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Abstract

Floodplain aquifers are important hydraulic connectors between hillslopes and surface-

water bodies. The flow field in floodplain aquifers comprises different flow components

governed by various geometric and hydrogeologic parameters. In this work, (semi-)analytical

and numerical stochastic simulations are used to address three classical problems associated

with investigations of floodplain aquifers. To this end, the Ammer floodplain west of Tübingen

serves as an exemplary study site.

The first aspect of this dissertation focuses on valley-scale lateral hyporheic exchange in

floodplain aquifers driven by widening and subsequent narrowing of the aquifer geometry. By

means of a new semi-analytical solution, simple analytical proxy-models can be derived that

allow a trivial and quick assessment, whether this type of exchange is relevant in a given setting.

The application of these tools to the Ammer floodplain shows that the site has the geometric

potential for notable valley-scale hyporheic exchange, but small hydraulic conductivities and

lateral influxes from the hillslopes restrict the exchange zone to a negligible extent.

The second topic is concerned with identifying promising points in space, where hydraulic-

head information would help to locate groundwater divides separating the catchment area of

floodplain aquifers from other catchments. A respective uncertainty-reduction optimization

problem is formulated and solved by the application of a stochastic framework based on

pre-filtered steady-state flow models. In the context of the Ammer floodplain, this analysis

confirms that a presumed shift between groundwater and surface water divide is likely to exist.

Three observation points identified by the procedure are predicted to help in reducing the

related uncertainty by more than fifty percent.

The third andfinal subject dealswith calibrating steady-state floodplainmodels to hydraulic-

head data. A modified, proxy-model-based, global calibration routine is able to find well-

performing parameter sets that bring a steady-state Ammer floodplain model in agreement

withmeasured field data. Neural Posterior Estimation, a technique from the field of Simulation-

Based Inference, confirms these parameter sets and sheds light on the related uncertainties and

correlations. A key result of this analysis is the confirmed inter-basin flow from the Ammer

hillslopes to the Neckar valley, which takes place in the Erfurt formation beneath the Spitzberg

ridge and the Wurmlingen saddle.

IV



Zusammenfassung

Auengrundwasserleiter sind wichtige hydraulische Verbindungen zwischen Hängen und

Oberflächengewässern. Das Strömungsfeld in Auengrundwasserleitern umfasst verschiedene

Strömungskomponenten, die von unterschiedlichen geometrischen und hydrogeologischen

Parametern bestimmt werden. In dieser Arbeit werden (semi-)analytische und numerische

stochastische Simulationen eingesetzt, um drei klassische Probleme im Zusammenhang mit

Auengrundwasserleitern zu behandeln. Dazu dient die Ammeraue westlich von Tübingen als

exemplarisches Untersuchungsgebiet.

Der erste Aspekt dieser Dissertation befasst sich mit groß-skaligem, lateralen hyporhei-

schen Austausch in Auengrundwasserleitern, der durch die Aufweitung und anschließende

Verengung der Grundwasserleitergeometrie angetrieben wird. Mit Hilfe einer neuen semi-

analytischen Lösung können einfache analytische Proxy-Modelle abgeleitet werden, die eine

triviale und schnelle Einschätzung erlauben, ob diese Art des Austausches in einem gegebe-

nen Umfeld relevant ist. Die Anwendung dieser Werkzeuge auf die Ammeraue zeigt, dass

der Standort das geometrische Potenzial für einen nennenswerten hyporheischen Austausch

besitzt, aber geringe hydraulische Leitfähigkeiten und seitliche Zuflüsse von den Hängen die

Austauschzone auf ein vernachlässigbares Niveau beschränken.

Das zweite Thema befasst sich mit der Identifizierung vielversprechender Landschafts-

Punkte, an denen Grundwassermessungen helfen würden, Grundwasserscheiden zu lokalisie-

ren, die das Einzugsgebiet von Auengrundwasserleitern von anderen Einzugsgebieten trennen.

Ein entsprechendes Optimierungsproblem zur Unsicherheitsreduzierung wird formuliert und

durch die Anwendung eines stochastischen Verfahrens auf der Grundlage vorgefilterter statio-

närer Abflussmodelle gelöst. Im Zusammenhang mit der Ammeraue bestätigt diese Analyse,

dass eine vermutete Verschiebung zwischen Grundwasser- und Oberflächenwasserscheide

wahrscheinlich ist. Drei durch das Verfahren identifizierte Beobachtungspunkte könnten vor-

aussichtlich dazu beitragen, die damit verbundene Unsicherheit um mehr als die Hälfte zu

reduzieren.

Das dritte und letzte Thema befasst sich mit der Kalibrierung von stationären Auenmodel-

len auf Basis von Daten zur hydraulischen Spiegelhöhe. Eine modifizierte, auf Proxy-Modellen

basierende, globale Kalibrierungsroutine ist in der Lage, gute Parametersätze zu finden, die

ein stationäres Ammerauen-Modell in Übereinstimmung mit gemessenen Felddaten bringen.

Die neuronale Posterior-Schätzung, eine Technik aus dem Bereich der simulationsbasierten

Inferenz, bestätigt diese Parametersätze und gibt Aufschluss über die damit verbundenen

Unsicherheiten und Korrelationen. Ein zentrales Ergebnis dieser Analyse ist der bestätigte

unterirdische Grundwasserabstrom von den Ammerhängen zum Neckartal, der in der Erfurt-

Formation unterhalb des Spitzbergs und des Wurmlinger Sattels stattfindet.
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General Abbreviations

AESS Averaged Effective Sample Size

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

GPE Gaussian Process Emulator

GPR Gaussian Process Regression

HGS HydroGeoSphere

MAF Masked Autoregressive Flow

MCMC Markov Chain Monte Carlo

NPE Neural Posterior Estimation

PDE Partial Differential Equation

PreDIA Preposterior Data Impact Assessor

RMSE Root Mean Square Error

SBI Simulation-Based Inference

SNPE Sequential Neural Posterior Estimation

Geological Units

moM Meissner formation

kuE Erfurt formation

kmGr Grabfeld formation

kmSt Stuttgart formation

kmSw Steigerwald formation

kmHb Hassberge formation

kmMh Mainhardt formation

kmLw Löwenstein formation

kmTr Trossingen formation

km2345 Lumped sandstone formations

Local Institutions

ASG Ammertal-Schönbuchgruppe

Campos Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale

(Collaborative Research Center)

LGRB Landesamt für Geologie, Rohstoffe und Bergbau

LTZ Landwirtschaftliches Technologiezentrum Augustenberg

LUBW Landesanstalt für Umwelt Baden-Württemberg

SWT Stadtwerke Tübingen
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Chapter I

Overall Background

1 Introduction

More than 4.5% of Germany’s land area morphologically belongs to floodplains (Koenzen and
Günther-Diringer, 2021) – those areas around rivers that are frequently inundated during high-

discharge events if no flood protection measures are taken (Brunotte et al., 2009). As landscape

elements, floodplains connect surface-water bodies, aquifers and hillslopes (Jung et al., 2004; Ó

Dochartaigh et al., 2019). This interface-rolemakes them interesting for various scientific disciplines,

including ecology, biology, hydro(geo)logy, geomorphology and biogeochemistry (Hauer et al.,

2016). The corresponding research deals with flow of water, sediment transport and (reactive)

transport of compounds including nutrients, contaminants and organic matter (Bridge, 2009). Wohl

(2021) provides an extensive review on how these processes interact with each other and how the

corresponding storages are integrated in floodplains.

Floodplains emerge and evolve through different sedimentary mechanisms involving deposition

of material within the river-channel and outside of it (Wolman and Leopold, 1957; Nanson and

Croke, 1992; Leopold et al., 2020). With processes like channel migration, as well as the associated

erosion and deposition, floodplains form comparably dynamic landscapes from a geomorphological

perspective (Bridge, 2009). Floodplain geomorphology can also be linked to riparian ecology

(Huggenberger et al., 1998), as floodplains (in this context also referred to as riparian zones) are

ecological habitats representing hotspots of biological diversity (Meyer and Edwards, 1990; Smock

et al., 1992; Brunotte et al., 2009). For instance, Hauer et al. (2016) provide an interdisciplinary

review on how riparian biodiversity benefits from ecosystem disturbances associated with flooding.

Such considerations are especially relevant in the context of hydrogeomorphical river management:

many floodplains have been anthropogenically modified in the past, for example through river

regulation and flood protection measures (Follner et al., 2010; Brunotte et al., 2009; Koenzen and

Günther-Diringer, 2021). It has been recognized recently that such interference has adverse effects

on the proper functioning of the river/floodplain ecosystem and that retaining the natural states

of floodplains is desirable (Beechie and Roni, 2012; Biron et al., 2014; Buffin-Bélanger et al., 2015;

Dezső et al., 2019; Karpack et al., 2020).

Another aspect of anthropogenic interferencewith riparian areas is the frequent usage of floodplains

and their surroundings for agricultural purposes (Tockner and Stanford, 2002). Crop cultivation

and the corresponding fertilization can lead to subsurface contamination with pollutants, most

prominently nitrate (Baillieux et al., 2014; Schilling et al., 2015). On the other hand, many floodplain

aquifers also provide hydraulic and biogeochemical conditions that are exceptionally suitable
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for contaminant degradation (Hill, 1990, 1996; Woessner, 2000; Bates et al., 2000; Cloke et al.,

2003; Clilverd et al., 2013), for example due to elevated contents of organic carbon in floodplain

sediments (Sutfin et al., 2016). Hill (2019) reviewed the recent state of research regarding nitrate

removal in floodplain aquifers, concluding that the denitrification pathway is more important than

other microbial degradation processes or uptake through vegetation. There are also cases where

the reduction of nitrate concentrations in floodplains is attributed to dilution with river water

(Pinay et al., 1998). Biogeochemical processes in floodplains are not limited to nitrogen species, as

illustrated by the review of Vidon et al. (2019), which also considers phosphorous, greenhouse gases

and emerging contaminants (e.g., fire retardants). How complex the interplay of biogeochemical

reactions in floodplains can be, becomes clear with the case study of Yabusaki et al. (2017), which

considered chemical species of carbon, nitrogen, oxygen, iron, sulfur and uranium.

Any qualitative and quantitative investigation of transport within a given floodplain, may it concern

reactive contaminants, conservative compounds, or sedimentary material, first requires a good

understanding of the relevant water flow processes (Büttner et al., 2006; Wohl, 2021).

1.1 Hydrogeology of Floodplain Aquifers

The first aspect that comes to mind with respect to water flow in floodplains is their role as flood

wave retention areas from the hydrological perspective (e.g., Rashid and Chaudhry, 1995; Bedient et

al., 2008; Valentová et al., 2010; Bornschein and Pohl, 2018). As recognized in the last decades, many

groundwater and surface-water bodies form a continuum that requires an integrated consideration

(Winter et al., 1998; Cook, 2015). Floodplains are a prime example of this phenomenon: surface-

water flood waves can also exert notable effects on groundwater levels in the underlying floodplain

aquifers. This process is known as flood wave propagation (Sophocleous, 1991). The associated

celerity and amplitude of the corresponding groundwater pressure waves, as well as the propagation

direction have been studied, for example, by Jung et al. (2004), Cloutier et al. (2014), and Buffin-

Bélanger et al. (2016).

The overall flow field in floodplain aquifers, however, is often times not (only) governed by flood

wave propagation, but other (regional) flow processes that are less dynamic in nature (Larkin and

Sharp Jr., 1992; Woessner, 2000). In this dissertation, I am interested in such long-term or quasi-

steady-state regional flow behavior of floodplain aquifers. Here, the conditions are assumed to be

stable considering time-scales large enough such that the effects of event-triggered dynamics can be

averaged out or neglected, but small enough to still consider the floodplain a static entity from the

geomorphological point of view. Real floodplain systems are of course never truly at an equilibrium

and local short-term dynamic effects might be superimposed on the general regional flow field.

Nonetheless, the analysis and investigation of floodplain aquifers in (assumed) quasi-steady-state

conditions can reveal insights into the hydraulic functioning of floodplain systems. It might also be

a valuable foundation for follow-up studies that target the transient effects, as for example done by

Grapes et al. (2006), Folch et al. (2010), Ostendorf et al. (2012), and Helton et al. (2014).

2
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Figure 1: Three-dimensional sketch of potentially relevant flow processes in floodplain aquifers.

An initial conceptual understanding of the subsurface-flow behavior of a floodplain aquifer system

can be obtained by a water balance consideration, namely a description of potential sources or sinks

of water (Wohl, 2021). Figure 1 provides a schematic overview in this regard, highlighting several

flow controls that are potentially relevant in floodplain aquifers (focusing on natural processes, and

thereby neglecting extraction wells for instance). In the following, I will further characterize the

individual contributions.

First of all, there is the longitudinal slope of the surface elevation which corresponds to the mean

effective slope of the river. Typically, this slope also leads to an along-valley flow component

in the subsurface (e.g., MacDonald et al., 2014), termed underflow component in the review of

Larkin and Sharp Jr. (1992). Depending on the connectivity of the floodplain to the preceding and

following subsurface-water bodies, this can result in groundwater fluxes entering or leaving the

floodplain at its upstream and downstream ends (as for example in the case of Peyrard et al., 2008).

Secondly, there is often another topographic gradient superimposed, pointing from the outer rims

of the floodplain towards the river. This can lead to a cross-valley component of flow, termed

baseflow component in the review of Larkin and Sharp Jr. (1992), caused by lateral input of water

entering the floodplain from adjacent hillslopes on the sides (e.g., Sun et al., 2017). Similarly, the

floodplain might be connected vertically to deeper groundwater resources (e.g., Macpherson and

Sophocleous, 2004). Depending on the given pressure situation, the floodplain aquifer might gain

water from deeper aquifers, or lose it towards the subsurface instead. The net effect of precipitation

and evapotranspiration can result in groundwater recharge within the floodplain. Finally, there

is the interaction of the floodplain aquifer and the river itself. Such surface-water/groundwater

interactions attract considerable scientific attention (see for example the reviews of Flipo et al.,

2014; Ward, 2016), because the interface of these usually very different water bodies (e.g., in terms

of physical and chemical properties) is of relevance for the hydro(geo)logical functioning of the

floodplain and for the turnover of major biogeochemical constituents and anthropogenic pollutants.
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Cook (2015) classified surface-water/groundwater interactions into river gain: exfiltration/dis-

charge of groundwater into the river (e.g., as a result of collecting the hillslope-influxes), river loss:

infiltration/recharge of river water into groundwater (e.g., if there is a significant loss towards

deeper groundwater systems), bank storage: bidirectional exchange between river and groundwater

due to dynamic changes in river-water stage, and hyporheic exchange: water originating from rivers,

taking a detour through groundwater and coming back to the river without a net impact on the

water balance of either the aquifer or the river. Hyporheic exchange is important for various aspects

of water quality and ecology, including microbial activity, solute turnover, nutrient fate, and redox

conditions (Triska et al., 1993; Hayashi and Rosenberry, 2002; Boano et al., 2009; Fabian et al., 2011;

Ward, 2016; Lewandowski et al., 2019).

As the subsurface is basically inaccessible, it is difficult to investigate which of the described flow

processes are actually taking place at a specific site, and how relevant they are. Most often, there

is only little or sparse information available, for example in form of (1) point-like data obtained

from groundwater observation wells, (2) general geometric descriptions (e.g., approximate length,

width, thickness and shape of the aquifer), and (3) estimated hydraulic properties obtained from field

measurements or as expert knowledge/guess-work. With respect to analyzing the flow behavior in

(floodplain) aquifers, groundwater observation wells provide the most valuable data, but unfortu-

nately their installation is costly. As a result, the locations of such wells should be chosen wisely to

gain the most information from as few wells as possible. In some cases, direct observational data

may be sufficient to answer scientific questions (e.g., the approximation of hillslope contribution

fluxes by Martin et al., 2020). More often, a quantitative and physically consistent analysis of the

flow field is necessary (e.g., when flow paths need to be identified). The field of hydrogeological

modeling provides adequate and versatile tools for this purpose.

1.2 Hydrogeological Modeling

Models are abstract and simplified representations of real, complex systems that are developed to

answer problem-specific questions (Asbrand et al., 2002; Anderson et al., 2015). These questions

can be related to system-understanding, physically-consistent interpolation, parameter inference

or prediction of states. In hydrogeology, modeling represents an especially important research

area, because the direct investigation of subsurface-flow systems in all aspects and in the desired

degree of detail is often not feasible, too expensive or even impossible. This is due to the fact that

physical access to the subsurface is limited and that subsurface-flow systems can cover extensive

areas, while often reacting only very slowly to changes (Hölting and Coldewey, 2013). The field of

hydrogeological modeling is vast and covers many aspects (e.g., model definition, model calibration,

modeling methods, sensitivity analysis, etc.). Extensive reviews on early modeling techniques are

given by Prickett (1975) and Bredehoeft (2012). Anderson et al. (2015) provide a detailed overview of

the modern state of hydrogeological modeling. In the following, I will focus mostly on the different

types of models in the context of hydrogeology and how they relate to this dissertation.
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At the most general level, (hydrogeological) models can be differentiated into conceptual models and

quantitative models. A conceptual model is a characterization of a (flow) problem that describes all

processes and properties that are relevant for the investigated system and modeling purpose. For

instance, this can include descriptions of the domain, the hydrostratigraphy, and assumed or known

flow conditions. While conceptual models can stand on their own, a conceptual model is often

the precursor of another model that attempts to give quantitative answers to modeling questions.

Such a quantitative model always requires a conceptual model (sometimes the conceptual model

is presented implicitly) and in many cases the modeling process consists of several iterations of

refining both, the conceptual and the quantitativemodel after gaining insights from the intermediate

model results.

Quantitative models can be grouped into physical models andmathematical models. Physical models

use experimental physical systems to reproduce those aspects of a real system that were deemed

relevant in the conceptual model. These physical systems can take the form of miniature versions

of larger-scale flow problems. For instance, the work of Darcy (1856) can be seen as a very early

example of using a small-scale laboratory model to simulate flow on a much larger scale. More

recent examples for lab-scale physical models are the works of Rodhe (2012), who developed several

physical models of classical hydrogeological problems for class-room teaching, and Boyraz and

Kazezyılmaz-Alhan (2017), who investigated surface-water/groundwater interactions through

lab-scale experiments. Physical models of hydrogeological systems can also be based on the flow

of quantities that are different from water, but subject to equivalent physical laws. For instance,

currents in electrical analogue studies can be related to groundwater discharges (e.g., Tóth, 1968;

Vaux, 1968; Kiràly, 1971). Similarly, there also exist studies on thermal analogues (Piggott and

Elsworth, 1989) and viscous fluids (Hele-Shaw models; e.g., Dvoracek and Scott, 1963; Awan and

O’Donnell, 1972). Physical models are obviously associated with comparably high labor intensity

and measurement errors, adverse properties that mathematical models do not have.

Mathematical models are quantitative representations of the conceptual model by means of mathe-

matical relationships. Generally, mathematical models comprise data-driven models and process-

based models. According to Anderson et al. (2015), data-driven models produce output from input

by applying empirical or statistical relationships that are inferred from a given data set, often

without resolving, distinguishing or even considering physical processes. Examples for data-driven

models are the studies of Amaranto et al. (2018), who used data-driven models for the prediction

of groundwater levels from meteorological data, and Kirchner (2019), who inferred catchment

transit-time distributions from concentration data in surface-water streams. In contrast to such

data-driven approaches, process-based models are based on a mathematical representation of the

relevant physical processes.

Process-basedmodels are often formulated as boundary value or initial value problems of governing

Partial Differential Equations (PDEs). Depending on the model complexity and the PDEs, analytical

solutions may be found for such problems. For instance, Theis (1935) formulated the analytical
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expression for transient radial flow towards a pumping well in a homogeneous two-dimensional

aquifer of infinite extent. Another famous example of a fully analytical model is the work of

Tóth (1963) targeting regional and local flow in a drainage basin. Fully analytical solutions are

mathematically elegant, precise, scale- and discretization-independent, and quick to evaluate.

Unfortunately, they are typically restricted to mostly inflexible, basic problems with predefined

geometries (e.g., rectangular domains) or simplistic boundary conditions (like the sinusoidal head

fluctuations of Tóth, 1963). For models targeting domains with complicated boundaries, internal

heterogeneities or other non-trivial properties, analytical solutions often cannot be derived. In

such cases, numerical methods can be used to (approximately) solve the respective problems.

Numerical solutions allow for arbitrary complexity and therefore full flexibility, but come at

the cost of larger evaluation times and accuracy limitations often related to spatial (or temporal)

discretization. The ever-increasing availability and power of computational resources (in terms of

hardware and software) in the last decades has lead to a rise in popularity of such numerical models

that are often based on the Finite Difference Method (FDM; e.g., Trescott et al., 1976), the Finite

VolumeMethod (FVM; e.g., Rees et al., 2004) or the Finite Element Method (FEM; e.g., Huyakorn

et al., 1984). As a result, the domain of fully numerical hydrogeologicmodeling tools offers a number

of modern software codes nowadays. For instance, Modflow (McDonald and Harbaugh, 1988) is a

widely used open-source modular groundwater flowmodeling suite (Langevin et al., 2017, 2022). In

this dissertation I rely on HydroGeoSphere (HGS), a FEM-based fully-integrated hydrogeological

model environment, that can simulate surface and variably saturated subsurface flow (Therrien

et al., 2010; Brunner and Simmons, 2012).

The distinction between analytical and numerical solutions is not strictly binary. In fact, semi-

analytical methods serve as an intermediate member on the spectrum of process-basedmathematical

models. Semi-analytical methods are typically based on a set of simplifying assumptions to make

the problem tractable, while maintaining the desired flexibility, for example by allowing arbitrary

geometries or boundary condition values for some relevant parts of the domain. This can result in

exact analytical expressions that require simple numerical methods for the evaluation of integrals

or the determination of infinite-series coefficients (e.g., Zlotnik et al., 2011). Once the set of approxi-

mate coefficients has been evaluated for a specificmodel setup, the semi-analytical expression can be

used to evaluate the solution at the same convenience as a fully analytical solution. Semi-analytical

techniques have been used in past hydrogeological research, in particular for vertical cross-sections

of hillslopes connected to rivers, drainage ditches or groundwater bodies (e.g., Powers, 1966; Li

et al., 1996; Read, 2007; Craig, 2008), but also for lateral two-dimensional problems (e.g., Suribhatla

et al., 2004; Boano et al., 2006; Samani and Sedghi, 2015; Gomez-Velez et al., 2017). The Analytical

Element Method (e.g., Strack, 1989; Bakker, 1999; Bakker and Strack, 2003; Strack, 2003; Bakker,

2006; Fitts, 2010; Strack and Nevison, 2015; Strack, 2018) represents a large class of semi-analytical

models. It allows the construction of solutions for a given problem with a modular superposition

approach, where each boundary condition represents a so-called analytical element.
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During the rise of computational power, models have also become more and more complex, due to

the availability of new numerical methods and higher affordability of computational complexity

(Venkataraman and Haftka, 2004; Zhou and Li, 2011; Jakob, 2014). This increased complexity can be

observed from the presence of a comparably large number of tunable parameters in modernmodels.

The process of adjusting model parameter values such that the model output agrees (more) with

measured data is known asmodel calibration, inverse modeling or parameter inference. It has a long

history and is one of the classical and essential problems in the field of modeling (Carrera et al., 2005;

Hill and Tiedeman, 2006; Zhou et al., 2014). As a result, many calibration philosophies and methods

exist, ranging from classical trial-and-error approaches (manual calibration) to automated calibration

schemes like those implemented in the PEST suite (Doherty et al., 1994; Doherty and Hunt, 2010;

Doherty, 2015), a general-purpose calibration toolbox based on the Levenberg-Marquardt method

(Levenberg, 1944; Marquardt, 1963) with extensions and variants, that is especially popular within

the community of hydrogeology (e.g., Selle et al., 2013). Nevertheless, calibration still remains

a crucial challenge in modern modeling, especially in cases where models are nonlinear, high-

dimensional, and/or computationally expensive. Moreover, off-the-shelf calibration routines are

usually insufficient when parameter uncertainties or interdependencies are of interest.

1.3 Overarching Questions and Outline ofThis Dissertation

In the following, I want to elaborate on how hydrogeological modeling can help to address three

typical questions arising in the investigation of floodplain aquifer systems.

Domain Delineation As the physico-chemical composition of a water parcel strongly depends

on its origin, it is of crucial importance to identify where the floodplain aquifer draws its water

from (which is also relevant for water budget analyses). This involves a delineation of the corre-

sponding catchment area towards the lateral hillslopes. A common assumption when performing

such a delineation is that the groundwater table on these hillslopes essentially follows the surface

topography (Tóth, 1963; Haitjema and Mitchell-Bruker, 2005), which simplifies the delineation to

finding the surface water divides (a comparably simple task that only requires a digital elevation

model and a geographic information system; Tarboton et al., 1991).

However, the topography of a phreatic groundwater surface may substantially differ from that of

the land surface so that the groundwater and surface water divides may not coincide (Haitjema

and Mitchell-Bruker, 2005; Bloxom and Burbey, 2015; Han et al., 2019). In fact, Haitjema and

Mitchell-Bruker (2005) reported on awhole class of aquifers naturally exhibiting such shifts between

surface and subsurface water divides, namely cases with relatively high hydraulic conductivities

in conjunction with a difference between the elevation of drainage points in neighboring valleys.

Additional factors contributing to shifts in groundwater divides include tilted aquifer strata, spatial

heterogeneity in the recharge rate, and hydraulic anisotropy. Of course, anthropogenic influence

(e.g., groundwater abstraction) can also result in shifted groundwater divides.
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The location of groundwater divides can be constrained by hydraulic-headmeasurements. In theory,

a very dense network of piezometers could be used to accurately interpolate the groundwater-table

map, which could subsequently be analyzed by the same tools as used for delineating surface-water

divides. In practice, this is not advisable as the number of observation wells is limited by financial

costs, labor intensity, and legal restrictions. That is, groundwater divides must be delineated with

head measurements from a limited number of piezometers. A classical way of doing this is by

calibrating groundwater flow-and-transport models to the head measurements, which explicitly

uses all information fed into the model construction (e.g., the geometry and parameter ranges of

geological units and boundary conditions) and leads to hydraulic-head fields that are consistent

with conservation principles. As only a limited number of observation wells is affordable, their

placements should be specifically optimized for delineating a particular groundwater divide. This

leads to the first research question of this dissertation:

1. How can we determine where to measure hydraulic head in order to reduce the uncertainty in

delineating a groundwater divide?

In Chapter III, I introduce an optimal-design analysis to address this problem bymeans of numerical

modeling. It can identify the best spatial configuration of piezometers for groundwater-divide

delineation and is based on formal minimization of the expected posterior uncertainty in localizing

the groundwater divide.

Valley-Scale River-Aquifer Interaction In addition to influxes to the floodplain aquifer at its

lateral boundaries, the river represents another entity relevant for water origin and fate. In this

context, hyporheic exchange is especially important for floodplain aquifers. In general, hyporheic

exchange occurs on different spatial and temporal scales (Boano et al., 2014; Barthel and Banzhaf,

2016; Magliozzi et al., 2017, 2018; Ward and Packman, 2019; Zachara et al., 2020), ranging from

centimeter-scale exchange induced by bedforms, over meter-scale exchange between step-pool

sequences, to kilometer-scale hyporheic exchange, which is sometimes referred to as parafluvial

flow (Mallard et al., 2014; Cook, 2015). While small-scale exchange typically takes place in the

vertical direction, larger-scale hyporheic exchange can also occur laterally (Hayashi and Rosenberry,

2002; Wagner and Bretschko, 2003; Gooseff et al., 2003; Fabian et al., 2011), for example between or

within river meanders (Boano et al., 2009; Gomez et al., 2012).

Floodplain aquifers often exhibit a widening and narrowing geometry (illustrated in Figure 1).

As shown by Tonina and Buffington (2009), such changes in cross-sectional area are one of three

drivers for hyporheic exchange (besides non-uniform hydraulic conductivity and changes in energy

head gradients). As a result, valley-scale lateral hyporheic exchange could be driven by these varying

geometries, even in cases where the river is straight and its slope is uniform. This phenomenon has

already been hypothesized conceptually (Wondzell and Gooseff, 2013), but a thorough analysis has

not yet been performed. This leads to the second research question of this dissertation:

8



2. Under which conditions can the lateral widening and narrowing of floodplain aquifer(s) cause

valley-scale hyporheic exchange?

I address this problem in Chapter II. Towards this end, I derive a semi-analytical solution which

describes the steady-state groundwater flow for two-dimensional floodplain aquifer systems con-

nected to rivers. Using simplified, generalized aquifer geometries allows me to observe general

patterns instead of site-specific local phenomena. Since the semi-analytical models are comparably

simple conceptually, I decided to present this topic before the chapter on domain delineation with

its numerical models.

Parameter Estimation After delineating the contributing area of a floodplain and determining

which processes need to be considered (e.g., surface-water interactions), a site-specific model needs

to be set up to address questions of groundwater management. Before a model can be used for

that, however, the model parameters need to be estimated. Model calibration is the process of

finding the set of parameters that makes the model meet measured data best. The analysis of

the posterior/conditional parameter uncertainty quantifies to which extent the parameters can

be constrained by measurements, and a sensitivity analysis helps to identify the parameters that

control the magnitude of model outputs. In this regard, parameters that model predictions are

sensitive to, but that are poorly constrained by the data define the worst case. The uncertainty of

parameters that model predictions are insensitive to can be tolerated much better.

For simple models requiring small runtimes and little computational resources, various automated

calibration schemes and global sensitivity analysis tools exist. For instance, ensemble-basedmethods

like genetic algorithms (Goldberg, 1989; Gen and Cheng, 1999; Das and Suganthan, 2011) and

Markov ChainMonte Carlo (MCMC)methods (Gilks et al., 1995; Brooks et al., 2011) are able to find

global minima and may provide a good approximation of the parameter distribution conditioned

on the measurements. To their disadvantage, these methods require many model runs. This can be

prohibitive for modern numerical subsurface-flowmodels with long run times and considerable

computational demands.

For these reasons, a special branch of calibration research is dedicated to developing global calibra-

tion schemes that are as efficient as possible (see Haftka et al., 2016, for a detailed review). Such

schemes are often based on proxy-models (also referred to as surrogate-models or meta-models).

A proxy-model might be a coarsened version of the original model or a black-box-type approxi-

mation relating input parameters sets to observed model output in a simplified way (e.g., through

machine-learning methods or by interpolation in parameter space). The underlying idea is that the

proxy-model is considerably quicker to evaluate than the original model (at the cost of accuracy).

The problem of such proxy-model-based global calibration schemes is that they only aim for a

single best estimate of the parameters without assessing uncertainties or relationships between the

parameters. Ideally, a full posterior parameter distribution should be obtained and analyzed.
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One idea to obtain such a distribution from computationally expensive subsurface-flowmodels

is to run a global calibration scheme first. During this operation, all intermediate input/output

information of the full model can be stored. This allows the generation of an interpolation-based

proxy-model afterwards, which is then used to perform posterior estimation methods that would

be too costly otherwise (e.g., MCMC sampling). Another possible solution might be provided by

the field of Simulation-Based Inference (SBI) (Cranmer et al., 2020; Tejero-Cantero et al., 2020;

Lueckmann et al., 2021). The corresponding tools allow the estimation of a full posterior parameter

distribution without evaluating expensive likelihoods. One particular method of this field is the

Neural Posterior Estimation (NPE), a likelihood-free posterior estimation tool based on machine

learning (Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019). This

raises the third research question of this dissertation:

3. How does NPE compare to proxy-model-based MCMC sampling of a posterior parameter distri-

bution after global calibration of a computationally expensive subsurface-flow model?

In Chapter IV, I address this question by constructing posterior distributionswith bothmethods and

comparing the outcomes to each other and the results of different variants of a proxy-model-based

global calibration routine.

Outline In each of the described three main chapters related to hydrogeological models of

floodplain aquifers, I use the same specific floodplain system as an example, namely the Ammer

floodplain close toTübingen. This site has been subject to a number of hydrogeological investigations

within the framework of the Collaborative Research Center 1253 Campos (Catchments as Reactors:

Metabolism of Pollutants on the Landscape Scale). After a detailed site description in Section 3,

I will pose additional site-specific questions in Section 3.5 that are also addressed in Chapters II

to IV. Before that, I introduce the general methods in Section 2, as the main chapters share some

common background related to the underlying scientific theory or methodology. At the end of

this dissertation, a concise summary of the outcomes related to the presented questions and final

conclusions across the main chapters is given in Chapter V.
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2 Methods

2.1 Notation

Within all equations and mathematical terms of this dissertation, scalar symbols are printed as

non-bold letters (𝑎), while vectors use lowercase letters in bold font (𝒂). For matrices, I use bold,
uppercase letters (𝑨). Special matrices are the identity matrix 𝑰 and the zero matrix𝑶. Similarly,
there are vectors of zeros 𝟎 and ones 𝟏. To make the dimensions of all tensors clear, I use the
notation 𝑛 × 𝑚, where 𝑛 is the number of rows and𝑚 is the number of columns. I use the notation
𝑨−1 to indicate the inverse of𝑨 and𝑨T for its transpose.

The ∇-operator is the vector of partial derivatives in all dimensions of the variable it is applied to:

∇𝒙 = [
∂
∂𝑥1
, ∂
∂𝑥2
, ⋯ , ∂

∂𝑥𝑛
] . (2.1)

Depending on the circumstances, this vector might also be defined as a column vector.

For general quantities that have a physical meaning I provide information about the respective

dimension with dimensional descriptors: M is a mass, L is a length and T is a time. For specific

physical quantities I provide the units (typically according to the Système International d’Unités

specification). All elevations are given in meters above sea level.

The meaning of all symbols is not strictly unique within this dissertation, because the same symbol

might be intuitive for different variables in different contexts. However, I keep symbols consistent

and unique at least within a section and I redefine symbols as soon as they change their meaning.

For graphic representations using colors to visualize continuous variables, I rely on the perceptually

uniform color maps suggested by Kovesi (2015), which allow for unbiased visual comparisons.

2.2 Governing Equations for Variably Saturated Flow

This section introduces the governing equations of subsurface flow through porous media under

the assumption that water and air are the only fluids, and the mobility of air is infinite.

2.2.1 Water Content andWater Saturation

The dimensionless volumetric water content𝛩w is defined as the ratio of the water-filled pore space
in a porous medium to the total volume of the considered sample. For a given porous material,

𝛩w can range from a minimum value, the residual water content 𝛩r, to a maximum value, the

saturated water content 𝛩s. The current water content can also be expressed as a dimensionless

water saturation 𝑆w, which describes the fraction of the volume occupied by water to the total pore
space volume available:

𝑆w =
𝛩w
𝛩s
. (2.2)
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The dimensionless residual saturation 𝑆r describes the ratio of residual to saturated water content:

𝑆r =
𝛩r
𝛩s
. (2.3)

This is the fraction of water that cannot be removed from pore-space considering conventional

flowmechanisms. As a result, all water saturations are within the range 𝑆r ≤ 𝑆w ≤ 1, while all water
contents are within the range 𝛩r ≤ 𝛩w ≤ 𝛩s. The effective saturation is defined as a fraction that

becomes zero at the residual water content𝛩r and one for full saturation:

𝑆e =
𝛩w − 𝛩r
𝛩s − 𝛩r

=
𝑆w − 𝑆r
1 − 𝑆r
. (2.4)

2.2.2 Subsurface Flow Equation

Subsurface water-contents typically vary both in space and time 𝑡. The PDEs for describing the

respective flow of water in a porous domain can be derived from the continuity equation (e.g.,

Farthing et al., 2003):
∂(𝜌w𝛩w)
∂𝑡 + ∇(𝜌w𝒒) = 𝜌w𝑄, (2.5)

where 𝜌w represents the density of water in ML−3, 𝒒 is the specific discharge in L T−1 and 𝑄
describes volumetric source and sink terms in T−1. With the chain rule of differentiation and after

dividing by the density of water we arrive at:

∂𝛩w
∂𝑡 +
𝛩w
𝜌w
∂𝜌w
∂𝑡 + ∇𝒒 = 𝑄, (2.6)

where spatial gradients of 𝜌w have been neglected (as they are typically not large enough to be

relevant for subsurface flow systems). Equation 2.6 holds for variably saturated flow, meaning both

water-saturated and -unsaturated conditions. For numerical solutions of the flow equation, it makes

sense to express the governing equation not in terms of water saturations, but water potentials (or

pressures, typically expressed in L through the division of the gravimetric potential and the density

of water). The most relevant potentials are:

• ℎp in L: The non-negative pressure-head describing hydrostatic pressure.

• 𝑧 in L: The gravimetric potential expressed as an elevation above a defined reference elevation.

• ℎc in L: The non-negative capillary head due to capillary forces exerted by the porousmedium.

Other potentials exist, but are neglected here (e.g., implicitly requiring uniform air pressure). The

total hydraulic head ℎ in L is composed of the individual potentials:

ℎ = ℎp + 𝑧 − ℎc. (2.7)

Water flows generally in direction of decreasing total potential (i.e., from large ℎ to small ℎ).
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The groundwater table describes that vertical location, where the total potential ℎ equals the elevation,
meaning both ℎc and ℎp are zero. Beneath the groundwater table, there are no capillary forces and
the associatedwater potential ℎc becomes zero. Above the groundwater table, there is no hydrostatic
pressure and the associated water potential ℎp becomes zero. The parts of the subsurface with

saturations smaller than unity are called the unsaturated zone, whereas the parts where the saturation

is unity are called the saturated zone. With this knowledge, Equation 2.6 can be expressed in terms

of ℎ, which requires two separate formulations, one for the parts above the groundwater table and
one for the parts beneath it.

Beneath the groundwater table, the porous medium is fully saturated and the water content 𝛩w
equals the saturated water content𝛩s. The storage terms can simply be expressed in terms of ℎ:

∂𝛩w
∂𝑡 +
𝛩w
𝜌w
∂𝜌w
∂𝑡 =
∂𝛩s
∂𝑡 +
𝛩s
𝜌w
∂𝜌w
∂𝑡 =
∂𝛩s
∂ℎ
∂ℎ
∂𝑡 +
𝛩s
𝜌w
∂𝜌w
∂ℎ
∂ℎ
∂𝑡 . (2.8)

It is common (e.g., Freeze andCherry, 1979) to combine the two storage terms into a single parameter

denoted specific storage coefficient 𝑆s in L−1, which describes howmuch water is stored in the porous

medium when ℎ is changing:

𝑆s =
∂𝛩s
∂ℎ +
𝛩s
𝜌w
∂𝜌w
∂ℎ . (2.9)

This results in the governing equation in terms of ℎ for flow beneath the groundwater table:

𝑆s
∂ℎ
∂𝑡 + ∇𝒒 = 𝑄. (2.10)

For the parts above the groundwater table, the water content does not in general equal𝛩s. However,
we can make use of the simplification

∂𝛩w
∂𝑡 +
𝛩w
𝜌w
∂𝜌w
∂𝑡 ≈
∂𝛩w
∂𝑡 , (2.11)

because typically in the unsaturated zone the changes in water content are much larger than the

temporal changes in water density. This results in Equation 2.12 for the governing flow equation

above the groundwater table:
∂𝛩w
∂ℎ
∂ℎ
∂𝑡 + ∇𝒒 = 𝑄. (2.12)

It is possible to combine the two formulations again, to construct a single, approximate, governing

equation for variably saturated flow (Cooley, 1971; Huyakorn et al., 1984; Therrien et al., 2010):

𝜂∂ℎ∂𝑡 + ∇𝒒 = 𝑄, (2.13)

with an overall storage coefficient 𝜂 in L−1 accounting for effects beneath and above the groundwater
table:

𝜂 = 𝑆w ⋅ 𝑆s +
∂𝛩w
∂ℎ . (2.14)
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Beneath the groundwater table, the pore space is fully water-saturated (𝑆w = 1) and the water
content does not depend on the total hydraulic head (∂𝛩w/∂ℎ = 0). The overall equation simplifies

to Equation 2.10. Above the groundwater table, water saturations start to drop and ∂𝛩w/∂ℎ
quickly becomes much larger than 𝑆w ⋅ 𝑆s. Hence, the overall equation approximately simplifies to
Equation 2.12. Equation 2.13 is the formulation used in HGS and is sometimes called the (modified)

Richards equation after thework of Richards (1931). The earliest formulation of a governing equation

for flow in the unsaturated zone was given by Richardson (1922).

The specific discharge 𝒒 in a variably saturated porous medium can be described by a generalized

version of Darcy’s law (Darcy, 1856):

𝒒 = −𝑲sat𝑘rel∇ℎ, (2.15)

where𝑲sat in L T−1 is a tensor of saturated hydraulic conductivity and 𝑘rel is a dimensionless relative
permeability, here considered to be isotropic. The former is a property of the porous medium, while

the latter depends on the current state of saturation. In the saturated zone, the relative permeability

equals unity. Above the groundwater table, it depends on the water saturation and can be in the

range 0 ≤ 𝑘rel ≤ 1. In numerical modeling of subsurface flow, it is common to relate the relative
permeability to the effective saturation 𝑆e by some parametrization 𝑘rel = 𝑘rel(𝑆e) (Tocci et al., 1998;
Farthing et al., 2003; Suk and Park, 2019).

2.2.3 Parametrization of the Unsaturated Zone

Different parametrizations of the unsaturated zone have been developed in the past. A particularly

common choice is the model of Brooks and Corey (1964):

𝑘rel(𝑆e) = 𝑆
3+ 2
𝜆

e , (2.16)

where 𝜆 is the dimensionless pore size index. It is positive (𝜆 > 0) and is typically larger for porous
media that have a narrow pore size distribution (i.e., more uniform pore sizes; Brooks and Corey,

1964). There are also more complex parametrizations in use; the most common one being the one

of van Genuchten (1980), which is based on the work of Mualem (1976):

𝑘rel(𝑆e) = √𝑆e(1 − (1 − 𝑆
𝑁
𝑁−1
e )

𝑁−1
𝑁

)

2

, (2.17)

where 𝑁 is an empirical parameter that has to be larger than one. The parametrization of van

Genuchten (1980) converges to the model of Brooks and Corey (1964) for large capillary pressures

(i.e., small effective saturations). In this case, the relationship between𝑁 and the pore size index is:

𝑁 = 1 + 𝜆. (2.18)
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This means that a porous medium with uniform pore size can be described with a large𝑁-value,
and small𝑁 close to one represent more heterogeneous pore size distributions.

So far we have only related the relative permeability to the effective saturation, which is not the

primary variable in subsurface flowmodels. Instead, relationships with respect to the total hydraulic

head ℎ are required. Those can be constructed by defining parametrizations relating the (effective)

water saturation with ℎ (or ℎc, to be more precise, as the saturation is always one where the capillary
pressure is zero). As the effective saturation can easily be converted to a water saturation by means

of Equation 2.4, the expression 𝑆e(ℎ) can also be used for the storage term ∂𝛩w/∂ℎ as a byproduct.

Again, the parametrizations of Brooks and Corey (1964) and van Genuchten (1980) are commonly

used. Equation 2.19 is the parametrization of Brooks and Corey (1964):

𝑆e(ℎc) = min[(
ℎAE
ℎ𝑐
)
𝜆
, 1] , (2.19)

where ℎAE in L is a fixed potential (commonly referred to as air entry pressure) that produces water
saturations smaller than unity if it is exceeded by the capillary head. However, there is also a

fully water-saturated portion above the groundwater table, where capillary forces are still active

(0 < ℎc < ℎAE). This is zone is called capillary fringe. It is the reason why the expressions “saturated

zone” and “beneath the groundwater table” are not fully equivalent.

Equation 2.20 displays the parametrization of van Genuchten (1980):

𝑆e(ℎc) = (1 + (𝛼ℎc)
𝑁)
1−𝑁
𝑁 , (2.20)

where 𝛼 in L−1 is another empirical parameter. With this parametrization, the saturation drops

below one immediately above the groundwater table. A capillary fringe is not explicitly considered.

There is, however, a zone with saturations close to unity that extends up to a certain capillary head

which is comparable to the capillary fringe. We can come up with an expression approximating an

air entry pressure that would be equivalent to a given van Genuchten model (van Genuchten, 1980;

Rawls and Brakensiek, 1985, 1989):

ℎAE ≈
1
𝛼. (2.21)

Hence, the two presented parametrizations approach each other for a specific set of properties

and certain unsaturated conditions. The main difference between the two parametrization from a

numerical point of view lies in the fact that the Brooks andCoreymodel is discontinuous but simpler

than the smooth van Genuchten equations. As discontinuities often lead to adverse convergence

behavior in numerical models, often the van Genuchten parametrization is preferred. However, for

small𝑁 (i.e.,𝑁 → 1) this parametrization results in a quick and drastic decrease of 𝑘rel when 𝑆e
drops below 1 (very similar to a discontinuity; Vogel and Cislerova, 1988; Vogel et al., 2000; Schaap
and Leij, 2000). For this reason, some modelers (e.g., Touma, 2009; Kuang et al., 2021) combine the
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two parametrizations by taking the saturation curve 𝑆e(ℎc) of van Genuchten (1980) and the relative
permeability curve 𝑘rel(𝑆e) of Brooks and Corey (1964) (and using Equation 2.18). This combination

leads to a smooth decrease of relative permeability with increasing capillary head, even for small

values of𝑁 or 𝜆. Of course this comes at the cost of breaking the conceptual consistency with the
underlying capillary/pore distribution model.

2.2.4 Boundary Conditions

PDE-based mathematical models require boundary and initial conditions in addition to the under-

lying PDE to be fully defined. Under steady-state conditions, initial conditions are not necessary. A

multitude of surface and subsurface boundary conditions can be applied in subsurface flow models.

In the following, I summarize the boundary conditions that are used in this dissertation.

Dirichlet Boundary A Dirichlet boundary fixes the primary unknown (i.e., the total hydraulic

head) of the subsurface flow equation:

ℎ = ℎfix on 𝛤D, (2.22)

where ℎfix is a known hydraulic head in L and 𝛤D is that part of the model-domain boundary 𝛤 that
the Dirichlet boundary condition is applied to. Dirichlet boundaries can be used on any outer or

inner part of the modeling domain (i.e., at the top/bottom surface, the lateral sides, and internally).

Neumann Boundary A Neumann boundary imposes a constraint on the normal derivative of

the primary variable. In case of subsurface flow models, such a boundary condition is typically

formulated as a fixed, specified flux boundary:

𝒏 ⋅ 𝒒 = 𝑞fix on 𝛤N, (2.23)

where 𝒏 is the dimensionless spatial unit normal vector perpendicular to the boundary pointing
outwards, 𝑞fix is a prescribed normal flux in L T−1 and 𝛤N is the boundary. Neumann boundaries

can be applied to all parts of the domains surface.

Seepage Boundary Thismodified Dirichlet boundary can be used to prevent groundwater tables

above surface elevations. Its formal definition can be expressed as in Equation 2.24:

ℎ = min[ℎsim, 𝑧surf] on 𝛤S, (2.24)

where ℎsim in L is the head a simulation would produce if the seepage boundary was not active, 𝑧surf
in L is the surface elevation, and 𝛤S is the seepage boundary. This type of boundary condition is

usually only applied at the model domain top surface. In numerical flow models, the boundary
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condition is typically enforced by triggering an artificial sink term, as soon as the groundwater

table hits the surface (e.g., in HGS; Therrien et al., 2010).

Leaky Boundary A leaky boundary can be used to simulate contact to another water body with

a prescribed head ℎfix in L. In contrast to a Dirichlet boundary, this contact is not assumed to be
hydraulically perfect, but occurring through a conductive zone. In numerical models, for example

HGS, it is usually defined by a source/sink term𝑄 in L3 T−1:

𝑄 = 𝐶L ⋅ (ℎ − ℎfix) on 𝛤L, (2.25)

where 𝐶L in L2 T−1 is a conductance and 𝛤L is the leaky boundary. Leaky boundaries can be used
on all outer surface parts of the domain. At lateral sides of the domain, the boundary condition is

sometimes referred to as fluid-transfer boundary. Here, the conductance term is defined by:

𝐶L =
𝐴
𝐿int
⋅ 𝐾int, (2.26)

where𝐴 in L2 is the area affected by the boundary, 𝐿int in L is the separation distance between the
boundary and the other water body, and𝐾int in L T−1 is the interjacent hydraulic conductivity. If a
leaky boundary is applied to the bottom or top of the domain’s surface, for example to simulate

contact to a river, the conductance can be defined by Equation 2.27:

𝐶L =
𝐿riv ⋅ 𝑤riv
𝐿sed
⋅ 𝐾sed, (2.27)

where 𝐿riv and𝑤riv in L are the length and width of the river segment and 𝐿sed in L and𝐾sed in L T−1

are the thickness and hydraulic conductivity of a sediment layer between river and subsurface.

Drain Boundary A special type of leaky boundary is the drain boundary. It allows exfiltration

only when the groundwater table exceeds a threshold 𝛥ℎ in L compared to the surface elevation:

𝑄 = {
𝐶D ⋅ (ℎ − 𝑧surf) if ℎ − 𝑧surf > 𝛥ℎ
0 otherwise

on 𝛤T, (2.28)

where 𝐶D in L2 T−1 is a drain conductance and 𝛤T is the drain boundary. In this case, the conduc-
tance can be inferred from an associated surface area 𝐴 in L2, as well as thickness and hydraulic
conductivity of an intermediate layer (𝐿int in L and𝐾int in L T−1):

𝐶D =
𝐴
𝐿int
⋅ 𝐾int. (2.29)

The drain boundary differs from the seepage boundary by the thresholding term and the leaky flux,

which allows for some overpressure to occur.
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2.3 Gaussian Process Regression

Sometimes, during pre- or post-processing of modeling data, a collection of inputs and outputs is

given, but the output is desired for an input value that is not part of the existing set. In such cases,

interpolation techniques can be used to infer the desired quantity from the given data. Gaussian

Process Regression (GPR) can be interpreted as a versatile stochastic interpolation method (that is

also suitable for proxy-modeling). It makes use of so-called Gaussian Process Emulators (GPEs).

Within this document, I will use the term GPE to refer to single interpolator instances, while GPR

corresponds to the technique itself. Formally, GPR is identical to kriging (Krige, 1951; Matheron,

1963; Cressie, 1990). However, the term kriging is mostly associated with geo-spatial interpolation

in one, two or three dimensions, while the term GPR is used for any dimensionality in the context

of machine learning applications (e.g., Rasmussen, 2003). For a detailed derivation and explanation

of GPR I refer the reader of this dissertation to Kitanidis (1997), Jones et al. (1998), Rasmussen and

Williams (2006), and Erdal et al. (2020). In the following, I will provide a brief summary of GPR

tailored towards my specific applications.

A GPE is defined for a specific interpolation problem using training data. These data consist of

several pairs of input points 𝒙train (each of size 1 × 𝑛dim) and scalar output values 𝑦 = 𝑓(𝒙train)
that were obtained by some external process 𝑓 (e.g., by sampling a spatial field or by executing a
numerical model). It is helpful to summarize the training points by vertical concatenation, which

results in a matrix𝑿train of size 𝑛train ×𝑛dim. Similarly, the outputs can be collected in a vector 𝒚train

of size 𝑛train × 1. The idea of GPR is to replace the data-generating process 𝑓 by an approximation
𝑔, which is a multi-Gaussian field. The approximation 𝑔 can then be used to estimate the output
𝑦est for any test (i.e., query) point 𝒙test. The approximated output is a Gaussian random variable:

𝑔(𝒙test) = 𝜇(𝒙test) +𝒩(0, 𝜎2est(𝒙test)), (2.30)

consisting of a mean function 𝜇 and a stochastic deviation term𝒩, namely a normal distribution

with zero mean and a variance of 𝜎2est. Both, 𝜇 and 𝜎2est depend on the test point 𝒙test in ways that
are summarized in the following.

2.3.1 PredictionMean and Variance

Themean function consists of a trend function 𝛽 (here assumed to be a constant) and deviations
from this trend:

𝜇(𝒙test) = 𝛽 + 𝒓T𝝃. (2.31)

The vector 𝒓 (size 𝑛train × 1) contains distance-based covariances between the test point and all
training points. 𝝃 (size 𝑛train × 1) can be interpreted as a vector of weights that can be determined
(together with 𝛽) by solving a system of equations.
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In other contexts, this equation system is often referred to as ordinary kriging system of equations:

[
𝑸 𝟏
𝟏T 0
][
𝝃
𝛽
] = [
𝒚train

0
] . (2.32)

The 𝑛train × 𝑛train matrix𝑸 is the covariance matrix of all training data points. It should be noted
that 𝑸 and 𝒚train, and therefore also 𝛽 and 𝝃, solely depend on the training data and not on 𝒙test.
Each entry𝑄𝑖𝑗 is given by evaluating a covariance function 𝐶 for two training data points:

𝑄𝑖𝑗 = 𝐶(𝑿train𝑖 , 𝑿train𝑗 , 𝜽), (2.33)

where𝑿train,𝑖 refers to the 𝑖-th training data point of shape 1 × 𝑛dim. Similarly, each entry 𝑟𝑖 of 𝒓 is:

𝑟𝑖 = 𝐶(𝒙test, 𝑿train𝑖 , 𝜽). (2.34)

The vector 𝜽 contains hyper-parameters depending on the training data (explained later).

Throughout this dissertation I use a stationary covariance function for GPR, which means that only

the difference 𝒙𝑎 − 𝒙𝑏 between the two evaluation points matters; not the absolute location of the
points themselves (Rasmussen and Williams, 2006):

𝐶(𝒙𝑎, 𝒙𝑏, 𝜽) = 𝐶(𝒙𝑎 − 𝒙𝑏, 𝜽), (2.35)

where 𝒙𝑎 and 𝒙𝑏 are placeholders for any training or test data point. One particular choice of
stationary covariance function, that I rely on, is the Matérn covariance function of order three-half

(Matérn, 1960; Stein, 1999):

𝐶(𝑑, 𝜎2) = 𝜎2 (1 + √6𝑑) exp(−√6𝑑) (2.36)

𝑑(𝒙𝑎, 𝒙𝑏, 𝒍) = √
𝑛dim
∑
𝑖=1
(
𝑥𝑎,𝑖 − 𝑥𝑏,𝑖
𝑙𝑖
)
2
, (2.37)

where 𝜎2 is a scalar variance and 𝒍 is a 𝑛dim × 1 vector of correlation lengths. Note that there exist
several versions of the Matérn covariance function differing in the constant (here√6). However, as
this constant always occurs as a product with 𝑑, the differences between these factors are simply
compensated by 𝒍 during the GPE training. The covariance parameters 𝜎2 and 𝒍 are typically
summarized into a single vector of hyper-parameters 𝜽:

𝜽 = [
𝜎2

𝒍
] . (2.38)

It is now obvious, that 𝝃 and 𝛽 can be determined easily from given training data, if the hyper-

parameters 𝜽 are known (by solving Equation 2.32). Determining (i.e., fitting or estimating) these
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hyper-parameters from a given set of training data is a common procedure that is available in

virtually all kriging/GPR toolboxes. In the “small toolbox for kriging” package (Bect, Vazquez, et al.,

2022) that I use, this is done by using a restricted maximum likelihood method (Patterson and

Thompson, 1971). It should be noted that estimating 𝒍 can be decoupled from the estimation of 𝜎2,
by maximizing the following likelihood term ℒ (likelihood of the samples 𝒚train given the input
𝑿train and the length scales 𝒍), where all constant contributions were omitted (Jones et al., 1998):

logℒ ∝ −𝑛train log(
(𝒚 − 𝟏𝟏

T𝑮−1𝒚train

𝟏T𝑮−1𝟏
)𝑮−1 (𝒚 − 𝟏𝟏

T𝑮−1𝒚train

𝟏T𝑮−1𝟏
)

𝑛train
)− log(det𝑮), (2.39)

where𝑮 is analogous to𝑸, but uses the correlation function 𝐶/𝜎2 (the covariance function divided
by the variance) for its entries. In the case of the small toolbox for kriging, the optimization problem

of 𝒍 is solved with Matlab’s fmincon (Bect, Vazquez, et al., 2022). Afterwards, 𝜎2 (and even the
constant trend coefficient 𝛽) can be determined with 𝑮 using the optimized length scales 𝒍 with the
following relationships:

𝛽 =
𝟏T𝑮−1𝒚train

𝟏T𝑮−1𝟏
(2.40)

𝜎2 =
(𝒚 − 𝟏𝛽)𝑮−1 (𝒚 − 𝟏𝛽)

𝑛train
. (2.41)

The weight vector 𝝃might then just as well be evaluated by

𝝃 = 𝑸−1(𝒚train − 𝟏𝛽). (2.42)

Predictions of GPEs always come with uncertainty estimates by definition (as every prediction is a

Gaussian random variable). The variance of a prediction is determined by

𝜎2est(𝒙test) = 𝜎2 − 𝒓T𝑸−1𝒓, (2.43)

where 𝜎2 still refers to the variance in the covariance function (i.e., the first hyper-parameter in 𝜽).

2.3.2 Interpolation

It is simple to quickly demonstrate how the described prediction procedure is an interpolation

scheme, by testing a training point (as illustrated by Jones et al., 1998). As testing requires a trained

GPE, we can assume all hyper-parameters (including 𝛽) to be known, which means we can use the
simplified relationship of Equation 2.42 to evaluate 𝝃.

We test for interpolation by taking one of the training points (𝑿train𝑖 ) as test point 𝒙test:

𝜇(𝒙test = 𝑿train𝑖 ) = 𝛽 + 𝒓T𝑸−1(𝒚train − 𝟏𝛽). (2.44)
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In this case, 𝒓will be identical to the 𝑖-th row/column of the matrix𝑸 (i.e.,𝑸𝒆𝑖, where 𝒆𝑖 is a unit
vector in the 𝑖-th direction). This allows the following rearrangement:

𝜇(𝒙test = 𝑿train𝑖 ) = 𝛽 + 𝒓T𝑸−1(𝒚train − 𝟏𝛽) (2.45)

= 𝛽 + ((𝑸−1)T𝒓)T(𝒚train − 𝟏𝛽) (2.46)

= 𝛽 + (𝑸−1𝒓)T(𝒚train − 𝟏𝛽) (2.47)

= 𝛽 + 𝒆T𝑖 (𝒚train − 𝟏𝛽) (2.48)

= 𝛽 + (𝑦train𝑖 − 𝛽) = 𝑦train𝑖 , (2.49)

where we exploit that𝑸 is a symmetric matrix, as well as the following identity:

𝑸−1𝒓 = 𝑸−1(𝑸𝒆𝑖) = (𝑸−1𝑸)𝒆𝑖 = 𝑰𝒆𝑖 = 𝒆𝑖. (2.50)

Similarly, we can see that the variance at a training point has to be zero:

𝜎2est(𝒙test = 𝑿train𝑖 ) = 𝜎2 − 𝒓T𝑸−1𝒓 (2.51)

= 𝜎2 − 𝒓T𝒆𝑖 (2.52)

= 𝜎2 − 𝐶(𝑿train𝑖 , 𝑿train𝑖 , 𝜽) (2.53)

= 𝜎2 − 𝐶(𝑿train𝑖 − 𝑿train𝑖 , 𝜽) (2.54)

= 𝜎2 − 𝐶(𝟎, 𝜽) = 𝜎2 − 𝜎2 = 0. (2.55)

2.3.3 Noisy Data

Depending on the application, it is possible to account for noise in the training data:

[
𝑸 + 𝑹 𝟏
𝟏T 0
][
𝝃
𝛽
] = [
𝒚train

0
] , (2.56)

where𝑹would be the covariance matrix of training data errors. If unknown, it can be parametrized
as 𝑹 = 𝜎2train𝑰, where the standard deviation of the training data 𝜎2train is an additional optimization
parameter. However, since I am using GPR for the interpolation of deterministic data, I refrain

from doing that and assume noise-free training data.

2.3.4 Derivative of PredictionMean

As the GPE prediction is a smooth, multi-Gaussian field, an analytical derivative can be obtained by

differentiation. As previously noted, the prediction mean is given by:

𝜇(𝒙test) = 𝛽 + 𝒓T𝝃. (2.57)
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We can take the derivative with respect to one of the input dimensions (here denoted 𝑖). The GPE is

assumed trained, so all hyper-parameters (including 𝛽 and 𝜎2) and the weight vector 𝝃 are constants
and independent of 𝒙test:

∂𝜇(𝒙test)
∂𝑥𝑖
= ∂∂𝑥𝑖
(𝛽 + 𝒓T𝝃) (2.58)

= ∂∂𝑥𝑖
(𝒓T𝝃) (2.59)

= ( ∂𝒓∂𝑥𝑖
)
T

𝝃. (2.60)

The entries in the derivative of 𝒓 with respect to one of the dimensions can be expressed in the
following way by the chain rule of differentiation:

∂𝑟𝑗
∂𝑥𝑖
= ∂𝐶(𝑑, 𝜎

2)
∂𝑥𝑖
= ∂𝐶(𝑑, 𝜎

2)
∂𝑑
∂𝑑
𝑥𝑖
, (2.61)

where 𝑑 is a shorthand of 𝑑(𝒙test, 𝑿train𝑗 , 𝒍). With the Matérn covariance function, both components

of this product can be differentiated analytically:

∂𝐶(𝑑, 𝜎2)
∂𝑑 = −6𝜎

2𝑑 exp(−√6𝑑) (2.62)

∂𝑑
𝑥𝑖
=
𝑥test𝑖 − 𝑋train𝑗,𝑖
𝑙2𝑖 𝑑
. (2.63)

This results in:

∂𝑟𝑗
∂𝑥𝑖
= −6𝜎2
𝑥test𝑖 − 𝑋train𝑗,𝑖
𝑙2𝑖

exp(−√6𝑑) . (2.64)
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3 Site Description

Within the framework of the Collaborative Research Center 1253 Campos (Grathwohl et al., 2013),

the Ammer catchment located west of Tübingen in South-Western Germany has been the site of

coordinated interdisciplinary research (e.g., Chavez Rodriguez, 2021; Müller et al., 2021; Osenbrück

et al., 2022; Petrova et al., 2022). The catchment’s main river, the Ammer, originates in Herrenberg

and stretches for about 22.5 km in south-eastern direction towards the city of Tübingen. The total

surface-water catchment of river Ammer has a size of 238 km2, of which 73 km2 belong to the

Goldersbach watershed, a tributary that only confluences with river Ammer shortly before the

Ammer itself flows into river Neckar in Tübingen. Besides the mostly coniferous Goldersbach

subcatchment, the Ammer valley is dominated by agricultural land-use with aggregates of urban

areas and few small forests and grasslands.

The climate in the Ammer valley is warm and temperate, being located at the transition zone from

a temperate oceanic climate to a warm-summer humid continental climate (Beck et al., 2018) as

defined in the Köppen climate classification (Köppen, 1884). From January 1, 2014 to December 31,

2021, the measured mean annual precipitation was 608.5mma−1 and the mean temperature was

11.0 °C (with a 5-th percentile of −0.8 °C and a 95-th percentile of 25.0 °C; LTZ, 2021). Precipitation
occurs throughout the year, with stronger, mostly convective, sporadic events in summer and more

continuous, front-related, minor events in winter (Martin et al., 2020). Similar to other temperate

regions, the majority of groundwater recharge takes place in winter.

3.1 Ammer Floodplain andModeling Domain

Themain study region of this dissertation is the Ammer floodplain, which has been the subject of

parallel doctoral field research (e.g., Martin et al., 2020; Klingler et al., 2020a,b, 2021). The Ammer

floodplain is an elongated portion of the Ammer catchment covering an area of about 8 km2 from

Pfäffingen via Unterjesingen to the west of the city of Tübingen (Klingler et al., 2020b). It exhibits a

mostly flat topography around river Ammer in the center of the valley, with mild slopes pointing

towards the river, as well as in its flow direction. To the north, the floodplain is bounded by steep

hills. Towards the south-east, a ridge (“Kapellenberg” and “Spitzberg”) presents the topographic

surface-water divide between the Ammer and Neckar valleys. Likewise, on the south-western side,

the surface-water divide is on a plateau (“Pfaffenberg”). Between these two steep ridges lies a gentler,

undulating hillslope that separates the two valleys (“Wurmlingen saddle”).

The Ammer river enters the floodplain on the west and leaves it eastbound. A prominent feature of

the main river is a temporary split into two channels, the northern one representing a mill race.

These two channels merge again in the floodplain, before another separation further downstream

splits the stream into two reaches before passing through the city of Tübingen and discharging into

the Neckar.
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Figure 2: Two-dimensional overview of the model domain as used in Chapters III and IV.

For the site-specific models of Chapters III and IV, I define a model domain that covers most of the

Ammer floodplain’s areal extent. Figure 2 shows a map of this domain’s outline, the surface-water

divide between the Ammer and Neckar valleys, as well as streams and drainage channels. In total,

the domain covers an area of 13 km2, of which 7.2 km2 are located north of the surface water divide

(within the Ammer catchment), and 5.8 km2 belong to the Neckar catchment according to the

surface water divide. The surface elevation within the model domain ranges from approximately

330m to 475m above sea level.

The geometry of this domain is carefully chosen to approximately have the western and eastern

boundaries perpendicular to assumed stream lines in the floodplain, while the boundary on the

hillslopes are running along such stream lines (i.e., flow within the hillslopes is mostly assumed to

be directed towards the floodplains). The decision on the outline is based on preliminary modeling

and expert knowledge. The northern edge of the domain follows a local surface-water divide. At

the southern edge, the domain partly covers the Neckar valley, but it does not reach river Neckar.

This way, the groundwater divide between the Ammer and Neckar emerges from the model instead

of being preset as a boundary condition (see Section 3.2 for further details).

3.2 Hydrogeologic Setting

Regional Geology The regional geology has been subject to many (hydro-)geological investi-

gations (e.g., Quenstedt, 1864; Lang, 1909; Kekeisen, 1913; Köpf, 1926; Kehrer, 1935; Harreß,

1973; Villinger, 1982; D’Affonseca et al., 2020). The bedrock geology in the area is governed by

sequences of sandstones and mudstones belonging to the Upper Triassic Keuper formation (Aigner
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and Bachmann, 1992; Klingler et al., 2020b). The relevant bedrock formations for my work are

briefly characterized in the following, in stratigraphic order from bottom to top:

• Erfurt formation (kuE): The Erfurt formation is roughly 20m thick (Hagdorn and Nitsch,

2009; Kirchholtes and Ufrecht, 2015). It is composed of thin layers of sandstones and clay-

stones with dolomite beds and extensive carbonate banks (Geyer and Gwinner, 2011). To-

wards the top, sulfate rocks (gypsum and anhydrite) can also be found (Hagdorn and Nitsch,

2009; Geyer and Gwinner, 2011). Its lower claystone layers (Estherienton) typically act as a re-

gional aquitard, separating the overlying groundwater systems from the underlying regional

karstified aquifer of the middle Triassic Muschelkalk formation (including the Meissner

formation moM; Kleinert, 1976; D’Affonseca et al., 2018, 2020). However, some internal

layers (e.g., sandstones and potentially fragmented/weathered carbonate and dolomite banks)

of the Erfurt formation can also attain significant transmissivities (e.g., Schollenberger, 1998;

Geyer and Gwinner, 2011). Literature information about hydraulic properties of the Erfurt

formation is collected in Table 10 (in the appendix).

• Grabfeld formation (kmGr): The Grabfeld formation is a mudstone unit bearing gypsum,

anhydrite and claystones (Geyer and Gwinner, 2011). It can reach thicknesses of about 100m

(Kleinert, 1976; LGRB, 2005). Up to 45% of this formation can consist of sulfatic rocks
(Hagdorn and Nitsch, 2009), which are prone to weathering. Its hydraulic properties vary

strongly depending on the degree of this weathering. The unweathered, anhydrite-bearing

parts of the Grabfeld formation are considered to be basically watertight, but they may

be fractured to allow some water circulation (Geyer and Gwinner, 2011). Water contact

within the Grabfeld formation transforms anhydrite to gypsum, which can be dissolved upon

further weathering (Ufrecht, 2017). This can increase the hydraulic conductivity by orders of

magnitude (Kirchholtes and Ufrecht, 2015; Ufrecht, 2017). Tables 11 and 12 (in the appendix)

summarize literature information regarding the hydraulic properties of the unweathered

and weathered Grabfeld formation. Table 13 provides a literature overview regarding the

maximum weathering depth of the Grabfeld formation beneath the ground surface.

• Mud- and sandstone formations (km2345): The remaining bedrock formations of the middle

Keuper (Stuttgart formation kmSt, Steigerwald formation kmSw, Hassberge formation kmHb,

Mainhardt formation kmMh, Löwenstein formation kmLw, and Trossingen formation kmTr),

contain interbedded sandstones, claystones, siltstones and dolomite layers (Geyer and Gwin-

ner, 2011). In analogy to Kleinert (1976), Selle et al. (2013), and D’Affonseca et al. (2020),

I consider these formations as a single, lumped hydrostratigraphic unit with uniform hy-

draulic properties. Although the fractured sandstone layers can be well permeable (Geyer

and Gwinner, 2011), the hydraulic conductivity of the lumped units is often set to low values

in models (e.g., Maier et al., 2013; Selle et al., 2013; D’Affonseca et al., 2018). Harreß (1973)

reported a negligible influence of these layers on regional subsurface flow. Literature data on

hydraulic properties of these formations are collected in Table 14 (in the appendix).
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Three-dimensional spatial information of layer boundaries between these bedrock units is available

from a geological model developed by D’Affonseca et al. (2018, 2020). In the domain of interest, the

Grabfeld formation is the dominant subcropping unit. The lumpedmud- and sandstone strata occur

only at the top the hills (Pfaffenberg, Kapellenberg, Spitzberg, as well as at the northern end), where

they serve as a cover of the Grabfeld formation. Towards the western end of the domain, two fault

lines and a general pinching out of the Grabfeld formation lead to very thin covering of the Erfurt

formation, up to a partial subcropping of this unit. This complex setup makes it difficult to assess,

which parts of the Ammer floodplain are in (hydraulic) contact with which bedrock formation.

Local Hydrostratigraphy The Ammer and Neckar rivers have carved small, elongated basins

into the bedrock (Martin et al., 2020), which are filled with Quaternary sediments forming the

floodplains. TheQuaternary material of the Ammer floodplain has been investigated byMartin et al.

(2020) and Klingler et al. (2020b,a, 2021), who have identified the following four hydrostratigraphic

units from bottom to top:

• Gravel (Ammer valley): The lowermost floodplain unit in the Ammer valley consists of a

Pleistocene clayey gravel body, acting as a local aquifer. Its thickness is in the range of 5m

to 10m (Klingler et al., 2020a). The estimated hydraulic conductivity of this layer ranges

from 10−5ms−1 to 10−3ms−1 (Klingler et al., 2021). An overview of literature data regarding

this unit is given in Table 15 (in the appendix). Klingler et al. (2020b) have hypothesized and

detected a deeper paleo-channel structure within this unit, which is not explicitly considered

in this dissertation.

• Clay: A silty clay unit of approximately 0.5m to 3m thickness separates the gravel aquifer

from the overlaying formation (Klingler et al., 2020a). Due to lacking direct measurements

regarding the hydraulic properties of this layer at the study site, I collected general literature

data covering silty clay in Table 16 (in the appendix).

• Tufa: Above the clay unit, this Holocene layer consisting mostly of autochthonous calcareous

aggregates forms another aquifer (Martin et al., 2020). It has a thickness of several meters

(Klingler et al., 2020a). Estimates of hydraulic conductivity based on slug test measurements

and single-well pumping test are in the range from 10−7ms−1 to 10−4ms−1 (Martin et al.,

2020). A complete overview of available literature data is given in the appendix (Table 17).

• Alluvial fines: Finally, the upper Tufa aquifer is confined by an alluvial clay serving as the

top of the Quaternary filling in the Ammer floodplain. This unit is several meters thick and

consists of alluvial silty and clayey fines (Klingler et al., 2020a). Table 18 (in the appendix)

provides an overview of hydraulic properties of alluvial fines (not limited to the Ammer site).

The three-dimensional layer boundaries of these formations have been inferred from borehole data

(Martin et al., 2020). These layers were subsequently implemented into a refined version of the

geological model of D’Affonseca et al. (2020).
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Finally, I consider the following four additional units:

• Gravel (Neckar valley): The floodplain material on the Neckar side consists mostly of Qua-

ternary sandy gravel sediments several meters thick. This unit was already considered as

Quaternary in the geological model of D’Affonseca et al. (2020). Table 19 (in the appendix)

provides an overview of relevant literature data.

• Hollows: Colluvial hollow fillings on the southern and northern hillslopes of the Ammer valley

cutting into the bedrock formations have been hypothesized and detected (Martin et al., 2020).

They reach thicknesses of about4m to13m and are partially filledwith poorly sorted colluvial

sediments (including some gravel fraction) deposited by mud-flows or similar processes

(Martin et al., 2020). The three-dimensional geometry of these hollows was estimated from

mapping out the alluvial fans of the geologic map (LGRB, 2005) and assuming subsurface

slopes for their bottom contact. Available data regarding the hydraulic properties of these (or

comparable) features are summarized in Table 20 (in the appendix).

• Soil: A top soil unit outside of the Ammer floodplain (where alluvial fines serves as top soil)

can be considered in the flow model. The layer boundary can simply be constructed by

offsetting the top surface elevation. Table 21 in the appendix contains related literature data.

• River buffer: Some drilling cores in the Ammer floodplain have been reported to contain

comparably clean material deposited by river Ammer (Martin et al., 2020). Still, it is unclear

to what extent river Ammer is connected to the subsurface, whether the riverbed generally

consists of drastically different material than the alluvial fines, and how deep the riverbed is.

Nevertheless, I account for a potential river buffer zone in the model, by introducing another

hydrostratigraphic unit surrounding the river.

A three-dimensional rendering providing an overview of all described units considered in this

dissertation is given in Figure 3.

Flow Conditions The groundwater recharge and drainage conditions within the Ammer flood-

plain and the outlinedmodeling domain are not entirely clear and partly subject of the investigations

carried out in this dissertation. There is ambient flow from the upstream end of the Ammer flood-

plain to its downstream end. Little groundwater recharge is assumed to take place directly within

the floodplain, due to the coverage by alluvial fines. However, lateral influxes from the hillslopes

might exist (Martin et al., 2020). While such fluxes could be relevant from the perspective of flow

within the floodplain aquifer(s), the Ammer Quaternary material is regarded as a barrier to such

hillslope inflow, due to comparably small hydraulic conductivities (Martin et al., 2020).

Knowledge about interactions between the floodplain aquifers and surface water bodies is sparse.

There is no detailed information about interactions with river Ammer, but the river is generally not

regarded as a major net source of groundwater. Within the Ammer floodplain, south of the river, a

network of artificial drainage channels has been installed (visible in Figure 2). Those drainage ditches
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Figure 3:Three-dimensional overview of the geological model with fivefold vertical exaggeration.

running on the south-north axis on the hillslope are dry most of the time, with exception of storm

events. The east-west drainages frequently carry water. In addition to these known drainage ditches,

there is anecdotal evidence regarding subsurface drainages features (i.e., tile drains) that might

have been installed around the beginning of the 20th century (e.g., Kehrer, 1935). Unfortunately,

precise information regarding the existence and location of these drainage features is not available.

The only surface water body on the Neckar side of the hills is a small creek (“Arbach”), which is

considered to be of minor importance with respect to the overall flow field.

The hydraulic connection or separation of the Ammer and Neckar valleys in the vicinity of the

Ammer floodplain is also not clear. Previous modeling studies suggested a shift of the groundwater

divide in this area towards the Ammer catchment in the north (Kortunov, 2018). This hypothesis

is supported by the Neckar valley being about 10m lower than the Ammer valley elevation-wise,

as well as by a partial dipping of the strata towards the south. However, prior to the work of this

dissertation there were no groundwater observation wells installed along the southern hillslope of

the Ammer floodplain that could have provided data to confirm or falsify this hypothesis.

3.3 Available Data

A large data set of different quantities observed over time is available for the domain of interest.

These data comprise meteorological information, groundwater observations, and recordings of

river-water stage. Figure 4 provides an overview of the respective time series. The period from

October 1, 2018 to November 23, 2018 is emphasized, as it shows extraordinarily stable conditions
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with respect to all observations. The steady-state simulations therefore focus on this period and the

observations obtained on November 6, 2018 are used as a key-date reference for the calibration in

Chapter IV.

Meteorology Meteorological data is available from Landwirtschaftliches Technologiezentrum

Augustenberg (LTZ, 2021, Station #146 in Unterjesingen provides precipitation, global radiation,

air temperature and relative humidity, Station #055 in Bondorf is the closest station that provides

wind speed). Figure 4a shows the precipitation and potential evapotranspiration determined using

the semi-empirical estimation equation of Penman (1956).

Groundwater Long-term field investigations targeting the Ammer floodplain have been con-

ducted by Martin et al. (2020) in the framework of the Campos project. Over the course of this

project, many groundwater observation wells have been installed in the gravel and Tufa aquifers of

the Ammer floodplain. In total, 51 groundwater observation locations exist in the Ammer flood-

plain, but not all of them recorded hydraulic heads with the same frequency or over the same time

frame. As shown in Figure 4e, most of the deep wells targeting the gravel aquifer discontinued

measurements in the summer of 2019, because the respective data loggers were relocated (partly

to the shallow Tufa aquifer). In the spring of 2020, three additional wells were installed in the

Grabfeld formation on the southern hillslope towards theWurmlingen saddle (partly as an outcome

of Chapter III).

I use November 6, 2018 as a key-date for the model calibration in Chapter IV, because it is the date

with the most simultaneous (i.e., recorded on the same day) hydraulic head observations during a

more or less stable phase of flow conditions.

Additional hydraulic-head data obtained within or close to the study site (not shown in Figure 4) are

available from regional and local water suppliers like the Ammertal-Schönbuchgruppe (ASG), the

Stadtwerke Tübingen (SWT) and from the former Water & Earth System Science research cluster.

In addition, the data of two observation wells in the Grabfeld formation located on top of the

Wurmlingen saddle (in the municipality of Wurmlingen) are used in the calibration of Chapter IV

(where they are referred to as “hill1c” and “hill2c”). These wells were installed on request of the

county office because of subrosion problems in Wurmlingen.

River Water Stage Temporally resolved information about the water stage in river Ammer is

available from a gauging station in Pfäffingen (about 700m upstream of the investigated domain).

Time series of water depth at this station are available from May 1, 2016 onward (LUBW, 2021,

Landespegel Hydrologie, Messstellennummer 417, Pfäffingen Ammer). Up to October 31, 2017,

LUBW (2021) also reported the corresponding river discharge. In addition to water-stage and

discharge over time, there is a spatial data set (Seitz, 2010) concerning the cross-sectional geometry

over the course of the river.
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Figure 4: Overview of available data. The metorological data (a-b) stem from stations in Unter-

jesingen and Bondorf. The shown hydraulic head data (c-f) were obtained within the scope of the

Campos project. The river water stage data (g-h) are publicly available from LUBW (𝑑 represents
the water depth at the gauging station).
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3.4 Surface-Water Model of River Ammer

In the model of Chapter IV, the connection between subsurface flow and river Ammer is incorpo-

rated as a first-type boundary condition. Hence, spatially resolved information about the river-water

stage as elevation data is necessary. Unfortunately, there is only a single gauging station in the

vicinity of the model domain (see Section 3.3). With the help of the cross-sectional data collected

by Seitz (2010), I set up a separate steady-state flowmodel to (1) convert a single river discharge

value to a spatial data set of river-water head (i.e., river-water stage/elevation), and to (2) do this for

different discharges, to create a rating curve for each point within the river. This way, all required

fixed-head values can be generated from a single discharge value prescribed at the gauging station.

The flowmodel described in this section is independent of all other models in this dissertation. It

was created and used only to infer the relationship between gauging station discharge and river

water stage. Themodel uses the HGS surface-water implementation, which is based on the diffusive

wave approximation of the Saint Venant equations (Viessman and Lewis, 1996; Fan and Li, 2006); for

the implementation details, seeTherrien et al. (2010). It therefore neglects any interactions between

surface water and groundwater. This simplifying assumption is necessary, as otherwise a full

coupling of surface and subsurface flow would have been needed. This would have required a high

spatial resolution to resolve the river morphology and would have also resulted in infeasibly large

runtimes. Neglecting the interactions with groundwater is reasonable from the perspective of river-

water stage modeling, because the river discharge is much larger than any expected gains or losses

from or towards groundwater: even if all rain water within the Ammer side of the modeling domain

would infiltrate and eventually drain to the river, the resulting long-term flux of about 0.14m3 s−1

would be small compared to the river discharge in the order of about 1m3 s−1. Accounting for

losses towards evapotranspiration and other sinks, the expected water gain of river Ammer within

the domain can be safely neglected.

The model geometry is described by a triangular mesh in three spatial dimensions to replicate the

real river bathymetry. The mesh consists of 36 670 triangles, whose vertical coordinates interpolate

between 97 cross-sections. The interpolation of the one-dimensional cross-section data to a three-

dimensional mesh is performed according to the method developed by Caviedes-Voullième et al.

(2014). For the two-dimensional meshing, the model relies on the mesh2DMatlab toolbox based

on the work of Engwirda (2014). The boundary conditions of this surface flowmodel are trivial:

a fixed specified discharge boundary condition at the single upstream end operates as inlet; two

critical-depth boundary conditions at both downstream ends serve as water outlets. The model

uses a Manning’s roughness coefficient of 0.03 sm−1/3 (Manning et al., 1890), as well as rill and

obstruction storage heights of 10−6m to allow for undisturbed surface flow. An overview of the

model geometry, including locations of cross-sections and boundary conditions is given in Figure 5.

This model is run with six discharges between 0.25m3 s−1 and 1.50m3 s−1 in steps of 0.25m3 s−1

(which covers low to more-than-average discharges). The spatially resolved output of river water
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Figure 5: Overview of the surface flow model developed to simulate river Ammer. The four

subplots (a-d) show rating curves (top of water surface ℎriv inm above sea level versus discharge

𝑄) obtained for four example locations. The bottoms of the vertical axes are aligned with the

thalweg elevation at the specific coordinates.

stages is collected and used to define inverse rating curves. These can be used to infer river-water

elevations from a given discharge value by linear interpolation. Four examples of such inverse

rating curves at different locations are shown in Figure 5. The lower limits of the vertical axes

in these plots correspond to the elevation of the thalweg at the specific locations to give a visual

impression of river water depth. Multiple conclusions can be drawn from these results:

• The river-water depth is highly heterogeneous. This can be related to very different cross-

sectional shapes throughout the river course. Wherever the cross-section resembles a∨-shape,
water depth increases; wherever the cross-section becomes wide and flat, the water depth

shrinks. Any fixed-head derivation based on a fixed water depth above the thalweg elevation

would therefore be erroneous.

• The slope of the river surface is not uniform (not visible in Figure 5). Instead, there are shorter

segments of steeper parts between sections of mild slopes. A simple interpolation of assumed

river head elevation at in- and outlets would therefore also be incorrect.

• The rating curves are relatively linear within the range of investigated discharges. However,

the slopes differ between the locations. As a result, a change in river discharge might affect

the river water head of some locations much more than at others. Therefore, an offsetting of

a spatial field of river head (e.g., obtained from a base model) would be oversimplified.

Ultimately, a proper derivation of river-water heads from a fixed discharge requires a model like

this, but fewer points in the inverse rating curves might have been sufficient to capture the essential

relationship between river discharge and spatial fields of river-water heads.
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3.5 Site-Specific Questions

In the following main chapters (Chapters II to IV) I do not only address the general questions raised

in Section 1.3, but also the following site-specific questions, some of which were already implicitly

raised in Section 3.2:

4. Is geometry-driven valley-scale hyporheic exchange relevant for the Ammer-floodplain aquifers?

5. Is the groundwater divide between the Ammer and the Neckar valley in vicinity of the Ammer

floodplain shifted, leading to inter-basin flow?

6. Can a steady-state subsurface flow model be calibrated to field data of the Ammer-floodplain

aquifers to achieve a decent representation of the observed flow field?

7. What is the role of the hydrostratigraphic units in the Ammer-floodplain aquifers, also with respect

to the interaction of the floodplain aquifers with the surroundings?

Question 4 is addressed inChapter II, Question 5 is discussed in Chapters III and IV, andQuestions 6

and 7 are subject of Chapter IV.
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Chapter II

Hyporheic Exchange in Idealized

Floodplain Aquifers

Context

The contents of this chapter were published as “Systematic Evaluation of Geometry-Driven Lateral

River-Groundwater Exchange in Floodplains” inWater Resources Research (Allgeier et al., 2021b).

The author contributions are: Jonas Allgeier derived the semi-analytical solution, set up all semi-

analytical models, performed the computations, created the figures, and wrote the draft manuscript;

Simon Martin assisted with the introduction, helped with the interpretation of the results and

contributed to manuscript revision; Olaf A. Cirpka conceived the presented idea, supervised the

work, provided funding, and revised the manuscript draft.

The model source code used to generate all data of this study is available in form of a repository at

https://osf.io/fykr9/ (Allgeier et al., 2021a). It comes in a command-line interface Matlab version

and an interactive Python Bokeh application (Bokeh Development Team, 2021). This interactive

tool is also available as a free online service (https://jonasallgeier.github.io/fpsimple) that can be

accessed and executed in all common web browsers.

4 Introduction

Over the past decades, hydrogeological research has become aware of the necessity of jointly

investigating surface and subsurface processes rather than treating them as separate domains (e.g.,

Winter et al., 1998). As a consequence, a key role in floodplain hydrogeology has been attributed to

the interactions between aquifers and the connected rivers (e.g., Ward et al., 2016; Fritz et al., 2018;

Ward and Packman, 2019). Especially hyporheic exchange has been identified as a key process of

surface-water/groundwater interactions in floodplain aquifers (Triska et al., 1993; Hayashi and

Rosenberry, 2002; Boano et al., 2009; Fabian et al., 2011; Ward, 2016; Lewandowski et al., 2019).

4.1 Lateral Hyporheic Exchange

Tonina and Buffington (2009) showed that changes in the cross-sectional area of floodplain aquifers

are one of three drivers for hyporheic exchange besides non-uniform hydraulic conductivity and

changes in energy head gradients. It is quite typical for floodplain aquifers, to have a varying cross-

sectional area in settings of alternating degrees of valley confinements. In geomorphology, the term

“confined” typically is used to describe valleys with a narrow floodplain that are laterally bounded
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by steep flanks forming a typical ∨-shape (Baxter et al., 1999; Fotherby, 2009; Nagel et al., 2014).
In contrast to that, unconfined valleys exhibit extensive floodplains and flat surface topography

(Nanson and Croke, 1992; Nagel et al., 2014). Hence, a sequence of confined and unconfined

valleys along a stream, as described by Stanford and Ward (1993), Baxter et al. (1999), and Nagel

et al. (2014), results in lateral widening and narrowing of floodplain aquifers (Wohl, 2021). Such

sequences can form when alternating softer and harder rock layers of a stratigraphic sequence dip

into the direction of flow so that the river alternatingly cuts through these softer and harder rocks

(Owen and Dahlin, 2005). At the up- and downstream ends of an unconfined basin, the river is

hindered to erode the harder bedrock, whereas the soft bedrock in between can be carved out by

the river. The widened valley is then filled with fluvial sediments and hillslope material forming the

floodplain aquifer. In fact, floodplain aquifers with narrow inlet and outlet cross-sections and a

basin-shaped central section occur frequently (e.g., Castro and Hornberger, 1991; Clément et al.,

2003; Helton et al., 2012; Ó Dochartaigh et al., 2019; Martin et al., 2020). For example, Ohara

et al. (2018) developed a simplified procedure to approximate the boundary of floodplain aquifers

solely from digital elevation models. They made use of the fact that the top surfaces of floodplains

exhibit small slopes, and that floodplain boundaries are characterized by inflection points of surface

elevation (i.e., where the curvature is zero). The mappings of Ohara et al. (2018) show a number of

floodplain aquifers along the investigated stream network following the described widening shape

between connection points of small width.

As mentioned above, the widening geometry of an unconfined valley in the middle of two confined

ones can sustain lateral hyporheic exchange on the valley-scale (Tonina and Buffington, 2009;

Buffington and Tonina, 2009; Wondzell and Gooseff, 2013; Nagel et al., 2014). Where the valley

widens, river water infiltrates into the aquifer, then flows predominantly down the valley, and is

pushed back into the river where the valley narrows again (similar effects on vertical non-uniform

cross-sections were already described by Vaux, 1968). This large-scale excursion of river water

into the adjacent aquifer defines the riparian hyporheic-exchange zone from a hydrogeological

perspective and is the main point of interest of this study. Figure 6 schematically shows that

alternating transitions from (partially) confined to unconfined valleys (and vice versa) can be a cause

of lateral geometry-driven hyporheic exchange even in straight river reaches, which can often be

found in anthropogenically modified, channelized floodplain systems (e.g., Brookes, 1987).

The actual quantitative measurement of hyporheic exchange in field studies (in terms of flux, travel

times, or spatial extent) remains a challenge, particularly on larger scales. A number of different

experimental quantification techniques exist, including heat tracing (Ren et al., 2019), conservative-

tracer tests (Mallard et al., 2014), isotope-data interpretation (Zhang et al., 2017), differential

river-discharge measurements (Kalbus et al., 2006), geophysical exploration (Ward et al., 2010),

or seepage-meter applications (Langhoff et al., 2006). Each of these methods comes with its own

strengths and limitations (see Cook, 2015, for a detailed comparison). Quantitative hydrogeological

models represent an attractive addition to field experiments for the quantification of hyporheic
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Figure 6: Conceptual drawing of large-scale, lateral, geometry-driven hyporheic exchange zones

in a river catchment. a: Hyporheic exchange between river meanders (not part of this study).

b: Hyporheic exchange in widening floodplains with straight (channelized) river section (focus of

this study).

exchange, because they are comparably cheap, versatile and allow full control over the respective

system. Consequently, there is a long history of surface-water/groundwater exchange modeling

studies, of which we want to highlight the ones most significant to our investigations.

4.2 Previous Work and Knowledge Gap

An early two-dimensional model of vertical hyporheic exchange was developed by Vaux (1968),

who used electric analogs to visualize his findings, as neither a closed-form solution nor a numerical

approximation of his formulation were available/feasible at that time. Lateral hyporheic flow was

modeled by Harvey and Bencala (1993), who applied the FDM to analyze the effect of alluvial

streambed topography on hyporheic exchange in horizontal, rectangular domains. Revelli et al.

(2008) used a FVMmodel to evaluate lateral hyporheic exchange occurring within a river meander.

Similarly, Cardenas (2009a,b) developed FEMmodels to investigate hyporheic exchange between

meanders in horizontal domains, incorporating also ambient river gain or loss. Huang and Chui

(2018) derived proxy-equations for pool-riffle systems, serving as simplified empirical models to

estimate the spatial scale of a hyporheic zone, as well as the related exchange flux and the median

travel time of water flowing through it. Boyraz and Kazezyılmaz-Alhan (2013, 2017) developed

(semi-)analytical solutions for two-dimensional flow in closed, horizontal, rectangular domains. As

the only source and sink of groundwater in their cases is the simulated river, their studies can be

interpreted as hyporheic flow investigations (where all water in the system belongs to the hyporheic
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exchange zone by definition). Recently, they expanded their work by deriving an analytical solution

for hyporheic exchange in rectangular systems under the influence of groundwater recharge from

ponds and wetlands (Boyraz and Kazezyılmaz-Alhan, 2021). In summary, many of these models

have targeted hyporheic exchange for various settings, including the case of Figure 6a. However,

we see a lack of research studying valley-scale lateral hyporheic exchange driven by the geometry

of the floodplain aquifers (i.e., the case in Figure 6b), which we want to address. To this end, we

define an idealized two-dimensional plan-view model and solve it semi-analytically.

4.3 Objectives

In this study, we develop a semi-analytical solution for the valley-scale lateral hyporheic-exchange

zone driven by the geometry of floodplain aquifers. We aim to answer three questions that are typi-

cally of interest when investigating hyporheic exchange (e.g., Kasahara and Wondzell, 2003; Welch

et al., 2015; Huang and Chui, 2018). These questions address relevant aspects of biogeochemical

reactive processes related to river-borne dissolved compounds:

• How much water (in terms of the volumetric flux) flows through the valley-scale lateral hyporheic

exchange zone?

Answering this question allows comparing the exchange flux with the total river discharge and with

total groundwater fluxes. If, for example, only a small fraction of the total river flow makes it into

the aquifer, the river-water composition will not be drastically affected by the hyporheic exchange.

• What is the spatial extent of the valley-scale lateral hyporheic zone?

This is important whenever field studies within the aquifer are conducted, because it marks the

boundary of “true” groundwater and infiltrated river water, which might carry a different chemical

signature (e.g., micropollutants originating from waste-water effluents).

• How long does the river water stay in the valley-scale lateral hyporheic exchange zone before

returning to the river?

The travel times quantify the contact time between water and aquifer material, which typically

determines the degree to which any kinetic reactions or microbial interaction can take place.

After deriving the semi-analytical expression for an idealized two-dimensional floodplain aquifer,

we perform a systematic parameter-variation study, to infer how the lateral exchange flux depends

on the geometric and hydraulic input parameters. This allows us to construct approximate predic-

tive proxy-models. We demonstrate the applicability of these proxy-models with two examples

mimicking field sites close to Tübingen.

A comparable proxy-model for hyporheic exchange fluxes between sinuous river meanders has

been developed by Cardenas (2009a,b). Of course, each floodplain site is unique with all its complex

three-dimensional geology, morphology and heterogeneity as well as its dynamic processes taking
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Figure 7: Schematic illustration of the two-dimensional problem definition. The tan line in the

north represents a Neumann boundary with constant flux 𝑞north. The other three lateral sides

reflect Dirichlet boundaries with values ℎ1, ℎ2 and ℎ3(𝑥) (warmer colors indicate higher hydraulic
heads). 𝐿,𝑤min and𝑤max represent the length of the domain as well as its minimum andmaximum

width. The shape of the northern boundary is defined by 𝑓B(𝑥), which creates an additional area
𝐴north compared to the rectangular area 𝐴rect.

place on multiple scales. It is therefore certainly not possible to capture all details of a site with our

simplified model, but it can give an easy and a quick order-of-magnitude type of estimation for the

hyporheic-zone metrics of interest in cases where only little information about the floodplain is

known (this motivation is similar to the one of Huang and Chui, 2018). Finally, our study gives

insight into major dependencies, which might get lost in the details of a site-specific modeling study.

5 Methods

5.1 Conceptual Model and Problem Statement

We simulate steady-state horizontal groundwater flow in a simplified two-dimensional aquifer (see

schematic illustration in Figure 7) without internal sources or sinks. The overall geometry idealizes

the mid-section subcatchment of a typical channelized river in a landscape formed on bedrocks of

alternating competence. In such settings, the large-scale along-valley ambient hydraulic gradient

and the topography (including aquifer bottom and top) essentially follow the slope of the river,

whereas the across-valley slopes are negligible. Laterally connected hillslopes are not part of our

modeling domain; their effect on the floodplain aquifer are considered by a boundary condition.

The restriction to two dimensions can be justified by the typical large lateral extent of floodplain

aquifers compared to their small and mostly uniform thickness (e.g., Clément et al., 2003). For ease

of description, we will use the terms “northern” (in the direction of 𝑦), “eastern” (in the direction of
𝑥), “southern” (against the direction of 𝑦) and “western” (against the direction of 𝑥) to denote the
four directions and boundaries.

The domain extends laterally within 0 ≤ 𝑥 ≤ 𝐿 and 0 ≤ 𝑦 ≤ 𝑓B(𝑥). Here, 𝐿 in L represents
the domain length. The continuous and real-valued function 𝑓B(𝑥) defines the location of the
northern boundary and thereby the domain width. At this northern end, a fixed specific flux
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𝑞north(𝑥) in L3 L−1 T−1 crosses the boundary in 𝑦-direction, which simulates lateral inflow of an

adjacent hillslope (𝑞north < 0 implies an influx). In the following derivations, we do not impose any
further assumption or restriction with respect to 𝑓B(𝑥), but in the investigated cases we will focus
on a “cosinusoidal” curve mimicking the widening shape of a floodplain aquifer:

𝑓B(𝑥) = 𝑤min +
1
2(𝑤max − 𝑤min) ⋅ (1 − cos(2𝜋

𝑥
𝐿)) , (5.1)

where𝑤min in L is the minimum width of the domain (which applies for the western and eastern

end) and𝑤max in L is the maximum width (which occurs at 𝑥 = 𝐿/2). In later comparisons, we also
investigate two alternate shapes that we denote “composite” and “bump”. The latter shape follows a

classical bump function defined by the points (0|𝑤min), (𝐿/2|𝑤max) and (𝐿|𝑤min):

𝑓B(𝑥) = 𝑤min + (𝑤max − 𝑤min) ⋅ 𝜁 (
𝑥
𝐿) (5.2)

𝜁(𝑥′) =
{
{
{

exp(1 − 1

1−(2𝑥′−1)2
) ; 𝑥′ ∈ (0, 1)

0 ; otherwise.
(5.3)

The “composite” configuration is defined as a piece-wise function by connecting the six points

(0|𝑤min), (𝑥1|𝑤min), (𝑥2|𝑤max), (𝑥3|𝑤max), (𝑥4|𝑤min) and (𝐿|𝑤min) with three constant and two
cosinusoidal segments to achieve an elongated shape with continuous first derivative:

𝑓B(𝑥) =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

𝑤min ; 𝑥 < 𝑥1
𝑤min +

1
2
(𝑤max − 𝑤min) (1 − cos(𝜋

𝑥−𝑥1
𝑥2−𝑥1
)) ; 𝑥1 ≤ 𝑥 < 𝑥2

𝑤max ; 𝑥2 ≤ 𝑥 < 𝑥3
𝑤min +

1
2
(𝑤max − 𝑤min) (1 + cos(𝜋

𝑥−𝑥3
𝑥4−𝑥3
)) ; 𝑥3 ≤ 𝑥 < 𝑥4

𝑤min ; 𝑥4 ≤ 𝑥,

(5.4)

with the four parameters 𝑥1 = 0.025𝐿, 𝑥2 = 0.375𝐿, 𝑥3 = 0.625𝐿 and 𝑥4 = 0.975𝐿. These

parameters create a straight central section of length 𝐿/2 and straight inlet and outlet sections with
a total length of a tenth of that.

Figure 8 shows example geometries for all three domain shapes. We denote the rectangular area of

the southern part 𝐴rect in L2 and the additional northern area 𝐴north in L2 (see Figure 7), such that
the total surface area of the domain 𝐴tot in L2 is the sum of the two:

𝐴tot = 𝐴rect + 𝐴north = 𝐿 ⋅ 𝑤min + 𝐴north. (5.5)

At the western and eastern boundaries, the fixed heads ℎ1 in L (western boundary) and ℎ2 in L
(eastern boundary) impose an ambient flow field, which we assume to be connected to adjacent

aquifers up- and downstream of the investigated catchment segment. The southern boundary is
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Figure 8: Flow-net examples with colored head contour lines, gray streamlines, and arrow

indicators of exchange flux. Black arrows highlight fluxes that occurwithin the hyporheic exchange

zone (shown in blue). The zone of water originating from the northern boundary is shown in tan.

The flow nets, flux indicators, and areas visualize actual results obtained with the semi-analytical

solution. a-c: Different shapes without northern influx. d: A case with northern influx.

assumed to be in perfect hydraulic contact with a river that provides another fixed-head boundary

with ℎ3(𝑥) linearly varying between ℎ2 and ℎ1. We allow the hydraulic conductivity to be anisotropic

in the principal directions (𝑥 and 𝑦), leading to a diagonal transmissivity tensor 𝑻 in L2 T−1:

𝑻 = (
𝑇𝑥 0
0 𝑇𝑦
) . (5.6)

The evaluation of travel times requires a depth-integrated flow-effective porosity, or the aquifer

thickness times the mean porosity, which we denote𝛷 in L.

5.2 Semi-Analytical Solution

The starting point of our derivation is the two-dimensional, steady-state, anisotropic groundwater-

flow equation for divergence-free flow. It involves the hydraulic head ℎ, the spatial coordinates 𝑥
and 𝑦 and the transmissivities 𝑇𝑥 and 𝑇𝑦 (e.g., Bear, 1972):

∂2ℎ
∂𝑥2 +
𝑇𝑦
𝑇𝑥
∂2ℎ
∂𝑦2 = 0. (5.7)

The stream function𝛹 in L3 T−1 helps in formulating Neumann boundaries and allows for trivial
flux evaluations after obtaining its solution. The Cauchy-Riemann equations relate the hydraulic

head with the stream function (e.g., Bear, 1972; Strack, 2017):

∂Ψ
∂𝑥 = 𝑇𝑦

∂ℎ
∂𝑦 (5.8)

∂Ψ
∂𝑦 = −𝑇𝑥

∂ℎ
∂𝑥. (5.9)
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We want to find the solution ℎ(𝑥, 𝑦) of Equation 5.7 meeting the following boundary conditions:

ℎ = ℎ1 at 𝑥 = 0 (5.10)

ℎ = ℎ2 at 𝑥 = 𝐿 (5.11)

ℎ = ℎ1 +
ℎ2 − ℎ1
𝐿 𝑥 at 𝑦 = 0 (5.12)

−(𝑻∇ℎ) ⋅ 𝒏(𝑥) = 1

√𝑓′B(𝑥)2 + 1
𝑞north(𝑥) at 𝑦 = 𝑓B(𝑥), (5.13)

where 𝒏(𝑥) is the unit normal vector along the northern boundary (pointing outwards) and 𝑓′B(𝑥)
is the derivative of 𝑓B(𝑥) in the 𝑥-direction. Similar to the derivation of Read (2007), it is possible
to express the northern Neumann boundary in terms of the stream function. To do that, we start

with the definitions of the unit normal vector of a function (in this case 𝑓B(𝑥)):

𝒏(𝑥) = 1

√𝑓′B(𝑥)2 + 1
[
−𝑓′B(𝑥)
1
] . (5.14)

Applying the hydraulic transmissivity tensor to the gradient of the hydraulic head and evaluating

the scalar product with the unit normal vector converts Equation 5.13 to:

𝑇𝑥 ⋅ 𝑓′B(𝑥) ⋅
∂ℎ
∂𝑥 − 𝑇𝑦 ⋅

∂ℎ
∂𝑦 = 𝑞north(𝑥). (5.15)

The application of the Cauchy-Riemann equations (definition of the stream function) yields:

−𝑓′B(𝑥)
∂𝛹
∂𝑦 −
∂𝛹
∂𝑥 = 𝑞north(𝑥) (5.16)

𝑓′B(𝑥)
∂𝛹
∂𝑦 +
∂𝛹
∂𝑥 = −𝑞north(𝑥). (5.17)

Since we are operating only along the northern boundary, 𝑓B(𝑥) equals 𝑦 and 𝑓′B(𝑥) equals
d𝑦
d𝑥
:

d𝑦
d𝑥
∂𝛹
∂𝑦 +
∂𝛹
∂𝑥 = −𝑞north(𝑥). (5.18)

The definition of the total derivative can be used to summarize the terms of the stream function:

d𝛹
d𝑥 = −𝑞north(𝑥). (5.19)

This ordinary differential equation can be integrated to get the stream function formulation of the

northern boundary equation:

𝛹(𝑥, 𝑓B(𝑥)) = −∫ 𝑞north(𝜉) d𝜉 = 𝑅(𝑥) at 𝑦 = 𝑓B(𝑥). (5.20)
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Equation 5.13 and Equation 5.20 are equivalent. Note that the stream function is only defined

subject to an arbitrary constant offset. Like in most studies, we are only interested in differences

between stream-function values so that the offset drops out. To clarify dimensions: 𝑞north(𝑥) is a
(potentially location-dependent) specific flux expressed in L2 T−1 and 𝑅(𝑥) represents a fixed value
for the stream function and is therefore expressed in L3 T−1.

The solution to the boundary value problem is a function of space ℎ(𝑥, 𝑦). It can be split into several
components that are superimposed, because the problem is linear. Each of these components has to

fulfill the groundwater flow equation, and the sum of them has to fulfill the boundary conditions.

For the problem at hand, it makes sense to attribute a linear head variation in 𝑥, which is given
by the western, southern and eastern boundary, to one component of ℎ(𝑥, 𝑦) and to attribute all
deviations to another component 𝜑(𝑥, 𝑦):

ℎ(𝑥, 𝑦) = ℎ1 +
ℎ2 − ℎ1
𝐿 𝑥 + 𝜑(𝑥, 𝑦). (5.21)

Therefore, it is sufficient to find the solution of𝜑(𝑥, 𝑦) and tomake sure that all boundary conditions
are fulfilled. This leads to another anisotropic partial differential equation:

∇2𝜑(𝑥, 𝑦) =
∂2𝜑
∂𝑥2 +
𝑇𝑦
𝑇𝑥
∂2𝜑
∂𝑦2 = 0. (5.22)

This problem has three simplified boundary conditions:

𝜑(0, 𝑦) = 𝜑(𝐿, 𝑦) = 𝜑(𝑥, 0) = 0. (5.23)

For now, we ignore the northern boundary. As an ansatz we use a product of two terms that depend

only on one of the two spatial variables:

𝜑(𝑥, 𝑦) = 𝑋(𝑥) ⋅ 𝑌(𝑦) (5.24)

∂2𝜑
∂𝑥2 =
∂2𝑋
∂𝑥2 ⋅ 𝑌 (5.25)

∂2𝜑
∂𝑦2 =
∂2𝑌
∂𝑦2 ⋅ 𝑋. (5.26)

These expressions can be substituted into Equation 5.22, yielding:

∂2𝑋
∂𝑥2 ⋅ 𝑌 +

𝑇𝑦
𝑇𝑥
∂2𝑌
∂𝑦2 ⋅ 𝑋 = 0. (5.27)

Using multiplication and division, we can separate the variables:

1
𝑋
∂2𝑋
∂𝑥2 = −

𝑇𝑦
𝑇𝑥
1
𝑌
∂2𝑌
∂𝑦2 . (5.28)
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The two sides have to be equal for all values of 𝑥 and 𝑦, which means that both terms must be
constants. We choose a positive constant term 𝑘2 for now and will account for a negative one later:

1
𝑋
∂2𝑋
∂𝑥2 = −

𝑇𝑦
𝑇𝑥
1
𝑌
∂2𝑌
∂𝑦2 = 𝑘

2. (5.29)

We can separate the partial differential equation into two decoupled ordinary differential equations:

∂2𝑋
∂𝑥2 = 𝑋 ⋅ 𝑘

2 (5.30)

∂2𝑌
∂𝑦2 = −𝑌 ⋅

𝑇𝑥
𝑇𝑦
𝑘2. (5.31)

For these equations, we know the possible general solutions:

𝑋(𝑥) = 𝑐1 exp(𝑘𝑥) + 𝑐2 exp(−𝑘𝑥) (5.32)

𝑌(𝑦) = 𝑐3 sin(𝑘√
𝑇𝑥
𝑇𝑦
𝑦) + 𝑐4 cos(𝑘√

𝑇𝑥
𝑇𝑦
𝑦) . (5.33)

We remember that we could have also chosen −𝑘2 as the constant term, which gives us one more
set of general solutions:

𝑋(𝑥) = 𝑐5 sin(𝑘𝑥) + 𝑐6 cos(𝑘𝑥) (5.34)

𝑌(𝑦) = 𝑐7 exp(𝑘√
𝑇𝑥
𝑇𝑦
𝑦) + 𝑐7 exp(−𝑘√

𝑇𝑥
𝑇𝑦
𝑦) . (5.35)

Iterating over all possible products of the subterms of𝑋(𝑥) and 𝑌(𝑦), we know that the solution

must be a linear combination of the following terms:

𝜑(𝑥, 𝑦) =

{{{{{{
{{{{{{
{

exp(𝑘𝑥) sin(𝑘𝜅𝑦), exp(−𝑘𝑥) sin(𝑘𝜅𝑦),
exp(𝑘𝑥) cos(𝑘𝜅𝑦), exp(−𝑘𝑥) cos(𝑘𝜅𝑦),
exp(𝑘𝜅𝑦) sin(𝑘𝑥), exp(−𝑘𝜅𝑦) sin(𝑘𝑥),
exp(𝑘𝜅𝑦) cos(𝑘𝑥), exp(−𝑘𝜅𝑦) cos(𝑘𝑥)

}}}}}}
}}}}}}
}

, (5.36)

where we use 𝜅 as a shorthand for 𝜅 = √
𝑇𝑥
𝑇𝑦
.

At this point, we take care of the boundary conditions. First of all, we know that the northern

boundary is the only boundary with a value of 𝜑 ≠ 0. Due to the diffusive nature of the Laplace
equation, there is no reason for any oscillation in the 𝑦-direction implying that we can drop all
terms involving a trigonometric function of 𝑦:

𝜑(𝑥, 𝑦) = { exp(𝑘𝜅𝑦) sin(𝑘𝑥), exp(−𝑘𝜅𝑦) sin(𝑘𝑥), exp(𝑘𝜅𝑦) cos(𝑘𝑥), exp(−𝑘𝜅𝑦) cos(𝑘𝑥)}.
(5.37)
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The southern boundary (𝜑(𝑥, 0) = 0) requires that the coefficients of the linear combination
involving the sine functions (and the cosine functions respectively) need to cancel each other out:

𝜑(𝑥, 𝑦) =
∞

∑
𝑛=1
𝛼𝑛 sin(𝑘𝑥) (exp(𝑘𝜅𝑦) − exp(−𝑘𝜅𝑦)) +

∞

∑
𝑛=1
𝛽𝑛 cos(𝑘𝑥) (exp(𝑘𝜅𝑦) − exp(−𝑘𝜅𝑦)) .

(5.38)

We can simplify this lengthy expression by applying the definition of the hyperbolic sine function:

sinh(𝑡) = 12 exp(𝑡) −
1
2 exp(−𝑡) (5.39)

𝜑(𝑥, 𝑦) =
∞

∑
𝑛=1
𝛼𝑛 sin(𝑘𝑥)

1
2 sinh(𝑘𝜅𝑦) +

∞

∑
𝑛=1
𝛽𝑛 cos(𝑘𝑥)

1
2 sinh(𝑘𝜅𝑦). (5.40)

Without loss of generalization, we can attribute the constant factors of one half to the linear

combination coefficients 𝛼𝑛 and 𝛽𝑛 to keep the equation succinct:

𝜑(𝑥, 𝑦) =
∞

∑
𝑛=1
𝛼𝑛 sin(𝑘𝑥) sinh(𝑘𝜅𝑦) +

∞

∑
𝑛=1
𝛽𝑛 cos(𝑘𝑥) sinh(𝑘𝜅𝑦). (5.41)

The western boundary condition (𝜑(0, 𝑦) = 0) requires dropping terms involving the cosine of 𝑥:

𝜑(𝑥, 𝑦) =
∞

∑
𝑛=1
𝛼𝑛 sin(𝑘𝑥) sinh(𝑘𝜅𝑦). (5.42)

The eastern boundary condition (𝜑(𝐿, 𝑦) = 0) can only be fulfilled, if the following condition holds,
which imposes a restriction on 𝑘:

sin(𝑘 ⋅ 𝐿) = 0 (5.43)

𝑘 = 𝑙 ⋅ 𝜋𝐿 ; 𝑙 ∈ ℤ ⧵ {0}. (5.44)

A solution with 𝑙 = 0 does not need to be considered, as the respective contribution to 𝜑(𝑥, 𝑦)
collapses to zero. As the sine function and the hyperbolic sine function are odd, we can assume

that all 𝑙 < 0 can be considered by adjusting the coefficients 𝛼(−𝑙). Therefore, 𝑙 can be restricted to
1 ≤ 𝑙 ≤ ∞, and we can use 𝑙 = 𝑛:

𝜑(𝑥, 𝑦) =
∞

∑
𝑛=1
𝛼𝑛 sin(
𝑛 ⋅ 𝜋
𝐿 𝑥) sinh(

𝑛 ⋅ 𝜋
𝐿 𝜅𝑦) . (5.45)

The infinite series solution of the original groundwater flow problem thereby becomes:

ℎ(𝑥, 𝑦) = ℎ1 +
ℎ2 − ℎ1
𝐿 ⋅ 𝑥 +

∞

∑
𝑛=1
𝛼𝑛 sin(
𝑛 ⋅ 𝜋
𝐿 𝑥) sinh(

𝑛 ⋅ 𝜋
𝐿 𝜅𝑦) , (5.46)

where 𝛼𝑛 in L is the 𝑛-th series coefficient and 𝜅 represents the dimensionless square root of the
anisotropy ratio 𝜅 = √𝑇𝑥/𝑇𝑦.
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The associated stream function is:

Ψ (𝑥, 𝑦) = −𝑇𝑥 ⋅ (𝛼0 +
ℎ2 − ℎ1
𝐿 ⋅ 𝑦 +

1
𝜅

∞

∑
𝑛=1
𝛼𝑛 cos(
𝑛 ⋅ 𝜋
𝐿 𝑥) cosh(

𝑛 ⋅ 𝜋
𝐿 𝜅𝑦)) , (5.47)

in which the coefficient 𝛼0 in L reflects the arbitrary offset of the stream function. The series

coefficients 𝜶 (i.e., 𝛼0 to 𝛼∞) are fully determined by the shape of the northern boundary 𝑓B(𝑥) and
the associated boundary condition 𝑅(𝑥) (Equation 5.20):

− 𝑇𝑥 ⋅ (𝛼0 +
ℎ2 − ℎ1
𝐿 ⋅ 𝑓B(𝑥) +

1
𝜅

∞

∑
𝑛=1
𝛼𝑛 cos(
𝑛 ⋅ 𝜋
𝐿 𝑥) cosh(

𝑛 ⋅ 𝜋
𝐿 𝜅𝑓B(𝑥)))

!
= 𝑅(𝑥). (5.48)

However, except for very simple cases (e.g., a valley with uniform width and constant normal flux

at the northern boundary) it is practically impossible to determine the coefficients analytically. We

alleviate this problem by numerical approximations of the series with a finite number of terms𝑁.
We use an approach similar to the Analytical Element Method of Strack (1989), that was refined and

applied by Barnes and Janković (1999), Janković and Barnes (1999), Read (2007) and Craig (2008).

In essence, we choose a finite number of𝑀 points along the northern boundary (𝑥𝑖|𝑓B(𝑥𝑖)) that
are used to evaluate the𝑁 + 1 ≤ 𝑀 coefficients 𝜶 of the truncated infinite series.

The solution of Equation 5.48 can then be obtained through a least-squares formulation minimizing

the sum of squared approximation errors 𝜀 along the northern boundary:

𝜀𝑖(𝜶) = 𝛼0 +
𝑁

∑
𝑛=1
𝛼𝑛𝑓𝑛(𝑥𝑖) − 𝑔(𝑥𝑖), (5.49)

with

𝑔(𝑥𝑖) = −
𝑅(𝑥𝑖)
𝑇𝑥
−
ℎ2 − ℎ1
𝐿 ⋅ 𝑓B(𝑥𝑖), (5.50)

𝑓𝑛(𝑥𝑖) =
1
𝜅 cos(
𝑛 ⋅ 𝜋
𝐿 𝑥𝑖) cosh(

𝑛 ⋅ 𝜋
𝐿 𝜅𝑓B(𝑥𝑖)) . (5.51)

The goal is to minimize the (weighted) sum of squared approximation errors across the𝑀 points:

𝜶̂ = argmin
𝜶

𝑀

∑
𝑖=1
𝑤𝑖 ⋅ 𝜀𝑖(𝜶)2, (5.52)

in which𝑤𝑖 represents the weight of the 𝑖-th point. This optimization problem is converted to a

system of linear equations by setting the derivative to zero (Craig, 2008). This yields𝑁+1 equations
with𝑁 + 1 unknowns, regardless of the number of points𝑀:

𝛼0
𝑀

∑
𝑖=1
𝑤𝑖 ⋅ 𝑓𝜂(𝑥𝑖) +

𝑁

∑
𝑛=1
𝛼𝑛 ⋅
𝑀

∑
𝑖=1
𝑤𝑖𝑓𝜂(𝑥𝑖)𝑓𝑛(𝑥𝑖) =

𝑀

∑
𝑖=1
𝑤𝑖𝑓𝜂(𝑥𝑖) ⋅ 𝑔(𝑥𝑖); 𝜂 = 1…𝑁, (5.53)

𝛼0 +
𝑁

∑
𝑛=1
𝛼𝑛 ⋅
𝑀

∑
𝑖=1
𝑤𝑖𝑓𝑛(𝑥𝑖) =

𝑀

∑
𝑖=1
𝑤𝑖 ⋅ 𝑔(𝑥𝑖). (5.54)
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In the case of𝑀 = 𝑁 + 1, the system is fully determined and the solution will be met exactly on

all𝑀 points. Then, these points are referred to as collocation points (Barnes and Janković, 1999).

Unfortunately, the Gibbs-Wilbraham (Wilbraham, 1848; Gibbs, 1898) and Runge phenomena

(Runge, 1901) can lead to significant and strong oscillations between the collocation points. These

artifacts cannot be reduced by increasing the approximation order𝑁 (for more information see,
for example, Hewitt and Hewitt, 1979; Read, 2007; Ray, 2020). Instead, it can be beneficial to

choose more points𝑀 than coefficients𝑁+1 to reduce the adverse effects of the Gibbs-Wilbraham

phenomenon by creating an over-determined system of equations. The corresponding solution will

then not be met exactly at all𝑀 points, but the error is minimized in an average sense. In such a

case of𝑁 + 1 < 𝑀 the points are typically called control points (Barnes and Janković, 1999). In our

study, we use𝑁 = 10 and𝑀 = 25.

As highlighted byCraig (2008), additionalGibbs-Wilbrahameffects can be causedwhereverDirichlet

and Neumann boundaries meet at angles that lead to inconsistent hydraulic gradients. In our

model setup this can happen at the intersection points of the northern boundary and the western

and eastern boundaries, depending on the choice of 𝑓B(𝑥) and 𝑞north(𝑥). In problematic cases,
according to Craig (2008), non-uniform weights with smaller values close to these points can

reduce the influence of these inconsistencies on the remaining parts of the domain. Another

way to deal with the problem is to use a non-uniform spacing of the points 𝑥𝑖. Neither of these
remedies were necessary in this study, so that we used identical weights for all points 𝑥𝑖 spaced
equidistantly (tests with parameter combinations outside of the investigated ranges suggest that the

most critical parameters with respect to the Gibbs-Wilbraham phenomenon are strong anisotropies

and extremely large width-to-length ratios).

The system of equations that we solve includes hyperbolic cosine terms (see Equations 5.51, 5.53

and 5.54). As the hyperbolic cosine function grows rapidly with its argument, it can be useful

to reformulate the solution to avoid terms that grow exponentially with 𝑛. This is possible by

redefining the series coefficients and scaling them with a hyperbolic cosine term:

𝛼∗𝑛 = 𝛼𝑛 ⋅ cosh(
𝑛𝜋
𝐿 𝜅𝑤max) , (5.55)

in which 𝛼∗𝑛 in L are the modified series coefficients and𝑤max is the maximum width. With the two

identities of hyperbolic fractions:

sinh(𝑡)
cosh(𝑏) =

exp(𝑡 − 𝑏) − exp(−𝑡 − 𝑏)
1 + exp(−2𝑏) , (5.56)

cosh(𝑡)
cosh(𝑏) =

exp(𝑡 − 𝑏) + exp(−𝑡 − 𝑏)
1 + exp(−2𝑏) , (5.57)

the resulting ratios of hyperbolic sine and cosine functions can be reformulated to contain only

terms with a negative sign in the exponential (for our case). Such a redefinition of coefficients

results in modified versions of the hydraulic head and stream function.
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Themodified versions of the hydraulic head and stream function solution are:

ℎ(𝑥, 𝑦) = ℎ1 +
ℎ2 − ℎ1
𝐿 ⋅ 𝑥 +

∞

∑
𝑛=1
𝛼∗𝑛 sin(𝑐𝑥)

exp(𝑐𝜅(𝑦 − 𝑤max)) − exp(−𝑐𝜅(𝑦 + 𝑤max))
1 + exp(−2𝑐𝜅𝑤max)

, (5.58)

and

Ψ (𝑥, 𝑦) = −𝑇𝑥 ⋅(𝛼∗0 +
ℎ2 − ℎ1
𝐿 ⋅ 𝑦 +

1
𝜅

∞

∑
𝑛=1
𝛼∗𝑛 cos(𝑐𝑥)

exp(𝑐𝜅(𝑦 − 𝑤max)) + exp(−𝑐𝜅(𝑦 + 𝑤max))
1 + exp(−2𝑐𝜅𝑤max)

) ,

(5.59)

where we make use of a new shorthand 𝑐 = 𝑛𝜋
𝐿
. A similar procedure has been exploited by Powers

(1966) and Powers et al. (1967). If there was an ideal computer with infinite precision the solutions

of the two formulations were identical, and the only difference would lie in the magnitude of the

series coefficients. Due to round-off errors, however, the modified version yields more precise

results when using standard double precision floating-point operations.

5.3 Characterization of the Hyporheic-Exchange Zone

Figure 8 shows semi-analytical flow nets for different model configurations, as well as directions

and magnitudes of the flux perpendicular to the southern boundary. This flux is zero at the western

end (𝑥 = 0). Depending on the geometric configuration and the northern influx rate, it typically
increases with 𝑥 until it reaches a maximum. From there on, it decreases again, passes zero and

becomes negative until it reaches a minimum. Finally, it increases again to reach zero once more

at the eastern end (𝑥 = 𝐿). In summary, we can observe in the western part a net flux from the

river to the aquifer and a reversed flux in the eastern part. Without a northern influx the pattern

is symmetric and the net exchange between the river and the aquifer is zero. By following the

streamlines, we can identify those parts of the domain, where the flow originates from the river

and returns to it again. These parts define the valley-scale hyporheic exchange zone (blue areas in

Figure 8). In the following we derive how to quantify the flux of water flowing through this zone

(the hyporheic exchange flux𝑄ex), how large the hyporheic exchange zone is (the exchange zone

area 𝐴ex) and how travel times through this zone are distributed.

5.3.1 Exchange Flux

As exchange flux, we define the discharge (in L3 T−1) of water originating from the river at the

southern boundary and returning to it again. We can quantify the exchange flux by considering

the stream function, which is defined such that the net discharge𝑄𝑝𝑞 crossing a line between two
points 𝑝 and 𝑞 equals the absolute difference of the stream-function values at the two end points:

𝑄𝑝𝑞 = |𝛹(𝑥𝑞, 𝑦𝑞) − 𝛹(𝑥𝑝, 𝑦𝑝)|. (5.60)

48



In Figure 8 we can see different manifestations of the exchange zone. It can span the entire southern

boundary (see Figure 8a-c), parts of it (see Figure 8d) or may vanish completely (e.g., if the northern

influx is very large). In any case, however, it is bounded by a dividing streamline that starts and/or

ends at one of the southern corner points of the domain (i.e., either (0|0) or (𝐿|0)). According to
Equation 5.8, an increase in the stream-function value along the southern boundary in the positive

𝑥-direction implies an exfiltration flux (groundwater discharge to the river). Thus, in the cases

shown in Figure 8, the stream-function first decreases along the southern boundary, reaches a

minimum and increases back until it reaches its initial value. In the case of Figure 8d it further

increases, because the river gains more water than it loses. In this setting, the exchange flux is given

by the stream-function values at (0|0) and at the minimum point. With different geometries (e.g., a

valley that first gets narrower and then widens) the southern boundary may start with exfiltrating

conditions (river gaining groundwater). In that case the exchange flux is given by the difference of

the stream-function values at the end point (𝐿|0) and at the minimum. All cases are covered by:

𝑄ex = min[𝛹(0, 0), 𝛹(𝐿, 0)] −min[𝛹(𝑥, 0)]. (5.61)

If there is no hyporheic-exchange zone, the end point with the smaller stream-function value is

identical with the point of minimal stream-function value, leading to the correct exchange flux of

zero. In general, the minimum of the stream function along the southern boundarymin(𝛹(𝑥, 0))
must be evaluated numerically. If the number𝑀 of points to determine the coefficients 𝜶was large
enough, it is convenient to re-use the same set of 𝑥-locations that were also selected for constructing
the system of equations.

5.3.2 Area of the Exchange Zone

The volume𝑉ex of the exchange zone can be expressed in terms of a two-dimensional area:

𝐴ex =
𝑉ex
𝛷 , (5.62)

where we make use of the depth-integrated effective porosity𝛷. Just as for the calculation of the
exchange flux, a general analytical solution for the area of the exchange zone is not available. Hence,

we determine the area numerically by constructing a polygon bounded by the southern domain bor-

der and the dividing streamline separating the exchange zone from the northern rest of the domain.

The dividing streamline is the contour line of 𝛹 representing a value ofmin[𝛹(0, 0), 𝛹(𝐿, 0)]. It
can be constructed with standard contouring algorithms from a set of point observations of𝛹(𝑥, 𝑦)
placed throughout the domain. The evaluation of the polygonal area is trivial; we only need to

make sure that we use enough points to approximate the polygon well enough. Again, it might be

convenient to reuse the set of 𝑥-nodes in combination with a set of 𝑦-nodes for the construction of
a mesh of points where𝛹 is evaluated.
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5.3.3 Travel Time Distribution

In order to evaluate the full travel-timedistribution of allwater parcels flowing through the exchange

zone, we construct 𝑛t contour lines of𝛹 across the full range of𝛹-values within the exchange zone
(i.e., frommin[𝛹(𝑥, 0)] tomin[𝛹(0, 0), 𝛹(𝐿, 0)]). By choosing equal steps between the contour line
values (i.e., a constant 𝛥𝛹), we construct stream-tubes of identical discharge. For each contour line
we determine the respective travel time 𝑡 in T and the fraction 𝐹(𝑡) of discharge that has a travel
time smaller than 𝑡. This gives one point of the travel-time distribution per contour line.

The travel time 𝑡i of the 𝑖-th contour line can be approximated by summation of the travel times 𝑡seg
of all its 𝑛seg line segments. A segment’s travel time can be determined from its length 𝐿seg in L and
its average flow velocity 𝒗avg in L T−1. We assume that the velocities of the segment endpoints (𝒗1
and 𝒗2) apply both each for half of the segment length, which results in an arithmetic average:

𝑡i =
𝑛seg

∑
𝑗=1
𝑡seg =

𝑛seg

∑
𝑗=1

𝐿seg
𝒗avg
=
𝑛seg

∑
𝑗=1

2 ⋅ 𝐿seg
|𝒗1| + |𝒗2|

. (5.63)

The linear velocity 𝒗 is given by Darcy’s law (Darcy, 1856) and the depth-integrated porosity𝛷:

𝒗 = − 1𝛷𝑻∇ℎ. (5.64)

The corresponding fraction of hyporheic discharge that has a travel time smaller than 𝑡𝑖 can be
determined with the stream function:

𝐹(𝑡𝑖) =
𝛹𝑖 −min(𝛹(𝑥, 0))
𝑄ex

, (5.65)

where𝛹𝑖 is the stream function value of the 𝑖-th contour line. The 𝑛𝑡 points (𝑡𝑖|𝐹(𝑡𝑖)) describe the
approximated cumulative distribution function of travel time. For a better comparison between

different settings, we create dimensionless travel times by normalizing with the mean travel time:

̃𝑡 = 𝑡𝑡mean

, (5.66)

𝑡mean =
𝑉ex
𝑄ex
=
𝛷𝐴ex
𝑄ex
. (5.67)

5.3.4 Summary of the Semi-Analytical Procedure

In short, the semi-analytical determination of hyporheic-exchange-zone properties for a given

setting involves the following steps:

1. Define all parameter values (including those describing the geometry).

2. Decide on𝑁,𝑀 and 𝑥𝑖.

3. Set up the system of equations (Equations 5.53 and 5.54).
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4. Solve the system of equations to obtain the coefficients 𝜶.

5. Evaluate the stream function on selected points to determine𝑄ex, 𝐴ex or 𝐹(𝑡) according to
Equations 5.61, 5.62 and 5.65.

Depending on𝑁 and𝑀, this scheme can be computationally expensive. Also, it gives no direct
evidence of how the various input parameters affect the exchange flux, the area of the exchange

zone, or the travel-time distribution. As this is our primary interest, we perform a systematic

parameter-variation study setting the base for easy-to-use empirical relationships.

6 Relating Exchange-Zone Metrics to Hydrogeological and

Geometric Properties of the Floodplain Aquifer

In this section we investigate how the various hydrogeological and geometric properties of the

floodplain aquifer affect the hyporheic-exchange flux, the hyporheic-zone area and the travel-time

distribution within the hyporheic exchange zone.

6.1 Sensitivity Analysis

First, we perform a global sensitivity analysis to investigate how strongly the exchange flux 𝑄ex
and the exchange zone area𝐴ex depend on the input parameters. As our semi-analytical solution
is reasonably fast, we are able to perform a full variance-based sensitivity analysis. It is typically

known as the method of Sobol indices, of which we give a brief summary in the following (for

detailed explanations we refer to Sobol′, 1993; Sobol′, 2001).

A variance-based sensitivity analysis aims to quantify what fraction of the variance in the observed

variable originates from the variance of individual input variables or combinations thereof. Two

metrics can be defined: first-order Sobol indices, which express the effects of individual variables

by themselves, and total effect Sobol indices, which express the effects of individual variables and

all their combinations with other variables. We determine the Sobol indices for𝑄ex and 𝐴ex with a
Monte Carlo approach. Figure 9 shows the outcomes of this investigation for the three different

boundary shapes “cosinusoidal”, “bump” and “composite”. We can observe the following:

• For the hyporheic exchange flux, the average hydraulic transmissivity is the dominant in-

dividual parameter. This is probably related to the fact that the transmissivities vary over

orders of magnitude and are a direct linear factor to all flux calculations.

• Considering combined effects, the 𝑄ex Sobol indices of all parameters are more evenly
distributed. Still, the hydraulic transmissivity reaches the highest values, but we can also

observe a large effect of the northern influx and the ratio of minimum to maximum domain

width.
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Figure 9: Results of the global variance-based sensitivity analysis for𝑄ex (a, c) and 𝐴ex (b, d) in
terms of first-order Sobol indices (a, b) and total effect Sobol indices (c, d).

• For the area of the exchange zone, the first-order indices and total indices show a very similar

pattern. This means combined effects of parameter combinations seem to have a less strong

effect compared to the hyporheic exchange flux.

• Two input parameters don’t influence the exchange zone at all, as they have Sobol indices

of basically zero. These two parameters are the ambient hydraulic gradient and the average

hydraulic transmissivity. This observation agrees perfectly with intuition, as these two

parameters do not affect the shape of the flow field, but only the magnitudes of ℎ and𝛹.

• The differences between the shape types are not very large.

Overall, however, we believe these results are comparably hard to interpret, because the Sobol

indices show average linear effects across the entire parameter space. We therefore continue our

investigation by constructing proxy-expressions relating model input to output.

6.2 Exchange Flux

We focus on the “cosinusoidal” shape to infer relationships between the input parameters and𝑄ex
and use the “bump” and “composite” shapes for verifying the derived expressions.
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Table 1: Constant hydraulic parameter values for analyzing the effects of geometric properties on

hyporheic-exchange metrics.

Parameter Symbol Value Unit

fixed head at inlet ℎ1 3 m

fixed head at outlet ℎ2 0 m

transmissivity in 𝑥 𝑇𝑥 10−3 m2 s−1

transmissivity in 𝑦 𝑇𝑦 10−3 m2 s−1

northern influx 𝑞north 0 m2 s−1

Cosinusoidal Shape To understand how the hyporheic-exchange flux relates to the domain

geometry for a given hydraulic setup, we fix all hydraulic parameters to the values defined in Table 1

and vary the domain length 𝐿 between 500m and 3500m, the minimum width𝑤min between 50m

and 350m, and the ratio of maximum to minimum width 𝑤max/𝑤min between 1.0 and 2.5. With

this initial sample, we can resemble most of the floodplain examples mentioned previously, which

range from a few hundredmeters to a few kilometers in length and have approximate𝑤max/𝐿 ratios
between 10% and 50% (e.g., Clément et al., 2003; Ó Dochartaigh et al., 2019) and approximate

𝑤max/𝑤min ratios of up to 2.5 (e.g., Castro and Hornberger, 1991; Helton et al., 2012).

Figure 10a shows a three-dimensional slice and scatter plot of corresponding exchange fluxes for

the 13×7×7 = 637 parameter combinations that we tested. This plot reveals the following insights:

(1) For a width ratio of one, the exchange flux is zero, independent of the other two parameters. This

is obvious, because the domain collapses to a rectangle, where the solution of the related system

of equations is trivial (𝛼1 to 𝛼𝑁 equal zero) and there is no driving force for any lateral hyporheic
exchange. (2) For a fixed length and minimum width, the exchange flux increases monotonically

with the ratio of𝑤max to𝑤min. (3) For any fixed width-ratio larger than one, the magnitude of the

exchange flux depends on both the domain length and the minimum width. (4) There seems to be

a ratio of the latter two that gives a maximum flux. (5) For ratios larger or smaller than that, the

exchange flux declines.

This rather complex behavior in three-dimensional parameter space can be simplified and the

dimensionality can be reduced. Figure 10b shows that all simulated points can be brought very

close to a single curve by plotting the following two transformed quantities against each other: On

the horizontal axis we display the ratio of the average width to the domain length. For that we

calculate the average domain width by dividing the domain’s total area by its length:

𝑤mean =
𝐴tot
𝐿 . (6.1)

On the vertical axis of the transformed plot, we show the product of the exchange flux and the ratio

of domain length to the transmissivity in 𝑥-direction and maximum width-difference 𝛥𝑤, which is:

𝛥𝑤 = 𝑤max − 𝑤min. (6.2)
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Figure 10: Response of the exchange flux to geometric parameters. a: Scatter plot and sliced

interpolation involving geometric parameters. b: A transformation brings the response of the

exchange flux to all three geometric parameters onto a single curve that can be approximated by a

scaled hyperbolic secant function (black line).

After subsequent variations of the hydraulic properties ℎ1, ℎ2 and 𝜅 for fixed geometries (not
shown), we found an easy way to incorporate their influence on the exchange flux into the existing

transformation as long as there is no northern hillslope influx (i.e., 𝑞north = 0): The square root of

the anisotropy ratio (𝜅) affects only the scaling in the direction of the horizontal axis and needs to
be multiplied with the ratio of the average width to the domain length. The hydraulic heads ℎ1 and
ℎ2 only matter as a head difference:

𝛥ℎ = ℎ1 − ℎ2. (6.3)

This difference only affects the vertical axis of the plot and can be accounted for in dividing the

existing expression by 𝛥ℎ.

The one-dimensional relationship derived in this way (see Figure 10b) starts at the point (0|1) and
is characterized by a monotonic decline that has a small slope in the beginning, a steeper part

around 0.25 and a tail asymptotically approaching zero. Such a behavior can be approximated by a
hyperbolic secant function scaled in the direction of the horizontal axis (Figure 10b contains such a

function fitted to the simulated model results). This relationship can be inverted to a description of

the dimensional hyporheic-exchange flux depending on all model parameters (with exception of

𝑞north, which has been set to zero so far). As a result, we postulate the approximation:

𝑄ex ≈ 𝑄0 ⋅ sech(𝑎1 ⋅ 𝜅
𝑤mean

𝐿 ) , (6.4)
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with a dimensionless fitting parameter 𝑎1 and the reference discharge𝑄0 in L3 T−1:

𝑄0 = 𝐼𝑥 ⋅ 𝑇𝑥 ⋅ 𝛥𝑤 =
ℎ1 − ℎ2
𝐿 ⋅ 𝑇𝑥 ⋅ (𝑤max − 𝑤min), (6.5)

where 𝐼𝑥 is the dimensionless ambient hydraulic gradient in 𝑥-direction, which is given by the ratio
of the head difference 𝛥ℎ to the domain length 𝐿.

We can interpret the relationship of Equation 6.4 in the followingway: (1)Thedifference between the

maximum and minimum width of the valley exerts a linear control on the hyporheic exchange flux.

(2) For a given width difference, there is a maximum potential exchange flux𝑄0. (3) The magnitude

of this flux linearly depends on the ambient hydraulic gradient and the hydraulic transmissivity

in 𝑥-direction. (4) The actual exchange flux 𝑄ex is smaller than 𝑄0 and the ratio of the two is
determined by the domain aspect ratio (𝑤mean/𝐿) and the anisotropy (𝜅 = √𝑇𝑥/𝑇𝑦). We explain the
details of this relationship in the following.

To understand the equation for𝑄0, it makes sense to analyze the illustrative extreme case of𝑤min

approaching zero in a scenario of constant 𝛥𝑤. As seen in Figure 7, in such a case nearly the
entire domain belongs to the northern part 𝐴north, and 𝐴rect becomes small. Basically all water
flowing through the domain must come exclusively from the river and return to it again (i.e.,

𝐴tot = 𝐴north = 𝐴ex). The easiest way to quantify the exchange flux for this specific scenario is to

take a look at the widest part of the domain (i.e., 𝑥 = 𝐿/2). Here, the discharge 𝑄∗ through the
domain, is given by Darcy’s law with the following approximation:

𝑄∗ = 𝛥𝑤(−𝑇𝑥
∂ℎ
∂𝑥) ≈ 𝛥𝑤 ⋅ 𝑇𝑥

ℎ1 − ℎ2
𝐿 , (6.6)

where we assume a uniform hydraulic gradient in 𝑥-direction equaling −𝛥ℎ over 𝐿. 𝑇𝑥 is the
only transmissivity that matters here, because the hydraulic gradient in the 𝑦-direction is zero.
It becomes clear now, that𝑄∗ equals our reference discharge𝑄0 and it represents the maximum
discharge that could be reached for a given 𝛥𝑤 and adjustable𝑤min.

The actual exchange flux can be smaller than 𝑄0 for two reasons: firstly the curvature of the
domain/flow-paths and secondly the distance between northern and southern boundary. Both

of these effects are summarized in the term𝑤mean/𝐿within the hyperbolic secant function in the
following way: Even in cases with𝑤min → 0, the actual exchange flux is smaller than𝑄0, because
of the curvature of the domain’s northern boundary. This curvature leads to flow-path lengths

larger than 𝐿. Consequently, the hydraulic gradient ∂ℎ/∂𝑥 is smaller than 𝐼𝑥 at 𝑥 = 𝐿/2. For
given domain widths, 𝐿 serves as a control to change the curvature, with 𝐿 → ∞ resulting in less

curved flow-paths yielding𝑄ex → 𝑄0. In addition to that, the deviation of𝑄ex from𝑄0 depends
on the average domain width𝑤mean, which is a measure for how far the northern boundary (i.e.,

the driving force) is separated from the river. As the hyperbolic secant function decreases strictly

monotonically, a larger separation distance always leads to a decrease of hyporheic exchange flux.
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Figure 11: Examples of flow nets showing how increasing separation (from a to d) between

the northern area and the southern boundary shrinks the hyporheic exchange zone. All model

parameters with exception of𝑤min and𝑤max are identical in the four cases. The difference of𝑤min

and𝑤max was kept constant too. The number in the title reflects the average domain aspect ratio

𝑤mean/𝐿.

This is in line with intuition: if the northern valley expansion is far away from the river, the water

necessary to “fill”𝐴north can be drawn from the western boundary without affecting the river too

much. For illustration of this behavior, Figure 11 contains fourmodel results that show how a larger

separation distance of the northern area𝐴north from the southern boundary leads to a reduction of

hyporheic exchange.

The hydraulic anisotropy acts as a scaling factor for the average aspect ratio𝑤mean/𝐿 of the domain,
meaning that if 𝑇𝑦 > 𝑇𝑥, it becomes easier to draw water from the river, having the same effect

as moving the northern boundary closer to it. Vice versa, a case of 𝑇𝑥 > 𝑇𝑦 can be interpreted
as increasing the distance between river and northern boundary. As 𝜅 represents the square root
of the anisotropy ratio 𝑇𝑥/𝑇𝑦, we can summarize the anisotropy-corrected aspect ratio to a new
dimensionless variable:

̃𝑥 = 𝜅
𝑤mean

𝐿 , (6.7)

which can be used to construct a dimensionless formulation for the exchange flux 𝑄̃ex:

𝑄̃ex =
𝑄ex
𝑄0
≈ sech(𝑎1 ⋅ ̃𝑥) . (6.8)

In the following, we want to analyze the dependence of the hyporheic exchange flux on the northern

hillslope influx 𝑞north to generalize Equation 6.8. Towards this end, we normalize the total northern
discharge by𝑄0, to obtain the dimensionless quantity 𝑄̃north:

𝑄̃north =
∫𝐿0 𝑞north d𝑥
𝑄0

=
𝑞north
𝑇𝑥
⋅ 𝐿
2

ℎ1 − ℎ2
⋅ 1
𝑤max − 𝑤min

. (6.9)
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Figure 12: Dependency of 𝑄̃ex on 𝑄̃north across different model realizations. 𝑄̃0ex represents
𝑄̃ex for ̃𝑥 = 0. a: Comparison of cases with different |𝑄̃north|. b: Transformation to a common
relationship.

An influx from the northern boundary leads to a reduction of the hyporheic exchange flux, because

the hyporheic exchange zone is “pushed” towards the southern river boundary. At sufficiently large

values of |𝑄̃north|, the exchange zone may even vanish completely, meaning that no river-water
infiltration takes place.

Figure 12a shows the results of a systematic parameter variation study, where 𝑄̃north varies between
−3 and 0 for a revision of the study conducted for Figure 10. It is obvious that 𝑄̃ex decreases with
increasing 𝑄̃north for a given ̃𝑥. The exact relationship between the two is not linear. Figure 12b

shows one way of approximating this relationship. The equation of the regression model (shown as

a black line) is given by:

𝑄̃ex ≈ sech(𝑎1 ̃𝑥) ⋅max[0, 1 − 𝑎2 ⋅ |𝑄̃north| cosh(𝑎3 ̃𝑥)] . (6.10)

We chose this model because it only needs two additional parameters and has a slope of 0 at ̃𝑥 = 0
for the transformed quantity, which is close to the simulated data points (see Figure 12). There

still exists a spread of the data points after the nonlinear transformation, but especially towards

small values of ̃𝑥 this model works decently well. As already mentioned, this relationship involves a
second empirical functionwith two coefficients 𝑎2 and 𝑎3, employing the hyperbolic cosine function.
The implementation of the maximum-value function constructs a threshold leading to a constant

exchange flux of 𝑄̃ex = 0 in cases of large values of |𝑄̃|north. This threshold can also be used to give

a simple approximate logical expression indicating if the exchange zone is present for a given case

of 𝑄̃north and ̃𝑥:
1 > 𝑎2|𝑄̃north| cosh(𝑎3 ̃𝑥). (6.11)

57



Table 2: Ranges of geometric and hydraulic parameters that were explored in the stochastic

simulation to obtain shape-dependent empirical coefficients.

Parameter Symbol Minimum Maximum Unit

length 𝐿 100.0 3000.0 m

gradient 𝐼𝑥 0.0 3.0 %
length ratio 𝑤max/𝐿 0.1 0.5 –

width ratio 𝑤max/𝑤min 0.4 1.0 –

log. transmissivity log10(√𝑇𝑥𝑇𝑦) −6.0 −2.3 𝑇 inm2 s−1

log. anisotropy log10(𝑇𝑥/𝑇𝑦) −1.0 1.0 –

northern influx 𝑄̃north −3.0 0.0 –
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Figure 13: Dimensionless exchange flux results for different values of |𝑄̃north| (0.0, 0.5, 1.0, 1.5,
2.0, 2.5 and 3.0) and three domain shapes (a-c). Fitted proxy-models are shown as black lines.

In summary, our proxy-expression for the estimation of the hyporheic-exchange flux has a single

empirical coefficient in case of zero northern influx, and two additional coefficients in cases with

non-zero northern influx. We will determine and compare these coefficients in the following for

different shapes of the floodplain.

Different Shapes We construct a sample of 1500 quasi-random model realizations to test

whether the derived proxy-equation also works for shapes other than the “cosinusoidal” one. The

parameter values of all realizations are drawn from uniform probability distributions within the

ranges documented in Table 2, in which the sampling of parameter sets is done with a scrambled

Halton sequence (Halton, 1960; Kocis and Whiten, 1997; Cheng and Druzdzel, 2013).

For each realization (i.e., parameter combination) we solve the semi-analytical model six times,

twice for each of the three shapes (“cosinusoidal”, “bump” and “composite”), with and without

influx from the northern hillslope. This allows determining the empirical fitting coefficient 𝑎1
independently of 𝑎2 and 𝑎3. Figure 13 shows the resulting normalized hyporheic-exchange flux for
this stochastic model sample. This figure could also be used as a tool to determine 𝑄̃ex from ̃𝑥 and
|𝑄̃north| graphically. Table 3 lists the fitted empirical coefficients and metrics indicating the quality
of the fits.
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Table 3: Fitted proxy-model coefficients and quality of fit metrics for the sample of 1500 model

realizations per domain shape. Coefficient values are shown as fit ± uncertainty, where the
uncertainty is obtained through linearized uncertainty propagation.

Shape 𝑎1 𝑎2 𝑎3 RMSE0 RMSE≠0

“cosinusoidal” 6.242 ± 0.002 0.434 ± 0.001 4.121 ± 0.024 0.005 0.014
“bump” 5.852 ± 0.009 0.355 ± 0.001 4.607 ± 0.037 0.023 0.025
“composite” 5.515 ± 0.010 0.331 ± 0.001 4.755 ± 0.026 0.027 0.019

The results are similar for all three shapes and closely follow the hyperbolic secant curve in the

cases without northern influx. Considerable differences between the shapes occur only for large

northern influxes, but are mostly restricted to how quickly the associated exchange flux drops. The

“bump” and “composite” shape are very similar to each other and exhibit a slower decrease of 𝑄̃ex
with increasing 𝑄̃north compared to the “cosinusoidal” shape. The qualitative behavior, however, is

identical for all domain shapes. This is also reflected in the fitted coefficients 𝑎1, 𝑎2, and 𝑎3, which
differ only slightly between the shapes.

We quantify the quality of the proxy-equation with the Root Mean Square Error (RMSE) of 𝑄̃ex
when comparing the proxy-equation to the semi-analytical solution. We do this independently for

the cases in which the northern influx is zero (“RMSE0”), and those with a non-zero northern influx

(“RMSE≠0”). Given that 𝑄̃ex ranges between zero and one, the RMSE-values of up to 0.027 indicate
a very good agreement between the proxy-equation and semi-analytical solution. This reveals that

our interpretations are valid across the different domain shapes. Finally, we perform a linearized

uncertainty propagation to estimate the uncertainties of the fitted coefficient values. The resulting

relative uncertainties (shown in Table 3) are on the order of a few percent or less, indicating a high

confidence in the fitted coefficients.

6.3 Area of the Exchange Zone

For each realization of the model sample, we determine the area of the hyporheic-exchange zone. In

this section, we construct a simplified proxy-equation relating this area to the model input parame-

ters. To do so, we define a dimensionless area 𝐴̃, by normalizing 𝐴ex with𝐴north for all realizations.
This dimensionless area seems to be approximately proportional to 𝑄̃ex, and additionally depends
on |𝑄̃north| in the following nonlinear way:

𝐴̃ =
𝐴ex
𝐴north
≈
𝑄̃ex

√1 + |𝑄̃north|
. (6.12)

Figure 14 shows that the 3000 simulations decently follow this curve for all three domain shapes,

and Table 4 summarizes the respective quality of the fits. Again, the RMSE values (RMSEarea) of up

to 0.028 are small compared to the range of observed values (zero to one).
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Table 4: Quality of the empirical-fit metrics for the area of the exchange zone. The results are

obtained for the sample of 3000 model realizations per domain shape.

Shape RMSEarea

“cosinusoidal” 0.017
“bump” 0.024
“composite” 0.028
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Figure 14: Nearly proportional relationship between the normalized exchange-zone area and the

dimensionless discharge for the three domain shapes (a-c).

The relationship of Equation 6.12 suggests that in cases without a northern influx, the area of the

hyporheic exchange zone closely scales with the normalized exchange flux and 𝐴north. This implies

that pronounced widening (i.e., a large width difference 𝑤max − 𝑤min) leads to a larger exchange

zone, but a greater ambient hydraulic gradient (𝐼𝑥) would not have any effect on 𝐴ex.

As intuitively expected, an influx on the northern hillslope boundary leads to a reduction of the

exchange area. As outlined above, the influx from the northern hillslope leads to a reduction of the

exchange flux, but the reduction of the area of the exchange zone is even bigger. One interpretation

of that could be that an increase of |𝑄̃north| does not only shrink the exchange zone in the𝑦-direction,
but also reduces its extent along the southern boundary. For cases with 𝑄̃north = 0, on the other
hand, the southern boundary of the exchange zone always covers the entire river and the occupied

area varies only in the 𝑦-direction.

6.4 Hyporheic Travel Times

For all simulated model scenarios, we calculate the distribution of normalized travel times as

outlined above. Figure 15a-c show the resulting cumulative distribution functions for the three

different domain shapes in the cases without northern influx. Figure 15g-i contain the twin versions

of these plots, but show all model runs that had a northern influx (𝑄̃north ≠ 0). These graphs show

similar results and are subject to the same interpretations as done in the following.

We plotted the 5th, 50th and 95th percentiles to highlight the spread across the collection of curves. It
becomes clear that this spread is comparably small, and the travel-time distributions are similar, both
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Figure 15: Travel-time distributions (a-c, g-i) and coefficients of fitted beta distributions (d-f, j-l)

for the three shapes. The top figures (a-f) correspond to cases without northern influx, the bottom

figures (g-l) are the twin versions for cases with northern influx.
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for all distributions of a specific shape, and between the three shapes. All curves show a sigmoidal

behavior starting at a travel time of zero, approximately passing 50% cumulative probability at
the mean travel time (determined from the area of and discharge through the exchange zone), and

finally reaching 100% probability at about twice the mean travel time.

That the cumulative distribution function of travel times start at the origin is intuitively clear:

an infinitesimally small travel time exists at the transition point along the river between losing

and gaining conditions. The fact that all distributions nearly pass 50% at the mean travel time
indicates that the median and mean travel times are almost identical. It is obvious that there

must be a finite maximum travel time, which corresponds to the time that the water needs to

travel along the bounding stream-line of the hyporheic exchange zone, which separates it from

the remaining aquifer. This maximum travel time is about twice as large as 𝑡mean. Altogether, this

results in a symmetric travel-time distribution, which qualitatively differs from skewed travel-time

distributions occurring in systems with stagnation points.

All curves shown in Figure 15 closely resemble beta distributions that are scaled in ̃𝑡-direction.
Hence, we chose to fit the cumulative distribution functions with the beta distribution, in which

the dimensionless time ̃𝑡 is scaled by the maximum time ̃𝑡max:

𝐹( ̃𝑡) = ℐ ̃𝑡/ ̃𝑡max
(𝑝1, 𝑝2), (6.13)

where ℐ ̃𝑡/ ̃𝑡max
(𝑝1, 𝑝2) is the regularized incomplete beta function and 𝑝1 and 𝑝2 are two shape

parameters.

As a result of the fit, we obtain one set of values of 𝑝1, 𝑝2, and ̃𝑡max for each simulation. Figure 15d-f

(and by extension to cases with northern influx Figure 15j-l) shows how these three fitted parameters

depend on the dimensionless exchange flux 𝑄̃ex. Comparing the results of the three different shapes,
it is remarkable that all shapes have the same parameter values for small dimensionless exchange

fluxes, namely 𝑝1 ≈ 𝑝2 ≈ ̃𝑡max ≈ 2, implying a symmetric distribution with 𝑡max ≈ 2𝑡mean and a

standard deviation of 𝑡mean/√5. This is probably related to the fact that small values of 𝑄̃ex indicate
a large separation between the river and the northern boundary, where the specific shape of the

boundary loses importance due to the diffusive nature of the groundwater flow equation. With

increasing values of 𝑄̃ex the fitted parameters begin to differ among the three different shapes.
For the “cosinusoidal” case, the parameters barely change across the full range of the hyporheic

exchange flux, whereas the other two shapes exhibit distinct trends. With increasing exchange

flux, the maximum travel time drops from twice the mean travel time to a value of about ̃𝑡 = 1.6
for both the “bump” and “composite” shape. This trend is accompanied by a change of the shape

parameters 𝑝1 and 𝑝2. For the “bump” shape, 𝑝1 and 𝑝2 start to deviate from each other with

increasing exchange flux, creating an asymmetric travel-time distribution. In the “composite”

models, asymmetry is also introduced (albeit to a smaller extent, as 𝑝1 and 𝑝2 change in the same
direction), but the variance of the travel-time distribution decreases as 𝑝1 and 𝑝2 increase.
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Table 5: Geometric and hydraulic parameters used for the two example calculations (I: Ammer

floodplain; II: Neckar floodplain).

Parameter Symbol Example I Example II Unit

shape – bump cosinusoidal –

domain length 𝐿 3.00 ⋅ 103 6.50 ⋅ 103 m

maximum width 𝑤max 6.00 ⋅ 102 1.75 ⋅ 103 m

minimum width 𝑤min 1.75 ⋅ 102 5.00 ⋅ 102 m

fixed heat at inlet ℎ1 3.49 ⋅ 102 3.45 ⋅ 102 m

fixed head at outlet ℎ2 3.41 ⋅ 102 3.24 ⋅ 102 m

transmissivity 𝑇𝑥 = 𝑇𝑦 5.00 ⋅ 10−5 1.25 ⋅ 10−2 m2 s−1

northern influx 𝑞North −2.50 ⋅ 10−8 −7.50 ⋅ 10−7 m2 s−1

depth-integrated porosity 𝛷 2.00 ⋅ 10−1 7.50 ⋅ 10−1 m

average width 𝑤mean 4.31 ⋅ 102 1.12 ⋅ 103 m

northern area 𝐴north 7.69 ⋅ 105 4.06 ⋅ 106 m2

Most likely, this is caused by the segment of constant width that the “composite” shape exhibits

in the mid-section of the floodplain aquifer, as it encourages parallel flow paths in this part of the

domain. Overall however, the dominant behavior does neither depend on the domain shape nor on

the magnitude of 𝑄̃ex.

6.5 Application to Study Site

As a result of the previous proxy-model derivations, we propose a simplified estimation of hyporheic-

zone properties, for a given setup. For illustrative purposes, we include two examples resembling the

floodplains of the rivers Ammer (I) and Neckar (II) close to Tübingen, in South-Western Germany.

These two neighboring floodplain aquifers are exposed to similar geomorphological settings (e.g.,

their aspect ratios, the ambient hydraulic gradients and the degree of river channelization are

comparable). However, they differ in their hydraulic properties and absolute size with the larger

Neckar aquifer being dominated by sandy gravel resulting in larger transmissivities. The floodplain

aquifer located in the adjacent Ammer valley is comparably small and consists of fine-grained

material, which results in smaller transmissivities. Figure 16 shows a map of the two locations, as

well as superimposed model results in the styling of Figure 8.

Just as stated in the introduction, we are interested in the hyporheic exchange flux, the extent of the

associated exchange zone and the travel times of water parcels passing it. For the evaluation, we

use the simplified proxy-equations:

1. Determine all geometric and hydraulic parameters. For the examples, we assume the values

shown in Table 5.

2. Choose one of the three shape types that resembles the real shape best: we assume “bump”

for the first example and “cosinusoidal” for the second one.

3. Read the coefficient values from Table 3. Ammer: 𝑎I1 = 5.852, 𝑎I2 = 0.355 and 𝑎I3 = 4.607.
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Figure 16:Mapof the Ammer (case I, northern part) andNeckar (case II, southern part) floodplains

near Tübingen, superimposed with example models. The model results are displayed as flow nets

and translucent areas, similar to the styling of Figure 8. In accordance with that, bedrock deposits

are shown in tan and floodplain materials are highlighted in light gray.

Neckar: 𝑎II1 = 6.242, 𝑎II2 = 0.434 and 𝑎II3 = 4.121.

4. Evaluate𝑄0 with Equation 6.5: 𝑄I0 = 5.68 ⋅ 10−5m3 s−1 and𝑄II0 = 5.05 ⋅ 10−2m3 s−1.

5. Determine ̃𝑥with Equation 6.7: ̃𝑥I = 0.144 and ̃𝑥II = 0.173.

6. Evaluate 𝑄̃north with Equation 6.9: 𝑄̃Inorth = −1.32 and 𝑄̃IInorth = −0.10.

7. Determine 𝑄̃ex either from Equation 6.10 or graphically from Figure 13: 𝑄̃Iex = 0.308 and
𝑄̃IIex = 0.577.

8. Find𝑄ex by multiplying 𝑄̃ex with𝑄0: 𝑄Iex = 1.74 ⋅ 10−5m3 s−1 and𝑄IIex = 2.91 ⋅ 10−2m3 s−1.

9. Determine the dimensionless area of the exchange zone either from Equation 6.12 or graphi-

cally from Figure 14: 𝐴̃I = 0.202 and 𝐴̃II = 0.551.

10. Find 𝐴ex by multiplying 𝐴̃with 𝐴north: 𝐴Iex = 1.55 ⋅ 105m2 and 𝐴IIex = 2.24 ⋅ 106m2.

11. Obtain themean travel time by diving the product of𝛷 and𝐴ex by𝑄ex: 𝑡Imean = 1.78 ⋅ 109 s ≈
56.5 a and 𝑡IImean = 5.76 ⋅ 107 s ≈ 1.8 a.
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Figure 17: Schematic illustration of how to estimate the incoming flux 𝑞north at the northern
boundary from the length 𝐿hs of the connected hillslope and a hillslope recharge rate 𝑞R.

The results of the simplified estimation compare reasonably well with the results of the semi-

analytical solution (first case: 𝑄ex = 1.74 ⋅ 10−5m3 s−1, 𝐴ex = 1.51 ⋅ 105m2 and 54.0 a; second case:
𝑄ex = 2.89 ⋅ 10−2m3 s−1, 𝐴ex = 2.62 ⋅ 106m2 and 2.2 a). We see that in both cases the absolute
volumetric-exchange flux is small (e.g., compared to the discharge of the associated rivers, which is

in the order of 0.5m3 s−1 and 7m3 s−1 under base-flow conditions). Comparing the results to the

reported collection of surface-water/groundwater interaction fluxes reviewed by Cranswick and

Cook (2015), the flux is basically negligible in the first case, while in the second case it operates

at the lower end of the exchange-flux spectrum reported for rivers of similar discharge. In the

first case (Ammer), the exchange-zone area is also relatively small. For the second case (Neckar),

however, a large portion of the aquifer is taken up by the exchange zone. Both cases exhibit average

travel times on the order of years, which might be enough time for the infiltrated river water to

lose its chemical signature and become very similar or indistinguishable from “true” groundwater

(at least on the longer flow-paths).

Our proxy-equations requires a value for the northern influx rate 𝑞north, which might not be readily
available for a specific site. For such cases, the following substitution might be helpful: 𝑞north
can be approximated by the length 𝐿hs in L of the connected hillslope and an estimated average
groundwater recharge rate 𝑞R in L T−1 stemming from awater balance of a vertical two-dimensional

hillslope slice:

𝑞north ≈ 𝐿hs ⋅ 𝑞R. (6.14)

Figure 17 provides a related schematic illustration. The sketch shows a vertical cross-section of a

hillslope that is connected with the floodplain on the right-hand side. It should be noted that in the

case of the Ammer example, the northern influx was not based on such a calculation, but instead

based on fluxes estimated by Martin et al. (2020). A hillslope/recharge-based estimation for the

Ammer case would result in much larger fluxes that would deform the flow field to the point of

being inconsistent with field data. As a side note, this indicates that at least some water infiltrating

on the southern hillslope adjacent to the Ammer floodplain does not enter the floodplain aquifer(s).
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7 Conclusions & Outlook

Thewidening and narrowing of river valleys due to varying bedrock geology, produces large-scale

variations in the geometry of floodplain aquifers, which subsequently induce valley-scale lateral

hyporheic exchange even for straight river reaches. Estimating the size of the hyporheic exchange

zone, the exchange flux, and the hyporheic travel-time distribution is relevant for groundwater

management, river-water quality, and ecology. We have computed these properties by a semi-

analytical modeling approach for idealized shapes of the floodplain aquifer. We found simple

proxy-equations to decently approximate the geometry-driven steady-state exchange flux between

floodplain aquifers and connected rivers, as well as the area covered by this hyporheic-exchange

zone. The equations involve three empirical coefficients, which we have fitted for three different

shapes of the floodplain aquifer. Our semi-analytical solution for the described problem provides

the hydraulic-head, specific-discharge, and stream-function values throughout the domain. This

information can be used to determine fluxes between different points, to construct dividing stream-

lines, to highlight zones of different hydrological origin and destination, and to determine travel

times.

Our main conclusions from investigating the behavior of valley-scale lateral hyporheic exchange

across the geometric and hydraulic parameter space are:

1. The maximum width-difference, the ambient hydraulic gradient, and the longitudinal trans-

missivity of the floodplain aquifer exert a linear control on the potential maximum exchange

flux𝑄0 between the river and the floodplain.

2. The ratio of the actual exchange flux𝑄ex to𝑄0 depends non-linearly on the aspect ratio of
the domain (𝑤mean/𝐿), which is the ratio of the floodplain width to the channel length. Large
aspect ratios lead to less hyporheic exchange.

3. Horizontal hydraulic anisotropy (𝑇𝑥 ≠ 𝑇𝑦) can act as a scaling factor for the aspect ratio of
the domain, controlling the ease of which water can be drawn from the river.

4. Groundwater influx from the hillslope 𝑞north exerts a strong control on the size of the ex-
change zone, where increasing𝑞north effectively pushes it towards the riverwhile also reducing
its longitudinal extent.

5. Travel-time distributions of hyporheic exchange water roughly follow beta distributions.

The applicability of the presented model to real case studies is of course limited: Real systems are

affected by transient forcings and are subject to three-dimensional heterogeneity. Furthermore, our

model only considers two-dimensional divergence-free groundwater flow and thereby assumes

that the aquifer and the river are connected across the full aquifer depth, which is often not the

case in real systems. Nonetheless, our expressions are useful for quick estimations of the lateral

exchange flux in cases with little known information. For example, our results can be used to decide
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which of several sites is most promising for targeted measurements of hyporheic exchange if budget

restrictions limit field investigations to one site. Actual field data might then be used to calibrate

and validate flowmodels (the presented one, or a more complex model) in order to simulate and

quantify the hyporheic exchange more accurately.

Other relevant questions, for example, whether the groundwater sampling point at a given location

lies within the hyporheic-exchange zone can be answered by the semi-analytical method, but we

have not developed proxy-models for them. Future work may expand on that. Furthermore,

it might be interesting to extend the semi-analytical solution to account for river meanders or

non-uniform slopes. It might also be worthwhile to analyze the effects of asymmetric northern

boundaries/influxes (i.e., 𝑓B(𝑥) and 𝑞north(𝑥)) on the hyporheic exchange zone.
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Chapter III

Optimal Well Placement for Delineating

Groundwater Divides

Context

The contents of this chapter were published as “A Stochastic Framework to Optimize Monitoring

Strategies for Delineating Groundwater Divides” in Frontiers in Earth Science (Allgeier et al., 2020).

The author contributions are: Jonas Allgeier set up the numerical flow and particle-tracking model,

implemented the stochastic sampler, performed the computations, created the figures, and wrote

the draft manuscript; Ana González-Nicolás performed the optimal experimental design analysis

and contributed to manuscript revision; Daniel Erdal developed the stochastic sampler and the pre-

selection method; Wolfgang Nowak and Olaf A. Cirpka conceived the presented idea, supervised

the work, provided funding, and revised the manuscript draft.

The raw data supporting the conclusions of this study and all Matlab codes used to generate the

figures are publicly accessible in form of a repository at https://osf.io/ayb58/ (Allgeier et al., 2022).

8 Introduction

Groundwater divides are curves separating different subsurface catchments. Water entering the

subsurface on one side of the groundwater divide ends up in a different receptor than water

infiltrating on the other side of the divide. Delineating groundwater divides is therefore important

for the analysis of aquifer water budgets, for investigating contaminant fate, and other applications

of groundwater management. Groundwater divides also represent attractive geometries for setting

second-type boundaries of hydrogeological models, since the water flux across the divide is zero

(e.g., Pöschke et al., 2018; Qiu et al., 2019; Erdal and Cirpka, 2019). Obviously, a natural stream

network contains many nested surface water and groundwater divides of different order (i.e., a

catchment can be subdivided into sub-catchments). It is therefore always important to define the

scale of investigation to identify which groundwater divides are relevant and which sub-catchments

can be attributed to a higher-order catchment.

Thecommonassumption that groundwater divides and surface-water divides, which are comparably

easy to delineate, coincide is not always valid (Haitjema andMitchell-Bruker, 2005; Bloxom and

Burbey, 2015; Han et al., 2019). Especially when hydraulic conductivities are high compared to

recharge rates and/or when an elevation difference between the drainage points in neighboring

valleys is given a significant shift between the two divides can exist (Haitjema and Mitchell-Bruker,
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2005). Drinking water extraction wells, tilted aquifers, heterogeneities and anisotropies can also

be contributing factors. In such cases, a proper groundwater divide delineation requires detailed

knowledge about the subsurface-flowfield fromhydraulic-headmeasurements. Suchmeasurements

can be obtained from groundwater observation wells (i.e., piezometers). The installation of such

devices involves expensive drillings into the subsurface, which means that typically only few are

affordable. As a result, the respective placement should be specifically optimized for delineating a

particular groundwater divide. Either, one wants to find the best possible piezometer configuration

for a fixed number of wells, in which the optimum is defined by minimizing the uncertainty of the

divide’s position, or one wants to find the configuration requiring the least number of wells for

a fixed target uncertainty of the divide’s location. In both cases, the objective is to maximize the

information-to-costs ratio, which is a well-known general problem under the name of “optimal

design of experiments” (Pukelsheim, 2006; Fedorov, 2013).

In this study, we solve the described optimization problem. We provide a framework to identify

the best set of points to delineate a particular groundwater divide. The “goodness” of such a point

set is defined by how much the uncertainty in the divide’s location is reduced, if hydraulic-head

measurements were available at these points. The best set of points might then be implemented

as real-world monitoring wells, whose measurements can be used to calibrate a flow model for

actually delineating the divide of interest.

Of course, during the stage of identifying promising measurement locations it is unknown which

measurement values would be obtained at these locations. To circumvent this problem, we apply a

specific optimal experimental design technique called Preposterior Data Impact Assessor (PreDIA,

Leube et al., 2012). We feed it with a sample of steady-state groundwater models that is efficiently

pre-selected to include only plausible subsurface flow fields (Erdal et al., 2020). By means of

delineating the groundwater divide for each individual realization and virtually conducting all

possible measurements, we can quantify both, the total uncertainty of the groundwater divide’s

location across the domain and by how much this scalar quantity can be reduced with a specific

measurement configuration.

Themain contributions of the present study are the formulation of the problem and the development

of a suitable objective function for delineating a groundwater divide, as well as the combination of

PreDIA with the pre-selection of plausible model results.

The motivation behind our work originates from a real field site. During the investigation of

the Ammer floodplain, it was discovered that the observed lateral groundwater influxes from the

hillslopes are too small to drain the water quantities gained by the hillslope’s expected recharge. This

imbalance of in- and outfluxes has led to the conclusion that the groundwater divide underneath

the hillslope is shifted in a way that the contributing area draining towards the floodplain is much

smaller than expected, when considering the surface water divide as contributing boundary. The

phenomenon of flow crossing surfacewater divides has been referred to as “inter-basin groundwater
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flow”. It needs to be quantitatively estimated, before detailed studies focusing on the hillslope or

floodplain can be conducted. The information of whether such inter-basin flow occurs in a domain

and how pronounced it is can be of great importance, for example if contamination occurs in one

basin and a sensitive receptor (e.g., a drinking water supply well) is located in the other one.

We developed our framework for cases, where the (suspected) shift of a groundwater divide is

the phenomenon of interest that needs to be quantified. In reality, such a shifted divide might

additionally be subject to transient processes (i.e., it might move with time). This is not covered by

our methodology, but we believe our analysis might still be useful in such cases (see Section 11.5).

We want to emphasize that a shifted divide does not imply its movement over time. A groundwater

divide can very well be at a (quasi-)steady state while being shifted due to the geological setting,

which does not change significantly over time scales relevant for groundwater management.

Section 9 introduces and explains the underlying framework. Real data from the Ammer site are

used in Section 10 to test the method. We want to highlight that we separate our site-specific

implementation details (application) from the general approach of our framework (methods). The

results of our example study are presented and discussed in Section 11. Finally, we draw conclusions

and give an outlook in Section 12.

9 Methods

9.1 Particle Tracking

Theoptimal experimental designmethodwe use later on (Section 9.4) is based on stochastic runs of a

steady-state subsurface flowmodel. To model saturated and unsaturated parts of the subsurface, we

solve the steady-state version of the Richards equation for variably saturated flow in porous media

with the van Genuchten parametrization (Richards, 1931; van Genuchten, 1980, see Section 2.2).

After simulating subsurface flow, we use particle tracking to determine the groundwater divide as

explained in Section 9.3. Towards this end, we introduce particles at the land surface, track their

advective movement according to the advective velocity 𝒗 in L T−1, and analyze on which side of
the groundwater system they end. This approach is a common procedure for delineating subsurface

water divides (e.g., Hunt et al., 2001; Han et al., 2019):

d𝒙𝑖
d𝑡 = 𝒗(𝒙𝑖(𝑡)) (9.1)

subject to 𝒙𝑖(𝑡 = 0) = 𝒙ini𝑖 (9.2)

with 𝒗 =
𝒒
𝛩w
, (9.3)

where 𝒙𝑖(𝑡) in L is the position of particle 𝑖 at time 𝑡 in T, 𝒙ini𝑖 in L is the starting position, 𝒒 in L T−1

is the specific discharge, and𝛩w is the volumetric water content.

71



The approach of delineating the groundwater divide by particle tracking obviously implies that the

divide is located within the modeling domain. This is in contrast to many practical groundwater-

modeling studies, where the domain is bounded by the assumed groundwater divides. Under such

conditions, these groundwater divides are fixed by the model choice. Since we want to study the

uncertainty of the groundwater divide, we require a model domain where the divide is in the

interior so that the model has the freedom to shift it.

9.2 Generation of a Plausible Model Sample

In order to capture the uncertainty of the divide’s location (prior to any measurements and after

hypothetical measurements), our framework makes use of ensemble-modeling. This implies the

repeated simulation of the same conceptual model with different numerical representations. These

can be formally identical, differing only, for example, in some material property values. They could

also differ in more fundamental properties, like the internal structure. We call the final group of

model entities a “sample”, to avoid confusion with the term “ensemble” referring to such a group of

infinite size. Each entity of the sample is termed a realization or sample member.

Formally, a sample member is defined both, by the formulation of the general model itself (common

to all members) and by a member-specific set of parameters. In addition to that, the sample member

also comprises its deterministic modeling results (after the model was evaluated), which can be

reproduced from the general model by using the same parameter set. We denote these parameter

sets 𝒑. They are vectors of all individual properties that differ between realizations. The vector 𝒑
may include not only material properties, but also boundary conditions or geometric descriptors

(for an example, we refer to our application in Section 10.1.3).

In theory, we could create a sample of sufficient size just by drawing random parameter sets from

appropriate prior distributions and subsequent numerical modeling of subsurface-flow. These prior

distributions could be derived frommeasurements (e.g., pumping tests for hydraulic conductivities),

other models (e.g., recharge rates) or expert knowledge (e.g., anisotropies). Afterwards, particle-

tracking would obtain one groundwater divide for each realization. In practice however, we need

to exclude parameter sets that lead to implausible model results (e.g., wrong signs of fluxes across

boundaries; more examples in context of our application, Section 10.2), because that would ignore

obvious insight into the correct system behavior and thus overstretch uncertainty. Conversely, we

do not want to restrict the parameter ranges too much because we want to assess the full space of

plausible model parameters. Therefore, we keep the prior parameter ranges untouched, but rely on

the exclusion of models with obviously unrealistic results (denoted unbehavioral or implausible).

While excluding unbehavioral realizations is a conditioning step, we would not yet consider it a

model calibration, but rather a plausibility check or pre-selection (see Erdal and Cirpka, 2019; Erdal

et al., 2020; Erdal andCirpka, 2020). In a rigorous conditioning step (i.e., “stochastic calibration”) that

could follow on this pre-selection, we would modify the parameters of sample members to better
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meet the exact measurement values. A potential method to do that would be an ensemble Kalman

smoother. However, a full stochastic calibration on the existing data would be computationally

expensive, but not informative about the quantity of interest, namely the position of the groundwater

divide. The lack of hydraulic-head measurements that are informative about the delineation of the

groundwater divide is the very reason why we perform the optimal design analysis to begin with.

The decision about the plausibility and acceptance or rejection of a candidate model is based on a

set of criteria. Each plausibility criterion compares a scalar model outcome (e.g., the flux across a

specific boundary) with a target value that must not be exceeded or fallen below. Only if a model

realization fulfills all plausibility criteria, it will be included in the sample for further analysis.

A key problem of the pre-selection is that more than 94% of randomly drawn parameter sets in our
application miss at least one criterion. If we performed full runs of the numerical subsurface-flow

model for each model candidate, we would thus waste more than 94% of the computing time on
model runs that must be discarded. To overcome this problem efficiently, we have adopted the

pre-selection method of Erdal et al. (2020), which is based on the work of Erdal and Cirpka (2019).

This method relates the plausibility criteria with the model parameters 𝒑 by means of interpolation,
to estimate whether a new parameter set is likely to be plausible. To this end, we follow these steps:

1. We create a small initial sample of 𝒑 by Latin Hypercube sampling (e.g., McKay et al., 1979;

Tang, 1993; Lin, Tang, et al., 2015) from appropriate priors and performnumerical subsurface-

flow modeling for all sample members. We compute the respective values of the plausibility

criteria for each realization.

2. We train one GPE per plausibility criterion as a proxy-model, with the initial sample of

full model runs. As discussed in Section 2.3, GPEs are kriging interpolators in parameter

space that estimate the expected value of the plausibility criterion and quantify its estimation

variance, provided that the assumptions of kriging (e.g., statistical stationarity) hold. We want

to emphasize here that this is not a spatial interpolation, but an interpolation of the model

response to parameter values.

3. We then draw further random samples of𝒑. For each of them, we apply the GPEs to compute
the compliance probability with each plausibility criterion. If a realization’s product of all

individual compliance probabilities (i.e., its overall probability) does not exceed a certain

threshold value (in our case 50%), we discard it and draw a new sample. This evaluation is

comparably quick (fraction of a second) and saves us modeling time that would be wasted by

running a model that would probably need to be rejected due to implausible results.

4. For a model candidate where this product exceeds the threshold probability (a “stage-1-

accepted” realization), we perform the simulation of the full subsurface-flow model. A small

percentage of sample members (we use 5%) is run directly without checking against the GPE
estimates first.
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Figure 18: Procedure to generate a sample of physically plausible model realizations.

5. If the model candidate also meets the plausibility criteria after running the full numerical

model, it is “stage-2-accepted” (i.e., included in the sample of physically plausible models), and

particle-tracking simulations are performed to obtain the groundwater divide. Otherwise, it

is discarded.

6. With an increasingly large set of full model runs, the GPE model is regularly retrained to

improve its accuracy in predicting the behavioral status of subsequent model candidates.

With this procedure, we were able to increase the overall acceptance ratio, that is, the number of

stage-2-accepted full-model runs over the total number of full-model runs. In the initial small

sample (fullMonte Carlo), only 6% of the realizations passed the plausibility check (111 out of 2000).
With the interpolation method, we were able to achieve an acceptance ratio of 69% of realizations
subject to a full model run (50 000 of 72 481 stage-1-accepted parameter sets; a large number of

randomly drawn parameter sets was rejected in stage 1). Figure 18 schematically illustrates the

whole sample-generation procedure. It results in 𝑛sample stage-2-accepted realizations that will

actually be used in the following analysis.

9.3 Uncertainty in Delineating a Groundwater Divide

For each stage-1-accepted parameter realization (see step 4 in Section 9.2), we determine the scalar

model outcomes of the plausibility check. Additionally, we simulate virtual measurement values of

hydraulic heads at all potential measurement locations, by determining the respective elevations of

the groundwater table at these locations. The number and location of such potential measurements

is known prior to the analysis and part of the problem statement.

Only for the 𝑛sample stage-2-accepted realizations, we compute a vector 𝒛 of particle fates via particle
tracking for a regular map of starting locations: We introduce 𝑛par particles at the model domain’s
surface. These particles are tracked through the domain until they exit the domain through a

groundwater outlet. This tracking allows us to classify the particles with two categories summarized
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by the classification vector 𝒛 with 𝑧𝑖 ∈ {0, 1} and 𝑖 = 1,… , 𝑛par. A particle 𝑖 that ends up in one
outlet (A) is assigned the value 𝑧𝑖 = 1, while a particle ending up in the other outlet (B) obtains a value
of 𝑧𝑖 = 0. Since each particle is related to a starting point in two-dimensional space, 𝒛 represents
what we call the binary particle-fate map. This binary classification is sufficient to delineate the

boundary of a single subdomain, but it cannot be used to delineate all groundwater divides between

more than two subdomains (e.g., due to groundwater extraction wells). In Section 9.5 we therefore

include a generalization to an arbitrary number of subdomains. In the following, we will focus on

binary systems, because this is the most common scenario.

Other approaches than particle tracking for the delineation of groundwater divides exist. They are

typically based on locating the “ridge of the groundwater table”. However, they have been shown to

be less reliable (Han et al., 2019).

The fate of a particle 𝑖 depends on the parameter vector 𝒑 (including all variable model decisions).
The probability 𝑃(𝑧𝑖) of 𝑧𝑖 being one (that is, of the associated starting point to be within the
catchment of outlet A) is computed by integrating over the space 𝛺𝒑 of the parameter vector 𝒑,
weighted with the probability density of 𝒑:

𝑃(𝑧𝑖) =∫
𝛺𝒑

𝑧𝑖(𝒑)𝜌(𝒑) d𝒑 ≈
𝑛sample

∑
𝑗=1
𝑧𝑖(𝒑𝑗)𝑃(𝒑𝑗), (9.4)

in which 𝑧𝑖(𝒑) is the binary fate of particle 𝑖 for the given parameter vector 𝒑, and 𝜌(𝒑) is the
probability density of 𝒑. The right-hand side of Equation 9.4 is the Monte-Carlo approximation

of 𝑃(𝑧𝑖) by the sample of discrete 𝒑-values with the probability 𝑃(𝒑𝑗) given to the 𝒑-value of
the 𝑗-th realization. In our initial sample, all accepted realizations are equally likely, implying
𝑃(𝒑𝑗) = 1/𝑛sample ∀𝑗. Upon conditioning on (virtual) head measurements, 𝑃(𝒑𝑗) will become a
Bayesian weight (explained later). Franzetti and Guadagnini (1996) and Hunt et al. (2001) used a

similar approach to estimate the uncertainty of capture-zone delineations.

We can now compute the probability 𝑃mc(𝑧𝑖) of misclassifying the fate of particle 𝑖:

𝑃mc(𝑧𝑖) = 2𝑃(𝑧𝑖)(1 − 𝑃(𝑧𝑖)). (9.5)

This equation expresses the probability that particle 𝑖, which actually ends up in outlet A, is estimated
to end up in outlet B or vice versa. 𝑃mc ranges from 0.0 (full certainty) to 0.5 (maximumuncertainty).

The reason for 0.5 being the largest value of 𝑃mc is the underlying assumption that the decision

threshold for classification is at 50%. 𝑃(𝒛) and 𝑃mc(𝒛) can be visualized as maps of probability all
over the catchment. We integrate the probability of misclassification over all starting locations 𝒙ini

of particles to obtain an integral metric𝑈 describing the uncertainty of the groundwater divide:

𝑈(𝒛) = 1𝐴2D
∫
𝐴2D

𝑃mc(𝑧(𝒙ini)) d𝒙ini ≈
1
𝐴2D

𝑛par

∑
𝑖=1
𝑃mc(𝑧𝑖)𝐴ini𝑖 , (9.6)
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in which 𝐴2D is the two-dimensional top surface area of the model domain and 𝐴ini𝑖 is the con-

tributing area of particle 𝑖, which may be computed by Voronoi tessellation of all starting locations
(e.g., Brassel and Reif, 1979). Large values of𝑈(𝒛) express that the outlet destination of particles is
uncertain on a large fraction of the domain’s surface, which is not desirable.

As discussed in the context of Equation 9.4, the probability 𝑃(𝑧𝑖) of starting location 𝒙ini𝑖 being

in the catchment of outlet A, and thus the associated probability of misclassification 𝑃mc(𝑧𝑖) and
ultimately the overall uncertainty𝑈(𝒛), depends on the probabilities 𝑃(𝒑𝑗) of individual parameter
realizations 𝑗. This implies that conditioning the parameter vector 𝒑 on head observations will
change the overall uncertainty 𝑈 of delineating the groundwater divide. The following optimal

design analysis aims at minimizing𝑈.

9.4 Prospective Optimal Experimental Design

To find the optimal placement of piezometers in order to delineate a groundwater divide, we apply

the optimal experimental design method PreDIA (the Preposterior Data Impact Assessor; Leube

et al., 2012), which we briefly review in the given context.

The scientific question of optimal design is to find the combination of measurements or experiments

with the largest information content regarding a target quantity, before the experiment itself is

carried out. Formally, the objective is to identify the single design 𝒅opt of a set of 𝑛des possible
designs 𝒅 in the design space 𝒅 ∈ 𝑫 that maximizes a utility function 𝜙(𝒅) (Leube et al., 2012):

𝒅opt = argmax
𝒅∈𝑫
[𝜙(𝒅)] . (9.7)

A design in this notation is a vector containing information about how measurements are taken in

space (and/or time). The utility function 𝜙(𝒅) is a measure of the usefulness of data obtained with
an experiment using design 𝒅. The evaluation of 𝜙 requires knowledge about the measurement
results of a particular design, which is unknown at the stage of the optimal-experimental-design

analysis. PreDIA can circumvent this problem by means of ensemble-based modeling.

As previously described, 𝒑 denotes the input parameter vector, comprising all uncertain model deci-
sions, such as material properties (e.g., hydraulic conductivity), boundary conditions (e.g., recharge),

geometric parameters (e.g., thickness of geological units), or structural modeling parameters (e.g.,

presence of layers). As outlined above, we create a sample of members with physically plausible

behavior. The variability in model input 𝒑 leads to interdependent variability of model output, both
with respect to simulated measurements and simulated target quantities (the particle-fate maps).

For a given realization 𝒑𝑖, we can simulate virtual observations 𝒇𝑦(𝒑𝑖, 𝒅) for a specific design 𝒅, in
which 𝒇𝑦 denotes the simulation outcome of the measured quantities. To account for measurement
errors, we add a random error term 𝜺𝑦 to 𝒇𝑦(𝒑𝑖, 𝒅).
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Figure 19: Schematic illustration of PreDIA. Inner loop in dark blue, outer loop in light blue.

This results in virtual measurements 𝒚𝑖(𝒅) of a specific design 𝒅 and parameter realization 𝑖:

𝒚𝑖(𝒅) = 𝒇𝑦(𝒑𝑖, 𝒅) + 𝜺𝑦. (9.8)

To answer the optimal-experimental-design question, we use the stage-2-accepted realizations

to compute the 1 × 𝑛par vector of prediction variables 𝒛 (binary particle-fate map) as discussed
above. The prediction solely depends on the input parameter vector 𝒑 and is independent of the
measurement design 𝒅.

In our particular application, the prediction variable is binary, namely the true/false information

whether a particle introduced into the subsurface at a given location belongs to one out of two

catchments. The binary nature of 𝒛 implies that the sample average of it equals the vector of
probabilities that the individual elements of 𝒛 are one.

After acquiring 𝑛sample stage-2-accepted sample members with a parameter vector 𝒑 and after
computing the associated virtual measurements and prediction variables, we have 𝑛sample ⋅ 𝑛des sets
of 𝒚(𝒅) and 𝑛sample sets of 𝒛 (which can be summarized in a 𝑛sample × 𝑛par matrix𝒁). As illustrated
in Figure 19, PreDIA proceeds in the following way to identify the best design:

1. Compute the unconditional sample mean 𝑃(𝑧𝑖) of all target variables 𝑧𝑖 by Equation 9.4 with
equal probabilities of all realizations.

2. Compute the vector of unconditional probabilities of misclassification 𝑃mc(𝑧𝑖) by Equa-
tion 9.5 and the associated overall prior uncertainty of groundwater-divide delineation𝑈(𝒛)
by Equation 9.6.

3. Select a random subset of 𝑛sub realizations to define “virtual truths”. The distribution of

virtually measured values 𝒚 in this subset should be similar to the corresponding distribution
using the full sample (across all designs). When computationally feasible, select all 𝑛sample

sample members such that 𝑛sub = 𝑛sample.
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4. For each design 𝒅, determine the utility function 𝜙(𝒅) by marginalizing an objective function
𝛷 over all 𝑛sub realizations:

𝜙(𝒅) = 1𝑛sub

𝑛sub
∑
𝑗=1
𝛷(𝒚𝑗(𝒅)), (9.9)

in which we have assumed that all realizations 𝑗 are equally likely. This step defines the outer

loop over all designs 𝒅 ∈ 𝑫, which is illustrated by light blue shading in Figure 19). An inner
loop (explained in the following), is used to determine the objective function values𝛷.

5. Identify the design 𝒅opt maximizing 𝜙(𝒅) according to Equation 9.7.

In an inner loop (illustrated by dark blue shading in Figure 19), each of the 𝑛sub virtual observations
for the currently chosen design 𝒅 are temporarily considered to be the truth. The inner loop results

in 𝑛sub objective-function values for a given design 𝒅. It follows this procedure:

1. Declare realization 𝑗with the virtual observations 𝒚𝑗(𝒅) and the virtual prediction variable
𝒛𝑗 temporarily as truth.

2. Assign each realization 𝑖 ≠ 𝑗 of the full set of 𝑛sample realizations a Bayesian weight depending

on how close the respective observations 𝒚𝑖(𝒅) are to 𝒚𝑗(𝒅). The weights are computed

by terms describing the likelihoodsℒ𝑖 of observation 𝒚𝑖(𝒅) using the observation 𝒚𝑗(𝒅) as
temporary truth:

𝑤𝑖 =
ℒ𝑖
∑𝑖ℒ𝑖

(9.10)

ℒ𝑖 =
{
{
{

exp(−1
2
(𝒚𝑖(𝒅) − 𝒚𝑗(𝒅))

T
𝑹−1𝜀 (𝒚𝑖(𝒅) − 𝒚𝑗(𝒅))) if 𝑖 ≠ 𝑗

0 otherwise,
(9.11)

in which 𝑛𝑦 is the number of virtual measurements according to the current design 𝒅, and
𝑹𝜀 is the 𝑛𝑦 × 𝑛𝑦 covariance matrix of measurement errors. We assume this to be a diagonal
matrix 𝜎2meas𝑰, which implies that these errors are uncorrelated and normally distributed
with a standard deviation of 𝜎meas. The weights are summarized in a 1 × 𝑛sample vector𝒘.

3. Compute the weighted mean of all prediction variables in 𝒁 (𝒛 conditioned on the observa-
tions 𝒚𝑗(𝒅) obtained with 𝒑𝑗 and 𝒅; this is the conditioned version of Equation 9.4):

𝑃(𝒛|𝒚𝑗(𝒅)) = 𝒘𝒁. (9.12)

The 1 × 𝑛par vector 𝑃(𝒛|𝒚𝑗(𝒅)) is the vector of probabilities that the individual elements of 𝒛
are one, conditioned on the vector of observations 𝒚𝑗(𝒅) of realization 𝑗 using the design 𝒅.

4. Compute the conditional probability of misclassification 𝑃mc(𝒛|𝒚𝑗(𝒅)) by substituting the
conditional averaged particle fate probabilities 𝑃(𝒛|𝒚𝑗(𝒅)) rather than the vector of uncondi-
tional probabilities 𝑃(𝒛), into Equation 9.5.
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5. From the vectors of conditional misclassification probabilities 𝑃mc(𝒛|𝒚𝑗(𝒅)) and uncondi-
tional misclassification probabilities 𝑃mc(𝒛), compute a scalar metric𝛷(𝒚𝑗(𝒅)) summarizing
the relative reduction of uncertainty 𝑈 in classifying all elements of 𝒛 by considering the
observations 𝒚𝑗(𝒅) belonging to design 𝒅 by using Equation 9.6:

𝛷(𝒚𝑗(𝒅)) = 1 −
𝑈(𝒛|𝒚𝑗(𝒅))
𝑈(𝒛) . (9.13)

The two loops of PreDIA require large sample sizes to make reliable statements about design per-

formances. To estimate whether the chosen sample is large enough for the results to be meaningful,

one can use the Averaged Effective Sample Size (AESS; Leube et al., 2012), a concept adapted from

Liu, 2008. It is a measure of how many realizations actually contribute to the analysis, where low

values indicate filter degeneracy, which needs to be mitigated by increasing the ensemble size.

PreDIA has fundamental advantages over other optimal-experimental-design techniques. It is

applicable to inherently non-linear problems without the need of a linearization. It is also very

versatile because it imposes few restrictions on the numerical model. Besides the definition and

reading of some pre-run input and post-run output quantities, the actual numerical simulation

code is independent of PreDIA. This independence makes it trivial to couple any numerical model

with PreDIA. It can be seen as a post-processing routine for any modeling sample. PreDIA can

capture all kinds of known or estimated uncertainties in boundary conditions, material properties,

model structure, or any other model parameters due to its ensemble-based nature.

The disadvantage of PreDIA lies in its computational cost. The analysis requires large sample sizes

(i.e., tens of thousands of model runs) and is computationally expensive itself. These difficulties,

however, can be overcome with parallel computing techniques (i.e., running multiple realizations

at the same time) and simplified models that are comparably quick.

9.5 Generalizations

Non-Binary Systems In cases where one wants to delineate not only a particular (sub-)catch-

ment’s boundary, but the (potentially intersecting) groundwater divides between more than two of

such catchments, the formulation of our objective function (Equation 9.9) based on binary particle

fate maps (Equation 9.5) is insufficient. Here, the particle fates cannot be described with the binary

Bernoulli distributions, where the outcome for particle 𝑖 is 𝑧𝑖 ∈ {0, 1}.

Instead, one could rely on categorical distributions, which can havemore than two outcomes. For ex-

ample, in a domain with 𝑛fates outlets the fate of particle 𝑖 can be described with 𝑧𝑖 ∈ {1, 2,… , 𝑛fates}.
Each of the outcomes would correspond to one outlet/subcatchment/receptor. To adapt our objec-

tive function to these cases, we need to formulate the overall probability of misclassifying the fate

of a particle 𝑖. We denote the probability that particle 𝑖 belongs to the receptor 𝑘 is 𝑃(𝑧𝑖 = 𝑘).
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For such a description, all steps of the method remain as outlined above, with the only exception

that the overall probability of misclassification now becomes:

𝑃mc(𝑧𝑖) =
𝑛fates
∑
𝑘=1
𝑃(𝑧𝑖 = 𝑘) ⋅ (1 − 𝑃(𝑧𝑖 = 𝑘)). (9.14)

Transient Systems A potential transient implementation of our framework would require a

new formulation of the objective function. In such applications both, the modeled subsurface

flow-field and the observations would change over time. This means that also the particle fate maps

are transient, since the fate probabilities might change throughout the simulation period. This

results in dynamic maps of misclassification probability, that is 𝑃mc(𝑧) becomes 𝑃mc(𝑧, 𝑡), which is
a function of time 𝑡. One potential way to define a metric quantifying the uncertainty of a transient
groundwater divide would be to perform an additional integration/averaging over the simulated

model duration 𝜏:

𝑈(𝒛) = 1𝜏 ⋅ 𝐴2D
∫
𝜏

∫
𝐴2D

𝑃mc(𝑧(𝒙ini), 𝑡) d𝒙ini d𝑡 (9.15)

= 1𝜏 ⋅ 𝐴2D
∫
𝐴2D

∫
𝜏

𝑃mc(𝑧(𝒙ini), 𝑡) d𝑡 d𝒙ini. (9.16)

9.6 Numerical Implementation

Our framework does not depend on the choice of any specific software, neither for the flow

simulation nor for the optimal-design analysis. In the following application, we use HGS for the

former. Because of the Richards equation’s nonlinearity, we do not solve for steady-state flow

directly. Instead, we use the transient solver of HGS with constant forcings over a simulation time

of 3 ⋅ 1012 s ≈ 100 000 a using adaptive discretization in time. It is reasonable to assume that steady
state is achieved within this time. The velocity field of HGS is then transferred to Tecplot to perform

advective particle tracking with Tecplot’s streamtracing routine in its command line mode (Tecplot

Inc., 2019).

The stochastic engine responsible for the sampling of the parameter space and performing the

plausibility check of sample members by the GPE-based proxy-model is written in Matlab and

based on the code of Erdal and Cirpka (2019). We execute the stochastic sampler on a mid-size

high-performance computing cluster with 24 Intel Xeon L5530 nodes (8 cores per node; 2.4GHz
and 8MB per chip).

The optimal design analysis using PreDIA is implemented as a separate Matlab code that acts on the

full sample of stage-2-accepted realizations after its acquisition.
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10 Application to Study Site

The location of the groundwater divide between the Ammer and Neckar catchments north and

south of theWurmlingen Saddle is unclear. A systematic northwards shift of the groundwater divide

has been suggested by modeling studies of Kortunov (2018). However, no piezometers currently

exist along the decisive hillslope so that the hypothesis of a shifted divide is fairly uncertain.† In

order to test the hypothesis of a shifted groundwater divide at this location, the installation up to

three piezometers is considered. We apply the presented framework to optimize the placement of

these observationwells such that they can help to delineate the groundwater divide. Due to legal and

logistical reasons, all new groundwater observation points need to be placed on a transect parallel

to the road from Unterjesingen to Wurmlingen (twenty proposed locations are shown in Figure 20).

We therefore use the described method to determine the best configuration of piezometers along

this transect.

10.1 Details of the Subsurface-FlowModel

10.1.1 Discretization

Figure 20 shows a plan view of the model domain, the discretization and the boundary conditions.

We discretize the two-dimensional area by 3959 triangles arranged in a conforming unstructured

grid. These triangles are extruded in the vertical dimension to generate triangular prisms. Using 35

prism layers from the bottom of the lowermost Erfurt formation to the surface elevation results

in a grid of 138 565 three-dimensional elements with 74 412 nodes. The number of prism layers

is constant throughout the domain, whereas the prism layer thicknesses vary. The topmost prism

layers of the domain are discretizedmore finely, in order to better resolve the unsaturated zone. The

chosen mesh is a compromise between numerical accuracy and computational effort. A comparison

between models set up on this grid with models defined on an eightfold refined version revealed

some deviations at the coarser parts (mostly on the Neckar side and in the deeper subsurface of

the domain). However, we deem these acceptable because they occur where the exact hydraulic

heads are of little interest to us anyway and because they are minor compared to the variance

between different model realizations. For future applications of the presented method, we suggest

performing a grid convergence analysis with a range of different discretizations. The coarsest grid

providing adequate accuracy should be selected.

From the geological units outlined in Section 3.2, we define a total of twelve different hydros-

tratigraphic units that are assumed to have uniform properties. These units are: (1) lower Erfurt

formation (kuE), (2) upper Erfurt formation (kuE), (3) lower Grabfeld formation (kmGr), (4) upper

Grabfeld formation (kmGr), (5) lumped sandstone formations (km2345), (6) hillslope hollows,

(7) gravel in Neckar floodplain, (8) gravel in Ammer floodplain, (9) clay, (10) Tufa, (11) alluvial

†The three Grabfeld formation observation wells on the southern hillslope on the Wurmlingen saddle that were

mentioned in Section 3.3 have been installed after the analysis and publication of this chapter.
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Figure 20: Boundary conditions and two-dimensional discretization of the underlying subsurface

flow model.

fines, and (12) a river buffer zone. We decided to split the Erfurt and Grabfeld formation into two

separate subunits, to account for heterogeneities in hydraulic conductivity (e.g., due to weathering).

Figure 21 illustrates the considered hydrostratigraphic units in three-dimensional renderings.

10.1.2 Boundary Conditions

Along different parts of the boundary, we apply different boundary conditions:

1. If not specified otherwise, all outer mesh faces are assigned a no-flux Neumann boundary

condition. These boundaries are either in formations of very low hydraulic conductivity

(particularly the bottom) or the boundaries are far away from the area of interest like the

northern boundary, which is derived from a secondary surface water divide on the far side

of the Ammer valley. The eastern and western boundaries are approximately parallel to the

estimated flow field.

2. Three Dirichlet boundary sections are defined at the western, eastern, and southern sides

of the domain to allow regional groundwater flow (see Figure 20). To obtain the fixed-head

values, we interpolate between observation well data. In the Ammer valley, the Dirichlet

boundaries extend over the Quaternary fillings, while on the Neckar side, they extend over

the whole depth of the model, where the formation consists of a thin, highly conductive

gravel that thins out towards the municipality of Wurmlingen. Because of the high hydraulic

conductivity and the absence of significant vertical hydraulic gradients here, we average the

interpolated head values over depth for the Dirichlet assignment.

82



10: Tufa 9: clay 8: gravel (Ammer)

Ammer
valley

Neckar
valley

7: gravel (Neckar)

6: hollows

5: km2345

4: upper kmGr3: lower kmGr2: upper kuE1: lower kuE

12: river buffer

11: alluvial fines

Figure 21: Three-dimensional overview of the subsurface-flow model with a fivefold vertical

exaggeration.

3. On the top surface of the domain, we apply recharge as a fixed-flux Neumann boundary

condition across element faces. Recharge rates in different zones depend on land use (crop-

land, floodplain, urban areas, and km2345-covered parts). By providing recharge as a model

boundary, we lump the dynamic interaction of evaporation, transpiration, precipitation and

soil water storage into a single stationary quantity, which is of course a simplification. How-

ever, since we are interested in the effective, long-term behavior and not the high-resolution

fluctuations, we consider this simplification justified. We base our range of possible recharge

rates on previous work conducted in our domain or in comparable aquifers in proximity

(Holzwarth, 1980; Wegehenkel and Selg, 2002; Selle et al., 2013).

4. We use a leaky boundary condition to simulate the interaction between groundwater and

the Ammer river.

5. For the network of drainage ditches in the Ammer valley and the small surface water creek

in the Neckar valley, we apply seepage boundaries.

6. Drain boundary conditions are applied to all other surface nodes, allowing water to drain

whenever the groundwater table is above the ground surface. We distinguish between ele-

ments that belong to the Ammer floodplain (highlighted in light brown in Figure 20) and the

remaining surface.

Note that there are no groundwater abstractions within the model domain so that we do not need

to consider corresponding internal boundary conditions.
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We tested different initial conditions for the flow solution, but the choice of initial condition affected

mostly the run time needed to reach convergence to steady-state, and influenced the steady-state

flow field itself onlymarginally. We settled with initial hydraulic heads equal to the surface elevation.

For other applications, we recommend a similar comparison procedure to identify a useful initial

condition. Choices that are too far away from a realistic flow field (e.g., a completely dry domain)

can lead to convergence problems due to the nonlinearity of Richards’ equation.

10.1.3 Uncertain Parameters and Prior Information

Each discretized spatial element (i.e., triangular prism) has a set of parameters defining the hydraulic

properties of its material. All elements belonging to the same hydrostratigraphic unit share the

same set of parameters. This includes the hydraulic conductivity tensor, which we describe by a

horizontal (𝐾𝑥𝑦 in L T−1) and a vertical hydraulic conductivity (𝐾𝑧 in L T−1):

𝑲sat =
[[[

[

𝐾𝑥𝑦 0 0
0 𝐾𝑥𝑦 0
0 0 𝐾𝑧

]]]

]

. (10.1)

In doing so, we consider anisotropy in the vertical principal spatial direction. Further parameters

that need to be assigned to each unit are the van Genuchten parameters 𝛼 (in L−1) and𝑁, and the
residual water saturation 𝑆wr = 𝛩r/𝛩s. For the transient calculations, we also need storage-related
parameters (i.e., porosity or specific storativity), but they do not affect the final steady-state solution.

Table 6 summarizes all material properties considered random. These parameters are the first part

of the parameter set𝒑, sampled by the stochastic engine. Prior to the pre-selection/conditioning, we
assume a uniform distribution of each parameter between a minimum and a maximum value. These

distributions reflect unbiased estimates within a range of plausibility based on expert knowledge.

The values in Table 6 are grouped by horizontal saturated hydraulic-conductivity values 𝐾𝑥𝑦,
anisotropy ratios𝐾z/𝐾xy, and the van Genuchten parameters 𝛼 and𝑁. The indices represent the

hydrostratigraphic unit using the numbering scheme introduced in Section 10.1.1. In total, we

consider 30 variable material properties (named #P1 to #P30), which is less than the number of

units times the number of hydraulic properties (12 × 4 = 48) because we chose some parameters
to be identical in several geological units. The hydrostratigraphic units 1 to 6 share the same van

Genuchten properties, and the units 7 and 8 do not require these unsaturated properties because

the gravel aquifers of the Neckar and Ammer valleys are always fully water saturated. We do not

treat the residual water saturations as random variables. Instead, we apply the following values in

all model runs: 𝑆wr,1−8 = 5%, 𝑆wr,9 = 17%, 𝑆wr,10 = 18%, 𝑆wr,11−12 = 25%.

In total, we use nine random parameters (#B1 to #B9) related to boundary conditions, listed in

Table 7. We again assume uniform priors within given bounds. Parameters #B1 to #B4 regulate the

groundwater recharge 𝑅 inms−1 on the four types of land use. Here we take the random recharge
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Table 6: Prior parameter ranges of randommaterial properties for the hydrostratigraphic units

considered in the model.

ID Name Minimum Maximum Unit Comment

#P1 log10𝐾𝑥𝑦,1 −8.0 −6.0 ms−1

#P2 𝐾xy,2 1/250 ⋅ 𝐾𝑥𝑦,1 1/2 ⋅ 𝐾𝑥𝑦,1 ms−1

#P3 log10𝐾𝑥𝑦,3 −9.0 −6.3 ms−1

#P4 𝐾xy,4 𝐾xy,3 103 ⋅ 𝐾𝑥𝑦,3 ms−1

#P5 log10𝐾𝑥𝑦,5 −8.3 −7.0 ms−1

#P6 log10𝐾𝑥𝑦,6 −9.0 −3.0 ms−1

#P7 log10𝐾𝑥𝑦,7 −5.3 −3.0 ms−1

#P8 log10𝐾𝑥𝑦,8 −5.3 −3.0 ms−1

#P9 log10𝐾𝑥𝑦,9 −10.0 −7.0 ms−1

#P10 log10𝐾𝑥𝑦,10 −5.3 −3.0 ms−1

#P11 log10𝐾𝑥𝑦,11 −9.0 −5.3 ms−1

#P12 log10𝐾𝑥𝑦,12 −8.0 −3.0 ms−1

#P13 𝐾𝑧,1/𝐾𝑥𝑦,1 1/15 1 –

𝐾𝑧,2/𝐾𝑥𝑦,2 1/15 1 – coupled to #P13

#P14 𝐾𝑧,3/𝐾𝑥𝑦,3 1/15 1 –

#P15 𝐾𝑧,4/𝐾𝑥𝑦,4 1/15 1 –

#P16 𝐾𝑧,5/𝐾𝑥𝑦,5 1/15 1 –

#P17 𝐾𝑧,6/𝐾𝑥𝑦,6 1/5 1 –

#P18 𝐾𝑧,7/𝐾𝑥𝑦,7 1/5 1 –

#P19 𝐾𝑧,8/𝐾𝑥𝑦,8 1/5 1 –

#P20 𝐾𝑧,9/𝐾𝑥𝑦,9 1/15 1 –

#P21 𝐾𝑧,10/𝐾𝑥𝑦,10 1/15 1 –

#P22 𝐾𝑧,11/𝐾𝑥𝑦,11 1/15 1 –

#P23 𝛼1-6 0.50 5.00 m−1

#P24 𝛼9 0.01 0.10 m−1

#P25 𝛼10 8.00 12.00 m−1

#P26 𝛼11 0.50 0.70 m−1

#P27 𝑁1-6 1.50 6.00 –

#P28 𝑁9 1.40 1.70 –

#P29 𝑁10 1.80 2.20 –

#P30 𝑁11 1.50 2.10 –

Table 7: Prior ranges of parameters describing boundary conditions of the model.

ID Name Minimum Maximum Unit Comment

#B1 𝑅cropland 1.5 ⋅ 10−9 8.0 ⋅ 10−9 ms−1

#B2 𝑅floodplain/𝑅cropland 0 1 – coupled to #B1

#B3 𝑅mud/sandstone/𝑅cropland 0 1 – coupled to #B1

#B4 𝑅urban/𝑅cropland 0.25 1 – coupled to #B1

#B5 𝛥ℎNeckar −0.50 0.50 m

#B6 𝛥ℎriver −0.25 0.25 m

#B7 ℎAmmer,in 346.0 347.0 m

#B8 ℎAmmer,out − ℎAmmer,in −8.6 −7.6 m coupled to #B7

#B9 𝐿11 0.10 1.50 m
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Table 8: Prior ranges of structural parameters.

ID Name Minimum Maximum Unit Comment

#S1 𝐿4 0 50 m

#S2 size factor hollows 0.5 1.5 –

#S3 bottom slope hollows 0.0 0.7 %
#S4 switch hollows −0.5 0.5 – no hollows if < 0
#S5 switch riverbed −0.5 0.5 – no riverbed if < 0

rate 𝑅cropland on undisturbed cropland as reference, which is reduced by random factors for the

other land-use types (floodplain material, areas covered by mud-/sandstone, urban areas). The

parameters #B5 to #B8 modify the fixed-head values at Dirichlet and leaky boundaries. The base

values for the fixed heads used on the southern boundary in the Neckar valley (ℎNeckar) and the
stage of river Ammer (ℎAmmer) vary in space. In the stochastic setup, we consider random constant

shifts of 𝛥ℎNeckar and 𝛥ℎAmmer to all nodes belonging to the respective boundaries. The fixed-head

values on the groundwater in- and outflow faces in the Ammer floodplain are spatially constant

but uncertain, so that the stochastic model directly treats these values, ℎAmmer,in and ℎAmmer,out, as

random variables. We have chosen the ranges of these values from time series of hydraulic head

measured in existing piezometers close to the boundaries. The last random boundary condition

parameter, #B9, represents the uncertain thickness of the drainage boundary in Equation 2.29 for all

floodplain elements. The respective hydraulic conductivity is𝐾𝑥𝑦,11. For the drainage boundaries
outside of the floodplain, we assume a soil layer of 0.2m thickness and a hydraulic conductivity of

10−6ms−1. The river boundary condition (see Section 2.2.4) uses𝐾12 for its conductivity and the
geometry parameters 𝐿riv = 40m,𝑤riv = 3m and 𝐿sed = 0.5m. The river buffer zone shares the van

Genuchten parameters of to the alluvial fines layer, and is assumed to be isotropic (𝐾𝑧,12 = 𝐾𝑥𝑦,12).

Finally, we consider a total of five random parameters (#S1 to #S5) describing uncertain geometry

of structural units. Table 8 lists the ranges of the parameters. #S1 controls the maximum depth

𝐿4 of the weathered kmGr formation: Those parts of the Grabfeld formation that have a distance

to the surface elevation smaller than 𝐿4 are considered to be part of the weathered zone (fourth
hydrostratigraphic unit). The parameters #S2 and #S3 describe the three-dimensional extent of

the hillslope-hollows. #S2 controls the lateral extent of the hollows by expanding or contracting

their width by a constant factor. #S3 defines the bottom slope of the hollows, which also controls

their maximum depth. The total volume of the sixth hydrostratigraphic unit therefore depends on

both, #S2 and #S3. The final two parameters, #S4 and #S5, are converted to binary flags, deciding

whether the hillslope hollows (#S4) and explicit river beds (#5) are considered at all. Negative values

of #S4 and #5 indicate that the respective features are not considered, whereas positive values lead

to realizations including these features. We have introduced these switches because the existence

and hydraulic relevance of these hydrogeological elements is uncertain at the real field site. A full

parameter set 𝒑 is the concatenation of all #P, #B and #S values.
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10.2 Plausibility Criteria for Model Pre-Selection

We define seven criteria to decide whether the flow solution of a model realization is plausible (i.e.,

stage-2-accepted). These criteria are listed in the following:

1. To keep the realizations close to data observed in the field, the simulated hydraulic heads

are compared to real head measurements obtained in the valleys (see Section 10.3). As the

model assumes steady-state flow, we time-average the available series of measured heads at

51 observation wells and compute the RMSE of the corresponding simulated steady-state

heads. For a model realization to be stage-2-accepted, its RMSE has to be smaller than 1.5m.
This reflects the order of magnitude of the measured annual fluctuations in hydraulic head,

which are in the range of 0.5m to 2m.

2. The total groundwater flux𝑄in crossing the fixed-head boundary at the western inflow end

of the Ammer floodplain aquifers must be positive.

3. The total groundwater flux𝑄out crossing the fixed-head boundary at the eastern outflow end

of the Ammer floodplain aquifers must be negative.

4. The magnitude of the two groundwater boundary fluxes𝑄in and𝑄out should be similar. It is
unclear which of the boundaries exhibits the larger groundwater discharge at the field site.

Both scenarios are possible (an increase of discharge from inlet to outlet due to recharge

and input from the hillslopes, as well as a decrease of discharge due to drainage towards the

rivers and channels). Therefore, we only evaluate the ratio 𝛾 of the absolute flux difference
over the mean flux:

𝛾 = 2
||𝑄in| − |𝑄out||
|𝑄in| + |𝑄out|

. (10.2)

This ratio can take values between 𝛾 = 0 (both fluxes are identical) and 𝛾 = 2 (one flux is
zero). For a stage-2-accepted model realization, we require 𝛾 ≤ 1, which is equivalent to
requiring 1/3 ≤ |𝑄in|/|𝑄out| ≤ 3.

5. The sum of all exchange fluxes between the subsurface and rivers must be negative (i.e., net

groundwater discharge into rivers). Field data on the exchange fluxes are difficult to obtain

because the change of river discharge due to surface-water/groundwater exchange is very

small along the investigated stretch. Nonetheless, we expect that the rivers are net gaining as

there are no groundwater abstractions within the domain. Losing conditions might occur

only locally on short stretches of the rivers and channels.

6. A typical behavior shown in many models with randomly drawn parameters is extensive

flooding of the model domain. At the real floodplain, by contrast, we do not observe perma-

nent flooding outside of the drainage ditch network. To exclude flooding of the floodplain

under steady-state flow conditions, we require that the total flux across all drainage nodes is

small (see Section 10.1.2). As plausibility, we set that the total flux leaving at the surface must

be smaller than 10% of the total flux produced by the recharge boundaries.
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7. Finally, the water flux leaving at the drainage ditches should not be excessive. In the real

floodplain, these ditches carry water mostly seasonally and in small quantities. Since the

actual fluxes are unknown and hard to estimate, we require a stage-2-accepted realization to

drain less than 50% of the recharged water through the ditches.

10.3 Tested Experimental Designs

Currently, there are 35 piezometers already installed at the field site, for which a decent-quality

data set of hydraulic head in one or multiple depths is available. Figure 20 shows the location of

these observation wells. Accounting for different depths in multi-level wells, hydraulic heads are

measured at 51 points. However, there are no piezometers located on the hillslope between the

two valleys. This lack of observation points results in high uncertainty regarding groundwater flow

underneath the hillslope and in the location of the groundwater divide.

In order to fill this gap, the installation of up to three additional piezometers is planned on a transect.

We identified twenty potential piezometer locations along this transect, coinciding with edges of

the computational grid. These locations are also highlighted in Figure 20. The line of points extends

longer on the north than the south, because we expect the divide to be shifted towards the north.

This is so, because the northern valley is at a higher elevation than the southern valley, and also

the geological units tend to partly dip towards the south-west. Furthermore, a preliminary study

conducted by Kortunov (2018) also suggested a shift in this direction.

The optimal experimental design analysis considers designs consisting of one, two, or three new

wells, each placed on one of the twenty locations. Our design space 𝑫 consists of all possible
permutations. The total number of possible designs 𝑛des for 1, 2 and 3 locations out of a set of 𝑛pts
can be evaluated by:

𝑛des = 𝑛pts +
1
2𝑛pts(𝑛pts − 1) +

1
6𝑛pts(𝑛pts − 1)(𝑛pts − 2), (10.3)

in which 𝑛pts is the number of potential observation points. With 𝑛pts = 20, Equation 10.3 results
in a total of 𝑛des = 20 + 190 + 1140 = 1350 individual designs, out of which we need to identify the
best one.

While the optimal three-well design will obviously outperform the optimal two- and one-well

designs, we want to investigate which information gain (e.g., reduction in uncertainty of delineating

the groundwater divide) is achieved by installing more or fewer wells. However, we do not perform

a full cost-benefit analysis, as the (financial) costs are difficult to compare to the benefit of reducing

the uncertainty in the groundwater-divide delineation.
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11 Results & Discussion

Of 72 481 stage-1-accepted realizations, 20 600 needed to be rejected, because they yielded implau-

sible results according to the given criteria. Another 1881model runs were rejected, because they

did not converge within 40min of wall-clock time, set as limit to use the available computational

resources efficiently. The remaining sample consists of 𝑛sample = 50 000 accepted realizations.

Among the successful realizations, the model run times roughly followed a log-normal distribution

with a mean of 20.7min, a median of 19.5min, and a standard deviation of 6.9min (not shown

here). Due to parallelization of up to 57 simultaneous model runs, the total wall-clock time required

to obtain all realizations was approximately three weeks. For computational speed-up, we only

used 𝑛sub = 10 000 realizations as virtual truths for the optimal design analysis. We checked the
validity of this subset size by comparing the average binary fate maps of the whole sample and

the subset. There were no significant deviations. For the PreDIA analysis, we assumed a standard

deviation of measurement errors of 𝜎meas = 0.05m.

11.1 Uncertainty and Sensitivity of Head Observations to Parameters

Figure 22 shows the distributions of the simulated groundwater-table measurements at the twenty

proposed locations. For each suggested observation-well location we show (1) a violin plot of

simulated head values of all 50 000 accepted sample members, (2) the median of the simulated head

(ℎmedian, light-gray dash markers), and (3) the position of the land surface (𝑧surf, black dash markers).
The longitudinal distance is evaluated along the line connecting the proposed locations from south

to north (i.e., zero corresponds to the first, southernmost investigated point).

At the southern end of the transect (close to the surface-water divide), the distributions of the

groundwater table are very wide, whereas at the northern end in the Ammer floodplain they become

quite narrow. This behavior can be explained with the plausibility constraints put onto the model

selection. As Figure 20 shows, most existing observation wells are within the Ammer floodplain,

restricting the variability of hydraulic heads by the first plausibility criterion. Also, excluding

realizations showing extended flooding contributes to narrowing the variability of hydraulic heads

within the floodplain. By contrast, there are no piezometers to constrain the models along the

southern hillslope. Observationwells further away from the hydraulic-head-constraining floodplain

show larger uncertainty than those close by, which reflects the uncertainty in groundwater recharge

and transmissivity of the weathered part of the Grabfeld formation (kmGr). The conditioning by the

pre-selection procedure might also explain the gradual change from near-Gaussian distributions

for the northern wells to multi-modal wide distributions towards the southern end.

As indicated by the black dashes in Figure 22, the topography along the transect is not strictly

monotonic. At about one quarter along the length of the profile, a hillslope hollow oriented in

the WSW-ENE direction crosses the transect. Along the transect, the median of the simulated

hydraulic head follows the topography to some extent, but with a much smaller range. At the
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Figure 22: Distributions of virtual hydraulic-head observations using the sample of stage-2-

accepted realizations at all twenty potential locations along the transect.

southern end, the median profile of hydraulic head drops towards the south along a distance of

200m, whereas the surface elevation profile increases. The median groundwater table dipping

towards the south of the transect might indicate that the groundwater divide is shifted towards the

north, as hypothesized by Kortunov (2018). However, not all individual realizations show the same

trend as the median, indicating that the general statement of Kortunov (2018) may be uncertain.

This is why we performed the ensemble-based particle-tracking analysis to evaluate the location of

the groundwater divide and its uncertainty in the following section.

To gain insights in how the head observations depend on the input parameters, we performed a

global sensitivity analysis using the framework developed by Erdal et al. (2020), which applies the

method of active subspaces (Constantine et al., 2014; Constantine and Diaz, 2017) supported by

GPEs. The active-subspace method results in activity scores, expressing the relative importance of

all input parameters for a selected target variable. We performed this analysis for the simulated

hydraulic-heads at the 20 potential piezometer locations along the transect. At the 14 southern-

most locations along the hillslope in the weathered Grabfeld formation, the activity scores were the

highest for the conductivities in the unweathered and weathered Grabfeld formation, the thickness

of the weathering layer, and the recharge rate of cropland. At the six northern-most locations,

closer to/within the floodplain, we saw a shift towards conductivities of floodplain sediments and

recharge in the floodplain. Comparable global sensitivity patterns have been obtained by Erdal and

Cirpka (2019) in a study on a neighboring catchment with similar geology.
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Figure 23: Maps of misclassification probability 𝑃mc = 2𝑃 ⋅ (1 − 𝑃). a: Prior 𝑃mc. b-d: 𝑃mc for

the best design with one, two and three additional piezometer(s). The best configuration is marked

by black circles (unused locations shown as white circles). Surface water divide shown in black.

11.2 Maps of Misclassification Probability

Figure 23 showsmaps of themisclassificationprobability𝑃mc according toEquation 9.5. It quantifies

how likely it is that any point on the map is considered part of one subsurface catchment while

belonging to the other one in reality. The 1526 polygons were constructed by Voronoi tessellation

based on the set of starting points for particle tracking. The resolution is higher in a stripe within a

fewhundredmeters north and south of the surfacewater divide, becausewe suspect the groundwater

divide to be within this area. The colors of the polygons reflect the misclassification probability

𝑃mc of a particle released in the center of the polygon, which ranges from 0.0 to 0.5.

Figure 23a shows the map prior to installing any new piezometers. The highest values of the

misclassification probability occur close to the surface-water divide. On the Neckar (southern)

side of the surface-water divide, the misclassification probability drops rapidly. Here, all model
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realizations agree that these points belong to the Neckar subsurface catchment. On the Ammer

(northern) side of the surface-water divide, by contrast, the misclassification probability decreases

gradually, overall resulting in an uncertainty belt of the groundwater divide with a width ranging

from 100m to 800m. This confirms the hypothesis of Kortunov (2018) that the groundwater

divide might be shifted in this direction. At the foot of the hillslope within the Ammer valley, the

misclassification probability is again practically zero, because these points belong to the Ammer

subsurface catchment in almost all stage-2-accepted model realizations.

The width of the identified uncertainty belt is comparably small at the steeper hillslopes towards the

east and at the very western end, where the topmost geological layer is the low conductive lumped

sandstone formation (see Figure 21, layer 5). In contrast to that, the width is large on the gentle

saddle in the western andmiddle parts of the domain, where the top subsurface-layer consists of the

weathered Grabfeld formation, which has a higher hydraulic conductivity. This observation agrees

with the findings of Haitjema and Mitchell-Bruker (2005), stating that groundwater and surface

water divides are more likely to differ in aquifers with high transmissivities (for a given recharge

rate and geometry). The transect of the proposed piezometer locations crosses the broadest part

of the uncertainty zone perpendicular to the course of the belt. This is fortunate for the optimal

experimental design, because we can acquire information just within the most uncertain region.

Figure 23b-d shows the maps of the misclassification probability after performing the optimal-

experimental-design analysis for one, two, and three additional piezometers, respectively. Fig-

ure 23b reveals how the misclassification probability is expected to be reduced by placing a single

additional piezometer. The optimal location is the southernmost point along the transect close

to the surface-water divide. Unsurprisingly, the location of this piezometer coincides with the

location that shows the highest uncertainty of hydraulic heads in Figure 22. A comparison between

Figure 23a and 23b shows that the misclassification probability is not only reduced in the direct

vicinity of the chosen new piezometer, but essentially over the entire width of the Wurmlingen

saddle, whereas the effect at the eastern end of the model domain is negligible. This pattern reflects

the smoothness of hydraulic heads, but is strongly affected by the assumption that each lithostrati-

graphic unit has a uniform set of hydraulic parameters (only the groundwater-recharge values are

subdivided by land-use). The latter implies that conditioning the model on a single observation

point in a particular unit, here the weathered Grabfeld formation, affects the model outcome at all

other points within this unit. However, if we had considered internal variability within the units,

individual head measurements would not have reduced the uncertainty at distant points within

that unit to the same extent. Consistent to these arguments, the eastern end of the uncertainty belt

(where the topmost geological unit is the lumped sandstone formation rather than the weathered

Grabfeld formation) is not affected by placing a piezometer along the transect.

Placing a second piezometer at the northern fringe of the uncertainty belt reduces the misclassifi-

cation probability further (Figure 23c), whereas the uncertainty pattern does not visually change

when placing a third additional piezometer between the first and second piezometers (Figure 23d).
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Figure 24: Performance of all 1350 investigated designs. a-c: Normalized utility function 𝜙 of
the given design according to Equation 9.9. d-f: Piezometer combination of the given design.

11.3 Performance of Designs

Figure 24 summarizes the performance of all 1350 investigated piezometer configurations (grouped

by one-, two- and three-additional-piezometer designs). All subfigures use the design number on

the horizontal axis. In the following discussion, we use the notation “(1st piez. | 2nd piez. | 3rd

piez.)” to describe a given design, in which the numbers of the piezometer locations are sorted

from south to north. Missing piezometers in the one- and two-piezometer designs are marked by a

dash. The designs are numbered in the following way: The first twenty designs contain only one

additional piezometer, ranging from (1|−|−) to (20|−|−). The designs 21 to 210 are two-piezometer
designs, starting with the combination (1|2|−), incrementing the second location in steps of one to
(1|20|−), then moving from (2|3|−) to (2|20|−) and so forth, until (19|20|−) is reached. In order
to exclude replicates, the index of the second piezometer is always larger than that of the first.

Finally, the designs 211 to 1350 start with (1|2|3) and increment the third location first, then the
second, and then the first one, until reaching the final design (18|19|20). Again we avoid replicates
by requiring that the piezometer indices increase from the first to the third piezometer within all

designs. Figure 24d-f visualizes which piezometers the designs use.

Figure 24a-c shows the values of the utility function 𝜙(𝒅) of the given designs 𝒅 according to
Equation 9.9. It quantifies the expected relative reduction of the spatial mean of 𝑃mc applying the

measurement design 𝒅. Theoretically, this metric can range between zero (no reduction of uncer-

tainty at all) to one (perfect identification of the groundwater divide with the selected piezometer

configuration for all tested truths).

In the single-piezometer designs (Figure 24a), the performance declines with increasing design

number (placing the new piezometer further north along the transect). While the first three designs
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result in a similar relative uncertainty reduction of about 36%, 𝜙(𝒅) gradually decreases to a
negligible low value of about 3% at location 20. The optimal design is (1| − |−), resulting in a
performance of 𝜙 = 36.6%. The best locations for placing a single piezometer coincide with

the points at which the prior uncertainty of hydraulic head is the highest (see Figure 22), so that

constraining the model by taking a single head measurement at these points yields the highest

information gain. As the hydraulic heads at the northern end of the transect are already constrained

by the plausibility criteria of the model pre-selection, additional piezometers hardly pay off here.

Figure 24b shows the performances of all two-piezometer designs. Like in the one-piezometer

designs, configurations including southern piezometer locations (design numbers 21 to ca. 100)
perform better than other designs. For a given first piezometer location, the performance depends

on the distance between the two piezometers. At least for the well-performing designs 21 to 100,

the optimal distance between the two piezometers is on the order of several hundred meters. Such

a configuration performs better than designs in which the two new piezometers are further apart

or closer to each other. The best two-piezometer configuration is (2|7|−), leading to an uncertainty
reduction of 𝜙 = 50.2%. The optimal two-piezometer designs may be explained by the combined

effects of having the highest prior uncertainty of hydraulic head at the southern end of the transect

(discussed in the context of the one-piezometer designs) and the inherent spatial correlation of

hydraulic head caused by the groundwater-flow equation itself: One piezometer should be located

at the most informative southern end; placing two piezometers to close to each other would yield

redundant information (and observing a small head distance would drown in the measurement

error), while placing the second piezometer at the northern end would be of little use because here

the hydraulic heads are already constrained by the plausibility criteria.

In the three-piezometer designs (Figure 24c), this pattern is maintained, with the best location of

the third piezometer being in the middle of the other two new observation wells. Thus, placing

the third well further north, where the head-uncertainty is low, is less beneficial than refining

the spatial resolution of head measurements in the southern third of the transect. The best three-

piezometer configuration is (1|7|15)with 𝜙 = 54.2%, which is not significantly better than the best
two-piezometer configuration. We conjecture that adding a fourth piezometer along the transect

would yield an even lower increase of performance. Thus, in a practical application, it might be

better to invest the money needed to install such a well in other investigations like elaborate well

tests, or in entirely different locations (see Section 11.4).

As a quality check, we determined the average effective sample size for the three optimal designs.

The values are comparably large (AESS1 = 859.7, AESS2 = 179.7 and AESS3 = 68.1), which means
the sample of 𝑛sample = 50 000was large enough to make reliable statements about the results.

Notably, all three optimal designs use very similar locations. Each larger optimal configuration

basically includes the smaller ones as a subset (with the exception of switching between locations

2 and 1 in the two-location design). This means that, in the given application, one could decide
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whether and where to install the next observation well after installing the preceding ones, yielding

essentially the same optimal designs. Such behavior is beneficial from a practical standpoint of

view as, in real-world applications, the decision about extending a measurement network is often

made only after realizing that the existing network is not (yet) sufficient. However, we cannot

generalize that such a behavior occurs in all cases. In other applications, the optimal designs ofmany

piezometers may not be a superset of the designs with fewer piezometers. Also, the information

gained by the actual data value obtained by a first well could change the current state of knowledge,

hence leading to (slightly) different later design decisions (Geiges et al., 2015). In such cases, deciding

on the number of observation wells would be necessary ahead of the first drilling in order to achieve

optimal results.

We may compare the performance of the optimal designs with those of intuitive choices using the

same number of new piezometers. When installing a single piezometer, one might place it on the

middle of the transect using the design (10|−|−). The uncertainty reduction of this particular design

is 𝜙 = 22.9%, which is considerably smaller than the optimal performance of 𝜙 = 36.6%. When

placing installing two piezometers, one could either maximize the distance along the full transect

with design (1|20|−) or subdivide the transect into three similarly long sections with the design
(7|14|−). The performances of these scenarios are 𝜙 = 37.2% and 𝜙 = 25.1%, respectively, while
the best two-piezometer design achieved 𝜙 = 50.2%. Actually, the best single-piezometer design
performs almost as good as the intuitive two-piezometer design taken the two end points of the

transect, and is considerably better than the intuitive design using identical section lengths. Finally,

intuitive choices for the three-piezometer designs would be design (1|10|20), which includes the
two end points of the transect, and design (5|10|15), subdividing the transect into sections of
similar length. The respective uncertainty reductions are 𝜙 = 50.5% and 𝜙 = 42.0% compared to
a reduction of 𝜙 = 54.2% obtained by the optimal design. These calculations exemplify the benefit

of an optimal-design-evaluation over intuitive choices.

11.4 Designs With theThird Piezometer Being Placed off the Transect

As shown in Figure 23, installing new piezometers along the suggested transect reduces the mis-

classification probability 𝑃mc(𝒙) on the hillslope parallel to the transect, but hardly affects 𝑃mc(𝒙)
at the eastern end of the uncertainty belt. This part of the high-uncertainty belt is covered by the

lumped sandstone formation. Therefore, this uncertainty depends on the hydraulic properties and

groundwater recharge of this hydrostratigraphic unit, and can only be reduced by observations that

are sensitive to these properties. Because installing a third piezometer along the transect does not

reduce 𝑃mc(𝒙) in this zone, the difference between the two- and three-piezometer designs is rather
small. We thus hypothesize that placing a third piezometer somewhere else would yield a better

performance. We tested this hypothesis by defining an alternative design space: we keep the best

two piezometer locations along the transect fixed and then allow the third piezometer to be placed

at any node of the two-dimensional computational grid. This results in 2067 additional designs.
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Figure 25: Results with the third piezometer being placed off the transect. a: Design performance

𝜙 as a function of the third observation location. b: Misclassification probability 𝑃mc for the

optimal three-piezometer design with one piezometer not being restricted to the transect.

Figure 25a shows the performance 𝜙 as a function of the location of the third piezometer. The

maximum performance of 𝜙 = 69.3% is obtained by placing it in the eastern part of the domain,
roughly 400m north of the highest-uncertainty region remaining after installing two piezometers

(see Figure 23c). This point is located in a hillslope hollow (see Figure 20) that collects groundwater

recharged in the lumped sandstone unit. The corresponding hydraulic head is sensitive to the

hydraulic properties and groundwater recharge of the lumped sandstone formation, which affects

𝑃mc(𝒙) in the eastern section of the uncertainty belt. The latter is confirmed by Figure 25b, which

shows the resulting map of misclassification probability 𝑃mc(𝒙) for this design. This indicates

that the new location of the third piezometer indeed reduces 𝑃mc(𝒙) in the eastern section of the
uncertainty belt, which was hardly influenced by installing wells exclusively along the transect.

The average effective sample size of the optimal design in this substudy is comparably low (AESS∗3 =
4.4). This drop is caused by the large information gain by the freely moving third well, so that only

few realizations achieve significant likelihoods when compared to the hypothetical data values.

Given this low number, a larger sample would be necessary to validate the statistical significance

of the interpretations. However, given the high computational costs and because this is only a

substudy beyond our actual objectives, we refrain from doing so.

Figure 25a includes an interesting and instructive artifact of the model: According to our model,

hydraulic-head measurements on the northern hillslope appear to be beneficial for delineating the

groundwater divide at the southern boundary of the Ammer valley. Most likely this is caused by

the assumed uniformity of hydraulic parameters within each lithostratigraphic unit. In the very

north of the model domain, the lumped sandstone formation crops out, implying the same values of

hydraulic conductivity and groundwater recharge as in the zone of interest at the southern boundary.

Thus, a hydraulic-head measurement within this northern zone constrains model parameters of

the lumped sandstone unit, reducing the misclassification probability in the eastern part of the

uncertainty belt. However, we are doubtful that this would be confirmed in a real-world application.
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11.5 Strengths and Limitations of the Framework

Our framework is easily adaptable to other cases and applications, with the underlying groundwater-

flow model being trivially exchangeable. This flexibility makes it convenient to apply the presented

technique to other sites. Both interfaces, from the stochastic sampler to the numerical model,

and from the numerical model to the optimal experimental design analysis, require only basic

input/output operations of parameter values and virtual observations. While we have implemented

the stochastic sampler and PreDIA as Matlab scripts, the approach could easily be transferred to

other programming environments. However, a particle tracking tool is a necessary requirement for

our framework to work.

Among the most labor-intensive parts of the framework is the initial model development, which is

needed in quantitative hydrogeological consultancy anyway. Computationally, the creation of the

plausible sample is the most costly step, but this can be parallelized effectively. To obtain reasonable

uncertainty estimates, several thousand model realizations are needed. This may not be affordable

to everybody who might be interested in the uncertainty of groundwater-divide delineation. Such

computer-time limitations may be overcome by cloud computing.

In practical applications, the costs related to elaborate modeling in the planning phase of a new

observation-well needs to be compared to the other expenses. This includes filing the application

for legal approval, advertising for bids, planning of the fieldwork, and the drilling and completion

expenses themselves. If the presented optimal-experimental-design method is initiated at the

beginning of this process, it becomes an integral part of the decision-making process of how many

new piezometers to install and where to place them.

The way we use the chosen optimal-design method PreDIA, we can only rank experimental designs

within a given finite set. The number of elements in this set determines the computational costs

of the optimal-design part of the analysis. In our application, we confined the design space by

restricting the piezometer locations to a transect, reflecting the legal constraints at the given field

site. With three piezometers at twenty potential locations, we had to consider 1350 configurations.

In the additional study presented in Section 11.4, we removed the constraint to stay on the transect

for one piezometer, considering 2067 potential locations. Allowing all three piezometers to be

placed at any of these 2067 locations, would have resulted in more than 1.4 ⋅ 109 designs (see
Equation 10.3), which is computationally prohibitive. Tackling such a problem would need to

involve an optimization algorithm around PreDIA to iteratively find a best-performing design

without exhaustively testing all of them.

Our application was restricted to steady-state flow. Of course, real flow systems are never fully

stationary, since they are always subject to transient forcings. Depending on the investigated site,

this can include climatic influences, weather, tides or anthropogenic impacts (e.g., drinking water

supply wells). All these processes could affect the position of groundwater divides (e.g., Rodriguez-

Pretelin and Nowak, 2018). In cases where the expected movement of the groundwater flow divide
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over time is the main research question obviously need to account for this. Characteristics of

such systems might be a significant abstraction of groundwater due to pumping wells, a known

imbalance of the groundwater flow field or severe temporal fluctuations in groundwater recharge

(e.g., Sanz et al., 2009). An interesting extension of our framework would be a transient analysis

for such systems, by using transient simulations and time-dependent observations. Consequently,

the underlying objective function would need to be redefined. We provided a possible extension

towards dynamic systems in Section 9.5. However, the higher uncertainties related to inherently

more complex transient models would require a larger sample andwouldmost likely deteriorate the

performance of the pre-selection method. In the context of transient data and models, a follow-up

project could combine optimal experimental design techniques with data-assimilation methods,

but this is beyond the scope of the present study.

For most cases where the divide is suspected to be shifted but not dramatically moving over time,

our steady-state framework is applicable (with the interpretation of the steady-state as a “most

representative state”). We also want to highlight that the goal of our framework is not to derive the

position of groundwater divides themselves. Instead, we want to identify those locations that are

best suited to conduct measurements providing insight for this delineation. The actual delineation,

for example, can then be carried out by calibrating a groundwater flow model to the obtained

measurement data. This second model can be more detailed, more finely discretized and even

transient, as probably fewer model runs are necessary. Prior to the calibration, a rigorous grid

convergence analysis should be performed to validate the numerical accuracy of the model.

As with every model, the performance of the method depends on the validity of underlying as-

sumptions. In particular, we have assumed that the hydraulic parameters are uniform within each

lithostratigraphic unit and that groundwater recharge is spatially uniform in zones defined by the

topmost geological layer and land-use. Neglecting spatial variability within these zones expands

the spatial ranges over which intended measurements are informative. We may also have missed

discrete features altogether, which could affect the position of the groundwater divide but do not

influence the existing measurements. The latter would lead to a systematic bias.

The optimal-experimental-design method chosen in this study can accommodate any kind of

uncertain parameters or uncertain model choices, provided that a prior uncertainty range is given.

Both, identifying the sources of uncertainty and defining the related prior distributions require

expert knowledge, thus questioning the objectivity of the analysis. However, as with all Bayesian

methods, such choices are at least made transparent. We have made good experience by initially

setting fairly wide prior parameter ranges and then constraining the parameter space to behavioral

models by the GPE-supported pre-selection method (Erdal et al., 2020).

In the given application, we restricted the observations to hydraulic-head measurements, but this is

not a limitation of the method. It is easy to augment the virtual observation vector by other data

(e.g., hydraulic tests to be performed using the new observation wells, like borehole dilution or
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tracer tests). Like with the extension to transient flow, the consideration of additional data types

may also require more (uncertain) parameters. Systematically analyzing which type of data is most

informative for which type of question is an ongoing issue of stochastic subsurface hydrology and

optimal experimental design beyond the scope of the current study.

12 Conclusions & Outlook

In this work we have presented a framework to identify the best piezometer configuration from a

set of possible layouts to delineate local groundwater divides. Through the combination of filtered

ensemble-based modeling of steady-state subsurface flow, particle tracking, and the application

of the optimal-experimental-design technique PreDIA (Leube et al., 2012), we could identify the

piezometer configuration for which we expect the largest reduction in the uncertainty of the

groundwater divide. We have applied the method to an appropriate case study, which revealed the

following insights:

1. Configurations involving new measurement locations that are far away from existing ones

perform better, because then the variability of hydraulic head, consistent with the existing

data, is higher.

2. In our application, amedium spacing of a fewhundredmeters betweenmultiple newpiezome-

ters was optimal. Closer points would have led to redundant information due to the spatial

auto-correlation of hydraulic head. Larger distances would have pushed observation points

into non-informative regions close to existing measurements.

3. The designs, defined as optimal by the presented framework, perform better than intuitive

equidistant piezometer placements. In fact, the identified optimal design for a single piezome-

ter provides similar information content as the tested intuitive equidistant placing of two

piezometers, implying significant savings in real-world applications.

4. Additional information obtained by adding more piezometers leads to further reduction of

uncertainty, but the additional gain of information decreases with each new piezometer.

5. Our procedure may be used to estimate whether the additional information gain is worth

the effort of installing an additional observation well. The actual decision depends on the

case at hand and involves a tradeoff between desired certainty and available resources. For

us, sequential optimization of one piezometer location after the other led to practically the

same designs as jointly optimizing multiple piezometer designs, but this observation cannot

be generalized.

A worthwhile follow-up study would be the extension of the presented framework to transient

flow systems.
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Chapter IV

Proxy-Model Assisted Calibration of a

Steady-State Subsurface FlowModel

Context

At the time of writing this dissertation, this chapter is currently being prepared for publication.

The author contributions are: Jonas Allgeier set up the numerical flow model, implemented the

proxy-model assisted calibration routine, performed the computations, created the figures, and

wrote the draft manuscript; Olaf A. Cirpka conceived the presented idea, supervised the work,

provided funding, and revised the manuscript draft. We acknowledge and appreciate the suggestion

of Alexandra Gessner to try Simulation-Based Inference for our problem and the technical help of

Michael Deistler in this regard.

The model source files, the calibration code, the raw data supporting the conclusions of this study

and all Matlab codes used to generate the figures are publicly accessible in form of a repository at

https://osf.io/uptxd/ (Allgeier, 2022b).

13 Introduction

Process-based numerical modeling of subsurface flow is an important tool for hydrogeological

research. The computational power (in terms of hardware and software) has improved drastically

over the last decades. At the same time, models have increased in complexity, as new numerical

methods have become feasible, more processes could be considered and evermore detail could be

represented in the models (not only within the hydrogeologic community; Venkataraman and

Haftka, 2004; Zhou and Li, 2011; Jakob, 2014). A side effect of this development is that modern

models tend to have many tunable parameters. Finding parameter sets that make model outputs

match observed measurement data is the goal of model calibration.

In manual calibration, the modeler tests different parameter sets until a satisfactory agreement with

the observations is achieved. Albeit still being used regularly (e.g., von Gunten et al., 2014), it is

generally regarded as tedious, inefficient, not reproducible, non-transparent, and unable to truly

find optimal parameter sets (Carrera et al., 2005; Beckers et al., 2020). Consequently, automated

calibration procedures have become more popular with the rise of computational abilities (Yeh,

1986; Solomatine et al., 1999).

Automated calibration schemes aim tominimize a scalar metric quantifying the differences between

simulations and observations (i.e., an objective function). Gradient-based methods, like the Gauß-
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Newton method and its descendants (e.g., the Levenberg-Marquardt method (Levenberg, 1944;

Marquardt, 1963) or trust-region reflective methods (Powell, 1970a,b; Conn et al., 2000)) are

comparably efficient in finding aminimumof the objective function. Unfortunately, they can neither

guarantee that this is the global minimum, nor do they provide reliable uncertainty estimates if the

functional dependence between model parameters and observables is nonlinear. Ensemble-based

methods, like genetic algorithms (Goldberg, 1989; Gen and Cheng, 1999; Das and Suganthan, 2011)

andMarkov ChainMonte Carlo (MCMC) methods (Gilks et al., 1995; Brooks et al., 2011) are better

in finding the global minimum andmay provide a good approximation of the parameter distribution

conditioned on the measurements, but they require orders of magnitude more model runs than

parameters, which can be prohibitive for computationally expensive models with long run times.

For these reasons, a special branch of calibration research tries to develop efficient global calibration

schemes based on proxy-models (Haftka et al., 2016). The proxy-models are used to select the

most promising point(s) in parameter space for an evaluation with the full model. After evaluation,

the proxy-model is retrained, new points are proposed and the next iteration starts. The variants

of such proxy-model-assisted calibration schemes differ mostly in the utilized proxy-model, the

mechanism of proposing points, and the criteria to select points for model evaluation.

One of the earliest examples making use of this procedure is the Efficient Global Optimization

algorithm developed by Jones et al. (1998). In each iteration it identifies a single promising point by

optimization of the “expected improvement”metric, which balances the predicted objective function

value with the estimated uncertainty. Regis and Shoemaker (2007) presented a more recent example

of a proxy-model-assisted global optimization tool, where a single point is selected from a randomly

generated set of points by evaluating a metric based on predicted objective function value and

distance to all previous points. Regis and Shoemaker (2009) provided an expansion of this method

by introducing a parallelized approach. In each iteration, multiple points are iteratively selected

from a set of randomly proposed points. All points are then evaluated in parallel using a high-

performance computing cluster. Wang and Shoemaker (2014) and Xia et al. (2021) extended this

general concept by more sophisticated point proposals, where the number of tweakable parameters

is restricted over the course of the calibration. In this study, we propose and apply another variant

of proxy-model assisted calibration tailored towards our specific modeling case at hand on the basis

of the scheme developed by Regis and Shoemaker (2009). We extend the latter scheme to account

for model plausibility, such that the calibration results in a parameter set that produces a plausible

model realization.

Global model calibration is associated with finding a single optimal parameter set for a given

model and a set of observations. In many cases, especially for models with numerous parameters,

there are different points in parameter space that can produce similar or even identical results,

which makes the problem of global calibration ill-posed (i.e., a unique solution does not exist;

Zhou et al., 2014). This problem is known as equifinality (Beven, 2006). Stochastic calibration

methods try to counteract equifinality problems by characterizing the uncertainty of calibrated
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parameters, or by even finding a multi-dimensional distribution of points that create acceptable

model results. Traditionally, stochastic calibration can be performed by Bayesian methods based

on the likelihood approach (e.g., Mohammadi et al., 2018; Beckers et al., 2020). MCMCmethods

represent a particularly popular example in the Bayesian toolbox. However, these likelihood-based

methods also suffer from the fact that many model realizations are necessary, which is often not

affordable.

In this study, we circumvent this problem in two different ways to still construct full posterior

parameter distributions for our calibration problem. First, we define a proxy-model from those

runs of the original model that were conducted during the global calibration. We then applyMCMC

sampling not to the original model, but themuch faster proxy variant. As an alternative, we generate

a full posterior parameter distribution through a likelihood-free method of the field of Simulation-

Based Inference (SBI) (Cranmer et al., 2020; Tejero-Cantero et al., 2020; Lueckmann et al., 2021),

namely Neural Posterior Estimation (NPE). This tool is based on machine learning and requires

only a collection of model inputs and outputs sampled from the prior distribution.

We compare the two resulting posterior distributions with each other and to the results of the

optimization-based global model calibration. This allows us (1) to gain insights beyond a best-

estimate parameter set, like the assessment of parametric uncertainty and correlation information,

and (2) to assess which posterior construction method is more appropriate/reliable for our problem.

Section 14 introduces our methodology and the model we consider. Then we present and discuss

the calibration results in Section 15. Finally we summarize our conclusions and give suggestions

for further research in Section 16.

14 Methods

We first introduce our notation and terminology. Afterwards we point out challenges that are

associatedwith calibration algorithms concerningmodelswith long run times and howwe approach

them. Thenwe present themethodswe use for the inference of full posterior parameter distributions

(SBI/NPE and MCMC). Finally, we introduce the model that is to be calibrated.

14.1 Calibration Terminology and Notation

Parameters A parameter is a variable model input that is allowed to change between different

model realizations. In hydrogeologic models it may internally affect material properties, boundary

conditions, or the geometry of geological features. A change in a parameter’s value usually also

leads to a different model output.

The particular parameter value 𝑝 of a single realization is a scalar quantity, typically symbolizing a
physical or mathematical property. It therefore usually consists of a value and a dimension (with a

unit), but it can also be dimensionless. Amodel typically depends onmultiple parameters𝑝1,… , 𝑝𝑑,
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where 𝑑 is the dimension of the calibration problem (i.e., the total number of parameters). For a

more compact notation of all parameters of a model realization, we introduce the parameter vector

𝒑 = [𝑝1,… , 𝑝𝑑]. A parameter set 𝒑 can also be referred to as a point in parameter space.

Working directly with the “physical” parameter values of the model has disadvantages that we

will discuss later on. We therefore introduce parameter transformations. The first one converts a

physical parameter vector 𝒑 to a normalized vector 𝒑cdf of the same size with dimensionless entries
ranging from 0 to 1. We denote this transformation 𝒇cdf and its inverse 𝒇−1cdf, implying that 𝒇cdf can
be interpreted as the vector of prior cumulative probabilities of all individual parameters:

𝒑cdf = 𝒇cdf(𝒑) (14.1)

𝒑 = 𝒇−1cdf(𝒑cdf). (14.2)

We introduce a second transformation converting the normalized parameter values 𝒑cdf to re-
scaled values ̃𝒑, with dimensionless entries ranging from −∞ to +∞. For forward and backward
transformation, we again define vector-valued functions:

̃𝒑 = 𝒇scl(𝒑cdf) (14.3)

𝒑cdf = 𝒇−1scl( ̃𝒑). (14.4)

Note that for the specific case of ̃𝒑 following a standard normal distribution, the combination
of the two transformations applied here is known as normal-score transformation, or Gaussian

anamorphosis (Wackernagel, 2003; Everitt and Skrondal, 2010). In summary, we have three equiva-

lent and effortlessly convertible ways to express parameter sets. We use ̃𝒑 for calibration-internal
calculations and transform these via 𝒑cdf to 𝒑, whenever a full model run is desired.

Model We denote the full model itselfℳ. A model realization with a specific parameter set 𝒑
results in the model outcome:

{𝝑•, 𝝋•} =ℳ(𝒑), (14.5)

which is split into two parts. The first one contains all 𝑛obj quantities needed for the evaluation
of an objective function (explained in the following): 𝝑• = [𝜗•1,… , 𝜗•𝑛obj]. The second one consists

of all 𝑛plaus quantities necessary for a plausibility assessment (also explained in the following):
𝝋• = [𝜑•1,… , 𝜑•𝑛plaus]. These two sets of model observations can intersect and could even be identical.

We just use a formal distinction for clarity. We use the symbol “•” to indicate the output of a full
model run (in contrast to proxy-model outputs introduced in the following).

Proxy-Model We use 𝒫 to denote the proxy-model that is used for accelerating the calibration.

In our case, the proxy-model is constructed (i.e., trained) from a set of known pairs of model input

(in terms of ̃𝒑) and model output (in terms of {𝝑•, 𝝋•}). The trained proxy-model can provide a

predicted model outcome for a specific re-scaled parameter vector ̃𝒑.
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This results in a predicted outcome, which ideally approximates the outcome of the full model:

{𝝑∘, 𝝋∘} = 𝒫( ̃𝒑) ≈ℳ(𝒑) = {𝝑•, 𝝋•}, (14.6)

where we use 𝒑 = 𝒇−1cdf(𝒇−1scl( ̃𝒑)). In analogy to the full model, the predicted model outcome
consists of objective-function quantities (𝝑∘ = [𝜗∘1,… , 𝜗∘𝑛obj]) and plausibility-function quantities
(𝝋∘ = [𝜑∘1,… , 𝜑∘𝑛plaus]). The symbol “∘” denotes proxy-model predictions.

Objective Function Theobjective function𝑓obj compares the 𝝑-part of the model output (which
could be a predictedmodel outcome 𝝑∘ or a full model output 𝝑•) to a target data set 𝝑∗ and provides
a scalar quantity of agreement 𝑦:

𝑦𝒑 = 𝑓obj(𝝑∗, 𝝑). (14.7)

Within the scope of this study, we assume that smaller numbers of 𝑦 indicate a better fit between
model output and target data. The calibration therefore aims to minimize 𝑦:

𝒑best = argmin
𝒑
𝑦𝒑, (14.8)

where 𝒑best is the best parameter vector found (ideally the global optimum).

Plausibility Function Similar to the objective function, we define a plausibility function 𝑓plaus
that takes the 𝝋-part of the model output (which could be 𝝋∘ or 𝝋•) and assigns a scalar quantity of
plausibility based on some internal rules:

𝑧 = 𝑓plaus(𝝋), (14.9)

where 𝑧 is a plausibility score ranging from zero (fully implausible) to one (completely plausible). A

detailed description of how we define and use the concept of plausibility is given in Section 14.2.

14.2 Calibration Scheme Challenges

Aviable calibration scheme faces several challenges, especially if confrontedwithmodels that require

a long run time. In the following, we will provide a summary of all problems we encountered when

developing our calibration scheme and of the solutions or workarounds that we applied.

Diversity of Model Parameters & Prior Definitions A common, but little talked about prob-

lem in model calibration is the diversity within the set of all physical input parameters 𝒑. For
instance, some parameters might describe hydraulic conductivities, others might be related to

recharge rates, a third group might define boundary conditions and a last set might describe the

geometry of features (e.g., thickness, dip and strike of geological layers, or offsets at faults). Simply

summarizing all of these in a single vector 𝒑 can be problematic for several reasons.
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First of all, not all parameters have the same physical dimension. While hydraulic conductivities

and recharge rates are in principle compatible (both are expressed in L T−1), the comparison of the

respective values is hardly meaningful. Others, like a fixed-head value (expressed in L) and a fixed

flux (expressed in L3 T−1) might not even be compatible to each other. The most primitive way to

circumvent this problem would be to divide each parameter by its unit, thus creating dimensionless

quantities. However, this remedy would arbitrarily depend on the chosen unit.

In fact, there is another problem with directly using 𝒑 for calibration: the allowable parameter
ranges (i.e., support intervals). While some parameters can in theory assume any real value, others

might have to be positive (e.g., hydraulic conductivities) and a final group has to stay within a fixed

interval (e.g., porosities ranging between zero and unity). Conducting the calibration on 𝒑would
result in a parameter space with complicated boundaries, where it is not trivial to ensure that newly

proposed points are within the valid limits.

Amore common remedy to this problem is to normalize each parameter by a relative value between a

minimumand amaximumnumber (e.g., seeChapter III).Thisway, all parameters can be summarized

by a dimensionless number between zero and one and the parameter space becomes a𝑑-dimensional
hypercube. We believe this is not the best solution, because it still requires checking validity of

points proposed by the calibration scheme with respect to being inside the hypercube. When

restricting all parameters to bounded intervals of finite values, it is also sometimes unclear how to

set these boundaries, especially for parameters that are in principle unbounded.

An approach that can account for both bounded and unbounded parameter ranges is based on

defining a probability density function for each input parameter and operate the calibration in

the space of cumulative probabilities (𝒑cdf). For individual model runs, a parameter vector is back-
transformed to physical space, where it can assume all values that are considered reasonable, or

even physically possible without the necessity of defining bounded intervals (uniform distributions

on a bounded interval are possible too, of course). The probability density function and the associ-

ated cumulative distribution function do not need to be based on analytical expressions (e.g., the

normal, Beta, Gamma or log-normal distribution). They could even be of empirical nature (modern

programming/scripting languages allow effortless construction and sampling of such).

We go one step further, by introducing a second transformation step via the inverse logit transform,

to re-scale the cumulative distribution values onto the unbounded interval (−∞,∞):

̃𝑝 = 𝑓scl(𝑝cdf) = log(
𝑝cdf
1 − 𝑝cdf
) . (14.10)

This leads to a homogenized vector ̃𝒑with entries ranging from −∞ to∞ following a standard

logistic distribution. This additional transformation has multiple advantages:

• It opens up the parameter space from a hypercube to the full 𝑑-dimensional space, which
means that the calibration algorithm does not need to account for any boundaries.
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• It avoids a problem of the 𝒑cdf-space, which might occur for distributions with pronounced
tailing: increasing or decreasing of the parameter value in the direction of tailing means

going closer and closer to the boundary of the 𝒑cdf-space. As a result, the derivative of the
physical parameter value with respect to the 𝒑cdf coordinate becomes very steep towards the
respective boundary. This might be problematic for a calibration routine. Obviously, this

problem depends very much on the chosen probability density functions, but in general the

re-scaled values ̃𝒑 do not suffer from this problem to the same extent, as the inverse logit

transform contains a double-sided tailing itself.

• By construction, the origin of the re-scaled parameter space is located at the median of

all physical parameter value prior distributions. This makes it easy to interpret positive or

negative numbers, as they mean “larger than” or “smaller than” the median.

• We note that by using the logit-retransformed space, we make sure that no point can actually

reach themaximumorminimumvalue of the input distributions. As this is typically unwanted

in calibration anyway, we consider this a useful feature as long as the input distributions are

chosen appropriately.

For the re-scaling, any distribution that maps the space (0, 1) to (−∞,∞) (e.g., the inverse Gaussian
distribution) is equally applicable. We prefer the unscaled logit transformation, because it shows

a slightly more pronounced tailing than a similarly scaled probit transformation. It also has the

advantage of a trivial formulation for both forward and backward transformation. A disadvantage

is that conditioning techniques that require Gaussian distributions, like Kalman Filtering, are not

applicable. As a side-note: If themapping onto the standard normal distribution is denotedGaussian

anamorphosis, the transformation suggested here might be denoted logistic anamorphosis.

Limitations inComputationalResources andTime For spatially distributed subsurface-flow

models, like the one we are discussing in this study, a single model run may take several hours or

even days. Calibration in the sense of global optimization typically requires many model runs,

which means available time and/or computational resources can become a limitation. As outlined

previously, one way to alleviate this problem, is the use of proxy-models. The actual calibration

algorithm could then operate on the proxy-model, with occasional feedback between the full model

and the proxy variant. This feedback might include running the full model at promising points in

parameter space that were identified by the proxy-model, as well as re-training the proxy-model

after a sufficient number of new input/output pairs was generated by running the full model.

In our approach, we make use of GPR for proxy-modeling (see Section 2.3). This technique is based

on the interpolation of model outcomes between evaluated full model runs. The underlying concept

and mathematical description is formally identical to kriging, but instead of interpolating in the

two- or three-dimensional physical space, it is carried out in the higher-dimensional re-scaled

parameter space (i.e., with ̃𝒑).
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Utilization of Computer-Cluster Resources Another important tool to overcome computa-

tional limitations is parallel computing. The presence, availability, and power of high-performance

computing clusters has improved drastically in recent years. With such clusters, it is comparably

easy to run computations in parallel. This can enhance model calibration in several ways:

• Parallelizing the underlying subsurface-flow model, for example by domain decomposition

(e.g., Hwang et al., 2014), can accelerate the individual model runs. However, increasing

communication-overhead limits this acceleration (i.e., doubling the number of processors

will not lead to a runtime decrease of 50%). For instance, the HGS manual recommends one
processor for each 105 model grid nodes for optimal parallel efficiency.

• Parallelization can also be realized on the level ofmodel runs themselves (i.e., runningmultiple

distinct realizations on different processors). As the individual model evaluations should

be completely independent of each other, this approach is trivial to implement. Besides

the initial model construction, and the final readings of the output, there is also no need

for communication between the model run and other processes. Hence, the efficiency does

not generally decline with increasing number of processors. However, a direct inversely

proportional relationship between core number and runtime is also not guaranteed, because

typically not all realizations take the same time and the slowest one might be decisive.

• Finally, the model calibration procedure itself might be able to benefit from parallelization

techniques. We outline one possible way to this in Section 14.2.

Schwede et al. (2012) investigated performance gains through the first two approaches.

Early calibration algorithms aiming at optimal use of limited computational resources focus on

requiring as few model evaluations as possible (e.g., Jones et al., 1998; Regis and Shoemaker,

2007). However, with parallel computing, the limiting factor is not the absolute number of model

evaluations themselves, but the number of iterations that have to be carried out in sequence. We

illustrate this with an example: If the available cluster can run 100 models simultaneously, it is

insignificant if the calibration algorithm needs 5, 10, 50 or 99model evaluations as long as they are

independent of each other. The wall-clock time will be identical (assuming each model realization

takes the same time). Instead, itmattersmuchmore if the algorithm requires 500or 1000 evaluations,

because then the wall-clock time for calibration increases by a factor of 5 or 10. Obviously, during

typical calibration algorithms, each model run is not independent of the previous one. On the

contrary, the algorithm suggests new points to test, after evaluating all previous points. Still, the

available computing resources should be used as much as possible.

We use a calibration approach that attempts to do this. As many others, it is based on an iterative

procedure that cycles between finding promising points and evaluating the objective function at

these points with the full model (e.g., Regis and Shoemaker, 2009; Wang and Shoemaker, 2014; Xia

et al., 2021). Having access to a computer cluster, we can afford to probe several points within an
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iteration, thereby scanning the parameter space and trying to identify the global minimum. To

increase the efficiency even further, and to account for the fact that not all model runs take the same

time, we even submit more points than required for the next cycle. We then wait until a desired

number of newly evaluated points and the respective information is available and continue with

the calibration procedure, while the remaining submitted models are still executed. This ensures

that the cluster resources are used meaningfully, while the algorithm is busy with finding the next

points to be evaluated.

Initial Sample Proxy-model assisted calibration schemes typically require an initial sample of

points, where model input and output are known (i.e., pairs of ̃𝒑 and {𝝑•, 𝝋•}). It is therefore
common to start the calibration procedure with constructing an initial sample of a given size (e.g.,

five or ten times the number of input parameters 𝑑). To sample the parameter space as efficiently as
possible, these points should not be drawn fully randomly, because pure random sampling has the

tendency to produce clusters of closely-spaced points and sparse regions of low point-density. One

way to avoid this, is the use of so-called space-filling designs, which try to space out the points as

equally-distributed as possible. A common space-filling design is the Latin hypercube (e.g., McKay

et al., 1979; Tang, 1993; Lin, Tang, et al., 2015), which provides a good spacing for a fixed number of

points in an arbitrary number of dimensions.

We construct our initial sample by means of the Halton sequence (Halton, 1960; Berblinger and

Schlier, 1991), a sequence of low discrepancy that can also be used to define space-filling designs.

The main advantage of the Halton sequence over a Latin hypercube design is its expandability: it is

not necessary to specify a number of points in advance and each next point of the sequence is close

to optimally spaced compared to all previous points. By basing our initial sample on this sequence,

we provide an excellent basis not only for the calibration algorithm and the proxy-model, but also

for continued global exploration of the parameter space (further discussed in Section 14.2).

Just like Latin hypercube designs, the Halton sequence produces points of arbitrary dimension (in

our case 𝑑) with coordinates ranging from 0 to 1. We treat these as points in the parameter space of

the form 𝒑cdf. By means of the inverse cumulative distribution function 𝒇−1cdf, we can convert these
values to physical parameter sets for the full model. By applying the inverse logit transform 𝒇scl, we
can convert these values to the homogenized re-scaled parameter space spanning (−∞,∞). These

definitions result in a denser sampling where the parameter distributions have a higher probability

density, which means computational resources are used to explore those regions of the parameter

space in more detail that are a priori considered to be more likely.

Proxy-Model Accuracy There are several ways of incorporating proxy-models into model

calibration. In the most straight-forward approach, a single proxy-model is used to directly relate

input parameters to the objective function value of the respective model results:

𝑦∘ = 𝒫( ̃𝒑) ≈ 𝑓obj(𝝑∗,ℳ(𝒑)) = 𝑦•. (14.11)
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This has the advantages of a trivial implementation and comparably minor computational effort.

However, it also comes at the cost of intermingling the behavior of the subsurface-flow model

with the behavior of the objective function. For example, two distinct input parameter sets might

result in completely different model outputs 𝝑, but rather similar objective function values 𝑦. This

underlying structure is hidden from the proxy-model and the available information (i.e., the raw

outputs 𝝑) is not utilized to the full extent. Ultimately, this could have adverse effects resulting in a
subpar prediction quality of the proxy-model.

One way of avoiding this intermingling is to define, train and use multiple internal proxy-models

and summarize them to a single “meta proxy-model”. To do that, we can train one GPE for each

observation that is used within the objective function. To estimate how a parameter set would

perform using the full model, all internal proxy-models are used to predict the individual model

outcomes and these predictions are then handed to the objective function:

𝑦∘ = 𝑓obj(𝝑∗,𝒫( ̃𝒑)) ≈ 𝑓obj(𝝑∗,ℳ(𝒑)) = 𝑦•. (14.12)

In thisway, predicting howa specific parameter setwould performwith the fullmodel in terms of the

objective function becomesmore reliable. Obviously, this benefit comes at additional computational

costs. These costs are two-fold: First, the construction (i.e., training) cost of the meta-proxy-model

increases proportionally with the number of observations 𝑛obj. For a limited set of independent
observations (e.g., about one hundred or fewer), like in our steady-state subsurface-flow model,

these additional costs can easily be alleviated by making use of available cluster resources (as the

proxy-models are independent of each other, their training can be trivially parallelized). However,

for the calibration of transient models, where the objective function depends on time series, these

costs quickly become prohibitive. Second, this approach also leads to an elevated computational

effort (that again grows proportionally with the length of 𝝑) each time a prediction is requested. We
deem this acceptable, as we assume the proxy-modeling is so fast that the difference of evaluating a

single or multiple internal proxy-models is small compared to the computing time of a full model

run and thereby the overall calibration timeframe.

Balance of Exploitation and Exploration A key issue of calibration with restricted computa-

tional resources is to strike a balance between parameter space exploration and exploitation (Jones

et al., 1998; Forrester and Keane, 2009). In this context, exploration refers to drawing and test-

ing points, where the expected model outcome is most uncertain, to learn more about the model

behavior. Most of the time, these points tend to be in regions of the parameter space which are

far away from all previously evaluated points. On the other side, exploitation tries to make use

of the available points in such a way, that new points are drawn and evaluated where the model

is expected to show the best performance (i.e., the smallest value of the objective function). An

algorithm solely focusing on exploration might take forever to find a reasonably good point to

satisfy the convergence criteria, while an algorithm only based on exploitation might quickly get
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stuck in a local minimum. As a result, many techniques of balancing these two “drivers” have been

developed (e.g., Jones et al., 1998; Regis and Shoemaker, 2007; Wang and Shoemaker, 2014). In his

study, we make use of the surrogate-distance metric developed by Regis and Shoemaker (2007) and

used by Regis and Shoemaker (2009) and Xia et al. (2021) to balance exploitation and exploration. A

brief summary of this procedure is given in Section 14.3.

In addition to points selected through the surrogate-distance procedure, we also select and submit

some points for full model evaluation based on the Halton sequence. By doing so, we ensure true

systematic global exploration. Conceptually, we think of it as following three strategies in parallel:

• local exploitation: track down local minima in the neighborhood of existing good points

• regional exploration: obtain a better impression of the response surface in the somewhat

wider region of existing good points

• global exploration: systematically explore the full parameter space without any bias.

Choosing points for all three criteria (with a smooth transition between the first and the second

through the weighted surrogate-distance metric), is a promising strategy to approach good points

without getting trapped in local minima or completely missing some regions in parameter space.

Plausibility of Calibration Results Ideally, model calibration should result in a parameter set

𝒑best that not only produces a model realization with optimal agreement of measured and modeled
observations – this realization should also be plausible. We consider (im)plausibility a property of

a model realization that would be more or less obvious to a human modeler when looking at the

output. An implausible model might, for example, have fluxes across model boundaries that are

orders of magnitudes off or even have the wrong sign. To avoid an implausible calibration outcome,

the algorithm needs to be made aware of the concept of plausibility.

In principle, this would require a multi-objective optimization, as plausibility and small objective

function values do not necessarily have to coincide. However, we think plausibility and lowobjective

function values do not share the same priority. It would therefore not make sense to construct a

Pareto front, because plausibility is more important (to us) than the value of the objective function.

For example, we would consider even a perfect fit of measured (𝝑∗) andmodeled data (𝝑•) worthless,
if the respective realization is implausible. Hence, we can view plausibility as a strict constraint

on the calibration. As 𝝑∗ is obtained from reality (which should be plausible by definition), it also

makes sense to assume that restricting the calibration to plausible points is helpful with respect to

finding realistic values of 𝝑•.

Obviously, to inform the calibration algorithm about the concept of plausibility, it needs to be

transferred to objective, quantitative metrics. We do this by defining a plausibility function (Sec-

tion 14.1) based on several plausibility criteria, each one operating on a scale from zero (implausible)

to one (plausible). For instance, a wrong sign of a boundary flux would yield zero; a correct sign
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would yield one. For some criteria (e.g., the absolute value of a flux or the ratio of two fluxes),

the boundary between fully plausible and fully implausible is not as clear. Wherever it is hard to

accurately define such a boundary, we use smooth transitions between zero and one to indicate a

plausibility fringe. The overall plausibility of a model realization is ultimately defined as the product

of all individual plausibility contributions. This ensures, that even if only a single criterion out of

many is not fulfilled, the overall assessment is “implausible”.

There are several potential ways to incorporate the plausibility function into a calibration algorithm.

For example, one might only check after a full model run, whether the results are plausible or

not. In the latter case, a penalty could be added when evaluating the objective function. Our

implementation considers plausibility already during the stage of creating a set of proposed points.

When constructing the set of proposal points, we apply a plausibility-based rejection-sampling

approach based on another proxy-model (or meta proxy model) for plausibility assessment. A point

with a predicted plausibility…

• …of 0 is immediately rejected and will not be run with the full model.

• …of 1 is immediately accepted and added to the set of proposal points that will be used for
selecting new full model runs.

• …between 0 and 1 is compared with a random number drawn from a uniform distribution

covering the interval (0, 1). If the plausibility value is larger than the random number, it is

added to the set of proposal points.

As a result, the set of proposal points only contains suggestions that are predicted to be at least on

the fringe of plausibility. A higher priority is given to points closer to full plausibility.

We do not apply the plausibility-check to points selected from theHalton sequence to ensure full and

unbiased global exploration. Such a point, an initial sample point or a point that was erroneously

predicted to be plausible, can turn out to be implausible. To avoid that these are treated as a viable

solution to the calibration problem, we only consider the subset of points with a plausibility larger

than zero for the calibration convergence criteria.

14.3 Applied Calibration Scheme Variants

As outlined above, we use the general parallelized proxy-model assisted calibration procedure

developed by Regis and Shoemaker (2009) in an adapted form. We use four different variants

differing in the number of internal proxy-models and the way of proposing points for full model

evaluations. Nonetheless, they are all based on the following general procedure:

1. Prior Definitions: For each model input parameter, a prior probability density function is

defined. These distributions allow all physically possible parameter values, but give a higher

priority (through probability density) to those values that are considered likely or reasonable.
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2. Initial Sample: By means of the Halton sequence, an initial set of points (in our case of

size 120) is drawn from the prior distributions in a space-filling way. The respective model

realizations are generated and submitted to a computing cluster for evaluation.

3. Main Loop: This loop is entered when all initial samples are available. It is executed until

some convergence criteria are fulfilled. In our case, we run all variations until 3070model

realizationswere simulatedwith the fullmodel. A single evaluation of the fullmodel requires a

wall time of about 1 h, which results in a total calibration runtime of a few days per calibration

variant (achieved through parallelization). We call each iteration of this loop a cycle.

(a) Analyze: The objective and plausibility functions are evaluated for all new model

realizations. At this point, the convergence criteria are checked and if they are met, the

main loop is terminated.

(b) (Re)train Proxy-Model(s): We keep track of all model inputs and outputs for all

full model realizations. We train a proxy-model for both, the objective function and

the plausibility function. Depending on the case, this requires up to one GPE per

observation. To accelerate this step, we parallelize the training by submitting training

jobs to the cluster.

(c) Propose Points: We generate a set of 𝑛pro = 104 plausible points scattered around
those locations that have proven to be “good” so far (judged by the objective function

value). The specific details of how to create those points are outlined below.

(d) Select Points: We iteratively apply the surrogate-distance metric for all (remaining)

proposal points to select 𝑛set = 39 points. Again, we provide further details of this step
in the following.

(e) Append Points: We extend the selected set with 11 points from the Halton sequence,

which results in 50 new model realizations that are to be evaluated with the full model.

(f) Update: We import all model realizations that have finished in the meantime. This

ensures that the next iteration step does not solely import points from a previous cycle.

(g) Follow-up Sample: We submit the 50 points in the selected set for evaluation with

the full model on the cluster.

(h) Wait: The status of all currently running model realizations is continuously checked.

When enough models are ready (in our case 39), we continue with the next cycle. The

remaining realizations are kept running in the background.

This procedure differs from the one of Regis and Shoemaker (2009) in that (1)we consider plausibility

as an additional model constraint, (2) we do not perform intermediate resets to keep all calibration

runs comparable, and (3) we use slightly different methods to propose and select points.
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Proposing New Points A key step in the outlined algorithm is to propose points for evaluation

with the full model. Ideally, those points should result in plausible model realizations that either

produce small values of the objective function or help to restrain the proxy-model. The general

idea behind our approach to proposing new points is the following:

1. Rank all points that have been evaluated with the full model already by the respective values

of the objective function.

2. Apply some random scattering around the good points.

3. Eliminate those points that are predicted to lead to implausible models.

4. Repeat the scattering and elimination until the desired number of points (104) is reached.

To select the set of good points among the already performed full model runs objectively, we draft

a weighted random subset from the set of all points. The respective weight𝑤𝑖 of each realization
is based on its objective function value 𝑦𝑖 in comparison to the best 𝑦min and median objective

function value ̄𝑦 of all points:

𝑤𝑖 =
𝜚𝑖
∑𝜚

(14.13)

𝜚𝑖 = max(0,
̄𝑦 − 𝑦𝑖
̄𝑦 − 𝑦min

)
2
. (14.14)

By comparing minimum and median objective function value and setting negative weight factors

to zero, we ensure that “less than average” performing realizations are not used for generating new

points. The squaring leads to a smooth transition at objective function values close to the median.

Using the median provides robustness towards extremely bad objective function values.

For the random scattering around the good points, we generalize the approach of Regis and Shoe-

maker (2009) who added random offsets 𝛥 ̃𝒑 in parameter space. In our case, we split these offsets
into a direction vector 𝒆 (with a length of one) and a magnitude 𝑐 that are generated independently:

𝛥 ̃𝒑 = 𝑐 ⋅ 𝒆. (14.15)

We base the magnitude 𝑐 on a scaling factor 𝜎scale, which takes the role of the standard deviation in
Regis and Shoemaker (2009). We start with 𝜎scale = 1.5 and increase the scale by 50% after three
consecutive cycles that succeeded in finding a better point. Similarly, we reduce 𝜎scale by 50% after
three consecutive cycles without an improvement. To avoid extreme scales, we restrict 𝜎scale to
be in the range from 5 ⋅ 10−3 to 2.5. We sample 𝑐 from the following probability density function

𝑓(𝑐|𝜎scale, 𝑑):

𝑓(𝑐|𝜎scale, 𝑑) =
21−𝑑/2

𝛤(𝑑
2
) 𝜎scale
( 𝑐𝜎scale
)
𝑑−1

exp(−12 (
𝑐
𝜎scale
)
2
) , (14.16)
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which is a scaled and transformed 𝜒2-distribution describing the length of a vector where each
entry is drawn from an independent normal distributionwith standard deviation 𝜎scale. Thismimics

the randommagnitudes of Regis and Shoemaker (2009). Our generalization lies in how we produce

random offset directions 𝒆.

Randomized Directions We require that the angle between 𝒆 and the estimated direction of
the steepest descent 𝒂 of the objective function with respect to ̃𝒑 (we elaborate on how to estimate

𝒂 later) is smaller than some opening angle 𝛾:

𝛾 ≥ arccos 𝒂 ⋅ 𝒆|𝒂||𝒆| (14.17)

𝒂 = −∇ ̃𝑝𝑦. (14.18)

This restricts the direction vector to be located within the hyperspherical sector of opening angle

𝛾 around the direction of the steepest descent. In case of 𝛾 = 𝜋, no restriction is applied and the
approach falls back to pure and unbiased random sampling. In case of 𝛾 = 0, the hyperspherical
cap collapses onto a single hyperdimensional line pointing directly towards the direction of the

steepest descent. For a value of 𝛾 = 𝜋/2 we allow all directions whose projection onto that line

would point towards 𝒂 (opposed to −𝒂). Within the hyperspherical sector we sample 𝒆 uniformly,
meaning that there is no preference of any direction over another, as long as they are inside the

hyperdimensional sector.

Drawing random directions on a full hypersphere is comparably easy (e.g., Muller, 1959; Marsaglia,

1972). Unfortunately, drawing such random directions and rejecting them if they are outside of the

hyperspherical cone can become prohibitive for higher dimensions and opening angles 𝛾 < 90°.
The reason for that is the rapidly shrinking ratio of the volume of hyperspherical sector𝑉sector to
the full hypersphere volume𝑉sphere with increasing number of dimensions (Li, 2011):

𝑉sector(𝛾, 𝑑)
𝑉sphere(𝑑)

=
{
{
{

1

2
ℐsin2𝛾(

𝑑−1

2
, 1
2
) if 0 ≤ 𝛾 ≤ 𝜋

2
1 − 1
2
ℐsin2(𝜋−𝛾)(

𝑑−1
2
, 1
2
) otherwise,

(14.19)

where ℐsin2 𝛾(𝑎, 𝑏) is the regularized incomplete beta function. A visualization of this curve for

different combinations of 𝛾 and 𝑑 is given in Figure 26.

As a result, we present another method of randomly drawing directions within the hyperspheri-

cal sector, which relies on hyperspherical coordinates. We are only interested in directions and

therefore assume a radial coordinate of one. The remaining coordinates 𝜙1 to 𝜙𝑑−1 are angles. In
the case of a hyperspherical cap around the first coordinate axis, 𝜙1 ranges from 0 to 𝛾, 𝜙2 to 𝜙𝑑−2
range from 0 to 𝜋 and 𝜙𝑑−1 ranges from 0 to 2𝜋. Figure 27 visualizes these angles (and the concept
of a hyperspherical sector/cap) for a three-dimensional case. Uniform random sampling of those

angles would not lead to uniform directions within the hyperspherical sector.
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Figure 26: The relative volume of a hyperspherical sector within a hypersphere depends on the

number of dimensions 𝑑 and the opening angle 𝛾.

a b c

point direction sphere

spherical cap first angle last angle

Figure 27: Visualization of a hyperspherical cap in three dimensions. A hypersphere can be

created from a point, a direction and a given length. By restricting the first hyperspherical angular

coordinate (of a rotated coordinate system) to be smaller than 𝜋, the hypersphere reduces to a
hyperspherical cap. The first angle is allowed to range from 0 to 𝛾, the last one from 0 to 2𝜋.
For higher-dimensional cases, there exist intermediate angles ranging from 0 to 𝜋. a: 𝛾 = 3/4𝜋.
b: 𝛾 = 𝜋/2. c: 𝛾 = 𝜋/4.
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Instead, the angles have to be sampled according to their contribution to the hyperspherical surface

element d𝐴𝑑−1 of a hypersphere in 𝑑-dimensional space:

d𝐴𝑑−1 =
𝑑−1

∏
𝑖=1

sin𝑑−1−𝑖(𝜙𝑖) d𝜙𝑖 (14.20)

= sin𝑑−2(𝜙1) d𝜙1
𝑑−2

∏
𝑖=1

sin𝑑−1−𝑖(𝜙𝑖) d𝜙𝑖 (14.21)

= sin𝑑−2(𝜙1) d𝜙1d𝐴𝑑−2. (14.22)

Hence, for uniform sampling within a hyperspherical sector with opening angle 𝛾 around the first
coordinate axis, the first angle 𝜙1 has to be sampled from the following probability density function:

𝑓(𝜙1) =
sin𝑑−2(𝜙1)

∫𝛾0 sin
𝑑−2(𝜏) d𝜏

, (14.23)

while all other angles can be constructed from a uniform point of a lower-dimensional (𝑑 − 2)-
sphere. Obviously, the shape of this probability density function depends on 𝛾 and 𝑑 in a rather
complicated way. However, with symbolic math software it is possible to find analytical expressions

of 𝑓(𝜙1) for a given combination of 𝛾 and 𝑑. Otherwise, the distribution can also be approximated
numerically. In any case, modern programming or scripting languages can use this distribution to

generate values of 𝜙1 that approximately satisfy Equation 14.23.

After obtaining valid directions in hyperspherical coordinates that assume the hyperspherical

sector to surround the first coordinate axis, a trivial conversion to Cartesian coordinates and a

back-rotation to the desired direction 𝒂 are necessary.

Steepest Descent Estimation Our generalized approach requires an estimated direction of the

steepest descent of the objective function value 𝑦with respect to the re-scaled input parameters
̃𝒑. If the proxy-model is a single GPE that relates ̃𝒑with 𝑦, the respective gradient can be directly

evaluated using the analytical GPE prediction derivatives outlined in Section 2.3.4. If multiple

internal GPEs are used as a proxy-model to relate ̃𝒑with 𝝑, the gradient can be decomposed in the
following way:

∇ ̃𝑝𝑦 =

[[[[[[[[

[

∂𝑦
∂ ̃𝑝1
∂𝑦
∂ ̃𝑝2
⋮
∂𝑦

∂ ̃𝑝𝑑

]]]]]]]]

]

=

[[[[[[[[

[

∂𝑦
∂𝜗1

∂𝜗1
∂ ̃𝑝1
+ ∂𝑦
∂𝜗2

∂𝜗2
∂ ̃𝑝1
+ … + ∂𝑦

∂𝜗𝑛

∂𝜗𝑛
∂ ̃𝑝1

∂𝑦

∂𝜗1

∂𝜗1
∂ ̃𝑝2
+ ∂𝑦
∂𝜗2

∂𝜗2
∂ ̃𝑝2
+ … + ∂𝑦

∂𝜗𝑛

∂𝜗𝑛
∂ ̃𝑝2

⋮ + ⋮ + ⋱ + ⋮
∂𝑦
∂𝜗1

∂𝜗1
∂ ̃𝑝𝑑
+ ∂𝑦
∂𝜗2

∂𝜗2
∂ ̃𝑝𝑑
+ … + ∂𝑦

∂𝜗𝑛

∂𝜗𝑛
∂ ̃𝑝𝑑

]]]]]]]]

]

=

[[[[[[[[

[

∂𝜗1
∂ ̃𝑝1

∂𝜗2
∂ ̃𝑝1
… ∂𝜗𝑛
∂ ̃𝑝1

∂𝜗1
∂ ̃𝑝2

∂𝜗2
∂ ̃𝑝2
… ∂𝜗𝑛
∂ ̃𝑝2

⋮ ⋮ ⋱ ⋮
∂𝜗1
∂ ̃𝑝𝑑

∂𝜗2
∂ ̃𝑝𝑑
… ∂𝜗𝑛
∂ ̃𝑝𝑑

]]]]]]]]

]

[[[[[[[

[

∂𝑦
∂𝜗1
∂𝑦
∂𝜗2
⋮
∂𝑦

∂𝜗𝑛

]]]]]]]

]

= 𝑱T𝜗, ̃𝑝∇𝜗𝑦, (14.24)
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where 𝑛 is 𝑛obj. In this case, two things are necessary for the desired gradient: the Jacobian 𝑱𝜗, ̃𝑝
of the model outputs 𝝑with respect to the re-scaled model inputs ̃𝒑 and the gradient ∇𝜗𝑦 of the
objective function value 𝑦with respect to the model outputs 𝝑.

Applying the analytical derivatives of Section 2.3.4 for each observation 𝜗𝑖 and each parameter ̃𝑝𝑗
yields the entries of 𝑱𝜗, ̃𝑝. Whether the gradient of the objective function value 𝑦with respect to the
model outputs 𝝑 can be determined analytically depends on the chosen objective function. We use
a common sum of squared residuals evaluation where this is comparably easy:

𝑦 = 𝑓obj(𝝑∗, 𝝑) =
𝑛obj

∑
𝑖=1
(𝜗𝑖 − 𝜗∗𝑖 )2 (14.25)

∂𝑦
∂𝜗𝑖
= 2 (𝜗𝑖 − 𝜗∗) . (14.26)

This results in the following expression for the gradient:

∇𝜗𝑦 =
[[[[

[

∂𝑦

∂𝜗1
⋮
∂𝑦

∂𝜗𝑛

]]]]

]

= 2 (𝝑T − 𝝑∗T) . (14.27)

As an overall result, we can obtain estimates of ∇ ̃𝑝𝑦 not only for all points that have already been
evaluated with the full model, but also (through the help of the proxy-models) for any other point.

The gradient ∇ ̃𝑝𝑦 points into that direction where the objective function value increases fastest
with a change in ̃𝒑. As discussed, we use the opposite direction (𝒂 = −∇ ̃𝑝𝑦) to propose new points.

Selecting New Points Similar to the approaches of Regis and Shoemaker (2007, 2009) and Xia

et al. (2021) we use the surrogate-distance metric to balance exploitation and exploration. This

criterion uses a weighted average between two normalized metrics:

• The exploration metric: a normalized measure of the minimal dimensionless distance (in

parameter space) between a proposed point and all points that have already been evalu-

ated/selected. The minimal distances of all points in the currently proposed set are linearly

normalized by the largest and smallest value that occur in the set:

𝑚explore𝑖 =
max(𝒅) − 𝑑𝑖

max(𝒅) −min(𝒅) , (14.28)

where 𝑚explore𝑖 is the exploration metric of the 𝑖-th point in the proposal set and 𝒅 is the
vector of minimum Euclidean distances between the proposed points and all previous points.

This metric ranges from 0 to 1, where 0 indicates largest minimal distance and 1 smallest

minimal distance. A pure exploration scheme would always strive for the point with the

smallest value, as it is the one furthest away from all previous points.
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• The exploitation metric: a normalized measure of performance as it is predicted by the

proxy-model. The predicted objective function values are linearly normalized by the largest

and smallest values of the current set of proposed points:

𝑚exploit𝑖 =
𝑦∘𝑖 −min(𝒚∘)

max(𝒚∘) −min(𝒚∘) , (14.29)

where𝑚exploit𝑖 is the exploitation metric of the 𝑖-th point in the proposal set and 𝒚∘ are the
predicted objective function values of the proposed points. This also results in numbers

ranging from 0 to 1, where 0 indicates minimal predicted objective function value and 1

indicates the opposite. A pure exploitation scheme would always go for the point with the

smallest value, as it is predicted to perform best.

To select 𝑛 points from a large set based on this metric, we use 𝑛weights that linearly scale between
zero and one. For each weight 𝜉we select the evaluation point with the lowest weighted average of
the two measures:

𝑖select = argmin
𝑖
[𝜉 ⋅ 𝑚explore𝑖 + (1 − 𝜉) ⋅ 𝑚exploit𝑖 ] , (14.30)

where 𝑖select is the index of the point that is selected for a full model evaluation. After selecting a
point, the exploitation metric is re-evaluated for all remaining points in the set and the next point

is selected based on the next weight. We start with a focus on exploitation (𝜉 = 0) and go towards
exploration (𝜉 = 1).

Variants In total we apply the presented calibration scheme in four different variants:

• “single (180°)”: We use only a single GPE as proxy-model for the objective function, and

another single GPE for the plausibility function. We do not restrict the space of point

proposals by using an opening angle of 𝛾 = 180°. This variant is conceptually closest to the

original implementation of Regis and Shoemaker (2009).

• “many (180°)”: We use multiple GPEs as a meta proxy-model for both, the objective function

and the plausibility function. We expect the proxy-model predictions to be more accurate,

which should enhance the calibration. We still do not restrict the space of point proposals

(𝛾 = 180°).

• “many (90°)”: In addition to using multiple GPEs for objective and plausibility functions, we

restrict the space of proposed points by narrowing the opening angle of the hyperspherical

sector to 𝛾 = 90°. This should avoid stepping into the wrong direction, while still allowing

enough randomness to find good new points. As a result, we expect a further improvement

of the calibration.

• “uninformed”: For comparison, we also apply a naïve global exploration variant of the

presented scheme. It does not use the outlined methods for point proposal and selection,
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but instead just continues with the next samples of the Halton sequence. As this approach

focuses solely on exploration and does not make an effort for exploitation, we expect it to

perform poorly compared to the other variants. We also iteratively train multiple GPEs for

this case, but the respective prediction information is not used during the calibration itself.

We compare both, the progression of these algorithms over time (over the course of the individual

cycles), and the final outcome after more than 3000 full model evaluations.

14.4 Construction of Posterior Distributions

Simulation-Based Inference The calibration schemes outlined above aim at finding a single

best-point estimate in the parameter space. Often, it is desirable to also estimate the uncertainty of

the individual parameters, ideally in terms of a full posterior distribution. Many classical approaches

for inferring this posterior are using likelihood-based Bayesian methods (e.g., MCMC). A common

problem of these methods is their slow convergence, especially in higher-dimensional parameter

spaces. One possible way to avoid such problems is to use a likelihood-free alternative for estimating

the posterior parameter distribution.

The recently developed research on SBI presents such alternatives. One particular example is

Sequential Neural Posterior Estimation (SNPE) (Papamakarios and Murray, 2016; Lueckmann

et al., 2017; Greenberg et al., 2019), which we apply to our case. The principle of SNPE is based

on training a deep neural network. In contrast to the GPE proxy-model, the SNPE method treats

model outputs (i.e., observations) as an input. For any queried set of observations, SNPE provides

a description of a multi-dimensional distribution of parameter values that are assessed as “likely

to produce the queried observations”. It is trivial to sample this distribution to infer information

about parameter correlations and uncertainties.

We use the single-round version of SNPE (i.e., NPE), because tests with our data have shown that

iterative re-training of the neural network does not improve the quality of the posterior distribution.

To be precise, we use the SNPE-C implementation (also known as automatic posterior transforma-

tion) with atomic loss (Greenberg et al., 2019) and a Masked Autoregressive Flow (MAF) density

estimation neural network (Papamakarios et al., 2017). We make use of the flexible interface of the

SBI toolbox of Tejero-Cantero et al. (2020) to perform NPE on pre-simulated data. In summary,

the procedure works as follows (see Greenberg et al., 2019, for a comprehensive description):

1. Sample 𝑛set input parameter sets ̃𝒑 from the prior distribution.

2. Obtain the corresponding 𝑛set model outputs 𝝑• for these parameters.

3. Formulate or choose an approximate 𝑑-dimensional posterior density distribution descrip-
tion 𝑃post(𝜳, ̃𝒑) (in our case MAF), which has a set of parameters 𝜳 and assigns a scalar
posterior probability density 𝑃post to any parameter set ̃𝒑.

120



4. Define a neural network 𝑓NN that relates the density estimator’s parameters 𝜳 to given
model outputs 𝝑•:

𝜳 = 𝑓NN(𝜱, 𝝑•), (14.31)

where𝜱 are the weights (i.e., coefficients) of the neural network.

5. Train the neural network on the sampled data, by adjusting the weights𝜱 to minimize the
following term:

𝜱∗ = argmin
𝜱
[−
𝑛set
∑
𝑖=1

log(𝑃post(𝑓NN(𝜱, 𝝑•𝑖 ), ̃𝒑𝑖))] . (14.32)

6. For a given set of observations 𝝑∗, the posterior density is then given by:

𝑃post(𝑓NN(𝜱∗, 𝝑∗), ̃𝒑). (14.33)

There are two reasons, why one should be careful with the interpretation of the NPE results in our

application: NPE (1) works with stochastic models (2) under the assumption that the target data

can be generated with the model and the right parameters. In our case, however, the subsurface

flow model is deterministic and there is little hope that any parameter set would provide a perfect

agreement between modeled and measured data. The latter has various reasons, including model

structural errors and the comparison of a steady-state model with a snapshot of real-life transient

data. As a result, we apply NPE slightly outside of its original purpose, but the results might be

interpretable and useful nonetheless.

Markov ChainMonte Carlo Ideally, we would like to compare the SBI results with a posterior

distribution obtained from a classical Bayesian inference method based on likelihoods and the

full model. We cannot afford this, due to the computational effort of a single model run and the

high-dimensional parameter space. However, we can run anMCMC scheme on a quick-to-evaluate

GPE-based proxy-model. For that, we train GPEs for all observations on all data generated with

the full model (across the four calibration variants) to generate the best possible meta proxy-model

that we can afford. We then apply a classical Metropolis-Hastings MCMC algorithm (Metropolis

et al., 1953; Hastings, 1970), which is briefly summarized in the following:

1. We randomly sample 𝑛chains = 12 points from the prior distribution to initiate different

chains. These points are treated as “trial points”.

2. We evaluate the proxy-model predictions for the trial points to emulate model runs and to

obtain approximate simulated observations 𝝑∘.

3. We determine the log-likelihood logℒpost of each trial point by comparing the virtual obser-

vations with the calibration target 𝝑∗:

logℒlik = −
1
2(𝝑
∘ − 𝝑∗)𝑪−1(𝝑∘ − 𝝑∗)T, (14.34)
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where 𝑛obj ×𝑛obj is a covariance matrix of measurement errors𝑪 and all constant terms were
omitted, as they are not necessary for the following calculations. We assume independent

Gaussian measurement errors with the same variance 𝜎2obs for all observations (𝑪 = 𝜎2obs𝑰). If
the model was able to meet all observations with the right set of parameters, 𝜎obs would only
reflect the uncertainty of the measured observations (in the order of a few centimeters). In

this case, however, 𝜎obs should also account for model structural errors (i.e., all reasons why
the model can only approximate the observed values). As a result, 𝜎obs needs to be inflated
artificially, because otherwise the likelihoods would drop rapidly if not evaluated at the best

parameter sets. On the other hand, if the uncertainty is inflated too much, all realizations

will be considered approximately equally likely, because even very large deviations between

modeled and measured values would be considered acceptable. We obtain our value for 𝜎obs
by considering a property of the 𝜒2-distribution: Assuming all residuals are independent and
identically distributed random variables following normal distributions, the sum of squared

residuals 𝑦 follows a 𝜒2-distribution scaled by the observation variance:

𝑦 ∼ 𝜎2obs𝜒2𝑛obj−𝑑. (14.35)

The expected value of this distribution is the number of degrees of freedom (𝑛obj − 𝑑):

𝐸[𝑦] = 𝜎2obs ⋅ (𝑛obj − 𝑑). (14.36)

By assuming that the sum of squared residuals 𝑦(𝒑best) for the best point found in the cali-
bration variants is equal to this expected value, we can derive a reasonable value of 𝜎obs:

𝜎obs = √
𝐸[𝑦]
𝑛obj − 𝑑

= √
𝑦(𝒑best)
𝑛obj − 𝑑
. (14.37)

4. We determine the prior log-probability logℒprior of each trial point via the probability density

function of the logistic distribution:

logℒprior =
𝑑

∑
𝑖=1
− ̃𝑝𝑖 − 2 ⋅ log(1 + exp(− ̃𝑝𝑖)) . (14.38)

5. The logarithm of the posterior probability density 𝑃post is then given by the sum of the two

terms:

log𝑃post = logℒlik + logℒprior. (14.39)

6. A comparison between the posterior densities of the current trial points and the previous

points in the chains decides whether the trial points should be accepted or rejected:

𝛿 = exp(log𝑃trialpost − log𝑃
previous
post ) − 𝜈, (14.40)
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where 𝜈 is a random number drawn from a uniform distribution between zero and one.

Whenever this difference is positive (𝛿 > 0), the trial point is accepted. Whenever it is negative,

the trial point is rejected and the previous point is re-accepted (i.e., repeated). As the initial

points do not have precursors, they are all accepted.

7. The current list of 𝑛chains (re-)accepted points is perturbed to generate new trial points. We

use trivial perturbations with offsets generated from scaled standard normal distributions.

The associated scaling factor is dynamically tuned over the course of the MCMC procedure

to maintain an acceptance rate of about 30%.

8. With the new set of trial points, the procedure is repeated from the second step until conver-

gence between the chains is achieved. For that we require that the criterion developed by

Gelman and Rubin (1992) needs to be smaller than 1.1 for all parameters.

The final list of points represents an MCMC-based sample from the posterior distribution.

14.5 Subsurface-FlowModel

In principle, we apply the calibration to the same subsurface flow model that was described in

Section 10.1. However, some insights obtained after publication of the paper reproduced in Chap-

ter III have lead to minor to moderate changes with respect to the model definition. These changes

affect the general model formulation (Section 14.5.1), the parametrization including the prior

distributions (Section 14.5.2) and the plausibility assessment (Section 14.5.3).

The calibration is carried out by comparing virtual measurements with the hydraulic heads recorded

on the key-date November 6, 2018 (see Section 3.3), as it is the largest and most diverse data set

available. Unfortunately, this means that the observation wells in the Grabfeld formation, which

were installed in the spring of 2020, could not be considered.

14.5.1 Description

First of all, the spatial discretization was changed to create a more appropriate model mesh. This

holds for both, the horizontal division into triangles, and the vertical distribution of nodal layers. We

paid particular attention to the Quaternary within the Ammer valley. For instance, a modification

of the meshing algorithm now ensures that the clay layer between Tufa and gravel is continuous,

as suggested by the geological model. Another improvement considers the nodes reflecting river

Ammer, which now follow the thalweg as it was inferred in Section 3.4. By optimizing the mesh

sizing using the mesh2D toolbox of Engwirda (2014), we could keep the number of elements

comparably small (4672 horizontal triangles, 102 784 three-dimensional elements and 55 752 three-

dimensional vertices).

In contrast to the model of Section 10.1, we do not split the Erfurt formation kuE into two parts,

because we have little geological information that justifies the division and the split would increase
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the number of model parameters. Nevertheless, we still use twelve layers, as we introduce a soil

layer of 1.5m thickness, which covers all surficial parts that are not covered by the Quaternary

alluvial fines in the Ammer floodplain. The three-dimensional geometry of the hillslope hollows

was refined and does not vary between the realizations anymore.

We modify the boundary conditions, to (1) make the model more realistic, (2) reduce the number

of model parameters, and (3) enhance model convergence. The new boundary conditions are the

following:

• We apply a single recharge rate at all top faces that are outside of the Ammer Quaternary.

• Instead of Dirichlet boundaries, we use a leaky boundary condition to describe the lateral

groundwater inlet and outlet in the Ammer valley.

• We still use a Dirichlet boundary condition to describe the southern groundwater outlet

towards the Neckar catchment. However, instead of applying it to the full southern boundary,

we restrict it to the eastern end. As the remaining boundarywasmostly parallel to streamlines

anyway, this change affects the resulting flow field only marginally.

• The interaction with river Ammer is now implemented as a Dirichlet boundary condition,

where the respective heads are inferred from the surface watermodel described in Section 3.4.

• We use a drain boundary for all drainage ditcheswith an intermediate layer thickness of 0.1m,
an intermediate hydraulic conductivity of 10−4ms−1 and a drainage threshold of 0.02m.
These values lead to a facilitated drainage.

• We use a drain boundary for all top nodes covered by alluvial fines with an intermediate

layer thickness of 0.4m, an intermediate hydraulic conductivity equaling the hydraulic

conductivity of the alluvial-fines layer and a drainage threshold of 0.5m. These values allow

some slightly artesian conditions in the Quaternary as observed in field measurements.

• Finally, we use a drain boundary for all remaining top nodes with an intermediate layer

thickness of 0.3m, an intermediate hydraulic conductivity of 10−4ms−1 and a threshold of

0.15m. This avoids a significant build-up of artesian heads in regions where the recharge

rate cannot be discharged towards the subsurface (this occurs mostly where the sandstone

formations km2345 crop out, but also at some coarsely resolved spots in the Neckar valley).

For the parametrization of the unsaturated zone we apply a mixture of the Brooks and Corey

model (we use Equation 2.16 for 𝑘rel(𝑆𝑒)with 𝜆 = 𝑁 − 1) and the van Genuchten model (we use
Equation 2.20 for 𝑆𝑒(ℎ𝑐)). As outlined in Section 2.2.3, this approach has proven to be beneficial for
the numerical convergence (especially with randomly drawn parameter sets), while the effect on

the resulting steady-state flow field is negligible.
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Table 9: Prior distribution definitions for all model parameters.

# Parameter Unit Type 𝑐1 𝑐2 𝑐3 support interval

1 weathering depth m log10𝒩 1.46 0.11 (0.00, ∞)
2 anisotropy (bedrock) – ℬ 1.52 3.04 (0.00, 1.00)
3 anisotropy (Quaternary) – ℬ 3.04 1.52 (0.00, 1.00)
4 anisotropy (soil) – ℬ 3.04 1.52 (0.00, 1.00)
5 𝑁 (bedrock) – log10𝒩T 0.20 0.06 (1.00, ∞)
6 𝑁 (Quaternary) – log10𝒩T 0.20 0.06 (1.00, ∞)
7 𝑁 (soil) – log10𝒩T 0.20 0.06 (1.00, ∞)
8 𝐾𝑥𝑦 (kuE) ms−1 log10𝒩 −5.27 0.68 (0.00, ∞)
9 𝐾𝑥𝑦 (lower kmGr) ms−1 log10𝒩 −8.77 1.16 (0.00, ∞)
10 𝐾𝑥𝑦 (upper kmGr) ms−1 log10𝒩 −5.17 0.73 (0.00, ∞)
11 𝐾𝑥𝑦 (km2345) ms−1 log10𝒩 −7.51 1.19 (0.00, ∞)
12 𝐾𝑥𝑦 (hollows) ms−1 log10𝒩 −6.16 1.00 (0.00, ∞)
13 𝐾𝑥𝑦 (Neckar gravel) ms−1 log10𝒩 −3.43 0.65 (0.00, ∞)
14 𝐾𝑥𝑦 (soil) ms−1 log10𝒩 −5.19 0.49 (0.00, ∞)
15 𝐾𝑥𝑦 (gravel) ms−1 log10𝒩 −4.35 0.84 (0.00, ∞)
16 𝐾𝑥𝑦 (clay) ms−1 log10𝒩 −8.11 0.62 (0.00, ∞)
17 𝐾𝑥𝑦 (Tufa) ms−1 log10𝒩 −5.09 0.66 (0.00, ∞)
18 𝐾𝑥𝑦 (alluvial fines) ms−1 log10𝒩 −7.00 1.02 (0.00, ∞)
19 𝐾𝑥𝑦 (river buffer) ms−1 log10𝒩 −5.19 0.49 (0.00, ∞)
20 ℎleaky (north, inlet) m 𝒩T 350.50 0.75 (346.69, ∞)
21 ℎleaky (north, outlet) m 𝒩T 335.50 0.75 (−∞, 337.26)
22 ℎleaky (south) m 𝒩 326.25 0.76 (−∞, ∞)
23 𝑄 (river) m3 s−1 ℰT 0.50 0.05 0.13 (0.34, 1.59)
24 recharge rate ms−1 ℬS 2.06 6.25 (0.00, 1.91 ⋅ 10−8)

14.5.2 Prior Distributions

The 𝑑-dimensional vector of prior distributions 𝒇cdf(𝒑) summarizes all available knowledge about
the model input parameters ahead of the calibration. Here, we assume independence between all

model parameters (a common choice, because typically little credible information about parameter

correlations is available a priori). This means we can describe the prior distribution by 𝑑 individual
distributions, each with its own support interval and cumulative density function 𝑓cdf(𝑝). In
the following, we provide an overview of the model parameters and all available data, as well as

explanations on how we infer the prior distributions. Table 9 provides a summary of that. We use

the following symbols for the different distribution types:

• 𝒩: A normal distribution with the mean value 𝑐1 and the standard deviation 𝑐2.

• log10𝒩: A log-normal distribution where the base-10 logarithm of the parameter has the

mean 𝑐1 and the standard deviation 𝑐2.

• ℬ: A beta distribution with the two shape parameters 𝑐1 and 𝑐2.

• ℰ: A generalized extreme value distribution with location parameter 𝑐1, scale parameter 𝑐2
and shape parameter 𝑐3.
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We use the symbol “T” to indicate a truncation that was applied to ensure that the support interval

does not include unreasonable values. We use the symbol “S” to indicate a linear scaling that was

applied to modify the support interval of the beta distribution.

WeatheringDepth Thefirst parameter describes themaximumweathering depth of theGrabfeld

formation beneath the land surface. Literature estimates for this quantity are collected in Table 13

(in the appendix). For the derivation of a prior distribution, we omit the 1m estimate of Kehrer,

as it was probably not meant to be a reliable estimate of the maximum weathering depth of this

formation. We also omit the rather extreme values of Erdal andCirpka (2019), to avoid a distribution

skewed too far towards large values and to limit the variance to a reasonable extent.

Themaximumweathering depth beneath the land surface has to be non-negative, as negative values

would not have a physical meaning and a fixed physical upper limit does not exist. Hence, we use

a log10-normal distribution to describe this parameter, as it is maxentropic for a given mean and

log-variance on the interval (0,∞). The two coefficients can be derived directly from all remaining

data by evaluating the mean and standard deviation of the log10-transformed values. The resulting

coefficients are listed in Table 9.

Material Properties Parameters #2 to #19 describe various material properties of the hydros-

tratigraphic units. Relevant literature data are collected in Tables 10 to 12 and 14 to 21 (in the

appendix). In principle, each hydrostratigraphic unit requires four parameters:

1. The non-negative saturated horizontal hydraulic conductivity𝐾𝑥𝑦 inms−1.

2. The anisotropy expressed as a dimensionless ratio of vertical to horizontal hydraulic con-

ductivity. It typically operates within the range 0.00 to 1.00 (i.e., the vertical permeability is
smaller than the horizontal one).

3. The positive van Genuchten parameter 𝛼 inm−1.

4. The dimensionless van Genuchten parameter𝑁, which has to be larger than 1.

With twelve hydrostratigraphic units we would end up with 48 parameters related to material

properties. As each additional parameter increases the dimensionality and therefore the vastness

of the parameter space, we decided to use additional regularizations to reduce the number of

parameters describing material properties to 18:

• We eliminate the vanGenuchten parameter𝛼 by directly relating𝛼 to the saturated horizontal
hydraulic conductivity according to a relationship derived in Section 17 (in the appendix).

• For the anisotropies and𝑁, we group all bedrock (kuE, lower/upper kmGr, km2345) and
Quaternary (hollows, Neckar gravel, gravel, clay, Tufa, alluvial fines) hydrostratigraphic units.

Together with the soil layer, this results in three groups per parameter.
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It is difficult to obtain reliable estimates of anisotropy ratios from the collected prior data as they

mostly contain assumptions instead of actual measurements. In some modeling studies it is also

not clear whether a value of 1.0was only chosen because the model could not cope with anisotropy.
As a result, we constructed two different beta distributions, one for all bedrock layers, and one for

both, all Quaternary layers and the soil layer. The first distribution is skewed towards lower values,

with a mean of 1/3 and a standard deviation of 1/5. The second distribution is skewed towards

higher values, with a mean of 2/3 and a standard deviation of 1/5. The underlying reasoning is

that consolidated bedrock material typically has smaller vertical conductivities due to internal

micro-structure (fine layers with hindered flow perpendicular to them), whereas the unconsolidated

Quaternary and the soil layer do not show that to the same extent.

The van Genuchten parameter𝑁 controls how quickly the relative permeability drops with increas-

ing matric potential. In principle, it can assume values between unity and infinity, but according to

Rawls and Brakensiek (1989) the values typically range from 1.0 to 1.4 for unconsolidated sediments.
Cases with𝑁 ≫ 2.0 can lead to a strong jump in the 𝑆e(ℎc)-curve that would result in a sudden loss
of saturation (and therefore permeability) even for small matric potentials. To enhance numerical

stability, we therefore choose a log10-normal distribution than mostly covers the range 1.0 to 2.5
(see Table 9 for the coefficients). To avoid numbers smaller than one, we truncate the distribution at

𝑁 = 1.0. As we have little data to justify different priors across the three groups, we use the same
distribution for all of them.

The saturated horizontal hydraulic conductivities cannot be negative, have no upper physical limit

and can easily vary overmultiple orders of magnitude. Therefore, we use log10-normal distributions

to describe their priors. The coefficients in Table 9 were constructed on a case-by-case basis to

meet the data of Tables 10 to 12 and 14 to 21 reasonably well. Where available, experimental data

from the study site were considered to be more trustworthy than other data (e.g., data referenced as

model assumptions).

Boundary conditions The groundwater inlet and outlet boundary conditions in the Ammer

floodplain require head values (i.e., ℎleaky). We use normal distributions to describe these. For the
Ammer valley we use the average longitudinal hydraulic gradient of approximately 8m/3000m =
0.27% (Martin et al., 2020) to estimate the mean hydraulic head at the floodplain ends about 1500m

upstream and downstream of the modeling domain. To account for the uncertainty of these values,

we use a standard deviation of 0.75m.

At the southern boundary towards the Neckar floodplain we use a normal distribution to describe

the fixed head. We base the mean value on the modeling results of Keim and Pfäfflin (2006). From

data measured by nearby ASG/SWT-wells we know that the hydraulic head in this area can vary by

about 2.5m. Therefore, we use a standard deviation of 0.76m, which results in a normal distribution
where 90% of the values are within ±1.25m distance from the mean.
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Figure 28: Prior distribution of the Ammer river boundary condition. a: River discharge inferred

from water depth recordings in the time period of interest. b: Derived prior distribution of𝑄.

The fixed heads of the Ammer river are constructed from the inverse rating curve relationship

derived in Section 3.4. Hence, the prior distribution is formulatedwith respect to the river discharge

𝑄 in L3 T−1. We obtain it from the Pfäffingen gauging station data (LUBW, 2021):

1. We train a one-dimensional GPE to infer𝑄 from the water depth. For training, we use the

time period in which both, water stage and discharge data are available (May 1, 2016 to

October 31, 2017).

2. We use the GPE to infer𝑄 at the time period of interest (October 1, 2018 to November 23,
2018). Fortunately, the respective water stages fall within the range of the training data,

which means that extrapolation (in the data space) is not required.

3. We create a histogram of the derived𝑄 values and fit a continuous distribution to it. In this
case, a generalized extreme value distribution provided the best agreement.

4. We truncate the distribution at the maximum and minimum values predicted by the GPE.

Figure 28 shows the training data, the GPE interpolation and the resulting prior distribution.

The final parameter is the average groundwater recharge rate, which is a non-negative number,

because negative values are only physically possible if there is a subsurface source and if the annual

mean evapotranspiration rates exceed precipitation. The physical upper limit of the recharge rate is

the average precipitation, which was 1.91 ⋅ 10−8ms−1 from January 1, 2014 to December 31, 2020

(LTZ, 2021, measured in Unterjesingen, which is located within the area of interest). As a result, we

choose a scaled beta distribution to describe this parameter, as it is defined on a bounded interval

and allows for non-uniform probabilities. We derive the respective coefficients (shown in Table 9)

from the literature data summarized in Table 22 (in the appendix).
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14.5.3 Plausibility Function

We base the plausibility function of a model realization on the individual fluxes across boundaries.

These are available as raw output from HGS in form of the water balance summary. In our case, the

plausibility function is the product of five contributions (𝜑1 to 𝜑5):

𝑓plaus(𝝋) = 𝜑1 ⋅ 𝜑2 ⋅ 𝜑3 ⋅ 𝜑4 ⋅ 𝜑5. (14.41)

The first criterion states that the flux𝑄inlet across the groundwater inlet boundary on the Ammer
side must be positive (i.e., the boundary has to be a source), the second one similarly states that the

flux𝑄outlet across the groundwater outlet boundary on the Ammer side must be negative (i.e., the
boundary has to be a sink):

𝜑1 = {
1 if𝑄inlet > 0
0 otherwise,

(14.42)

𝜑2 = {
1 if𝑄outlet < 0
0 otherwise.

(14.43)

The third and fourth criteria state that the flux across the outlet or inlet (on the Ammer side) should

not be much larger than its counterpart. We accept all realizations where the magnitude of one flux

is less than twice the magnitude of the other flux, and we reject all those where one is more than

four times larger than the other. Between these two limits we define a gradual transition by the

smoothing function 𝑓s(𝑥) = 3𝑥2 − 2𝑥3:

𝜑3 =
{{{{
{{{{
{

1 if |𝑄outlet| < 2|𝑄inlet|
0 if |𝑄outlet| > 4|𝑄inlet|

𝑓s(4
|𝑄inlet|
|𝑄outlet|
− 1) otherwise,

(14.44)

𝜑4 =
{{{{
{{{{
{

1 if |𝑄inlet| < 2|𝑄outlet|
0 if |𝑄inlet| > 4|𝑄outlet|

𝑓s(4
|𝑄outlet|
|𝑄inlet|
− 1) otherwise.

(14.45)

Finally, a criterion states that the Ammer river is not a major source. We require that its net contri-

bution𝑄river is less than 10% of the total water balance flux𝑄tot (the flux across all boundaries):

𝜑5 =
{{{{
{{{{
{

1 if𝑄river < 0
0 if𝑄river > 0.1 ⋅ 𝑄tot
𝑓s(1 − 10

𝑄river
𝑄tot
) otherwise.

(14.46)

The smoothing between 0 and 1 for the last three criteria is implemented to alleviate the effects of

the arbitrarily chosen thresholds. The third-order smoothing function𝑓s ensures that the transition
at the thresholds has a continuous first derivative.
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15 Results & Discussion

We first describe and discuss the results of running the best-point calibration variants for 3070 full

model realizations. Then, we analyze the full posterior distributions (derived with SBI andMCMC).

Finally, we discuss noteworthy features of the resulting flow field in the calibrated model.

15.1 Calibration Scheme Variants

Figure 29 shows the development of the objective function over the course of the different calibration

variants. We can observe that the uninformed sampling strategy converges very slowly, as expected,

evenwith the space-filling Halton sequence. After nearly sixty cycles it has only reached an objective

function value of about 6.1m2 (which corresponds to an RMSE of 0.39m), which was achieved by
the other three schemes already within the first two cycles. After more than 3000 realizations (59

cycles), the informed schemes that rely on multiple internal GPEs have found points with objective

function values close to each other (“many (180°)”: 2.90m2, which corresponds to an RMSE of

0.27m; “many (90°)”: 2.80m2, RMSE of 0.26m), while the variant based on a single, lumped GPE
produced results between these two and the uninformed scheme (3.32m2, RMSE of 0.28m). In
general, this ranking seems to be stable over the cycles: The informed schemes are able to find good

regions in parameter space much faster than the uninformed one, and multiple GPEs accelerate the

calibration even more. There is also a difference between the two multi-GPE runs with different

opening angles, but it is comparably small. The curve corresponding to the narrowed opening

angle of 90° is nearly always slightly beneath the line of representing the full opening angle of 180°.

Therefore, the reduction of the opening angle seems to help finding better points in parameter

space, but the effect is only marginal.

The sampling strategies can be observed in Figure 29b:

• The uninformed variant consistently produces values of the objective function across the

range from 6m2 to 1000m2. As expected, there is no systematic improvement over time and

all cycles produce similar results.

• The informed variants show patterns. On the long-term, a systematic improvement can

be observed for all three approaches. This can be attributed to finding good regions in

parameter space. Within in each cycle, especially in later ones, it can be observed that early

realizations yield smaller values of the objective function than later realizations. This is

a direct outcome of the linearly decreasing exploitation/exploration weights that initially

promote points that are predicted to be favorable (i.e., in the sense of having low objective

function values). The increase is the result of shifting the weights towards regional parameter

space exploration. The last eleven realizations of each cycle correspond to the unbiased global

sampling according to the Halton sequence. Those are recognizable by typically much larger

values of the objective function, as they are not aware of the good parameter-space regions.

130



0 10 20 30 40 50

cycle #

0

2

4

6

8

10
y m

in

a

0 500 1000 1500 2000 2500 3000

realization #

100

101

102

103

y

b

uninformed single (180°) many (180°) many (90°)

Figure 29: Objective function values 𝑦 for the different calibration variants. a: Best objective
function value of all previous iteration cycles. b: All individual objective function values on a

logarithmic scale. The vertical lines separate the cycles.

• All variants make use of the same Halton sequence. This is visible for the first cycle, where all

four variants start with the same set of 120 initial points, and for the last eleven realizations

of all subsequent cycles, where the points of the three informed schemes fall on top of each

other.

In summary, the performance of all informed schemes is comparable with respect to the final

objective function value, but usingmultipleGPEs helps to find and exploit good regions in parameter

space faster.

Figure 30 shows how the four variants differ with respect to the prediction error of the proxy-model

over the course of the calibration. The prediction error is defined as the absolute difference between

an actually determined objective function value (or plausibility) obtained by running the full model

and the value previously predicted by the surrogate model.
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Figure 30: Absolute difference between predictions of objective function value and plausibility

score and the actual value obtained from running the full model.

Figure 30a reveals the following:

• Even though the uninformed approach uses multiple GPEs for predicting the value of the

objective function, the predictions are of comparably low quality. The prediction error

does not drastically decrease over time, which means that the prediction quality increases

only marginally even though new information is appended to the GPEs. This illustrates the

vastness of the parameter space, as even thousands of space-filling points result in such a low

point density that GPE-based interpolation is obviously difficult.

• The informed single-GPE variant roughly starts with similar prediction errors as the unin-

formed case, but the prediction quality increases over time. This is a result of the scheme

approaching better regions in parameter space, where the sampling density increases such

that the interpolation works better. In contrast to that, the space-filling Halton design of the

uninformed scheme tries to maintain a uniform density throughout the parameter space.
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• The calibration scheme variants based on multiple GPEs immediately achieve smaller predic-

tion errors of the objective function, which highlights the drastically improved prediction

quality. Over the course of the calibration, the prediction error also decreases until the three

informed schemes achieve a similar prediction quality after about 2300 realizations.

The prediction error of the plausibility score behaves similarly, but also shows some differences:

• With values around 0.05 or smaller (from 30 cycles onward), all four variants achieve a decent

average prediction quality (a value of 1would indicate that all plausibility predictions of a

cycle were completely wrong; a value of 0would mean perfect plausibility predictions).

• The uninformed variant and the single-GPE variant performworse than themulti-GPE cases,

but the initially large difference decreases over time. Again, this is probably related to the

low point-density, where each new point is very far from all previous points.

• It is interesting to see that the uninformed scheme can also achieve a significant improvement

for the prediction of the plausibility score. This indicates that predicting plausibility is easier

(i.e., requires a smaller point density) than predicting the objective function value. This might

be partly related to the fact that our plausibility function depends on fewer variables than

our objective function.

• The informed variants with multiple internal GPEs produce conspicuously similar mean

prediction errors. The reason for that can be found in the contribution of the individual

realizations to these mean prediction errors. While the two multi-GPE schemes achieve

a nearly perfect plausibility prediction of points selected by the surrogate-distance metric

(i.e., a prediction error of 0), nearly the entire mean prediction error stems from the Halton

sequence points, which are identical in both variants.

So far, the approaches have only been compared with respect to the model outputs in terms of the

objective function and the plausibility assessment. We now want to consider the parameter values

(i.e., the coordinates in parameter space) of the points found by the individual schemes.

Figure 31 visualizes the estimated logit-score transformed parameters of the final best points of

the four calibration variants. To give an impression of the calibration course, the full sequence of

all intermediate best points after the first cycle (i.e., all the parameter sets that have contributed to

Figure 29a) is shown, too. It is important to note that these point sets do not form an interpretable

distribution (at least not a meaningful posterior distribution), as the optimization schemes to not

attempt to truly sample the full posterior distribution, but rather aim at finding the single global

optimum. The corresponding ranges can therefore also not be related to parameter uncertainties.

In Figure 31 we can see that the best points found with the uninformed scheme obviously are

a subset of the prior distribution, but already here some patterns emerge. For example, some

parameters exhibit a systematic shift towards positive (e.g., hydraulic conductivities of Tufa and the

alluvial fines) or negative (e.g., hydraulic conductivities of Neckar gravel and soil anisotropy) values.
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Figure 31: Visualizations of best found parameter sets in the dimensionless ̃𝑝-space as large, dark,
outlined circles. Intermediate best points are shown as faded smaller circles, where the circle size

corresponds to calibration progress (smaller circles occur in earlier cycles).

The best points found with the informed schemes share some common properties. Four common-

alities in Figure 31b-d stand out particularly:

• There are many agreements for parameters related to hydraulic conductivities. For example,

the best estimate for the Neckar gravel (parameter #13) is negative in all informed variants.

Similarly, parameters #15 to #18 (hydraulic conductivity of gravel to hydraulic conductivity

of the alluvial fines) form a consistent visual pattern from left to right: The scaled parameter

values seem to shift from being more or less strongly negative (gravel) to around zero (clay)

to slightly positive (Tufa, with exception of “many (90°)”) to large and positive (alluvial fines).

• The scaled parameter values of the hydraulic conductivity of the Erfurt formation (kuE)

change only slightly over the course of the calibration.

• The parameter values related to hydraulic head offsets in the Ammer valley ( #20 and #21) are

positive, while the offset in the Neckar valley boundary (#22) scatters around zero.
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• Positive parameter values seem to be preferred for the first parameter (maximumweathering

zone depth) across all calibration scheme variants.

On the other hand, there are also significant differences between the best points found by the

single-GPE and multi-GPE schemes:

• While in both cases the values for the hydraulic conductivity of the Erfurt formation are

barely changed during the calibration, the absolute values of this parameter are different

between the variants. The single-GPE scheme clearly shifts towards positive values, while

the other variants produce negative values.

• Similarly, the values for the recharge rate do not agree. Again, the point found by the

single-GPE scheme is a positive normalized value, while the other variants have found good

points only with negative shifted values of this parameter.

• Finally, there are large discrepancies for the parameter describing the hydraulic conductivity

of the hillslope hollows (parameter #12). Positive, neutral and strongly negative values are all

present in the three variants.

While comparing the subfigures with each other, one should obviously not forget that the best points

found with the four variants correspond to different values of the objective function. For instance,

the uninformed sampling data (i.e., the one with the worst agreement to measured data) are further

away from being optimal parameter sets than the other three cases. However, as already stated,

the objective-function values of the best points found with the informed variants are reasonably

close to each other. The differences between these plots raise the question of which (if any) of the

parameter sets should be trusted most and how large the parameter uncertainties really are. The

analysis of full posterior distributions allows such investigations.

15.2 Analysis of Posterior Distributions

Sample Construction We apply Neural Posterior Estimation as outlined in Section 14.4. This

requires a sample from the prior distribution, for which we use the 3070 realizations of the un-

informed sampling scheme. The neural network training step of NPE involves a random split of

the input data into a training and a test data set. To make the results robust with respect to that,

we apply NPE ten times and average the resulting posterior distributions. We then sample 10 000

points, of which a randomly chosen subset of 250 are used to generate full model realizations.

For the MCMC-based approach, we obtain an inflated standard deviation of measurements of

𝜎obs = 0.41m from the sum of squared residuals at the best found point 𝑦(𝒑best) = 2.80m2. With

that, the MCMC scheme outlined in Section 14.4 converges after 27 000 proxy-model realizations.

We omit the first 5000 to diminish the influence of the chains’ initial states. From the rest we

randomly choose 10 000 points that serve as a posterior sample for comparison with its SBI-

counterpart. Finally, we run the full model for 250 randomly selected points of this set.
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Figure 32: a-c:Comparison of prior and posterior parameter distributions, where circles highlight

the median values and the shaded areas show point density (violin plots). All parameter values

are displayed in the dimensionless ̃𝑝-space. a: Prior definitions of parameters. b: Posterior
parameter distribution as obtained by the SBI procedure. c: Posterior parameter distribution

as obtained by the MCMC procedure. d: Dissimilarity between the SBI and MCMC marginal

posterior distributions expressed as 𝜔2 (Equation 15.1).

Marginal Distributions Both posterior construction methods result in multi-dimensional pa-

rameter distributions. In Figure 32, we show the marginal distributions as violin plots for each

parameter side by side. Figure 32a uses the full set of points generated by the uninformed calibration

variant to give an impression of the prior distribution. We see that the scaled parameter values

mostly are within the range −5 to 5, with a higher concentration around 0. This fits perfectly with

the definition of the logit transformation. None of the parameters stands out visually, which con-

firms that the uninformed and unbiased sampling by means of the Halton sequence was successful.

Figure 32b shows themarginal distributions obtainedwith SBI; Figure 32c shows theMCMC-based

marginal posterior distributions. To understand consequences for the physical, untransformed

parameter values, we also provide the marginal cumulative distribution functions of all unscaled

parameter values (i.e., 𝑝) for the prior and posterior distributions in Figure 33.
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Figure 33: Individual marginal prior and posterior parameter distributions visualized as cu-

mulative distribution functions of unscaled physical parameter values 𝑝. Colored lines in the
background indicate the best points of the optimization schemes. All hydraulic conductivities are

given inms−1 and displayed on a logarithmic axis to the base 10.
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In Figures 32 and 33, some remarkable features of the posterior distributions are immediately

recognizable and similar to results obtained from the calibration outcomes (Figure 31). For instance,

the hydraulic conductivity of the Erfurt formation is the narrowest dimensionless parameter in

both cases (Figure 32b-c), with a significant shift of similar magnitude towards larger values. Just as

observed in Figure 31, we also see a distinct difference between the prior and posterior values for

parameters #15 to #18. In all four cases a parameter shift in the same direction can be observed for

both posterior cases and the global calibration outcomes.

In general, the most striking differences between prior and posterior distributions occur for pa-

rameters related to hydraulic conductivities. This could indicate, that these parameters exert an

important control on the model output (i.e., the hydraulic head observations). This is not surprising,

considering that the hydraulic conductivities are defined on a logarithmic scale. In this case, even

a minor shift can result in a change by one order of magnitude of material permeability. Not all

hydraulic conductivity values are equally important for the observed hydraulic heads. For instance,

the conductivities of the lumped sandstone formation, the soil layer and the hillslope hollows are

hardly affected by the inference. They obviously exert a low influence on the simulated heads at the

measurement locations, which are mostly affected by conductivities in the direct vicinity of the

location and by those conductivities that determine the overall flow field. The former is the case for

the Ammer gravel and Tufa layers; the latter applies for the hydraulic conductivities in the Erfurt

formation and the alluvial fines:

• The alluvial fines form the top of the Quaternary valley-filling in the Ammer floodplain and as

such represent the connection between deeper groundwater stories (like the Tufa and gravel

aquifers) and the land surface, including the drainage ditches and river Ammer. Increasing the

corresponding hydraulic conductivity therefore enhances groundwater discharge towards

the drainage network. Apparently, to get the flow system close to measured observations, an

intensification of this exfiltration process is required, up to a point where the high-density

regions of posterior and prior parameter distribution hardly overlap (at least for the SBI-

based distribution). This might be an indication that the parameter is compensating for a

structural model error. For instance, a network of tile drains that is assumed to exist in the

real domain (mentioned by Kehrer, 1935) could play this exfiltrating role in reality. As it

was not implemented in the model due to lacking information about the position of the tile

drains, the inference leads to an adjustment of the alluvial fines instead.

• The Erfurt formation is the bottom-most hydrostratigraphic unit of the model. It is also the

only one that extends laterally across the entire domain. Depending on its hydraulic conduc-

tivity, it might therefore take a leading role in connecting or separating the northern (and

elevation-wise upper) Ammer floodplain with/from the southern (lower) Neckar floodplain.

The inference suggests a higher hydraulic conductivity of this unit than initially proposed by

the prior information. This could mean that a better hydraulic connection between the two

valleys is necessary to align the model with the measurements.
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It is a bit surprising that the parameters related to the Ammer river (hydraulic conductivity of the

river buffer zone and the river discharge responsible for river water stage) are basically not affected

by the inference at all. This could indicate that the connection between the groundwater system

and the drainage ditch network is more important for the head observations than the connection

to the river.

The prior and posterior distributions of the three parameters related to the van Genuchten coef-

ficient𝑁 are also nearly identical. This indicates a low sensitivity of the virtual hydraulic head

observations to these parameters, which is not surprising, as these parameters have very little effect

on the steady-state flow field and the observations.

Another noteworthy point concerns the hydraulic conductivities of Tufa and gravel in the Ammer

valley. The posterior distributions suggest a decrease in permeability for gravel and an increase

for Tufa, up to a point where the hydraulic conductivity in the Tufa formation exceeds the one in

the gravel. This is unexpected, considering the field measurements (see Table 15 and Table 17 in

the appendix), which were mostly derived from slug tests. However, the gravel has a clayey matrix

and the wells have been developed prior to performing the slug tests. This might have washed

out too much clay in the direct vicinity of the deep wells to obtain a reliable estimate of hydraulic

conductivity of the formation. Perhaps it would be worthwhile to perform larger-scale pumping

tests to confirm or falsify this outcome.

The weathering zone is interesting in that the related depth is shifted towards larger values, but the

corresponding hydraulic conductivities are decreased compared to the prior. Again, this agrees

well with the best-point estimates found in the global calibration, just like a slight preference for

larger values regarding the boundary condition offset parameters in the northern modeling domain

(mostly at the outlet), that is missing for the southern boundary condition. Another commonality

between the posterior distributions are the lowered values for the conductivity of the Neckar gravel

and the recharge rate. The corresponding uncertainties, however, are smaller for the MCMC-

posterior, which is noticeable by narrower distributions. There are more also visibly asymmetrical

distributions for the MCMC-posterior in general (e.g., in the hydraulic conductivities of Neckar

gravel, Tufa and alluvial fines), while in the SBI case they aremostly symmetric. Smaller uncertainties

and conspicuous asymmetries might be an indication that the MCMC-based approach is more

suitable to constrain the posterior parameter values based on the observation data, compared to

NPE. However, at this point we cannot draw any conclusions about the goodness of the posteriors,

as this requires an analysis of the drawn full model runs (given in Section 15.4).

One way of objectively comparing the corresponding marginal posterior distributions of a parame-

ter is the 𝜔2-metric developed by Anderson (1962) based on the work of Cramér (1928) and von
Mises (1928):

𝜔2 =

∞

∫
−∞

(𝐹(𝑥) − 𝐺(𝑥))2 d𝐻(𝑥), (15.1)
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where 𝐹(𝑥) and𝐺(𝑥) are the individual empirical cumulative distributions functions of the samples
and𝐻(𝑥) is the empirical cumulative distribution function of both samples combined. Larger values
of 𝜔2 indicate a greater dissimilarity, and a value of 𝜔2 = 0would indicate a perfect agreement.

The resulting𝜔2-values are displayed in Figure 32d. It becomes clear, that especially for the hydraulic
conductivities of the Tufa and alluvial fines layers, the posterior distributions disagree. In the case

of the alluvial fines, the MCMC-based posterior tends to shift much less towards larger values than

the SBI-based counterpart. This might be a result of the influence of the prior distribution that

condemns points far away from zero as “unlikely” – an information that is neither used, nor directly

available in the NPE process. The shifting for the hydraulic conductivity of the Tufa, on the other

hand, is even larger in the MCMC case. In both cases, the shift is accompanied by a narrowing,

indicating that this parameter can be constrained by the observations to some extent.

CorrelationAnalysis The visualizations presented so far only looked intomarginal information

of individual parameters. However, as we have access to full 𝑑-dimensional posterior distributions,
we can determine correlation coefficients between all 24 parameters. The resulting matrices for

both, the SBI- and MCMC-based results are combined in Figure 34.

Visually most striking is a nearly perfect correlation between the hydraulic conductivity of the

Erfurt formation and the recharge rate in both posteriors. The former is also correlated to most

of the Quaternary hydraulic conductivities (gravel, clay, Tufa, alluvial fines). Obviously, this also

implies correlations between recharge rate and these conductivities, which can also be observed in

Figure 34. There is also a notable correlation between these hydraulic conductivities themselves.

Apart from these stronger correlations, there is quite some disagreement between the SBI- and

MCMC-based distributions. The largest discrepancy might be a sign flip of low to medium correla-

tion between the hydraulic conductivities of Neckar gravel and the Erfurt formation. However,

it is difficult to draw further conclusions from Figure 34, as many correlation coefficients are

comparably small in magnitude and therefore imply weak relationships that might just be governed

by random noise. Such noise is a bit more visible in the MCMC-based posterior distribution,

where there are even some minor correlations for the van Genuchten𝑁 parameters that have been
confirmed to be of low relevance.

Individual correlation coefficients are only scalar summary metrics that work best for linear re-

lationships. As such, they might occlude nonlinear relationships between the two investigated

parameters of each pixel in Figure 34. We therefore plot full pairwise two-dimensional posterior

distributions in Figure 35. We also show the final best points of the calibration scheme variants.

With 242 = 576 individual subfigures, this chart contains a lot of information, so we only focus on
the most important aspects.
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Figure 35: Bivariate marginal density plots of posterior distributions (SBI for upper triangular

matrix; MCMC for lower triangular matrix). The axes reflect scaled parameters (i.e., ̃𝑝). Overlain
are the final best points of the three optimization schemes. All local axes cover the parameter space

from −8.5 to 8.5, with exception of the alluvial fines’ hydraulic conductivity. Here, additional gray
lines indicate these limits, as the SBI-posterior extends beyond them.
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We see that the correlation coefficient close to one originates from a nearly perfect one-dimensional,

linear relationship between the hydraulic conductivity of the Erfurt formation and the recharge rate

(in both posterior distributions). This points out a moderate ill-posedness of the calibration problem

in the way the model is currently defined: In steady-state simulations, where all conductivities and

the recharge rate are freely allowed to change, only the ratio of conductivities to recharge rate can

be inferred from a given set of hydraulic-head observation data. A higher recharge rate can always

be balanced by higher hydraulic conductivities. Of course this effect is mitigated by the definition

of prior distributions (which means that the parameters are not completely free to change). Still,

there seems to be a comparably wide range of allowable recharge rates, where each specific rate

requires the hydraulic conductivity of the Erfurt formation to be in a comparably narrow range.

The final best points of the four calibration variants fall onto this linear relationship, and even

the intermediate best points follow it closely (not shown). However, the single-GPE variant and

multi-GPE variants seem to have found points on opposite ends of the line. This explains why the

best point estimates (colored lines in Figure 33) do not agree on the hydraulic conductivity of the

Erfurt formation, even though (1) the three informed parameter sets had a comparable performance

and (2) this parameter was recognized as important in all cases. Apparently, the three points found

through the informed schemes (and to some extent even the best point found by the uninformed

scheme) are still part of the same posterior distribution.

No other bivariate distribution shows such a narrow region of high posterior density. However,

as already previously noted, similar relationships can be seen for many other combinations of

hydraulic conductivity and recharge rate (e.g., Tufa), albeit not as sharply defined.

There do not seem to be any obvious nonlinear relationships that were previously missed by the

analysis of the correlation coefficients. However, it cannot be ruled out that there are higher-

dimensional relationships that are still masked.

15.3 Sensitivity Analysis

There is one additional tool available to reinforce the drawn conclusions: We can extract derivative

information from the GPE proxy-models, to obtain global sensitivity measures. Using the final

GPEs (that summarize all full model runs across the optimization schemes), we retrieve the Jacobian

(i.e., the derivative of all observations with respect to all parameters) for the MCMC-derived

posterior sample of 250 points selected for a full model evaluation. Averaging all entries across

these realizations results in a global posterior sensitivity matrix that is visualized in Figure 36.

Figure 36a shows relative sensitivities for each individual observation (i.e., the sensitivity magnitude

of the most important parameter was used to normalize the sensitivities of all other parameters

within a row). This allows sensitivity comparisons of parameters for any given observation. Fig-

ure 36b shows the maximum absolute sensitivity of a specific observation (i.e., row) in m per

normalized parameter unit. This allows sensitivity comparisons across the different observations.
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Figure 36: Mean sensitivities of posterior samples as determined by GPE differentiation (in

the scaled parameter space ̃𝑝). a: Sensitivities normalized for each observation well, where the
magnitude reveals the relative importance of a parameter for a given observation, and the sign

tells whether an increase of the parameter would lead to an increase of observed hydraulic head.

b: Mean absolute value of sensitivities across all wells and parameters. Larger values indicate a

higher overall sensitivity of an observation to the input parameters.
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In terms of absolutemagnitude, fewwells (most prominently “hill1c” and “hill2c”, but alsoGWM049a

and GWM052a) dominate the sensitivity matrix with values larger than 2.0m per normalized

parameter unit. Most of the remaining absolute sensitivities are in the range from 0.25m to 1.0m.
Most likely, this stems from the fact that these two wells are not installed in the valley, but instead

at a deep location up on the Wurmlingen saddle (“hill1c” and “hill2c”), or at the outer, southern

fringe on the floodplain towards the hillslope (GWM049a and GWM052a). Deviations of hydraulic

conductivities can result in more dramatic changes in hydraulic head here, while the observations

in the valley are stabilized by head-related boundary conditions. Additionally, the groundwater

table on the hill has more vertical space to shift within. For most of the valley wells on the other

hand, this vertical freedom is restricted by the comparably shallow surface elevation.

With respect to the relative sensitivities for individual observations, the recharge rate is an important

parameter for all of them. Higher recharge rates lead to an increased hydraulic head, which is

consistent with basic hydrogeologic knowledge. Most of the other important parameters are

hydraulic conductivities. The Erfurt formation evidently is important for all observation wells in

this regard. For the shallow groundwater wells in the Ammer valley, the Tufa and the alluvial-fines

layer are more important than gravel and clay. For the deeper wells, gravel and clay also play a role.

This makes sense considering that gravel and clay are overlain by the Tufa and alluvial-fines layers.

Most of the sensitivities related to hydraulic conductivities are negative, implying a head decrease

with increasing parameter value. For some observations, however, the mean sensitivity of the

gravel and clay hydraulic conductivities is positive. This implies a counterintuitive head increase

with increasing parameter value. The reason for that is unclear. Perhaps, an increased hydraulic

conductivity allows more water to enter the aquifer at the groundwater inlet. However, this would

also allow a better drainage towards the groundwater outlet and it is unclear why that effect should

only be visible for the deeper hydrostratigraphic units in the floodplain.

The weathering depth only plays a minor role for most of the observations, with exception to

GWM065a/b and GWM071a/b close to the eastern boundary. Here, an increase of the weathering

depth leads to an increased hydraulic head, which is counterintuitive at first. However, at these

locations the domain is comparably thin and basically the entire Grabfeld formation is assumed to

be weathered anyway. Increasing the weathering depth even further might connect these locations

hydraulically to a other regions, resulting in higher observed pressures.

As expected, the observations are not sensitive to the van Genuchten parameters (i.e.,𝑁) at all. The

relevance of the soil layer and the anisotropies is equally negligible. Only those few observations

close to the lateral inlet and outlet boundaries (namely GWM011a/b, GWM038a, GWM61a/b,

GWM65a/b and GWM71a/b) show a visible dependence on the respective head offset parameters.

This sensitivity analysis is limited by the quality of the GPE derivatives and over-interpretation

should be avoided. Still, the hydraulic conductivity of the Erfurt formation and the recharge rate

seem to be the governing parameters, which explains their comparably small posterior uncertainties.
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Figure 37: Calibrated flow field. a: Comparison of modeled hydraulic heads and the correspond-

ing field observations including the best calibration estimate, and 250 realizations each of the

prior, the SBI- and the MCMC-based posterior distribution. b: Visualization of the shallow flow

field, with contour lines of hydraulic head and concentric rings symbolizing the measured (inner

circle) and modeled (outer ring) hydraulic heads. c: Same visualization for all deep observations.

15.4 Flow Field of Calibrated Model

After analyzing the system behavior in terms of how the model parameters affect the observations,

we now want to focus on the resulting flow field after calibration. Figure 37 provides an overview

based on the best parameter set found across all calibration variants. As already stated, this ultimately

stems from the variant with multiple internal GPEs and an opening angle of 𝛾 = 90°. Figure 37a
shows modeled versus measured observations in comparison to the identity line. For further points

of reference, 250 samples of modeled output from the prior and the posteriors (SBI and MCMC;

run with the full model) are added.

We observe that the modeled hydraulic head observations scatter around the field data for all

three cases (prior, SBI-posterior and MCMC-posterior). The amount of scattering is not uniform
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across the different measurement locations Especially the modeled prior observations related to

the observations “hill1c” and “hill2c” (“other”) show a much larger variability than the others. As

already mentioned in the context of the exceptionally large sensitivities of these observations to

input parameters, this is probably related to the location of the corresponding wells far away from

boundary conditions. The observations generated from SBI-derived posterior samples scatter closer

around the identity line than their prior counterparts. This confirms that the NPE was at least

partially successful in finding better-performing regions of the parameter space. However, the

realizations generated with the MCMC-based verification procedure are even closer to the identity

line, which indicates a superior performance.

The performance of the best parameter set identified by the calibration procedure is remarkably

good, compared to the scattering of the prior and posterior distributions. The differences between

modeled hydraulic heads and the corresponding field measurements (i.e., the residuals) are small

and do not show any obvious visual patterns. For instance, the number of points with positive and

negative residuals does not drastically differ. There is also no single observation that has a much

larger residual than the other ones, and the residuals do not seem to depend on the observed value

itself. This it indicates a favorable lack of obvious bias. Obviously, not all measurements are met

with the accuracy of typical measurement uncertainties (in the order of few centimeters). However,

this is not surprising, considering (1) that we use a steady-state model with homogeneous layers

to simulate a snapshot from a transient, heterogeneous, real system, and (2) that the measured

elevation of the piezometers themselves might be inaccurate.

Figure 37 also provides a spatial overview of the modeled data, separated by shallow (Figure 37b)

and deep (Figure 37c) observation wells. For a facilitated visual comparison between the calibrated

flow field and the flow field as it was observed on the key-date (November 6, 2018), we display two

concentric rings for each observation. The inner ring represents the measured data, the outer ring

the calibrated modeled output. Wherever rings would intersect, we divide the space up by Voronoi

tessellation (Brassel and Reif, 1979), leading to a nearest-neighbor visualization in regions with

high spatial density of measurement points. On top of that, we provide contour lines of hydraulic

head extracted from the model’s flow field within the Tufa and Ammer gravel units.

In general, the comparison shows that both, the shallow and the deep flow field are decently

represented by the model. In both cases, the dominant hydraulic gradient in the longitudinal

direction of the floodplain is clearly visible. The model was also able to reproduce the northwards

component of hydraulic gradient in the southern central section of the floodplain, which can be

attributed to lateral hillslope contributions (this can be seenmore clearly in the shallowTufa aquifer).

Nonetheless, this central part is the region of strongest disagreement between model and reality.

One location stands out particularly (GWM016a/b, denoted by a circular symbol), where the model

underestimates the hydraulic head by about 0.5m. A possible reason for this discrepancy might be
an insufficient representation of the transition zone between hillslope and floodplain aquifers, as

GWM016a/b is located at the southern fringe of the floodplain. Even though hillslope hollows were
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Figure 38: Example streamlines show inter-basin flow diving beneath the unweathered Grabfeld

formation (fivefold vertical exaggeration).

explicitly added as separate hydrostratigraphic units (one of them is very close to GWM016a/b),

the model might still be oversimplified in this regard. In reality, the transition between hillslope

and floodplain is probably smoother than the sharp material property zones of the model allow.

The observations of GWM016a/b might be affected by that. This outcome suggests that it might be

worthwhile to closely investigate the transitioning zone between the hillslope and the floodplain.

The model was able to capture the head differences between the shallow Tufa and deeper gravel

aquifer. This is visible for those observations at the northern inlet that operate in both depths, but

also in the contour lines throughout the aquifers. Unsurprisingly, we also see that the shallow Tufa

aquifer is much more affected by the Ammer river. The contour lines indicate gaining conditions

for most river stretches (this is confirmed by raw nodal model output of HGS), with minor local

infiltrations (e.g., in the northern reach right before the confluence of the two main reaches).

Another aspect that is different between gravel and Tufa aquifer is the steepening of hydraulic

gradients at the northern and southern floodplain fringes. This is very pronounced for the Tufa

aquifer, especially towards the eastern end of the domain. These steep hydraulic gradients indicate

lateral inflow from the hillslopes. The gravel aquifer however does not show that, but it also does

not have the same lateral extent as the Tufa aquifer. The steepening could simply take place in the

adjacent bedrock formations instead.

Figure 38 shows three-dimensional streamlines that illustrate an important aspect of the flow field

that was already hypothesized in Section 15.2. We can see pronounced inter-basin flow from the
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Ammer side to the Neckar side in the Erfurt formation. The unweathered Grabfeld formation seems

to be such a hindrance to flow that streamlines originating on the Ammer side of the Spitzberg first

move towards the Ammer floodplain, before they enter the Erfurt formation, shift direction and

dive towards the Neckar valley. Of course, this has implications for the location of the groundwater

divide. It also implies that not the Grabfeld formation is critical in this regard, but the connection

between the two valleys is provided by the Erfurt formation instead.

16 Conclusions & Outlook

We successfully calibrated a steady-state subsurface flow model of the Ammer floodplain and the

adjacent section of the Neckar catchment. Using multiple internal GPEs during the calibration

helped to improve and accelerate the calibration. Restricting the opening angle of proposed points

from 180° to 90° has lead to an additional minor enhancement. We also applied Simulation-Based

Inference to infer a full posterior distribution, which helped us to understand the connection

between the calibrated parameter sets and also provided estimates on parameter uncertainty. The

main properties of this distribution were in accordance with another posterior distribution derived

from classical Bayesian MCMC sampling conducted with a GPE-based proxy-model. Considering

that the NPE only used 3070 comparably low-performing realizations sampled from the prior

distribution, these results are impressive. However, some minor deviations were noticeable, and

realizations drawn from the MCMC-posterior outperformed their SBI equivalents in terms of

agreement with measured data. Depending on the calibration problem at hand, the application of

NPE should therefore be evaluated carefully.

For instance, if the reason for constructing a posterior distribution is to obtain a rough idea about

parameter values, uncertainties, and relationships (e.g., as part of a preliminary study) performing

NPE on a model sample generated from prior parameter distributions is straightforward and might

be sufficient. If details of the posterior distribution are important, or if well-performing samples of

the posterior distribution are required, it might be worthwhile to (1) produce additional realizations

in promising regions of the parameters space (e.g., by means of a global calibration scheme), (2) train

a high-quality proxy-model, and (3) performMCMC sampling with that proxy-model. Another

possible route could be the application of other SBI algorithms (e.g., Papamakarios et al., 2019;

Hermans et al., 2020), which were beyond the scope of this study.

The comparison across the different global calibration variants, posteriors and GPE-based sen-

sitivity analysis produces a consistent picture that allows the following conclusions about the

hydrogeological system:

• The hydraulic conductivity of the Erfurt formation is the most important material property.

This formation seems to take a special role in the modeled system: As a connector between

the Ammer and Neckar valleys it acts as a facilitator for inter-basin flow, which is necessary

to keep the groundwater levels in the Ammer valley at the observed values.
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• The recharge rate is a crucial parameter that affects the measured flow field at all observation

wells, but it cannot be inferred independently of the hydraulic conductivity of the Erfurt

formation. Instead, there is a close relationship, where a given value of that conductivity

allows only a narrow range of recharge rates.

• The hydraulic conductivities of the Quaternary material are also important for most of the

observation wells. The calibrated model requires comparably high values for the alluvial

fines, which might be the outcome of a parameter compensating for a structural model error,

namely the absence of tile drains in the model.

The largest discrepancies between the calibrated flow field and measured data occur towards the

southern hillslope in the central region of the Ammer floodplain. A refinement of the model might

be necessary in this part of the domain. We also propose to conduct another key-date measurement

targeting all available observation wells in the domain, including the wells recently installed in

the Grabfeld formation. As these wells are systematically probing the hillslope far from other

observation locations, the corresponding data might be especially valuable for model calibration at

the hillslope/floodplain interface.

Some aspects of the investigation raised further questions: For instance, the calibrated hydraulic

conductivities of Tufa and gravel do not match the prior information in a qualitative sense. Data

frommulti-well pumping tests could help to assess whether this outcome is true or a mere mod-

eling artifact (potentially caused by the positive global sensitivities associated with the hydraulic

conductivity of the Ammer gravel).

The presented multi-GPE calibration variants are not transferable to transient model calibration,

because each time point for each well would essentially require a single GPE, as GPEs can only

predict scalar quantities. This is unfeasible, as meta proxy-model training time and prediction time

increase linearly with the number of GPEs and even with parallel computing there is a limit that is

quickly reached alreadywith a very coarse temporal resolution. However, NPE and SBI have already

been successfully applied to transient data and high-dimensional model outputs (Lueckmann et

al., 2017; Gonçalves et al., 2020). This makes the field of SBI a promising candidate for inferring

posterior parameter values of a transient version of the presented model. One key to that issue

might be the development of applicable and valid summary metrics from time series data, as they

are used for example in Lueckmann et al. (2017). This could potentially re-enable the use of the

presented GPE-assisted schemes.

With respect to the presented calibration scheme variants, we propose a rigorous investigation of

how the opening angle affects the calibration efficiency. Thismight include different calibration runs

with various opening angles that might even decrease over the course of the calibration. Repeated

runs of these scheme variants, also in comparison to the schemes developed by Regis and Shoemaker

(2009), Wang and Shoemaker (2014), and Xia et al. (2021) would be ideal. However, we propose to

perform this comparison with a simpler model to keep the computational costs tractable.

150



Chapter V

Overall Conclusion

Main Findings In the general introduction (Sections 1.3 and 3.5) I raised some overarching

questions that guided my doctoral research. In this section, I would like address these questions by

briefly putting the most important results in context again, before concluding this dissertation with

a general outlook.

1. How can we determine where to measure hydraulic head in order to reduce the uncertainty in

delineating a groundwater divide?

InChapter III, I formulated an optimization problemwhose solution is the piezometer configuration

that minimizes the uncertainty in the location of a local groundwater divide. The quantification of

this uncertainty is based on particle-tracking information interpreted as (binary) particle fate maps.

By means of stochastic, numerical, subsurface-flow modeling, the effect of new hydraulic-head

information obtained at planned measurement locations on the uncertainty can be assessed, even

though the corresponding data are unknown at the stage of the analysis. A trivial ranking of different

measurement configurations with respect to the corresponding uncertainty reduction results in

the solution of the optimization problem. To accelerate the stochastic modeling framework, a

plausibility-based pre-filtering process can be used.

2. Under which conditions can the lateral widening and narrowing of floodplain aquifer(s) cause

valley-scale hyporheic exchange?

In Chapter II, I derived a semi-analytical model for two-dimensional flow in idealized widening

and narrowing floodplain aquifers. This model allows identifying and quantifying geometry-

driven valley-scale lateral hyporheic exchange. I used the semi-analytical solution to perform a

systematic evaluation of hyporheic zone characteristics (exchange flux, affected area and travel-

time distribution). This has resulted in simplified proxy-models that reveal mechanistic insights in

how these characteristics depend on various geometric and hydrogeologic properties. The main

conclusion from this study is that the lateral widening and narrowing of floodplain aquifers causes

valley-scale hyporheic exchange. This process is driven by thewidth-difference between the aquifer’s

widest and narrowest section, and regulated by the separation distance between the floodplain

boundary and the river. Influxes from the adjacent hillslopes can shrink the hyporheic exchange

zone disproportionately. If such influxes exceed a threshold depending on the domain aspect

ratio and the hydraulic anisotropy, this zone even collapses completely such that no valley-scale

hyporheic exchange can be observed.

3. How does NPE compare to proxy-model-based MCMC sampling of a posterior parameter distri-

bution after global calibration of a computationally expensive subsurface-flow model?
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In Chapter IV, I applied different variants of an efficient global calibration scheme to a computa-

tionally expensive subsurface-flow model. I compared the resulting best-point estimates with full

posterior parameter distributions obtained through NPE, a Simulation-Based Inference method,

and MCMC-based sampling of a proxy-model. In general, these posterior distributions aligned

well with the results obtained from the calibrations. Furthermore, in the investigated example,

they revealed additional information about model parameters in terms of uncertainties and cor-

relations that is in principle unavailable from global calibration outcomes. The two posterior

sampling mechanisms produced qualitatively similar results and were able to identify the main

correlations. However, realizations drawn from the MCMC-based posterior distribution yielded

superior agreement with field observations compared to a similar set generated through NPE.

4. Is geometry-driven valley-scale hyporheic exchange relevant for the Ammer-floodplain aquifers?

Applying both, the original semi-analytical solution and the derived proxy-models of Chapter II

to the Ammer site, helped to address this question. Even though the Ammer floodplain geometry

would have some potential for valley-scale hyporheic exchange (pronounced widening combined

with a comparably small average separation distance between river and floodplain boundary), the

results indicate that this process is not relevant in terms of hyporheic discharge and affected area.

This is the case, because lateral influxes from the southern hillslope push the exchange zone towards

the river, which leads to a disproportionate shrinkage of the affected area. The remaining hyporheic

zone is characterized by small discharge and large travel times on the order of decades, which

are both a direct result of the comparably small hydraulic conductivity in the Ammer floodplain

aquifers. Due to the long time that water parcels on the hyporheic flow paths originating from

river Ammer spend in the floodplain aquifer, the physical and chemical signature of the surface

water would most likely be lost. As a result, water in the hyporheic zone would probably resemble

groundwater even at comparably small distances from the river.

5. Is the groundwater divide between the Ammer and the Neckar valley in vicinity of the Ammer

floodplain shifted, leading to inter-basin flow?

With respect to the Ammer floodplain site, the analysis of Chapter III showed that the uncertainty

in the groundwater divide’s position is largest on the Wurmlingen saddle. A potential shift of the

groundwater divide by several hundred meters towards the Ammer side can be observed in at least

a major fraction of the randomly generated model realizations. The sensitivity analysis conducted

in Chapter III showed that the hydraulic heads at theWurmlingen saddle, and therefore the position

of the groundwater divide, depend mostly on the Grabfeld formation and its weathering state

in particular. In the refined model version of Chapter IV, however, the Erfurt formation takes

a leading role with respect to governing the overall flow field. This is an outcome of updated

prior parameter distributions based on existing literature, as well as refined model geometries and

boundary conditions. Nonetheless, inter-basin flow from the northern Ammer site towards the

southern Neckar catchment was observed in the calibrated subsurface-flow model.
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6. Can a steady-state subsurface flow model be calibrated to field data of the Ammer-floodplain

aquifers to achieve a decent representation of the observed flow field?

In Chapter IV, I carried out the calibration of a steady-state model of the Ammer floodplain to

hydraulic-head data of a key-date measurement. The application of different variants of a proxy-

model-assisted calibration scheme resulted in several similarly-performing parameter sets, that

all achieved a decent fit between modeled and observed hydraulic-head data (with exception of an

uninformed variant that served as a comparison). The calibrated flow field obtained from running

the model with the single best parameter set replicates properties identified through measurements,

like a head difference between the Tufa and gravel aquifers. Lateral influxes from the southern

hillslopes are visible in the contour lines, too. Interactions with river Ammer in terms of mostly

exfiltrating conditions (i.e., river gains water from the subsurface) have been revealed for the Tufa

aquifer.

7. What is the role of the hydrostratigraphic units in the Ammer-floodplain aquifers, also with respect

to the interaction of the floodplain aquifers with the surroundings?

As already discussed in context of Question 3, the posterior parameter distribution obtained

throughNeural Posterior Estimation and a sensitivity analysis based onGaussian Process Emulators

have helped to understand the function and significance of individual hydrostratigraphic units in

Chapter IV.The Erfurt formation, for instance, serves as a hydraulic connector between the Ammer

and Neckar valleys, beneath the unweathered Grabfeld formation, which is basically watertight.

This also implies a northward shift of the groundwater divide. The top alluvial fines in the Ammer

floodplain have also been identified to be of importance for the flow field, most likely as they

represent the connection between the floodplain aquifers and the drainage system.

Outlook The semi-analytical and stochastic numerical methods for the simulation of subsurface

flow in floodplains presented in this dissertation could be extended in several regards. For example,

it would be interesting to investigate how the valley-scale hyporheic exchange in floodplain aquifers

of varyingwidthwould be affected by sinuosity in the river course and bynon-uniformity in the river

slope. Such changes are trivial to implement in the conceptualmodel, but the resultingmathematical

problem might become intractable without relying on fully numerical models. With respect to the

flow field, these changes would probably result in additional superposition of hyporheic exchange

on a smaller scale.

For the methods introduced in Chapters III and IV, an extension to transient systems would be very

useful, but also difficult to implement. In the case of optimizing well placement for groundwater

divide delineation I already sketched out a possible idea of how to address this issue in Section 9.5.

Applying the proxy-model assisted calibration scheme to transient models, however, is not straight-

forward and might require the development of smart summary metrics that keep the number of

internal proxy-models at a feasible level.
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I want to end this dissertation with an outlook of how hydrogeologic research in the Ammer

floodplain could be continued. Now that steady-state simulations have proven to be successful with

respect to replicating patterns observed in the field, the logical consequence would be to extend the

model to transient simulations. The overview of available field data (Figure 4) already shows how

dynamic the aquifer system can be, and it would be interesting to see if and how these patterns can

be matched bymodeling. A calibrated transient flowmodel could give insights and detailed answers

on questions regarding the water balance of the Ammer floodplain (e.g., whether the connection

between aquifers and the drainage network is active primarily during rain events or throughout

the year). However, developing and calibrating a transient model to the Ammer-floodplain data

is challenging. Transient models lead to a drastic increase of complexity, as more parameters

are needed and relevant (e.g., the unsaturated zone parametrization is much more influential in

transient models). The model run times would also increase and the definition of a good objective

function judging the fit between measured and modeled time series data is also not trivial.

In my opinion, future modeling studies on the Ammer floodplain should therefore also consider

a modification of the model domain, depending on the modeling focus. If the primary interest

regards the floodplain Quaternary itself, I would propose an extension of the domain area laterally

to both ends of the floodplain (from Pfäffingen or even Poltringen, to the western end of the

city of Tübingen). This alleviates problems with the arbitrarily defined boundary geometries and

the corresponding boundary conditions. At the same time, it could be worthwhile to restrict the

investigation to the Quaternary floodplain aquifer units themselves. Interactions with hillslopes and

the deeper subsurface could then be considered by source and sink terms (e.g., by including lateral

Neumann boundaries and a leaky boundary towards the bottom). Potentially, this approach might

even allow to consider some internal heterogeneity. Alternatively, if the focus lies on the interaction

between the Ammer floodplain and the regional hydrogeology, an extension of the domain in all

directions accompanied by a decreased resolution (possibly also by lumping all Quaternary units)

might be promising. Ultimately, the combination of both approaches might be ideal, for instance

by coupling a lower-resolution regional scale model to a high-resolution Quaternary model.

Prior to and during any further modeling activities, I would encourage conducting further key-date

measurements of hydraulic head at all available observation locations. This should include all

Quaternary wells in the Ammer floodplain aquifers, but also the Grabfeld formation wells that were

installed as an outcome of Chapter III, as well as other ones (e.g., Erfurt formation wells recently

installed by the Ammertal-Schönbuchgruppe). Such nearly-simultaneous snapshots of the flow

field are essential to understand the system.
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Appendix

17 Simplified Parametrization of the Unsaturated Zone

Stochastic numerical simulations are based on repeated simulations of the same flow model with

varying values of internal model parameters. In most setups, the parameters are assumed to be

independent. This assumption becomes problematic for parameters related to the unsaturated zone,

as these are typically correlated (Schaap and Leij, 2000). Especially the parameter related to air entry

pressure (𝛼 in the van Genuchten model; ℎAE in the Brooks and Corey model) is often reported
to be correlated to the saturated hydraulic conductivity, where higher hydraulic conductivities

indicate smaller air entry pressures (Schaap and Leij, 2000; Guarracino, 2007). Other correlations

have been identified too (e.g., Franzmeier, 1991; Timlin et al., 1999, 2004). Independent sampling

of 𝛼 and𝐾sat might therefore produce unrealistic parameters sets, even if both values are within
realistic ranges by themselves.

An obvious solution to that problem would simply be to measure the parameters in lab studies for

any given subsurface material to either specify them as fixed parameters, or to infer the correlations.

However, this is difficult and requires a lot of effort (Reynolds et al., 2000; Vereecken et al., 2010).

Furthermore, the results will then only be valid for the investigated sample(s), which might not be

representative for the full hydrostratigraphic formation.

To avoid these issues, another solution is based on identifying relationships between the unsaturated

zone parameters to othermaterial properties that are easier to determine and then exploit the inverse

relationship for inference. Such estimation techniques are the key elements of so-called pedotransfer

functions (Vereecken et al., 2010; Van Looy et al., 2017; Szabó et al., 2021). A widely popular early

study in this regard was conducted by Carsel and Parrish (1988), whoworkedwith artificial data sets

generated from the pedotransfer functions of Rawls et al. (1982) and Rawls and Brakensiek (1985,

1989). The outcome of Carsel and Parrish (1988) is a collection of multidimensional distributions,

where correlated samples of𝐾sat,𝛩𝑟, 𝛼 and𝑁 can be drawn for any given soil type.

I decided against directly applying the relationships of Carsel and Parrish (1988) in stochastic

numerical modeling for the following reasons:

• Accounting for correlations during sampling for stochastic simulations can be difficult, even

when the correlations are known.

• The data is quantized into different soil type categories. Often it is unclear, which of the cate-

gories to choose, especially for bedrock layers. Such formations are obviously not considered

in the collection of Carsel and Parrish (1988), but unsaturated zone parameters are required

nonetheless in the modeling, where each hydrostratigraphic unit requires a description of its

unsaturated behavior.
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• The article of Carsel and Parrish (1988) appears to contain minor errors (e.g., missing zeros

in comparison to the original data set of Rawls and Brakensiek (1985) and duplicate entries

in the correlation tables). Even though these errors were probably only introduced during

typesetting, it means that at least part of the presented data are likely to be incorrect.

To circumvent these problems, I use a direct deterministic, empirical relationship to infer 𝛼 from
a given or (randomly) sampled𝐾sat. For that I use the original relationships developed by Rawls
et al. (1982) and Rawls and Brakensiek (1985, 1989), which are based on data sets of Brooks and

Corey coefficients and sand, silt and clay content of the respective materials. By sampling within

the two-dimensional parameter space of sand and silt content (the clay content is automatically

assumed to make up the remaining fraction) I create 1500 virtual data points. To achieve a uniform

point density in the ternary sand/silt/clay-fraction diagram, I sample according to a uniform three-

dimensional Dirichlet distribution with concentration parameters equal to one. For these 1500

data points, I determine both 𝛼 and 𝐾sat according to the empirical relationships of Rawls and
Brakensiek (1989, with some randomness introduced for the bulk density estimation). Finally, I fit

a one-dimensional sigmoidal model that treats log𝛼 as a function of log𝐾sat:

log10 𝛼 = −0.97 + 5.96
1

1 + exp(−0.34 ⋅ (log10𝐾sat + 2.74))
. (17.1)

This has the advantages of (1) a direct coupling of 𝛼 and𝐾sat, which reduces the number of indepen-
dent model parameters, and (2) providing a relationship that can infer 𝛼 for any given𝐾sat, which
might also be used for bedrock formations. Obviously, this is not a perfect solution, as it is (1) still

based only on data from unconsolidated sediments, and (2) neglecting parametric uncertainty by

assuming a deterministic relationship. Nonetheless, it is good enough in the context of steady-state

modeling, where the parametrization of the unsaturated zone is of minor importance to the overall

flow field anyway. The relationship of Equation 17.1 and the data it was fitted to is shown in

Figure 39. The Matlab code to re-generate this relationship and figure are available in form of a

repository at https://osf.io/9zycb/ (Allgeier, 2022a).

It should be noted that this approach is only used in Chapter IV. For Chapter III, which was

developed earlier, I use independent sampling of 𝛼,𝐾sat and𝑁.
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Figure 39: Derivation of a relationship to infer 𝛼 from𝐾sat. a: Set of randomly genereated points.
b: Corresponding values of 𝛼 and𝐾sat according to Rawls and Brakensiek (1989), as well as the
inferred relationship between those two parameters.

18 Literature Values of Model Parameters

The following tables contain collected literature information regarding the hydrostratigraphic units

described in Section 3. With comments I indicate in what context the information was published:

• “modeled”: The presented data were used in a modeling study either as input value or as

calibrated model output.

• “measured”: The presented data were measured either in situ or in lab-scale experiments.

• “cited”: The presented data was mentioned in text as a reference to another publication,

but that (supposedly original) publication is not available to me at the time of writing this

dissertation. This might be either due to publisher-related restricted access, insufficient

description of the original publication, or because the original publication is not available to

the general public (anymore).

As average groundwater recharge rates cannot be measured directly and each quantitative recharge

rate estimation is essentially the outcome of some (implicit) model, I use the terms “calculated” and

“assumed” in Table 22, where the former indicates outputs of data- or model-driven approaches

and the latter to denotes data that were (apparently) based on expert knowledge.

In cases where multiple data were documented, I collected the extreme values (indicated by “min”

and “max”), to give an appropriate overview of the value ranges.

Within all tables,𝐾 is the hydraulic conductivity, 𝑎𝑟 is the anisotropy ratio (vertical to horizontal),
𝜙 is the porosity and 𝛼/𝑁 are the van Genuchten parameters. In some cases,𝐾was inferred as the
ratio of a given transmissivity to the corresponding layer thickness.
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Table 10: Literature values of parameters describing the Erfurt formation.

Source 𝐾 inms−1 𝑎𝑟 𝜙 𝛼 inm−1 𝑁 Comment

Butscher et al. (2011) 1 ⋅ 10−6 0.10 modeled

D’Affonseca et al. (2018) 1 ⋅ 10−6 0.10 0.06 modeled

D’Affonseca et al. (2020) 1 ⋅ 10−6 0.10 modeled

Erdal and Cirpka (2019) 1 ⋅ 10−8 0.02 0.5 1.5 modeled (min)

Erdal and Cirpka (2019) 1 ⋅ 10−5 1.00 5.0 9.0 modeled (max)

Erdal et al. (2020) 1 ⋅ 10−9 0.02 0.5 1.5 modeled (min)

Erdal et al. (2020) 1 ⋅ 10−5 1.00 5.0 9.0 modeled (max)

Keim and Pfäfflin (2006) 6 ⋅ 10−5 measured (min)

Keim and Pfäfflin (2006) 4 ⋅ 10−3 measured (max)

Kirchholtes and Ufrecht (2015) 2 ⋅ 10−7 measured (min)

Kirchholtes and Ufrecht (2015) 5 ⋅ 10−3 measured (max)

LGRB (2010) 5 ⋅ 10−6 measured (min)

LGRB (2010) 6 ⋅ 10−6 measured (max)

LGRB (2012) 5 ⋅ 10−5 measured

Schollenberger (1998) 8 ⋅ 10−6 measured (min)

Schollenberger (1998) 4 ⋅ 10−5 measured (max)

Schweizer et al. (2019) 1 ⋅ 10−5 1.00 0.02 modeled

Selle et al. (2013) 7 ⋅ 10−6 1.00 modeled (min)

Selle et al. (2013) 1 ⋅ 10−4 1.00 modeled (max)

Table 11: Literature values of parameters describing the unweathered Grabfeld formation; also

comprises effective cases, where only a single formation was considered.

Source 𝐾 inms−1 𝑎𝑟 𝜙 𝛼 inm−1 𝑁 Comment

Butscher et al. (2011) 1 ⋅ 10−7 1.00 modeled

D’Affonseca et al. (2018) 5 ⋅ 10−8 0.10 0.03 modeled

D’Affonseca et al. (2020) 5 ⋅ 10−8 0.10 modeled

Erdal and Cirpka (2019) 1 ⋅ 10−9 0.02 0.5 1.5 modeled (min)

Erdal and Cirpka (2019) 1 ⋅ 10−7 1.00 5.0 9.0 modeled (max)

Erdal et al. (2020) 1 ⋅ 10−9 0.02 0.5 1.5 modeled (min)

Erdal et al. (2020) 1 ⋅ 10−5 1.00 5.0 9.0 modeled (max)

Hiller et al. (2012) 1 ⋅ 10−14 cited (min)

Hiller et al. (2012) 1 ⋅ 10−7 cited (max)

Hiller et al. (2012) 1 ⋅ 10−5 0.40 modeled

Kirchholtes and Ufrecht (2015) 2 ⋅ 10−13 measured (min,

effective)

Schlosser et al. (2007) 2 ⋅ 10−13 mentioned (min)

Schlosser et al. (2007) 3 ⋅ 10−5 mentioned (max)

Schweizer et al. (2018) 1 ⋅ 10−10 0.03 cited (min)

Schweizer et al. (2018) 0.09 cited (max)

Schweizer et al. (2019) 1 ⋅ 10−10 1.00 0.02 modeled

Ufrecht (2017) 1 ⋅ 10−13 mentioned (min)

Ufrecht (2017) 1 ⋅ 10−7 mentioned (max)

Wittke (2014) 1 ⋅ 10−12 measured (min)

Wittke (2014) 1 ⋅ 10−7 measured (max)
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Table 12: Literature values of parameters describing the weathered Grabfeld formation.

Source 𝐾 inms−1 𝑎𝑟 𝜙 𝛼 inm−1 𝑁 Comment

Butscher et al. (2011) 1 ⋅ 10−7 1.00 modeled

D’Affonseca et al. (2020) 8 ⋅ 10−6 1.00 modeled

D’Affonseca et al. (2018) 8 ⋅ 10−6 1.00 0.06 modeled

Erdal and Cirpka (2019) 1 ⋅ 10−7 0.02 0.5 1.5 modeled (min)

Erdal and Cirpka (2019) 5 ⋅ 10−5 1.00 5.0 9.0 modeled (max)

Erdal et al. (2020) 1 ⋅ 10−9 0.02 0.5 1.5 modeled (min)

Erdal et al. (2020) 1 ⋅ 10−5 1.00 5.0 9.0 modeled (max)

Hiller et al. (2012) 1 ⋅ 10−4 0.40 cited

Kirchholtes and Ufrecht (2015) 1 ⋅ 10−2 measured (max,

effective)

Kortunov (2018) 1 ⋅ 10−5 1.00 0.03 4.0 1.3 modeled, effective

LGRB (2010) 1 ⋅ 10−6 measured

Martin (2021) 3 ⋅ 10−5 measured (min)

Martin (2021) 6 ⋅ 10−4 measured (max)

Schlosser et al. (2007) 2 ⋅ 10−9 mentioned (min)

Schlosser et al. (2007) 3 ⋅ 10−4 mentioned (max)

Schweizer et al. (2018) 4 ⋅ 10−7 0.10 0.08 modeled

Schweizer et al. (2019) 2 ⋅ 10−5 1.00 0.16 modeled

Selle et al. (2013) 1 ⋅ 10−5 1.00 modeled (min),

effective

Selle et al. (2013) 2 ⋅ 10−5 1.00 modeled (max),

effective

Ufrecht (2017) 1 ⋅ 10−6 mentioned (min)

Ufrecht (2017) 9 ⋅ 10−3 mentioned (max)

Table 13: Literature values of weathering zone depth 𝐿w beneath surface (no weathering below)
in the Grabfeld formation.

Source 𝐿w inm Comment

Butscher et al. (2011) 30 figure

D’Affonseca et al. (2018) 5 modeled

Erdal and Cirpka (2019) 5 modeled (min)

Erdal and Cirpka (2019) 50 modeled (max)

Hiller et al. (2012) 20 modeled (min)

Hiller et al. (2012) 30 modeled (max)

Kehrer (1935) 1 estimated

Martin (2021) 28 measured

Schlosser et al. (2007) 34 mentioned

Schweizer et al. (2019) 35 figure

Ufrecht (2017) 20 mentioned (min)

Ufrecht (2017) 40 mentioned (max)
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Table 14: Literature values of parameters describing relevant sandstone formations.

Source 𝐾 inms−1 𝑎𝑟 𝜙 𝛼 inm−1 𝑁 Comment

D’Affonseca et al. (2018) 5 ⋅ 10−8 0.10 0.06 modeled

D’Affonseca et al. (2020) 5 ⋅ 10−8 0.10 modeled

Kortunov (2018) 1 ⋅ 10−5 1.00 0.03 4.0 1.3 modeled

LGRB (2010) 8 ⋅ 10−6 measured

Maier et al. (2013) 1 ⋅ 10−6 1.00 0.18 8.7 1.6 modeled (kmHb)

Maier et al. (2013) 3 ⋅ 10−8 1.00 0.41 2.3 1.2 modeled (kmTr)

Schlosser et al. (2007) 1 ⋅ 10−11 mentioned (min;

kmSt)

Schlosser et al. (2007) 2 ⋅ 10−4 mentioned (max;

kmSt)

Schlosser et al. (2007) 4 ⋅ 10−13 mentioned (min;

kmSw, kmHb,

kmMh)

Schlosser et al. (2007) 1 ⋅ 10−5 mentioned (max;

kmSw, kmHb,

kmMh)

Schlosser et al. (2007) 6 ⋅ 10−13 mentioned (min;

kmLw)

Schlosser et al. (2007) 3 ⋅ 10−6 mentioned (max;

kmLw)

Schlosser et al. (2007) 2 ⋅ 10−13 mentioned (min;

kmTr)

Schlosser et al. (2007) 2 ⋅ 10−5 mentioned (max;

kmTr)

Schweizer et al. (2019) 8 ⋅ 10−6 1.00 0.09 modeled

Selle et al. (2013) 3 ⋅ 10−9 1.00 modeled (min)

Selle et al. (2013) 4 ⋅ 10−9 1.00 modeled (max)

Table 15: Literature values of parameters describing clayey gravel (Ammer or comparable).

Source 𝐾 inms−1 𝑎𝑟 𝜙 𝛼 inm−1 𝑁 Comment

D’Affonseca et al. (2018) 6 ⋅ 10−4 0.10 0.15 modeled

(Quaternary)

D’Affonseca et al. (2020) 6 ⋅ 10−4 0.10 modeled

Erdal and Cirpka (2019) 1 ⋅ 10−7 1.00 0.5 1.5 modeled (min;

Quaternary)

Erdal and Cirpka (2019) 1 ⋅ 10−5 1.00 5.0 9.0 modeled (max;

Quaternary)

Erdal et al. (2020) 1 ⋅ 10−9 1.00 0.5 1.5 modeled (min;

Quaternary)

Erdal et al. (2020) 1 ⋅ 10−5 1.00 5.0 9.0 modeled (max;

Quaternary)

Kortunov (2018) 1 ⋅ 10−5 1.00 0.20 35.0 5.3 modeled

Martin et al. (2020) 3 ⋅ 10−9 measured (min)

Martin et al. (2020) 4 ⋅ 10−4 measured (max)

Martin (2021) 1 ⋅ 10−6 measured (min)

Martin (2021) 2 ⋅ 10−3 measured (max)
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Table 16: Literature values of parameters describing silty clay.

Source 𝐾 inms−1 𝑎𝑟 𝜙 𝛼 inm−1 𝑁 Comment

Carsel and Parrish (1988) 6 ⋅ 10−8 0.36 0.5 1.1 cited

Capuano and Jan (1996) 3 ⋅ 10−5 0.00 measured (field)

Capuano and Jan (1996) 1 ⋅ 10−9 measured (lab,

min)

Capuano and Jan (1996) 5 ⋅ 10−7 measured (lab,

max)

Kortunov (2018) 1 ⋅ 10−8 1.00 0.30 0.8 1.2 modeled

Leroueil et al. (n.d.) 2 ⋅ 10−10 0.30 measured (min)

Leroueil et al. (n.d.) 3 ⋅ 10−9 1.00 measured (max)

Lu et al. (2017) 3 ⋅ 10−11 measured (min)

Lu et al. (2017) 6 ⋅ 10−9 measured (min)

Lu et al. (2017) 3 ⋅ 10−6 measured (max)

Table 17: Literature values of parameters describing Tufa.

Source 𝐾 inms−1 𝑎𝑟 𝜙 𝛼 inm−1 𝑁 Comment

Kortunov (2018) 1 ⋅ 10−6 1.00 0.40 0.8 1.2 modeled (min)

Kortunov (2018) 1 ⋅ 10−5 modeled (max)

Martin et al. (2020) 3 ⋅ 10−7 measured (min)

Martin et al. (2020) 5 ⋅ 10−5 measured (max)

Martin (2021) 4 ⋅ 10−7 measured (min)

Martin (2021) 2 ⋅ 10−4 measured (max)

Table 18: Literature values of parameters describing alluvial fines.

Source 𝐾 inms−1 𝑎𝑟 𝜙 𝛼 inm−1 𝑁 Comment

Huch et al. (2013) 1 ⋅ 10−10 cited

Kortunov (2018) 1 ⋅ 10−6 1.00 0.30 0.8 1.2 modeled (min)

Kortunov (2018) 0.40 modeled (max)

Maier et al. (2013) 1 ⋅ 10−4 1.00 0.40 5.5 1.5 modeled

Minasny et al. (2004) 5 ⋅ 10−10 0.22 0.1 1.1 mentioned (min)

Minasny et al. (2004) 2 ⋅ 10−6 0.39 1.9 2.0 mentioned

Minasny et al. (2004) 2 ⋅ 10−4 0.55 12.4 7.6 mentioned (max)

Nagarajarao and Mallick (1980) 3 ⋅ 10−5 0.39 measured (min)

Nagarajarao and Mallick (1980) 9 ⋅ 10−5 0.42 measured (max)
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Table 19: Literature values of parameters describing gravel (Neckar or comparable).

Source 𝐾 inms−1 𝑎𝑟 𝜙 𝛼 inm−1 𝑁 Comment

D’Affonseca et al. (2018) 1 ⋅ 10−3 0.10 0.15 modeled

D’Affonseca et al. (2020) 1 ⋅ 10−3 0.10 modeled

Keim and Pfäfflin (2006) 5 ⋅ 10−5 measured (min)

Keim and Pfäfflin (2006) 4 ⋅ 10−3 measured (max)

Kleinert (1976) 2 ⋅ 10−5 0.10 measured (min)

Kleinert (1976) 7 ⋅ 10−3 measured (max)

Kortunov (2018) 1 ⋅ 10−3 1.00 0.20 35.0 5.3 modeled

Lessoff et al. (2010) 2 ⋅ 10−3 measured

Willscher et al. (2002) 1 ⋅ 10−3 modeled

Table 20: Literature values of parameters describing hillslope fillings.

Source 𝐾 inms−1 𝑎𝑟 𝜙 𝛼 inm−1 𝑁 Comment

Maier et al. (2013) 3 ⋅ 10−4 1.00 0.40 2.5 1.3 modeled

Martin et al. (2020) 8 ⋅ 10−9 measured (min)

Martin et al. (2020) 6 ⋅ 10−5 measured (max)

Martin (2021) 1 ⋅ 10−3 measured

Table 21: Literature values of parameters describing generic top soil.

Source 𝐾 inms−1 𝑎𝑟 𝜙 𝛼 inm−1 𝑁 Comment

Kortunov (2018) 1 ⋅ 10−6 1.00 0.40 0.8 1.2 modeled

Maier et al. (2013) 1 ⋅ 10−4 1.00 0.38 4.0 2.3 modeled

Archer et al. (2013) 3 ⋅ 10−7 measured (min)

Archer et al. (2013) 5 ⋅ 10−5 measured (max)

Weber (2018) 7 ⋅ 10−7 modeled (min)

Weber (2018) 3 ⋅ 10−6 modeled

Weber (2018) 6 ⋅ 10−5 modeled (max)
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Table 22: Literature values of groundwater recharge rates 𝑟R in the Ammer floodplain study area
or close to it.

Source 𝑟R inms−1 Comment

Ammer et al. (1983) 3.1 ⋅ 10−9 calculated (min,

forest)

Ammer et al. (1983) 3.5 ⋅ 10−9 calculated (max,

forest)

BfG (2003) 7.9 ⋅ 10−10 calculated (min)

BfG (2003) 4.8 ⋅ 10−9 calculated (max)

Erdal and Cirpka (2019) 2.5 ⋅ 10−9 assumed (min)

Erdal and Cirpka (2019) 4.8 ⋅ 10−9 assumed (max)

Harreß (1973) 3.3 ⋅ 10−9
Gudera (2015) 1.6 ⋅ 10−9 cited (min)

Gudera (2015) 6.3 ⋅ 10−9 cited (max)

Kleinert (1976) 7.0 ⋅ 10−9 calculated

Kortunov (2018) 6.3 ⋅ 10−9 cited

Maier et al. (2013) 1.0 ⋅ 10−8 assumed

Martin et al. (2020) 6.3 ⋅ 10−9 assumed

Wegehenkel and Selg (2002) 1.4 ⋅ 10−9 calculated (min)

Wegehenkel and Selg (2002) 4.8 ⋅ 10−9 calculated

(long-term)

Wegehenkel and Selg (2002) 9.4 ⋅ 10−9 calculated (max)
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