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Abstract 

Soils of the northern circumpolar region are a key organic carbon storage strained by 

global warming. Thawing of permafrost-affected soils from global warming increases 

greenhouse-gas emissions whose quantification is limited by sparse, uncertain and 

spatially diverse data of soil organic carbon stocks (SOCS) across the Arctic region, 

especially in Greenland. The accurate assessment of the effects of global warming 

requires better understanding of environmental interactions and feedbacks on SOCS 

which, however, vary spatially and across scales in Arctic environments. 

Therefore, different scales were selected to identify scale-dependent effects of 

environmental factors and processes on the SOCS distribution in permafrost-affected 

soils in Arctic environments, exemplified by two study areas in West Greenland. Three 

controlling factors (vegetation, landscape, aspect) were used as representation of 

spatial varying environmental conditions to investigate the spatial SOCS distribution 

over short distances separately in both areas on the local scale and over a long 

distance between both areas on the regional scale. Further, the spatial SOCS 

distribution was analyzed using a set of multi-scale terrain and spatial features 

representing environmental processes acting parallel but differing in their intensity on 

the moraine, valley and catchment scale. The soil data set comprises of SOCS from 

140 locations distributed over a study area at the coast and at the ice margin of West 

Greenland being characterized by oceanic and continental climate.  

On the local scale, the SOCS distribution was best explained by vegetation and aspect 

as both reflect the importance of wind and solar radiation in both areas. Furthermore, 

aspect and curvature best mapped the SOCS distribution shaped by water-driven 

relocation processes on the moraine and valley scale in SISI and wind-induced 

processes acting parallel on the moraine, valley and catchment scale in RUSS. On the 

regional scale, differences in the SOCS distribution result from contrasting climate 

conditions between the coast and the ice margin which both are reflected by 

differences in the importance of relevant terrain features and scales and vegetation 

units between both study areas. Consequently, it is recommended to apply multi-scale 

terrain features in combination with vegetation to address scale-dependent soil-

landscape interrelations being essential for spatial analysis of SOCS in West 

Greenland.
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Zusammenfassung  

Böden der nördlichen zirkumpolaren Region speichern einen Großteil des weltweiten 

organischen Bodenkohlenstoffs. Der Klimawandel fördert das Auftauen von 

Permafrost beeinflussten Böden und die damit verbundene Freisetzung von 

Treibhausgasen, deren Quantifizierung aufgrund der bestehenden Datendrunglage 

des organischen Bodenkohlenstoffvorrats (SOCS) für diese Region, insbesondere für 

Grönland, eine hohe Unsicherheiten aufweist. Die Höhe des SOCS ist abhängig von 

zahlreichen bodenbildenden Faktoren und Prozessen, die sowohl räumlich als auch 

skalenabhängig variieren. 

Es wurden mehrere Skalen ausgewählt, um die skalenabhängige Auswirkungen von 

Umweltfaktoren und -prozessen auf die SOCS-Verteilung in Permafrostböden der 

Arktisregion am Beispiel von zwei Untersuchungsgebieten in Westgrönland zu 

ermitteln. Drei Kontrollfaktoren (Vegetation, Landschaft, Exposition) wurden zur 

Beschreibung räumlich variierender Umweltbedingungen verwendet, um die räumliche 

SOCS-Verteilung über kurze Entfernungen in beiden Gebieten auf der lokalen Skala 

und über große Entfernungen zwischen beiden Gebieten auf der regionalen Skala zu 

untersuchen. Darüber hinaus wurde die räumliche SOCS-Verteilung anhand einer 

Reihe von mehrskaligen Gelände- und Raummerkmalen analysiert, die verschiedene 

Umweltprozesse auf der Moränen-, Tal- und Einzugsgebietsskala repräsentieren. Der 

zugrunde liegende Datensatz umfasst SOCS-Werte von 140 Standorten, die über zwei 

Untersuchungsgebiete verteilt sind, die sich an der Küste (SISI) und am Eisrand 

(RUSS) in West Grönland befinden.  

Auf lokaler Ebene wurde die SOCS-Verteilung am besten durch Vegetation und 

Exposition beschrieben, da beide die Bedeutung von Wind und Sonneneinstrahlung in 

beiden Gebieten widerspiegeln. Darüber hinaus ließen sich mit Exposition und 

Krümmung der Einfluss wasserbedingter Verlagerungsprozesse auf der Moränen- und 

Talskala in SISI und windinduzierter Prozesse auf allen drei Skalen in RUSS abbilden. 

Auf der regionalen Skala resultieren die Unterschiede in der SOCS-Verteilung aus den 

unterschiedlichen Klimabedingungen zwischen der Küste und dem Eisrand. Diese 

spiegeln sich sowohl in Unterschieden wichtiger Geländemerkmale, relevanter 

Prozessskalen und SOCS vergleichbarer Vegetationseinheiten zwischen beiden 

Gebieten wider. Schlußendlich empfielt sich Skalen bei Untersuchungen des SOCS 

einzubeziehen um die Genauigkeit von SOCS-Berechnungen zu verbessern.
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1 Introduction and objectives 

Carbon storage and climate change 

Worldwide, soils store up to 3000 Pg of carbon which is twice the amount of the 

biosphere and atmosphere combined (Lal, 2004; 2009; Köchy et al., 2015). A large 

portion of this total carbon is contained as organic carbon in permafrost-affected 

organic and mineral soils of the northern circumpolar permafrost region 

(Ping et al., 2015). In total, the amount of storage is approximately 1300 Pg of soil 

organic carbon (SOC; Tarnocai et al., 2009) whereof, the top 30 cm of the soil store 

217 Pg and the first 100 cm 472 Pg (Hugelius et al., 2013; 2014). 

This large SOC stock (SOCS) is sensitive to climate change as thawing of permafrost 

follows the increase in Arctic air temperatures which significantly exceeded the global 

average over the last decades (Biskaborn et al., 2019; IPCC, 2019). Consequently, 

permafrost-affected soils thaw to greater depth and longer period during the Arctic 

summer gradually intensify environmental interactions and feedbacks (Baumann et al., 

2014; Westermann et al., 2015). Recent findings suggest microbial breakdown of 

organic carbon and thus the release of greenhouse gases into the atmosphere, which 

expedites climate change and related environmental impacts (Schuur et al., 2015; 

McGuire et al., 2018). Hence, the growing relevance of permafrost-affected soils over 

the last decades demands an assessment of the effects of global warming and 

greenhouse gas emissions on SOCS in permafrost-affected regions as precise as 

possible (van Huissteden and Dolman, 2012; Chadburn et al., 2017). However, the 

ability to quantify potential greenhouse gas release from thawing permafrost-affected 

soils in the northern circumpolar region is restricted by the uncertainty of the SOCS 

data due to several aspects (Wojcik et al., 2018). 

Soil organic carbon stocks and data uncertainty 

There is a high variety of approaches for taking soil samples, measuring soil 

characteristics and calculating soil properties being relevant for the calculating of 

SOCS which tend to be uncertain, e.g. bulk density (BD; Poeplau et al., 2017). On this 

account, suggestions of standardising procedural methods in soil science were 

developed to reduce uncertainty and to generate consistent soil data sets 

(Arrouays et al., 2014). Gaps in the underlying data are filled mathematically, which 

holds another potential for uncertainty (Hugelius et al., 2014). In addition to the 
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computational completion of single datasets, databases are expanded by artificial data 

in form of pseudo-observations to take the unequal SOCS distribution data across the 

Arctic into account (Hengl et al., 2017). However, such large-scale estimations, e.g. 

covering the whole Arctic region, are generalised representation of the spatial variation 

of soil information generated from polygon data (Jones et al., 2009; 

Hugelius et al., 2013; 2014) or raster data (Hengl. et al 2014; 2017; Poggio et al., 

2021). Being potentially not representative for the undersampled areas of the northern 

circumpolar region due to limitations in quality and quantity of SOCS data, large-scale 

estimations differ significantly from various field measurements (Zubrzycki et al., 2014; 

Kühn and Henkner, 2019). Especially, the majority of studies is spread across Alaska, 

Canada and Siberia, which makes Greenland an underrepresented area 

(Tarnocai et al., 2009; Hugelius et al., 2013; 2014; Köchy et al., 2015; Ping et al., 2015). 

Soil organic carbon stocks and environmental relationships 

The SOCS distribution of the circumpolar region is related to vegetation varying 

spatially in species, growth height, density and thus biomass production being a key 

source of organic material for the formation of SOCS (CAVM Team, 2003). In addition 

to organic material on the terrain surface, the SOCS is built on plant roots of diverse 

characteristics within the topsoil (Joggáby and Jackson, 2000; Iversen et al., 2015). 

Vegetation patterns are linked to variations of the landscape which has been reshaped 

by periglacial processes since the last deglaciation which started around 10,000 years 

ago in West Greenland (Levy et al., 2012). Besides, the SOCS distribution in 

permafrost regions also depends on the intensity of accumulation and decomposition 

of SOC affected by specific site conditions (Elberling et al., 2004; Baumann et al., 

2014). On the one hand, decomposition rates are high under warm and dry site 

conditions (Auslander et al., 2003) and, on the other hand, accumulation of organic 

material is high under cold and moist soil conditions (Hobbie et al., 2000). The Arctic 

region is characterized by such contrary conditions related to specific landforms and 

terrain features which represent various relocation processes as well as forms of 

deposits (Palmtag et al., 2018; Wojcik et al., 2019).  

Overland and interflow relocates soil material including SOC downslope and thus 

effects the spatial SOCS distribution under humid climate conditions e.g. at the coast 

of West Greenland (Stäblein, 1977). Water is also important for predominant processes 

of Arctic environments for the horizontal and vertical transportation and mixing of soil 
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material by solifluction and cryoturbation respectively. Solifluction is characterized as 

slow movement of topsoil along inclined permafrost-affected landscape surfaces 

whereas the intensity of mixing and transport of soil material depends on the slope 

angle of the surface (Matsuoka, 2001; 2011). Additionally, sorting soil material 

horizontally and vertically, ice wedges are common in Arctic landscapes 

(Mackay, 1995) but rather occur on north-facing slopes in West Greenland 

(Henkner, et al. 2016). Being common for permafrost regions, cryoturbation 

significantly alters the vertical appearance of the soil by frequently running freeze and 

thaw cycles (Bockheim, 2007). Cryosols thereby formed are wide-spread and show 

high SOCS also in the subsoil (Jones et al., 2009). Furthermore, aeolian transport is 

typical relocation process of periglacial shaped landscapes (Brookfield, 2011). This 

results in alteration of topsoil texture and coverage of the prior land surface which forms 

paleosols with organic rich horizons in the subsoil, e.g. in the ice margin area of West 

Greenland (Müller et al., 2016). Altogether, distinctly affecting SOCS distribution of 

permafrost-affected soils, environmental controlling factors and processes however 

differ in their spatial extent and their intensity across scales. 

Soil organic carbon stocks and spatial scale dependencies 

On large scales, being limited in considering small scale effects on environmental 

factors and processes, estimations of the circumpolar region show little variation in 

SOCS and might to be considered as uncertain and not representative for Greenland 

(Hugelius et al., 2014). With smaller scales, spatial heterogeneity of SOCS becomes 

more apparent as controlling factors being considered in increasing resolution of the 

underlying data (Hengl., 2014; 2017; Poggio et al., 2021). On large scales, climate 

related environmental factors as precipitation and temperature control vegetation 

development and soil formation (Post et al., 1982) leading to regionally differing soils 

and soil-landscape-systems varying in SOCS across Greenland (CAVM Team, 2003; 

Jones et al., 2009). In West Greenland, Umbrisols and Cambisols are predominant 

and potentially hold higher SOCS than shallow soils in North and East Greenland 

(Kühn and Henkner, 2019). 

On the regional scale, decreasing precipitation and temperature along the west coast 

of Greenland results in regionally differing soil types and vegetation turning from 

Cryosols and Histosols and prostrate vegetation on Thule Peninsula in the Northwest 

(Horwath Burnham and Sletten, 2010) to humus-rich Arctic brown soils and dwarf 
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shrub vegetation in the Southwest (Bradley-Cook and Virginia, 2016). There is also a 

distinct spatial trend in environmental conditions from the coast to the margin of the 

Greenland Ice Sheet (GrIS) in West Greenland. Shaped by differences in the Holocene 

deglaciation history (Levy et al., 2012) and climate conditions (Cappelen et al., 2001; 

Carstensen and Jørgensen, 2009), regionally specific landscapes vary in vegetal 

activity (CAVM Team, 2003) and permafrost thickness (Van Tatenhove and Olesen, 

1994) between the coastal region at Sisimiut and the ice margin region at 

Kangerlussuaq in West Greenland on the regional scale. At the coast, oceanic climate 

conditions favour the accumulation of SOC under moist and cold soil conditions, while 

the production and decomposition of SOC benefits from warm continental climate at 

the ice margin (Stäblein 1977; Ozols and Broll, 2003; Bradley-Cook et al., 2016; 

Henkner et al., 2016; Petrenko et al.,2016). Acting over a long distance, teleconnected 

processes vary with predominant climate conditions and have a subordinate effect on 

the spatial distribution of soil characteristics in periglacial shaped landscapes (Behrens 

et al., 2019a). Aeolian processes are associated with SOCS distribution only at the ice 

margin in West Greenland (Henkner et al., 2016; Müller et al., 2016). 

On the local scale, the spatial SOCS distribution is connected to location-specific 

characteristics and relocation processes in permafrost regions (Dörfer et al., 2013; 

Baumann et al., 2014; Patzner et al., 2020). Shaped by periglacial processes, such 

heterogeneous landscapes are characterized by a multitude of small-size 

geomorphological elements which can be described by representative landscape units 

(Palmtag et al., 2018; Wojcik et al., 2019). They also reflect different site conditions 

affecting plant growth and soil formation and thus the SOCS distribution on the local 

scale (Jobbágy and Jackson, 2000; Ozols and Broll, 2003; Bradley-Cook and Virginia, 

2016; Henkner et al., 2016; Petrenko et al., 2016). Therefore, the SOCS is low on 

north-facing locations with colder microclimate than on south-facing locations with 

higher input of organic material which is represented by the aspect and vegetation 

respectively (Henkner et al. 2016). Soil characteristics vary vertically on small scales 

(Rentschler et al., 2019, 2020) and, however, are additionally affected by cryoturbation 

which spatially varies in the intensity with the terrain on the local scale at the coast of 

West Greenland (Stäblein, 1977).  

Furthermore, environmental processes take place parallel on several environmental 

scales but differ in their role and intensity on soil characteristics. Common Arctic 

processes as cryoturbation and impeded drainage lead to higher SOCS on summits 
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and toeslopes than on backslopes and footslopes (Ramage et al., 2019). Interflow and 

hillwash relocate SOC downward along slopes of both small hills and valleys 

(Stäblein, 1977). On the hill scale, soil material is transported between small-scale 

geomorphological elements as from moraine crests to depressions but on the valley 

scale along the valley slope to moraine crests. In addition, material is moved by water 

and wind on the catchment scale depending on predominant environmental 

characteristics like sharply incised valleys being shaped by periglacial processes since 

the last deglaciation in West Greenland (Stäblein, 1977; Ozols and Broll, 2003; 

Willemse et al., 2003; Henriksen, 2008; Müller et al., 2016). Perspectival, comparable 

landscape characteristics show similar processes, however, affect the spatial SOCS 

distribution differently depending on the relevant scale which can be represented by 

multi-scale terrain features (Behrens et al., 2019b). 

Soil organic carbon stocks and machine learning 

Already, terrain features are successfully used as representatives for soil forming 

factors in digital soil mapping (Jenny, 1941; McBratney et al., 2003). Furthermore, 

environmental processes are related to landscape characteristics being represented 

by terrain features as well (Wilson and Gallant, 2000; Moran and Bui 2002). Over the 

last decades, a variety of extended and newly developed approaches as regression 

kriging (Hengl. et al., 2004) or geographically weighted regression 

(Fotheringham et al., 2002) were used to improve spatial estimations of soil 

information on different scales separately (Mishra and Riley, 2012; Hengl., 2014). 

Subsequently, increasing computing capacity advanced the development of machine 

learning techniques which nowadays are regarded as standard in soil-landscape 

analysis (Padarian et al., 2020; Taghizadeh-Mehrjardi et al., 2022). 

Machine learning recently enabled interweaving the effects of multiple scales in soil 

data (e.g. Behrens et al. 2014, Behrens et al., 2018a). Such scale-dependent and 

spatial variation of soils results from multi-scale sources and interactions 

(Burrough, 1983), which can be detected by scale-related pattern recognition and 

contextual feature construction techniques such as the ConMap approach 

(Behrens et al., 2010), wavelet transformations (Biswas et al. 2013), Euclidean 

distance fields (EDF; Behrens et al., 2018b), a variogram based effective scale space 

(Karl and Maurer, 2010, Behrens et al., 2019b) and analyzing teleconnections in soil 

environmental systems (Behrens et al., 2019a). In addition, soil formation is dependent 
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on spatial scale-related processes which can be represented by multi-scale 

environmental features derived from feature construction and selection techniques 

such as generating soilscapes (Schmidt et al., 2010), hyper-scale digital soil mapping 

(Behrens et al., 2014) and a Gaussian scale space (Behrens et al., 2017). Among other 

soil information, reliable estimations of SOC were generated successfully by the 

application of machine learning techniques in different environmental systems at 

various scales (Grimm et al., 2008; Schmidt et al., 2014; Stumpf et al., 2018; Rentschler 

et al., 2019; 2020; Viscarra Rossel et al., 2019; Taghizadeh-Mehrjardi et al., 2020).  

Random forests (RF) (Breiman, 2001) is frequently applied in soil science as being a 

robust machine learning technique unaffected by outliers and data gaps. Additionally, 

being a transparent method combined with the significant advantage of measuring the 

importance of environmental features (Kuhn, 2017), RF allows for an expert based 

interpretation in a pedological context concerning the role of single input features on 

the spatial variation of soil characteristics. Hence, machine learning techniques can 

increase the understanding of environmental controlling factors and associated spatial 

scale-dependent processes of soil formation on different scales in Arctic low mountain 

ranges with limited soil information, as in West Greenland. 

Objectives 

Objective of this thesis was to investigate the SOCS distribution of permafrost-affected 

soils in West Greenland. In this context, the role of controlling factors and relocation 

processes affecting the spatial variation of SOCS was observed. As interrelations of 

SOCS, controlling factors and relocation processes are scale-dependent and vary 

spatially, the investigations were allocated to two complementary scale approaches. 

First, this thesis focused on vegetation, landscape and aspect in form of defined units 

to describe the SOCS distribution over short distances on the local scale and over long 

distances on the regional scale within and between two study areas differing in climate 

conditions respectively (Gries et al., 2020). Second, spatial and multi-scale terrain 

features were applied to investigate the role of relocation processes related to frost 

change, water and wind acting parallel in varying intensity on the hill, valley and 

catchment scale on the SOCS distribution in two study areas separately (Gries et al., 

unpublished). Therefore, such spatial features were recreated to provide the 

integration of spatial-dependencies into machine-learning based digital soil mapping 

approaches (Behrens et al., 2018b). Further, the vertical distribution of SOC was 



1 Introduction and objectives 

 

7 

investigated (Rentschler et al., 2019; Gries et al., 2020, Rentschler et al., 2020). For 

this thesis, two study areas in West Greenland, showing comparable environmental 

conditions on the local scale and contrary climate conditions on the regional scale, 

were selected to ensure general conclusions and recommendations from ranking 

controlling factors and processes by comparing particular units and measuring the 

feature importance respectively. 

The objectives of this thesis were to: 

- investigate the role of environmental factors on the spatial and vertical SOCS 

distribution on the local and the regional scale in West Greenland (manuscript 1, 4, 5). 

- investigate the role of relocation processes on the SOCS distribution acting on the 

hill, valley and catchment scale in West Greenland (manuscript 2, 3). 

 

First, it was hypothesized that SOCS in West Greenland is higher in the amount and 

the spatial variation compared to existing large-scale estimations. Conjecturable, the 

SOCS decreases with warmer and drier environmental conditions towards the ice 

margin. Further, it was assumed that vegetation, landscape and aspect units are 

adequate representatives of heterogeneous environmental conditions on the local 

scale and of contrary climate conditions on the regional scale to describe the spatial 

SOCS distribution on both scales.  

Second, it was hypothesised that the SOCS distribution is affected primarily by 

relocation processes on the hill scale due to heterogenous local terrain in both study 

areas. Further, it is assumed that relevant scales and important features differ between 

both study areas as presumably the SOCS distribution additionally depends on aeolian 

processes by katabatic winds at the ice margin.
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2 Data and methods 

To respond to the hypothesis and the objectives a wide spectrum of methods is 

required (Figure 1). To ensure an optimal representation of the environmental 

conditions of the study areas (Section 2.1), a stratified random sampling was applied 

(Section 2.2) for retrieving soil data (Section 2.3). Processing of environmental data 

and defining several scales (Section 2.4) are preconditioned for statistical and machine 

learning based analyses (2.5). 

 

Figure 1: Methodical overview. Visualisation of the main methodical steps beginning with preprocessing 

steps required for an appropriate sampling scheme as basis for a comprehensive data set, consisting of 

soil and environmental data from field work and feature construction. The data set is analysed by statistical 

and machine learning techniques in consideration of two complementary scale approaches for a concluding 

ranking of environmental factors and features with regard to their potential to reflect the SOCS distribution.     
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2.1 Study areas 

For this thesis, two study areas in West Greenland are selected (Fig. 2). The first one 

is located at the coast 4 km east of Sisimiut (SISI, 66° 57 N, 53° 33’ W). The coastal 

region is characterized by oceanic climate conditions with coastal westerly winds, 

frequently occurring fog, a mean annual temperature (MAT) of –3.5 °C and a mean 

annual precipitation (MAP) of 383 mm (Cappelen et al., 2001; Carstensen and 

Jørgensen, 2009). SISI is 1.5 km2 in size, located within a deep valley orientated 

northeast-southwest and has steep north- and south-facing slopes. To the north SISI 

is limited by steep slopes (> 30°) being characterized by thin soils and sparse 

vegetation cover. A small river defines the eastern boundary and crosses the study 

area to the southwest into a lake as the western boundary. In the south, steep north-

facing slopes limit the study area, which is covered with adjacent depressions in smooth 

transition with slightly inclined slopes and moraines (Gries et al., 2020). 

The second study area is 1.8 km2 in size and located around two kilometres west of 

the Russell Glacier (RUSS, 67° 6’ N, 50° 17’ W) at the ice margin of the GrIS. This area 

is characterized by katabatic winds from the east and an Arctic continental climate with 

MAT of –5.7 °C and MAP of 149 mm (Cappelen et al., 2001; Carstensen and 

Jørgensen, 2009). RUSS is limited by lakes to the east and west and to the north and 

south by steep slopes of an east–west oriented valley. In north-south direction, different 

terminal moraines cross the valley which shows sand dunes occurring in the 

northeastern part formed by aeolian sediments from the outwash plains at the glacier 

foreland (cf. Müller et al., 2016). 

Both study areas are covered by mountain vegetation on non-carbonate bedrock, i.e., 

mostly granite in SISI and gneiss in RUSS (CAVM Team, 2003; Henriksen, 2008). 

Vegetation cover is connected to geomorphology with sedges growing in flat areas. 

Mosses, lichens and prostrate dwarf shrubs cover steep slopes and ridges. Wind 

sheltered areas and slightly inclined slopes are covered by dwarf shrubs. The 

landscape has been reshaped by periglacial processes since the last deglaciation 

(Willemse et al., 2003; Henriksen, 2008), thus soil formation took place for around 

10,000 years in SISI and 6,800 years in RUSS (Levy et al., 2012). Crests and the steep 

slopes of moraines are characterized by coarse substrate, thick active layer (> 200 cm) 

and less developed soils. Sandy substrate and warm and dry soil conditions are typical 

for wind sheltered locations of dunes and slightly inclined slopes showing partially 
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buried organic rich soils sometimes buried by aeolian sediments. Flat areas are 

covered by soils with thick organic horizons, silty substrate, high soil moisture and a 

thin active layer (~ 50 cm; Gries et al., 2020). 

 

Figure 2: Study areas and sampling design. Overview of geographical locations of the study area 

close to Sisimiut at the coast (SISI, left) and nearby the Russell Glacier at the margin of the 

Greenland Ice Sheet of West Greenland (RUSS, right; geodata from © OpenStreetmap 

contributors), climate conditions (Cappelen et al., 2001; Guijarro, 2019), geomorphology and 

vegetation (Fotos: © J. Gries, Sept. 2015) and sampling design including landscape units and 

sampling locations (Maps from Gries et al., 2020, modified). 
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2.2 Sampling design and delineation of landscape units 

As the landscape of both study areas is heterogenous, a sampling design adapted to 

the given environmental conditions is necessary to avoid under- or oversampling (Lohr, 

2021). Therefore, both study areas are divided into homogenous landscape units (LU) 

according to the deglaciation history and geomorphology of the land surface (Fig. 1, Fig. 2). 

In the first step, a set of local, regional and combined terrain covariates being relevant 

for the spatial distribution of SOCS (Tab. 1) is derived from a digital elevation model 

(DEM) using the Terrain Analysis Toolbox in SAGA GIS (version 2.2.2; Conrad et al., 

2015). This DEM with a resolution of 5x5 m is computed from aerial images from the 

Geodetic Institute of Denmark using structure from motion and photogrammetry using 

VisualSFM (Wu, 2011; Wu et al., 2011; Smith et al., 2016).  

In the second step, using the stats package in R (version 3.4.2; 

R Development Core Team, 2013), k-means cluster analysis for automated and 

unsupervised classification of the terrain covariates is applied to delineate the LU 

(Burrough et al., 2000; Schmidt et al., 2010). The result of the cluster analysis is the 

subdivision of the study areas into homogeneous classes showing high interclass 

variance and small intraclass variance (Webster and Beckett, 1968; Everitt, 1980). The 

selection of the number of clusters is based on a representation of the two study areas 

that is as structured and less fragmented as possible. The maximum number of LUs is 

set to k = 10 to address feasibility of the subsequent sampling design 

(Schmidt et al., 2010). For the determination of the optimal number of classes, the 

number of fragments and their perimeter per class is used. The optimal number of 

classes results from a low degree of fragmentation which is given at a small number of 

fragments and their perimeter. Visually, the intersection represents the optimal size of 

k which is both 3.68 and 4.34 for SISI and 4.18 for RUSS (Fig. 3). Finally, four classes 

are set for LUs (Gries et al., 2020). 

In the third step, pairwise comparability of related LUs between both study areas is 

confirmed by a paired t-test of the terrain covariates of each LU (Tab. 1) using the 

stats package in R (version 3.4.2; R Development Core Team, 2013). 

In the last step, according to surface percentage and fragmentation, 140 sampling 

points are proportionally allocated to the LUs and within each LU randomly distributed 

using Create Random Points in ArcGIS Desktop (version 10.3; ESRI, 2014; Fig. 2).
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 Table 1: Properties of landscape units. Comparison of landscape units (LU) adapted from main area distribution and descriptive statistics (mean ± SD) of 

terrain covariates, related to environmental processes and conditions affecting SOCS, including results of the t-test (significance level, α = 0.05) to verify the 

comparability of each LU between SISI and RUSS (from Gries et al., 2020, modified). 

 

 
 

1Zevenbergen and Thorne, 1987; 2Freeman, 1991; 3Moore et al., 1991; 4Relative mass balance; Friedrich, 1996; 5Topographic classification index for lowlands; 

Bock et al., 2007; 6Topographic position index; Guisan et al., 1999; 7Topographic wetness index; Beven and Kirkby, 1979. SAGA GIS tool box ‘terrain analysis’: 
amorphometry – slope [°], aspect [°], curvature [1/m]; bhydrology – flow accumulation (mass flux method) [log(n pixels)]; chydrology – ls factor [dimensionless]; 
dhydrology – tci low [dimensionless]; emorphometry – topographic position index [dimensionless]; fhydrology – topographic wetness index [dimensionless]. 



2 Data and methods 

 

13 

2.3 Soil data 

During the field work in the summer of 2016, soil, vegetation and landscape 

characteristics were recorded and soil samples were collected at 140 locations in total 

in both study areas. Soil moisture (SM) content [%] was measured within the top 5 cm 

using a HH2 Moisture Meter and Thetaprobe ML2 (Delta-T Devices, Cambridge, GB). 

The determination of the active layer (AL) thickness [cm] was done within the 

uppermost 200 cm while taking the soil samples. Dominant species and growth height 

were recorded as vegetation characteristics. The aspect was detected with a compass 

to specify the landscape at all sampling location.  

Soil samples for SOC and BD were taken at four depth increments (0 – 25, 25 – 50, 

50 – 100 and 100 – 200 cm) using a hand-driven, half-open Pürckhauer auger with a 

slot width of 18 mm for 0 – 100 cm and an extension with a slot width of 16 mm for 

100 – 200 cm. Samples were only taken from the unfrozen ground. The first depth 

increment (D1) was set to 0 – 25 cm since a maximal thickness of the upper organic 

horizon of 25 cm was derived from a previous field survey in both study areas. The 

second depth increment (D2) was set to 25 – 50 cm to account for a minimum AL 

 

Figure 3: Number of landscape units. Comparing the fragmentation to the number of cluster classes 

to determine the optimal number of landscape units. The graphs represent the number (▼) and 

perimeter (■) of fragments as a function of the number of cluster classes subdividing SISI (blue) and 

RUSS (green) respectively. The optimal number of classes results from a low degree of fragmentation 

graphically expressed within the range (grey) of the intersections of corresponding graphs between 

3.68 and 4.34 for SISI and RUSS (from Gries et al., 2020, modified). 
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thickness of about 50 cm under comparable landscape conditions in West Greenland 

(Bradley-Cook et al., 2016; Henkner et al., 2016). The third depth increment (D3) was 

set to 50 – 100 cm to address large amounts of SOC in the subsoil 

(Tarnocai et al., 2009; Hugelius et al., 2014). The fourth depth increment (D4) was set 

to 100 – 200 cm to consider soil heterogeneity due to cryoturbation (Ping et al., 1998). 

At each sampling location, three soil cores were sampled for SOC analysis to ensure 

three replicates of each depth increment over the entire depth. The replicates of each 

depth increment were bulked to one sample. If frozen subsoil conditions or bedrock 

prevent sampling the entire depth increment, the SOCS of the not-sampled part was 

set to 0. Due to such subsoil conditions 140 samples were taken from D1, 138 samples 

from D2, 127 samples from D3, and 91 samples from D4 for SOCS. BD samples were 

collected from the middle of each depth increment (10 – 15, 35 – 40, 72.5 – 77.5, and 

147.5 – 152.5 cm) from soil cores at 16 locations, covering all LUs (Gries et al., 2020). 

Samples for SOC were dried at 40 °C, sieved (< 2 mm) and analyzed using an element 

analyzer (CN mode, Vario EL II, Elementar Analysesysteme GmbH, DE). 

Measurements below the detection limit (carbon: 0.2 %) were set to zero. The total 

carbon content equals SOC [%] as the carbonate content off all samples was zero 

according to the Scheibler test (Rothenhöfer et al., 2000). Samples for BD were dried 

at 105 °C to determine the 𝑚𝑎𝑠𝑠 [g] gravimetrically to calculate the BD [g cm–3] 

according to equation (1) and equation (2) and to define the mass proportion of the 

coarse fraction (CF; > 2 mm) [%] to calculate the SOCS [kg m–2] according to equation 

(3; Scholten et al., 2017). Equation (2) is required to measure the volume of a sample 

(𝑉𝑠) taken from a half-open Pürckhauer auger (Gries et al., 2020): 

(1) 𝐵𝐷 = 𝑚𝑎𝑠𝑠 𝑉𝑠⁄ , 

(2) 𝑉𝑠 = 𝑉𝑐 + 0.5 × 𝑉𝑒 = 𝑤 × ℎ × 𝑙 + 0.5 × (𝜋 × 𝑎 × 𝑏 × 𝑙), 

where 𝑉𝑠 [cm3] results from the volume of a cuboid 𝑉𝑐 [cm3] with height ℎ and the half 

of an ellipse 𝑉𝑒 [cm3] with height 𝑏; 𝑎 is the half of the slot width of the auger 𝑤 and 𝑙 is 

the depth of the BD samples; 𝑎, 𝑏, ℎ, 𝑙, and 𝑤 are given in cm. 

(3) 𝑆𝑂𝐶𝑆 = 𝑆𝑂𝐶 × 𝐵𝐷 × 𝐷 × (1 − 𝐶𝐹), 

where 𝐷 [cm] is the thickness of the depth increments D1–D4. The actual depth was used 

for 𝐷 if it was not possible to sample the entire depth increment due to subsoil conditions. 
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2.4 Environmental data and definition of scales 

2.4.1 Vegetation, landscape and aspect units on the local and regional scale 

Vegetation cover was classified by species and growth height according to Bliss (2000) 

into four vegetation units (VEG; Tab. 2): dwarf shrub heath tundra (VEG1), low shrub 

tundra (VEG2), tall shrub tundra (VEG3) and graminoid-moss tundra (VEG4). The LUs 

represent the spatial extend of homogenous landform elements of the land surface 

within the study areas (Tab. 1): depressions, flat and bankside areas (LU1), moraine 

crests, ridges and summits (LU2), plateau areas (LU3) and steep slopes (LU4). The 

aspect (ASP) was grouped to 8 classes according to the main (N, E, S, W) and ordinal 

directions (NE, SE, SW, NW). 

In this scale approach, the role of spatially varying environmental conditions is 

represented by the above-mentioned controlling factors (VEG, LU, ASP) which are 

considered to explain the SOCS distribution at two different scales: 

 The local scale focuses on the differences between the units of the controlling 

factors within each study area to explain the SOCS distribution over short 

distances. 

 The regional scale focuses on the related units of each controlling factor between 

the two study areas to investigate differences of SOCS between the coast and the 

ice margin with different climatic conditions. 

 

Table 2: Properties of vegetation units. Classification of vegetation based on species and growth 

height according to Bliss (2000) (from Gries et al., 2020, modified). 
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2.4.2 Terrain and spatial features on the moraine, valley and catchment scale 

Environmental factors and processes affecting the SOCS distribution are connected to 

landscape characteristics varying spatially and across different scales. As being a 

multi-scale hierarchical mapping approach combining terrain and spatial feature 

construction, contextual spatial modelling (CSM) allows for pedological multi-scale and 

spatial analyses (Behrens et al., 2018a; 2019b). Therefore, CSM was applied to 

construct terrain features using a hierarchical representation of the ArcticDEM (2x2 m, 

version 2.0, release 4; Porter et al., 2018) in the form of a Gaussian pyramid (Behrens 

et al., 2018a). First, the resolution of the ArcticDEM was halved stepwise using 

smoothing and scaling steps until no further scaling is possible (Burt and Adelson, 

1983). This resulted in a sequence of 22 digital elevation models representing 22 

different scales (Fig. 4). Second, all 22 DEMs were upsampled to the original resolution 

of 2 x 2 m to avoid any artefacts when combining gridded datasets of different cell 

sizes. Third, from all 22 resampled DEMs, the following terrain features were 

delineated based on the algorithms by Zevenbergen and Thorne (1987): elevation 

(Elev), steepest slope downslope (Slope), sine and cosine transformation of the aspect 

(sinAsp, cosAsp), average curvature (AvCurv), cross-sectional curvature (CrCurv) and 

longitudinal curvature (LoCurv). 

To supplementary address spatial relationships within the data set, Euclidean distance 

fields (EDF) were used as spatial features (Behrens et al., 2018b). The EDFs are a 

representation of the distance to the edges (X01, Y01), corners (C1, C2, C3, C4) and 

the centre (CC) of an artificial grid surrounding the study areas. Being a collection of 

autocorrelated indicators of relative spatial position within the study area, EDFs allow 

to identify spatial non-linear relationships. EDFs are gridded datasets having the same 

resolution as the multi-scale terrain features whereas the pixel values correspond to 

the Euclidean distance to the respective edge, corner or centre of the bordering grid 

(Fig. 4). The inclusion of several reference points enables detecting spatially varying 

trends within the soil dataset and thus to consider for spatial non-stationarity (Behrens 

et al., 2018b). Multi-scale terrain and spatial features were constructed by the CSM – 

contextual spatial modelling software (version 17.08, BitMapping GmbH, DE). 

In this scale approach, the SOCS distribution affected by environmental processes 

acting on different scales is considered. Such processes are linked to certain 

topographic conditions which can be represented by specific terrain features of 
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different scales (Wood, 1996). Therefore, the sequence of 22 scales which are the 

result of the multi-scale terrain feature construction is segmented into three 

environmental scales associated with key topographic conditions and related 

processes. The calculation basis for the subdivision is the resolution of the upsampled 

DEMs of the Gaussian pyramid and the maximum horizontal distance between key 

geomorphological elements of the periglacial landscape. The maximum horizontal 

distance is digitally determined based on expert knowledge in SAGA GIS (version 

2.2.2; Conrad et al., 2015). All scales with a pixel size smaller than or equal to the 

maximum horizontal distance of the respective scale are combined (Fig. 4): 

 The moraine scale deals with freeze-thaw processes as solifluction having an 

effect on the relocation of soil material along small-size geomorphologic elements 

such as moraines and small hills characterizing the heterogeneous terrain surface 

within the study areas. The maximum horizontal distance between ridge and 

footslope of moraines and small hills is 54 m and the moraine scale comprises the 

scales 1 – 10 with pixel sizes between 2 x 2 m to 48 x 48 m. 

 The valley scale covers downslope processes, as interflow and hillwash, relocating 

soil components along the valley slopes into the study areas. The maximum 

horizontal distance of the slope segments potential for relocation is 145 m in both 

study areas and thus the valley scale comprises scales 11 – 14 with pixel sizes 

ranging from 64 x 64 m and 192 x 192 m. 

 The catchment scale considers the catchment area of teleconnected processes, which 

result from the respective climate conditions in SISI and RUSS as wind direction and 

aeolian transport. Such processes take place over long distances being represented by 

the scales 15 – 22 with pixel sizes from 256 x 256 m to 3072 x 3072 m. 
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Figure 4: Environmental scales and feature construction. Definition of the moraine, valley and 

catchment scale according to the maximum horizontal distance of key geomorphological elements 

and corresponding pixel sizes of DEMs which result from sequenced smoothing and scaling steps. 

After resampling all DEMs to the original resolution (2 x 2 m), terrain features are delineated at 

overall 22 scales. Due to the smoothing and scaling and resampling steps, the representation of 

the landscape by the terrain features has changed which is exemplified by the sine of the aspect 

(sinAsp) and steepest slope downslope (Slope) at first and last scale of the moraine scale (1, 10), 

the last of the valley scale (14) and the first of the catchment scale (15) to demonstrate the trend in 

the delineation of the landscape at the respective environmental scale. The spatial features include 

the Euclidean distance fields (EDF) representing the distance to the upper left (C1), upper right 

(C2), lower left (C3) and lower right corner (C4), the centre (CC), the lower (X01) and left edge 

(Y01) of an artificial grid around the study area.  
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2.5 Data analyses, feature importance and spatial modelling 

Statistical analyses of field and lab data and relationships between soil characteristics 

and environmental units are done with the statistical software R using the 

stats package (version 3.4.2; R Development Core Team, 2013). 

The analyses of the importance of individual spatial features and terrain features of 

specific environmental scales was done using random forests (RF, Breiman, 2001) 

being – as a machine learning technique – highly suited to extract relationships within 

large and complex datasets for the spatial prediction of soil characteristics 

(Taghizadeh-Mehrjardi et al., 2022). The concept of RF is the aggregation of multiple 

Classification and Regression Trees (CART; Breiman, 1984) each build on randomly 

selected samples of the training data. The drawing of the samples bases on 

bootstrapping so that individual samples may be taken several times and others may 

be not considered in a single tree at all. The validation of the particular CART is done 

with the training data not being used. Besides, a random set of features is used for 

each split. By accounting for these random effects, RF is robust to outliers and offers 

higher model accuracy than CART. The specification of the optimum number of 

features at each split (mtry) is done by grid learning (cf. Schmidt et al., 2008) using the 

caret package (Kuhn, 2017) in R (R Development Core Team, 2013). The accuracy of 

the RF models is given by the coefficient of determination (R2; equation 4) and the 

normalized root mean square error (nRMSE; equation 5) based on ten times repeated 

10-fold cross-validation: 

(4) 𝑅2 = (
∑ (𝑦−µ𝑦)(ŷ−µŷ)
𝑛
𝑖=1

√∑𝑛𝑖=1 (𝑦−µ𝑦)2√∑
𝑛
𝑖=1 (ŷ−µŷ)

2
)2, 

 (5) 𝑛𝑅𝑀𝑆𝐸 = √
1

𝑛
∑𝑛
𝑖=1 (𝑦𝑖 − ŷ𝑖)2 (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)⁄ , 

where 𝑦 and ŷ are the observed and predicted values and µ𝑦 and µŷ are the means of 

the observed and predicted values.  

The advantage of RF is an integrated measurement of the feature importance in which 

the mean decrease in accuracy is calculated. Thereby, the values of each feature are 

permuted and the resulting decrease in the accuracy of the model is measured. The 

more important a feature is, the greater the decrease in accuracy (Kuhn, 2017).  
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The feature importance measurement is used to investigate the scale, spatial and 

regional dependencies of the SOCS distribution. The determination of dominant scales 

and features comprises the analyses of the feature importance to address the following 

dependencies: 

 Scale dependencies of the SOCS distribution influenced by environmental 

processes acting parallelly on the moraine, valley and catchment scale are 

considered by this area-specific approach consisting of an ascending and a 

descending approach. The ascending approach (SISIasc, RUSSasc) primarily 

considers small scales and prevents the cover effect of large scales by stepwise 

adding scales in a sequence of RF models. The first RF model includes the terrain 

features of the first of 22 scales. The following RF model is extended by the terrain 

features of the next larger scale, and so on. The descending approach (SISIdesc, 

RUSSdesc) accounts for the effect of large scales and is processed in reverse order 

to the ascending one. The first RF model includes the terrain features of the last of 

22 scales. The following RF model is extended by the terrain features of the next 

smaller scale, and so on. The ascending and descending approach are applied in 

each study area separately. For each area, one RF model is trained using all multi-

scale terrain features to estimate the spatial distribution of SOCS in SISI 

(SISIarea-specific) and RUSS (RUSSarea-specific) separately. 

 Spatial dependencies of the SOCS distribution are considered by additionally 

including spatial features into separate spatial approaches for SISI and RUSS 

(SISIall, RUSSall). These models allow for identifying spatial dependencies in the 

data set which might not covered by the terrain features. 

 Regional dependencies of the SOCS distribution between SISI and RUSS are 

investigated by two regional-specific approaches. The crosswise approach (SISIcross, 

RUSScross) examines regional dependencies by transferring models to regions differing 

in their environmental conditions. For SISI and RUSS, a RF model including terrain 

features from all scales is built separately and transferred to estimate the spatial SOCS 

distribution for the respective other study area. The combined approach (COMBasc, 

COMBdesc) considers the impact of small and large scales on the spatial SOCS 

distribution in West Greenland from the coast to the ice margin. Therefore, as described 

above, ascending and descending sequences of RF models are trained on a merged 

dataset from both study areas. Finally, one RF model based on the merged data and 

all multi-scale terrain features (COMBall) is used to estimate the SOCS in both areas.
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3 Results and discussion of the manuscripts 

3.1 SOCS distribution on the local and regional scale (manuscript 1, 4, 5) 

3.1.1 Local scale SOCS distribution 

In SISI, SOCS is lowest at all depth increments for dwarf shrub heath tundra (VEG1; 

Tab. 2; Fig. 5). As primarily covering north-west- and west-facing locations, growth of 

VEG1 is negatively affected by continuously blowing onshore winds and strong direct 

solar radiation. Consequently, low production but high decomposition rates of organic 

material results in low SOCS with VEG1 in coastal regions in West Greenland 

(Jensen et al., 2006). In SISI, SOCS distribution at the first depth increment is linked 

to heterogenous spatial variation in vegetation cover as the roots of most Arctic plants 

grow within the upper 25 – 30 cm (Iversen et al., 2015). Due to differences in rooting 

depth of the occurring species, the spatial varying vertical SOCS distribution follows 

non-linear trends (Rentschler et al., 2019). Further, downslope relocation processes 

transport organic material along steep slopes dominantly covered by VEG1 to flat 

areas and depressions covered by graminoid-moss tundra (VEG4; Gries et al., 2020). 

Such areas show highest SOCS at both 25 – 50 cm and 50 – 100 cm of depth due to 

dense rooting and the continuous accumulation of organic material forming thick 

organic layers at moist soil conditions with low decompositions rates at oceanic climate 

conditions (Stäblein, 1977; Jensen et al., 2006). The SOCS is high with low shrub 

tundra (VEG2) and tall shrub tundra (VEG3) due to similar processes of SOCS 

accumulation (Petrenko et al., 2016). Thus, the SOCS combined for VEG2 and VEG3 

corresponds with 10.57 ± 6.33 kg m-2 in SISI to SOCS with 10.20 kg m-2 for comparable 

vegetation in coastal areas of West Greenland (Bradley-Cook and Virginia, 2016). 

In RUSS, the general relationships between SOCS and VEG are similar to SISI. 

However, low precipitation rates and dry katabatic winds throughout the vegetation 

season negatively affect vegetation growth and biomass production on wind-exposed 

areas and additionally the accumulation of organic material into the soil at the ice 

margin area (Ozols and Broll, 2003). Therefore, the SOCS is lowest with 

4.98 ± 4.03 kg m-2 at the first depth increment for VEG1 predominantly covering wind-

exposed areas. The SOCS is highest with 10.88 ± 2.20 kg m-2 for VEG3 being 31 % 

higher than for VEG2 and VEG4 at 0 – 25 cm as leaf remains of Salix glauca – the 
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dominant species of VEG3 – contributes decisively to the accumulation of soil organic 

matter into the upper soil horizons (Ozols and Broll, 2003). Further, very dry soil 

conditions result in low decomposition rates and high SOCS with VEG2. In contrast, 

high soil moisture content also reduces decomposition rates in bankside areas and 

depressions in RUSS predominantly covered by VEG4. Soil moisture is connected to 

physical soil properties changing distinctly between soil horizons which results in high 

vertical variation of SOCS (Rentschler et al., 2020).  In summary, the distribution of 

SOCS depends on the spatial variation of the vegetation cover and the portions in 

Arctic environments on the local scale (Elberling et al., 2008b; Horwath Burnham and 

Sletten, 2010; Palmtag et al., 2015; Siewert et al., 2015; Wojcik et al., 2019). 

In both study areas, SOCS distribution is linked to the heterogenous periglacial 

landscape and the variety of associated processes. In SISI, the SOCS is highest with 

10.82 ± 8.83 kg m-2 at 0 – 25 cm in plateau areas (LU3) which is about 40 % higher 

than in depressions, flat areas and bankside areas (LU1), moraine crests and ridges 

(LU2) and steep slopes (LU4) (Tab. 1, Fig. 6) due to dense shrub vegetation cover 

accompanied by fast incorporation of organic material and thus high accumulation 

rates into the soil (Ozols and Broll, 2003). Cryoturbation processes are characteristic 

for the coastal area in West Greenland (Stäblein, 1977; Jensen et al., 2006) which 

results from deep thawing of soils during the summer causing vertical relocation of 

SOC and thus high SOCS in the third and fourth depth increment at all landscape units 

in SISI. In addition, a low isolating effect of VEG1 fosters a thick active layer and vertical 

relocation of SOC causing SOCS being highest within 50 – 100 cm in LU4. High subsoil 

SOCS might also be caused by buried organic material by downslope relocation 

processes taking place along different topographic positions within the varying 

landscape (Palmtag et al., 2015; 2018; Wojcik et al., 2019). Such processes differ in 

their intensity causing SOCS varying more distinct between different topographic 

positions (Rentschler et al. 2019). 

In RUSS, the spatially variation in SOCS is connected to cold and dry katabatic winds 

negatively affecting vegetation growth and increasing evapotranspiration at the ice 

margin (Ozols and Broll, 2003; Henkner et al., 2016). Therefore, particularly 

wind-exposed areas as east-facing upper slopes and moraine crests represented by 

LU2 show lowest SOCS within all depth increments. At the top depth increment, SOCS 
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Figure 5: SOCS and vegetation. Variation in 

SOCS (mean, SD) by VEG in SISI (blue) and 

RUSS (green). Missing SD relates to n = 1 or 

SD > mean (from Gries et al., 2020, modified). 

 

Figure 6: SOCS and landscape units. Variation 

in SOCS (mean, SD) by LU in SISI (blue) and 

RUSS (green). Missing SD relates to n = 1 or 

SD > mean (from Gries et al., 2020, modified). 

 



3 Results and discussion of the manuscripts 

24 
 

with 5.66 ± 3.00 kg m-2 in LU2 in RUSS corresponds to SOCS on moraine crests and 

summits at 0 – 30 cm in the Umimmalissuaq valley at the ice margin with similar 

environmental conditions (Henkner et al., 2016). Terminal moraines are a 

characteristic geomorphological feature being transverse to the katabatic winds in 

RUSS. Consequences are a weakening of the katabatic winds and the creation of wind 

sheltered areas on leeside locations. Thus, favourable growing conditions results in 

high production of organic material and consequently in high SOCS at 0 – 25 cm in 

LU1, LU2 and LU4 (Fig. 6). Characterized by very moist to wet soil conditions with low 

decomposition rates of organic material, lake surroundings and depressions show 

highest SOCS at the first and second depth increment in LU1. Also, the SOCS is higher 

below 50 cm depth in LU1 than LU2, LU3 and LU4 which is connected to organic layers 

buried by lake sediments from fluctuating water levels during the Holocene 

(Willemse et al., 2003). Dry hillslope areas in LU4 show lower SOCS as organic 

material and sediments are relocated downslope (Palmtag et al., 2018) and 

decomposition rates are higher under warm and dry soil conditions 

(Elberling et al., 2004). This corresponds to findings by Rentschler et al. (2019) 

applying non-linear depth functions to express the high spatial variation in the vertical 

SOCS distribution across landscape positions. Finally, varying in their characteristics, 

LU also effect the distribution of SOCS on the local scale in both study areas. 

There is a high variation in SOCS in both study areas linked to the aspect which reflects 

different (micro-)climate conditions. In SISI, the SOCS is with up to around 30 kg m-2 

highest at 0 – 25 cm on south-facing locations (S, SE: Fig. 7) being characterized by 

high solar energy input and great water availability from an adjacent large catchment 

area in the north of the study area. These environmental conditions favour plant growth 

and limit decomposition of organic material under moist soil conditions. In contrast, the 

SOCS is lowest on average with < 5 kg m-2 within 0 – 25 cm on east-, west- and 

northwest-facing locations. East-facing locations show less solar energy input and thus 

less biomass production than south-facing locations due to often occurring fog until 

noon (Cappelen et al., 2001). Conversely, high solar energy input causes warm soil 

conditions, high decomposition rates (Elberling et al., 2004) and thus low SOCS on 

west- and north-west-facing locations in SISI (Gries et al., 2020).  
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Figure 7: SOCS and aspect. Variation in SOCS (mean: dashed line) by ASP in SISI (blue) and RUSS 

(green) (from Gries et al., 2020, modified). 
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In RUSS, the SOCS is lowest with 4.95 ± 1.19 kg m-2 at 0 – 25 cm on east-facing 

locations, which is up to 15.17 kg m-2 lower than on west-facing locations where the 

SOCS is highest within 0 – 25 cm (Fig. 7). Both, east- and west-facing locations are 

affected by katabatic winds in RUSS. Production and input of organic material into the 

soil is limited on east- and south-east-facing locations by constantly blowing dry and 

cold winds from the Greenland Ice Sheet which results in low topsoil SOCS 

(Henkner et al., 2016). In contrast, shrub vegetation growth is favoured on leeside 

positions on west- and north-west-facing as well as on south- and south-west-facing 

locations having high SOCS (Ozols and Broll, 2003; Petrenko et al., 2016). Due to 

lower soil moisture, higher soil temperature and thus higher mineralisation rates on 

south-facing locations (SE, S, SW), the SOCS is with 7.16 ± 3.84 kg m-2 lower than on 

north-facing locations (NE, N, NW) with 8.91 ± 3.25 kg m-2 SOCS at 0 – 25 cm of depth. 

There are distinct similarities in SOCS in RUSS and the Umimmalissuaq valley being 

characterized by similar environmental conditions (Henkner et al., 2016). Topsoil 

SOCS on wind exposed crest positions in the Umimmalissuaq valley are comparable 

to east-facing locations in RUSS as both areas are affected by katabatic winds. The 

aspect affects microclimate on the land surface which results in varying topsoil depth 

and thus SOCS varying vertically with the aspect (Rentschler et al., 2019; 2020). 

3.1.2 Regional scale SOCS distribution 

On the regional scale, maximum SOCS is 47 – 68 % higher in SISI than in RUSS within 

all depth increments (Tab. 3) which can be explained by different landscape ages. Due 

to soil formation taking place 3000 years longer at the coast, soil could store more soil 

organic material than at the ice margin where the GrIS retreated 6.8 ka ago 

(Levy et al., 2012; Bradley-Cook and Virginia, 2016). Therefore, the SOCS differs 

distinctly in the range, which is with 7.85 ± 7.77 kg m-2 twice as large in SISI than with 

7.86 ± 3.74 kg m-2 in RUSS at the first depth increment. This also applies to the second 

depth increment and is reflected in comparable mean SOCS and a higher value range 

in SISI than in RUSS. On average, within 50 – 100 cm and 100 – 200 cm, the SOCS 

is 36 % respectively 53 % higher in SISI than in RUSS, which is related to cryoturbation 

processes being characteristic for the coastal area but evident at the ice margin area 

in West Greenland (Stäblein, 1977; Petrenko et al., 2016; Gries et al., 2020).  
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Table 3: Descriptive statistics of soil characteristics in SISI and RUSS (values with “<” indicates the 

detection limit) (from Gries et al., 2020, modified). 
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The bioclimatic zonation of West Greenland indicates an increasing net annual 

production from the coast to the ice margin suggesting lower SOCS in SISI than RUSS 

(CAVM Team, 2003). However, this only applies for VEG1 where the SOCS 

(0 – 25 cm) is 6 % lower in SISI than in RUSS (Fig. 5). In contrast, the SOCS at 

0 – 25 cm is 11 – 17 % higher for VEG2, VEG3 and VEG4 in SISI than in RUSS. Also, 

the SOCS is lower at the remaining depth increments in RUSS, except for VEG3, 

where SOCS at 25 – 50 cm is with 7.20 ± 3.93 kg m-2 higher in RUSS than in SISI 

(5.64 ± 0.93 kg m-2). In General, differences in SOCS between SISI in RUSS are 

connected to differences in respective climate conditions. Oceanic climate provides 

better growing conditions at the coast than at the ice margin where dry climate restricts 

plant growth at the end of the growing season. Concurrently, decomposition rates of 

soil organic material increase with warmer and drier conditions in Greenland 

(Elberling et al., 2004; Jensen et al., 2006) resulting from decreasing mean annual 

precipitation and increasing mean summer temperatures from the coastal to the ice 

marginal area (Cappelen et al., 2001). The vertical variation in SOCS changes from 

the coast to the ice margin due to the influence of spatially varying SM conditions 

(Rentschler et al., 2020). In addition, decreasing topsoil SOCS with same vegetation 

cover from the coast towards the ice margin is linked to the deglaciation history in West 

Greenland (Bradley-Cook and Virginia, 2016). The interaction of these environmental 

conditions effects vegetation and thus SOCS differently in both study areas and results 

in higher SOCS in SISI than in RUSS within the same vegetation unit (Gries et al., 2020). 

Although having the same landscape conditions, related LU show different SOCS 

between SISI and RUSS on the regional scale (Fig. 6) due to different climate 

conditions between the coast and the ice margin in West Greenland. In SISI, coastal 

climate is characterized by higher mean annual precipitation than at the ice margin 

showing continental climate conditions (Cappelen et al., 2001). Thus, relocation of 

SOC by overland flow is distinctly pronounced which results in 23 % higher SOCS at 

0 – 25 cm in LU3 in SISI than in RUSS, where overland flow is restricted as a result of 

dry climate condition at the ice margin area. In SISI, the SOCS at 0 – 25 cm in LU2 is 

10 % higher in SISI than RUSS due higher decomposition rates under drier and 

warmer soil conditions at the ice margin. 
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In both study areas, east-facing locations show lowest SOCS since the respective 

climate conditions restrict plant growth by low solar radiation due morning fog in SISI 

and high evapotranspiration rates due to katabatic winds in RUSS. As the coastal fog 

dissipates, solar radiation on south-east-facing locations increases, and with this 

biomass production which results in SOCS being 59 % higher in SISI than RUSS 

(Fig. 7), where south-east-facing locations are still affected by katabatic winds. In 

contrast, on west-facing locations, the SOCS is 54 % higher in RUSS than in SISI since 

plant growth is negatively affected by strong coastal west winds in SISI, but favoured 

on leeside positions of moraines in RUSS. In summary, under spatially varying 

environmental conditions, controlling factors affect the spatial distribution of SOCS in 

a different way on the regional scale.  

In Greenland, there is a high spatial variation of SOCS across northern coastal regions. 

In Northeast Greenland, the SOCS at 0 – 50 cm is with 11.00 ± 1.5 kg m-2 at 

Zackenberg (Elberling et al., 2004) lower than in SISI with 13.18 ± 12.82 kg m-2 at 

0 – 50 cm. In Northwest Greenland, the SOCS is with 6.7 kg m-2 at 0-100 cm on Thule 

peninsula (Horwath Burnham and Sletten, 2010) and with 6.7 kg m-2 at 0-60 cm on 

Disco Island (Jensen et al., 2006) also lower than in SISI. Differences in SOCS might 

be related to colder climate conditions in Northeast and Northwest Greenland. 

Variations in SOCS across northern coastal regions might also result from differences 

in vegetation cover and landscape pattern and related soil forming processes.  

However, large scale estimations reflect such regional differences in SOCS to a limited 

extent since they are subject to uncertainty as basis datasets may contain data gaps 

filled mathematically or key soil characteristics for calculation SOCS can be uncertain 

(Tarnocai et al., 2009; Hugelius et al., 2014; Köchy et al., 2015; Ping et al., 2015). In 

addition, the underlying data might be not representative for various regions, which 

applies especially to Greenland (Hugelius et al., 2014; Köchy et al. 2015). Although, 

showing similar SOCS at the coast and the ice margin of West Greenland, large scale 

estimations differ significantly from SISI and RUSS in terms of the amount and value 

range of SOCS (Jones et al., 2009; Hugelius et al., 2014; Köchy et al., 2015). At the 

first depth increment, the mean SOCS in both study areas is distinctly higher and has 

six respectively three times the range than estimated SOCS with 0.1 – 5 kg m-2 within 

0 – 30 cm (Hugelius et al., 2014). With focus on SOCS within 0 – 100 cm and                
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100 – 200 cm, differences in SOCS between SISI and RUSS are contrary to existing 

large-scale estimations showing no differences between the coast and the ice margin 

area. Within 0 – 100 cm, the SOCS is with 16.87 ± 14.79 kg m-2 in SISI and with 

15.49 ± 8.75 kg m-2 in RUSS slightly higher than estimated SOCS with 9 – 15.9 kg m-2 

by Jones et al. (2009) and with 5 – 15 kg m-2 by Hugelius et al. (2014) and around 

30 % than estimated SOCS with 10 kg m-2 by Köchy et al. (2015). Within 100 – 200 cm, 

large range in SOCS in SISI (33.61 kg m-2) and RUSS (15.33 kg m-2) reflect the high 

spatial and vertical variation in SOCS in both study areas. 

3.1.3 Role of controlling factors to describe the SOCS distribution 

The results reflect the spatial variation in SOCS on both the local and the regional 

scale. The controlling factors being used (VEG, LU, ASP) have different capabilities to 

characterize the SOCS distribution on both scales. Therefore, the controlling factors 

are ranked according to their potential to address the spatial variation in SOCS: 

+++ high; ++ medium; + low. The expert-based ranking is based on the comparison of 

the potential of each unit to be unique according the used classification scheme. With 

a high potential, a specific range of the SOCS distribution within the study area is 

represented by a specific unit on the local scale and the ranking is also stable over 

both study areas on the regional scale (Tab. 4). 

Vegetation units have a high (+++) potential to describe the spatial variation in SOCS 

by including to a certain extent insolation, geomorphology and wind on both the local 

and the regional scale. In SISI, similar topsoil SOCS for VEG2 and VEG4 is a result of 

fluvial relocated SOC. In RUSS, ASP reflects best the negative effect of katabatic 

winds being characteristic for continental climate at the ice margin. Further, the SOCS 

differs for all depth increments below 25 cm with VEG. Thus, VEG has a high potential 

(+++) to describe the variation in SOCS on the local scale. Showing similar pattern in 

the spatial distribution of SOCS, VEG points out different amounts of SOCS between 

SISI and RUSS on the regional scale. Therefore, VEG also have a high potential (+++) 

to describe the variation in SOCS on the regional scale. 

However, landform and landscape classifications are well known approaches for 

analysis of the horizontal vertical distribution of SOCS (Palmtag et al., 2018; 

Siewert et al., 2016; Wojcik et al., 2019). In addition, such classifications are useful for 
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representing local patterns such as accumulation areas of additional SOC input (as in 

SISI) or convexly shaped moraines of limited SOCS (as in RUSS). Further, LUs reflect 

the effect of local climate conditions in both study areas. However, LUs have little 

potential (+) to capture the variation in SOCS at the local scale in this study. Although, 

reflecting similar geomorphologic features between SISI and RUSS, LUs consider the 

influence of different climatic conditions and thus the differences in SOCS of related 

LUs between the coast and the ice margin on the regional scale (++). 

On both scales, ASP has high potential (+++) by representing great differences in site 

characteristics between east- and west-facing as well as north- and south-facing 

locations on the local scale and additionally by describing different climate conditions 

between the coast and the ice margin on the regional scale. 

In general, corresponding to comparable studies applying landform classification 

approaches in Arctic environments (Elberling et al., 2008b; Henkner et al., 2016; 

Siewert et al., 2016; Palmtag et al., 2018; Wojcik et al., 2019), the results presented 

above demonstrates both ASP and LU additionally yielding relevant information for 

analysing and understanding the spatial distribution of SOCS in West Greenland. On 

the local scale, ASP and LU represent specific environmental conditions within the 

study areas and differences between the study areas on the regional scale as well. As 

LU has lowest potential to describe the distribution of SOCS on both scales, it is 

recommended to use vegetation and aspect for investigations on the SOCS distribution 

on the local and the regional scale (Gries et al., 2020). Further, both environmental 

controlling factors can be delineated from remote sensing data and digital elevation 

models with high resolution across large areas. 

Table 4: Ranking of environmental units according to their potential (+++ high; 

++ medium; + low) to describe the SOCS distribution on the local and regional scale 

(Gries et al., 2020). 
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3.2 Scale and spatial SOCS dependencies (manuscript 2, 3) 

3.2.1 Scale dependent SOCS distribution 

The analysis of the area-specific approach shows distinct variations in the model 

accuracy of the sequenced RF models for SISI and RUSS (Fig. 8). In SISI, there is a 

decrease in the model accuracy from the moraine to the valley scale but a subsequent 

increase to the catchment scale for the ascending approach (SISIasc). Both the 

ascending and the descending approach (SISIdesc) highlight the relevance of the 

moraine and catchment scale for the spatial SOCS distribution at the coast. This attest 

the SOCS distribution depending on small scale environmental conditions varying 

within the study area and being also influenced by oceanic climate conditions 

(Jensen et al., 2006; Bradley-Cook and Virginia, 2016; Gries et al., 2020). However, 

R² is 0.20 on average and very low for both SISIasc and SISIdesc because the SOCS 

distribution is weakly connected to the terrain surface which has been reshaped by 

periglacial processes and SOC has been relocated since the deglaciation of the 

coastal region of West Greenland 10,000 years ago (Stäblein, 1977; Levy et al., 2012; 

Bradley-Cook and Virgina, 2016). In addition, since the beginning of soil formation, soil 

material was mixed and redistributed vertically by freeze and thaw cycles typically for 

permafrost-affected landscapes (Bockheim, 2007; Baumann et al., 2014). 

In contrast, higher model accuracy in RUSS than in SISI suggests a stronger 

connection between SOCS and terrain as lower precipitation rates and landscape age 

have lower potential for reshaping the landscape and affecting soil formation at the ice 

margin. Therefore, the SOCS distribution is strongly connected to specific landscape 

elements at the ice margin in West Greenland (Gries et al., 2020). The increase in 

model accuracy on the moraine scale of the ascending and descending approach 

points out the importance of small-scale environmental conditions and processes to 

the spatial SOCS distribution at the ice margin. On the regional scale, differences in 

the model accuracy and important scales between SISI and RUSS confirm that 

controlling factors and processes affecting the SOCS distribution vary over long 

distances and with different climate conditions in West Greenland (Gries et al., 2020). 

Expressed by a function of soil forming factors, soils vary according to the variation in 

such factors including space (Jenny, 1941; McBratney at al., 2003). As soil-landscape  
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Figure 8: Variation in model accuracy across environmental scales. Mean variation in R² and nRMSE 
of the ascending (blue) and descending (red) sequence of RF models in SISI and RUSS across all 
single scales (black dots) which are grouped (vertical lines) to the hill scale (2 – 48 m), valley scale 
(64 – 192 m) and catchment scale (256 – 3072 m). Grey areas represent value range of the ten times 
repeated 10-fold cross-validation and the horizontal dotted lines the mean value of the validation of 
the respective environmental scale.  

. 
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interrelations including environmental conditions and processes change across 

different scales, the estimation of the spatial SOCS distribution needs to respect the 

relevant scale (Viscarra Rossel et al., 2019).  

The model accuracies vary over different scales since the importance of specific terrain 

features varies over different scales as well. Figure 9 shows the cumulative increase 

in feature importance of the terrain features across the environmental scales. The 

steeper the increase in feature importance within the moraine, valley or catchment 

scale the higher is the relevance of the respective environmental scale of the specific 

terrain feature. In SISI, the aspect is the most the important terrain feature on the 

moraine and the catchment scale and thus confirms its significance for the description 

of the SOCS distribution in West Greenland (Gries et al., 2020). The aspect also 

represents small-sized landscape elements as small hills on the moraine scale that 

affects microclimate, growing conditions and vegetation cover in West Greenland 

(Jensen et al., 2006; Horwarth Burnham et al., 2010; Henkner et al., 2016; 

Gries et al., 2020). On the catchment scale, the aspect represents the coastal climate 

that has a negative effect on plant growth in the form of coastal fog on eastern part and 

in form of strong coastal winds on the western part of SISI. Besides, curvature is a key 

terrain feature since addressing scale dependencies of the SCOS distribution in SISI 

on the moraine scale and the valley scale. Solifluction and erosion on valley slopes 

cause colluvial deposits at valley footslopes (Stäblein, 1977; Palmtag et al., 2015; 

Ramage et al., 2019) which results in high SOCS along the northern part of SISI 

(Stäblein, 1977; Gries et al., 2020). Downslope processes along moraine slopes result 

in high SOCS in depressions and accumulation areas within the study area 

(Gries et al., 2020). 

In RUSS, curvature represents moraines slopes on the moraine scale and the valley 

slope on the valley scale and to both accompanied relocation processes. Moraines 

show downslope relocation processes, favour vegetation growth in wind protected 

areas and have a lasting effect on aeolian transport which results in high SOCS in 

depressions, on their western side and buried by aeolian deposits respectively 

(Henkner et al., 2016; Müller et al., 2016; Kühn and Henkner, 2019; Gries et al., 2020). 

Curvature generally is suitable to describe geomorphological pattern on various scales  
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Figure 9: Cumulative importance of terrain features across environmental scales. The steeper the 

increase in cumulative feature importance of the ascending and descending RF sequences the higher 

is the relevance of the respective environmental scale. The black dots represent single scales being 

grouped to the hill (2 – 48 m), valley (64 – 192 m) and catchment scale (256 – 3072 m). 
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as small-scale landforms disappear and merge into large-scale generalised landforms 

when the scale enlarges (Wood, 1996). The highest moraine ridge significantly shapes 

the valley dividing it into a wind-exposed and a wind-protected part which causes lower 

SOCS on the east-facing than on the west-facing part as katabatic winds negatively 

affect vegetation growth on wind-exposed locations in the east of RUSS. The influence 

of the katabatic wind on the SOCS distribution is evident on all scales in different ways 

which can be captured by the aspect at the all three scales. On the moraine scale, the 

aspect reflects the SOCS distribution depending on vegetation growth affected by 

katabatic winds. On the valley scale, the aspect explains the SOCS distribution within 

the study area in the same way as the curvature on the valley scale. On the catchment 

scale, the aspect represents the spatial trend of increasing SOCS with increasing 

distance to the ice margin as a result of weakening influence of the katabatic winds 

related to aeolian transport and vegetation growth to the west (Henkner et al., 2016; 

Gries et al., 2020). Finally, reflecting wind as a soil forming factor not being used as 

predictor, the aspect is as proxy with high potential to capture and describe 

environmental factors and related processes on different scale levels which control the 

spatial distribution of soil properties in periglacial shaped landscape. In general, this 

confirms the relevance of considering multiple scale for the analysis of SOCS 

distribution to capture the effect of scale-dependent interactions between 

environmental conditions and the landscape towards the distribution of soils 

(Behrens et al., 2010; Kerry and Oliver, 2011). 

3.2.2 Spatial dependent SOCS distribution 

Spatial dependencies of the SOCS distribution are examined by comparing the 

importance of spatial features to terrain features with the spatial approaches for SISI 

and RUSS. The importance of the terrain and spatial features of both spatial 

approaches are given in Tab. 5 and Tab. 6. In SISI, the importance of spatial features 

is with an average of 2.02 ± 0.54 % higher than the mean importance of the terrain 

features (1.36 ± 1.61 %). Within the study area, SOCS slightly increase to the east as 

the effect of strong coastal winds on the vegetation, a key source of organic material, 

weakens with increasing distance to the coast. Further, the northeaster part of the 

study represents on the one hand a wind-sheltered area favouring biomass production 

and on the other hand the footslope of the valley with an additionally increase of 
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relocated material from the valley slopes which both generally results in high SOCS on 

the footslope (Stäblein, 1977; Ozols and Broll, 2003; Henkner et al., 2016; Palmtag et 

al., 2015; Ramage et al., 2019). This slight increase of SOCS from the west to the east 

in SISI is reflected by the spatial feature Y01, representing the Euclidean distance to 

the western boundary of the study area (Fig. 4). In addition, there is a spatial trend of 

decreasing SOCS to the south, which is reflected by the spatial feature X01 

representing the Euclidean distance from the southern boundary of SISI. Cold soil 

conditions due to low solar energy input on the north-facing valley slope result in low 

SOCS in the south of SISI (Gries et al., 2020). The spatial approach (SISIspatial) shows 

better validation results and comparable SOCS distribution than the non-spatial model 

approaches for SISI (Tab. 7; Fig. 10). This confirms that the SOCS distribution is 

weakly linked to the present land surface as coastal climate and landscape age foster 

relocations processes and highlights the relevance of EDFs as suitable spatial features 

to identify spatial dependencies of SOCS at the coast. However, the maximal 

importance of the terrain features is with 6.05 % for the sinAsp (18) at the catchment 

scale clearly higher than for the spatial features (2.61 %, Y01). The multi-scale terrain 

features consider small-scale variation of SOCS on the moraine and valley scale in 

addition to large-scale effects on the catchment scale as by the prominent EDFs. 

In RUSS, the spatial feature importance is with 1.10 ± 2.14 % lower than for the terrain 

features 2.22 ± 3.46 %, as the spatial SOCS distribution is connected to local 

environmental controlling factors and thus varies over short distances with the local 

landscape. The variation of SOCS primarily results from soil-landscape interrelations on 

the moraine scale but additionally shows a subordinate increase in SOCS to the west. 

The negative effect of the katabatic winds decreases with increasing distance to the ice 

margin which is reflected by the aspect on the catchment scale and by the spatial feature 

Y01, both explaining increasing SOCS to the west in RUSS (Gries et al., 2020). The 

advantage of multi-scale terrain features covering both landscape-driven and spatial 

SOCS pattern within the study area is also reflected in the maximum feature importance 

of 15.57 % (Cross-sectional curvature at the moraine scale) being distinctly higher than 

for the EDFs with 4.48 % (C1). The spatial approach (RUSSspatial) results in comparable 

validations results and predicted SOCS distribution in RUSS (Tab. 5; Fig. 11). This 

confirms that the SOCS distribution is linked to the present terrain at RUSS due the 

water-driven relocation of soil material is low due to low MAP at the ice margin.     
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Table 5: Importance of terrain and spatial features of the spatial approach for SISI (SISIspatial).  

 

Table 6: Importance of terrain and spatial features of the spatial approach for RUSS (RUSSspatial).  
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3.2.3 Regional dependent SOCS distribution 

The examination of regional dependencies is based on the estimation of the spatial 

SOCS distribution in both study areas by the area-specific, spatial, crosswise and 

combined approach using different training data sets and validation areas (Fig. 10; Fig. 

11). The validation of the models results from the difference between the predicted and 

measured values and is expressed by nRMSE and R² (Tab. 7). 

In SISI, the R² of the area-specific approach (SISIarea-specific) is with 0.76 higher than for 

the combined approach (SISIcombined). Relevant soil-landscape interrelationships at 

different scales are better depicted by SISIarea-specific, which minimizes differences 

between the observed and predicted values. With SISIcombined strong scale-dependent 

soil-landscape interrelations at the ice margin may have been transmitted incorrectly 

from RUSS to SISI. This causes an underestimation of SOCS especially in the north-

eastern part of SISI, where the SOCS is high due to relocation processes along the 

valley slope. This circumstance is characteristic for the coastal area showing higher 

precipitation and higher relocation rates than at the ice margin (Gries et al., 2020). 

In contrast, slightly higher R² for RUSScombined (0.88) than RUSSarea-specific (0.85) results 

from additional soil information from SISI. The combined dataset leads to an artificial 

expansion and thus better coverage of the range of the measured SOCS and a higher 

consistency of the predicted values in RUSS. The crosswise approaches (SISIcross, 

RUSScross) cause highest nRMSE for SISI (0.26) and RUSS (0.58) and results in an 

underestimation and an overestimation of SOCS in SISI and RUSS respectively. Both, 

Table 7: Validation of the spatial SOCS predictions in SISI and RUSS. 
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SISIcross and RUSScross extract scale-dependent soil-landscape interrelations being 

characteristic for the respective training dataset and study area which, however, have 

no validity in the respective other area. Also, SISIspatial shows best results of all model 

approaches pointing out that the SOCS distribution is less linked to the local terrain 

due to erosion processes and relocation of soil material which benefit from high 

precipitation rates under coastal climate conditions than at the ice magin where the the 

application of spatial features does not improve the prediction of SOCS in comparison 

to the non-spatial approaches of RUSSarea-specific and RUSScombined. This confirms 

regional differences of soil-landscape interrelations and SOCS related to contrary 

climatic conditions between the coast and the ice margin in West Greenland on the 

regional scale (Gries et al., 2020). 

Distinct differences in relevant scales, important terrain features, biotic and abiotic 

controlling factors and climate conditions between SISI and RUSS and thus varying 

interactions between the coast and the ice margin contradict the requirements of 

spatial predictions: comparable environmental conditions in the training and validation 

area and balanced training data according to environmental controlling factors 

(Taghizadeh-Mehrjardi et al., 2020). On this basis, and considering these spatially 

varying and scale-dependent environmental interrelations, large scale estimations 

would be reliable and interpretable in a pedological context (Behrens et al., 2010; 

Viscarra Rossel et al., 2019). However, due to limited data and the mapped scales, the 

non-linear gradient in SOCS between the coast and the ice margin is not considered 

by large scale estimations which show no spatial variation in SOCS in West Greenland 

(Jones et al., 2009; Hugelius et al., 2013; 2014; Köchy et al., 2015). 

Therefore, extrapolation and estimation of SOCS across large areas with spatially 

varying environmental conditions are subject to uncertainty. Mapping the uncertainty 

of soil information proves beneficial for the identification of underrepresented areas. 

Providing spatial uncertainty with the prediction of soil information, geo-statistical 

approaches are limited in representing non-linear relationships which can be detected 

within data sets by machine learning techniques (Behrens and Scholten, 2007). 

Stumpf et al. (2017) derived the spatial uncertainty of soil texture from RF on the 

catchment scale. Mapping the spatial uncertainty is also an element of large-scale 

estimations of various soil properties using machine learning (Poggio et al., 2021). 
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Figure 10: Prediction of the spatial SOCS distribution in SISI. The area-specific approaches uses 

multi-scale terrain features only. The spatial approach includes multi-scale and spatial features. The 

combined approach is based on a combined data set from SISI and RUSS and uses multi-scale 

terrain features to predict SOCS in SISI. The crosswise approach comprises a RF model trained 

with a data set from RUSS to predict SOCS in SISI. 
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Figure 11: Prediction of spatial SOCS distribution in RUSS. The area-specific approaches uses 

multi-scale terrain features only. The spatial approach includes multi-scale and spatial features. The 

combined approach is based on a combined data set from SISI and RUSS and uses multi-scale 

terrain features to predict SOCS in RUSS. The crosswise approach comprises a RF model trained 

with a data set from SISI to predict SOCS in RUSS. 
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3.2.4 Role of environmental features to describe the SOCS distribution 

The machine learning based approaches differ in revealing scale, spatial and regional 

dependencies of SOCS within and between SISI and RUSS which allows for ranking 

the area-specific, spatial and regional approach concerning the potential (high: +++; 

medium: ++; low: +; none: o) to describe the SOCS distribution over short distances 

on the local and large distances on the regional scale (Tab. 8). Due to the ascending 

and descending sequenced RF modelling, the area-specific approach is highly suitable 

to account for soil-landscape interrelationships varying across the moraine, valley and 

catchment scale as well as over space in SISI and RUSS on the local scale (+++). On 

the regional scale, differences in feature importance and relevant scales between the 

coast and the ice margin also show high potential of the area-specific approach (+++) 

to proof regional dependencies of SOCS related to different environmental conditions. 

Besides, allowing to consider spatial trends within the coastal and ice marginal study 

area by terrain features of the catchment scale, the area-specific approach has higher 

potential than the spatial approach. On the local scale, spatial features show low 

potential (+) to describe the SOCS distribution according to the heterogeneity of the 

landscape and variation of environmental conditions over short distances. However, 

contrary important spatial features between SISI and RUSS reflect contrary 

environmental conditions regarding wind systems and precipitation and thus medium 

potential on the regional scale (++). Regional dependencies are accentuated by the 

crosswise approach potentially suitable to point out differences in soil-landscape 

interrelations (++) between SISI and RUSS to some extent but not qualified to explain 

the spatial SOCS distribution in the other respective area on the local scale (o). The 

potential of the combined approach is low to account for scale dependencies on the 

local scale in SISI (+) as area-specific environmental relationships are disregarded. In 

contrast, the potential of the combined approach is high in RUSS (+++) as differences 

between the area-specific and combined approach are marginal according to the 

validation results. 
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Table 8: Ranking of model approaches according to their potential (+++ high; ++ medium; 

+ low; o none) to describe the SOCS distribution on the local and regional scale. 
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4 Summary and outlook 

Objective of this thesis was to investigate the SOCS distribution in permafrost-affected 

soils in West Greenland. To achieve this, soil and environmental data was collected 

at 140 sampling locations distributed according to a stratified random sampling design 

within two study areas. To consider contrary climate conditions, the study areas are 

located at the coast and the ice margin in West Greenland. The results confirm the 

hypothesis that the SOCS in West Greenland is higher in the amount and the spatial 

variation compared to existing large-scale estimations as environmental conditions 

and processes vary in their effect on different scales within and between both study 

areas. Such environmental conditions are successfully represented by the chosen 

environmental controlling factors (vegetation, landscape, aspect) in form of defined 

units to explain the spatial variation in SOCS over short distances within both study 

areas on the local scale and between the coastal and the ice marginal study area on 

the regional scale. Further, multi-scale terrain features allow to address environmental 

processes acting parallel on the moraine, valley and catchment scale but differ in the 

effect on the respective environmental scales on the local scale SOCS distribution.  

On the local scale, the SOCS distribution is linked to spatial vegetation pattern in 

comparable ways within both study areas. Accordingly, the SOCS is highest with tall 

shrub tundra (VEG3) and low shrub tundra (VEG2) due to high biomass production 

favoured by the predominant occurrence under good growing conditions such as wind-

protected locations with balanced solar energy input and sufficient water availability. 

In contrast, the SOCS is lowest with dwarf shrub tundra (VEG1) limited in growth by 

disfavour site conditions as unbalanced solar energy input, strong winds and 

insufficient water availability. Generally, the SOCS is higher with graminoid-moss 

tundra (VEG4) than with VEG1 in SISI and RUSS respectively due to lower 

decomposition rates under moist and cold soil conditions in depressions and bankside 

areas which corresponds to landscape unit LU1. However, landscape units show less 

potential than vegetation units to describe the spatial SOCS distribution. In both areas, 

the SOCS is similar for three of four LUs and thus the accentuation of SOCS of one 

LU is related to the respective climate conditions. So, the SOCS is highest in LU3 in 

SISI due to high water availability at the coast and the lowest in LU2 in RUSS due to 

strong katabatic winds at the ice margin. As an assemblage of multiple terrain features, 
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landscape units, however, show less potential in explaining the spatial variation in 

SOCS than a single terrain feature like the aspect. In both study areas, the aspect 

highlights the importance of solar energy input and predominant winds which causes 

low SOCS on east- and west-facing locations due to low solar energy input by morning 

fog and strong coastal winds in SISI and low SOCS on east-facing locations due to 

dry katabatic winds in RUSS on the local scale. Further, the application of multi-scale 

terrain features additionally highlights the advantage of an individual terrain feature 

over landscape units as sequenced RF models allow to measure the feature 

importance and thus to identify the relevant scale and to evaluate the role of related 

environmental processes on the SOCS distribution. In SISI, the aspect indicates the 

importance of downslope processes on the moraine scale and the role of wind related 

processes on the catchment scale being relevant for the spatial SOCS distribution at 

the coast as well. Further, the curvature highlights the effect of water-driven relocation 

processes on the valley scale which results in high SOCS along the northern boundary 

of the study area corresponding to LU3. Additionally, the spatial features describe 

spatial trends in the SOCS distribution at the coast that is less connected to the present 

terrain compared to the ice margin. In RUSS, katabatic winds are characteristic for the 

ice margin area and influence the SOCS distribution in different ways which is 

illustrated in detail by single terrain features of different scales. The aspect points out 

the negative effect of katabatic winds on the moraine scale which results in SOCS 

being lower on east-facing than on wind-sheltered west-facing locations in RUSS. This 

can be transferred to the valley scale, where in the west to the highest moraine ridge, 

illustrated by the curvature, the SOCS is higher than in the eastern and wind-exposed 

part of the study area. Further, the aspect reflects increasing SOCS with distance from 

the ice margin which results from decreasing strength of the katabatic winds on the 

catchment scale. These scale-dependent soil-landscape interrelations confirm the 

hypothesis that small-scale processes primarily affect the SOCS distribution on the 

one hand but on the other hand accentuate the importance to consider secondary 

large-scale processes in spatial analysis of SOCS.  

On the regional scale, different soil-landscape interrelations between both study areas 

were inferred from differences in the range and in the amount of SOCS of 

corresponding units of the environmental controlling factors as well as differences in 

the importance and relevant scales of the terrain features and differences in related 
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environmental processes. A climatic gradient is expressed in opposing wind systems 

and decreasing amount of water over a long distance from the coast to the ice margin 

of West Greenland. Coastal climate causes cold and wet soil conditions fostering the 

accumulation of SOC whereas decomposition is favoured by the warm and dry 

continental climate at the ice margin. Furthermore, water shortage restricts plant 

growth especially at the end of the growing season at the ice margin and, thus, results 

in lower SOCS with related vegetation units in RUSS than SISI. Feature importance 

and relevant scales in SISI demonstrate the importance of relocation processes by 

water for SOCS at the coast. In contrast, a strong connection to the terrain and a 

subordinate role of respective scales and features indicate minor redistribution due to 

surface runoff at the ice margin. The aspect also captures the differenteffect of the role 

of solar energy input and wind direction on the SOCS between both study areas on 

the regional scale. Additionally, differences in relevant scales of the aspect between 

SISI and RUSS point out the multi-scale SOCS dependency on katabatic winds at the 

ice margin. Finally, by the comparison of environmental conditions and processes by 

unit, features and scales, it is recommended to combine a set of multi-scale terrain 

features with vegetation to examine the spatial SOCS distribution on various scales. 

Numerous software tools allow the derivation of multi-scale terrain features from DEMs 

and vegetation parameters from remote sensing data, which both are available in high 

resolution and over wide areas. 

Future examinations and estimations of SOCS will benefit from new findings and 

recommendations as well as new soil data. With SOCS data from four depth 

increments at each of 140 locations and the analysis incorporating vegetation, climate 

and terrain conditions, this thesis is an important contribution to research of Arctic 

environments which will help to decrease uncertainty of large-scale estimations, 

especially in Greenland. This already applies to parts of this dataset which will be used 

in upscaling methods based on soil maps and also machine learning models for a 

global permafrost nitrogen stock estimation.  
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Abstract: 

The soil organic carbon (SOC) pool of the Northern Hemisphere contains about half of 

the global SOC stored in soils. As the Arctic is exceptionally sensitive to global 

warming, temperature rise and prolonged summer lead to deeper thawing of 

permafrost-affected soils and might contribute to increasing greenhouse gas emissions 

progressively. To assess the overall feedback of soil organic carbon stocks (SOCS) to 

global warming in permafrost-affected regions the spatial variation in SOCS at different 

environmental scales is of great interest. However, sparse and unequally distributed 

soil data sets at various scales in such regions result in highly uncertain estimations of 

SOCS of the Northern Hemisphere and here particularly in Greenland. The objectives 

of this study are to compare and evaluate three controlling factors for SOCS distribution 

(vegetation, landscape, aspect) at two different scales (local, regional). The regional 

scale reflects the different environmental conditions between the two study areas at 

the coast and the ice margin. On the local scale, characteristics of each controlling 
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factor in form of defined units (vegetation units, landscape units, aspect units) are used 

to describe the variation in the SOCS over short distances within each study area, 

where the variation in SOCS is high. On a regional scale, we investigate the variation 

in SOCS by comparing the same units between the study areas. The results show for 

both study areas that SOCS are with 8 kg m-2 in the uppermost 25 cm and 16 kg m-2 

in the first 100 cm of the soil, i.e. 3 to 6 kg m-2 (37.5 %) higher than existing large scale 

estimations of SOCS in West Greenland. Our approach allows to rank the scale-

dependent importance of the controlling factors within and between the study areas. 

However, vegetation and aspect better explain variations in SOCS than landscape 

units. Therefore, we recommend vegetation and aspect for determining the variation 

in SOCS in West Greenland on both scales. 

 

1 Introduction 

Soils store up to 3000 Pg carbon worldwide, which is twice the amount of the biosphere 

and the atmosphere together (Köchy et al., 2015). The northern circumpolar 

permafrost region stores about 1300 Pg soil organic carbon (SOC), whereof 217 Pg 

SOC are stored in the top 30 cm and 472 Pg in the first meter of the soil (Hugelius et 

al., 2013; 2014). The increase in air temperature of the Arctic overrides the global mean 

significantly over the last decades (IPCC, 2019), assuming a much stronger influence 

on permafrost soils than previously expected (Chadburn et al., 2017). This causes 

environmental alterations accelerating microbial breakdown of organic carbon and 

enhancing the release of the greenhouse gases to the atmosphere (Schuur et al., 

2015). To assess the impact of global warming and greenhouse gas emission in 

permafrost-affected regions the spatial distribution and the amount of SOC stored in 

the soils have to be estimated as precise as possible. 
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However, the estimation of soil organic carbon stocks (SOCS) of permafrost-affected 

soils is highly uncertain as, for one reason, there is an unbalanced distribution of 

studies across the Arctic focusing on Alaska, Siberia and Canada while Greenland is 

underrepresented (Tarnocai et al., 2009; Hugelius et al., 2014; Köchy et al., 2015; Ping 

et al., 2015). For West Greenland predominantly Umbrisols and Cambisols are 

reported (cf. Jensen et al., 2006; Bradley-Cook and Virginia, 2016; Petrenko et al., 

2016; Kühn and Henkner, 2019) which could store a significantly higher amount of 

SOC than thin and less developed soils in East and North Greenland (Elberling et al., 

2008a; 2008b, Palmtag et al., 2015; 2018). 

On a regional scale, SOCS are typically related to climate in terms of precipitation and 

temperature (Post et al., 1982). In West Greenland, mean annual air temperature 

(MAT) and mean annual precipitation (MAP) decrease from the coast at Sisimiut (MAT; 

MAP: -3.5 °C; 383 mm) to the ice margin at Kangerlussuaq (-5.7 °C; 149 mm) over a 

distance of 150 km on the regional scale (Cappelen et al., 2001; Carstensen and 

Jørgensen, 2009). At the ice margin, the air temperature is 3 K higher during the 

growing season (May-September) and 5 K lower from October until April than at the 

coast (Cappelen et al., 2001). Vegetal activity (CAVM Team, 2003) and permafrost 

thickness (Van Tatenhove and Olesen, 1994) increase towards the ice margin. Another 

interpretation of lower amounts of SOCS with increasing distance from the coast to the 

ice margin in West Greenland is related to the Holocene deglaciation history of the 

Greenland Ice Sheet, with decreasing age of exposed surfaces from the coast to the 

ice margin (Levy et al., 2012; Bradley-Cook and Virginia, 2016). However, these 

findings are in contrast with large scale estimates of SOCS in West Greenland showing 

no differences between the coast and the ice margin (Jones et al., 2009; Hugelius et 

al., 2014; Köchy et al., 2015). 
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On a local scale, vegetation and topography influence SOCS distribution in Greenland 

(Ozols and Broll, 2003; Jensen et al., 2006; Elberling et al., 2008b; Horwath Burnham 

and Sletten, 2010; Henkner et al., 2016) and also in other Arctic environments 

(Palmtag et al., 2015; 2018; Siewert et al., 2015; 2016; Wojcik et al., 2019). The 

topography affects both the local and the regional climate, thaw depth of the active 

layer, deflation, erosion by water and related accumulation processes (Van 

Tatenhoven and Olesen, 1994; Müller et al., 2016). Katabatic winds take control in 

east-west direction, with more arid and colder conditions close to the ice margin over 

distances of some hundred meters to a few kilometers (Müller et al., 2016). In addition, 

topsoil SOCS are connected to distribution pattern of vegetation and soil moisture 

(Henkner et al., 2016) whereas slope processes, cryoturbation and active layer 

thickness affect the vertical distribution of SOC in the subsoil (Bockheim, 2007; 

Palmtag et al., 2015; 2018; Siewert et al., 2015; 2016; Wojcik et al., 2019). However, 

vegetation pattern and the soil water regime are related to topographic positions as 

well (Elberling et al., 2008a), mainly determined by the local Holocene deglaciation 

history resulting in moraines stretching across valley from north to south (Henkner et 

al., 2016). Given such strong differences in controlling environmental conditions on 

various scales, a similar fluctuation of SOCS is expected. If that holds true, such scale-

dependent variations in SOCS cannot be described by the existing large scale 

estimations satisfactory.  

The objectives of this study are to compare and evaluate three controlling factors for 

SOCS distribution (vegetation, landscape, aspect) at two different scales (local, 

regional). The regional scale reflects the different climate conditions and related 

vegetation patterns on SOCS between two study areas. On the local, characteristics 

of each controlling factor in form of defined units (vegetation units, landscape units, 
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aspect units) are used to describe the variation in SOCS over short distances within 

each study area. On a regional scale we investigate the variation in SOCS by 

comparing the same units between the study areas. This approach allows to rank the 

scale-dependent importance of the controlling factors of SOCS within and between the 

study areas.  

 

2 Material and methods 

2.1 Study areas 

The study area at the coast (SISI) is 1.5 km² in size and located around 4 km east to 

the city of Sisimiut (66° 57 N, 53° 33’ W). The coastal area is characterized by oceanic 

climate conditions with frequently occurring fog, coastal westerly winds, MAT of -3.5°C 

and MAP of 383 mm (Cappelen et al., 2001; Carstensen and Jørgensen, 2009). SISI 

is located within a deep valley with northeast-southwest orientation and steep north- 

and south-facing slopes. The northern boundary of the study area consists of steep 

slopes (> 30°) with sparse vegetation cover and thin soils. A lake defines the eastern 

boundary and a small river the western boundary. The small river crosses the study 

area from the northeast to the southwest characterised by adjacent flat areas and 

depressions in smooth transition with slightly inclined slopes and moraines. A ridge 

with steep north-facing slopes marks the southern boundary of the study area (Fig. 1). 

The study area at the ice margin (RUSS) comprises around 1.8 km² and is located 

directly at the ice margin, around two kilometres west of the Russell Glacier (67° 6’ N, 

50° 17’ W), which is an outlet glacier of the Greenland Ice Sheet. The ice margin area 

is characterized by an arctic continental climate with MAT of -5.7 °C and MAP of 149 

mm and katabatic winds blowing down from the Greenland Ice Sheet predominantly to 
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the west (Cappelen et al., 2001; Carstensen and Jørgensen, 2009). RUSS is located 

in an east-west oriented valley with steep north- and south-facing slopes and lakes in 

the east and west which define the boundaries of the study area. Sand dunes occur in 

the northeaster part caused by the katabatic winds taking up sediment from the 

outwash plains (cf. Müller et al., 2016). Different terminal moraines cross the valley in 

north-south direction (Fig. 1). Mountain vegetation on non-carbonate bedrock, i.e. 

mostly granite in SISI and gneiss in RUSS defines the vegetation in both study areas 

(CAVM Team, 2003; Henriksen, 2008). Sedges cover depressions, flat and bankside 

areas, whereas mosses, lichens and prostrate dwarf shrubs grow on steep slopes and 

ridges. Dwarf shrubs < 40 cm in height in SISI and > 40 cm in RUSS occur in wind 

sheltered areas and slightly inclined slopes. Since the last deglaciation, predominantly 

periglacial processes reshaped the glacial landscape (Stäblein, 1977; Ozols and Broll, 

2003; Willemse et al., 2003; Henriksen, 2008; Müller et al., 2016). The maximal 

possible time for soil formation since the last deglaciation is around 10,000 years in 

SISI and 6800 years in RUSS (c.f. Bradley-Cook and Virginia, 2016). Dominant soils 

are acid haplic Cambisols and Cryosols in both study areas (Stäblein 1977; Jones et 

al., 2009; Henkner et al., 2016; Kühn and Henkner, 2019). The majority of soils at steep 

slopes, moraine crests, ridges and summits are less developed on coarse substrate 

with an active layer thickness >200 cm. Wind sheltered locations of dunes and at 

slightly inclined slopes are characterized by warm and dry soil conditions and sandy 

substrate. On these locations, soil formation results in organic rich soils of which some 

are buried by aeolian sediments. Soils in depressions, flat and bankside area have 

thick organic horizons with silty texture, high soil moisture content and a thin active 

layer (60.08 ± 35.34 cm). Further impressions of the study areas are given by 

photographs in the online supplement (S1, S2). 
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Figure 1: Study areas near Sisimiut (SISI) at the coast and close to the Russell Glacier 

(RUSS) at the ice margin of the Greenland Ice Sheet with sampling locations and 

landscape units. 

 

2.2 Delineation of landscape units and sampling design 

Landscape units (LU) are delineated as spatial entities that represent the spatial 

extend of homogenous landforms according to the deglaciation history and 

geomorphology of the land surface (Tab. 1). To structure the topography of the study 

areas, we used a set of local, regional and combined terrain covariates which are 

relevant for the spatial distribution of SOCS (Tab. S3, supplementary material). The 

terrain covariates are derived from a digital elevation model with a resolution of 5 x 5 

m computed from aerial images from the Geodetic Institute of Denmark using 
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VisualSFM (Wu, 2011; Wu et al., 2011), where structure from motion is combined with 

photogrammetry to estimate three dimensional terrain surface objects from satellite 

image sequences (Carrivick et al., 2016). 

To delineate the LU, we used k-means cluster analysis for automated and 

unsupervised classification of terrain covariates (Burrough et al., 2000; Schmidt et al., 

2010). The aim of the cluster analysis is to divide the study area into homogeneous 

classes with high interclass variance and small intraclass variance (Webster and 

Beckett, 1968; Everitt, 1980). The selection of the number of clusters aims at a best-

structured and less-fragmented representation of the two study areas. According to 

Schmidt et al. (2010) we set k=10 as maximum number of LUs to address feasibility of 

the subsequent sampling design and determined the optimal number of classes by 

using the number of fragments and their perimeter per class (Fig. 2). The smaller the 

number of fragments and the perimeter, the lower the degree of fragmentation of the 

classes and thus optimally suited for the designation of LU. The intersection represents 

the optimal size of k which is both 3.68 and 4.34 for SISI and 4.18 for RUSS. Finally, 

we chose four classes for LUs for both study areas. The paired t-test of the terrain 

parameters of each LU ensures the pairwise comparability of related LUs between both 

study areas (Tab. 1). 

In total 140 sampling points were proportionally allocated to the LUs according to 

surface percentage and fragmentation. The sampling points were randomly distributed 

based on software (Create Random Points tool, ArcGIS Desktop 10.3, ESRI, 2014) 

within each LU (Fig. 1). 
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Table 1: Results of t-test (significance level, α = 0.05) to verify the comparability of 

each LU between SISI and RUSS and the major landform elements they represent. 

Landscape unit Landform element p-value (t-test) 

LU1 Depression, flat and bankside area 0.037 

LU2 Moraine crest, ridge, summit 0.027 

LU3 Plateau area 0.019 

LU4 Steep slope 0.020 

 

 

Figure 2: Determination the optimal number of classes (c) in SISI (black) and RUSS 

(grey) by using the number of fragments (points) and their perimeter (triagles) per 

class. The intersections represent the optimal number of classes which is both 3.68 

and 4.34 for SISI and 4.18 for RUSS.  
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2.3 Field work, laboratory and statistical analysis 

During a field campaign in summer 2016, vegetation cover (VEG) was recorded by 

species and their growth height according to Bliss (2000) (Tab. 2) and the aspect (ASP) 

was determined at all sampling locations. We used a hand-driven, half-open 

Pürckhauer auger (0-100 cm; slot width 18 mm) with an extension (100-200 cm; slot 

width 16 mm) for sampling of SOC and bulk density (BD) (e.g. Don et al., 2007) at four 

depth increments (0-25, 25-50, 50-100 and 100-200 cm). Only unfrozen ground was 

sampled. The first depth increment (D1) was set to 0-25 cm as according to an earlier 

field survey the maximal thickness of the upper organic horizon was found to be 25 cm 

in both study areas. Since the minimal thickness of the active layer (AL) is around 50 

cm at comparable landscape conditions in West Greenland, the second depth 

increment (D2) was set to 25-50 cm (cf. Bradley-Cook et al., 2016; Henkner et al., 

2016). The third depth increment (D3) was set to 50-100 cm, because a large amount 

of SOC can be stored in the subsoil (Tarnocai et al., 2009; Hugelius et al., 2014). We 

set the fourth depth increment (D4) to 100-200 cm to include soil heterogeneity caused 

by cryoturbation (Ping et al., 1998). 

For SOC analysis, we sampled three soil cores at each sampling location to have three 

replicates of each depth increment over the complete depth. The replicates of each 

depth increment were bulked. If a depth increment could not be sampled completely 

due to frozen subsoil conditions or bedrock the SOCS of the not-sampled part was set 

to 0. Due to the subsoil conditions 140 samples were taken from D1, 138 samples from 

D2, 127 samples from D3 and 91 samples from D4. We sampled 16 locations for BD, 

covering all LUs. BD samples were collected from the middle of each depth increment 

(10-15, 35-40, 72.5-77.5 and 147.5-152.5 cm) from the soil cores. 
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Samples for SOC were dried at 40°C, sieved (< 2mm) and analysed using oxidative 

heat combustion at 1150°C in a helium atmosphere (element analyser Vario EL II, 

Elementar Analysesysteme GmbH, Germany, in CN mode). Measurements below the 

detection limit (carbon: 0.2 %) were set to zero. Since the gasvolumetrical 

determination of carbonate content according to Scheibler (Rothenhöfer et al., 2000) 

was negative for all samples, we assumed that total carbon content equals SOC [%]. 

The BD samples were dried at 105 °C to determine the mass (mass, [g]) gravimetrically 

to calculate the BD [g cm-3] according to Eq. 1 and Eq. 2 and to determine the mass 

proportion of the coarse fraction [%] >2 mm (CF [%]) to calculate the SOCS [kg m-2] 

according to Eq. 3 (Scholten et al., 2017). Eq. 2 is necessary to calculate the volume 

of a sample taken from a half-open Pürckhauer auger. 

BD = mass • Vs-1 (Eq. 1), 

Vs = Vc + 0.5 • Ve = w • h • l + 0.5 (π • a • b • l) (Eq. 2), 

where Vs (volume of the sample , [cm³]) is a combination of the volume of a cuboid Vc 

[cm³] and the half of an ellipse Ve [cm³]; w is the slot width of the auger, h the height 

of the cuboid and l the depth of the BD samples; a is the half of the slot width w and b 

the height of the ellipse; w, h, l, a and b are given in [cm]. 

SOCS = SOC • BD • D • (1 – CF). (Eq. 3), 

where D [cm] is the thickness of the depth increments D1-D4. If the entire depth 

increment could not be sampled due to bedrock or the permafrost table, the actual 

depth was used for D. For analysing field and lab data we used the statistical software 

R and the stats package version 3.4.2 (R Development Core Team, 2013). We used 

ANOVA to determine statistical connections. 
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Table 2. Vegetation units according to Bliss (2000). 

 

 

3 Results 

First, we present the results on the local variation in SOCS related to VEG, LU and 

ASP within each study area. Regional differences between the study areas are 

explained in chapter 3.2. 

3.1 Local scale variations in SOCS 

3.1.1 Vegetation units 

Dwarf shrub heath tundra (VEG1) is predominant at steep slopes, moraine crests, 

ridges and summits characterized by sandy texture at 0-25 cm with increasing silt 

content down to 100 cm depth, a thick active layer and a wide range of soil moisture 

content in both study areas. Low shrub tundra (VEG2) and tall shrub tundra (VEG3) 

mainly cover slightly inclined slopes and wind sheltered areas. Topsoil material (0-25 

cm) has higher silt content on locations covered by VEG2 and VEG3 compared to 

VEG1. Graminoid-moss tundra (VEG4) has highest soil moisture content compared to 

the other VEG.  
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In SISI, topsoil SOCS are highest for VEG3 (12.20 ± 4.76 kg m-2) which is 27 % higher 

than for VEG2 and VEG4 and 7.52 kg m-2 higher than for VEG1. Within 25-50 cm and 

50-100 cm, SOCS are highest for VEG4 but highest for VEG3 within 100-200 cm. In 

general, SOCS are lowest for VEG1 at all depth increments in SISI (Fig. 3). The 

uppermost 25 cm of soil show no significant correlation between VEG and SOCS in 

SISI (Tab. 3). 

In RUSS, the general picture is the same as in SISI. SOCS are highest for VEG3 (10.88 

± 2.20 kg m-2) which is 31 % higher than for VEG2 and VEG4 and 54 % higher than 

for VEG1 within 0-25 cm (4.98 ± 4.03 kg m-2). Besides, SOCS are highest for VEG3 

(25-50 cm, 50-100 cm) as well but 80 % lower than for VEG2 and VEG4 within 100-

200 cm (Fig. 3). For the uppermost 25 cm, VEG and SOCS are significantly correlated 

(Tab. 3). 

 

3.1.2 Landscape units 

The landscape units represent specific landform elements similar in both study areas 

(Tab. 1). Sampling locations in LU1, dominated by graminoid-moss tundra (VEG4), are 

characterized by sandy texture, wet and cold soil conditions and low active layer 

thickness in both study areas. In both study areas, in LU2 tall shrub tundra (VEG4) is 

not existent and LU3 is dominated by low shrub tundra (VEG2). 

In SISI, SOCS are highest within 0-25 cm in LU3 (10.82 ± 8.83 kg m-2) which is 37 % 

higher than in LU1, 42 % in LU2 and 44 % in LU4. But SOCS are lowest in LU2 within 

Figure 3: Variation in SOCS (mean, SD) by VEG and LU in SISI and RUSS. Missing 

SD in 100-200 cm relates to n = 1 and SD > mean. 
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Figure 4: Variation in SOCS (mean: dashed line) related to the aspect in SISI and 

RUSS. 
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all depth increments below 0-25 cm. Within 100-200 cm, there is no distinct difference 

in SOCS of the different LUs (Fig. 3). 
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In RUSS, SOCS are lowest in LU2 within all depth increments decreasing from 5.66 ± 

3.00 kg m-2 (0-25 cm) to 3.01 ± 2.98 kg m-2 (100-200 cm). In LU1, SOCS are highest 

within all depth increments being 50-60 % higher than within all depth increments in 

LU2 (Fig. 3). SOCS are with 8.28 ± 3.87 kg m-2 and 8.54 ± 3.54 kg m-2 similar in LU3 

and LU4 within the uppermost 25 cm. There is a significant correlation between LU 

and SOCS within 0-25 and 20-50 cm in RUSS (Tab. 3). 

 

3.1.3 Aspect 

In SISI, SOCS are lowest (mean < 5 kg m-2) on east-, northwest- and west-facing 

locations and with up to about 30 kg m-2 highest on south-facing (S, SE) locations in 

0-25 cm (Fig. 4). Average SOCS on north-facing locations are 7.75 ± 5.22 kg m-2 in 

the uppermost 25 cm, which is about 2 kg m-2 respectively 1 kg m-2 higher than within 

25-50 cm and 50-100 cm but about 2 kg m-2 lower within 100-200 cm. There is a 

significant relationship between SOCS and ASP in SISI at 100-200 cm (Tab. 3). 

In RUSS, there is a large difference up to 15.17 kg m-2 between the lowest on east-

facing locations (4.95 ± 1.19 kg m-2) and highest SOCS on west-facing locations within 

the first depth increment. Generally, soils on north-facing locations show higher SOCS 

(NE, N, NW: 8.91 ± 3.25 kg m-2) than on south-facing locations (SE, S, SW: 7.16 ± 

3.84 kg m-2) (Fig. 4). Tall shrub tundra (VEG3) is only present on south- and southeast-

facing locations. 
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Table 3: Anova (F-Value) of environmental parameters and significance (p-values: *** 

<0.0001, ** < 0.001, * <0.05) in SISI and RUSS. 

Study area  Depth [cm] LU VEG ASP 

      

SISI 
SOC

S 
0-25 1.82 1.85 1.48 

(coast)  25-50 1.39 2.40 0.70 

  50-100 1.32 2.23 1.03 

  100-200 0.04 3.00* 2.72* 

 LU   0.02 3.66* 

 VEG    1.65 

 ASP     

      

RUSS 
SOC

S 
0-25 4.09* 4.64* 2.14 

(ice 
margin) 

 25-50 5.85* 0.91 0.66 

  50-100 1.16 0.96 0.97 

  100-200 0.72 1.86 0.46 

 LU   0.33 0.71 

 VEG    1.94 

 ASP     

 

 

3.2 Regional scale variations in SOCS 

On average, SOCS are similar in both study areas within 0-25 cm (around 8 kg m-2) 

and 25-50 cm (around 5 kg m-2) but have distinct differences within 50-100 cm and 

100-200 cm with 36 % respectively 53 % higher SOCS in SISI than in RUSS. In 

addition, maximum SOCS within all depth increments are 47-68 % higher in SISI than 

in RUSS (Tab. 4).  
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3.2.1 Vegetation units 

In SISI, SOCS (0-25 cm) are 11 to 17 % higher for VEG2, VEG3 and VEG4 but 6 % 

lower for VEG1 than in RUSS. Over all soil depth increments, SOCS are higher in SISI 

compared to RUSS. Only for VEG3, RUSS shows with 7.20 ± 3.93 kg m-2 higher SOCS 

within 25-50 cm than in SISI (5.64 ± 0.93 kg m-2) (Fig. 3). 

 

3.2.2 Landscape units 

Topsoil SOCS (0-25 cm) in LU2 and LU3 are 10 % respectively 23 % lower in RUSS 

compared to SISI, where LU1 and LU4 are around 30 % lower than in RUSS. Within 

25-50 cm, SOCS are similar with around 3 kg m-2 and 4 kg m-2 in LU2 respectively LU4 

in both study areas. Within 100-200 cm SOCS are 20-59 % higher in all LUs than in 

RUSS (Fig. 3). 

 

3.2.3 Aspect 

In both study areas, SOCS is lowest on east facing locations. SOCS on south-east 

facing locations is 59 % higher in SISI than in RUSS where SOCS are 54 % higher on 

west facing locations compared to SISI. Within all depth increments, SOCS is higher 

on south facing locations in SISI than in RUSS. In RUSS, SOCS are higher on west 

facing locations within the depth increments of the uppermost 100 cm but lower within 

100-200 cm compared to SISI (Fig. 4). 
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Table 4: Descriptive statistics of SOC content, BD, SOCS, soil moisture and AL 

thickness in SISI and RUSS (value with “<” indicates the detection limit). 

Study area  Soil characteristic Depth [cm] n Min Mean ± SD Max 

        

SISI 

(coast) 

SOC content [%] 0-25 74 0.28 6.14 ± 7.00 28.96 

25-50 73 <0.02 2.09 ± 2.69 14.37 

50-100 66 <0.02 0.82 ± 1.00 5.65 

100-200 42 0.20 1.02 ± 0.98 4.30 

       

BD [g cm-3] 0-25 8 0.43 0.65 ± 0.30 1.23 

25-50 8 1.02 1.17 ± 0.08 1.33 

50-100 8 1.13 1.34 ± 0.09 1.45 

100-200 8 1.38 1.42 ± 0.09 1.68 

       

SOCS [kg m-2] 0-25 74 0.34 7.85 ± 7.77 30.05 

25-50 73 <0.02 5.25 ± 7.72 39.52 

50-100 66 <0.02 4.42 ± 6.18 38.10 

100-200 42 0.87 7.91 ± 8.10 34.48 

       

Soil moisture [%] 0-5 74 0.70 26.80 ± 23.48 92.60 

       

Lower limit of AL [cm]  
0-200 17 4.00 70.00 ± 42.70 144.00 

>200 57 - - -  

        

RUSS 

(ice margin) 

SOC content [%] 0-25 66 0.46 3.23 ± 1.45 6.27 

25-50 65 0.20 2.41 ± 2.05 9.44 

50-100 56 <0.02 0.97 ± 1.30 7.29 

100-200 33 <0.02 0.54 ± 0.67 3.47 

       

BD [g cm-3] 0-25 8 0.84 0.97 ± 0.08 1.10 

25-50 8 0.82 1.12 ± 0.18 1.39 

50-100 8 0.83 0.99 ± 0.30 1.40 

100-200 8 1.06 1.24 ± 0.22 1.75 

       

SOCS [kg m-2] 0-25 66 1.01 7.86 ± 3.74 15.79 

25-50 65 0.58 5.41 ± 4.24 18.75 

50-100 56 <0.02 2.82 ± 3.13 12.32 

100-200 33 <0.02 3.74 ± 3.97 15.33 

       

Soil moisture [%] 0-5 66 0.70 8.33 ± 7.08 25.50 

       

Lower limit of AL [cm] 
< 200 37 6.00 53.00 ± 28.09 142.00 

> 200 29 - - -  
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4 Discussion 

4.1 Local scale variations in SOCS 

4.1.1 Vegetation units 

Generally, topsoil SOCS are controlled by vegetation cover because most Arctic plants 

root within the upper 25-30 cm (Iversen et al., 2015). Vegetation varies in its spatial 

distribution and portions affecting the spatial distribution of SOCS in Arctic 

environments (Elberling et al., 2008b; Horwath Burnham and Sletten, 2010; Palmtag 

et al., 2015; Siewert et al., 2015; Wojcik et al., 2019). In SISI, VEG1 predominantly 

covers west- and north-west-facing locations where plant growth might be restricted 

by constant onshore winds and high direct solar radiation. For VEG1, SOCS are lowest 

due to low accumulation rates of SOC in coastal regions in West Greenland (Jensen 

et al., 2006). Besides, organic material is relocated from steep slopes covered by 

VEG1 to depressions and flat areas covered by VEG4. Soils covered by VEG4 have 

thick and humus rich topsoil horizons because of dense rooting, low decomposition 

rates and a constant accumulation of SOM under moist soil conditions due to oceanic 

climate conditions (Stäblein, 1977; Jensen et al., 2006). Similar SOCS for VEG2 and 

VEG3 result from similar mechanisms of SOC storage (Petrenko et al., 2016). 

However, SOCS are highest for VEG3, which is sparsely occurring and not 

characteristic for coastal areas in West Greenland (CAVM Team, 2003). In SISI, SOCS 

with combined shrub tundra vegetation (VEG2 and VEG3: 10.57 ± 6.33 kg m-2) 

correspond to findings by Bradley-Cook and Virginia (2016) of 10.20 kg m-2 with 

comparable vegetation in coastal West Greenland.  

In RUSS, accumulation of SOM in the topsoil is mainly caused by the incorporation of 

leaf remains of Salix glauca (Ozols and Broll, 2003), the dominant species of VEG3. 
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Under dry soil conditions decomposition of SOM is lower and so SOCS are higher for 

VEG3 than VEG2. In contrast, decomposition of SOM is also limited by high soil 

moisture conditions in depressions, flat and bankside areas predominantly covered by 

VEG4. Similar SOCS for VEG2 and VEG4 correspond to findings of Petrenko et al. 

(2016) detecting no significant differences in SOCS in 0-50 cm between graminoid and 

shrub vegetation at the ice margin in West Greenland. Dry katabatic winds and low 

precipitation rates during the growing season influence the growth of VEG1 and reduce 

biomass productivity on wind-exposed areas as well as the incorporation of organic 

matter into the soil (Ozols and Broll, 2003). 

 

4.1. 2 Landscape units 

In SISI, topsoil SOCS vary spatially with different LUs. LU3 includes the foot slope of 

a large catchment area in the north of SISI into which SOC is transported by overland 

and subsurface flow (Stäblein, 1977). At coastal area of West Greenland cryoturbation 

processes were found as a characteristic phenomenon (Stäblein, 1977, Jensen et al., 

2006). Deep thawing of soils during summer fosters vertical relocation of SOC via 

cryoturbation processes and results in high SOCS at 50-100 and 100-200 cm at all 

landscape units in SISI. In LU4, SOCS are highest at 50-100 cm which might be 

connected a thick active layer since the isolating effect of sites with low-growing 

vegetation is less than on sites with shrub vegetation leading to deep thawing and 

relocation of SOC in LU4. Besides cryoturbation, SOCS can also be high in the subsoil 

caused by buried organic material which was deposited or covered by slope processes 

related to various topographic positions within different landscape patterns (Palmtag 

et al., 2015; 2018; Wojcik et al., 2019). 
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In RUSS, a spatial variation in SOCS can be related to the varying impact of local 

climate conditions. Climate conditions at the ice margin in West Greenland commonly 

have dry and cold katabatic winds blowing from the Greenland Ice Sheet to the west. 

These dry winds increase evapotranspiration and prevent growth of vegetation 

(Cappelen et al., 2001), especially at wind-exposed areas like moraine crests with east-

facing upper slopes (LU2). Since tall shrub tundra has highest SOCS (Fig. 3), but does 

not occur in LU2, SOCS are the lowest in all depth increments in LU2. Lowest SOCS 

within 0-25 cm in LU2 in RUSS (5.66 ± 3.00 kg m-2) correspond to findings in the 

Umimmalissuaq valley, located at the ice margin 20 km to the south of RUSS, where 

SOCS from 0-30 cm are also lowest with 6.01 ± 2.49 kg m-2 at crest positions with 

similar environmental conditions as in LU2 in RUSS (Henkner et al., 2016).  

A common geomorphological feature are terminal moraines oriented perpendicular to 

the dominant wind direction in RUSS. These moraines reduce the negative effects of 

katabatic winds on the vegetation cover on leeside locations leading to higher SOCS 

within 0-25 cm in LU1, LU3 and LU4. Hence, landscape conditions affect the variation 

in SOCS in RUSS in 0-25 cm by negative effects of katabatic winds to plant growth, 

which result in higher SOCS on leeside positions than in wind-exposed areas in RUSS.  

Including all depressions and lake-surrounding areas, LU1 includes generally very moist 

and wet soil conditions, which explain highest SOCS within 0-25 cm (9.40 ± 3.70 kg m-

2) and 25-50 cm (8.11 ± 3.97 kg m-2). In LU1, highest SOCS also occur in 50-100 cm 

and 100-200 cm, which can be linked to organic matter buried by lake sediments from 

alternating lake water levels during the Holocene (Willemse et al., 2003) or by relocated 

sediments (Palmtag et al, 2018). Lower SOCS in LU4 than in LU1 can be explained by 

generally dry hillslope areas in LU4 and the availability of oxygen and the microbial 

activity is higher causing higher decomposition of SOC (Elberling et al., 2004). 
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4.1.3 Aspect 

In SISI, SOCS are lowest on west-facing (SW, W, NW) locations. Due to high solar 

energy input on north-west-facing and west-facing locations, high decomposition rates 

benefit from warm soil conditions resulting in low SOCS (Elberling et al., 2004). On 

east-facing locations direct solar radiation is low caused by frequently occurring fog 

until noon (Cappelen et al., 2001). After the fog has lifted, the sun stands in the 

southern sky causing lower direct solar radiation on east-facing locations than on west- 

and north-west-facing locations. In SISI, SOCS are highest on south-facing locations 

because of better growing conditions than on north-facing locations. Generally, south-

facing locations have a high solar energy input and higher water availability caused by 

the water discharge from a large catchment area in the north of SISI. These particular 

natural conditions result in better plant growth and reduced decomposition processes 

of SOCS on south-facing locations with moist soil conditions. 

In RUSS, SOCS on east-facing and west-facing locations are related to katabatic winds 

constantly blowing from the Greenland Ice Sheet. Therefore, lowest SOCS at 0-25 cm 

were found on east- and south east-facing locations as biomass production and input 

of organic matter into the soil is restricted by these winds (Henkner et al., 2016). In 

contrast, west- and northwest facing locations have highest SOCS within 0-25 cm 

because these leeside locations are favoured by shrub vegetation responsible for high 

SOCS (Ozols and Broll, 2003; Petrenko et al., 2016). The same reason applies for 

south and south-west-facing locations with higher SOCS compared to east-facing and 

north east-facing locations. According to the findings of Henkner et al. (2016) in the 

Umimmalissuaq valley, higher SOCS on north-facing than on south-facing locations 

result from higher mineralization rates due to higher soil temperatures and lower soil 

moisture content on south-facing locations. Wind exposed crest positions in the 
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Umimmalissuaq valley also show lowest topsoil SOCS (6.01 ± 2.49 kg m-2, 0-30 cm) 

comparable to east- and south-east-facing locations in RUSS (5.17 ± 2.16 kg m-2, 0-

25 cm).  Also, SOCS on south- and southwest-facing locations, which are less 

influenced by katabatic winds, are similar between RUSS (8.04 ± 4.20 kg m-2, 0-25 cm) 

and the Umimmalissuaq valley (8.35 ± 4.16 kg m-2, 0-30 cm; Henkner et al. 2016). 

North-facing slopes in RUSS have highest SOCS. Differences in SOCS between 

RUSS and the Umimmalissuaq valley might result from different calculation 

approaches for SOCS as Henkner et al. (2016) did not account for the volume and 

density of the coarse fraction being important for determining SOCS (Tarnocai et al., 

2009). The Umimmalissuaq valley and RUSS are both located in valleys with 

comparable environmental conditions including elevation (about 200 m a.s.l), 

orientation (south-east to north-west), vegetation (dominant species), distance to the 

ice margin (< 10 km) and climate conditions (Cappelen et al., 2001; Henkner et al., 

2016). Thus, comparable environmental conditions on a local scale are reflected by 

similar SOCS at comparable topographic positions in ice marginal areas in West 

Greenland. In several locations close to the ice margin in RUSS, higher SOCS were 

found in 25-50 cm because of buried dark and organic-rich horizons potentially 

representing Holocene palaeosols (cf. Müller et al., 2016). 

 

4.2 Regional scale variations in SOCS 

On average, SOCS in 0-25 cm and 25-50 cm are similar in both study areas which 

correspond generally to large scale estimations showing no differences in SOCS 

between the coastal and the ice margin area. However, SOCS are lower on average 

and have larger ranges in areas at the coast and at the ice margin than we found 
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between SISI and RUSS (Jones et al., 2009; Hugelius et al., 2014; Köchy et al., 2015). 

Hugelius et al. (2014) found SOCS with 0.1-5 kg m-2 within 0-30 cm, which is lower 

than the average SOCS in both study areas (SISI: 7.85 ± 7.77 kg m-2; RUSS: 7.86 ± 

3.74 kg m-2). The ranges of the SOCS within 0-25 cm in SISI and RUSS are sixfold 

respectively threefold the range of estimated SOCS within 0-30 cm (Hugelius et al., 

2014). 

On average, SOCS in 50-100 cm and 100-200 cm are 1.60 kg m-2 and 4.17 kg m-2 

higher in SISI than in RUSS (Tab. 4). These differences can be explained by 

cryoturbation processes which are characteristic at the coast in SISI (Stäblein, 1977) 

but are not present at the ice margin in RUSS in West Greenland (see Petrenko et al., 

2016). Additionally, higher maximum values of SOCS in all depth increments in SISI 

compared to RUSS might result from the different landscape ages. Soil formation 

lasted 3000 years longer and could accumulate more SOM at the coast at Sisimiut 

compared to the ice marginal areas in West Greenland around Kangerlussuaq 

(Bradley-Cook and Virginia, 2016), which was deglaciated around 6.8 ka ago (e.g. 

Levy et al., 2012).  

However, differences in SOCS within 0-100 cm and 100-200 cm between SISI and 

RUSS are in contrast to large scale estimations mentioned above. Hugelius et al. 

(2014) found similar SOCS with 5-15 kg m-2 in 0-100 cm and 100-200 cm, whereas 

Jones et al. (2009) suggest SOCS from 0-100 cm with 9-15.9 kg m-2 and Köchy et al. 

(2015) with 10 kg m-2. In both study areas, SOCS within 0-100 cm (SISI: 16.87 ± 14.79 

kg m-2; RUSS: 15.49 ± 8.75 kg m-2) are slightly higher than estimated by Jones et al. 

(2009) and Hugelius et al. (2014) within the first 100 cm and around 30% higher than 

the results by Köchy et al. (2015). In 100-200 cm, the wide range of SOCS in SISI 

represents the high variation of SOCS in the study area and is with 33.61 kg m-2 twice 
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the estimated range of 5-15 kg m-2 (Hugelius et al., 2014), which corresponds to the 

range of SOCS in RUSS (15.33 kg m-2). 

Such general estimations of SOCS have a tendency to be uncertain, caused by the 

underlying datasets containing data gaps, which have to be filled mathematically. 

Additionally specific soil characteristics may have a high uncertainty, e.g. the bulk 

density, which is a crucial parameter for the calculation of SOCS (Tarnocai et al., 2009; 

Hugelius et al., 2014; Köchy et al., 2015; Ping et al., 2015). Furthermore, the available 

data may have been not representative for regions, which counts particularly for 

Greenland (Hugelius et al., 2014; Köchy et al. 2015). 

The SOCS in SISI and RUSS are higher compared to northern coastal regions in 

Greenland. At Zackenberg in Northeast Greenland, SOCS from 0 to 50 cm are with 

11.00 ± 1.5 kg m-2 (Elberling et al., 2004) lower than in SISI with 13.18 ± 12.82 kg m-2 

(0-50 cm). On Thule peninsula in Northwest Greenland, SOCS are 6.10 kg m-2 from 0 

to 100 cm (Horwath Burnham and Sletten, 2010) and 6.7 kg m-2 from 0 to 60 cm on 

Disko Island (Jensen et al., 2006). Differences in SOCS may be caused by colder 

climate conditions in the north. Further, it has to be noted other study areas as 

mentioned above cover also vegetation and landscape patterns with lower SOCS, 

which do not occur in our study areas. For a better understanding of differences in 

SOCS between SISI and RUSS on the regional scale, differences in the controlling 

factors between the coast and the ice margin are pointed out in the following. 

 

4.2.1 Vegetation units 

Differences in vegetation between SISI and RUSS correspond to the bioclimatic 

zonation of the Circumpolar Arctic Vegetation Map indicating a higher net annual 
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production at the ice margin compared to the coast (CAVM Team, 2003). This suggests 

the possibility of higher SOCS in RUSS than in SISI. However, SOCS are generally 

around 1.40 kg m-2 (0-25 cm) higher within the same vegetation unit (VEG2, VEG3, 

VEG4) in SISI than in RUSS, except for VEG1 where SOCS are 0.30 kg m-2 (0-25 cm) 

lower in SISI. Oceanic climate suggests better growing conditions in SISI than in RUSS 

where plant growth is limited by dry climate at the end of the growing season. With 

increasing mean summer temperatures and decreasing mean annual precipitation 

from the coast towards the ice margin (Cappelen et al., 2001), the decomposition of 

SOM in Greenland is higher under drier and warmer conditions (Elberling et al., 2004; 

Jensen et al., 2006). Higher SOCS in the uppermost 20 cm in coastal areas compared 

to lower SOCS in inland areas with same vegetation cover are related to the 

deglaciation history (Bradley-Cook and Virginia, 2016). In summary, this results in 

higher SOCS in SISI than in RUSS within the same vegetation unit.  

Besides effecting the amount of SOCS in SISI and RUSS in different ways, regional 

climate conditions also influence the spatial distribution of SOCS within both study 

areas. There is a significant relation between vegetation and SOCS at 0-25 cm in 

RUSS but not in SISI. Due to higher mean annual precipitation at the coast, SOC is 

relocated by overland and interflow processes (Stäblein, 1977), whereas only little 

effect of them is noticeable on the spatial distribution of SOC at the ice margin. 

Therefore, SOCS are result of the in situ-production and incorporation of organic 

material into the soil in RUSS. 

4.2.2 Landscape units 

Corresponding landscape units between both study areas are characterized by the 

same landscape conditions, but have different SOCS caused by different climate 

conditions between the coastal and the ice margin area. In general, SOCS at 0-25 cm 
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are higher in RUSS than in SISI as shrub growth is favoured at wind-sheltered areas 

leading to high SOCS (LU1, LU3 and LU4) in RUSS. Katabatic winds negatively affect 

SOCS in LU2 only in RUSS, which results in higher SOCS within 0-25 cm in LU2 in 

SISI. Induced by higher mean annual precipitation at the coast, SOC is relocated by 

overland flow resulting in higher SOCS in LU3 in SISI than in RUSS, where overland 

flow is limited due to the dry climate at the ice margin. 

 

4.2.3 Aspect 

In both study areas, SOCS are lowest on east-facing locations as plant growth is 

negatively affected by the following climate conditions: increased evapotranspiration 

by katabatic winds in RUSS and reduced direct solar radiation by morning fog in SISI. 

The leeside areas of terminal or lateral moraines favour the growth of VEG2 and VEG3 

in RUSS, west-facing locations in SISI represent locations with restricted plant growth 

by coastal west winds. Thus, SOCS on west-facing locations are higher in RUSS than 

in SISI. 

 

4.3 The role of controlling factors to describe the spatial distribution of SOCS in West 

Greenland 

SOCS have a high spatial variation in West Greenland on both the local and the 

regional scale. The chosen controlling factors differ in their ability to describe the 

variation in SOCS on both scales in different ways. We ranked the controlling factors 

by their potential (+++ high; ++ medium; + low) to account for the variation in SOCS 

(Tab. 5). The ranking is expert-based on comparing the potential of each unit to be 

unique according to the used classification scheme. A high potential means each unit 
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represents a specific range of the SOCS distribution within the study areas (local scale) 

and the ranking is also stable over both study areas (regional scale) (cf. Fig. 3, Fig. 4). 

 Vegetation units have a great potential to describe both local and regional scale 

variation in SOCS, because vegetation incorporates to a certain extent local 

distribution patterns of wind, geomorphology and insolation as well as their differences 

between the coast and the ice margin on the regional scale. However, topsoil SOCS 

are similar for VEG2 and VEG4 which results from water driven relocation of SOC in 

SISI. The negative effect of katabatic winds on SOCS is best described by ASP, which 

can be explained by the continental climate conditions in RUSS. In addition, vegetation 

units have distinct differences in SOCS for all depth increments below 25 cm. 

Therefore, VEG is highly suitable to describe the variation in SOCS (+++) on the local 

scale. On the regional scale, SOCS have similar distribution patterns for different VEG 

but differences in the amount of SOCS between SISI and RUSS. This accounts for 

VEG a high potential to describe the variation in SOCS (+++) on the regional scale as 

well. In general, landscape and landform classifications are common approaches to 

address the horizontal and vertical distribution of SOCS (Palmtag et al., 2018; Siewert 

et al., 2016; Wojcik et al., 2019). Further, such classifications are suitable to represent 

local patterns like accumulation areas with additional input of SOC (as in SISI) or lower 

SOCS on convex shaped moraines (as in RUSS). In addition, LUs comprise the 

influence of local climate conditions in RUSS. However, in this study, LUs have low 

potential (+) to describe the variation in SOCS on the local scale. Representing 

comparable geomorphological features between SISI and RUSS, LUs account for the 

effect of different climate conditions and the variations in SOCS on the regional scale 

(++) by different amounts of SOCS of the related LU. 
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ASP performs high with both scales (+++). It represents locally strong differences in solar 

radiation between north- and south facing and east- and west facing topographic positions. 

Regionally, ASP describes climate conditions between the coast and the ice margin, i.e. 

mainly different wind systems. Our results correspond to the findings of other studies using 

landform classification approaches in Arctic environments (Elberling et al., 2008b; Henkner 

et al., 2016; Siewert et al., 2016; Palmtag et al., 2018; Wojcik et al., 2019) and show that 

both LU and ASP yield additional relevant information to analyse and understand the spatial 

distribution of SOCS in West Greenland. Both, LU and ASP reflect specific environmental 

conditions on the local scale within the study areas and on a regional scale differences 

between the study areas. Most importantly, ASP has a high potential to describe the 

variations in SOCS on both scales, which is not the case for LUs. Thus, to have the best 

description of the variations in SOCS, we recommend to use vegetation units and the 

aspect. Vegetation extracted from remote sensing data provides the advantage to describe 

the variations in SOCS with a high resolution across large areas. In addition, the aspect can 

be taken from digital elevation models (DEM) by using various GIS software. 

 

Table 5: Potential of controlling factors to describe the variation in SOCS on the local 

and the regional scale. (VEG: vegetation, LU: landscape unit, ASP: aspect, +++ high 

potential, ++ medium potential, + low potential) 

 Local scale 
Regional 

scale 

VEG +++ +++ 

LU + ++ 

ASP +++ +++ 

 



Appendix – Manuscript 1 

91 
 

5 Conclusions 

This study presents new data of SOCS from two different regions of West Greenland, 

a coastal (SISI, oceanic climate) and an ice marginal (RUSS, continental climate) area. 

We focused on three controlling factors (VEG, LU, ASP) to describe the variation in 

SOCS on two different scales (local, regional). The local scale reflects the spatial 

variation in the controlling factors over short distances within each study area and the 

regional scale the different climate conditions between both study areas. 

On a local scale, VEG and ASP have the highest potential to describe the distribution 

of SOCS in both study areas. SOCS vary spatially and vertically with different 

vegetation pattern, landscape units and aspect. In both study areas, SOCS within 0-

25 cm are highest with tall shrub tundra (VEG4) and lowest with dwarf shrub heath 

tundra (VEG1) covering predominantly areas exposed to local wind patterns or areas 

with a high solar radiation input. Both are limiting plant growth and the accumulation of 

SOC. Except for VEG1, SOCS are around 1.40 kg m-2 higher in SISI than in RUSS 

due to effect of different climate conditions. 

On the regional scale, also VEG and ASP have the highest potential to describe the 

distribution of SOCS. In both study areas, the mean SOCS are similar from 0-25 cm 

and 25-50 cm. Due to oceanic climate conditions, cold and moist soil conditions 

support accumulation of soil organic matter in SISI. In contrast, we assume production 

and decomposition of soil organic matter to increase due to warmer and drier 

conditions in RUSS. Mean SOCS within 50-200 cm are up to 53 % higher in SISI than 

in RUSS. Coastal climate conditions in SISI foster vertical relocation of soil organic 

carbon by cryoturbation processes, which plays in contrast a minor role to the vertical 

distribution of SOCS in RUSS. Additionally, a longer period of soil formation at the 

coast – related to earlier deglaciation of the landscape - results in a wider range of 
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SOCS being two times higher in all depth increments (0-25, 25-50, 50-100, 100-200 

cm) in SISI than in RUSS. 

Generally, SOCS are up to six times higher at 0-25 cm, up to 30% higher at 0-100 cm 

and two times higher in 100-200 cm in both study areas in comparison to existing large 

scale estimations. This may be caused by sparse and unequal distributed soil data 

available for large scale estimations resulting in a high uncertainty. However, it should 

be considered that our study was carried out in two small study areas (around 2 km2 

each) and therefore we propose to add further representative areas for a 

comprehensive comparison on a larger scale, e.g. West Greenland. 

The applied controlling factors VEG, LU, and ASP are suitable to examine horizontal 

and vertical distribution of SOCS on both the local and the regional scale. Our results 

show that vegetation in combination with additional environmental factors such as 

landscape units and aspect better explain the variation in SOCS on both scales. 

However, we recommend to use at least the aspect together with vegetation, because 

this yielded excellent results to determine the variation in SOCS in alpine zones as e.g. 

in West Greenland on both scales.  

 

Supplement material 

Figure S1: Section of the study area at the coast in West Greenland (SISI) with view 

to the north (Photo by L. Kandolf). 

Figure S2: Overview of the study area at the ice margin in West Greenland (RUSS) 

with view to the southeast (Photo by L. Kandolf). 

Table S3: Terrain covariates, related influence on SOCS and descriptive statistics 

(mean ± SD) for each LU for each study area (SISI, RUSS). 
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Abstract 

Soils of the northern circumpolar region are a key organic carbon storage strained by 

global warming. Thawing of permafrost-affected soils increases greenhouse-gas 

emissions whose quantification is limited by sparse, uncertain and spatially diverse soil 

organic carbon stocks (SOCS) data across this region. The spatial distribution of SOCS 

results from interactions and feedbacks of environmental factors and processes 

varying across scales. Recent developments in machine learning allow to entangle 

effects of multiple scales in soil data using contextual feature construction techniques.  

The objective of this study is to identify dominant spatial scales and process 

interactions relevant to the spatial interpretation of SOCS in periglacial landscapes of 

Arctic low mountains using contextual spatial modelling. This study includes SOCS 

data from 140 sampling locations from two study areas (coast and ice margin) in West 
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Greenland and a set of multi-scale terrain features reflecting soil forming factors and 

relocation processes. Random forest models were applied to account for scale-

dependent effects within the data set. 

Variation in model accuracy across different scales shows that the distribution of SOCS 

in both study areas is scale-dependent. Aspect and curvature are key terrain features 

to interpret the distribution of SOCS. On a the hill scale, both represent the 

heterogeneous periglacial landscape with different site conditions (microclimate) and 

relocation processes (solifluction), both of which influence SOCS. On the catchment 

scale, the aspect reflects the effects of different climatic conditions on SOCS, such as 

dry katabatic winds at the ice margin and moist onshore winds at the coast. Such 

processes act over long distances and have a generalised effect on the SOCS 

distribution. Such spatial trends in SOCS are additionally respected by spatial features 

showing higher feature importance at the coast than at the ice margin. Differences in 

the importance of spatial and terrain features as well as different relevant scales 

between the coast and the ice margin confirms the regional variation in soil-landscape 

interrelations which has to be considered for large scale estimations of the SOCS.     

 

1 Introduction 

Globally, the pedosphere contains up to 3000 Pg carbon (Köchy et al., 2015) which 

corresponds to twice the amount of carbon stored in the atmosphere and the biosphere 

together (Lal 2004). In the northern circumpolar region, organic soils (peatlands) and 

permafrost-affected mineral soils store about 1300 Pg soil organic carbon (SOC) 

(Tarnocai et al., 2009) of which 217 Pg SOC is within 0-30 cm and 472 Pg within 0-

100 cm (Hugelius et al., 2013; 2014). This huge amount of organic carbon stored in 
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permafrost and permafrost-affected soils has been of growing concern in the recent 

decade because permafrost is expected to considerably degrade under almost all 

global warming scenarios (IPCC, 2019; Chadburn et al. 2017). Yet, the ability to 

quantify potential greenhouse-gas release from thawing permafrost is limited, among 

other, by the uncertainty in distribution and vulnerability of the permafrost SOC stocks 

(SOCS) in undersampled areas of the northern circumpolar region (Mishra et al. 2013; 

Hugelius et al. 2014). 

Along with undersampling, SOCS in permafrost-affected soils in Arctic environments 

have a very high spatial diversity. Interactions and feedbacks between environmental 

factors on SOCS are highly scale-dependent in periglacial landscapes of Arctic low 

mountain ranges (Ping et al., 2015; Gries et al. 2020), which contain a great variety of 

sediments, soils, paleosols and complex forms such as sand dunes and terminal 

moraines (e.g. Ping et al. 1998, Palmtag et al. 2015, Siewert et al. 2015, Müller et al. 

2016), and have strong local and regional climate gradients related to topography and 

distance from the ice margin (Bradley-Cook and Virginia, 2016). Typical and important 

processes that control SOCS in Arctic environments like freezing and thawing, 

reduction and oxidation, aeolian transport, and drainage depend on the spatial scale 

(Wojcik et al., 2019, Gries et al., 2020). Geomorphological units such as slopes and 

valleys are often decisive for certain processes. Ramage et al. (2019) reported strong 

variations in SOCS along hillslopes on Herschel Island with high SOCS on summits 

and toeslope positions due to cryoturbation or impeded drainage and low SOCS on 

backslopes and footslopes. Henkner et al. (2016) showed that SOCS vary with the 

aspect that indirectly affects the microclimate resulting in higher amount of SOC on 

north-facing slopes than on south-facing slopes in a valley in West Greenland. In 

consequence, the spatial pattern of SOC distribution is related to different 
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environmental scales. Examples from West Greenland show that the controlling 

processes interact different on small, i.e. along a catena, towards larger scales, i.e. 

between regions (e.g. Stäblein, 1977; Ozols and Broll, 2003; Henkner et al., 2016 

Petrenko et al., 2016). Nevertheless, there is still a deficiency of reliable scale-

dependent information on the distribution of SOCSs and on how different scales are 

interlinked. 

Recent developments in machine learning (ML) allow to entangle effects of multiple 

scales in soil data (e.g. Behrens ret al. 2014). Scale-related contextual feature 

construction and pattern recognition techniques can detect multiscale sources and 

interactions of spatial variation in soil (Burrough 1983), for example the ConMap 

approach (Behrens et al. 2010), the analysis of teleconnections (Behrens et al. 2019), 

modelling with an effective scale space calculated from the variogram of soil properties 

(Karl and Maurer 2010, Behrens et al. 2019), Euclidian distance fields (Behrens et al. 

2018) and wavelet transformation (Biswas et al. 2013). To additionally address spatial 

scale-related processes of soil formation that vary over scale, feature selection and 

construction techniques are able to distinguish between scales of soil information and 

can provide a set of multi-scale environmental features, for example hyper-scale digital 

soil mapping (Behrens et al. 2009, 2014), Gaussian scale space (Behrens et al. 2018) 

or generating soilscapes (Schmidt et al. 2010). Regarding SOC, ML techniques have 

been successfully used to provide reliable estimates of SOC in different environments 

(Grimm et al., 2008; Mishra and Riley, 2012; Schmidt et al., 2014; Stumpf et al., 2018; 

Rentschler et al., 2019; Viscarra Rossel et al., 2019; Taghizadeh-Mehrjardi et al., 

2020). Additionally, Behrens et al. (2019) illustrated a positive effect on the modelling 

accuracy by deriving the relevant range of scales which improved the understanding 

of the spatial distribution of loess deposits in a periglacially shaped landscape. A robust 
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ML technique that has been used frequently in soil science is random forest (RF, 

Breiman 2001). An important advantage of RF is the measurement of the importance 

of environmental features which allows an expert-based interpretation of the model in 

a pedological context. Thus, ML techniques can contribute to a better understanding 

of spatial scale-related processes of soil formation and the environmental factors 

controlling them in general, but also at local and regional level in Arctic low mountain 

ranges with limited soil information, as in Greenland.  

In this study, we aim (1) to analyse environmental scale effects and interactions on the 

variation and estimation of SOCS in permafrost-affected soils for two study areas in 

West Greenland using contextual spatial ML. We further aim (2) to identify dominant 

spatial scales and process interactions relevant for the interpretation of the spatial 

variation of SOCS. This can help to better understand how relevant soil formation 

processes changed over spatial scales and respond to environmental factors. To 

analyse the effect of different scale interactions, we combined multi-scale terrain 

analysis with spatial feature construction using contextual spatial modelling (CSM) 

method and Euclidean distance fields (EDF). 

 

2 Data and methods 

2.1 Study areas 

The study is located in West Greenland (Fig. 1) and comprises two study areas with 

different climate conditions at the coast (SISI) and the ice margin (RUSS). SISI (4 km 

east of Sisimiut, 66° 57 N, 53° 33’ W, 1.5 km²) has oceanic climate conditions with a 

mean annual temperature (MAT) of -3.5 °C and a mean annual precipitation (MAP) of 

383 mm (Cappelen et al., 2001; Carstensen and Jørgensen, 2009). RUSS (2 km west 

of the Russell Glacier at the margin of the Greenland Ice Sheet, 67° 6’ N, 50° 17’ W, 
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1.8 km²) is characterized by Arctic continental climatic conditions with MAT of -5.7 °C 

and MAP of 149 mm) and katabatic winds mainly blowing from the east (Cappelen et 

al., 2001; Carstensen and Jørgensen, 2009). Both study areas are part of east-west 

oriented valleys bordered by steep valley slopes. SISI is bordered to the west by a lake 

and to the east by a small river that crosses the study area from northeast to southwest. 

The landscape consists of flat areas and depressions in gentle transition to moraines 

and slightly inclined slopes. In RUSS, terminal moraines cross the valley from north to 

south and lakes define the boundaries to the east and west (Gries et al., 2020). The 

vegetation in both study areas is defined as mountain vegetation on non-carbonate 

bedrock which consists mostly of granite in SISI and gneiss in RUSS (CAVM Team, 

2003; Henriksen, 2008). Since the last deglaciation, the land surface of West 

Greenland has been reshaped by periglacial processes (Stäblein, 1977; Willemse et 

al., 2003; Müller et al., 2016). Soil formation began after deglaciation about 10,000 

years ago in SISI and 6,800 years ago in RUSS (c.f. Bradley-Cook and Virginia, 2016). 

Acid haplic Cambisols and Cryosols are the dominant Reference Soil Groups after 

WRB (Jones et al., 2009; Kühn and Henkner, 2019). 

 

2.2 Soil data 

The soil data consist of SOCS for 0-25 cm from 74 sampling locations in SISI and 66 

in RUSS (Fig. 1), which were sampled in 2016 (Gries et al., 2020). The sampling 

locations were selected by k-means cluster analysis of an environmental dataset 

consisting of local, regional and combined terrain features relevant for SOC distribution 

(for details see Gries et al., 2020). Samples for SOC [%] were dried (40 °C), sieved (< 

2 mm) and analysed using an element analyser (Vario EL II, Elementar 

Analysesysteme GmbH, Germany, in CN mode). Samples for bulk density BD [kg cm-3] 
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Figure 1: Stratified random sampling design based on four landscape units with comparable 

environmental conditions between the coastal study area SISI and RUSS located at the margin of the 

Greenland Ice Sheet in West Greenland. (Overview map: © openstreetmap contributers; Hillshade: 

ArcticDEM, Porter et al., 2018). 

 

were dried at 105 °C and corrected for the coarse fraction (CF, > 2mm, [%]). SOCS 

were calculated according to Eq. 1, where D is the thickness of the sampled depth 

increment (0-25 cm). 

 

SOCS = SOC • BD • D • (1 – CF). (Eq. 1)   [1] 

 

2.3 Multi-scale terrain and spatial feature construction 

We applied contextual spatial modelling as a multi-scale hierarchical mapping 

approach which enables a multi-scale analysis of soil formation processes (Behrens et 
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al., 2018a). It combines two domains, multi-scale terrain feature construction and 

spatial feature construction. Terrain features were constructed with a Gaussian 

pyramid as hierarchical multiscale representation of a digital elevation model (DEM). 

Smoothing and scaling steps (Burt and Adelson, 1983) have been used to stepwise 

reduce the resolution of the original DEM by half until no further scales are possible. 

The resulting sequence cover all possible scales based on the original resolution of 

the DEM. To avoid any artefacts by combining gridded datasets of different cell sizes 

we upsampled any gridded dataset within the sequence to the original resolution based 

on the Gaussian filter approach as described in Behrens et al (2018a). We calculated 

elevation (Elev), steepest slope downslope (Slope), sine and cosine transformation of 

the aspect (sinAsp, cosAsp), average curvature (AvCurv), cross-sectional curvature 

(CrCurv) and longitudinal curvature (LoCurv) based on the algorithms by Zevenbergen 

and Thorne (1987).  

Euclidean distance fields (EDF, Behrens et al., 2018b) are representing the distance 

to the edges (X1, Y1), corners (C1, C2, C3, C4) and the center (CC) of an artificial grid 

bordering the study areas and were applied to detect spatial non-linear relationships 

within the modelling framework. As such, EDFs are a set of auto-correlated indicators 

of the relative spatial position within the study area. These spatial features are grids 

with the same resolution as the terrain features where each pixel contains its Euclidean 

distance to the respective position. Based on distance measurements to different 

reference points, these features allowed to include spatially varying trends within the 

soil sample set into a spatial modelling approach and to consider spatial non-

stationarity (Behrens et al. 2018b). They are only valid for a specific study area and 

can increase the local understanding of soil formation by incorporating distance 

measurement into contextual models. 
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Environmental scales 

Multi-scale spatial features were constructed for 22 scales from the upsampled 

sequence of DEM representations computed for the Gaussian pyramid.  The scales 

were class-divided into three environmental scales calculated with the maximum 

horizontal distance between key geomorphological elements of the periglacial 

landscape and the pixel size of the DEMs of the Gaussian pyramid. All DEMs whose 

pixel size is smaller or similar to the maximum horizontal distance of each scale are 

grouped into the three following environmental scales (Fig. 2):  

 The moraine scale represents surface heterogeneity of the study area given by 

small-sized geomorphic elements like moraines and small hills. It includes the 

scales 1-10 with pixel sizes ranging from 2 x 2 m to 48 x 48 m corresponding to 

the maximum horizontal difference of 54 m between ridge and footslope of 

moraines and small hills. This scale addresses freeze-thaw processes like 

solifluction affecting the relocation of soil material along small-size 

geomorphologic elements.  

 The valley scale represents the shape of the valleys and covers the potential of 

downslope processes relocating soil components from the valley slopes into the 

study areas, for example hillwash or interflow. It comprises scales 11-14 with 

pixel sizes between 64 x 64 m and 192x192 m which corresponds to the 

maximum horizontal distance of 145 m representing sections of the valley 

slopes in both study areas where relocations processes take place. 

 The catchment scale addresses teleconnected processes over long distances, 

for example aeolian transport of silt particles or dominant weather direction 

influencing the water amount. This class contains the scales 15-22 with pixel 

sizes between 256 x 256 m and 3072 x 3072 m.  
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Figure 2: Environmental scales and feature construction. Definition of the moraine, valley and catchment 

scale according to the maximum horizontal distance of key geomorphological elements and 

corresponding pixel sizes of DEMs which result from sequenced smoothing and scaling steps. After 

resampling all DEMs to the original resolution (2 x 2 m), terrain features are delineated at overall 22 

scales. Due to the smoothing and scaling and resampling steps, the representation of the landscape by 

the terrain features has changed which is exemplified by the sine of the aspect (sinAsp) and steepest 

slope downslope (Slope) at first and last scale of the moraine scale (1, 10), the last of the valley scale 

(14) and the first of the catchment scale (15) to demonstrate the trend in the delineation of the landscape 

at the respective environmental scale. The spatial features include the Euclidean distance fields (EDF) 

representing the distance to the upper left (C1), upper right (C2), lower left (C3) and lower right corner 

(C4), the centre (CC), the lower (X01) and left edge (Y01) of an artificial grid around the study area. 
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2.4 Analysis of feature importance and scales 

Random forests (RF, Breiman, 2001) is a widely used ML technique in pedometrics for 

the spatial estimation of soil characteristics by extracting their relationships to given 

environmental features. RF is a combination of numerous Classification and 

Regression Trees (CART; Breiman, 1984). Each CART is built on a randomly chosen 

samples of the training data. The samples were drawn with replacement, known as 

bootstrapping, which means that some samples were used multiple times in a single 

tree and some were left out. The part of the training data left out is used to validate the 

particular CART model. In addition, for each split a random set of features is used. The 

consideration of these random effects made this approach robust against outliers and 

improved model accuracy. We used the “caret” package (Kuhn, 2017) in R (R 

Development Core Team, 2017) for grid learning (cf. Schmidt et al., 2008) to determine 

the optimal number of features at each split (mtry). Ten times 10-fold cross-validation 

was applied to calculate the accuracy of the RF models expressed by the coefficient 

of determination (R2, equation [2]) and the normalized root mean square error (nRMSE, 

equation [3]): 

 𝑅2 = (
∑ (𝑦−µ𝑦)(ŷ−µŷ)
𝑛
𝑖=1

√∑ (𝑦−µ𝑦)2
𝑛
𝑖=1 √∑ (ŷ−µŷ)

2𝑛
𝑖=1

)2 [2] 

 𝑛𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)2 
𝑛
𝑖=1 (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)⁄  [3] 

with 𝑦 and ŷ as the observed and predicted values and µ𝑦 and µŷ as the means of the 

observed and predicted values. An advantage of RF is a build-in measure of feature 

or feature importance by calculating the mean decrease in accuracy. The general 

simple and attractive idea behind the feature importance measure is to permute the 

values of each feature and measure how much the permutation decreases the 
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accuracy of the model. Clearly, for unimportant features, the permutation should have 

little to no effect on model accuracy, while permuting important variables should 

significantly decrease it. We applied RF and the feature importance measurement in 

different setups to address and identify important scales and spatial dependencies on 

the distribution of SOCS within each study area separately as well as for regional 

spatial dependencies in West Greenland independently from the specific study area. 

To achieve this, we sequenced RF modelling to account for scale-dependent effects 

on the spatial distribution of SOCS in the study areas and the corresponding feature 

importance. The first RF model used the terrain features from the first out of 22 scales 

only. The next RF model was extended by the terrain features of the subsequent scale, 

and so on. This ascending approach was applied to determine the effect of small scales 

first and omit superimposition. The procedure was repeated in reverse order, where 

the first model used the largest scale only. This descending approach was used to 

analyse the importance of large scales. Both approaches are applied for both SISI and 

RUSS separately. The area-specific approach is a RF model based on all multi-scale 

terrain features to predict the area-specific SOCS distribution in SISI (SISIarea-specific) 

and RUSS (RUSSarea-specific) respectively. 

To account for spatial dependencies within each study area, we applied the spatial 

approach: a RF model based on all multi-scale terrain features and the spatial features 

for SISI and RUSS (SISIspatial/RUSSspatial). The comparison of the importance of terrain 

and spatial features indicates for potential spatial trends within the soil data sets not 

being covered by the terrain features. Both models were used to estimate SOCS for 

SISI and RUSS separately. 

To account for regional dependencies and transferability the combined approach and 

crosswise approach are applied. With the crosswise approach, we trained RF models 
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crosswise for SISI and RUSS using all multi-scale terrain features 

(SISIcrosswise/RUSScrosswise) and model the SOCS for SISI with the RF model build for 

RUSS and vice-versa to examine the role of different environmental conditions. In 

addition, one RF model was trained to a unified data set including soil data sets from 

both SISI and RUSS and all multi-scale terrain features and to the above described 

ascending and descending approach. This combined approach was designed to 

determine the effect of small and large scales on the SOCS distribution in West 

Greenland from the ice margin to the coast. 

3 Results 

3.1 Scale dependencies 

The multi-scale spatial feature analyses show distinct variation in the accuracy of the 

ascending and descending RF models for SISI and RUSS (Fig. 3). In SISI, the model 

accuracy quantified by the proportion of the variation in the data that is explained by 

the RF model as R² is more or less constant over all scales with a mean of 0.20. In 

RUSS, R² decreases over scale with high values at the moraine scale and distinctly 

lower values at the valley and catchment scale for the descending RF modelling chain. 

For the moraine, valley and catchment scale of the ascending RF model chain, R² 

values are much higher for RUSS than for SISI. Representing the accuracy by the 

difference between the measured and predicted values in dependence to the range of 

the measured values, the nRSME shows the same overall picture independent from 

the modelling direction, with an almost constant magnitude of average error of the RF 

models ranging from 0.25 to 0.27 in SISI and from 0.19 to 0.26 in RUSS. The mean 

nRMSE of the ascending and descending approach is with 0.26 (SISI) and 0.21 

(RUSS) the lowest in the moraine scale. The highest variation of the model accuracy 
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between single scales can be observed in the moraine scale for SISI and in the valley 

and catchment scale for RUSS. This is also shown by the confidence interval. 

Interestingly, although differences occur for single scales, this general trend holds true 

for the ascending and descending modelling approach. Differences between the two 

approaches are clearly visible for RUSS with much lower model accuracy and higher 

average error for the descending model chain at the valley and catchment scale. 

The results of the feature importance measurement of both study sites are plotted 

cumulative over scale as decrease in accuracy for the ascending and descending 

approaches (Fig. 4). The higher the decrease in model accuracy and the steeper the 

ascent of the curves between two adjacent environmental scales the greater is the 

feature importance within a scale. In SISI, the ascending model has a very constant 

cumulative decrease function. All three curvature measures behave more or less 

equal.  The cosine of the aspect is the most important feature at moraine scale. The 

sine of aspect and slope are less important compared to all other terrain attributes. 

Regarding the descending model, the sequence of feature importance is the same as 

for the ascending model. However, the rise of the curve for the cosine of aspect is 

comparably steeper and the feature bundle is expanded over a larger range of feature 

importance. The sine of the slope becomes more important at the catchment scale for 

pixel sizes between 256 and 3072 m, which represent processes over long distances 

like aeolian transport or weather phenomena.  At the valley scale, longitudinal 

curvature is most important and sine of the aspect and slope at the catchment scale.  

In RUSS, both bundles of cumulative feature importance are very similar in shape and 

sequence of features for the ascending and descending models (Fig. 4). In general, a 

steep increase in the cumulative importance of all features is the highest at the moraine 

scale. The highest increase of importance shows the cross-sectional curvature over all 
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scales for the ascending model and for the moraine and valley scale for the descending 

model. At the valley scale, cosine of the aspect and slope show the highest increase 

in the cumulative feature importance. In addition, cosine of the aspect is also important 

at the catchment for the ascending approach. At the catchment scale, the curve of 

slope has the steepest ascent.  

 

3.2 Spatial dependencies 

Here, we compare the importance of the seven terrain attributes with spatial attributes 

derived from EDFs in SISI (Tab. 1) and RUSS (Tab. 2), that representing the distance 

to the edges, corners and the center of SISI and RUSS to describe spatial non-linear 

relationships. Similar to Fig. 4, the feature importance represents the percentage mean 

decrease in accuracy of the model when using the permuted feature. In SISI, the 

importance of the terrain features ranges between 3.6 and 6.1 % with mean decrease 

of the accuracy of 1.36 ± 1.61 %. The most important terrain features are sine of the 

aspect, elevation, slope and cosine of the aspect at the catchment scale also with 

higher importance than the spatial features. The importance of the spatial features is 

with an average of 2.02 ± 0.54 % higher but with a maximal importance of 2.61 % (C1) 

lower than for the terrain features (6.05 %, sinAsp of scale 18 at the catchment scale; 

Tab.1). In RUSS, the mean importance of the terrain features is with 2.22 ± 3.46 % 

twice the mean importance of the spatial features with 1.10 ± 2.14 %. Cross-sectional 

curvature at the moraine scale is the most important terrain feature with up 15.57 %, 

which is three times higher than for the spatial features with 4.48 % (C1; Tab. 2). 
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Figure 3: Variation in model accuracy (R², nRMSE) of the ascending and descending models for different 

scales in SISI and RUSS. The black dots represent single scales, the blue line represents the ascending, 

the red line the descending approach, and vertical lines are limits of the environmental scales. 
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Figure 4: Cumulative importance of terrain features over different scales for the ascending and 

descending approaches for SISI and RUSS. The black dots represent single scales and the vertical 

lines are limits of the environmental scales.
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Table 1: Importance of terrain and spatial features of the spatial approach for SISI (SISIspatial).

 

Table 2: Importance of terrain and spatial features of the spatial approach for RUSS (RUSSspatial). 
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3.3 Regional dependencies 

Different model approaches were used to estimate the spatial distribution of SOCS in 

SISI (Fig.5) and RUSS (Fig. 6). The validation results of the estimations are expressed 

by the R² and nRMSE on the basis of the difference between the measured and 

estimated values and are given in Table 2. In SISI, there is a distinct difference 

between the area-specific and the combined approach showing lower SOCS in the 

northeast. The SOCS estimation of the cross-transferred approach results in low 

SOCS in general. In RUSS, the SOCS are higher and vary less than with the combined 

and area-specific approach (Fig. 6). The R² is the highest for the area-specific (0.76) 

and the lowest for the cross-transferred approach (0.00) in SISI. In RUSS the combined 

(0.88) and area-specific approach (0.85) shows similar results. The nRMSE is the 

highest with the cross-transferred models for SISI (0.26) and RUSS (0.58). In SISI, the 

area-specific model provides the best SOCS estimation result with the lowest nRMSE 

(0.16). In RUSS, the combined approach shows the lowest nRMSE with 0.12. Except 

for the cross-transferred approach, the models generate smaller errors for RUSS than 

SISI (Tab. 3).  

 

Table 3: Validation of the spatial SOCS predictions in SISI and RUSS. 
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4 Discussion 

4.1 Scale dependencies 

In SISI, the SOCS distribution is connected to small scale environmental and coastal 

climate conditions and related processes (Stäblein, 1977; Gries et al., 2020) acting at 

the moraine and catchment scale. The importance of both scales can be concluded 

from the variation of the model accuracy decreasing at the valley scale and subsequent 

increasing at the catchment scale for the ascending approach in SISI (Fig.2). The 

increase in the model accuracy at the moraine scale with the descending approach 

additionally points out the importance of the environmental conditions and related 

processes within the study area controlling the SOCS distribution. Low model accuracy 

for both approaches result from a weak connection of SOCS to the present terrain as 

landscape age and coastal climate fostered relocation of soil material in the past. But, 

considering the landscape across multiple scales reflects additional soil forming factors 

not being used as predictors (Behrens et al., 2014; Behrens et al., 2018a). However, 

further processes and factors controlling the SOCS distribution cannot be represented 

by the included terrain features. The model accuracy is higher in RUSS than in SISI as 

SOCS at 0-25 cm is stronger connected to landscape conditions at the ice margin than 

at the coast (Gries et al., 2020). In RUSS, the ascending and the descending approach 

demonstrate clearly the importance of the moraine scale suggesting small scale 

processes control the SOCS distribution at the ice margin. The ascending and 

descending approaches show that it is important to consider multiple scales for the 

interpretation of SOCS distribution as this allows to address the effect of scale-

dependant interactions between landscape and environmental conditions towards the 

distribution of soil properties (Pike, 1988; Gerrard, 1981; Hole, 1978; Behrens et al., 

2010a; Kerry and Oliver, 2011; Viscarra Rossel, 2011). Differences in the model, 1981 
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Figure 5: Prediction of the spatial SOCS distribution with different approaches in SISI. The area-specific 

approaches uses multi-scale terrain features only. The spatial approach includes multi-scale and spatial 

features. The combined approach is based on a combined data set from SISI and RUSS and uses multi-

scale terrain features to predict SOCS in SISI. The crosswise approach comprises a RF model trained 

with a data set from RUSS to predict SOCS in SISI. 
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Figure 6: Prediction of spatial SOCS distribution with different approaches in RUSS. The area-specific 

approaches uses multi-scale terrain features only. The spatial approach includes multi-scale and spatial 

features. The combined approach is based on a combined data set from SISI and RUSS and uses multi-

scale terrain features to predict SOCS in RUSS. The crosswise approach comprises a RF model trained 

with a data set from SISI to predict SOCS in RUSS. 
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accuracy and dominant scales between SISI in RUSS also indicate the variation in 

processes affecting the SOCS distribution in West Greenland. Viscarra Rossel et al. 

(2019) also showed that environmental factors and related processes influencing SOC 

vary over different scales in Australia.  

The variation of the model accuracy over different scales results from the scale-

dependant importance of specific terrain features (Fig. 3). With different scales, terrain 

features represent different landscape conditions (Fig. 2) and thus different related 

environmental processes. Behrens et al. (2010) identified four scale levels to 

differentiate between processes affecting the spatial variation of soil texture. Also at 

coastal area in West Greenland, soil texture distribution is linked to small-sized 

landscape elements and valley slopes (Stäblein, 1977). For SOCS, the aspect is a 

suitable abiotic factor to determine SOCS on different scales in West Greenland (Gries 

et al., 2020). This is confirmed by the aspect being the most important terrain feature 

at the moraine and catchment scale in SISI and at the valley scale at RUSS. (Fig. 4). 

 At small-sized landscape elements at the moraine scale at SISI, the aspect indirectly 

affects microclimate and growing conditions (Auslander et al., 2003) and thus is 

strongly connected to vegetation cover and the spatial distribution of SOCS in West 

Greenland (Jensen et al., 2006; Horwarth Burnham et al., 2010; Henkner et al., 2016; 

Gries et al., 2020). In addition, Behrens et al. (2010; 2018a) consider the aspect as a 

proxy for wind controlling the variation of loess within a periglacial shaped landscape. 

In SISI, the sine of the aspect at the catchment scale reflects characteristics of coastal 

climate conditions. Plant growth is negatively affected by westerly onshore winds and 

by reduced solar energy input due to coastal fog which results in lower SOCS at east-

facing locations (Gries et al., 2020). In addition, slope at the catchment scale point out 

the effect of the surrounding landscape on the predominant wind system. As a result, 
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there are wind-protected areas in the northeast of the study area favouring the growth 

of tall shrub tundra and high SOCS (Gries et al., 2020). In general, curvature describes 

geomorphological patterns which can be calculated at any scale. Thereby, the 

geomorphology is more generalised or specific landforms become more apparent with 

an increased scale (Wood 1996). In SISI, the curvature displays the variation of the 

shape and related processes and thus the distribution of SOCS along different slopes. 

Curvature at the moraine scale represents the slope of moraines and small hills within 

the study area characterised by a downslope increase in SOCS (Gries et al., 2020). 

The curvature at the valley scale represents the shape of the valley. On valley slopes, 

solifluction and erosion result in colluvial deposits and SOC accumulation at the 

footslope (Stäblein, 1977; Palmtag et al., 2015; Henkner et al., 2016; Ramage et al., 

2019). In SISI, the area along the northern border of the study area covers the 

footslope of the valley slope and thus shows high SOCS (Gries et al., 2020). 

In RUSS, cross-sectional curvature at the moraine scale is the most important terrain 

feature addressing the relocation of soil components along moraine slopes which 

results in SOCS increasing downslope and being the highest at moraine footslopes 

and in depressions (Gries et al., 2020). In addition, cross-sectional curvature at the 

moraine scale displays moraine ridges being exposed to katabatic winds negatively 

affecting plant growth which results in lowest SOCS in RUSS (Gries et al., 2020). 

Besides, katabatic winds initiate aeolian processes affecting soil formation as well as 

the spatial distribution of SOC stocks within the study area (Ozol and Broll, 2003; 

Willemse et al., 2003; Henkner et al., 2016; Müller et al., 2016; Gries et al., 2020). The 

cosine of the aspect at the moraine scale is also an important terrain feature. It 

represents the variation in solar energy input causing frequent occurrence of freeze-

thaw cycles and low SOCS on south-facing locations and high SOCS on north-facing 



Appendix – Manuscript 2 

125 
 

locations by accumulating organic material under cold and moist soil conditions 

(Henkner et al., 2016).  

At the valley scale, cross-sectional curvature represents the shape of the valley and 

points out the highest moraine ridge which divides the valley bottom into a wind 

exposed and wind protected area. In RUSS, SOCS are higher in the western than the 

eastern part as wind protected areas benefits growth of tall shrub tundra connected to 

high SOCS at the ice margin area (Ozols and Broll, 2003; Henkner et al., 2016; 

Petrenko et al., 2016; Gries et al., 2020). At the catchment scale, the cosine of the 

aspect represents katabatic winds blowing from the Greenland Ice Sheet negatively 

affecting plant growth, increasing SOC decomposition and relocate soil particles. 

Additionally, slope at the valley and catchment scale is important to explain the spatial 

distribution of SOCS in RUSS (Fig.3). Slope at the valley scale show the variation in 

steepness of the valley slope and thus the variation in SOCS being higher at footslopes 

than at main slopes due to downslope processes (Ramage et al., 2019). On the 

catchment scale, slope represents the effect of the landscape on environmental 

processes acting over large distances, e.g. aeolian distribution of loess (Behrens et al., 

2018a). 

 

4.2 Spatial dependencies 

The spatial feature Y representing the Euclidean distance from the southern boundary 

and reflects the increase in SOCS towards the northern boundary in SISI. This specific 

area covers the footslope of the valley being characteristic for high SOCS due to 

downslope transport processes (Palmtag et al., 2015; Ramage et al., 2019) which is 

also reflected by slope at the catchment scale. In general, terrain features at the 
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catchment scale are the most important features representing climate conditions, 

major landscape elements, valley orientation and related processes controlling the 

spatial distribution of SOCS increasing from the southwest to the northeast in SISI. 

This spatial trend is also expressed by the corner distances (C1, C2, C3 and C4) which 

are the most important spatial features also representing the orientation of the valley. 

However, terrain features are more suitable to represent spatial trends as they combine 

both spatial and terrain information in SISI. 

In RUSS, the highest moraine ridge crosses the study area from the northwest to the 

southeast and thus influences the effectiveness of katabatic winds across the study 

area. The spatial features C1 and C4 show above average importance as they describe 

the orientation of this moraine ridge and thus cover the spatial trend with higher SOCS 

in the western than in the eastern part in RUSS. However, cross-sectional curvature at 

the moraine scale shows distinct higher feature importance than the spatial features 

which suggests that the SOCS distribution mainly depends on small scaled 

environmental conditions and processes acting on small-sized landscape elements. 

 

4.3 Regional dependencies 

There is a non-linear gradient in environmental conditions and related processes 

controlling SOC accumulation between the coast and the ice margin area in West 

Greenland (Bradley-Cook and Virginia, 2016; Gries et al., 2020). This gradient is 

reflected in the scales and feature importance being different in SISI and RUSS. 

Considering such scale-dependant and spatially varying environmental interrelations 

results in reliable large scale estimations and enables the interpretation in a 

pedological context (Behrens et al., 2010, 2014, 2018a, 2018b, 2019; Viscarra Rossel 
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et al., 2019). However, large scale estimations of SOCS of the northern circumpolar 

area are limited to account for such varying interrelations due to sparse soil data (Jones 

et al., 2009; Tarnocai et al., 2009; Hugelius et al., 2013; 2014; Köchy et al., 2015; Hengl 

et al., 2017). Spatial predictions require similar environmental conditions between the 

training and the validation area both being represented by a balanced training data 

considering relevant environmental factors (Behrens et al., 2009; Taghizadeh-

Mehrjardi et al., 2020). This is reflected in the validation of the predicted SOCS with 

the cross-transferred approach being the lowest in SISI and RUSS (Tab. 3). Also, the 

application of an inadequate model causes high uncertainty of the target variable 

leading to an underestimation and overestimation of SOCS in SISI and RUSS 

respectively (Fig. 5; Fig. 6). This holds true for local studies in West Greenland showing 

higher SOCS than existing large scale estimations (Kühn and Henkner, 2019). Due to 

the represented scale, largescale estimations show low variation in SOCS between 

the coast and the ice margin area in West Greenland (Jones et al., 2009; Hugelius et 

al., 2013; 2014; Köchy et al., 2015) but which is confirmed by similar mean SOCS in 

SISI and RUSS (Gries et al., 2020). With a finer scale, differences in landscape and 

climate pattern can be taken into account for the estimation of SOCS spatially varying 

in West Greenland (Hengl et al., 2014; 2017). However, SoilGrids (Hengl et al., 2017) 

account only for soil landscape interactions at the valley and catchment scale due to 

the resolution and thus cannot consider differences in environmental conditions and 

related relocation processes at the moraine scale. Furthermore, sparse soil data 

additionally complemented by pseudo-observations results in uncertain SOCS 

estimations in West Greenland (Hengl et al., 2014; 2017). 

The combined approach emphasizes the importance of representative soil data for 

high resolution SOCS estimations as additional data enables the model to distinguish 
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between spatially varying and site-related soil landscape interrelations and produce 

more reliable results compared to the cross-transferred approach (Tab. 3). However, 

with the combined approach SOCS are still underestimated at the coast especially in 

the northeastern area in SISI (Fig. 5). Due to the strong link between soil and terrain 

in RUSS, scale-dependent soil landscape interrelation might be mistakenly transferred 

from the ice margin area to the coastal area. In contrast, for RUSS, the combined 

approach achieves slightly better validation results compared to the area-specific 

approach (Tab. 3) which might be related to characteristics of statistical models like 

RF. Having several advantages, RF is widely used in pedometrics but is also limited in 

the reproduction of the range of the observed values in the predictions. So, additional 

soil information from SISI artificially extends the range of the SOCS in RUSS which 

leads to a better coverage of the range of the observed values and a higher 

consistency by the predicted values (Fig. 6). 

 

Conclusion 

There is a high spatial variation in SOCS in both study areas which can be described 

by the application of several RF models comprising different sets of multi-scale terrain 

and spatial features in SISI and RUSS. The advantage of using sequenced RF models 

allows to measure the feature importance of single terrain features to identify relevant 

scales and explain the spatial SOCS distribution by accompanied environmental 

processes. In SISI, the aspect indicates the importance of downslope processes on 

the moraine scale and the role of wind related processes on the catchment scale being 

relevant for the spatial SOCS distribution at the coast as well. Further, the curvature 

highlights the effect of water-driven relocation processes on the valley scale which 

results in high SOCS along the northern boundary of the study area in SISI. In RUSS, 
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katabatic winds are characteristic for the ice margin area and influence the SOCS 

distribution in different ways which is illustrated in detail by single terrain features of 

different scales. The aspect points out the negative effect of katabatic winds on the 

moraine scale which results in SOCS being lower on east-facing than on wind-

sheltered west-facing locations in RUSS. This can be transferred to the valley scale, 

where in the west to the highest moraine ridge, illustrated by the curvature, the SOCS 

is higher than in the eastern and wind-exposed part of the study area. Further, the 

aspect reflects increasing SOCS with distance from the ice margin which results from 

decreasing strength of the katabatic winds on the catchment scale. These scale-

dependent soil-landscape interrelations confirm the hypothesis that small-scale 

processes primarily affect the SOCS distribution on the one hand but on the other hand 

accentuate the importance to consider secondary large-scale processes in spatial 

analysis of SOCS. 

Different soil-landscape interrelations between both study areas were inferred from 

differences in the importance and relevant scales of the terrain features and differences 

in related environmental processes. A climatic gradient is expressed in opposing wind 

systems and decreasing amount of water over a long distance from the coast to the 

ice margin of West Greenland. Feature importance and relevant scales in SISI 

demonstrate the importance of relocation processes by water for SOCS at the coast. 

In contrast, a strong connection to the terrain and a subordinate role of respective 

scales and features indicate minor redistribution due to surface runoff at the ice margin. 

However, the aspect also captures the differential effect of the role of solar energy 

input and wind direction on the SOCS between both study areas. Additionally, 

differences in relevant scales of the aspect between SISI and RUSS point out the multi-
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scale SOCS dependency on katabatic winds at the ice margin. There, we recommend 

multi-scale approaches for the spatial analysis of SOCS in permafrost-affected soils.   
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Summary 

This study introduces a hybrid spatial modelling framework, which accounts for spatial 

non-stationarity, spatial autocorrelation and environmental correlation. A set of 

geographic spatially autocorrelated Euclidean distance fields (EDF) was used to 

provide additional spatially relevant predictors to the environmental covariates 

commonly used for mapping. The approach was used in combination with machine-

learning methods, so we called the method Euclidean distance fields in machine-

learning (EDM). This method provides advantages over other prediction methods that 

integrate spatial dependence and state factor models, for example, regression kriging 

(RK) and geographically weighted regression (GWR). We used seven generic (EDFs) 

and several commonly used predictors with different regression algorithms in two 

digital soil mapping (DSM) case studies and compared the results to those achieved 

with ordinary kriging (OK), RK and GWR as well as the multiscale methods ConMap, 
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ConStat and contextual spatial modelling (CSM). The algorithms tested in EDM were 

a linear model, bagged multivariate adaptive regression splines (MARS), radial basis 

function support vector machines (SVM), Cubist, random forest (RF) and a neural 

network (NN) ensemble. The study demonstrated that DSM with EDM provided results 

comparable to RK and to the contextual multiscale methods. Best results were 

obtained with Cubist, RF and bagged MARS. Because the tree-based approaches 

produce discontinuous response surfaces, the resulting maps can show visible 

artefacts when only the EDFs are used as predictors (i.e. no additional environmental 

covariates). Artefacts were not obvious for SVM and NN and to a lesser extent bagged 

MARS. An advantage of EDM is that it accounts for spatial non-stationarity and spatial 

autocorrelation when using a small set of additional predictors. The EDM is a new 

method that provides a practical alternative to more conventional spatial modelling 

and thus it enhances the DSM toolbox. 

 

Highlights 

• We present a hybrid mapping approach that accounts for spatial dependence 

and environmental correlation. 

• The approach is based on a set of generic Euclidean distance fields (EDF). 

• Our Euclidean distance fields in machine learning (EDM) can model non-

stationarity and spatial autocorrelation. 

• The EDM approach eliminates the need for kriging of residuals and produces 

accurate digital soil maps. 
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Introduction 

The spatial variation and distribution of soil properties can be represented by random 

fields (i.e. random functions in the geographical space that are spatially correlated) 

(Matérn, 1960). Soil variation and its spatial distribution are also often strongly related 

to the parametric distribution of the ‘clorpt’ soil forming factors (i.e. climate, organisms, 

relief, parent material and time) described by Jenny (1941). Here, we introduce 

Euclidean distance fields (EDFs) (Rosenfeld & Pfaltz, 1968) as new, spatially relevant, 

covariates for modelling soil spatial variation. The EDFs can be used alone as 

predictors in regression approaches for mapping, or in combination with other more 

commonly used predictors, such as climate and terrain attributes, when there is a need 

to account for both spatial dependence and environmental correlation. We propose 

the use of EDFs with machine learning methods; therefore, we call the method 

Euclidean distance fields in machine learning (EDM). Spatial dependence refers to the 

covariation of variables within geographic space and includes descriptions of spatial 

autocorrelation and non-stationarity. Spatial autocorrelation is a quality of the data 

whereby observations are interrelated in space. It is used by methods for spatial 

interpolation to estimate values at unobserved locations using values at observed 

locations in a neighbourhood (Oliver & Webster, 1990; Páez, 2004). Spatial non-

stationarity is a condition in which a global regression model cannot explain the 

relations between some sets of variables (i.e. where variation in relations occurs over 

space and where models that allow local variation are required) (Brunsdson et al., 

1996). Models that account explicitly and simultaneously for both spatial dependence 

and environmental correlation are called ‘hybrid’ models. In this respect the ‘scorpan’ 

approach introduced by McBratney et al. (2003) is an extension of Jenny’s clorpt state 

factor equation to account more explicitly for spatial effects. In addition to Jenny’s 
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clorpt factors, the scorpan model adds ‘s’ for other soil properties and ‘n’, which is 

important for hybrid models because it refers to space or location, and thus any spatial 

dependence in the data. Two well-known hybrid approaches are regression kriging 

(RK) (Neuman & Jacobson, 1984; Odeh et al., 1994) and geographically weighted 

regression (GWR) (Brunsdon et al., 1996). In the case of RK, a regression model is 

first generated using a set of environmental covariates followed by kriging (spatial 

prediction) of the regression residuals. Both models are summed to generate the final 

prediction map. In contrast, GWR is based on localized calibrations, where different 

regression models are applied in different regions using local sets of sample points. 

Kriging is commonly used to predict spatially autocorrelated variables under 

assumptions of stationarity, whereas GWR was developed to predict spatially non-

stationary variables. Local RK approaches (Sun et al., 2012) adapt the GWR idea to 

the RK framework and derive local models within a given geographic neighbourhood. 

Another approach to account for spatial dependence is trend surface mapping (TSM) 

(Unwin, 1975), which is often used for detrending (i.e. separating relatively large-scale 

systematic spatial trends from non-systematic small-scale variation arising from local 

effects) (Krumbein, 1959). It is based on fitting linear or polynomial regression 

equations to the geographic (x, y) coordinates. Applying the concept of TSM with non-

linear modelling approaches, such as artificial neural networks or decision trees, 

should produce local rather than global trend models that can characterize local 

variation. Including additional EDFs as predictors (i.e. not only x, y) should help to map 

complex processes that are characterized by both global and local spatial variation. 

We suggest here a set of five generic geographic EDFs that can be used as additional 

spatial predictors in ‘scorpan’ models. Because EDFs partition geographic space into 

sub-regions, the regression model can deal with the interactions between 
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environmental covariates and soil that vary non-linearly over space. This is a common 

advantage of EDM, GWR and local RK. In contrast, RK cannot account for spatial non-

stationarity because of its two-step approach in setting up a global regression model 

with fixed geographical relations and subsequent interpolation by kriging to account 

for spatial autocorrelation in the residuals. Compared to EDM, the regression models 

in GWR are explicitly local and thus based only on a local subset of sample data. 

Therefore, the local regression models in GWR might not reveal important global 

spatial dependencies. There are additional hybrid methods described in the DSM 

literature. These are mostly variations of RK (i.e. RK with regression approaches other 

than the linear model) or combinations of GWR and kriging, such as GWR-kriging or 

local RK (e.g. Kumar et al., 2012; Viscarra Rossel et al., 2015; Sun et al., 2012). 

Although local kriging models can handle non-stationarity better than the usual RK, all 

local models have the same theoretical drawbacks. Regression kriging with non-linear 

regression models can, in some cases, improve the accuracy of prediction (Viscarra 

Rossel et al., 2014). Another category of hybrid DSM methods comprises those that 

use multiscale contextual derivatives or indicators of environmental covariates, such 

as terrain; that is ConMap (Behrens et al., 2010), ConStat (Behrens et al., 2014) and 

contextual spatial modelling (CSM, Behrens et al., 2018), referred to as contextual 

mapping in the following. They do not rely on spatial predictors, such as in EDM, and 

are not based on local regression models as in GWR. Rather, they make use of spatial 

contextual environmental covariate information. This contextual information is 

extracted at local to supra-regional scales in terms of circular spatial neighbourhoods 

or decomposed scales, and considers much larger neighbourhoods than common 

multiscale approaches (e.g. Wood, 1996; Moran & Bui, 2002; Behrens et al., 2018). 

These contextual mapping approaches account for the source of spatial dependence 
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(i.e. small to large-scale interactions between environmental covariates across the 

landscape), instead of using spatial autocorrelation or factoring in non-stationarity for 

mapping directly, as with GWR or RK. In this respect, contextual mapping represents 

a contrasting approach to EDM. Although EDM makes use of spatial autocorrelation, 

the contextual mapping approaches try to remove the spatially autocorrelated part of 

the residuals. Our aims here are to describe the EDM concept, to demonstrate its 

application with two datasets and to compare the efficacy of EDM against ordinary 

kriging (OK), RK, GWR and contextual mapping methods. 

 

Materials and methods 

Study sites 

The aim of this study was to introduce and evaluate a new hybrid spatial mapping 

approach using Euclidean distance fields embedded in a ‘scorpan’ framework with 

additional environmental covariates; therefore, we needed datasets with both spatial 

dependence and some correlation with environmental factors. Consequently, we used 

the same two datasets analysed previously by Behrens et al. (2010, 2014, 2018) 

because they met the required criteria. 

The study site in Rhine-Hesse, Germany, is a large wine-growing and loess-covered 

region of approximately 1150 km2. The mean annual precipitation ranges from 500 to 

850 mm. Luvisols, Cambisols and Podzols characterize this region. The major process 

that influenced topsoil silt content, which is analysed in this study, was local 

translocation of loess during the Wuerm glaciation. The loess was blown out of the 

surrounding riverbeds and deposited on the plateaus and in lee areas. This process 

is not well reflected by the underlying parent material (map) or by current climate 
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conditions or land cover. Historical land use might be relevant to explain subsequent 

erosion processes better. However, data on historical land use are not available. 

Therefore, the only relevant data available for prediction of this property in this area 

are those on terrain. Terrain shape modulated climate conditions, leading to 

translocation of loess. Gravity, and thus terrain, is also the major controlling factor of 

soil erosion. Other relevant processes in this region, such as the formation of 

periglacial slope deposits, are controlled by solar insolation (i.e. slope and aspect) and 

contributing area. In total we used 342 samples to predict topsoil silt content (0–10 

cm) with a digital elevation model (DEM) with a resolution of 20 m (Figure 1). The 

topsoil silt content ranges from 2 to 83%. The Piracicaba study area covers an area of 

approximately 300 km2 and is in the state of São Paulo (Brazil); the area comprises 

mainly sugarcane fields. The mean annual precipitation is 1328 mm. The geology of 

the area is characterized by sandstone, siltstone and shale, and to a lesser extent 

limestone, basalt and colluvial deposits (Mezzalira, 1965). Arenosols, Ferralsols, 

Acrisols, Alisols, Nitisols, Cambisols and Lixisols are the major soil types. Because of 

the predominantly sedimentary substrates, ranging from sandstone to limestone, clay 

content, which is modelled in this study, has a wide range of values from 6 to 72%. 

Therefore, parent material plays a major role, but there is no appropriate map of parent 

material available. Nevertheless, the effect of parent material can be inferred from the 

geomorphic signature (Behrens et al., 2014, 2018). Land use does not play a role 

because all the data come from sugarcane fields. Hence, terrain was again used as 

the only relevant covariate. In total 321 soil samples were available to predict topsoil 

clay content (0–10 cm) with a shuttle radar topography mission (SRTM) DEM with a 

resolution of 90 m (Figure 1). 
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Environmental covariates 

The hypothesis behind this study is that spatial dependence, and more specifically 

spatial autocorrelation and spatial non-stationarity, can be modelled by the EDM 

approach. To interpret the effect of spatial dependence in relation to environmental 

correlation, we compare EDM with OK, RK using a linear regression model, GWR and 

the three contextual mapping approaches. The idea was to compare the proposed 

EDM approach with several of the most commonly used spatial prediction approaches. 

Because we are introducing a new methodology, to be able to focus on the EDF 

predictors and make comparisons with previous studies (Behrens et al., 2010, 2014, 

2018), we use only terrain attributes as the environmental covariates. 

We derived the following seven, moderately correlated (maximum r =0.66), terrain 

attributes from the DEMs as environmental covariates for both study sites with the 

common terrain analysis tools provided in SAGA GIS 6.0 (Conrad et al., 2017): valley 

depth, topographic wetness index (TWI), slope, longitudinal curvature, elevation, 

cross-sectional curvature and aspect. Sine and cosine transforms (sinAspect and 

cosAspect) were applied to linearize the circular measurements of aspect. Thus, 

including elevation, eight terrain attributes were computed and used. All terrain 

attributes were subsequently log10 transformed and rescaled to a range of 0 to1. 

Euclidean distance fields and terrain attribute subsets 

The X and Y coordinates used alone as spatial predictors in soil mapping might not be 

sufficient to produce accurate models. Thus, additional spatial Euclidean distance 

fields (Krumbein, 1959) can be used as explicitly autocorrelated indicators of spatial 

position and context for ‘scorpan’ models in common regression approaches. We 

integrated the following generic Euclidean distance fields in the EDM: 
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• X and Y coordinates, which are distance fields to the edges of a rectangle around 

the sample set.  

• the distances to the corners of a rectangle around the sample set (C1, C2, C3, C4). 

• and the distances to the centre location of the sample set (CC).  

Figure 2 shows an example of these spatial predictors for a quadratic region. The idea 

behind the selection of the corners and centre distance was that these provide 

additional (non-linear) information about position without introducing too many 

additional predictors, to maintain parsimony in the models. Moreover, this set of EDFs 

is independent from the sample locations and can easily be calculated in any 

geographic information system (GIS). Other metrics related to position might also be 

possible. However, some measures would be required to determine the positions of 

the location of the origin of the EDFs. Using the corners (and the same applies for XY) 

ensures that a specific distance is directionally unique across the study area (i.e. the 

minimum and maximum are located at different corners or boundaries). The converse 

is the centre distance, which does not provide directionally unique distances. Yet, in 

combination with the X and Y coordinates and the corner EDFs it might help to account 

for non-linear effects. Another approach, instead of using the seven generic EDFs 

applied in this study, would be to use a distance transform for each sample location 

(i.e. sample EDFs). This might enable less complex regression algorithms to reveal 

local effects better, but it would also increase markedly the number of predictors and 

computation by a factor of 45 in this study. We used the minimum and maximum 

values of the X and Y coordinates of the sample set to determine the origin of the 

distance transforms. An additional buffer is not required and, because EDM might be 

considered an interpolation method, spatial extrapolation is not recommended. 
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Figure 1 Sample locations showing the silt and clay content and elevation a.s.l. (m) for 

(a) Piracicaba and (b) Rhine-Hesse. 

 

 

Figure 2 Experimental variograms (dots) and fitted models (dashed lines) for the clay 

dataset of Piracicaba and the silt dataset of Rhine-Hesse. 

 

To evaluate the effects of combining EDFs with relevant, and partially irrelevant, 

terrain attributes on the performance of different models, we produced two terrain 

attribute subsets (T1, T2) from a feature-importance analysis. We derived the average 
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feature importance with the model-specific feature-importance analysis functions 

implemented in random forests (RF) and Cubist, together with a model-independent 

filter approach that uses the R2 value from a locally weighted scatterplot smoothing 

(LOESS) regression for each feature. All calculations were carried out using the R 

package caret (Kuhn, 2017). The first terrain subset (T1) contains only the most 

important terrain attribute and the second subset (T2) contains the three most 

important terrain attributes. The T3 subset contains all eight terrain attributes. To 

determine the effect of the EDF predictors, their combinations and the influence of the 

terrain attributes, we evaluated the following combinations of EDM predictors with the 

environmental covariates: 

• X and Y coordinates (XY)  

• Corner distances+centre distance (CD)  

• X and Y coordinates+corner distances + centre distance (XY +CD) 

• All terrain attributes (T3)  

• X and Y coordinates+terrain attribute subset 1 (XY +CD +T1)  

• X and Y coordinates+terrain attribute subset 2 (XY +CD +T2)  

• X and Y coordinates+all terrain attributes (XY +CD +T3)  

• X and Y coordinates+corner distances+centre distance+ terrain attribute subset 1 (XY +CD 

+T1)  

• X and Y coordinates+corner distances+centre distance+ terrain attribute subset 2 (XY +CD 

+T2)  

• X and Y coordinates+corner distances+centre distance+all terrain attributes (XY +CD +T3)  
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The range of the feature space of all spatial predictors was standardized to values 

between 0 and 1, which is required for some algorithms such as neural networks (NN) 

(cf. Behrens et al., 2005). All models used the same data without any further model-

specific preprocessing in terms of variable selection or scaling.  

Regression approaches tested with the EDF predictors  

The choice of the regression can be important for EDM because of the effect it has on 

the map of predictions. Most transitions in nature are relatively smooth, over longer or 

shorter distances. The use of a decision tree on continuous X and Y spatial 

coordinates to interpolate a spatially correlated field can produce discontinuous 

response surfaces (sharp boundaries), which are unnatural and not visually appealing 

(Figures 10 and 11). Yet, these discontinuous surfaces might produce a model that is 

well validated. Therefore, implementing EDM requires careful choice of the 

appropriate regression for the specific aim. Consequently, we compared several 

algorithms. Table 1 lists the models tested using the caret package in R (Kuhn, 2017). 

The following sections provide a short overview of the methods. Most of these 

methods have already been applied successfully in the context of digital soil analysis 

and mapping (e.g. Grimm et al., 2008; Bui et al., 2009; Viscarra Rossel & Behrens, 

2010; Schmidt et al., 2014). 

Linear regression  

Multiple linear regression examines linear correlations between multiple independent 

variables and a dependent variable. We applied the least square criterion for 

calibrating the model (Rao & Toutenburg, 1999). It is the most general and widely used 

model and served as a reference in this study. It was also used as part of regression 

kriging and GWR in this study.  
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Table 1 Regression models and the corresponding R libraries compared for Euclidean 

distance fields in machine learning (EDM) in this study. 

 

 

 

Support vector machines  

Support vector machines are a kernel-based learning method from statistical learning 

theory. They make use of an implicit mapping of the input data into a high-dimensional 

feature space defined by a kernel function (Karatzoglou et al., 2004). It is possible to 

derive a linear hyperplane as a decision function for non-linear problems and then 

apply a back-transformation in the non-linear space. We used the typical general-

purpose radial basis function kernel in this study (Karatzoglou et al., 2004).  
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Decision tree ensembles  

One of the most recent improvements in ensemble learning, which has become widely 

adopted, is RF (Breiman, 2001; Grimm et al., 2008). It aggregates multiple 

classification or regression tree predictions based on changes in the training dataset 

through sampling in the instance and feature space. Cubist uses if–then rules that 

partition the data. When the conditions in each rule are satisfied, a linear least squares 

model is used to predict the response (Quinlan, 1992). There are various examples of 

the use of Cubist for digital soil mapping (e.g. Bui et al., 2009).  

Multivariate adaptive regression splines  

Multivariate adaptive regression splines (MARS) introduced by Friedman (1991) are a 

generalization of recursive partitioning regression approaches such as classification 

and regression trees (CART, Breiman et al., 1984). By applying linear basis functions 

between the splits of the partitioned space, MARS generates piecewise linear models 

instead of piecewise constant models like CART. Therefore, when the underlying 

function is continuous, the accuracy of prediction is expected to be higher with MARS 

(Friedman, 1991). The piecewise functions are aggregated in terms of an additive 

model.  

Single hidden layer artificial neural networks  

Neural networks are frequently used in DSM studies (e.g. Behrens et al., 2005). In this 

study we used single hidden layer feed-forward NN as described in Venables & Ripley 

(2002). Kuhn (2017) extended the model in terms of an ensemble approach, which 

aggregates the same NN model based on a different random number seeds.  
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Reference algorithms currently used for DSM 

Kriging. Kriging is applied in several fields of environmental science; it was one of the 

first and most important, spatial interpolation techniques. Kriging is based on the 

theory of regionalized variables (Matheron, 1963) and is a spatial distance-weighted 

interpolation method that assumes stationarity or intrinsic stationarity of the mean 

(Webster & Oliver, 2007). The weighting is based on the spatial autocorrelation 

function, which can be visualized and analysed using a variogram. Regression kriging 

(RK) is a hybrid extension of the above that combines a linear regression model with 

kriging of the residuals (Neuman & Jacobson, 1984; Odeh et al., 1994). The advantage 

of RK is the inclusion of an external trend. Regression kriging is equivalent to universal 

kriging or kriging with external drift (e.g. Hengl et al., 2003). We used the gstat package 

(Pebesma, 2004) in R for variography and kriging.  

Geographically weighted regression. Geographically weighted regression (GWR) is a 

local distance-weighted linear regression technique that accounts for local spatial 

variation (Brunsdon et al., 1996). It enables regional prediction of properties based on 

a linear regression with spatially varying regression coefficients. The spatial kernel 

used to weight observations in the regression is based on their distance to the centre 

and can be constant or adaptive. We used an adaptive Gaussian spatial kernel as 

implemented in the GWmodel package in R (Gollini et al., 2015), which ensured that 

the kernel size was adapted to the sample density.  

Contextual mapping. In contrast to common DSM approaches based on derivatives 

computed from digital terrain analysis, ConMap (Behrens et al., 2010) and ConStat 

(Behrens et al., 2014) do not derive standard terrain attributes. Both ConMap and 

ConStat are designed to analyse simultaneously a wide range of spatial scales, from 
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the local or point scale to supra-regional scales, which is not typically accomplished 

with conventional terrain analysis. In the Rhine-Hesse case study the largest scale or 

neighbourhood size was 1000 times larger than the cell size of the DEM. 

ConMap and ConStat differ in the way that terrain features are generated and 

described. ConMap uses elevation differences from the centre pixel to each pixel in a 

sparse circular neighbourhood. ConStat uses statistical measures within growing, 

sparse circular neighbourhoods. In both cases, the terrain indices extracted for each 

location are used as predictors. The advantage of ConStat is that the resulting model 

can be interpreted in terms of soil genesis using feature importance analysis and 

partial dependence models (Behrens et al., 2014). Both methods depend on terrain 

indices only; therefore, they have no explicit geographic component as in RK, GWR 

or EDM. However, they can account for spatial dependence (Behrens et al., 2010, 

2014). A related approach to the above methods is CSM (Behrens et al., 2018). In 

contrast to ConMap and ConStat, CSM uses a small set of common terrain attributes 

derived from scaled versions of the DEM generated by a Gaussian pyramid approach. 

The advantages compared to ConMap and ConStat are that the models are easier to 

interpret, the entire range of scales can be covered, and the approach is 

computationally less demanding. The maximum spatial context analysed with ConMap 

and ConStat in this study was set to a neighbourhood radius of 20 km for Rhine-Hesse 

and 25 km for Piracicaba. The variograms of the clay and silt distribution are shown in 

Figure 3. 
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Validation. Several aspects have to be considered regarding validation accuracy:  

• the effect of different EDF and terrain predictor combinations on modelling accuracy, 

• the differences between regression approaches tested with the EDF predictors, and 

• the comparison of EDM predictions against the reference approaches (OK, RK, GWR 

and contextual mapping).  

Ten times 10-fold cross-validation was used to determine modelling accuracy for all 

models. Begleiter & El-Yaniv (2008) proposed that estimation of parameters by the 

regression approaches and accuracy of estimates from modelling should be 

embedded within one cross-validation procedure. Therefore, we tested different 

parameter settings in a grid learning approach (e.g. Schmidt et al., 2008) implemented 

in the R package caret (Kuhn, 2017). Therefore, we used a single ten-fold cross-

validation approach. Ten times ten-fold cross-validation was used to derive the final 

modelling accuracy and the 95% confidence intervals of the accuracies from ten-fold 

cross-validation. We used the coefficient of determination (R2) as the criterion to 

interpret the differences between the models and the study sites. 

 

 

Figure 3 Visualization of the Euclidean distance fields in machine learning (EDM) 

predictors. 
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Results 

Correlation and feature importance  

The correlation between the soil properties and the EDFs, as well as the terrain 

attributes, was comparable at both study sites, indicating a similar effect of terrain and 

spatial dependence on the distribution of the soil property (Table 2). In Piracicaba, the 

maximum value of the correlation coefficient was 0.56 for the EDFs and for the terrain 

attributes. In Rhine-Hesse, the maximum was 0.27 for the EDFs and 0.29 for terrain, 

indicating a more complex landscape and thus pedogenesis. 

 

Table 2 Pearson correlation coefficients between clay (Piracicaba) and silt (Rhine-

Hesse), and the EDFs and terrain attributes. 

 

CC, distances to the centre location of the sample set; C1, C2, C3, C4, distances to the 

corners of a rectangle around the sample set; EDF, Euclidean distance fields; TWI, 

topographic wetness index. 
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Figures 4 and 5 show that the general trend of the three feature-importance measures 

is relatively consistent. The trend appears to be more important for the EDFs than the 

terrain attributes for both study sites. Elevation was the most important terrain attribute 

in both cases and was the only one with the same range of importance as the EDF 

predictors. All other terrain attributes had average importance values below the 

weakest EDF. For Rhine-Hesse, the most useful remaining terrain attributes selected 

for subset T2 were slope and sin(Aspect) (Figure 5). For Piracicaba, the additional 

terrain attributes for T2 were valley depth and TWI (Figure 4). 

 

 

Figure 4 Feature-importance values for Piracicaba. Feature-importance values 

calculated by random forests (RF), Cubist and locally weighted scatterplot smoothing 

(LOESS) regression using the R package caret. 
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Figure 5 Feature-importance values for Rhine-Hesse. Feature-importance values 

calculated by random forests (RF), Cubist and locally weighted scatterplot smoothing 

(LOESS) regression using the R package caret. 

 

Validation  

Because the results of both study sites show similar general patterns, in most cases, 

the results are described together. Figure 6 shows the R2 cross-validation values and 

the corresponding 95% confidence intervals of the EDM approaches averaged across 

all regression algorithms. Figures 7 and 8 give the R2 values and corresponding 95% 

confidence intervals for the regression approaches for Piracicaba and Rhine-Hesse, 

respectively. Figure 9 shows the R2 cross-validation results of the reference mapping 

approaches. The R2 values of the CSM approach are taken from Behrens et al. (2018). 

The largest validation accuracies within each group of predictor combinations indicate 

that the two tree-based modelling approaches, Cubist and RF, generally performed 
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best (Figures 7 and 8). For the predictor combinations including terrain attributes, 

bagEarth also had large validation accuracies. The svmRadial and avNNet methods 

were in some cases similar to bagEarth but were less accurate overall. The linear 

model did not perform well in any of the scenarios tested. The main results of the 

comparison of combinations of the X and Y coordinates (XY), the corner and centre 

distance transforms (CD) and the terrain attributes, are:  

• prediction accuracy of the CD data was generally significantly greater than for the 

XY data,  

• prediction accuracy of the XY +CD data was generally significantly higher than the 

CD data alone,  

• the increase in prediction accuracy when adding CD to XY was comparable for both 

study sites,  

• although correlation analysis suggested a comparable effect of terrain and EDF 

predictors, the prediction accuracy was least when only terrain attributes were used,  

• the largest prediction accuracies were obtained when EDF and terrain attributes were 

combined,  

• in general, the XY +CD +T models attained significantly greater accuracies than the 

corresponding XY +T models, 

• in some cases for Cubist and RF there was no significant difference when the CD 

were added to XY,  

• adding non-relevant predictors, such as in T3, often had a significant negative effect 

on prediction accuracy, which was an effect of fitting noise,  
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• analysis of single regression approaches showed that the strength of the negative 

effect of non-relevant predictors was related to the regression approaches,  

• radialSVM was the most adversely affected by noisy predictors, whereas the linear 

regression model (lm) was not affected at all,  

• bagEarth, RF and Cubist analysed the EDF+T datasets best,  

• the negative effect of noise was less pronounced with XY +CD +T data than XY +T 

data, and  

• the greatest increase in R2 with XY and CD combined was for lm and avNNet, 

showing that less complex models benefit from the additional information. 

Importantly, the additional CD spatial location predictors with XY or XY +T significantly 

increased prediction accuracy in most cases. 

 

 

Figure 6 Average R2 values of the Euclidean distance fields in machine learning models 

for Piracicaba and Rhine-Hesse. The lines indicate the 95% confidence interval 
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Mapping  

Visualization of the model results is part of interpreting the behaviour of the machine 

learning approaches when using different combinations of EDFs and environmental 

covariates. We illustrate the most relevant models based on the XY, XY +CD, T3 and 

XY +CD +T3 predictors. The EDM predictions and the maps of the reference DSM 

approaches for Piracicaba are shown in Figure 10, and for Rhine-Hesse in Figure 11. 

In each case, the legends are restricted to the range of the soil property values in the 

sample data. The following sections pertain to the mapping. 

The EDM XY and XY+CD models 

The most interesting comparisons concern the EDM modelling approaches that use 

only EDFs as predictors. In general, the local patterns were stronger when XY +CD 

were used as predictors instead of XY only. In this case, even the linear regression 

model showed the general spatial trend of the silt and clay distributions. However, only 

Cubist, RF and svmRadial showed details comparable to OK. Cubist and RF, and to 

a lesser extent bagEarth, produced visible artefacts, which stemmed from the 

methods. 

The EDM XY+CD +T3 models 

Visually, the EDM XY +CD +T3 RF, Cubist and bagEarth predictions resembled the 

ConMap predictions most closely. SvmRadial and avNNet showed a similar pattern, 

but with more spatial variation, which might be a function of fitting non-relevant 

predictors, resulting in spurious spatial detail. Like ConMap, the EDM predictions with 

RF, Cubist and bagEarth showed less local variation than for svmRadial, but they 

achieved greater prediction accuracies. Thus, they were less affected by noisy or 

irrelevant predictors. 
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Figure 7 The R2 values of the Euclidean distance fields in machine learning (EDM) models for Piracicaba. The lines indicate the 95% 

confidence interval. 
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Figure 8 The R2 values of the Euclidean distance fields in machine learning (EDM) models for Rhine-Hesse. The lines indicate the 95% 

confidence interval.
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The EDM predictors and piece-wise models  

The XY models clearly showed artefacts related to the piece-wise modelling 

approaches of the tree-based ensembles and to a lesser extent the bagEarth model. 

Although this resulted in unnatural looking response surfaces, they were the best 

performing interpolation approaches based on the EDF+T datasets tested so far. One 

advantage of this behaviour might be that we are immediately reminded that we are 

looking at a model and not at ground truth. The addition of CD to the XY +T predictors 

also produced similar artefacts (e.g. abrupt boundaries), but they were less obvious. 

When we included terrain data as additional covariates in hybrid ‘scorpan’ modelling, 

only a very few such artefacts remained visible.  

Comparison of EDM to the reference mapping approaches  

Both EDM (XY +CD +T3) and RK produced similar accuracies. The contextual 

mapping approaches gave results that were slightly better than all other models in 

Rhine-Hesse. In Piracicaba they were similar to RK and the XY +CD +T models. In 

both study areas, GWR was only slightly better than lm. The local GWR regressions 

seemed to lack the global information required to derive a good general model. The 

relations are also non-linear in general so that local linear models do not account well 

for spatially varying geographical relationships. Another reason is the generally small 

effect of terrain at the scale of the DEM resolution, which might be a case where GWR 

should not be considered. The generally smaller contribution of common terrain 

attributes to model accuracy in Rhine-Hesse also seemed to account for the poorer 

validation accuracy of RK compared to OK. Therefore, the residuals used in the kriging 

part of RK seemed to provide less information than the original data, which must also 

be attributed to the adverse effect of non-relevant predictors.  
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In Piracicaba RK was equivalent to the contextual mapping approaches. However, it 

performed less well in Rhine-Hesse. The best EDM approaches in Rhine-Hesse were 

based on RF and Cubist, which were similar to OK, but their R2 values were 

approximately 5% smaller than for contextual mapping (Figures 7–9).  

It is unlikely that a different set of conventional terrain attributes at the scale of 

resolution of the DEM would help to increase the prediction accuracy of the EDM 

approach, RK or GWR in both regions significantly. For Rhine-Hesse the set of 

reference terrain attributes in Behrens et al. (2010) for ConMap was different and 

contained many more attributes. Nevertheless, the R2 value obtained with RF in that 

study was also smaller than 0.2. It seems for both datasets that the better the terrain-

based predictions performed, the more comparable were the validation accuracies 

between all models. 

 

Figure 9 The R2 values of the reference modelling approaches for Piracicaba and Rhine-

Hesse. 
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Figure 10 Spatial modelling results for Piracicaba. The upper section shows the spatial 

models arranged as a matrix where the rows reference the machine learning algorithms 

and the columns the different Euclidean distance fields in machine learning (EDF) 

combinations used for modelling (XY, XY +CD and XY +CD +T). The lower section 

shows the spatial models of the reference algorithms OK, RK, GWR, ConMap and 

ConStat. 



Appendix – Manuscript 3 

166 
 

 

Figure 11 Spatial modelling results for Rhine-Hesse. The upper section shows the 

spatial models arranged as a matrix where the rows reference the machine learning 

algorithms and the columns the different Euclidean distance fields in machine learning 

(EDF) combinations used for modelling (XY, XY +CD and XY +CD +T). The lower 

section shows the spatial models of the reference algorithms OK, RK, GWR, ConMap 

and ConStat. 
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Discussion  

Contextual spatial modelling, EDM and GWR differ from RK in their ability to consider 

non-stationary relations between a soil property and environmental covariates directly. 

The contextual mapping approaches and EDM account for spatial autocorrelation by 

using covariates that identify and describe some of the spatial structure in a target 

variable (e.g. de Knegt et al., 2010). In the case of contextual mapping, these 

covariates represent substitutes for environmental factors, whereas for EDM they are 

explicit spatially autocorrelated Euclidean distance fields that are not specific regarding 

the location and values of the sample set and environmental covariates. These EDFs 

enable the regression model to infer the relevant spatial dependence when predicting 

unknown values at new locations based on known values at nearby sampled locations. 

This is the opposite of GWR, for which local models are used, which also aim to extract 

the spatial structure that is not described by environmental covariates. Contextual 

mapping, EDM and RK differ from GWR because GWR does not use the entire sample 

set for creating the regression model at specific locations, but only local subsets. Thus, 

it might fail to reveal relevant parts of the soil–environmental relations, which might 

only be extractable from the entire dataset. 

The theoretical advantages of EDM have not resulted here in clear increases in 

prediction accuracy compared to the other (reference) methods, although the accuracy 

attained by EDM was similar to that of RK, which cannot account for changing 

geographical relations. However, the theoretical advantage of EDM should result in 

greater prediction accuracies when there is strong spatial autocorrelation, when the 

relation of the dependent variable to the environmental covariates is strong and when 

the extent of changes in the geographic relations in space are large. 
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The GWR, and similar local models, often cannot develop relations from the entire 

dataset because it might not be useful for DSM. As shown in the Rhine-Hesse dataset, 

RK can be less accurate than OK if the regression model is developed on ‘noisy’ and 

potentially artificial relations. In the presence of non-stationarity, EDM might perform 

better than RK because regional variation can be dealt with directly. If the spatial 

structure shows a large-scale trend ConMap and ConStat might not be able to resolve 

it fully. In such cases, EDM, RK and GWR might outperform ConMap and ConStat. 

Linear models should also be able to produce results strongly correlated with those of 

OK when the distances to each sample location are used as additional predictors for 

interpolation. However, from a comparison with the reference methods, a further 

increase in prediction accuracy with additional distance fields is not expected in hybrid 

‘scorpan’ models for non-linear regressions. Nevertheless, it might help to improve the 

performance of some algorithms, such as artificial neural networks. 

For the regression methods tested with EDM, the application of machine learning 

algorithms depends on the dataset and they can perform differently (cf. Viscarra Rossel 

& Behrens, 2010). Random forests, Cubist and bagged MARS seem to be good 

options for EDM. In many cases, SVM and NN should provide good predictions. An 

outstanding question is what to do about the visible artefacts in the response surfaces 

of the tree-based approaches.  

Most of the methods tested, including EDM, are not suited for interpreting the models 

entirely in terms of the processes that result in soil formation. Such interpretations are 

achieved best with machine learning methods (e.g. RF or Cubist), together with the 

contextual mapping. Conversely, EDM is fast because it requires only a small set of 

additional predictors. 
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Conclusions  

The generic EDFs that we described and evaluated represent a new option for 

improving representation of the spatial factor (n) in the ‘scorpan’ model. We showed 

that the accuracy of predictions made with several commonly used machine-learning 

approaches generally improved when the new location covariates, or EDFs, were 

included in the analysis. These additional measures of spatial context and position can, 

and do, undoubtedly contribute to improvements in spatial prediction of soil properties 

and spatial data mining, in general. They enable machine-learning models to vary 

predictions locally to model non-stationary conditions and to make locally varying 

predictions that use information that quantifies local spatial autocorrelation. 

The results of this paper add to the growing body of evidence which suggests that 

machine learning models that use covariates describing spatial position or spatial 

context might eliminate the need for a second, separate step to correct residuals, as 

done in the kriging step of RK. They do this in a single-stage spatially varying prediction 

model. The remaining residuals ought not to exhibit any remaining spatial dependence. 
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Abstract 

As limited resources, soils are the largest terrestrial sinks of organic carbon. In this respect, 

3D modelling of soil organic carbon (SOC) offers substantial improvements in the 

understanding and assessment of the spatial distribution of SOC stocks. Previous three-

dimensional SOC modelling approaches usually averaged each depth increment for multi-

layer two-dimensional predictions. Therefore, these models are limited in their vertical 

resolution and thus in the interpretability of the soil as a volume as well as in the accuracy 

of the SOC stock predictions. So far, only few approaches used spatially modelled depth 
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functions for SOC predictions. This study implemented and evaluated an approach that 

compared polynomial, logarithmic and exponential depth functions using non-linear 

machine learning techniques, i.e. multivariate adaptive regression splines, random forests 

and support vector machines to quantify SOC stocks spatially and depth-related in the 

context of biodiversity and ecosystem functioning research. The legacy datasets used for 

modelling include profile data for SOC and bulk density (BD), sampled at five depth 

increments (0-5, 5-10, 10-20, 20-30, 30-50 cm). The samples were taken in an 

experimental forest in the Chinese subtropics as part of the biodiversity and ecosystem 

functioning (BEF) China experiment. Here we compared the depth functions by means of 

the results of the different machine learning approaches obtained based on multi-layer 2D 

models as well as 3D models. The main findings were (i) that 3rd degree polynomials 

provided the best results for SOC and BD (R2 = 0.99 and R2 = 0.98; RMSE = 0.36% and 

0.07 g cm-3). However, they did not adequately describe the general asymptotic trend of 

SOC and BD. In this respect the exponential (SOC: R2 = 0.94; RMSE = 0.56%) and 

logarithmic (BD: R2 = 84; RMSE = 0.21 g cm-3) functions provided more reliable estimates. 

(ii) random forests with the exponential function for SOC correlated better with the 

corresponding 2.5D predictions (R2: 0.96 to 0.75), compared to the 3rd degree polynomials 

(R2: 0.89 to 0.15) which support vector machines fitted best. We recommend not to use 

polynomial functions with sparsely sampled profiles, as they have many turning points and 

tend to overfit the data on a given profile. This may limit the spatial prediction capacities. 

Instead, less adaptive functions with a higher degree of generalisation such as exponential 

and logarithmic functions should be used to spatially map sparse vertical soil profile 

datasets. We conclude that spatial prediction of SOC using exponential depth functions, 

in conjunction with random forests is well suited for 3D SOC stock modelling, and provides 

much finer vertical resolutions compared to 2.5D approaches. 
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Introduction 

Soils are a fundamental part of ecosystem functioning and services [1]. As finite 

resources, soils contribute to food production, nutrient cycling, biodiversity and 

freshwater quality [2]. Furthermore, they are interconnected with other ecosystem 

functions and services, such as local and global climate alteration; and therefore, 

contribute indirectly to human well-being [3]. Among soil properties, soil organic carbon 

(SOC) plays an important role in this context. SOC increases the water-holding 

capacity (e.g. important for agriculture, forest and flood management), improves the 

physical properties of soils, such as nutrient availability for plants in agriculture and 

forestry, and accounts for carbon sequestration to mitigate climate change [4–6]. In 

forestry, there is strong interest in the effects of tree species and tree diversity on soil 

carbon input and mineralization as well as the net effects of these processes [7]. 

Knowledge about the interconnection between SOC, forests and the diversity of tree 

species as well as SOC stock degradation by soil erosion [8,9] and land cover change 

[10,11] can also help to implement countermeasures to reduce global warming [7]. 

Consequently, the implementation of a credible soil carbon auditing and monitoring to 

verify changes in SOC is crucial regarding soil security and carbon sequestration [7,12]. 

To preserve the functions and services provided by soils, a good quantitative 

understanding of the SOC stocks is required–both in the vertical domain of a soil profile 

as well as in the spatial domain over landscapes [13,14]. However, conventional soil 

maps use soil classes in horizontal dimension and soil horizons in vertical dimension. 

This categorical setup is often not precise enough and not well suited for interpreting 

soil functions and processes as well as for decision-making, since soil properties 

mostly vary continuous in space and time [15,16]. 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref001
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref002
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref003
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref004
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref006
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref007
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref008
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref009
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref010
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref011
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref007
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref007
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref012
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref013
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref014
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref015
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref016
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For the spatial prediction of continuous soil properties, such as SOC, methods of digital 

soil mapping (DSM) are suitable [17–19]. DSM is based on the soil forming factor 

concept [20] and the scorpan model introduced by McBratney et al. [21]. Both 

approaches illustrate soil information as a function of environmental covariates, 

influencing the process of soil formation. Terrain parameters, describing the shape of 

the land surface, are used widely as an environmental covariate in DSM. Terrain is an 

essential factor of soil formation and controls the effects of gravity, climate, lithology, 

water and biota [22–24]. Hence, models that are based on terrain parameters 

reproduce displacement and reallocation of soil (i.e. mass movements and soil 

erosion) and are of particular interest when modelling SOC at catchment scale [25]. 

Furthermore, terrain can not only be used to estimate or model soil displacement and 

reallocation, but also as a proxy for environmental covariates, which are not used as 

predictors, or inaccessible scorpan-factors. For instance, slope and aspect can serve 

as proxy for microclimate through its influence on local solar insulation [24]. The 

catchment area can serve as a proxy for soil fertility because of terrain driven water 

and SOC accumulation [19] and elevation, slope and aspect can act as proxy for parent 

material, tectonics and periglacial climate through strike and dip of the geological 

sediments and down-cutting processes [22,23,26]. 

For spatially modelling soil properties, different approaches have been established to 

derive relationships between soil properties and environmental covariates. However, 

for a reliable estimation of SOC stocks, the vertical dimension is crucial [13]. A common 

way of three-dimensional mapping is to consider the vertical dimension as multiple 

two-dimensional predictions, which can be interpreted in a three-dimensional way 

[17,27–29]. Because, multi-layered predictions do not provide full 3D soil information, 

since they are limited to the mapped depth increments. Information of the space 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref017
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref019
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref020
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref021
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref022
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref024
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref025
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref024
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref019
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref022
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref023
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref026
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref013
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref017
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref027
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref029
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between the mapped depth increments has to be derived on an interpretative and 

subjective basis. One approach is to vertically interpolate the single layers to construct 

a volumetric model, which is computationally intensive [30,31]. 

Therefore, multi-layered models are referred to as pseudo-3D mapping or 2.5D 

mapping [32]. To overcome these drawbacks, it is favourable to map soil properties as 

continuous depth function in the spatial domain [13,18], where the vertical distribution 

of soil properties is represented by depth functions, that are predicted spatially. These 

predictions allow the calculation of SOC stocks over the integral of the functions [33] 

as well as the calculation of fully three-dimensional maps at any vertical resolution 

[32,34–37]. 

Besides geostatistical frameworks [38,39], different depth functions have been applied 

for 3D modelling: power, logarithmic [32,40], exponential decay [32,33], polynomial 

[34,36] and equal-area spline functions [31,41]. 

While with 2.5D mapping soil properties are directly predicted at specific depth levels 

using the environmental covariates [17,29], 3D approaches use environmental 

covariates to predict parameters of the depth functions [34], which are abstract soil 

properties. According to the scorpan model, soil properties can be spatially mapped 

with neighbourhood relations solely [21], which also have been used for 3D modelling 

[36,40,42,43]. Over the past years, machine learning techniques have become a 

standard technique in DSM due to several advantages like dealing with non-linearity 

or the handling of large datasets. Aldana Jague et al. [33] used multiple linear 

regression (MLR) to model SOC incorporating terrain covariates, while Gasch et al. 

[43] compared spatial and terrain covariates using random forests (RF) and regression 

kriging for mapping SOC at different depth layers. Piikki et al. [27] used multivariate 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref030
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref031
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref032
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref013
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref018
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref033
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref032
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref034
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref037
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref038
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref039
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref032
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref040
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref032
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref033
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref034
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref036
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref031
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref041
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref017
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref029
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref034
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref021
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref036
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref040
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref042
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref043
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref033
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref043
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref027
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adaptive regression splines (MARS) to model clay and sand fractions as well as 

organic matter based on proximal soil sensing data. Several other studies also suggest 

that machine learning techniques, such as artificial neural networks (ANN; [41,44]), 

random forests (RF; [17]) and support vector machines (SVM; [45]), can be applied 

successfully in DSM. 

The objectives of this study were to test the spatial prediction of four soil profile depth 

functions for modelling SOC content and bulk density with different machine learning 

methods based on multi-scale terrain covariates. The tested soil profile depth functions 

are polynomials of 2nd and 3rd degree, natural logarithmic and exponential functions. 

The machine learning methods used to model the depth functions spatially were 

multivariate adaptive regression splines (MARS), random forests (RF) and support 

vector machines (SVM) with radial basis functions. We validated the machine learning 

models with 10-fold cross-validation and evaluated the results of the 3D mapping 

approach by comparing it with the predictions of the more common multi-layered 2.5D 

modelling approach based on five layers. 

Material and methods 

Study area and sampling design 

The BEF-China study sites are artificial biodiversity experiments on property leased 

and managed by the project partner Institute of Botany, Chinese Academy of Sciences, 

20 Nanxincun, Xiangshan, Bejing, 100093, PR China. Field studies did not involve 

endangered or protected species and no specific permissions for field research were 

required. 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref041
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref044
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref017
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref045
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The biodiversity and ecosystem functioning (BEF) China project [46] is located near 

Xingangshan, Jiangxi Province, PR China (UTM/WGS84: 50R 588000 3222000), 

about 400 km south-west of Shanghai (Fig 1). The study site is a topographically 

heterogeneous environment in a small catchment of 26.7 ha leased by the Institute of 

Botany of the Chinese Academy of Sciences (CAS). It features an elevation ranging 

from 105 to 275 m a.s.l., slopes inclined 29° in average and a maximum slope 

inclination of 45°, which are typically convex [19]. Non-calcareous slates with varying 

sand and silt content and grey-green sandstone constitute the bedrock. Predominant 

soil types are Endoleptic Cambisols with Anthrosols at the hillsides and Gleysols at the 

valley bottom. The mean soil depth is 0.6 m with underlaying isomorphic weathered 

slate (saprolite; [19]). Soil texture ranges from silt loam to silty clay loam [47]. The 

climate is typically subtropical with monsoons in summer, a mean annual temperature 

of about 17 °C and long-term average annual rainfall of about 1800 mm [48] but with 

a drier period from 2009 to 2012 [49]. 

 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref046
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g001
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref019
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref019
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref047
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref048
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref049
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Fig 1. Study area in mainland China with BEF-China plot scheme and indication of 
sampled plots.  

Upper right panel with permission by R. Hijmans; https://gadm.org/.  

 

About 18 ha were covered with 271 experimental plots. In total 8.7 ha at the valley 

bottom were not part of the experimental design due to paths and rivulets. Plots had a 

size of 25.8 m × 25.8 m (traditional Chinese unit of 1 mu, 1/15 ha) and were replanted 
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in 2008 after clear-cut of a commercial Chinese fir plantation. One plot comprised 400 

(20 × 20) trees in monocultures and mixtures of 2, 4, 8, 16 and 24 species. Species 

composition of the plots was based on random as well as non-random (plant trait-

oriented) extinction scenarios, where all species were represented equally (broken-

stick design). The datasets used in this study comprised soil samples from random 

subsets of all species and species richness levels referred to as VIPs (Very Intensively 

Studied Plots). For details on the experimental design, see Bruelheide et al. [46] and 

Trogisch et al. [50]. 

Datasets 

All described datasets are part of the legacy database of BEF-China. Soil sampling 

was conducted in 2014. Nine cores on a regular grid basis (3 cm in diameter) were 

taken at each of the 67 VIPs according to the BEF-China experimental design (Fig 1; 

[46]). The samples were bulked for each depth increment (0–5 cm, 5–10 cm, 10–20 

cm, 20–30 cm and 30–50 cm) and were referred to as dataset SOC (n = 67; Fig 2). 

Fine roots and charcoal were sorted out manually. For dry combustion CNS-analysis, 

a Vario EL III (Elementar, Hanau, Germany) was used. Due to acidic soil conditions 

there was no detectable carbonate fraction, and thus total carbon represented SOC 

[19]. SOC content ranged from 5.06 to 0.35% decreasing with depth. 

Bulk density samples (n = 55) were taken in April 2015 with soil sample rings (100 cm3) 

and five replicates for each depth increment at the VIPs. Bulk density was determined 

gravimetrically and was referred to as dataset BD (Fig 2). Bulk density ranged from 

0.75 to 1.84 g cm-3 increasing with depth. Since some plots with SOC samples did not 

have BD data (Fig 1), both soil properties were modelled individually instead of 

calculating and modelling the SOC stocks directly. This ‘model-then-calculate’  

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref046
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref050
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g001
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref046
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g002
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref019
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g002
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g001
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approach is a useful alternative to the ‘calculate-then-model’ approach. Both were 

compared by Orton et al. [51]. The digital elevation model (DEM) had a resolution of 5 

m and was generated by ordinary kriging [52] based on differential global positioning 

system data (DGPS) with 1956 points (73 points per ha; [19]). The distribution of 

datasets SOC and BD over the DEM is shown in Fig 3. Dataset SOC covered the 

elevation data more comprehensively compared to the dataset BD. 

 

Fig 2. Datasets for SOC and BD used in this study summarized in boxplots. 

The boxplots show the variation of the SOC and BD values for each depth increment. 
SOC and BD samples were taken in five depth increments and 9 cores per plot were 
bulked (Note that depth increments do not increase linearly). The grey lines show 
model depth functions (3rd degree polynomial for SOC and natural logarithmic function 
for BD; see subsection “3D mapping with soil depth functions”). 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref051
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref052
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref019
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g003
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Fig 3. Empirical cumulative distribution functions (ECDF) for SOC and BD datasets. 

The ECDFs show the locations of the sampling sites in the state space of the elevation 
(DEM) in metres above sea level (m a.s.l.). The aim is to show the coverage of the 
DEM feature space by the samples. It can be seen that most samples are located in 
the mid-range of the elevation values. Therefore, predictions at grid locations which 
are only sparsely covered by the samples (i.e. locations close to the minimum and 
maximum values of the DEM) may be less accurate. The minimum, median and 
maximum values of both datasets (DEM and sampling locations) are shown with 
vertical lines (dashed grey: DEM, dashed black: sampling locations) to compare the 
full range of the respective feature spaces. 

 

Digital terrain analysis 

Environmental covariates that describe the morphometry of a landscape are grouped 

in four major classes of terrain attributes: local, regional, combined (i.e. combinations 

of local and regional) and solar morphometric variables. Given that many terrain 

attributes can be calculated based on different equations or modelling approaches and 

because it is unknown which version would be most suitable for modelling SOC and 

BD within the study area, we used multiple established methods to derive single terrain 

attributes, if available. Given the circular nature of aspect, we used sine and cosine 
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transformations to derive eastness and northness. Overall, we calculated 58 terrain 

attributes (Table 1) with SAGA GIS 2.3.1 [53]. 

 

Table 1. Terrain attributes used for SOC and bulk density modelling. 

 

 

 

Terrain attributes derived from a DEM with a given resolution may not be suitable for 

landscape characterization and for digital soil mapping due to a non-representative 

DEM resolution [63], since the terrain attributes are not derived on the most relevant 

scale [64,65]. To examine the influence of scale, [65] applied simple smoothing (mean) 

filters with different neighbourhood sizes. This approach was applied on every terrain 

attribute used in this study with five circular neighbourhoods (radii of 1, 2, 4, 6 and 8 

pixels), resulting in 290 terrain attributes in total. The maximum radius was set to 8 

pixels to represent the local catena scale of 90 m. 

Machine learning techniques 

We compared three data mining methods to test the 3D prediction of soil profile depth 

functions for SOC and BD based on terrain covariates. Given the large number of 290 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-t001
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref053
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref063
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref064
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref065
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref065
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covariates (instances) and sample sizes of n = 67 and n = 55, not all available 

techniques could be applied. For example, the interpretable multiple linear regression 

(MLR) analysis used for spatial modelling of polynomial depth functions by Aldana 

Jague [34] requires more samples (n) than instances (p; [66]). Furthermore, we have 

to account for multi-collinearity. Many terrain covariates in this study are calculated by 

different algorithms for the same terrain attribute and on different spatial scales with 

the same algorithm, which is often seen as a constraint in machine learning [66]. To 

reduce the covariate space to either enable MLR or handle the ‘curse of 

dimensionality’, principal component analysis (PCA) is often applied. However, feature 

reduction with PCA can have negative effects on model accuracy with multi-scale 

terrain data and models with the full set of covariates have higher accuracies [65]. 

Other feature reduction methods increase accuracy only marginally [65]. In this study, 

we applied multivariate adaptive regression splines (MARS), random forests (RF) and 

support vector machine (SVM). These machine learning methods are robust against 

multi-collinearity, can handle n<p [66] and select the most informative covariates 

without expert knowledge. Further, we omitted feature reduction. 

For modelling, R version 3.3.1 was used [67]. For accessing the machine learning 

packages, the uniform interface caret [68] was used, which also offers data handling 

and model validation methods. 

Multivariate adaptive regression splines (MARS). 

MARS was introduced by Friedman [69] and is a generalisation of recursive partitioning 

regression approaches using piecewise linear models. With its linear basis functions, 

it overcomes the discontinuous response of other recursive partitioning models like 

Classification and Regression Trees (CART; [70]) and can generate continuous 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref034
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref066
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref066
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref065
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref065
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref066
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref067
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref068
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref069
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref070
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surfaces. Therefore, prediction accuracy of MARS is expected to be higher [69]. MARS 

is a partial linear function, where each new part is added with an exhaustive search for 

best fit and models a finite quantity of the regression. Thus, the model measures 

variable importance by its nature and is insensitive to non-informative instances. 

MARS require very little pre-processing and are non-affected by collinearity, since the 

predictor selection is random during iteration and redundant features are used equally 

[66]. This may affect measurement of variable importance and interpretation, which, 

however, is out of scope in this study. For modelling using MARS, the earth package 

version 4.4.6 [71] was used. 

Random forests (RF). 

RF is a widely used machine learning technique in digital soil mapping [17,22,64,72]. 

It was introduced by Breiman [73] and is an ensemble technique with CART [70] as a 

base learner. The single decision tree uses binary splits to create more homogenous 

groups in respect to the response. To grow an ensemble of trees, different random 

subsets of covariates (bootstrap sampling) and features (random set of features for 

every split) are used to build a single tree. The final prediction is created by averaging 

all individual tree outputs. Breiman [73] has proven that random forests with a large 

number of trees is robust against overfitting. Moreover, it is robust against noise, non-

informative and correlated features. RF also returns feature importance measures 

(affected by correlation as MARS; [66]) and there is little need for fine-tuning [74]. 

The randomForest package version 4.6–12 [75] was used for modelling with RF. 

Support vector machine (SVM). 

Originally, SVM has been developed for classification problems [76]. It is a kernel 

method and uses hyperplanes to linearly separate classes of objects. For regression 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref069
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref066
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref071
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref017
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref022
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref064
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref072
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref073
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref070
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref073
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref066
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref074
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref075
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref076


Appendix – Manuscript 4 

190 
 

problems, Drucker et al. [77] developed support vector regression machines (SVR), 

which are an extension of SVM. Therefore, the term SVM is often used in both cases. 

The kernel function defines a transformation of the input data into a high dimensional 

feature space. In this feature space, it is possible to derive a linear regression 

hyperplane for non-linear relationships. Afterwards, it is back-transformed to non-linear 

space. Smola and Schölköpf [78] provide a comprehensive and detailed insight into 

SVR. The kernel used in this study is a radial basis function, where the scaling 

parameter σ is estimated by caret after a method by Caputo et al. [79]. In contrast to 

MARS, Drucker et al. [77] suggest that SVM should be used when the number of 

features is larger than the number of instances, since its optimisation does not depend 

on the dimensionality of feature space. Furthermore, SVM is partially insensitive to 

outliers (depending on cost factor) and does not require feature reduction to reduce 

multi-collinearity [66]. The kernlab package version 0.9–25 [80] was used for radial 

support vector regression modelling. 

Data pre-processing. 

Some algorithms are sensitive to the scale and the range of the covariate space (e.g. 

SVM). To reduce effects of small values and little variance, SVM needs centred and 

scaled covariates [66], which was computed using the scale and centre-option in caret. 

To make all models comparable, this was also done for MARS and RF. 

Spatial 2.5D and 3D models 

Differences between 2.5D models and spatial prediction of depth functions. 

The environmental covariates were used to train regression models (MARS, RF and 

SVM) to predict SOC and BD. For 2.5D predictions this was done for each sampled 

depth increment individually, were we assigned the mid-depth of the sampled 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref077
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref078
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref079
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref077
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref066
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref080
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref066
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increments as depth of the respective layer. This method to obtain volumetric soil 

information has several advantages. For modelling of each standard depth individually, 

there are no further requirements to abstract soil information in terms of vertical 

variability, i.e. a soil profile function. Furthermore, there is no error propagation through 

secondary models that describe depth functions. On the other hand, in contrast to 3D 

modelling, 2.5D modelling has the disadvantage that the individual model outcomes 

are purely two-dimensional. Soil properties of the depth increments between the 

standard depths are not used in the model and have to be derived on an interpretative 

basis [15] or through further processing [30] after spatial prediction. However, this is a 

well-established and well-documented approach. Therefore, we compare the results 

of the 3D approach described below directly with the 2.5D results. 

3D mapping with soil depth functions. 

For the spatial modelling of depth functions, which we handled similar to the soil 

properties in terms of modelling, we applied 3rd degree polynomial functions proposed 

by Aldana Jague [34] and less flexible 2nd degree polynomials as well as logarithmic 

and exponential functions [32]. The workflow of the 3D mapping (Fig 4) of this study 

involved five main steps: 

i). Mathematical approximation of depth functions to the five depth increments with a 

linear least squares approach. These were 

𝑓1(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3 (1) [34] 

𝑓2(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 (2) 

𝑓3(𝑥) = 𝑐1 ∗ ln (𝑐2𝑥) (3) [32] 

𝑓4(𝑥) = 𝑒𝑥𝑝𝑐1+𝑐2𝑥 cf. [32] 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref015
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref030
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref034
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref032
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g004
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref032
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where f1,2,3,4(x) is SOC and BD at a specific depth x (depth of the lower corner of a 

voxel in cm), c0 is the intercept that equals SOC and BD at depth 0 (cm) and the 

function coefficients c1, c2 and c3 are dimensionless. This altogether described the 

vertical distribution of SOC in respect to depth x at a certain location. 

ii). Evaluation of model error for all equations in (i). 

iii). Spatial modelling of the function coefficients c1, c2, c3 and c0 (analogous to two-

dimensional modelling of SOC and BD) of the depth function with the lowest error (ii) 

with MARS, RF and SVM. The depth function parameters were treated and evaluated 

similar to a soil property. 

iv). Evaluation of the cross-validation results for MARS, RF and SVM models of the 

depth function coefficients. 

v). Solving the depth functions with spatially modelled coefficients (iii) at each grid 

location to generate a three-dimensional model. 

The depth functions were solved for depths from 0 cm to 50 cm in 5 cm increments. 

The resulting 11 depth layers (matrices) were stacked to two three-dimensional models 

(one for SOC and BD each), where individual values are represented by voxels, which 

are the volumetric 3D analogue of 2D pixels. Due to the nature of the polynomial depth 

functions, negative SOC predictions in the profiles are possible. Consequently, the 

values of these voxels had to be set to zero. This is not required for logarithmic and 

exponential functions. 
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Fig 4. Flow chart summarizing the methodology steps of the 3D mapping and the used 
datasets at each step. 
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Compared to the standard depth method, the main advantages of spatially modelled 

depth functions are a higher vertical resolution and the fact that the result can be 

interpreted as volumetric structure. Instead of pixels with SOC and BD information in 

multiple layers, volumetric elements–so called voxels–in a three-dimensionally 

georeferenced stack of matrices with user-defined vertical resolution are obtained. 

Since the depth functions are secondary models, the error which is propagated by the 

depth function model to the spatial model depends on the chosen function. Due to the 

limited number of samples per profile, cross-validation of the depth functions was 

omitted. 

The final models for SOC and BD were validated internally against the measured 

values of the input datasets. 

 

Validation and evaluation 

The evaluation consists of two independent steps for the 2.5D multi-layered model 

predictions and the volumetric 3D model predictions of SOC and BD, where we treat 

the depth function parameters as soil properties. 

In a first step, we evaluated each model of the soil properties SOC and BD as well as 

the spatial models of the depth function parameters, by using a 10-fold cross-validation 

with the coefficient of determination (R2) and the root mean square error (RMSE) as 

quality criterion. In this step, the models were tuned over the default grid- or hyper-

learning sequence of parameters [81] using the tune grid function of caret to identify 

the most suitable combination of tuning parameters with the lowest RMSE and to 

reduce the model error, while preserving the models ability to generalise. The tuning 

parameters are degree and nprune for MARS, mtry for RF and cost for SVM. For RF 
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ntree was set to the default value and σ for SVM was calculated by a method after 

Caputo et al. [79]. All models used the same set of folds to make cross-validation 

results comparable. The final models were selected from this sequence by the lowest 

RMSE. 

To estimate the effect of overfitting of the depth function models based on grid learning, 

we evaluated the 3D model results with the datasets SOC and BD by R2 and RMSE 

(observed-predicted-evaluation). Overfitting is indicated by large differences in the 

prediction error between the training and the validation sets [81]. 

Further, we compared the 3D models against the 2.5D predictions of the same 

datasets to evaluate the performance of the 3D models. We chose this approach, 

because the legacy datasets are too small to hold out a larger subset for independent 

validation. The model results should be similar, if the spatial prediction of depth function 

parameters is reproducing the spatial distribution of the soil properties. This means 

that independently from the modelling framework (modelling of SOC and BD or 

modelling depth function as soil property) the results of the 3D model are reasonable, 

if both models are similar. 

We see this comparison as a valid method for the evaluation of the 3D models, since 

Brus et al. [38] report strong correspondence between 2.5D and 3D geostatistical 

models and MARS, RF and SVM are well established for 2D and 2.5D soil mapping 

and in data science [17,27,66]. Therefore, we use the 2.5D layered predictions at the 

specific mid-depth of the increments as reference predictions. For the comparison 

between the 2.5D models and the corresponding depths of the 3D models, we used 

the coefficient of determination R2, Lin’s concordance correlation coefficient (ρc; [82]), 

which validates the models against the 1:1 line, and the RMSE. 
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Estimation of SOC stocks 

The three-dimensional array of SOC stocks was calculated by 

𝑆𝑂𝐶𝑠𝑡𝑜𝑐𝑘 =
𝑆𝑂𝐶

100
∗ 𝐵𝐷 ∗ 5002 ∗ 5 

where SOCstocks (g voxel-1) is the soil organic carbon storage, SOC is SOC content 

(%), BD is bulk density (g cm-3), 5002 is the base area of a voxel (cm2) related to the 

DEM resolution of 500 cm and 5 is the vertical resolution in cm. Consequently, 1 voxel 

represented 1.25 m3 of soil. Adjustment with the fraction of coarse material (> 2 mm) 

was omitted, since the coarse fraction was negligible low (< 5 vol.-%) at the VIPs and 

cannot be determined precisely by coring. According to Orton et al. [51] calculating the 

SOC stocks from two models of SOC and BD is an useful alternative when the samples 

are not taken at the same locations. 

 

Results 

2.5D predictions of standard depths as reference 

For the models of SOC, the mean cross-validation R2 of MARS was 0.33 with a root 

mean square error of 0.39%, compared to RF with an R2 of 0.41 (RMSE 0.34%) and 

SVM with an R2 of 0.39 (RMSE 0.35%; cf. Table 2). Models for BD showed a mean 

R2 of 0.43 (MARS), 0.39 (RF) and 0.39 (SVM) and mean RMSE values of 0.09 g cm-

3 (MARS), 0.08 g cm-3 (RF) and 0.08 g cm-3 (SVM). In addition to the mean 

values, Table 2 shows the prediction accuracies and the RMSE’s for each depth 

increment and all three machine learning techniques of both SOC and BD. 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref051
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-t002
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-t002
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Table 2. Performance of 10-fold cross-validation for MARS, RF and SVM applied on 
the sampled standard depths of SOC and BD. 

 

 

 

 

Table 3. Performance of a 10-fold cross-validation for MARS, RF and SVM applied on 
function coefficients of a 3rd degree polynomial (f1 for SOC and BD with four 
coefficients) and natural logarithmic function (f3 for BD with two coefficients). 
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Soil depth functions 

For SOC, all equations showed R2 values higher than 0.9 (0.99 for f1, 0.96 for f2, 0.96 

for f3 and 0.94 for f4) with a RMSE ranging from 0.36 (f1) to 0.7% (f2). For BD, the 

performance in terms of R2 was similar (RMSE = 0.07 g cm-3), except for f3 with R2 = 

0.84 (RMSE = 0.22 g cm-3), which is the natural logarithmic function. The 3rd degree 

polynomial (f1) resulted in the best fits for SOC and BD. However, the general trend of 

SOC in the profiles was exponential (Fig 2). Hence, both the 3rd degree polynomial and 

the exponential functions were chosen for further spatial modelling and comparison in 

this study. With higher errors and without being able to reproduce the general trend in 

the profiles profile the 2nd order polynomial (f2) was omitted in the following steps. 

Spatial modelling of soil depth functions 

The cross-validation results for the machine learning methods applied on the depth 

functions (c.f. Table 3) showed, that the polynomial depth functions for MARS, RF and 

SVM for SOC were comparable in their goodness of fit with marginal differences (mean 

R2 from 0.3 to 0.32). R2 of the exponential depth functions ranged from 0.3 for MARS 

to 0.44 for RF.  

The models of the function coefficients could not be compared directly because 

c0 represented the SOC in % and BD in g cm-3, whereas c1, c2 and c3 were 

dimensionless. Hence, we compared these models by the normalised RMSE 

(nRMSE), which is the RMSE divided by the coefficients range (Table 3). The nRMSE 

showed little variation of around 0.18 for all coefficient predictions of the 3rd polynomial 

depth function of SOC. RF had the lowest mean of nRMSE over all coefficients (0.17). 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g002
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-t003
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-t003
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The lowest nRMSE (0.09) for SOC was achieved by the exponential depth functions 

(RF and SVM). 

The models based on the 3rd degree polynomial depth functions of BD had a mean 

R2 of about 0.23–0.4, while the mean nRMSE was about 3×104, due to the low 

performance of models with c3. Given such high errors, none of the models could 

reasonably predict the 3rd degree polynomial depth function for bulk density. The 

exponential function was not able to reproduce the vertical trend of BD. Thus, we used 

the logarithmic depth function, although it fitted the five depth increments least. 

However, these spatial depth function models performed better (mean R2 from 0.36 to 

0.45; nRMSE of about 0.16 for SVM). 

Evaluation of 3D predictions 

For the comparison of 3D models against the 2.5D reference predictions, we used the 

coefficient of determination R2, Lin’s concordance correlation coefficient ρc and the 

RMSE in corresponding depths (Table 4). 

The three-dimensional MARS prediction for SOC with the 3rd degree polynomial depth 

function showed the largest difference to its counterpart. The prediction at 2.5 cm 

ranged from close to zero to 15% SOC compared to 1.5 to 4% SOC in the two-

dimensional prediction (Fig 5). The other depth increments showed a similar pattern 

with values down to -15% SOC. For the 2.5 cm increment the performance of RF was 

slightly better than that of SVM, but subsequently dropped with increasing depth. 

Especially at 40 cm, but also at 25 cm and 15 cm, the three-dimensional prediction of 

RF differed more from the two-dimensional predictions than the three-dimensional 

predictions of SVM differed from their counterparts. There was no distinct over- or  

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-t004
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g005
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Table 4. Coefficient of correlation (R2), Lin’s concordance correlation coefficient (ρc) 
and RMSE of 2.5D reference predictions and correspondent depths of 3D predictions 
with polynomial (f1), logarithmic (f3) and exponential (f4) depth function. 

 

 

 

Table 5. Internal validation results of the final 3D models with the exponential function 
for SOC and the logarithmic function for BD.
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underestimation of RF, but random scattering between -4 and 4% SOC for 40 cm (Fig 

5). SVM showed lower deviation at 15 cm, 25 cm and even 40 cm. There were less 

predictions with negative values and less scattering. The predicted depth intersections 

of spatially modelled depth functions corresponded to the two-dimensional predictions 

by SVM largely by R2 and ρc, while RMSE is low (Table 4). 

In contrast, the 3D predictions of RF and SVM based on the exponential function 

showed good correspondence for all five depth increments (Table 4). The 3D 

predictions overestimated SOC for the 0–5 and 5–10 cm increments and 

underestimated it for 20–30 and 30–50 cm slightly due to the exponential nature of the 

equation, but there was no wide scattering as it was the case with the polynomial 

prediction for RF. 

The results of the internal validation showed high correspondence between the chosen 

models (RF with exponential function for SOC and RF with logarithmic function for BD) 

and respective input data at all five sampled depth increments (Table 5). The R2 and 

RMSE values of the internal validation were similar to the validation results of the 

model comparison, indicating that model overfitting of both models is similar (Table 4). 

This partly accounts to the propagation error of the profile depth function. The spatial 

prediction of the exponential function for SOC had an average R2 of 0.79 with an 

average RMSE of 0.33% and the prediction of the logarithmic function used for BD had 

a R2 of 0.77 with an average RMSE of 0.14 g cm-3. 

 

 

 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g005
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g005
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-t004
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-t004
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-t005
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-t004
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Fig 5. 3D predictions of sampled depth increments plotted against corresponding 2.5D 
predictions. 

3D prediction of SOC was calculated with 3rd degree polynomials (upper row) and 
exponential function (middle row). The 3D prediction for BD with logarithmic function 
(lower row). 
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SOC stocks 

The 2.5D models showed SOC stocks of 61.9 Mg ha-1 from 0 to 40 cm, with 19, 14.7, 

12, 8.9 and 7.3 Mg ha-1 in the individual depth increments (from surface downwards). 

The 3D model predicted 78.3 Mg ha-1 over the whole interval. The upper 20 cm of soil 

contained about 46.4 Mg ha-1. This depth is often designated as topsoil [83,84] and is 

also a critical soil depth for modelling plant productivity and community assembly [85]. 

31.9 Mg ha-1 SOC are stored in the subsoil from 20 to 40 cm. Considering that the 

rooting depth varies, depending on the species and individual age, a static 

discrimination between topsoil and subsoil may be not appropriate. The model showed 

that plants with shallow roots down to 5 cm mainly interacted with a carbon pool of 

10.9 Mg ha-1, whereas plants with roots in 25 cm depth interacted with a pool of 54.5 

Mg ha-1. Fig 6 shows the 3D prediction of SOC stocks as vertical intersections of the 

solum. The highest stocks in the upper 5 cm were predicted in the central upper slopes 

and at the western slopes. Predictions for this depth at the valley bottom were around 

20% lower. However, at the valley bottom the predictions for intermediate depth 

increments (around 30 cm) were higher than predictions at the upslope positions. The 

depth function for SOC stocks was much steeper and the SOC stock decline with depth 

was more pronounced at upslope positions compared to downslope and valley 

positions. 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref083
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref084
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref085
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g006
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Fig 6. Three-dimensional prediction of SOC stocks for the whole catchment. 

The final 3D SOC stock model is shown in vertical slices 150 m apart to display the 
vertical variability, which is larger than the spatial variability. 

 

 

Discussion 

2.5D predictions of standard depths as reference 

As RF returned the lowest error for the 2.5D models, this was the best choice for 

modelling SOC. SVM ranked slightly below. Compared to the results presented by 

Lacoste et al. [30], who used Cubist for 2.5D SOC stock mapping, the accuracy of our 

results was similar and reasonable. 

However, the sampled VIPs do not represent the terrain of the study site adequately, 

since they were chosen based on species richness levels, which were distributed 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref030
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randomly, and not representative for the study site. For example, a representative 

sampling design could be achieved with Conditioned Latin Hypercube Sampling 

(cLHS) [72,86]. 

For bulk density SVM and RF performed equal by means of R2 and RMSE and showed 

a similar pattern, especially at 15 cm and 40 cm. MARS performed least for BD. In 

general, RF resulted in the most stable predictions and is therefore recommended over 

SVM. 

Evaluation of 3D predictions 

The negative values in the prediction results and the pronounced difference between 

the 3D models, with predictions up to 15% SOC, and the 2.5D models indicated that 

MARS is not capable of adequately predicting the depth functions in space, although 

the cross-validation showed similar results as for RF and SVM models. The latter 

showed better correspondence between the 3D and the 2.5D models (Fig 5, Table 4). 

According to the results of the direct comparison between the multi-layered prediction 

and the corresponding depths in the 3D model, RF with exponential functions was most 

suitable for SOC modelling. RF and SVM with polynomials performed well at upper 

depth increments and less in lower increments. MARS models were not suitable of 

reproducing the 2.5D predictions. Lower performance of all techniques with 

polynomials in the lower depth increments may be referred to lower influence of the 

terrain as a driving factor to explain SOC accumulation and redistribution (e.g. by 

erosion). Other factors accounting for SOC redistribution in deeper soil horizons may 

be bioturbation or vertical transport in the liquid soil phase. Additionally, it is possible, 

that accumulation layers in the solum, that would reflect the lateral distribution, were 

not fully covered by the legacy dataset and, therefore, the interpretation remains 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref072
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref086
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g005
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-t004
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difficult. All these processes and others relevant for SOC concentration as well as SOC 

stocks cannot be fully covered by a distinct set of terrain parameter and lead to a 

dilution effect by predicting the deeper horizons. Lower accordance of the models also 

may be referred to uncertain models of function coefficients (c3) and (c2), which have 

significant influence at greater depths (cubic and squared) and exponentiate up this 

error. Based on the results, we chose RF with exponential depth functions for three-

dimensional mapping of SOC and the logarithmic depth function for BD. 

SOC stocks 

Compared to other studies in this area, the estimated SOC stocks were well in line. 

Scholten et al. [19] calculated mean SOC stocks of 70 Mg ha-1 for the upper 50 cm 

with the same data but a different approach. Chen et al. [83] compared five plantations 

with different species in five age groups and calculated SOC stocks for the upper 20 

cm. Especially the age of the trees and shrubs and their biomass have a strong impact 

on SOC stocks. Very young forest communities showed SOC stocks ranging from 20 

to 25 Mg ha-1 and plantations with older trees of 7 to 10 years 30–40 Mg ha-1. The latter 

were slightly older than the trees of BEF-China, where 42 Mg ha-1 were predicted. 

Diverse species pools in these studies may explain differences. Tang et al. [87] found 

SOC stocks in the top 60 cm in bamboo forests ranging from 60 to 200 Mg ha-1. 

The introduced approach is capable of summing SOC stocks at any depth interval. 

Since topsoil depth varies spatially, conventional static assumptions of topsoil 

thickness can result in inaccurate SOC stock calculations for individual horizons. 

Incorporating spatial models of topsoil depth into 3D SOC stock mapping can 

overcome this drawback and help to improve ecological and biodiversity models as 

conducted in the BEF-China experiment. In particular, consideration of biotic predictors 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref019
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref083
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref087
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like forest biomass, tree species richness and functional plant diversity might further 

improve model fit and accuracy of estimated SOC stocks [14]. This would allow one to 

quantify terrain-specific effects of changes in forest cover and composition on SOC 

stocks. The developed models could also help to identify areas that are especially 

prone to loss of SOC stocks (e.g. by soil erosion or land cover change). 

Furthermore, continuous three-dimensional SOC mapping can support models of a 

national SOC inventory. Yang et al. [37] applied depth functions to categorical soil 

types and estimated SOC stocks for mainland China. Combining models with high 

vertical resolution by Yang et al. [37] and continuous spatial modelling like in this study 

can improve accuracy of SOC mapping compared to the categorical mapping 

approach. This combination can also help to estimate and understand carbon fluxes 

between topsoil and subsoil [88] as well as between soil and the atmosphere [5]. Both 

objectives play major roles in inventory estimation, SOC auditing and decision making 

in respect to ecosystem services and carbon sequestration [1,5,7,12,89]. 

 

Conclusion 

This study comprises the spatial prediction of soil depth functions for three-dimensional 

modelling of SOC and bulk density. The spatial prediction of the function coefficients 

enabled the calculation of two three-dimensional arrays by solving the depth functions 

for depths from 0 to 50 cm by 5 cm increments. This was used to estimate the SOC 

stocks in high spatial (5 m) and vertical (5 cm) resolution. The main conclusions of this 

study are: 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref014
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref037
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref037
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref088
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref005
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref001
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref005
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref007
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref012
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref089
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 The general trend of SOC as visualised by the boxplots (Fig 2) was exponential. 

However, polynomial depth functions described the soil profiles for SOC with 

higher accuracy and the logarithmic functions for BD showed better results in 

spatial modelling. Therefore, we conclude that functions resulting in high 

accuracies based on the soil profile data may not be the most suitable for spatial 

modelling, as they may overfit the vertical trend of SOC content. 

 The 3D RF models correspond best with the 2.5D counterparts (R2 up to 0.96). 

Thus, RF is recommended to predict SOC based on exponential depth functions 

and bulk density with logarithmic depth functions in high vertical resolution. The 

2.5D and 3D predictions of SOC with RF correlated much better, especially 

when using exponential functions, and lacked accuracy in deeper layers for 

SOC when modelled based on polynomial functions. 

 Comparisons between conventional 2D and 2.5D predictions at the sampled 

depth and the corresponding depth of the three-dimensional predictions showed 

that MARS is not suitable for modelling corresponding 2.5D and 3D models, 

although cross-validation of the individual models showed similar performance 

in R2. 

Minor conclusions are: polynomial functions may be an option, when the problem of 

propagated errors and the ability to generalise in the horizontal domain is investigated 

further, however, polynomials of any degree have to be used carefully. To overcome 

these shortcomings, a higher sampling density in the vertical and horizontal domain 

and in combination with other depth functions, such as equal-area splines [90], should 

be considered, since exponential functions are not suitable for soil properties that do 

not increase or decrease continuously. 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone-0220881-g002
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881#pone.0220881.ref090
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The 3D approach presented in this study is promising for SOC auditing in various 

disciplines and especially for decision making regarding climate and land use policies. 

Future work should focus on sampling design to cover valley positions outside the 

established plots at site A of BEF-China project. Given the dynamics of SOC stocks, 

we recommend the analyses of time series data and the expansion of the current 

database for four-dimensional models. 
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Abstract 

Soil organic C (SOC) and soil moisture (SM) affect the agricultural productivity of soils. 

For sustainable food production, knowledge of the horizontal as well as vertical 

variability of SOC and SM at field scale is crucial. Machine learning models using 

depth-related data from multiple electromagnetic induction (EMI) sensors and a 

gamma-ray spectrometer can provide insights into this variability of SOC and SM. In 

this work, we applied weighted conditioned Latin hypercube sampling to calculate 25 

representative soil profile locations based on geophysical measurements on the 

surveyed agricultural field, for sampling and modeling. Ten additional random profiles 

were used for independent model validation. Soil samples were taken from four equal 

depth increments of 15 cm each. These were used to approximate polynomial and 
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exponential functions to reproduce the vertical trends of SOC and SM as soil depth 

functions. We modeled the function coefficients of the soil depth functions spatially with 

Cubist and random forests with the geophysical measurements as environmental 

covariates. The spatial prediction of the depth functions provides three-dimensional 

(3D) maps of the field scale. The main findings are (a) the 3D models of SOC and SM 

had low errors; (b) the polynomial function provided better results than the exponential 

function, as the vertical trends of SOC and SM did not decrease uniformly; and (c) the 

spatial prediction of SOC and SM with Cubist provided slightly lower error than with 

random forests. Hence, we recommend modeling the second-degree polynomial with 

Cubist for 3D prediction of SOC and SM at field scale. 

 

Abbreviations 

CCC  concordance correlation coefficient 

cLHS  conditioned Latin hypercube sampling 

DSM  digital soil mapping 

ECa  apparent electrical conductivity 

EMI  electromagnetic induction 

HDP  horizontally oriented magnetic dipole 

nRMSE normalized root mean squared error 

SM  soil moisture 

SOC  soil organic carbon 

3D  three-dimensional 

VDP  vertically oriented magnetic dipole 

wecLHS weighted conditioned Latin hypercube sampling with extremes. 
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1 INTRODUCTION 

The lack of knowledge about the resource soil is a major gap in agriculture (Godfray et 

al., 2010). Soils play a key role in sustainable agriculture (Bouma, 2014; Bouma & 

McBratney, 2013) and thus food production. Soil management practices are directly 

linked to the spatial knowledge about soil properties and conditions that are relevant 

indicators for more efficient and effective agriculture. As one of the key soil properties, 

soil organic C content (SOC) is relevant for soil quality and fertility, as it influences the 

soil's nutrient availability and structural stability (Dexter et al., 2008). In combination 

with soil texture, SOC affects the soil water-holding capacity, plant available water, and 

soil moisture (SM; Rawls, Pachepsky, Ritchie, Sobecki, & Bloodworth, 2003). 

Understanding the spatial as well as vertical variability of SOC and SM is essential for 

plant cultivation, which requires fertile soils and sufficient water. Digital soil mapping 

(DSM) can provide high-resolution information for sustainable agricultural 

management to facilitate food production on the field and farm scale through the spatial 

prediction of physical and chemical soil properties (Govers, Merckx, van Wesemael, & 

van Oost, 2017), such as SOC and SM. This facilitates an improvement in the decision-

making processes for fertilization, irrigation, and liming, among others, and 

subsequently higher productivity of food and biofuels (McBratney, Whelan, Ancev, & 

Bouma, 2005). 

However, soil properties vary in the horizontal as well as in the vertical domain. Hengl 

et al. (2014) and Viscarra Rossel et al. (2015) mapped soil properties in multiple 

depths, which can be interpreted three-dimensionally, but do not actually provide 

continuous three-dimensional (3D) information (Liu et al., 2016). To fully grasp the 

continuous character of soil, the third dimension should be included in the analysis as 

continuous entity (e.g., by incorporating mathematical functions that represent the 
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vertical distribution of soil properties, so-called soil depth functions; Aldana Jague et 

al., 2016; Minasny, McBratney, Mendonça-Santos, Odeh, & Guyon, 2006; Rentschler 

et al., 2019; Veronesi, Corstanje, & Mayr, 2014). The spatial distribution of soil depth 

functions is related to the spatial distribution of environmental covariates given by the 

soil forming equation (Jenny, 1941; McBratney, Mendonça Santos, & Minasny, 2003): 

𝑆 = 𝑓(𝑠, 𝑐, 𝑜, 𝑟, 𝑝, 𝑎, 𝑛) 

where S is the soil or any soil information we would like to explain, s stands for other 

available soil properties at a location, c is climate, o is organisms, the factor r is the 

terrain, p is the parent material, a is age, and n is the spatial position. The function 

coefficients of the soil depth functions can be treated as an abstract soil property and 

therefore modeled and predicted spatially based on comprehensive sets of 

environmental covariates delineated from digital elevation models representing terrain 

(Aldana Jague et al., 2016; Minasny et al., 2006; Rentschler et al., 2019; Veronesi 

et al., 2014), provided by land cover maps representing organisms (Minasny 

et al., 2006; Veronesi et al., 2014) and gamma-ray sensing data as indicators for soil-

forming minerals (Aldana Jague et al., 2016; Cook, Corner, Groves, & Grealish, 1996; 

Minasny et al., 2006). Besides gamma-ray spectrometry, hydrogeophysical methods, 

such as electromagnetic induction (EMI) sensors, provide a widely used base in DSM 

in general (Binley et al., 2015; Cassiani et al., 2012; Martini et al., 2017), as well as in 

3D soil mapping specifically (Moghadas, Taghizadeh-Mehrjardi, & Triantafilis, 2016), 

complementing field sampling by generating high-resolution spatial geophysical 

covariates. In particular, geophysical sensing technologies and measurements are 

urgently needed at the field scale, as the distribution of soil properties (S) in the vertical 

domain are decreasingly linked to terrain (r) and climate (c) variability but more prone 

to variations in weathering, mineralogy (as parts of s and p), biological activities, as 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0002
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0034
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0045
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0050
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0034
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0050
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0002
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0013
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0034
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0003
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0010
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0028
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0036
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well as past anthropogenic influences (o and a; Jobbágy & Jackson, 2000; Rentschler 

et al., 2019). 

 

Core Ideas 

 Multi-depth ECa and gamma-ray spectrometry describe vertical trends of SOC 

and soil moisture. 

 Machine learning models can predict vertical trends of SOC and soil moisture 

spatially. 

 Cubist models of polynomial depth functions provide accurate 3D maps at field 

scale. 

Apparent electrical conductivity (ECa) from EMI sensors and dose rate, 40K, 238U, 

and 232Th contents from gamma-ray spectrometers are covariates that are closely 

linked to numerous soil properties, such as texture, horizonation, bulk density, SOC, 

and SM in the case of EMI (Cho, Sudduth, & Chung, 2016; Doolittle & Brevik, 2014; 

Martini et al., 2017), and in the case of gamma-ray spectrometry texture and SOC. 

Thus, gamma-ray spectrometry and EMI are used either individually or combined 

(Castrignanò, Wong, Stelluti, Benedetto, & Sollitto, 2012) as a proxy to the mineralogy 

of the parent material and other soil properties developed or inherited from the parent 

material (Cook et al., 1996; Jenny, 1941; McBratney et al., 2003). The geophysical 

measurements are interpolated with geostatistical methods like kriging (Krige, 1951) 

to obtain spatial information of ECa, 40K, 238U, and 232Th covering the whole field 

with high spatial resolution (Abdu, Robinson, Seyfried, & Jones, 2008; Schmidt et al., 

2014). The interpolations of the geophysical measurements constitute the covariate 

space of the agricultural field, which is utilized in crucial modules of DSM: 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0024
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0045


Appendix – Manuscript 5 

221 
 

1. The spatial data of 40K, 238U, and 232Th and multi-depth ECa are used to 

calculate the locations of a representative sampling scheme for soil sampling. 

The aim is to fully cover potential soil variability that influences the modeled soil 

property, and that is found on the field at the time of measurement. For that, 

many approaches use conditioned Latin hypercube sampling (cLHS) or 

extensions like weighted extreme cLHS (Minasny & McBratney, 2006; Schmidt 

et al., 2014). The cLHS is a stratified random sampling design that provides an 

optimal stratification of a covariate space with a reduced number of spatially 

distinct sample sites (Minasny & McBratney, 2006). 

2. The sampled point-wise soil data (i.e., SOC and SM in this work) is linked to the 

geophysical measurements at the soil profile locations with linear or nonlinear 

machine learning models (Aldana Jague et al., 2016; Rentschler et al., 2019; 

Schmidt et al., 2014). The dependent variable of the models are the samples 

measured at the locations introduced above, and the independent variables are 

the interpolated geophysical measurements at these locations. 

3. The model trained with sampled soil data and geophysical measurements is 

used to make predictions to the locations of the covariate space where no soil 

samples were taken. 

4. The model predictions are validated with additional soil samples. Ideally, the 

sampling scheme used for validation is independent from the scheme used for 

model training, which can be achieved with randomly distributed samples (Brus, 

Kempen, & Heuvelink, 2011; Steyerberg & Harrell, 2016). 

 

Based on the modules of DSM described above and the potential to measure 3D soil 

properties provided by geophysical measurements (other available soil properties s in 
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the soil forming equation), we assume that EMI and gamma-ray spectroscopy are 

highly suitable for the spatial prediction of soil depth functions, as the combination of 

multi-coil EMI and gamma-ray spectrometry provides multiple penetration depths and 

a different sensitivity to soil parameters (Dierke & Werban, 2013; McNeill, 1980a, 

1980b). To our knowledge, there are no studies on spatial prediction of soil depth 

functions with EMI and gamma-ray sensing data as environmental covariates. 

The major objective of this study was the prediction of SOC and SM in 3D using soil 

depth functions based on EMI data from sensors with 12 different penetration depths 

and gamma-ray spectrometry by capturing the response of the parent material and 

overlaying soil. For model training, we used Cubist and random forests, two machine 

learning methods often used in DSM. The hypothesis is that for 3D modeling of SOC 

and SM, data from EMI and gamma-ray spectrometry will achieve low errors 

throughout the sampled depth increments, due to the different depth penetration of the 

sensors. 

 

2 MATERIALS AND METHODS 

2.1 Study site 

The study site is an agricultural field of 58 ha ≈70 km north of Leipzig, Saxony, 

Germany (Figure 1). The field is located on the Elbe flood plain and bordered by the 

creeks Altes Flieth and Fließgraben. There is no visible terrain variation in the field. 

Present soil types are Gleysols and Gleyic Cambisols consisting of alluvial loam (loam 

and clay) over Holocene sediments of fluvial sand (LAGB, 2014). At the time of 

sampling in August 2017, the cultivated wheat (Triticum aestivum L.) had been 

harvested, and the field was bare. 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-fig-0001
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0026
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FIGURE 1 

Location of the field Wesen near Selbitz, Saxony-Anhalt, Germany, sampling scheme 

of the geophysical measurements with electromagnetic induction (EMI) and gamma-

ray spectrometry, and sampled soil profiles (circle, weighted conditioned Latin 

hypercube sampling with extremes [wecLHS] samples for calibration, cross, random 

samples for validation). The signal of the CMD-Explorer with 4.49-m intercoil spacing 

and vertical dipole orientation (VDP) was noisy due to a grid gas pipe, and therefore 

measurements of all sensors were omitted in the marked area 
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2.2 Methodological overview 

The workflow consisted of seven individual steps (Figure 2). First, the geophysical 

measurements were taken with EMI and gamma-ray spectrometry and, subsequently, 

interpolated geostatistically with ordinary kriging (Krige, 1951) to receive spatial 

predictions of the environmental covariates. These covariates were used to calculate 

representative sampling locations with an extension of cLHS (Minasny & 

McBratney, 2006) and served as independent variables for the soil depth function 

modeling. In the next step, these models were applied for spatial prediction of the soil 

depth functions with the independent variables and validated independently in the final 

step. The subsections below describe this workflow in detail. 

 

 

 

FIGURE 2  

Workflow diagram illustrating the individual working steps of this study 

 

 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-fig-0002
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0025
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0033
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The geophysical measurements were recorded with two EMI sensors (CMD-Explorer 

and CMD-Mini-Explorer, both GF Instruments) and a gamma-ray spectrometer (GS 

CAR, GF Instruments) in August 2016. The EMI sensors measure the apparent electric 

conductivity (ECa in mS m−1). The penetration depth of the magnetic field is mainly 

controlled by the intercoil spacing and the orientation of the dipoles, as well as the 

applied frequency. The penetration depth and footprint of the sensor data increase with 

increasing intercoil spacing. Vertically oriented magnetic dipoles (VDP/coil axis 

horizontal coplanar [HCP]) provide a higher depth penetration than horizontally 

oriented magnetic dipoles (HDP/coil axis vertical coplanar [VCP]) while taking into 

account the different cumulative sensitivity functions of both orientations (Callegary, 

Ferre, & Groom, 2012; Martini et al., 2017; McNeill, 1980b; von Hebel et al., 2019). 

The CMD-Explorer and the CMD-Mini-Explorer enable simultaneous multi-depth 

exploration of ECa with either VDP or HDP. The instruments have one transmitter and 

three receiver coils with different intercoil spacings covering six effective penetration 

depths, which is defined by the manufacturer (GF Instruments) as the depth above 

which 70% of the signal comes from (Table 1). This multi-sensor setup measuring 

ECa and penetration depths of up to 6.7 m enables the detection of textural patterns of 

the spatially variable subsurface sediments of the Elbe floodplain indirectly (Doolittle & 

Brevik, 2014). This is important for SM modeling to account for subsurface sediment 

structures, as gravel lenses with high permeability can drain and clay lenses can retain 

percolate water or facilitate capillary water rise (Abdu et al., 2008). 

The sledge-mounted devices (height of CMD-Explorer 80 cm, height of CMD-Mini-

Explorer 10 cm) were towed by a four-wheel vehicle at <10 km h−1, crossing the field 

in multiple parallel (track distance 27 m) and a few crossed transects. By using 

overlapping measurements collected at different time from crossing the field in the end, 
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drifts in the data were assessed and a linear drift function was applied to correct the 

data (Martini et al., 2017). Before interpolation these quality control lines, as well as 

outliers related to a gas pipe line, were removed (Figure 1). Within the dataset, 

negative values of ECa occurred due to the custom calibration of the instrument (von 

Hebel et al., 2019). We corrected the measurements with an offset of 

3.44 mS m−1 (CMD-Mini-Explorer VDP 0.32 m), 4.86 mS m−1 (CMD-Mini-Explorer 

HDP 0.32 m), and 0.21 mS m−1 (CMD-Mini-Explorer HDP 0.71 cm) to avoid confusion 

with these values and to make use of the containing information on spatial variability. 

Smoothing of the data was not necessary due to low noise conditions. All EMI sensors 

captured five records per second in any dipole orientation. We refrained from inverting 

EMI data, since the reliability of the required calibration procedure is limited due to a 

number of fundamental issues that are not solved yet (Martini et al., 2017). 

TABLE 1. Intercoil spacings and effective penetration depth for vertical and horizontal 

coil orientation for the used electromagnetic induction (EMI) sensors CMD-Mini-

Explorer and CMD-Explorer 
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The bulk (≈90%) of aboveground measured gamma radiation is emitted in the top 30–

50 cm of soil (Cook et al., 1996). We used a gamma-ray spectrometer with a 4 l 

NaI(Tl)-crystal and automatic peak-stabilization to measure the concentration 

of 40K, 238U, and 232Th. The device has 512 channels with an energy range from 

100 keV to 3 MeV. Measurements were captured every 5 s. The 40K, 238U, and 232Th 

were measured as counts per second. The concentration of 40K (in %) and 238U 

and 232Th (both in μg g−1, where μg g−1 = 1 ppm) was calculated corresponding to the 

decay rate at specific energy levels. The concentration of 40K, 238U, and 232Th was 

used to calculate the dose rate (Gy h−1; IAEA, 2003). 

The geophysical measurements served as a basis for the sampling design (Figure 1) 

and were interpolated to a grid cell size of 5 m with ordinary kriging (Krige, 1951) using 

individual exponential semivariogram functions for each dataset in the gstat package 

version 1.1-5 (Pebesma, 2004) in R version 3.4.3 (R Development Core Team, 2017). 

Beforehand, measurements within 1-m range were averaged. Noisy measurements 

along a straight line were detected for the CMD-Explorer with the higher depth 

penetrations, caused by an underground grid gas pipe (Figure 1). For reasons of 

continuity, all measurements from the EMI sensors and the gamma-ray spectrometer 

in this area were excluded from further processing. This crucial step is to be evaluated 

carefully, since all consecutive steps strongly depend on accurate environmental 

covariates. Therefore, error of the kriging predictions was assessed with a 10-fold 

cross-validation, which is an out-of-sample testing method to assess the ability of the 

model to generalize to independent data subsets. For that, the dataset is partitioned in 

10 folds of nearly equal size, where nine folds are used to train a model and tested 

with the 10th fold. This is done 10 times to test all folds, and the quality measure is the 

average of all models. For the final model, all folds are used. 
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2.4 Soil sampling 

For the estimation of the number of soil profiles to sample, the areas under curve for 

the empirical cumulative distribution functions were calculated for the proposed 

sampling set sizes of n = 10, 20, 25, 30, 35, and 40 and the geophysical measurements 

with the MESS package version 0.5.0 (Ekstrøm, 2018) in R. The mean of the 

differences between the areas under curve indicated the error for each sample set size 

and the sample set size with the lowest error is chosen (Ramirez-Lopez et al., 2014; 

Schmidt et al., 2014). In this case, the optimal sample set size with the lowest error 

was 35. However, due to costs and feasibility constraints, we agreed on a sample set 

size of 25 for the representative sampling design as tradeoff between feasibility and a 

slight increase in model error. 

Spatial soil modeling requires specific sampling schemes or designs for sampling and 

validation (Brus et al., 2011; Schmidt et al., 2014). The aim of a sampling design is to 

cover the full range of potential driving factors that influence the modeled soil property 

and that are found on the field at the time of measurement while reducing soil sampling 

effort and analytical costs. Therefore, we calculated the locations of the soil profiles to 

sample for model training with a weighted cLHS with extreme values (wecLHS; 

Schmidt et al., 2014) based on the geophysical covariates with the lowest error in 

cross-validation of each sensor, to obtain representative sampling locations. The 

wecLHS extends the cLHS (Minasny & McBratney, 2006) by including samples from 

the extrema of the used covariate space to cover the full range of data. Further, a 

weighting scheme according to the explained variation (R2) of the kriging predictions 

is implemented to account for noise in the interpolation (Schmidt et al., 2014). The 

wecLHS design was calculated with 150,000 iterations. The settings were a 



Appendix – Manuscript 5 

229 
 

temperature decrease of 0.95, an initial temperature of 1, optimization every 10 steps, 

and an initial Metropolis value of 1. 

Additionally, we sampled 10 fully randomly distributed profile locations for independent 

model validation. We chose a fully random sampling design for validation, since 

wecLHS is a stratified random sampling design and for independent validation a 

nonstratified sampling strategy is recommended. Further, no assumptions regarding 

the standard error of the estimated quality measures are required (Brus et al., 2011; 

Steyerberg & Harrell, 2016). The locations of the sampled profiles are displayed in 

Figure 1. 

The soil profiles were sampled from four equal depth increments to 60-cm depth (0–

15, 15–30, 30–45, 45–60 cm) with a hand auger on 2 d with the same weather 

conditions in August 2017 again after harvest under similar field conditions as during 

sensing. Sixty centimeters is the depth above which ≈80% of the roots of many 

agricultural crops are found (Fan, McConkey, Wang, & Janzen, 2016). Samples were 

taken for each depth increment as mixed subsamples from two corners and the center 

of 1 m2 (Schmidt et al., 2014), resulting in 100 samples for the training set and 40 

samples for the validation set. The positions of the profiles were located with a 

differential GPS (Leica TPS1200+, Leica Geosystems). 

 

2.5 Laboratory analysis 

For SOC determination, the samples were dried at 40 °C for 24 h, sieved (<2 mm), and 

ground and root fragments were removed. Total C was determined with dry combustion 

using an ELTRA CHS-580A Helios analyzer (ELTRA). Although LAGB (2014) states 

that soils in the flood plains of the Elbe river are mostly free of carbonates, pH of the 

samples ranged from 5.2 to 7.2. Consequently, inorganic C was determined 
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gravimetrically with 10 % HCl solution. Then, SOC was determined as the difference 

between total C and inorganic C. 

Soil moisture was measured gravimetrically with drying at 90 °C for 24 h. A summary 

of the training and validation sets for SOC and SM is shown in Figure 3. Training and 

validation sets were similar. The rather small differences are due to the small sampling 

set size of the validation set and its sensitivity to extreme values because of its random 

and nonstratifying nature. 

 

 

 

FIGURE 3  

Summary of the training and validation sets for soil organic C (SOC) and soil moisture 

(SM) as boxplots and the respective polynomial soil depth functions. The boxplots 

show the variation of the samples within the sampled depth increments. Training and 

validation sets have a similar range at each sampled depth increment and the 

validation set is suitable for model evaluation. The polynomial soil depth functions show 

the vertical distribution at the 25 profiles of the training set 
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2.6 Model training, prediction, and validation 

2.6.1 Soil depth functions and 3D predictions 

For the 3D modeling of SOC and SM, we tested a second-degree polynomial 

(Equation 1; Aldana Jague et al., 2016) and an exponential function (Equation 2; 

Rentschler et al., 2019): 

𝑓(𝑥)=𝑐0+𝑐1𝑥+𝑐2𝑥2fx=c0+c1x+c2x2 (1) 

𝑓(𝑥)=exp𝑐1+𝑐2𝑥fx=expc1+c2x  (2) 

where c0 is the intercept with the y axis, thus the SOC and SM at the surface, 

and c1 and c2 are dimensionless coefficients. 

The functions coefficients c0, c1, and c2 were modeled and predicted for the whole 

study site based on the geophysical data of the EMI sensor and gamma-ray 

spectrometer with Cubist and random forests. After modeling and spatial prediction of 

the coefficients of the soil depth functions, the respective function can be solved at 

every grid location of the study site, and SOC and SM can be calculated with any 

vertical resolution (Aldana Jague et al., 2016; Liu et al., 2016; Veronesi et al., 2014). 

However, vertical resolution is limited by the vertical sampling of each profile that 

reflects the vertical variation within each profile. In this work, the soil depth functions 

were solved from 0 to 60 cm with a vertical resolution of 5 cm. The main advantage of 

this approach is that solving the soil depth functions provides data points that represent 

a three-dimensional entity (voxels) of the response variables instead of two-

dimensional pixels. The voxels were stored in an array with the dimensions of the study 

area in the horizontal domain (Rentschler et al., 2019). A workflow diagram is given in 

Figure 2. 
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2.6.2 Supervised machine learning 

In many applications in DSM, supervised machine learning is used to train regression 

models with numeric values, such as the coefficients of soil depth functions. In such 

models, the function coefficients at each sampling location are the dependent variable 

(soil property S in the soil forming equation) and the geophysical measurements 

compose the covariate space of independent variables (i.e., ECa in the measured 

depth intervals, 40K, 238U, and 232Th) at the location of each sample for regression: 

𝑆=𝑓(ECa,40K,238U,232Th)   (3) 

Subsequently, the model can predict the dependent variable for each grid location at 

the field, since the independent variables were measured and interpolated onto the 

whole study area. Common supervised machine learning methods in DSM are Cubist 

and random forests. 

Cubist uses a robust system called M5 model tree, which was established by Quinlan 

(1992). It applies a recursive partitioning of data to build a piecewise linear model as a 

decision tree, where the terminal nodes are linear models. When growing the tree, 

intra-subset variation is minimized at each split. A leaf of such a tree applied on 

continuous data contains a linear model connecting the values of the training cases to 

their attribute values. The procedure is based on building and applying rules. The rules 

generate subsets of the data according to similar characteristics of predictor and 

response variables. The rules are structured as if (condition is true), then (regress), 

else (apply next rule), comprising single or multiple predictor variables. With the rules 

that fulfil the conditions, soil properties are predicted by ordinary least-squares 

regression. If the rule does not apply, a new rule is processed for the next node of the 

tree within an iterative process. These rule sets are appropriate for model interpretation 

(Quinlan, 1992, 1993). 
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Random forests were developed by Breiman (2001) as an ensemble of classification 

and regression trees (Breiman, Friedman, Stone, & Olshen, 1984). Binary splits are 

used for a single decision tree to homogenize the predictor variables according to the 

dependent variable, thus minimizing the node impurity. Random forests use a 

bootstrap approach, where random predictor variables are chosen at each split of a 

tree. The final regression model results from averaging all decision tree outputs 

(Breiman, 2001). Random forests are robust against overfitting and interpretable with 

the feature importance calculated from its randomly permutated trees (Breiman, 2001). 

However, this is beyond the scope of this study as it requires more detailed analysis of 

the depth functions as dependent variables. 

The tuning parameters for the machine learning methods used were the number of 

subsequently adjusted trees committing to the final decision tree (committees) and the 

number of neighboring samples from the training set to adjust the model prediction 

(neighbors) for Cubist. The number of randomly selected covariates at each split (mtry) 

was used for tuning of random forests. The number of trees (ntree) and the node size 

of random forests were set to default as this is not necessary when a large number of 

trees is computational manageable (Probst & Boulesteix, 2018). To find the best tuning 

parameters for the models, a grid search (Schmidt, Behrens, & Scholten, 2008) with a 

10 times repeated 10-fold cross-validation was applied. The final models were 

calibrated with the tuning parameters of the models with the lowest RMSE. 

 

2.6.3 Model validation 

The 3D predictions are validated independently with the coefficient of determination 

(R2, Equation 3) as measure of correlation between the observed and predicted values, 

Lin's concordance correlation coefficient (CCC, Equation 4), the RMSE (Equation 5), 
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and the normalized RMSE (nRMSE, Equation 6) as measures of error with the 10 

random profiles of four samples each taken at 0–15, 15–30, 30–45, and 45–60 cm. 

The CCC is a measure of concordance of the model predictions and the measured 

values on the 1:1 line from the origin. The RMSE is a measure of error, which allows 

to compare models with observed values of the same magnitude. Since the response 

of SOC and SM has observed values of different range, the nRMSE is required to 

compare the models for each depth increment. 

The equations for R2, the CCC, the RMSE, and nRMSE are 

𝑅2 = [
∑𝑛𝑖=1 (𝑦−𝜇𝑦)(𝑦 −𝜇𝑦 )

√∑𝑛𝑖=1 (𝑦−𝜇𝑦)2√∑𝑛𝑖=1 (𝑦 −𝜇𝑦 )2
]
2

   (1) 

𝐶𝐶𝐶 =
2ρσyσŷ

σy2+σŷ2+(μy−μŷ) 2 (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (yi − ŷi)2𝑛
𝑖=1  (3) 

𝑛𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
  (4) 

where y and ŷ are the observed and predicted values, μy and μŷ denote the means for 

the observed and predicted values, respectively, ρ is the correlation coefficient 

(Pearson's r), σy and σŷ are the corresponding variances, ymax is the maximum of the 

observed values, and ymin is the minimum of the observed values. 

 

3 RESULTS AND DISCUSSION 

3.1 Geophysical measurements and interpolation 

The results of the 10-fold cross-validation for the geostatistical interpolation showed a 

high coefficient of determination (R2) between the observed and the predicted values 

for all EMI sensors (R2 > .96) and low errors (nRMSE ≤ 0.08). The predictions for the 
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CMD-Mini-Explorer with intercoil spacings of 0.71 and 1.18 m and VDPs had the 

highest coefficient of determination (R2 = .99 and nRMSE = 0.01), and the predictions 

for the CMD-Explorer with an intercoil spacing of 4.49 m and horizontally oriented 

dipole had the lowest coefficient of determination (R2 = .96 and nRMSE = 0.04). 

The cross-validation results of the gamma-ray spectrometer showed coefficients of 

determination ranging from .75 (238U) up to .92 (dose rate). The lower R2 compared 

with EMI sensor interpolation is to be expected due to the noise prone passive nature 

of statistical counting gamma decays. The errors of the interpolation range from 0.05 

(dose rate) to 0.07 (238U). All results of the 10-fold cross-validation are shown in 

Table 2. 

The spatial variation of the measured ECa varies between the sensors and sensor 

orientation. The highest values were measured with the CMD-Mini-Explorer VDP 

(0.71 m; Table 2, Figure 4b), and the lowest values were measured with the CMD-Mini-

Explorer HDP (0.32 m; Figure 4d). The measures with the CMD-Mini-Explorer in the 

same orientation (VDP and HDP) showed considerable changes in ECa (Figure 4a–

4c, 4d–4f) with increasing intercoil spacing, whereas the measurements with CMD-

Explorer were more alike (Figure 4g–4l). However, we used all EMI measures as 

independent variables, since the similar depths of investigation may contain varying 

information while using different coil orientation resulting in  
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TABLE 2. Results of the 10-fold cross-validation of the interpolation with ordinary 

kriging. The sensors and sensor setups we used for the weighted conditioned Latin 

hypercube sampling with extremes (wecLHS) sampling design are highlighted in bold 
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FIGURE 4  

Results of the interpolation with ordinary kriging for apparent electrical conductivity 

(ECa) measured with an (a–c) CMD-Mini-Explorer vertically oriented magnetic dipole 

(VDP), (d–f) CMD-Mini-Explorer horizontally oriented magnetic dipole (HDP), (g–i) 

CMD-Explorer VDP, and (j–l) CMD-Explorer HDP in order of increasing effective depth 

range. CRS, coordinate reference system; UTM, Universal Transverse Mercator 

(coordinate system) 
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different shapes of their sensitivity functions. The interpolations of 40K, 232Th, 238U, and 

dose rate (Figure 5) showed different spatial trends with some shared local minima in 

the center and the southeast and a shared local maximum in the west of the field. All 

results of the interpolations are visualized in Figures 4 and 5. 

Given the low error (nRMSE ≤ 8%) of the interpolation for the EMI data and for gamma-

ray measurements, the environmental covariates interpolated with ordinary kriging 

represented the spatial distribution of ECa at multiple depths, 232Th, 238U, and dose rate 

adequately. Thus, they were suitable to calculate a wecLHS sampling design, as well 

as for modeling and mapping of SOC and SM in the horizontal and vertical domain. 

The covariates with low cross-validation error and high coverage of the covariate space 

used for wecLHS were dose rate for the gamma-ray spectrometer and CMD-Mini-

Explorer with VDP (0.32 m intercoil spacing), CMD-Mini-Explorer with HDP (0.32 m) 

and CMD-Explorer with VDP (4.49 m) for the EMI sensors. 

 

3.2 Soil depth functions 

The fitted soil depth functions showed the vertical trend of SOC and SM at the profile 

locations (Figure 3). For both polynomial and exponential functions at each profile, 

the R2 and RMSE values of the soil depth functions were calculated. The soil depth 

function with the highest R2 for SOC and SM was the polynomial function (Equation 1) 

with a mean R2 of .98 for SOC and 0.92 for SM (RMSE = 0.14 and 0.00). The 

exponential soil depth function had lower mean R2 and a higher error for both SOC 

and SM. A summary of the evaluation of the soil depth functions is shown in Table 3. 
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FIGURE 5  

Results of the interpolation with ordinary kriging for (a) 40K, (b) 232Th, (c) 238U, and (d) 

dose rate 
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The minimum values in R2 and the high standard deviation of the soil depth functions 

for SM showed that the soil depth functions could not depict the vertical trend in some 

soil profiles (Table 3). This is the case for Profiles 2 and 10, where the SM was 0.22, 

0.20, 0.23, and 0.21 and 0.25, 0.21, 0.22, and 0.24, respectively. These profiles had a 

local maximum or minimum between 15 and 45 cm that could not be modeled with the 

exponential function, which cannot be explained with the geophysical measurements 

or additional knowledge about the field. In both cases, the polynomial function of 

second degree had a lower error than for all other profiles. To solve this, other functions 

are required that can reproduce vertical distributions with local minima and maxima 

(minimax; Minasny, Stockmann, Hartemink, & McBratney, 2016). 

 

TABLE 3. Summary of the model validation results with the coefficient of determination 

(R2) and RMSE (in %) of the polynomial and exponential depth functions for soil 

organic C (SOC) and soil moisture (SM). Bolded values are referred to in the text 
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3.3 3D predictions 

The independent validation with the validation set of 10 randomly located profiles with 

the same sampled depth increments showed a high overall explained variation and low 

errors for both polynomial and exponential functions and for both Cubist and random 

forests. The R2 of Cubist models for SOC and for SM was .86 and .88 with the 

polynomial function and .86 and .87 with the exponential function (Table 4). Random 

forest models showed a similar R2 except for SM with the polynomial function 

(R2 = .84). The CCC of all Cubist models was slightly higher than the CCC of the 

random forests models. Cubist models had a CCC of .91 for SOC and .91 for SM with 

polynomial function. The CCC for SM with exponential function was slightly higher 

(CCC = .93). The error of all four models for SM was identical (RMSE = 0.02). For 

SOC, the error of the Cubist and random forests models with polynomial function was 

about 0.02–0.03% lower than the error of models with exponential function. The 

difference in RMSE between Cubist and random forests was <4% (Table 4). 

TABLE 4. Results of the independent model validation with the explained variation as 

coefficient of determination (R2), Lin's concordance correlation coefficient (CCC), and 

RMSE (in %) of the polynomial and exponential soil depth functions for soil organic C 

(SOC) and soil moisture (SM). Bolded values are referred to in the text 
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The minimum values in R2 and the high standard deviation of the soil depth functions 

for SM showed that the soil depth functions could not depict the vertical trend in some 

soil profiles (Table 3). This is the case for Profiles 2 and 10, where the SM was 0.22, 

0.20, 0.23, and 0.21 and 0.25, 0.21, 0.22, and 0.24, respectively. These profiles had a 

local maximum or minimum between 15 and 45 cm that could not be modeled with the 

exponential function, which cannot be explained with the geophysical measurements 

or additional knowledge about the field. In both cases, the polynomial function of 

second degree had a lower error than for all other profiles. To solve this, other functions 

are required that can reproduce vertical distributions with local minima and maxima 

(minimax; Minasny, Stockmann, Hartemink, & McBratney, 2016). 

 

3.3 3D predictions 

The independent validation with the validation set of 10 randomly located profiles with 

the same sampled depth increments showed a high overall explained variation and low 

errors for both polynomial and exponential functions and for both Cubist and random 

forests. The R2 of Cubist models for SOC and for SM was .86 and .88 with the 

polynomial function and .86 and .87 with the exponential function (Table 4). Random 

forest models showed a similar R2 except for SM with the polynomial function 

(R2 = .84). The CCC of all Cubist models was slightly higher than the CCC of the 

random forests models. Cubist models had a CCC of .91 for SOC and .91 for SM with 

polynomial function. The CCC for SM with exponential function was slightly higher 

(CCC = .93). The error of all four models for SM was identical (RMSE = 0.02). For 

SOC, the error of the Cubist and random forests models with polynomial function was 

about 0.02–0.03% lower than the error of models with exponential function. The 

difference in RMSE between Cubist and random forests was <4% (Table 4). 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-tbl-0003
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https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-tbl-0004
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TABLE 5. Results of the independent model validation for each individual sampled 

depth (as the midpoint of the depth increment) with the coefficient of determination 

(R2), Lin's concordance correlation coefficient (CCC), RMSE, and the normalized 

RMSE (nRMSE) for soil organic C (SOC) and soil moisture (SM). For SOC as well as 

SM, Cubist with polynomial functions had the lowest error. Bolded values are referred 

to in the text 

 

 

 

 



Appendix – Manuscript 5 

244 
 

More important is that the nRMSE of Cubist and random forest models with the 

polynomial function did vary least with depth in absolute values. This showed that the 

model could predict SOC and SM with low error throughout the sampled interval of the 

soil profile (Table 5). Both Cubist and random forests with the exponential function for 

SOC and SM had high errors (nRMSE) in the depth increment ranging from 15 to 30 

cm. Therefore, we conclude that the exponential function could not depict the vertical 

trend of SOC and, to a lesser extent, of SM within the sampled profile. We ascribe this 

to the 30-cm-deep plough horizon, which needs to be accounted for with a less 

uniformly decreasing soil depth function. The flexibility of polynomial functions of third 

degree or higher is potentially capable of depicting local variations in the soil better 

than exponential functions. We recommend that this be investigated in more detail. 

Further, the R2 of the SOC models decreased from around .80 to .50 on average with 

increasing depth and increased from .76 to .88 with increasing depth for SM. Lin's CCC 

showed a similar pattern. These differences in explained variability indicate differences 

in explanatory power of the geophysical measurements for SOC and SM modeling for 

the depth intervals used in this study. On the one hand, geophysical measurements 

and especially EMI measurements are influenced by SM, whereas SOC content is 

related indirectly through SM content and influenced by other soil and environmental 

processes. This may not be covered by EMI and gamma-ray sensors, where covariates 

of the latter have little influence on depths >30 cm. On the other hand, this may refer 

to the decreasing range of SOC content and the increasing range of SM (Figure 3). 

The lower SOC content variability in depth may not be represented by the covariates. 

Therefore, these complex interactions need be investigated in more detail to make 

more precise conclusions about the use of geophysical measurements as covariates 
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for 3D modeling with soil depth functions. The final predictions are sketched in Figure 

6 and shown in detail in the Supplements 1–4. 

 

 

FIGURE 6  

Three-dimensional (3D) predictions of soil organic C (SOC) and soil moisture (SM) with 

polynomial depth function and Cubist (see Supplements 1–4 for detailed animated 

cross sections) 

 

Analyzing the interaction of spatial prediction of SOC and SM and the geophysical 

covariates, one can see that the highest SOC values were located in areas with high 

ECa values (compare Figure 1). Figure 5 shows topsoil SOC contents of up to 6% in 

the western and central part of the site (lower left side) and ≈3% in the south (lower 

right side). This range of SOC content at this particular agricultural field is similar to the 

range of SOC in most agricultural fields in central Europe (Tóth, Jones, & 

Montanarella, 2013). A similar pattern can be seen in the SM prediction. In the western 

part, SM is distributed uniformly, with 20–25% in the whole profile, and in the south, 

there is much less SM in the deeper subsoil (5%) than in the topsoil (15–20%). These 

patterns can also be found in the sampled soil profiles (Figure 3). 

In the central part of the field, pillar-like patterns of higher SOC content values were 

visible. These pillars are well described and linked to old meanders of the rivulet 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-fig-0001
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-fig-0005
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0049
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-fig-0003
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Fließgraben or the river Elbe. In these areas, a farmer can expect better growing 

conditions for field crops, as SOC affects nutrient availability and SM retention. Thus, 

these areas need less additional fertilizer than the areas with less SOC and lower ECa. 

Using the proposed framework can therefore contribute to a sustainable agricultural 

approach (e.g., precision agriculture that applies fertilizer according to soil 

requirements). Three-dimensional mapping is highly suitable for informing farmers, as 

sampling based on wecLHS is fast (only few profiles are required) and the model 

development based on the geophysical measurements is computationally efficient, 

relatively fast compared with conventional soil mapping, as well as potentially 

extendable to other soil properties such as pH, cation exchange capacity, and texture 

(Cassiani et al., 2012; Doolittle & Brevik, 2014). 

 

4 CONCLUSION 

In this case study, we predicted SOC and SM in the vertical as well as horizontal 

domain (i.e., in 3D using geophysical covariates derived from EMI and gamma-ray 

sensors with different intercoil spacings and thus different penetration depths and 

footprints of the signal). A weighted cLHS design was applied for calculation of the 

locations of the calibration samples. We hypothesized that the used sensor setup will 

lead to predictions of SOC and SM with high explained variation throughout the soil 

profile as well as in the spatial domain. 

We showed that coefficient of determination and model error of the polynomial and 

exponential functions modeled and predicted with Cubist and random forests were 

stable over all depth increments. Thus, the data from two EMI sensors with depth-

dependent sensitivity and gamma-ray spectrometry are well suited for the 3D 

prediction of SOC and SM despite the reduced number of samples. In general, the 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0010
https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20062#vzj220062-bib-0016
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differences between the models’ error were rather small. The differences between the 

used machine learning methods are smaller compared with the differences between 

the used soil depth functions. This demonstrates the suitability of the sampling design 

approach for modeling with Cubist and random forests. Therefore, we conclude that 

the choice between soil depth functions is more important than the choice of the 

machine learning method for spatial prediction, if both methods are well established in 

DSM. The flexible polynomial function is capable of depicting local variation, which is 

not limited to plow horizons but also comprises clay-enriched horizons, pH drops with 

decreases in CaCO3 content, and others. We recommend the combination of second-

degree polynomial soil depth function with Cubist for 3D mapping of SOC and SM with 

two EMI sensors and gamma-ray spectrometry covering a wide range of environmental 

covariates representing the horizontal and vertical domain of SOC and SM variation 

on the field scale. Within the scope of precision agriculture, this approach is suitable 

for SOC and SM estimation in similar environmental conditions, as it offers a spatial 

evaluation that incorporates the whole soil continuum. Thus, the 3D mapping of SOC 

and SM with high spatial and vertical resolution can help to optimize sustainable 

management strategies on the field scale with respect to fertilization, irrigation, and 

liming and subsequently to increase food and biofuel productivity. 

For future investigation and to simplify the approach for field application, the 

contribution and importance of the individual sensors and sensor settings are of great 

interest. Since both orientations of the CMD-Explorer showed similar interpolation 

results, these measurements may be strongly cross-correlated and redundant. This 

can be evaluated and solved with the feature importance calculated within random 

forests, but it requires comprehensive and complex analysis of the interaction of the 

modeled depth function coefficients and the geophysical measurements (e.g., by using 
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different slices of the target variable related to a specific depth increment compared to 

the depth sensitivity of the sensors). Further, the extension of the modeled depth may 

be of interest, since plants can uptake water from greater depth. This depends on the 

crop and also extends to forestry. For that purpose, other soil properties such as 

texture, water-holding capacity, permeability, horizontation, or the extension of the 

modeled depth to the depth of bedrock may be of interest. More complex soil depth 

functions such as polynomials of higher degree may be beneficial, when a tradeoff 

between soil sampling costs and model benefits is found. In our study, we successfully 

integrated depth-dependent ECa data; however, we refrained from inversion of the data 

because we did not want to introduce additional uncertainties and ambiguities into the 

data analysis. As recently shown by von Hebel et al. (2019), an enhanced processing 

chain can provide accurate and quantitative EMI data. This offers interesting 

possibilities to extend the presented approach by depth-true electrical conductivity 

values. 
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