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Abstract

The objective of this thesis is the efficient approximation of high-dimensional stochastic dif-
ferential equations (SDE’s) via newly developed, theoretical-based adaptive methods. The
thesis is split into two parts, which motivate and discuss the (temporal) approximation of
high-dimensional SDE’s from different aspects. Conceptually, the derivation of the corre-
sponding adaptive methods follows the same principle: finding an appropriate scheme for
the approximation of the underlying SDE, derivation of a (weak) a posteriori error estimate,
and an implementation of an adaptive method based on it.

In the first part of this thesis we mainly consider SDE systems emerging from a spatial
discretization of a given semilinear stochastic partial differential equation (SPDE). The cor-
responding adaptive method consists of the semi-implicit Euler scheme and a local refine-
ment /coarsening strategy of the temporal mesh based on a computable error estimator, and
generates time step sizes as well as iterates, such that the resulting (weak) error is always
less or equal than a prescribed tolerance. The (computable) error estimator directly comes
from the related a posteriori error estimate, which is derived by means of the Kolmogorov
equation. In this regard, we (globally) bound derivatives of the solution of Kolmogorov’s
equation via (probabilistic) variation equations independently of the dimension and in terms
of derivatives of the underlying test function. At this juncture, the use of the Clark-Ocone
formula reduces the complexity of the derivatives to be bounded. Furthermore, the approxi-
mation via the semi-implicit Euler scheme allows for stability bounds which are independent
of the dimension, and which, in particular, contribute to bound the error estimator. The
combination of the above concepts enables an error analysis of the a posteriori estimate
resp. the estimator, which is independent of the dimension, and, in particular, is the key for
convergence of the adaptive method, as well as its applicability in high dimensions. Compu-
tational experiments compare adaptive meshes with uniform meshes and show a considerable
gain in efficiency of the adaptive method.

The second part can conceptually be regarded as an extension of the first one and considers
SDE systems, which arise from the probabilistic reformulation of an underlying boundary
value problem, i.e., of an elliptic/parabolic partial differential equation (PDE) on a bounded
domain. Opposed to the setting in the first part, the solution of the SDE here takes values
in a bounded domain, which, in particular, involves a convenient exposure to stopping in an
approximative framework when the (approximated) solution process is about to leave the
domain. To this end, we use an already existing scheme in the literature (slightly modified),
which, among other things, replaces unbounded Wiener increments in the generation of
(explicit) Euler iterates by bounded ones having the same distribution, and which thus
allows to properly control the dynamics of the (approximated) solution process up to the
boundary of the domain. Based on this scheme, we derive an a posteriori error estimate
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from which three error estimators emerge, where each of them captures different dynamics
concerning the distance of the approximated process to the boundary. These dynamics are
especially reflected in the choice of the local time step size selection (up to the boundary)
of the adaptive method, which approximates the solution of the underlying boundary value
problem at a fixed point. The choice of the local time step sizes is complemented by a suitable
temporal weight factor within the related refinement /coarsening strategy, which, aside from
stability results concerning stopping dynamics, ensures the (optimal) convergence of the
method with respect to a given tolerance parameter. Computational experiments illustrate
a stable application of the method even for violated data requirements, and a substantial
gain in efficiency through adaptive (time) mesh generation.
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Zusammenfassung

Ziel dieser Arbeit ist es, hochdimensionale stochastische Differentialgleichungen (SDE’s) ef-
fizient mithilfe von neu entwickelten, theoretisch basierten adaptiven Verfahren zu approx-
imieren. Die vorliegende Dissertation ist in zwei wesentliche Teile untergliedert, welche das
(zeitliche) Approximieren von (hochdimensionalen) SDE’s aus jeweils unterschiedlichen As-
pekten motivieren und diskutieren. Die Herleitung der zugehorigen adaptiven Verfahren in
beiden Teilen folgt konzeptionell dem gleichen Prinzip: Aufstellen eines geeigneten Schemas
fir die Approximation der zugrundeliegenden SDE, Herleitung einer (schwachen) a posteriori
Fehlerabschétzung und Realisierung eines darauf basierenden adaptiven Verfahrens.

Im ersten Teil dieser Arbeit werden hauptsichlich SDE Systeme betrachtet, welche im Zuge
einer Ortsdiskretisierung einer gegebenen (semiliniearen) stochastischen partiellen Differen-
tialgleichung (SPDE) hervorgehen. Das zugehorige adaptive Verfahren, bestehend aus dem
semi-impliziten Euler Schema und einer lokalen Verfeinerungs- bzw. Vergroberungsstrate-
gie des zeitlichen Gitters, welche auf einem berechenbaren Fehlerschatzer basiert, generiert
Zeitschrittweiten sowie Iterierte derart, dass der resultierende (schwache) Fehler stets kleiner
gleich einer vorgegebenen Toleranz ist. Der (berechenbare) Fehlerschitzer resultiert unmit-
telbar aus der zugehorigen a posteriori Fehlerabschatzung, welche mithilfe der Kolmogorov-
Gleichung hergeleitet wird. In diesem Zusammenhang werden auftretende Ableitungen
der Losung der Kolmogorov-Gleichung mittels (probabilistischen) Variations-Gleichungen
dimensionsunabhédngig und in Form von Ableitungen der zugrundeliegenden Testfunktion
beschriankt. Hierbei verringert der Einsatz der Clark-Ocone Formel die Komplexitat der
Ordnung der zu beschrénkenden Ableitungen. Des Weiteren erlaubt die Approximation
durch das semi-implizite Euler Schema dimensionsunabhingige Stabilitdtsabschétzungen,
mit deren Hilfe der Fehlerschatzer beschrankt werden kann. Die Kombination dieser obigen
Konzepte ermoglicht eine dimensionsunabhéangige Analyse der Fehlerabschéitzung bzw. des
Fehlerschatzers und ist somit insbesondere der Schliissel fiir die Konvergenz des adaptiven
Verfahrens sowie fiir dessen Anwendbarkeit in hohen Raumdimensionen. Numerische Stu-
dien vergleichen adaptive Gitterwahl mit uniformer, und zeigen eine beachtliche Effizien-
zsteigerung des adaptiven Verfahrens auf.

Der zweite Teil kann konzeptionell als Erweiterung des ersten angesehen werden und be-
trachtet SDE Systeme, welche aus der probabilistischen Loésungsdarstellung eines zugrun-
deliegenden Randwertproblems, d.h. einer elliptischen/parabolischen partiellen Differential-
gleichung (PDE), hervorgehen. Anders als im ersten Teil nimmt der Losungsprozess der
SDE hier nur Werte in einem beschrankten Gebiet an, was insbesondere einen verniinftigen
Umgang mit der zugehorigen Randproblematik in einem geeigneten approximativen Rahmen
erfordert. Dazu wird ein in der Literatur bereits existierendes Schema (leicht modifiziert)
verwendet, welches unter anderem unbeschrénkte Wiener Inkremente in der Generierung
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von (expliziten) Euler-Iterierten durch ,in Verteilung gleiche* beschrénkte Inkremente er-
setzt und somit eine exakte Kontrolle des approximierten Prozesses bis einschliefllich zum
Rand des Gebietes erlaubt. Basierend hierauf wird eine a posteriori Fehlerabschéitzung
hergeleitet, aus welcher drei Fehlerschatzer hervorgehen, die jeweils unterschiedliche Dy-
namiken (bzgl. des Abstand zum Randes) des approximierten Prozesses erfassen. Diese
Dynamiken widerspiegeln sich insbesondere in der flexiblen, lokalen Zeitschrittwahl des da-
rauf aufbauenden adaptiven Verfahrens, welches punktweise die Losung des vorliegenden
Randwertproblems approximiert. FErganzt wird diese Zeitschrittwahl durch ein geeignetes
Zeitgewicht in der zugehorigen (lokalen) Verfeinerungs- bzw. Vergroberungsstrategie, welches
neben Stabilitdtsresultaten hinsichtlich der Randproblematik die (optimale) Konvergenz des
Verfahrens bzgl. einer gegebenen Toleranz sicherstellt. Numerische Studien belegen eine
robuste Anwendbarkeit des Verfahrens in hohen Dimensionen und bei verletzten Datenan-
forderungen sowie eine beachtliche Effizienzsteigerung durch adaptive (Zeit-)Gitterwahl.
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Introduction

The mathematical modeling of ‘real-world problems’ in order to describe them and/or to
make predictions, is one of the most important — if not the most important — subject
of (applied) mathematics. Many ‘real-world problems’ such as e.g. the motion of masses
subjected to forces (mechanics), radioactive decay of materials (modern physics), games and
multi-stage processes (statistical systems), chemical reactions (chemistry), epidemic models
for diseases (biology), dynamics of the population of predator and prey species (ecology),
option pricing (finance), firing activity of a single neuron (neuronal activity), coordination of
human movement (experimental psychology), traffic reconstruction using autonomous vehi-
cles (autonomous driving), concern relationships between changing quantities and can thus
be described via differential equations; see e.g. [81,52,[63]. Once having found an appropriate
differential equation to describe the dynamics of a given ‘real-world problem’; one typically
needs to find a corresponding solution. However, ‘real-world problems’ are complex in gen-
eral and corresponding models are often complicated, i.e., involve perturbations (‘noise’),
complex data structures, and may be high-dimensional. Consequently, solving (such) a given
differential equation is usually hard and in fact, is only possible in very few cases, which is
why their numerical approximation becomes enormously important. The (efficient) numeri-
cal approximation of different types of differential equations such as e.g. ordinary differential
equations (ODE’s), partial differential equations (PDE’s), stochastic differential equations
(SDE’s) or stochastic partial differential equations (SPDE’s) has been extensively studied
within the last decades and is still a very active field of research; see e.g. [42] 52, 73], [6, 46, [82]
and references therein. The main properties and goals in this respect for a corresponding
numerical method to have are always: convergence to the (unknown) solution, stability/ter-
mination, flexibility, i.e., is the method applicable for general data settings, and efficiency,
i.e., how long does it take to finish the approximation and how large are storage resources.
Typically, numerical methods for ODE’s and SDE’s only involve time discretizations to ap-
proximate the corresponding solution at some given time points — opposed to methods for
PDE’s and SPDE’s, which usually require a discretization of the underlying state space (in
addition). Generally, corresponding time- and space discretization parameters, i.e., the time
step size At > 0 and the spatial mesh size h > 0 are constant and convergence results
with respect to these parameters are proposed on uniform spatial resp. temporal meshes.
However, a uniform time discretization with a fixed At for instance may neglect tempo-
ral dynamics of the underlying ODE/SDE system and might lead to an unnecessary fine
resp. too coarse resolving of the temporal mesh in certain areas, where corresponding dy-
namics remain unchanged resp. vary a lot, and consequently causes a loss in efficiency. To
overcome this ‘flaw’ and to boost the efficiency of the approximation, adaptive methods are
proposed, which automatically generate flexible mesh sizes to capture the involved dynamics
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Introduction

of the system more adequately.

While there is rich literature on adaptive concepts for ODE’s and PDE’s; see e.g. [16] 29|
30, 48] and Chapter |7} as well as references therein, there are only a few works on adaptivity
for SDE’s and SPDE’s; see Chapte and e.g. [72, 57]. A reason for this is the involved
‘randomness’ in the stochastic models, which makes an extension of adaptive concepts (as
well as their theoretical analysis) for ODE’s (resp. PDE’s) to SDE’s (resp. SPDE’s) much
more difficult. Most of the adaptive strategies above rely on the error between the (unknown)
solution and its numerical approximation. In the framework of SDE’s and SPDFE’s, this view
is referred to the concept of strong approxzimation, i.e., pathwise approximation. However,
many applications such as e.g. the approximation of expected functionals or the probabilistic
representation (of the solution) of PDE’s (‘Feynman-Kac formula’) involve the concept of
weak approximation, i.e., where one is only interested in the error between distributions
of the (unknown) solution of a given SDE resp. SPDE and its numerical approximation.
So far, proposed adaptive time-stepping strategies for SDE’s based on the concept of weak
approzimation are limited to small dimensions [76], 64] or either lack a (fully) theoretical
backup [72]. Inspired by these limitations, and as far as the expressions ‘flexibility’ and
‘efficiency’ are concerned; this is precisely the point where the newly developed concepts
presented in this thesis come into play; see also [58] [59].

Let L, K € N, and T > 0. In the first part of this thesis, which consists of Chapters [T] -
, we study a new adaptive time-stepping strategy to efficiently approximate the R¥-valued
solution X = {Xy; t € [0,T]} of the SDE

dX, = (—o/X, +£(X,)) dt + fjak(xt) dBi(t) Vte[0,T], Xo=yeR", (0.1)

k=1

where {Bk(t);t € [0,T]}, k = 1,..., K are independent R-valued Wiener processes on the
filtered probability space (Q, F, {F; }+>0, P), and & € RE*L is invertible and positive definite.
We refer to Chapter [2, where proper settings for data <7, f, {0}, are given. Problem (0.1)
may be motivated from a spatial discretization of the semilinear stochastic partial differential
equation (SPDE) on a bounded domain D C R%,

dX; = (eAXt + 8- VIX, + F(Xt)> dt + i Sr(X) dBe(t) Vielo,T], Xo—ycH,

k=1
(0.2)
for given € > 0, B : D — R? constant for simplicity, and H a Hilbert space; see Chapter
for further details.
Our aim is an adaptive mesh strategy for the semi-implicit Euler method applied to ,
which, for every j € Ny, automatically selects the new step size 7971 = t;,1 — ¢;, and then
determines the RE-valued random variable Y/*! from (j € Ny)

K
Y =Y 4 Tj+1(_~‘2{Yj+1 + f(Yj)> +> 0.(Y)A B, Y=y, (0.3)
k=1
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Introduction

for Aj 16k := Br(tj41) — Br(t;), to approximate the solution X, from (0.1 at time ;4.
Conceptually, we base this local step size selection strategy on a (computable) a posteriori
weak error estimator & in each step, i.e.,

max
0<j<J

E[5(X,)] - E[s(Y))]| < ¥ 76 (¢i 77, V7). (0.4)

J=0

for ¢ € C3(RL) with globally bounded first, second and third derivatives. A criterion may
then be set up to select a new, large 777! in every step, such that the right-hand side of
(0.4) stays below a chosen tolerance Tol > 0. For the derivation of we benefit from
[77], where an expansion of the weak approximation error for uniform deterministic time
steps (and originally for the explicit Euler method) was obtained via Kolmogorov’s backward
equation:

Opu(t,x) + Lu(t,x) =0 V(t,x) €[0,T) x R, (0.5a)
u(T,x) = ¢(x) Vx € R,

where £ = Lx is the generator of the Markovian semigroup from X = {Xy; t € [0,7]} in

(0.1)),

Lu(t,x) = <—JZ%X—I— f(x), Dyu(t,x >

g ( o) (x)D2ult, X))

= (~a/x + £(x), Dault, ), + Tr(a(x)aT(x)Dgu(t,x)),

L

N | — w\»—t

with o(-) = [01(~), ...,O'K(')} € R Under proper assumptions, such as for instance those
stated in Chapter the function u(t,x) = E[gb(Xt’x)} is the unique solution of (0.5)); see

e.g. [49, p. 366ff.]. As usual we denote by X"* = {X“‘ s € [t, T]} the RE-valued process

s )

which starts at time ¢ € [0,7] in x € RE.

As already mentioned, we are motivated by (a spatial discretization of) SPDE , which
is why we aim for adaptive methods, which are applicable to SDE with L > 1 large; in
this respect, we prefer deterministic (rather than random) meshes {¢;},>0 C [0, 7] to avoid
requirements for too large storage resources, or time-consuming post-processing tasks to syn-
chronize data, such as interpolation, or projection. This approach lends itself to a vectorized
implementation (see Algorithm and is of advantage over procedurally generated meshes
(such as those in [32, 50, [5I]) where the efficient implementation as a vectorized algorithm
is an unsolved problem.

The following example illustrates local mesh refinement and coarsening by the adaptive
Algorithm which is detailed in Chapters [4] and [5}

Example 0.1. Let L = 25. Consider SDE system ((0.1) with K = 5, which results from

a finite element discretization (with spatial mesh size h = T+1) of SPDE (0.2)) with ¢ = 1,
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B =0, and

F(Xt(:c)) = %sin(wXAx)), Y (Xt(x)) = 211{: sin(rkx) Xy(x), y(z) = sin(7x)

for z € (0,1); see Section for details. For the test function ¢(x) = v/A||x||gz to approx-
imate the L2-norm, and an initial step of size 0.1, we observe an instantaneous refinement
via Algorithm to 71 ~ 10~%; the mesh size then rapidly increases to values close to 107!
at times ¢ &~ 0.5, reflecting (spatial) smoothing dynamics; see Figure [0.1(B). Figure [0.1[(A)
shows a typical trajectory, where the buckling is caused by the driving noise. Figure [0.1[C)
compares related errors for (0.3) on uniform vs. adaptive time meshes through Algorithm
. Here, Ey[¢(Y7)] == + 30 (b(Yj (wm)) denotes the empirical mean to approximate
E[¢(Y?)], where we choose M = 10* Monte-Carlo simulations. For the tolerance parameter
Tol = 0.1, Algorithm [4.1] generates an adaptively refined mesh with J = 501 time steps
to stay below the given error threshold Tol. In contrast, a uniform mesh needs J = 2000
time steps to perform equally well. In Figure (D), the evolution of the a posteriori error
estimator j > &™) ((b; Tj+1,Yj) is displayed, that approximately takes values between Tol
and %; this is in accordance with the tolerance criterion of Algorithm , indicating an
efficient selection of variable step sizes. See Section for more details.

Furthermore, since our adaptive mesh strategy is related to the concept of weak approxi-
mation, it can also be used to efficiently approximate the solution of (the high-dimensional)
PDE (0.5) (in a pointwise manner), which is another motivation for problem . In fact,
the numerical approximation of high-dimensional (parabolic) PDE’s on the whole space is
of great relevance due to their ubiquitous occurrence in nature. Typical examples are:

e The Schridinger equation in quantum mechanics
i0u(t,x) + Au(t,x) — V(x)u(t,x) =0 Y (t,x) €[0,T) x R*, (SE)

to describe the state (represented by the wave function u(¢,x)) of a quantum me-
chanical system and its dynamical changes in time, where i is the imaginary unit and
V :RY — Ris a potential. Here, the dimension L is three times the number of particles
considered in the system.

e The Black-Scholes equation in finance
1, &
Ou(t,x) + 29 ;xl O, 0z, u(t, x) + T<X, Dyu(t, x)>RL—ru(t, x) =0

V(t,x) € [0,7) x R*, (BSE)

for pricing financial derivatives, where u(t,x) is the value of an option depending on
time t and asset prices X = (x1,...,x) ", o denotes the volatility, and 7 is the (risk-free)
interest rate. Here, the dimension L is the number of the underlying financial assets.
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(A) (s xe) = Y-7(x£)(w) - (B)t] |—>‘ 7—j+‘1

0.8

Realization
=
>

=

=3
i

(C)t; > Elp(Xy)| - EM[Qb(Yj)” (D) j > &0(¢; 73+, Vi)
 [=adaptive: J = 501 | =) e®(g )|
A —uniform: J = 2000 i

Error estimator

-2 I L | I
0 100 200 300 400 500

Figure 0.1.: (Example for Tol = 0.1, M = 10*, T = 1) (A) Contour plot of the
solution for a single realization w up to time ¢ = 0.25. (B) Semi-Log-Plot
of the corresponding adaptive time step size. (C) Error for uniform (—) vs.
adaptive (—) time meshes via Algorithm (D) Plot of the (empirical) a

posteriori weak error estimator &®) (¢; AR Yj).

Usually, the numerical approximation of and /or via deterministic methods is
a difficult task due to the well-known ‘curse of dimensionality’ (computational cost grows
exponentially with the dimension). However, we are convinced that the structure of
(and hence of (0.1))) can be extended in such a way that the (efficient) approximation of
and /or via (a modified version of) Algorithm [4.1]is possible, which, in particular,
avoids the curse of dimensionality due to the probabilistic ansatz.

We refer to Chapter [1] for a continuing discussion of the concepts presented so far.

Let now D C R” be a bounded, smooth domain. In the second part of this thesis, which

consists of Chapters [0] - [L1], we derive an a posteriori error estimate and an adaptive time-
stepping strategy based on it, for a discretization which is based on the probabilistic repre-
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sentation of the elliptic PDE with Dirichlet condition

;Tr(a(x)aT(x)Diu(x)) + <b(x), Dxu(x)>RL +c(x)u(x)+g(x) =0 VxeD, (0.6a)
u(x) = ¢p(x) Vx € 9D,
(0.6b)

where b:D - RF, 6 :D - RME ¢:D Ry, g:D— Rand ¢ : D — R are given. For
proper settings of data such as stated in Section B.1] there exists a unique classical solution
u : D — R of problem , given by the probabilistic representation

u(x) = E[gb(Xfx)VT’i + fo] ¥x €D, (0.7)

see e.g. [62, p. 366], where

1) X* = {X¥; t > 0} denotes the RF-valued solution of the stochastic differential equation
(SDE)
dX; = b(X,)dt + o(X;)dW, Vt>0, Xo=x€DcCR", (0.8)

starting in x € D, where W = {W;; t > 0} is an RE-valued Wiener process on a
filtered probability space (2, F, {F:}t>0, P), and the first exit time of X* from D is

7 := inf {t >0: XF ¢ D}. (0.9)

2) V¥ = {VX;t > 0} resp. Z* = {ZF;t > 0} denote the R-valued solutions of the
random ordinary differential equations (ODE)

dV; = oX¥)Vidt Vt >0, Vo=1, and (0.10)
dz, = g(XF)Vidt vt >0, Zy=0. (0.11)

To numerically solve , deterministic schemes based on finite differences, finite volumes,
or finite elements are well-known, which are complemented by rigorous a priori and a pos-
teriori error analysis. However, these methods all suffer from the ‘curse of dimensionality’,
which restricts their implementations to small values 1 < L < 4 in practice. To simulate
the boundary value problem for L > 4, other (deterministic) mesh-based methods are
available, such as sparse grids, or methods that rely on tensor-structured data and (structure-
inheriting) compatible operators; see also Chapter 7| for more details.

In this work the probabilistic interpretation of is taken to approximate u(x), x € D,
for high-dimensional problems, i.e., L > 4, and free from (restrictive) constraints on data
in (0.6): specifically, the first goal is an a posteriori error analysis for discretization Scheme
(see Section based on [62], p. 365 ff., Sec. 6.3] to bound the approximation error for
u(x), x € D in terms of the computed solution {Y%};50. A distinct feature of Scheme
is the use of a scaled random walk instead of unbounded Wiener increments to rigorously
derive the a posteriori error bound below.
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To our knowledge, the first a posteriori (weak) error analysis for the Euler method with
Wiener increments (unbounded) to solve the Kolmogorov PDE on D = R goes back
to [76], whose application is restricted to low dimensions L. These techniques are later
extended to the related (parabolic) boundary value problem in [28], where ‘stopping’ is
realized when corresponding iterates have come ‘close’ to D rather than onto dD; however,
the a posteriori error analysis still suffers from same restrictions; see Chapter [7]

In this work, for x € D fixed, and a given mesh {t;};50 C [0,00) with local mesh sizes

{7711} >0, we verify the following a posteriori (weak) error estimate for iterates
{(Y%, Yy, Y2)} ., from Scheme

ul) - B[OV +/]| <C@g) Lo (el v e 16}, 01y
=0

with C(¢, g) > 0, (computable) a posteriori error estimators {Q5é')}?:1 in terms of the discrete

solution, and J* = J*(x) € Ny the stopping index. Main achievements in our work are then

(7) its comstruction, which is based on Taylor’s formula (rather than It6’s formula) to
properly address the use of scaled random walk; see Theorem [0.1 At time ;, the
functional 69 ) is assembled from those states that realize in the interior of D, while the
remaining two are assembled from those in a O(v/77+1)—neighborhood of the boundary,
addressing possible bouncing back/stopping.

(71) Stability results in Section concerning ‘discrete stopping’ ensure that the sum in
is in fact finite, and, besides the ‘stopping’-mechanism in Scheme , they are the
key to verify optimal first order of convergence for on families of (time-)meshes
with maximum mesh size 7% > 0, when 7% \ 0; see Theorem [9.6]

(737) Estimate (0.12) will be used in Chapter 10| to construct an adaptive time stepping
algorithm (see Algorithm |10.1]) for which we prove local, as well as global termination,
and optimal convergence behaviour in terms of the tolerance (Tol > 0); see Chapter

[1al

We refer to Chapter [0, where we directly take up this discussion. Moreover, we present
similar concepts for the approximation of parabolic boundary value problems.
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An adaptive time-stepping method based
on a posteriori weak error analysis for
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1. Introduction

Different adaptive methods to solve SDE may be found in the literature, addressing
diverse numerical goals: in [55], an adaptive time-meshing concept is combined with the
Euler-Maruyama method to foster discrete stability of the explicit time-stepping scheme in
cases where the local Lipschitz drift only satisfies a ‘one-sided Lipschitz condition’. Automatic
mesh refinement (resp. coarsening) for each realization w € € is applied if rapid (resp. slow)
changes in the drift at two subsequent states are observed, where a maximum mesh size
Apax bounds local (random) mesh sizes {77 (w)} ;>0 C [0, Apax] to conclude asymptotic strong
convergence. Another work which uses adaptive random meshes as well to strengthen the
stability of the underlying explicit discretization of the above mentioned class of SDE’s
is [32]: here, a ‘discrete one-sided Lipschitz condition’ is used to generate random mesh sizes
{7j(w)};>0, which are then further constrained to lie in [Apn, Amax]. The main result in
[32] is the derivation of an optimal convergence rate O(Al/2) on variable random meshes of
size between A, and Ap.;. Close to the goals and applied tools in this work are [50] [51],
where, again, to set parameters A, and A, requires some a priori knowledge, and the
complexity in the worst case of the method may depend on A_l  and the dimension L of
the problem due to the explicit character of the discretization that affects relevant discrete
solution bounds; see also [43] in this respect.

A different line of research derives a posteriori error estimates (such as (0.4)) to judge
the quality of the current approximation, and uses it then as a ‘steering tool’ to initiate
an automatic remeshing strategy. While this conceptual idea to design adaptive methods
has been well-known in the context of (certain) ODE’s and PDE’s before, it has first been
introduced in [76], 64] for SDE’s in the contents of weak approximation of SDE solutions
(here again via Euler-Maruyama discretization). In these works, an (asymptotic weak) a
posteriort error exrpansion

‘E{Qﬁ(XT)} - E{gb(YT)H = E[sz Pj+1* (Tjﬂ)z} + ‘higher order terms’ , (1.1)

with computable {p; 3-]:1 has first been obtained. Its derivation in [76] 64] rests on the weak
error expansion of Talay and Tubaro [(7] via Kolmogorov’s backward equation , and
numerically approximates derivatives of the solution u of the PDE , whose simulation
is limited to small dimensions L. Then, (random) time meshes are generated automatically
based on the computable part of the right-hand side of — with no minimum or maximum
mesh sizes to be set, but only the parameter Tol (also serving as convergence parameter)
to bound the leading error term on the right-hand side of . The iterative generation of
an adapted time mesh requires the repeated computation of (approximations of) the global
problem (0.5) — opposed to determining local time steps 777! based on ‘so far’ computed
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solutions {Y*}*) only. From an analytical viewpoint, the results in [76], 64] crucially rest
on the assumed boundedness of the involved drift and diffusion functions to circumvent the
deficiency of ‘discrete stability’ of the governing (explicit) Euler-Maruyama scheme; the
advantage, however, is a theoretical backup for this weak adaptive algorithm in terms of
termination at optimal rate, and the asymptotic weak a posteriori error estimate .

Conceptually, the derivation of the adaptive Algorithm below is close to [76] 64] and
uses a related weak error representation (see below) for the semi-implicit Euler scheme
(0.3]) with the help of the solution u of — but differs in some relevant aspects: the first
is the use of the semi-implicit Euler scheme , which allows for L—independent (higher
moment) stability bounds for its solution in case data satisfy (A1) — (A3) in Section [2.1}
see Lemma These stability bounds for in Lemma are the relevant property to
show optimal order of weak convergence of the a posteriori weak error estimator proposed
in Theorem on given meshes; c¢f. Theorem

A second difference to [70, [64] is that we bound derivatives of u that appear in (0.5 in the
weak error representation by a priori bounds (see below) in terms of derivatives
of ¢, which removes the necessity to numerically approximate derivatives of the solution of
(0.5) — and thus enables the applicability of Algorithm to large SDE systems, as they
e.g. come from SPDE ((0.2)) via spatial discretization (in Example .

To further detail relevant steps in our program, we start with the continuified process Y =
{Yi;t € [0,T]} of the sequence of random variables {Y?};5o which solves (0.3]). We easily
observe in Chapter [3] that

V=Y + <(]I + TjH;zf)_lf(Yj) — o (1+ Tiﬂgf’)_lw’) (t —t;)

+3 (11 + TJH,Q{) () (Bult) = Bult;)) V€ [ty tis] (1.2)
k=1

interpolates {Y’};>0 at {t,;};50, and is {F; };>0-adapted. Now assume 0 =ty < t; < ... <

t; =T and fix n =0, ..., J — 1; considering (0.5)) on [0,#,1] x R, a standard argument then

leads to (see Lemma |3.2))

E[6X,.)]-E[r")]| = [E[u0.y) - ultanr, Y]
< SEfuta Y - Y (3)

We may now use [t6’s formula with u from (0.5) to transform Y on each time interval [t;, ¢;41]

to represent each increment w(t;1, Y/™) — u(t;,Y?) in the last sum, and employ (0.5)) to
deduce

E[ult;s, Y7 = ulty, Y9)]

tj+1
_ / EK(H " Tj+1%)71f(Yj) — o (I+ Tj+1£{)*1Yj —f(Y,) + dys,Dxu(s,ys)>RL} ds
t

J

‘error indicator (drift)’ ‘weight’
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2 [ R () e (4 ) o] oo 0)

J

‘error indicator (diffusion)’

-Diu(&ys)ﬂ ds; (1.4)

‘weight’

see Lemma for the justification of this identity. Conceptionally, the right-hand side
of uses the continuified process Y built from the iterates Y’/ and Y7*!' — and first
and second derivatives of the solution u from to transform {Yy; t € [t;,t;11]}. An
interpretation of (the right-hand side of) in a corresponding setting in [76, [64] is its
view as products of (local) error indicators for the drift and diffusion, and weights Dyu, D2u,
which ‘encode’ the chosen test function ¢.

In the next step, we use the first to third variation equations for , see - in
Section [2.3] to deduce bounds

L
sup || Dyu(t, x)[| e <> Cry sup || D'é(x)]

(t,x)€[0,T]xRE i=1 x€RL

i (¢e{1,2,3}), (1.5)

for derivatives of the solution u of , where constants Cy; > 0 do not depend on the
dimension L. Note that only derivatives of u are involved in (|1.4)), so their estimation with
the help of suggests to choose test functions ¢ : R — R in (0.4) whose derivatives are
uniformly bounded on R* — such as norms; see also Example

While the derivation of estimate is known for a general class of SDE’s, see e.g. [19,
Sec. 1.3], we calculate the constants {Cyp;; 1 < i < ¢, 1 < ¢ < 3} under the assumptions
(A1) — (A3), which are needed in the a posteriori error estimate (0.4); see Lemma 2.5, A
further tool to derive then is the use of common Malliavin calculus techniques such
as the Clark-Ocone formula, to avoid that the error estimator uses the interpolated process
Y in rather than computable iterates Y7 from (0.3). Here, we benefitted from similar
ideas and concepts, which were used in [24] in the context of a priori weak error analysis of
SPDE’s of form (0.2) with 8 = 0; see Remark [3.2| for further details. For a fixed ¢ € C3(R”),
our first main result in this work then is the weak a posteriori error estimate ((0.4) (see also
Theorem , giving quantitative error bounds for iterates {Y?};>q solving n a given
a mesh {t¢;};>o covering [0,7] with the help of computable (local) weak error estimators

e
{®<¢’T Y >}j20'
In Chapter , we use the a posteriori error estimation (0.4) for iterates {Y’};5o of (0.3)
to automatically steer the computation of local mesh sizes 777! via the adaptive Algorithm

, yielding tuples {(Tj+1,Yj+1)}j>0. Given j > 0, the guiding criterion for admissibil-
ity of a new tuple (7971, Y7*1) is that the evaluation with the local error estimator yields
Q5<gb; Tj+1,Yj> < 2%, where the tolerance Tol > 0 is provided by the user. We generate
such an admissible tuple by successively halving the previous time step, and thus generat-
ing a sequence {79t} C R with 7/+h¢ = TJ;# and 7710 = 77 until admissibility
of a tuple for some 77 15+ is attained; see Figure [1.1l This sequence of steps precedes a
single potential step of coarsening; see Algorithm [£.1] for further details. As a result, we
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obtain an adaptive method where only Tol > 0 needs be set, and where admissible tuple
{(7’7“, Yj“)} . satisfy ‘) where the right-hand side is now bounded by Tol > 0. The
J

second main result in this work then is Theorem [£.2, which ensures computation of each new
time step 777! in Algorithm after no more than (7, = O(log(Tolf1)> many iterations
(indexed by j; local determination), and at most J = O(Tol™!) many steps to reach T
(global termination); its proof again rests on the stability bounds given in Lemma and
yields the existence of a lower bound of the step sizes generated via Algorithm [£.1}; see also
Figure . We remark that this local construction of the new mesh size 797! with the help
of only Y7 differs from the strategy in [76, 64], where admissible meshes are obtained by
iterative computation of global problems (‘approximate Kolmogorov equation’), and where
again the assumed boundedness of drift and diffusion is crucial to conclude optimality of
attained meshes.

Q5(¢; AR Yj)

1

[ | K

1
Tol f ___. S-S R S S N S S PR -
T 1

1

1

[ ]

1

T
Tol fewaa e I ) [ -
2T i
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1

—

: N

] 7 N ,

1 8-
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0 Tol Tol j+10+1 FitLe
2CT CcT

Figure 1.1.: Tllustration of the local (for fixed j) and global termination argument given in
Theorem , yielding a maximum of (7, , = O(log(Tol_1)> many refinement

steps («); see also (4.2)), within the loop of {797} >, to accept the new step
size = 7/+L541 and the existence of a lower bound of step sizes generated
via Algorithm [£.1] such that either (2) (+/) or (3) (*.) is met. Note that due
to the choice of the initial mesh size 7! for the generation of Y! and the setup

of Algorithm it is not possible that 77+ < J&& ¢ > 0.
Chapter |5 then reports on computational studies for different SPDE’s after finite ele-
ment discretization with the help of the adaptive Algorithm .1} we specify the corresponding
a posteriori error estimator, and pinpoint those computable expressions {E;},>; involved in
the error estimator in Example 0.1 which are mainly responsible for local mesh adjustments.
For the different examples, including one which is convection dominated, the results evidence
efficiency in comparison with uniform meshing, and accuracy of the weak adaptive Algorithm

Tl

This part is organized as follows: Chapter [2| collects the assumptions needed for the data
o f {o}r of (0.1) and recalls relevant tools from Malliavin calculus; moreover, variation
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equations for (0.1) are recalled to verify the bounds (|1.5) and stability bounds for iter-
ates {Y’};>o from (0.3)) are presented. The a posteriori error analysis for (0.3) is given in
Chapter [l The related weak adaptive method is proposed and analyzed in Chapter [4, and

corresponding computational studies are reported in Chapter [5
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2. Assumptions and Tools

Section lists basic requirements on data 7, f,0 = {01, ...,aKLy in throughout
this work. Section shortly recalls needed tools from Malliavin calculus. In Section [2.3]
we derive explicit bounds for {Du}_, from Kolmogorov’s backward equation under
Assumptions (A1) — (A2). Stability bounds for {Y?};>o from are given in Section
2.4 provided (A1) — (A3) are valid.

2.1. Assumptions

Throughout this work, (Q, F, {F;}i>0,P) is a given filtered probability space with natural

filtration of the Wiener processes in (0.1)). Below, we use positive constants Cpeg, C'f(z_l),

Cpes, CHD, C’b(ffl) (1 < ¢ <3),and A to specify dependence on data o7, f, 0 = {01, ...,O'K}
in (0.1)); none of these constants depend on L. For a sufficiently smooth g € C(R*;R"),
corresponding (matrix) operator norms are given as follows (n, L € N, x € RF):

IDg(x) sup [|Dg(x)(vi, .., ve)lle  (CEN),

[IVillgr =1

Hc(RL X ... X RL;R") =

£—times

where ||-||gn denotes the (Euclidean) vector norm of a R"-valued vector. If n = L, we write
L= E(]RL X oo X RL;RL). If n =1, D = Dy denotes the gradient and D* = D2 the
Hessian matrix of g, and we also write £ = E(RL x ... x RE; R). Moreover, ||Dyg(x)||s1 =

| Dxg(x)||rz, ||D2g(x)||zz = ||D2g(x)||gexz, where ||-||gzxz denotes the spectral (matrix)
norm.

(A1) (a) The matrix & € RY*F is invertible and positive definite, i.e., there exists a
constant A, > 0, s.1.

(%, x)pe > Ay|x|l7e Vx €RE.
(b) The map f € C}(RL; RL), and there exist constants {Cpee}3_,, s.t.

sup [|DE()]lee < Cpee (1< €< 3);

xeRE
. ¢
moreover, there exist constants {C{7}2_ s.t.

It () e < CFF (14 [/ %|[ze) YxeRF (0<0<2).
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(A2) The maps g € C3(RE; RY) for every k = 1, ..., K, and there exist constants {Cpe, }o_;,
s.t.

K
> sup || Dor(x)||ee < Cpey (1< £<3);

k=1 x€ERL

moreover, there exist constants {CD}2_ . s.t. for every k =1,..., K

| o (%) ||pe < C’t(f)(l + ||427’€x||RL) Vx € RF (0<1<2).
(A3) For 0 < ¢ <2, there exists C}(,Z), s.t. the initial datum y € RL in (0.1)) satisfies
|7y |[ze < CS.

Throughout this work, we admit test functions ¢ € C3*(R%Y) with globally bounded first,
second and third derivatives.

2.2. Malliavin calculus

We briefly recall the Malliavin derivative, recall the chain rule for Malliavin derivatives and
state the Clark-Ocone formula. For further details, we refer to [68].— We denote by C3°(R")
the space of all smooth functions ¢ : R¥ — R, such that ¢ and all of its partial derivatives
have polynomial growth. Let P the set of R-valued random variables of the form

F=g(W(hy), ... W(hy))
for some g € C°(R*) and hy, ..., hy, € L*(0,T). Here, W : L*(0,T) — L%, (Q) is defined by

W= | U Rt dB() .

We further define for any F € B its R-valued Malliavin derivative process DF := {D,F; 0 <
t <T} via

D,F = Eﬁxig(W(hl), o W (h) ) hat). (2.1)

For any p > 1, let D' denote the closure of the class of smooth random variables with
respect to the norm

1P|y = <E[|F|P] +E{||DF||§2(O7T)DP.

Next, we recall the chain rule for Malliavin derivatives; see [68] p. 28, Prop. 1.2.3].
Let ¢ : RY — R be a continuously differentiable function with bounded partial derivatives

T
of order 1, and p > 1 be fixed. Let further F = (Fl, ...,FL) be a random vector whose
components belong to the space D'?. Then ¢(F) € D'P, and

D(¢(F)) =3 0., 0(F)DF".

Finally, we recall the Clark-Ocone representation formula; see [68, p. 46, Prop. 1.3.14].
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Lemma 2.1. Let F € D2, and /8 be a one-dimensional Wiener process. Then

Fl+ [ E[DFIF]as0).

2.3. Variation equations for (0.1) and a priori bounds for
{Du}?_, of (0.5

Kolmogorov’s backward equation has a unique solution [0, 7] x R* 3 (¢,x) — u(t,x) =
E[p(X%¥)], whenever assumptions (A1) — (A2) hold; see e.g. [49, p. 366ff.]. The derivation
in Chapter |3|requires explicit bounds for derivatives u, which are uniform in L, in particular.
To this end, we use the variation equations corresponding to (0.1)) and derive these results
here.

For y € RY fixed, we denote by X = X% the solution of (0.1)). Let h € RE. Following [19,
p. 37/f.], we recall the first variation equation corresponding to (0.1)),

an = (—af + DECX)) nhdi + 3" Dou(X) mbdi(t)  wie0.T],  (22a)

k=1

nge=h. (2.2b)

Since assumptions (A1) — (A2) are valid, there exists a unique solution g = {pP; t €
[0, T]}; it is equal to DyX%Y - h, the derivative w.r.t. the initial datum y € R* of the map
y — X% along the direction h € R”.

Lemma 2.2. Assume (A1) — (A2) in (2.2a). Then, for every h € RE and p > 1,

sup B[} . ] < ViV - [
t€[0,T]
where V meaX{ )\Qf+CDf+ 3 C%G,O} (p > 1) and ‘/'1(1) — eTmaX{_)\(Qf'i'CDf'i‘%C%o_,o}'

Proof. We prove the statement for p € N. By Jensen’s inequality, the result also holds true
for noninteger p > 1.
a)l<peN: Lette[0,7], he Rl and 1 < p € N. By It6’s formula,

B¢ t .
[H s < B [ ((—or + DEKD) k), Ik
1 X h hyT h|p—2
+5 2 Tr(DorXnt (Don(Xn| ") - (0 — lin’ 5% ds .
k=1

Using assumptions (A1) — (A2) leads to

[||n [
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L K
” ]|9|RL -HE[/ {<(—,52%+Df(Xs)) -171;,17?> pTZ | Do (X WSHRL}llﬂsllp stl
k=1
1l -
< TR + rnax{ — Ay +Cps + LZ‘IC’%"’O}/O E{Hﬂ?”f}@} ds

Applying Gronwall’s inequality leads to the first result.
b) p = 1: This follows by using Jensen’s inequality.
O

Next, following [19, p. 39ff.], we consider the second variation equation corresponding to
(0.1), that is, for h,w € R,

At = ((—f + DECX)) - €™ + D(X) - () ) e

+ 3 (Pou(X0) - ¢+ Don(X0) - (nfn) Jdd(t)  VEED.T], (23
k=1

hw _ g c RE. (2.3b)

Since assumptions (A1) — (A2) are valid, there exists a unique solution (™% = {¢"V; t €
[0,T}; it is equal to DX - (h, w), the second derivative w.r.t. the initial datum y € R”
of the map y — XY along the directions h, w € R”.

Lemma 2.3. Assume (A1) — (A2) in (2.3a). Then, for every h,w € RY, £;,&, > 0 and
p=1

Sup E[I¢M 15| < Vi, - il lwiigs

where 1/1(252 = ‘/2(262 for p=1, and
1 2 2
2) . (1)
‘/17(78)1,62 T T(gpl ng?f + E:_(1372)/2 (p o 1)20pD2¢r> V2p
1 2

-1 -2
epT max {—Ad+CDf+(p—1)C§,U+Msl+(2%52,O}

P (p>2).

Proof. The proof follows the steps outlined in the proof of Lemma [2.2} we first prove the
statement for p € N. By Jensen’s inequality, the result also holds true for noninteger p > 1.
a)2<peN: Lette|0,7], h,weRand 2 < peN. By [té’s formula,

1 how |(p
B¢
<B| [ {{(-or + DROK)) g, (DK - o). €2), ]

i1 ZHDok )¢ 4 D20y(X.) - () e - (o — >||<hW|r”ds].
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Using assumptions (A1) — (A2) leads to
1 w t W w w -
SE[IC ] < E| [ (A + Cor} - 162 o + Comeln® s o [ 17"
+Z||D0k ) CEVIIRe - (p = 1) - 1€ 152"

+ ZHD%k(Xs) SR )3 - (p— 1) - [ICh B2 ds

k=1

t
S ]E[/O { — )\g{ + CDf + (p - 1)6%0} . HC?’WHEL + CD2an?HRL”nZVHRLHC?’WH%zl

w w || p—2
+ Cheg [t l12e 0¥ 12 (p — DICHY R ds| .
=1l

Applying Young’s inequality (in generalized from) to | and Il leads to
| < C=U IR, + S OB ey 1 (51> 0)
> P s RL p 1Y p2f n RL 775 1 )

_ w 2 4 w
I < =2 | chow)e, +W(p—1)20%20\!n?!\ﬁLHm I (e2>0),
2

and hence

;E[H(i"WH%L] SE[/;{_M+CM (= 1) + 0z, 4 00} [, as

+ (= Clon + —s (0 = 08T, ) [ E[Ime 2] B I 135] as.

Applying Lemma in combination with the Cauchy-Schwarz inequality further leads to

t
E[I¢H" 5] < pmax { = Ay + Coe + (p = 1), + ko1 + 552,,0} [ E[I¢2 5] ds
+ T Chue + 27 (0 - 1>2cg2,,)v2; B2 v
Applying Gronwall’s inequality finally yields the first result.

b) p = 1: This follows by using Jensen’s inequality.
m

Now, let hy, hy,hy € R, Following [19, p. 43ff.], we recall the third variation equation
corresponding to ((0.1)),

1
degr et — ((—ﬂ + DE(X,)) - O 0 4 2 37 DX - (™, ¢ )

TES3

+ DX - O nf) ) de
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o 1 h.(y) .h-(oh
+ Z(Dak(xt) S R 13 DX (7, )

k=1 TES3

+ DYoy(X,) - (P nn) )dse(t) Vi e 0.7, (2.4a)
ey — g e RE. (2.4b)

Here, S; denotes the set of all permutations of a set of three elements. Since (Al) —
(A2) are valid, there exists a unique solution @Prhzhs = f@P1h2hs. 4 10 7]} it is equal
to D3X% - (hy, hy, hg), the third derivative w.r.t. the initial datum y € R* of the map
y — X% along the directions hy, hy, hg € R”.

Moment bounds for the solution of are obtained as in Lemmas [2.2)and [2.3] In view of
Lemma below, it suffices to consider only second moment bounds in the following lemma.

Lemma 2.4. Assume (Al) — (A2) in 1} Then, for every hy, hy, hy € RY and €3 > 0,

hi,ha,h
sup B[[07"2)2,] < V32 - | hal[2e || hal 2e || hs| 2z,
t€[0,T]

where

V2, = TV (Vi (5 + 5 ) + VT (500 + )

27T max {—)\W-FCDf-‘r%CQDU-i-Eg,O}
- e .

Moreover for Vl(i)g = @ ’

3
sup E[[OF 2 0.] < Vi - [y e [ b e [ s

t€[0,T]
Proof. a) Let t € [0,T], and hy, hy, hg € RE. By [té’s formula,
SE[EF . ]
< E[/Ot ((—« + Df(X,)) .9?1,hz7h376217h2,h3>RL

3 2 (DPEK) - (7 ) @b g (DUE(X,) - e e ). @)

71'653

+3 ZHD"k hats 4 1S Dy (X,) - (T ¢E )

TrESS
2
ds| .
RL

+ DPor(X,) - (b, b=, le)
Using assumptions (A1) — (A2) leads to

1
SE[I1€7 2. ]

39



CHAPTER 2. ASSUMPTIONS AND TOOLS

t
1 h, Br(2)hy
=" U { = Aar + Cor} €28 s o 3C0ne D™ s 67 s O 720 s
0

TES3

K
3
+ o0 lge 022 lme 022 e 12 €22 s + 5 S| Dow(X,) - O "2 b2,
k=1

K

3 h, h,(2),h,
DI DI NN

242
k=1 mESs

K
2 3
L IDR ) b s
k=1
t
<E U { = Ao+ Cpe+ 3C}, } - [|@h+P2P3 2,
0

1 h, h(2)hn
+ 10820 g { Coaelint a2 lae 22 s + 7C2e D 10" e 6272 ™ s }

TES3

h, h,(2),h, 3
Chag Y 0™ IR lIC™ ™ [3e + 5 Chisg 3 e 05 e 12 e ds] .

TES3

3-6

+2~42

Applying Young’s inequality (in generalized form) to | leads to

| < es]|@ 02 e

1 1 h, h,(2)h, 2
| el s Int™ s 22 s + 5o 3 It s 6 s} (2> 0),
483 4 TES3
and hence

1
SE[ler b2, ]

¢
< ]E[/O { — Aoy +Cps + %C’%a + 63} . ||9?1’h2’h3||]12@ ds}

t
1 1 h, hir(2) by 2
+EU 453{CDSfllﬂﬁ‘lHRLHnﬁ”IIRLHﬂ?"‘IIRL + 1 Cpze > lins™ |l 1€ (S)HRL}
0

TES3

9 h, h.(2),hr 3
# 15Chie LIt IR IC R+ S Chogl s s 2 e ]

TES3

t
< max{ — Ay + Cps + 303, + 25,0} / E[[@" =132, ] ds
0

t
+ (5o + 308s0) [ Bl o Ind s e s ds
0
=:1l

t
hr h(2),hy
+ (5 Chae + 5C8e0) [ B[ S Intm 22 1C 12, ] ds

TES3

Applying Lemmas [2.2] and [2.3] in combination with the Cauchy-Schwarz inequality to Il and
Il further leads to

1< T (35 Chor + 3080 WV 2 ol s
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1< (& Chag + FCho )WV VA2 Lt s i e i e

and consequently
E[He?l,hz,haH%L] < Qmax{ — Ao+ Cpe + 3C}, + €3, 0} /OtE[He?Lhml'mH%L} ds
+ TV (\/ Vi ey (& Chne + HChy ) + VA (£Chue + 30%30))
e[z Dl [hs e
Applying Gronwall’s inequality finally yields the first result.

b) The second result immediatly follows by using Jensen’s inequality.
O

Let t € [0,7] and x € R, In order to obtain global bounds for the first and higher
derivatives of u in ((0.5)), we use the following identities, which can be found in e.g. [I9, p. 94]
in connection with Kolmogorov’s forward equation, which is just a time reversal ¢t — T — t
and a change of the terminal condition into an initial condition in (0.5)).

(Deu(t,x),h),, = EKD,@(X}’X), D XEX h>RL] Vh e RY, (2.5)

(Du(t,x)h,w)  =E [<D§¢(X§?‘)Dxxgx -h, D XE* W>RL}
+ E[(ngb(xg"), D2XE . (h, w)>RL] VhweRl  (2.6)
and

<Dx<Diu(t, x)hyhs)_ . h3>

[<D3¢(X“)D X5 - hy D X5 - hy, D X5* - hg)
L

+E[{D2p(X5) D2X5x - (hl,hs),DxXth~h2>RL

+E|(D2p(X5X)D XtT’x'hl,DiXtT’x'(h27h3)>

RL

RL

(
(

+E< S(XF)DIXE* - (hy, hy), DX - hs)
(

+E

x¢ th DSXtX (hl?hz’h3)>RL:|
Vhy, hy, hg € RY. (2.7)

In the following Lemma [2.5] based upon (2.5)-(2.7) and Lemmas and [2.4] we derive
global bounds for the first, second and third derivatives of the solution u of (0.5 in terms

of derivatives of ¢, which are independent of the dimension L.
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Lemma 2.5. Assume (A1) — (A2), and let {D5u}3_, be from (0.5). Then, for all e, &y, 3 >
0,

i)  sup Dt x)|ge <V - sup | Do) |ar
(t,x)€[0,T]xRE x€RL

(i) sup [IDRu(t,x)|mees < ViE L, - sup | D)l + Vo™ - sup [ D*(x) e
(t,x)€[0,T]xRE xeRE x€RL

(i) sup [D3ult;x)]les < Vi - sup [ Do) [ + 3VVVAE, L, - sup [ D) e
xeR R

€3 1,€2
(t,x)€[0,T]xRE x€

+ VIOVVE - sup | DPo(x) | s

x€RL

where Vl(l), VQ(I), ‘/4(1), Vl(i)l e Vl(?;l are given in Lemmas , and .

Proof. (i): Let x € RE and 0 # h € RE. We apply the Cauchy-Schwarz inequality to the
identity (2.5) and use Lemma to get

‘<Dxu(t, X), h>RL

< VY- sup | Do ()||ge - [|hlge -
zeRL

Thus, taking h = Dyu(t, x) immediately yields the assertion.
(ii): Let x € RF, 0 # h,w € R and &1, 9 > 0. Similar to (i) we obtain, using Lemmas
and [2.3]

‘<Diu(t, x)h, w>

< (W2 sup1Do(a) ks + V5 - sup D%z ) - [ e
ze

L
R zcRL

Taking w = D2u(t,x)h, we further obtain

l)iu/t,x h|r:
1Dt Xl <y sup Do) e + Vi - s D% (z) s

|| 2€RL 2cR

The assertion now follows since

ID2u(t, X)llgies = sup [ D2u(t,x)hlgs
HhHRLzl

(iii): Let x € RY and 0 # hy,hy, hy € RE. Similar to (i) and (ii), the verification of
assertion (iii) follows by means of identity (2.7)), the Cauchy-Schwarz inequality and Lemmas

23 23 and 2]
]
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2.4. Stability bounds for iterates {Y’};>, from (0.3

We derive L-independent stability bounds for iterates {Y’};>¢ from (0.3)), provided (A1) —
(A3) are valid.

Lemma 2.6. Assume (A1) — (A3). Consider a mesh {t;}7_, C [0,7]. Let p € N and let
{Y7},50 solve (0.3). Then, for ¢ =0, 1,2, we have

sup B[||.7“Y7(|%] < CY)
j=0

1,p>

where constants C §‘; > 0 are independent of L.

We give the proof for p = 1, 2, and the proof for general p > 2 then follows inductively.

Proof. a) p=1: Fixj > 0and £ = 0,1,2. Let Z/ := &7/*Y’. We multiply (0.3) by (&*)"Z/*!
and use the binomial formula, as well as Young’s inequality (61,02 > 1) to estimate

1 ; ; 1 1 1 , , . A A
Z( 1272, — 1|27 2L> ( - - > Z7t 792, J+L/) 77+l Zitl
512771 = 1Z08) + (5 - 55— 36 e + 77 (2, 247

< ()| (Y lfe + 77 E (Y| 127

RL

(2.8)

RL

K K
+02 Y [l ok (Y) Ay Bl + > <W£Uk(Yj)Aj+15k>ZJ>
f=1

k=1

Note that the last term vanishes if E[-] is applied. By (A1) — (A2), the tower property for
expectations, and the identity E[|A]~+16k|2} = 77+ we further conclude that

;E[||Zj+1||§4 < (261 (Cf(f)yT +20 4+ 252K(C§£))2) .]E{HZJ'H[?RL} il
+ (251 ()T + 200 + 252K(q§f>)2> gy

We set
C = (251 (YT + 208 + 252K(c§f>)2) .

Summation over all iteration steps, and using (A3) then lead to

L] < (CP) 420 120X PUEIZIR] G ).

J=0

E[[Z”

Now, the discrete Gronwall inequality yields the assertion.
b) p = 2: Multiply (2.8) with |[Z7*!||%, and use the binomial formula to get the estimate

1 ) ) 1 ) ) 2 1 1 1
1027 = 12708 ) + 1 (127 12 — 12713 ) + (5 - 75 — 150

AR T | LAy 2l 1 r

+Tj+1<4272j+1,2j+1>RL||Zj+1||]§L
< S (T2 T Re |27 e + 77 (Y ) e 127 e 127 B
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K K
+02 > N ok (YA 1 Bl3e 27 R + D (o o (Y) A 1B, Z0) 127 1R
k=1 k=1

We now add and substract ||Z7]|2, in the two terms on the right-hand side which involve
random increments, to then absorb part of it to the second term on the left-hand side. For

81,09, 03,04 > 0, thanks to (A1) — (A2), taking expectations and using the tower property
leads to

1 ; ; 1 1 1 1 1 ; , 2
1 ElZ8] -EZ0)) + (- = - = — = - 15 B I — 1271
BNz ] ~EIZ18]) + (- 35— 35— a5~ a5 BNz — 1221
1 1 1 i+1 2 7itL2 i+1 i+1 7j+1 j+112
+<2—451—452)E[HZJ — D327 3] + PR (27 212 ]

<S(1+E[|Z)L]) - 7,
with
C = 85,827% (1) 4475, (C) + 418, (C")” + 80" + 2415, K753 (€)'
+4K8,(C) + 4K, (V).
Choosing 01,8, > 1, 01,02, 03,04 > 4 and using (A1) then leads to

411<E“|Zj+1||§‘@} _ E[||Zj||ﬂ4@LD <C.rtt 4 (NJE[||Zj||§L] L

Now, similar arguments as in b) yield the assertion.
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3. A posteriori weak error analysis

In Theorem , we derive an a posteriori error estimate for iterates {Y’ 3-]:0 of scheme

(0.3)). It is shown in Theorem that this error estimator converges with optimal order on
uniform meshes, recovering a corresponding result in [24] on a priori weak error analysis for
a corresponding time discretization of (0.2)); the relevant tools to verify Theorem are the

(discrete) stability properties of (0.3)) in Lemma [2.6]

3.1. A posteriori weak error estimation: Derivation and
Properties

in a posteriori form

E[6(X,,)| — E[¢(Y)]
in Theorem For this purpose, we employ the (data-dependent) estimates in Lemma [2.5]
and therefore define (cf. also (|1.5]))

We bound the weak approximation error Jnax
SIS

Cp(0) == V- sup [ Do(x)|er

x€eRL
C11
Cpe(9) = Vi), - sup | DS(x) | + Vo) - sup | D2S(x) |z,
—— x€eRL " xeRL
Co1 Ca2
Cps(¢) == Vi - sup ||D 3V,Vv2 - sup || D?
p3(¢) == Vi, - sup | Do(x)[|ge + 3Vi'ViL, ., - sup || D?o(x)||rexe
~—~—~ xcRL ~—————— xERL
0371 03,2
+ VIOV sup |DP6(x) g5, (e1,80,85 > 0).
N————— xeRL

C33

The following result estimates the weak error caused by {Y’}7_; from (0.3) on a mesh
of local mesh sizes {7’7“}5]:_01 in terms of a computable a posteriori error estimator & =

{Qﬁ(qb; AR Yj>}3]:_01.

Theorem 3.1. Assume (A1) — (A3). Let {t;}7_, C [0,7] be a mesh with local sizes
{rI*1}/2). Let {Y7}7/_; solve (0.3). Then, we have

max
0<5<J

E[s(X,)] - E[s(Y7)]| < ¥ 76 (0771, YY), (3.1)

J=0
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where the a posteriori error estimator 05(gz5; It Y ) is given by

@(@ 7-J'+1’YJ') — {3CD( ) By (Y]) D§(¢) .EQ(YJ') + CDTWS) -Ea(Yj) + CDTW) ~E4(Yj)

2 j Cp> j 2
+ CD2(¢) ES(Y]) + D2(¢) Es(Y]) D (¢) (
+ C200) gy () 1 Opa(9) Ba(Y7) + O e }
+ {{ ¢)Cp2¢ - \/E10(Y7) + {CD Cpis +Cp:(op CDQf} E; (Y

C C
—|—CD2 CD20' E13 —|— l: D2 Do

+ OD3 CD20:|

' \/E14(Yj)} ‘ \/TJ+1 +E10(Y7) + g 'Elz(Yj)} ' (Tﬂl)w

’ {Cm(?c}%’ ~E1o(Y?) + CD;(¢) 'Els(Yj)} ' (Tm)?,

— . -1
with &7/*! = (H + TJHJZ/) , and computable terms

RL]’

2. Eo(Y?) :=E Z | (X)), || on(Y)

1 Ey (YY) = E[HM&ZJ’“YJ’ — (YY)

RL]’

3. Ea(Y?) :=E Hﬂdﬂ‘“w —.g{_j“f(Yj)HRL||Df(Yj)HL],

RL]’

)

4. E4(Y') :=E ||D2 (Y7)| 2 - ZH&W“ (YY)

5. Es(Y?) :=E ||Df(YJ Iz - ZHMH ol

k=1

RL

6. Es(Y) = E|| a7 Y — (YY) - ZHJ;C(YJ)H]RLHDak(YJ)Hl;},
- k=1

- K _ ) K ) )
T E(Y) =K & on(Y)|e - Znak(Y])HRL||D20'k(Yj)||L2}v

“ k=1 k=1

- K _ ) K ) )
8. Eo(Y') :=E| > [&" on(Y)|s - ZIIGk(YJ)HRLHDak(Yj)Hc}7
S k=1 k=1

46
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9. Eo(Y’) := E[i |7 7o (Y)

k=1

LAl

2
RL |’

10. Eso(Y?) = || 7@t 1Y7 — o/ 1£(Y)
2 2
RE ]’
2
RL}’

13. Eya(Y/) :=E Hm«fﬁlw A T(YY)

,.JjJrlO'k (Y])

] N K
11. E11<Y]) =K

- K
12. Enp(Y7) :=E| Y |7 o4 (Y)

‘Uk Yj Iz

|

I

14. E14<Yj) =K ,.Q(JJFI Y]

(Y7) e

K
. —. . 2
15. E15(Y]) =K Z Hddﬁ_lak(Y]) RL
k=1

Remark 3.1. 1. For f = 0 and/or o3, k = 1,..., K constant, the estimator & simplifies
considerably; also, Theorem remains valid for ODE systems, i.e., for o, = 0 (k =
1,..., K), where only terms Ei(-), Es(-) and Eqo(-) constitute &.

For ODE systems (0.1)) with o, = 0 (k = 1, ..., K), a different approach to derive a (residual-
based) a posteriori estlmate on a mesh {t } o C [0,T] for [|[ Xy — Y7||ge is via duality
methods [29], which exploit (strong stability properties of) the related adjoint equation;
see also 2. below. Another variational approach here that avoids duality methods is [67],
where an inherited ‘(discrete) energy dissipation’ property of the implicit discretization of
(0.1) is used to bound max;<;<; [|X;, — Y|z for cases where the drift operator in
is the gradient of a convex functional. We also mention [80, Ch. 6], where (residual-based)
a posteriori estimates are derived by variational methods for space-time discretizations of
the more general with 3, =0 (k= 1,..., K), where the drift operator need not be the
gradient of a convex functional.

2. For finite element based discretizations of (linear elliptic, parabolic) PDEs A(u) = f,
residual-based a posteriori estimates are obtained in [29], where dual/adjoint problems are
the relevant tool; their (global) stability properties may then be exploited to bound the error
in terms of the residual p(u,) = A(uy) — f of the computed solution wy, times a related
stability constant. In later works, dual problems involve functionals ¢, and its solution z is
computed approximately to then enter as local weights w(z,) in the ‘duality-based weighted
residual’ estimator of the form

lo(u) — pup)| < |<p(uh),w(zh))\ + ‘higher order terms’
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to sharpen computable error bounds; see the surveys [7, 36].

The derivation of a posteriori error estimate for iterates of uses the (backward)
Kolmogorov equation on [0, t,1] xRF for the transform u(t, x) = E{qﬁ(Xiﬁl)} — instead
of an adjoint evolutionary problem on (0,%,.1) that is motivated from optimal control: the
works [76} 64] approximate derivatives of u to build local weights contained in {p;}7_, in ,
which is possible for small L; in this work, we use the global stability estimate that
leads to the a posteriori error estimator in for iterates from , which is applicable
to SDE for arbitrary L.

3. In [76], [64], (asymptotic) a posteriori error expansions for the terminal time T are given
for both, random and deterministic meshes, while bounds the error uniformly in time.
The proof of Theorem exploits that meshes {¢; }}‘7:0 C [0,T) are deterministic, e.g., by
repeated use of [to’s formula.

4. The weak Euler method replaces Wiener increments {A;4106}/=) in by bounded,

discrete random variables {gi“x/ Tj+1}3.]:_()1 with approximate moments, see e.g. [52, p. 458]:
for example, IP’[EH = :I:l} = 3 leads to iterates (Y7 7_o, and their ‘continuification’ Yy =
{¥,; t €[0,T]}, given by
K
Y, = Vi + (dj“f(Yj) _ gmﬂ‘ﬂw) (t—t) + 3 e (YOE ft —t,
k=1
Vie . (32)

The a posteriori weak error analysis now starts again with (1.3, but lacks Ité’s formula in
(1.4), and thus proceeds with the mean value theorem and Taylor’s formula,

Eu(tyer, Y = uty, Y9)| = Elu(tjpr, YH) = ulty, Y) +ut;, Y —u(t;, Y)]

=K

(", Y1) - 7 4 (Dyu(t;, YI), YT =Y

Y

. ;Tr(DiU(tj,?*)(?Hl _ ?J’) (?ﬁrl _ ?a’)T)

where t* € (t;,t;,1) and Y* := Y7 + ©(Y/*! — YY) for some © € [0,1]. A repeated use
of and (in modified form) (cf. also (3.2))) then causes changes to the proof of
Theorem [3.I} no Malliavin calculus is needed any more for the weak Euler method — as is
needed to handle terms and ; also, higher derivatives of u appear, and further
computable terms constitute {65(¢; Tj+1,/ij,/ij+1)}j20 for (3.1)).

5. In practice, the terms {Eg(-)}o—1
Chapter 5] for more details.

15 may be approximated by Monte-Carlo method; see

,,,,,

The representation of the a posteriori weak error estimator & = {(’5(¢;Tj+1,Yj /20 in
involves the bounds (global in time and space) Cpe(¢) (¢ = 1,2,3; cf. (L.5)), as
well as computable error terms {E¢(Y7)}s;. The matrix &/7+! which also arises in the
representations of {Eg(Y7)}e—; . 15 results from the use of the semi-implicit Euler scheme

[03).

.....
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The proof of Theorem consists of several steps: Lemma is based on the inequality
in the introduction, where we represent the weak approximation error via . Lemma
then examines the first expectation on the right-hand side of , where only the drift
term of appears; and in a similar manner, Lemma examines the second expectation
on the right-hand side of , where only the diffusion term is involved. The proof of
Theorem then follows by combining these lemmas. Note that similar concepts for the
investigation of the weak approximation error with the explicit Euler scheme have been
proposed in e.g. [77], which here are adapted to the implicit scheme (0.3)); see also [24],
where weak a priori error estimates are obtained for a time-implicit discretization of SPDE

(0.2) with 8 = 0, and Remark ﬂ

Lemma 3.2. Assume (Al) — (A3). Let {t;}7_, C [0, 7], with local mesh sizes {r7+'}/2],
and {Y7}7_; solves . Then, for every n =0,...,J — 1, we have

] [6(X,,..)] —E[o <Y"+1>H

{’ [ (DY)~ 8D) + AV, — AT, D, D)., ds}
7=0

1
2

i:j l /t’“ rq.!z(_j’Llak(Yj)[,Q{_Hlok(Yj)}T—ok(ys)a,j(ys)}Diu(s,ys)>d3]

(3.}3)

Proof. Fix n = 0,...,J — 1 and consider , where we replace T" by t,,1. Note that
under assumptions (A1) — (A3), the function u € Cl’g([O,th] X RL;R) with bounded
continuous derivatives w.r.t. the state and continuous derivative w.r.t. the time, and given
by u(t,x) = IE[gZ)(XtX )} is the unique solution of (0.5)); see e.g. [49, p. 366/f.]. Thus, putting

tni1
x = Y™ (w) in the second equation in (0.5) on [0, ,,1] x RE, we immediately conclude that

E[qs(XW)]:u(o,y) and E[¢<Y”“>}:E{u@m,w*l)}. (3.4)

Hence, applying (3.4)), a first calculation yields (1.3} Since u is the unique solution of (0.5))
on [0, tn+1] x RL we use It6’s formula with u to in (L.3) to deduce

E[u(tjer, Y = u(t;, Y7)]

ti+1 —. . —. .
= E[/ " Osu(s,Vs) + < — A ATTY + o TTH(YY), Dxu(s,ys)>RL

+ ;éTr <.szx7j+1ak(Yﬂ‘ [ 51.(Y?)] D2, y5)> ds] . (35)

Using (0.5) on [0, ¢,41] X RE to eliminate dyu(s,Y;) in (3.5) further leads to (1.4). Finally,

combining ([1.3]) and ((1.4)) yields the assertion.
O
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The next lemma examines the first expectation appearing on the right-hand side of (1.4)).

Lemma 3.3. Suppose the setting in Lemma [3.2 Then we have

E

[ ARN) k@) + AP, STV, Dl D)), dsl
t

J

. C . . .
< {303(@ CEq (YY) 4+ “229 By (YY) + % “Es(YY) + CDTW) -Eq(YY)

. . 2
+ Sl -E5<Yﬂ>} ()

n {{CD(¢)CD2f' Eio(Y7) + [CDW;)CD?* +CD2(¢)CD2f] . Eu(Yj)}

: \/% -E10(Y7) + % 'E12(Yj)} . <Tj+1)2.5' (3:6)

In the proof of Lemma [3.3] we use Lemma to (globally) bound the first and second
derivative of u by Cp(¢) and Cp2(¢), respectively. Besides some standard arguments, we
also use Malliavin calculus techniques to validate O(|777!|?) on the right hand-side of ([3.6]).

Proof. Using the fact that for any v € R” it holds
Ay = v — P g of Ty,
we obtain in a first calculation
(ATH(Y) = EV,) + SV, — AT, Deuls, V),
=7 (AT — S ATE(Y), D5, V), A (FVs — S Y, Deuls, V),
+ (F(Y7) = £(¥,), Dxuls, Yy)). - (3.7)
We use this identity and Lemma to bound the left-hand side of ({3.6)),

|]E

[ TR) @)+ AP, — S TV, Dl Y S)>Rﬂd51
t

J

tj

< Cp(6) -Es(Y?)- (7+1) + ‘E[ / A~ Y Dails. V), ds]

4 ‘Eﬂl [N O Dxu(s,ys)>RLds]

tj

= I+ 1II+1III (3.8)
We estimate the terms in (3.8) independently, starting with
Step 1: (Estimation of I1I) a) We apply Itd’s formula with {f;; 1 <i < L} to (1.2) to get

‘]E[ / e, - 1Y), Dxu(s,ys)>RLds]

tj
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iE[ / TR = £00) o u(s ) ds]

i=1
<|E /fﬂl/ <Df(yr)( ,ﬁaf,gz{_jﬂYj_|_,gz{_j+1f(Yj)),Dxu(s,ys))>RL drds]
1 [; j+1 —. i
+ 3 > ]E[/ / D2 J+1ak(Yﬂ)g{J+1ak(YJ),Dxu(s,ys))>RL dr ds] + M,
k=1
where
L K tiv1 s —. )
— ZZE[/ / (D). ou(Y) dfi(r)),, ds - 0, usySH
i=1 k=1 tj tj (3 0)

We add and substract Df(Y?) and D?*f(Y?) as integrands in order to get closer to computable
optimal terms. This step leads to the additional terms

K, — ‘E[/t:j+1 /: <{Df(yT)—Df(Yj)}(_mgij+1yj+gij+1f(Yi)), Dxu(s,ys))>RL dr ds]

and

K

]E{ /th+1 /%<{D2f(yr)— D(Y) VT (Y a4 (Y7), Dycu(s,V5))) g drds] ,

k=1

which will be estimated in ¢) below. Thus, we obtain

’E[ /t e, - 1Y), Dxu(S,ys)>RLds]

J

<[E /tt+ /t (DEY)(~a/ 7Y + AT (YY)), Dyu(s, V), dr dsl

K tit1 S ) _ ' _ .
- E[ / / <D2f(YJ)dJ+1ak(YJ)dJ+1ak(YJ>,Dxu(s,ys)>RLdrds}
) t;

1
—|—M1—|—K1—|—§K2.

We apply the Cauchy-Schwarz inequality, Lemma (i), and some standard calculations to
obtain

J

‘E[ / e, - 1Y), Dxu(s,ys)>RLds]

. : 1
< {C[)Q(¢) _Es(YJ) CD(¢ E4(YJ>} . <7_J+1)2 + M +K; + §K2 (310)

We estimate the terms M, K;, K5 independently in parts b) and c).
b) We consider M; in (3.9)): for its successul treatment, we use tools from Malliavin calculus.
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Fori=1,..., L, we have
k=11=1 J

Since 9, u(s,Y,) € DY (see e.g. [1, 168]), we apply the Clark-Ocone formula in Lemma
to Oz, u(s,Vs), to get

Ouu(s,V.) = E[0,u(s,9,)] + | SE[D,@ (axiu(s,ys))m} ABu(r), (3.12)

tj
where D) denotes the Malliavin derivative w.r.t. B (r). Applying ([2.1)) to D{* (8 u(s, ys))
further leads to
L
DM (y,u(s, Vo)) = > On,, (Owu(s, V) (&7 a1 (Y7)) (3.13)
m=1 m

Now, inserting (3.12)) into (3.11)) and using the fact that the expectation of a stochastic
integral w.r.t. the Wiener process is zero, we conclude

M, ;

iiﬁ[ [ [ B[l @uts y) 7] @) [ 0052 00(x) ) as

k=11=1

-y [ [ [ B[P (005, 2) 17|02 S0 (0 (), dr] ds,  (314)

k=11=1 J

where in the last step we used a (generalized) It6 isometry argument; see e. 2 [37, p. 135,
Thm. 4.2.3]. An application of the tower property (law of total expectation) in (3.14]), and

(3-13) then lead to
SH3> / / [( o (0,u(5,9.) (@7 o1(Y7)) )azlfl(y»( Hlvk(Y]))]drds

k=1i,0=1

[ /tjm /t Te(D2u(s, Y, DEY ) a1 (Y) [0 (¥7)] ) dr ds} |

In the next step, we add and substract in the second argument Df(Y?) as well, to then
obtain

[/]+1/ Tr( u(s,Y,)DEY)) e (Yj){.!ijﬂak(Yj)}T) drds]

K tit1 s
_ Z]E[/ / ’I‘r(DiU(S,ys){Df(yr) —Df(Yj)}Jij+1ak(Yj)['Q{_j-‘rlo.k(Yj)]T) drds] .
k=1 tj tj
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Using Lemmal2.5(ii), and Tr(Bvw ") < || B||ge<z|| vz || w|g: for any B € RFE v, w € RE,
consequently leads to

c . N2
My < =29 Eg(YV) - (71) 4+ K. (3.15)
c) We show that the terms K;, Ks, K3 are the higher order terms in (3.5)), which account
for the difference between Y and {Y7},5¢. Since the treatment of Kj, Kp and Kj is similar,
we only consider K; in detail. We start with a standard calculation, that is for s € [t;, ¢;41]
and r € [t;, s| we have, considering the continuified process ([1.2]) and using some standard

calculations

B[y, - Y|i3

<Eo(Y?) - (r —t;)* +Ep(Y/) - (r — t;). (3.16)

Using
IDE,) = DECY?)|e < Cp2e - | Yr = Y |[ge

the Cauchy-Schwarz inequality and Lemma (i), we get

1
- i ti+1 S . 2
Ky < Cp(¢)Cpes - \/Eso(YY) - (7J+1 /tj (s —1t;) /t]- ]E[Hyr - YJ||1%@L] dr ds)
Using (3.16) consequently leads to
] j+1 . . . 2.5
K1 < Cp()Cee - [Eso(Y?) - \/ 7" -Ego(Y9) + 1 -Eqp(Y7) (r )™ (3.17)
In a similar way, we obtain
: J+1 . . . 2.5
K> <Cp(¢)Cpss - \/Eu(Y]) : \/Tlg -E10(Y7) + § - Epa(Y79) - (T]H) (3.18)
and
. J+1 . R . 2.5
K3 < Cp2(¢)Cp2s - \/Eu(Y]) : \/Tlg -E10(Y7) + & - Epa(Y9) - (T]H) : (3.19)

Step 2: (Estimation of IT) Similar arguments as used for IIT in Step 1 give the bound

II < {C%WEAYJ')#’D;WEAYJ')} () (3.20)

Step 3: (Finishing the proof) We combine (3.17)), (3.18), (3.19) and (3.15)) with (3.10) and

plug the resulting expression as well as (3.20)) into (3.8)), which proves the assertion.
m

We now bound the last sum on the right hand-side of (3.3)).
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Lemma 3.4. Suppose the setting in Lemma [3.2] Then we have

iE[/:H Tr(

k=1

410,(Y) [ 0 (Y)] = (W)l (9.)] D, ys))ds]

<{Cp2(9) -Ee (YY) + 229 LB (YY) + Cps() - Eg(YY)
+2C p2(¢) - Eo(Y?) + Cp2(¢)Chy - {Tgl -Eyo(Y7) + % 'E12(Yj)} : <7j+1)2

+ {{2CD2 (QS)CD% . E13(Yj) + [sz(gb)CDaa + 20D3(¢)CD20} . \/E14(Yj)}

2.5

: \/% -E10(Y7) + 3 -E12(Yj)} : (Tj+1)

3

+Cp2(0) -Ess(Y7) - (71) (3.21)

Proof. Similar as in (3.7)), we start with a straightforward calculation. For k =1, ..., K, we
have

A (Y) [ (Y)] | — (D)ol (V)
= 0. (Yo (Y)) — 7% oy (Y9) [l o (Y] — % o e (Yo (V)
+ (7 A d o (V) [ d 0 (Y] - anP)el (D).

o

= T ([ (Y7)o] () — 01V )o] (V)] Duls, V)

This yields

A (Y [ (V)] — ak(ys)ol(ys)} Diuf(s, ys>>

_ (Tr (ak(Yj) {M,Q(_j“ak(Yj)]TDiu(S,ys))
+ Tr (mzﬁ“ak(Yj)a;(Yj)Diu(s,ys)>> L7t
+Tr (%ﬁijﬂak(Yj [ 10, (Y7)] D2u(s, ys)) (P 322)
We set

T1 =

éE [ (el (0 - el 9] Dias. )
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and plug - ) into the left-hand side of - ) to deduce

J+1

([ o) [ o (Y)] — au@)ol (9.) D2t ys)>ds]

[/ v Tr(ffk(Yj> [0, (Y)] Diu(s. V)

tj

el
S;E

s}

-l (Yo (Y1) (s, Y, )

. (7-j-i-1)2 ;)

[ (e o[ 0] D2t v ) as

tj

= IV +V+T.
Step 1: (Estimation of IV') Some standard calculations and Lemma (ii) lead to
IV < 2C12(6) -Eo(Y) - (7). (3.23)
Step 2: (Estimation of V') Again, standard calculations and Lemma (ii), lead to
V < Cpa(0) - Es(Y) - (7771)’ (3.24)

Step 3: (Estimation of Ty) a) For k = 1,..., K, we add and substract ;(Y?)o(Y,) and use
Tr(B) = Tr(BT) for B € RE*L to obtain

T [o (Yo (¥7) — o1P)o ] (V)] Dius, 2,))
=2. Tr({ak(Yj) - Uk(ys)}azj(Yj)DiU(Svys))

_ Tr([ak())s) — 0u(Y))][or(V.) — 0 (Y7)] D2u(s, ys)> . (3.25)
Plugging into Ty immediately leads to
Ty <2-Ta+Tip, (3.26)
where
i [ [ (o) @)l () i) ) d ]
and -
Tip = ?E[ [ (@)~ 00 o9 — (v Diu(s.3.) ds] .

b) We estimate Ty with the help of Lemma [2.5] (ii),

tit .
Tip < Cp2(0) E[/t > llok(Ys) — ou(Y)| e ds] :
J k=1
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Assumption (A2) and (3.16) then lead to
i1 A N2
T < Cp2(¢)Chy - {T —Eio(Y’) + 3 ‘Eiz(Yj)} : (T]H) ' (3.27)

c) Next, we consider the expression Tj,,. We apply [td’s formula with {a,g,i); 1<E<K 1L
i < L} to (1.2)) and use standard arguments to get

K tit1 L )
Tio = | S| [ 3 (D005, 20.0000),, o 90 - o (¥} a5
<Ta1 +Tie2 +Ms, (3.28)
where
K
Tlal ZE[/ Z Da U(S ))s) O'k<YJ)>
k=1 i =1
/ (YY) dﬁj+1Yj7Dgéi)(yr)>RL drd81
t]
K 41 . - . - .
ZE[/ / u(s,Ys) O’k(YJ),DO'k(yr)(g/dJ-HYJ _,Q{J+1f(YJ))>RL dr ds] :
tiv L
e £ 5[ [ £ Bt 0000,
k=1 ti =1
Tr< ol(Y)| & o (Yj)]TDza,(f)(yr)> drds]
_ ! f E / R / (D2u(s, )01 (Y), DoY) 0 (Y) o (Y7)) | drds
212 My Iy VT TR TR l l Y
and
M,

i [ /tw :1 (Dy0su(s,¥5),06(Y7)) / (Dol ), (V) A1), ds]

(2

Z: U / u(s, Y)or(Y?), Do(V,) e ou(Y) dBi(r)),, ds} . (329)

Almost the same arguments as we used for the treatment of (3.10) in Lemma [3.3] that is
generating additional higher order terms to get closer to computable terms gives

Tian < %229 Eg(Y)) - (7)1 Ky (3.30)
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and
Tiaz < 929 B (YY) (7)) 4+ Ks, (3.31)
where
[/]+1/ 5 ys a'k(Y])
(Dow(¥,) = Doy (Y))) (/Y7 — a7 E(Y))), dr ds]
and
K " oY
S e

(D’0x(Y2) = D*or(Y7)) @7 ou(Y) oy (YY), dr ds]

are higher order terms.

d) Next, we consider the expression Ms. Here, our approach is very similar to that in Lemma
3.3l where we used tools from Malliavin calculus for an appropriate treatment of M;, and
therefore skip most of the details here. We obtain

M, = glel /]t " /t Tr<D3 (5,Y.)0:(Y) Do (¥, o (Ya)[g{m (YJ)}T)drdsl
< 2 l/” / Tr<D3 (5,Y5)01(Y)) Do, (Yl ' Ho (Y])[d]Jrl (YJ)}T>drds]
+ Kg ,
where
wl e

Tr <Diu(s, Y.)o(Y){Do(¥,) — Doy(Y))} ol +ia, (YY) {,g{_jJrlal(Yj)} T) dr ds}

is again an additional higher order term, which results from adding and substracting Do (Y7),
k=1,..., K, in order to obtain an almost fully computable leading order term.
Similar calculations as we used before and using Lemma (iii), yields

My < €29 Eg(Y9) - (771)" 4 K. (3.32)
e) Hence, plugging (3.30)), (3.31) and (3.32)) into (3.28) yields
Ty, < {CD;@ CEg(YY) + €220 g (YY) 4 Cosld) -Es(Yj>} - (Tj+1)2 + K4+ K5 + Ks.

(3.33)
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f) Plugging further (3.27)) and (3.33)) into (3.26) yields

Ty < {CD2(¢) Es(Y7) + “22% By (YY) + Cps (9) - Ea(YY)

+ Cp2(¢)C3, - {773“ ‘Ego(Y’) +1 .E12(Yj)}} . <7j+1)2 +2K4 + 2K5 + 2K .
(3.34)

g) It remains to examine the terms Ky, K5 and Kg and to show that these terms are in-
deed higher order terms. Again, a similar treatment as we did for the higher order terms
K1, K5, K3 in Lemma [3.3] yields

- J+1 . . . 2.5
K1 < Cp2(6)Cpig - \/Esa(Y7) - /Tt -Ego(Y7) + 1 -Epa(Y9) - (r ), (3.35)
. 1 . . . 2.5
Ks < % . \/E14(YJ) : \/712 “E10(Y7) + L -Epa(YY) - (7-J+1> (3.36)
and
. j+1 . . . 2.5
K < Cps(6)Cpzg - \/Esa(Y7) - /71" -Eao(Y9) + § - Eag(Y3) - (r771) . (3.37)

Step 4: (Finishing the proof) We combine (3.35)), (3.36]) and (3.37) with (3.34), and then
combine the resulting expression with (3.23)) and ([3.24)), which proves the assertion.

]

Next, we show convergence with optimal weak order O(7) for the a posteriori error estimator
in (3.1)) on a mesh with maximum mesh size 7 > 0 with the help of Lemma — and hence
of the weak error of {Y’}7_ from thanks to Theorem .

Theorem 3.5. Assume (A1) — (A3). Let {Y/}/_ solve on a mesh {t;}7_, C [0, 7]
with local mesh sizes {Tj+1}3~]:_()1 and maximum mesh size 7 = max; 777!, Then, there exists
C = C(¢) > 0 independent of L, such that

J-1
Z Tj+1®<¢;7j+1,Yj) <C-T.

J=0

Remark 3.2. 1. The work [25] derives a weak a priori error estimate for the linear stochastic
heat equation with additive noise, where the analysis exploits the representation formula for
the mild solution, and a transformation of it to another process which solves a further SPDE
without drift term and additive noise. In contrast, the weak a priori error analysis in [24]
for SPDE (0.2) with 8 = 0 requires Malliavin calculus to efficiently estimate additionally
appearing stochastic integral terms due to the nonlinearities ' and ¥ — which are of similar
type as My in (3.9) and M in appearing here. The a posteriori error analysis to
verify Theorem with estimators {®(¢; Tj+1,Yj)}j20 also exploits Malliavin calculus,
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and eventually enables Theorem [3.5] We remark that the tools from Malliavin calculus used
here slightly differ from those in [24]: while [24] utilizes an integration by parts formula
(¢f. [24, Lemma 2.1]), we are making use of the Clark-Ocone formula (cf. Lemma [2.1)).

2. The work [24] uses less regular initial data, in particular, and exploits the regularizing
effect of the involved semigroup. In this work, we assume (A3) to verify Theorem [3.5}
however, we believe a corresponding result to hold for less ‘regular’ initial data, by using a
modification of Lemma that involves temporal weights in the functional to handle less
regular initial data, and mimic the regularizing effect in the present context of arguments.

Proof. We independently bound {E¢(Y?)}e—1. 15 0, -1 in & = {Qﬁ(qb; Tj+1,Yj) 3-]:_01 in
(3.1) with the help of Lemma
a) Second moment bounds for E,(Y’), £ = 1,2,3,4,5,6,9,10,12,15, j = 0,...,J — 1:
We show for ¢ = 0,1, 2 that
() _max E[|o Y] < C13,
7=0,...,J—1 ’

(i) max B[l e (Y[R < 2(c) (1 +c1).

7=0,...,

K
(i) max Y E[|o @ oY) < 2K(CP)P(1+C1)

""" k=1

) max S E[lodY)IE] < 2K(COP(1+04),
k=1

7=0,....,J

_ . 1
where Cﬁ >0, ¢ =0,1,2, are the constants from Lemma , and &7 = (H + 7'”1427) .

Let £ =0,1,2and j =0, ...,J — 1. Since ||@7*!||gexe < 1 for every 791 > 0, we immediately
obtain

|l et Y e < ||/ Y |3 - (|97 |mene < 7Y s

Hence, taking the expectation and using Lemma , assertion (i) follows. In almost the
same way, on using (A1) (b), we obtain

—. . . 2 .
|l T (Y) [ < [ F O Re < 2(C7) (1 + 19 Y ) -

Again, taking the expectation and applying Lemma assertion (ii) follows. Statement
(iii) follows by the same argumentation and (iv) immediately follows from (A2) and Lemma
2.6l

The bounds (i) — (iv) now yield these for Eo(Y7), £ =1,2,3,4,5,6,9,10,12,15, j =0, ..., J —
1.

b) Fourth moment bounds for E,(Y?), £ =7,8,11,13,14, j =0, ..., J — 1: Similar as in
a), by Lemma , we obtain
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(v) max E[|o/a"Y|j] < CY,

7=0,...,

(vi) max E[|lo/a 1 (y7)4] <8(cf”) (1+01),

7=0,...,

.....

K —_ .
(vii) 5na>}_1;E{Hd”ldk(Y])H%L} <8K(CO(1+0Y),

K
(viii) _max ;E[Hak(Yﬂ)“ﬁ‘iL] < 8K(C§0))4(1 + C§°§) ,

.....

where C’% >0, £ =0, 1, are the constants from Lemma Again, the bounds (v) — (viii)
yield these for Eo(Y7), £ =7,8,11,13,14, j =0, ..., J — 1.
c): By means of a) and b), we can find a constant €' > 1 independent of L and j such that
forall j >0

&(g; 7MY <C -7t (3.38)

Hence, plugging (3.38) into (3.1), using 771! < 7 for every j > 0, and setting C :=C - T
yields the assertion.
]

In the next chapter, we base an adaptive method on the a posteriori error estimate to
automatically select local step sizes. For every 7 > 0, we show that the adaptive method
selects a new time step 777! within finitely many steps, and that the algorithm reaches the
terminal time 7" > 0 after finitely many steps as well (global termination).
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4. Weak adaptive approximation:
Algorithm and Convergence

By Theorem the weak error caused by schem on a given partition {t;}7_, C [0, 7]
is controllable via the a posteriori error estimate (0.4)). In this chapter, we use this result for
an adaptive method that automatically steers local mesh size selection. For this purpose, we
check if the criterion &(¢; 7771 Y7 ) < Tt is met or not: in the first case, 77! is admissible,
bounding the new local error in such a way that the overall error will be bounded by Tol
through Theorem ; in the latter case, 7/*! will be replaced by the refined mesh size
71 .= . and the criterion will be checked again. The following algorithm contains

2
a refinement step (1) to generate {7971¢},5¢ and — if Qﬁ(gb;TjH’f,Yj) is ‘too small’ — a
final coarsening step (3) in the loop of generating the subsequent iterate from (0.3)), after
accepting the possible underestimation of Qﬁ((b; AR € )

Algorithm 4.1. Fix Tol > 0 and 7! > . Let (77,Y7) be given for some j > 1. Define
0 =77, — For £ =0,1,2,... compute (’5(¢; Tj+1’£,Yj) and decide:

(1) If & (g 77400 YT) > T set 7400 = T2 and £ £ 4 1.

(2) If % < ®(¢;Tj+1’e,Yj) < %, set Tt = pIHLE ¢ =t + 79TL compute
ANji10Bk = Bk(tj + Tj“’e) — Bk(t;), for k = 1,..., K, then solve (0.3) for Y/*!, and
Jj—J+1

2T
with 77+t and {A; 1160k, k =1,..., K}. Then set 77! := 2771 and j — j + 1.

(3) If Q5(gz5; Tj—"_l’K,Yj) < Tl set 7T = pIFLE oy =t + 79T compute Y7 via (0.3)

Stop, if t; > T for some j and set J := j.

This sequence of refinement steps, which is succeeded by possibly one coarsening step pre-
vents infinite loops of refinement and coarsening, and enables a flexible re-meshing to capture
local dynamics. The following theorem validates termination of the adaptive method, con-

sisting of (0.3) and Algorithm [4.1]

Theorem 4.2. Let Tol > 0. Suppose (Al) — (A3). Then, the adaptive method con-
sisting of (0.3) and Algorithm generates each of the local step sizes of {777!};5¢ after
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O(log(Tolfl)) many iterations and the algorithm reaches the terminal time 7" > 0 within
J= O(Tol_l) time steps. Furthermore, admissible tuple {(77*!, Y7*1)}/Z} satisfy

max
0<5<J

E[s(X:,)| - E[gb(Yj)H < Tol. (4.1)

Remark 4.1. 1. An adaptive method based on a strong a posteriori error estimate to steer au-
tomatic spatio-temporal remeshing for a discretization of with additive noise is proposed
in [57], for which termination of an iterative strategy to select new local mesh parameters for
a fized index j € N is shown. [57] conceptionally follows ideas in [20] for the heat equation
(ie., By =0 (1 <k < K) in (0.2)), where a local approximation argument in step j € N
settles the existence of a value 77+ > 0, s.t. values 7971 < 77+ meet the stopping criterion;
this argument, however, does not exclude selected 77 in [57, 20] to crucially depend on j,
leaving open global termination. This deficiency has been overcome in [53] for a modified
version of the adaptive algorithm in [20], which, in particular, exploits a discrete stability
property of the underlying discretization to herewith establish inf; 77t > 7, > 0. — We
here proceed analogously to settle convergence of Algorithm with the help of Lemma [2.6]
2. Automatic mesh refinement in [64] is based on the computable leading-order term in
the weak a posteriori estimator that has been derived in [76], provided that the in-
volved drift and diffusion functions are bounded. For a sufficiently fine initial mesh Z;o :=
{tj}}]io C [0,T] and given Z ¢, the new mesh Z;e+1 D Z ;¢ refines those intervals [t;e, t(;11)e],
where p(; +1)e]7(j+1)l|2 overshoots ©%*. Note that this iterative strategy requires the global
re-computation of {p;};e for every ¢ > 0: termination after £* < oo iterations, with
JY = O(Tol™?) is then shown in [64].

Proof. a) Termination for each j > 0: Fix j > 0, and recall (3.38) in the proof of
Theorem . Since the constant C' > 1 appearing there does not depend on j, we generate

. 0* . 1
a finite sequence {775} 40 with 7914 = %;’0, {=0,..,05,,, according to the refinement
mechanism (1) of Algorithm [4.1] until either (2) or (3) is met. In view of (3.38)), we find

FHL06T

out that ¢ = Pog< TTTol > /log(2)—‘ is the smallest natural number such that

TIH0 1 Tol
: <

200 — T

@(¢;Tj+1’e,Yj) < C. .7t =C
Consequently, we have

*
0</f,, <

log(2)

which yields a maximum of (’)(log(Tol_l)) (refinement) steps to accept the local step size
FIFl = I T

E3

ofi+1

log <Tj+;;iéT) w o)
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b) Global termination rate: We show by induction that

. Tol
TJHZQC?T (7 >0),

where C > 1 is the constant in . In particular, this means that 7T is reached within
J = (’)(Tol_l) many time steps.

The base case follows by the choice of the initial mesh size 71 > % Now suppose that
we have generated Y7 with step size 77 > 2TC9,1T; see also Figure . In order to successfully
compute Y71 we set 77710 := 77 (if (2) occurred in the generation of 77), or 7710 := 277
(if (3) occurred in the generation of 77). In both cases, 7/t10 > 1L Via a), we generate a

Tol
o 20T
finite sequence {771}, 2" until either (2) or (3) is met, and then generate Y7*1 with step

. i j * j+1,0 .
size T9t1 = 7950 = 20 Since [2] < 1+, # € R, we conclude by means of (#.2)
2 J+1

TI+10 Tol
>
2%i+1 2CT

c) Estimate (4.1) immediately follows from (3.1) and part (2) of Algorithm [4.1
) y D g

. . «
T]+1 = 7“7+17£j+1 =
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5. Computational Experiments

The simulations of iterates {Y?},5¢ from (0.3) use independent standard normally dis-
tributed pseudo-random numbers (‘randn’) in MATLAB (version: 2017a). By Kolmogorov’s ex-
tension theorem; see e.g. [69, p. 11, Thm. 2.1.5], a family of probability measures {N¢ 1; 0 <
t < T} on (RE B(RY)) yields the existence of a (filtered) probability space (Q, F, {F; }+>0, P)
and Wiener processes {5;(t); t € [0,T]}, k =1, ..., K on it; we consider them to be the ones

with which (0.1]) and (0.3)) are defined.

Let Tol > 0. We use in combination with the adaptive Algorithm for different
examples, which result from a finite element spatial discretization of a SPDE . We show
how the involved a posteriori error estimate serves to estimate related weak errors, and
that adaptive remeshing substantially reduces the amount of needed steps to overcome the
interval [0,7]. For the sake of computations, we therefore use sufficiently large M-samples
to suppress additional statistical errors in the Monte-Carlo method due to approximating

appearing expectations E[-] by Ey[-] — as in (0.4)), which then takes the form
e, |B[6(X,,)] — Bu[o(¥)]| < 2701, (1)

and which now holds with high probability. In order to obtain (5.1]), we first add and
substract ]E{gb(Yj )} and use Theorem |3.1] which yields

g [BL6%,)] - Balot]| < 3 7o W) + g [Bfo00)] — Eaforv)]|

Replacing all arising expectations E(-), £ = 1,...,15 in the representation of the error es-

timator & by their corresponding empirical means EéM)(-) and writing &® for the related
(empirical) error estimator further leads to

max
0<5<J

E[6(Xy,)| - Ex|6(Y)] ‘ < le T SM (6;7711, Y7) 4 ERRg(M) + ERR, (M), (5.2)

where ERRg (M), ERR,(M) denote the arising statistical errors resulting from the approximation
of the error estimator & and from the approximation of the expectation of the test function
¢. Algorithm [£.1] controls the first expression on the right-hand side of (6.1a). In order to
control the remaining statistical errors, i.e., to ensure that ERRg(M) + ERR,(M) < Tol holds
with high probability, and to conclude , one can (asymptotically) determine a number
M = M(Tol) € N of Monte-Carlo samples by means of concentration inequalities, the central
limit theorem or other (non-)asymptotic controls; we refer to [37] for more details in this
direction — In the computational studies reported below, we mostly chose M = 10* for which
the Monte-Carlo simulations performed stably.
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CHAPTER 5. COMPUTATIONAL EXPERIMENTS

5.1. The one-dimensional stochastic heat equation in

Example [0.1]

Let T'> 0, K € Nand D = (0,1) C R. We consider the SPDE withe =1, 8 =0,
and F, Y € C3 (R) N H (D), as well as homogeneous Dirichlet boundary conditions, and
Yo € H} (D). These assumptions ensure the existence of a unique strong solution of ; see
e.g. 22, p. 197ff.]. We use standard notation, as e.g. L? = L.*(D) and H}, = H}(D) below;
see e.g. [31), p. 244 ff.].

Let L € N. We consider a (uniform) triangulation of the domain D such that

0=xp <X <..<xp<xpy1 =1, with hEXg—Xg_lzﬁ (t=1,...,L).

Following [47], we use a finite element method based on piecewise affine functions to spatially
discretize SPDE ((0.2) with e = 1 and 8 = 0. In combination with ‘mass lumping’, we obtain
the following L—dimensional SDE system:

dx! :(—%X?—l—f(X?))dt—i—kglak(xg)dﬁk(t) Vi e 0,17,

. (5.3)
Xg - (yo(xl)a "'7y0<XL)) € RL’

where
XJ = (X))o X)) €RE, E(X]) = (F(XP00))s e F(XP () € RE

1
tridiag[—1,2, —1] € R

O'k(X?) = (Zk(Xth(Xl)), ,Ek(Xth(XL)))T c ]RL, of — ﬁ

Example|0.1] discusses computational studies for ((5.3)) via (0.3)) in combination with adaptive
Algorithm 4.1 We choose ¢(x) = V/h|x||gz to approximate the L?—norm of (the finite

element approximation of) {X;, ¢t € [0,7]} from SPDE ((0.2). The related constants to
compute & = {(’5<¢; T‘j+1,Y‘j)}j20 below (3.1)) are:

~ 2 _m _x? _ w3 _ 137 _
/\&7 ~ T CDf — B> C1D2f — 5 CYD3f — 5 CVDa’ — 1207 CDQU - 0158a

Cpig = 0518, Cp(¢) =Vh, Cp(¢) =0, Cps(¢) =0 (21 =e=2e5=6).

Figure |5.1| below displays the contributions of the different EéM)(-), e {l,...,15}\{7,13,14}
in the a posteriori error estimator &, which steers the step size selection of the adaptive Al-
gorithm [4.1] Note that & consists of leading order terms Eq(-), £ € {1,2,3,4,5,6,8,9,12}, as
well as ‘higher order terms’ E¢(-), £ € {10, 11, 15}. Mainly responsible for mesh adjustments
are the leading order terms — in particular E4(-), which addresses higher derivatives (up to
order 4) of the (approximated) solution {X;, t € [0, T} of (0.2), starting with  — sin(7z) as
initial function. Heuristically, it might therefore be justified to neglect ‘higher order terms’
in order to save computational effort, and only take into account leading order terms in &.
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CHAPTER 5. COMPUTATIONAL EXPERIMENTS

For different noise parameters K € {0,1,3,5,6,8,10}, Figure below compares the total
amount of time steps needed for adaptive and uniform meshes to perform equally well, in-
dicating that: the larger K the more improved performance of the adaptive Algorithm [4.1]
compared to scheme with uniform time steps may be expected.

(A)t; = B (YY) (C)t; — E¢V(YY)

10t

. —thEiMJ(Y') 10! _t,HEéM?(Y/)
v —t; — ES(Y)) " —t; — E(YY)
w —t; — EW (YY) w0 —t; » ES (YY)

2
Z10t
2100

g
O g6

Figure 5.1.: (Error indicators of the weak a posteriori error estimator &™ of Example
for Tol = 0.1, M = 10*, T = 1) (A) Semi-Log-Plot of the corresponding
computable error indicators ¢; — EﬁM) (Y7), £ = 1,3,10, which only involve
the drift term. (B) Semi-Log-Plot of the corresponding computable error in-
dicators t; +— EEM) (Y7), £ = 2,8,9,11,12,15, which only involve the diffusion
term. (C) Semi-Log-Plot of the corresponding computable error indicators
tj — EM (Y?), £ =4,5,6, where both the drift and diffusion are involved.

¢
5.2. A convection dominated (stochastic) problem

Example 5.1. Consider (0.2) on D = (0,1), " > 0, with ¢ > 0, 8 € R, F = 0 and
homogeneous Dirichlet boundary conditions. After a finite element discretization, using

‘mass lumping’, and h = 15 for some L € N, we obtain
K
AX! =~/ XMt + > op(XD)ABe(t) Vi€ [0,T],
k=1
N
Xy = (yO(Xl)a ~~>?Jo(XL)) € R,

where o1,(X") as in (5.3), and

o = %tridiag[—l, 2,—1] — Q'Bhtridiag[—l, 0,1] € RE*E,

We study three different cases given in Table[5.I} Setup A deals with a purely deterministic
version of Example [5.1, i.e., no diffusion is involved. In this context, for fixed 8 and &, we
discuss the role of the chosen test function ¢ in the adaptive method; see Figure [5.4] and
Figure below. Then, for a fixed test function, Setup B studies the impact of different
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(A) K +— # time steps

0.8

0.6

2 = uniform : K — # time steps
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Figure 5.2.: (Adaptive vs. uniform:

Influence of noise pa-
rameter K on the total
amount of time steps

1,600

(A)e +— # time steps

1,200 -

800 -

400 -

=adaptive : € — # time steps
=uniform : & — # time steps

. .,

Figure

I I I I I I
0 0.2 0.4 0.6 0.8 1

5.3.: (Adaptive vs. uniform:
Influence of parameter
€ on the total amount
of time steps within

within Example[0.1] for Setup B for Tol =
Tol = 0.1, M = 5000, 0.1, M = 5000, B =
T = 1) (A) Semi- 1, T = 1) (A) Semi-

Log-Plot of the total
amount of time steps
for unifom (—) wvs.
adaptive (—).

Log-Plot of the total
amount of time steps
for unifom (—) wvs.
adaptive (—).

choices of B, ¢ on adaptive meshing; see Figures 5.6, 5.7 and 5.8 below. Setup C investigates
Example for a different initial function and a different type of multiplicative noise, but
with fixed B, € and ¢; see Figure below.

L T @ K Sk (Xe(x)
Setup A 50 1 sin(mz) 1 0
Setup B 50 1 sin(mz) 5 e
Setup C 50 1 sin(3mz) 5 i sin(mkx) (Xt + 0.2>

Table 5.1.: Different Setups for Example

As we can see in Figures [5.4] and [5.5] different choices of test functions might lead to huge
changes in the amount of time steps generated via Algorithm [4.1] In Figures and

.....

L?—norm (resp. the L>®—norm) of (the finite element approximation of) {X;, ¢t € [0,T]},
from SPDE ((0.2)). Although both figures illustrate similar behaviours of time step size, error
and a posteriori error plots, the amount of time steps needed to stay below the given error
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(A) (tj, l‘g) — Yj(l‘g) (B) tj s 7‘_‘7‘_5_1

0.1

09 —t. — Tj+1

0.8 8.10-2 |

Realization

0.4

0.2 2.1072F

(Q) tj e 6(Xe) — o(YY) (D)j ,_> (¢ 77, )

—adaptive: J = 259 T BTy

—uniform: J ;360 |

08

0.6

04}

0.2

I I I 2 L L L | I
0 0.2 0.4 0.6 0.8 1 0 50 100 150 200 250

Figure 5.4.: (Setup A with Tol = 0.1, 8 = 2, ¢ = 2h and ¢(x) = V'h||x||gz) (A) Contour
plot of the solution. (B) Plot of the corresponding adaptive time step size.
(C) Error for uniform (—) vs. adaptive (—) time meshes via Algorithm [4.1]
(D) Plot of the a posteriori weak error estimator @(gb; i+l Yj).

threshold Tol in Figure [5.5] is larger compared to Figure [5.4] which is due to the different
scalings of the considered norms.

Different choices of 8 and ¢ affect the amount of total steps generated via Algorithm 4.1 A
larger size of B increases the convection effect and leads to more time steps; see Figures
and In turn, larger values of € reduce the transport, which requires fewer time steps,
see Figure . For different parameters € € {h,2h,5h, 15h,30h, 1}, Figure compares the
total amount of time steps needed for adaptive and uniform meshes to perform equally well,
indicating that the smaller ¢ is, the more savings are obtained via the adaptive Algorithm
if compared to scheme with uniform time steps.
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. . _ J ; .l VI
(A) tj — 7—]+] o (B> t] — ‘¢<th) ¢<Y )‘ (C>] = ®(¢* 7/ 7YJ>
3 0.13
—adpiive. ] = 1830 R
—uniform: J = 2400 T
81072 01 4 <
2 &
6 1072 B é
£ | &
11072
2-1072
0 ”\\ 0.2 0.4 0.6 0.8 1 110 JU 500 1,000 1,500
0 0.2 0.4 0.6 0.8 Time Time steps
Time

Figure 5.5.: (Setup A with Tol = 0.1, 8 = 2, ¢ = 2h and ¢(x) = ||x||) (A) Plot of the
corresponding adaptive time step size. (B) Error for uniform (—) vs. adaptive
(—) time meshes via Algorithm (C) Plot of the a posteriori weak error

estimator & (¢; Tt Yj> .

(A) (tj, xp) > Yj(x[)(w) e (B) ti— i+l

—t; — !
1.2

Ste

(C)t; = \EWth)} - JEM[QS(Y]')H (D) j — M (g 77+, YY)
2 _ada tive: J =105 0.13 _j’—)QS(M)(OZTj+1,Y])
—uniform: J = 1000 o %él

0.1

051 1-1072

0 et 121072

0 50 100
N

Figure 5.6.: (Setup B with Tol = 0.1, M = 10*, 8 = 1, ¢ = 2h and $(x) = Vh|x||rz)
(A) Contour plot of the solution for a single realization w. (B) Plot of the
corresponding adaptive time step size. (C) Error for uniform (—) vs. adaptive
(—) time meshes via Algorithm 4.1} (D) Plot of the a posteriori weak error

estimator &™) (gzﬁ; VAR Yj) .
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(A) (t), ) = Y (20)(w)

Step size

(©)t; — Elg(Xy)| - EM[gb(Yj)]‘ (D)j > (s 7, YY)
z | ;ada five: J‘: 91 013 | | —j~ 0‘5(”)(¢;Tj“‘7Yf) |
—uniform: J = 400 - ggjl

Figure 5.7.: (Setup B with Tol = 0.1, M = 10%, 8 = 1, ¢ = 5h and ¢(x) = Vh|x||rz)
(A) Contour plot of the solution for a single realization w. (B) Plot of the
corresponding adaptive time step size. (C) Error for uniform (—) vs. adaptive
(—) time meshes via Algorithm 4.1} (D) Plot of the a posteriori weak error
estimator &™) (gb; YEARS Yj> .
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Step size

(©)t; = E[(X,)] — Exo(Y")] (D) = 6(p: 77, Y)
5 | —adaptive: J — 258 o1 | | —j - 6<”)(¢;‘T]“-,Yj)‘ ]
—uniform: J = 1000} - 'Ti’ll

0.1

M N
0.5 1
0 : : . 1102

Time Time steps

Figure 5.8.: (Setup B with Tol = 0.1, M = 10*, 8 = =2, ¢ = 2h and ¢(x) = Vh|x||rz)
(A) Contour plot of the solution for a single realization w. (B) Plot of the
corresponding adaptive time step size. (C) Error for uniform (—) vs. adaptive
(—) time meshes via Algorithm .1l (D) Plot of the a posteriori weak error

estimator &™) ((b; YEARE Yj) .
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Figure 5.9.: (Setup C with Tol = 0.1, M = 10%, § = 1, ¢ = 2h and ¢(x) = Vh|x||gz)
(A) Contour plot of the solution for a single realization w. (B) Plot of the
corresponding adaptive time step size. (C) Error for uniform (—) vs. adaptive
(—) time meshes via Algorithm 4.1l (D) Plot of the a posteriori weak error

estimator &™) ((;5; YEARE Yj) .
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6. Introduction

The following aspects directly tie in with items (i), (i7) and (¢i¢) in the introduction in the
beginning of this thesis.

ad (i). The derivation of conceptually follows the guideline of Theorem [3.1]in the first
part, where an a posteriori (weak) error estimate is presented for the (semi-implicit) Euler
method, which uses (unbounded) Wiener increments; in fact, 959 in is conceptually
close to the estimator in (3.1)). While Theorem [3.1] considers the Kolmogorov PDE (see (0.5)),
and also (6.1)) on the whole space D = R, we here consider bounded domains D C R”,
which requires the proper numerical approximation of the stopping time 7* in when X*
crosses the boundary 8D. To this end, the weak Euler method in Scheme [2] in combination
with the corresponding ‘stopping’-mechanism enables a successive (local) construction of
iterates {ch}jzo up to the boundary 8D, where all of them lie in D: in this respect, we
denote by S,;+1 C D, j > 0, the set of points which are close to &D. We characterize this
‘boundary strip’ via the verification:

o if d(Y%,0D) := inf{||Yk — vl|gr |v € 8D} > N\;v/79+, then Yk € D\ 8,41, and
hence Y§ ' € D,

o if 0 < d(Y%,0D) < \;V7i+1, then Y € 8,1,

for a suitable number \; > 0; see Section for a proper choice. Once Yg( € 8.+, it
is either projected onto @D and the procedure stops or is ‘bounced back’ to the interior
of D (with some probability). This different treatment of realizations of Y% via Scheme

is reflected in the error estimators {055)};3’:1 in (0.12)) (see Figure below): those which
contribute to the functional @ﬁj ) take positions in D \ 8,;+1; in contrast, Qﬁgf ) accounts for

those in the boundary strip §,,+1, while Qﬁgj ) assembles the subset of those realizations, which
bounce back to the interior of D.
We illustrate the role of the different estimators {&\’}3_, in (0.12) for a prototype PDE

0.6).
Example 6.1. Let L € Nand D = {x e Rl ||x||ge < 1}. Consider with b(x) = 0,
o(x) = \/% T, where I denotes the L—dimensional identity matrix, ¢(x) = 0. Then, {&7}3_,
in Theorem [9.1] are (j > )}

o

RL |’

1
'Here, given an event A, 14 : Q — {0,1} denotes the indicator function of A, i.e., 14(w) = 1 if w € A,

) = .E|1 Y- Y
and 14(w) =0ifw ¢ A.

2 { {Yg(eD\STjH} ‘
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(a) Y, € D\S,in (b) Yx € 8., (c) Yy €8,
and ‘bouncing
back’

Figure 6.1.: Realizations which (a) contribute to &, (b) to 65 and (c) to &y,

. 2
ngj) = RL:| )

T2 .E{I{Yigesfﬂl}l{%(:‘(;ﬁ)‘i Tj+1"(HaD(Yg(

) RESERE

() _
B — 9 E[l {Y%(GSTHI}} .
@ﬁj ) accounts for incremental changes within the interior D \ 8, j+1. The terms in @éj )
account for those iterates that have already entered &,j+1, and where the event of a ‘pro-
jection’ resp. ‘bouncing back’ is about to happen next. The terms in (’5%7 ) account for those
realizations in §,;+1 which will be ‘bounced back’.

ad (ii). Once the a posteriori error estimate has been established in Theorem (9.1, we
analyze its convergence behavior along sequences of shrinking meshes with maximum mesh
size 7% > (. The result in Theorem shows an optimal rate of convergence, and thus
recovers the well-known a priori estimate for iterates {(Y%, Y., YZ) /2y of Scheme ; see

[62, p. 369, Thm. 3.4]. In fact, the presence of the estimator {(’59 )}jZO is crucial to validate
order 1; in fact, if it would be removed from the estimator, and an immediate projection
onto @D of an iterate in the boundary strip would occur, only a convergence order % of the
reduced a posteriori error estimate may be expected; this conclusion may be drawn from the a
priori error analysis in [62, p. 370, Rem. 3.5] where this selective ‘bouncing back/projection’-
mechanism was conceived. Further crucial tools in the proof of Theorem are stability
results in Section [8.3[for the boundedness of visits in the boundary strips {87j+1 }j>0, and the

discrete stopping time (see Lemmas and , which generalize related stability results in
[62, p. 367, Lem. 3.2] and [62, p. 367, Lem. 3.2] to non-uniform time steps; see also Remark
Rl for further details.

ad (). In Chapter[L0} the a posteriori error estimate (0.12)) is used to construct an adaptive
method (see Algorithm [10.1)) which automatically selects deterministic (local) step sizes
Tt =t;,1 —t; in every iteration step. For this purpose, given some tolerance Tol > 0 and
J >0, we check via iterated refinement /coarsening of the current step size 77! whether the
J
partial sum rk+1{a5§""“) + @gk) + Qigk)} is below (a multiple of) a pre-assigned tolerance
k=0
Tol > 0; see (10.1). If compared to Algorithm in the first part, the main difficulty for
the boundary value problem here is to set up a thresholding criterion that properly
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addresses the ‘discrete stopping’, for which the stability results in Lemmas [8.3] and [8.4] hold.
Theorem _ then validates computation of each new time step 7971 in Algorithm after
finitely many iterations (i.e., in O(log(Tol_l))), at most E[J*} = O(Tol™!) many steps to
(globally) terminate, and a weak error convergence order O(Tol).

The following example from [13] illustrates efficient local mesh refinement-coarsening by the
adaptive Algorithm [I0.1] for L > 1.

(A) Positions of samples in D (B) Positions of samples in D (C) Positions of samples in D

-1 -08 0.6 -04 -0.2 0 02 04 06 08 1 -1 -08 -0.6 =04 -0.2 0 02 04 06 08 1 -1 —-08 -0.6 =04 -0.2 0 02 04 06 08 1

Figure 6.2.: Example for L = 2: Temporal evolution of positions of samples in D: e
samples in the interior of D; e samples in the corresponding boundary strips;
[0 samples on dD.

Example 6.2 (see [13]). Let L = 10 and D := {X e RE : |x||pe < 1}. Consider
with a(x) = I, b(x) = 0, ¢(x) = 0, g(x) = 1 and ¢(x) = 0. Fix x = 0. We use
Algorithm m (with Tol = 0.005, M = 10%) to get the approximation u™ (x) of the solution
u(x) = %(1 - ||X||]%§L) Here,

zMj o(Yx ") "+ Y™ (xeD)

m=1

u®™(x) := Eu|o(Y5)VY + Y]] =

Z\H

denotes the empirical mean to approximate E[qﬁ(Y{{)YV* —i—YZ*} . The initial refinement and
gradual coarsening of the step sizes (‘U’-profile) in Figure (A) is a typical consequence
of Algorihm [10.1] allowing for an interaction between mformatlons from the (empirical) error
estimators {&,” L )}é , and a minor weightening of ‘outlier-samples’ according to the shape
of the distribution of the stopping time t,+; see Figure (B), and also Figure E In a
comparative consideration of Figures[6.3| (A), (B), and (C), first samples enter the boundary
strips at time ~ 0.025 and hence (possibly) get projected onto 0D, which is why we observe
a refinement of step sizes up to this time. Within the time interval [0.025,0.125], most of
the samples hit D which involves fine step sizes in this region to reach a certain level of
accuracy regulated by the choice of Tol. Those samples, which have not been stopped before
time 0.125 may be considered as ‘outlier-samples’ which most likely spoil the approximation.
The mechanism in Algorithm automatically allows a gradual coarsening of related step
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sizes for the generation of these leftover samples, which increases the width of their boundary
strips, and hence forces their immediate projection onto D, i.e., a stopping of Algorithm
10.1, Moreover, Algorithm is efficient to reach the same accuracy (Error ~ 0.002,
Tol = 0.005, M = 10%* x = 0); the needed number of steps to terminate in Algorithm
10.1| resp. the empirical mean of the stopping index J* is max J* (W) = 642 (CPU time:
m=1,...,
243 sec) resp. [Ey[J*] ~ 362 — opposed to gllaxMJ*(wm) = 3757 (CPU time: 800 sec)
resp. Ey[J*] = 957 for Scheme 2/ on a uniform mesh. Hence, automatic mesh size selection

which leans on where current states realize (i.e., in the interior, where only Qig') is active

or close to the boundary, where q5§') and Q5g) adjust proper scaling) highly increases the
efficiency of Scheme

(A)tj — Tj+1

(B) Distribution of ¢ -

1,600 |- ('\
1,400 - \
1,200 -

1,000 -

Step size

800 |-

600 |-

400 -

200 |-

10

- = - E = ) ol - L |
0 5.102 01 015 02 025 03 035 04 0 5.0 01 0I5 02 o025 03 03 04

Time Time

(C)t; = #tsamples in D\ Sy

('

(D) Convergence rate

0.9

= Tol  |u(x) — ul™(x)|
11| |7~ slope 1 reference
slope 0.5 reference

0.8}

0.7}

0.6 -
0.5}
0.4}

0.3}

0.2

0.1

| | |
00 5.1072 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time

Figure 6.3.: (A) Semi-Log plot of the (adaptive) step sizes generated via Algorithm .
(B) Shape of the distribution of ¢ illustrated via a histogram plot. (C)
Temporal evolution of (sample-)iterates in the interior of D. (D) Convergence
rate (error) Log-log plot via Algorithm m (M= 10° x = 0).

Secondly, we focus on the parabolic PDE with proper terminal and Dirichlet boundary data,
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Opu(t,x) + %Tr(a(x)aT(x)Diu(t,xD + (b(x), Dyu(t, x))g, + g(t,x) =0 V(t,x) €[0,T) xD, (6.1a)

uw(T,x) =¢(T,x) VxeD, (6.1b)
u(t,x) = ¢(t,x)  V(t,x) €[0,T) x D,
(6.1c)

where additionally T > 0, and g : [0,T] xD — R, ¢ : [0, 7] xD — R. Under proper settings
of data stated in Section , there exists a unique classical solution u : [0,7] x D — R of
problem (§6.1)), which has the following probabilistic representation; see e.g. [62, p. 340]:

ult, x) = ]E[cﬁ('rt’x, Xi%) + ZTt,x] V(t,x) € [0,T) x D, (6.2)

where

1) Xbx = {X!*; s € [t,T]} denotes the Rl-valued solution of the SDE
dX, = b(X,)ds +o(X,)dW, Vsc (t,T], X,=xcDcR'  (6.3)
starting at time ¢ € [0,7) in x € D, and the first exit time of X** from D is

9% .= inf {8 >t: X*¢Dors¢ (t,T)}. (6.4)

2) Z={Z,; s €[t,T]} denotes the R-valued solution of the (random) (ODE)

dZ, = g(s,X"*)ds Vs e (¢,T], Z;=0. (6.5)

If compared to deterministic numerical methods — see also Section —, a conceptional
advantage of probabilistic numerical methods which approximate is that only one
(temporal) discretization parameter is needed. Consequently, main structural tools which
lead to a posteriori error estimate for now may easily be adopted to approximate
(6.2), and evenly so for the later construction of an adaptive method; for (¢,x) € [0,T) x D
fixed, the a posteriori error estimate on a given mesh {t;}7_, C [t,T] with local mesh sizes
{rit1}2] for iterates {(Y%,Y)) 7/~ from Scheme (3| to approximate takes again the
form

u(t,x) = E[o(ts, YE) + V7] \ <€g.9)- > 7oV + 05 + 05}, (66)
§=0

with €(¢, g) > 0, J = J(t,x) € N, (computable) a posteriori error estimators {Sﬁg')}i’:l, and
0 < J* = J*(t,x) < J the stopping index; see Theorem
The following example details {5’_)2)}2’:1 in for a prototype PDE (/6.1)).
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Example 6.3. Let L € Nand D = {x e R x|lgpe < 1}. Consider (6.1]) with b(x) = 0,

o(x)

= \/% -1, g(t,x) = 0, and ¢ smooth. Then,

. 7.]+1 ,

2
RL

Y

559) - E{l{YﬁeD\STﬁl} . HY;ZA - Y%( ;L} e E[l{Y;(GD\STjHﬂ

¢’ :E[1{ v - Yk

. 1. v
Y;(ESTj+1} {Y;(:Yg(-i-/\j Tj+1n(HaD(Y;())}

+2'E[l{YgesTHl}l{YgFY%“j Tﬁl"(n"’”(Y@)}} o

ﬁ:(gj):2'E|:1{Yj s }]
XSO ritl

The three estimators take similar roles as in Example for .

The following items () — (ééi) comment on the construction of (6.6]), its convergence analysis,
and use to construct an adaptive method.

(4)

(iid)

If compared to Scheme [2| for the elliptic problem , Scheme (3| (see Section
exploits an additional observance of ‘stopping’ when there is no projection onto 9D

before the terminal time 7" > 0, but is similar elsewise. Consequently, the form of

is close to (0.12)).

If compared to , the convergence analysis of along sequences of shrinking
meshes with a maximum mesh size simplifies since the stopping time 7% in (6.4
is P—a.s. bounded by the terminal time 7" > 0, which, in particular, avoids a related
stability result concerning ‘discrete-stopping’. In fact, only Lemma[8.5]is needed, which
is an analogue of Lemma [8.3|in the elliptic setting.

Similar to Algorithm in Chapter we construct an adaptive time-stepping algo-
rithm (see Algorithm based on (6.6), for which we prove (again) local and global
termination, as well as optimal convergence in terms of a given tolerance Tol > 0.
The (successive) step size selection procedure in Algorithm proceeds in the same
way as in Algorithm [10.1} given Tol > 0 and j > 0, the current step size 7/*! is
(automatically) generated (via iterated refinement/coarsening), such that the partial
sum i rhtl {Jﬁgk) +53§’“) —|—5§§k)} is below Tol times a specified ‘temporal weight’, which

k=0
grows with ¢;, but is bounded by means of the stability result in Lemma [8.5 In the

fully practical implementation of Algorithm m (as well as Algorithm , where
arising expectations are approximated by Monte-Carlo method, the ‘temporal weight’
gradually forces those leftover samples, which have not been projected onto D with
the majority of samples, to a projection. These ‘forced’ projections are obtained by
enlarging corresponding boundary strips through a gradual coarsening of the step sizes

(see Examples and , and also Figure . We refer to Chapters [10] and (11| for
further details.
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The following example from [56, Experiment 7.1] illustrates local mesh refinement-coarsening

by Algorithm
Example 6.4 (see [50, Experiment 7.1]). Let T = 1, and D := {X = (11,29)" € R? :
||x||re < 1}. Consider ((6.1]) with

o(x) = [ é g 1 , b(x) = [ ii ] , g(t,x) = 5(1 - e_(T_t)> — (25 — 3 — x%)e_(T_t),

o(t,x) = (25 -z - x%) (1 — e_(T_t)) .
The corresponding solution is given by u(t,x) = (25 — 2? — x%) (1 — e_(T_t)). We fix
(t,x) = (0,0), and use Algorithm (with Tol = 0.01, M = 10%) to approximate u(t,x) by
u®(¢,x). Ilustrated in Figure below, the methodology of Algorithm allowing for
interactions between {.ﬁg')’(m }3_, and a less weightening of ‘outlier-samples’ is conceptually
similar to Algorithm we observe a refinement of step sizes (within [0,0.05]) till first
samples hit @D; fine step sizes are needed within [0.05, 0.4], where most samples are projected
onto OD; afterwards, we observe a gradual coarsening of the step sizes (within [0.4,1]) to
force ‘outlier-samples’ to hit D resp. to proceed to the terminal time T as fast as possible.
Furthermore, Algorithm is (also) efficient to reach the same accuracy (Error ~ 0.015,
Tol = 0.02, M = 10%, (¢,x) = (0,0)); the needed number of steps to terminate in Algorithm
10.3| resp. the empirical mean of the stopping index J* is _max J*(wm) = 709 (CPU time:

.....

-----

resp. Ey[J*] = 1607 for Scheme [3| on a uniform mesh.

This part in organized as follows: Chapter [7|provides a survey of existing (adaptive) methods
for the approximation of the elliptic, as well as the parabolic PDE. Chapter [§ collects the
assumptions needed for the data in resp. , recalls a priori bounds for the solution of
resp. and presents Schemes |1/ to 3, as well as corresponding stability results. The
a posteriori error estimates and are derived in Chapter EL where also its optimal
convergence orders are shown. The related adaptive methods are proposed and analyzed in
Chapter [I0] Chapter [IT] presents computational studies.
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Figure 6.4.: (A) Semi-Log plot of the (adaptive) step sizes generated via Algorithm [10.3]

(B) Shape of the distribution of t;« illustrated via a histogram plot.

(©)

Temporal evolution of (sample-)iterates in the interior of D. (D) Convergence
rate (error) Log-log plot via Algorithm m (M= 10°, (¢,x) = (0,0)).
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7. A short review of A posteriori error
analysis and Adaptivity

Deterministic methods to solve PDE’s and usually employ meshes to resolve
the state space, and their implementation usually is complicated. In contrast, probabilistic
methods are meshless, comparatively easier to implement, and still are applicable in high
dimensions L. Their efficiency increases rapidly with the recent emergence of modern (par-
allel) GPU architectures; see [45]. The main goal in this chapter is to survey some existing
representative directions in the a posteriori error analysis and adaptive numerical methods

for the (initial-)boundary value problems and (/6.1)).

7.1. Probabilistic methods to discretize high-dimensional
PDE'’s

In the literature, there exist different numerical methods for or , which may be seen
as examples of more general ‘stopped diffusion’ problems. Most of them use the explicit Euler
method, i.e., where ‘§;1V 7/t is replaced by the Wiener increment ‘W, — W, 7; see
([9-57). The main difficulty then is to accurately compute the (discrete) stopping time
resp. , when the related (discrete) solution path leaves the domain D. This problem
becomes even more prominent when the related first exit time 7 of the (abstract) continuified
Euler process Y* (see (9.58)) is compared in this context on an interval [t;,t;41] — where
trajectories may exit D even though all discrete (explicit) Euler iterates lie in D; see Figure
(a) below. An a priori error analysis therefore cuts the expectable convergence rate from
1 to %; see [38, Thm. 2.3]. To recover optimal order, more simulations are needed close to the
boundary to accurately capture discrete stopping. First works in this direction are [38, [39],
which prove optimal convergence order 1. To use the method in [39], the exit probability
of YX leaving the domain, 4.e., the probability that ¥ lies in a time interval specified by
two (consecutive) grid points needs be available explicitly, which is only known for certain
domains (e.g. when D is a half-space; see e.g. [39]). For general underlying domains D, this
approach needs be combined with local transformations of @D to be successful.

In order to avoid local charts close to @D, the ‘boundary shifting method’ is presented in [40]
which shrinks the domain D to generate more frequent exits. If compared to the ‘Brow-
nian bridge method above, an explicit formula for exit probabilities of YX is not required
anymore, which broadens the applicability of the method to more general domains. The
corresponding error analysis guarantees order 0(\/&), while computations evidence order 1.
For further, different strategies to ensure accurate ‘stopping’, we also refer to [60] [I3].
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The methods that we discussed so far were supplemented by a priori error analysis; to our
knowledge, the only work that addresses a posteriori error analysis in this setting is [2§].
For ¢ = 0 in , and based on an (asymptotic) weak a posteriori error expansion with
computable leading order term, a time-stepping method is proposed which generates global
stochastic (adaptive) meshes to approximate (6.2]). However, these (random) mesh genera-
tions are only based on the computable part of the underlying error expansion, and adaptivity
here thus remains heuristic. The corresponding derivation uses computable exit probabilities
(similar to [38]139]), and is elsewise similar to the procedure in 76} [64]: the derivation rests
on the weak error expansion via PDE , which practically involves numerical approxima-
tions of derivatives of the (unknown) solution u of (6.1)), whose simulation is only feasible
in small dimensions L. The computational experiments in this work indicate a convergence
order 1, but no theoretical results are known that support these observations.

The methods above are primarily addressing the (efficient) approximation rather than
([0.6). We here mention the works [T}, 12, 14] which computationally study the approximation
of by extending the ideas from [39]: there, 7* in is (accurately) approximated by
sampling from a distribution, which is constructed by means of the related exit probability.
Computational studies with the corresponding method evidence an improved convergence
order 1 as well.

These schemes all use the (explicit) Euler method with unbounded Wiener increments. From
a practical viewpoint however, the weak Euler method in (8.1]) is an alternative option, as it
uses bounded random variables in every iteration step (see Scheme (1| below) to avoid over-
shootings outside the domain by controlling the steps up to the boundary; in particular the
work [61] verifies first order convergence for in an associated scheme (very close to
Scheme [2| resp. , which — except for a projection onto @D resp. bouncing back to the
inside of D — does not require further adjustments of its iterates close to 0D. We use
this simple, fully practical method within Schemes [2| and (3| in Chapter |§] to provide
computable right-hand sides in an a posteriori error analysis, which may then be used to set
up an adaptive time-stepping strategy based on it in Chapter .

7.2. Deterministic adaptive methods in low dimension —
AFEM

Adaptive finite element methods (AFEM) base an automatic adjustment of a given mesh
To covering D C R” on an a posteriori error estimator n*(uz,, To) = n* = Y pmoey, Mrmo for
the computed approximation ur, : D — R for on 7y. FEM is a general deterministic
Galerkin method for posed on an arbitrary low-dimensional domain D; in practice,
its use then leads to large coupled algebraic systems to be inverted by means of advanced
iterative solvers, where its performance crucially hinges on the ellipticity of (0.6). AFEM
extends these concepts, by trying to optimally distribute nodal mesh points across D, guided

!For comparison, we give an a posteriori error analysis for the usual Euler method (9.57) in Section
where an upper error bound is given in terms of the stopping time 7 of the continuified Euler process
VX (9.58) — which requires an approximation via additional computations; see Remark
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by local {nymo; T™° € Ty} where nr = nr(ur, - T™9), while aiming for optimal accuracy
under fixed computational costs; it is an iterative method which repeatedly refines meshes
locally and thus generates a family of nested {T;};_; — until the related approximate ur,, :
D — R of fulfills a certain threshold criterion.

Existing AFEM mainly uses Hilbert space methods to derive an (residual-based) a posteriori
estimator n(ur,, 7¢) to upperly bound the error u—wuy, in the ‘energy norm’, with an unknown
factor (e.g., Poincare’s constant reflecting stability properties of , and another one which
accounts for admitted triangulations; see [29, 65]). For AFEM, this estimate then suggests

the following loop
Solve — Estimate — Mark — Refine (7.1)

to automatically generate a sequence of (increasingly more) specific, (locally) refined meshes
{Tne}e, starting from a coarse mesh 75, which all cover D: for a given Ty, we

1) (‘Solve’) first compute uy, with the help of direct or indirect solvers (e.g., PCG,
multigrid method, GMRES, or BICG) that solves a large linear system. Then

2) (‘Estimate’) the estimator n(ur,;, 7;) is computed to decide whether or not uy, is suf-
ficiently accurate, and/or 7, should be refined or not. Based on the estimator alone
Is

3) (‘Mark’) ‘Dérfler’s marking criterion’ (see (7.2)) below), which selects those elements
Te = {T™* € T,;} which are up to refinement.

4) (‘Refine’) Only mesh refinement is admitted to obtain the new nested mesh 7,4, —
via the ‘newest bisection method’ that splits the marked elements in 3).

It remained open until [27] to show that tuple {(u7,,7;)}, obtained from 1) — 4) meet a
pre-assigned error tolerance within finite steps £*: next to the assumption of a sufficiently
fine initial 7o and the ‘one interior node’-condition in 4), the convergence proof for AFEM
in [27] for Poisson’s problem rests on ‘Dorfler’s strategy marking’:

Find a subset T, C Ty : n(ur,, Te) > On(ug,, To) (7.2)

for a fixed 0 < @ < 1, which ensures that sufficiently many elements from 7, = {T™*},, are
chosen that constitute a fixed proportion of the global error estimator [65]. The work [27]
initiated a whole series of works to broaden convergence results for more general AFEM of
sort , s.t. the relevant contraction property remains valid, which is

38 € (0,1) : /D|v<u—un)|2dxgoﬁf (e N),
with a generic constant C' = C'(D) > 0 that depends on D and admitted mesh geometries: to
e.g. remove in [I§] the (too costly) ‘one interior node’-condition in 4), next to required suffi-

ciently fine initial 7y, the concept of ‘total error’ was central. Another direction generalizes
the convergence property of AFEM to nonsymmetric linear-elliptic, and even quasi-linear
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problems; see e.g. [33, [§]. Next to the contraction property, ‘mesh optimality’ is a crucial
property for AFEM to have, which bounds the number of degrees of freedom Ny = §7-
in the terminating mesh 7p-: the first work in this direction is [10], which shows optimal
convergence rates (in terms of Ny for the Poisson problem) for a certain AFEM which
included a crucial coasening step; this step was later removed by a modified approach in
[75]. For a further discussion of ‘mesh optimality’ for AFEM we refer to [66], and [I7] where
sufficient criteria are identified which ensure optimal convergence rates for a general AFEM;
and to e.g. [33, 8] for more general (PDE’s). We remark that the proof of ‘mesh optimality’
usually requires 6 € (0,6*) in (7.2)), for * sufficiently small to bound the number of marked
elements in step 3) — whose value is not explicit for actual simulations. We refer to [26] for
a further discussion.

These concepts are applied in [20, 53], 34] to construct adaptive methods based on the implicit
Euler method for the heat equation, as a special example of the evolutionary PDE : for
every n > 0, to (iteratively) find the new time step 7, and then the spatial mesh 7, to cover
D, different error indicators are identified which subsequently (and thus independently)
address these goals. These indicators are space-time localizations of computable terms in
the a posteriori error estimate [79], see also [53, Thm. 3.1], whose derivation is based on
the concept of weak (variational) solution for (6.1]), to bound the error in the global Bochner
norm L*(0, T; H{)NW12(0, T;H'). As a consequence, given n > 0, and 7,,, the construction
of a mesh 7,, to approximate the solution of

iu" + Lu" = iu"_l +g,

T Tn
where £ = —A, via the convergent AFEM strategy is then possible. However, the subtle
interplay of different spatial and temporal scales and the decoupled treatment of related error
occuring in each time step makes the construction of an efficient adaptive method for
more challenging in this parabolic case (see also [34]): also, we have to make sure that

(i) 7, may iteratively be constructed via a finite sequence {Tn,g}go, and that

(i) the final time T is reached after finitely many steps, i.e., there exists N € N: 7y > T

to conclude convergence of the adaptive method. The adaptive method in [20] satisfies (i)
but lacks (ii); a first convergent method is given in [53], where each time-step starts with
a possible coarsening of (7,_1,7,-1), and only refinements afterwards; a wuniform energy
estimate for iterates is now employed to determine a (uniform) minimum admissible time
step for each n to meet the error tolerance, and thus show termination of the adaptive
method, i.e., property (ii) — although with nonoptimal complexity bounds.

7.3. Deterministic methods to discretize high-dimensional
PDE’s — tensor sparsity

For D = (0,1)%, mesh-based methods (such as FEM used in Section to e.g. solve PDE
suffer the curse of dimensionality: for N the number of points on a uniform mesh per
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dimension, the number of related nodal basis functions is O(N*), which grows exponentially
with the dimension L. Sparse grids on hypercubes D = (0,1)L drastically cut down this
complexity of a full mesh to O(N|log(N)|*~!) many grid points: they discard those elements
of a hierarchical basis in tensor product form which have small support, such that no loss
of approximation power for sufficiently smooth solutions of PDE occurs, see e.g. [15];
for the heat equation in and rough initial data in tensor form, graded time meshes
properly address this requirement for sparse spatial grids in [70]. As e.g. detailed in [I5] [71],
the efficient use of sparse grids for high dimensions L requires a restricted data setting
(b,o,¢,g,0,D): for non-constant elliptic operators £ including convection, or a domain
that is not of tensor structure, as well as non-constant (Dirichlet-) boundary data partly
non-trivial extensions are necessary, and those setups of data typically lower accuracy, and
reachable L; see the discussion in [7§]. Also, a theoretical backup for local adaptive mesh
adjustments (see [15] [71]) that preserve optimal complexity as L increases is less developed.
To approach even larger dimensions L based on tensor product representations for approx-
imate solutions of PDE (0.6) with ‘Laplacian like operator’, the construction of a proper
(sub-)set of basis functions will be part in the low rank approzimation method itself; see
e.g. [B] for a recent survey. We also mention [41) [74], where its complexity is compared
with sparse grids, and smoothness of the function was again found to be crucial for the
efficiency of the low rank approximation. According to [2], its efficiency crucially hinges on
the differential operator in PDE to ‘have a simple tensor product structure’, and that
(L-dependent) ranks, whose optimal value is not evident in general [3] should be chosen
properly; see also [5 Sect. 5.3]. In fact, related theoretical discussions in [23] for the high-
dimensional PDE ((0.6)) with constant, symmetric elliptic operators £ = —div(AVu) with
A€ ]RdLiXaé conclude the transfer of tensor-sparsity from data to solutions, which motivates
low-rank tensor format approximations for the solution of PDE in those cases; but such
a structural transfer may get lost in the case of stronger couplings [4] for general A € RﬁpﬁL,
demanding higher ranks for a proper approximation.

While current research on deterministic methods for large L mainly focuses on the efficient
use of ‘tensor-sparsity respecting data’ to fight the ‘curse of dimensionality’, we base the
construction of easily implementable, adaptive methods to solve PDE’s resp. (6.1]) on
their probabilistic reformulations resp. : general domains D C R¥, and elliptic
differential operators £ = £(x) in resp. (6.1) are admitted, which appear in physical
applications in particular, for which convergence with optimal rates for the related adaptive
Algorithms and that base on a posteriori error estimators will provide a theoretical
backup.
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8. Assumptions and Tools

Section lists basic requirements on data b, a, ¢, g, ¢ in , which guarantee the existence
of a unique classical solution u : D — R of (0.6); see e.g. [35, Ch. 6]. Moreover, we recall
bounds for {D{u}j_; of (0.6). In almost the same manner, Section [8.2) presents assumptions
on data b, 0, g, ¢ in (6.1]), which ensure the existence of a unique classical solution u of (6.1));
see e.g. [54, p. 320, Thm. 5.2]. Moreover, we recall bounds for {D%u}j_; of (6.1).

For a sufficiently smooth ¢ € C(RY;R"), corresponding (matrix) operator norms are given
as (n,L € N, x € RF)

Dby(x = sup ||D%(x)(v1,...,ve)||rn teN),
D0t ) = P IP O ¥l (T
£—times

where ||-||g» denotes the (Euclidean) vector norm of a R"-valued vector. If n = L, we write
L= E(RL X oo X RL;RL). If n =1, D = Dy, denotes the gradient and D? = D2 the
Hessian matrix of ¢, and we also write £ = £(RL X ... x RE; ]R). Moreover, ||Dyxo(x)]|z1 =
| Dip(X) |lmrs [|D2p(x)||c2 = || D2p(x)||gexr, where ||-||gexz denotes the spectral (matrix)
norm.

For k € Nand 3 € (0,1), we denote by C**#(D; R) the Banach space consisting of continuous
functions v in D, with continuous derivatives up to order k£ in D, such that

k Y} -y
o’ -
lolip ™ - Z 3 suplu(x)|+ Y. sup [ v(x) }gv(y)\ < .
J=0|j'|=5* x€D l7'|= g XYED, x#y HX_YHRL
or rather
d ] 6j, . aj/
vl =" sup sup|@ v(x)| + sup  sup v) ~ Svy)l 0,

S2014'|=j x€D =k xyeD,xzy  ||x —yl|on

where the above summation is taken over all multi-index 5’ of length |5”].

In a similar manner, we denote by C**#/2++5([0, T] x D;R) the Banach space consisting of
continuous functions w in [0,7) x D, with continuous derivatives up to order k in [0, 7] x D,
such that

(k-+8) o
HIUH[O; <D - Z Z sup |3t(9iw(t,x)|
J=02r+|5'|= j(taX)G[O,T)XD

r€Np

Ly qp | w(tx) — 93 w(t,y)

2417 =k (£),(6,y)€[0.T)xD Ix = ylige
reNp XAy
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0709 w(t,x) — oo w(s, x)

i i 8 < 00,
25! |=k (t.x),(s,%)€[0,T]xD It — 5|
reNg t#s

see also [54] p. 2 ff] for further details.

8.1. The elliptic PDE (0.6): assumptions and bounds for
{Diu}%:l

We give assumptions, under which there exists a unique classical solution u € C*5 (73; R)

(0 < 8 < 1) of PDE (0.6); see [35, Ch. 6].

(A1) b:D — RL, with b,(+) € C**P(D;R), i =1,..., L.

(A2) 0 : D — R with o04(+) € C**P(D;R), 4,5 = 1,...,L. Moreover, there exists a
constant A\, > 0, s.t.

<y,a(z)aT(z)y>RL > Ao|lylae VzeD, ycRE.

(A3) c € C*(D;Ry), g € C**#(D;R) and ¢ € C*7(D;R).

In the next chapter, we need to sharpen these asssumptions. Hence, we assume
(A1*) (z,b(z))grr >0 VzeD.

(A1**) There exists a constant Cy 5, > 0, s.t.

2<Z,b(Z)>RL + LAs > Cb,a,L Vz €D.

Lemma 8.1. Assume (A1) — (A3) in (0.6). Then, for ¢ =1,2,3,4,
Cpe(9:9) = sup||Dyu(@) e < C(9,9),
VAS]
where
Clo.9) = C{ngnﬁ’ﬁ) + Il + s;a%w(zn} ,

for some constant C > 0 depending on the data in , the dimension L and the domain
D.

The proof of Lemma is an immediate consequence of [35, p. 142, Prob. 6.2 and p. 36,
Thm. 3.7].
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8.2. The parabolic PDE (6.1): assumptions and bounds for
{Diu}zl:l

We give assumptions, under which there exists a unique classical solution v € C**?/>+1:4+8 ([0, T x
D; R) (0 < 8 < 1) of PDE (6.1)); see [54, p. 320, Thm. 5.2].

(B1) b:D — RE with b;(-) € C**#(D;R) i=1,..,L.

(B2) 0 : D — RML| with o,;(-) € C**3(D;R), 4,5 = 1,...,L. Moreover, there exists a
constant A\, > 0, s.t.

(v.o(2)o"(2)y)_, > Xolylte VzeD, yeR".
(B3) g € C*P2255([0,T] x D; R) and ¢ € C***/2+14%5([0, T) x D; R), with (j = 0,1)

o o(t, x) + <b(x), Dx(8g¢(t,x))>RL + ;TI(J(X)JT(X)Di(agdt,x))) + & g(t,x) =0
V(t,x) e {T} x0D.

Lemma 8.2. Assume (B1) — (B3) in (6.1). Then, for ¢ =1,2,3,4,

sup || Dgu(t,2) ]| o < €(9,9),
(t,z)€[0,T)xD

where
(¢, 9) —C{||9||f§§ﬁ)p+ll¢( [l +||¢||[§;iap}

for some constant C > 0 depending on the data in (6.1]), the dimension L and the domain
D.

The proof of Lemma is an immediate consequence of [54], p. 320, Thm. 5.2].

8.3. Discretization for the elliptic PDE (0.6): Scheme and
stability

Scheme [2| below will be used to approximate (0.7]) from . For this purpose, we fix x € D
and let {t;},50 C [0,00) be a mesh with local mesh sizes {777} ,.

Scheme 1. Let j > 0. For given (Y, Y, Y2) at time t;, find the R*-valued random variable
Yi from

Vi =Yg+ b L o(YRE VT, Yk=x. (8.1)
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-
where €41 = ( ](-21, o SJ(-JLr)l) is a R¥-valued random vector, whose entries are independent

1

two-point distributed random variables, taking values =1 with probability 3

each, as well as
the R-valued random variables Y, Y27 from

Y = VW rte(Yt, YP=1, and
= Vi)Y, Yieo
to approximate solution X, ., from (0.8), V;,,, from (0.10), and Z,, from (0.11]) at time

tj+1 = tj +Tj+1.

The iterates {Y\;}jzo from (8.2) are computed via the implicit Euler method in order to
ensure 0 < Yy < 1 (5 > 0) without additonal smallness assumptions of the corresponding
step sizes {T7T1},50.

Scheme below is closely based on [62), p. 365 ff., Sec. 6.3] and uses Schemeto approximate
by ‘E [¢(Y§)YJ*+YZ‘]*} " where J* = J*(w) is the smallest number such that Yy € 8D.
Recalling the characterization of the boundary strip 8,;+1 in Chapter |§] (see also Figure
(b)), we observe that \; > 0 has to be chosen such that \;v79+1 > [ Y4 — Y|z, d.c., as
(computable) upper bound of the distance between two consecutive iterates. Hence, choosing

A= Ib(Y) e VI + VI |o(Yx) [ree (8.4)

is suitable. Consequently, we identify Yg( € D as being ‘close’ to resp. ‘away’ from @D, when
Y% € S,i+1 resp. Yy ¢ S.j+1. For the following, we denote by Tlgp : D — 8D the projection
onto the boundary 8D, and by n(HaD(z)) the unit internal normal to D at Ilsp(z); see

Figure (b).
Scheme 2. Let j > 0. Let (Y, Y, Y2) be given, and Y4 € D, for k=0, ..., j.
(1) (‘ Localization’) If Y ¢ 8,41, set Y = Y.
a) If Y4 € D, go to (4).
b) If Y ¢ D, set J* :=j, Y¥ = Hap(Y%), Yy =Y, Y =Y}, and STOP.
(2) (‘ Localization’) If Y4 € 8,41, then either ?;( = Iap(Y%) with probability

AVt
[ Y4 + V7 in(Tap(Yk)) — Hop(Yk)

p; = P[Yk = lop(Y%) [Yk| =

RL
- | | (8.5)
or Y = Yk + \jv777n(Tlap(Y%)) with probability 1 — p;.

(3) (‘l;rojection’) If ?;( = Hap(Y%), set J* == 4, Y{ = Tlop(Y%), Vi = Y{, V) =
Y;, and STOP.

(4) (“ Solve’) Set Y := ?;(. Compute Y4, V7™ and Y™ via Scheme .
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(5) Put j:=j+1, and return to (1).
For j > J*, we set (Y, Y, YD) = (YL, Y, Y.
Note that p; > 5 in Step (2) of Scheme , since d(Y,0D) = HY%;—HaD(Ygi)
and Y + \ v 0 (op(Y%)) ¢ 8pr.

RL < )\j\/Tj+1,

() (b)

Figure 8.1.: (a) Exit of the continuified Euler process Y* in (0.58). (b) Projection
resp. bouncing back mechanism in Scheme .

The following lemma estimates the number of iterates {Y% };>o from Scheme [2/in the bound-
ary strips; it may be considered as a generalization of [62, p. 367, Lem. 3.2] for non-uniform
time steps.

Lemma 8.3. Assume (A1) — (A3). Fixx € D. Let {t;};>0 C [0,00) be a mesh with local
mesh sizes {77"!},5. Let {Y%};>0 be from Scheme . Then

E{l , } < 2.
JZ:;) {Y';(ESTj-i—l}
Proof. Let j € N. Since the probability p; in (8.5]) is greater than %, we obtain
]P’J*:':IE[]El .—; YJ'}:IEEP _ 1, | Yj]
[J* =] [ (7+=j} | x] [ {yg(esﬂ.ﬂ} {Y;(:Hav(y&)} | Yk

1
= E{I{Yg(esﬂ-ﬂ} .pj} > §E {I{Y;(GSTHI}} .

Consequently, we have

OOIEI[l | ]<2°°1P>[J*:j]:2.
2 s} <225
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The following lemma yields boundedness of the expected discrete stopping time
tye 1= min{tj .Yy edD, j> 0},

which approximates .

Lemma 8.4. Assume (A1) — (A3). Fix x € D. Let {t;};>0 C [0,00) be a mesh with local
mesh sizes {77*1},;59 and maximum mesh size 7% := max; 777", Let {Y%},;0 be from
Scheme . For 77" either sufficiently small, or for general 7% > 0 if (A1) is complemented
by (A1*) or (A1*), we have

Et;] <C,

where C' > 0 depends on the dimension L, the domain D and the data in (0.6]), but is
independent of x € D.

Proof. Step 1: (Derivation of a ‘discrete Dynkin-formula’) We derive a ‘discrete Dynkin-
formula’ adapted to our setting. Let f € C(RF) and k € N. A first calculation yields

E[f(Y% ") - f(x)] = E[ Z {rovgh) - f(Y%'()}]
—E| 3 {0 - AT+ (VR0 - 1)

=E EZ: ey - {FOYKT - f(Y§<>}] +E KZ: Loy {F(Yx) f(Y%?)}] '

—T —Ty
(8.6)
a) (Investigation of T1) According to the procedure in Scheme 2| we have
Th =T, +Tp, (8.7)
where
. = j+1 J
T =B S0 1O - 100} .
k-1 .
fia = ELZB U viees, o} {Themrierv ()} VKD f(Y;‘)}] |
b) (Investigation of T1,1) Taylor’s formula yields
Thvi =T +The2, (8.8)

where
k-1

Tl,l,l = E l Z 1

j=0 {YQGD\SUH} . <Dxf(Yg()7Y%‘(+1 B Y§>RL1 |
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k—1
Tiaa = 5F [E Yems,) T (DA (Y - Vi) (Y& - Y;()T)] |

for some Y% between Y4 and Y%, ie., Y& = Y + G(Y?l — Y&) with 6 € (0,1). We
use (8.1)) to represent the increment Y4 — Y%’ in Ti1,1, as well as the tower property and

independency arguments to get

k-1

Ty = E[Z 1

— {Yg(eD\S ].+1} ' <Dxf<Y§()v b<Y§()>RL ) TjJrl]

+ z:(:)E[l{ L (Duf (Y, 0 (Yh)Eji1),,, - Vﬂ'“}

Y%ED\STJ'_;J

=0

k-1

=K 1 _ - ( Dy Yj ,b Yj s 3.9
LZ:% {Y§€9\57j+1} < F(Yx), b( X)>RL (8.9)
Similar arguments as in , i.e., representing the increment ‘ng T Yg(’ in Ty,1,2 via (8.1))

and using standard calculations, as well as independency arguments lead to

1 k—1 . X . .
Ti12 = -E 1, -Tr<D2 Yi)o(Yi)e ' (Y ) I T , 8.10
112 = 5 Lz:(:) {Y;(ep\sﬂ-ﬂ} S (Yx)o(Yx)o (Yx) )T 1,1,2,1 (8.10)
where
k—1

faa = iE[g Hyiens i) -Tr(Dif(Yiab(Yé‘()bT(Yg()).(ﬂﬂﬂ

N | =

e[ Lypems,, ) T({ DU (V5 — DL (YR Jo(YR) (0(Yh)&s01) ) -(+) }

N

: Z vy oo, ot ({02 (Vh) = DL (YR o (YEs b (YR))- () ]

N | =

+

k-1

B2 Ypems . ) Te({ D2/ (V) — DAY o (Yh)E 41 (a(Y;(gm)T)-TjH] .
L=

Plugging and (8.10]) into (8.8)) yields

) | (DY) Y0, ]

Tia :]El21

=0 {Y%(GD\ST‘HJ
k—1

+;E[21

_ .Tr(Dfc Yo (Yia T (YY ),Tj+1] LT (811
= {Yi(GD\STHl} f(Yx)o(Yx)o (Yx) 1,121 - (8.11)

c) (Investigation of T12) Since the investigation of T} 2 is similar to T34, we obtain

k—1
_ sv2l Szl j+1
T = E[Zo 1{Y§<€5ﬂ+1}1{?§c:Y§<+ THln(Ha‘D(ch))} . <DXf(YX)’b(YX)>RL ot }
‘7:
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k-1
1 2 ¢~ I \NLT A j+1
Tk []ZO {vi esﬁﬂ} (X5 =i +VrFin(Top (YY) } 'Tr(DXf(YX)U(YX)a (YX))'TJ }
+Th1,2.1, (8.12)

where T3 1,21 has the same representation as T 121, where every Y in the trace terms is

replaced by Y7, yand 10 is replaced by 1 1. : )
" r X {Y§69\37j+1 P Y {Yg(é‘g”“} {WFY%* Tj“”(Ha”(Y%c))}

d) (Investigation of Ty) According to the procedure in Scheme [2| we obtain

T,-E[S1, 1. LAY = FYO 8.13
2 Lz:%) {Y§(6571+1} {Y§<=Yg(+mn(nap(Y§(>)} (V30 = 1 )}] (8.13)

e) We insert and ( into , and plug the resulting expression as well as

into to otal
k—1

E[f(YL)I;/\k)] = f(x) —HE{Z 1{Y§€D\S e <Dxf(Y§(),b(Y§()>RL .Tj+1:|
i=0 g

k—1
1 2 j i\ T~ i+1
# 35| S wgems o TP Y00 (00) 7+ B
k—1 . .
~J ~J i+1
E{Zo 1{Y§6871+1}1{7§:Y§<+ Tj+1n(H3D(Yg())} . <Dxf(YX)’b(YX)>]RL o ]
=

k-1
1 2 N N NAT (N j+1
+ 2E{ZO 1{Y§(EST_7‘+1}1{?§<:Y§(+ 757 1n (Mon (YY) } 'TY(D"f(YX)G(YX)U (YX))'T
=
k-1

T2t E{Z;) 1{Y§c€873‘+1 } 1{?j =Y+ Tj+1"(Hav(Y§())} ' {f(?;() B f(Y%()}} . (8.14)
j=

Step 2: (Proof of the statement for 7™ sufficiently small) Let n € N. Choose a B € RF
such that min||z + BJ||2} > 1. Set A? := max||z + BJ|2} and consider (8.14) with
z€D zeD

f(z)=A*—|z+Blz:  (z€D),
Op f(z) = =2n|z+B|2Y V(i +B)  i=1,..L,
05,0, f(z) = —4n(n — )|z + BI2Y 2 (2 + Bi) (2 + B;) — 2nl|z + B[2% V6,
,7=1,..., L.
We refer to [62, p. 367, Lemma 3.2] for a similar choice of a function f in a related setting.
By applying (A2) four times, we consequently obtain for k € N

k—1
E[f(Y5™)] = f(0) - 2"E[Zl{ygep\s ) IR BIEY TV (Y 4+ B, b(Y >RJ
j=0 "

~

k—1

_”E[Zl{w eD\S i1} Y+ B Z(U(ch)UT(Y%c))kk}

k=1
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k—1
o , -
—9n(n - 1)E {Zl{w oy IV + B2 <Y;(+B,o<yg()aT(Y;()(Y;(+B)>RL}

>Xo [ Y4 +BI2,

+T11,1,2
k—1

1
—2nE|:z%1{Y—;(GSTj+1}1{Yg(—Y;+ 7—J+1n(H8D(Y§())} I HY +BHR <YX_|'B b(YX)> :|
J:

k—1 L
1 2(n—1) ) \ T /<7
_nE[z:ol{chesﬁﬂ}l{ch_Ygﬁ 7i+n (Hap (Y))) } o ”Y * Bllg Z(U(YX)U (YX))kk]
=

k=1
>A\o L
k—1 )
i+1 n—2
— 2n(n — 1 |:]ZO 1{Y7 cS J+1} {YJ _Y7 + TJ+1n(H8D(Y7 )} TJ ||Y + BHR
(Y + Buo(YhoT (V) (Y + B |
> |IY%+BI2,
- k—1 iy
+T1’1’1’2 + E[Z 1{YJ ) ]+1} {YJ Y] + TJ+1'n.(H31> Y] )} {HY] + BH - ||Y;( + B||]12{£}:|
j=0
k—1

1 (N 2(n—1) ' j
< f(x) —nE Lz_:o 1{Y;€D\STM} Y, + Bl {2<Y§( +B,b(Y%))p: +(2n—2+ L)/\a}}
k—1
- n]E [; 1{Y§E$Tj+1}1{?;(:ch+ Tj+1n(Hap(Yg<))}
TJ+1||Y n B||2(” 1) {2(?1( + B,b(?gi))RL +(2n—2+ L)/\,,}}
k—1
m 2
+Tia12+T112+AE LZ:O 1{Y§637j+1 }] .
We choose n € N large enough such that

2<z+B,b(z)>RL +(2n—2+4L)A,>1 VzeD.

Since f(z) > 0,z € D, [ Yk +B[2¢ ™" > 1, [V +BJ2¢™ > 1, and z ]E[ frycs }] <2
i1
due to Lemma 8.3, we further get

Mk—1 .
V= bg s Jz% {1{Y§<€’D\3Tj+1} i 1{Y§(637j+1}1{?§(:Y;(+ THm(Hap(Yég)) }} ' T]Jrl}

+Tipa2 + T2 + 2A%

Ch—1
=f(x)—n-E| > 1ypagp - TJH] + Ty +Thp2 + 24

L j=0

=f(x)—n-Elt;n) +Tip12 + T2 + 2A%.
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By means of standard calculations and Taylor’s formula one can show that

T2+ T2 < )T E[t k)

max < n

where €(n) > 0. For 7% sufficiently small, i.e., 7% < 30

, we thus have

f(x) +242

Eltjpg] < —t——
] = n — &(n)rmaz’

Letting k — oo yields the assertion.
Step 3: (Proof of the statement under (A1*)) Set A™** := max||z||3, and consider (8.14)
zeD

with
f(z) =A™ —|lz|g.  (z€D).

Applying (A2) and (A1*) and using the fact that Ty 1,12 +T1,1,1,2 < 0, we obtain for k € N
E[f (Y5 )] < F(x) = Ao L - Eltyeni] +24™. (8.15)
Since f(z) > 0, z € D, we obtain

3Ama:c _ HXHQL
Elt o np] < R~
] < =7

Hence, letting £ — oo yields the assertion.
Step 4: (Proof of the statement under (A1**)) The assertion immediately follows from

[B-I5) and (A1%).
]

Remark 8.1. 1. Lemma generalizes [62, p. 367, Lem. 3.2] to non-uniform time steps.
There, (uniform) time steps are chosen ‘small enough’ to ensure the statement from Lemma
8.4 without postulating additional assumptions such as (A1*) or (A1*).

2. For (A1*) or (A1**), Lemma 8.4/ holds for general mesh sizes, which is needed to establish
optimal convergence of the adaptive Algorithm see Theorem [10.2] Examples
and satisfy (A1%).

3. For the usual Euler method in , it is possible to derive a similar result as in Lemma
only under (A1) — (A3) thanks to Dynkin’s-formula.

4. The constant C' > 0 can be explicitly identified under assumption (A1*) resp. (A1**).
In the first case

1
Ao L

1
Blto-] < 17 (3maxlalifs — Il ) < 1 - 3maxlial = €
zeD L D

)\a' VAS

while in the second

1
Elt ;] <
[J]_Cb,o,L

-3max||z|z. =: C.

(3maaliz. — xl2: ) < ,
b,o,L zcD

z€D
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8.4. Discretization for the parabolic PDE (6.1): Scheme
and stability

Fix (t,x) € [0,7) x D in (6.2) and let {t;}7_, C [t,T] be a mesh with local step sizes
{77+1}7-1 where J = J(t,x) € N. We use (8.1)) and (8.3) with Y} = 1, and where ‘g(Y%)’

j=0 A
is replaced by ‘g(t;, Y% )’ to approximate (6.3) and (6.5). In the following, we state Scheme
, which is closely based on [62], p. 353 ff., Subsec. 6.2.1], and which can be seen as an analog

to Scheme [2|in the elliptic setting to approximate by ‘E[(b(t 7 YE)+Y } "
Scheme 3. Let j > 0. Let (Y, Y2) be given with Y& € D, k=0, ..., j.
(1) Proceed as in (1) - (4) in Scheme 2]
(2) (‘stop) Ifj+1=J,set J*:=j+1, Yg :=Y%, Y/ =Y/ and STOP.
For j > J*, we set (Y, Y, YD) = (Y&,Y, V).
Similar to Lemma the following lemma can be considered as a generalization of [62,

p. 356, Lem. 2.2] to non-uniform time steps, which estimates the number of iterates { Y% 3-]:0
from Scheme [3|in the boundary strips.

Lemma 8.5. Assume (B1) — (B3). Fix (t,x) € [0,7) x D. Let J = J(t,x) € N and
{t;}7_5 C [t.T] be a mesh with local mesh sizes {77}/2. Let {Y%}7_, be from Scheme .

Then .
E [1 , } 2.
2 P s} S
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9. A posteriori weak error analysis

In Section we derive an a posteriori error estimate for iterates {(Yk, Y, Y2)} >0 of
Scheme [2| within the approximative framework of the elliptic PDE ; see Theorem .
It is shown in Theorem that the resulting error estimators converge with optimal order
1 on a mesh with maximum mesh size 7% > 0; the relevant tools for its verification are
Theorem [9.1] and Lemmas [3.3] and B.4 Corresponding results for the parabolic PDE (6.1]),
¢f. Theorem [9.7] and Theorem are derived in Section [9.2] In Section we derive an

a posteriori error estimate for the (usual) Euler scheme and discuss related difﬁculties.

9.1. A posteriori weak error estimation: Derivation and
Optimality for the elliptic PDE (0.6

in terms

u(x) — E[¢(Y{)Y +Y)|

The following result bounds the approximation error

of computable a posteriori error estimators { 055)};3:1.

Theorem 9.1. Assume (A1) — (A3) in Section[8.1] Fix x € D. Let {t;};50 C [0, 00) be a
mesh with local step sizes {7771} ;5. Let {(Yk, Y{,Y4)};50 solve Scheme 2l Then we have

() ~ B[V 477 ][ <€) Xm0 o) vel), (o)
=0
where C(¢,g) > 0 is the constant from Lemma , and the a posteriori error estimators
{Q5§j)}§’:1, are given by
B = BV YY) 77 4 B (YR Y VD) 4 Es(YE, 1Y)
PV RV YY) (7)o LBV YY)
AL BV ) YY),
BF) = Ba(Yk, Vi Y1) 7% 4 B (YR YA Vi V)
b3 Eao( Vi, Y VE) -7 4 VE B (YR Y Yo 9) - (7)

1 _ o A 1 o A A
+ ZL B (YL, Y4, Yy, Vi) + 5L Ea(Y, Y%, Y{) - 79!

D=
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+ E14(Yg(7 ?;(a Y\;—H? Yd’) )
6y =2 Eus (Y4, YY),

with computable terms

1.

2.

10.

11.

12.

13.

14.

15.

E (YL, V) =E1 -

[ {vieD\s 1} (1 -7+ e(YY))

()| Y7 - DY)l |

Ba(YK, Y, YY) =1 1= e(Yg)) e(YO| - ¥ YR - Y

{Y;GD\STJ+1} ' | (

Es(Y%, V) :=E|1

[ {Y;(GD\STJ-FI} . Y‘; . Hb(Y%()H;L} ’

B (Y VR By,

semvs, 3 Y IYRT = Yl 0000 e o 0¥ o |

Es (Y, YL, Vi) = E{l Vi Yt = YL, ||a(Yg();|;LxL} ,

<.

{Y]).(GD\STJqJ} '

Bo(Yi 1) = B[l s, 1 (PO fne ]

1
{Y§c€$,j+1}1{?j =Y+ T“l"(HaD(Yj ))} ‘(1 - X)) C(YX)‘

B (Vi ) = B[,

XED\STJ-H} ' ’C(Y%()| ’ |Yl;+1 - Y\i

E3(Y§(a?;(a Yé’) = E|:1

J+1 ~7J
Bs(Yx ’Yx7YX7 ) _E{ {Y§657j+1}1{?;(:Y§(+Aj 7—.7‘+1n(Ha7>(Y§())}

(1= e(Y30) eV ¥ - YT - Y

EIO(YgO?;OY\;) =E|1

{ {Yg(ESTHl}l{?j =YL 42X THI"(HaD(ch))} 'Y] Hb YX HRL} ’

o o
Eu(Y5 V9 = B[l s ) M mevyonvmmm(momov) ) 50 IYR — il

B e - [l (T3 grr |
Y)Y - Ve

Eiz(Yx7YX7Y ) _]E|: {Y;(Gsqu,l}l{?j :Y;(-‘r)\j Tj+1n(Hap(Y“;())}

o (50 s
Vb5

B (Y, Vi, Y7) _]E{ {chesﬂﬁ}l{?;:Ygﬁ,\j 77 n (Mon (YY) }

o (750 e -
o bl wiy i
(Yo Ve W) = B[y sy v v o) 19070

v

E15(Y%,Yé) [ {YJ s J+1} JYJ}
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Remark 9.1. 1. For b(x) = 0, 0(x) = v/2 - I, where I denotes the L—dimensional identity
matrix, which are data requirements in for well-known elliptic PDE’s such as the
Poisson equation or Helmholtz equation, the particular error estimators {Q5§')}§:1 simplify
considerably. For Poisson’s equation, where additionally ¢(x) = 0 is required in , only
Es(-),Es2(-) and Eqs(-) constitute {6 }3_; cf. Example

2. The derivation of the a posteriori error estimate crucially depends on the use of the
weak Euler method and the associated procedure in Scheme . Note that the right-hand

.....

by Monte-Carlo method, which typically provides a basis for an efficient error approximation
(see Chapter [11]for further details). In contrast, we present an a posteriori error analysis via
the explicit Euler method in Section [0.3] whose derivation is (also) close to Theorem
in the first part, and discuss upcoming difficulties, where, in particular, the computation
of terms in a posteriori form involved there is not straightforward; c¢f. Remark [0.3]

3. The terms {Eg(-)}gzl - in &1, which capture dynamics away from 8D, may be related

.....

and (’5g) address stopping dynamics near the boundary, which, however, do not occur in the
framework of Theorem [B.11

The proof of Theorem consists of several steps: Lemma [9.2] represents the error on the

left-hand side of (9.1)) with the help of the (unknown) solution u of (0.6)). Lemmas [9.3]
and estimate the expressions ‘I;’, ‘II;" and ‘III;’ emerging from Lemma and given

in (9.2), (9.3) and (9.4)), respectively. The derivation of the a posteriori error estimate (9.1))
then follows by combining these lemmas.

Lemma 9.2. Assume (A1) — (A3). Fixx € D. Let {t;};>0 C [0,00) be a mesh with local
step sizes {7971} ,50. Let {(Y,Y{}, Y2)} 50 solve Scheme [2, Then we have

‘u(X) —Elo(Y$)VY + Y] ‘ < i {Ii + I + 111},
j=0

where
I = ’]E [1 . fu(YY —u(Y)YY + YT = Vi, (9.2)
= \E{l{y;esw}l{ygzygcﬂj i (om(vi0)) }
Au(YEYET —u(Y) Y + VT - YE )| (9.3)
111, = 11@{1 {Yg(esw}{u(y;)yg —u(Yi)vi |- (9.4)

Proof. Considering PDE and observing that Y2 = 1, Y2 = 0, a first calculation leads
to

u(x) ~ E[s(Y)¥ + 77|

= ‘u(x)Y‘[} +Y9 - E[u(Y{)Y +Y)]
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*—1
B3 u(vgT V7 - uiov - ¥
=0

SE[u(YRYY + Y] — u(YR)YY = V] +u(YE)YP + V) — (Y)Y - V)]

=:d; = :d;.

(9.5)

Since d; = 0 on the event {Y%( ¢ STj+1}, d; = 0 on the event {Y%( € ST]-+1} N {YJ =
Man(Y%)}, &) = 0 on the event {Y¥ ¢ 8,01} N {Y% ¢ D} and {Y§ € 8-} N { Y% ¢
D} = (), the assertion follows from ({9.5).

[

Lemma 9.3. Assume (A1) — (A3). Fixx € D. Let {t;};>0 C [0,00) be a mesh with local
step sizes {797 },50. Let {(Y%, Y, YZ)} ;>0 solve Scheme [2, Then, for every j > 0, we have

I; <C(¢,g)- &Y 77+,
where I; is given in (9.2)), and C(¢, g) > 0 is from Lemma 8.1
Proof. In the following, we write A, 23{'%( € D\STJ-H} to simplify the notation. In a first
step, we rewrite I; by making use of (8.2) and in Scheme 1]
1y = [B[L, - {ulYEYE — (YR — Y+ oo )
- [u(YE) — u(Y)] V7 + g(Y)VE TJ‘HH ‘ . (9.6)

Ly, - {u(VE) (1 - 7 eYR) (¥R - 7

Step 1: (Employing PDE ) We use Taylor’s formula to deduce from ((9.6])

Ij—‘E

L, Y { [V = u(vio)] (1= 7 evdo) oY) -
FulYi) (1= 7 e(YR)) (V) -7 o g(Yh) 7
, , , 1 . . . . .
+ (DeulYR), Y = Y, + 5T D2u(YR (Y& - YR(v&! = Y )},
9.7)

for some Y% between Y4 and Y%, i.e., Y4 = Y§ + Q(Yg'(“ — Y%() with 6 € (0,1). Now,
we use the identity in to restate g(Y%) - 77! in (9.7)

I~:’E

Ly, - Y { [u(YE) = (V)] (1 = 7771eYh)) oY) - 77

(V) (1Y) e(Yh) - 7 = u(Y)e(Yk) - 77
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— (b(Y), Dxu(Y))gr - 77 = ;Tr<0(Y§()aT(Y§()Diu(Y§()> it

. . . 1 Ny , ‘ ‘ ‘
+ (DY), Y& = Y), + 5 Tr( DY (YK~ Vi (Y& - &) )

=~

Next, we use (8.1) to represent Y4 — Y% in (9.8), and standard calculations,

I; <K, +Ky+ K3+ Ky+ Ks , (9.9)

where

Lt

K, = 'EPA]. (L= THe(YR)) (Y VY - {u(YE) - u(ch)}}

N2
’ ) (7-]+1) ,

. o
Ky = o[B[1, ¥ (Db )b(YE))

K;: = ; E|1a, Yy Tr(Diu(Yéi){b(Y;()<U(Y;<)£J'+1)T
+0(Y§()§j+1b(Y§<)T}> ‘ , (Tj+1)%’
Ky: = ;’E 14, .Y& . {Tr<Diu(Yg()a(Y%()§j+1 (0'(Yg()§j+1)T>

Lt

Ty (DiU(ch)U(ch)“T(Yg‘)) H

AR

Ks = ‘E[lAj cu(Y)e(Yx) - {YH — Yg}]

Step 2: (Estimation of K;, Ky, K3, Ky, K5) We estimate the terms in independently.
a) (Estimation of K;) We use Taylor’s formula to get

. . —1 . . . . .
1, - (1—77e(Y%)) e(YR)YE- {< Dyu(Y), Y& = Y&)

K = ’E
1 2 . , . ,
+ 5T D (YE - YY" - YR )}

. 7_]+1 ’

for some SA(%( between Yj{ ' and ch. Using again (8.1)) for Yg'(“ — ch, independency, the
fact that Y > 0 (this follows from the generation of Y} via the implicit Euler method (8.2])),
Lemma [8.1 and standard arguments lead to

Ky <C(¢,9) -Ey (Y, YY) (73“)2 +5C0(0,9) - Ea (YK Y, 17) - 777 (9.10)
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b) (Estimation of K3) Lemma [8.1|and standard arguments immediately lead to
1 i v j+1)2
K, < §O(¢7 9) - Ea(Yx. Yy)- (T ) : (9.11)

c) (Estimation of K3) We add and substract D2u(Y%), use independency and Lemma
to obtain

1
K3 — 2‘E

Ly, ¢ Te({ D2u(¥%) - Diu(vd) |
Dovi) (oY, 1)+ oYt bV H]|- ()

)

. ~ . . . . 1 . 3
C(6,9) - E|La, - Vi - [V% = Yillat IOV o - o (Y Eualles | - (771)7, (912

Njw

3
2

< E[ L, Y7 | D2u(¥) — D2u(Y) s [DOY) s (Y&

IN

where we estimate ||D2u(Y%) — D2u(Y%)||gexe < C(o,9) - 1Y% — Yillge. In order to

A,

estimate the term |[Y% — Y&||zz in (9.12), we recall that Y% is a point between Y% and
Y. ie, Y = Y = 0(YE" = Yk with 0 € (0,1); thus we have

IV = Yl < VKT = Y[ (9.13)
Plugging (9.13) into (9.12) and using ||€;41]lzz = V'L then leads to

3
2

K3 < C(6,9)VL Ea(YX" Y, YY) - (1) (9.14)

d) (Estimation of K;) We start with a straightforward rewriting of Kjy.

1
K4 — Z‘E

Ly, - Y- {<{Diu<Y%<> — Du(Y%) o (Y5)€11,0(Yi)Ej),
+ (D2u(Y)o (Yx)E511,0(Y)Ej11),,

Ty <Diu(Y§()a(Y§()aT(Y§()> H s

By the independence of 53(-21 and fj(-]i)l (note that &;41 = (fﬁ)l, ...,fj(i)l)T), and Lemma ,
we deduce

Ky <Ky, (9.15)

where

it

Kua s = 5[5t 7 {({D20(Y4) — D2yl bo (Vg o (YEs1),,

Ll

= 1, (DY [V - Y4)2,.2,), ]
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+ i’E it

Ly, Y (D) (Ve - Y (Ve - ¥4)2,.2,),,

by Taylor’s formula, where Z; := 0(Y§()§j+1, and, for some Y% between Y% and Y. Next,

by Lemma , (9.13)), since ||€;1113. = L, we estimate
1 . o .
Kyy < Kypp+C(6,9)L - Bs (YK, Y, ¥7) - 7/ (9.16)
where

1 , e : : , :
Kana =5 E[La, Y7 - (DY) (¥4 — Yo (Y0 1.0 (Y1), || - 771

2

In order to estimate Ky .1, we again use the representation Yi - Y = 0<Y§;r - Y%() with
6 € (0,1), and (8.1) to represent Y4 ' — Y%,

K < 5C(6.0)L Es(Yk,¥9) - (7)) (917

We combine (9.17)) with (9.16)) and plug the resulting expression into ((9.15)) to obtain
1 . o 1 o N2
Ky < 70(6.9)L - Es(YX, Y5, 1) - 7/ + 5C(6,9)L - Be(Yi ¥9) - (P1) 7. (918)
e) (Estimation of K5) Lemma [8.1) and standard arguments immediately lead to
K5 < C<¢7 g) : E7(Y%(> Y\£+17 Y‘ﬁ') EAR (919)

Step 3: Finally, combining (9.10)), (9.11)), (9.14), (9.18) and (9.19) with proves the

assertion.

]

The following lemma estimates II; from (9.3)). Its proof is very similar to the proof of
Lemma and is thus omitted. In fact, by replacing A; resp. Yk in the proof of Lemma

bij = 1{ g+l

. 1. A resp. Yx, and observing that Y
Y&ESTJ‘JA } {?;(:Y%(+)\j Tj+1n<Hap(Yg()) } p X & X
is generated starting from Y%, yield the proof of Lemma

Lemma 9.4. Assume (A1) — (A3). Fixx € D. Let {t;};>0 C [0,00) be a mesh with local
step sizes {797 },50. Let {(Y%, Y, YZ)} >0 solve Scheme [2, Then, for every j > 0, we have

II; <C(¢.9)- ®5 - 777,
where I1; is given in (9.3)), and C(¢, g) > 0 is from Lemma .
The next lemma estimates IT1; from (9.4)).
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Lemma 9.5. Assume (A1) — (A3). Fixx € D. Let {t;};>0 C [0,00) be a mesh with local
step sizes {79T1},50. Let {(Y%, Y, YZ)} >0 solve Scheme [2| Then, for every j > 0, we have
II; < C(¢.g)- 6§ - 771,

where I11; is given in (9.4), and C(¢, g) > 0 is from Lemma 8.1]

Proof. We take the conditional expectation w.r.t. Y%C and use measureability arguments to
obtain in a first calculation

III; =

= 2 00 g 00
e R Tt

- ‘E{l{YﬁeSﬂH}Y‘;{U(Y&) ~biv U(HW(Y&))

b

—(1—p;)- “(Y%c A Tj+1"<HaD(Yg<)>>}]

where p; is given in (8.5). We apply the mean value theorem twice to get

1= B\ e 0 - i AT (T (Y50)
u(Y%—i—)V Tj+1n(Ha’D(Y%()) —u(HaD(Yg())) )\m}]
IV + AV 0 (ap (Y)) ~ Hon (Vi) |z~
<Ellyy, o PP - (Dxu(¥i)n(llon(YR))) - AV
Dyt(Y2), Yoo + A7 i (Tlgp (Y2 ) — Tgp (Y
+< u ).() X+‘] i a,D( x) ?D( X)>RL~A]-\/TJ'T]’ (9.20)
[Yi + X Vr+n(Tlap(Yx)) — Tap (Y ||

for some points Y%, Y% between Y% and Y + \v/7i+ 1n(HaD(Y§()), and between
Mop(Y) and Y + AV 7i+n (Hap(ch)), respectively.
Next, we define @(z,n<HaD(Y§())) = <Dxu(z),n(Hap(Y§<))>RL, z € D. Since

Y% + AV n(Tlap(Yk) ) — Hap(Y)
’ch A Tan(HaD(Y‘;c)) — Hap(Yk)

)

RL

n(ﬂ'm(‘@c)) = ‘

we can rewrite (9.20) as follows,

I, < E{1{

Pl o(Yien(on(YH))) - o(Yhn (Mo (YH0)) )| | - V77T

J
YXGSTj+1
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<sup sup || Dyplav)lles - E[Lp VIV - Vil | VAL (9021)
2€D ||v||y. =1 {Y%<€3Tj+1}

Since || Yk — Yi|lgr < 20,7 P—a.s., and i} > 0, j > 0, and for all v € R” with
[V|re =1

L

| Dasp(2,V)lgx = J > [(Du0; ), ¥}

the assertion then follows from (9.21]).

2§C(¢,g)7

]

Next, we show convergence with optimal (weak) order 1 of the a posteriori error estimate
(9.1) on a mesh with maximum mesh size 77%* > 0. Theorems [9.1] and [9.6] then imply the
a priori estimate [62), p. 369, Thm. 3.4], in particular.

Theorem 9.6. Assume (A1) — (A3). Fix x € D. Let {(Y%,Y{,Y4)};50 solve Scheme
on a mesh {¢;};50 C [0,00) with local mesh sizes {777'},5o and maximum mesh size
7 = max; 7/ > 0.

(i) If 7o is sufficiently small, there exists C' > 0, independent of 7% such that

Clp,g)- Y 7 e +of +ef} <C. .
7=0

(i) If (A1*) or (A1*") holds in addition, there exists C' > 0, independent of 7% such
that

Clp,g)- Y 7 e +of +ef} <C. .
7=0

Proof. In the following, C' > 0 is a constant, which might differ from line to line, but is
always independent of 7%,
Step 1: We independently bound {Ex(+) }r—1

(=1,2,in (0.1).

()
¢

14 appearing in the error estimators {®,” } >,

77777

-----

max|[b(y)|ss <€, maxllo(y)re <C. maxley)| <C.
yeD yeD yeD

for some constant C > 0. Moreover, since ¢ < 0, we have 0 < Y‘; <1 for every 7 > 0. Let
7 > 0. We immediately obtain

Ek(Yg;,Y&')SOJE[l{ k=136.

Y;ED\STjJ'_l }:|
By means of (8.3) and standard arguments used before, we further get

E (YL YL V) < -E[l ] Jtl g =2
(Vi YV Y9 <O {Yiepis i } ! 5
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and

[SIES

Y YL, Y <O-E{1 } g+l
E4( X XX, V) = {Yg'(eD\STjH} (T )
Moreover, due to (8.2)), we obtain
LIt

E (Y%, Yo vi <C’-]E[1 _ ]
7( X4V v)_ {Y&GD\Sﬂﬂ}

Consequently, by considering the representation of Qigj ) in Theorem , we obtain

e < C’-Eﬁ[l , } LIt 9.22
1 - {Y&GD\STJ'_'J} ( )
b) Bounds for {Eg(-)}i—s . 14 in 055”. Similar to a), we obtain
&Y < C-E[l _ 1. _ } AR 9.23
2= OB Y sV  Bevson v I (nvi) ) (5:29)

Step 2: Let j > 0. By means of the representation of ); in (8.4), and the fact that
0 <Yy <1, we get

89 <C- E{l{w_ B +}} . (9.24)

Step 3: We plug (9.22)), (9.23) and (9.24)) into (9.1]), and use 77! < 7% to get

ZTj_H{Qng) + ng]) + Qjéj)}
=0

[e.9]

< C . mez Z Tj+1E

= 1{Y§(6D\STH1} + 1{Y§(esrj+1}1{?§(=yg‘(mj THln(nw(Yg()) }}

+C -7 ;)E {1{Y§(€Sﬂ-+1 }}

_ .o ) S gy »}+OOE[1 | } . 9.25
T {jZoT (J>5} JZO {Yg(esﬁ-“} (9.25)

Due to Lemma [8.3, we have

o)

ZE[l {Y;_(Esw}} <2, (9.26)

=0
and due to Lemma [3.4] we obtain in both cases (i) and (ii)

oo

3 TJ'+1E[1{J*>]-}] _E[t,.]<C (9.27)

=0

for some constant C' > 0 independent of 7 > 0 and 7",

Step 4: We plug (9.26)) and (9.27) into (9.25)), which proves assertions (i) and (ii).
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9.2. A posteriori weak error estimation: Derivation and
Optimality for the parabolic PDE (6.1

Close to Theorems and for the elliptic PDE , we derive corresponding results for
PDE (§6.1)); see Theorems 9.7 and below.

Theorem 9.7. Assume (B1) — (B3) in Section Fix (t,x) € [0,T) x D. Let J =
J(t,x) € Nand {t;}7_; C [t,T] be a mesh with local step sizes {7/ }/2]. Let {(Y%,Y7)},
solve Scheme Bl Then we have

\u(t, x) — E[(ts, Y% ) + Y]] \ <€)y o7 + 58 + 8§}, (9.28)

=0
where the a posteriori error estimators {fjéj )}?:1, are given by
9 =B (YY) -t g Eo(Y) -7+ % Ea(Y&', YY) +Ea(YY ' Yi) +Es(Yg) - 77!
+ {%CD% + %LCD%N} Ee(YX ', Y) + L-Er(Yy) -7/ + %L Ea (Y, YY)
+ %L Eo(Y%) T/t 4 %L E10 (Y, YY) + %L~E11(Y%() A
+ VL -En(YE", Yi) - Vit [Eaa(YX™, Y t))] +Esa(Y)) - 7F
0 1 Bis (V. Vi) - 7/ + 5 - Eaa (Y Vi) 77!+ 5 - Bar(V§ Y i)+ Ean (VX Y. Y
+E19(Y§<7?§<> SRS {%Cmb * iLCDzU”T} 'E2°(Y§+17Yg<7?;<)
LB (Y o) 4 LD En(YH, Y, Vi) + 5L Bas(Y, V) 707!
b L Ean(YE Y5 Y30 + DL Eas(Vie, Vi) 704+ VE - Ea(YR L Yk, V) - Vi L
+ [Bar (Y Y Vi )] + Eas (Y, Y) -7/
95 =2 En(Y),
where Cpey, := sup|| D*b(y)|| c2, Cpzgpr = sup sup || Do (y)o’ (y)(vi, va)l|re<e,
yeD yeD IVillgL
and €(¢, g) > 1 is the constant from Lemma 8.2 and with computable terms
L E(YR) =By, s POV e

2. E2(Y§() = E[l{Yg(ED\STjH}Hb(Yg()H]%L} ’

3. Ba(YY, Y)) =E[1 PIVET = Yl DY)l

{Y;c €ED\S j+1

1 E(YE Y =B Y4 = Yl IbOYK™) = BVt |

1{Y§(€'D\5,J’+1 } H
Jy . . j

5 Es(Y) =E[lpy, pis 1 IDDYR) BV x|

6. Es(YY, Y)) =E[1

S~ g2
{Y;eD\STj+1}||YX YXH]RL:| 9
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B (V) =E[ly, o IOV e o (Y0 o]

Ea(Y4', Y4) = E|[1 Y& = Yl lo (Y [ |

{che’D\STjﬂ } |

Eg(Yg() = E[l{YgeD\S }HG' ||RL><L:| ,

E10(ch+1aY§<) = ]E[l Yg(H - Y%(”]RL

{vpeprs, i}
o (Yo T (Y — o (Yo T (Yl |

Eu(Yg() =E|1

; A IDe(Y)a T (YY) - b(Yi)lrexe |,
{vieD\5 ;11 }

Ena(YX Yh) = E[1 Y5 = Yllre [160Y50) e o (Yo e ]

{Y;eD\STj+1}|
o » |
Ea(YX ' Yaot) = E[Ly, s 1 (000 YK — 01, Y5)|

I
E14(YX) T E|}"{Y§(€D\Sﬂ+1}i| ’

AR AT 7
Eis(YX7YX) T E[l{YQESTH-l}l{?j =Y§(+/\j THln(HaD(Y';())}”b(YX)HRL} ’

i NIy . <7\ |12
Els(Yx7YX) o E[l{YigeSﬁﬂ}l{?ig:Yiﬁ/\j TJ"*'ln(l'Ia'D(Y;())}”b(YX)HRL} ’
Ear (YL, Y. Vi) = E[1

j+1
{chesﬁdrl} {YJ =Y+, Tj+1n(nav i )}HYJ YX”RL

Ib(T30) ]

E18 (Yg;—la Y%(a ?;()

=E[1 PIVET = Ve (YK -

{cheSTjH} {F5%=Yi+2,vVriTin(lon (YY)
g — i
E1s(Yi, Yx) 1= E[l{Y;'(eS,jﬂ}l{?j =Y+, Tj+1n(HaD(Y’,;))}”Db(YX) ' b(YX)”RL} ’

i+1 ~rd o NN
Ex(Yx , Yx, Yx) = [ {vi esfm} {F=Y4+2, V0 (on (Y4))

i Yy .- v Y} Y2
En (Y, Yx) = E[l{y;(esﬂ.ﬂ}l{? =Y+, Tj+1n(HB,D(Y.;())}||b(YX)||RL||6(YX)||RLXLi| )

Ezz(Y‘§(+1 Yx) ]E{ }HYJH YX”RL

{v3 ESTJ+1} {F5%=Yi 42, vVritin(lon (YY)

o (30 e |

Bas (Y, Yx) = E[l{Y;esTj+1}1{?j =Y 42 Tj+1n(HaD(Y;())}||0(YX)||RLXL:| ’

it vi Yy .— _ J+l
Exa(Yx ', Y%, Yx) = E{l{Y;ESTj+1}1{?] =Y+, rfﬂn(nap(yg())}HYX Yx|re

N (Y& e T (V) — o(T)o T (T e
i Yy .=
Ezs(Yx, Yx) '7E[1{Y§(€$,j+1} {(F=vd AT (Ton (Y1) }

1De (Yx)o T (V) - b(Yx) [t |
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26. Eas(Y ", Yi.,Y%) ::E[ }IIY%g+1 ~ Ylle

1{Y§(esﬂ-+1}1{?” =Y+ TJ+1n(Hap(Y§())
() e o (V) s ]
G+l ~d Ny _

21 E27(YX ’YX’YX’tJ)'_]E{I{Yicesﬂﬂ}l{?;:ﬁ(ﬂj Tf+1n(Hav(Y§<))}
(ol Y& = 0(t5, Y50)) |

i Iy
28 E28(Y‘;(7Yx) = EI:]_{Y;(ESTJ‘+1}1{?j =Y§(+kj Tj+1n(H6’D(Y§())}:| )

29. Epe(Y%) = E{l{chesTHl})\ﬂ .

Remark 9.2. 1. For b(x) =0, ¢g(t,x) = 0 and 0(x) = v/2a - I, where a > 0, which are data
requirements in for the (homogeneous) heat equation, the particular error estimators
{$¢}2_, simplify considerably: only Eg(-),Eg(-),E1a(-),Ea0(+),E2(+),Ezs(+) and Egg(+) consti-
tute {H}3_,; ¢f Example

2. An a posteriori error estimate for a more general PDE (6.1)) with c(¢, x) # 0 (¢f. also(0.6))
is possible, but its corresponding derivation would be more complicated.

The proof of Theorem follows the guideline of the proof of Theorem and consists of
several steps: Lemma represents the error on the left-hand side of with the help of
the (unknovyn) solution u of . Lemmas , and @ estimate the expressions ‘I;-’,
‘I1;" and ‘I11;’ emerging from Lemmaand given in @7 and , respectively.
The derivation of the a posteriori error estimate ([9.28|) then follows by combining these
lemmas.

Lemma 9.8. Assume (B1) — (B3). Fix (t,x) € [0,7) x D. Let J = J(t,x) € N and
{t;};>s C [t.T] be a mesh with local step sizes {T7'}/2]. Let {(Y%,Y7)}/_, solve Scheme
Bl Then we have

‘u(t, x) = E[o(tr, Y5) + Y] ‘ < Jf I+ IT; + 111},
j=0

where
I = ‘E {1 (viems, i) {ulty o, YE) = ulty, Yy) + V3 = Y2}, (9.29)
11 = 'E[l{ygesﬂﬂ}l{x{;’(:x{gﬁxj 1 (Moo (¥}
Aty YE —ult;, Ya) + Y2 = Y2} |, (9.30)
Iil; = ‘E[l {Y;_(EsTjH}{u(tj,Yg() - u(tj,ch)}] . (9.31)
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Proof. Considering PDE ({6.1)) and observing that Y = 0, a first calculation leads to

’u( (.-, YX)+YZH:

u(t, x) + Y9 — E[u(t, Y§) + V7] ‘

(t1, YX) + Y2 —ulty, Yi) — YZj]

Z [u (15, V) + Y7 = ulty, Yk) = V7 +ultyn, Y Y™ —u(t;, Yi) — V7]

~/
J

X
<8

(9.32)
Since (~ij = 0 on the event {Y{K ¢ STjJrl}, [i; = 0 on the event {Yé( € STj+l} N {?;( =
Mon(Yk)}, d; = 0 on the event {Y§ ¢ S} N {Y% ¢ D} and {Y§ € S, b {Y% ¢

D} = (), the assertion follows from ({9.32]).
O

Lemma 9.9. Assume (B1) — (B3). Fix (t,x) € [0,7) x D. Let J = J(t x) € N and
{t;}j>s C [t,T] be a mesh with local step sizes {7’”1}‘] L Let {(Y¥%, Yj) _o solve Scheme
Bl Then, for every j > 0, we have

I; <€(g,g)- 7 -,
where I is given in (9.29), and €(¢, g) > 0 is from Lemma 8.2

Proof. In the following, we write A; := {Y%( € D\STj+1} to simplify the notation. In a first

step, we rewrite I;
I = [ L, {0 Y& )=l YR ey, YR = ulty, Vi) +(ts, Y-+ ]| (033)

Step 1: (Employing PDE (6.1)) We use the mean value theorem and Taylor’s formula to
deduce from ((9.33))

ij = ‘E [1141‘ ) {atu(ga Yg(-H) A + <Dxu(tj7Y§()aY§(+1 - Y§(>RL
1 . A . : . . .
+ 5T Dulty, YOYE = YO (YK = Y8)T) +glty, YR - ]| 930

for some # between ¢; and t,,1, and for some Yk between Y4 and Y%, i.e., Y% = Yi +
H(YQL - Y%() with 6 € (0,1). Now, we use the identity in (6.1]) and represent the increment

Y — Y in (9.34) to get
N ) L 1 . ) o
L = [E[La, - { [~ (O, Dt X&) = 5 Tr(o (YK o (YA D2ulE, Y4

—g(f, Y;(“)] I (Dyulty, Y, DY, ) s - 77+ (Dacu(ty, Y), 0(YR )€1 )gr - VI T
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+ %TY(Diu(tj,?ég)(b(Yig)Tj+l + (Y51 VIT) (b(Y) T + 0 (Y5)g V) 1)
+ g(tj,Y%l() : Tj+1}} ‘ .

Standard calculations then lead to

I; <Ki+ K>+ Ks+ Ky + K5 + K , (9.35)
where
Ky = [E[La, - {(Daulty, i), (YR, — (DB Y. bOYED),, |- 74
11T . :
Ky = 5 [B[L, - {Tr( D2ults, Yo (Y011 (Y08 11) )

_ Tr(D2 (7, Vi o (Y%’g-l)a_T(Yg(-i-l)) }” LIt

1 N . . T . 3
Ky = 5 B[ Ly, - Tr( Dutty, Y0b(Yi) (o(Yg1) ]| - (771) "
1 . . , A 3
Kui= o [B[1, T D2t Yo (g b)) || (77)7
1 » . . ,
Ks = 2‘1@ 1, -Tr(Diu(tj,Y;()b(yg()b(ygy) ‘.(Tm)?’
1 P v+l J j+1
Ks = 3 [B[1a, - {olf. Y4 — gt Y| 77

Step 2: (Estimation of K, Ks, K3, Ky, K5, Kg) We estimate the terms in (9.35) indepen-
dently.
a) (Estimation of Kj) In a first step, we rewrite Kj.

K, <K+ Kp, (9.36)
where
Ky, = ’E 1y, - <Dxu(t]-,Y§() — Dyu(t, Y§<+1)ab(Y§<)>RL] e
K = ‘E 1y, - <Dxu(f, Y&, b(YE) — b(Yg()>RL} sy

In the following, we investigate Kj1. We use the mean value theorem and Taylor’s formula
to get

= i1
K= J

ZE[lA ~bi( {8 Ju(t Yg(_H) - awiu(tijgg_l) + 8$iu(tj7Y‘§(+1) - 8w¢u(tjaY§()}} T
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L
> E[La, 0i(Y) - i ull, YE| - (- 1) - 77

L
+ D B[4, bi(Y) - (Dxdaulty, Y, Y& = Yo | - (F = t5) - 7] 2

)

ZE[lAj b (YY) ~Tr(Di8miu(tj,\?g(){Y§(+l — Y Y - Y;}T)} it

i=1

for some # between ¢; and #, and for some Y% between Y4 and Y%. Standard calculations
further lead to
)

L, - (Dt YO IYE = Y41, b(YE)),, |

RL

Kz < 'E

L, - (Dedu(d, YE), b(YR),, |

RL

+ ’]E AR

AR

1
+5[E y

L, - (Ddulty, VYR = YAHYE - Y} b(Yh),, |

By Lemma [8.2] we then conclude

. . 2 ) . 2 1 ) ) .
K1y < €(0,9) Ea(Yh) - (7)) +€(0,9) Ea(Y%) - (1) + 5€(0,9) - Ea(YK ", Vi) - 77
(9.37)
We proceed with the investigation of Kj2. A first calculation yields

s

K, < ‘E

L, - (Denld, YE) = Dl Y5, b(YE™) ~ b(YY)), |

i+1
N A

(B [1, - (Deuld, V0 bOXE) b)),

We use Lemma [8.2] and Taylor’s formula to get

L
ZE[lA,- - O, u(t, ch){bi(Yg(‘H) _ bl(YQ)}} s

i=1

< €(0,9) Ea(YE " YR) -7 4 [E[La, - (Dub(Yh) - BYK), Dl Y0) )

K12 <€(¢,9) Ea(YE ' YY) 77H +

. (Tj+1)2

1 . ) . ) ) . )
5 [E[1a, - (DB (YK = YEHYE = Y Deuld, Y )] |- 7777,

for some Y%( between Yng "and Y%, and where we estimate
| Dyue(t, Y5 — Deu(f, YY) lre < €(,9) - YR — Yi||ge. Using Lemma again, we
conclude

. , , , N2
Kip < €(0,9) - Ea(YE, Y) - 7771 + €(,g) - Es(YY) - (77)
1 , , :
+ §€(¢7Q)CD2b Ee(YX ', Yi) -7 (9.38)
Consequently, plugging (9.37) and (9.38)) into (9.36]) yields

K1 < €(¢,9)- {Ei(Y%c) T Ea(Yh) T o Ea(YXT Y HEA(YKT YY)
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. , 1 4 ) )
+Es(Y%) -7 4+ ZCpop - Ee(YX ', Y4 - 7L, (9.39)
X 2 X X

b) (Estimation of K3) By the independence of 53(21 and fj(?l (note that €41 = (5](‘217 o ](i)l)T),
we estimate

1
K2 - 2’]E

L, - {({D2ults. Y = D2ulty, Y o (Y&, 0(YR)E 1),
+ ({ D2ulty, Y Jo (Y& 11,0 (Y& ).,
- (D2 YR o (Yo (V)
< Ks1+ Kay, (9.40)
where

j+1
A

1 . A _ A
Ky = Q\E[uj ({DRult;, Y%) = Diult;, Y) o (Yh)€j41,0(Y%)E01),

Kya = %‘E[uj : {I&«(Diu(tj,Yg()a(Yg‘()aT(Yg’()) — Tr(D2u(, Yg’(“)a(Yg’(“)aT(Ygl))H ’ L

The investigation of Ky is similar to Kj2, and besides standard calculations, uses Taylor’s
formula, Lemma and the fact that §# < 1 (see the representation of Y4 in (19.34])). We

get
1 : ) 1 . ) )
Kax < 5 LE,9)-Ex(YR) - (7/*) "+ | L€(6.9) - Ea( YK Vi) - 77+ (9.41)

We proceed with the expression of Kpa. A first calculation leads to

K2 < Kap1 + Kapg, (9.42)
where
1 A o | | |
Ky = Q‘E[lAj -Tr<{Diu(tj,Y%<) - Diu(t,Yg;l)}a(yg()aT(Yg())] it
Ka22 =5 |E|14, -Tr(DfJL(t,Y%Jl){a(Y%(“)ch(Y%(+ b a(Yg)aT(YQ}H LIt

The investigation of Kag is similar to K1, and uses the mean value theorem and Taylor’s
formula, as well as Lemma Hence, we get

1 , , 1 : 4 1 A : 4
Ka21 <€(¢,9)- {iL Eo(Y) - (rtH) + S L Er(Y%)- (P + 1L Es(YKT YY) -TJ“} - (943)
Furthermore, the treatment of Kag9 is very similar to Kj 2, and we get

1 , , _ 1 . a1 , , _
K212,2 < Q:((b’ g) . {iL 'EiO(Y%(JrlaY%() 'TJJrl + §L 'Eil(Y;() ' (7_]+1) + ZLCD%'UT 'ES(Y%(—HvY;() '7—]+1} .
(9.44)

116



CHAPTER 9. A POSTERIORI WEAK ERROR ANALYSIS

We combine (9.43)) and (9.44) with (9.42)), and plug the resulting expression, as well as
(19.41)) into (9.40) to finally get

1 . . . ) 1 . .
Ky < €(¢,9) - {4LCD20‘0'T Es(YX, Y&) + L-Er(Yk) - 77 + §L ‘Eg(YX ', Y%)

1 S 1 : S | S .
+5L Eo(Y%) -7t 4 5L Eo (YL, Y4) + 5L “Eqy (Y%) - TJ“} St (9.45)

c) (Estimation of K3) We add and substract D2u(t;, Y%), use independency and Lemma
to obtain

3
2

1
K3 — 2‘]E

. . . . T .
L, - Tr({ D2ulty, Y5 - Dault;, Y Po(¥io) (o(Ya)gi) )| - (1)
1 A A N2

< S VIE(d.9) - Ena(YK " YE) - (7)), (9.46)
where we estimate ||D,2(u(t],Y§() — D2u(t;, Yi) |moxr < Q:( 9) - 1Y% — Yk|lge, and || Y% —
Yillee < [|[YX" — Yi||lee due to the representation of Y% in (9.34).
d) (Estimation of Kj) The treatment of K} is similar to K3. We have

1 : . N3
Ky < 5VLE($.9) Eaa(YX', YY) - (7)". (9.47)
e) (Estimation of K5) Lemma [8.2) and standard arguments immediately lead to
2

Ks < ¢(¢, 9) - Ea(Y%) - (7). (9.48)

f) (Estimation of Kg) Standard arguments and the mean value theorem yield

Ko < [Es(YX", Yk 1)) -7/ + \E 1, {olt;, Y& — g YEOH |- 7+
— Eaa(YE" Yty - 7 4 B[ L, D96 Y| - 1) 7
: , ' . o,
< [Eas(YX, Yk, 1) - 77 + €(6,9) - Eaa(Y%) - (771)
Since we can assume €(¢, g) > 1 without restrictions, we have
Ko < €(6.9) - {Esa(YX", Y, t)] + B (V) - 7771 |- 7770 (9.49)

Step 3: Finally, combining (9.39)), (9.45), (9.46), (9-47), (9.48) and (9.49) with (9.35] proves
the assertion.

]

The following lemma estimates II from (9.30)). Its proof is very similar to the proof of
Lemma . and is thus omitted. In fact, by replacing A; resp. YX in the proof of Lemma

by A; := resp. Y, and observing that Yg(+ !

10 1, . , .
(s40500) e 1m))
is generated starting from Y%, yield the proof of Lemma m
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Lemma 9.10. Assume (B1) — (B3). Fix (¢,x) € [0 T) xD. Let J = J(t x) € N and
{t;};>s C [t,T] be a mesh with local step sizes {7/"1}/Z]. Let {(Y%, Y]) _o solve Scheme
| Then, for every j > 0, we have

II; < €(¢,g) - 9 - 77+

where I ~Ij is given in (9.30), and €(¢, g) > 0 is from Lemma .
The next lemma estimates IT I; from ((9.31]).

Lemma 9.11. Assume (B1) — (B3). Fix (¢t,x) € [0, ) xD. Let J = J(t x) € N and
{t;};5s C [t.T] be a mesh with local step sizes {r7*'}/Z]. Let {(Y, YJ) _o solve Scheme
Bl Then, for every j > 0, we have

IIT; < €, g) - HY - 77+

where IT1; is given in (9.31)), and €(¢, g) > 0 is from Lemma

Proof. We take the conditional expectation w.r.t. Yg'( and use measureability arguments to
obtain in a first calculation

ElE {1{Y§687j+1}{U(tj7Yj )~ 1{YJ =Tlop (Y )}U<t]’,Ha’D(Y§())

)}u(tj,Y%; + Tj+1"(H"’D(Y§<)))} ’Y%(” ‘

ITI; =

N 1{YJ =YL+ TJ“n<Hm>(Yj )

—(1—p,)- u(tj,Y§( + A 7j+1n(H3p(Y§()))}]

)

where p; is given in (8.5). We apply the mean value theorem twice to get

III; =

: ll{Y§<6871+1 } {u(tﬁ’ Yi) - u(ty, Y + XV n(lop(Y)))

u(tj,YJX + A T?'+11n(HaD(Y§<)) - u(tj,HaD(Y ) )\]m}
X+ A VTitin(Tlap(Y)) — Hap(Y

%) ||

— (Dxult;, Yy),m(Hon(Y%)) ), - AV7ITT

<E [1{Y§68Tj+1}
<Dxu(tja§g()7Yg( + M VTt n(Tlep (Y)) — Hap (Y )>

+ ; : '
1Y% + A V77 in(Tap (Y)) — Ton (Y ||z

RE .\ Vrit!

|

(9.50)
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for some points Y%, \2@( between Y and Y§ + ), Tj+1n<HaD(Y§()), and between
Map(Yk) and Y + AV 79+ n (Hw(Yg()), respectively.
Next, we define @(z,n(Hw(ch))) = <Dxu(tj, z),n(HaD(Yg()»RL, z € D. Since

o HY%( + /\j 7—j+1n(Ha1)(Y%()) — HB’D(Y%()

n(HBD<Y§())

)

RL

we can rewrite (9.50)) as follows,

Iij SE{I{ A7+l

o(Yien(on(YH)) ) — o(Vn (o (Y4)) )|

Y €S ; }/\j
X i+l

2€D ||v||pr =1

<o s [Dsp( )l B[ M- V| VPR 051
X i+

Since || Y%k — Ykl|lge < 2)\V7i+1 P—a.s., and for all v € R with ||v||ge = 1

L

\quwmmzdzwm@mm@me

i=1

“ <€),

the assertion then follows from ({9.51]).
O

Next, we show convergence with optimal (weak) order 1 of the a posteriori error estimate
(9.28)) on a mesh with maximum mesh size 7% > 0.

Theorem 9.12. Assume (B1) — (B3) in Section Fix (t,x) € [0,7) x D. Let J =
J(t,x) € N and let {(Y%,Y7)}/_, solve Scheme [3{ on a mesh {t;}7_, C [t,T] with local

Jj=0
mat — max; 79! Then, there exists C =

mesh sizes {77"1}/2} and maximum mesh size 7

C(¢,g,T) > 0, such that
Q((b’ g) . Z 7—3—&-1{55]) + f_)gj) + ﬁgj)} < C . mar
=0

Proof. In the following, C' > 0 is a constant, which might differ from line to line, but is
always independent of 7%, '
Step 1: We independently bound {Eg(+)}x=1... 25 appearing in the error estimators {jﬁy )}jzo,

(=12, @©28.

as their derivatives are bounded in D by some constant C > 0. Let j > 0. We immediately
obtain

Ee(Y%) gC-E[l{ =1,2,5,7,9,11,14.

R
Y%(ED\ST]'JA }
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Moreover, by means of the representation of the increment || Y4 — Y% ||gz (see Scheme [3)
and standard arguments used before, we further get

Ek(ngl,Y&)sC-E[l{ St k=3,4,6,8,10,

Y;ED\STj_;_l }:|

and

N|=

En(YX, Y3 <C’-]E[1 | ] A
12( X x) = {Y&ev\sﬁ-ﬂ} ( )
Moreover, by Taylor’s formula, we obtain

Eys(YLL Y2 )] < ~]E[1 ] s
‘13( X » IX, ])|_C {YQED\STJ-H} T

Consequently, by considering the representation of 539 ) in Theorem we obtain

s <. E[l{ (9.52)

Y;(GD\STj+1 }

55§j) <C- E[l{Yg(esTj+1 } 1{?§:Y§(+)\j Tj+1n<Hap(Y‘§()) }] AR (9.53)

Step 2: Let j > 0. By means of the representation of \; in Scheme (see (8.4)), in particular),
we get

89 <C- E[l{w N }] . (9.54)
X €8 j+1
Step 3: We plug (9.52)), (9.53) and (9.54) into ([9.28)), and use 7711 < 7% {0 get
J-1
=0
J-1
<C-rmer rﬂ'+1E[1 | +1 1y, . | }
- ]go {Y;(ED\STJ'+1} {Y;(ESTjJrl} {Y&ZY;(-F)\J- Tj+1n(HB'D(Y;())}

J—1
+C . TmeT jzo E{l{Yg(esTHl}}

J-1
<C.rmw )Ty E[l | ] . 9.55
{ D } o
Due to Lemma [8.5] we have
J-1
E[l | } <2 9.56
jz() {Y§<€5Tj+1} (9-56)

Step 4: We plug (9.56) into (9.55)), which proves assertion.
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9.3. A posteriori error analysis for the Euler method

Counsider the Euler method

YE! =Yk +b(Y)r ! +o(Y) (Wey, - Wy)  (G20),  Yy=x, (957

i+
to approximate (6.1). The interpolating continuified Euler process Y* = { Xt > O} of the
{Yg(}jzo is given by

VX =Y+ b(Yi)(t—t) + oY) (Wi - W) teltntin]  (G>0).  (9.59)

We consider the parabolic PDE (6.1)) with a(x) = I, g = 0 for simplicity; cf. also Example
6.3 For the following, we fix (t x) € [0,T) x D in and let {t;}/_, C [t,T] be a mesh
with local step sizes {7'9“}] o, Where J = J(t,x) € N We denote by

7 .= inf {s >t YX*cdDors ¢ (t,T)} (9.59)

the first exit time of YX* = {y}t#; s € [t,T]}, which starts at time ¢ € [0,7] in x € D.
Motivated by [37, p. 181], the expression

J—1
2B [1{fe<tj,tj+11}¢<tj+1, Y&“)] (9.60)
5=0

is now used to approximate . In this respect, first localizes 7 in (¢;,t;41], and if
it is assured, proceeds via the approximation 7 ~ t;4;. The following theorem presents a
related a posteriori error estimate for , @D From its representation it is not difficult
to obtain first order of convergence for (9.61)) on families of (time-)meshes with maximum
mesh size 7 > 0.

Theorem 9.13. Assume (B1) — (B3) in Section 8.2 Fix (¢,x) € [0, ) xD. Let J =
J(t,x) € N, and {t;}7_y C [t,T] be a mesh with local step sizes {77!}/Z]. Let {thX
solve - Then, for €(¢,g) > 1 from Lemma 8.2

J-1

> E{l{feaj,tjﬂ]}qﬁ(tﬁu Y&“)H < €(,9) Z A0+ 891, (9.61)
§=0

where the a posteriori error estimators {S%y )}%:1 are given by
~ (s 1 . . 1 o : ) 1 o : .
(1J) B, (YJ ) it 4 ZL By (Y4 - Tt 4 §L Ea(Yh) - 7!

2
- » 1
"‘ {CDZb . E4<Y%() + §LCD3b + LCDQb}

N

1. L |
N J 14~ iy +1
SE(YR) T+ 2 Bs(YY) (7)*,

9 = Ee(Yk),

where Cpzy, := sup||D*b(y)||z2, Cpsp := sup||D*b(y)||zs, and with computable terms
y€D y€D
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L E(Y) = E[ Ly en [DBOYL) - BV ]
2. Ba(Y) 1= E |1y en) I D*B(YH) 2]

3. Bo(Y4) 1= E|Lien) [ DB(YE) 1|

1 Ba(Y4) 1= B[ Lgn DY) s

5. Bs(Y)) =E 1{tj<f}] ,

6. Bo(Yk) = E|Lgre (0113 (Coo + Coolb(Yi)llss + ;LCD2¢)] ,

where
Cop:= sup |06(s,y)],  Cpy:= sup |Dé(s,y)|re,
(s,y)€[0,T]xD (s,¥)€[0,T)xD
Cpzg := sup 7HD2¢(3,3’)HRLM-
(s,¥)€[0,T)xD

Proof. (Sketch of the proof of Theorem|9.15) We add and substract the term E[gb(i'?));(’t’x)}
in the expression on the left-hand side of (9.61]) to get

J—1 .
u(tvx) - Z E{l{fe(tj,tj+l]}¢(tj+1yYJXH)]‘
=0
Xt Xt = i1
< |u(t,x) — E[¢(F, Y1) \ - ‘E[w,yf eSS E[l{fe@j,tﬁl]m(%, Y )] ‘ .
=0

=1 =0T
a) Estimation of I: The estimation of I is similar to Theorem in the first part, where
an a posteriori error estimate on [0, 7] x R” is presented, and conceptually uses the same
tools due to the Wiener process involved in (9.57) resp. (9.58)). By means of the fact that

E ¢(%,y§’“‘)} = E[u(?,y}t’x)}, Ito’s formula, the identity in the first line of (6.1]), Lemma
8.2 as well as Malliavin calculus techniques, we obtain

_ J-1

<&y 7ol

=0
b) Estimation of IT: Using Ito’s formula immediately leads to

IT =

J-1 ‘

]Z::g E [1{fe<t]-,tj+ﬂ} <¢(tj+1a Y — o7, Y5 ’t’x))]
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tj+1 .
E|Lpetya [ 005 Y50%) + (b(Y), D5, VX))

J—1
<>
j=0

- ;Tr(Diqs(s,yfvth))ds}

ti+1
+E[1{fe(tj,tm} /T <Dx¢(s,)7§’t’x),dWS>RL} ,

Since Lize(t; ;1) = 1 — LF<t;) — Li#>t;4,), and due to arguments from probability theory,
we get

tj+1
ElLpey [ (Daols, VX)W, | =0,

Thus, we conclude

J-1 '
IT<e(s,9)- > m95,
=0
where we assume €(¢, g) > 1 without restrictions. O

Remark 9.3. The terms in 5%5) address effects inside D, and due to their derivation, are
very similar to Theorem . In contrast, ﬁg) captures effects concerning ‘stopping’. In the
framework of Example [6.3] for instance, we have

5:39) =0, 5:39 = (03¢> + %LCD%) 'E{l{fe(twtﬁll}} :

The practical application of the a posteriori error estimate (9.61)) is restricted by terms
Ei(),....Be(-) in H!” and H, and even of itself, which involves the abstract stopping
time 7. A possibility to tackle this problem might be the use of concepts from [39] (¢f. Section

[7.1)), which, however, requires (additional) approximations.
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10. Adaptive weak Euler methods:
algorithm and convergence

The Theorems resp. provide a posteriori error estimates for the approximation of
resp. (6.2)). In this chapter, we use these results to set up adaptive methods that
automatically steer successive local mesh size selection to meet a pre-assigned tolerance
Tol > 0 of the overall errors.

10.1. Adaptive weak Euler method for the elliptic PDE
0.6

The algorithm below combines Scheme [2] with an automatic step size selection procedure,
which is based on the a posteriori error estimate in Section 0.1 In every step indexed by
J € No, we first check the ‘safeguard’ criterion I (see Algorithm [10.1] _ 1| below), which holds if
the computation of Y% through II (2) b) and II (3) in the previous step took place with
a step size being ‘too large’. Next, we check via IT if Y% is ‘close’ to the boundary 8D and
then may possibly be projected onto dD; and if not, we compute the subsequent iterates
Y%érl, Y&'H, Yg“ with the help of step sme 79+1. With this information at hand, we compute
the a posteriori error estimators {QSz 13_, and check for a given tolerance Tol > 0, if the
criterion in IIT which also incorporates the already computed {QS(k ML 0, (£ =1,2,3), and
which is

J : :
P R LN (R ot E P R L ]
X k41

k=0 k=0
(10.1)

is met or not to decide whether to coarsen or refine the current mesh size 771, Different to
Algorithm {.1]in the first part, criterion involves the error estimators {@@’f)}izl with
k < j in summarized form, and aims for Tol times a ‘temporal weight’ as corresponding
upper bound to adress stopping. Hence, a summation also appears on the right-hand side
of (10.1)) to address accumulated errors; see Theorem [10.2] below. Furthermore, {a;};>0 is
a sequence of additional ‘weights’ with 1 < a;_; < a; § C for some C > 0, which may
be given by the user; see Chapter [11] for a detailed explanation. A suitable choice may be
aj :=min(l+L-¢t;,1+L-(C+ 5, for some k € N, where C' > 0 is the constant from
Lemma
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Algorithm 10.1. Fix Tol > 0 and 7' > Tol. Let (77, Y%, Y{,Y}) and a; be given for some
j > 0. Define 7710 := 77,

I (‘Safeguard’) If Yi ¢ D, set J* := j, Y¥ = llop(Y%), Vi) =Y/, V" =Y}, and
STOP.

— For £ =0,1,2,... do:
IT (1) (‘Localization’) If Y4 € D\ S, js1e, set ?g'( = Y% and go to IT (3).

(2) (‘Localization’) If Yi € 8,41, draw a Bernoulli distributed random variable
U with parameter p; given in (8.5).

a) (‘Projection’) If U= 1, set J* == j, Y{ = lop(Y%), ¥/ =V, V) =
Y}, and go to IIIL
b) (‘Bouncing back’) If U = 0, set Y := Y% + )\j\/TjJ'_l’Zn(Ha'D(Yg()) and go
to IT (3).
3) (‘Solve’) Set Y := Y%. Compute Y&, Y+ and Y4 via Scheme |1| with step
X x s v Z

size 7IThL

III (‘Computation’) Compute {79} | e {&Y}3 | with step size 771, set

BU0 = }:rbH{®“—+®w-+® el + it + e,

k=0
j—1 .
I, = kz:% {Tk+1E[1{J*>k}} + E[l{Y’;(esTkH}]} 4 7—]+1,£]E[1{J*>k}} + ]E[l{chesTﬁu}} )
and decide:

(1) If 899 > Tol - (1 +a; - Ijj), set 7/HLAL = Tﬁ” ,and £ — 0+ 1.
(2) % (14a;-T;,) <BU) <Tol-(1+4q;- IM), and
a) if U=1, STOP.
b) if U= 0, set 77! := Tj“’g, tipi:=t;+77" and j— j+ L.
) ol . (1+a; an
(3) &) < T (1 4a;-1;,), and
a) if U= 1, STOP.
b) if U= 0, set 79 := 77*LE ¢, = t; + 7971 Then set 77+ := 277+ and
j—j+1
After the admissible step size 777! has been generated through the (finite) sequence {79714} ,5

of refinements IIT (1) which precedes a single potential coarsening step III (3), the new
local error (up to time ¢;41) is bounded by (10.1)).

The following theorem validates termination and convergence (w.r.t. ‘Tol’) of Algorithm
10.1} its proof is similar to Theorem in the first part, and exploits the stability results in
Lemmas R.3 and R.4]
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Theorem 10.2. Let Tol > 0. Suppose (A1) — (A3) in Section 8.1} Further suppose that
the step sizes {797'},5¢ are sufficiently small according to Lemma or either (A1*) or
(A1*) are valid. Fix x € D. Then, Algorithm m generates each local step size 777!
after O(log(Tolfl)) many iterations and terminates after E{J*} = O(Tolfl) time steps.

Furthermore, the 4—tuple {(TM,Y;'(, Y&, Yg)}PO satisfies

’u(x) —E[o(Y{)Y + V)] ‘ <CTol, (10.2)

where C > 0 depends on C(¢,g) > 0 from Lemma [8.1) C' > 0 from Lemma [8.4] and the
upper bound of max a;.
J=Z

In the following proof, let C' > 1 be a constant which might differ from line to line, but is
always independent of 77*! and j > 0.

Proof. a) Termination for each j > 0: Fix j > 0, ¢ > 0, and use (9.22)), (9.23)) and (9.24])

to deduce
0 L of0 oY) < Ot IR, +E[1 | ] . (103
{ 1 2 3 }_ [ {J >g}] {Y§<€37j+1,e} ( )

. ; £ . ; j+1,0 .
Hence, we generate a finite sequence {7771} 2" with 77+ = = ¢ = 0,..., £, ,, according

to the refinement mechanism ITI (1) in Algorithm [4.1) until either III (2), or III (3) is met.
In view of ((10.3)), as well as

j—1
&0 < Tol - {1+ R AR +E{1 ”
<To aj—1 I;)T [ Iy >k}} {Y’,“(eSTkH}

+ CTj+1’é{Tj+1’€E{1{J*>j}} +E {1{w s }} }
XSO j+1,L
< Tol - (1+a;-150), (10.4)
+i+1,0¢

and the fact that a; > 1 and a; — a;_; > 0, we find out that ¢ = ’710g<'1"01>/10g(2)—‘ is the

smallest number such that

A FIFL0
C rittt=C. < Tol
2t ’
which, however, implies (10.4)). Consequently,
log(THLOC>
Tol
o< <|————~2 10.5
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which yields a maximum of O(IOg(T()l_l)) (refinement) steps to accept the local step size
Fitl .= LG, O

E3

ofi+1

b) Global termination: We show by induction that

, Tol
e oE (120). (10.6)

This means that all step sizes are bounded from below by %, which, in particular, can be
considered as the smallest step size that Algorithm is able to generate.

The base case follows by the choice of the initial mesh size 7! > Tol. Now suppose that we
have generated Yg(, Yé and Yg with step size 77 > % and no ‘stopping’ has been detected
before. In order to successfully compute Y4 (and Yi, YZ™), we set 77+10 := 79 (if III
(2) occurred in the generation of 77), or 77710 := 279 (if IIT (3) occurred in the generation

‘ - . . . .
of 77). In all cases, 77710 > T&&. Via a), we generate a finite sequence {77} %} until

either ITI (2), or ITI (3) is met, and then generate Y4 (and Y7, Y2 with step size
Fitl = LG — 0 Gince [2] < 1+ 2, 2 € R, we conclude by means of (10.5)) that

-
o+

rI+0  Tol
>

I+ = I = 2 oA
265+ 2C

Having ((10.6)) at hand, we conclude that

Tol

Elts] = PV E Ly 2 B[] T

=0

By Lemma , we may infer E{J*} = O(Tol_l).

c) Convergence rate: Let j > 0. We (upper) bound the right-hand side of (10.1)) (in-
dependent of j). By means of the boundedness of a; < C, and Lemmas and , we
immediately obtain

Tol - <1+aj : i {T’““E[lww}} + E{l{yggesfw}] }>

ol ot el )
< Tol - (1 +C- (E[tJ*] + ]iE{l{Y’g(eSTkﬂ}]))
< Tol - <1+c. (C+2)>, (10.7)

where C' > 0 is from Lemma Now, (10.2) immediately follows from the a posteriori

error estimate (9.1)), the tolerance criterion in Algorithm (cf. (10.1))), and (10.7)).
[l
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10.2. Adaptive weak Euler method for the parabolic PDE
6.1

By following a similar guideline in the setup of Algorithm [10.1, we present an adaptive
algorithm (see Algorithm below) for the (pointwise, i.e., for (t,x) € [0,7) x D fixed)

approximation of PDE (6.1)). Similar to Theorem in Section Theorem validates

termination and convergence of the adaptive method.

Algorithm 10.3. Fix Tol > 0 and 7! > Tol. Let (77, Y%,Y?) and a; = 1 + L - t; be given
for some j > 0. Define 79110 := 77,

I (‘Safeguard’) If Y4 ¢ D, set J* := j, Y¥ = Hap(Y%), Y := Y], and STOP.
— For /=0,1,2,... do:

II (1) (‘Localization’) If Y ¢ S, i+, set Y = Y% and go to IT (3).

(2) (‘Localization’) If Yi € 8,41, draw a Bernoulli distributed random variable
U with parameter p; given in (8.5).

a) (‘Projection’) If U= 1, set J* := j, Y§ := ap(Y%), Y := Y}, and go to

I11.
b) (‘Bouncing back’) If U= 0, set Y = Y + )\j\/Tj+1’£n(HaD(Y§()) and go
to IT (3).
(3) (‘Solve’) Set Y := ch. Compute Y4 and Y2 ™ via Scheme [3| with step size
FitLe

III (‘Computation’) Compute {57713 ie., {73 | with step size 79+1¢, set

e | | | |
900 =3 e + 9 + 9 4 2 BP0+ 980 4 9§ 0L
k=0

j—1
I,,:= PR 1 +]E[1 } + 7R 1, . +]E[1 , }
gt ]é){ [ 18 >k}} {Y’)"(ESTkH} [ v >k}} {Y&ESTJ'-HJ}

and decide:
(1) T H9 > Tol- (1+a;- T¢), set 770 = T2 and £ £+ 1.

(2) %2 (1+a;-1;,) <HOD <Tol- (1+a,- 1), and

a) if U= 1, STOP.

b) if U=0, set 791 =70 ¢ =1, + 77 and j — 5+ 1.
(3) IEHUO < T (14 a;-1;), and

a) ifu=1, STOP.
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b) if U= 0, set 7/t := 79tLE ¢, = ¢, + 7971 Then set 771 := 2771 and
j—75+1

STOP, if t; > T for some j and set J :=j, J*:=J, Y& =YY%, Y/ =Y,

Very similar to Theorem [10.2, the following theorem states termination and convergence
(w.r.t. ‘Tol’) of Algorithm [10.3| Its proof simplifies due to the a priori knowledge of the
terminal time 7" > 0, and is thus omitted.

Theorem 10.4. Let Tol > 0. Suppose (B1) — (B3) in Section 8.2 Fix (¢,x) € [0,7) x D.
Then, Algorithm [10.3|generates each local step size 797! after O(l@g(Tol_l)) many iterations

and terminates after O(Tol_1> time steps. Furthermore, the 3—tuple {(Tj+1,Y§(, YZJ)}

satisfies

720
’u(t,x) — E[gzﬁ(tJ*,Y‘)];) - YZJH < C-Tol,

where C > 0 depends on €(¢, g) > 1 from Lemma 8.2 and 7' > 0.
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11. Monte-Carlo simulations for
adaptive weak Euler methods

All simulations are conducted via MATLAB (version: 2017a and 2019a).

In the practical implementation of Algorithm (and also for Algorithm [10.3)), we replace
33
all expectations E¢(-), £ = 1, ..., 15 contained in {6?}#1 (in Algorithm|10.1)) by their empiri-

, 3
cal means E,™(-), £ =1, ..., 15, and write {Q5§ )’(M)}z_l for the related (empirical) error estima-

tors. Moreover, in every simulation concerning (0.6]), we chose a; := min(l +L-tj,1+L- C’)
(with C' > 0 from Lemma as additional ‘weight’ in Algorithm m

As seen in Examples and (and also in (most of) the examples below), the plots of
the step sizes generated via Algorithms and conceptually have the same structure
(‘U’-profile). This related dynamics can be classified into three phases (cf. Figure [6.2)):

e [nitial phase: In this stage, no stopping dynamics takes place, and step sizes are refined
until first samples enter the boundary strips.

e Bulk phase: Here, the step sizes attain smallest values and remain constant over a
certain period of time. In this period, the majority of samples are projected onto
the boundary 9D, where the smallness of the step sizes guarantee accuracy of those
projections.

e [nd phase: In this phase, the leftover samples, i.e., the ‘outlier-samples’; are gradually
forced to be projected onto @D by a gradual coarsening of the step sizes. Besides the
guidance of refinement /coarsening through the error estimators, the ‘temporal weight’
in is mainly responsible for this additional dynamics towards the end.

So far, the data requirements of Examples and coincide with the assumptions in
Chapter 8 In the following two sections, we (mostly) consider data setups for simulations of
and , which go beyond the scope of our theoretical backup. Even in these cases,
where e.g. D has a reentrant corner (see Example , or boundary and terminal data are

incompatible (see Examples and [11.5)), Algorithms and still yield promising

results.
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11.1. Simulations for the elliptic PDE (0.6

The following example with a quadratic inhomogeneity g and a quartic boundary condition
¢ is taken from [12, Problem 4.2.2b]. The discussion in [9, Subsec. 5.5, Fig. 9] states sub-
optimal practical performance of Scheme , if run on a fixed mesh; see Figure m (C)
below. In contrast to this, the results in Example below show that complementary
‘time adaptivity’ (see Algorithm recovers optimal convergence.

Example 11.1 (see [12, Problem 4.2.2b]). Let L = 32 and D := {X € RE ¢ ||x[|ge < 1}.
Consider with a(x) =1, b(x) =0, ¢(x) =0 and

g(x):—Zi-x?, gb(x):észf (xeD).

For M = 10° fixed, we investigate the convergence rate for the approximation u®(x) of the

solution u(x) = ¢(x) at x = (5/100, ...,5/100) . Figure [LL.1] (B) illustrates optimal order of

convergence 1 with respect to Tol — as opposed to sub-optimal order % (as also found in [9),

2
Subsec. 5.5, Fig. 9]) on uniform-meshes; see Figure[11.1] (C). It seems that time adaptivity in

this respect preserves the theoretically stated first order convergence even for ‘complicated’
functions g and ¢ involved in .

(B) Convergence rate (C) Convergence rate
100 . . . 100 . =
10! 101 /H\s\{/-“
102
107 .
F:A: 51(]
1073 F -
i " e To1 fu(x) — u® (x)| L =h e ju(x) —u®(x) |
107 ---slope 1 reference ] ---slope 1 reference

slope 0.5 reference 1077 slope 0.5 reference

Figure 11.1.: (A) Semi-Log plot of the (adaptive) step sizes generated via Algorithm m
(with Tol = 0.01). (B) Convergence rate (error) Log-log plot via Algorithm
10.1} (C) Convergence rate (error) Log-log plot via Scheme [2[ on uniform
meshes with step size h.

The next example from [9, Example 1] considers a data setup for in a 3—dimensional,
non-convex domain D with a reentrant corner. Computational studies in [9, Example 1]
with the original method [6I] on uniform meshes (again) state a suboptimal performance
when approximating the solution at a point close to the corner. Although this experimental
framework violates our assumptions, we see that Algorithm [10.1] even in this case performs
very well, and achieves the desired order of convergence; see Figure [11.2] (D) below.
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Example 11.2 (see [9, Example 1]). Let D := {X = (21,79, 23)" € R3: ||x||ps < 1} \ {X =
(v, 29,23)" : 21 > 0.67, 23 > 0.67, 23 > 0.67}. Consider with

\/1+‘£L'3| 0 0 T
o(x) = |5\/1+ x| /51 + |zl 0 , b(x)= |z, cx)=0,
0 Witlel 31+ 1
1 3
Q(X):—<5’3§$3+5E§5€1+ﬁ1’2+2(9”3\/1+|5131|\/1+|$3\+5U1\/;\/1+\$1’\/1+|552!)>7

¢(X) = X1T2X3 .

'

The corresponding solution is given by u(x) = zjzez3. We fix x = (0.57,0.57,0.57) ", and
use Algorithm (with Tol = 0.01, M = 10°) to approximate u(x) (see Figures (B)
and (C) for resulting features). As stated in [9, Example 1], the suboptimal performance
there is due the frequent overshoots of the inner corner of D, where an ‘ad-hoc’ value \; = 2
in (8.4) is used within the related method (on uniform meshes) to characterize the boundary
strips. In contrast, the (automatic) choice of adaptive step sizes in combination with the
flexible choice of A; according to accurately identifies particular boundary strips, i.e.,
leads to proper projections onto 8D, and yields a first order convergent approximation.

Within the framework of the last example in this section, we discuss aspects of Algorithm
10.1] concerning the choice of M and Tol with respect to the absolute error, when used
for approximations at different points at whose neighborhoods the (true) solution does not
resp. drastically change. For this reason, we consider a convection dominated example taken
from [44, Example 2] (slightly modified here) which has an internal boundary layer; see

Figure [I1.3]

Example 11.3. Let D := (0,1)? and ¢ = 107>. Consider with o(x) = v/2¢ - 1,
b(x) = (1,0)", ¢(x) = —1. The functions g and ¢ are chosen such that the true solution is
given by

1 x1 — 0.
u(x) = 5 (1 + tanh (10025)> (X = (z1,29)" € 'D) :
We fix z; = (0.8,0.5)" € D and x5 = (0.8,0.5)7 € D . Tables[11.1]and [11.2|display errors in
relation to Tol and M for the approximation of u(x;) resp. u(x2). As we can see in the tables
below, the approximation of u(zg) via Algorithm , i.e., at a point inside the convection
dominated area needs very small values for Tol, more Monte-Carlo samples M and much
more time steps to aim for a ‘small’ corresponding error, as opposed to the approximation
of u(xy), where z; is located outside the internal boundary layer; see Figure m

132



CHAPTER 11. MONTE-CARLO SIMULATIONS FOR ADAPTIVE WEAK EULER
METHODS

102 F

L5
Lo T 102

Step size

(D) Convergence rate

10°

35W | = Tol — [u(x) — u™(x)|

---slope 1 reference

251
8

2 1 21072
=

1.5 H

y

0 01 02 03 04 05 06 01 251079 102 25-102  5.102 10!
Time

Figure 11.2.: (A) Representation of D. (B) Semi-Log plot of the (adaptive) step sizes
generated via Algorithm [10.1] (C) Shape of the distribution of ¢, illustrated
via a histogram plot. (D) Convergence rate (error) Log-log plot via Algorithm
10.1l(M=5-10°% x = (0.57,0.57,0.57) 7).

Tol M  time steps Error Tol M  time steps  Error
0.1 103 8 0.09 0.1 103 10 0.89
0.1 105 9 0.084 0.1 10° 11 0.088
0.01 103 15 0.014 0.01 103 54 0.223
0.01 10° 16 0.012 0.01 10° 55 0.219
0.001  10%> 329 0.0012 0.001  10* 1090 0.023
0.001  10* 331 0.001 0.001  10* 1091 0.023
0.0001 10% 7439 1.25-1074 0.0001 10% 19598 8.6-107*
Table 11.1.: z; = (0.8,0.5)" Table 11.2.: x5 = (0.5,0.5)"
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(A)x — u(x)

Figure 11.3.: (A) Solution in D.

11.2. Simulations for the parabolic PDE (6.1

The following example from [21] (‘time-reversed’ here in our setting) considers incompatible
terminal and boundary data in (6.1]), and hence violates assumption (B3) in Section[8.2] We
observe encouraging results with Algorithm also in this case, where different structures
of step size plots (‘L’-profiles) occur, depending on the point in space and time at which the
solution is approximated; see Figure [11.4] (D) below.

Example 11.4 (see [21, Subsec. 3.2]). Let T = 1, and D := (0,1)%. Consider (6.1)) with
o(x)=+v0.4-1, b(x) =0, g(t,x) =0, and

sin(%xl + %”) Sin(%l'g + ?jf) , t=T
t<T.

¢(t7 X) = {

?

For M = 10* and Tol = 10~ fixed, Figure below displays step size plots for the approxi-
mation of u(0.98,x) at two different values for x: one in the spatio-temporal incompatibility
region (cf. (B)), and one in the interior of D (¢f. (C)). In both step size plots, we observe
a ‘L’-profile structure — opposed to a ‘U’-structure as before, which is due to the temporal
dynamics involved here, since ‘not enough’ samples are projected onto @D within the short
time interval [0.98,1]. Consequently, a gradual coarsening, i.e., the ‘end phase’ does not
occur — opposed to Figures [11.F] (B) and (C), where for Tol = 0.01 fixed, related step
size plots are shown at a different time ¢ = 0, at which the incompatibility has dissolved.
Moreover, the reversed ‘L’-profile structure of the step size plot in Figure m (B) results
from the position of the (spatial) point (close to @D) at which u is approximated, and the
choice of Tol: here, samples are already located in the boundary strips at the beginning,
which is why the ‘initial phase’ does not take place. Furthermore, in order to make up for
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point in the interior of D (c¢f. Figure [11.5 (C)) as opposed to gllaXMJ* (W) = 57 for an
approximation at the point close to D (cf. Figure [11.5 (B)).

(A)x — u(0.98, x)

(B)tj — Tj+1

— j+1
1073 F t H Tj+ 1

u(0.98,%)

Step size

0.98 0.985 0.99 0.995 1
Time

(C)tj s 71 (D) Convergence rate

B Tol = Ju(t, x) — u®(t,x)|
1075 4" ---slope 1 reference 1
--- slope 0.5 reference

| | | 6
0.98 0.985 0.99 0.995 1 107 1074 10-% 102 10!
Time Tol

Figure 11.4.: (A) Solution in D at t = 0.98. Semi-Log plots of (adaptive) step sizes for
t =10.98 and (B) x = (0.05,0.6)", (C) x = (0.6,0.6)". (D) Convergence rate
(error) Log-log plot via Algorithm (M=5-10°,¢ = 0.98,x = (0.05,0.6) ).

Example below is from [70, Subsec. 6.2] (again, ‘time-reversed’ here) and similarly to
Example [I1.4] exhibits an incompatibility of boundary and terminal data at times close to
T > 0, but in a high-dimensional domain D. Within the framework of this example — also
complementing phenomena of Algorithm [10.3]in Example[I1.4] we continue the investigation
of different aspects of Algorithm concerning the choice of M and Tol with respect to the
absolute error.
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vl =g s At

10-16 -

Step size
Step size

1072

Figure 11.5.: (A) Solution in D at ¢t = 0. Semi-Log plots of (adaptive) step sizes for t =0
and (B) x = (0.05,0.6)", (C) x = (0.6,0.6)".

Example 11.5 (see [70, Subsec. 6.2]). Let T'= 1, and D := (0,1)'°. Consider (6.1)) with
o(x) =21, b(x) =0, g(t,x) =0, and

1, t=T
olt, ) {0, t<T.
We fix x = (0.05,0.5,....,0.5) " € D. Tables f display errors in relation to Tol and
M for the approximation of u(¢,x) at different times ¢. As we can see in the tables below, the
approximation via Algorithm at times close to T', i.e., where the incompatibility effect
is present, needs much more Monte-Carlo samples M and very small values for Tol to aim
for a ‘small’ corresponding error, as opposed to the approximation at times ‘away’ from T,
where the incompatibility effect dissolves.

Tol M  time steps Error Tol M  time steps Error
0.01 10% 8 0.16 0.01 102 25 0.012
0.01 10t 8 0.14 0.01 10 33 0.01
0.001  10? 53 0.054 0.001 10% 184 0.01
0.001  10* 53 0.053 0.001  10* 257 0.002
0.0001 10* 782 0.053 0.0001 10% 4067 0.002
0.0001 10* 772 0.014 0.0001 10* 4061 7-1074
Table 11.3.: ¢t = 0.99 Table 11.4.: t = 0.95
Tol M  time steps Error
001 102 92 9.10-5 Tol M time steps Error
0.01 10* 50 9.107° 0.01 10* 23 3-10713
0.001 10* 217 91075 0.01 10* 50 3-10713
0.001 10° 513 3-107°

Table 11.6.: t = 0.7
Table 11.5.: t =10.9
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