and (H’)(y z).

From the argument above we know that the real lifting
conditions for the bitangent shapes (H) and (H)(y z) that
appear in this deformation class are the same. Thus,
the equality of the real lifting conditions for all shapes
in this deformation class follows from the statement for
deformation class (B H’ H).

Deformation class (B M)+(y z)

We refer to the paragraph on deformation class (B H’ H) for the explanation of the
parameters i, j and v.
Similar to the case of deformation class (B H’ H)+(y z), we note that the dual

bitangent motifs of shape (M) and (M)(y z) coincide. This implies that the bitangent
shapes coincide since the triangle (p30p31p21) is symmetric under (y z). It follows
that the real lifting conditions have to be equal.

Without this geometric argument, we can demonstrate the equality of the lifting
conditions analogously to the case of deformation class (B H’ H)+(y z): we consider
the real lifting conditions of (y z)((M)(y z)), apply (y z) to them and compare them
with the real lifting conditions of (M).

Shape real lifting condition
(B) (−s1vs1,v+1)i+1s0is21 > 0 and (−s21)j+1sj31s1vs1,v+1sj0 > 0
(M) (−s1vs1,v+1)i+1s0is21 > 0 and s31s1vs1,v+1s30 > 0
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We conclude from the dual bitangent motif of shape
(B) that we have to substitute j = 3 in the real lifting
conditions. In this case te real lifting conditions for shape
(B) and (M) coincide.

Since we argued above that the real lifting conditions for (M) and (M)(y z) are the
same, we conclude that the real lifting conditions of shape (B)(y z) coincide with
the other shapes in this deformation class.

Deformation class (D L’ Q)

We recall, that the parameter i in the real lifting condition of shape (D) is determined
by the lattice point p0i which forms a triangle with the red edge (p10p11) in the
dual bitangent motif.
We note that all shapes in this deformation class are in the image of the same

σ ∈ S3. Without loss of generality, we can assume the shapes to be in identity
position.

Shape real lifting condition
(D) (−s10s11)is0is22 > 0

(L’),(Q) s00s22 > 0

From the dual deformation motif we see that p00 forms a
triangle with (p10p11). Thus, we have to substitute i= 0
in the real lifting condition. In this case, shape (D) has
the same real lifting conditions as shapes (L’) and (Q).

Deformation class (D L’ Q Q’ R)

We refer to the case of deformation class (D L’ Q) for an explanation of the
parameter i.
Notice that again all shapes in this deformation class are in the image of the

same σ ∈ S3. Therefore, we can assume, without loss of generality, that the shapes
are in identity position.

Shape real lifting condition
(D) (−s10s11)is0is22 > 0

(L’),(Q),(Q’),(R) s00s22 > 0

We see the triangle (p00p10p11) in the dual deformation
motif. As for (D L’ Q) this means we have to substitute
i = 0 in the real lifting condition. Thus, the real lifting
conditions for all shapes in this deformation class coincide.
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Deformation class (D L O)

As for the previous cases all shapes in this deformation class are in the image of
the same σ ∈ S3, such that without loss of generality we can assume the shapes to
be in identity position.

Shape real lifting condition
(D) (−s10s11)is0is22 > 0

(L),(O) −s10s11s01s22 > 0

Explanation to the parameter i in the real lifting condition can be found in the
case to deformation class (D L’ Q).

We see in the dual deformation motif that the lattice point
p01 forms a triangle with the red edge (p10p11). Hence, we
have to substitute i = 1 in the real lifting conditions of
shape (D). We observe that we obtain the same real lifting
conditions as for shapes (L) and (O).

Deformation class (E F J)

We conclude from the proof of Theorem 4.2.3 that all shapes in this deformation
class are in the image of the same σ ∈ S3, such that without loss of generality we
can assume the shapes to be in identity position.

Recall that the parameters v and i in the real lifting condition are given by the
dual bitangent motif in the following way: the edge (p1vp1,v+1) forms a triangle
with p20 and one with p0i.

Shape real lifting condition
(E), (F), (J) (−s1vs1,v+1)is0is20 > 0

We note that as the three shapes (E), (F) and (J) are in the
same position with respect to the action of S3, and that all
three shapes correspond to the same two triangles formed
with the edge (p1vp1,v+1). Thus, we see that the real lifting
condition as determined in Table 3.1 and depicted above
is constant for this deformation class.

Deformation class (G I N)+(xy)

This deformation class, similar to deformation classes (B H’ H)+(y z) and (B M)+(y z),
contains (G) and (G)(xy). In general, we don’t have (xy)(G)=(G)(xy).
We recall that the parameter i is determined by the lattice point p0i forming a

triangle with (p10p11) and that k is determined by the blue edge (p11pk,4−k).
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Shape real lifting condition
(G) (−s10s11)is0isk,4−k > 0

(I),(N) −s10s11s01sk,4−k > 0

We see in the dual bitangent motif of shape (G) in identity
position that p01 forms a triangle with (p10p11). This
implies that we have to substitute i= 1 in the real lifting
condition of shape (G). We observe that in this case the
real lifting conditions of the shapes in identity position
(G), (I) and (N) coincide.
Similar to the case of (M) and (M)(y z) in deformation
classes (B M)+(y z) we can argue that (N) and (N)(xy)
have the same real lifting conditions.
By the same argument as above for (G), (I) and (N) in
identity position, we conclude that (N)(xy), (I)(xy) and
(G)(xy) have the same real lifting conditions. It follows
that the real lifting conditions are constant for all shapes
in this deformation class.

Deformation class (G K U T T’)

All shapes in this deformation class are in the image of the same σ ∈ S3. Hence,
without loss of generality, we can assume the shapes to be in identity position.
We refer to the case of deformation class (G I N)+(xy) to an explanation of the
parameters i and k in the real lifting conditions below.

Shape real lifting condition
(G) (−s10s11)is0isk,4−k > 0

(K), (T), (T’), (U) s00sk,4−k > 0

In the dual bitangent motif of shape (G) contained in the
dual deformation motif we see that p00 forms a triangle
with the edge (p10p11). Hence, we have to substitute
i= 0 in the real lifting condition of shape (G). The edge
(p11pk,4−k) is determined by the dual deformation motif,
and it is therefore the same for all bitangent shapes in
this deformation class. We obtain that the real lifting
conditions are the same for each shape in this deformation
class.
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Deformation class (G K U U’ T T’ T” V)+(xy)

Similar to deformation classes (G I N)+(xy), this deformation class contains for
the shapes (G), (K), (U), (U’) (T), (T’), (T”) and (V) their images under (xy).
Depending on the edge (p11pk,4−k) we don’t have have (xy)(G)=(G)(xy) (resp. for
the other shapes), since (xy)((G)(xy)) would have a different dual bitangent motif
if (p11pk,4−k) is not symmetric with respect to (xy).

Shape real lifting condition
(G) (−s10s11)is0isk,4−k > 0

(K), (T), (T’), (T”), (U), (U’), (V) s00sk,4−k > 0

We recall that the parameter i is determined by the lattice point p0i forming a
triangle with (p10p11) and that k is determined by the blue edge (p11pk,4−k).

We observe that in both dual deformation motifs the lattice
point p00 forms a triangle with the edge (p10p11), so we
have to substitute i = 0 in the real lifting conditions of
shape (G) in identity position. It follows that all the
shapes in identity position in this deformation class have
the same real lifting conditions.
We remark that shape (V) and shape (V)(xy) are the same
sets of vertices, since the triangles (p00p10p11), (p00p01p11)
determining the vertices of the tropical quartic curve
contained in the bitangent class are symmetric under
(xy). As the triangulation stays constant during the
deformations, it follows that they also both correspond to
the same edge (p11pk,4−k) and are thus equal. Hence, the
lifting conditions are the same.

This case is similar to shape (N) in deformation class (G I N)+(xy) or shape (M)
in deformation class (B M)+(y z). With an analogous argument as for the shapes
in identity position of this deformation class, the shapes in position (xy) in this
deformation class have the same real lifting conditions.
Since the case (p11p22) is fully symmetric with respect to (xy), the argument

above is corroborated by the following table computing the lifting conditions for
each shape and position thus showing that they are equal.
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shape permutation lifting condition parameters
i= y-coor. of vertex at x= 0

(G) identity (−s10s11)is0is04 > 0 forming a triangle with p10p11
p04 vertex of edge p11pk,4−k

(K),(T), identity s00s04 > 0 p04 vertex of edge p11pk,4−k(U),(V)
(K),(T), (xy) s00s04 > 0 p04 vertex of edge p11p4−k,k(U),(V)

i= x-coor. of vertex at y = 0
(G) (xy) (−s01s11)isi0s04 > 0 forming a triangle with p01p11,

p04 vertex of p11p4−k,k

The value of k changes when we consider the (xy) permutation. However, the
(blue) edge p11p04 in the subdivision stays the same in all cases. Since the vertex
relevant to the value of i is p00 in both cases, we substitute i= 0 and obtain the
real lifting condition s00s04 > 0 for all shapes in this deformation class.

deformation class Lifting conditions

(A) (−s1vs1,v+1)is0is22 > 0 and
(−su1su+1,1)jsj0s22 > 0

(B H’ H), (−s1vs1,v+1)i+1s0is21 > 0 and
−s21s1vs1,v+1s40 > 0(B H’ H)+(yz),

(H)

(B M)+(yz) (−s1vs1,v+1)i+1s0is21 > 0 and
s31s1vs1,v+1s30 > 0

(B) (−s1vs1,v+1)i+1s0is21 > 0 and
(−s21)j+1sj31s1vs1,v+1sj0 > 0 with j ∈ {0,1,2}

(C)

if j=2: (−s11s12)is0is20 > 0 and
(−s21s12)ksk,4−ks20 > 0

if j=1,3 (−s11)i+1si12s21s0isj0 > 0 and
(−s21)k+1sk12s11sk,4−ksj0 > 0

(D) (−s10s11)is0is22 > 0 with i ∈ {2,3,4}
(D L O), (P) −s10s11s01s22 > 0
(D L’ Q),

(D L’ Q Q’ R), s00s22 > 0
(S), (T)

(E), (E F J) (−s1vs1,v+1)i+1s0is20 > 0
(G) (−s10s11)is0isk,4−k > 0 with i ∈ {2,3,4}

(G I N)+(xy) −s10s11s01sk,4−k > 0
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5.1 Real lifting conditions of deformation classes

deformation class Lifting conditions
(G K U U’ T T’),

s00sk,4−k > 0(G K U U’ T T’ T” V)+(xy)
rest no conditions

Table 5.1: Real lifting conditions of the deformation classes in their positions as in
Figure 4.39.

Markwig, Payne and Shaw characterize the lifting conditions of bitangent shapes
over arbitrary Henselian fields (Definition 2.2.8) with residue field k of char(k) 6= 2
and 2-divisible value group in their work [MSP22]. The lifting conditions originate
in the solvability of quadratic equations that come from tropical modifications. For
real lifts the conditions are on the signs of the coefficients since over R the square
root can only be applied to positive numbers. Over arbitrary Henselian fields, the
conditions transform to products or quotients of the coefficients being squares over
the chosen field. This is why we need the value group to be 2-divisible. The sets
of coefficients of the lift of the quartic curve that have to satisfy the conditions
for any given shape does not change when we move from R to a Henselian field
with odd or zero residue characteristic. We thus obtain the following Corollary of
Theorem 5.1.4.

Corollary 5.1.5. Let Γ be a generic tropical smooth quartic curve with dual
triangulation T and let K be a non-Archimedean valued Henselian field with 2-
divisible value group such that the residue field k satisfies char(k) 6= 2.

The lifting conditions of the tropical bitangent classes to Γ over K only depend
on the dual subdivision T .

Therefore, deformation classes are relevant for the lifting behavior of tropical
bitangents over other Henselian fields, not only over real closed fields.

Proof. Let K be a non-Archimedean valued Henselian field with 2-divisible value
group and residue field k such that char(k) 6= 2, see Definition 2.2.8.

An analogous investigation to the proof of Theorem 5.1.4 shows that the lifting
conditions again are constant in every deformation class. The local lifting conditions
arise from the existence of a solution to a certain polynomial equation of degree 2
over the residue field, that over the Henselian property can then be moved to the
base field. Here we need the value group to be 2-divisible. For every bitangent
shape, the radicands can be computed from the data in [CM21]. In [CM21] only
the signs of the radicands are needed. Thus, the real lifting conditions correspond
to the signs of the radicands up to factors of even exponent. For lifting over a
Henselian field K, we are interested in whether or not the radicands are squares in
K. Factors of even exponent are here again not important. Also, in [CM21] the
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Chapter 5 Tropical count of real bitangents to tropically smooth quartics

product of the signs of the nominator and denominator is considered if a factor is
a fraction. However, the product of two non-zero elements in a field is a square if
and only if their quotient is a field, so again this change from the radicand to the
sign conditions does not matter when we consider lifting over K.

Because the solutions for the lifting equations in the residue field have coefficients
which are powers of 2, we require char(k) 6= 2.

We provide details for deformation class (B H’ H). The local lifting condition at
each tangency intersection is the existence of a solution to a certain polynomial
equation of degree 2, achieved by tropical modifications [LM20, CM21]. Therefore,
the lifting conditions overK are that the radicands of the solutions of the polynomial
equations are squares over K. By the Henselian property this condition can be
formulated in working over the residue field k. For K = R{{t}} the aij below are
the initial terms of the coefficients of the quartic curve.
For bitangents of shape (B) belonging to deformation class (B H’ H), the two

radicands in k can be computed from the formulas in [CM21, Propositions 5.2 & 6.3,
Table 10]. They are R1,R2 as below:

R1 :=( a1v
a1,v+1

)i+1a0ia21(−1)i+1,

R2 :=(a21
a31

)4+2a40a31(−1)4+2+1a1,v+1
a1v

a21
a31

R̃2 :=−a40
a1,v+1
a1v

a21,

where R̃2 is simplified by deleting the factor (a21
a31

)4+2 which is always a square and
by using the equation (−1)4+2+1 =−1. Thus, R2 is a square if and only if R̃2 is a
square.
For (H’), (H) the radicands are by [CM21, Propositions 5.3 & 6.3, Table 10]

given as

R1 :=( a1v
a1,v+1

)i+1a0ia21(−1)i+1,

R2 :=−a40a21
a1v
a1,v+1

.

We recognise the same coefficients whose signs are relevant for the real lifting
conditions as in Table 5.1 for deformation class (B H’ H), only that now we have
quotients when before we had only products. However, both for signs as for squares
the condition to be positive resp. a square is equivalent for products and quotients:

a · b= c2 ⇔ a

b
= c̃2, with c̃= c

b
.
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5.1 Real lifting conditions of deformation classes

To conclude, we see that the two relevant radicands for the shapes (B), (H’)
and (H) in the deformation class (B H’ H) are the same. Therefore, the lifting
conditions over the Henselian field K are the same for all bitangent shapes in this
deformation class.
Moreover, we observe that the lifting conditions are satisfied if and only if

(−1)i+1(a1va1,v+1)i+1a0ia21 = A2 and
−a40a21a1va1,v+1 =B2,

for some A,B ∈K. Note, that substituting s for a and "equals a square" with "is
positive" this is gives the real lifting condition for deformation class (B H’ H) as in
Table 5.1.

For the other deformation classes we make similar observations and come to
the same conclusion. Only for shape (C) the situation is more interesting, so we
consider the case here.
We recall that for shape (C) we have to consider different edge length cases

because the lifting conditions were computed for the case that the bounded edge of
direction −e2 adjacent to the vertex of bitangent shape (C) is the shortest. We also
recall form the proof of Proposition 5.1.3 that we needed to consider only the two
cases λ2 <λ1 ≤ λ3 and λ1 <λ3 ≤ λ2, where λ1, λ2 and λ3 denote the lattice lengths
of the edges adjacent to the vertex that forms the bitangent class of shape (C) with
direction −e2 , −e1 and e1 + e2, respectively.
We first check the case λ2 < λ1 ≤ λ3. The following table shows the square

conditions for the radicands [CM21, Proposition 6.4, Lemma 6.5] for the identity
position λ1 < λ2 ≤ λ3, and for the changed position with λ2 < λ1 ≤ λ3. The
radicands are already partially simplified by eliminating square factors.

λ1 < λ2 ≤ λ3 λ2 < λ1 ≤ λ3
j ∈ {1,3} ai12a

−j
21 a0iaj0 = A2 aj21a

−i
12a0iaj0 = C2

i ∈ {1,3} (−1)k+1ak−j21 ak12a
j
11ak,4−kaj0 =B2 (−1)k+1ak−i12 ak21a

i
11ak,4−ka0i =D2

j = 2 a02a20 = A2 a02a20 = C2

i= 2 (−1)kak21a
k
12ak,4−ka20 =B2 (−1)kak12a

k
21ak,4−ka02 =D2

j = 2 (−a11)iai12a0ia20 = A2 −ai11a
−i
12a20a0i = C2

i ∈ {1,3} (−1)kak12a
k
21ak,4−ka20 =B2 (−1)k+1ak−i12 ak21a

i
11ak,4−ka0i =D2

j ∈ {1,3} −aj11a
−j
21 a02aj0 = A2 (−a11)jaj21aj0a02 = C2

i= 2 (−1)k+1ak−j21 ak12a
j
11ak,4−kaj0 =B2 (−1)kak21a

k
12ak,4−ka02 =D2

Similar to the proof of Proposition 5.1.3 we go through the four cases:

• i, j ∈{1,3}: From the first condition of λ1<λ2≤λ3 we know that ai12a
−j
21 a0iaj0
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Chapter 5 Tropical count of real bitangents to tropically smooth quartics

is a square, say A2. By multiplying with a2j
21
a2i

12
, we obtain the first condition for

λ2 < λ1 ≤ λ3. Further, we can multiply the second condition of λ1 < λ2 ≤ λ3
with A2 ·ai+j11 which is a square since i,j ∈ {1,3}. We obtain

(−1)k+1ak−j21 ak12a
j
11ak,4−kaj0 · (ai12a

−j
21 a0iaj0a

i+j
11 )

=(−1)k+1ak21a
k+i
12 ai11ak,4−ka0i · (a−2j

21 a2
j0a

2j
11).

This is a square if and only if (−1)k+1ak21a
k−i
12 ai11ak,4−ka0i is a square, which

is exactly the second condition of λ2 < λ1 ≤ λ3.

• i= j = 2: We observe that the first conditions for both cases are the same.
By substitute a20 = A2

a02
in the second equation of the case λ1 < λ2 ≤ λ3 we

obtain

(−1)kak21a
k
12ak,4−ka20 = (−1)kak21a

k
12ak,4−k

A2

a02
.

This is a square if and only if (−1)kak21a
k
12ak,4−ka02 is a square, which is

exactly the second condition of λ2 < λ1 ≤ λ3.

• j = 2, i∈{1,3}: By multiplying the first condition of λ1 <λ2≤ λ3 with a2i
12 and

recalling that i∈ {1,3}, we observe that the first two conditions are equivalent.
To prove the equivalence of the second conditions we multiply the second
condition of λ1 < λ2 ≤ λ3 with the first condition (−a11)iai12a0ia20 = A2 and
obtain

(−1)kak12a
k
21ak,4−ka20 · ((−a11)iai12a0ia20)

=(−1)k+iak+i
12 ak21a

i
11ak,4−ka0i · (a2

20).

This term is a square if and only if (−1)k+1ak−i12 ak21a
i
11ak,4−ka0i is a square,

since i ∈ {1,3}. This is the second condition of λ2 < λ1 ≤ λ3.

• j ∈{1,3}, i= 2: Similarly to the case before we see that the first two conditions
are equivalent by multiplying the the first condition of λ1 < λ2 ≤ λ3 with
a2j

21 and recalling that j ∈ {1,3}. To prove the equivalence of the second
conditions, we multiply the second condition of λ1 < λ2 ≤ λ3 with the first
condition −aj11a

−j
21 a02aj0 = A2 and obtain

(−1)k+1ak−j21 ak12a
j
11ak,4−kaj0 · (−a

j
11a
−j
21 a02aj0)

=(−1)kak21a
k
12ak,4−ka02 · (a2j

11a
−2j
21 a2

j0).
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5.2 A tropical count of real bitangents

This term is a square if and only if (−1)kak21a
k
12ak,4−ka02 is a square. This is

the second condition of λ2 < λ1 ≤ λ3.

This proves the claim for the transformation between the edge lengths λ1 < λ2 ≤ λ3
and λ2 < λ1 ≤ λ3. To finish the proof we have to consider the change of edge
lengths from λ1 < λ2 ≤ λ3 to λ1 < λ3 ≤ λ2. The radicands for these cases, again
simplified by eliminating square factors can be found in the tables below.
For j ∈ {1,3} we have

λ1 < λ2 ≤ λ3 λ1 < λ3 ≤ λ2
(−1)i+1ai12a

−j
21 a

i+j
11 a0iaj0 = A2 (−1)−k+1a−k12 a

j
11ak,4−kaj0a

−k−j
21 = C2

(−1)k+1ak−j21 ak12a
j
11ak,4−kaj0 =B2 (−1)−i+1a−i+j11 a−i12a

−j
21 a0iaj0 =D2

while for j = 2 we have
λ1 < λ2 ≤ λ3 λ1 < λ3 ≤ λ2

(−1)iai12a
i
11a0ia20 = A2 (−1)ka−k12 a

−k
21 ak,4−ka20 = C2

(−1)kak12a
k
21ak,4−ka20 =B2 (−1)ia−i12a

−i
11a0ia20 =D2

We observe that for both cases the first conditions of λ1 < λ2 ≤ λ3 are equivalent
to the second conditions of λ1 < λ3 ≤ λ2 and the other way round. It follows that
in each case the conditions are equivalent, which proves the claim.

5.2 A tropical count of real bitangents
This section contains a tropical count of Plücker and Zeuthen’s number of real
bitangents [Plü34, Plü39, Zeu73] to tropically smooth algebraic quartic curves
stated in Theorem 5.2.2. The tropical count is achieved by computational methods.
In joint work with Marta Panizzut, we developed an extension of polymake; see
Section 6.1. In this environment, we implemented an algorithm to provide the
tropical count of the Plücker-Zeuthen numbers; see Algorithm 2.
This section builds on the preprints [GP21a, GP21b], which are joint work

with Marta Panizzut. Appendix B.1.1 contains functions used for the proof
of Theorem 5.2.2, which are not part of the extension TropicalQuarticCurves
introduced in Section 6.1.

First recall the notion of genericity, see Remark 3.3.2. The assumption that if the
tropical curve Γ contains a vertex adjacent to three bounded edges with directions
−e1, −e2 and e1 + e2, the shortest edge is unique mainly targets the coefficients,
i.e., the weight vector in the secondary cone which induces the edge lengths of
the quartic. We point out that not for every tropical smooth quartic curve with
triangulation T the secondary cone Σ(T ) contains weight vectors that induce a
generic representative of the combinatorial type.
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Chapter 5 Tropical count of real bitangents to tropically smooth quartics

Remark 5.2.1. Up to S3-symmetry there are 8 regular unimodular triangulations
of 4∆2 that can never satisfy the above mentioned genericity condition. They
are different completions of the subdivision shown in Figure 5.4. Even for a

Figure 5.4: All tropical quartics whose combinatorial type is up to S3 one of the 8
refinements to a unimodular triangulation of this subdivision can never satisfy the
genericity condition.

generic triangulation there might be points in the secondary cone, such that the
corresponding quartic curve is not generic. This set of non-generic points inside a
generic secondary cone is always lower dimensional. The areas of non-genericity
are determined in Proposition 6.3.4 in Section 6.3.2.
Now we can state and prove the third main result of Part I of this thesis.

Theorem 5.2.2. Let Γ be a generic tropicalization of a smooth quartic plane curve
V (f) defined over a real closed complete non-Archimedean valued field. Either 1, 2,
4 or 7 of its bitangent classes admit a lift to 4 real bitangents each to V (f).
In other words, every smooth quartic curve over a real closed complete non-

Archimedean valued field whose tropicalization is smooth and generic has either 4,
8, 16 or 28 totally real bitangents.

Proof. Let Γ be a generic tropicalization of a smooth quartic plane curve V (f)
defined over a real closed complete non-Archimedean valued field. Due to Tarski-
Seidenberg Transfer Principle [BPR06, Theorem 1.4.2], we can assume, that V (f)
is defined over KR. Let T denote the dual subdivision of Γ. Since Γ is tropically
smooth and generic, we know that T is a unimodular triangulation of 4∆2 satisfying
the condition (i) of Remark 3.3.2.

By Theorem 5.1.4, the real lifting conditions of the 7 bitangent classes of Γ only
depend on the corresponding 7 dual deformation motifs contained in T .
The authors of [BJMS15] computed a list of the 1278 representatives of the

unimodular regular triangulations of 4∆2 modulo S3-symmetry. We will denote
this list by L. Thus, we know that there exists σ ∈ S3 such that σ(T ) is equal to one
representative in L. Therefore, the prove the statement for arbitrary generic tropical
smooth quartic curves, we prove the statement for every generic triangulation in
the list L. This is possible, because, as we have seen in Section 5.1, the lifting
conditions computed for σ(T ) can be transformed via application of σ−1 to the
the lifting conditions corresponding to T .
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5.2 A tropical count of real bitangents

This approach makes a computational proof possible. The procedure is to let
an algorithm run through all elements of L and for each compute the real lifting
conditions and the number of possible lifts.

In joint work with Marta Panizzut, we implemented code in polymake [GJ00] to
perform these computations. The functions that is not contained in the extension
TropicalQaurticCurves can be found in Appendix B.1.1.

Note that, as explained in Remark 5.2.1, 1270 of the 1278 S3-representatives in
the list L are generic in the sense of condition (i) in Remark 3.3.2. Nevertheless, we
ran the computations over all 1278 triangulations, with the exception that for the
8 non-generic triangulations did not compute the lifting behavior of the bitangent
class of shape (C) since that is not yet understood.
The computational prof consists of three steps. The first step is to determine

the set of dual deformation motifs for each triangulation in our list L. Algorithm 1
describes this procedure.

Algorithm 1 Finding all dual deformation motifs
Input: Unimodular regular triangulation T of 4∆2 from the list L.
Output: The list of all dual deformation motifs in T .
1: for each dual deformation motif M in Figure 4.39 do
2: for each σ ∈ S3 do
3: if the triangles of σ(M) are contained in T then
4: output (σ(M),σ).
5: end if
6: end for
7: end for

The output of this algorithm also confirms the implication of the classification
from Theorem 4.2.3 that every unimodular triangulation as exactly 7 different
associated deformation classes.

The ground work for the second step is contained in the set up of the polymake
extension TropicalQuarticCurves that we developed: For every dual deformation
motif in identity position we have by Table 5.1 up to two inequalities on the signs
of the coefficients of f as the real lifting conditions. We associate a matrix of
two sets to each dual deformation motif. Each set encondes one of the up to two
inequalities. This is more closely described in Section 6.1.1.
Now in the second step we collect all real lifting conditions for each generic

triangulation in our list L of S3-representatives.
The function detecting the dual deformation motifs inside a given triangulation

remembers the element σ ∈ S3 that transforms the corresponding identity position
into the position occurring in the triangulation. Hence, we can let σ act on the
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Chapter 5 Tropical count of real bitangents to tropically smooth quartics

sets of sign conditions and compute the set of real lifting conditions for any given
tropical smooth quartic curve.

In the third step, the actual counting of the real bitangents takes place. For this,
we need to determine for each sign vector with 15 = |4∆2∩Z2| entries how many
of the real lifting conditions are satisfied. By standardizing the sign vectors to
start with +1, we can limit the algorithm to 214 sign vectors to check. By [CM21,
Theorem 1.2 and Corollary 7.3], each bitangent class has either zero or exactly four
lifts to totally real bitangents. That means that we have to count each satisfied
real lifting condition with a multiplicity of four to achieve the correct number of
real bitangents. This routine is described in Algorithm 2.

Algorithm 2 Computing the possible numbers of real bitangents
Input: Unimodular regular triangulation T of 4∆2 from the list L.
Output: The list of all possible numbers of real bitangents of an algebraic quartic

curve with dual subdivision T .
1: for each v ∈ {±1}15 starting with 1 do
2: n = 0
3: for each real lifting condition c of T do
4: if c(v) is true then
5: n + 4.
6: end if
7: end for
8: if the value of n did not appear before then
9: output n
10: end if
11: end for

The computation yields that any smooth quartic curve V (f) for which Trop(V (f)) =
Γ is smooth and generic has either 4, 8, 16 or 28 totally real bitangents. We conclude
that each sign vector satisfies the real lifting conditions of 1, 2, 4 or 7 deformation
classes of a generic unimodular triangulation.

The implementation of Algorithm 1 and 2 in polymake to prove Theorem 5.2.2
resulted in the polymake extension TropicalQuarticCurves and the database
collection Tropical:QuarticCurves in the polymake database polyDB [Paf17].
Both are joint work with Marta Panizzut and are introduced in detail in Chapter 6.
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More on tropical bitangents
This chapter collects sections on different aspects of tropical bitangents, with focus
on the computational feature.

Section 6.1 introduces the software extension TropicalQuarticCurves [GP], of
polymake [GJ00], and the new collection Tropical:QuarticCurves in the database
polyDB [Paf17] for objects in discrete geometry and related areas. This section
gives an insight in the thoughts behind the code to explain which data was stored,
and to communicate the handling of the code and the database.
In Section 6.2, we present results of analytical, computational investigations of

the data provided by the collection Tropical:QuarticCurves. This includes distri-
bution of orbit sizes or possible numbers of real bitangents (Theorems 6.2.1 & 6.2.3),
as well as an investigation of the question whether the tropical bitangents determine
the tropical quartic curve (Theorem 6.2.5, Problem 6.2.8). The polymake functions
used for the computational aspects of these proofs can be found in Appendix B.1.2.

In Section 6.3, special areas of the secondary cone are determined: Those areas
for which the bitangent shapes are constant, and the lower dimensional areas for
which non-generic quartics appear in a secondary cone corresponding to a generic
triangulation.

The sections 6.1, 6.2 and 6.3.1 are based on work for the preprint [GP21a], which
is joint work with Marta Panizzut.

6.1 polymake extension and database
As bitangents or more generally intersections are intensely studied by the tropical
community, we expect the extension TropicalQuarticCurves and the entry in
the polymake database polyDB to be useful for further research as they make
computing examples on the topic easier and more accessible.

Furthermore, other researchers can now use this software and even further develop
the code, for example to study arithmetic multiplicities of tropical bitangent or the
lifting conditions over other fields (Corollary 5.1.5).
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In recent years, computational methods are having a more prominent role in the
proof of interesting results in tropical and algebraic geometry. We believe that
our approach to this project rightly fits and addresses the paramount questions
and challenges on how to make these methods and data available and confirmable
by the research community, following the FAIR data principles. We refer to the
description of newly established consortium MaRDI [MaR] for further details.

In Section 6.1.1, we present the polymake extension TropicalQuarticCurves [GP]
whose structure was inspired by the extension TropicalCubics [JPS], while Sec-
tion 6.1.2 introduces the collection Tropical:QuarticCurves in the database
polyDB [Paf17]. The collection was build out the expansion of data of [BJMS15].

The extension was used for the the computations in the proof of Theorem 5.2.2,
as Algorithms 1 and 2 where implemented in polymake using the objects and code
provided by the extension. Both the development of the extension as well as the
collection of data for the database entry is joint work with Marta Panizzut and the
content of this section builds on the joint paper [GP21a].

6.1.1 Smooth tropical quartic curves in polymake

We present the polymake extension TropicalQuarticCurves [GP] which is joint
work with Marta Panizzut. In the extension TropicalQuarticCurves, we introduce
the objects DualSubdivisionOfQuartic and DeformationMotif in the application
fan, and the object QuarticCurve<Addition> in the application tropical. This
procedure was inspired by the extension TropicalCubics [JPS20] for the analysis
of tropical cubic surfaces.
The extension is available for polymake version 4.5 at

https://polymake.org/doku.php/extensions/tropicalquarticcurves

Remark 6.1.1. We recall that in Chapter 2 the tropical semifield was defined via
the max-convention (see Definition 2.2.1), and that the Chapters 3, 4 and 5 adhere
to this convention. However, in polymake the implementation of subdivisions of
point configurations used for computing regular subdivisions of polytopes, as well
as the computation of their secondary cones, fits with the min-convention. See
Remark 2.2.21 (1) and (2).
When working with tropical hypersurfaces in polymake, users can specify their

preferred convention. As the extension TropicalQuarticCurves builds on these
areas, the user needs to take care when a change of conventions in the computation
is necessary.

The extension TropicalQuarticCurves contains new objects in the applications
fan and tropical. We begin by introducing the additions to applications fan.
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6.1 polymake extension and database
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(a) Order of lattice points of 4∆2 in the
extension TropicalQuarticCurves.
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(b) The dual subdivision $S, with trian-
gles of the dual deformation motif $DLO
filled.

Figure 6.1: Illustrations on the order or lattice points as used in the extension

Application fan. In this application, we can work with the objects and the-
ory on the dual side of quartic curves. This means regular subdivisions, dual
deformation motifs, etc. A regular subdivision in polymake is usually given as a
SubdivisionOfPoints, specified by the lattice points and either the weights or the
maximal cells of the subdivision. The order of the lattice points of 4∆2 is predefined
in the extension as illustrated in Figure 6.1a. Hence, a regular subdivision of 4∆2
can be given to polymake as a DualSubdivisionOfQuartic by specifying only
either the weights or the maximal cells. The object DualSubdivisionOfQuartic
is derived of the object SubdivisionOfPoints and therefore possesses the same
properties, in addition to the ones defined by the extension.
fan > $S = new DualSubdivisionOfQuartic(MAXIMAL_CELLS =>[[0,1,2],

[1,2,4],[2,4,12],[4,7,12],[2,8,12],[2,8,13],[8,12,13],[2,5,13],
[5,9 ,13],[9,13,14],[7,11,12],[7,10,11] ,[4 ,7,10] ,[4 ,6,10] ,

[3,4,6],[1,3,4]]);
fan > $T = new DualSubdivisionOfQuartic(WEIGHTS =>[14,9,4,6,

0,12,4,0,5,21,3,1,0,12,31]);
fan > $M = $T ->MAXIMAL_CELLS;
fan > print "[".join("],[",map(join(",",@$_),@$M))."]\n"; #for

improved print layout
[7,11,12],[4,7,12],[8,12,13],[2,8,12],[2,4,12],[1,3,4],[0,1,2],

[1,2,4],[2,5,13],[5,9,13],[9,13,14],[2,8,13],[3,4,6],[4,7,10],
[4,6,10],[7,10,11]

We observe that $S and $T have the same maximal cells and thus present the
same regular subdivision. Further, we observe that the subdivision consists of 16
triangles. Therefore, it is a unimodular triangulation of 4∆2, since the volume
of 4∆2 is 8 and the minimal volume of a lattice triangle is 1

2 . To account for the
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action of S3 on 4∆2 as described in Chapter 3, the permutation group is predefined
under the property ACTION of DualSubdivisionOfQuartic.
fan > print $S ->ACTION ->ALL_GROUP_ELEMENTS;
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 2 1 5 4 3 9 8 7 6 14 13 12 11 10
10 6 11 3 7 12 1 4 8 13 0 2 5 9 14
10 11 6 12 7 3 13 8 4 1 14 9 5 2 0
14 9 13 5 8 12 2 4 7 11 0 1 3 6 10
14 13 9 12 8 5 11 7 4 2 10 6 3 1 0

To investigate the tropical bitangents we need the dual deformation motifs. For these
we use the object DeformationMotif, which is defined from its three properties
TRIANGLES, TYPE and SYMMETRY. The property TRIANGLES consists of the maximal
cells of the triangulation that form the dual deformation motif. The TYPE is
the name associated in the classification depicted in Figure 4.39. And SYMMETRY
specifies which element of the permutation group S3 acts on the identity position
of the deformation motif to transform it to the position of the given triangles.
fan > $Motif1 = new DeformationMotif(TRIANGLES =>[[1,2,4],[2,4,12],

[4,7,12]], TYPE=>"DLO",SYMMETRY =>1);

This dual deformation motif is depicted in Figure 6.1b. In the same way as
described above for DualSubdivisionOfQuartic, the permutation group is encoded
as property ACTION of DeformationMotif.
When defining a DeformationMotif from its properties, it is left to the user

to ensure that the input properties are consistent with the classification from
Theorem 4.2.3.

There are additional properties of DeformationMotif that can be computed
from the three defining ones. By Theorem 5.1.4 the real lifting conditions only
depend on the deformation class. They are stored for each deformation motif.
Additionally, the hyperplanes that describe the deformation of the shapes within
the secondary cone are computable. More details on the hyperplanes can be found
in Section 6.3.
fan > print $Motif1 ->SIGN_CONDITIONS;
{-1 1 2 4 12}
{}
fan > print $Motif1 ->HYPERPLANES;
0 1 -1 0 1 0 0 -2 0 0 0 0 1 0 0

The property SIGN_CONDITIONS returns two possibly empty sets. The following
explanation describes how to read this output. As $Motif1 is deformation class
(D L O)(xz) we can read off its real lifting condition from Table 5.1 and apply (xy).
We obtain

−s01s11s10s22 > 0.
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Since some deformation classes have two of these inequalities for their real lifting
conditions, SIGN_CONDITIONS is always a vector with two entries. In our example
the second entry is empty, since we only have one inequality. The real lifting
condition −s01s11s10s22 > 0 now translates to the set {-1 1 2 4 12} as follows.
We remember the initial minus sign by the -1 in the set. The remaining signs
come from coefficients of the quartic curve. The ordering of the monomials of the
quartic curve corresponds to the ordering of the lattice points in 4∆2 as depicted
in Figure 6.1a. Thus, we have the following allocation from the inequality to the
set given by SIGN_CONDITIONS:

−1 7→ -1
s01 7→ 2
s11 7→ 4
s10 7→ 1
s22 7→ 12

Especially for investigation of the lifting conditions, it is important to know
whether the unimodular triangulation considered is generic: For non generic
triangulations no sign conditions are assigned to deformation class (C), since these
are not yet understood. See Remarks 3.3.2 and 5.2.1. For any generic triangulation,
we can compute the collected sets of real lifting conditions.
fan > print $S ->IS_GENERIC;
true
fan > $Signs = $S ->ALL_SIGN_CONDITIONS;
fan > print "[".join("],[",map(join(",",@$_),@$Signs))."]\n"; #

Improve output layout
[{-1 2 8 12 13},{-1 1 2 4 12}], [{-1 2 8 12 13} ,{10 12}], [{-1 2 8

12 13} ,{10 12}], [{-1 1 2 4 12},{}], [{10 12},{}], [{10
12},{}], [{-1 1 2 4 10} ,{}]

At this point we want to recommend to use all the functions with caution,
whenever you are working with a non-generic triangulation. Also keep in mind
that there are tropical quartic curves with generic dual subdivision that do not
satisfy the genericity condition on their edge lengths, as mentioned in Remark 5.2.1.
Section 6.3.2 provides a description of these lower dimensional areas for which we
can observe non-generic points inside a generic secondary cone.

It is also possible to access the deformation motifs and their properties from $S via
the property ALL_DEFORMATION_MOTIFS. This provides an array of the deformation
motifs associated to the triangulation.

fan > $Motifs = $S ->ALL_DEFORMATION_MOTIFS;
fan > $Hyperplanes = $Motifs ->[3]-> HYPERPLANES;
fan > $Signconditions = $Motifs ->[3]-> SIGN_CONDITIONS;
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fan > print $Motifs ->[3]-> properties;
type: DeformationMotif

ACTION
type: PermutationAction <Int , Rational >

HYPERPLANES
0 1 -1 0 1 0 0 -2 0 0 0 0 1 0 0

SIGN_CONDITIONS
{-1 1 2 4 12}
{}

SYMMETRY
1

TRIANGLES
{2 4 12}
{4 7 12}
{1 2 4}

TYPE
DLO

Further, we can access some information on the subdivision via the properties
DENSE_UNIMODULAR, ORBIT_SIZE and DEFORMATION_MOTIFS_TYPES.
fan > print $S ->DENSE_UNIMODULAR; #checks whether the subdivision

has of 16 maximal cells
true
fan > print $S ->ORBIT_SIZE; #number of different subdivisions in

the orbit of $S
6
fan > print $S ->DEFORMATION_MOTIFS_TYPES; #prints the names of the

7 deformation classes
A A A DLO E E GIN+(xy)

Moreover, the extension provides a function to compute the number of real
bitangents for a given DualSubdivisionOfQuartic and a given sign vector, i.e., a
vector with entries ±1. To illustrate this, we revisit Example 3.3.6. We consider
the triangulation $S1 from Figure 3.9 and define it from its weights. Note, that
the weights in Figure 3.9 are given according to the max-convention, so that we
have to use their negative. The sign vector in Example 3.3.6 was the all positive
vector, described by a vector of dimension 15 will all ones. We observe the same
result as computed by hand in Example 3.3.6.
fan > $S1 = new DualSubdivisionOfQuartic(WEIGHTS

=>[14,0,13,4,0,14,9,1,4,16,15,4,0,9,19]);
fan > $v = new Vector <Int >([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]);
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fan > print give_pluecker($S1 ,$v);
8

Further, we can access the properties of that are defined in polymake for the
object SubdivisionOfPoints. This includes the secondary cone, and minimial
integer weights inducing the given subdivision.
fan > $SC = $S ->SECONDARY_CONE;
fan > print $SC ->DIM;
15
fan > $w = $S ->MIN_WEIGHTS;
fan > print $w;
14 9 4 6 0 12 4 0 5 21 3 1 0 12 31

Application tropical. In this application, we want to work with a tropical quartic
curve. For this we introduce the object QuarticCurve<Addition> which is derived
from the object Hypersurface<Addition>. To define a Hypersurface<Addition>
the user has to specify first the preferred convention (Min or Max) and then the
monomials and their coefficients. Since we want to have the duality between
DualSubdivisionOfQuartic and QuarticCurve<Addition> working nicely, the
monomials of the tropical quartic curve are already predefined in the extension
in the same fixed order as the lattice points of 4∆2. See Figure 6.1a. Hence, to
define a tropical quartic curve, the user only needs to specify the convention of the
tropical addition that should be used together with the coefficients.
fan > application "tropical";
tropical > $V = new Vector <Int >([-14,-9,-4,-6,0,-12,-4,

0,-5,-21,-3,-1,0,-12,-31]);
tropical > $C = new QuarticCurve <Max >( COEFFICIENTS=>$V);

Recall from Remark 4.2.4 that the deformation of the the shapes is described by
linear inequalities. Theorem 6.3.1 shows that the deformations are induced by
hyperplanes intersecting the secondary cone. By using the hyperplanes describing
the shape deformations inside a deformation class we can compute the 7 bitangent
shapes of the tropical quartic curve from its coefficients.
tropical > print $C->BITANGENT_SHAPES;
A A A D E E I

The new objects in application fan and tropical can be used in a connected
way. For example, for a given quartic curve we can recover the dual subdivision
and work with its properties as described above.
tropical > $Sub = $Curve1 ->DUAL_SUBDIVISION;
tropical > print $Sub ->tpe ->full_name;
DualSubdivisionOfQuartic

However, we have
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fan > print $Sub ->POINTS;
1 4 0 0
1 3 1 0
1 3 0 1
1 2 2 0
1 2 1 1
1 2 0 2
1 1 3 0
1 1 2 1
1 1 1 2
1 1 0 3
1 0 4 0
1 0 3 1
1 0 2 2
1 0 1 3
1 0 0 4

This is the homogenized 2-simplex in 3-space, an equilateral triangle. We can
still perform all the computations as before. Nevertheless, for the purposes of
visualization it might be advisable to use the following code instead in order to see
4∆2 as in Figure 6.1a and as defined Definition 2.2.17.
tropical > $M = $Sub ->MAXIMAL_CELLS;
tropical > $Subdiv= new fan:: DualSubdivisionOfQuartic(

MAXIMAL_CELLS=>$M);

The object $Subdiv has as lattice points exactly the 2-dimensional lattice points
as in Figure 6.1a.
Moreover, as explained above, we can access the secondary cone of the regular

subdivision, find an interior point and define the tropical quartic corresponding to
that point.
tropical > use application "fan";
fan > $SC = $Sub ->SECONDARY_CONE;
fan > $v = $SC ->REL_INT_POINT;
fan > print $v;
1 5/4 7/72 5/3 31/72 1/36 17/8 15/16 11/72 0 47/18 107/72 4/9 0 0
fan > $Curve1 = new tropical :: QuarticCurve <Min >( COEFFICIENTS=>$v);
fan > print $Curve1 ->BITANGENT_SHAPES;
A A A D E E G

If we would rather work with an integer vector of small values, we can use the
property MIN_WEIGHTS of the subdivision.
fan > $w = $Sub ->MIN_WEIGHTS;
fan > print $w;
14 9 4 6 0 12 4 0 5 21 3 1 0 12 31
fan > $Curve2 = new tropical :: QuarticCurve <Min >( COEFFICIENTS=>$w);
fan > print $Curve2 ->BITANGENT_SHAPES;
A A A D E E I
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Remark 6.1.2. Recall, that the two new objects DualSubdivisionOfQuartic and
QuarticCurve<Addition>, are derived of existing polymake objects. This means
we can use the properties of these objects. This includes the option of visualization.
tropical > $C->VISUAL;

or equivalently
fan > $Sub ->VISUAL;

will provide a picture of the tropical quartic curve or respectively the unimodular
triangulation.

6.1.2 The database collection QuarticCurves

The 1278 unimodular regular triangulations of 4∆2 computed by Brodsky et
al. [BJMS15] were first available at the git repository

https://github.com/micjoswig/TropicalModuliData.

Since our analysis of tropical quartic curves and their tropical bitangents, created
additional information for each such unimodular regular triangulation, we decided
to make this data available as a collection in polyDB [Paf17], a general database
for discrete geometric objects with an interface in polymake. The database entries
are available in the collection QuarticCurves within the database Tropical of
polyDB at

https://db.polymake.org/.
The database can be accessed via the web interface as well as directly from polymake.
Each triangulation has a unique identifier, an integer between 1 and 1278 that
can be used to retrieve it from the database. For each triangulation given by its
maximal cells, the database entry contains:

• the GKZ-vector (see Definition 2.1.11): GKZ_VECTOR,
• a minimal representative as explained below: MINIMAL_REPRESENTATIVE,
• a boolean stating whether the triangutlation is generic: IS_GENERIC,
• all dual deformation motifs: ALL_DEFORMATION_MOTIFS and for each of these

– their sign conditions: SIGN_CONDITIONS,
– their associated hyperplanes: HYPERPLANES,

• the Plücker numbers of their possible real bitangents: PLUECKER_NUMBERS,
• an exemplary sign vector for each Plücker number: SIGN_REPRESENTATIVES.
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We call the numbers of real bitangent lifts of a tropical quartic curve Plücker
numbers.

The MINIMAL_REPRESENTATIVE to a given triangulation T is the minimal tri-
angulation in the S3 orbit of T with respect to the lexicographical order on the
vertex labels in the maximal cells. An example is provided below. Given a triangu-
lation T , the property MINIMAL_REPRESENTATIVE is used to find the associated S3-
representative in the database. This is done via the function find_in_database()
which computes the minimal representative of T and compares it with the ones
stored in the database returning the identifier.
fan > $S = new DualSubdivisionOfQuartic(MAXIMAL_CELLS =>[[6,10,11],

[3,6,11],[3,7,11],[7,11,12],[1,3,7],[4,8,12],[8,12,13],
[0,4,8],[5,9,13],[9,13,14],[5,8,13],[2,5,8],[4,7,12],[0,4,7],
[0,2,8],[0,1,7]]);

fan > print find_in_database($S);
100

Note that not all the properties from the above list are displayed for a chosen
identifier on the web interface. However, after downloading the JSON source file
for a chosen triangulation from the database, the data can be loaded into polymake
and investigated within the extension.
polytope > application "fan";
fan > $T = load_data("YOUR/PATH /100. json");
fan > print $T ->DEFORMATION_MOTIFS_TYPES;
A A A A G G T
fan > print $T ->PLUECKER_NUMBERS;
{4 8 16 28}
fan > print $T ->SIGN_REPRESENTATIVES;
{<1 1 1 1 1 1 1 1 1 1 1 1 1 1 1> <4>}
{<1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1> <8>}
{<1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1> <16>}
{<1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1> <28>}

Remark 6.1.3. To compute all the possible numbers of real bitangents possible for
quartic curves with the given dual unimodular triangulation, we have to evaluate
the real lifting conditions for all possibilities of sign vectors {±1}15. The same is
true for the code behind the computation of the property SIGN_REPRESENTATIVES,
which provides for each possible number of real bitangents a sign vector with which
the quartic curve would attain the given number of real bitangents. The evaluation
of the real lifting conditions over all possible sign vectors is the reason, why these
properties are only available for the database entries.
The function to compute the property SIGN_REPRESENTATIVES is documented

in Appendix B.1.2 for reasons of completeness.
It is possible to obtain the values for a unimodular triangulation that does not

coincide with its representative stored in the database via S3 transformation.
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The following gives an example of the property MINIMAL_REPRESENTATIVE.
fan > print "{".join("},␣{",map(join(",",@$_),@{$T->MAXIMAL_CELLS

}))."}\n"; #for improved print layout
{0,1,2}, {1,2,3}, {2,3,4}, {2,4,5}, {3,4,6}, {5,7,8}, {5,8,9},

{7,8,10}, {9,12,13}, {9,13,14}, {8,9,12}, {8,11,12}, {4,5,7},
{4,7,10}, {8,10,11}, {4,6,10}

print "{".join("},␣{",map(join(",",@$_),@{$T->
MINIMAL_REPRESENTATIVE }))."}\n"; #for improved print layout

{0,1,2}, {1,2,3}, {2,3,4}, {2,4,5}, {3,4,6}, {4,5,7}, {4,6,10},
{4,7,10}, {5,7,8}, {5,8,9}, {7,8,10}, {8,9,12}, {8,10,11},
{8,11,12}, {9,12,13}, {9,13,14}

We recall from Remark 5.2.1 that up to S3 there are 8 regular unimodular triangu-
lations that are non-generic. Representatives of these non-generic triangulations
can be accessed under the identifiers #511, #719, #842, #905, #1095, #1114,
#1191 and #1263 in the database.
Instructions on how to access the database from polymake can be found in

the polymake wiki1. The following illustrates how a specific triangulation can be
accessed via its identifier.
polytope > application "fan";
fan > $polydb = polyDB (); #calls the main instance of polyDB
fan > $collection = $polydb ->get_collection("Tropical.

QuarticCurves"); #to access the correct collection
fan > $cur = $collection ->find_one ({"_id"=>"511"});
fan > print $cur ->name; #prints the identifier
511
fan > print $cur ->IS_GENERIC;
false

The command ->find_one selects one database entry that satisfies the given
property. In the above example this property was that the identifier "_id" was
equal to "511" for which we know that there exists only one entry. (Note that the
identifiers are stored as strings.) The interface to polymake makes other queries
to the collection possible. For example, we can count all entries that satisfy a
specific property. This is helpful to conduct analyses of the data as presented in
the following section.

6.2 Data on tropical quartic curves
This section presents results from analytical investigations of the collected data on
smooth tropical quartic curves and their bitangents, like the distribution of orbit

1https://polymake.org/doku.php/user_guide/howto/polydb_tutorial
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sizes in Theorem 6.2.1 or the distribution of possible numbers of real bitangent
lifts in Theorem 6.2.3. The latter shows that every generic tropical smooth quartic
curve admits a lift to a quartic curve with 28 real bitangents.

Further, we use the computational data to investigate the question whether trop-
ical bitangents determine the quartic curve similarly to the algebraic case [CS03].
We prove that the deformation classes determine the combinatorial type of the
quartic curve using the extension TropicalQuarticCurves (Theorem 6.2.5). More-
over, we look at an example of a quartic curve with bitangents more closely and
formulate in Problem 6.2.8 an open research question for future exploration.
The results presented in Theorems 6.2.1, 6.2.3 and 6.2.5 are joint work with

Marta Panizzut for a second version of [GP21a].
Additionally, this section contains an analysis of the real lifting of shape (C)

for non-generic triangulations as formulated in Problem 6.2.4 together with the
explanatory paragraph and computational data in Table 6.3. This is independent
work, and not part of the joint work.

The polymake functions used for the computational aspects in this section can
be found in Appendix B.1.2.

Theorem 6.2.1. The fourth dilation of the standard 2-dimensional simplex 4∆2
has 7422 regular unimodular triangulations. These are grouped into 1278 orbits
with respect to the action of S3. The distribution of the orbit sizes is shown in
Table 6.1.

1 2 3 6
2 5 72 1199

Table 6.1: Distribution of orbit sizes among smooth tropical quartic curves.

Proof. The number of regular unimodular triangulations of 4∆2 was determined by
Brodsky et al. in [BJMS15]. The statement on the orbit distribution can be proven
by a query over the entries of the database collection introduced in Section 6.1.2.
Algorithm 3 describes the procedure. Here ei denotes the i-th standard basis
vector in R6 and L means the collection of S3-representatives of the unimodular
triangulations as saved in the database. Naturally, the entries 4 and 5 of the
vector v will stay zero. The output vector is v = (2,5,72,0,0,1199). The polymake
function for this computation can be found in Appendix B.1.2.

When considering the interplay between algebraic and tropical geometry, a
naturally arising question is:
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Algorithm 3 Computing the possible numbers of real bitangents
Input: Unimodular regular triangulation T of 4∆2 in L.
Output: Distribution of the orbit sizes
1: v = (0,0,0,0,0,0)
2: for each T in L do
3: O = orbit of T under S3
4: i = size(O)
5: v = v+ ei
6: end for
7: return v

Question 6.2.2. Does every generic smooth tropical quartic have a real lift to a
smooth real quartic curve with exactly 28 bitangents?

The answer lies within the collected data.

Theorem 6.2.3. The distribution of Plücker numbers among the 1270 generic
smooth unimodular triangulations of 4∆2 is reported in Table 6.2. Every generic
combinatorial type of smooth tropical quartic curve admits a lift to a plane curve
with 28 real bitangents.

{4,8,16,28} {4,8,28} {4,16,28} {8,16,28} {4,28} {8,28} {16,28}
1200 15 26 18 6 3 2

Table 6.2: Distribution of Plücker numbers among the combinatorial types of generic
smooth tropical quartic curves.

Proof. Since for every unimodular triangulation in the database collection the
possible numbers of real bitangents are stored as property PLUECKER_NUMBERS, the
setup of the database allows a simple count of all the triangulations with the same
set of possible numbers of real bitangents.
polytope > application "fan";
fan > $polydb = polyDB ();
fan > $collection = $polydb ->get_collection("Tropical.

QuarticCurves");
fan > $n = $collection ->count ({"PLUECKER_NUMBERS"= >[4 ,8,16,28]});
fan > print $n;
1200
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These will only count the generic triangulations. It can be checked in the database
that the non-generic triangulations always contain a number outside of the al-
lowed set {4,8,16,28} from the missing lifting behaviour of the bitangent class of
shape (C).

All sets of possible Plücker numbers with non-zero output for the database query
are collected together with their occurrence in the set of regular generic unimodular
triangulations in Table 6.2. We observe that each such set contains the number 28,
thus answering Question 6.2.2 positively.

Recall that for non-generic triangulations the real lifting conditions of shape (C)
are unknown. Therefore, we have the following open problem:

Problem 6.2.4. What is the real lifting behavior of shape (C) for an non-generic
triangulation?

Since the numbers of real bitangents to smooth quartic curves were determined
by Plücker and Zeuthen [Plü34, Plü39, Zeu73], it is possible for some sign vectors
to conclude whether or not the shape (C) will lift. If we obtain as numbers of
real bitangents 0, 12 or 24 for a non-generic triangulation, we know (since shape
(C) is not counted) that in these cases the bitangent class of shape (C) has to
lift. If we obtain the numbers 8 or 16, we know that shape (C) cannot lift, as this
would contradict the results by Plücker and Zeuthen. Only in the case that we
obtain exactly 4 real lifts we cannot decide on the realizability of shape (C) over R.
Table 6.3 shows the distribution of the sign vectors to the three cases described
above.

#511 #719 #842 #905 #1095 #1114 #1191 #1263
(C) lifts 8192 6144 8192 6144 6144 6144 6144 6144

(C) cannot lift 4096 2048 0 2048 2048 2048 2048 2048
unclear 4096 8192 8192 8192 8192 8192 8192 8192

Table 6.3: The distribution of the 214 sign vectors on the three different cases of
realizability of shape (C) over R for each of the eight non-generic triangulations by
their database identifiers.

In algebraic geometry, a smooth quartic curve is uniquely determined by its 28
bitangent lines [CS03]. Theorem 6.2.5 shows that we can replicate this result on
the combinatorial side of the tropical world with respect to the dual deformation
classes and the combinatorial type of the quartic curve. In other words, for an
allowed choice of 7 dual deformation motifs in 4∆2 there exists a unique completion
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to a regular unimodular triangulation. A choice of dual deformation motifs is
allowed, if they fit together into a regular subdivision of 4∆2.

Theorem 6.2.5. The combinatorial type of a tropical quartic curve is determined
by its 7 dual deformation motifs.

Proof. The proof is of computational nature. For every triangulation in the set of
1278 representatives stored in the database, we collected the triangles that belonged
to the seven dual deformation motif of the triangulation. Hence, each such set is the
part of the triangulation fixed by the deformation classes of bitangents of its dual
quartic curves. Collecting the orbits of these subcomplexes of the triangulations
in a set, we counted 7422 different subcomplexes. The procedure is illustrated in
Algorithm 4. The code can be found in Appendix B.1.2.

Algorithm 4 Computing the number of allowed sets of dual deformation motifs
Input: Unimodular regular triangulation T of 4∆2 in L.
Output: Number of different sets of dual deformation motifs
1: S = {}
2: for each T in L do
3: T = set of all triangles determined by the dual deformations motifs of T
4: for each σ ∈ S3 do
5: add σ(T ) to the set S
6: end for
7: end for
8: return |S|

As there only exist 7422 regular unimodular triangulations of 4∆2 [BJMS15], we
conclude that every triangulation has its unique set of dual deformation motifs. In
other words, the 7 dual deformation motifs uniquely determine the unimodular
triangulation, i.e., the combinatorial type of the quartic curve.

The question remains whether we observe a similar situation to the algebraic
setting [CS03] for tropical quartic curves and their bitangent classes.

Question 6.2.6. Is a smooth tropical quartic curve determined by the positions
and shapes of its 7 bitangent classes?

Here we consciously avoid the mention of deformation classes or bitangent motifs,
since we now only consider the situation in the plane, i.e., we know about the
positions of the bitangent classes in R2 and we know their shape out of the collection
in Figure 3.6.
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(C)

(B)

(B)

(B)

(A)

(A)

(A)

(a) (b) (c)

Figure 6.2: In Figure 6.2a we see the given bitangent shapes in their determined
positions. Figures 6.2b and 6.2c show two smooth tropical quartic curves of different
combinatorial type satisfying the conditions from Figure 6.2a.

An example is shown in Figure 6.2. This example also already answers Ques-
tion 6.2.6 since we observe two tropical quartic curves of different combinatorial
type with the given bitangent shapes in the predefined positions.
By Theorem 6.2.5 we know that combinatorial type is determined by the dual

deformation motifs of the bitangent classes, and we observe that the deformation
classes of the leftmost bitangent class of shape (B) differs for the two quartic curves
in Figure 6.2. Therefore, we ask:

Question 6.2.7. Is a smooth tropical quartic curve determined by the positions
and dual deformation motifs of its 7 bitangent classes?

In Figure 6.3 we see two different options on how the tropical quartic curve can
change without affecting either its combinatorial type or the shapes and positions
of its bitangent classes. Accordingly, the answer to Question 6.2.7 is again negative.

If we additionally fix the tropical tangency points for each bitangent class for the
quartic curve in Figure 6.3, it is possible to reconstruct the coefficients of the quartic
curve except for the coefficients to the monomials x0y0, x4y0 and x0y4. Recalling
the notions of Definition 3.1.5, this means that the skeleton of the tropical quartic
curve is fixed by the position of the tangencies and the shapes of the bitangent
classes, and only the generalized leaves can still be pulled. To prove this for the
curve in Figure 6.3, recall the position of the tropical tangency points as described
in Proposition 3.3.8. A few steps of this process are illustrated in Figure 6.4. In
Figure 6.4a and 6.4b the first tangency points of bitangent classes (3) and (6) are
used to determine the first edge of the quartic. In Figure 6.4c, the first tropical
tangency point of bitangent class (4) together with the position of the vertex of the
quartic coinciding with the bitangent class of shape (C) determines another edge
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(a) Change of edge lengths in the skeleton
of the curve.

(b) Pulling the leaves of the curve.

Figure 6.3: A smooth tropical quartic curve dual to the honeycomb triangulation
with its 7 bitangent shapes. We see two possible changes of the edges of the quartic
that do not interfere with the given bitangent shapes.

of the quartic. In Figure 6.4d, all tropical tangency points are drawn, where the
notation t(i)j denotes the j-th tangency point j ∈ {1,2} of the (i)-th bitangent class,
i ∈ {1,...,7}. The dotted edges in the skeleton do not contain tropical tangency
points. They are fixed by the balancing condition and the fact that we have a
tropical smooth curve of degree 4.

So the edge length changes depicted in Figure 6.3a are no longer possible when
we fix the tropical tangency points. The only possible changes left are the pulling
of leaves as illustrated in Figure 6.3b. Please note that we did not need the dual
deformation motifs of the bitangent classes to fix the skeleton.
This indicates the following interesting question, which we leave for further

research.

Problem 6.2.8. Is it in general possible to determine the skeleton of a smooth
tropical quartic curve from its bitangent shapes and the tropical tangency points
of its realizable representatives such that the only remaining edge length changes
correspond to varying the edge lengths of generalized leaves?
If yes, does every tropical quartic in such a family allow a lift with 28 real

bitangents?
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Figure 6.4: The bitangent shapes and their tropical tangency points fix the skeleton
of the quartic curve.

6.3 Hyperplane arrangements
We have seen in Chapter 4 that changes between bitangent shapes, which belong
to the same deformation class, for a given combinatorial type of the quartic curve
corresponds to choosing a different coefficient vector from the associated secondary
cone. This section focuses on special areas in the secondary cone.
Section 6.3.1 is concerned with the areas of a given secondary cone for which

every tropical quartic has the same set of bitangent shapes, which turn out to be
chambers of a hyperplane arrangement (Theorem 6.3.1).
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The chambers of constant bitangent shapes are interesting not only for compu-
tations of the exact shape visible for a given quartic curve, but also for further
research in the area of tropical bitangents [MSP22]. Theorem 6.3.1 additionally
provides a full list up to S3-action. This first subsection builds on joint work with
Marta Panizzut [GP21a].
Section 6.3.2 investigates the lower dimensional areas in secondary cones of

generic triangulations for which the tropical curve does not satisfy the genericity
condition. These areas are determined in Proposition 6.3.4.

6.3.1 Hyperplanes of deformation classes
This subsection, which builds on joint work with Marta Panizzut [GP21a], investi-
gates the areas of the secondary cones of unimodular triangulations, in which for
every tropical quartic curve the bitangent shapes are constant. There are 128 sec-
ondary cones up to S3-equivalence, for which the whole interior of the cone satisfies
this condition. The remaining 1150 secondary cones up to S3-equivalence are refined
by the condition of constant bitangent shapes as determined in Theorem 6.3.1.
The results in this section are important for further research, when there are

properties of bitangent shapes that are not constant within a deformation class.
One example are arithmetic multiplicities of tropical bitangents as explained below.

By Corollary 5.1.5 the lifting conditions, not only over R but also over arbitrary
Henselian fields K with residue characteristic 6= 2, depend solely on the deformation
classes. Consequently one might wonder, whether the exact knowledge of which
shape a bitangent class attains has any use exceeding the creation of examples. But
there is at least one property of bitangent classes that indeed depend on the shape
and can vary within a deformation class. When studying bitangent lines to quartic
curves in arithmetic geometry, one is interested in the arithmetic multiplicity [LV21,
Definition 1.2]. The arithmetic multiplicity of tropical bitangent classes of quartic
curves over any field, as investigated in [MSP22], can vary between different shapes
in the same deformation class. More precisely, [MSP22] provides examples of
shapes with different arithmetic multiplicities that belong to the same deformation
class. One of these is given by the shapes (W) and (BB) of deformation class
(W...HH)+(xz), which have different arithmetic multiplicities.

As noted in Remark 4.2.4, the proof of Theorem 4.2.3 implies that the deforma-
tions of the shapes inside a dual deformation class are described by linear equations.
This means that for their investigation we consider hyperplane arrangements
secondary cones.

Theorem 6.3.1. For a given unimodular triangulation T of 4∆2 we can subdivide
the associated secondary cone Σ(T ) by hyperplanes, such that for each chamber
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Chapter 6 More on tropical bitangents

in the hyperplane arrangement the bitangent shapes of the corresponding quartic
curves are constant.

The hyperplanes depend on the deformation motifs and are classified for the
identity position of the dual deformation motifs in Table 6.4.

Proof. The main argument of the proof is that the deformations between shapes in-
side a deformation class are described by linear inequalities that provide hyperplanes
refining the secondary cone.
We recall that the changes of shapes inside a deformation class arise from

the change of relative positions of relevant edges or vertices. In the proof of
Theorem 4.2.3, the relevant edges and vertices were identified for every deformation
class together with their relative positions by inequalities and which shape these
induce.
We give the details of the computation for the hyperplane of deformation class

(E F J). For the other cases the method is the same.
We use the notation (λij) for a coefficient vector in Σ(T ) whose coordinates

correspond to the lattice points pij of 4∆2.
Recall from the proof of Theorem 4.2.3 the following notations:

a= (ax,ay) := (p1vp1,v+1p20)∨,
b= (bx,by) := (p20p30p31)∨.

The classification then states, that we observe the shapes (E), (F) or (J) depending
on the relation between ay and by:

ay < by→ Shape (E),
ay = by→ Shape (J),
ay > by→ Shape (F).

To determine the hyperplane that separates shape (E) from shape (F) we have to
compute the values of ay and by in dependence of the coefficient vector (λij)∈Σ(T ).

Note that in order to adhere to the polymake convention in which the points in
the secondary cone induce subdivisions via the min-convention (Remark 6.1.1),
the coefficient vector (λij) is the vector of valuations of coefficients of a lift. In
other words: if (aij) are the coefficients of a lift of the tropical quartic curve we
have λij = val(aij). As we draw our quartic curves and tropical bitangents in the
max-convention, this implies that for the following computation of the coordinates
of a and b we have to use −λij . We refer to Remark 2.2.21 for the details of the
min/max-conventions.
To compute the coordinates of a and b, we recall from Example 2.2.19 how to

compute vertices of the tropical curve from the duality. We have to solve the
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6.3 Hyperplane arrangements

following equations:

For a :
−λ1v +ax+v ·ay =−λ1,v+1 +ax+ (v+ 1) ·ay =−λ20 + 2 ·ax.

For b :
−λ20 + 2 · bx =−λ30 + 3 · bx =−λ31 + 3 · bx+ by.

This yields:

ay = λ1,v+1−λ1v,

by = λ31−λ30.

Therefore, the hyperplane separating the shapes in deformation class (E F J) is
given by H := {λ1,v+1− λ1v − λ31 + λ30 = 0}, with the negative halfspace H<0
corresponding to shape (E), the positive halfspace H>0 corresponding to shape (F),
and the hyperplane H itself correspond to shape (J). See Figure 6.5 for an example.
Table 6.4 states all the linear inequalities describing the different shapes for every
deformation class in identity position.

The hyperplanes that determine the changes of the shapes for a deformation class
are stored in the database as a property of the deformation motif. If a triangulation
contains only deformation motifs without hyperplanes, then each of its dual tropical
quartic curves has the same collection of shapes of bitangent classes.

Proposition 6.3.2. There are 128 unimodular triangulations modulo S3 action
with dual smooth tropical curves having constant shapes of bitangent classes.

Proof. This statement can be proven similarly to the Theorems in Section 6.2
by going over the entries of the database collection Tropical:QuarticCurves
in polyDB. For every deformation class that contains only one shape, i.e., for
every constant deformation class, we have not assigned a hyperplane. On the
other hand, every not constant deformation class has hyperplanes assigned that
describe the deformations of the shapes. See Theorem 6.3.1. Thus, we can
identify all those unimodular triangulations for which the quartic curves have only
constant deformation classes by checking the existence of assigned hyperplanes
for each of their seven deformation motifs. If none have assigned hyperplanes,
we add the triangulation to our count. The computation yields 128 unimodular
triangulations for which we only have constant deformation classes. The polymake
code and the database identifiers of the cones with constant shapes are available in
Appendix B.1.2.
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Chapter 6 More on tropical bitangents

For −λ1 = (0,5,5,9,8,5,6.5,9,9,4,2,7,8,7,1)
we have

(λ1)8− (λ1)4 =−9 + 8
=−1
<−0.5 =−7 + 6.5
= (λ1)11− (λ1)6,

so we see Shape (E).

For −λ2 = (0,5,5,9,8,5,6,9,9,4,2,7,8,7,1)
we have

(λ2)8− (λ2)4 =−9 + 8
=−1
=−7 + 6 = (λ2)11− (λ2)6,

so we see Shape (J).

For −λ3 = (0,5,5,9,8,5,5.5,9,9,4,1,7,8,7,1)
we have

(λ3)8− (λ3)4 =−9 + 8
=−1
>−1.5 =−7 + 5.5
= (λ3)11− (λ3)6,

so we see Shape (F).

Figure 6.5: The different shapes that appear for one bitangent class when choosing
different edge lengths are given by linear inequalities. Note that here the edge
(p1vp1,v+1) = (p11p12), so for a coefficient vector λ∈Σ we have the hyperplane given
by λ8−λ4−λ11 +λ6 = 0, since these indices give the position of the corresponding
lattice points starting at 0 in the order as fixed in Figure 6.1a.
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6.3 Hyperplane arrangements

We can use the polymake function HyperplaneArrangements [KP20] for the
other triangulations, to analyze the chamber decomposition induced by the hyper-
planes on their secondary cones as the following example illustrates.
fan > $DS = new DualSubdivisionOfQuartic(MAXIMAL_CELLS=>

[[0,1,2],[1,2,3],[2,3,4],[5,8,9],[9,13,14],[8,11,12],[3,7,8],
[6,10,11],[3,6,11],[3,7,11],[8,12,13],[3,4,8],[2,5,8],[8,9,13],

[7,8 ,11],[2,4 ,8]]);
fan > $DM = $DS ->ALL_DEFORMATION_MOTIFS;
fan > print $DM ->[6]->TYPE;
W...HH+(xz)

The triangulation has a dual deformation motif of type (W...HH)+(xz). We now
look at the chamber decomposition of the secondary cone defined by the hyperplane
arrangement given by the hyperplanes associated to the deformation class.
fan > $Hyps = $DM ->[6]-> HYPERPLANES;
fan > $SC = $DS ->SECONDARY_CONE;
fan > $HA = new HyperplaneArrangement(HYPERPLANES=>$Hyps);
fan > $CD = $HA ->CHAMBER_DECOMPOSITION;

Consider the first chamber in the arrangement. We extract the corresponding cone
and pick a point in its relative interior.
fan > $R = $CD ->RAYS;
fan > $NR = $R ->minor($CD ->MAXIMAL_CONES ->[0], All);
fan > $C = new Cone(INPUT_RAYS=>$NR , INPUT_LINEALITY=>$HA ->

LINEALITY_SPACE);
fan > $Cone = intersection($C, $SC); #intersect with the secondary

cone
fan > print $Cone ->DIM;
15
fan > $NP = $Cone ->REL_INT_POINT;

We compute the tropical quartic curve defined by the coordinates of that point and
check its bitangent shapes.
fan > application ’tropical ’;
tropical > $H = new QuarticCurve <Min >( COEFFICIENTS=>$NP);
tropical > print $H->BITANGENT_SHAPES;
A B B E F N EE

In this example, we see that tropical quartic curves with coefficients in the cone
corresponding to the first chamber in the hyperplane arrangement have a bitangent
class of shape (EE) within the deformation class (W...HH)+(xz).
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Chapter 6 More on tropical bitangents

Figure 6.6: A tropical quartic curve not satisfying the genericity conditions from
Remark 3.3.2 together with its generic unimodular triangulation.

6.3.2 Hyperplanes for (C) non-generic
This section focuses on the areas in secondary cones corresponding to generic
unimodular triangulations for which a point in the area induces a tropical curve
that does not satisfy the genericity constraint (i) from Remark 5.2.1. When
applying the results of Chapter 5 on a tropical quartic curve, or more generally
on a combinatorial type, it is important to be able to check the genericity for a
chosen tropical coefficient vector.
Further, an understanding of these areas might help to understand the full

dimensional secondary cones for which every point induces a non-generic tropical
quartic curve (Remark 5.2.1).

Definition 6.3.3. We call a full-dimensional secondary cone generic if the cor-
responding unimodular triangulation is not equivalent via S3 to one of the eight
non-generic triangulations as mentioned in Remark 5.2.1.

Recall that a generic triangulation does not necessarily imply that every dual
tropical quartic curve satisfies the genericity conditions. As an example consider
the quartic curve in Figure 6.6 which has as dual subdivision the honeycomb
triangulation which is generic.
In Remark 5.2.1, we claimed that these areas in generic secondary cones for

which the tropical curves are non-generic, because they violate condition (i) in
Remark 3.3.2, are lower dimensional. Note, that this situation can only occur if the
triangulation corresponding to the secondary cone contains the triangle (p11p12p21).
In this case, we say the secondary cone allows bitangent shape (C). The following
proposition contains a full description of these non-genericity areas.

Proposition 6.3.4. The areas of non-generic curves in a generic secondary cone
that allows bitangent shape (C) are intersections of the cone with at most three
half-hyperplanes. They are described in Table 6.5.
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6.3 Hyperplane arrangements

`1

`2

`3

Figure 6.7: Illustration of the part of the tropical quartic curve relevant for a
bitangent class of shape (C) together with the euclidean edge lengths.

{µ3 > µ2 = µ1}
λ21−2λ11 +λ0i− (i−1)(λ12−λ11) = λ12−2λ11 +λj0− (j−1)(λ21−λ11)

(k−3)λ12− (k−1)λ21 +λk,4−k +λ11 > λ12−2λ11 +λj0− (j−1)(λ21−λ11)
{µ2 > µ1 = µ3}

λ21−2λ11 +λ0i− (i−1)(λ12−λ11) = (k−3)λ12− (k−1)λ21 +λk,4−k +λ11
λ12−2λ11 +λj0− (j−1)(λ21−λ11)> λ21−2λ11 +λ0i− (i−1)(λ12−λ11)

{µ1 > µ3 = µ2}
λ12−2λ11 +λj0− (j−1)(λ21−λ11) = (k−3)λ12− (k−1)λ21 +λk,4−k +λ11
λ21−2λ11 +λ0i− (i−1)(λ12−λ11)> (k−3)λ12− (k−1)λ21 +λk,4−k +λ11

Table 6.5: The non-generic areas are given by intersecting the three half-hyperplanes
as given above with the secondary cone that allows shape (C). Here, λij = val(aij).

Proof. Let T be a generic triangulation that contains the triangle (p11p12p21). The
areas in the secondary cone of T for which the elements induce a non-generic tropical
quartic curve can be computed by computing the hyperplanes that determine
whether two of the edges adjacent to the vertex v have the same lattice length.

Let `1, `2, `3 denote the euclidean lengths of the edges of direction −e1,−e2 and
e1 + e2. See Figure 6.7. Let µ1, µ2 and µ3 denote the lattice lengths. Then we
know:

µ1 =`1,
µ2 =`2,

µ3 = 1√
2
`3.

Now we have to compute the hyperplanes for which two of the lengths are equal:

H1 := {µ1 = µ2}, H2 := {µ1 = µ3}, H3 := {µ2 = µ3}.
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Chapter 6 More on tropical bitangents

Thus, the areas of non-generic curves will be intersections of the relevant secondary
cone with the three half-hyperplanes:

H1∩{µ3 > µ2},
H2∩{µ2 > µ1},
H3∩{µ1 > µ3}.

In order to obtain equations for the three half-hyperplanes that we can apply to
the secondary cone Σ(T ), we have to compute µ1, µ2 and µ3 from in dependence
of the min-convention coefficients (λij) ∈ Σ(T ). This works via the same strategy
as the computation of the hyperplanes in the proof of Theorem 6.3.1. We note:

µ1 := (p11p12p21)∨x − (p0ip11p12)∨x ,

µ2 := (p11p12p21)∨y − (pj0p11p21)∨y ,

µ3 := 1√
2

√
((p11p12p21)∨x − (pk,4−kp21p12)∨x )2 + ((p11p12p21)∨y − (pk,4−kp21p12)∨y )2.

Here i, j,k are used as in the proof of Proposition 5.1.3, only that we allow
i, j,k ∈ {0,1,2,3,4}, that means this computations works independently of the
identity position of the dual deformation motif of shape (C). Computing the
vertices (p0ip11p12)∨, (pj0p11p21)∨, (pk,4−kp21p12)∨ and (p11p12p21)∨ as described
in Example 2.2.19, we obtain:

µ1 := λ21−2λ11 +λ0i− (i−1)(λ12−λ11),
µ2 := λ12−2λ11 +λj0− (j−1)(λ21−λ11),
µ3 := (k−3)λ12− (k−1)λ21 +λk,4−k +λ11,

where λij = val(aij). Hence, the areas in the secondary cone that do not give
generic curves are as described in Table 6.5.

Example 6.3.5. The min-convention coefficients for the tropical quartic curve
depicted in Figure 6.6 are w = (5,2,2,1,0,1,2,0,0,2,5,2,1,2,5), ordered as in
Figure 6.1a. From the subdivision we read off that i= j = k = 2 and we thus have
the following formula for the lattice lengths µ1, µ2, µ3:

µ1 := λ21−2λ11 +λ02− (λ12−λ11),
µ2 := λ12−2λ11 +λ20− (λ21−λ11),
µ3 :=−λ12−λ21 +λ22 +λ11.
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6.3 Hyperplane arrangements

We substitute the entries of w into the formula according to the ordering and obtain

µ1 = 0−2 ·0 + 1− (1 · (0−0)) = 1,
µ2 = 0−2 ·0 + 1−1 · (0−0) = 1,
µ3 =−1 ·0−1 ·0 + 1 + 0 = 1.

So w is indeed contained in all three half-hyperplanes.

We know the lifting conditions for the bitangent class of shape (C) outside of
these half-hyperplanes in the secondary cone. Moreover, the lifting conditions are
constant in the secondary cone apart for the non-genericity areas. Since these areas
are of codimension 1, we state the following open problem:

Problem 6.3.6. Do the lifting conditions of shape (C) in generic position extend
to the half-hyperplanes describing the non-generic areas?

An answer to this problem might open new ways to tackle Problem 6.2.4 of the
lifting conditions of shape (C) for non-generic full-dimensional secondary cones.
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Part II

Towards tropically counting binodal
surfaces
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Chapter 7

Preliminaries
In this chapter, we provide background on tropical singular surfaces and the
theory of their enumeration. First, we define tropical singular surfaces and recall
what is known about them in Section 7.1. Then, lattice paths and points in
Mikhalkin position are defined in Section 7.2. They form one of the key tools for
the enumeration of tropical surfaces. In Section 7.3, we introduce another key tool:
the concept of tropical floor plans for counting singular surfaces.
The main references for this chapter are [MMS12, MMS18, MMSS22, BG20].

The results and proofs in the following chapters build on the results, notation and
definitions introduced here.

Notation 7.0.1. In Part II of this thesis, we fix K = C{{t}} the field of complex
Puiseux-series with its natural non-trivial valuation; see Example 2.2.9.

7.1 Tropical singular surfaces
This section introduces the notions of tropical singular surfaces, of their support
and of the tropical discriminant. We recall from Section 2.2.3 that, by definition, a
tropical surface is smooth if its dual subdivision is a unimodular triangulation. This
section further recalls the results from [MMS12] on the classification of isolated
nodes in tropical singular surfaces via circuits.

Definition 7.1.1. Let S be a tropical surface in R3. We say that S is a tropical
singular surface, if there exists an algebraic variety X in K3 such that S = Trop(X)
and X is a singular surface. A point on S is a tropical singularity or tropical node
if it is the tropicalization of a singularity/node of a lift of S.

Note that for tropical smooth hypersurfaces we know that every lift has to be
algebraically smooth. The same is not true for tropical singular surfaces: There can
be both smooth and singular lifts. For the definition of a lift, see Definition 2.2.12.
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Chapter 7 Preliminaries

Definition 7.1.2. For a hypersurface V (f)⊂K3 with f =∑
(i, j,k)∈N3 aijkx

iyjzk

we call the set {(i,j,k) ∈N3|aijk 6= 0} the support of the hypersurface or the support
of the polynomial f .

The Newton polytope Ω of V (f) is the convex hull of the support of f , as can
be seen by comparing the above with Definition 2.2.13. By abuse of notation we
will sometimes use the expression Ω is the support of f .

Definition 7.1.3. Let Ω be a lattice polytope with Ω∩Z3 = {ω0, . . . ,ωN+1}.
Consider the set of singular surfaces with support Ω∩Z3 that have a singularity in
the torus (K∗)3, where K∗ := K\{0}:

Singaff(Ω) ={(aω0 ,...,aωN+1) ∈ (K∗)N+2 | V (f) with f =
N+1∑
i=0

aωix
ωi is singular

at a point (xy z) ∈ (K∗)3}

=V (f, ∂f
∂x
,
∂f

∂y
,
∂f

∂z
,1− txyz)∩K[aω0 , . . . ,aωN+1 ].

This is a variety. Multiplying all the coordinates aωi with a non-zero scalar does
not change the support of the surface or the existence of the singularity. Therefore,
we can consider this as a projective variety:

Sing(Ω) ={(aω0 : ... : aωN+1) ∈ PN+1 | all aωi 6= 0, and V (f) with f =
N+1∑
i=0

aωix
ωi

is singular at a point (xy z) ∈ (K∗)3}
=(Singaff(Ω)/∼)\V (aω0 · · ·aωN+1).

We call Sing(Ω) the discriminant of hypersurfaces of support Ω∩Z3.

The tropical discriminant is its tropicalization:

Trop(Sing(Ω))⊂ RN+2/(1,...,1)R.

Since Sing(Ω)⊂ PN+1 \V (X0 · . . . ·XN+1), its tropicalization lives in RN+2.
We know from Section 2.2.2 that multiplication becomes addition under tropical-

ization. Hence, taking the quotient with respect to multiplication with a non-zero
scalar is tropically mirrored by taking the quotient with the space generated by the
all one vector (1, . . . ,1)R. The arising space RN+2/(1,...,1)R is consequently called
the tropical projective torus.

Moreover, for a point in Sing(Ω) the tropicalization of the corresponding surface
has a tropical singularity in R3, since every surface with coefficient vector in Sing(Ω)
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7.1 Tropical singular surfaces

has a singularity in the torus (K∗)3 which tropicalizes to a dense subset of R3

(Section 2.2.2).
Remark 7.1.4. It follows from [GKZ94, 10.1.2] that Trop(Sing(Ω)) is a subfan of
the codimension 1 skeleton of the secondary fan of Ω.
Remark 7.1.5. If a tropical singular surface satisfies point conditions in general
position, all lattice points in the dual subdivision of S are visible (Definition 2.1.9),
and the corresponding secondary cone is of codimension 1. In particular, the dual
subdivision of S contains exactly one of the 5 circuits depicted in Figure 7.1 and
all polytopes in the subdivision that do not contain the circuit are unimodular
simplices.

Circuit (A) Circuit (B) Circuit (C) Circuit (D) Circuit (E)

Figure 7.1: Circuits that encode a single node inside a dual subdivision

Theorem 7.1.6 ([MMS12, Theorem 2 and 4]). Let S be a tropical surface with
Newton polytope Ω satisfying |Ω∩Z3|−2 point conditions in general position. Then
S is a tropical singular surface if and only if it contains one of the circuits from
Figure 7.1 as described below:

1. Circuit (A) or (B) have to satisfy no additional conditions.

2. Circuit (C) lies
a) not on the boundary of Ω, then it does not have to satisfy additional

conditions.
b) on the boundary of Ω, and appears in the subdivision as the base triangle

of a tetrahedron P ( Ω of normalized volume vol(P ) = 9.

3. Circuit (D) does not lie on the boundary of Ω.

4. Circuit (E) is contained in the subdivision
a) together with either 3 lattice points such that any two of these together

with the circuit span R3.
b) together with 4 lattice points of which exactly 2 lie on a plane with the

circuit and the other 2 lie outside of this plane.
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The circuits in their perspective positions encode a tropical singularity. The
following theorem describes the position of the tropical singularity in the surface
depending on the circuit and its position.

Theorem 7.1.7 ([MMS12, Theorem 2]). Let S be a singular tropical surface
satisfying point conditions in general position. Then S contains only finitely many
singular points. Their possible locations depend on the circuit and how it is contained
in the subdivision:

1. Circuit (A) or (B) is contained in the subdivision. The dual cell of the circuit
is a vertex V of the tropical surface S and this vertex is the only singular
point.

2. Circuit (C) is contained in the subdivision
a) as in Theorem 7.1.6 (2a), i.e., as the base triangle of a tetrahedron in

the subdivision. Then there is a singularity on the edge E dual to the
circuit whose distance from the vertex of E depends on six coefficients
of the tropical polynomial.

b) as in Theorem 7.1.6 (2b), i.e., as the base triangle of two tetrahedra in
the subdivision. Let E be the edge dual to the circuit. Either there is a
singularity at the midpoint of E or at points which divide E with the
ration 3 : 1 or the edge E admits finitely many (bounded or unbounded)
extensions to a virtual edge with a singularity at the positions described
for (2a).

3. Circuit (D) is contained in the subdivision as in Theorem 7.1.6 (3), i.e., as
the base parallelogram for two pyramids. Then S contains a unique singular
point which is the midpoint of the edge E dual the circuit.

4. Circuit (E) is contained in the subdivision as in Theorem 7.1.6 (4). The dual
cell to circuit (E) is a 2-dimensional cell of S. If this cell is a triangle or
trapeze, there is a singular point at the weighted barycenter resp. generalized
midpoint (see explanation below).
An arbitrary 2-dimensional cell dual to circuit (E) admits finitely many
extensions to a triangle or a trapeze, with a singularity at the position described
above.
The generalized midpoint of a trapeze is the midpoint of the line segment
parallel to the two parallel edges on the same distance to the two parallel edges
of the trapeze. The weighted barycenter of a triangle is the weighted sum
of the vertices, where each vertex is weighted with the area of the projection
(along circuit (E)) of the polytope dual to the vertex in the dual subdivision.
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7.2 Lattice paths
This section introduces a special point configuration called Mikhalkin position. In
this position, the points are situated such that they are algebraically in general
position and their tropicalization is tropically in general position. This allows us
to draw conclusions from the counting results in tropical geometry towards the
answer of the enumeration problem in algebraic geometry.
Further, we see how points in Mikhalkin position induce lattice paths for the

dual subdivisions of tropical surfaces and how this can determine the subdivision.

Definition 7.2.1 ([MMS18, Section 3.1], points in Mikhalkin position). For a point
configuration p = (p1,...,pn) of n points in K3, we denote by qi = Trop(pi) ∈ R3 for
i= 1,...,n the tropicalized points. We say p is in Mikhalkin position if the pi are in
general position in K3 and the qi are distributed with growing distances along a
line {λ · (1,η,η2)|λ ∈ R} ⊂ R3, where 0< η� 1.

We say a tropical surface passes through points in Mikhalkin position if it passes
through the qi.

By abuse of notation we will also use the expression in Mikhalkin position with
respect to the tropicalized points qi.

To find such a point configuration is possible by [Mik05, Theorem 1, Section 7.1].
Remark 7.2.2. For a surface S ⊂K3 with δ nodes and with Newton polytope Ω,
we have to fix |Ω∩Z3|− δ−1 many points in general position to obtain a finite
counting problem [CC99].

For surfaces of degree d, this is
(
d+3

3

)
−δ−1 since the Newton polytope Ω = d∆3

has
(
d+3

3

)
lattice points.

Definition 7.2.3 ([MMS18, Section 3.2], Lattice path). Let v ∈ R3 be a fixed
vector. Consider the partial order � in R3 where u� u′ ⇔ 〈u−u′,v〉> 0. Order
the points of Ω∩Z3 according to �:

Ω∩Z3 = {w0,...,wN+1}, wi ≺ wi+1 for all i= 0,...,N.

Given a subset A⊂ Ω∩Z3 consisting of m≥ 2 points a1 ≺ a2 ≺ ·· · ≺ am, we call
an ordered subset of the set of segments P (A) := {[ai,ai+1] : i = 1,...,m− 1} a
lattice path supported on A if it covers the whole set A. The set P (A) is called the
complete lattice path supported on A.

We call a lattice path connected if the union of its segments is connected and
starts at ω0 and ends at ωN+1.
We call a lattice path connected from k to l if the union of its segments is

connected and starts at ωk and ends at ωl, 0< k,l < N + 1.
A lattice path is called disconnected if the union of its segments is disconnected.
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For a tropical surface passing through points in Mikhalkin position, we know that
the points are contained in the interior of 2-dimensional cells of the surface [MMS18].
As 2-dimensional cells correspond to edges in the dual subdivision of the Newton
polytope ∆, these point conditions lead to a path of the lattice points of ∆ as
follows.

Let v = (1,η,η2) with 0< η� 1. Given a smooth or nodal tropical surface with
Newton polytope ∆ passing through points in Mikhalkin position, the set of edges
in the dual subdivision of ∆ corresponding to 2-dimensional cells containing one of
the points forms a lattice path as above. In the smooth case, we can use the lattice
path to construct the dual subdivision of the Newton polytope by the smooth
extension algorithm [MMS18, Section 3.3].
Remark 7.2.4 ([MMS18, Remark 3.1. (2)]). The set of singular tropical surfaces
with a fixed Newton polytope passing through points in Mikhalkin position is finite.
All its elements are singular tropical surfaces for which all points are visible in
the dual subdivision (Definition 2.1.9) and the corresponding secondary cone is of
codimension 1. Furthermore, each marked point qi, 1≤ i≤ n, is in the interior of a
different 2-cell of the tropical surface.

Since 2-cells of a tropical surface S correspond to edges in the dual subdivision,
we can construct a lattice path from the marked points qi as follows: Let Ei denote
the edge in the dual subdivision corresponding to the 2-cell of S containing qi.
Then P (S,q) denotes the lattice path given by the segments of lattice points of S
associated to the edges Ei.

Lemma 7.2.5 ([MMS18, Lemma 3.2]). We fix a point configuration p in Mikhalkin
position. Let S be a tropical surface with one node passing through q = Trop(p).
The lattice path P (S,q) satisfies exactly one of the following conditions:

(i) P (S,q) = P (A), where A= Ω∩Z3 \{wk} for some 1≤ k ≤N . In this case
the lattice path is connected and we call this path Γk.

(ii) P (S,q) = P (A′)∪P (A′′), where A is partitioned in A′ = {ω0, . . . ,ωk}, and
A′′ = {ωk+1, . . . ,ωN+1} for some 1≤ k ≤N −1. In this case the lattice path
is disconnected and we call this path Γ[k,k+1].

(iii) P (S,q) = P (A), where A = Ω∩Z3 \{ωk} for k = 0, N + 1. In this case the
lattice path is connected from 1 to N + 1, resp. 0 to N , and we denote this
path Γ0 resp. ΓN+1.

Remark 7.2.6. Let L be a line of direction (1,η,η2) on which the tropicalized points
q = (q1, . . . ,qn) of point conditions in Mikhalkin position are distributed. Let S be
a tropical surface with one node that satisfies the point conditions and has Newton
polytope Ω. It follows that N + 1 = |Ω∩Z3|−1 and n=N . Then L\q has N + 1
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line segments. These pass through 3-dimensional regions of R3 \S, which are dual
to some vertices of the subdivision of Ω. Since |Ω∩Z3|=N + 2, and all N points
are contained in different 2 cells of S, R3 \S can consist of N + 2 or N + 1 regions.

If both L\q and R3\S consist of N+1 components, the lattice path is connected
of type Γk with k ∈ {1, . . . ,N}.
If R3 \S has N + 2 components, there is an additional intersection point y of

L with S that is not part of the point conditions. If y � q1, the arising lattice
path is connected from 1 to N + 1. If y ≺ qn, the arising lattice path is connected
from 0 to N . Otherwise, qk � y � qk+1 with k /∈ {0,N + 1}, and the lattice path is
disconnected of type Γ[k,k+1].
The following lemma explains how a given subdivision can be extended when

the Newton polytope is enlarged. It is called the smooth extension algorithm. This
is applied, for example, when we start with a subdivision containing a circuit in
one of the positions as in Theorem 7.1.7 and we want to extend to a subdivision of
d∆3 dual to a singular degree d surface satisfying point conditions.
Lemma 7.2.7 ([MMS18, Lemma 3.4], smooth extension algorithm). The following
data is given:

• a convex lattice polytope ρ′ ⊂ Rn and a convex piecewise linear function
ν ′ : ρ′→ R, whose linearity domains define a subdivision T ′ of ρ′ into convex
lattice subpolytopes;

• a convex lattice polytope ρ′′ ⊂ Rn such that ρ0 = ρ′ ∩ ρ′′ is a cell of the
subdivision T ′ and a face of ρ′′ of codimension 1.

Pick a point ω ∈ (ρ′′∩Zn) \ ρ′. Then there exists a unique extension of T ′ to a
convex subdivision T of ρ= conv(ρ′∪ρ′′) such that

• the vertices of T are the vertices of T ′ and of ρ′′,

• ρ′′ is a cell of T ,

• the cells of T are linearity domains of a convex piecewise linear function
ν : ρ→ R such that ν|ρ′ = ν ′ and ν(ω)�maxν ′.

The algorithm is called smooth extension algorithm, because if we start the
algorithm with a subdivision of ρ′ containing a circuit, the emerging tropical surface
has no singular points on the 2-cells dual to cells of the subdivision outside of ρ′.
Figure 7.2 illustrates the steps of the smooth extension algorithm on an example.
Remark 7.2.8. The smooth extension algorithm is a generalization to dimension 3 of
the lattice path algorithm by Mikhalkin for counting plane curves through generic
points [Mik05]. This algorithm is described roughly in the proof of Theorem 8.1.7 in
Section 8.1, where we additionally point out some parallels between point conditions
and lattice paths for dimensions 2 and 3.
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Figure 7.2: Example of smooth extension algorithm

The smooth extension algorithm is used to prove the following statement.

Lemma 7.2.9 ([MMS18, Lemma 3.6]). Let Ω = conv(A), where A ⊂ Ω∩Z3,
|A| = N + 1, and A = {a0,...,aN}, where the order a0 ≺ a1 ≺ ... ≺ aN is induced
by v = (1,η,η2); let q be a sequence of N points in vR ⊂ R3, coming from the
tropicalization of points in Mikhalkin position. Then:

• In the space of tropical surfaces defined by tropical polynomials of the form
F : R3→ R, F (X) = minai∈A(ci+ 〈ai,X〉), ci ∈ R, i= 0, ...,N , there exists a
unique surface S = S(A,q), that passes through q.

• Each point of q belongs to the interior of some 2-cell of S, and distinct points
belong to distinct cells.

• The dual subdivision of S consists only of tetrahedra, and it is constructed by
a sequence of smooth extensions, starting with the point a0 and subsequently
adding the points a1,...,aN . The edges dual to the 2-cells of S that intersect
q form the lattice path P (A) subsequently going through the points a0, ...,aN .

If we wish to count surfaces with singularities, we have fewer point conditions
than in the smooth case. This corresponds to leaving out lattice points from the
lattice path, or to leaving out steps, i.e., segments, from the lattice path in the case
of disconnected lattice paths. See Lemma 7.2.5. The smooth extension algorithm
can still be applied in this case, provided we start with the polytope(s) containing
the circuit.

7.3 Tropical floor plans
There are many tropical tools, like floor diagrams, for counting curves. In this
section, we introduce the concept of tropical floor plans for counting tropical
surfaces with multiple nodes as developed in [MMSS22]. We introduce the version
of tropical floor plans as generalized by Madeline Brandt and the author in [BG20].
Further, this section recalls the results of [MMS18] on the computation of the

complex multiplicities for circuits of type (A), (D) and (E), which are needed to de-
termine the complex lifting multiplicity for tropical surfaces with the corresponding
singularities.
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Figure 7.3: The dual subdivision of a floor decomposed smooth tropical cubic
surface

This section is closed with a counting example illustrating how tropical floor plans
(taking into account the more general circuit occurrences and their multiplicities)
can be applied to general surfaces (i.e. surfaces with Newton polytope not d∆3).

When the surface has multiple nodes, it is not yet well understood what the dual
subdivision of the tropical surface can look like. One possibility is that the nodes
are separated.

Definition 7.3.1 ([BG20]). If two singularities arise from circuits contained in the
subdivision as described in Theorem 7.1.6 and the cells dual the circuits intersect
at most in a unimodular face, then we say the two nodes are separated.

When choosing points in Mikhalkin position and a lattice path through the
Newton polytope, we expect to obtain a sliced subdivision corresponding to a floor
decomposed surface [BBLdM18].

Definition 7.3.2 ([BM09, FM10]). We say a tropical hypersurface is floor decom-
posed if, after a change of coordinates, the dual subdivision of the Newton polytope
can be grouped into subdivisions of polytopes of width 1 in x-direction. In other
words, a tropical hypersurface is floor decomposed if the subdivision allows a slicing
of the Newton polytope into polytopes of width 1 in x-direction (after coordinate
change).

Figure 7.3 shows the dual subdivision of a floor decomposed smooth tropical
cubic surface.
Remark 7.3.3. It follows from [MMS12, MMSS22] that a one-nodal tropical surface
satisfying point conditions in Mikhalkin position is floor decomposed. For multi-
nodal surfaces passing through points in Mikhalkin position this is in general still
an unsolved problem.
This decomposition of the surface is used in the description of the surface via

tropical floor plans. Tropical floor plans are a tool for viewing the surface as a
sequence of tropical plane curves. These curves are dual to the 2-dimensional
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subdivision, which arise from the intersection of the dual subdivision of the floor
decomposed tropical surface with {x = i}. Thus, the curves hold information
about the subdivision and the satisfied point conditions (because the points are
contained in 2-cells of the surface which are dual to edges in the dual subdivision).
Moreover, they encode nodes of the surface. In joint work with Madeline Brand,
we generalized the definition of tropical floor plans in [BG20].

The structures appearing in a curve that could produce a node are called node
germs.

Definition 7.3.4 ([MMSS22], Definition 5.1). Let C be a plane tropical curve of
degree d passing through

(
d+2

2

)
−2 points in general position. A node germ of C is

one of the following:

1. a vertex dual to a parallelogram,

2. a midpoint of an edge of weight two that is dual to a pair of adjacent triangles
of area two each sharing an edge of length two in the dual subdivision of C,

3. a horizontal or diagonal end of weight two,

4. a right or left string (see below).

Assume that the triangle at the right (resp. left) lower corner of the Newton
polytope of C is part of the subdivision. In the case that none of the points in
general position are contained in an end adjacent to the vertex dual the corner
triangle, it is possible to prolong the adjacent bounded edge in direction (1,0) (resp.
(−1,−1)). This produces a family of curves, all of which pass through the points.
The union of the two ends is called a right (resp. left) string. This is illustrated in
Figure 7.4.

(a) Right string (b) Left string

Figure 7.4: Right and left strings

Now we can define tropical floor plans. The following definition is a generalization
of the original definition from [MMSS22] taking the results of [BG20] into account.
We fix a point configuration (p1,...,pn) of n=

(
d+3

3

)
−δ−1 points in K3 and denote

qi = Trop(pi) ∈ R3. See Remark 7.2.2. Let Qi = Πy,z(qi) be the projection of qi
along the x-axis.
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Definition 7.3.5 ([BG20], generalized from [MMSS22]). A δ-nodal floor plan F
of degree d is a tuple (Cd, . . . ,C0) of plane tropical curves Ci of degree i together
with a choice of indices d ≥ iδ′ > .. . > i1 ≥ 1 each assigned a natural number kj
such that ∑δ′

j=1kj = δ, where 0< δ′ ≤ δ, satisfying the following conditions.

1. The curve Ci passes through the following points, where i0 = 0, iδ+1 = d+ 1.
if iν > i > iν−1 :

Q∑d
k=i+1 (k+2

2 )−δ+(
∑
j:i>ij

kj)+1, . . . ,Q
∑d
k=i (k+2

2 )−δ+(
∑
j:i>ij

kj)−1,

if i= iν :

Q∑d
k=i+1 (k+2

2 )−δ+(
∑
j:i≥ij

kj)+1, . . . ,Q
∑d
k=i (k+2

2 )−δ+(
∑
j:i>ij

kj)−1.

2. The plane curve Cij has kj node germs for every j = 1, . . . ,δ′.

3. If Cij contains a left string as a node germ, then its horizontal end aligns
with one of the following

• a horizontal bounded edge of Cij+1,
• a 3-valent vertex of Ci+1 not adjacent to a horizontal edge. Here edges

are counted with multiplicity.

4. If Cij contains a right string as a node germ, then its diagonal end aligns
with one of the following

• a diagonal bounded edge of Cij−1,
• a 3-valent vertex of Cij−1 not adjacent to a diagonal edge. Again, edges

are counted with multiplicity.

5. If id = δ′, then the node germs of Cd can only be diagonal ends of weight two
or a right string.

6. If i1 = 1, then the node germ of C0 is a left string.

By [MMSS22, Construction 5.8], a unique tropical surface passing through the
points q can be constructed from the data contained in a tropical floor plan.
Figure 7.5 illustrates some of the cases how a node germ in a tropical curve in

the floor plan gives rise to a circuit in the dual subdivision. Example 8.1.8 shows
pictures of tropical floor plans for surfaces not dual to a subdivision of d∆3.
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(a) Left string aligns with
vertex not adjacent to hor-
izontal edge: circuit (A)

(b) Left string aligns with
horizontal bounded edge:
circuit (D)

(c) Right string aligns with
diagonal bounded edge:
circuit (D)

(d) Vertex dual to a paral-
lelogram: circuit (D)

2

(e) Diagonal end of weight
two: circuit (E)

2

(f) Horizontal end of weight
two: circuit (E)

Figure 7.5: Examples how node germs of curves in the tropical floor plan give rise
to a circuit (A), (D) or (E) in position as in Theorem 7.1.6 in the dual subdivision.

Remark 7.3.6. This definition of tropical floor plans covers all separated nodes. It
follows that a tropical multi-nodal surface passing through points in Mikahlkin
position with nodes all separated is floor decomposed.
Further, note that any tropical surface constructed from such a tropical floor

plan is floor decomposed. So tropical floor plans only count floor decomposed
surfaces.

We now describe how to compute the multiplicity of a floor plan. The multiplicity
of a tropical floor plan is the lifting multiplicity (Definition 2.2.12) of the unique
tropical surface belonging to this floor plan. In other words, it is the number of
lifts of the tropical surface that satisfy the fixed point conditions p = Trop(q).

Definition 7.3.7 ([BG20], generalised from [MMSS22, Definition 5.4]). Let
F = (Cd, . . . ,C0) be a δ-nodal floor plan of degree d. Let C∗ij be a node germ of Cij ,
we define the following local complex multiplicity multC(C∗ij ):

1. If C∗ij is dual to a parallelogram, then multC(C∗ij ) = 2.

2. If C∗ij is the midpoint of an edge of weight two, then multC(C∗ij ) = 8.

3. If C∗ij is a horizontal end of weight two, then multC(C∗ij ) = 2(ij + 1).

4. If C∗ij is a diagonal end of weight two, then multC(C∗ij ) = 2(ij−1).

5. If C∗ij is a right string whose diagonal end aligns with a diagonal bounded
edge, then multC(C∗ij ) = 2.
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6. If C∗ij is a right string whose diagonal end aligns with a vertex not adjacent
to a diagonal edge, then multC(C∗ij ) = 1.

7. If C∗ij is a left string whose horizontal end aligns with a horizontal bounded
edge, then multC(C∗ij ) = 2.

8. If C∗ij is a left string whose horizontal end aligns with a vertex not adjacent
to a horizontal edge, then multC(C∗ij ) = 1.

The complex multiplicity of a δ-nodal floor plan F is defined as

multC(F ) =
δ′∏
j=1

∏
node germs of Cij

multC(C∗ij ).

The statements under points 7 and 8 in the definition arise from the generalization
of the tropical floor plans in [BG20] and are build on the results in [MMSS22].

We are now able to translate the problem of counting tropical surfaces through
points to counting floor plans. This leverages the structure imposed by choosing
the points to be in Mikhalkin position, since we now count curves (which are well-
understood) and the ways they can interact to produce nodes (which is outlined by
Definition 7.3.5).

In a joint project with Madeline Brandt, which proceeded the project on which
the following chapters of Part II are based, we used this to enumerate binodal cubic
surfaces with separated singularities.

Theorem 7.3.8 ([BG20, Theorem 1.3]). There are 39 tropical binodal cubic surfaces
through 17 points in Mikhalkin position containing separated singularities. They lift
to 214 of the total 280 complex binodal cubic surfaces through 17 points.

The multiplicities in Definition 7.3.7 hold of tropical floor decomposed surfaces
of degree d. The concept of tropical floor plans can also be used for tropical floor
decomposed surfaces that are not of degree d. In these cases, we can obtain different
multiplicities.
Remark 7.3.9. All pentatopes appearing in the dual subdivisions of degree d surfaces
passing through points in Mikhalkin position have multiplicity 1, see [MMS18,
Lemma 5.5]. This is why the node germs that give rise to a pentatope in the
subdivision (right and left string aligning with a vertex) are counted with multiplicity
one for tropical floor plans of degree d. For more general surfaces, it is possible
that pentatopes with higher multiplicity occur. In these cases, the multiplicity has
to be determined from the point conditions and the discriminant. This is described
in Proposition 7.3.10.
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Proposition 7.3.10 ([MMS18, Lemma 3.14 and 4.4]). If the circuit in the dual
subdivision of S is of type (A), there exists an affine automorphism Z3→ Z3 taking
the vertices of the pentatope to the position

conv(

0
0
0

 ,
1

0
0

 ,
0

1
0

 ,
0

0
1

 ,
1
p
q

), with gcd(p,q) = 1.

The discriminantal equation of a polynomial with this support (Definition 7.1.2)
can then be written as

(−1)1+p+q ap+q000 a
−1
100a

−p
010a

−q
001a1pq = 1.

If circuit (A) is contained in a subdivision with lattice path

• Γk, then the multiplicity is the absolute value of the exponent of aωk in the
discriminantal equation.

• Γ[k,k+1], then the circuit contains

– either ωk and ωk+1 as the last two lattice points (order induced by the
path) and the multiplicity is the absolute value of the exponent of aωk+1
in the discriminantal equation,

– or ωk+1 and ωk+2 as the last two lattice points (order induced by the
path) and the multiplicity is the absolute value of the exponent of aωk+1
plus the absolute value of the exponent of aωk+2 from the discriminantal
equation.

In some examples, we will also observe circuits of type (D) and (E) in different
positions than they can occur in subdivisions of surfaces of degree d through points
in Mikhalkin position. Therefore, the following two propositions will revisit their
lattice path multiplicities in the generic case [MMS18]. As we will not come across
surfaces with subdivisions containing circuits of type (B) and (C) in this thesis, we
will not restate how to compute their multiplicities in general. This can be found
in [MMS18, Section 4.4].

Proposition 7.3.11 ([MMS18, Lemma 4.8]). Let S be a tropical singular surface
with Newton polytope Ω. Let S satisfy point conditions q = Trop(p) in Mikhalkin
position and let the dual subdivision to S contain circuit (D).
Then there are two algebraic surfaces which are lifts of S satisfying the point

conditions p and with a singularity tropicalizing to the midpoint of the edge dual to
the circuit, as described in Theorem 7.1.7 (3).

156



7.3 Tropical floor plans

Proposition 7.3.12 ([MMS18, Lemma 4.9]). Let S be a tropical singular surface
with Newton polytope Ω. Let S satisfy point conditions q = Trop(p) in Mikhalkin
position and let the dual subdivision to S contain circuit (E) with special neighboring
points

• ωa,ωb, ωc from Theorem 7.1.6 (4a). Let ρ ⊂ R2 be the triangle formed by
the projections of ωa,ωb, ωc the plane orthogonal to the circuit. Then, there
are 2volZ(ρ) many algebraic surfaces which are lifts of S, satisfy the point
conditions p, and have a singular point tropicalizing to the position described
in Theorem 7.1.7 (4).

• ωa,ωb, ωc and ωd from Theorem 7.1.6 (4b). Then there are 8 algebraic surfaces
which are lifts of S satisfy the point conditions p, and have a singular point
tropicalizing to the position described in Theorem 7.1.7 (4).

Using the above results for the multiplicity, tropical floor plans can easily be
generalized to count surfaces that do not have Newton polytope d∆3. This is
demonstrated in the following example.

Example 7.3.13. We are interested in the number of binodal surfaces passing through
points in Mikhalkin position with Newton polytope Ω as in Figure 7.6.

Ω = conv

0 0 0 0 1 1 1 1
0 1 1 2 0 1 1 2
1 0 1 1 0 0 1 0


0

1

2 3

4 5

6

7

Figure 7.6: Given 5 points in general position and the Newton polytope shown
above, how many binodal surfaces with this support pass through the points?

The formula n= |Ω∩Z3|− δ−1 from Remark 7.2.2 tells us that we have to fix
8− 3 = 5 points pi in Mikhalkin position. Let qi = Trop(pi) denote the tropical
point conditions. After tropicalizing the counting problem we can use tropical floor
plans for the counting, taking into account the multiplicities.
Our tropical floor plan will consist of two curves (C1,C0), since in x-direction

the polytope Ω has width 1. Given some subdivision of Ω the curve C1 is dual to
the subdivision of Ω∩{x= 0}, while C0 is dual to the subdivision of Ω∩{x= 1}.
We make a case distinction by how many points Qi = Πy,z(qi) are contained in
each curve. We first consider only those cases for which the corresponding lattice
paths are connected from 0 to 4. In this case one segment of the lattice path has to
connect the two facets of Ω at {x= 0} and {x= 1}, we know that in the tropical
floor plan the curves C1 and C0 pass through 4 points Qi.

157



Chapter 7 Preliminaries

The curve C1 can pass at most through 3 points of our point configuration. In
this case, the curve is completely fixed and smooth, i.e., it does not contain node
germs. The curve C0 has to pass through exactly 1 point of the point configuration
and it has to contain two node germs. From the form of the Newton polytope to
curve C0 this can only be a right and a left string, though these look different from
Definition 7.3.4, since the curve is not of degree d. To allow alignment, the rightmost
diagonal end of the curve contains the last point of the point configuration. Hence,
the right string consists of the vertical end and the horizontal bounded edge on
which the left string (consisting of the ray of direction (−1,1) and the leftmost
vertical end) is connected. For the right string there is only one alignment option
that still allows an alignment for the left string. For the left string there are two.
The lattice path and the floor plans are depicted in Figure 7.7. For both alignments
we observe two pentatopes, i.e., two circuits of type (A), in the subdivision.

Figure 7.7: This lattice path allows for two alignments. They correspond to different
subdivisions of the polytope that both contain two pentatopes.

We count them with their multiplicities as described in Proposition 7.3.10: we
investigate the discriminant of the two occurring pentatopes for each of the two
floor plans in Figure 7.7. This computation yields that in both cases one pentatope
has to be counted with multiplicity 2 and the other with multiplicity 1, so in total
we count 2 ·1 + 2 ·1 = 4 surfaces coming from these floor plans.

If the curve C1 passes only through 2 points, it has to contain one additional
node germ. Let us first consider the case that this is an upwards pointing vertical
end of weight 2, i.e., a circuit of type (E). This node germ is not mentioned in
Definition 7.3.4 since for surfaces of degree d with Newton polytope d∆3 a vertical
end of weight 2 would not give rise to a node. However, in this more general case
where there exists an end of direction (−1,1) of curve C0, it does give rise to a
singularity.
In this case, the curve C0 also has to pass through 2 points and contains one

node germ. Right or left strings are not possible since curve C1 does not allow for
any alignment that would give rise to a circuit in the subdivision. Hence, curve C0
also has a downwards pointing vertical end of weight 2, i.e., another circuit of type
(E). Since C0 has an end of direction (−1,− 1) this weight 2 end gives rise to a
node. The floor plan and the corresponding lattice path are depicted in Figure 7.8.
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7.3 Tropical floor plans

The floor plan in Figure 7.8 has multiplicity 2 ·2 = 4 as follows from Proposi-
tion 7.3.12.

Figure 7.8: There is one lattice path for which the two nodes are coming from
intersections of rays with weight two ends.

Another option for curve C1 to pass through only 2 points of the point configu-
ration, is that we have a right string, i.e., the vertex corresponding to the triangle
((0,1,0),(0,1,1),(0,2,1)) is not fixed by the point conditions. In order to allow an
alignment with an edge of C0 that will give rise to a parallelogram (circuit (C))
in the subdivision, the node germ contained in C0 has to be a left string, i.e., the
the vertex corresponding to the triangle ((1,0,0),(1,1,0),(1,1,1)) is not fixed by the
point conditions. This leads to two circuits of type (C) in the subdivision, which

Figure 7.9: This lattice path allows an alignment that corresponds to two bipyramids
in the dual subdivision.

each give each rise to a bipyramid in the subdivision By Proposition 7.3.11 we
count them with multiplicity 2. So, we obtain 2 ·2 = 4 surfaces for this floor plan.
The last possibility is for curve C1 to pass through exactly 1 point of the point

configuration. This implies that curve C0 passes through 3 points and is thus smooth
and completely determined by the point conditions. The only possible alignments
for the two vertices of C1 are with the vertical edges of C0, see Figure 7.10. This
gives rise to two parallelograms, i.e., two circuits of type (C), in the subdivision.
The multiplicity is computed the same way as before. So, we count 2 ·2 = 4 surfaces
for this floor plan.

Note that the floor plans in Figure 7.9 and 7.10 produce the same alignment of
the curves, but they differ in the distribution of the points from the point conditions
on the the two curves.
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Figure 7.10: This lattice path allows an alignment corresponding to two bipyramids
in the dual subdivision. The arising dual subdivision of Ω is the same as induced
by the floor plan in Figure 7.9.

In total, we obtain 16 surfaces from the count of the tropical floor plans. This
coincides with the degree of the binodal variety of surfaces with Newton polytope
Ω, which can be computed using OSCAR [osc, Gei22] or Singular [DGPS21].
For the definition of the binodal variety, see Definition 9.1.1. Algorithms 5

and 7 present two ways how to compute the binodal variety. The code for the
computation in OSCAR is available for download at [Gei22] on GitHub, and can be
inspected in Appendix B.2.
We can conclude that there are no disconnected paths or connected paths that

are not connected from start to end in this case, because the paths connected from
0 to 4 already provided a full count.
This example shows that for some surfaces the tropicalization only contains

separated nodes, so that a complete count can be achieved using only the tools of
separated nodes.
Remark 7.3.14. Two singularities can tropicalize to points on the tropical surface
that are closer together such that the singularities are no longer separated. In this
case the tropical floor plans will not recover the full count. This occurs, for example,
for binodal tropical cubic surfaces satisfying point conditions in Mikhalkin position,
see [BG20, Theorem 1.3]. Unseparated nodes are encoded in the dual subdivision via
larger polytope complexes, which have not been classified. See [BG20, Section 5.1].
In Chapter 9, we see how polytopes with 6 lattice points can encode two nodes
that are tropically at the same point and coincide with a vertex of the surface.
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Chapter 8

Counting with tropical floor plans
This chapter presents two different aspects of tropical floor plans: In Section 8.1 we
show how this technique can be extended to count nodal plane curves and prove in
Theorem 8.1.7 that the count via this method recovers the Gromov-Witten number.

Section 8.2 investigates the asymptotic count of multi-nodal surfaces via tropical
floor plans In Theorem 8.2.6, we prove that tropical floor plans of surfaces as
defined in Definition 7.3.5, which only count separated nodes, are not sufficient to
recover the asymptotic count of binodal and trinodal surfaces up to two degrees.
This motivates the investigation of unseparated nodes and their contribution for
the asymptotic count, which is the main topic of Chapters 9 and 10.

This chapter is based on the collaborative preprint [BG21] with Madeline Brandt.

8.1 Floor plans of plane curves
Tropical floor plans for one-nodal plane curves are introduced in [MMSS22, Defini-
tion 4.1]. In this section, we generalize this definition to plane curves with δ nodes
and prove that with this definition we can recover the Gromov-Witten numbers of
plane curves. This section is built on joint work with Madeline Brandt [BG21].

The multicomponent Gromov-Witten numbers of plane curves give the number
Nd,g of plane curves of degree d and genus g passing through 3d−1 +g points in
general position. These numbers belong to the larger family of Gromov-Witten
invariants. For this interesting topic, we refer to [Gat03, CH98, Vak08, KM94,
Kon95] which is only a small selection of the extensive literature in this area.

We only consider multicomponent Gromov-Witten invariants of plane curves in
this section, so we drop the adjective "multicomponent" in the following for shorter
notation.
Curves of degree d and genus g passing through 3d− 1 + g points in general

position are nodal. This follows from the degree-genus formula.

Theorem 8.1.1 ([Har77], degree-genus formula). A plane curve of degree d and
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genus g has δ nodes where

δ = (d−1)(d−2)
2 −g.

The following definition is inspired by [FM10, Definition 3.4] and used similarly
in [CJMR21, Section 4.2] and [MMSS22].

Definition 8.1.2. A collection of finitely many points (q0, . . . ,qN ) in R2, qi = (xi,yy),
is said to be in horizontally stretched position, if they satisfy

x0� x1� . . .� xN ,

y0 < y1 < .. . < yN ,

max
i6=j
|yi−yj | ∈ (0,ε), for ε small.

These points are tropically in general position, so it follows from [Mik05, Theorem
1], that there exist lifts in K2 of the points in this configuration that are algebraically
in general position.
Tropical plane curves passing through general points in horizontally stretched

position are floor decomposed, i.e., all vertical lines appear in the dual subdivision
of the Newton polytope [BM09, FM10]. Sometimes such a subdivision is also called
column-wise.

When we considered tropical floor plans for surfaces in Definition 7.3.5, we
noted in Remark 7.3.6 that these only count surfaces that are floor decomposed
(Definition 7.3.2). The definition of floor plans for plane curves also uses the
property floor decomposed.
When fixing points in Mikhalkin position as in Definition 7.2.1 adapted for

K2, we do not obtain floor decomposed tropical curves [GM07, Remark 3.9]. To
count curves via tropical floor plans, we have to fix points in horizontally stretched
position because they ensure that the curve is floor decomposed.
For tropical surfaces we have seen in Definition 7.3.5 that a floor plan consists

of a tuple of curves. For a tropical curve the floor plan consists of tuples of
points, however, in contrast to the surface case, a point can appear with a higher
multiplicity. Thus, we need the concept of tropical divisors.

Definition 8.1.3 ([GK08], Definition 1.3). Let X be a tropical plane curve. The
group of divisors of X is the free abelian group generated by the points of X, i.e.,
a divisor D on X is a linear combination

D =
k∑
i=1

zixi, where k ∈ N and the xi ∈X,zi ∈ Z.
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8.1 Floor plans of plane curves

The degree of D is deg(D) =∑k
i=1 zi. We call divisors on X tropical divisors.

We want to use the tropical floor plans for curves to recover the Gromov-Witten
numbers, which count degree d curves of genus g passing through 3d−1 +g points
in general position. By the degree-genus formula, the correct number of point
conditions to achieve the Gromov-Witten numbers is

n := 3d−1 +g = 3d+ (d−1)(d−2)
2 − δ−1 =

(
d+ 2

2

)
− δ−1.

Therefore, we fix points q1,...,qn in R2 in horizontally stretched position. We
denote the projection of qi to its second coordinate by Qi := πy(qi).
Now we are ready to give the generalized definition of tropical floor plans for

δ-nodal curves of degree d.

Definition 8.1.4. A tropical floor plan for a tropical plane curve of degree d with δ
nodes consists of a tuple of tropical divisors (Dd,Dd−1, . . . ,D1) on R where each Di

is of degree i, together with a choice of indices d≥ iδ′ > ... > i1 ≥ 1 each assigned
a natural number kj ≤ ij such that ∑δ′

j=1kj = δ, where 0< δ′ ≤ δ. The divisor Di

passes through the following points, where we set i0 = 0, iδ+1 = d+ 1:
ij > i > ij−1 : Q(d+2

2 )−(i+2
2 )−δ+∑j−1

l=1 kl+1, . . . ,Q(d+2
2 )−(i+1

2 )−δ+∑j−1
l=1 kl−1,

i= ij : Q(d+2
2 )−(i+2

2 )−δ+∑j
l=1 kl+1, . . . ,Q(d+2

2 )−(i+1
2 )−δ+∑j−1

l=1 kl−1.

Furthermore, a divisor Dij may have points of weight w, where 2≤ w ≤ δ+ 1 if
ij /∈ {1,d}. The sum of the weights of the points is at most deg(Dij ), and the total
sum of points with higher weight is at most xδ. If Dij contains r points of weight
≥ 2, then kj− r points of weight 1 in Dij have to align with a point of Dij−1 or
with a point of Dij+1.

Remark 8.1.5. If i is not in the index tuple, then Di contains i points and has to
meet all of them. If i= ij , then Di has to meet only i−kj points. If the last point
of Di is Qs, then the first point of Di−1 is Qs+2, so that there is always exactly
one point, Qs+1, between Di and Di−1.

Similar as for surfaces, a tropical floor plan of plane curves gives rise to a unique
tropical plane curve of degree d. This can be shown with the methods from
[BBLdM18], also see [MMSS22, Theorem 4.5]. We now only have to define the
lifting multiplicity with which the tropical floor plan has to be counted when we
want to recover the Gromov-Witten numbers.

Definition 8.1.6. We define the complex multiplicity multC(F ) of a floor plan F
with r points of weights w1,...,wr ≥ 2 to be multC(F ) =∏r

j=1w
2
j .
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Chapter 8 Counting with tropical floor plans

This generalizes the definition of tropical floor plans and of their multiplicities
for one-nodal curves as given in [MMSS22] to multi-nodal curves.

Theorem 8.1.7. The number of tropical floor plans of degree d with δ nodes
counted with complex multiplicity equals the Gromov-Witten number Nd,g of curves
with genus g = (d−1)(d−2)

2 −δ and degree d passing through 3d−1+g general points:

Nfloor(d,g) :=
∑
F

multC(F ) =Nd,g,

where the sum runs over all tropical floor plans F of tropical curves of degree d
with δ nodes.

This proof needs the theory of counting plane curves via lattice paths from
[Mik05]. A few necessary details are recalled in the proof. For further details we
refer to [Mik05, Mar06, GM07].

Proof. The idea behind this proof is to use Mikhalkin’s Correspondence Theorem
[Mik05, Theorem 1 and 2] which states that the number of λ-increasing lattice
paths Npath(d,g) counted with multiplicity equals the Gromov-Witten number Nd,g,

Npath(d,g) =Nd,g.

To use this result, we will show that Npath(d,g) is the same as the number Nfloor(d,g)
of tropical floor plans counted with multiplicity.
We first revisit some definitions and facts from curve counting via λ-increasing

lattice paths from [Mik05]. In [Mik05, Definition 7.1], a λ-increasing lattice path
is defined. This is a set of segments of lattice points in 2-dimensional polytopes
induced by a partial order of the lattice points given by λ= (1,− ε) with 0< ε� 1
irrational. In Definition 7.2.3 an analogous situation in R3 was described.

We choose λ := (−1,−ε) with 0< ε� 1 irrational to obtain an easier construction
of a tropical floor plan from a lattice path induced subdivision.
For counting tropical curves with λ-increasing lattice paths, the choice of λ=

(−1,− ε) corresponds to fixing point conditions with growing distances on a line
with direction vector (1,ε). These are points in two-dimensional Mikhalkin position,
compare Definition 7.2.1 for the three-dimensional case. These point conditions in
Mikhalkin position are different from the horizontally stretched points we need to
fix for counting with tropical floor plans.

Similar to the smooth extension algorithm for singular surfaces, each point from
the point conditions is contained in the relative interior of a different edge of the
tropical plane curve. Also, the edges of the tropical curves that contain the points
from the point conditions in their relative interior are dual to edges in the dual
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8.1 Floor plans of plane curves

subdivision that form the segments of the λ-increasing lattice path. An example of
a λ-increasing lattice path is depicted in Figure 8.1a.

Every λ-increasing lattice path is connected from start to end, i.e., it is connected
as the union of its line segments, and it starts at (0,0) and ends at (d,0). Moreover,
the line segment of the x= 0 boundary of the Newton polytope d∆2 in the lattice
path can only have lattice length 1.

There exists an algorithm in [Mik05, Definition 7.1] on how to obtain subdivisions
of d∆2 from a λ-increasing lattice path which give tropical nodal curves passing
through the points on the line (1,ε)R by duality. This algorithm mainly consists of
going along the lattice path and at each turn (above and below the path) to decide
whether to cut the corner to make a triangle or to fold it out to a parallelogram.
The subdivision depicted in Figure 8.1a arises in this way.

The multiplicity of a λ-increasing lattice path is then defined as the sum over
the multiplicity of all subdivisions arising from the path, where a subdivision is
given the multiplicity ∏

T triangle in subdiv.
(2 ·area(T )). (8.1)

The subdivisions arising from λ-increasing lattice paths are not necessarily floor
decomposed. However, when we consider tropical floor plans we know the arising
tropical curves will have floor decomposed dual subdivisions.
By [GM07, Definition 3.4], we can consider N (0),(d)

path (d,g) instead of Npath(d,g).
The number N (0),(d)

path (d,g) counts also via λ-increasing lattice paths, but it counts
column-wise subdivisions induced by the λ-increasing lattice path. These floor
decomposed subdivisions are counted with the same multiplicity as in Equation (8.1).
It is a result of [GM07] that the multiplicity of a λ-increasing lattice path via the
algorithm by [Mik05] is the same as the multiplicity of a λ-increasing lattice path
via its floor decomposed subdivisions from [GM07]. The number N (0),(d)

path (d,g) does
not count every floor decomposed subdivision that contains a λ-increasing lattice
path Γ. The conditions are [GM07, Remark 3.9]:

• the subdivision contains all vertical lines above and below Γ,

• in the area above Γ each vertical line segment over the path Γ forms a
parallelogram with a line segment to its right (i.e., a vertical line segment
with smaller x-coordinate),

• in the area above Γ each triangle in the subdivision “is pointing to the left”,
i.e., the vertex opposite to its vertical edge lies to the left of this edge,

• in the area below Γ each vertical line segment over the path Γ forms a
parallelogram with a line segment to its left, i.e., a vertical line segment with
larger x-coordinate, and
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• in the area below Γ each triangle in the subdivision “is pointing to the right”,
i.e., the vertex opposite to its vertical edge lies to the right of this edge.

The aim is now to prove N (0),(d)
path (d,g) =Nfloor(d,g). For this purpose we will give

a bijection between the floor decomposed subdivisions coming from λ-increasing
lattice paths and tropical floor plans and and show that they are counted with the
same multiplicities.

We fix a λ-increasing lattice path and a floor decomposed subdivision that arises
from this path according to the algorithm.

From the floor decomposed subdivision and its lattice path, we now construct a
tropical floor plan as follows: For every vertical line segment of length w in the
lattice path contained in the line x= i we allocate one of the points Qk(= πy(qk))
to the divisor Dd−i with weight w. We start with x = 0 and Q0. When passing
from x= i to x= i+ 1, we skip one of the Qk. (Recall that in a tropical floor plan
there is always one projected point from the point conditions between two divisors.)

Now we have a d-tuple of tropical divisors. Since for x= 0 a λ-increasing lattice
path has only line segments of length 1, the divisor Dd satisfies the condition of
the tropical floor plan.

For divisors Di that still have deg(Di)< i, we obtain the remaining points from
the parallelograms in the subdivision: Assume we have Di with deg(Di)< i, then
there are vertical line segments in the subdivision at x= d− i that are not part of
the lattice path. They are part of one or two parallelograms.

For every line segment that lies below the lattice path, we consider the parallelo-
grams they form with line segments in x= d− (i+ 1) which belong to the lattice
path. Their positions tell us with which point of divisor Di+1 the corresponding
point of Di has to align with. For the line segments over the lattice path, we
proceed analogously with the line segments in x = d− (i− 1) and the points of
divisor Di−1.
This process is illustrated for an exemplary subdivision of 4∆2 induced by a

λ-increasing lattice path counting 3-nodal curves in Figure 8.1.
Next, we show that the multiplicity of the tropical floor plan constructed from a

subdivision arising from a λ-increasing lattice path coincides with the multiplicity
of the subdivision.
Recall that the floor decomposed subdivisions arising from λ-increasing lattice

paths have multiplicity ∏
T triangle in subdiv.

(2 ·area(T )).

Thus, only triangles of area 2w ≥ 1 contribute to the multiplicity of the subdivision.
These arise from vertical edges of length w≥ 2 inside the subdivision, and each such
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(a) A floor decomposed
subdivision from a fixed λ-
increasing lattice path

(b) The vertical edges cor-
responding to the divisors
marked in color

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

2

(c) The tropical floor plan

Figure 8.1: Example of how to obtain a tropical floor plan from a floor decomposed
subdivision coming from a fixed λ-increasing lattice path.

edge is adjacent to two triangles of area w
2 . So the multiplicity of the subdivision

can also be given as ∏
vertical edges of length wj≥2

w2
j .

Vertical edges of length w ≥ 2 correspond to points of weight w in the tropical
divisors of the tropical floor plan. Therefore, the above coincides with the complex
multiplicity assigned to the tropical floor plans:

mult(F ) =
d∏
i=1

∏
points in Di
of weightwj

w2
j .

It remains to demonstrate that every tropical floor plan arises in the way described
above. A tropical floor plan (Dd, . . . ,D1) uniquely defines a tropical curve which is
dual to a floor decomposed subdivision consisting of triangles and parallelograms.
By reverse engineering the process described above, we obtain from the divisors Di

special vertical line segments in the subdivision that can be uniquely extended to a
λ-increasing lattice path of the correct length.

Due to the choice of point conditions in horizontally stretched position, the line
segment of the lattice path that connects the last segment of the x= i line with the
first segment of the x= i+1 line is of direction (1,−a) with a≥ 1. This implies
that every vertical line segment over the path forms a parallelogram with a line
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segment to its right. All the remaining triangles over the path point to the left.
Moreover, under the lattice path we see the symmetric picture (parallelograms
formed to the left, triangles pointing to the right). Thus, the subdivision satisfies
the conditions of [GM07, Remark 3.9]. Hence, it is one of the floor decomposed
subdivisions to the lattice path and therefore in the count.
With [GM07, Section 3] and Mikhalkin’s Correspondence Theorem [Mik05,

Theorem 1 and 2], it follows that

Nfloor(d,g) =N
(0),(d)
path (d,g) =Npath(d,g) =Nd,g,

where g = (d−1)(d−2)
2 − δ is the genus.

Example 8.1.8. We now use tropical floor plans to count the 225 binodal plane curves
of degree 4 passing through 12 general points [FM10, Figure 1]. We distinguish
the cases by the index tuples (i1,i2) encoding the position of the nodes in the four
floors and their associated numbers (k1,k2) that count the number of nodes in the
nodal floors. Note that we do not always have i2 and k2 since if k1 = 2 there is
only one nodal floor in the floor plan.

We compute the case (i1,i2) = (4,3) with (k1,k2) = (1,1) in detail as an example.
The other index choices and their contributions are listed in Table 8.1. For each case,
one considers the different types of the nodes that are possible, and if applicable,
their possible alignment options. Then, we compute the multiplicities for each case.
Let (i1,i2) = (4,3) and (k1,k2) = (1,1). In this case the divisor D4 passes only

through the first 3 points from the point conditions.
Since deg(D4) = 4, there is one "free" point in the divisor, i.e., a point that is not

fixed by the point conditions. It has to align with a point in D3. The divisor D3
passes only through 2 points from the point conditions and thus either contains a
point of weight 2 or a third "free" point that aligns either with a point of D4 or
with a point of D2.

We make a case distinction by the special point in D3.

• If D3 has a point of weight 2, it contains only one point of weight 1 with
which the free point of D4 can align. There are two choices for the point of
weight 2 in D3, thus this situation contributes 2 ·22 = 8 curves to our count.

• If D3 contains a third "free" point that aligns with a point of
– D2. There are 2 options for this alignment. Additionally there are 3

possible alignment options for the "free" point of D4 with a point of D3.
Counted with multiplicity this adds up to 3 ·2 = 6 curves.

– D4. In this case there are 3 alignment options for the point in D3 to
align with a point of D4 since we cannot choose the "free" point for this
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alignment, as this would contradict the point conditions. There remain
2 alignment possibilities for the point of D4 to align with a point of D3.
This gives 2 ·3 = 6 curves.

In total the case (i1,i2) = (4,3), (k1,k2) = (1,1) contributes 8 + 6 + 6 = 20 curves to
our count. All floor plans with indices (i1,i2) = (4,3), (k1,k2) = (1,1) can be seen in
Figure 8.2. The total count is given in Table 8.1.

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

2

2

Figure 8.2: Floor plans for plane curves of degree 4 with 2 nodes and index tuple
(i1,i2) = (4,3).

(i1,i2) (4,−) (3,−) (2,−) (4,3) (4,2) (4,1) (3,2) (3,1) (2,1) sum(k1,k2) (2,−) (2,−) (2,−) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
count 3 48 6 20 24 6 84 28 6 225

Table 8.1: A full count of plane curves of degree 2 with 2 nodes passing through
general points by tropical floor plans.

8.2 Asymptotic estimation
In this section, we make the step from counting curves, as in the previous section,
towards counting surfaces as prepared in Chapter 7. We investigate the use of
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tropical floor plans counting surfaces with separated nodes for an asymptotic count
of δ-nodal surfaces of degree d. This is joint work with Madeline Brandt [BG21].
The main result is Theorem 8.2.6, which proves that even for counting binodal

and trinodal surfaces asymptotically we have to understand how to count nodes
that are not separated. They will be called unseparated.

The complex surfaces of degree d in P3 with δ < 4(d−4) distinct nodes as their
only singularities form a family of dimension

(
d+3

3

)
−1−δ [ST99]. As stated by the

authors of [MMSS22], it can be shown by procedures in enumerative geometry that
the degree of this family for δ ≥ 1 fixed and d� δ is described by the following
polynomial

NP3
δ,C(d) = 4δ

δ! (d−1)3δ +O(d3δ−3). (8.2)

Only the three terms of highest degree are known. Since this equation holds for
d� δ, we also call this an asymptotic count of δ-nodal surfaces of degree d. Using
the original definition of tropical floor plans, [MMSS22, Definition 5.2], for which
node germs have to be at least one floor apart, Markwig et al. were able to recover
the coefficient of the highest degree term of the polynomial in Equation (8.2).

Theorem 8.2.1 ([MMSS22, Theorem 6.1]). The number NP3,floor
δ,C (d) of δ-nodal

floor plans for surfaces of degree d satisfies

NP3,floor
δ,C (d) = (4d3)δ

δ! +O(d3δ−1).

From the earlier joint work with Madeline Brandt in [BG20] a generalization
of tropical floor plans arose, Definition 7.3.5, which allows node germs to appear
closer together as long as they still induce separated nodes (Definition 7.3.1).
A natural question arising from this generalization is whether counting all

separated nodes via tropical floor plans allows us to recover the coefficient of the
term with second highest degree from the asymptotic count in Equation (8.2). To
understand this is a first step towards recovering also terms of lower degree of
NP3
δ,C(d), of which only one more is known.
To be able to compare how much closer we get to the asymptotic count when we

allow for all separated nodes, we need to have numbers that mirror the different
counts.

Notation 8.2.2. Let Sδ(d) denote the number of δ-nodal floor plans of degree d
counted with multiplicity as originally defined in [MMSS22, Definition 5.2]. This
means that Sδ(d) only counts floor plans where each floor Ci contains at most one
node germ and where two consecutive singular floors Cij and Cij+1 are separated
by at least one smooth floor, i.e, ij+1 > ij + 1.
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This corresponds to those floor plans from Definition 7.3.5 with δ′ = δ and kj = 1
for all j, and ij+1 > ij + 1. In this case the alignment of a left string with a vertex
as described in Definition 7.3.5 is not possible.
In [BG20] we considered floor plans of binodal cubic surfaces where there is no

constraint on which floors the node germs may appear. However, some floor plans
will produce tropical surfaces in which the nodes are unseparated. For these cases,
the dual subdivision, tropical floor plans and multiplicities are unknown, and so
we do not know how to count them. To allow for all kinds of separated nodes, we
generalized the definition of tropical floor plans (see Definition 7.3.5).

Notation 8.2.3. Let Uδ(d) denote the number of δ-nodal tropical floor plans of
degree d counted with multiplicity as defined in Definitions 7.3.5 and 7.3.7.

We now introduce artificial δ-nodal floor plans. These do not count any true
multinodal tropical surfaces, but we use them as a counting tool; they provide an
upper bound for Uδ(d).

Definition 8.2.4. An artificial δ-nodal floor plan is a tuple of 1-nodal floor plans
(P1, . . . ,Pδ) where the node germ of Pi appears in a higher or in the same floor as
the node germ of Pi+1.
The multiplicity of an artificial floor plan is the product of the multiplicities of

the Pi.
Let Iδ(d) denote the number of artificial floor plans counted with multiplicities.

We think of artificial δ-nodal floor plans as simulating how many surfaces there
would be if the nodes did not interact with one another at all. It follows from the
definitions that I1(d) = U1(d) = S1(d) =NP3

1,C(d).

Proposition 8.2.5. For d > δ we have the following inequality:

Iδ(d)≥ Uδ(d)≥ Sδ(d).

Proof. The floor plans counted by Sδ(d) are always counted by Uδ(d) and also by
Iδ(d). The number Uδ(d) counts the same floor floor plans as Sδ(d) as well as the
floor plans with node germs in adjacent floors or at least two node germs in the
same floor such that the node germs give rise to separated nodes. We have to
compare the multiplicity of such such a floor plan as counted by Uδ(d) with the
multiplicity an artificial floor plan with nodes in the same positions will be counted
with.

If we have strings in adjacent floors or in the same floor and their alignment
fits with smooth adjacent floors, then their multiplicities are counted in the same
way by Uδ(d) and Iδ(d). This does not mean that the adjacent floors have to be
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Chapter 8 Counting with tropical floor plans

Figure 8.3: The dual subdivisions to the nodal floors in [BG20, Case (7c,9f)]. In
the cubic part, the node germ induces a triangle without vertical edges. Without
the node germ, there would be two bounded horizontal edges in the cubic floor for
the left string in the conic floor to align with.

smooth, it just rules out alignments which are only possible if the adjacent floor is
not smooth.
Other alignments arise from strings that align with a vertex, which would not

exist if the corresponding floor were smooth. These give a contribution to Uδ(d)
which is smaller than the alignment counted by Iδ(d). This is due to the fact that
an alignment with a vertex is counted only with multiplicity 1, while alignments
with bounded edges are counted with multiplicity 2.

For example, in [BG20, Case (7c,9f)] illustrated in Figure 8.3, we have that
Uδ(d) and Iδ(d) count the same number of alignments, but the alignment of the
left string with a vertex not adjacent to a horizontal edge (counted by Uδ(d)) has
multiplicity 1, whereas Iδ(d) counts an alignment with a horizontal bounded edge
with multiplicity 2. This horizontal bounded edge is replaced by the vertex dual to
the triangle without vertical edges in [BG20, Case (7c,9f)].
Furthermore, smooth adjacent floors offer the maximum number of possible

alignments for right strings. If the node germs are weight 2 ends, again smooth
adjacent floors offer the highest multiplicity.

As Iδ(d) counts the situation where every node germ has smooth adjacent floors,
Iδ(d) can count more cases than Uδ(d), and it counts them with at least the same
multiplicity. It follows that Iδ(d)≥ Uδ(d).

We will now show that for small δ, the overcount Iδ(d) is still too small to
produce the second coefficient of NP3

δ,C(d). Therefore, relaxing the notion of a floor
plan to allow nodes to be in the same or in adjacent floors is not enough to produce
the second order coefficient of the asymptotic count from [MMSS22, Theorem 6.1].
Thus, the unseparated nodes contribute in degree d3δ−1.

Theorem 8.2.6. For δ = 2,3, there are at most

I2(d) = 8d6− 168
5 d5 +O(d4), I3(d) = 32

3 d
9− 1341

35 d8 +O(d7),

surfaces with separated nodes.

172



8.2 Asymptotic estimation

Equivalently, the number of δ-nodal surfaces of degree d passing through points in
Mikhalkin position such that their tropicalization has unseparated nodes is at least

(168
5 −24)d5 +O(d4)> 0 for δ = 2,

and (1341
35 −32)d8 +O(d7)> 0 for δ = 3.

Therefore, surfaces with separated nodes are insufficient to asymptotically count
binodal and trinodal surfaces up to two degrees.

Proof. We begin by counting the multiplicity of a given artificial floor plan I. Let
(i1, . . . , iδ) be the weakly decreasing sequence which records the floors of the node
germs of I.
We now calculate the contribution from the presence of a node germ in floor

ij . This will be a polynomial in ij . When counting, we will only consider the top
two orders in ij , because these are the only terms that will impact the top two
degrees in our asymptotic count. Given a node germ in floor ij , there are several
possibilities for what kind of node germ it is:

1. Parallelogram (ij 6= 1,d). By Proposition 4.6 of [MMSS22], the number of one-
nodal curves of degree ij with a parallelogram is 3i2j−6ij+3, and the complex
multiplicity of such a node germ is 2. This case contributes 6i2j −12ij +O(1)
to our count.

2. Horizontal end ( 1< ij < d). The number of curves of degree d with a weight
2 horizontal end is ij − 1, because there are that many possible locations
for a weight 2 horizontal end. The multiplicity is 2(ij + 1) by [MMSS22,
Definition 5.4]. This contributes 2i2j +O(1) to our count.

3. Diagonal end(1< ij). Analogous to the the case of the horizontal end, the
number of curves of degree d with a weight 2 diagonal end is ij − 1. By
[MMSS22, Definition 5.4] the multiplicity for diagonal ends is 2(ij−1). This
contributes 2i2j −4ij +O(1) to the count.

4. Right string (1< ij). There are two alignment options for right strings. A
right string can meet a diagonal bounded edge of Cij−1. There are ij − 2
many diagonal bounded edge of Cij−1. Each such alignment is counted with
multiplicity 2.
Or, a right string aligns with a vertex not adjacent to a diagonal edge. There
are 2(ij−3+ ij−4+ . . .+1) = (ij−3)2 +(ij−4) = i2j −5ij +O(1) many such
vertices. These alignments are counted with multiplicity 1. Thus, we get
2 · (ij−2) + i2j −5ij +O(1) = i2j −3ij +O(1) surfaces for our count.
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5. Left string (ij < d). For a left string there is only one alignment option, since
the adjacent floors are smooth: It can align with any horizontal bounded edge
of Cij+1. As Cij+1 is a smooth tropical plane curve of degree ij +1 satisfying
horizontally stretched point conditions, there are ij + . . .+ 1 = 1

2(i2j + ij)
such edges. Each possible alignment is counted with multiplicity 2. This
contributes i2j + ij to the count.

Thus, a node germ in floor ij for ij 6= 1,d contributes

6i2j −12ij + 2i2j + 2i2j −4ij + i2j −3ij + i2j + ij +O(1) = 12i2j −18ij +O(1). (8.3)

If ij = d, then it contributes

2d2−4d+d2−3d+O(1) = 3d2−7d+O(1), (8.4)

and if ij = 1, then it contributes

12 + 1 +O(1) = O(1). (8.5)

Suppose δ = 2. We sum over all choices of i1, i2 > 1 to obtain the count. We
can discard the case ij = 1, since this will not contribute to the top two terms
asymptotically. We have

I2(d) =
d−1∑
i1=2

i1∑
i2=2

2∏
j=1

(12i2j −18ij) + (3d2−7d)
( d−1∑
i2=2

(12i22−18i2)
)

+ (3d2−7d)2

= 8d6− 168
5 d5 +O(d4).

Suppose δ = 3. We sum over all choices of i1, i2, i3 > 1 to obtain the count. We
ignore the possibility of a node in the first floor because this will not contribute to
the asymptotic count. We have

I3(3) =
d−1∑
i1=2

i1∑
i2=2

i2∑
i3=2

3∏
j=1

(12i2j −18ij) + (3d2−7d)
d−1∑
i2=2

i2∑
i3=2

3∏
j=2

(12i22−18i2)

+ (3d2−7d)2
d−1∑
i3=2

(12i22−18i2) + (3d2−7d)3

=32
3 d

9− 1341
35 d8 +O(d7).
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8.2 Asymptotic estimation

As immediate consequence from Theorem 8.2.6 and Equation (8.2), we obtain
the following corollary.

Corollary 8.2.7. There are at least 48
5 d

5 +O(d) binodal surfaces of degree d with
unseparated nodes. There are at least 221

35 d
8 +O(d) trinodal surfaces of degree d

with unseparated nodes.

Remark 8.2.8. Note that for δ = 4, our method of proof is inconclusive. This follows
from counting artificial floor plans with 4 nodes and comparing the coefficients of
the top two degrees with the coefficients of the top two degrees in Equation (8.2)
for δ = 4.

To obtain the number of artificial floor plans I4(d), we proceed as in the proof of
Theorem 8.2.6. We sum over all choices of i1, i2, i3, i4 > 1 to obtain the count. As
before for δ = 2,3, we can ignore the cases with ij = 1 as they do not contribute to
the top two degrees. Additionally, we allow at most i1 to possibly equal d, because
(as can be seen for δ = 2,3) having more than one ij = d does not contribute to the
top two degrees. Using the multplicities as determined in Equations (8.3) and (8.4),
we obtain:

I4(d) =
d−1∑
i1=2

i1∑
i2=2

i2∑
i3=2

i3∑
i4=2

4∏
j=1

(12i2j −18ij) + (3d2−7d)
d−1∑
i2=2

i2∑
i3=2

i3∑
i4=2

4∏
j=2

(12i22−18i2)

= 32
3 d

12− 64
5 d

11 +O(d10).

Substituting δ = 4 in Equation (8.2), we get:

NP3
4,C(d) = 44

4! d
12− 3 ·44

4! d11 +O(d10)

= 32
3 d

12−32d11 +O(d10).

Since −64
5 > −32, it follows that for 4 nodes this method is inconclusive to

determine whether surfaces with unseparated nodes are sufficient to produce the
coefficients of the top two degrees of the count.
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Chapter 9

Binodal polytopes

We have seen in Theorem 8.2.6 that separated nodes are not sufficient to asymptot-
ically count multi-nodal surfaces up to the second order term. This motivates the
investigation of unseparated nodes. This chapter is concerned with the examination
of small polytopes that can be the support of a binodal surface.

Section 9.1.1 introduces the (generalized) binodal variety and the algorithms to
compute it. In Section 9.1.2, we introduce the notion of binodal polytopes, which
are polytopes that are the support of a binodal surface. We determine some first
conditions for polytopes to be binodal, for example that they must have at least 6
lattice points (Lemma 9.1.9).

Since we want to improve the counting method of tropical floor plans to include
unseparated nodes, and tropical floor plans count floor decomposed surfaces, we
start in Section 9.2 with the investigation of lattice polytopes of width 1 with 6
lattice points. We go through the classification from [BS16b] and extract 6 families.
Since the families are infinite, we can only verify the claim that they are binodal
(Conjecture 9.2.8) for a few representatives fo each family.

Section 9.3 revisits the lattice paths introduced in Section 7.2 and specializes
them for the binodal case. Subsection 9.3.2 further explains how to compute the
multiplicities of lattice paths.
In Section 9.4, we go through the 6 families of binodal polytopes one by one,

determine the valid lattice paths and state conjectures based on computed data for
the path multiplicities.

Section 9.5 ends this chapter by a display on how the results determined in the
earlier sections can be used to count binodal surfaces.
This chapter is based on joint work with Madeline Brandt [BG21]. The com-

putations are done using [Gei22]. For completeness this code is contained in
Appendix B.2.
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Chapter 9 Binodal polytopes

9.1 Binodal surfaces
To count binodal surfaces passing through general points via tropical geometry, we
have to understand the parameter space of binodal surfaces with a fixed support.
This is the topic of Section 9.1.1.

In Section 9.1.2 we make first steps towards finding out what kind of polytopes
can be the support of a binodal surface.

9.1.1 Binodal variety
We want to count surfaces with two isolated singularities and a fixed dual Newton
polytope. Therefore we make the following definition, similar to the discriminant
Sing(Ω) in Definition 7.1.3:

Definition 9.1.1. Let Ω be a lattice polytope with Ω∩Z3 = {ω0, . . . ,ωN+1}.
Consider the set of surfaces with support Ω∩Z3 with two distinct nodes as
singularities in the torus (K∗)3:

Baff
Ω ={(aω0 ,...,aωN+1) ∈ (K∗)N+2 | V (f) with f =

N+1∑
i=0

aωix
ωi has two

distinct nodes in (K∗)3}

=(V (f, ∂f∂x1
, ∂f∂x2

, ∂f∂x3
,q, ∂q∂u1

, ∂q∂u2
, ∂q∂u3

,1− t
3∏
i=1

xiui,)\V (u1−x1,u2−x2,x3−u3))

∩K[aω0 , . . . ,aωN+1 ],

where q =∑N+1
i=0 aωiu

ωi . This is an affine variety, which is contained in Singaff(Ω).
As for the discriminant, multiplying all the coordinates aωi with a non-zero scalar
does not change the support of the surface or the existence of the two singularities.
Therefore, we can consider this as a projective variety:

BΩ ={(aω0 : ... : aωN+1) ∈ PN+1| all aωi 6= 0, and V (f) with f =
N+1∑
i=0

aωix
ωi

has two distinct nodes in (K∗)3}
=(Baff

Ω /∼)\V (aω0 · · ·aωN+1) ⊂ Sing(Ω).

We call BΩ the binodal variety of hypersurfaces of support Ω∩Z3.
The tropical binodal variety is its tropicalization:

Trop(BΩ)⊂ RN+2/(1,...,1)R.
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9.1 Binodal surfaces

Lemma 9.1.2. The expected dimension of the binodal variety is

dimexpected(BΩ) = |Ω∩Z3|−3,

i.e., we expect it to be of codimension 1 in the discriminant Sing(Ω).

By the Structure Theorem for tropical varieties [MS15, Theorem 3.3.5] the
dimension of the tropical variety coincides with the dimension of the binodal
variety.

Proof. The projective space of all surfaces with support |Ω∩Z3| has dimension
|Ω∩Z3|−1. We expect the two nodes to be independent, and for each independent
node we intersect this space with a codimension-1 space, and thus lose one dimension.
However, the surfaces corresponding to points the binodal variety could all contain
non-isolated singularities. In this case, the dimension of the binodal variety could
be larger.

Remark 9.1.3. The aim of this chapter and of Chapter 10 is to count binodal surfaces
with a given support. For this we will fix |Ω∩Z3|−3 many points in general position,
since the intersection of the binodal variety with the |Ω∩Z3|−3 linear spaces of
dimension 1 given by the generic point conditions will be of dimension 0, so that
we will obtain a sensible finite number.

When the binodal variety is not of expected dimension, it either means that the
corresponding surfaces can never satisfy our general point conditions, or it means
that some singularities are dependent so that the binodal variety is of a too large
dimension and our general point conditions do not determine the surface. These
cases we want to exclude.
We can compute the binodal variety by using Algorithm 5.
When examining whether a given a lattice polytope is binodal, we want to

use computational tools to compute the binodal variety and its properties. The
computations in Part II of this thesis are done with Singular and OSCAR. The
functions for OSCAR were written by the author during the joint work with Madeline
Brandt on [BG21] and edited during the writing of this thesis. The revised functions
are available at [Gei22], additionally they are contained in the Appendix B.2.
Example 9.1.6 gives a brief demonstration of the functions for computing the
(generalized) binodal variety.

To keep the number of variables used in the computation smaller and to avoid an
additional variable that needs to be eliminated, we instead compute the generalized
binodal variety as defined below, and then check whether the generalized binodal
variety has components for which the ideal contains monomials; see Lemma 9.1.5.
This is only an auxiliary step. It is also possible to directly compute the binodal
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Chapter 9 Binodal polytopes

Algorithm 5 Computing the binodal variety BΩ

Input: M = (mi,j) ∈Mat3×n filled with the lattice points of Ω
Output: Generators of the ideal I for which V (I) =BΩ
1: f =∑n

j=1aix
mj,1
1 x

mj,2
2 x

mj,3
3

2: q =∑n
j=1aiu

mj,1
1 u

mj,2
2 u

mj,3
3

3: J = 〈f, ∂f∂x1
, ∂f∂x2

, ∂f∂x3
,q, ∂q∂u1

, ∂q∂u2
, ∂q∂u3

,1− t∏3
i=1xiui,1− s

∏n
i=1ai〉

� The polynomial 1− t∏3
i=1xiui is used to ensure that the singularities are in

the torus
� The polynomial 1− s∏ni=1ai is used to ensure that all coefficients of f are
non-zero

4: JS = saturation of J with respect to 〈x1−u1,x2−u2,x3−u3〉 � This ensures
that the singularities are distinct

5: JE = elimination of s,t,x1,x2,x3,u1,u2,u3 from JS
6: G generators of JE in Q[a1, . . . ,an]
7: return I = Radical(〈G〉)

variety (see Algorithm 5) but it might take more computational time and/or
memory, which is why we introduce the following definition.

Definition 9.1.4. Let Ω be a lattice polytope with Ω∩Z3 = {ω0, . . . ,ωN+1}. We
define the generalized binodal variety of hypersurfaces with support Ω as

Bgen
Ω = {(aω0 : ... : aωN+1) ∈ PN+1|V (f) with f =

N+1∑
i=0

aωix
ωi

has two distinct nodes in (K∗)3}.

This is an auxiliary variety for computational reasons as explained above. It is
nearly the same as the binodal variety as demonstrated in the following lemma.

Lemma 9.1.5. Let Bgen
Ω = V (I) and let I = J1∩ . . .∩Js be a primary decomposition

of I ⊂K[aω0 , . . . ,aωN+1 ]. Let K := {i : Ji∩〈aω0 · · · · ·aωN+1〉= ∅} ⊂ {1, . . . ,s}. Then

BΩ = V (
⋂
i∈K

Ji). (9.1)

Proof. It follows directly form the definition that BΩ = Bgen
Ω \ V (aω0 · · ·aωN+1).

Since we choose I to be radical (see Algorithm 6), the Ji are prime ideals. Therefore,
Ji ∩ 〈aω0 · · · · · aωN+1〉 = ∅ is equivalent to 〈aω0 · · · · · aωN+1〉 ⊂ Ji. So the claim
holds.

Algorithm 6 describes the algorithm to determine the generalized binodal variety.
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9.1 Binodal surfaces

The only difference to Algorithm 5, which describes the binodal variety, is that we
dispense with the polynomial 1− s∏ni=1ai in the definition of J . Thus, we don’t
need the variable s anymore, which later had to be eliminated.

Algorithm 6 Computing the generalized binodal variety Bgen
Ω

Input: M = (mi,j) ∈Mat3×n filled with the lattice points of Ω
Output: Generators of the ideal I for which V (I) =Bgen

Ω
1: f =∑n

j=1aix
mj,1
1 x

mj,2
2 x

mj,3
3

2: q =∑n
j=1aiu

mj,1vmj,2wmj,3

3: J = 〈f, ∂f∂x1
, ∂f∂x2

, ∂f∂x3
,q, ∂q∂u1

, ∂q∂u2
, ∂q∂u3

,1− t∏3
i=1xiui〉

� The polynomial 1− t∏3
i=1xiui is used to ensure that the singularities are in

the torus
4: JS = saturation of J with respect to 〈x1−u1,x2−u2,x3−u3〉 � This ensures

that the two singularities are distinct
5: JE = elimination of t,x1,x2,x3,u1,u2,u3 from JS
6: G generators of JE in Q[a1, . . . ,an]
7: return I = Radical(〈G〉)

We will mostly use Algorithm 7 to compute the binodal variety from the general-
ized variety. The advantage of this procedure is that we can already deduce from the
dimension of the generalized binodal variety whether we have to apply the primary
decomposition: Since Bgen

Ω ⊃BΩ, we can deduce from dim(Bgen
Ω )< dimexpected(BΩ),

that the lattice polytope Ω cannot be support of a binodal surface satisfying
|Z3∩Ω|−3 general point conditions. In this case, we do not need to compute BΩ.

Algorithm 7 Computing the binodal variety BΩ from Bgen
Ω

Input: M = (mi,j) ∈Mat3×n filled with the lattice points of Ω
Output: ideal I for which V (I) =BΩ
1: J ideal generating Bgen

Ω as computed by Algorithm 6
2: I = 〈1〉
3: Compute primary decomposition (J1, . . . ,Js) of J
4: for i ∈ {1, . . . ,s} do
5: if Ji∩〈aω0 · · · · ·aωN+1〉= ∅ then
6: I = I ∩Ji
7: end if
8: end for
9: return I
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Chapter 9 Binodal polytopes

Example 9.1.6. We demonstrate the use of the OSCAR functions general_binodal,
binodal and investigate_binodal, see [Gei22] or Appendix B.2. We first have
to include the functions.
julia > using Oscar;
julia > include("YOUR/PATH/TO/code_binodals.jl")

As an example we consider first the polytope given by the rows of the matrix M1 as
lattice points. The function general_binodal computes the generalized binodal
variety, while the function binodal computes the binodal variety.
julia > M1 = matrix(ZZ ,6,3,[0,0,0,0,1,0,0,1,1,0,1,2,0,2,0,1,0,0])
[0 0 0]
[0 1 0]
[0 1 1]
[0 1 2]
[0 2 0]
[1 0 0]

julia > general_binodal(M1)
ideal(a6, -64*a1*a4^2*a5 + 16*a2^2*a4^2 - 8*a2*a3^2*a4 + a3^4)

julia > binodal(M1)
ideal (1)

We observe that the ideal to the generalized binodal variety of M1 contains the
monomial a6. Consequently, the binodal variety of M1 is empty.
Let us now consider the polytope given by the rows of the matrix M9 as lattice

points. (The numbering of the matrices becomes clear when consulting Table 9.1).
julia > M9 = matrix(ZZ ,6,3,[0,0,0,0,0,1,0,1,0,0,1,1,1,0,0,1,0,1])
[0 0 0]
[0 0 1]
[0 1 0]
[0 1 1]
[1 0 0]
[1 0 1]

julia > general_binodal(M9)
ideal(-a3*a6 + a4*a5, -a1*a6 + a2*a5, -a1*a4 + a2*a3)

julia > binodal(M9)
ideal(-a3*a6 + a4*a5, -a1*a6 + a2*a5, -a1*a4 + a2*a3)

Observe that the generalized binodal variety coincides with the binodal variety. We
can now investigate the binodal variety for its dimension and degree. The function
investigate_binodal prints the results and returns the tuple (dim ,deg). The
function has two methods: either input the matrix defining the polytope, or the
radical ideal defining the binodal variety. We show the example for the polytope.
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9.1 Binodal surfaces

julia > investigate_binodal(M9)
Affine dimension of the generalized variety is 4
The binodal variety is of expected affine dimension.
Degree of the binodal variet is 3
[0 0 0; 0 0 1; 0 1 0; 0 1 1; 1 0 0; 1 0 1] could be a binodal

polytope.
(4, 3)

The notation of binodal polytope is explained in Definition 9.1.8.

9.1.2 Binodal polytopes
This section gives first answers to the question which polytopes we can expect
to see as Newton polytopes of binodal surfaces. We demonstrate that a binodal
polytope has to have at least 6 lattice points and that prove that for a binodal
surface with Newton polytope with exactly 6 lattice points the tropical surface is a
fan with both nodes tropicalizing to the unique vertex.

Notation 9.1.7. Let Ω⊂ R3 be a lattice polytope and let ω0, . . . ,ωN denote its
lattice points. We will abuse notation and instead of Ω = conv{ω0, . . . ,ωN+1} we
will often use the notation

Ω =


m1,1 · · · m1,N+2
... . . . ...

m3,1 · · · m3,N+2

 (9.2)

where m1,j+1
m2,j+1
m3,j+1

 := ωj , for j ∈ {0, . . . ,N + 1}.

Definition 9.1.8. We say that a 3-dimensional lattice polytope Ω is binodal if
the binodal variety BΩ is of the expected dimension and if there exists a surface
passing through |Ω∩Z3|−3 points in general position that contains two nodes as
its only singularities and has Newton polytope Ω.

If general points in the binodal variety induce surfaces with non-isolated singu-
larities, the binodal variety can still have the expected dimension. Since we want to
exclude such a case, we need to add the existence of a binodal variety with support
Ω to the definition.

In order to tropically count surfaces of a given degree with at least two nodes we
have to count unseparated nodes. To do this, we must first understand the smallest
possible Newton polytopes of binodal surfaces.

Lemma 9.1.9. Let Ω be a 3-dimensional binodal polytope. Then |Ω∩Z3| ≥ 6.
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Chapter 9 Binodal polytopes

Proof. Suppose Ω were a binodal 3-dimensional lattice polytope with |Ω∩Z3| ≤ 5.
Then the projective dimension of BΩ would be ≤ 2. See Definitions 9.1.1 and 9.1.8.

On the other hand, there exists a surface with two isolated singularities that has
Newton polytope Ω. By translating this surface in K3, we obtain a 3-dimensional
family of binodal surfaces with Newton polytope Ω. So the dimension of BΩ is at
least 3. This contradicts the number of lattice points of Ω, hence we must have
|Ω∩Z3| ≥ 6.

For separated nodes, Theorem 7.1.7 stated the position of the tropicalized
singularity for each circuit position. Similarly to the case of separated nodes, we
want to know where the singularities tropicalize to when we are given a binodal
polytope with 6 lattice points.

Proposition 9.1.10. Let Ω be a binodal polytope with 6 lattice points, and let S
be a binodal surface over C{{t}} with Newton polytope Ω. Then trop(S) is a fan
and both nodes tropicalize to the vertex of the fan.

Proof. Let BΩ be the variety of binodal surfaces with Newton polytope Ω. It has
projective dimension 3 inside P5.

Without loss of generality, we may translate the surface S so that one node of S
is located at (1,1,1). Let L be the variety of surfaces with Newton polytope Ω and
one node at (1,1,1). We denote by M = (mi,j) ∈Mat3×6 the matrix obtained from
the lattice points of Ω as in Notation 9.1.7.
Let a0, . . . ,a5 be the coordinates on P5. Let

f(x,y,z) = a0x
m1,1ym2,1zm3,1 + · · ·+a5x

a1,6ya2,6za3,6

be a generic polynomial defining a surface with Newton polytope Ω. Then L is the
variety cut out by the linear equations

f(1,1,1) =a0 +a1 +a2 +a3 +a4 +a5 = 0,
∂f

∂x
(1,1,1) =a0m1,1 +a1m1,2 +a2m1,3 +a3m1,4 +a4m1,5 +a5m1,6 = 0,

∂f

∂y
(1,1,1) =a0m2,1 +a1m2,2 +a2m2,3 +a3m2,4 +a4m2,5 +a5m2,6 = 0,

∂f

∂z
(1,1,1) =a0m3,1 +a1m3,2 +a2m3,3 +a3m3,4 +a4m3,5 +a5m3,6 = 0.
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9.2 Polytopes with 6 lattice points of width 1

It follows that L is the linear space defined by the kernel of the 4×6 matrix

ML :=


1 1 1 1 1 1

m1,1 m1,2 m1,3 m1,4 m1,5 m1,6
m2,1 m2,2 m2,3 m2,4 m2,5 m2,6
m3,1 m3,2 m3,3 m3,4 m3,5 m3,6

 ∈Mat4×6.

Since Ω is 3-dimensional, this matrix has rank 4. So dim(ker(ML)) = 2, and thus
L= ker(ML) defines a projective linear space of projective dimension 1.
Consider the discriminant Sing(Ω) of hypersurfaces of support Ω∩Z3 (Defini-

tion 7.1.3). Then Sing(Ω) has codimension 1 in P5, and BΩ ⊂ Sing(Ω) is of codi-
mension 1. Further, the linear space L is contained in the discriminant L⊂ Sing(Ω).
Moreover, the one dimensional linear space L is not contained in BΩ because there
may be surfaces with exactly one node, located at (1,1,1), which are described by
points in L and not in BΩ. It follows that the intersection BΩ∩L⊂ Sing(Ω) has
dimension 0 and consists of finitely many points.

Since BΩ and L are defined by equations over C, and C⊂ C{{t}} is algebraically
closed, points in BΩ∩L are defined over C. Each point in BΩ∩L is a complex
surface whose nodes are also defined over C. Thus, the tropicalization of surfaces in
BΩ∩L are fans with vertex at (0,0,0) and both nodes tropicalizing to (0,0,0).

Remark 9.1.11. This proposition and its proof hold more generally for δ-nodal
polytopes of dimension d with δ+d+ 1 lattice points.
Remark 9.1.12. In this thesis we do not investigate polytopes with 7 or more lattice
points. Binodal polytopes with 7 lattice points can be properly subdivided inside
the subdivision. There are 496 three-dimensional polytopes with 7 lattice points
and width greater than 1 [BS18]. The infinite families of polytopes with 7 vertices
and width 1 are not classified.
Some subdivisions of polytopes with more than 6 lattice points that might be

dual to binodal surface can be found in [BG20, Section 5].

9.2 Polytopes with 6 lattice points of width 1
In this section we analyze polytopes with 6 lattice points and investigate whether
they are binodal. This section is based on joint work with Madeline Brandt [BG21].

We use the classifications of three-dimensional polytopes with small numbers of
lattice points given by Blanco and Santos [BS16a, BS16b, BS18]. These classifica-
tions give the finitely many 3-polytopes with n lattice points for 5≤ n≤ 11 and
width greater than 1. For polytopes with width equal to 1, they give a classifica-
tion of the finitely many infinite families of polytopes with 5 and 6 lattice points.
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Chapter 9 Binodal polytopes

Because of Lemma 9.1.9 we only consider polytopes with 6 lattice points. We now
explain why we restrict to polytopes of width 1.
Remark 9.2.1. When a polytope has width greater than 1, it will not appear in
the subdivision of a floor decomposed surface without being further subdivided.
However, we do not know that tropical surfaces through points in Mikhalkin position
with more than one node are necessarily floor decomposed. See Remark 7.3.3.

As we have seen in Proposition 9.1.10, binodal polytopes with 6 lattice points
can only appear in the dual subdivision of a tropical binodal surface if the binodal
polytope has the trivial subdivision. Therefore, only the ones with width 1 could
appear in a floor decomposed surface.

We use the classification of polytopes with 6 lattice points of width 1 from [BS16b]
to search for binodal polytopes.
We only consider polytopes up to integral unimodular affine transformations,

also called IUA-equivalence [MMS12].

Definition 9.2.2. We consider two polytopes equivalent or IUA-equivalent if they
can be transferred into each other by affine translations and multiplication, of the
lattice points with an element of SL3(Z).

From [BS16b, Tables 5, 6 & 7] that provide a list of the finitely many polytope
families with 6 lattice points and of width 1, we have extracted a list of polytope
families in Table 9.1 as follows: First, we deleted those polytopes for which an IUA-
equivalent polytope appears somewhere else in the Tables 5, 6, and 7 from [BS16b];
see [BS16b, Remark 4.3]. That way, the remaining polytope families contained
unique representatives up to IUA-equivalence. To make computations of the binodal
variety easier, we have translated each polytope to ensure that all coordinate entries
are positive. For consistency with [BG20], we permuted the coordinates by (xz y)
and ordered the lattice points by the partial order induced by v = (1,η,η2) with
0< η� 1; see Definition 7.2.3.

We enumerate the resulting polytope families from 1 to 21. They are displayed
in Table 9.1.
In [BS16b] polytope family 21 is given with the restriction ad− bc = ±1. By

applying the SL3(Z) operation that switches the entries in the y and z coordinates,
we see that the polytope family satisfies a symmetry condition, and without loss of
generality, we can assume that ad− bc= 1.

The remainder of this section is concerned with sorting out those polytopes from
this list that cannot be binodal.

186



9.2 Polytopes with 6 lattice points of width 1

no. Figure Lattice points

1
1

2

0
4

3

5

0 0 0 0 0 1
0 1 1 1 2 0
0 0 1 2 0 0



2 20 4

1

3

5

0 0 0 0 0 1
0 1 1 1 2 0
1 0 1 2 1 0



3

0

1

3

4

2

5

0 0 0 0 0 1
0 0 0 1 1 0
0 1 2 0 1 0



4
1

2

0

4

3

5

0 0 0 0 0 1
0 1 1 1 2 0
0 1 2 3 1 0



5 1

0

3

42

5

0 0 0 0 0 1
0 1 1 2 2 0
0 1 2 1 2 0



6 1

0

3

5

2

4

0 0 0 0 1 1
0 1 1 2 0 1
0 1 2 1 0 0


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no. Figure Lattice points

7 1

0

3

2

5

4

0 0 0 0 1 1
0 1 1 2 0 1
0 1 2 1 0 1



8 1

0
33 5

2

4

0 0 0 0 1 1
0 1 1 2 0 a
0 1 2 1 0 b



gcd(a,b) = 1, 2b < a, 0< b < a

1

0

5

3

2

4

0 0 0 0 1 1
0 1 1 2 0 a
0 1 2 1 0 b



gcd(a,b) = 1, 2b > a, 0< b < a

9
0

1

4
2

3
5

0 0 0 0 1 1
0 0 1 1 0 0
0 1 0 1 0 1



10
0

3

2

1

4

5
0 0 0 0 1 1

0 0 1 1 0 a
0 1 0 1 0 b



gcd(a,b) = 1, 0< b < a

11 10 3

2

4

5
0 0 0 0 1 1

0 1 1 2 0 0
0 0 1 0 0 1



188



9.2 Polytopes with 6 lattice points of width 1

no. Figure Lattice points

12 10
3

2

5

4

0 0 0 0 1 1
0 1 1 2 0 1
0 0 1 0 0 1



13

10

5

3

2

4

0 0 0 0 1 1
0 1 1 2 0 a
0 0 1 0 0 b


gcd(a,b) = 1, 0< b < a

14

10

2

3
4

5 0 0 0 0 1 1
0 1 1 2 0 b
0 0 1 0 0 a



gcd(a,b) = 1, 0< b < a

15
1

0

2

3

4 5

0 0 0 0 1 1
0 0 0 0 0 a
0 1 2 3 0 b



gcd(a,b) = 1, 0≤ b < a

16
10

4
2

3

5 0 0 0 1 1 1
0 1 2 0 b 2b
0 0 0 0 a 2a


gcd(a,b) = 1, 0≤ b < a

17
0

4
1

2

5

3

0 0 0 1 1 1
0 0 1 0 a 2a
0 1 0 0 b 2b


gcd(a,b) = 1, 0< b≤ a
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no. Figure Lattice points

18
0

1

2
4

53
0 0 0 1 1 1

0 0 1 0 1 1
0 1 0 1 0 1



19
0

1
4 5

3
2

0 0 0 1 1 1
0 0 1 0 0 1
0 1 0 0 1 1



20
1

0
4

3

5

2

0 0 0 1 1 1
1 1 2 0 1 1
0 1 0 a 0 1



a≥ 3

21

0

1

2

5

4

3

0 0 0 1 1 1
0 0 1 0 a c
0 1 0 0 b d



ad− bc= 1, a,b,c,d > 0, c+d > a+ b, c > a
Table 9.1: The families of polytopes with 6 lattice points of width 1 from the
classification in [BS16b]

Proposition 9.2.3. The polytopes of the families with numbers 1−7, 11, 12, 18
and 19 in Table 9.1 are not binodal.

Proof. Each of these families consists of only one polytope. For each we can
compute the binodal variety using a computer algebra software like Singular or
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9.2 Polytopes with 6 lattice points of width 1

OSCAR. See Algorithms 5 & 6. We used the implementation in OSCAR in [Gei22],
also contained in Appendix B.2.
For the polytopes of families 1− 5 the computations tell us that the binodal

variety as defined in Definition 9.1.1 is empty. Example 9.1.6 shows the code
snippet for the computation for polytope family 1.
For the polytopes of families 6, 7, 11, 12, 18 and 19 the generalized binodal

variety has too small dimension, so the polytopes cannot be binodal.

Proposition 9.2.4. The polytopes of the families listed in Table 9.1 with numbers
9, 15, 16, and 17 are not binodal.

Proof. As the families with numbers 15, 16, and 17 are infinite families, we cannot
compute the binodal variety for every polytope of the families since the parameters
a and b that parameterize the families end up in the exponents of the variables
x,y,z. Instead we eliminate each polytope family by an individual investigation.
The polytope family with number 9 only consists of one polytope, so we can

compute the binodal variety and it is of the expected dimension. However, we will
prove that a surface with the polytope of family 9 as support and containing at
least 2 singularities, contains non-isolated singularities.

Polytope Family 9

Since polytope family 9 consists only of one polytope, we refer to the one element in
this family as Polytope 9. We claim that the binodal locus of Polytope 9 consists of
surfaces with non-isolated singularities. Using the OSCAR code available at [Gei22],
we can compute the polynomials generating the binodal variety in the polynomial
ring of coefficients Q[a0, . . . ,a5]. We obtain the three polynomials

g1 = a3a4−a2a5, g2 = a1a4−a0a5, g3 = a1a2−a0a3.

Compare with Example 9.1.6, where we computed the binodal variety for Polytope 9
using OSCAR.
Let f = a0 +a1z+a2y+a3yz+a4x+a5xz be a polynomial defining a binodal

surface. Then we know that the coefficients are zeroes of the three polynomials
g1,g2,g3 and the coefficients are all nonzero, so using the above equations, we can
write

a3f =a0a3 +a1a3z+a2a3y+a2
3yz+a3a4x+a3a5xz

=a1a2 +a1a3z+a2a3y+a2
3yz+a2a5x+a3a5xz

=(a2 +a3z)(a1 +a3y+a5x).
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Chapter 9 Binodal polytopes

So for any polynomial f with Polytope 9 as Newton polytope such that the surface
V (f) contains at least two singularities, the variety V (f) contains non-isolated
singularities.

Polytope Family 15

We show that the binodal variety to any polytope of family 15 is empty. Let
f ∈K[a0, . . . ,a5][x,y,z] be a polynomial describing a generic surface with Newton
polytope Ω given by a polytope in family 15, so

f = a0 +a1z+a2z
2 +a3z

3 +a4x+a5xy
azb,

with 0≤ b < a and gcd(a,b) = 1. Its derivatives are given by:

∂f/∂x= a4 +a5y
azb,

∂f/∂y = aa5xy
a−1zb,

∂f/∂z = a1 + 2a2z+ 3a3z
2 + ba5xy

azb−1.

Now, consider the projective variety Sing(Ω) whose points are given in non-zero
coordinates a0, . . . ,a5. The points in Sing(Ω) describe singular surfaces with Newton
polytope Ω from family 15 that have a singular point in the coordinates x,y,z in
the torus (K∗)3. See Definition 7.1.3. When we substitute the coordinates of the
singular point (x̃,ỹ,z̃) ∈ (K∗)3 into f and its derivatives, then the four equations
are linear in the ai and they vanish on Sing(Ω). In particular we have

∂f/∂y = aa5x̃ỹ
a−1z̃b = 0,

However, (x̃,ỹ,z̃) ∈ (K∗)3, a > 0 and the coordinates ai 6= 0. It follows that the
discriminant Sing(Ω)⊃BΩ, and thus the binodal variety BΩ is empty.

Polytope Family 16

Let Ω be a lattice polytope in the family with number 16 from Table 9.1. Let
f ∈K[a0, . . . ,a5][x,y,z] be a polynomial with support Ω. It can be written

f = a0 +a1y+a2y
2 +x(a3 +a4y

bza+a5y
2bz2a).

Its derivatives are given by

∂f/∂x= a3 +a4y
bza+a5y

2bz2a,

∂f/∂y = a1 + 2a2y+ bxyb−1za(a4 + 2a5y
bza),
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9.2 Polytopes with 6 lattice points of width 1

∂f/∂z = axybza−1(a4 + 2a5y
bza).

Recall from Definition 7.1.3 the discriminant Sing(Ω), whose points (in coordinates
a0, . . . ,a5) describe singular surfaces with Newton polytope Ω that have a singular
point (described in coordinates x,y,z) in the torus (K∗)3. Remember that the
binodal variety BΩ is contained in the discriminant.

By writing h := a0 +a1y+a2y2 and g := a3 +a4ybza+a5y2bz2a we can rephrase
f = h+xg. Now, let (x̃,ỹ,z̃) ∈ (K∗)3 be a singular point of V (f). By ∂f/∂x= g, it
follows that h(x̃,ỹ,z̃) = 0 and g(x̃,ỹ,z̃) = 0.

Setting w = yazb allows us to rewrite g = a3 +a4w+a5w2. Moreover,

∂g/∂w = a4 + 2a5w = a4 + 2a5y
azb.

We know that a > 0. It follows from ∂p/∂z(x̃,ỹ,z̃) = 0 that a4 + 2a5ỹbz̃a = 0, since
x̃, ỹ, z̃ are not zero. So it follows that g as a univariate polynomial in w has a double
zero, so a2

4−4a3a5 vanishes on Sing(Ω). Hence, we can write g = γ(yazb− ε)2 for
γ,ε ∈K[a0, . . . ,a5]\{0}.

Furthermore, we can conclude from ∂f/∂y and the above that

∂h/∂y(x̃,ỹ,z̃) = a1 + 2a2ỹ = 0,

which means that h as a univariate polynomial in y has a double zero. So a1−4a0a2
vanishes on Sing(Ω), and we can write h= β(y−α)2 with α,β ∈K[a0, . . . ,a5]\{0}.

Thus, we can rewrite f and its derivatives as

f = β(y−α)2 +γx(yazb− ε)2,

∂f/∂x= γ(yazb− ε)2,

∂f/∂y = 2β(y−α) + 2γaxya−1zb(yazb− ε),
∂f/∂z = 2γbxyazb−1(yazb− ε).

It follows that all (x̃,ỹ,z̃) ∈ (K∗)3 satisfying

ỹaz̃b = ε,

ỹ = α

are singularities of V (f). This is an infinite family of singularities. Therefore, every
polytope in family 16 has non-isolated singularities.
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Chapter 9 Binodal polytopes

Polytope Family 17

Let Ω be a lattice polytope in the family with number 17 from Table 9.1. Let
f ∈K[a0, . . . ,a5][x,y,z] be a polynomial with support Ω. It can be written

f = a0 +a1y+a2z+x(a3 +a4y
azb+a5y

2az2b),
with 0< b≤ a, gcd(a,b) = 1. Its derivatives are given by

∂f/∂x= a3 +a4y
azb+a5y

2az2b,

∂f/∂y = a1 +axya−1zb(a4 + 2a5y
azb),

∂f/∂z = a2 + bxyazb−1(a4 + 2a5y
azb).

We proceed similarly to the case of polytope family 16. Recall from Defini-
tion 7.1.3 the discriminant Sing(Ω), whose points (in coordinates a0, . . . ,a5) describe
singular surfaces with Newton polytope Ω that have a singular point (described in
coordinates x,y,z) in the torus (K∗)3. Remember that the binodal variety BΩ is
contained in the discriminant.

Setting h= a0 +a1y+a2z and g = a3 +a4yazb+a5y2az2b we can write f = h+xg.
Now, let (x̃,ỹ,z̃) ∈ (K∗)3 be a singular point of V (f). By ∂f/∂x= g, it follows that
h(x̃,ỹ,z̃) = 0 and g(x̃,ỹ,z̃) = 0.
We know that the partial derivatives vanish in the singularity (x̃,ỹ,z̃). We can

thus consider

bỹ∂f/∂y(x̃,ỹ,z̃) = az̃∂f/∂z(x̃,ỹ,z̃),
⇒ bỹ(a1 +ax̃ỹa−1z̃b(a4 + 2a5ỹ

az̃b)) = az̃(a2 + bx̃ỹaz̃b−1(a4 + 2a5ỹ
az̃b)),

⇒ ba1ỹ = aa2z̃,

⇒ ỹ = a2
a1

a

b
z̃.

We can divide by b ·a2 since in Sing(Ω) all ai are non-zero and we know b > 0.
Substituting this into h, we can solve for z:

h(x̃,ỹ,z̃) = a0 +a1ỹ+a2z̃ = 0,

a0 +a1
a2
a1

a

b
z̃+a2z̃ = 0,

a0 +a2(a
b

+ 1)z̃ = 0,

−a0
a2

b

(a+ b) = z̃.

Again we can divide by a2 and a+ b by the same reasons as above. Thus, we have
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9.2 Polytopes with 6 lattice points of width 1

unique solutions for y and z. It follows that for any singularity (x̃,ỹ,z̃) ∈ (K∗)3 of
V (f) we have

z̃ =−a0
a2

b

(a+ b) ,

ỹ =−a2
a1

a

b

a0
a2

b

(a+ b) = a0
a1

a

(a+ b) .

With these solutions ∂f/∂y(x̃,ỹ,z̃) = 0 and ∂f/∂z(x̃,ỹ,z̃) = 0 are linear equations
in x̃. If a4 + 2a5yazb 6= 0, each of these two equations can be solved for x̃. Thus,
we see either zero (if the solutions for x̃ do not agree) or exactly one singularity in
V (f). Thus, (a0 : . . . : a5) /∈BΩ. Hence, to allow at least two singularities in V (f)
we must have a4 + 2a5yazb = 0.

However, with ∂f/∂y(x̃,ỹ,z̃) = 0 and ∂f/∂z(x̃,ỹ,z̃) = 0, this implies a1 = a2 = 0.
So the binodal variety as defined in Definition 9.1.1 is empty.

Proposition 9.2.5. For the following values of the parameters a and b, the polytopes
in the families below from Table 9.1 are not binodal.

Family 10: a= 1, b= 1 and a= 2, b= 1.

Family 13: a= 2, b= 1 and a= 3, b= 1.

Family 14: a= 2, b= 1 and a= 3, b= 1.

Family 20: a= 3.

Proof. Similar to the proof of Proposition 9.2.4, we can compute the (generalized)
binodal varieties using computer algebra software as OSCAR or Singular. See
Algorithms 5 & 6 and the OSCAR code [Gei22] in Appendix B.2. The computations
provide the following results: The polytopes with a= 3 and b= 1 in the polytope
families 13 and 14 both give an empty binodal variety, while for the other polytopes
in the proposition we obtain that the generalized binodal variety has dimension
less than three.

The polytope families that remain from the list in Table 9.1 are collected in
Figure 9.1.

Notation 9.2.6. We use the notation Ω(10)
a,b to denote a polytope of family number

10 with parameters a and b and analogously for the other polytope families.

Remark 9.2.7. In the list of remaining polytopes, it is possible that some still
have the property that their binodal locus contains only surfaces with non-isolated
singularities. Since we deal with infinite families of polytopes we cannot make a
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No. 80 0 0 0 1 1
0 1 1 2 0 a
0 1 2 1 0 b


gcd(a,b) = 1,

2b 6= a, 0< b < a

No. 100 0 0 0 1 1
0 0 1 1 0 a
0 1 0 1 0 b


gcd(a,b) = 1,

0< b≤ a, a≥ 3

No. 130 0 0 0 1 1
0 1 1 2 0 a
0 0 1 0 0 b


gcd(a,b) = 1, 0< b < a,

a+ b≥ 5

No. 140 0 0 0 1 1
0 1 1 2 0 b
0 0 1 0 0 a


gcd(a,b) = 1, 0< b < a,

a+ b≥ 5

No. 200 0 0 1 1 1
1 1 2 0 1 1
0 1 0 a 0 1


a > 3

No. 210 0 0 1 1 1
0 0 1 0 a c
0 1 0 0 b d


ad− bc= 1, a,b,c,d > 0,
c+d > a+ b, c > a

Figure 9.1: The polytopes with 6 lattice points of width 1 that after Proposi-
tions 9.2.3, 9.2.4 and 9.2.5 remain from the list in Table 9.1 as possibly binodal.

general statement on whether the polytopes are all binodal. However, there is a
way to check for non-isolated singularities for a single polytope Ω for which we can
compute the binodal ideal in the ai with i= 0, . . . ,6, as follows: Intersecting the ideal
with 4 generic conditions for 4 arbitrarily chosen ai should give a 0-dimensional
ideal. If it does not, the conditions and ai were not generic enough. We then
solve for the remaining two ai and obtain a generic point in our binodal variety
BΩ. When we compute the singular locus of the algebraic surface corresponding to
that point, and this locus is of dimension zero, then the surface has only isolated
singularities.

This procedure is described in Algorithm 8 and partially implemented in two func-
tions for OSCAR in [Gei22]; see Appendix B.2. The first function find_generic_point
computes the intersection of the binodal ideal with a choice of generic conditions
for a election of 4 coefficients ai and computes the dimension of the intersection.
The step of solving for the remaining two variables in the case of dimension zero
is not implemented in OSCAR, but left to the user. For the solved system, the
second function singular_locus computes the dimension of the singular locus of
the corresponding surface.

Conjecture 9.2.8. The polytopes as in Figure 9.1 are binodal.

This conjecture is verified for polytopes with small coordinates of each family by
applying Algorithm 8. The verified polytopes and coefficient vectors for which the
verification was run are collected in Table 9.2.

We illustrate the computations using the code from [Gei22] in OSCAR by showing
them for Ω(8)

3,1. First, we find a generic point in the binodal variety BΩ(8)
3,1
.
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9.2 Polytopes with 6 lattice points of width 1

Algorithm 8 Checking for isolated singularities
Input: M = (mi,j) ∈Mat3×n filled with the lattice points of Ω, a set s of n− 2

indices and n−2 arbitrary values vi for each i ∈ s
Output: Whether the surface defined byM and v contains isolated or non-isolated

singularities
1: Compute binodal ideal I via Algorithm 5 or Algorithm 7
2: if dim(I) = n−2 then
3: for each Generator g of I do
4: hg = g|ai=vi∀i∈s
5: end for
6: J = 〈hg|g generator of I〉 the ideal in K[ai0 ,aj0 ] where {i0,j0}= {1, . . . ,n}\s
7: if dim(J) = 0 then
8: solve for a solution (vi0 ,vj0) for (ai0 ,aj0)
9: p=∑n

j=1 vix
mj,1ymj,2zmj,3

10: JS = 〈p,∂p/∂x,∂p/∂y,∂p/∂z〉
11: if dim(JS) = 0 then
12: The polytope Ω is binodal
13: else
14: Either the chosen conditions were not generic enough or Ω is not

binodal.
15: end if
16: end if
17: end if

julia > A = matrix(ZZ ,6,3,[0,0,0,0,1,1,0,1,2,0,2,1,1,0,0,1,3,1]);
julia > p = [1 ,1//2 ,1//3 ,1//5];
julia > find_generic_point(A,[2,5],p)
ideal (9*e1 + 8*e2, 128*e2^3 - 225)

We compute a generic point in the binodal variety by solving for e1 and e2 by
hand. The solutions are not rational, so we need to define a field extension.
julia > Qt , t = QQ["t"];
julia > K, a = NumberField(t^3 -225//128 ,"a")
(Number field over Rational Field with defining polynomial t^3 -

225//128 , a)

Now, we compute the singular locus of the polynomial with coefficient vector v.
We need to specify the field K in the function singular_locus. If the coefficient
vector is rational, this last input entry to the function has to be omitted.
julia > v = [1, -8//9*a,1//2 ,1//3 ,a ,1//5]; #the coefficient vector
julia > singular_locus(A,v,K)
(ideal (1//5* x1*x2^3*x3 + a*x1 + 1//3* x2^2*x3 + 1//2* x2*x3^2 -

8//9*a*x2*x3 + 1, 1//5* x2^3*x3 + a, 3//5* x1*x2^2*x3 + 2//3* x2*
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x3 + 1//2*x3^2 - 8//9*a*x3 , 1//5*x1*x2^3 + 1//3*x2^2 + x2*x3 -
8//9*a*x2), 0)

The singular locus is of dimension zero, so the surface does not contain non-isolated
singularities and Ω(8)

3,1 is binodal.

polytope coefficient vector
Ω(8)

3,1 (1,− 8
9

3
√

225
128 ,

1
2 ,

1
3 ,

3
√

225
128 ,

1
5)

Ω(8)
3,2 (1,−48

25 ,
746496
390625 ,

1
2 ,

1
3 ,

1
5)

Ω(10)
3,1 (1,− 3

40 ,
1
2 ,

3
10 ,

1
3 ,

1
5)

Ω(10)
3,2 (1,12 ,

32
75 ,

1
3 ,
−27

8 ,15)

Ω(13)
3,2 (1, 48

125 ,
1
2 ,

2304
78125 ,

1
3 ,

1
5)

Ω(14)
3,2 (1, 625

6912

√
63700992

76125 ,12 ,
√

63700992
76125 ,13 ,

1
5)

Ω(20)
4 (1,12 ,

1
3 ,

3
160 ,

−2
5 ,

1
5)

Ω(20)
5 (1,12 ,

1
3 ,

1
640000(−264465

100 +
√

552−400·16
40000 ),− 55

200 +
√

552−400·16
40000 ,15)

Ω(21)
1,1,2,3 (1,12 ,

1
3 ,

8192
46875 ,

256
1125 ,

1
5)

Ω(21)
2,1,3,2 (1,12 ,

1
3 ,

78732
15625 ,

81
50 ,

1
5)

Table 9.2: Polytopes and coefficient vectors for which Conjecture 9.2.8 is verified.

9.3 Lattice paths for binodal polytopes with 6 vertices of
width 1

In this chapter we first introduce notation for lattice paths that induce binodal
surfaces satisfying point conditions and how to check whether the lattice path is
valid (Section 9.3.1). Then in Section 9.3.2 we show how to compute the path
multiplicities and briefly demonstrate how to use the OSCAR functions ([Gei22],
Appendix B.2) written for this purpose.
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9.3 Lattice paths for binodal polytopes with 6 vertices of width 1

9.3.1 Lattice paths
Lattice paths are a key ingredient to tropical surface counting. In this section we
consider binodal surfaces and deduce properties of their possible lattice paths and
introduce notation for the following sections.

Lemma 9.3.1. Let Ω be a binodal polytope with 6 lattice points and S a tropical
surface with Newton polytope Ω. Assuming that S passes through points in Mikhalkin
position, the induced lattice path on Ω passes along the edges of the polytope.

Proof. By Proposition 9.1.10, the dual subdivision to a binodal tropical surface
whose Newton polytope is a binodal polytope with 6 lattice points is always the
trivial subdivision.

Lemma 9.3.2. Let Ω be a binodal lattice polytope of width 1 with 6 lattice points,
and let S be the tropical surface dual to the trivial subdivision of Ω.

Let p = (p1, . . . ,pN−1) be a point configuration in K3 in Mikhalkin position where
the qi = Trop(pi) are distributed with growing distances along a line L of direction
(1,η,η2) with 0< η� 1. The direction vector v = (1,η,η2) induces an order on the
lattice points of a polytope Ω : ω0, . . . ,ωN+1.

Then the line L has to pass through the 3-dimensional regions of R3 \S that are
dual to ω0 and ωN+1.

Proof. By [MMS18, Lemma 3.2], the line L on which the points in Mikhalkin
position are distributed has to pass through the 3-dimensional regions defined by
the tropical surface via R3 \S in the order given by the partial order induced on
their dual vertices by the direction vector of L.
The ordering of the lattice points induced by v is given by ωi < ωj if and only

if 〈ωj−ωi,v〉> 0, see Definition 7.2.3. The ordering of the vertices stands for the
order in which the line through the point configuration passes through the cells
dual to the vertices. For a smooth surface, the line L has to pass through all N +2
regions into which the surface divides R3. Due to the direction vector of the line
on which the points are distributed, the line always has to start in the region of
R3 dual to the first vertex ω0 and it always has to end in the region dual to ωN+1,
even when the surface is no longer smooth.

We introduce notation similar to Lemma 7.2.5 for lattice paths that induce
binodal surfaces. Let L denote the line with direction vector (1,η,η2) on which
the point conditions are distributed. Recall, that in Lemma 7.2.5 we distinguished
lattice paths depending on how many intersection points L has with the tropical
surface S, or equivalently, how many 3-dimensional regions R3 \S are intersected
by L. When we now consider lattice paths that count binodal singularities, there
are more options. They are all described in the following Lemma.
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Lemma 9.3.3 ([MMS18, Lemma 3.2]). We fix a point configuration p in Mikhalkin
position. Let S be a binodal tropical surface passing through q = Trop(p). Let L
denote the line on which the qi are distributed with growing distances.

1. If the line L passes through N of the 3-dimensional regions of R3 \S, the
lattice path P (S,q) satisfies
(i) P (S,q) = P (A), where A= Ω∩Z3 \{ωk,ωl} for some 1≤ k < l ≤N . In

this case the lattice path is connected. We denote such a path by Γk,l.

2. If the line L passes through N + 1 of the 3-dimensional regions of R3 \S, the
lattice path P (S,q) satisfies exactly one of the following conditions:
(ii) P (S,q) = P (A), where A= Ω∩Z3 \{ω0,ωl} for some 1≤ l≤N . In this

case the lattice path is connected from 1 to N + 1 if l > 1 resp from 2 to
N + 1 if l = 1, and we call this path Γk,l.

(iii) P (S,q) = P (A), where A= Ω∩Z3 \{ωl,ωN+1} for some 1≤ l ≤N . In
this case the lattice path is connected from 0 to N if l < N resp from 0
to N −1 if l =N , and we call this path Γk,l.

(iv) P (S,q) = P (A′)∪P (A′′), where A is partitioned in the two sets A′ =
{ω0, . . . ,ωk}\{ωl}, and A′′ = {ωk+1, . . . ,ωN+1} for some 1≤ k ≤N −1
and l < k. In this case the lattice path is disconnected and we call this
path Γl,[k,k+1].

(v) P (S,q) = P (A′)∪P (A′′), where A is partitioned in A′ = {ω0, . . . ,ωk},
and A′′ = {ωk+1, . . . ,ωN+1}\{ωl} for some 1≤ k ≤N −1 and k+ 1< l.
In this case the lattice path is disconnected and we call this path Γ[k,k+1],l.

(vi) P (S,q) = P (A′)∪P (A′′), where A is partitioned in A′ = {ω0, . . . ,ωk},
and A′′ = {ωk+2, . . . ,ωN+1} for some 1 ≤ k ≤ N − 1. In this case the
lattice path is disconnected and we call this path Γ[k,k+2],k+1.

3. If the line L passes through N + 2 of the 3-dimensional regions of R3 \S, the
lattice path P (S,q) satisfies exactly one of the following conditions:
(vii) P (S,q) = P (A), where A= Ω∩Z3 \{ω0,ωN+1}. In this case the lattice

path is connected from 1 to N , and we call this path Γ0,N+1.
(viii) P (S,q) =P (A), where A= Ω∩Z3\{ω0,ω1} resp. A= Ω∩Z3\{ωN ,ωN+1}.

In this case the lattice path is connected from 2 to N+1 resp. 0 to N−1,
and we call this path Γ0,1 resp. ΓN,N+1.

(ix) P (S,q) = P (A′)∪P (A′′), where A is partitioned in the two sets A′ =
{ω1, . . . ,ωk}, and A′′ = {ωk+1, . . . ,ωN+1} for some 1 < k ≤ N − 1. In
this case the lattice path is disconnected and we call this path Γ0,[k,k+1].
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(x) P (S,q) = P (A′)∪P (A′′), where A is partitioned in the two sets A′ =
{ω0, . . . ,ωk}, and A′′ = {ωk+1, . . . ,ωN} for some 1≤ k < N −1. In this
case the lattice path is disconnected and we call this path Γ[k,k+1],N+1.

(xi) P (S,q) = P (A′)∪P (A′′)∪P (A′′′), where A is partitioned in the three
sets A′ = {ω0, . . . ,ωk}, A′′ = {ωk+1, . . . ,ωl}, and A′′′ = {ωl+1, . . . ,ωN+1}.
for some 1≤ k, k+1< l <N . In this case the lattice path is disconnected
and we call this path Γ[k,k+1],[l,l+1].

(xii) P (S,q) = P (A′)∪P (A′′), where A is partitioned in A′ = {ω0, . . . ,ωk},
and A′′ = {ωk+2, . . . ,ωN+1} for some 1 ≤ k < N − 1. In this case the
lattice path is disconnected and we call this path Γ[k,k+2].

When constructing possible lattice paths, please note that the start and end
points of gaps in the lattice path have to be vertices of the dual subdivision of
the Newton polytope. Lattice points that are not vertices of the subdivision can
always only appear as skipped points, as they do not define a 3-dimensional region
of R3 \S.

Proof. A lattice path that induces a binodal surface has to contain at least N lattice
points, and L therefore intersects at least N of the 3-dimensional regions of R3 \S.
By Lemma 9.3.2, we know that L always has to pass through the 3-dimensional
regions dual the vertices ω0 and ωN+1.

We distinguish three cases: If L intersects exactly N of the 3-dimensional regions
of R3 \S, then there are exactly N −1 points where L intersects S. These are the
qi and the N−1 distinct 2-cells of S containing the qi form the lattice path P (S,q).
Since L is of direction v = (1,η,η2) and we have a partial order on the lattice points
given by v, the induced lattice path is connected.

If L intersects N+1 of the 3-dimensional regions of R3 \S, then there are exactly
N points where L intersects S. Thus, we have one additional intersection point to
the qi. The shape of the path P (S,q) is determined by the position of the additional
intersection point t. This point t is contained in the relative interior of a 2-cell of
S which corresponds to an edge in the dual subdivision of the Newton polytope Ω
of S. Lets call the lattice points forming this edge ωt1 and ωt2 . If ωt1 � ωi for all
ωi in the lattice path, then ωt1 = ω0 and t2 ∈ {1,2} and the induced lattice path
is connected from t2 to N + 1. The case ωt2 ≺ ωi for all ωi in the lattice path is
analogous.

If the line segment formed by ωt1 and ωt2 is in the middle of the lattice path, we
are in case (iv), (v) or (vi) depending on which connected half of the lattice path
skips the lattice point ωl. If ωl ≺ ωt1 we are in case (iv), if ωt2 ≺ ωl we are in case
(vi) and if ωt1 ≺ ωl ≺ ωt2 we are in case (v).

If L intersects N+2 of the 3-dimensional regions of R3 \S, then there are exactly
N+1 points where L intersects S. Thus, we have two additional intersection points
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of L with S to the qi. The shape of the path P (S,q) is determined by the position
of the two additional intersection points. The cases (vii) to (xii) distinguish the
different options: If the additional intersection points of L with S are both before
q0 or after qN−1, we are in the cases (vii) or (viii). If exactly one of the additional
points corresponds to a gap in the lattice path, we are in the cases (ix) or (x).
Otherwise, both additional intersections correspond to line segments that interrupt
the lattice path and we are in the cases (xi) or (xii).

We will not observe option (3) in Lemma 9.3.3 for any of the polytopes investi-
gated in this thesis.
We will use the following condensed, extracted information of Lemma 9.3.3 to

exclude certain lattice paths in the following sections.
Remark 9.3.4. For a lattice path connected from 0 to N +1 the line L intersects N
regions of R3 \S. If either ω0 or ωN+1 are not part of the lattice path, the line L
has to intersect at least N + 1 regions of R3 \S. If both are not contained, it has
to intersect all N + 2 regions of R3 \S.
For each gap in the lattice path the line L intersects one additional region of

R3 \S: For a lattice path with one gap, L intersects N + 1 regions; for a lattice
path with two gaps, L intersects all N + 2 regions.
We compute a list of possible lattice paths for each polytope family. We note,

that for each polytope family in Table 9.1 the edge-vertex combinatorics remains
constant across different choices of parameters, except for polytope family 8, where
there are two cases, depending on whether 2b > a or 2b < a. This is significant,
because the possible lattice paths only depend on the ordering of the vertices and
the existence of edges between the vertices.

Definition 9.3.5. We call a lattice path P (A) with A ⊂ Ω∩Z3 a valid binodal
lattice path on Ω, if it arises from a tropical binodal surface S with Newton polytope
Ω satisfying |Ω∩Z3|−3 point conditions in Mikhalkin position.

The following remark describes how we can check whether a given lattice path is
valid.
Remark 9.3.6. The idea is to check whether the lattice points forming the lattice
path define a set of 3-dimensional regions of R3 \S that L can pass through in
the order induced by the partial order on the lattice points. Here, L is the line of
direction (1,η,η2) on which the qi from the point conditions are distributed.

Since the polytopes in the 6 binodal families in Figure 9.1 all have 6 lattice points,
we know that we are in the case of the trivial subdivision by Proposition 9.1.10.
Example 2.2.20 described for this case how to compute the 3-dimensional regions
of R3 \S which are pointed cones. Without loss of generality we can assume that
the line L passes through (0,0,0) and that the unique vertex of S is in (x,y,z).
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When we have computed the rays spanning the cones, the lattice path tells us
with which facets of the cones (i.e. 2-dimensional cells of S) the line L= (1,η,η2)R
intersects and in which order. By fixing the points qi as (0,0,0) and positive
multiplies of (1,η,η2) with growing distances on L, we obtain a set of linear
equations in (x,y,z) and the parameters of the 2-dimensional cells. If this linear
system can be solved such that the parameters of the 2-dimensional cells are all
positive (only then we see an intersection of L with the relative interior of the
2-cell), and the independence of the distances of the qi and the direction vector is
not violated (this ensures the generality of our point conditions), then the lattice
path is valid as in Definition 9.3.5.
Sometimes we can already exclude certain lattice paths by looking at the 3-

dimensional regions of R3 \S and, for example, observing that a line of the given
direction could never pass through two of the regions but only through one of them.
These observations are helpful, as they limit the possible paths as described in
Lemma 9.3.3, since they are determined by the number of 3-dimensional regions of
R3 \S the line L crosses.

9.3.2 Multiplicity of lattice paths

This section explains how we can compute the multiplicity of a lattice path for a
given binodal polytope Ω. The theory is described by Algorithms 9 and 10. For the
computational execution we use the OSCAR code [Gei22], which we will demonstrate
with short code snippets in this section. The functions are also contained in
Appendix B.2.

Determining the multiplicity of a lattice path is a crucial step towards counting
surfaces. A path multiplicity is the lifting multiplicity of the tropical surface passing
through the points in Mikhalkin position that induce the lattice path. The path
multiplicities of all valid lattice paths should therefore always add up to the degree
of the binodal variety of the polytope.
We can compute the multiplicity of a lattice path for a binodal polytope as

follows. We make a distinction between connected and disconnected lattice paths.
In this context it is not important if the lattice path is connected from 0 to N + 1
or from l to k. We will not discuss the multiplicity of lattice paths of type (3)
from Lemma 9.3.3. Most of the following can be adapted for paths of type (3)
with at most one gap. For two gaps, or one gap of length 2, there is a modified
technique which we do not discuss here as it will not appear for any of the polytopes
investigated in this thesis.
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Connected lattice paths

For a connected lattice path Γk,l leaving out the two lattice points ωk and ωl,
we substitute the remaining parameters in the binodal variety (i.e., all aωi for
which i 6= k, l) by generic values. Similar to the computation of the binodal variety,
we have to eliminate all those components of the resulting variety that contain
monomials. This can be done by computing the primary decomposition and
checking the primary components. We keep only those components that do not
contain monomials. Computing the degree of this variety gives the multiplicity of
the lattice path. The values for the parameters have not been chosen generically
enough if the dimension of the variety in aωk and aωl is not zero.

This procedure is the same for all connected lattice paths, the ones described by
Lemma 9.3.3 in (1) and (2). It is summarized in Algorithm 9.

Algorithm 9 Multiplicity of a connected lattice path
Input: M = (mi,j) ∈ Mat3×(N+2) filled with the lattice points of Ω, a set s =
{0, . . . ,N + 1}\{k,l} of N indices and N arbitrary values vi for each i ∈ s

Output: Multiplicity of lattice path Γk,l
1: Compute binodal ideal I via Algorithm 5 or Algorithm 7
2: if dimproj(I) =N −1 then
3: for each Generator g of I do
4: hg = g|aωi=vi∀i∈s
5: end for
6: J = 〈hg|g generator of I〉 the ideal in K[aωk ,aωl ] where {k,l}= {1, . . . ,n}\s
7: if dimaff (J) = 0 then
8: IP = 〈1〉
9: Compute primary decomposition (J1, . . . ,Js) of J
10: for i ∈ {1, . . . ,s} do
11: if Ji∩〈aωk ·aωl〉= ∅ then
12: IP = IP ∩Ji
13: end if
14: end for
15: return path multiplicity deg(IP ).
16: end if
17: end if

Example 9.3.7. We briefly demonstrate the use of the OSCAR function path_mult
for connected paths. As an example we use the polytope Ω(8)

3,2 and the lattice path
Γ1,4(Ω(8)

3,1), see Figure 9.4
The function path_mult can be applied either directly to the binodal polytope

Ω or to the radical ideal generating the binodal variety BΩ. We demonstrate its
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use for the polytope. We provide the polytope by its lattice points in a matrix A.
To apply it to the ideal I, the user inserts the ideal instead of the matrix into the
function. The other entries have to stay the same.
Additionally, we have to provide a vector v filled with the general values that

substitute the coefficients corresponding to those lattice points that are part of the
path.
julia > A = matrix(ZZ ,6,3,[0,0,0,0,1,1,0,1,2,0,2,1,1,0,0,1,3,1])
[0 0 0]
[0 1 1]
[0 1 2]
[0 2 1]
[1 0 0]
[1 3 1]
julia > v = [1 ,1//2 ,1//3 ,1//5];

We need to specify the lattice points that are left out of the path. Note that OSCAR
starts counting at 1, while we start with 0 when enumerating the lattice points. So
for path Γ1,4(Ω(8)

3,1) the left out lattice points, starting to count at 1, are 2 and 3.
julia > p = [2,3];
julia > path_mult(A, p, [true ,true], v)
Affine dimension is 0
Path multiplicity is 1
(ideal (25*e2 - 2, 3*e1 + 2), 1)

The third entry to the function [true,true] states that the two lattice points
given by p are indeed left out points and not points of gap of a disconnected path.
We see that mult(Γ1,4(Ω(8)

3,1)) = 1, as also stated in Table 9.3.

Disconnected lattice paths

In this thesis we will not observe a polytope for which a lattice path can have two
gaps or a gap of length 2 as described in Lemma 9.3.3 (3). Therefore, we restrict
to the disconnected paths as described in Lemma 9.3.3 (2).
For a disconnected lattice path the procedure is similar. If ωl is the lattice

point left out of the lattice path, and the segment [ωk1 ,ωk2 ] is the one filling the
gap in the disconnected lattice path, and the path up to aωk1

is connected, then
we proceed with the parameters up to aωk1

as described before. The parameters
aωl and aωk2

do not get assigned a value, but stay variable. However, all the
following parameters, i.e., aωj with j > k2, will be substituted by generic linear
equations in aωk2

, such that the quotient aωj/aωk2
is constant. The degree of the

new variety gives the multiplicity of the disconnected lattice path. The values and
linear equations are generic enough if the variety is of dimension 0.

Analogous to the computation of the multiplicity of the connected lattice paths,
we have to eliminate all those components of the resulting variety that contain
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monomials. For this we compute the primary decomposition and check the primary
components. We keep only those components that do not contain monomials. This
procedure works for all types of disconnected paths with one gap of length 1 as
described in Lemma 9.3.3 (2). It is illustrated in Algorithm 10.

Note that in the case of the disconnected paths we have either k2 = k1 + 1 with
l > k2 or l < k1, or k2 = k1 + 2 and l = k1 + 1.

Algorithm 10 Multiplicity of a disconnected lattice path
Input: M = (mi,j) ∈ Mat3×(N+2) filled with the lattice points of Ω, the index

k ∈ {0, . . .N +1} of the left out point, a segment [k1,k2] that stands for the gap
and N arbitrary values vi

Output: Multiplicity of a disconnected lattice path
1: Compute binodal ideal I via Algorithm 5 or Algorithm 7
2: if dimproj(I) =N −1 then
3: for each Generator g of I do
4: hg = g|aωi=vi∀i∈s′,aωj=aωk2

·vi∀j∈s′′ where s′ = {0, . . . ,k1} \ {l} and s′′ =
{k2 + 1, . . . ,N + 1}\{l,}

5: end for
6: J = 〈hg|g generator of I〉 the ideal in K[aωk2

,aωl ]
7: if dimaff (J) = 0 then
8: IP = 〈1〉
9: Compute primary decomposition (J1, . . . ,Js) of J
10: for i ∈ {1, . . . ,s} do
11: if Ji∩〈aωk2

·aωl〉= ∅ then
12: IP = IP ∩Ji
13: end if
14: end for
15: return path multiplicity deg(IP ).
16: end if
17: end if

Example 9.3.8. We briefly demonstrate the use of the OSCAR function path_mult
for disconnected paths. As an example we use the polytope Ω(21)

1,1,2,3 and the lattice
path Γ1,[3,4](Ω

(21)
1,1,2,3), see Figure 9.15.

As before for the connected paths, we only demonstrate the function when it is
applied directly to the polytope. We provide the polytope by its lattice points in a
matrix B. We can use the same vector v filled with the general values that we used
in Example 9.3.7 for the connected case.
julia > B = matrix(ZZ ,6,3,[0,0,0,0,0,1,0,1,0,1,0,0,1,1,1,1,2,3])
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9.4 Counting binodal polytopes of width 1 with 6 lattice points

[0 0 0]
[0 0 1]
[0 1 0]
[1 0 0]
[1 1 1]
[1 2 3]

We need to specify the lattice point that is left out of the path and the lattice point
that ends the gap. To indicate which is which, we use the boolean vector, which
for the connected case was [true,true].
For the path Γ1,[3,4](Ω

(21)
1,1,2,3), the left out point ω1 comes first, so the boolean

vector b has a first entry true, while the vector with the special lattice points p has
p[1]=2 (recall that OSCAR starts counting at 1). The gap of the path is between
the lattice points ω3 and ω4. The function needs as input only the endpoint of the
gap, so p[2]=5. That this is indeed the endpoint of a gap is indicated by setting
b[2]=false.
julia > p = [2,5];
julia > b = [true , false ];
julia > path_mult(B, p, b, v)
Affine dimension is 0
Path multiplicity is 2
(ideal (125* e1 - 96*e2, 1944* e2^2 - 125), 2)

As stated in Table 9.8, we see that mult(Γ1,[3,4](Ω
(21)
1,1,2,3)) = 2.

Remark 9.3.9. We note that the above constructions work even for invalid paths,
i.e., lattice paths that do not come from the a tropical surface satisfying point
conditions in Mikhalkin position. Hence, a non-zero multiplicity resulting from
these computations does not imply that the lattice path contributes to the total
count.
To check the validity of a lattice path, we refer to Remark 9.3.6.

9.4 Counting binodal polytopes of width 1 with 6 lattice
points

We have determined the 6 families of binodal polytopes with 6 lattice points of width
1 and we have collected information on the lattice paths and their multiplicities in
the previous sections. In this section we are ready to present the main results of this
chapter: We ascertain the valid lattice paths for each of the 6 families of binodal
polytopes, compute their multiplicities and the degree of the binodal varieties for
small values and pose general conjectures on the multiplicities of the lattice paths
and the degrees of the binodal varieties in dependence of the parameters of the
family.
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Chapter 9 Binodal polytopes

We consider each family separately in its own subsection. The procedure will be
similar for all 6 cases: First, we exclude specific cases for the lattice paths according
to Lemma 9.3.3. Then we go through all remaining possible lattice paths and
determine which of these are valid. Finally, we present the conjecture based on the
computed data of lattice path multiplicities and degrees of binodal varieties. Each
conjecture is accompanied by a table presenting the cases for which the conjecture
could be verified using OSCAR, and on which the conjecture is based.
Remark 9.4.1. Please note that the validity of a lattice path depends highly on the
ordering induced on the lattice points of the polytope by the point conditions on
the surface. When we have points in Mikhalkin position we have fixed the tropical
points on a line of direction (1,η,η2) with growing distances (Definition 7.2.1).

This is important to keep in mind when we consider a different IUA-representative
of a binodal polytope family, or, in other words, when we consider a polytope of
one of the binodal families that has been transformed by affine translation and
actions of SL3(Z). If we can determine the transformation and apply it to the
direction vector (1,η,η2) of the line with the tropical point conditions and count
with these new point conditions, we obtain the same lattice paths and multiplicities
as before. If that is for some reason not possible, for example because the polytope
is part of a larger subdivision and we want to keep the original point conditions, as
will be the case in Chapter 10, we have to recompute the valid lattice paths and
their point conditions.
From now on, we assume that the points our surfaces pass through are in

Mikhalkin position.

9.4.1 Polytope family 8

Ω(8)
a,b =

0 0 0 0 1 1
0 1 1 2 0 a
0 1 2 1 0 b


gcd(a,b) = 1, 2b 6= a, 0< b < a

0

1

2

3

4

5

Ω(8),<
a,b where 2b < a

0

1

2

3

4

5

Ω(8),>
a,b where 2b > a

Figure 9.2: Polytope family 8

Recall, that for each polytope family in Table 9.1 the edge-vertex combinatorics
remains constant across different choices of parameters, except for polytope family
8, where there are two cases, depending on whether 2b > a or 2b < a. This is
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9.4 Counting binodal polytopes of width 1 with 6 lattice points

significant, because the possible lattice paths only depend on the ordering of the
vertices and on the existence of edges between the vertices. See Figure 9.2 to see
the two different polytope types. We observe that for 2b < a there is an edge from
ω0 to ω5, while for 2b > a we see instead an edge from ω3 to ω4.

We now investigate the possible lattice paths for this polytope family. Wherever
necessary we distinguish between the two subfamilies of family 8 by using the
following notation:

Ω(8),<
a,b stands for a polytope of family 8 where 2b < a.

Ω(8),>
a,b stands for a polytope of family 8 where 2b > a.

We write Ω(8)
a,b if it is not necessary to make a difference between the two subtypes.

Lemma 9.4.2. For all polytopes of family 8 with lattice points as in Figure 9.1,
only lattice paths connected from 0 to 5 are possible.

Recall that the lattice paths are induced by point conditions in Mikhalkin position
(Definition 7.2.1).

Proof. Let Ω(8)
a,b be a polytope of family 8. Without loss of generality, we can

assume that the surface S dual to the polytope has a unique vertex at (0,0,0).
The direction vector of the line L on which the points of the point condition lie is
(1,η,η2) with 0< η� 1.

In the following, we use the notation ·∨ as introduced in Corollary 2.1.15 to
denote the dual object under the duality connection between the Newton polytope
and the tropical surface.
There can only exist disconnected lattice paths for Ω(8)

a,b if the line L, on which
the points from the point conditions are distributed, intersects with the tropical
surface S more than 3 times; see Lemma 9.3.3. Label the lattice points of the
polytope with ω0, ω1, ω2, ω3, ω4 and ω5. The lattice point ω1 is then never a vertex
of the polytope. Therefore, a tropical surface with support Ω(8)

a,b divides R3 into
only five 3-dimensional regions. For a path not connected from 0 to 5, the line
L must pass through all five regions. In the proof of Proposition 9.4.3, the rays
generating the regions are computed (compare Remark 9.3.6 and Example 2.2.20).
We observe that if the line L passes through ω∨0 , ω∨2 , ω∨3 , the remaining ray of
L is contained in the {z > 0,y > 0} quadrant of R3. However, for each polytope
of family 8, ω∨4 ∩{z > 0,y > 0}= ∅ (compare with the proof of Proposition 9.4.3).
Thus, L cannot pass through all five 3-dimensional regions R3 \S.

Proposition 9.4.3. The lattice paths depicted in Figures 9.4 resp. 9.5 are the only
possible lattice paths for the polytopes in family 8 with 2b < a resp. 2b > a.
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0

1

2

3

4

5

(a) Exemplary polytope and dual hypersur-
face for family number 8 with 2b < a.

0

1

2

3

4

5

(b) Exemplary polytope and dual hypersur-
face for family number 8 with 2b > a.

Figure 9.3: The two types of polytope family 8 with exemplary polytope and its
dual hypersurface for a= 3 and b= 1 resp. b= 2.

Proof. By Lemma 9.3.1 we know that the lattice path has to run along the edges.
Further, we know that the lattice path has to be connected from 0 to 5, as this
follows from Lemma 9.4.2, and that ω1 = (0,1,1) can never be part of the path.
Since the Ω(8),<

a,b and Ω(8),>
a,b have different edges, we need to distinguish the two

subtypes in the remainder of this proof.
For Ω(8),<

a,b the previous arguments limit the possible cases to all lattice paths
depicted in Figure 9.4. For Ω(8),>

a,b the previous arguments limit the possible cases
to all lattice paths depicted in Figure 9.5.

It remains to check for both subtypes whether all the lattice paths are valid. We
do this using the methods described in Remark 9.3.6:

We examine each possible lattice path through the vertices of the two subtypes
of the polytope family and check whether it is possible for a line to pass through
the corresponding regions and through points in Mikhalkin position. This is done
by choosing general points (0,0,0), (1,η,η2), (λ,λη,λη2), 0< η� 1� λ and letting
(x,y,z) be the vertex of the tropical surface. This gives rise to 9 equations, one for
each coordinate of each point, asserting that the point is contained in the claimed
cell of the tropical surface. These equations are given in 6 variables corresponding
to the coefficients on the rays and the 3 variables x,y,z. Solving these equations
either results in a solution or a contradiction.
Recall, that we use the notation ·∨ to indicate dual objects under the duality

between the subdivision of the Newton polytope (which in our case is trivial) and
the tropical surface S and the 3-dimensional regions of R3 \S. In particular, for a
vertex V of the polytope V ∨ denotes the 3-dimensional region of R3 \S dual to V .

For a polytope Ω(8)
a,b we know that its lattice points are given by ω0 = (0,0,0),

ω1 = (0,1,1), ω2 = (0,1,2), ω3 = (0,2,1), ω4 = (1,0,0), and ω5 = (1,a,b). The rays
defining the dual regions are different depending on 2b > a or 2b < a because they
depend on the edges of the polytope.
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0

1

2

3

4

5

(a) Γ1,4(Ω(8),<
a,b )

0

1

2

3

4

5

(b) Γ1,3(Ω(8),<
a,b )

Figure 9.4: Lattice paths for polytopes Ω(8),<
a,b of family 8 where 2b < a

In the following, let S denote the tropical surface dual to Ω(8)
a,b passing through 3

points p = (p1,p2,p3) in Mikhalkin position and let L denote the line on which the
points q = Trop(p) are distributed.
We first consider Ω(8),<

a,b , that means 2b < a. In this case we have the following
five 3-dimensional regions of R3 \S:

ω∨0 is defined by (−1,0,0),(0,−2,1),(2b−a,1,−2),(0,b,−a);
ω∨2 is defined by (−1,0,0),(0,−2,1),(3− (a+ b),1,1),(2a− b,− b,a);
ω∨3 is defined by (−1,0,0),(2b−a,1,−2),(3− (a+ b),1,1);
ω∨4 is defined by (0,−2,1),(0,b,−a),(2a− b,− b,a);
ω∨5 is defined by (2b−a,1,−2),(0,b,−a),(3− (a+ b),1,1),(2a− b,− b,a).

Now we consider the two paths depicted in Figure 9.4 separately.
The path Γ1,4(Ω(8),<

a,b ) passes through the 2-dimensional cells of S given by
(ω0ω2)∨, (ω2ω3)∨ and (ω3ω5)∨. This gives us the following set of equations:0

0
0

=

xy
z

+α1

−1
0
0

+α2

 0
−2
1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

−1
0
0

+β2

3− (a+ b)
1
1

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

3− (a+ b)
1
1

+γ2

2b−a
1
−2

 , γ1,γ2 > 0.

This system has the solutions

x= α1 = λ+γ1(a+ b−3) +γ2(a−2b)> 0,
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y = 2α2 = 2
3(η−η2)> 0,

z = 1
3(η2−η),

β1 = x−1 + (3− (a+ b))β2 > 0,

β2 = η− 2
3(η−η2)> 0,

γ1 = λη− (λ+ 1)1
3(η−η2)> 0,

γ2 = λ−1
3 (η−η2)> 0.

We know α1 = x > 0 since γ1,γ2 > 0, a > 2b and a+ b > 3. β1 > 0 since γ1 > β2.

It follows that the path Γ1,4(Ω(8),<
a,b ) is valid.

The path Γ1,3(Ω(8),<
a,b ) passes through the 2-dimensional cells of S given by

(ω0ω2)∨, (ω2ω4)∨ and (ω4ω5)∨. This gives us the following set of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
−2
1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
−2
1

+β2

2a− b
−b
a

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

2a− b
−b
a

+γ2

 0
b
−a

 , γ1,γ2 > 0.

This system of equations has the solution

x= α1 = 1−η−2η2 > 0,

y = 2α2 = λη+ bλ

2a− b(η+ 2η2)> 0,

z =−α2 =−1
2λη−

bλ

2(2a− b)(η+ 2η2),

β1 = λη

2 +η2 + λb−2a
2(2a− b)(η+ 2η2)> 0,

β2 = 1
2a− b(η+ 2η2)> 0,

γ1 = 1
2a− b(λ−1 +η+ 2η2)> 0,
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9.4 Counting binodal polytopes of width 1 with 6 lattice points

γ2 = λ−1
2a− b(1−η−2η2)> 0.

Thus, the path Γ1,3(Ω(8),<
a,b ) is valid.

Now we can consider the second subtype Ω(8),>
a,b , that means the cases where

2b > a. In this case we have the following five 3-dimensional regions of R3 \S:

ω∨0 is defined by (−1,0,0),(0,−2,1),(0,1,−2);
ω∨2 is defined by (−1,0,0),(0,−2,1),(3− (a+ b),1,1),(2a− b,− b,a);
ω∨3 is defined by (−1,0,0),(0,1,−2),(3− (a+ b),1,1),(2b−a,b,−a);
ω∨4 is defined by (0,−2,1),(0,1,−2),(2a− b,− b,a),(2b−a,b,−a);
ω∨5 is defined by (2a− b,− b,a),(3− (a+ b),1,1),(2b−a,b,−a).

As before we consider the three possible paths depicted in Figure 9.5 separately.

0
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3

4

5

(a) Γ1,4(Ω(8),>
a,b )

0

1

2

3

4

5

(b) Γ1,3(Ω(8),>
a,b )

0

1

2

3

4

5

(c) Γ1,2(Ω(8),>
a,b )

Figure 9.5: Lattice paths for polytopes Ω(8),>
a,b of family 8 where 2b > a

The path Γ1,4(Ω(8),>
a,b ) passes through the 2-dimensional cells of S given by (ω0ω2)∨,

(ω2ω3)∨ and (ω3ω5)∨. This gives us the following set of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
−2
1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

−1
0
0

+β2

3− (a+ b)
1
1

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

3− (a+ b)
1
1

+γ2

2b−a
b
−a

 , γ1,γ2 > 0.
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This system of equations has the solution

x= α1 = λ+ (a+ b−3)γ1− (2b−a)γ2 > 0,

y = 2α2 = η− 1
3(η+ 2η2)> 0,

z =−α2 = η2− 1
3(η+ 2η2),

β1 = x−1 +β2(3− (a+ b))> 0,

β2 = 1
3(η+ 2η2)> 0,

γ1 = (λ−1)(η− b

a+ b
(η−η2)) + η+ 2η2

3 > 0,

γ2 = 1
a+ b

(λ−1)(η−η2)> 0.

We have α1 > 0 since λ > γ2, and β1 > 0 holds since γ1−β2 > 0. Thus, the path
Γ1,4(Ω(8),>

a,b ) is valid.

The path Γ1,3(Ω(8),>
a,b ) passes through the 2-dimensional cells of S given by

(ω0ω2)∨, (ω2ω4)∨ and (ω4ω5)∨. This gives us the following set of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
−2
1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
−2
1

+β2

2a− b
−b
a

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

2a− b
−b
a

+γ2

2b−a
b
−a

 , γ1,γ2 > 0.

This system has the set of solutions

x= α1 = 1−η−2η2 > 0,

y = 2α2 = λη+ b

2a− b(λη+ 2λη2),

z =−α2 = λη2− a

2a− b(λη+ 2λη2)> 0,

β1 = λ−1
2a− b(aη+ bη2)> 0,
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β2 = 1
2a− b(η+ 2η2)> 0,

γ1 = 1
2a− b(λη+ 2λη2) + 1

a+ b
(λ−1)(1−η−2η2)> 0,

γ2 = λ−1
a+ b

(1−η−2η2)> 0.

We have β1 > 0 because a > (a− b)η. It follows that the path Γ1,3(Ω(8),>
a,b ) is valid.

Finally, we consider the path Γ1,2(Ω(8),>
a,b ). It passes through the 2-dimensional

cells of S given by (ω0ω3)∨, (ω3ω4)∨ and (ω4ω5)∨. We get the following equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
1
−2

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
1
−2

+β2

2b−a
b
−a

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

2a− b
−b
a

+γ2

2b−a
b
−a

 , γ1,γ2 > 0.

This system has the set of solutions

x= α1 = 1−2η−η2 > 0,

y =−α2 = λη− b

2b−a(2λη+λη2),

z = 2α2 = λη2 + a

2b−a(2λη+λη2)> 0,

β1 = a

2b−a(λ−1)η+ b

2b−a(λ−1)η2 > 0,

β2 = 1
2b−a(2η+η2)> 0,

γ1 = 1
a+ b

(λ−1)(1−2η−η2)> 0,

γ2 = 1
2b−a(2λη+λη2) + 1

a+ b
(λ−1)(1−2η−η2)> 0.

It follows that the path Γ1,2(Ω(8),>
a,b ) is valid.

Recall that for gcd(a,b) = 1 and 2b > a it follows that gcd(a,a− b) = 1 and
2(a−b)< a. Thus, Ω(8),>

a,b and Ω(8),<
a,a−b are both polytopes of family 8. The following
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conjecture postulates their connection.

Conjecture 9.4.4. The degree of the binodal variety for a polytope in family 8 with
parameters a and b satisfying 2b > a is equal to the degree of the binodal variety
for the polytope in family 8 with parameters a and a− b:

deg(BΩ(8),>
a,b

) = deg(BΩ(8),<
a,a−b

).

Furthermore, we have the following conjecture for the connection of the lattice
path multiplicities between Ω(8),>

a,b and Ω(8),<
a,a−b:

mult(Γ1,4(Ω(8),<
a,a−b)) = mult(Γ1,4(Ω(8),>

a,b )),

mult(Γ1,3(Ω(8),<
a,a−b)) = mult(Γ1,3(Ω(8),>

a,b )) +mult(Γ1,2(Ω(8),>
a,b )),

mult(Γ1,3(Ω(8),>
a,b )) = 1

2(mult(Γ1,3(Ω(8),<
a,a−b)) +mult(Γ1,4(Ω(8),<

a,a−b))),

mult(Γ1,2(Ω(8),>
a,b )) = mult(Γ1,3(Ω(8),>

a,b ))−mult(Γ1,4(Ω(8),>
a,b )).

This conjecture is verified up to b < a≤ 7 by the computations as described in
Section 9.3.2 executed with the OSCAR code in [Gei22], which can also be found
in Appendix B.2. The results of this computation are collected in Table 9.3.
Remark 9.4.5 explains how to read the table.

b\a 3 4 5 6 7
1 8 20 24 56 80

3+5 6+14 6+18 12+44 15+65
2 8 x 33 x 60

3+(4+1) 9+24 12+48
3 x 20 33 x 70

6+(10+4) 9+(21+3) 15+55
4 x x 24 x 70

6+(12+6) 15+(50+5)
5 x x x 56 60

12+(28+16) 12+(36+12)
6 x x x x 80

15+(40+25)
Table 9.3: The degree of the binodal variety and the multiplicities of the lattice
paths for polytopes in family number 8. These were computed using [Gei22]. The
presentation is explained in Remark 9.4.5.
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9.4 Counting binodal polytopes of width 1 with 6 lattice points

Remark 9.4.5. We explain briefly how the data supporting Conjecture 9.4.4 is
displayed in Table 9.3. The table displays the computed results for both subtypes
of family number 8: The computed data for Ω(8),<

a,b can be found in the white cells,
the gray cells belong to Ω(8),>

a,b . To highlight the the border between the cases
where 2b < a and 2b > a the cells with 2b = a are colored half in gray. The cells
corresponding to parameters (a,b) for which a ≤ b are not colored at all to keep
the table uncluttered.
Each cell contains the degree of the binodal variety deg(BΩ(8)

a,b

in its first line.
The second line shows the path multiplicities. They are presented as sums, to
demonstrate that they sum up to the degree of the binodal variety. The order of
the lattice path multiplicities in the sum is as follows:

• For Ω(8),<
a,b : mult(Γ1,4(Ω(8),<

a,b )) +mult((Γ)1,3(Ω(8),<
a,b )).

• For Ω(8),>
a,b : mult(Γ1,4(Ω(8),>

a,b )) +mult((Γ)1,3(Ω(8),>
a,b )) +mult((Γ)1,2(Ω(8),>

a,b )).

9.4.2 Polytope family 10

Ω(10)
a,b =

0 0 0 0 1 1
0 0 1 1 0 a
0 1 0 1 0 b


gcd(a,b) = 1, 0< b≤ a, a≥ 3

0

1

2

3

4

5

Figure 9.6: Polytope family 10

We investigate possible lattice paths for the polytope family number 10 and their
multiplicities.

Lemma 9.4.6. For all polytopes Ω(10)
a,b of family 10 with lattice points as in Fig-

ure 9.1, only lattice paths connected from 0 to 5 are possible.

Proof. We proceed similarly to the proof of Lemma 9.4.2. Let S be the surface
dual to Ω(10)

a,b . We translate S such that the vertex is at (0,0,0). The direction
vector of the line L on which the points of the point condition lie is (1,η,η2) with
0< η� 1.

Recall the notation ·∨ for the dual object under the duality connection between
the Newton polytope and the tropical surface (Corollary 2.1.15).
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0

1

2

3

4

5

(a) Γ2,4(Ω(10)
a,b )

0

1

2

3

4

5

(b) Γ2,3(Ω(10)
a,b )

0

1

2

3

4

5

(c) Γ1,4(Ω(10)
a,b )

0

1

2

3

4

5

(d) Γ1,3(Ω(10)
a,b )

Figure 9.7: Valid lattice paths for polytopes of family 10

For a lattice path which is not connected from 0 to 5, the line L on which the
points q from the point conditions are distributed intersects with the tropical
surface more than 3 times, e.g. if the line passes through more than four of the
3-dimensional regions of R3 \S.

The vertices of Ω(10)
a,b are ω0 = (0,0,0), ω1 = (0,0,1), ω2 = (0,1,0), ω3 = (0,1,1),

ω4 = (1,0,0), ω5 = (1,a,b). In dependence of a,b we can determine the rays defining
the six regions into which the surface subdivides R3. We know that

ω∨0 is defined by (−1,0,0),(0,−1,0),(0,0,−1);
ω∨1 is defined by (−1,0,0),(0,0,1),(0,−1,0),(a,− b,a);
ω∨2 is defined by (−1,0,0),(0,0,−1),(−a+ 1,1,0),(b,b,−a);
ω∨3 is defined by (−1,0,0),(0,0,1),(−a+ 1,1,0);
ω∨4 is defined by (0,−1,0),(0,0,−1),(b,b,−a),(a,− b,a);
ω∨5 is defined by (0,0,1),(−a+ 1,1,0),(b,b,−a)(a,− b,a).

Since we know that a,b > 0, we can make containment statements for the 3-cells
dual to the vertices with respect to the quadrants of R3: We have ω∨1 ⊂{y < 0,z > 0}
and ω∨2 ⊂ {y > 0,z < 0}, so we know that L can only pass through one of them.
Moreover, ω∨3 ⊂ {y > 0,z > 0} and ω∨4 ∩{y > 0} ⊂ {z < 0} while ω∨4 ∩{z > 0} ⊂
{y < 0}, so again L can only pass through one of these regions. It follows that
L can pass at most through four of the six 3-dimensional regions defined by the
tropical surface. Hence, the claim follows with Lemma 9.3.3.

Remark 9.4.7. Under IUA-transformations, polytopes of family 10 can be brought
into a position where the lattice points are distributed 3+3 between two floors. We
will see this position in Section 10.1.1. As the argument in the proof of Lemma 9.4.6
depends on the exact position of the vertices under transformation, this case has
to be checked independently. However, an analysis using the same tools as above
shows that there are still no disconnected lattice paths possible.

Proposition 9.4.8. The lattice paths depicted in Figures 9.7 are the only pos-
sible lattice paths for the polytopes in family 10 in the IUA-representation as in
Figure 9.6.
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9.4 Counting binodal polytopes of width 1 with 6 lattice points

Proof. From Lemma 9.4.6 we know that any possible lattice path has to be con-
nected from 0 to 5, and by Lemma 9.3.1 we know that the lattice path has to run
along the edges of the polytope. This limits the possibilities to the four cases in
Figure 9.7. Similarly to the proof of Proposition 9.4.3, we check the validity of
the lattice paths by using the technique from Remark 9.3.6. In the following let
S denote the tropical surface dual to Ω(10)

a,b passing through points in Mikhalkin
position. Let L denote the line on which the points q = Trop(p) are distributed.
To this purpose we choose the points q1 = (0,0,0), q2 = (1,η,η2), q3 = (λ,λη,λη2)
with 0< η� 1� λ and let (x,y,z) be the vertex of the tropical surface.

For polytopes Ω(10)
a,b we know that its lattice points are given by ω0 = (0,0,0),

ω1 = (0,0,1), ω2 = (0,1,0), ω3 = (0,1,1), ω4 = (1,0,0), and ω5 = (1,a,b). Recall the
regions of R3 \S from the proof of Lemma 9.4.6.

We have to set up the linear systems for each path in Figure 9.7 and prove that
they have a solution. The path Γ2,4(Ω(10)

a,b ) passes through the 2-dimensional cells
of S given by (ω0ω1)∨, (ω1ω3)∨ and (ω3ω5)∨. We obtain the following system of
linear equations: 0

0
0

=

xy
z

+α1

−1
0
0

+α2

 0
−1
0

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

−1
0
0

+β2

0
0
1

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

0
0
1

+γ2

−a+ 1
1
0

 , γ1,γ2 > 0.

This system has the solution:

x= α1 = λ+ (a−1)(λ−1)η > 1> 0,
y = α2 = η > 0,
z = 0,
β1 = α1−1> 0,
β2 = η2 > 0,
γ1 = λη2 > 0,
γ2 = (λ−1)η > 0,

which satisfies all the conditions. Therefore the path Γ2,4(Ω(10)
a,b ) is valid.
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The path Γ2,3(Ω(10)
a,b ) passes through the 2-dimensional cells of S given by (ω0ω1)∨,

(ω1ω4)∨ and (ω4ω5)∨. We obtain the following system of linear equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
−1
0

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
−1
0

+β2

 a
−b
a

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

 b
b
−a

+γ2

 a
−b
a

 , γ1,γ2 > 0.

This system has the solution:

x= α1 = 1−η2 > 0,

y = α2 = λη(1 + b

a
η)> 0,

z = 0,

β1 = λη(1 + b

a
η)−η− b

a
η2 > 0,

β2 = η2

a
> 0,

γ1 = 1
b

(λ−1 +η2−γ2a)> 0,

γ2 = b

a+ b
(1
b

(λ−1) + 1
a

(λ+ a

b
)η2)> 0.

Therefore, the path Γ2,3(Ω(10)
a,b ) is valid.

The path Γ1,4(Ω(10)
a,b ) passes through the 2-dimensional cells of S given by (ω0ω2)∨,

(ω2ω3)∨ and (ω3ω5)∨. We obtain the following system of linear equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
0
−1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

−1
0
0

+β2

−a+ 1
1
0

 , β1,β2 > 0,
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 λ
λη
λη2

=

xy
z

+γ1

0
0
1

+γ2

−a+ 1
1
0

 , γ1,γ2 > 0.

This system has the solution:

x= α1 = λ+ (a−1)λη > 0,
y = 0,
z = α2 = η2 > 0,
β1 = λ−1 + (a−1)(λ−1)η > 0,
β2 = η > 0,
γ1 = (λ−1)η2 > 0,
γ2 = λη > 0.

Therefore, the path Γ1,4(Ω(10)
a,b ) is valid.

The path Γ1,3(Ω(10)
a,b ) passes through the 2-dimensional cells of S given by (ω0ω2)∨,

(ω2ω4)∨ and (ω4ω5)∨. We obtain the following system of linear equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
0
−1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
0
−1

+β2

 b
b
−a

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

 b
b
−a

+γ2

 a
−b
a

 , γ1,γ2 > 0.

This system has the solution:

x= α1 = 1−η > 0,
y = 0,

z = α2 = a

b
λη+λη2 > 0,

β1 = a

b
(λ−1)η+ (λ−1)η2 > 0,

β2 = η

b
> 0,

γ1 = λη+γ2b

b
> 0,
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γ2 = λ(1−η) +η−1
a+ b

> 0.

Therefore, the path Γ1,3(Ω(10)
a,b ) is valid.

Now that we know that all lattice paths in Figure 9.7 are valid, we can compute
the path multiplicities by using OSCAR (see Section 9.3.2 and [Gei22]). From the
results depicted in Table 9.4 we worked out the following conjecture.

Conjecture 9.4.9. For polytopes Ω(10)
a,b of family number 10 as in Figure 9.6 where

gcd(a,b) = 1, 0< b≤ a and a≥ 3, we have the following conjecture about the degree
of the binodal variety and the path multiplicities:

deg(BΩ(10)
a,b

) = (a−2)(a+ b+ 2),

mult(Γ2,4(Ω(10)
a,b )) = a−2,

mult(Γ2,3(Ω(10)
a,b )) = a(a−2),

mult(Γ1,4(Ω(10)
a,b )) = a−2,

mult(Γ1,3(Ω(10)
a,b )) = b(a−2).

This conjecture is verified up to a ≤ 7 and b ≤ 4 by using the OSCAR code
[Gei22] as in Appendix B.2. The values for these cases are depicted in Table 9.4.
Remark 9.4.10 explains the presentation of the data in the table.

b\a 3 4 5 6 7
1 6 14 24 36 50

1+3+1+1 2+8+2+2 3+15+3+3 4+24+4+4 5+35+5+5
2 7 x 27 x 55

1+3+1+2 3+15+3+6 5+35+5+10
3 x 18 30 x 60

2+8+2+6 3+15+3+9 5+35+5+15
4 x x 33 x 65

3+15+3+12 5+35+5+20
5 x x x 52 -

4+24+4+20
Table 9.4: Verified path multiplicities and degree of binodal variety for polytope
family number 10 as computed using [Gei22] in OSCAR. The case a= 7, b= 5 did
not terminate. See Remark 9.4.10 for more explanations on the data.

222



9.4 Counting binodal polytopes of width 1 with 6 lattice points

Remark 9.4.10. The data supporting Conjecture 9.4.9 displayed in Table 9.4 can be
read as follows: The first line in each cell states the degree of the binodal variety
deg(BΩ(10)

a,b

). The second line in each cell shows how the path multiplicities partition
the binodal degree. The order of the summands is as follows:

mult(Γ2,4(Ω(10)
a,b )) +mult(Γ2,3(Ω(10)

a,b )) +mult(Γ1,4(Ω(10)
a,b )) +mult(Γ1,3(Ω(10)

a,b )).

9.4.3 Polytope family 13

Ω(13)
a,b =

0 0 0 0 1 1
0 1 1 2 0 a
0 0 1 0 0 b


gcd(a,b) = 1, 0< b < a, a+ b≥ 5

0 1

2

3
4

5

Figure 9.8: Polytope family 13

We investigate possible lattice paths for the polytope family number 13 and their
multiplicities.

Lemma 9.4.11. For all polytopes of family 13 with lattice points as in Figure 9.1,
only lattice paths connected from 0 to 5 are possible.

Proof. The proof runs along the same lines as for polytope family 8. Let Ω(13)
a,b be

a polytope of family 13. Without loss of generality we can assume that the surface
S dual to the polytope has a unique vertex at (0,0,0). The direction vector of the
line L on which the points of the point condition lie is (1,η,η2) with 0< η� 1.

There can only exist disconnected lattice paths for Ω(13)
a,b if the line L, on which

the points from the point conditions are distributed, intersects with the tropical
surface S more than 3 times; see Lemma 9.3.3. Label the lattice points of the
polytope with ω0, ω1, ω2, ω3, ω4 and ω5 in the order as induced by v = (1,η,η2)
(Definition 7.2.3). We know by Proposition 9.1.10 that in order to be dual to a
binodal surface Ω(13)

a,b has the trivial subdivision, so the lattice point ω1 is never a
vertex of the subdivision. Therefore, a tropical surface with support Ω(13)

a,b divides
R3 into only five 3-dimensional regions. For a path not connected from 0 to 5, the
line L must pass through all five regions. We refer to the proof of Proposition 9.4.12
for the rays generating these regions.
Considering these we observe that if the line L passes through ω∨0 , ω∨2 and ω∨3 ,

the remaining ray of L is contained in the {z > 0,y > 0} quadrant of R3.
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For each polytope of family 13 we have

ω∨4 =
{
µ1

 0
0
−1

+µ2

 0
−1
1

+µ3

a− b−b
a

+µ4

 2b
b
−a

 |µi > 0∀i ∈ {1,2,3,4}
}
.

Assume µ1, µ2, µ3, µ4 > 0 determine a point in ω∨4 ∩{z > 0,y > 0}. It follows:

−µ2− bµ3 + bµ4 >0,
−µ1 +µ2 +aµ3−aµ4>0,

which implies the following two inequalities

bµ4 > µ2 + bµ3,

µ2 +aµ3 > µ1 +aµ4 > µ1 + a

b
µ2 +aµ3.

This in its turn implies µ2 > µ1 + a
bµ2, which contradicts µ1,µ2 > 0 since a

b > 1.
So ω∨4 ∩{z > 0,y > 0}= ∅. Thus, L cannot pass through all five 3-dimensional

regions R3 \S.

Proposition 9.4.12. The lattice paths depicted in Figure 9.9 are the only possible
lattice paths for the polytopes in family 13 with vertices as in Figure 9.8.

0 1

2

3
4

5

(a) Γ1,3(Ω(13)
a,b )

0 1

2

3
4

5

(b) Γ1,4(Ω(13)
a,b )

0 1

2

3
4

5

(c) Γ1,2(Ω(13)
a,b )

Figure 9.9: Valid lattice paths for polytopes of family number 13

Proof. The paths depicted in Figure 9.9 are all the possible lattice paths that
run along edges (Lemma 9.3.1), are connected from 0 to 5 and leave out ω1
(Lemma 9.4.11). Analogous to the proofs of Propositions 9.4.3 and 9.4.8 we prove
that the paths are valid by setting up the linear equation systems and computing
their solutions.
In the following let Ω(13)

a,b be a binodal polytope of family 13 and S the tropical
surface dual to the trivial subdivision of Ω(13)

a,b .
For polytopes of family 13 we know that ω0 = (0,0,0), ω1 = (0,1,0), ω2 = (0,1,1),

ω3 = (0,2,0), ω4 = (1,0,0), ω5 = (1,a,b). The 3-dimensional regions of R3 \S with
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vertex of the surface at (0,0,0) are given by the dual regions of the vertices:

ω∨0 is defined by (−1,0,0),(0,0,−1),(0,−1,1);
ω∨2 is defined by (−1,0,0),(0,−1,1),(a− b,− b,a),(2− (a+ b),1,1);
ω∨3 is defined by (−1,0,0),(0,0,−1),(2b,b,−a),(2− (a+ b),1,1);
ω∨4 is defined by (0,0,−1),(0,−1,1),(a− b,− b,a),(2b,b,−a);
ω∨5 is defined by (2b,b,−a),(2− (a+ b),1,1),(a− b,− b,a).

Assume S passes through points in Mikhalkin position. We fix these points as
(0,0,0), (1,η,η2), (λ,λη,λη2), where λ� 1� η > 0. Let L denote the line on which
these points are distributed. For the above regions, this means that we have to
add the vertex (x,y,z) of S to translate the cones to their correct position.

Now we check that the paths in Figure 9.9 are valid.

The path Γ1,4(Ω(13)
a,b ) passes through the 2-dimensional cells of S given by (ω0ω2)∨,

(ω2ω3)∨ and (ω3ω5)∨. This gives us the following set of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
−1
1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

−1
0
0

+β2

2− (a+ b)
1
1

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

2− (a+ b)
1
1

+γ2

 2b
b
−a

 , γ1,γ2 > 0.

This system has the solutions

x= α1 = λ+ (a+ b−2)λη+ η−η2

2 (2− (a+ b)−2(λ−1)b)> 0,

y = α2 = η−η2

2 > 0,

z =−y,
β1 = x−1 + (2− (a+ b))β2 > 0,

β2 = η+η2

2 > 0,

γ1 = λη− η−η
2

2 − b

a+ b
(λ−1)(η−η2)> 0,
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γ2 = 1
a+ b

(λ−1)(η−η2)> 0.

To see that β1 > 0, we substitute the values for x and β2 and observe that negative
summands only appear for terms with η or η2. Since λ� 1� η > 0, it follows that
β1 > 0. It follows that the path Γ1,4(Ω(13)

a,b ) is valid.

The path Γ1,3(Ω(13)
a,b ) passes through the 2-dimensional cells of S given by (ω0ω2)∨,

(ω2ω4)∨ and (ω4ω5)∨. This gives us the following set of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
−1
1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
−1
1

+β2

a− b−b
a

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

 2b
b
−a

+γ2

a− b−b
a

 , γ1,γ2 > 0.

This system has the solutions

x= α1 = 1−η−η2 > 0,

y = α2 = λη+ b

a− b
(λη+λη2)> 0,

z = λη2− a

a− b
(λη+λη2),

β1 = (λ−1)(η+ b

a− b
(η+η2))> 0,

β2 = 1
a− b

(η+η2)> 0,

γ1 = 1
a+ b

(λ−1)(1−η−η2)> 0,

γ2 = 1
a− b

(λη+λη2) + 1
a+ b

(λ−1)(1−η−η2)> 0.

It follows that the path Γ1,3(Ω(13)
a,b ) is valid.

The path Γ1,2(Ω(13)
a,b ) passes through the 2-dimensional cells of S given by (ω0ω3)∨,
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(ω3ω4)∨ and (ω4ω5)∨. This gives us the following set of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
0
−1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
0
−1

+β2

 2b
b
−a

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

 2b
b
−a

+γ2

a− b−b
a

 , γ1,γ2 > 0.

This system has the solutions

x= α1 = 1−2η > 0,
y = 0,

z = α2 = λη(a
b

+η)> 0,

β1 = a

b
(λ−1)η+ (λ−1)η2 > 0,

β2 = 1
b
η > 0,

γ1 = 1
b
λη+ 1

a+ b
(λ−1)(1−2η)> 0,

γ2 = 1
a+ b

(λ−1)(1−2η)> 0.

It follows that the path Γ1,2(Ω(13)
a,b ) is valid.

We can now compute the multiplicities of the valid lattice paths for binodal
polytopes of family 13. We do this in the same way as for the other polytope
families: We use the OSCAR functions which are based on Algorithms 9 and 10 from
Section 9.3.2. The functions are displayed in Appendix B.2 and are available on
GitHub1, see [Gei22].

Conjecture 9.4.13. For polytopes Ω(13)
a,b of family number 13 as in Figure 9.8

where gcd(a,b) = 1, 0< b < a and a+ b≥ 5, we have the following conjecture about
the degree of the binodal variety and the path multiplicities.

1https://github.com/AlheydisGeiger/Code-Binodal-Surfaces
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If a and b have different parities, we conjecture

deg(BΩ(13)
a,b

) = 1
2(a2−a+ b2− b) +ab−3,

mult(Γ1,4(Ω(13)
a,b )) = a+ b−3,

mult(Γ1,3(Ω(13)
a,b )) = 1

2(a2−3a− b2 + 3b),

mult(Γ1,2(Ω(13)
a,b )) = b(a+ b−3).

If a and b are both odd, we conjecture

deg(BΩ(13)
a,b

) = 1
2(a2−2a+ b2−2b) +ab−4,

mult(Γ1,4(Ω(13)
a,b )) = a+ b−4,

mult(Γ1,3(Ω(13)
a,b )) = 1

2(a2−4a− b2 + 4b),

mult(Γ1,2(Ω(13)
a,b )) = b(a+ b−4).

This conjecture is verified up to a≤ 9 and b≤ 8 by using the OSCAR code [Gei22],
also displayed in Appendix B.2.
Remark 9.4.14. The data supporting Conjecture 9.4.13 displayed in Table 9.5 can
be read as follows: The first line in each cell states the degree of the binodal variety
deg(BΩ(13)

a,b

). The second line in each cell shows how the path multiplicities partition
the binodal degree. The order of the summands is as follows:

mult(Γ1,4(Ω(13)
a,b )) +mult(Γ1,3(Ω(13)

a,b )) +mult(Γ1,2(Ω(13)
a,b )).
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Chapter 9 Binodal polytopes

9.4.4 Polytope family 14

Ω(14)
a,b =

0 0 0 0 1 1
0 1 1 2 0 b
0 0 1 0 0 a


gcd(a,b) = 1, 0< b < a, a+ b≥ 5

0 1

2

3
4

5

Figure 9.10: Polytope family 14

We investigate possible lattice paths for the polytope family number 14 and their
multiplicities.

Lemma 9.4.15. For all polytopes of family 14 with lattice points as in Figure 9.1,
only lattice paths connected from 0 to 5 are possible.

In the following, we use the notation ·∨ as introduced in Corollary 2.1.15 to
denote the dual object under the duality connection between the Newton polytope
and the tropical surface.

Proof. The proof runs along the same lines as for polytope family 8. Let Ω(14)
a,b be

a polytope of family 14. Without loss of generality we can assume that the surface
S dual to the polytope has a unique vertex at (0,0,0). The direction vector of the
line L on which the points of the point condition lie is (1,η,η2) with 0< η� 1.

There can only exist disconnected lattice paths for Ω(14)
a,b if the line L, on which

the points from the point conditions are distributed, intersects with the tropical
surface S more than 3 times; see Lemma 9.3.3. Label the lattice points of the
polytope with ω0, ω1, ω2, ω3, ω4 and ω5 in the order as induced by v = (1,η,η2)
(Definition 7.2.3). We know by Proposition 9.1.10 that in order to be dual to a
binodal surface Ω(14)

a,b has the trivial subdivision, so the lattice point ω1 is never a
vertex of the subdivision. Therefore, a tropical surface with support Ω(14)

a,b divides
R3 into only five 3-dimensional regions. For a path not connected from 0 to 5, the
line L must pass through all five regions. We refer to the proof of Proposition 9.4.16
for the rays generating these regions.
Considering these we observe that if the line L passes through ω∨0 , ω∨2 and ω∨3 ,

the remaining ray of L is contained in the {z > 0,y > 0} quadrant of R3.
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9.4 Counting binodal polytopes of width 1 with 6 lattice points

However, for each polytope of family 14 we have

ω∨4 =
{
µ1

 0
0
−1

+µ2

 0
−a
b

+µ3

2a
a
−b

 |µi > 0∀i ∈ {1,2,3}
}
.

Assume µ1, µ2, µ3 > 0 determine a point in ω∨4 ∩{z > 0,y > 0}. It follows:

−aµ2 +aµ3 > 0,
−µ1 + bµ2− bµ3 > 0.

The first inequality implies µ3 >µ2, which in combination with the second inequality
leads to µ1 < 0.
So ω∨4 ∩{z > 0,y > 0}= ∅. Thus, L cannot pass through all five 3-dimensional

regions R3 \S.
Proposition 9.4.16. The lattice paths depicted in Figure 9.11 are the only possible
lattice paths for the polytopes in family 14 with vertices as in Figure 9.10.
Proof. The proof is analogous to the proof of Proposition 9.4.12. The paths depicted
in Figure 9.11 are all the possible lattice paths that run along edges (Lemma 9.3.1),
are connected from 0 to 5 and leave out ω1 (Lemma 9.4.15). Analogous to the
proofs of Propositions 9.4.3, 9.4.8 and 9.4.12, we prove that the paths are valid by
setting up the linear equation systems and computing their solutions.
In the following let S denote the tropical surface dual to Ω(14)

a,b passing through
points q in Mikhalkin position. Let L denote the line on which the points q1 = (0,0,0),
q2 = (1,η,η2) and q3 = (λ,λη,λη2) are distributed.
For polytope Ω(14)

a,b we know that ω0 = (0,0,0), ω1 = (0,1,0), ω2 = (0,1,1), ω3 =
(0,2,0), ω4 = (1,0,0), ω5 = (1,b,a).

The 3-dimensional regions of R3 \S with vertex of the surface at (0,0,0) are given
by the dual regions to the vertices (Remark 9.3.6):

ω∨0 is defined by (−1,0,0),(0,0,−1),(0,−a,b),(b−a,−1,1);
ω∨2 is defined by (−1,0,0),(b−a,−1,1),(b−a,1,1);
ω∨3 is defined by (−1,0,0),(0,0,−1),(2a,a,− b),(b−a,1,1);
ω∨4 is defined by (0,0,−1),(0,−a,b),(2a,a,− b);
ω∨5 is defined by (b−a,−1,1),(2a,a,− b),(b−a,1,1),(0,−a,b).

Assume S passes through points in Mikhalkin position. We fix these points as
(0,0,0), (1,η,η2), (λ,λη,λη2), where λ� 1� η > 0. Let L denote the line on which
these points are distributed. For the above regions this means, that we have to
add the vertex (x,y,z) of S to translate the cones to their correct position.
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0 1

2

3
4

5

(a) Γ1,4(Ω(14)
a,b )

0 1

2

3
4

5

(b) Γ1,2(Ω(14)
a,b

Figure 9.11: Valid lattice paths for polytopes of family 14

Now we check that the paths in Figure 9.9 are valid.
The path Γ1,4(Ω(14)

a,b ) passes through the 2-dimensional cells of S given by (ω0ω2)∨,
(ω2ω3)∨ and (ω3ω5)∨. This gives us the following set of equations:0

0
0

=

xy
z

+α1

−1
0
0

+α2

b−a−1
1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

−1
0
0

+β2

b−a1
1

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

b−a1
1

+γ2

2a
a
−b

 , γ1,γ2 > 0.

This system has the solutions

x=λ+ 1
a+ b

((a− b)bλ+ (a− b)2

2 −2a(λ−1))η

+ 1
a+ b

((a− b)aλ− (a− b)2

2 + 2a(λ−1))η2,

y =α2 = η−η2

2 > 0,

z =−η+η2

2 ,

α1 =λ+ 1
a+ b

((a− b)b(λ−1)−2a(λ−1))η

+ 1
a+ b

((a− b)(aλ+ b) + 2a(λ−1))η2 > 0,
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β1 =λ−1 + 1
a+ b

((a− b)b(λ−1)−2a(λ−1))η

+ 1
a+ b

((a− b)a(λ−1) + 2a(λ−1))η2 > 0,

β2 =η+η2

2 > 0,

γ1 =( b

a+ b
λ+ a− b

2(a+ b))η+ ( a

a+ b
λ+ b−a

2(a+ b))η2 > 0,

γ2 = 1
a+ b

(λ−1)(η−η2)> 0.

It follows that the path Γ1,4(Ω(14)
a,b ) is valid.

The path Γ1,2(Ω(14)
a,b ) passes through the 2-dimensional cells of S given by (ω0ω3)∨,

(ω3ω4)∨ and (ω4ω5)∨. This gives us the following set of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
0
−1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
0
−1

+β2

2a
a
−b

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

2a
a
−b

+γ2

 0
−a
b

 , γ1,γ2 > 0.

This system has the solutions

x= α1 = 1−2η > 0,
y = 0,

z = α2 = λη2 + b

a
λη > 0,

β1 = (λ−1)(η2 + b

a
η)> 0,

β2 = η

a
> 0,

γ1 = 1
2a(λ−1 + 2η)> 0,

γ2 = 1
2a(λ−1) + 1

a
(1−λ)η > 0.

We can follow the positivity of the parameters by λ� 1� η > 0 and a > b > 0. It
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follows that the path Γ1,2(Ω(14)
a,b ) is valid.

b\a 3 4 5 6 7 8 9
1 x 10 12 28 32 54 60

2+8 2+10 4+24 2+28 6+48 6+54
2 8 x 24 x 48 x 80

2+6 4+20 6+42 8+72
3 x 20 24 x 48 72 x

4+16 4+20 6+42 8+64
4 x x 36 x 64 x 100

6+30 8+56 10+90
5 x x x 56 64 90 100

8+48 8+56 10+80 10+90
6 x x x x 80 x x

10+70
7 x x x x x 108 120

12+96 12+108
Table 9.6: Verified path multiplicities and degree of binodal variety for polytope
family number 14 as computed using [Gei22] in OSCAR. See Remark 9.4.18 on how
to read the table.

Knowing all the valid lattice paths for binodal polytopes of family 14, we can
compute their multiplicities, similarly as for the other polytope families. We use the
OSCAR functions based on Algorithms 9 and 10 from Section 9.3.2. The functions
are displayed in Appendix B.2 and are available on GitHub2, see [Gei22].

Conjecture 9.4.17. For polytopes Ω(14)
a,b of family number 14 as in Figure 9.10

where gcd(a,b) = 1, 0< b < a and a+ b≥ 5, we have the following conjecture about
the degree of the binodal variety and the path multiplicities.

If a and b have different parities, we conjecture

deg(BΩ(14)
a,b

) = (a+ 1)(a+ b−3),

mult(Γ1,4(Ω(14)
a,b )) = a+ b−3,

mult(Γ1,2(Ω(14)
a,b )) = a(a+ b−3).

2https://github.com/AlheydisGeiger/Code-Binodal-Surfaces
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If a and b are both odd, we conjecture

deg(BΩ(14)
a,b

) = (a+ 1)(a+ b−4),

mult(Γ1,4(Ω(14)
a,b )) = a+ b−4,

mult(Γ1,2(Ω(14)
a,b )) = a(a+ b−4).

This conjecture is verified up to a≤ 9 and b≤ 7 by using the OSCAR code [Gei22],
as displayed in Appendix B.2; see Table 9.6.
Remark 9.4.18. The data supporting Conjecture 9.4.17 displayed in Table 9.6 can
be read as follows: The first line in each cell states the degree of the binodal variety
deg(BΩ(14)

a,b

). The second line in each cell shows how the path multiplicities partition
the binodal degree. The order of the summands is as follows:

mult(Γ1,4(Ω(14)
a,b )) +mult(Γ1,2(Ω(14)

a,b )).

9.4.5 Polytope family 20

Ω(20)
a =

0 0 0 1 1 1
1 1 2 0 1 1
0 1 0 a 0 1


a > 3

0

1

2

3

4

5

Figure 9.12: Polytope family 20

We investigate possible lattice paths for the polytope family number 20 and their
multiplicities.

Lemma 9.4.19. For a tropical surface S dual to a binodal polytope Ω(20)
a of family

20 passing through points in Mikhalkin position, the line L on which the points are
distributed can pass through at most 5 of the 3-dimensional regions of R3 \S.

This implies that lattice paths as in Lemma 9.3.3 (3) cannot appear.

Proof. We have to prove that the line L, on which the points from the point
condition are distributed, cannot pass through all the regions of R3 \S. We can
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compute the regions of R3 \S as described in Remark 9.3.6. Let ωi denote the
lattice points of Ω(20)

a and assume the vertex of S is in (0,0,0).
A polytope of family 20 has the vertices ω0 = (0,1,0), ω1 = (0,1,1), ω2 = (0,2,0),

ω3 = (1,0,a), ω4 = (1,1,0), ω5 = (1,1,1). We can compute the cones ω∨1 and ω∨4 using
Remark 9.3.6. The generating rays are displayed in the proof of Proposition 9.4.20.
We observe that ω∨1 ⊂ {z > 0} and ω∨4 ⊂ {z < 0}. Thus, it immediately follows

that if our line L passes through ω∨1 it cannot pass through ω∨4 afterwards.

Next, we identify all valid lattice paths for binodal polytopes of family 20.

Proposition 9.4.20. For the polytopes of family 20 with lattice points as in
Figure 9.12, we can only have the lattice paths shown in Figure 9.13.

0

1

2

3

4

5

(a) Γ3,4(Ω(20)
a )

0

1

2

3

4

5

(b) Γ2,4(Ω(20)
a )

0

1

2

3

4

5

(c) Γ1,3(Ω(20)
a )

0

1

2

3

4

5

(d) Γ1,2(Ω(20)
a )

0

1

2

3

4

5

(e) Γ0,4(Ω(20)
a )

Figure 9.13: Valid lattice paths for polytopes of family number 20. The vertex ω0
in the path Γ0,4(Ω(20)

a ) is colored in gray, since the line on which the points are
distributed passes through its dual region.

Proof. Let S be a tropical surface dual to the trivial subdivision of a binodal
polytope Ω(20)

a of family number 20. We examine each possible lattice path through
the vertices of the two polytopes and check whether it is possible for a line to pass
through the corresponding regions and through points in Mikhalkin position. This
is done by choosing general points (0,0,0), (1,η,η2), (λ,λη,λη2), 0< η� 1� λ and
letting (x,y,z) be the vertex of the tropical surface. This gives rise to 9 equations,
one for each coordinate of each point, asserting that the point is contained in
the claimed cell of the tropical surface. This system of equations has 6 variables
corresponding to the coefficients on the rays and the 3 coordinate points x,y,z of the
vertex of S. Solving these equations either results in a solution or a contradiction.

For polytopes Ω(20)
a of family 20, we have the vertices ω0 = (0,1,0), ω1 = (0,1,1),

ω2 = (0,2,0), ω3 = (1,0,a), ω4 = (1,1,0), ω5 = (1,1,1). The 3-dimensional regions
defined by the tropical surface dual to this kind of polytope with vertex of the
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surface at (0,0,0) are given by the dual regions to the vertices:

ω∨0 defined by (−1,0,0),(0,0,−1),(−1,−1,0),(0,−a,−1);
ω∨1 defined by (−1,0,0),(−1,−1,0),(−a,1,1);
ω∨2 defined by (−1,0,0),(0,0,−1),(a−2,a−1,1),(−a,1,1),(1,1,0);
ω∨3 defined by (1,0,0),(−1,−1,0),(0,−a,−1),(−a,1,1),(a−2,a−1,1);
ω∨4 defined by (1,0,0),(0,0,−1),(0,−a,−1),(1,1,0);
ω∨5 defined by (1,1,0),(1,0,0),(a−2,a−1,1).

We know from Lemma 9.4.19 that a lattice path for Ω(20)
a has to come from a

line L containing the points in Mikhalkin position that intersects at most 5 of the
3-dimensional regions of R3 \S. Further, we recall from Lemma 9.3.1 that the
lattice path has to run along edges of the polytope. By taking into account that
we know from the proof of Lemma 9.4.19 that ω1 and ω4 are never part of a lattice
path together, we therefore obtain the following list of possible lattice paths which
we have to check for validity:

1. Γ[1,2],4(Ω(20)
a ),

2. Γ[2,3],4(Ω(20)
a ),

3. Γ0,4(Ω(20)
a ),

4. Γ4,5(Ω(20)
a ),

5. Γ3,4(Ω(20)
a ),

6. Γ2,4(Ω(20)
a ),

7. Γ1,4(Ω(20)
a ),

8. Γ1,3(Ω(20)
a ),

9. Γ1,2(Ω(20)
a ).

This list excludes the paths Γ1,[3,4](Ω
(20)
a ), Γ1,5(Ω(20)

a ) for the following reason:
If L passes through ω∨0 ,ω

∨
2 and ω∨3 , then we know that L passes in ω∨3 through

ω∨3 ∩{y > 0} ⊂ {z > 0}, since ω∨2 ⊂ {y > 0}. Then the line L cannot pass through
ω∨4 ⊂ {z < 0}.

We first consider the paths (1)-(4) for which the line L intersects with the tropical
surface more than 3 times, i.e., if the line passes through more than four of the
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3-dimensional regions into which the tropical surface subdivides R3. Then, we go
through the remaining connected paths one at a time.

Recall that λ� 1� η > 0, that these two parameters have to be independent of
each other, and that λ cannot have an upper bound while η is not allowed a lower
bound in order to ensure the genericity of the point conditions.

1. For Γ[1,2],4(Ω(20)
a ) the points qi are contained in the cells (ω0ω1)∨, (ω2ω3)∨,

(ω3ω5)∨ of the surface. We obtain the following system of 9 equations in 9
unknowns: 0

0
0

=

xy
z

+α1

−1
0
0

+α2

−1
−1
0

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

2−a
1
1

+β2

a−2
a−1

1

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

a−2
a−1

1

+γ2

1
0
0

 , γ1,γ2 > 0.

We solve from the first condition that z = 0, and therefore γ1 = λη2. Then,
the third condition yields y = λη(1− (a−1)η). Applying z = 0 to the second
equation, we obtain β1 = η2−β2 and consequently β2 = η

a−2(1−λ(1−η(a−
1))−η). But β2 has to be positive. This implies

λ <
1−η

1−η(a−1) .

However, to ensure the genericity of our points, there cannot be an upper
boundary to the value of λ.

2. For Γ[2,3],4(Ω(20)
a ) the points qi are contained in the cells (ω0ω1)∨, (ω1ω2)∨,

(ω3ω5)∨ of the surface. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

−1
−1
0

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

−1
0
0

+β2

2−a
1
1

 , β1,β2 > 0,
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 λ
λη
λη2

=

xy
z

+γ1

a−2
a−1

1

+γ2

1
0
0

 , γ1,γ2 > 0.

Similar as before, we conclude z = 0 and β2 = η2. It follows y = η− η2.
Applying the two solutions for y and z to the third equation of vectors, we
obtain two solutions for γ1, which coincide if λ = 1−η

1+η(1−a) where a is the
parameter from the polytope, η is from the direction vector (1,η,η2), with
η < 1

a and λ > a+ 1 is the distance for the third marked point. This implies
a condition on the exact value of λ which contradicts the general choice of
our points.

3. For Γ0,4(Ω(20)
a ) the points qi are contained in the cells (ω1ω2)∨, (ω2ω3)∨,

(ω3ω5)∨ of the surface. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

2−a
1
1

 , with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

2−a
1
1

+β2

a−2
a−1

1

 , with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

a−2
a−1

1

+γ2

1
0
0

 , with γ1,γ2 > 0.

This system has the solutions:

x= 1 + (λ−2)(η−η2)− (a−2)(λ−1)η2,

y = λ(η2− η−η
2

a−2 ),

z = λ(η2− η−η
2

a−2 ),

α1 = 1−2η+aη2 > 0,

α2 = λ(η−η
2

a−2 −η
2)> 0,

β1 = (λ−1)(η−η
2

a−2 −η
2)> 0,

β2 = η−η2

a−2 > 0,
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γ1 = λ
η−η2

a−2 > 0,

γ2 = (λ−1)(1−2η+aη2)> 0.

To show that α1 > 0 we use a−2≥ 1 and (a+2)η < 1. Solving the equations
does not produce contradictions, so the path Γ0,4(Ω(20)

a ) is valid.

4. For Γ4,5(Ω(20)
a ) the points qi are contained in the cells (ω0ω1)∨, (ω1ω2)∨,

(ω2ω3)∨ of the surface. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

−1
−1
0

 , with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

−1
0
0

+β2

2−a
1
1

 , with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

2−a
1
1

+γ2

a−2
a−1

1

 , with γ1,γ2 > 0.

This gives the following solution for γ1:

γ1 = λη2− (η−η2)(λ−1)
a−2 .

Then, γ1 > 0 if and only if λ+1<a. This contradicts the genericity conditions
of our points.

5. For Γ3,4(Ω(20)
a ) the points qi are contained in the cells (ω0ω1)∨, (ω1ω2)∨,

(ω2ω5)∨ of the surface. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

−1
−1
0

 , with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

−1
0
0

+β2

2−a
1
1

 , with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

a−2
a−1

1

+γ2

1
1
0

 , with γ1,γ2 > 0.
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This system has the solutions:

x= λ− (λ−1)η+ (λ−1)η2,

y = η−η2,

z = 0,
α1 = λ(1−η+η2)> 0,
α2 = η−η2 > 0,
β1 = (λ−1)(1−η+η2) + (2−a)η2 > 0,
β2 = η2 > 0,
γ1 = λη2 > 0,
γ2 = (λ−1)η+η2(1−aλ+λ)> 0.

As this solutions satisfy all the constrains, the path Γ3,4(Ω(20)
a ) is valid.

6. For Γ2,4(Ω(20)
a ) the points qi are contained in the cells (ω0ω1)∨, (ω1ω3)∨,

(ω3ω5)∨ of the surface. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

−1
−1
0

 , with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

−1
−1
0

+β2

2−a
1
1

 , with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

a−2
a−1

1

+γ2

1
0
0

 , with γ1,γ2 > 0.

This system has the solutions

x= 1 + (λ−1)η+ (λ−1)(1−a)η2,

y = λη(1− (a−1)η),
z = 0,
α1 = 1−η+η2(a−1)> 0,
α2 = λη(1− (a−1)η)> 0,
β1 = (λ−1)η+ (1−aλ+λ)η2 > 0,
β2 = η2 > 0,
γ1 = λη2 > 0,
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γ2 = (λ−1)(1−η+η2)− (a−2)η2 > 0.

It follows that the path Γ2,4(Ω(20)
a ) is valid.

7. For Γ1,4(Ω(20)
a ) the points qi are contained in the cells (ω0ω2)∨, (ω2ω3)∨,

(ω3ω5)∨ of the surface. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
0
−1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

2−a
1
1

+β2

a−2
a−1

1

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

a−2
a−1

1

+γ2

1
0
0

 , γ1,γ2 > 0.

The first equation implies that y = 0 and x,z > 0. The last equation however
implies that z = λη(η− 1

a−1). Since η < 1
a <

1
a−1 , it follows that z < 0, a

contradiction. So, this path is not valid.

8. For Γ1,3(Ω(20)
a ) the points qi are contained in the cells (ω0ω2)∨, (ω2ω4)∨,

(ω4ω5)∨ of the surface. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
0
−1

 , with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
0
−1

+β2

1
1
0

 , with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
1
0

+γ2

1
0
0

 , with γ1,γ2 > 0.

We obtain the following solutions:

x= 1−η,
y = 0,
z = λη2,

α1 = 1−η > 0,
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α2 = λη2 > 0,
β1 = (λ−1)η2 > 0,
β2 = η > 0,
γ1 = λη > 0,
γ2 = (λ−1)(1−η)> 0.

There are no contradictions, so the path Γ1,3(Ω(20)
a ) is valid.

9. For Γ1,2(Ω(20)
a ) the points qi are contained in the cells (ω0ω3)∨, (ω3ω4)∨,

(ω4ω5)∨ of the surface. We obtain the following system of 9 equations in 9
unknowns: 0

0
0

=

xy
z

+α1

−1
−1
0

+α2

 0
−a
−1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

1
0
0

+β2

 0
−a
−1

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
0
0

+γ2

1
1
0

 , γ1,γ2 > 0.

This system has the following solutions:

x= α1 = η−aη2 > 0,
y = η+a(λ−1)η2,

z = α2 = λη2 > 0,
α2 = λη2 > 0,
β1 = 1−η+aη2 > 0,
β2 = (λ−1)η2 > 0,
γ1 = λ(1−η+aη2)> 0,
γ2 = (λ−1)(η−aη2)> 0.

As there are no contradictions against positivity of the ray parameters or
genericity of the points, the path Γ1,2(Ω(20)

a ) is valid.

Now that we know all valid lattice paths for a polytope Ω(20)
a , we can determine
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their multiplicities using the OSCAR functions [Gei22]. The computed values are
arranged in Table 9.7

lattice path a= 4 a= 5 a= 6 a= 7
Γ3,4(Ω(20)

a ) 1 2 3 4
Γ2,4(Ω(20)

a ) 1 2 3 4
Γ1,3(Ω(20)

a ) 1 2 3 4
Γ1,2(Ω(20)

a ) 1 2 3 4
Γ0,4(Ω(20)

a ) 2 6 12 20
deg(B(Ω(20)

a )) 6 14 24 36
Table 9.7: Verified path multiplicities and degree of binodal variety for polytope
family number 20 as computed using OSCAR.

Conjecture 9.4.21. For binodal polytopes Ω(20)
a of family number 20 as in Fig-

ure 9.12 where a ≥ 4, we have the following conjecture about the degree of the
binodal variety and the path multiplicities.

deg(BΩ(20)
a

) = (a+ 2)(a−3),

mult(Γ3,4(Ω(20)
a )) = a−3,

mult(Γ2,4(Ω(20)
a )) = a−3,

mult(Γ1,3(Ω(20)
a )) = a−3,

mult(Γ1,2(Ω(20)
a )) = a−3,

mult(Γ0,4(Ω(20)
a )) = (a−2)(a−3).

This conjecture is verified up to a≤ 7.

9.4.6 Polytope family 21
We investigate possible lattice paths for the polytope family number 21 and their
multiplicities.

Lemma 9.4.22. For a tropical surface S dual to a binodal polytope Ω(21)
a,b,c,d of

family 21 passing through points in Mikhalkin position, the line L on which the
points are distributed can pass through at most five of the 3-dimensional regions
of R3 \S.

This implies that lattice paths as in Lemma 9.3.3 (3) cannot appear.
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Ω(21)
a,b =

0 0 0 1 1 1
0 0 1 0 a c
0 1 0 0 b d


ad− bc= 1, a,b,c,d > 0,
c+d > a+ b, c > a

0

1

2
3

4

5

Figure 9.14: Polytope family 21

Proof. The proof is similar to the proof of Lemma 9.4.19.
We have to show that the line L, on which the points from the point condition

are distributed, cannot pass through all the regions of R3 \S. For this we compute
the regions of R3 \S as described in Remark 9.3.6. Let ωi denote the lattice points
of Ω(21)

a,b,c,d and assume the vertex of S is in (0,0,0).
We have the vertices ω0 = (0,0,0), ω1 = (0,0,1), ω2 = (0,1,0), ω3 = (1,0,0), ω4 =

(1,a,b), ω5 = (1,c,d), where ad− bc= 1, c+d > a+ b, c > a and a, b, c, d > 0.
We can compute the cones ω∨1 and ω∨4 using Remark 9.3.6. The generating rays

are displayed in the proof of Proposition 9.4.23.
We observe that ω∨1 ⊂ {z > 0} and ω∨4 ⊂ {z < 0}. Thus, it immediately follows

that if our line L passes through ω∨1 it cannot pass through ω∨4 afterwards. Therefore,
the claim holds.

Proposition 9.4.23. For the polytopes of family 21 with lattice points as in
Figure 9.14 we can only have the lattice paths shown in Figure 9.15.

0

1

2
3

4

5

(a) Γ3,4(Ω(21)
a,b,c,d)

0

1

2
3

4

5

(b) Γ2,4(Ω(21)
a,b,c,d)

0

1

2
3

4

5

(c) Γ0,1(Ω(21)
a,b,c,d)

0

1

2
3

4

5

(d) Γ1,5(Ω(21)
a,b,c,d)

0

1

2
3

4

5

(e) Γ1,[3,4](Ω
(21)
a,b,c,d)

Figure 9.15: Valid lattice paths for polytopes of family 21. The vertices ω0 in the
path Γ0,1(Ω(21)

a,b,c,d) and ω5 in the path Γ1,5(Ω(21)
a,b,c,d) are colored in gray, since the

line on which the points are distributed passes through their dual region.
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Proof. This proof works the same way as the proof of Proposition 9.4.20.
Let S denote the tropical surface dual to a polytope of family 21. We start by

making a list of all possible lattice paths and check whether it is possible for a
line to pass through the corresponding regions and through points in Mikhalkin
position.
For this we choose general points q1 = (0,0,0), q2 = (1,η,η2), q3 = (λ,λη,λη2),

with 0< η� 1� λ and let (x,y,z) be the vertex of the tropical surface S. For each
lattice path this gives rise to 9 equations, one for each coordinate of each point
ensuring that the point is contained in the claimed cell of the tropical surface. We
have 6 variables corresponding to the coefficients on the rays and the 3 variables
x,y,z of the vertex of S. Solving these equations either results in a solution or a
contradiction.
Recall, that we use the notation ·∨ to indicate dual objects under the duality

between the subdivision of the Newton polytope (which in our case is trivial) and
the tropical surface S and the 3-dimensional regions of R3 \S. In particular, for a
vertex V of the polytope V ∨ denotes the 3-dimensional region of R3 \S dual to V .

Polytopes of family 21 have the vertices ω0 = (0,0,0), ω1 = (0,0,1), ω2 = (0,1,0),
ω3 = (1,0,0), ω4 = (1,a,b), ω5 = (1,c,d), where ad− bc= 1, c+d > a+ b, c > a and
a, b, c, d > 0. Thus, we obtain the following regions of R3 \S:

ω∨0 is defined by (−1,0,0),(0,−1,0),(0,0,−1);
ω∨1 is defined by (−1,0,0),(0,−1,0),(1− (d+ c),1,1),(c,−d,c);
ω∨2 is defined by (−1,0,0),(0,0,−1),(d− b−1,d− b,a− c),(1− (d+ c),1,1),(b,b,−a);
ω∨3 is defined by (0,−1,0),(0,0,−1),(1,0,0),(b,b,−a),(c,−d,c);
ω∨4 is defined by (1,0,0),(b,b,−a),(d− b−1,d− b,a− c);
ω∨5 is defined by (c,−d,c),(1− (d+ c),1,1),(1,0,0),(d− b−1,d− b,a− c).

We recall from Lemma 9.3.1 that the lattice path has to run along edges of the
polytope. Moreover, we know from Lemma 9.4.22 that a lattice path for Ω(21)

a,b,c,d has
to come from a line L containing the points in Mikhalkin position that intersects
at most 5 of the 3-dimensional regions of R3 \S.

We know from the proof of Lemma 9.4.22 that ω1 and ω4 are never part of a lattice
path together. Further, as ω∨1 ⊂ {z > 0}, ω∨2 ⊂ {y > 0}, and ω∨3 ∩{z > 0,y > 0}= ∅,
it is not possible for L to pass through ω∨1 , ω∨2 and ω∨3 . It follows that if a lattice
path is not connected from 0 to 5 (i.e., L intersects 5 of the 3-dimensional regions
of R3 \S), it has to contain ω4 and has to skip ω1.

We therefore obtain the following list of possible lattice paths which we have to
check for validity:

1. Γ1,[2,3](Ω
(21)
a,b,c,d),
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2. Γ1,[3,4](Ω
(21)
a,b,c,d),

3. Γ0,1(Ω(21)
a,b,c,d),

4. Γ1,5(Ω(21)
a,b,c,d),

5. Γ3,4(Ω(21)
a,b,c,d),

6. Γ2,4(Ω(21)
a,b,c,d),

7. Γ1,3(Ω(21)
a,b,c,d),

8. Γ1,2(Ω(21)
a,b,c,d).

This list excludes the path Γ1,4(Ω(21)
a,b,c,d) for the following reason: Since ω∨0 ⊂

{x < 0,y < 0,z < 0}, ω∨2 ⊂ {y > 0} and ω∨3 ⊂ {x > 0}, it follows that L passes
through ω∨3 ∩{x > 0,y > 0}. To pass from ω∨3 directly to ω∨5 , L has to pass through
R>0 · (1,0,0) +R>0 · (c,−d,c)⊂ {y < 0}. This is impossible since the direction of L
is (1,η,η2) with 1� η > 0.
As in the proof of Proposition 9.4.20 we go through the list of possible lattice

paths, set up the system of equations from the point conditions for each and check
if it is solvable under the given constraints.

1. For Γ1,[2,3](Ω
(21)
a,b,c,d) the points qi are contained in the 2-cells (ω0ω2)∨, (ω3ω4)∨

and (ω4ω5)∨. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
0
−1

 with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

1
0
0

+β2

 b
b
−a

 with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
0
0

+γ2

d− b−1
d− b
a− c

 with γ1,γ2 > 0.

The first two conditions lead to y = 0 and z = η2 + a·η
b . Inserting this into the

last condition we can solve for γ2 = λη
d−b and obtain another equation for z:

z = λ(η2 + c−a
d− b

η) ⇒ η2 + a ·η
b

= λ(η2 + c−a
d− b

η)
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⇒ 0 = (λ−1)η2 + (λc−a
d− b

− a
b

)η.

Since for the parameter condition ad− bc = 1 and d+ c > a+ b, it follows
that d− b > 0 so we do not divide by zero. For the genericity of our point
conditions, it is important that η and λ can be chosen independently of each
other. This is not satisfied by the above equation for all a,b,c,d. Thus, this
path is not valid for any polytope in family 21.

2. For Γ1,[3,4](Ω
(21)
a,b,c,d) the points qi are contained in the 2-cells (ω0ω2)∨, (ω2ω3)∨

and (ω4ω5)∨. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
0
−1

 with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
0
−1

+β2

 b
b
−a

 with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
0
0

+γ2

d− b−1
d− b
a− c

 with γ1,γ2 > 0.

We can compute the following solutions:

x= α1 = 1−η > 0,
y = 0,

z = α2 = λ(c−a
d− b

η+η2)> 0,

β1 = λ(c−a
d− b

η+η2)−η2− a
b
η > 0,

β2 = 1
b
η > 0,

γ1 = λ−1 +η+ (−1 + 1
d− b

)λη > 0,

γ2 = 1
d− b

λη > 0.

We can see β1 > 0 since c > a, d > b, λ� 1 so b(λ−1)(c−a)> 1. Solving for
all variables does not lead to a contradiction, so the path is valid.

3. For Γ0,1(Ω(21)
a,b,c,d) the points qi are contained in the 2-cells (ω2ω3)∨, (ω3ω4)∨
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and (ω4ω5)∨. We obtain the following system of equations:0
0
0

=

xy
z

+α1

 0
0
−1

+α2

 b
b
−a

 with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 b
b
−a

+β2

1
0
0

 with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
0
0

+γ2

d− b−1
d− b
a− c

 with γ1,γ2 > 0.

Using ad− bc∗1, we can solve this system of equations as follows:

x= (1− b(c−a)(λ−1))η+ (1−λ)b(d− b)η2,

y = (1− b(c−a)(λ−1))η+ (1−λ)b(d− b)η2,

z = a(c−a)(λ−1)η+ (a(d− b)λ− b(c−a))η2,

α1 = a

b
η+η2 > 0,

α2 = ((c−a)(λ−1)− 1
b

)η+ (λ−1)(d− b)η2 > 0,

β1 = (λ−1)((c−a)η+ (d− b)η2)> 0,
β2 = 1−η > 0,
γ1 = λ+ (λ(a−1)−a)η+ (λ−1)bη2 > 0,
γ2 = (λ−1)(aη+ bη2)> 0.

We see that α2 > 0 because λ� 1� η > 0, so λ−1> 1
bη(d−b) . When fixing

the point conditions we choose η first. After fixing η we are not allowed to
have upper bounds for λ. This lower bound for λ in dependence of η does
not contradict our genericity conditions. So the path Γ0,1(Ω(21)

a,b,c,d) is valid.

4. For Γ1,5(Ω(21)
a,b,c,d) the points qi are contained in the 2-cells (ω0ω2)∨, (ω2ω3)∨

and (ω3ω4)∨. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
0
−1

 with α1,α2 > 0,
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 1
η
η2

=

xy
z

+β1

 0
0
−1

+β2

 b
b
−a

 with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
0
0

+γ2

 b
b
−a

 with γ1,γ2 > 0.

We obtain the following solutions:

x= 1−η,
y = 0,

z = λ(a
b
η+η2),

α1 = 1−η > 0,

α2 = λ(a
b
η+η2)> 0,

β1 = (λ−1)(η2 + a

b
η)> 0,

β2 = 1
b
η > 0,

γ1 = (λ−1)(1−η)> 0,

γ2 = 1
b
λη > 0.

It follows that the path Γ1,5(Ω(21)
a,b,c,d) is valid.

5. For Γ3,4(Ω(21)
a,b,c,d) the points qi are contained in the 2-cells (ω0ω1)∨, (ω1ω2)∨

and (ω2ω5)∨. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
−1
0

 with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

−1
0
0

+β2

1− (d+ c)
1
1

 with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

d− b−1
d− b
a− c

+γ2

1− (d+ c)
1
1

 with γ1,γ2 > 0.
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This system of equation is solvable as follows:

x=α1 = λ−γ1(d− b−1) +γ2(d+ c−1)> 0,
y =α2 = η−η2 > 0,
z =0,
β1 =x−1 +η2(1− (d+ c))> 0,
β2 =η2 > 0,

γ1 =(λ−1)(η−η2)
d+ c− (b+a) > 0,

γ2 =(d− b)λη2 + (c−a)((λ−1)η+η2)
d+ c− (b+a) > 0.

Since (d+ c)− (a+ b)> 0, we do not divide by zero and the denominator is
positive. To see that α1 > 0, we observe that d−b−1

d+c−(b+a) < 1 so

λ−γ1(d− b−1)> 0.

For β1 > 0, we note

β1 =x−1 +η2(1− (d+ c))
=λ−1−γ1(d− b−1) + (γ2−η2)(d+ c−1).

With the same argument as α1 > 0, we conclude λ− 1− γ1(d− b− 1) > 0.
Moreover,

γ2−η2 = (λ−1)(d− b)η2 + (c−a)(λ−1)η
d+ c− (b+a) > 0.

Thus, all parameters are positive as required and there are no dependencies
for λ and η. Therefore, the path Γ3,4(Ω(21)

a,b,c,d) is valid.

6. For Γ2,4(Ω(21)
a,b,c,d) the points qi are contained in the 2-cells (ω0ω1)∨, (ω1ω3)∨

and (ω3ω5)∨. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
−1
0

 with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
−1
0

+β2

 c
−d
c

 with β1,β2 > 0,
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 λ
λη
λη2

=

xy
z

+γ1

 c
−d
c

+γ2

1
0
0

 with γ1,γ2 > 0.

This system of equation is solvable as follows:

x= 1−η2,

y = λ(η+ d

c
η2),

z = 0,
α1 = 1−η2 > 0,

α2 = λ(η+ d

c
η2)> 0,

β1 = (λ−1)(η+ d

c
η2)> 0,

β2 = η2

c
> 0,

γ1 = λ

c
η2 > 0,

γ2 = (λ−1)(1−η2)> 0.

We do not divide by zero as c > 0. So the path Γ2,4(Ω(21)
a,b,c,d) is valid.

7. For Γ1,3(Ω(21)
a,b,c,d) the points qi are contained in the 2-cells (ω0ω2)∨, (ω2ω4)∨

and (ω4ω5)∨. We obtain the following system of equations:0
0
0

=

xy
z

+α1

−1
0
0

+α2

 0
0
−1

 with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 b
b
−a

+β2

d− b−1
d− b
a− c

 with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
0
0

+γ2

d− b−1
d− b
a− c

 with γ1,γ2 > 0.

Solving for β2, shows that β2 > 0 if and only if ab +η > λ(c−ad−b +η). For any
choice of a, b, c, d parameters of the polytope family 21, this implies an upper
bound for the value of λ which contradicts the generality of our chosen points.
So, the path Γ1,3(Ω(21)

a,b,c,d) is not valid.
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8. For Γ1,2(Ω(21)
a,b,c,d) the points qi are contained in the 2-cells (ω0ω3)∨, (ω3ω4)∨

and (ω4ω5)∨. We obtain the following system of equations:0
0
0

=

xy
z

+α1

 0
−1
0

+α2

 0
0
−1

 with α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

1
0
0

+β2

 b
b
−a

 with β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
0
0

+γ2

d− b−1
d− b
a− c

 with γ1,γ2 > 0.

By using only the y,z−equations of the second and third condition we can
solve for β2,γ2,y,z:

y = λη− (λ−1)(d− b)(aη+ bη2),
z = λη2 + (λ−1)(c−a)(aη+ bη2),

β2 = 1
a

(λ−1)(η2 + (c−a)(aη+ bη2)) = 1
b

(λ−1)(−η+ (d− b)(aη+ bη2)),

γ2 = (λ−1)(aη+ bη2).

Since α1 = y we have to check whether y > 0. However, since d > b, we have

y > 0 ⇔ λ <
(b−d)(a+ bη)

1 + (b−d)(a+ bη) .

This contradicts the generality of our point conditions. The path Γ1,2(Ω(21)
a,b,c,d)

is not valid.

We conclude that only the lattice paths depicted in Figure 9.15 are valid for binodal
polytopes of family 21.

We can now determine the multiplicities of the valid lattice paths using the
OSCAR functions from [Gei22]. The computed values are displayed in Table 9.8.

Conjecture 9.4.24. For binodal polytopes Ω(21)
a,b,c,d of family number 21 as in

Figure 9.14 where ad−bc= 1, c+d > a+b, c > a, a,b,c,d > 0 we have the following
conjecture about the degree of the binodal variety and the path multiplicities.

deg(BΩ(21)
a,b,c,d

) =(d+ c+ 2)(d+ c−4),
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mult(Γ3,4(Ω(21)
a,b,c,d)) =c+d−4,

mult(Γ2,4(Ω(21)
a,b,c,d)) =c(c+d−4),

mult(Γ0,1(Ω(21)
a,b,c,d)) =c+d−4,

mult(Γ1,5(Ω(21)
a,b,c,d)) =b(c+d−4),

mult(Γ1,[3,4](Ω
(21)
a,b,c,d)) =(d− b)(c+d−4).

This conjecture is verified for the values in Table 9.8.

(a,b,c,d) Γ3,4 Γ2,3 Γ0,1 Γ1,5 Γ1,[3,4] deg(BΩ(21)
a,b,c,d

)

(1,1,2,3) 1 2 1 1 2 7
(2,1,3,2) 1 3 1 1 1 7
(1,1,3,4) 3 9 3 3 9 27
(3,2,4,3) 3 12 3 6 3 27
(1,1,4,5) 5 20 5 5 20 55
(1,2,2,5) 3 6 3 6 9 27
(2,1,5,3) 4 20 4 4 8 40
(2,3,3,5) 4 12 4 12 8 40
(3,1,5,2) 3 15 3 3 3 27
(4,3,5,4) 5 25 5 15 5 55

Table 9.8: Verified path multiplicities and degree of binodal variety for polytope
family number 21 as computed using [Gei22] in OSCAR. In order to keep the table
slim we shorten the notation of the lattice path by leaving out the polytope.

9.5 Example for counting binodal surfaces
In this section, we show by means of one example, which is small enough to allow a
computational verification, how the binodal polytopes, their lattice paths and the
associated multiplicities as determined in Chapter 9 can be used to obtain a count
of binodal surfaces that could not have been recovered using only the techniques
from Chapter 7.

There are two ways how to find all tropical binodal surfaces with a given support
passing through points in Mikhalkin position together with their lifting multiplicities.
The first is to consider the tropicalization of the binodal variety, which is a subfan
of the secondary fan of the Newton polytope. Each cone in the tropicalized binodal
variety gives rise to a subdivision of the Newton polytope for which we can check

254



9.5 Example for counting binodal surfaces

for valid lattice paths and compute their multiplicities. This approach however is
only feasible for small examples.
The second way is to start with the lattice paths. To better see what happens

with respect to the point conditions induced by the path, and thus to easier find
valid lattice paths, we consider tropical floor plans. This is the way that will be
demonstrated in this section.
In our example we work with tropical floor plans as introduced Chapter 7,

Definition 7.3.5 and adapt this definition to the binodal case. Formally, tropical
floor plans for binodal surfaces of degree d will be introduced in Chapter 10,
Definition 10.2.1.
Notation 9.5.1. Let P be a Newton polytope with a floor decomposed subdivi-
sion S. We assume that P is contained in the positive orthant of R3.

Let d := max{ωx |(ωx,ωy,ωz) is a lattice point of P}. The intersection of S with
the plane {x= i} for each i ∈ {0,...,d} such that this intersection is not empty gives
2-dimensional subdivisions Si of P ∩{x= i}.

In this section, we will speak of a tropical floor plan of a tropical surface dual to
S when we consider the constellation of the tropical curves Cd−i dual to the Si.
The positions of the curves Cd−i are fixed by the lattice path and the dual

subdivision of P in the following way: We say two curves are neighbors if they
are dual to neighboring slices of the subdivision Si and Si+1. Any alignment or
intersection of neighboring curves corresponds to a 3-dimensional polytope in the
subdivision. This polytope is spanned by the edges in the subdivision dual to the
aligning or intersection edges of the curves. As an example, think of the pentatope
or the bipyramids as illustrated in Figure 7.5 in Section 7.3.

Further, we recall that each segment in the lattice path stands for a 2-cell of the
dual tropical surface S that contains a point from the point conditions in its relative
interior. Each edge of a tropical curve Cd−i in the tropical floor plan corresponds
to an edge of the subdivision. If this edge is part of the lattice path, the associated
edge in the curve contains the projection of the point to the last two coordinates
Qi = Πy,z(qi).

When we fix points in Mikhalkin position (Definition 7.2.1), these points, through
which the curves of the floor plan pass, are distributed with growing distances
along a line of direction (1,η).
The point conditions need to determine the positions of the curves Cd−i up

to possible alignments, which give rise to the two nodes in the tropical surface;
compare Definition 7.3.4 of node germs for separated nodes. When counting, we
have to identify those alignments of the curves in the tropical floor plan that give
rise to a binodal polytope in the subdivision and thus hide two unseparated nodes.
Remark 9.5.2. In this example we will not present the computations to check the
validity of the lattice paths. When working with tropical floor plans, the fact that
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the curves of the floor plan pass through the projections of the points gives a strong
indication that the lattice path can be valid. However, it does not imply it; so a
check via the linear systems of equations as shown in Section 9.4 is necessary to
obtain a full proof.

Remark 9.5.3. When counting binodal surfaces with a Newton polytope of more
than 6 lattice points, it does no longer hold that lattice paths have to run along edges
of the polytope. Instead a lattice path has to run along edges of the subdivision of
the Newton polytope to which the surface passing through the point conditions is
dual.

Consider the polytope P given by the following lattice points0 0 0 0 1 1 1
0 0 1 1 0 1 3
0 1 0 1 0 0 1

 .
Let ωi denote the lattice points of P in the order as given above. Note that this is
the order induced by v = (1,η,η2). We observe that this polytope can be obtained
by taking the convex hull of the lattice points of Ω(10)

3,1 and the lattice point (1,1,0).
The binodal variety of P can be computed via OSCAR using [Gei22]. It has

degree 12.

julia > P = matrix(ZZ ,7,3,
[0,0,0,0,0,1,0,1,0,0,1,1,1,0,0,1,1,0,1,3,1]);

julia > I = binodal(P);
julia > investigate_binodal(I);
Affine dimension of the binodal variety is 5
The binodal variety is of expected affine dimension.
Degree of the binodal variet is 12
(5, 12)

This computation does not need much memory, but takes a few days to terminate.
We fix |P ∩Z3|−3 = 4 points p = (p0, . . . ,p3) in Mikhalkin position. As usual

let qi = Trop(pi). We denote by Qi = Πy,z(qi) the projection of the tropical point
conditions to the last two coordinates.
We observe that the polytope P has width 1, so any subdivision will be floor

decomposed. Furthermore, this tells us that any floor plan will consist of two
curves: One dual to the subdivision S0 of(

0 0 1 1
0 1 0 1

)
,
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and one dual to the subdivision S1 of(
0 1 3
0 0 1

)
.

There are three possibilities for S0. These induce three options for the dual curve C1,
which are depicted in Figures 9.16a, 9.16b and 9.16c. As the polytope P ∩{x= 1}
is a unimodular triangle, there is only the trivial subdivision possible. The dual
tropical curve C0 is depicted in Figure 9.16d.

(a) First op-
tion for C1

(b) Second
option for C1

(c) Third op-
tion for C1 (d) C0

Figure 9.16: There are three possibilities for S0: the trivial subdivision induces
Figure 9.16a, the subdivision given by the diagonal from (0,0) to (1,1) induces
the curve in Figure 9.16b, and the subdivision given by the diagonal from (1,0)
to (0,1) induces the curve in Figure 9.16c. For the subdivision S1 only the trivial
subdivision of the triangle is possible. The dual curve is shown in Figure 9.16d.

To find all valid lattice paths we go through the different options for C1. In each
case we consider different distributions of the points Qi on the two curves:

1. C1 passes through Q0, Q1, Q2, and C0 passes through Q3;

2. C1 passes through Q0, Q1, and C0 passes through Q2, Q3;

3. C1 passes through Q0, Q1, Q2, and C0 passes through no point;

4. C1 passes through Q0, Q1, and C0 passes through Q3;

5. C1 passes through Q0, and C0 passes through Q2, Q3.

Curve C1 as in Figure 9.16a
If S0 is the trivial subdivision of the square we see curve C1 as in Figure 9.16a. In
this case C1 can only pass through at most 2 points. We therefore only have to
consider the cases 2, 4 and 5.
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Figure 9.17: For these two distributions of the point conditions with C0 as in
Figure 9.16a, the tropical floor plan cannot be binodal.

(9.16a,2): Point distribution 2 + 2

Assume that C1 passes through Q0 and Q1 and that C0 passes through Q2 and Q3;
see case (2). In this case both curves are completely determined and they intersect
in 3 points. The dual subdivision contains 3 tetrahedra and one pyramid over the
square. See Figure 9.17. Therefore, the subdivision contains neither a binodal
polytope, nor two circuits that could give rise to 2 separated nodes.

(9.16a,4): Point distribution 2 + 1

If C1 passes through Q0 and Q1, the curve C1 is completely determined by the
point conditions and by the argument above we know that C0 has to pass only
through Q3. This means that C0 is not fixed by the point conditions. Therefore, we
need an alignment to determine the floor plan. There are three possible positions
of the point Q3 in C0: one for each ray of C0.

If Q3 is contained the vertical ray of C0, there does not exist a possible alignment
to fix the curve.
If Q3 is contained in the ray with direction (−1,3), the only possible alignment

that determines the curve is to fix the vertex of C0 on the horizontal ray of C1.
See Figure 9.18a. This intersection gives rise to a pentatope in the subdivision.
The ray with direction (−1,3) intersects the vertical ray of C1. This leads to a
tetrahedron in the subdivision of P . The vertex of C1 gives a pyramid over the
square. This subdivision does not lead to a binodal surface, since additionally to
the node at the vertex dual to the pentatope we do not see another circuit that
would induce a second separated node.

If Q3 is contained the ray of C0 with direction (1,−2), the only possible way
to fix the curve is to align the vertex of C0 with the horizontal ray of C1. See
Figure 9.18b. This also aligns the vertical rays of C0 and C1 and therefore leads to
a polytope in the subdivision that is IUA-equivalent to the polytope of family 9.
As proven in Lemma 9.2.4 this polytope is not binodal.
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(a) (b)

Figure 9.18: For these four distributions of the point conditions with C0 as in
Figure 9.16a, the tropical floor plan cannot be binodal.

(9.16a,5): Point distribution 1 + 2

In this last case, C1 passes through Q0, and C0 passes through Q2 and Q3. This
means that C0 is fixed by the point conditions. We can conclude from the fact that
the Qi are distributed on a line of direction (1,η) with 1� η > 0 that Q2 and Q3
are contained in the two downwards pointing rays of C0, and that Q0 is contained
in the vertical ray of C1.

The horizontal ray of C1 is the part of the floor plan that is not fixed. There are
two possible alignments: with the vertex of C0 or with the intersection of the ray
with direction (−1,3) of C0 with the vertical ray of C1. The first alignment gives
rise to a pentatope in the subdivision. Apart from the point conditions, this is the
same alignment as in Figure 9.18a, and similarly as before we see that this case
does not lead to a binodal surface.

The second alignment leads to a polytope with 6 lattice points in the subdivision,
which is equal to Ω(10)

3,1 . This is formed by the convex hull of ω0, ω1, ω2, ω3, ω4
and ω6. The tropical floor plan together with the corresponding lattice path and
tropical surface is shown in Figure 9.19.

0 2

1 3

4 5

6

Figure 9.19: Tropical floor plan for (9.16a,5) with lattice path, dual subdivision
and tropical surface. In the subdivision the binodal polytope is colored red.

The lattice path depicted in Figure 9.19, corresponds to the lattice path Γ1,3(Ω(10)
3,1 )

as studied in Section 9.4.2. We know from Table 9.4 that this lattice path has
multiplicity 1. So the tropical floor plan Figure 9.19 contributes one surface to our
count.
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Figure 9.20: When the point conditions are distributed 2 + 2 with C0 as in Fig-
ure 9.16b, the tropical floor plan cannot be fixed.

Curve C1 as in Figure 9.16b
The next case to consider is that curve C1 is of the form as in Figure 9.16b. First
we note that in this case the curve C1 can pass through at most 2 points, because
the points are distributed along a line of direction (1,η), 1� η > 0.

(9.16b,2): Point distribution 2 + 2

In this case C0 is completely fixed by the point conditions. For C1 there are two
choices on how the curve can pass through two points, each determines the position
of one of the two vertices of C1. For the first of these choices, Figure 9.20 depicts
the two possible alignments of the second vertex of C1 with C0. They both do not
lead to either a binodal polytope in the subdivision nor to two unseparated nodes.

For the second choice, the lower vertex of C1 is determined by the point conditions,
while the vertex with larger y-coordinate is not fixed. We can therefore pull this
vertex along the direction (−1,1) without ever meeting C0. This means that the
curves cannot be determined. So they do not lead to a tropical floor plan of a
binodal surface.

(9.16b,4): Point distribution 2 + 1

As for the case discussed above, there are two ways how C1 can pass through 2
of the points. With the same argument as before, we exclude the case that the
point conditions fix the lower vertex of C1; see left picture in Figure 9.20. For C0
we have three rays each of which can contain Q3. We obtain the three options
depicted in Figure 9.21.

In the floor plan depicted in Figure 9.21a, the alignment of the two undetermined
vertices of C1 and C0 gives rise to a polytope in the subdivision that is IUA-
equivalent to Ω(10)

2,1 which is not binodal by Proposition 9.2.5.
We see that in Figure 9.21b no alignment fixing the vertex of C0 is possible. So

the curves are not fixed and we do not obtain a valid floor plan.
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(a) (b) (c)

Figure 9.21: When the point conditions are distributed 2 + 1 with C0 as in Fig-
ure 9.16b, the tropical floor plan cannot be fixed.

However, the floor plan in Figure 9.21c induces a subdivision containing two
bipyramids and one pentatope. We get a tropical surface with two separated nodes.

0 2

1 3

4 5

6

Figure 9.22: Tropical floor plan for (9.16b,4) with lattice path, dual subdivision
and tropical surface. In the subdivision the two pyramids are colored yellow and
the pentatope is colored blue.

We recall from Proposition 7.3.11 that we have to count the node given by the
bipyramids with multiplicity 2. To obtain the multiplicity of the pentatope we
use Proposition 7.3.10: via an affine automorphism of Z3 we can bring it into the
position as in Proposition 7.3.10:0 0 0 1 1

0 1 1 1 3
0 0 1 0 1

 
0 0 0 1 1

0 1 0 0 1
0 0 1 0 1

 ,
and then compute its discriminant

4a(0,1,0)a(0,0,1)a(1,0,0) +a2
(0,0,0)a(1,1,1) = 0. (9.3)

We see that lattice point (0,1,0) is the one left out of the path, so we get multiplicity
dega(0,1,0)

(4a(0,1,0)a(0,0,1)a(1,0,0) +a2
(0,0,0)a(1,1,1)) = 1. Hence, we have to count this

tropical floor plan with multiplicity 2 ·1 = 2, and we obtain 2 more surfaces to our
count.
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(a) (b) (c) (d)

Figure 9.23: For these four distributions of the point conditions and with C0 as in
Figure 9.16b, the tropical floor plan cannot be fixed.

(9.16b,5): Point distribution 1 + 2

If C1 contains only Q0, then C0 has to pass through Q2 and Q3, and it is therefore
determined. There are five edges in C1 that could contain Q0. For the bounded
edge and the rays of directions (0,1), (1,0) and (0,−1) we see that the vertex of
C1 with larger y-coordinate can not be fixed by any alignment with C0. This is
illustrated in Figure 9.23. So only the case with Q0 contained in the ray of direction
(−1,0) remains. We need to fix both vertices of C1 by alignments with C0 that give
rise to two singularities. There is only one choice, which is depicted in Figure 9.24.

0 2

1 3

4 5

6

Figure 9.24: Tropical floor plan for (9.16b,5) with lattice path. The dual subdivision
and tropical surface are the same as in Figure 9.22.

We observe that this looks like the tropical floor plan in Figure 9.22. The
difference is which of the two curves contains the second point and which is aligned.
This difference is not visible in the floor plan, but in the lattice path.

For the multiplicity, we get a factor 2 from the alignment of the vertical rays. To
obtain the multiplicity of the pentatope, which is dual to the alignment of the second
vertex of C1 with C0, we use that we know the discriminant, see Equation (9.3).
It is again lattice point (0,1,0) that is left out of the path, so we get a factor 1.
Hence, we have to count this tropical floor plan with multiplicity 2 ·1 = 2, and we
obtain 2 more surfaces to our count.
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(a) (b) (c)

Figure 9.25: For these three distributions of the point conditions with C0 as in
Figure 9.16c, the tropical floor plan is either not determined (Figure 9.25a) or not
binodal (Figures 9.25b and 9.25c).

Curve C1 as in Figure 9.16c
The last case is to consider C1 as in Figure 9.16c. We first exclude the cases that
all four points are visible in the floor plan.

(9.16c,1): Point distribution 3 + 1

Assume that C1 passes through Q0, Q1 and Q2, and C0 passes through Q3. In this
case the curve C1 is completely determined by the point conditions. For C0 there
are three possibilities which of the rays contains Q3.

If Q3 is contained in the ray with direction (0,−1) the curve cannot be fixed by
any alignment with C1; see Figure 9.25a.
If Q3 is contained in the ray with direction (−1,3), the only possible alignment

with C1 to fix the curve is to align the vertex of C0 with the ray of C1 in direction
(1,0). See Figure 9.25b. This floor plan induces a subdivision of P that contains of
a pentatope, but no other circuit. This does not give rise to a binodal surface.

If Q3 is contained in the ray with direction (1,−2), the only possible alignment
of C0 with C1 is to align the vertex of C0 with the ray of direction (0,1) in C1.
See Figure 9.25c. This floor plan induces a subdivision of P that contains two
pyramids over a parallelogram, but contains no other circuit. This does not give
rise to a binodal surface.

(9.16c,2): Point distribution 2 + 2

In this case C0 is completely determined by the point conditions. For C1 there are
five possible options how the two points can be contained in the curve.

For the first four of these options, which are depicted in Figure 9.26, the curve C0
cannot be fixed by alignments with C0. For the last option, there are two possible
alignments as depicted in Figure 9.27. However, both of these do not give rise to
a binodal surface as the dual subdivision neither contains two circuits inducing
separated nodes, nor a binodal polytope.
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(a) (b) (c) (d)

Figure 9.26: When C1 is as in Figure 9.16c and passes through 2 points, the curve
cannot be fixed in the tropical floor plan by the depicted four point distributions.

(a) (b)

Figure 9.27: For the two distributions of the point conditions with C0 as in Fig-
ure 9.16c, the tropical floor plan is not binodal. The dual subdivision for the
tropical floor plan in Figure 9.27a is the same as in Figure 9.25c

(9.16c,3): Point distribution 3 + 0

In this case the curve C1 is determined by the point conditions. In order to
determine the position of the curve C0 in the plane, we have to fix the vertex of
C0 by some alignment. There are two options: the two vertices of C1. These floor
plans arise from the same lattice path, but give rise to different tropical floor plans
and different binodal polytopes in the subdivision. The alignment with the vertex
of C1 with larger y-coordinate is depicted in Figure 9.28.

The induced subdivision consists of one tetrahedron and one polytope with 6

0 2

1 3

4 5

6

Figure 9.28: Tropical floor plan for (9.16c,3) of the first choice of alignment, with
lattice path, dual subdivision and tropical surface. In the subdivision, the binodal
polytope is colored in red.
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lattice points, which is IUA-equivalent to a polytope of family 20 with a= 4:0 0 0 1
0 0 1 0
0 1 0 0

 and

0 0 0 1 1 1
0 1 1 0 1 3
1 0 1 0 0 1

 .
We can compute the path multiplicity for this case by using [Gei22] in OSCAR.
julia > A1 = matrix(ZZ ,6,3,[0,0,1,0,1,0,0,1,1,1,0,0,1,1,0,1,3,1]);
julia > path_mult(A1 ,[4,5],[true ,true ] ,[1 ,1//2 ,1//3 ,1//5]);
Affine dimension is 0
Path multiplicity is 1

The alignment with the vertex of C1 with larger y-coordinate is depicted in
Figure 9.29.

0 2

1 3

4 5

6

Figure 9.29: Tropical floor plan for (9.16c,3) of the second choice of alignment with
lattice path, dual subdivision and tropical surface. In the subdivision, the binodal
polytope is colored in red.

The induced subdivision consists of one tetrahedron and one polytope with 6
lattice points, which is IUA-equivalent to a polytope of family 10 with a= 3, b= 1:0 0 0 1

0 1 1 3
1 0 1 1

 and

0 0 0 1 1 1
0 0 1 0 1 3
0 1 0 0 0 1

 .
We can compute the path multiplicity for this case by using [Gei22] in OSCAR.
julia > A2 = matrix(ZZ ,6,3,[0,0,0,0,0,1,0,1,0,1,0,0,1,1,0,1,3,1]);
julia > path_mult(A2 ,[4,5],[true ,true ] ,[1 ,1//2 ,1//3 ,1//5]);
Affine dimension is 0
Path multiplicity is 1

Therefore, we obtain two more surfaces to our count from these two cases.

(9.16c,4): Point distribution 2 + 1

As in the case with the distribution of the point conditions 2 + 2 between the two
curves, we have five options how C1 can pass through Q0 and Q1. With the same
arguments we can exclude the four cases shown in Figure 9.26. Thus, the only way
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Figure 9.30: For this distribution of the point conditions and with C0 as in Fig-
ure 9.16c, the tropical floor plan cannot be fixed.
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(a)

0 2

1 3

4 5
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(b)

Figure 9.31: Tropical floor plan for (9.16c,4) with lattice path. The dual subdivision
and tropical surface are the same as in Figure 9.28.

that can lead to a valid tropical floor plan is that Q0 is contained in the horizontal
ray with direction (−1,0) and Q1 is contained in the bounded edge.

We know that there are three possibilities for C0 to contain Q3. If Q3 is contained
in the ray with direction (−1,3) we cannot determine the position of the vertex of
C0 along that ray by any alignment with C1, see Figure 9.30.
The other two options are depicted in Figures 9.31a and 9.31b. Both tropical

floor plans induce the same subdivision, which coincides with the subdivision given
induced by the tropical floor plan in Figure 9.28.
From this case we know that the subdivision contains a binodal polytope IUA-

equivalent to Ω(20)
4 . We can compute the multiplicities of the two lattice paths by

using [Gei22] in OSCAR.

julia > A1 = matrix(ZZ ,6,3,[0,0,1,0,1,0,0,1,1,1,0,0,1,1,0,1,3,1]);
julia > path_mult(A1 ,[3,6],[true ,true ] ,[1 ,1//2 ,1//3 ,1//5]); #Path

in Figure 9.31 (a)
Affine dimension is 0
Path multiplicity is 1
julia > path_mult(A1 ,[3,5],[true ,false ] ,[1 ,1//2 ,1//3 ,1//5]); #Path

in Figure 9.31 (b)
Affine dimension is 0
Path multiplicity is 3

Summing both cases, we obtain 4 more surfaces to our count.
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(a) (b) (c)

Figure 9.32: When C1 is as in Figure 9.16b and passes through 1 point, the curve
cannot be fixed in the tropical floor plan by the depicted three positions of the
point condition.

(a) (b)

Figure 9.33: None of the two possible alignments determine the tropical floor plan.

(9.16c,5): Point distribution 1 + 2

By this distribution of the point conditions, the curve C0 is determined. For C1
there are five possibilities how the point Q0 can be contained in the relative interior
of one of its edges. They are depicted in Figure 9.32. We see that the first four
options in Figure 9.32 do not make it possible to fix the curve C0 in the floor plan.
The last option leads to the floor plan shown in Figure 9.34.
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4 5
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Figure 9.34: Tropical floor plan for (9.16c,5) with lattice path. The dual subdivision
and tropical surface are the same as in Figure 9.28

This floor plan leads to the same subdivision as the tropical floor plans in
Figures 9.28, 9.31a and 9.31b, which contains a binodal polytope IUA-equivalent
to Ω(20)

4 . We can compute the path multiplicity for this case by using OSCAR.
julia > A1 = matrix(ZZ ,6,3,[0,0,1,0,1,0,0,1,1,1,0,0,1,1,0,1,3,1]);
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julia > path_mult(A1 ,[1,3],[true ,true ] ,[1 ,1//2 ,1//3 ,1//5]); #Path
in Figure 9.34

Affine dimension is 0
Path multiplicity is 1

The count:

One can verify using the techniques as described in Remark 9.3.6 that all these
lattice paths are indeed valid.
To obtain the total count we sum together all the multiplicities of the tropical

floor plans and obtain∑
F floor plan

multC(F ) = (1) + (2 + 2) + (1 + 1 + 3 + 1 + 1) = 12 = deg(BP ).

Remark 9.5.4. When we tropicalize the binodal variety of P , we observe that it has
a lineality space of dimension 4 and consists of 4 rays. These four rays give rise to
four different subdivisions of P . These are exactly the four subdivisions that can
be constructed from the tropical floor plans.

However, in general it is not know that the subdivisions to binodal surfaces are
contained in the maximal dimensional cones of the tropicalized binodal variety.
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Counting binodal surfaces
We now turn to the question of counting binodal degree d surfaces. In order to
improve on the tropical count of binodal degree d surfaces via tropical floor plans,
we have to understand how we can use the results on binodal polytopes of Chapter 9
in this situation.

That means we need to understand which binodal polytopes with 6 lattice points
and width 1 can be contained in the dual subdivision of a degree d surface passing
through points in Mikhalkin position. We have to determine all the possible lattice
paths for these cases and discover their multiplicities. This is done in Section 10.1.
The results are collected in Theorem 10.1.6 and Conjecture 10.2.2.

Building on this conjecture, Section 10.2 poses that binodal polytopes with 6
lattice points contribute 1

4d
4 to the asymptotic count of binodal surfaces (Con-

jecture 10.2.5). Moreover, we extend the definition of tropical floor plans for
surfaces of degree d to count surfaces for which the tropicalization of the two
singularities is a vertex of the tropical surface dual to a binodal polytope with 6
lattice points and width 1 (Definition 10.2.1). This generalization is an important
step towards achieving a definition of tropical floor plans that will provide the full
number NP3

δ,C(d).
This chapter is based on joint work with Madeline Brandt [BG21].

10.1 Binodal polytopes in degree d surfaces
Recall from Conjecture 9.2.8, that there are six families of binodal polytopes. In
this section, we investigate which of these contribute to the count of binodal floor
decomposed degree d surfaces. For those that contribute, we find all valid lattice
paths and their multiplicities. For the multiplicities we proceed as in Chapter 9:
we compute the multiplicities for small values, and pose a conjecture building on
this data.

To decide whether a binodal polytope can appear in a dual subdivision of a floor
decomposed tropical surface passing through points in Mikahlkin position, we use
the concept of tropical floor plans as defined in Definition 7.3.5. However, we have
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to adapt and extend the definition to fit the binodal cases. Accordingly, before we
start investigating the binodal polytopes, we need some definitions and notations.
This section is based on joint work with Madeline Brandt [BG21].
The formal definition of tropical floor plans for surfaces of degree d can be found

in Section 10.2 as this definition builds on the results of this section.
Remember that we assume our binodal tropical surface to pass through points

in Mikhalkin position. The tropical points (q1, . . . ,qN ) are distributed with growing
distances along a line of direction (1,η,η2) where 1� η > 0. This induces an order
on the lattice points of d∆3, Definition 7.2.3.

The problem of finding a way to fit a polytope of width 1 into a subdivision S of
d∆3 arising from a lattice path induced by the above partial order can be viewed
as a problem on tropical floor plans: The tropical floor plan is the constellation
of tropical plane curves Cd−i dual to the subdivisions Si = S ∩{x = i}, where a
curve C passes through the projected points Πy,z(qi) =:Qi if and only if the edge
of the curve C containing Qi in its relative interior corresponds to the 2-cells of the
tropical surface S that contains qi. Polytopes in S correspond to vertices of these
curves or intersection points. See also Section 9.5 for an explanation on this topic.
If we leave out lattice points from the lattice path, the curves in the tropical

floor plan gain degrees of freedom. To fix the curves, we need to align them. And
to obtain singular surfaces, these alignments need to give rise to polytopes in the
subdivision which hold nodes. Definition 7.3.5 contains all alignments that give rise
to separated nodes. Recall Figure 7.5 for an illustration how node germs induce
circuits in the subdivision.

In the following investigation of how to fit binodal polytopes into subdivision of
d∆3 dual to a binodal tropical surface through Mikhalkin points, we also need to
check what kind of alignments are possible in the tropical floor plan to give rise to
such a binodal polytope. This is not only necessary to later extend the definition of
tropical floor plans to these cases, but more importantly it helps to see whether the
arising tropical surface will pass through the fixed point conditions and therefore
be a valid choice.

Notation 10.1.1. The i-th floor of a tropical floor plan, is the tropical plane curve
Cd−i. We use i-th floor subdivision to mean the dual subdivision Si of the plane
curve Cd−i.
When we speak of alignments between floors we mean the alignments of the

tropical plane curves to fix the degrees of freedom as explained above. This is
equivalent to choosing edges in the floors of d∆3 to form polytopes which are not
determined by the lattice path. We will also sometimes call this an alignment.

We recover an observation from [BG20, Section 5.1] that we can now phrase as
a definition, and that gives us new option for alignments between floors that might
give rise to binodal polytopes.

270



10.1 Binodal polytopes in degree d surfaces

Figure 10.1: A double right string

Definition 10.1.2. We fix points in Mikhalkin position. If none of the points
pass through an end adjacent to the lower right vertex of the Newton polytope
and none of the points passes through the horizontal bounded edge adjacent to
this end, then we can both prolong the edge in direction (2,1) and the edge in
direction (1,0). This produces a family of curves that all pass through the chosen
points in Mikhalkin position. The union of the two ends together with the unfixed
horizontal edge is called a double right string. This is illustrated in Figure 10.1.
Remark 10.1.3. In accordance with the naming of the right and left strings from
[MMSS22] (Definition 7.3.4) we call it a double right string, even though we will
not look at the left analogue. This is because a “left double string” would have two
degrees of freedom in the directions (−1,−1) and (−1,−2), for which the slopes
are too steep to allow any curve fixing alignments.

Now we start investigating which polytopes of the 6 families of binodal polytopes
determined in Chapter 9 can occur in the dual subdivision of a binodal floor
decomposed surface of degree d passing through points in Mikhalkin position.
We need the concept of IUA-equivalence of lattice polytopes as described in
Definition 9.2.2. The first results shows that we can exclude three families entirely.
Proposition 10.1.4. Let S be a floor decomposed binodal surface of degree d
passing through points in Mikhalkin position. Then the dual subdivision to S cannot
contain polytopes which are IUA-equivalent to polytopes of families 8, 14 or 21.
Proof. We know |d∆3∩Z3|=

(
d+3

3

)
. Therefore, S passes through

(
d+3

3

)
−3 points

in Mikhalkin position. Recall that the tropical points are distributed with growing
distances along a line of direction (1,η,η2) where 1� η > 0 and that this induces a
partial order on the lattice points of d∆3 which the lattice path needs to follow.
We consider the three polytope families separately.

Family 8

Any polytope that is IUA-equivalent to a polytope of family 8 has a triangular
facet that contains one interior lattice point. A lattice path inducing a subdivision
of d∆3 that contains a triangle with an interior point in a floor subdivision must
skip at least 3 lattice points. This comes from the partial order on the lattice
points of d∆3.
Thus, S satisfies at most

(
d+3

3

)
−4 of the point conditions.
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Family 14

A polytope of family 14 has width 1 and since we assume the tropical surface S to
be floor decomposed, we can assume that any IUA-equivalent polytope Ω̃ contained
in the dual subdivision S satisfies that Ω̃∩{x= i} is a triangle with one edge of
length 2 and that Ω̃∩{x= i±1} is the opposite edge.
We assume that Ω̃∩{x= 0} is the triangle with the edge of length 2, and that

the opposite edge is Ω̃∩{x = 1}. The case that Ω̃∩{x = 1} is the triangle with
the edge of length 2, and that the opposite edge is Ω̃∩{x= 0} works analogous.
The contradictions we see below arise in a similar way for this second case.

We make a case distinction by the direction of the edge of length two. Due to
the points in Mikhalkin position, the edge can only be either vertical, horizontal or
diagonal. An edge of length two in the subdivision of a different direction would
require leaving out more than 2 lattice points from the lattice path to fit the edge
into one floor subdivision and a the same time to enable an alignment between the
floor and a neighboring floor which corresponds to the polytope in the subdivision.
As Ω̃ has a triangle in the 0-th floor subdivision and an edge in the 1st floor

subdivision, we need an alignment between the two floors in the tropical floor plan.
Additionally, we have to leave out at least one lattice point to obtain the edge of
length 2, so we have only two options: Either the triangle with the edge of length
2 is missing another lattice point from the path, or we can use only tools from the
one-nodal case, i.e., right and left string, to achieve the alignment.
If the edge of length 2 is horizontal, it has to be contained in d∆3 ∩{z = 0}.

That means that the curve in the associated floor has a vertical end of weight 2.
We can apply IUA-equivalences to bring Ω(14)

a,b in this position:
 0 0 0 0 1 1
y−2 y−1 y−1 y 0 b

0 0 1 0 a 0

 .
In the floor subdivision S1 the edge of the polytope has direction (b,a) with

0< b < a with gcd(a,b) = 1. This only fits between two columns if b= 1.

Ω̃ =

 0 0 0 0 1 1
y−2 y−1 y−1 y 0 1

0 0 1 0 a 0

 .
This polytope can be contained in d∆3 with a+ 1≤ d and it does not immediately
contradict our point conditions, since we can draw a lattice path leaving out the
point (0,y− 1,0). If y = d, it is possible to draw a lattice path that leaves out
(0,d−1,0) and (0,d,0).
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10.1 Binodal polytopes in degree d surfaces

In both cases, the vertex of the curve from which the vertical end of weight
two starts, will be below the line on which the points from the point conditions
are distributed. That means that if the triangle has three points in the lattice
path, an alignment can only be possible via a left string. However, considering
the IUA-representative of the polytope above, we see that this is not possible for
1 = b < a.

If the triangle only has two points in the lattice path, it must be in the position
y = d. In this case, the left out points in the path lead to a Y−formed string whose
vertex needs to be aligned with the edge dual to S1∩ Ω̃. The only vertex that is
free to move to achieve the alignment is the vertex of the Y−formed string. This
vertex lies below the line on which the points Qi from the point conditions are
distributed. However, the edge dual to S1∩ Ω̃, with which the vertex has to align,
is relatively close to that line but with y-coordinate much larger. This makes an
alignment impossible.

If the edge of length 2 in Ω̃ is diagonal, it has to be dual to a diagonal end of
weight 2 in the tropical floor plan. The triangle containing this edge in the dual
subdivision contains either a vertical or a horizontal edge. If the triangle contains
a vertical edge, the midpoint of the edge of length two has to be the only lattice
point from the triangle that is left out of the lattice path. It follows that the vertex
in the floor plan dual to the triangle is fixed, and lies above the line on which the
points from the point conditions are distributed. This implies that an alignment
between the two floors is only possible via a left string in the neighboring curve
Cd−1. However, that end of the left string, which would align with the vertex, is
the horizontal end. Such an alignment leads to a polytope IUA-equivalent to a
polytope of family 12 in the dual subdivision, and by Proposition 9.2.4 we know
that this is not binodal.
It follows that the triangle needs to be the right tip of d∆3 because this is the

only way to get a horizontal edge for the triangle. In this position the second lattice
point of the triangle cannot be part of the lattice path. We apply IUA-equivalences
to bring Ω(14)

a,b in this position:

Ω̃ =

 0 0 0 0 1 1
d−2 d−1 d−1 d 0 b

2 0 1 0 a+ b 0

 .
The point conditions enforce b = 1, because the lattice path restricted to S1 is
smooth and therefore this floor subdivision is column-wise. Since we have already
determined that the lattice path needs to leave out two points in the triangle,
we can move the vertex in Cd dual to the triangle in (2,1)-direction. This vertex
is above the line on which the points from the point conditions are distributed.
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Therefore, it can never be aligned with any bounded edge in Cd−1 that corresponds
to the edge Ω̃∩{x= 1} for b= 1, a≥ 4.
If the edge of length 2 is vertical, it is dual to a horizontal edge of weight 2 in

the floor plan. This edge can be bounded or unbounded depending on whether
the edge is in the boundary of d∆3. Applying IUA-equivalence we obtain two
representatives, which fit into the subdivision: 0 0 0 0 1 1

0 0 0 1 0 a
z−2 z−1 z 0 az− (a+ b) 0

 or

0 0 0 0 1 1
0 1 1 1 0 a
z 0 1 2 b+a(d−1) 0

 ,
where z ≤ d. For both choices for Ω̃ we see that Ω̃∩{x= 1} cannot be made to fit
between two columns. However, an alignment of the vertex dual to the triangle
and the edge dual to Ω̃∩{x = 1} that fits together with the lattice path is only
possible if Ω̃∩{x= 1} has width 1. So this case is not possible.

Family 21

Polytopes of family 21 have no parallel edges. The existence of parallel edges is not
influenced by IUA-equivalences. Therefore, any polytope that is IUA-equivalent to
a polytope of family 21 has no pair of parallel edges.
With just two lattice points that can be left out, it is impossible to fit two

triangles into adjacent floor subdivisions such that they have no parallel edges, and
such that the point conditions allow an alignment of their dual vertices in the floor
plan. As long as all floor subdivisions are column-wise, this follows directly.
Leaving out only two lattice points from the lattice path in d∆3, we cannot fit

a triangle in a floor subdivision such that it does not have either a vertical or a
diagonal edge. In the adjacent floor subdivision the alignment needs to be done
with a string or double string, depending on how many lattice points we can still
leave out. However, the triangle dual to the vertex that aligns in a (double) string
always has a diagonal and a vertical edge. Thus, even if the point conditions allow
an alignment, we always have parallel edges, so the emerging polytope will not
belong to family 21.

Remark 10.1.5. For multi-nodal tropical surfaces with more than two nodes passing
through points in Mikhalkin position the above arguments do not necessarily apply.
It is therefore possible that polytopes IUA-equivalent to polytopes of the families
8, 14 or 21 appear in subdivisions dual to such surfaces.

To keep notation short, we say a polytope belongs to family m or is of family m
if it is IUA-equivalent to a polytope of family number m as in Table 9.1.
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10.1 Binodal polytopes in degree d surfaces

In the following sections we deal with each of the remaining three binodal
polytope families one by one. We summarize the results in the following theorem:

Theorem 10.1.6. Of the binodal polytopes with 6 lattice points of width 1 only
polytopes belonging to the families with numbers 10, 13 and 20 can appear in the
dual subdivision of a floor decomposed binodal surface of degree d through n points
in Mikhalkin position. They can only appear if d > 4.

Proof. This follows from Propositions 10.1.7, 10.1.10 and 10.1.13.

For each polytope family we first determine the options how we can use IUA-
equivalences to get the polytope in a dual subdivision of a floor decomposed tropical
binodal surface passing through points in Mikhalkin position. Then, we find the
possible lattice paths, prove that they are valid and compute their multiplicities
using OSCAR. From this data we pose a general conjecture for each path.

10.1.1 Polytope family 10
Proposition 10.1.7. Let S be a floor decomposed tropical binodal surface of
degree d passing through points in Mikhalkin position. Then, the dual subdivision S
to S can only contain a polytope of family 10 if d≥ 5.

We distinguish three different positions, which are shown in Table 10.1.

Proof. Let Ω be a binodal polytope of polytope family 10. The IUA-representative
of Ω in Figure 9.6 in Chapter 9 satisfies that its intersection with {x = 1} is a
sloped edge from the point (1,0,0) to the point (1,a,b), where a≥ b > 0.

We know that when a floor decomposed binodal surface S passes through points
in Mikhalkin position there are only few possibilities for the floor subdivisions
to be not column-wise. Considering these options we deduce that b = 1 for any
IUA-equivalence of Ω to appear in a floor decomposed surface.

We use the facets of Ω to make a case distinction to cover all options: the unique
facet of Ω that is a parallelogram is either contained in a floor subdivision or
between two floor subdivisions.
If the parallelogram is contained between two floor subdivisions, it arises from

the alignment of two vertices of the two corresponding plane curves. In order to
induce a parallelogram the two aligning vertices must have an outgoing edge of the
same direction. Moreover, when investigating the combinatorics of Ω, we observe
that the two triangles in the two floor subdivisions of Ω have only one pair of
parallel edges. This is the pair that forms the parallelogram. We argue that these
two edges have to be vertical. The two triangles in the floor subdivisions of d∆3
that belong to Ω are of minimal lattice volume. Assume the triangles both do not
have a vertical edge. We can only obtain such triangles in the subdivision induced
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on d∆3 by the points in Mikhalkin position if the lattice path leaves out a point on
the diagonal boundary. But then, we do not have enough degrees of freedom left
to obtain an alignment in the tropical floor plan that leads to the binodal polytope
of family 10. Hence, the edges forming the parallelogram have to be vertical.

We can align two vertices of adjacent floors either by fixing one vertex and leaving
the other vertex two degrees of freedom, or by leaving one degree of freedom to
both vertices. Since the alignment of a left and right string does yield a polytope
of family 9, which is not binodal, we know that at least one of the two triangles
does not correspond to a right or left string. But a vertex in a floor that does
not correspond to a left or right string and that is not determined by the point
conditions can have only a limited area of movement because the surrounding
vertices of the curve are fixed by the point conditions. Thus, the alignment of the
two vertices corresponding to the triangles of Ω is not possible.

Leaving two degrees of freedom to one vertex such that it can be moved to align
with the other vertex is only possible when we have a double right string. Applying
IUA-equivalences we can move Ω into such a position in d∆3: 0 0 0 1 1 1

d−1 d−1 d y y y+ 1
0 1 0 a a+ 1 0

 ,
where we assume without loss of generality that the polytope is contained between
the 0th and the 1st floor, and y is a parameter for the column in the higher
floor. The generic version of the IUA-representative can be found in Table 10.1.
Figure 10.2 shows this for a= 3, y = 0 and d= 5.

A polytope of family 10 with b= 1 is only binodal if a≥ 3, so we conclude d≥ 5.
We denote this position of Ω by Ω̃(10)

I and the polytope by Ω̃(10)
I (a,d,f,y), where

f stands for the degree of the floor containing the double right string.

Figure 10.2: Polytope of family 10 in 5∆3 in position Ω̃(10)
I

If the parallelogram is contained in one of the floor subdivisions, it comes from
the alignment of an edge of an adjacent floor with the 4-valent vertex dual to the
parallelogram.
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10.1 Binodal polytopes in degree d surfaces

The parallelogram arises from a left out lattice point and the folding out of a
corner. This means that we have one more lattice point that we can leave out to
make the alignment possible. An additional left out point in the parallelogram
does not give enough freedom to the vertex to move the relatively far way towards
the next floor. It follows that the alignment has to happen via a left or right string.
Hence, the edge in Ω∩{x= 1} needs to be transformed to either the diagonal edge
of the right string or the vertical edge of the left string.

If Ω∩{x = 1} is the vertical edge of the left string, the parallelogram cannot
have vertical edges, since this would be a polytope of family 9. Thus, due to the
point conditions, the parallelogram must have either a pair of horizontal or a pair
of diagonal edges. We obtain the following two IUA-representatives under these
conditions:0 0 0 0 1 1

0 1 a a+ 1 0 0
1 1 0 0 0 1

 or

 0 0 0 0 1 1
0 1 a a+ 1 0 0

2 +a a+ 1 1 0 0 1

 .
In both cases the parallelogram is in a position that cannot be contained in the
subdivision with our choice of point conditions since a≥ 3.

It follows that the alignment must be due to a right string. Because of the point
conditions and the fact that the edges of the parallelogram cannot be parallel to the
edge dual to the diagonal end of the right string, it follows that the parallelogram
has a pair of vertical parallel edges. Such a parallelogram appears from the folding
out of an edge when a lattice point at the top or bottom of a column is left out.
Applying IUA-equivalences we obtain the two positions: 0 0 1 1 1 1

d−1 d y y y+ 1 y+ 1
1 0 d−2 d−1 d−a−3 d−a−2

 ,

and

 0 0 1 1 1 1
d−1 d y y y+ 1 y+ 1

1 0 a+ 1 a+ 2 0 1

 ,
where y ∈ N0 is a parameter for the column that contains the parallelogram. Here
we assume that the poltope Ω is contained between the 0th and the 1st floor. The
generic representatives can be found in Table 10.1. We denote the first of these
positions Ω̃(10)

II and the second Ω̃(10)
III , and add the parameters (a,d,f,y) if we want

to speak of a specific polytope in this position. Figure 10.3 shows position Ω̃(10)
II for

a= 3, y = 0, f = 5 and d= 6. In this case the positions Ω̃(10)
II and Ω̃(10)

III coincide.
The difference is given by the lattice path: For Ω̃(10)

III the lattice path would follow
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the upper part of the parallelogram instead of the lower part, passing through
(1,0,5) and leaving out (1,1,0). Since the polytopes from family 10 with b= 1 are
only binodal for a≥ 3, it follows that d≥ 6.

Figure 10.3: Polytope of family 10 in 6∆3 in position Ω̃(10)
II

Ω̃(10)
I (a,d,f ,y)d− (f + 1) d− (f + 1) d− (f + 1) d−f d−f d−f

f f f + 1 y y y+ 1
0 1 0 a a+ 1 0


Example: Ω̃(10)

I (3,5,4,0) in Figure 10.2
Ω̃(10)

II (a,d,f ,y)d− (f + 1) d− (f + 1) d−f d−f d−f d−f
f f + 1 y y y+ 1 y+ 1
1 0 f −y−1 f −y f −y−a−2 f −y−a−1


Example: Ω̃(10)

II (3,6,4,0) in Figure 10.2
Ω̃(10)

III (a,d,f ,y)d− (f + 1) d− (f + 1) d−f d−f d−f d−f
f f + 1 y y y+ 1 y+ 1
1 0 a+ 1 a+ 2 0 1


Example: Ω̃(10)

III (3,6,4,0) in Figure 10.2

Table 10.1: The three types of possible positions for a polytope belonging to family
10 to appear in the dual subdivision of a binodal surface of degree d through points
in Mikhalkin position. The parameters have the following meaning: f is the degree
of the floor containing the main part of the polytope, y is the value that can be
obtained in the y-coordinate and a is the parameter of the polytope family.

We have already seen possible lattice paths for the three positions in the proof
of Proposition 10.1.7. It is enough to show that these lattice paths are locally
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10.1 Binodal polytopes in degree d surfaces

valid, i.e., we only have to consider the binodal polytope without the remaining
subdivision of d∆3.

Proposition 10.1.8. For each of the three positions of a polytope belonging to
family 10 in Table 10.1 there is one valid lattice path that agrees with the lattice
path for d∆3:

Γ1,2(Ω̃(10)
I ), Γ1,3(Ω̃(10)

II ), Γ1,4(Ω̃(10)
III ).

Note that there are polytopes that can be at the same time in position Ω̃(10)
II and

Ω̃(10)
III ; see Figure 10.3.

Proof. We know these three lattice paths from the proof of Proposition 10.1.7,
where we have seen that these are the only possible paths agreeing with the point
conditions in Mikhalkin position for a floor decomposed binodal tropical surface. I
remains to show that they are valid lattice paths.

We use IUA-equivalences that preserve the order of the lattice points to obtain
representatives of the three polytopes that are minimal with respect to the lattice
points, but still in the positive orthant of R3. This polytope does depend on a but
it will no longer depend on d, f and y. We thus consider

Ω̃(10)
I (a) =

0 0 0 1 1 1
0 0 1 0 0 1
0 1 0 a a+ 1 0

 .
For this polytope we can apply the same methods as in Proposition 9.4.8. Let
ωi denote the lattice points of Ω̃(10)

I (a) in the order as given above. The path
Γ1,2(Ω̃(10)

I (a)) passes through the 2-dimensional cells of S given by (ω0ω3)∨, (ω3ω4)∨
and (ω4ω5)∨. We can compute the rays spanning these cones as described in
Remark 9.3.6. We obtain the following system of linear equations:0

0
0

=

xy
z

+α1

 0
−1
0

+α2

 0
−a
−1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
−1
0

+β2

1
0
0

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
0
0

+γ2

 0
a+ 1

1

 , γ1,γ2 > 0.
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This system has the solution:

x= 0,
y = λη− (a+ 1)(λ−1)η2,

z = α2 = η2 > 0,
α1 = λη− (a+ 1)(λ−1)η2−aη2 > 0,
β1 = (λ−1)(η− (a+ 1)η2)> 0,
β2 = 1> 0,
γ1 = λ > 0,
γ2 = (λ−1)η2 > 0.

which satisfies all the conditions, provided 1
a+1 > η. So, the path Γ1,2(Ω̃(10)

I (a)) is
valid.

For position the IUA-equivalence gives us the following representative:

Ω̃(10)
II (a) =

0 0 1 1 1 1
0 1 0 0 1 1
1 0 a+ 1 a+ 2 0 1

 .
We denote by ωi the lattice points of Ω̃(10)

II (a) in the order as given above. We can
apply the same methods as in Proposition 9.4.8.

The path Γ1,3(Ω̃(10)
II (a)) passes through the 2-dimensional cells of S given by

(ω0ω2)∨, (ω2ω4)∨ and (ω4ω5)∨. We can compute the rays spanning these cones as
described in Remark 9.3.6 and obtain the following system of linear equations:0

0
0

=

xy
z

+α1

 0
−1
0

+α2

 0
−(a+ 1)
−1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 a
−(a+ 1)
−1

+β2

1
0
0

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
0
0

+γ2

0
1
0

 , γ1,γ2 > 0.

This system has the solution:

x= 0,
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y = η+ (a+ 1)(λ−1)η2,

z = α2 = λη2 > 0,
α1 = η− (a+ 1)η2 > 0,
β1 = (λ−1)η2 > 0,
β2 = 1−a(λ−1)η2 > 0,
γ1 = λ > 0,
γ2 = (λ−1)(η− (a+ 1)η2)> 0.

which satisfies all the conditions, provided 1
a+1 >η. Therefore, the path Γ1,3(Ω̃(10)

II (a))
is valid.

Under the IUA-equivalence that moves the polytopes to their minimal positive
representative, we have Ω̃(10)

II (a) = Ω̃(10)
III (a).

The path Γ1,4(Ω̃(10)
III (a)) passes through the 2-dimensional cells of S given by

(ω0ω2)∨, (ω2ω3)∨ and (ω3ω5)∨. We obtain the following system of linear equations:0
0
0

=

xy
z

+α1

 0
−1
0

+α2

 a
−(a+ 1)
−1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
−1
0

+β2

1
0
0

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
0
0

+γ2

 −1
a+ 1

1

 , γ1,γ2 > 0.

This system has the solution:

x=−aη2,

y = λη− (a+ 1)(λ−1)η2,

z = α2 = η2 > 0,
α1 = λ(η− (a+ 1)η2)> 0,
β1 = (λ−1)(η− (a+ 1)η2)> 0,
β2 = 1 +aη2 > 0,
γ1 = λ+ (a+λ−1)η2 > 0,
γ2 = (λ−1)η2 > 0,
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which satisfies all the conditions, provided 1
a+1 > η. So, the path Γ1,4(Ω̃(10)

III (a)) is
valid.

As the changes from Ω̃(10)
I (a) to Ω̃(10)

I (a,d,f,y) did not change the order of
the lattice points with respect to the induced partial order, nor the polytope of
family 10 that the polytope is equivalent to, the lattice path and its multiplicities
are preserved. The same holds for Ω̃(10)

II (a,d,f,y) and Ω̃(10)
III (a,d,f,y). Therefore,

the lattice paths as determined in Proposition 10.1.8 can be used to compute the
multiplicities of the three positions of a polytope of family 10 in d∆3.

Conjecture 10.1.9. The multiplicity of the lattice paths depends only on a and is
given by

mult(Γ1,2(Ω̃(10)
I (a))) = mult(Γ1,2(Ω̃(10)

II (a))) = mult(Γ1,2(Ω̃(10)
III (a))) = a−2.

This conjecture is verified for 3≤ a≤ 7 by using [Gei22] in OSCAR. The computed
values are collected in Table 10.2.

lattice path a= 3 a= 4 a= 5 a= 6 a= 7
Γ1,2(Ω̃(10)

I (a)) 1 2 3 4 5
Γ1,3(Ω̃(10)

II (a)) 1 2 3 4 5
Γ1,4(Ω̃(10)

III (a)) 1 2 3 4 5
Table 10.2: Verified multiplicities for polytope 10 in d∆3

10.1.2 Polytope family 13
Proposition 10.1.10. Let S be a floor decomposed tropical binodal surface of
degree d passing through points in Mikhalkin position. Then, the dual subdivision S
to S can only contain a polytope of family 13 if d≥ 7.

In this case the edge of length 2 of the polytope has to be a vertical edge of the
subdivision. We distinguish two positions which are shown in Table 10.3.

Proof. Let Ω be a polytope belonging to family 13. Then Ω has a unique edge of
length 2. The procedure is similar to the proof of Proposition 10.1.4: We make a
case distinction by the direction of the edge of length 2. With the same argument
as for the polytope family 14 in the proof of Proposition 10.1.4, we conclude that
the edge of length 2 can only be either vertical, horizontal or diagonal due to the
point conditions in Mikhalkin position.
If the edge of length 2 is horizontal, it has to be contained in the boundary of

d∆3, so in the tropical floor plan it is dual to a vertical weight 2 end. In this
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case the edge opposite the triangle in Ω is of direction (0,a,b) with 0< b < a with
gcd(a,b) = 1. This never fits between two columns in a floor subdivision. Since we
know that the middle lattice point of the edge of length two can never be part of
the lattice path we can only leave out one more lattice point from the path. This
does not give us any options to fit an edge of the above mentioned direction into a
floor subdivision in agreement with the lattice path.

If the edge of length 2 is diagonal, it has to be dual to a diagonal end of weight 2
in the tropical floor plan. The triangle containing this edge in the dual subdivision
contains either a vertical or a horizontal end. If the triangle contains a vertical
edge, the midpoint of the edge of length two is the only lattice point from the
triangle left out of the lattice path. It follows that the vertex in the floor plan from
which the diagonal end of weight 2 starts is fixed. Moreover, the vertex lies in the
tropical floor plan above the line on which the points from the point conditions
are distributed. Similarly to the arguments for polytope family 14 in the proof of
Proposition 10.1.4, we obtain a polytope of family 12 instead, so this case is not
possible.
It remains to consider the case where the triangle contains a horizontal edge.

This is only possible if the triangle with the edge of length 2 is positioned at the
right tip of d∆3. We apply IUA-equivalences to bring Ω in this position: 0 0 0 0 1 1

d−2 d−1 d−1 d 0 a
2 0 1 0 a+ b 0

 ,
where we assume that Ω is contained between the 0th and the 1st floor. Due to
the point conditions, the edge of Ω that would be in S1 does not agree with the
lattice path: We can only leave out one lattice point in the path restricted to S1,
this does not allow for an edge of direction (a,−a− b) with a+ b ≥ 5, a > b > 0.
So this case is not possible.
If the edge of length 2 is vertical, it is dual to a horizontal edge of weight 2 in

the tropical floor plan. This edge can be bounded or unbounded depending on
whether the edge is in the boundary of d∆3. Considering the polytope Ω belonging
to family 13, we observe that the edge opposite to the triangle with the edge of
length 2 can only be contained between two columns if b= 1. If that edge is not
contained between two columns in the floor subdivision, the edge stands in conflict
with the lattice path unless we leave out more than two lattice points in total from
the path. That would contradict the number of point conditions. So we know b= 1.
We first exclude the case that the lattice path passes only through two of the

vertices of the triangle containing the edge of length 2. In this case the edge of
length 2 has to be the boundary of d∆3. Since it is a vertical edge, this means it
has y-coordinate zero. It follows that the edge either has z coordinates 0,1,2 (we
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say it is at the bottom) or the maximal values possible in the corresponding floor
subdivision (we say it is at the top).

If it is at the top, the vertex dual to the triangle is above the line containing the
points from the conditions in the tropical floor plan. Moreover, we can only move
the vertex along the direction of the edge dual to the bottom edge of the triangle
and the movement is restricted due to the surrounding point conditions. This does
not allow enough freedom to align the vertex with an edge of an adjacent floor.

If the edge of length two is at the bottom, the vertex dual to the triangle is below
the line containing the points from the conditions. Moreover, we can only move
the vertex in the tropical floor plan along the direction (−2,−1). Since the slope
of the line containing the points from the point conditions is very small and the
points are distributed with growing distances it is not possible to align the vertex
with an edge of the adjacent floors.

It follows that the lattice path contains all three vertices of the triangle containing
the edge of length 2. This means that an alignment is only possible via a right
or left string. For a left string the end aligning with the triangle has the same
direction as the weight 2 edge. This leads to a polytope from family 11, which is
not binodal (Proposition 9.2.3). So the alignment happens via a right string.
With this alignment, the relative positions of 4 vertices are fixed, and after

applying IUA-equivalence we obtain two representatives for the containment of Ω
in d∆3: 1 1 1 1 0 0

1 0 0 0 d−1 d
0 a a+ 1 a+ 2 1 0



and

 1 1 1 1 0 0
0 1 1 1 d−1 d

d−1 d−a−3 d−a−2 d−a−1 1 0

 ,
where a is the parameter of the polytope family. We denote the first of these
positions Ω̃(13)

I and the second Ω̃(13)
II , and add the parameters (a,d,f,y) if we want

to speak of a specific polytope in this position. Figure 10.4 shows both positions
for the parameters a= 4, y = 0, f = 6 and d= 7.
The positions in the two matrices above are exemplary: We assume Ω to be

contained between the 0th and 1st floor and that the triangle with the edge of
length two is contained in the highest column of the floor subdivision. The same
can be achieved for different floor subdivisions and different columns, as long as
the minimum of the absolute values of the slopes of the non-vertical edges of the
triangle of volume 2 is at least 4. This is because for b= 1, polytopes of family 13
are only binodal for 4≤ a. The generic representatives can be found in Table 10.3.
For both positions, we conclude that d≥ 7.
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10.1 Binodal polytopes in degree d surfaces

(a) Polytope of family 13 in 7∆3 in position Ω̃(13)
I

(b) Polytope of family 13 in 7∆3 in position Ω̃(13)
II

Figure 10.4: The two positions for Polytope 13 contained in 7∆3

In the proof of Proposition 10.1.10, we have seen possible lattice paths for the
two positions. As for polytopes of family 10 in Section 10.1.1 it is enough to show
that these lattice paths are locally valid. Consequently, we only have to consider
the binodal polytope without the remaining subdivision of d∆3.

Proposition 10.1.11. For each of the two positions of a polytope belonging to
family 13 in Table 10.3 there is one valid lattice path that agrees with the lattice
path for d∆3:

Γ1,3(Ω̃(13)
I ), Γ1,4(Ω̃(13)

II ).

Proof. We know the two lattice paths from the proof of Proposition 10.1.10, where
we have seen that these are the only possible paths agreeing with the point conditions
in Mikhalkin position for a floor decomposed binodal tropical surface. I remains to
show that they are valid lattice paths.

We use IUA-equivalences that preserve the order of the lattice points to obtain
representatives of the two polytopes contained in the positive orthant of R3 and
minimal with respect to the lattice points. This polytopes depend on a but they
will no longer depend on d, f and y. We start with

Ω̃(13)
I (a) =

0 0 1 1 1 1
0 1 0 0 0 1
1 0 a a+ 1 a+ 2 0

 .
For this polytope we can apply the same methods as in Proposition 9.4.12. We
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Ω̃(13)
I (a,d,f ,y)d− (f + 1) d− (f + 1) d−f d−f d−f d−f

f f + 1 y y y y+ 1
1 0 a a+ 1 a+ 2 0


Example: Ω̃(13)

I (3,7,6,0) in Figure 10.4a
Ω̃(13)

II (a,d,f ,y)d− (f + 1) d− (f + 1) d−f d−f d−f d−f
f f + 1 y y+ 1 y+ 1 y+ 1
1 0 f −y f −y−a−2 f −y−a−1 f −y−a


Example: Ω̃(13)

II (3,7,6,0) in Figure 10.4b

Table 10.3: The two types of possible positions for a polytope belonging to family 13
to appear in the dual subdivision of a binodal surface of degree d through points
in Mikhalkin position. The parameters have the following meaning: f is the degree
of the floor containing the main part of the polytope, y is the value that can be
obtained in the y-coordinate and a is the parameter of the polytope family.

denote by ωi the lattice points of Ω̃(13)
I (a) in the order as given above.

The path Γ1,3(Ω̃(13)
I ) passes through the 2-dimensional cells of S given by (ω0ω2)∨,

(ω2ω4)∨ and (ω4ω5)∨. We compute the directions of the rays spanning the cones
associated to the facets and obtain the following system of linear equations from
the point conditions:0

0
0

=

xy
z

+α1

 0
−1
0

+α2

a−1
−a
−1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

 0
−1
0

+β2

1
0
0

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

1
0
0

+γ2

 0
a+ 2

1

 , γ1,γ2 > 0.

This system has the solution:

x= (1−a)η2,

y = λη− (a+ 2)(λ−1)η2,
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z = α2 = η2 > 0,
α1 = λη− (a+ 2)λη2 + 2η2 > 0,
β1 = (λ−1)(η− (a+ 2)η2)> 0,
β2 = 1 + (a−1)η2 > 0,
γ1 = λ+ (a−1)η2 > 0,
γ2 = (λ−1)η2 > 0,

which satisfies all the conditions, provided 1
a+2 > η. This can be satisfied without

violating the genericity of our point conditions because 1� η > 0. Therefore, the
path Γ1,3(Ω̃(13)

I ) is valid.
For the second position we obtain the IUA-representative

Ω̃(13)
II (a) =

0 0 1 1 1 1
0 1 0 1 1 1
1 0 a−2 0 1 2

 .
The path Γ1,4(Ω̃(13)

II ) passes through the 2-dimensional cells of S given by (ω0ω2)∨,
(ω2ω3)∨ and (ω3ω5)∨. We compute the directions of the rays spanning the cones
associated to the facets and obtain the following system of linear equations:0

0
0

=

xy
z

+α1

3−a
1
1

+α2

a−3
2−a
−1

 , α1,α2 > 0,

 1
η
η2

=

xy
z

+β1

a−3
2−a
−1

+β2

1
0
0

 , β1,β2 > 0,

 λ
λη
λη2

=

xy
z

+γ1

0
1
0

+γ2

1
0
0

 , γ1,γ2 > 0.

This system has the solution:

x=−(a−3)λη2,

y = η+ (a−2)(λ−1)η2,

z = λη2 > 0,

α1 = 1
a−3(η− (a−2)η2)> 0,

α2 = 1
a−3(η− (a−2)η2) +λη2 > 0,
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β1 = (λ−1)η2 > 0,
β2 = 1 + (a−3)η2 > 0,
γ1 = (λ−1)(η− (a−2)η2)> 0,
γ2 = λ(1 + (a−3)η2)> 0.

which satisfies all the conditions, provided 1
a−2 > η. As 1� η > 0 this can be

satisfied without violating the genericity of our point conditions. Thus, the path
Γ1,4(Ω̃(13)

II ) is valid.

Analogously to Section 10.1.1 we see that the changes from Ω̃(13)
I (a,d,f,y) to

Ω̃(13)
I (a) did not change the order of the lattice points with respect to the induced

partial order, nor did it change the polytope of family 13 that the polytope is
equivalent to. The same holds for Ω̃(13)

II (a,d,f,y). Hence, the lattice path and
its multiplicities are preserved, and the lattice paths as determined in Proposi-
tion 10.1.11 can be used to compute the multiplicities of the positions of a polytope
of family 13 in d∆3.

Conjecture 10.1.12. The multiplicity of the lattice paths depends only on a and
is given by

mult(Γ1,3(Ω̃(13)
I (a))) = mult(Γ1,4(Ω̃(13)

II (a))) =
a−2 if a even,
a−3 if a odd.

This conjecture is verified for 4≤ a≤ 10 by using [Gei22] in OSCAR; see Table 10.4.

Lattice path a= 4 a= 5 a= 6 a= 7 a= 8 a= 9 a= 10
Γ1,3(Ω̃(13)

I (a)) 2 2 4 4 6 6 8
Γ1,4(Ω̃(13)

II (a)) 2 2 4 4 6 6 8
Table 10.4: Verified multiplicities for polytope 13 in d∆3

10.1.3 Polytope family 20
Proposition 10.1.13. Let S be a floor decomposed tropical binodal surface of
degree d passing through points in Mikhalkin position. Then, the dual subdivision S
to S can only contain a polytope of family 20 if d≥ 5.

In this case there is one type of position for the polytope; see Table 10.5.

Proof. Let Ω be a binodal polytope of family 20, then only one pair of the edges of
Ω is parallel. Assume these two parallel edges were in the same floor subdivision of
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d∆3. From the combinatorics of polytopes of family 20 we know that the other two
lattice points of Ω are distributed on the two adjacent floor subdivisions. Thus, Ω
would have width 2 in the x-direction and S would no longer be floor decomposed.

Accordingly, we know that the two parallel edges of Ω are in adjacent floor
subdivisions in S.

Since Ω has only triangular facets, the polytope corresponds to the alignment of
two vertices of adjacent floors in the tropical floor plan. Analogous to the case of
the parallelogram between the floors for polytopes of family 10 in Proposition 10.1.7,
we argue that the two parallel edges of Ω have to be vertical.

We can align two vertices of adjacent floors either by fixing one vertex entirely
while the other has two degrees of freedom, or by leaving one degree of freedom to
each vertex such that both can be moved to enable the alignment.

If we leave out one lattice point in each of the two triangles spanning Ω, each of
the corresponding vertices will have one degree of freedom in the tropical floor plan.
However, at least one of the vertices will only have a limited area for movement,
since the surrounding vertices are fixed by the point conditions. This is only not
true for left and right strings, but an alignment of a left with a right string does
not induce a polytope of family 20.

The other approach, fixing one vertex and giving the other two degrees of freedom,
leads to a double right string. The position of Ω is therefore fixed to give one
representative for the containment in d∆3 by applying IUA-equivalences: 0 0 0 1 1 1

d−1 d−1 d y y+ 1 y+ 1
0 1 0 d−y−1 d−a−1 d−a

 ,
where a is the parameter of the polytope family and y is the parameter the position
of the second triangle in the y-coordinate. Here we assume that Ω is contained
between the 0th and 1st floor subdivision in S. The generic representative can be
found in Table 10.5. For consistence with the notation in Sections 10.1.1 and 10.1.2,
we denote this position Ω̃(20) and use Ω̃(20)(a,d,f,y) when we mean a particular
polytope. Figure 10.5 depicts this containment and the dual floor plan alignment
for a= 4, d= 5, f = 5 and y = 0.

Since polytopes of family 20 are only binodal for a≥ 4, it follows that d≥ 5.

Remark 10.1.14. Note that Ω̃(20)(a,2,1,0) under the SL2(Z) transformation (1,0,0) 7→
(1,0,a−1), is equal to Ω(20)

a as in Figure 9.12 in Chapter 9. This transformation
does not change the order of the lattice points as induced by (1,η,η2). Therefore,
we can use the results from Section 9.4.5 from Chapter 9, instead of having to
recompute as in Sections 10.1.1 and 10.1.2.
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Figure 10.5: Polytope of family 20 in 5∆3in position Ω̃(20)

Proposition 10.1.15. There is one valid lattice path that agrees with the lattice
path for d∆3 for the one position Ω̃(20) of a polytope belonging to family 20:

Γ1,2(Ω̃(20)).

Proof. This follows from the proof of Proposition 10.1.13, Remark 10.1.14 and
Proposition 9.4.20.

Conjecture 10.1.16. The multiplicity of the lattice path Γ1,2(Ω̃(20)(a)) depends
only on a and is given by

mult(Γ1,2(Ω̃(20)(a))) = a−3.

This conjecture is verified for 4≤ a≤ 7 by using [Gei22] in OSCAR; see Table 9.7.
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10.2 Counting binodal polytopes in degree d surfaces
In this section we apply the results of the previous sections to counting binodal
surfaces of degree d.

In Definition 10.2.1, we formally extend tropical floor plans to the cases of binodal
polytopes with 6 lattice points and width 1 as determined in Section 9.4. This step
is important as a foundation for future research in counting tropical surfaces via
tropical floor plans.
Then, building on the conjectured multiplicities from Section 9.4, we state a

conjecture on the contribution of the binodal polytopes to the asymptotic count
of binodal degree d surfaces NP3

2,C(d), asserting that they add to the third highest
term.
This section is based on joint work with Madeline Brandt [BG21].
We adapt some of the definitions from [MMSS22] to define floor plans that

enumerate tropical surfaces with a binodal polytope in their dual subdivision. First,
we note some differences from the original definitions.

We will count a double right string as two node germs to assure that two node
germs in the tropical floor plan correspond to two nodes in the associated surface.

Unlike the original definition of node germs by [MMSS22], we let a bounded edge
of length two be a node germ, instead of just its midpoint. We do this because for
polytopes from family 13, the edge of weight 2 in the tropical floor plan contributes
to the two nodes via one of its vertices, not via its midpoint.

Definition 10.2.1 (Generalized from [MMSS22, BG20]). Let Qi be the projection
of qi along the x-axis. A δ-nodal floor plan F of degree d is a tuple (Cd, . . . ,C1) of
plane tropical curves Ci of degree i together with a choice of indices d≥ iδ′ > .. . >

i1 ≥ 1 each assigned a natural number kj such that ∑δ′
j=1kj = δ, where 0< δ′ ≤ δ,

satisfying:

1. The curve Ci passes through the following points, where i0 = 0, iδ+1 = d+ 1.
if iν > i > iν−1 :

Q∑d
k=i+1 (k+2

2 )−δ+(
∑
j:i>ij

kj)+1, . . . ,Q
∑d
k=i (k+2

2 )−δ+(
∑
j:i>ij

kj)−1,

if i= iν :

Q∑d
k=i+1 (k+2

2 )−δ+(
∑
j:i≥ij

kj)+1, . . . ,Q
∑d
k=i (k+2

2 )−δ+(
∑
j:i>ij

kj)−1.

2. The plane curves Cij has kj node germs for each j = 1, . . . ,δ′, where the double
right string counts for two.
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10.2 Counting binodal polytopes in degree d surfaces

3. If Cij contains a left string as a node germ, then its horizontal end aligns
either with a horizontal bounded edge of Cij+1 or with a 3-valent (where edges
are counted with multiplicity) vertex of Ci+1 not adjacent to a horizontal
edge.

4. If Cij contains a right string as a node germ, then its diagonal end aligns
either

• with a diagonal bounded edge of Cij−1,
• with a 3-valent (where edges are counted with multiplicity) vertex of
Cij−1 which is not adjacent to a diagonal edge,

• with a vertex dual to a parallelogram which has two vertical edges and
two edges of slope of absolute value at least 4, or

• with a vertex dual to a triangle which consists of one vertical edge of
length two and two edges with slope of absolute value at least 4.

5. If Cij contains a double right string, then the vertex adjacent to the diagonal
and vertical end of the double right string aligns with a vertex dual to a
triangle that is formed of a vertical edge and two edges with slope of absolute
value at least 3.

6. If id = δ′, then the node germs of Cd can only be diagonal ends of weight two,
a right string, or a double right string.

7. If i1 = 1, then the node germ of C1 is a left string.

Now we have to decide with which complex lifting multiplicity we have to count
a tropical floor plan that allows for binodal polytopes in the dual subdivision. We
first summarize the results on the multiplicities of lattice paths for subdivisions of
d∆3 containing a binodal polytope with 6 lattice points of width 1 from Section 9.4
in the following conjecture:

Conjecture 10.2.2. Let S be a floor decomposed, tropical binodal surface of
degree d passing through points in Mikhalkin position such that the dual subdivision
contains one of the binodal polytopes

Ω̃(10)
I (a), Ω̃(10)

II (a), Ω̃(10)
III (a), Ω̃(13)

I (a), Ω̃(13)
II (a), Ω̃(20)(a),

and only unimodular simplices everywhere else.
Then the complex lifting multiplicity of S is given by

multC(S) =
a−3 for Ω̃(20)(a), and for Ω̃(13)

I (a), Ω̃(13)
II (a) if a odd,

a−2 else.
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Chapter 10 Counting binodal surfaces

Conjecture 10.2.2 is verified for polytopes belonging to family 13 when 4≤ a≤ 9,
for polytopes belonging to family 20 when a≤ 7, and for polytopes belonging to
family 10 when 3≤ a≤ 7; see Tables 10.1, 10.3 and 9.7.
To generalize the definition of the multiplicity of a floor plan, we distinguish

between node germs appearing in separated mode and unseparated mode.

Definition 10.2.3. A node germ appears in separated mode if the corresponding
singularity is separated. Otherwise, we say the node germ appears in unseparated
mode.

By definition a double right string is always in unseparated mode. All other node
germs in unseparated mode are accompanied by a second node germ in unseparated
mode with which it interacts, e.g. by alignment. These node germs in unseparated
mode with be always given as a pair.

The definition of separated or unseparated modes of node germs allows us to
distinguish between node germs giving rise to binodal polytopes in the dual subdi-
vision (unseparated mode) and node germs giving rise to the polytope complexes
described in connection with the circuits in Section 7.1 (separated mode).
The following definition is based on Conjecture 10.2.2.

Definition 10.2.4 (Generalized from Definition 5.4, [MMSS22]). Let F be a
δ-nodal floor plan of degree d. Let C∗ij be a node germ of Cij in separated mode.
Then we define the following local complex multiplicity multC(C∗ij ):

1. If C∗ij is dual to a parallelogram, then multC(C∗ij ) = 2.

2. If C∗ij is the midpoint of an edge of weight two, then multC(C∗ij ) = 8.

3. If C∗ij is a horizontal end of weight two, then multC(C∗ij ) = 2(ij + 1).

4. If C∗ij is a diagonal end of weight two, then multC(C∗ij ) = 2(ij−1).

5. If C∗ij is a left string whose horizontal end aligns with a horizontal bounded
edge, then multC(C∗ij ) = 2.

6. If C∗ij is a left string whose horizontal end aligns with a vertex not adjacent
to a horizontal edge, then multC(C∗ij ) = 1.

7. If C∗ij is a right string whose diagonal end aligns with a diagonal bounded
edge, then multC(C∗ij ) = 2.

8. If C∗ij is a right string whose diagonal end aligns with a vertex not adjacent
to a diagonal edge, then multC(C∗ij ) = 1.
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10.2 Counting binodal polytopes in degree d surfaces

If (C∗ij ,C
∗
ij−1) is a pair of node germs in unseparated mode, where C∗ij−1 is the

node germ in Cij−1 associated to C∗ij , or C
∗
ij

is a double right string, we assign the
following local multiplicities:

9. If C∗ij is a double right string that aligns with a vertex dual to a triangle that
is formed of a vertical edge and two edges with slope |a| ≥ 3 with the vertical
edge on the left side of the triangle, it has multiplicity |a|−2. Otherwise it
has multiplicity |a|−3.

10. If (C∗ij ,C
∗
ij−1) consists of a right string and an edge of weight 2 dual to the

vertical edge of length two of a triangle for which the minimum of the absolute
value of the slope of the other two edges is |a| ≥ 4, the pair has multiplicity
|a|−2 if |a| is even, and |a|−3 if |a| is odd.

11. If (C∗ij ,C
∗
ij−1) consists of a right string and a parallelogram which has two

vertical edges and two edges of slope |a| ≥ 4, the pair has multiplicity |a|−2.

The multiplicity of a δ-nodal floor plan F is

multC(F ) =
δ′∏
j=1

∏
node germs in

separated mode of Cij

multC(C∗ij )

·
∏

double right strings of C∗ij

multC(C∗ij )

·
∏

node germs in unseparated
mode of (Cij ,Cij−1)

multC((C∗ij ,C
∗
ij−1)).

We can use these multiplicities to compute the contribution of tropical surfaces
with binodal polytopes in their dual subdivision to the count of binodal surfaces of
degree d.

Conjecture 10.2.5. Assuming Conjecture 10.2.2 is true, it follows that tropical
degree d surfaces with a binodal polytope with 6 vertices and width 1 in the dual
subdivision contribute 1

4d
4 +O(d3) surfaces to NP3

2,C(d), which is the count of binodal
degree d surfaces.

So, binodal polytope with 6 vertices and width 1 contribute to the third highest
term of the polynomial NP3

2,C(d).

Proof. By Theorem 10.1.6 we know that the only polytopes that can contribute are
IUA-equivalent to binodal polytopes of the families 10, 13 and 20. Let n=

(
d+3

3

)
−3

be the number of points in Mikhalkin position the tropical binodal surface has to
pass through.
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Chapter 10 Counting binodal surfaces

There were three different positions, each with one valid lattice path, on how
to include a polytope belonging to family number 10 in a subdivision S of d∆3
induced by point conditions in Mikhalkin position: Ω̃(10)

I , Ω̃(10)
II , and Ω̃(10)

III . We
consider them separately.

First, we consider position Ω̃(10)
I , in which the parallelogram of the polytope of

family 10 is contained between two floor subdivisions. This arises from an alignment
as in Definition 10.2.1 (5).

Let f denote the degree of the (d− f)th floor. We consider the general rep-
resentative of Ω̃(10)

I (a,d,f,y) in Table 10.5, and observe that to enumerate all it
inclusions in S we need to find all the ways how the triangle spanned by the vertices
(d−f,y,a), (d−f,y,a+ 1), (d−f,y+ 1,0) can be contained in S. Then we have to
count them all with the multiplicity of their lattice path to gain their contribution
to the count.

To give rise to a polytope of family 10, the triangle can only occur in floor
subdivisions dual to a curve of degree f = deg(F ) with 4≤ f < d. For such a floor
subdivision, there are f − 3 many columns that can accommodate the triangle.
In each of these columns, we have to fit in the triangle spanned by (d− f,y,a),
(d−f,y,a+1), (d−f,y+1,0) while ensuring a≥ 3. There are f−y−3 many options.
We count each option with multiplicity a−2. This yields a total contribution of

d−1∑
f=4

f−4∑
y=0

f−y−1∑
a=3

(a−2) = d4

24 −
5d3

12 + 35d2

24 −
25d
12 + 1.

In both the positions Ω̃(10)
II and Ω̃(10)

III the parallelogram is contained in a floor
subdivision of S. Further, these two options are symmetric, and the correspond-
ing paths give the same multiplicity. So, we only enumerate the possibilities of
Ω̃(10)
II (a,d,f,y) to be contained in S.

Let again f denote the degree of the (d−f)th floor. We have to find all the ways
how the parallelogram spanned by (d− f,y,f − y− 1), (d− f,y,f − y), (d− f,y+
1,f −y−a−3), (d−f,y+ 1,f −y−a−2) can be contained in a floor subdivision
of d∆3 and count them with multiplicity. We know from Proposition 10.1.7 that
it can only be contained in floor subdivisions with dual curve of degree 5≤ f < d.
Such a floor subdivision contains f −4 many columns that can accommodate the
parallelogram.

For each of these columns there are f −y−3 many ways to fit the parallelogram
into it while ensuring a≥ 3. We count each option with multiplicity a−2. This
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10.2 Counting binodal polytopes in degree d surfaces

yields a total contribution of

d−1∑
f=5

f−4∑
y=1

f−y−1∑
a=3

(a−2) = d4

24 −
7d3

12 + 71d2

24 −
77d
12 + 5.

Counting this contribution twice (once for position Ω̃(10)
II and once for Ω̃(10)

III ) and
adding the contribution for position Ω̃(10)

I we get a total contribution of

d4

8 −
19d3

12 + 59d2

8 − 179d
12 + 11

from the tropical floor plans with an alignment corresponding to a polytopes of
family 10.
For polytopes of family 13, Proposition 10.1.10 determined two different ways

of including the polytope in a subdivision S of d∆3 arising from point conditions
in Mikhalkin position: Ω̃(13)

I and Ω̃(13)
II . For each there is one valid lattice path by

Proposition 10.1.11. However, the two cases are symmetric and they both give the
same lattice path multiplicity, so we only need to count the contribution of Ω̃(13)

I .
We have to find all the ways how the triangle spanned by the lattice points

(d− f,y,a), (d− f,y,a+ 2), (d− f,y+ 1,0) an be contained in S, and count them
with multiplicity. As for polytopes of family 10, we let f denote the degree of
the curve in the (d− f)th floor. By Proposition 10.1.10 we know that any floor
subdivision containing the triangle with a≥ 4 has to correspond to a floor of degree
6≤ f < d. Such a floor subdivision has f−5 many columns that can accommodate
the triangle such that a≥ 4. For any such column there are f−y−2 many ways to
fit the triangle in while ensuring a≥ 4. We count each option with its multiplicity:
a−2 if a is even, and a−3 if a is odd. In the sum we use a= 2k resp. a= 2k+ 1,
and see that in both cases the multiplicity can be computed by 2k−2. Thus, we
obtain the following sum as the contribution of polytopes in position Ω̃(13)

I :

2 ·
d−1∑
f=6

f−5∑
y=1

b f−y−1
2 c∑

k=2
(2k−2) =


1
24d

4− 7
12d

3 + 17
6 d

2− 17
3 d+ 4 if d even,

1
24d

4− 1
2d

3 + 25
12d

2− 7
2d−

17
8 if d odd.

So both positions, Ω̃(13)
I and Ω̃(13)

II , contribute via their lattice path multiplicities
the following number to our count:

1
12d

4− 7
6d

3 + 17
3 d

2− 34
3 d+ 8 if d even,

1
12d

4−d3 + 25
6 d

2−7d− 17
4 if d odd.
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Chapter 10 Counting binodal surfaces

By Propositions 10.1.13 and 10.1.15 we know that for a polytope belonging to
family 20 there is only one position, Ω̃(20), with only one valid lattice path in a
subdivision S of d∆3 induced by n points in Mikhalkin position.

To find all ways how this position can be attained in d∆3, we have to enumerate
all the ways how the triangle (d− f,y,f − y), (d− f,y+ 1,f − y− a), (d− f,y+
1,f − y− a+ 1) can be contained in S, where f is the degree of the (d− f)th
floor. The parameter a has to satisfy a≥ 4, otherwise the polytope is not binodal
(Proposition 9.2.5). It follows from Proposition 10.1.13 that 4 ≤ f < d. A floor
subdivision corresponding to a floor of degree 4≤ f < d has f −3 many columns
that can accommodate the triangle such that a≥ 4. For any such arbitrary column,
we have to fit in (d− f,y,f − y), (d− f,y+ 1,z), (d− deg(F ),y+ 1,f − y− a+ 1)
ensuring a ≥ 4. This yields f − y−3 many options. We count each option with
multiplicity a−3. This yields the following contribution of polytopes in position
Ω̃(20) to the count:

d−1∑
f=4

f−4∑
y=0

f−y∑
a=4

(a−3) = d4

24 −
5d3

12 + 35d2

24 −
25d
12 + 1.

It follows that for d > 6 binodal polytopes contribute

1
4d

4− 19
6 d

3 + 29
2 d

2− 85
3 d+ 20 if d even,

1
4d

4−3d3 + 13d2−24d− 31
4 if d odd.

to the count of binodal degree d surfaces.
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Appendix A

Polytopes with 6 lattice points of width 2
and 3
The lattice polytopes with 6 lattice points of width 2 and 3 have been classified
in [BS16b]. In this section, we record all these polytopes together with dimension
and degree of the associated generalized binodal variety for those cases, where the
computations terminated. We order the polytopes in different tables, depending
on the results of the computations. The polytopes are transposed so that all
coordinates are positive and permuted by (xy z). They are numbered according to
the numbering in [BS16b]1.

no. vertices (dim, deg) of the generalized binodal variety

2

1 1 2 1 1 0
0 1 1 1 2 2
0 1 1 2 1 5

 dim = 3, deg = 9

3

1 1 2 1 0 1
0 1 1 1 1 2
0 1 1 2 4 1

 dim = 3, deg = 24

4

1 1 2 1 1 0
0 1 1 1 2 2
0 1 1 2 1 6

 dim = 3, deg = 44

5

1 1 2 1 1 0
0 1 1 1 2 2
0 1 1 2 1 7

 dim = 3, deg = 65

12

5 0 0 1 0 0
0 1 2 2 2 3
0 0 1 1 2 1

 dim = 3, deg = 45

13

7 0 0 1 0 0
0 1 2 2 2 3
0 0 1 1 2 1

 dim = 3, deg = 91

1https://personales.unican.es/santosf/3polytopes/Size_6_latticepoints.txt
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Appendix A Polytopes with 6 lattice points of width 2 and 3

no. vertices (dim, deg) of the generalized binodal variety

14

0 2 3 2 3 2
0 2 2 3 3 4
0 1 1 1 2 1

 dim = 3, deg = 14

15

0 1 2 1 2 1
0 1 1 2 2 3
0 1 1 1 3 1

 dim = 3, deg = 27

16

0 1 2 3 2 3
0 1 2 2 3 3
0 1 2 2 2 4

 dim = 3, deg = 20

17

0 1 2 1 2 1
0 1 1 2 2 3
0 2 2 2 5 2

 dim = 3, deg = 65

18

0 1 2 3 2 3
0 1 2 2 3 3
0 2 4 4 4 7

 dim = 3, deg = 44

19

0 1 2 3 2 3
0 1 2 2 3 4
0 2 4 4 4 9

 dim = 3, deg = 119

24

0 2 3 4 3 4
0 1 2 2 3 3
0 2 4 4 4 7

 dim = 3, deg = 14

29

0 1 2 1 2 3
0 1 1 2 2 4
0 1 1 1 3 8

 dim = 3, deg = 136

38

1 1 2 1 1 0
0 1 1 1 2 2
0 1 1 2 1 3

 dim = 3, deg = 7

39

1 1 2 1 1 0
0 1 1 1 2 2
0 1 1 2 1 4

 dim = 3, deg = 16

40

1 1 2 0 1 1
0 1 1 1 1 2
0 1 1 2 2 1

 dim = 3, deg = 6

42

1 0 1 2 1 1
0 1 1 1 1 2
0 1 1 1 2 1

 dim = 3, deg = 6

43

3 3 4 3 3 0
0 1 1 1 2 2
0 1 1 2 1 3

 dim = 3, deg = 36
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44

3 3 4 3 3 0
0 1 1 1 2 2
0 1 1 2 1 6

 dim = 3, deg = 84

46

0 0 0 0 1 3
0 1 1 2 2 2
0 1 2 1 2 3

 dim = 3, deg = 10

47

1 2 1 1 1 0
0 0 0 1 1 3
0 0 1 0 1 4

 dim = 3, deg = 7

48

1 2 1 1 1 0
0 0 0 1 1 4
0 0 1 0 1 5

 dim = 3, deg = 18

50

5 0 1 0 0 0
0 2 2 2 3 3
0 1 1 2 1 2

 dim = 3, deg = 14

52

0 1 1 2 1 2
0 0 1 1 2 2
0 1 1 1 1 3

 dim = 3, deg = 8

53

0 1 2 1 2 2
0 1 1 2 2 2
0 1 1 1 2 3

 dim = 3, deg = 6

54

0 1 1 2 1 2
0 0 1 1 2 2
0 2 2 2 2 5

 dim = 3, deg = 24

55

0 1 2 1 2 2
0 1 1 2 2 2
0 2 2 2 4 5

 dim = 3, deg = 16

56

0 1 2 1 2 2
0 1 1 2 2 3
0 2 2 2 4 7

 dim = 3, deg = 48

57

0 2 3 2 3 5
0 2 2 3 3 6
0 1 1 1 2 2

 dim = 3, deg = 20

58

0 2 3 2 3 5
0 2 2 3 3 8
0 1 1 1 2 2

 dim = 3, deg = 70

59

0 1 2 1 1 2
0 1 1 2 2 2
0 1 1 0 1 3

 dim = 3, deg = 18
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no. vertices (dim, deg) of the generalized binodal variety

60

0 1 2 1 2 1
0 1 1 2 2 4
0 1 1 1 3 2

 dim = 3, deg = 48

62

0 3 4 5 4 5
0 2 3 3 4 4
0 4 5 5 5 7

 dim = 3, deg = 56

65

0 1 2 1 2 2
0 1 1 2 2 3
0 2 2 2 5 7

 dim = 3, deg = 65

68

0 1 2 3 2 3
0 2 3 3 4 4
0 3 5 5 5 8

 dim = 3, deg = 75

69

0 2 3 4 3 4
0 3 4 4 5 5
0 5 7 7 7 10

 dim = 3, deg = 126

74

0 1 2 1 1 2
0 1 1 2 2 3
0 1 1 0 1 6

 dim = 3, deg = 180

Table A.1: Polytopes with 6 lattice points and width 2 or 3 that could be binodal.

For the following polytopes the ideal generating the general binodal variety
contains monomials. Therefore, the binodal varieties is empty and the polytopes
cannot be binodal.

no. vertices (dim, deg) of the generalized binodal variety

1

0 0 0 0 0 2
0 1 1 1 2 2
0 0 1 2 0 1

 dim = 3, deg = 4, contains monomials

6

1 1 2 1 0 1
0 1 1 1 1 2
0 1 1 2 3 1

 dim = 3, deg = 3, contains monomials

9

0 2 0 1 0 0
0 0 1 1 1 2
0 1 1 1 2 1

 dim = 2, deg = 3, contains monomials

10

0 0 1 2 0 0
0 1 1 1 1 2
0 1 1 1 2 1

 dim = 2, deg = 3, contains monomials
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20

0 2 3 2 3 4
0 2 2 3 3 6
0 1 1 1 2 2

 dim = 1, deg = 2, contains monomials

21

0 1 2 0 1 2
0 1 1 2 2 2
1 2 2 0 2 4

 dim = 1, deg = 2, contains monomials

22

0 2 3 4 3 4
0 2 3 3 4 4
0 3 4 4 4 6

 dim = 3, deg = 5, contains monomials

23

0 1 2 1 2 2
0 1 1 2 2 3
0 2 2 2 5 8

 dim = 3, deg = 7, contains monomials

37

0 0 0 0 2 0
0 1 1 1 2 2
1 0 1 2 0 1

 dim = 3, deg = 4, contains monomials

41

1 1 2 1 1 0
0 1 1 1 2 2
0 1 1 2 1 2

 dim = 2, deg = 8, contains monomials

49

5 0 1 0 0 0
0 2 2 2 3 3
0 1 1 2 1 2

 dim = 2, deg = 2, contains monomials

51

0 2 2 3 2 3
0 1 2 2 3 3
0 1 1 1 1 2

 dim = 3, deg = 3, contains monomials

Table A.2: For these polytopes with 6 lattice points and width 2 or 3 the binodal
variety is empty.

For the following polytopes the question of binodality is undecided, because the
generalized binodal variety is a hypersurface. One would have to compute the
binodal variety, to see if the binodal variety is of the expected dimension.

no. vertices (dim, deg) of the generalized binodal variety

8

3 0 3 3 3 6
0 0 1 1 2 2
0 2 1 2 1 3

 dim = 4, deg = 12

11

0 0 0 0 3 6
0 1 1 2 2 3
0 1 2 1 3 5

 dim = 4, deg = 6
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no. vertices (dim, deg) of the generalized binodal variety

45

0 3 3 3 3 6
0 0 1 1 2 2
0 1 2 3 2 4

 dim = 4, deg = 6

Table A.3: For these polytopes the generalized binodal variety is a hypersurface.
The question of binodality is undecided.

For the remaining polytopes the computations did not terminate. We include
them for completeness.

no. vertices

7

3 3 4 3 3 0
0 1 1 1 2 2
0 1 1 2 1 9


25

0 11 13 14 13 14
0 10 12 12 13 13
0 6 7 7 7 8


26

0 15 17 18 17 18
0 13 15 15 16 16
0 7 8 8 8 9


27

0 7 8 9 8 9
0 6 7 7 8 8
0 8 9 9 9 11


28

0 9 10 11 10 11
0 7 8 8 9 9
0 8 9 9 9 11


30

0 1 2 1 2 6
0 1 1 2 2 5
0 1 1 1 3 12


31

0 4 5 6 5 6
0 3 4 4 5 5
0 5 7 7 7 10


32

0 5 6 7 6 7
0 6 7 7 8 8
0 9 11 11 11 14


33

0 1 2 1 2 0
0 1 1 2 2 3
0 2 2 2 5 1


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no. vertices

34

0 1 2 1 2 4
0 1 1 2 2 5
0 2 2 2 5 15


35

0 3 4 5 4 5
0 4 5 5 6 7
0 7 9 9 9 14


36

0 1 2 1 2 3
0 1 1 2 3 5
0 2 2 2 7 13


61

1 2 3 0 2 3
0 1 1 2 2 2
2 3 3 0 3 5


63

0 5 6 7 6 7
0 4 5 5 6 6
0 6 7 7 7 9


64

0 1 2 1 2 1
0 1 1 2 2 3
0 2 2 2 5 3


66

0 1 2 1 2 2
0 1 1 2 2 3
0 2 2 2 5 9


67

0 0 1 2 1 2
0 1 2 2 3 3
1 0 2 2 2 5


70

0 2 3 4 3 4
0 3 4 4 5 5
0 3 5 5 5 8


71

0 0 1 2 1 2
0 0 1 1 2 3
0 1 2 2 2 7


72

0 1 2 3 2 3
0 1 2 2 3 4
0 1 3 3 3 8


73

0 1 2 3 2 3
0 2 3 3 4 5
0 3 5 5 5 10


75

2 0 1 2 1 2
0 0 1 1 2 3
0 1 2 2 2 7


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Appendix A Polytopes with 6 lattice points of width 2 and 3

no. vertices

76

0 1 2 3 2 3
0 1 2 2 3 4
0 2 3 3 3 8


Table A.4: For these polytopes with 6 lattice points and width 2 or 3 the computation
did not terminate.
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Appendix B

Software code and functions
For completeness, this section contains code and functions used to obtain the
computational results of this thesis.

B.1 polymake extension TropicalQuarticCurves
The main functions in the polymake extension TropicalQuarticCurves [GP] can
be downloaded from the polymake wiki. Because of the length of the code of the
extension, this section of the Appendix contains the code that is not bundled in
the extension, and that was used to achieve the results in Sections 5.2 and 6.2.

B.1.1 Code for proof of Theorem 5.2.2
We first present the function to check whether a given vector of signs satisfies a
given real lifting condition.
use application "polytope";
$Verbose ::files =0;
# The function checks whether a given signvector satisfies a given

set of lifting conditions.
# The condition is given as the product of those entries of the

sign vector $vector , for which the indices are elements of the
entry of $signset , is positive.

# This has to hold for both entries of $signset
# If the signset contains a -1 it means that the product (after

taking -1 out) has to be negative to satisfy the condition.
# The boolean output states whether the conditions are satisfied.
# INPUT: Vector <Set <Int >> with 2 entries and Vector <Int >

containing only +/- 1 of length 15
# OUTPUT: boolean
sub validate_signs {

my $signset = $_[0];
my $vector = $_[1];
my $cond1 = new Bool(true);
my $cond2 = new Bool(true);
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my $product = new Int (1);
if ($signset ->[0]->size != 0) {

if (contains($signset ->[0], -1)) {
my $set = $signset ->[0] - new Set <Int >(-1);
my $subvector = $vector ->slice($set);
my $size = $subvector ->dim();
for my $i (0.. $size -1) {

$product = $product*$subvector ->[$i];
}
$product = -1*$product;
$cond1 = ($product == 1);

}
else {

my $subvector = $vector ->slice($signset - >[0]);
my $size = $subvector ->dim();
for my $i (0.. $size -1) {

$product = $product*$subvector ->[$i];
}
$cond1 = ($product == 1);

}
}
if ($cond1 == true) {

$product = new Int (1);
if ($signset ->[1]->size != 0) {

if (contains($signset ->[1], -1)) {
my $set = $signset ->[1] - new Set <Int >(-1);
my $subvector = $vector ->slice($set);
my $size = $subvector ->dim();
for my $i (0.. $size -1) {

$product = $product*$subvector ->[$i];
}
$product = -1*$product;
$cond2 = ($product == 1);

}
else {

my $subvector = $vector ->slice($signset - >[1]);
my $size = $subvector ->dim();
for my $i (0.. $size -1) {

$product = $product*$subvector ->[$i];
}
$cond2 = ($product == 1);

}
}

}
my $output = $cond1 && $cond2;
return $output;

}

The lifting of tropical bitangents over R depends on the signs of the coefficients
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of the real quartic curve. To compute all possible numbers of lifts to real bitangents
of a tropical smooth quartic curve, we need to check all possible signs of the 15
coefficients. Without loss of generality, we can assume that the first coefficient is
positive. The following function computes the 214 vectors with entries {±1} of
length 15 starting with 1. The list is printed into the file signs.txt.
use application "polytope";
$Verbose ::files =0;

open (my $output , ">", "signs.txt") or die "Can’t␣open␣:␣$!";

sub compute_signs {
my $S = new Set <Int >([0,1,2,3,4,5,6,7,8,9,10,11,12,13]);
for my $k (0..14) {

my $subsets = all_subsets_of_k($S , $k);
foreach my $sset (@$subsets) {

my $V = new Vector <Int >([1,1,1,1,1,1,1,1,1,1,1,1,1,1]);
my $W = new Vector <Int >(15);
foreach my $s (@$sset) {

$V ->[$s] = -1;
$W ->[0] = 1;
for my $i (1..14) {

$W ->[$i] = $V ->[$i -1];
}

}
print $output "[".join(",", @{$W})."]\n";

}
}

}

Using the following subroutine we can compute the number of real bitangents
for a given combinatorial type of the tropical quartic and a given vector of signs.
Running this function over all S3-representatives of smooth tropical quartics and
all {±1}15 proves Theorem 5.2.2.
# INPUT: DualSubdivisionOfCQuartics and Vector <Int > with 15

entries +/-1
# OUTPUT: Integer
sub give_pluecker {

my $trn = new DualSubdivisionOfQuartic($_[0]);
if ($trn ->IS_GENERIC != true) {

print "Triangulation␣is␣not␣generic.","\n";
}
else {

my $signvector = $_[1];
my $conditions = $trn ->ALL_SIGN_CONDITIONS;
my $output = 0;
for my $i (0..6) {

my $signconditions = $conditions ->row($i);
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if (validate_signs($signconditions ,$signvector)==true) {
$output = $output +4;

}
}
return $output;

}
}

For a given combinatorial type of the tropical quartic curve, we can compute all
possible numbers of real bitangents (in the code called Plücker numbers) together
with an exemplary sign vector for this number of real lifts.
# Function to compute all possible numbers of real bitangents

together with an exemplary sign vector for a given
DualSubdivisionOfQuartic.

# The output is a Set <Int > and Array <Set <Vector <Int >>> consisting
of 4 entries. Each entry consists of one of the 4 numbers 4,

8, 16, 28 of real lifts , and , if applicable , an associated
signvector.

# INPUT: DualSubdivisionOfQuartic
# OUTPUT: (Set <Int >, Array <Set <Vector <Int >>>)
sub give_signvectors {

my $trn = $_[0];
my @output = ();
if ($trn ->IS_GENERIC != true) {

@output = (new Set <Int >(), new Array <Set <Vector <Int >>>());
print "Triangulation␣is␣not␣generic.","\n";

}
else {

my $cond = $trn ->ALL_SIGN_CONDITIONS;
my $PlueckerNums = new Set <Int >();
my $SignsNumbers = new Array <Set <Vector <Int >>>(new Set <

Vector <Int >>(new Vector <Int >([4])), new Set <Vector <Int >>(
new Vector <Int >([8])), new Set <Vector <Int >>(new Vector <
Int >([16])), new Set <Vector <Int >>(new Vector <Int >([28]))
);

my $check = new Set <Int >();
open (my $input , "<", "signs.txt") or die "Can’t␣open␣:␣$!";
while (<$input >) {

my $signs = new Vector <Int >(eval $_);
my $number = give_pluecker($trn ,$signs);
$PlueckerNums ->collect(new Int($number));
if (contains($check ,$number)==0){

$SignsNumbers ->[$check ->size]->collect($signs);
}
$check ->collect($number);

}
close $input;
@output = ($PlueckerNums ,$SignsNumbers);

}
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return @output;
}

B.1.2 Code for the analyses in Chapter 6
The following code computes the distribution of orbit sizes for Theorem 6.2.1 using
the data of [BJMS15] directly.
use application "polytope";
$Verbose ::files =0;

open (my $input , "<", "/YOUR/PATH/TO/TropicalModuliData/
Computations/g3/preprocessing/g3TriangulationsData/
g3FineRegularAffine.txt");

my $i=0;
my $S3 = new group:: PermutationAction(GENERATORS=>

[[0,2,1,5,4,3,9,8,7,6,14,13,12,11,10],
[10,6,11,3,7,12,1,4,8,13,0,2,5,9,14]]);

my $sizes = new Vector <Int >([0,0,0,0,0,0]);
while (<$input >) {

my $trn = new Set <Set <Int >>(eval $_);
my $A = new Set <Set <Set <Int >>>(group::orbit <group:: on_elements

>($S3 ->ALL_GROUP_ELEMENTS ,$trn));
my $orbsize = $A ->size();
$sizes ->[$orbsize -1] = $sizes ->[$orbsize -1] +1;
++$i;
print $i."\n";

}
print $sizes;
close $input;

The following code computes that every smooth tropical quartic curve is combi-
natorially determined by its deformation classes, Theorem 6.2.5.
# We go through the list of representatives. For each

representative we collect the set of triangles , that is
determined by its deformation classes.

# To avoid the problem , that there might be different S3-
equivalent options for completing the unimodular triangulation ,

# we add all elements of the orbits of the set of triangles fixed
by the deformation classes.

# We collect all these sets , there are 7422 sets of this type.
# A there are 7422 regular unimodular triangulations in total , we

can conclude , that the deformation classes combinatorially
determine the quartic curve.

application "fan";
$polydb = polyDB ();
$set = new Set <Set <Set <Int >>>();
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$collection = $polydb ->get_collection("Tropical.QuarticCurves");
$cur=$collection ->find ({});
$k = 0;
while ($cur ->has_next ()) {

my $p = $cur ->next();
my $triangles = new Set <Set <Int >>();
for my $i (0..6) {

my $size = $p ->ALL_DEFORMATION_MOTIFS ->[$i]->TRIANGLES ->size
;

for my $j (0.. $size -1){
$triangles ->collect($p->ALL_DEFORMATION_MOTIFS ->[$i]->

TRIANGLES ->[$j]);
}

}
for my $o (0..5) {

$helptriangles = group::action <group:: on_elements >($p ->
ACTION ->ALL_GROUP_ELEMENTS ->[$o],$triangles);

$set ->collect($helptriangles);
}
print $k,"\n";
print $set ->size ,"\n";
$k = $k+1;

}
print $set ->size == 7422;

Using the following code, we can obtain the identifiers of the cones with constant
bitangent shapes and count them. This code was used to prove Proposition 6.3.2.
application "fan";
$polydb = polyDB ();
$collection = $polydb ->get_collection("Tropical.QuarticCurves");
open (my $output , ">", "ConstantShapeCones.txt") or die "Can’t␣

open␣:␣$!";
for my $i (1..1278) {

my $cur=$collection ->find({_id=>"$i"});
my $p= $cur ->next();
my $motifs = $p ->ALL_DEFORMATION_MOTIFS;
my $j = 0;
for my $k (0..6) {

my $hyp = $motifs ->[$k]->HYPERPLANES;
if ($hyp ->rows ==0) {

$j = $j+1;
}

}
if ($j==7) {

print $output $i."\n";
}
$i = $i+1;

}
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The 128 secondary cones with constant bitangent shapes, Proposition 6.3.2,
numbering according to the database identifyers:

12
18
27
32
39
52
60
70
77
82
83
92
98
99
100
101
121
129
139
141
152
156
158
168
170
176
177
186
195
209
257
264
265
272
280
303
304
313
326
334
344
359
360
384

385
412
459
475
477
484
497
504
543
546
547
549
572
573
574
620
629
631
652
653
654
660
661
664
668
702
720
749
752
753
754
755
756
767
768
769
770
849
893
914
915
916
925
933

935
936
937
939
957
958
968
972
989
992
993
994
997
1000
1001
1018
1019
1046
1047
1049
1055
1110
1147
1155
1156
1157
1159
1160
1179
1185
1186
1199
1209
1240
1251
1256
1267
1274
1275
1278
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B.2 Functions in OSCAR for binodal polytopes
Here the functions written by the author for the joint project [BG21] with Madeline
Brandt are contained. The code can also be downloaded [Gei22]. The code was
written in OSCAR [osc] version 0.8.2. The first section, Section B.2.1 contains the
main functions used for the investigations in Chapters 9 and 10. In Section B.2.2,
the helper functions are contained for completeness.
Disclaimer: The computations do not terminate for larger input values on a

standard computer.

B.2.1 Main functions
This section consists of the functions to investigate binodal varieties for a fixed
support of the surfaces given by a (small) lattice polytope. These functions use
certain helper functions enclosed in Section B.2.2. They have to be loaded first in
OSCAR. In the downloadable version available at [Gei22], this is already done by
the script.
This function computes the generalized binodal variety (Definition 9.1.4) by

using Algorithm 6.
#INPUT: matrix(ZZ,n,3 ,[...])
#OUTPUT: returns the radical ideal generating the generalized

binodal variety
function general_binodal(A:: MatElem)

n = nrows(A)
R, c = PolynomialRing(QQ ,vcat(["c$i" for i in 1:n+7]))
x = c[n+1]
y = c[n+2]
z = c[n+3]
u = c[n+4]
v = c[n+5]
w = c[n+6]
t = c[n+7]

#(x,y,z) stand for the position of the first node , (u,v,w) for the
position of the second node

#t is an additional variable to make sure that the nodes are
contained in the torus
Id = identity_matrix(ZZ ,n)
M = hcat(Id,A)
M = hcat(M, zero_matrix(ZZ,n,4)) #add coefficients for u,v,w,t
h = MPolyBuildCtx(R)
for i in 1:n

push_term !(h,1,Vector{Int64 }([M[i,j] for j in 1:ncols(M)]))
end
p= finish(h)
q = evaluate(p,[x,y,z],[u,v,w])
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I = ideal(R,[p,q,derivative(p,x),derivative(p,y),derivative(p,z
),derivative(q,u),derivative(q,v),derivative(q,w) ,1-t*x*y*z*
u*v*w])

Sat = saturation(I, ideal(R,[x-u,y-v,z-w]))
K = eliminate(Sat ,[t,x,y,z,u,v,w])
J = gens(K)
RR, a = PolynomialRing(QQ, ["a$i" for i in 1:n])
V = Vector{fmpq_mpoly }(undef ,length(J))
for i in 1: length(J)

V[i] = evaluate(J[i],vcat(a,[zero(RR) for i in 1:7]))
end
II = ideal(RR ,V)
Radical = radical(II)
return Radical

end

The next function computes the binodal variety (Definition 9.1.1) following
Algorithm 7. It uses the function general_binodal above. This function has two
methods: it can be applied either to an integer matrix filled with the lattice points
of the polytope, or to the ideal generating the generalized binodal variety. If the
affine dimension of the generalized binodal variety is less than n−2, where n is
the number of variables, the function returns an error.
#INPUT: matrix(ZZ,n,3 ,[...])
#OUTPUT: returns the radical ideal generating the binodal variety
function binodal(A:: MatElem)

n = nrows(A)
Var = general_binodal(A);
RR = base_ring(Var)
monomes = RR(Rational{BigInt }[1] ,[ fill (1,6)])# this is the

monomial a[1]*...*a[n]
Mon = ideal(RR , monomes)
dimension = dim(Var)
@assert dimension >= n-2 "Generalized binodal variety is of too

small dimension."
Bin = helper_component_check(Var)
return Bin

end

#INPUT: ideal of type MPolyIdeal{fmpq_mpoly}
#OUTPUT: returns the radical ideal generating the binodal variety
function binodal(I:: MPolyIdeal{fmpq_mpoly })
RR = base_ring(I)
n = nvars(RR);
monomes = RR(Rational{BigInt }[1] ,[ fill(1,n)])# this is the

monomial a[1]*...*a[n]
Mon = ideal(RR , monomes)
dimension = dim(I)
@assert dimension >= n-2 "Generalized binodal variety is of too
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small dimension."
Bin = helper_component_check(I)
return Bin
end

Given a radical ideal this function computes the degree of the associated variety.
#INPUT: ideal of type MPolyIdeal{fmpq_mpoly}
#OUTPUT: the degree of the given ideal (an integer)
function compute_degree(Path:: MPolyIdeal{fmpq_mpoly })

Gens = gens(Path)
k = nvars(base_ring(Path))
Genshom = Vector(undef , length(Gens))
for i in 1: length(Gens)

Genshom[i] = homogenization(Gens[i],"z",k+1)
end
RRhom = parent(Genshom [1]) # This is RR, homogenous with

additional variable e3 and weights [1, 1,..., 1]
IIhom = ideal(RRhom , RRhom .( Genshom))
Q, _ = quo(RRhom , IIhom)
deg = degree(quo(RRhom , IIhom)[1]) #this is the degree of the

hyperplane section of the binodal variety in the left out
points

return deg
end

The next function investigates the properties of the binodal variety. It returns
the affine dimension and the degree. If the binodal variety is empty or not of
expected dimension, the function prints the corresponding message. This function
has again two methods: it can be used on the ideal generating the binodal variety,
or directly on the matrix filed with the lattice points of the polytope.
Note that the main time of the computations is taken up by computing the

binodal variety. Therefore, it might be advisable to compute the binodal variety
only once, save it, and apply the first method of the investigative function.
#INPUT: matrix(ZZ,n,3 ,[...])
#OUTPUT: Pair (dimension , degree)
function investigate_binodal(I:: MPolyIdeal{fmpq_mpoly })

deg = compute_degree(I)
dimension = dim(I)
n = nvars(base_ring(I))
println("Affine dimension of the binodal variety is ",

dimension)
if isone(I)

println("Binodal variety is empty")
elseif dimension ==n-2
println("The binodal variety is of expected affine dimension

.")
println("Degree of the binodal variet is ", deg)
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else
println("The binodal variety is not of expected affine

dimension.")
end
return dimension , deg

end

#INPUT: matrix(ZZ,n,3 ,[...])
#OUTPUT: Pair (dimension , degree)
function investigate_binodal(A:: MatElem)

I = binodal(A)
deg = compute_degree(I)
dimension = dim(I)
n = nvars(base_ring(I))
println("Affine dimension of the generalized variety is ",

dimension)
if isone(I)

println("Binodal variety is empty")
elseif dimension ==n-2

println("The binodal variety is of expected affine dimension
.")

println("Degree of the binodal variet is ", deg)
println(A, " could be a binodal polytope.")

else
println("The binodal variety is not of expected affine

dimension.")
end
return dimension , deg

end

The next function computes the intersection of the binodal variety for a 3-
polytope given as a matrix filled with the lattice points, with 4 linear spaces of
codimension 1 given by substituting all variables with the values given in v, apart
from those two with indices specified in p. In the code this is called path ideal,
because the degree of this ideal is the multiplicity of the connected lattice path
given by skipping the two lattice points with indices specified in p (Lemma 9.3.3,
(i), (ii) and (iii)). The function follows Algorithm 9, only that it returns the ideal,
not the degree.

This function has again two methods, similar to binodal or investigate_binodal.
#INPUT: The n lattice points of the polytope as matrix , the

positions of the two left out lattice points as a Vector , a
generic point Vector of length n-2

#OUTPUT: the Path ideal
function con_mult(A::MatElem , p:: Vector{Int}, v:: Vector)

@assert p[1]!= p[2] "Left out points must me different"
@assert length(p)==2 "This function is only meant for lattice

paths with 2 left out points."
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@assert p[1] < p[2] "Left out points must be ordered from small
to large."

I = binodal(A)
J = gens(I);
n = nrows(A)
o = helper_find_indices(n,p)
V = Vector{fmpq_mpoly }(undef ,length(J))# we fill this vector

according to the left out point conditions p[1] and p[2]
with the values from v

for i in 1: length(J)
V[i] = evaluate(J[i],[o[i] for i in 1:(n-2)], [v[i] for i in

1:(n-2)])
end
RRR , e = PolynomialRing(QQ ,["e$i" for i in 1:2])
w = helper_switch_ring(n,p,[true ,true],v,RRR)
m = length(J)
V2 = helper_finish_switch_ring(n,m,w,V)
II = ideal(RRR ,V2) # this is the ideal of the intersection of

the binodal variety with the hyperplanes given by v
Radical = radical(II)
Path = helper_component_check(Radical)
return Path

end

# INPUT: the binodal variety , the positions of the two left out
lattice points as a Vector , a generic point Vector of length n
-2

# OUTPUT: the Path ideal
function con_mult(I:: MPolyIdeal{fmpq_mpoly}, p:: Vector{Int}, v::

Vector)
@assert p[1]!= p[2] "Left out points must me different"
@assert length(p)==2 "This function is only meant for lattice

paths with 2 left out points."
@assert p[1] < p[2] "Left out points must be ordered from small

to large."
J = gens(I);
n = nvars(base_ring(I))
o = helper_find_indices(n,p)
V = Vector{fmpq_mpoly }(undef ,length(J))# we fill this vector

according to the left out point conditions p[1] and p[2]
with the values from v

for i in 1: length(J)
V[i] = evaluate(J[i],[o[i] for i in 1:(n-2)], [v[i] for i in

1:(n-2)])
end
RRR , e = PolynomialRing(QQ ,["e$i" for i in 1:2])
w = helper_switch_ring(n,p,[true ,true],v,RRR)
m = length(J)
V2 = helper_finish_switch_ring(n,m,w,V)
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II = ideal(RRR ,V2) # this is the ideal of the intersection of
the binodal variety with the hyperplanes given by v

Radical = radical(II)
Path = helper_component_check(Radical)
return Path

end

The function below computes the multiplicity of a lattice path following Algo-
rithms 9 and 10. The polytope is as always given by a matrix filled with the lattice
points. We indicate the lattice path by two vectors: The first vector p contains the
indices of the lattice points that are left out of the path resp. are the end point
of a gap of the path. The second vector b contains boolean values, where true
indicates that the lattice point in the corresponding position in p is a skipped point.
Consequently, false indicates that the lattice point in the corresponding position
in p is the end point of a gap in the path.
Example: b[1] = true means, that the point at position p[1] is a skipped

point, not part of a gap. For the moment, p and b are only allowed exactly 2
entries. It should be possible to expand the function if needed for further research.
Analogous to con_mult, this function has two methods.
Note that p needs to be filled according to size, i.e., the smallest value first, the

largest at the end.
# INPUT: The n lattice points of the polytope as matrix , the

positions of the two left out lattice points as a Vector , the
types of the indicated lattice points as a boolean vector , a
generic point Vector of length n-2

# OUTPUT: prints the lattice path multiplicity if the points in v
are generic enough.

function path_mult(A::MatElem , p:: Vector{Int}, b:: Vector{Bool}, v
:: Vector)
n = nrows(A)
@assert p[1]!= p[2] "Left out points must me different"
@assert length(p) ==2 "This function is only meant for lattice

paths with 2 left out points."
@assert length(p) == length(b) "$p and $b need to have the same

length"
@assert length(v)== n-length(p) "Number of point conditions in

$v is wrong."
@assert p[1] < p[2] "Left out points must be ordered from small

to large."
@assert b[1] || b[2] "This function is only meant for lattice

paths with at most one gap."
@assert (!(p[1] == 1 || p[1] == 2) || !b[1] || b[2] || p[2] >=4)

"Invalid Path given."
@assert (b[1] || !(p[1] <3||p[1]==n-1)) "Invalid Path given."
I = binodal(A)
J = gens(I)
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if b[1] && b[2] #case of the connected paths (no gap in the
path)
Path = con_mult(A,p,v)

else #disconnected multiplicty
if b[1] && !b[2] #first left out point , then gap

o = helper_find_indices(p[2],p)
V = Vector{fmpq_mpoly }(undef ,length(J))
for i in 1: length(J)

V[i] = evaluate(J[i],[o[i] for i in 1:(p[2]-2)], [v[i]
for i in 1:(p[2]-2)])

end
println(V)
RRR , e = PolynomialRing(QQ ,["e$i" for i in 1:2])
w = helper_switch_ring(n,p,b,v,RRR)
V2 = helper_finish_switch_ring(n,length(J),w,V)

elseif !b[1] && b[2] # here the gap appears first
o = helper_find_indices(p[1],p)
V = Vector{fmpq_mpoly }(undef ,length(J))
for i in 1: length(J)

V[i] = evaluate(J[i],[o[i] for i in 1:(p[1]-1)], [v[i]
for i in 1:(p[1]-1)])

end
RRR , e = PolynomialRing(QQ ,["e$i" for i in 1:2])
w = helper_switch_ring(n,p,b,v,RRR)
V2 = helper_finish_switch_ring(n,length(J),w,V)

end
II = ideal(RRR ,V2)
Radical = radical(II)
Path = helper_component_check(Radical)

end
deg = compute_degree(Path)
if isone(Path)

println("Path variety is empty")
else

dimension = dim(Path)
println("Affine dimension is ", dimension)
if dimension == 0

println("Path multiplicity is ", deg)
else

error("Given point conditions were not generic enough or
the polytope is not binodal.")

end
end
return Path , deg

end

#INPUT: The binodal variety , the positions of the two left out
lattice points as a Vector , a generic point Vector of length n
-2
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#OUTPUT: prints the lattice path multiplicity if the points in v
are generic enough.

function path_mult(I:: MPolyIdeal{fmpq_mpoly}, p:: Vector{Int}, b::
Vector{Bool}, v:: Vector)
n = nvars(base_ring(I))
@assert p[1]!= p[2] "Left out points must me different"
@assert length(p)==2 "This function is only meant for lattice

paths with 2 left out points."
@assert length(p)== length(b) "$p and $b need to have the same

length"
@assert length(v)== n-length(p) "Number of point conditions in

$v is wrong."
@assert p[1] < p[2] "Left out points must be ordered from small

to large."
@assert b[1] || b[2] "This function is only meant for lattice

paths with at most one gap."
@assert (!(p[1] == 1 || p[1] == 2) || !b[1] || b[2] || p[2] >=4)

"Invalid Path given."
@assert (b[1] || !(p[1] <3||p[1]==n-1)) "Invalid Path given."
J = gens(I)
if b[1] && b[2] #case of the connected paths (no gap in the

path)
Path = con_mult(I,p,v)

else #disconnected multiplicty
if b[1] && !b[2] #first left out point , then gap

o = helper_find_indices(p[2],p)
V = Vector{fmpq_mpoly }(undef ,length(J))
for i in 1: length(J)

V[i] = evaluate(J[i],[o[i] for i in 1:(p[2]-2)], [v[i]
for i in 1:(p[2]-2)])

end
println(V)
RRR , e = PolynomialRing(QQ ,["e$i" for i in 1:2])
w = helper_switch_ring(n,p,b,v,RRR)
V2 = helper_finish_switch_ring(n,length(J),w,V)

elseif !b[1] && b[2] # here the gap appears first
o = helper_find_indices(p[1],p)
V = Vector{fmpq_mpoly }(undef ,length(J))
for i in 1: length(J)

V[i] = evaluate(J[i],[o[i] for i in 1:(p[1]-1)], [v[i]
for i in 1:(p[1]-1)])

end
RRR , e = PolynomialRing(QQ ,["e$i" for i in 1:2])
w = helper_switch_ring(n,p,b,v,RRR)
V2 = helper_finish_switch_ring(n,length(J),w,V)

end
II = ideal(RRR ,V2)
Radical = radical(II)
Path = helper_component_check(Radical)
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end
deg = compute_degree(Path)
if isone(Path)

println("Path variety is empty")
else

dimension = dim(Path)
println("Affine dimension is ", dimension)
if dimension == 0

println("Path multiplicity is ", deg)
else

error("Given point conditions were not generic enough or
the polytope is not binodal.")

end
end
return Path , deg

end

Now, we present the functions used for the verification of binodal polytopes
(Conjecture 9.2.8). The procedure is Algorithm 8. The first step is to find a generic
point in the binodal variety. For this we use the function find_generic_point,
which is just a more intuitive name for the function con_mult. See the explanation
above for that function.
# INPUT: The n lattice points of the polytope as matrix , the

positions of the two left out lattice points as a Vector , a
generic point Vector of length n-2

# OUTPUT: the Path ideal
function find_generic_point(A::MatElem , p:: Vector{Int}, v:: Vector)

Path = con_mult(A,p,v);
return Path

end

This function returns an ideal that induces a zero dimensional variety. We can solve
for a point in this variety. In general, this is not easy. When we have a solution,
we can compute the singular locus of the surface generated by the coordinates of
point in the variety as coefficients.
If the coefficients are not rational, we need to define a field extension. Usually

this is a simple number field. Therefore, the function has again two methods, which
can be used depending on whether the field extension is needed.
#INPUT: the monomials given as matrix(ZZ,n,3 ,[...]) and the

ocefficients given as Vector{Rational{Int64}}
#OUTPUT: Pair (the ideal of the singular locus , its dimension)
function singular_locus(A::MatElem ,v:: Vector{Rational{Int64 }})

R, x = PolynomialRing(QQ ,["x$i" for i in 1:3])
n = nrows(A)
h = MPolyBuildCtx(R)
for i in 1:n
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push_term !(h,v[i],Vector{Int64 }([A[i,j] for j in 1: ncols(A)
]))

end
p= finish(h)
I = ideal(R,[p,derivative(p,x[1]),derivative(p,x[2]),derivative

(p,x[3])])
return I, dim(I)

end

#Works for a simple NumberField K
#INPUT: the monomials given as matrix(ZZ,n,3 ,[...]), the

ocefficients given as Vector{Rational{Int64}} and the field
extension given as AnticNumberField

#OUTPUT: Pair (the ideal of the singular locus , its dimension)
function singular_locus(A::MatElem ,v:: Vector{Any},K::

AnticNumberField )
R, x = PolynomialRing(K,["x$i" for i in 1:3])
n = nrows(A)
h = MPolyBuildCtx(R)
for i in 1:n
push_term !(h,v[i]*one(K),Vector{Int64 }([A[i,j] for j in 1:ncols(A)

]))
end
p= finish(h)
I = ideal(R,[p,derivative(p,x[1]),derivative(p,x[2]),derivative(p,

x[3])])
return I, dim(I)
end

B.2.2 Helper functions
This section contains the helper functions for the functions computing the multiplic-
ities of lattice paths, as contained in Section B.2.1, together with a brief description
of the functions.

This following function fills a vector with the indices of the variables which have
to be substituted by fixed values.
#INPUT: integer n giving the number of the coefficients that have

to be substituted , vector p stating the indices of the
coefficients that are not to be substituted

#OUTPUT: Vector{Int64}
function helper_find_indices(n::Int ,p:: Vector{Int})

o = Vector{Int64 }() #this is auxiliary vector to help us fill
the point conditions in the vector V

s = p[1]
t = p[2]
for i in 1:n
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if i<s && i<t
append !(o,i)

elseif s<i && i<t
append !(o,i)

elseif i<s && t<i
append !(o,i)

elseif s<i && t<i
append !(o,i)

end
end
return o

end

The following is the first helper function to switch from the polynomial ring with
n variables aω0 , . . . ,aωN+1 to the polynomial ring in 2 variables. The function is
used in the computation of multiplicities of lattice paths. It computes the vector
w, which is used to substitute the remaining variables and move the ideal into the
polynomial ring with 2 variables, so that we can compute the degree of the path
ideal. Depending on connected (if (b[1]&&b[2])==true) or disconnected paths
(if (b[1] &&!b[2])||(!b[1]&&b[2])==true), the vector w gets filled differently.
This is explained in detail in Section 9.3.2. See Algorithms 9 and 10. The vector
w is filled with zeros at those coordinates which do not depend on the new two
variables, because these entries are substituted before by the general rational entries
of the input vector v in path_mult.
#INPUT: Integer n, Vector p, Vector of bools b, PolynomialRing RRR
#OUTPUT: Vector w filled with zero(RRR) for all indices not in p

and with monomials in e[1], e[2] for the entries of p
function helper_switch_ring(n::Int ,p:: Vector{Int},b:: Vector{Bool},

v::Vector ,RRR:: FmpqMPolyRing)
w = Vector(undef ,n)
RRR , e = PolynomialRing(base_ring(RRR),symbols(RRR))
if b[1] && b[2]

for i in 1:n
if i!=p[1] && i!=p[2]

w[i] = zero(RRR)
elseif (p[1]==i && p[1]<p[2]) || (p[2]==i && p[2]<p[1])

w[i] = e[1]
elseif (p[1]==i && p[2]<p[1]) || (p[2]==i && p[1]<p[2])

w[i] = e[2]
end

end
elseif b[1] && !b[2]

for i in 1:n
if i<p[1] || p[1]<i<p[2]

w[i] = zero(RRR)
elseif i == p[1]

w[i] = e[1]
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elseif i == p[2]
w[i] = e[2]

else
w[i] = v[i-2]*e[2]

end
end

elseif !b[1] && b[2]
for i in 1:n

if i<p[1]
w[i] = zero(RRR)

elseif i == p[1]
w[i] = e[1]

elseif i == p[2]
w[i] = e[1]*e[2]

elseif p[1]<i<p[2]
w[i] = v[i-1]*e[1]

else
w[i] = v[i-2]*e[1]

end
end

end
return w

end

Next is the second helper function to switch from the Polynomial ring with n
variables aω0 , . . . ,aωN+1 to the polynomial ring in 2 variables. This is needed for
the computation of the Path multiplicities. The function substitutes the variables
in the m generating polynomial of the binodal variety, according to the vector w
defined by the function above.
#INPUT: Integer n for the number of inital variables , Integer m

for the number of polynomials that have to be substituted ,
vector w that contains the polynomials in the new variables e
[1], e[2] that have to be substituted in the indices
complementary to those found by using helper_find_indices ,
vector V consisting of the m polynomials in which the entries
with indices found by helper_find_indices are already
substituted by fixed values

#OUTPUT: Vector V2 that consists for each variable of the original
ring of fixed values or monomials in e[1],e[2]

function helper_finish_switch_ring(n::Int ,m::Int ,w::Vector ,V::
Vector)
V2 = Vector(undef ,m)
for i in 1:m

V2[i] = evaluate(V[i],[w[i] for i in 1:n])
end
return V2

end
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The following function takes an ideal, computes its primary decomposition and
checks for each primary component whether the associated prime ideal contains
monomials. The function returns the radical ideal consisting of the intersection
of all those prime ideals that do not contain monomials. This function is used for
the computation of the binodal variety in binodal, and for the path varieties in
con_mult and path_mult.
#INPUT: ideal I of type MPolyIdeal{fmpq_mpoly}
#OUTPUT: the maximal radical ideal in I such that no primary

component contains monomials
function helper_component_check(I:: MPolyIdeal{fmpq_mpoly })

RRR = base_ring(I)
k = nvars(RRR)
monomes = RRR(Rational{BigInt }[1] ,[ fill(1,k)]) #e[1]*e[2]
Mon = ideal(RRR , monomes)
L = primary_decomposition(I)
II = ideal(RRR , one(RRR))
l = length(L)
for i in 1:l

if !issubset(Mon ,L[i][2])
II = intersect(II ,L[i][2])

end
end
return II

end
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