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Abstract

Automatic differentiation is a key enabler of deep learning: previously, practitioners were limited to models
for which they could manually compute derivatives. Now, they can create sophisticated models with almost
no restrictions and train them using first-order, i. e. gradient, information. Popular libraries like PyTorch [126]
and TensorFlow [1] compute this gradient efficiently, automatically, and conveniently with a single line of
code. Under the hood, reverse-mode automatic differentiation, or gradient backpropagation, powers the
gradient computation in these libraries. Their entire design centers around gradient backpropagation.

These frameworks are specialized around one specific task—computing the average gradient in a mini-batch.
This specialization often complicates the extraction of other information like higher-order statistical moments
of the gradient, or higher-order derivatives like the Hessian. It limits practitioners and researchers to methods
that rely on the gradient. Arguably, this hampers the field from exploring the potential of higher-order
information and there is evidence that focusing solely on the gradient has not lead to significant recent
advances in deep learning optimization [145].

To advance algorithmic research and inspire novel ideas, information beyond the batch-averaged gradient
must be made available at the same level of computational efficiency, automation, and convenience.

This thesis presents approaches to simplify experimentation with rich information beyond the gradient
by making it more readily accessible. We present an implementation of these ideas as an extension to the
backpropagation procedure in PyTorch. Using this newly accessible information, we demonstrate possible use
cases by (i) showing how it can inform our understanding of neural network training by building a diagnostic
tool, and (ii) enabling novel methods to efficiently compute and approximate curvature information.

First, we extend gradient backpropagation for sequential feedforward models to Hessian backpropagation
which enables computing approximate per-layer curvature. This perspective unifies recently proposed block-
diagonal curvature approximations. Like gradient backpropagation, the computation of these second-order
derivatives is modular, and therefore simple to automate and extend to new operations.

Based on the insight that rich information beyond the gradient can be computed efficiently and at the
same time, we extend the backpropagation in PyTorch with the BackPACK library. It provides efficient and
convenient access to statistical moments of the gradient and approximate curvature information, often at a
small overhead compared to computing just the gradient.

Next, we showcase the utility of such information to better understand neural network training. We build
the Cockpit library that visualizes what is happening inside the model during training through various
instruments that rely on BackPACK’s statistics. We show how Cockpit provides a meaningful statistical
summary report to the deep learning engineer to identify bugs in their machine learning pipeline, guide
hyperparameter tuning, and study deep learning phenomena.

Finally, we use BackPACK’s extended automatic differentiation functionality to develop ViViT, an approach
to efficiently compute curvature information, in particular curvature noise. It uses the low-rank structure
of the generalized Gauss-Newton approximation to the Hessian and addresses shortcomings in existing
curvature approximations. Through monitoring curvature noise, we demonstrate how ViViT’s information
helps in understanding challenges to make second-order optimization methods work in practice.

This work develops new tools to experiment more easily with higher-order information in complex deep
learning models. These tools have impacted works on Bayesian applications with Laplace approximations [40],
out-of-distribution generalization [64, 130], differential privacy [179], and the design of automatic differentia-
tion systems. They constitute one important step towards developing and establishing more efficient deep
learning algorithms.





Zusammenfassung

Automatisches Differenzieren stellt eine wesentliche Komponente für Deep Learning dar: Zuvor waren
Anwender auf Modelle beschränkt, deren Ableitungen sich manual berechnen ließen. Jetzt können sie
komplexe Modelle mit fast beliebiger Struktur entwerfen und diese mit Gradienteninformation trainieren.
Software-Bibliotheken wie PyTorch [126] und TensorFlow [1] berechnen den Gradienten effizient und
automatisch in einer Codezeile. Im Hintergrund geschieht dies per automatischer Differenzierung im
Rückwärtsmodus, genannt Backpropagation. Das Design dieser Bibliotheken basiert auf Backpropagation.

Solche Bibliotheken sind besonders auf eine spezielle Funktion – das Berechnen des gemittelten Gradienten
über einen Mini-Batch – ausgerichtet. Diese Spezialisierung erschwert oft die Berechnung anderer Größen,
wie höhere statistische Momente des Gradienten oder Ableitungen höherer Ordnung, etwa der Hesse-Matrix.
Sie beschränkt Anwender und Forscher auf gradientenbasierte Methoden und hindert die Erforschung des
Potenzials höherer Ableitungen und statistischer Momente. Es gibt Anzeichen, dass dieser Fokus auf den
Gradienten keine signifikanten Fortschritte in der Optimierung neuronaler Netze erlaubt hat [145].

Um die algorithmische Forschung voranzutreiben und neue Ideen zu inspirieren müssen andere Größen, die
über den gemittelten Gradienten eines Mini-Batches hinausgehen, genauso einfach – das heißt automatisiert
und effizient – zugänglich gemacht werden.

Diese Arbeit stellt Ansätze vor, die das Experimentieren mit diversen Größen jenseits des Gradienten
erleichtern, indem sie diese leichter zugänglich machen. Wir implementieren diese Ideen durch Erweiterung
der bestehenden Backpropagation in PyTorch. Mit diesen neu zugänglichen Größen demonstrieren wir
Anwendungsszenarien indem wir zeigen wie diese (i) anhand eines Diagnosetools zum besseren Verständnis
des Trainings neuronaler Netze führen und (ii) neue Methoden für effiziente und approximative Berechnung
von Krümmungsinformation ermöglichen.

Zunächst erweitern wir Gradient Backpropagation für sequenzielle neuronale Netze auf Backpropagation
von Hesse-Matrizen, welche die Berechnung von Krümmung innerhalb einer Schicht ermöglicht. Diese
Formulierung vereinheitlicht kürzlich vorgeschlagene Näherungsverfahren für Krümmung durch block-
diagonale Matrizen. Wie Gradient Backpropagation ist dieses Verfahren für Ableitungen zweiter Ordnung
zwischen Schichten entkoppelt und daher einfach zu automatisieren und zu erweitern.

Basierend auf der Erkenntnis, dass reichhaltige Information jenseits des Gradienten gleichzeitig mit diesem be-
rechnet werden kann, erweitern wir die Standard-Backpropagation von PyTorch mit der BackPACK-Bibliothek.
Diese bietet effizienten Zugriff auf statistische Gradientenmomente und approximative Krümmungsinforma-
tion. Im Vergleich zur Gradientenberechnung ist der Mehraufwand oft gering.

Danach demonstrieren wir den Nutzen solcher Information zum besseren Verständnis des Trainings
neuronaler Netze. Wir entwickeln die Cockpit-Bibliothek, die während des Trainings anhand verschiedener
Instrumente – basierend auf BackPACKs Größen – visualisiert, was innerhalb des Modells geschieht. Wir
zeigen, wie Cockpit Ingenieuren hilft, Fehler in deren Pipeline zu identifizieren, Hyperparameter zu wählen
und Deep Learning Phänomene zu untersuchen.

Zuletzt verwenden wir BackPACKs Funktionalität zur Entwicklung von ViViT, einem Verfahren zur effizienten
Berechnung von Krümmungsinformation, insbesondere deren Rauschen. ViViT basiert auf dem äußeren
Produkt in der verallgemeinerten Gauß-Newton-Matrix und behebt Probleme bestehender Methoden. Durch
Beobachtung von Krümmungsrauschen zeigen wir, wie ViViTs Größen dabei helfen, Herausforderungen für
die erfolgreiche Realisierung krümmungsbasierter Optimierer zu verstehen.

Diese Arbeit entwickelt neue Tools zum vereinfachten Experimentieren mit Information höherer Ordnung
in komplizierten tiefen Netzen. Diese Tools haben Arbeiten zu bayesschen Anwendungen mit Laplace-
Approximationen [40], Out-of-Distribution Generalisierung [64, 130], Differential Privacy [179], sowie das
Design von Deep Learning Bibliotheken beeinflusst. Sie stellen einen wichtigen Schritt zur Entwicklung und
Etablierung effizienterer Algorithmen für Deep Learning dar.
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Notation

The notation is influenced by Goodfellow et al. [60].

Tensors, Matrices, Vectors, Numbers

𝑎 A scalar
𝒂 A column vector
𝑨 A matrixA A tensor
𝑎𝑖 or [𝒂]𝑖 The 𝑖th entry of the vector 𝒂
𝐴𝑖 , 𝑗 or [𝑨]𝑖 , 𝑗 The (𝑖 , 𝑗)th entry of the matrix 𝑨 (row 𝑖, column 𝑗)
[𝑨]𝑖 ,: (or [𝑨]:, 𝑗) The 𝑖th row (or 𝑗th column) of the matrix 𝑨
A𝑖 , 𝑗 ,𝑘 or [A]𝑖 , 𝑗 ,𝑘 The (𝑖 , 𝑗 , 𝑘)th entry of the tensor A
vec(𝑨), vec(A) Matrix/tensor flattened into a vector; convention implies vec(𝑨𝑩𝑪) = (𝑪⊤ ⊗ 𝑨) vec(𝑩)
diag(𝒂) The square matrix with vector 𝒂 on the diagonal and zeros elsewhere
diag(𝑨) The vector containing the diagonal elements of the matrix 𝑨
diag(𝑨1 , . . . ,𝑨𝐿) A block-diagonal matrix with diagonal blocks given by square matrices 𝑨1 , . . . ,𝑨𝐿

Tr(𝑨), det(𝑨) Trace and determinant of a matrix 𝑨
∥𝒂∥2 𝐿2 norm of vector 𝒂, i. e. ∥𝒂∥22 = 𝒂⊤𝒂
eig(𝑨) := {(𝜆𝑘 , 𝒆𝑘)}𝑘 Eigendecomposition of the matrix 𝑨, eigenpairs (𝜆𝑘 , 𝒆𝑘) satisfy 𝑨𝒆𝑘 = 𝜆𝑘𝒆𝑘
(𝜆𝑘(𝑨), 𝒆𝑘(𝑨)) 𝑘th eigenpair (eigenvalue, eigenvector) of matrix 𝑨
𝑨 ⊗ 𝑩 Kronecker product of two matrices, For two vectors 𝒂 , 𝒃, one has 𝒂 ⊗ 𝒃⊤ = 𝒂𝒃⊤A ⊙ B,𝑨 ⊙ 𝑩, 𝒂 ⊙ 𝒃 Elementwise multiplication (Hadamard product) of two tensors, matrices, vectorsA ⊘ B,𝑨 ⊘ 𝑩, 𝒂 ⊘ 𝒃 Elementwise division (Hadamard division) of two tensors, matrices, vectorsA⊙2 ,𝑨⊙2 , 𝒂⊙2 Elementwise square of a tensor, matrix, vectorA⊙1/2 ,𝑨⊙1/2 , 𝒂⊙1/2 Elementwise square root of a tensor, matrix, vector

Empirical Risk Minimization

A datum is usually indicated by a subscript 𝑛 .

(𝒙 , 𝒚) Labeled datum with input features 𝒙 and target 𝒚
(𝒙𝑛 , 𝒚𝑛) Datum 𝑛 from a dataset
𝐷 Total number of parameters in a model
𝜽 ∈ Θ := ℝ𝐷 Parameter vector of a model
𝒇 := 𝑓𝜽(𝒙) Prediction of a model 𝑓𝜽 for input features 𝒙
ℓ or ℓ ( 𝒇 , 𝒚) Loss function to compare prediction and target; convex in 𝒇

𝔻 := {(𝒙𝑛 , 𝒚𝑛)} |𝔻|𝑛=1 A dataset containing instances of labeled data (𝒙𝑛 , 𝒚𝑛) indexed by 𝑛
𝔹 A mini-batch 𝔹 ⊆ 𝔻

𝑁 Number of data in a mini-batch or a dataset, depending on the context
𝒇 𝑛 := 𝑓𝜽(𝒙𝑛) Model prediction for datum 𝑛
ℓ𝑛 or ℓ ( 𝒇 𝑛 , 𝒚𝑛) Loss of datum 𝑛
𝑝𝔻(𝒙 , 𝒚) Empirical distribution of a dataset 𝔻
L𝔻(𝜽) Empirical risk implied by the empirical distribution of a dataset 𝔻
L𝔻train(𝜽),L𝔹(𝜽), etc. Training loss, mini-batch loss, etc.



Neural Networks

The layer number is indicated by parenthesized superscripts (𝑙).

𝐿 Total number of layers
𝑑(𝑙) Number of parameters in layer 𝑙; total number of parameters is 𝐷 =

∑𝐿
𝑙=1 𝑑

(𝑙)

𝜽(𝑙) ∈ ℝ𝑑(𝑙) Parameter vector of layer 𝑙, potentially empty for parameter-free layers like activations
ℎ(𝑙−1) Number of (hidden) inputs fed into layer 𝑙
𝑀 := ℎ(0) , 𝐶 := ℎ(𝐿) Input feature dimension, output dimension (number of classes for classification)
𝒛(𝑙−1) ∈ ℝℎ(𝑙−1) (Hidden) features fed into layer 𝑙 (output of layer 𝑙 − 1)
𝒙 := 𝒛(0) , 𝒇 := 𝒛(𝐿) Input to the neural network, and its prediction for input 𝒙
𝑓 (𝑙)
𝜽(𝑙)

Layer 𝑙 parameterized by 𝜽(𝑙), mapping input 𝒛(𝑙−1) to output 𝒛(𝑙)

𝑓𝜽 := 𝑓 (𝐿)
𝜽(𝐿)
◦ . . . ◦ 𝑓 (1)

𝜽(1)
Sequential feedforward neural network parameterized by 𝜽, maps input 𝒙 to output 𝒇

𝜽 Parameter vector, concatenation of parameters over layers 𝜽 := (𝜽(1)⊤ , . . . , 𝜽(𝐿)⊤)⊤

Derivatives

∇, J and ∇2 denote the gradient, Jacobian, and Hessian, respectively.

J𝒂𝒃 Jacobian matrix of a vector 𝒃 w.r. t. a vector 𝒂, [J𝒂𝒃]𝑖 , 𝑗 = 𝜕[𝒃]𝑖/𝜕[𝒂]𝑗
JAB Generalized Jacobian matrix for tensor variables, [JAB]𝑖 , 𝑗 = 𝜕[vecB]𝑖/𝜕[vecA]𝑗
∇𝒂𝑏 := (J𝒂𝑏)⊤ Gradient vector of a scalar 𝑏 w.r. t. a vector 𝒂, [∇𝒂𝑏]𝑖 = 𝜕𝑏/𝜕𝑎𝑖
∇2
𝒂𝑏 Hessian matrix of a scalar 𝑏 w.r. t. a vector 𝒂, [∇2

𝒂𝑏]𝑖 , 𝑗 = 𝜕2𝑏/𝜕[𝒂]𝑖𝜕[𝒂]𝑗 (symmetric)
∇2
𝒂𝒃, ∇2AB Generalized Hessian matrix (in general not quadratic, hence not symmetric) of a vector

𝒃 w.r. t. a vector 𝒂, or more general tensor variables
𝒈𝑛(𝜽) := ∇𝜽ℓ𝑛(𝜽) Gradient of the loss implied by sample 𝑛
𝒈𝔻(𝜽) := ∇𝜽L𝔻(𝜽) Gradient of the empirical risk implied by a dataset 𝔻
𝒈𝔹(𝜽) := ∇𝜽L𝔹(𝜽) Mini-batch gradient
𝑯𝑛(𝜽) := ∇2

𝜽ℓ𝑛(𝜽) Hessian of the loss implied by sample 𝑛
𝑯𝔻(𝜽) := ∇2

𝜽L𝔻(𝜽) Hessian of the empirical risk implied by a dataset 𝔻
𝑯𝔹(𝜽) := ∇2

𝜽L𝔹(𝜽) Mini-batch Hessian
𝑯 (𝑙)(𝜽(𝑙)) or 𝑯(𝜽(𝑙)) The block in the Hessian corresponding to layer 𝑙
𝑮𝔻(𝜽) Generalized Gauss-Newton matrix on a dataset 𝔻
𝑮(𝑙)(𝜽(𝑙)) or 𝑮(𝜽(𝑙)) The block in the generalized Gauss-Newton matrix corresponding to layer 𝑙

Statistics

U({1, . . . , 𝑁}) Uniform distribution over {1, . . . , 𝑁}
N (𝑥 | 𝜇, 𝜎2) Uni-variate normal/Gaussian distribution of random variable 𝑥, with mean 𝜇, positive

variance 𝜎2, and density N (𝑥 | 𝜇, 𝜎2) = 1/𝜎√2𝜋 exp[−1/2((𝑥−𝜇)/𝜎)2]
N (𝒙 | 𝝁,𝚺) Multi-variate normal/Gaussian distribution of random vector 𝒙 with mean vector𝝁, PSD

covariance matrix 𝚺, and density N (𝒙 | 𝝁,𝚺) = 1/(√2𝜋det𝚺) exp[−1/2(𝒙 − 𝝁)⊤𝚺−1(𝒙 − 𝝁)]
Cat(𝑐 | 𝒑) Multinomial/Categorical distribution with probabilities 𝒑 for categories 𝑐

Miscellaneous

log The natural logarithm (base e, i. e. log(e) = 1)
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onehot(𝑐) One-hot vector of class 𝑐 with onehot(𝑐) = 𝛿𝑖 ,𝑐
softmax(𝒂) Softmax probabilities of the logits 𝒂, [softmax(𝒂)]𝑐 = exp(𝑎𝑐 )/∑𝑖=1 exp(𝑎𝑖 ) .
𝛿𝑖 , 𝑗 , 𝛿(𝒙 − 𝒂) Kronecker delta (𝛿𝑖 ,𝑖 = 1 and 𝛿𝑖 , 𝑗≠𝑖 = 0), Dirac delta distribution
(𝕏→ 𝕐 ) Signature of a function that maps between 𝕏 and 𝕐

{𝒙𝑛} or {𝒙𝑛}𝑛 A set/collection of vectors 𝒙1 , 𝒙2 , . . . over the index set implied by 𝑛
𝒆̂ 𝑖 Unit vector in direction 𝑖, i. e. 𝒆̂ 𝑖 = onehot(𝑖)
1𝑚 An 𝑚-dimensional vector containing ones everywhere
log(𝒂), exp(𝒂) Elementwise natural logarithm and exponential function of a vector
𝑚𝜽𝑡 (𝜽) Local approximation of the loss in around 𝜽𝑡

Acronyms & Abbreviations

E.g. or e.g. For example (exempli gratia)
Etc. or etc. And so on (et cetera)
I. e. or i. e. That is (id est)
I. i.d. or i. i.d. Independent and identically distributed
W.r.t. or w.r. t. With respect to
AD Automatic differentiation
API Application Programming Interface
BDA Block diagonal approximation
CG Conjugate gradients
CNN Convolutional neural network
CPU Central processing unit
DNN Deep neural network
DP Differential privacy
FCNN Fully-connected neural network
GGN Generalized Gauss-Newton (matrix)
GN Gauss-Newton (matrix)
GPU Graphics processing unit
HBP Hessian backpropagation
JMP Jacobian-matrix product
JVP Jacobian-vector product
KFAC Kronecker-factored curvature
KFC Kronecker factors for convolution
KFLR Kronecker-factored low rank
KFRA Kronecker-factored recursive approximation
MAP Maximum a posteriori (estimation)
MC Monte Carlo
MJP Matrix-Jacobian product
ML Machine learning
MLE Maximum likelihood estimation
MLP Multi-layer perceptron
NGD Natural gradient descent
PCH Positive-curvature Hessian
PD Positive definite
PSD Positive semi-definite
ResNet Residual (neural) network
SNR Signal-to-noise ratio
TPU Tensor processing unit
VJP Vector-Jacobian product
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1.1 Introduction

Deep learning has achieved significant performance gains over traditional
methods on various tasks like image classification [41, 68, 91, 153, 159,
181], image generation [35, 58, 84, 131], machine translation [7, 102,
172], and game play [111, 151, 152]. These applications are powered by
machine learning (ML) frameworks [1, 32, 126, 165] that tremendously
reduce the added complexity for practitioners of using highly-efficient
implementations on hardware accelerators like GPUs [88] and TPUs [83].
The convenience introduced by these libraries makes deep learning more
accessible and is one main factor for its popularity and success.

It is surprisingly easy to build, train, and deploy a model, despite deep
learning being computationally extremely demanding. Typically, neural
networks have millions [68, 91, 153, 159, 181], billions [24, 129], even
trillions [49] of parameters, and are trained on large data sets [41, 98] that
can only be processed in smaller batches. The parameters are adjusted
during training, which is phrased as optimization of a performance
measure called “the loss”.

Training, i. e. optimization, proceeds in an iterative fashion: to update
the model, a mini-batch of data is fed through the model (forward pass)
to evaluate its current performance—the mini-batch loss. This loss is
then differentiated w.r. t. the model’s parameters to obtain the mini-batch
gradient (backward pass). Finally, an optimizer incorporates this gradient
to update the model parameters. Popular frameworks like PyTorch [126]
and TensorFlow [1] realize this procedure in code that looks similar to
the following pseudocode:

Procedure 1.1: Canonical deep learning
training loop. After setting up the data,
model, loss function, and optimizer, iter-
ate over batches: in each iteration, com-
pute the mini-batch loss in a forward
pass, and its gradient with a backward
pass. Then use the gradient as learning
signal to update the model parameters.

1 dataset = ... # Learning task examples

2

3 model = ... # Practitioner’s choice

4 loss_func = ... # Practitioner’s choice

5

6 optimizer = ... # First-order method

7

8 while not_converged: # Standard training loop

9 features, targets = dataset.next_minibatch()

10

11 # Forward pass: Compute the loss

12 predictions = model(features)

13 loss = loss_func(predictions, targets)

14

15 # Backward pass: Compute the gradient

16 loss.backward()

17

18 # Update model parameters using the gradient

19 optimizer.step()

20 optimizer.zero_grad()

This framework frees practitioners from implementation details and
lets them focus on, e.g., specifying the neural network (Line 3) and
performance criterion (Line 4). No matter how complicated a model



2 Chapter 1 Overview

(a)

2010 2012 2014 2016 2018 2020
0

200

400

600

800

1,000

Year

A
rX

iv
m

en
tio

ns

SGD Momentum NAG Adam
RMSProp Other AMSBound AMSGrad
AdaBound Adadelta Adagrad Lookahead
Nadam RAdam AdaBelief

(b)

2010 2015 2020
0

0.2

0.4

0.6

0.8

1

Year

N
or

m
al

iz
ed

A
rX

iv
m

en
tio

ns

SGD Momentum NAG Adam
RMSProp Other AMSBound AMSGrad
AdaBound Adadelta Adagrad Lookahead
Nadam RAdam AdaBelief

Figure 1.1: All popular deep learning optimizers are first-order methods that rely on the gradient. Reproduced from Schmidt et al.
[145] with permission from the authors. (a) Number of ArXiv mentions in titles and abstracts of deep learning optimization methods,
with other methods grouped into a single category. (b) The same plot with mentions normalized to the unit interval.

a practitioner may come up with: as long as it is differentiable, it will
be compatible with the above training loop, and can be automatically
differentiated and trained. This allows practitioners to focus on modeling
aspects of their problem. Thanks to automatic differentiation built into
ML libraries, they do not have to worry about low-level details of how
to compute the learning signal. They obtain the gradient with a single
function call that performs the backward pass (Line 16).

However, by abstracting these details, Procedure 1.1 limits practitioners
and researchers to gradient access only. This is not restrictive for the
most popular optimizers to train DNNs as they only rely on the gradient
(Figure 1.1). But the development of novel methods focuses mainly on
inventing alternative update rules involving the gradient. Currently, there
exist more than one hundred such methods; see e.g. [145] for an overview.
This leads to the question whether one of these update rules performs
significantly better than others. A broad comparison of the methods
in Figure 1.1, however, raises concerns that those methods do not seem to
be specialized to problems or leverage different problem properties:

Despite efforts by the community, there is currently no method
that clearly dominates the competition. [. . . ] tuning helps about as
much as trying other optimizers. Schmidt et al. [145]

One reason for this may be that despite the diversity of update rules, they
all rely on the same gradient information. Research and the development
of novel methods should therefore use more than just the gradient.

Such information can be of statistical or geometrical nature (Figure 1.2).
The loss/gradient is the empirical mean of the distribution of per-
sample losses/gradients. Higher moments of the gradients, such as their
variance, could enable more robust estimation of the mean. Higher-
order derivatives, e.g. curvature in form of the Hessian, encode the loss
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Figure 1.2: Beyond the average gradient.
Higher-order statistical (noise) and geo-
metrical (curvature) information provide
a richer local approximation of the loss
in deep learning, which relies mostly
on the gradient highlighted in . The
goal of this thesis is making higher-
order information more readily avail-
able (figure inspired by [22]). ∇𝜽L, ∇2

𝜽L
denote average gradient and Hessian;
{∇𝜽ℓ𝑛}, {∇2

𝜽ℓ𝑛} are the distributions of
per-sample gradients and Hessians.

landscape’s geometry. These quantities are useful to build approximations
of the loss that take its stochastic nature and curvature into account.

Optimization methods that use more than the gradient are the default in
other applications (e.g. convex optimization, generalized linear models)
and have also been considered in deep learning [5, 14, 53, 69, 106, 109,
178, 183]. However, they are often so complicated to implement that
practitioners barely try them out: efficiently computing with higher-order
information is challenging because its explicit representation is often
too large to be stored in memory. Therefore, practical methods rely
on implicit schemes, such as matrix-vector products, or light-weight
structured approximations. Understanding and efficiently implementing
them requires expert knowledge, which complicates experimentation.

The adoption of, and research on, algorithms depend on ease-of-use
within frameworks. Existing software has closely evolved with the pop-
ularity of first-order methods that only demand efficient access to the
gradient. This leads to the question on how to make higher-order in-
formation more readily available within such frameworks to expand
the available toolkit. As backpropagation [137] forms the computational
backbone of deep learning, this thesis describes approaches to extend
the backpropagation algorithm, and answers the research questions:

(Q1) Which information beyond the gradient is efficiently accessible?
(Q2) How to compute this information—conveniently, automatically, and

efficiently—re-using the existing backpropagation implementation of
ML frameworks?

(Q3) How to use this information to advance gradient-based deep learning?

1.2 Outline

This thesis contains three main parts: (I) an introduction to the setting,
related concepts, and relevant notation along with motivation; (II) the
achieved scientific contributions; and (III) a discussion of their impact
and future directions. Throughout the text, additional details (examples,
auxiliary calculations, etc.) are provided in margins. Readers that are
familiar with the subject should feel encouraged to read the main text
without interruptions of this additional material. An extensive appendix
(IV) complements the main parts. It collects lengthier mathematical
discussions and details about experiments and implementations, along
with additional empirical results.

Part I provides background material and motivates the goal of this
work. Chapter 2 introduces the components of supervised deep learning
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through gradient-based empirical risk minimization (Procedure 1.1). The
goal is to highlight how each component introduces structure in the em-
pirical risk that can be leveraged for convenient and efficient computation.
This structure is helpful to identify new classes of interesting quantities
and understand the computational pipeline that will be extended in this
work. Specifically, we inspect the following components:

▶ The loss: Section 2.1 presents supervised learning through em-
pirical risk minimization and outlines connections of loss-based
learning to approximating the unknown data distribution through
samples via maximum likelihood estimation (MLE) or maximum a
posteriori (MAP) estimation. Further, it highlights the finite-sum
structure in the loss. This allows for massive speed-ups on parallel
hardware accelerators like GPUs [88] when evaluating the loss,
and stochastic approximation via sub-sampling with mini-batches,
which introduces noise into the computed quantities.

▶ The model: Section 2.2 outlines structure in the optimization space
given by the parameter space of a deep neural network. DNNs are
usually highly over-parameterized, containing millions [68, 91, 153,
159, 181], billions [24, 129], even trillions [49] of parameters. Yet,
they are built from relatively simple functional units—layers, or
modules—glued together through function composition. We give
a selected overview of layers, and present sequential feedforward
neural networks, which are the model class this work focuses on.

▶ The gradient: Section 2.3 outlines the importance of automatic
differentiation (AD) for ML. It starts with fundamentals on how to
automate the chain rule for functions represented by a computation
graph that tracks the dependencies between input, output, and
intermediate variables. One important property is the modularity
of AD, which allows for an elegant and extensible implementation:
because the chain rule relates the derivative of a function composi-
tion to the derivatives of its composites, only these composites need
to implement derivatives. New operations that cannot be composed
from primitives can be added by specifying their derivatives. The
discussion concludes by presenting gradient backpropagation [137],
the most prominent evaluation scheme to compute gradients of
the loss in deep learning which will be extended in this work.

Chapter 3 motivates why focusing only on the gradient might be prob-
lematic, and motivates the importance of higher-order information, e.g.
in form of noise (stochasticity) and curvature, to further enrich deep
learning algorithms. First, Section 3.1 exemplifies the gradient’s domi-
nance in optimization for deep learning where state-of-the-art methods
are first-order methods. Next, Section 3.2 introduces relevant higher-
order information for second-order optimization methods that rely on
curvature. It discusses popular curvature matrices, such as the Hessian,
generalized Gauss-Newton (GGN), Fisher information, and gradient co-
variance matrix, as well as their connections. Section 3.3 further motivates
the utility of such information through concrete examples.

This concludes the background material. We identified and appreciated
the strengths of deep learning libraries, their potential shortcomings
that might complicate advances in the field, and found higher-order
information as a promising direction for their extension.
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Part II tackles this manuscript’s goal to extend the functionality of machine
learning libraries to efficiently, automatically, and conveniently provide access to
higher-order information. It describes doing so by extending the gradient
backpropagation algorithm of ML libraries to go beyond the gradient.

Chapter 4 presents Hessian backpropagation (HBP), an extension of Chapter 4: HBP: block-diagonal curva-
ture via Hessian backpropagation.





github.com/f-dangel/hbp

gradient backpropagation to compute layer-wise curvature in sequential
feedforward neural networks. Just like gradient backpropagation recovers
the gradient vectors in blocks that correspond to layers, local curvature,
i. e. second-order partial derivatives of the loss w.r.t. parameters in a
layer can be evaluated by backpropagating Hessians. Its computation
is disentangled to the modular level, which allows for an elegant and
extensible implementation in analogy to gradient backpropagation. We
describe the backpropagation operations at the per-layer level, resulting
in an algorithm that computes local curvature in an automated fashion,
and at the same time as the gradient. Adaptations of the exact procedure
recover positive semi-definite block diagonal approximations (BDAs)—
e.g. of the GGN—and recently proposed Kronecker-factored curvature
approximations [21, 31, 109] of the Hessian, unifying their computation.

Disclaimer 1.1 Chapter 4 is based on the peer-reviewed conference
paper with the following co-author contributions:

F. Dangel, S. Harmeling, and P. Hennig. “Modular Block-diagonal Cur-
vature Approximations for Feedforward Architectures”. International
Conference on Artificial Intelligence and Statistics (AISTATS). 2020 [37]

Ideas Experiments Analysis Writing
F. Dangel 70 % 80 % 70 % 65 %
S. Harmeling 10 % 10 % 10 % 10 %
P. Hennig 20 % 10 % 20 % 25 %

Chapter 5 further generalizes this idea and presents BackPACK, an effi- Chapter 5: BackPACK: an efficient frame-
work built on top of PyTorch that extends
the backpropagation algorithm.

github.com/f-dangel/backpack

cient framework that extends the gradient backpropagation of PyTorch.
The library provides access to higher-order statistical information about
the gradient distribution, like individual gradients or an estimate of their
variance, and structured curvature information, like the Hessian/GGN
diagonal and block-diagonal Kronecker-factored curvature approxima-
tions. This is achieved with slightly more flexible implementations of AD
functionality and by backpropagating additional information through the
graph. Importantly, most quantities add small overhead to the gradient,
making their exploration for research more attractive.

Disclaimer 1.2 Chapter 5 is based on the peer-reviewed conference
publication with the following co-author contributions:

F. Dangel, F. Kunstner, and P. Hennig. “BackPACK: Packing more into
Backprop”. International Conference on Learning Representations (ICLR).
2020 [38]

Ideas Experiments Analysis Writing
F. Dangel 33 % 55 % 45 % 35 %
F. Kunstner 33 % 45 % 45 % 45 %
P. Hennig 33 % 0 % 10 % 20 %

https://github.com/f-dangel/hbp
https://github.com/f-dangel/backpack
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Chapter 6 introduces Cockpit, a live-monitoring debugging tool thatChapter 6: Cockpit: a debugging tool for
the training of deep neural networks.

github.com/f-dangel/cockpit

consists of various instruments which leverage higher-order information,
efficiently provided by BackPACK. By providing a deeper look into the
inner workings of neural networks through the lens of this informa-
tion, Cockpit can help identify bugs in the ML pipeline, while keeping
the computational overhead acceptable. This demonstrates the utility
of higher-order information to assist deep learning practitioners and
researchers to better understand their problems and conduct research.

Disclaimer 1.3 Chapter 6 is based on the peer-reviewed conference
paper with the following co-author contributions:

F. Schneider, F. Dangel, and P. Hennig. “Cockpit: A Practical Debug-
ging Tool for Training Deep Neural Networks”. Advances in Neural
Information Processing Systems (NeurIPS). 2021 [147]

Ideas Experiments Analysis Writing
F. Schneider 45 % 40 % 40 % 45 %
F. Dangel 40 % 50 % 40 % 40 %
P. Hennig 15 % 10 % 20 % 15 %

Chapter 7 presents ViViT, a method that leverages the low-rank structureChapter 7: ViViT: efficient computation
with the GGN’s low-rank structure.

T 

github.com/f-dangel/vivit

in the GGN to efficiently extract eigenvalues, eigenvectors, per-sample
first- and second-order directional derivatives, and Newton steps. In
contrast to other popular curvature approximations, ViViT is capable of
tracking off-diagonal curvature blocks, offers principled approximations
to trade off cost and accuracy, and allows studying noise in the curvature.
Under the hood, ViViT’s quantities are efficiently computed during
backpropagation, building on BackPACK’s advanced AD functionality.
This demonstrates how such functionality enables investigations of
unexplored structure in higher-order information which may be used
to develop novel algorithms and better understand challenges to make
them work in practice, e.g. noise.

Disclaimer 1.4 Chapter 7 is based on the peer-reviewed journal paper
with the following co-author contributions:

F. Dangel, L. Tatzel, and P. Hennig. “ViViT: Curvature Access Through
The Generalized Gauss-Newton’s Low-Rank Structure”. Transactions
on Machine Learning Research (TMLR) (2022) [39]

Ideas Experiments Analysis Writing
F. Dangel 50 % 40 % 40 % 40 %
L. Tatzel 35 % 50 % 40 % 45 %
P. Hennig 15 % 10 % 20 % 15 %

Part III summarizes the findings of this manuscript w.r.t. the inital
questions from Page 3, as well as their impact and relation to the latest de-
velopments in the field. Finally, the manuscript identifies future research
directions for the presented extended AD eco-system around PyTorch,
and more broadly for the development of future ML libraries.

https://github.com/f-dangel/cockpit
https://github.com/f-dangel/vivit
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Broadly speaking, ML seeks to find a well-performing algorithm for a
given task from “experience”. This thesis considers supervised deep
learning, where “experience” is given through annotated examples in
form of a dataset. A datum (𝒙 , 𝒚) consists of input features 𝒙 and targets, or
labels, 𝒚. The algorithm, or model, is a deep neural network (Section 2.2)
that tries to predict 𝒚 from 𝒙 and is selected by minimizing a performance
criterion on the available data (the empirical risk, Section 2.1) using
optimization methods which rely on automatically computed derivatives
(Section 2.3). This chapter reviews these components, highlighting their
structure w.r. t. implementation in ML libraries. For a broader introduction
to deep learning, see e.g. [60].

2.1 Empirical Risk Minimization

“Learning” is connected to optimization by the risk minimization
paradigm. The idea is to define a performance metric that assesses the
quality of the model’s prediction. Then, learning happens by maximizing
that performance metric. Conversely, one can specify a metric for the
prediction’s error (also referred to as risk), and minimize the latter.

For example, an intuitive way to assess performance for a classification
task is accuracy, the ratio of correct and total predictions (the error would
be the ratio of incorrect and total predictions). However, such direct per-
formance measures are hard to optimize with derivative-based methods1 1: e. g. the accuracy on one datum is ei-

ther 0 or 1, and hence its derivative van-
ishes everywhere it is defined.

and must be substituted by a surrogate function that approximates the
original performance measure, but is easier to optimize. In the deep
learning terminology, these surrogates are commonly referred to as loss
functions. This section expands on risk minimization, its characteristic
properties in deep learning, and its probabilistic interpretation.

2.1.1 Notation & Mathematical Details

Risk & Empirical Risk

Consider supervised learning with the goal to learn the functional relation
between inputs 𝒙 ∈ 𝕏 and targets 𝒚 ∈ 𝕐 (Figure 2.1). The mapping is
described by a model 𝑓𝜽 : 𝕏→ 𝔽 with adjustable parameters 𝜽 ∈ Θ that
produces predictions 𝒇 := 𝑓𝜽(𝒙) ∈ 𝔽 for an input 𝒙. A prediction’s error
is assessed through a convex loss function ℓ : 𝔽 × 𝕐 → ℝ.

Regression (Example 2.1) and classification (Example 2.2) are two common
tasks that will be used frequently in later chapters. The remainder of
this text sets 𝕏 = ℝ𝑀 and 𝔽 = ℝ𝐶 , with input and prediction space
dimensions 𝑀, 𝐶, respectively (𝐶 corresponds to the number of classes
for classification). Because the discussion focuses on neural networks as
model, it sets Θ = ℝ𝐷 in what follows.
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Figure 2.1: Components of supervised
learning: The goal is to infer parameters
𝜽 of a model 𝑓𝜽 , that relates inputs 𝒙
to predictions 𝒇 , by minimizing a loss
function ℓ between the prediction 𝒇 and
label 𝒚.

𝒙

𝑓𝜽

𝜽

𝒇

ℓ

ℓ ( 𝒇 , 𝒚)

𝒚

Assume that the population of input-target pairs, i. e. the data-generating
process, follows a distribution 𝑝data(𝒙 , 𝒚). A model’s expected risk under
this distribution is defined as

L𝑝data(𝜽) := 𝔼𝑝data(𝒙 ,𝒚) [ℓ ( 𝑓𝜽(𝒙), 𝒚)]
=

∬
𝕏,𝕐

ℓ ( 𝑓𝜽(𝒙), 𝒚)𝑝data(𝒙 , 𝒚)d𝒙 d𝒚 .
(2.3a)

The incentive for a model to perform well is to achieve a small expected
risk. Therefore, training a model is minimizing Equation (2.3a),

minimize
𝜽

L𝑝data(𝜽) . (2.3b)

But in practice, Equation (2.3b) is inaccessible because the data-generating
process 𝑝data(𝒙 , 𝒚) is unknown. Instead, the problem is approximated
through an i. i.d. dataset𝔻 = {(𝒙𝑛 , 𝒚𝑛) ∈ 𝕏×𝕐 }𝑛 of labeled data collected
from 𝑝data(𝒙 , 𝒚). 𝑝data(𝒙 , 𝒚) is approximated by the empirical distribution

𝑝𝔻(𝒙 , 𝒚) = 1
|𝔻|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

𝛿(𝒙 − 𝒙𝑛)𝛿(𝒚 − 𝒚𝑛) (2.4a)

implied by 𝔻. The model’s empirical risk on 𝔻 follows from substituting
𝑝data with 𝑝𝔻 in Equation (2.3a), which yields

L𝔻(𝜽) := L𝑝𝔻 (𝜽) =
1
|𝔻|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) . (2.4b)

Example 2.1 (Least squares regression & square loss) Regression
associates features in 𝕏 = ℝ𝑀 with targets in 𝕐 = ℝ𝐶 . A prediction
in 𝔽 = ℝ𝐶 compares to its ground truth via the mean squared error2

2: There exist different conventions for
the normalization factor. This text adapts
the implementation of MSELoss (with
reduction="mean" mode) in PyTorch

for consistency with the code presented
in later chapters. Normalizing by 1/𝐶
is also close to what the name, mean
squared error, suggests.

ℓ ( 𝒇 , 𝒚) = 1
𝐶

𝐶∑
𝑐=1
(𝑦𝑐 − 𝑓𝑐)2 =

1
𝐶
∥𝒚 − 𝒇 ∥22 (2.1)

Example 2.2 (𝐶-class classification & softmax cross-entropy loss)
Classification assigns features in 𝕏 = ℝ𝑀 to classes in 𝕐 = {1, . . . , 𝐶}
using a model to 𝔽 = ℝ𝐶 . The softmax cross-entropy loss3

3: Sometimes, the softmax is consid-
ered part of the model rather than the
loss function. This text assigns it to the
loss function, in line with the PyTorch
implementation of CrossEntropyLoss ,
that combines softmax and cross-entropy,
which is numerically more stable [60,
Chapter 4].

maps the
model’s prediction to a probability distribution over classes, then uses
cross-entropy to compare it with the ground truth,

ℓ ( 𝒇 , 𝑦) = − log([𝑝( 𝒇 )]𝑦) = −log 𝑝( 𝒇 )⊤onehot(𝑦) (2.2)

where 𝑝( 𝒇 ) = softmax( 𝒇 ) and [onehot(𝑦)]𝑐 = 𝛿𝑐,𝑦 .

https://pytorch.org/docs/1.11/generated/torch.nn.MSELoss.html#torch.nn.MSELoss
https://pytorch.org/docs/1.11/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
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In practice, learning happens by minimizing an empirical risk,

minimize
𝜽

L𝔻(𝜽) . (2.4c)

Challenges for Optimization

Training a model relies on optimization algorithms which are initialized
at some 𝜽0 ∈ Θ and seek to iteratively improve the solution to Equa-
tion (2.4c). At an iteration 𝑡, the optimizer is given access to information
about the objective at 𝜽𝑡 , like derivatives (Section 2.3), to deduct a step
𝜽𝑡+1 ← 𝜽𝑡 , potentially using additional information from past obser-
vations. In general, the more local information is available, the more
powerful a single update step can be. But richer information is often
more costly to compute. The large-scale nature of deep learning poses
challenges on the accessible information:

▶ Big data: deep learning datasets are often large because more data
gives better approximations of the true distribution 𝑝data via 𝑝𝔻,
and thus better task performance. The simultaneous computation
of all per-datum losses forL𝔻(𝜽)does not fit into memory (for many
contemporary tasks, it is even infeasible to hold 𝔻 in memory4). 4: E.g. ImageNet [41] consists of 1,281,167

training images. The Kaggle download
requires roughly 166 GB of memory.

Still, to obtain L𝔻, one could sequentially compute and reduce
its summands on data chunks of manageable size. In practice,
it is more common though to approximate L𝔻 on a randomly
drawn small subset, a mini-batch, 𝔹 ⊆ 𝔻 with |𝔹| ≪ |𝔻|. While
this avoids a computationally expensive full sweep over the data,
subsampling introduces noise in the loss (Section 2.1.2). This noise
is inherited by the computed information supplied to the optimizer.
Algorithms must therefore take into account the stochastic nature
of their observations.

▶ Very large models: the parameter space dimension 𝐷 of DNNs
usually exceeds the (already large) amount of data |𝔻|, i. e.𝐷 ≫ |𝔻|.
It affects the complexity to store and compute information, such
as derivatives of the loss w.r.t. 𝜽, and makes it more challeng-
ing to efficiently work with higher-order information5. Therefore, 5: For example, interesting quantities for

an optimizer are the loss landscape’s lo-
cal slope (gradient) and curvature (Hes-
sian, Definition 3.1). While the gradient
is cheap to compute and store (𝐷 ele-
ments), holding the 𝐷 × 𝐷 Hessian in
memory is infeasible.

working with higher-order information relies on implicit schemes
(e.g. matrix-free Hessian-vector products [127]) or light-weight
structured approximations (e.g. through Kronecker products [109]).
Such approaches are usually technical and challenging to imple-
ment. They also add significant computational work that must be
compensated for by an improved update step quality in optimizers.

In addition to these computational aspects, there exist other challenges:

▶ Non-convexity: although the loss function ℓ is convex w.r.t. the
model’s output 𝒇 , convexity does not carry through to the model’s
parameters6

6: Convexity of ℓ in 𝒇 is still useful to con-
struct PSD approximations to the Hes-
sian, see Section 3.2.3.. This is because DNNs 𝑓𝜽 are highly non-linear, and

therefore generally non-convex, in 𝜽. Local minima of convex
functions are global minima, meaning that local improvement
gets us closer to a global solution. But non-convex problems like
Equation (2.4c) have multiple local minima that need not be global.
Through local improvements, an optimizer can arrive at one of
these local minima, but with no path of improvement to a global
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solution. This depends on various aspects, such as the update rule,
hyperparameters, initialization, etc..

▶ Generalization: learning is not pure optimization. While mini-
mizing the empirical risk Equation (2.4c) improves the model’s
performance on the collected data, the actual goal is to obtain
good performance on new unseen data, i. e. generalize well. To
achieve generalization, it is crucial to prevent optimization to overfit
specifics in the data. It is common practice to split the data into
three disjoint sets 𝔻train, 𝔻valid, and 𝔻test. The train set’s empirical
riskL𝔻train(𝜽) is minimized, and the validation lossL𝔻valid(𝜽) serves
to identify hyperparameters that lead to generalization on 𝔻valid.
The held-out examples in the test set 𝔻test are used to assess gener-
alization to new data. Another way to improve generalization is
to use more data during training. Data augmentation [150] allows
for cheap generation of new examples without collecting new data.
Sometimes, it may be desirable to penalize model properties by
adding a regularization term to the objective in Equation (2.4c).

2.1.2 Batching & Noise

Due to the large-scale nature of 𝔻 and 𝑓𝜽 in the empirical risk, Equa-
tion (2.4b) is usually stochastically approximated through a mini-batch
𝔹 ⊆ 𝔻, and assessed through a mini-batch loss

L𝔹(𝜽) = 1
|𝔹|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔹

ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) . (2.5)

In the following, per-sample predictions and losses will often be abbrevi-
ated as 𝒇 𝑛 := 𝑓𝜽(𝒙𝑛) and ℓ𝑛 := ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛).

Batched Computations

Evaluation of the mini-batch loss in Equation (2.5) can be parallelized
(Figure 2.2a). All mini-batch features {𝒙𝑛} are mapped to predictions
{ 𝒇 𝑛} by the same instructions 𝑓𝜽 , and compared in parallel with the labels
{𝒚𝑛}, resulting in the per-sample losses {ℓ𝑛}. Hardware accelerators can
use this structure to achieve significant speed-up of evaluating the loss,
or its derivatives (Section 2.3).

This single-instruction-multiple-data structure of the loss is often baked
into ML libraries. Many of their operations natively support batched
behavior, i. e. accept stacked inputs and assume one, usually the first, axis
to correspond to a batch axis. The operation is then applied to all slices
along the batch axis (Figure 2.2b).

The concept of map in functional programming [73] formalizes applying
a function to a collection of inputs, which can be seen as a function
transformation. Batched operations can be understood as transformations
of the original operation. Recently developed ML libraries [23, 72] make
batching explicit by providing a vmap interface to automatically vectorize,
i. e. parallelize, the application of map .



2.1 Empirical Risk Minimization 13
(a) Same instructions, multiple data
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(b) Batched operations

{𝒙𝑛}
𝑓𝜽

𝜽

{
𝒇 𝑛

}
ℓ

{ℓ𝑛}

{𝒚
𝑛 }

Figure 2.2: Different visualizations of empirical risk computation graphs. (a), The empirical risk is a weighted sum of per-sample losses
that are computed independently and with the same instructions, allowing for efficient parallelization. (b) Many ML libraries natively
support batched operations for efficiency. In code, this batching is often assumed, but not explicitly expressed. The vmap concept allows
to make batching explicit: 𝑓𝜽 and ℓ in (b) correspond to vectorized versions vmap( 𝑓 ) and vmap(ℓ ) from (a).

Definition 2.1 (vmap) Let 𝑓 : 𝕏 → 𝕐 , 𝑥 ↦→ 𝑓 (𝑥) denote a function.
The vectorized map , vmap( 𝑓 ), of 𝑓 w.r. t. its argument 𝑥 is a function
that accepts a collection of inputs and maps each item by 𝑓 , resulting
in a collection of outputs,

vmap : (𝕏→ 𝕐 ) → (𝕏𝑁 → 𝕐 𝑁 ) ∀𝑁 ∈ ℕ
such that

vmap( 𝑓 )({𝑥1 , 𝑥2 , . . . , 𝑥𝑁 }) = { 𝑓 (𝑥1), 𝑓 (𝑥2), . . . , 𝑓 (𝑥𝑁 )} .

Collections are often abbreviated as {𝑥𝑛} := {𝑥1 , 𝑥2 , . . . , 𝑥𝑁 } and
{ 𝑓 (𝑥𝑛)} := { 𝑓 (𝑥1), 𝑓 (𝑥2), . . . , 𝑓 (𝑥𝑁 )}. Multi-variate functions can be
mapped w.r. t. to a subset of arguments.

Making batching explicit with map , the mini-batch loss computation
uses a vectorized model vmap( 𝑓𝜽) w.r.t. the input features 𝒙, such that

vmap( 𝑓𝜽)({𝒙𝑛}) = { 𝒇 𝑛(𝜽)} . (2.6a)

Per-sample losses, which are reduced into the mini-batch loss, are

{ℓ𝑛(𝜽)} = vmap(ℓ )({ 𝒇 𝑛(𝜽)}, {𝒚𝑛}) . (2.6b)

Numerically, collections of vectors like {𝒙𝑛} etc. are represented as
matrices, and more generally, collections of 𝑟-dimensional arrays are
stacked into a (𝑟 + 1)-dimensional arrays with an additional batch axis
(e.g., {𝒙𝑛} is a |𝔹| × 𝑀 matrix). These arrays can then be efficiently
processed in hardware accelerators.

Noise

While
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Figure 2.3: Illustration of stochastic sub-
sampling: The computation graph of the
empirical risk (with five data in this ex-
ample) is only evaluated on a subset of
data (two in this example) to save com-
putations. While this preserves paral-
lelization, the transparent parts are not
evaluated, which introduces noise.

the sum structure in the loss Equation (2.4b) can be efficiently
parallelized, it can also be used for stochastic approximation via sub-
sampling (Figure 2.3). The mini-batch loss L𝔹 in Equation (2.5) is an
estimator of the empirical risk L𝔻 implied by the stochastic sampling
procedure of 𝔹. Increasing the batch size makes this estimator more
precise but more costly to compute.
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To see this cost-accuracy trade-off, consider the loss of a single datum ℓ𝑛
where 𝑛 is uniformly drawn from {1, . . . , |𝔻|}. Then, ℓ𝑛 is a random vari-
able, implied by the sampling distribution 𝑛 ∼ 𝑝(𝑛) = U({1, . . . , |𝔻|}),
and an unbiased estimator of the empirical risk,

𝔼𝑝(𝑛)[ℓ𝑛(𝜽)] =
|𝔻|∑
𝑛=1

𝑝(𝑛)ℓ𝑛(𝜽) = L𝔻(𝜽) , (2.7a)

with variance

𝜎2 := Var𝑝(𝑛)[ℓ𝑛(𝜽)] = 𝔼𝑝(𝑛)
[(ℓ𝑛(𝜽) − L𝔻(𝜽))2

]
= 𝔼𝑝(𝑛)

[
ℓ𝑛(𝜽)2

] − L𝔻(𝜽)2 .
(2.7b)

Next, consider a batch with𝔹| randomly drawn samples𝒏 = (𝑛1 , . . . , 𝑛 |𝔹|)
from a joint distribution 𝑝(𝒏), i. e. the mean of ℓ𝑛1 , . . . , ℓ𝑛 |𝔹| ,

L𝒏(𝜽) = 1
|𝔹|

|𝔹|∑
𝑖=1

ℓ𝑛𝑖 (𝜽) . (2.8a)

If samples are drawn uniformly i. i.d. (𝑝(𝒏) = ∏|𝔹|
𝑖=1 𝑝(𝑛𝑖) with 𝑝(𝑛𝑖) =

U({1, . . . , |𝔻|})), this estimator is also unbiased,

𝔼𝑝(𝒏)[L𝒏(𝜽)] = 1
|𝔹|

|𝔹|∑
𝑖=1

𝔼𝑝(𝑛𝑖 )[ℓ𝑛𝑖 (𝜽)] = L𝔻(𝜽) , (2.8b)

but has smaller variance than the single-sample estimator:

Var𝑝(𝒏)[L𝒏(𝜽)] = 𝔼𝑝(𝒏)[L𝒏(𝜽)2] − L𝔻(𝜽)2 =
𝜎2

|𝔹| . (2.8c)

Using more samples, i. e. a larger |𝔹|, decreases the variance, and thereby
reduces noise in the mini-batch loss. The central limit theorem [50]
connects the mini-batch estimator to a normal distribution. As the mini-
batch size |𝔹| approaches infinity, L𝒏 converges to a normal distribution
with mean and variance from Equations (2.8b) and (2.8c)

lim
|𝔹|→∞

: L𝒏 ∼ N (L𝒏 | L𝔻 , 𝜎
2/|𝔹|) . (2.9)

While applications rely on finite batch sizes, it is sometimes useful to
assume that this Gaussian distribution holds approximately.

Noise in the mini-batch loss propagates to other quantities, like the
mini-batch gradient ∇𝜽L𝔹(𝜽), that are used for applications like train-
ing. Therefore, it represents a fundamental challenge for deep learning
methods. It can be assessed through higher-order statistical moments
such as the variance (the centered second moment, see Section 3.2.5
and Appendix C.3 for examples). Motivated by the central limit theo-
rem Equation (2.9)—if the Gaussian approximation holds sufficiently
well—only second-order statistical moments are required.

Like higher-order derivatives of multi-variate functions, higher-order
statistical moments of multi-variate random variables such as the mini-
batch gradient ∇𝜽L𝔹(𝜽) ∈ ℝ𝐷 (first moment) scale exponentially with
dimension 𝐷 (e.g. the 𝐷 × 𝐷 gradient covariance matrix, Section 3.2.5).
Therefore, they are challenging to work with using naive approaches.
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2.1.3 Probabilistic Interpretation

Risk-based supervised learning is often connected to learning the un-
known true distribution 𝑝data(𝒙 , 𝒚) through a model distribution 𝑝𝜽(𝒙 , 𝒚)
and data 𝔻, using estimation techniques to finding a good set of pa-
rameters that minimizes a measure of dissimilarity between 𝑝data and
𝑝𝜽. The following section links the loss function ℓ and the model 𝑓𝜽 to
probabilistic objects. This will be helpful to identify additional structure
in the risk minimization problem and use it for structural approxima-
tion of higher-order information (e.g. the Fisher information matrix,
Section 3.2.4), and to motivate probabilistic applications (e.g. Laplace
approximations, Section 3.3.1).

Connections to Maximum Likelihood Estimation (MLE)

The KL-divergence between the true and the model distribution,

𝐷KL(𝑝data(𝒙 , 𝒚) ∥ 𝑝𝜽(𝒙 , 𝒚))
= 𝔼𝑝data(𝒙 ,𝒚) [log 𝑝data(𝒙 , 𝒚) − log 𝑝𝜽(𝒙 , 𝒚)] ,

(2.10a)

can be used to measure their dissimilarity. Minimizing the above expres-
sion over 𝜽, and dropping parameter-independent terms leads to

minimize
𝜽

𝐷KL(𝑝data(𝒙 , 𝒚) ∥ 𝑝𝜽(𝒙 , 𝒚))
⇔minimize

𝜽
𝔼𝑝data(𝒙 ,𝒚) [− log 𝑝𝜽(𝒙 , 𝒚)] .

(2.10b)

𝑝data(𝒙 , 𝒚) is inaccessible and therefore empirically approximated
through data 𝔻 = {(𝒙𝑛 , 𝒚𝑛)}𝑛 . Under the i. i.d. assumption in the data,
𝑝data is replaced with the empirical distribution 𝑝𝔻 from Equation (2.4a)
and yields the accessible optimization task

minimize
𝜽

1
|𝔻|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

− log 𝑝𝜽(𝒙𝑛 , 𝒚𝑛) (2.10c)

This expression resembles the empirical risk minimization Equation (2.4c)
with a specific loss function ℓ that produces the negative log-probability
of a datum (𝒙𝑛 , 𝒚𝑛).

Supervised learning only processes features 𝒙 to predict labels 𝒚. The
probabilistic model 𝑝𝜽(𝒙 , 𝒚) thus has a more special form, in that it only
parameterizes the likelihood 𝒚 | 𝒙,

𝑝𝜽(𝒙 , 𝒚) = 𝑝𝜽(𝒚 | 𝒙)𝑝(𝒙) . (2.11a)

Since only the likelihood contains parameters, Equation (2.10b) simplifies
to minimizing the expected negative log-likelihood

minimize
𝜽

𝔼𝑝data(𝒙 ,𝒚) [− log 𝑝𝜽(𝒚 | 𝒙) − log 𝑝(𝒙)]
⇔minimize

𝜽
𝔼𝑝data(𝒙 ,𝒚) [− log 𝑝𝜽(𝒚 | 𝒙)]
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and with empirical approximation through i. i.d. data as Equation (2.10c),

minimize
𝜽

1
|𝔻|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

− log 𝑝𝜽(𝒚𝑛 | 𝒙𝑛) . (2.11b)

This minimization problem corresponds to MLE7 with a statistical model7: Finding the negative log-likelihood’s
minimum, Equation (2.11b), is equiva-
lent to finding the maximum of the i. i. d.
data’s likelihood

𝑝(𝔻 | 𝜽) = ∏
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

𝑝𝜽(𝒚𝑛 | 𝒙𝑛)𝑝(𝒙𝑛) .

The MLE satisfies

𝜽MLE = arg max 𝑝(𝔻 | 𝜽)
= arg max log 𝑝(𝔻 | 𝜽)
= arg min− log 𝑝(𝔻 | 𝜽) .

Inserting 𝑝(𝜽 | 𝔻) and dropping
parameter-independent terms recovers
the problem Equation (2.11b).

𝑝𝜽(𝒚 | 𝒙). This is a specific form of empirical risk minimization where
the model’s prediction 𝑓𝜽(𝒙) parameterizes a likelihood 𝑞 for 𝒚 | 𝒇 , and
a negative log-likelihood loss function ℓ , i. e.

𝑝𝜽(𝒚 | 𝒙) = 𝑞(𝒚 | 𝑓𝜽(𝒙)) , (2.12a)
ℓ ( 𝒇 , 𝒚) = − log 𝑞(𝒚 | 𝒇 ) . (2.12b)

Both the square loss and softmax cross-entropy loss (Examples 2.1 and 2.2)
have such a probabilistic interpretation, see Examples 2.3 and 2.4.

Example 2.3 (Probabilistic interpretation of square loss) The square
loss Equation (2.1) is the negative log-likelihood of a Gaussian centered
around the model’s prediction with diagonal constant covariance,

ℓ ( 𝒇 , 𝒚) = − log 𝑞(𝒚 | 𝒇 )
with 𝑞(𝒚 | 𝑓𝜽(𝒙)) = N (𝒚 | 𝝁,𝚺)

where8

8: Inserting mean and covariance into
the negative log-probability yields,

− logN (𝒚;𝝁,𝚺)
= 1/2(𝒚 − 𝝁)⊤𝚺−1(𝒚 − 𝝁)
+ 1/2 [log det𝚺 + 𝐶 log 2𝜋] ,

i. e. the square loss Equation (2.1) up to
a 𝜽-independent term which does not
affect optimization.

𝝁 = 𝑓𝜽(𝒙) and 𝚺 = 𝐶/2𝑰.

Example 2.4 (Probabilistic interpretation of softmax cross-entropy
loss) The softmax cross-entropy loss Equation (2.2) is the negative
log-likelihood of a multinomial distribution parameterized by the
softmax probabilities,

ℓ ( 𝒇 , 𝑦) = − log 𝑞(𝑦 | 𝒇 )
with 𝑞(𝑦 | 𝑓𝜽(𝒙)) = Cat(𝑦; 𝒑)

where9

9: With 𝑝𝑐 denoting the probability to
observe class 𝑦 = 𝑐,

− log Cat(𝑦; 𝒑) = − log 𝑝𝑦 ,

which is the softmax cross-entropy loss
Equation (2.2). 𝒑 = softmax( 𝑓𝜽(𝒙)).

Following the maximum likelihood principle results in the MLE parame-
ter 𝜽MLE which satisfies Equation (2.11b) and gives rise to the distribution
𝑝𝜽MLE(𝒚 | 𝒙) = 𝑞(𝒚 | 𝑓𝜽MLE(𝒙)) as an approximation to 𝑝data(𝒚 | 𝒙).

Connections to Maximum A Posteriori (MAP) Estimation

MLE maximizes the likelihood 𝑝(𝔻 | 𝜽). In a probabilistic formu-
lation with a prior 𝑝(𝜽) over the parameters and evidence 𝑝(𝔻) =∫

Θ
𝑝(𝔻 | 𝜽)𝑝(𝜽)d𝜽 for the data, one can instead consider the posterior

𝑝(𝜽 | 𝔻) = 𝑝(𝔻 | 𝜽)𝑝(𝜽)
𝑝(𝔻) (2.13)
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which corrects the prior with data observations. Such a posterior is useful
to form probabilistic beliefs over predictions 𝒚★ for new inputs 𝒙★,

𝑝(𝒚★ | 𝒙★,𝔻) =
∫

Θ
𝑝(𝒚★ | 𝒙★,𝔻, 𝜽)𝑝(𝜽 | 𝒙★,𝔻)d𝜽

=
∫

Θ
𝑝(𝒚★|𝒙★, 𝜽)𝑝(𝜽 | 𝔻)d𝜽 .

(2.14)

However, this requires integration over the posterior, which itself is
almost always intractable and thus needs to be approximated.

The MAP principle approximates the posterior with a delta distribution
around the posterior mode, i. e. the point of maximum posterior density,

𝑝(𝜽 | 𝔻) ≈ 𝛿(𝜽 − 𝜽MAP) where 𝜽MAP = arg max
𝜽

𝑝(𝜽 | 𝔻) . (2.15)

It is connected to empirical risk minimization with a regularization term
that results from the prior 𝑝(𝜽). To see this, reformulate Equation (2.15) to
minimize the negative log-posterior, expand Baye’s rule (Equation (2.13))
and neglect the parameter-independent evidence term. Then, apply the
same assumptions as for MLE10, i. e. i. i.d. data and 𝜽 only parameterizing 10: Mathematically, they translate into

𝑝(𝔻 | 𝜽)
=

∏
𝑛
𝑝(𝒙𝑛 , 𝒚𝑛 | 𝜽)

=
∏
𝑛
𝑝(𝒚𝑛 | 𝒙𝑛 , 𝜽)𝑝(𝒙𝑛 | 𝜽)

=
∏
𝑛
𝑝(𝒚𝑛 | 𝒙𝑛 , 𝜽)𝑝(𝒙𝑛)

with slightly different notation for 𝜽 in
comparison to the MLE discussion, as it
is now treated probabilistically.

the likelihood 𝒚 | 𝒙. This yields

𝜽MAP = arg min
𝜽
− log 𝑝(𝜽 | 𝔻)

= arg min
𝜽
− log 𝑝(𝔻 | 𝜽) − log 𝑝(𝜽)

= arg min
𝜽

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

− log 𝑝(𝒚𝑛 | 𝒙𝑛 , 𝜽) − log 𝑝(𝜽)

= arg min
𝜽

1
|𝔻|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

− log 𝑝(𝒚𝑛 | 𝒙𝑛 , 𝜽) −
log 𝑝(𝜽)
|𝔻| .

(2.16)

In analogy to Equation (2.12), the first term is an empirical risk (Equa-
tion (2.11b)) with negative log-likelihood loss of a distribution 𝑞 for targets
given model predictions,

𝑝(𝒚 | 𝒙 , 𝜽) = 𝑞(𝒚 | 𝑓𝜽(𝒙)) and ℓ ( 𝒇 , 𝒚) = − log 𝑞(𝒚 | 𝒇 ) . (2.17)

However, this risk is extended by a regularization term from the prior,

𝜽MAP = arg min
𝜽

L𝔻(𝜽) + 𝑟(𝜽) where 𝑟(𝜽) = − log 𝑝(𝜽)
|𝔻| . (2.18)

Equations (2.13), (2.16) and (2.18) connect the posterior with the loss via
log 𝑝(𝔻 | 𝜽) = −|𝔻|L𝔻(𝜽) and log 𝑝(𝜽) = −|𝔻|𝑟(𝜽),

𝑝(𝜽 | 𝔻) = exp [log 𝑝(𝔻 | 𝜽) + log 𝑝(𝜽)]
𝑝(𝔻)

=
exp {−|𝔻| [L𝔻(𝜽) + 𝑟(𝜽)]}

𝑝(𝔻) .
(2.19)

It underlines the aforementioned challenges to track the posterior. The
exponent is non-linear in 𝜽, and 𝑝(𝔻) requires computing an integral.

Equation (2.19) gives rise to posterior approximations that go beyond a
delta distribution. The Laplace approximation [93] (Section 3.3.1) also
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𝒛(0)

𝑓 (1)
𝜽(1)

𝜽(1)

𝒛(1)

𝑓 (2)
𝜽(2)

𝜽(2)

𝒛(2)

. . .

𝒛(𝐿−1)

𝑓 (𝐿)
𝜽(𝐿)

𝜽(𝐿)

𝒛(𝐿)

Figure 2.4: Forward pass of a sequential feedforward neural network (Equation (2.20a)). The computational graph indicates the data
flow and dependencies of intermediate variables.

starts with the MAP estimate, but uses a quadratic Taylor expansion
of the log-posterior around 𝜽MAP to approximate the posterior by a
Gaussian. This quadratic expansion requires higher-order information in
form of second-order derivatives, presented in Chapter 3.

2.2 Neural Networks

The previous section focused on structure in the empirical risk—like
its sum structure, and interpretations of risk-based learning for specific
loss functions—without assumptions about the model 𝑓𝜽. This section
introduces structure in the model. While DNNs are generally highly
over-parameterized, they usually rely on relatively simple components
and construction principles.

This manuscript considers sequential feedforward neural networks that
consist of layers. They comprise “classic” architectures like multi-layer
perceptrons (MLPs), convolutional neural networks (CNNs), and es-
tablished architectures like VGG [153], and ResNets [68]. Most of the
discussion in this text also applies to other architectures, but would
require heavier notation.

2.2.1 Layer-wise Notation

Sequential feedforward neural networks of depth 𝐿 consist of modules, or
layers, 𝑓 (𝑙)

𝜽(𝑙)
, 𝑙 = 1, . . . , 𝐿, stacked on top of each other such that

𝑓𝜽 = 𝑓 (𝐿)
𝜽(𝐿)
◦ 𝑓 (𝐿−1)

𝜽(𝐿−1) ◦ . . . ◦ 𝑓 (1)𝜽(1)
(2.20a)

They map input features 𝒙 =: 𝒛(0) to predictions 𝑓𝜽(𝒙) =: 𝒛(𝐿) via a
sequence of intermediate hidden features 𝒛(1) , . . . , 𝒛(𝐿−1). In a forward
pass, a module 𝑓 (𝑙)

𝜽(𝑙)
receives the parental output 𝒛(𝑙−1) ∈ ℝℎ(𝑙−1) and

applies an operation with (potentially empty) parameters 𝜽(𝑙) ∈ ℝ𝑑(𝑙) ,

𝒛(𝑙) = 𝑓 (𝑙)
𝜽(𝑙)
(𝒛(𝑙−1)) . (2.20b)

The output features 𝒛(𝑙) ∈ ℝℎ(𝑙) serve as input to the next layer 𝑙 + 1. This
builds up dependencies in form of the computational graph shown in
Figure 2.4 that maps the leaf nodes 𝒛(0) and𝜽(1) , . . . , 𝜽(𝐿) to the prediction
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𝒛(𝐿). The neural network parameters are often treated as a single vector
𝜽 ∈ ℝ𝐷 which results from layer-wise concatenation,

Definition 2.2 (Tensor flattening)
Let A ∈ ℝ𝑛1×𝑛2×...,×𝑛𝑚 denote a
tensor of rank 𝑚 with dimensions
𝑛1 , 𝑛2 , . . . , 𝑛𝑚 . The flattened tensor
vec(A) ∈ ℝ𝑛1𝑛2 ···𝑛𝑚 is a vector that
concatenates A’s elements in a first-
index-varies-fastest fashion,

vec(A) =

©­­­­­­­­­­­­­­­­­
«

A1,1,1,...,1
A2,1,1,...,1

...
A𝑛1 ,1,1,...,1
A1,2,1,...,1

...
A𝑛1 ,2,1,...,1

...
A𝑛1 ,𝑛2 ,𝑛3 ,...,𝑛𝑚

ª®®®®®®®®®®®®®®®®®
¬

. (2.21)

The matrix case𝑚 = 2 corresponds to
column-stacking. Flattening a vector
𝒂 leaves it unaffected, i. e. vec(𝒂) = 𝒂.

𝜽 =

©­­­­
«

𝜽(1)

𝜽(2)
...

𝜽(𝐿)

ª®®®®
¬
. (2.22)

To simplify the presentation, Equation (2.20b) assumes vector-shaped
quantities. However, many neural networks process higher-dimensional
data like images, represented by tensors. Sometimes, the tensor structure
is convenient to work with. One can convert between the tensor and
vector view without loss of generality by introducing conventions for
tensor flattening (Definition 2.2) and reshaping (Definition 2.3); after all,

Definition 2.3 (Vector reshaping)
Let 𝒂 ∈ ℝ𝑛1𝑛2 ···𝑛𝑚 be a vector. Re-
shaping that vector into a rank-𝑚
tensor of shape 𝑆 = (𝑛1 , 𝑛2 , . . . , 𝑛𝑚)
happens by filling 𝒂’s elements into
the tensor in a first-index-varies-
fastest fashion,

A = reshape𝑆(𝒂) (2.23a)

with elements

A1,1,1,...,1 = 𝑎1 ,

A2,1,1,...,1 = 𝑎2 ,

...

A𝑛1 ,1,1,...,1 = 𝑎𝑛1 ,

A1,2,1,...,1 = 𝑎𝑛1+1 ,

...

A𝑛1 ,2,1,...,1 = 𝑎2𝑛1 ,

...

A𝑛1 ,𝑛2 ,𝑛3 ,...,𝑛𝑚 = 𝑎𝑛1𝑛2𝑛3 ···𝑛𝑚 .
(2.23b)

The matrix case 𝑚 = 2 corresponds
to column-filling. With tensor flat-
tening (Definition 2.2) this allows to
define tensor reshaping: A tensor B1
of shape 𝑆1 is rearranged into any ten-
sor B2 of compatible shape 𝑆2 by first
flattening, then reshaping it, i. e.B2 :=
reshape𝑆2

(B1) := reshape𝑆2
(vecB1).

multi-dimensional arrays are represented in a vector format in memory.

However, there exist different flattening conventions. Implementations of-
ten favor row-major ordering. This manuscript uses (the more common in
literature) column-major order as it allows for elegant generalizations of
derivative concepts for multi-variate functions, like the Jacobian (Defini-
tion 2.5), the Hessian (Definition 3.2), and their chain rules (Theorems 2.2
and 3.1). To translate analytical results into implementations, it is crucial
to be aware of these differing conventions.

2.2.2 Modularity & Common Operations

An important strength of deep learning is its modularity. ML libraries
provide a large number of operations, or modules, that can be com-
bined in almost arbitrary ways through function composition, like in
Equation (2.20a). Training the resulting models with first-order methods
remains simple because their gradient can be automatically computed
via AD (Section 2.3). New operations can easily be added because its
implementation is decoupled to the modular level.

Modules are vaguely defined. Often, multiple operations that form a
logical processing unit in a neural network are grouped into a single
module, e.g. an MLP layer combines affine transformation and elemen-
twise activation (see below). In extreme cases, even an entire neural
network can be considered a single module that can be used in other
neural networks; e.g. the neural network in Figure 2.1 resembles a single
layer in Figure 2.4 and could act as one layer in a larger network.

For theoretical analyses, it is preferable to consider units with a small
number of operations as modules. This, however, is inconvenient for
constructing large architectures, where many operations are grouped into
higher-level units. This text adapts a rather fine-grained view on modules
that is close to their implementation in ML libraries like PyTorch.

A common categorization for modules distinguishes trainable functions
with parameters, and parameter-free operations. Table 2.1 lists the for-
ward passes of common operations that will be illustrated in the following
presentation of network architectures. To distringuish more clearly be-
tween input and output of an operation, the notation uses the symbols
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Table 2.1: Forward pass for common
modules used in feedforward networks.
Input and output are denoted 𝒙 , 𝒛 rather
than 𝒛(𝑙) , 𝒛(𝑙+1) to avoid clutter. 𝑰 is
the identity matrix. Bold upper-case
symbols (𝑾 ,𝑿 , 𝒁 , . . . ) denote matrices
and bold upper-case sans serif symbols
(W,X, Z, . . . ) denote tensors. See Appen-
dices A.2 to A.4 for details, and Tables 2.2
and 4.1 for extended versions of this table
for the backward, and Hessian backward,
pass.

OPERATION FORWARD

Matrix-vector multiplication 𝒛(𝒙 ,𝑾 ) = 𝑾𝒙
Matrix-matrix multiplication 𝒁(𝑿 ,𝑾 ) = 𝑾𝑿
Addition 𝒛(𝒙 , 𝒃) = 𝒙 + 𝒃
Elementwise activation 𝒛(𝒙) = 𝝓(𝒙) , s.t. 𝑧𝑖(𝒙) = 𝜙(𝑥𝑖)
Skip-connection 𝒛(𝒙 , 𝜽) = 𝒙 + 𝒔(𝒙 , 𝜽)
Reshape/view Z(X) = reshape(X)
Index select/map 𝜋 𝒛(𝒙) = 𝚷𝒙 , Π𝑗 ,𝜋(𝑗) = 1 ,
Convolution Z(X,W) = X★W ,

𝒁(𝑾 , ⟦X⟧) = 𝑾 ⟦X⟧ ,

Square loss ℓ ( 𝒇 , 𝒚) = 1/𝐶(𝒚 − 𝒇 )⊤(𝒚 − 𝒇 )
Softmax cross-entropy ℓ ( 𝒇 , 𝑦) = −onehot(𝑦)⊤ log [𝒑( 𝒇 )]

𝒙 , 𝒛 for module input and output instead of 𝒛(𝑙−1) , 𝒛(𝑙), and neglects the
layer superscript for the parameters, writing 𝜽 instead of 𝜽(𝑙).

Deep Linear Networks & Multi-layer Perceptrons (MLPs)

Linear layers process inputs 𝒙 by affine transformation, i. e. multiplication
with a weight matrix 𝑾 , followed by addition of a bias vector 𝒃,

𝒛 = 𝑾𝒙 + 𝒃 where 𝜽 =
((vec𝑾 )⊤ 𝒃⊤

)⊤
. (2.24)

They are also referred to as fully-connected layers, because each output 𝑧𝑖
depends on all inputs 𝒙 through 𝑾 𝑖 ,: and 𝑏𝑖 .

Deep linear networks (Example 2.5) consist of only linear layers and are
Example 2.5 (Deep linear network)
In notation of Equation (2.20), a deep
linear network of depth 𝐿 reads

𝒛(𝑙) = 𝑾 (𝑙)𝒛(ℓ−1) + 𝒃(𝑙)

where

𝜽(𝑙) =
((

vec𝑾 (𝑙)
)⊤

𝒃(𝑙)
⊤)⊤

,

𝑙 = 1, . . . , 𝐿 .

of interest for analytical studies [e.g. 16, 112, 143] as they are somewhat
tractable. They describe a linear feature map, i. e. a linear function w.r. t. the
input 𝒛(0), that is non-linear in the parameters. Therefore, such networks
are as expressive as a single linear layer, but highly overparameterized.

A common technique to turn a deep linear network into a non-linear
feature map is to interlace affine transformations with non-linear activa-
tions [136]. An activation layer 𝝓 acts elementwise on its input, i. e. applies
the same function 𝜙 to each input element,

𝒛 = 𝝓(𝒙) such that 𝑧𝑖 = 𝜙(𝑥𝑖) .

There exist many activations (ReLU, sigmoid, tanh, etc. [60, Chapter 6]),
and recent works proposing new choices (e.g. squared ReLU [156]).

Multi-layer perceptrons (MLPs, Example 2.6) combine affine transformation
Example 2.6 (Multi-layer perceptron
(MLP)) In terms of Equation (2.20),
an MLP of depth 𝐿 reads

𝒛(𝑙) = 𝝓(𝑙)
(
𝑾 (𝑙)𝒛(ℓ−1) + 𝒃(𝑙)

)
,

where

𝜽(𝑙) =
((

vec𝑾 (𝑙)
)⊤

𝒃(𝑙)
⊤)⊤

,

𝑙 = 1, . . . , 𝐿 ,

𝝓(𝐿) = id

and id denotes the identity.

and activation in a layer. Activation functions 𝝓(𝑙) may vary between
layers, but are often chosen identically, with no activation in the last layer.
One way to interpret this design is that the mapping 𝒛(0) ↦→ 𝒛(𝐿−1) acts
as non-linear feature transformation, and the last layer 𝒛(𝐿−1) ↦→ 𝒛(𝐿) as
linear classifier for the learned features.

Convolutional Neural Networks (CNNs)

CNNs represent an important neural network architecture revolution and
were the first class of deep neural network to beat “classical” methods on
the ImageNet competition [41, 91, 138]. Broadly speaking, such networks
contain convolutional layers with trainable parameters.
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Convolutional layers: Convolutions process multi-channel input fea-
tures such as images and are parameterized by a kernel that can be
imagined as a filter for patterns like edges, corners, etc. During the convo-
lution operation, the kernel slides over the input features and produces
an output element by contraction with the overlapping elements of the
image. In most cases, each output channel is also shifted by a bias param-
eter which will be neglected in this presentation for simplicity (detailed
discussion in Appendix A.4, example in Equation (A.8)). Because the
kernel moves over the image, it can detect patterns irrespective of their
position. The process can be adjusted with various hyperparameters,
such as stride, padding, groups, dilation (see [45] for a visual guide).

In contrast to the linear layer (Equation (2.24)) where each output is
connected to all inputs via independent rows of the weight matrix, the
parameters in the kernel are shared across all outputs. Therefore, convo-
lutions usually require less parameters than fully-connected layers.

Nevertheless, both layers are related because convolution is a linear
operation and can therefore be regarded as matrix multiplication. Due
to the weight sharing, this matrix is structured by the kernel elements11. 11: E.g., in the one-dimensional case, the

convolution of two vectors can be com-
puted by expanding one into a Toeplitz
matrix, and multiplying that onto the
second vector [171].

Alternatively, one can stack patches—input elements that overlap with
the kernel at each stage—into columns of a matrix, which yields the
unfolded input, denoted by ⟦X⟧ in Table 2.1. Then, convolution is a
matrix-matrix product between a matrix reshape of the kernel and the
unfolded input [29] (see Figure A.3c for an illustration).

Padding & pooling layers: Convolutions are often combined with other
modules. Padding layers add pixels around the outer dimensions of an
image, which helps to reduce information loss at the image boundaries
during convolution. Pooling layers down-sample images by summarizing
patches of pixels and reduce the number of hidden features. Similar to
convolution, pooling considers patches of an input image. Two common
summary operations are per-channel averaging and taking the per-
channel maximum. They give rise to maximum and average pooling.

One can interpret padding and pooling as scatter operations, realized by
multiplication with a sparse, binary matrix 𝚷 (compare Table 2.1:

▶ For padding, 𝚷 does not dependent on the input, but only its shape
and the hyperparameters. A row is empty if its index corresponds
to the padded area, and otherwise contains a one at the element’s
index to be copied from the input.

▶ For maximum pooling, 𝚷 depends on the input. Each row contains
a one at the index of the element with maximum value in the patch.

▶ For average pooling, 𝚷 does not dependent on the input, but only
its shape and the hyperparameters. Each row contains the inverse
patch size at indices of the elements in the current patch.

Residual Networks (ResNets)

The inclusion of skip (or residual) connections [68] represents another
revolution in the design of CNNs, and enabled training of deeper archi-
tectures, with 100 or even 1000 layers. This lead to improved performance



22 Chapter 2 Deep Learning Components

of such CNNs on tasks like ImageNet [41, 138]. Skip connections branch
off a hidden feature and feed it back after the residual block 𝒔(𝒙 , 𝜽),

𝒛 = 𝒙 + 𝒔(𝒙 , 𝜽) .

This can be seen as learning a small modification 𝒔(𝒙 , 𝜽)—a residual
function—for 𝒙; hence the name residual connection.

Closing Remarks & Sources of Non-linearity

This short overview of common neural network layers and architectures
is, of course, incomplete. Other famous layers include dropout [158],
recursive [33, 47, 71], normalization [79, 174], attention layers [167], etc.

An interesting observation about the operations in Table 2.1 is that most
of them are linear (linear, convolution, padding, and average pooling
layers) or piece-wise linear (maximum pooling and ReLU activation layer)
w.r. t. both their input and parameters. This implies that their second- and
higher-order derivatives vanish. Non-linearity is often only introduced
by activation layers (elementwise) and loss functions (after the model’s
forward pass). While the properties of these components are not inherited
by the entire neural network, they give rise to structure in a network’s
higher-order derivatives, see e.g. Chapter 4.

2.3 Automatic Differentiation

Together with empirical risk minimization and neural networks, the last
ingredient in the ML pipeline, Procedure 1.1, is computing the gradient.
Contemporary methods to train neural networks (Section 3.1) rely on this
quantity. ML libraries compute it via their built-in automatic differenti-
ation (AD), built around the famous backpropagation algorithm [137],
described in more detail here.

2.3.1 Foundations

An Example & Path Interpretation

Given a program that evaluates a function, AD produces a program to
evaluate its derivative. The general idea is to consider the function as
composition of atomic operations (e.g. addition, multiplication, . . . ) with
known derivatives. To automatically compute the derivatives, one needs
to track the dependencies between intermediate variables and combine
their derivatives using the chain rule.

Figure 2.5 illustrates the basic principles of AD for an example from [119].
The starting point is a function defined by code (Figure 2.5a). Such
a function transforms input to output variables through atomic oper-
ations and builds up intermediate variables along its execution. The
relation between these operations are described by a directed graph
G = (V , E) with a set of nodes V = {𝑧(1) , 𝑧(2) , . . . } and a set of edges
E = {(𝑧(𝑖1) , 𝑧(𝑗1)), (𝑧(𝑖2) , 𝑧(𝑗2)), . . . } where (𝑧(𝑖) , 𝑧(𝑗)) denotes a directed
edge from node 𝑧(𝑖) to 𝑧(𝑗) (Figure 2.5b).
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(a) Function as Python program

1 from math import exp, sin
2

3 def z7(z1: float, z2: float):
4 """Example function."""
5

6 # intermediate variables
7 z3 = sin(z2)
8 z5 = z3 + z2
9 z4 = exp(z1)

10 z6 = z4 * z5
11

12 # output variable
13 z7 = z4 + z6
14

15 return z7

(b) Computation graph

𝑧(1) 𝑧(2)

𝑧(3)

𝑧(4)

𝑧(5)

𝑧(6)

𝑧(7)

exp(𝑧(1))

sin(𝑧(2))

𝑧(3) + 𝑧(2)

𝑧(4) · 𝑧(5)

𝑧(4) + 𝑧(6)

(c) Local derivatives

𝑧(1) 𝑧(2)

𝑧(3)

𝑧(4)

𝑧(5)

𝑧(6)

𝑧(7)

exp(𝑧(1))

cos(𝑧(2))
1

1

1

𝑧(5)

𝑧(4)

1

(d) Bauer paths

𝑧(1) 𝑧(2)

𝑧(3)

𝑧(4)

𝑧(5)

𝑧(6)

𝑧(7)

exp(𝑧(1))

cos(𝑧(2))

1

1

1

𝑧(5)

𝑧(4)

1

Figure 2.5: Basic AD principles [119].
(a) Example input program represented
by Python code. The atomic operations
combined via composition are addition,
multiplication, exponential function, and
sine. The result 𝑧(7) is computed from the
inputs 𝑧(1) , 𝑧(2) through intermediates
𝑧(3) , 𝑧(4) , 𝑧(5) , 𝑧(6),

𝑧(7) = exp(𝑧(1))
+ exp(𝑧(1))

(
sin(𝑧(2)) + 𝑧(2)

)
.

(b) Representation as computation graph
to track dependencies between the inter-
mediate variables on the level of atomic
operations. (c) Computing derivatives
relies on local derivatives 𝜕𝑧(𝑗)/𝜕𝑧(𝑖) on
edges (𝑧(𝑖) , 𝑧(𝑗)), which need to be ac-
cumulated according to the chain rule.
(d) Interpretation of the chain rule as
sum over path products. Computing the
derivatives of a node w.r. t. to another
node in the graph requires summing the
path product of local derivatives for all
paths that connect them. In detail:

𝜕𝑧(7)

𝜕𝑧(1)
=

𝜕𝑧(7)

𝜕𝑧(4)
𝜕𝑧(4)

𝜕𝑧(1)
+ 𝜕𝑧(7)

𝜕𝑧(6)
𝜕𝑧(6)

𝜕𝑧(4)
𝜕𝑧(4)

𝜕𝑧(1)

= exp(𝑧(1)) + 𝑧(5) exp(𝑧(1))
= exp(𝑧(1))
+

(
sin(𝑧(2)) + 𝑧(2)

)
exp(𝑧(1)) ,

𝜕𝑧(7)

𝜕𝑧(2)
=

𝜕𝑧(7)

𝜕𝑧(6)
𝜕𝑧(6)

𝜕𝑧(5)
𝜕𝑧(5)

𝜕𝑧(3)
𝜕𝑧(3)

𝜕𝑧(2)

+ 𝜕𝑧(7)

𝜕𝑧(6)
𝜕𝑧(6)

𝜕𝑧(5)
𝜕𝑧(5)

𝜕𝑧(2)

= 𝑧(4) cos(𝑧(2)) + 𝑧(4)
= exp(𝑧(1)) cos(𝑧(2)) + exp(𝑧(1)) .

To compute derivatives, the local derivatives on edges (Figure 2.5c) are
combined according to the chain rule. For 𝜕𝑧(𝑗)/𝜕𝑧(𝑖) between two variables
in the graph, all paths connecting them need to be considered. A path
between two nodes 𝑧(𝑖) and 𝑧(𝑗) is a sequence of edges that connect
them: starting from 𝑧(𝑖), following the edges in a path leads to 𝑧(𝑗).
Let [𝑧(𝑖) → 𝑧(𝑗)] denote the set of paths connecting 𝑧(𝑖) to 𝑧(𝑗). Then the
derivative is the sum of path products of local derivatives (Figure 2.5d),

𝜕𝑧(𝑗)

𝜕𝑧(𝑖)
=

∑
𝑝∈[𝑧(𝑖)→𝑧(𝑗)]

∏
(𝑧(𝑘) ,𝑧(𝑙))∈𝑝

𝜕𝑧(𝑙)

𝜕𝑧(𝑘)
. (2.25)

The path formulation goes back to Bauer [12].

The Jacobian Matrix & Its Chain Rule

For the computation graph of a neural network’s empirical risk, tracking
dependencies between variables at a scalar level would result in a consid-
erable book-keeping overhead due to the large number of connections.
This can be circumvented by using vector-valued (or tensor-valued)
nodes 𝒛(1) , 𝒛(2) , . . . and tracking edges between vectors (or tensors), see
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Figure 2.6. However, this requires a generalization of Equation (2.25) to
multi-variate nodes. The accumulation is efficiently expressed as matrix
multiplication by arranging partial derivatives into Jacobians.

Definition 2.4 (Jacobian) Let 𝒃 : ℝ𝑛 → ℝ𝑚 , 𝒂 ↦→ 𝒃(𝒂) be a differen-
tiable vector-to-vector function. The Jacobian J𝒂𝒃(𝒂) of 𝒃 w.r. t. 𝒂 is an
𝑚 × 𝑛 matrix with partial derivatives,

J𝒂𝒃(𝒂) = 𝜕𝒃(𝒂)
𝜕𝒂⊤

, with [J𝒂𝒃(𝒂)]𝑖 , 𝑗 = 𝜕𝑏𝑖(𝒂)
𝜕𝑎 𝑗

. (2.26)

Matrix- and tensor-valued functions require flattening their arguments
into vectors12

12: Definition 2.4 assumes vector-valued
functions. With the flattening convention
Definition 2.2, it generalizes to tensor-
valued functions as follows:

Definition 2.5 (Generalized Jaco-
bian) Let 𝑩 : ℝ𝑛×𝑞 → ℝ𝑚×𝑝 ,𝑨 ↦→
𝑩(𝑨) be a differentiable matrix-to-
matrix function. The Jacobian J𝑨𝑩(𝑨)
of 𝑩 w.r. t. 𝑨 is an 𝑚𝑝 × 𝑛𝑞 matrix

J𝑨𝑩(𝑨) = 𝜕 vec𝑩(𝑨)
𝜕(vec𝑨)⊤ (2.27a)

with entries

[J𝑨𝑩(𝑨)]𝑖 , 𝑗 = 𝜕 [vec𝑩(𝑨)]𝑖
𝜕 [vec𝑨]𝑗

(2.27b)

and the flattening operation vec from
Definition 2.2 [103, Chapter 9.4]. The
analogous tensor case (𝑨, 𝑩) →
(A,B) requires lengthy notation and
is therefore omitted.

In the context of neural networks, the
most common occurrences of Defini-
tion 2.5 involve vector-to-vector func-
tions 𝑓 : ℝ𝑛 → ℝ𝑚 , 𝒙 ↦→ 𝑓 (𝒙)with

J𝒙 𝑓 (𝒙) = 𝜕 𝑓 (𝒙)
𝜕𝒙⊤

.

For instance, 𝒙 can be considered the
input or bias vector of a layer apply-
ing an affine transformation. Other cases
involve matrix-to-vector mappings 𝑓 :
ℝ𝑛×𝑞 → ℝ𝑚 ,𝑿 ↦→ 𝑓 (𝑿 )with

J𝑿 𝑓 (𝑿 ) = 𝜕 𝑓 (𝑿 )
𝜕(vec𝑿 )⊤ ,

where 𝑿 might correspond to the ℝ𝑚×𝑞
weight matrix of a linear layer. See Ta-
ble 2.2 for an overview.

. For a vector-to-scalar function 𝑏(𝒂), i. e. 𝑚 = 1, the
Jacobian has one row that contains the gradient, [J𝒂𝑏(𝒂)]⊤ = ∇𝒂𝑏. The
gradient will often be denoted by 𝒈 . E.g. 𝒈𝑝data

(𝜽) := ∇𝜽L𝑝data(𝜽) for the
gradient of the population risk Equation (2.3a), and 𝒈𝔻(𝜽) := ∇𝜽L𝔻(𝜽)
for the gradient of the empirical risk Equation (2.4b) on a dataset 𝔻
(with 𝔻 = 𝔻train ,𝔹 for the train loss and the mini-batch gradient).

In the vector-valued case, one must accumulate Jacobians through matrix
multiplies instead of scalar multiplications to compute derivatives,

J𝒛(𝑗)𝒛
(𝑖) =

∑
𝑝∈[𝒛(𝑖)→𝒛(𝑗)]

∏
(𝒛(𝑘) ,𝒛(𝑙))∈𝑝

J𝒛(𝑘)𝒛
(𝑙)(𝒛(𝑘)) . (2.28)

The product term generalizes the chain rule to vector-valued functions.

Theorem 2.1 (Jacobian chain rule) Let 𝒃 : ℝ𝑛 → ℝ𝑚 , 𝒂 ↦→ 𝒃(𝒂) and
𝒄 : ℝ𝑚 → ℝ𝑟 , 𝒃 ↦→ 𝒄(𝒃) be differentiable vector-to-vector functions.
Consider their composition 𝒅 = 𝒄◦𝒃 : ℝ𝑛 → ℝ𝑟 , 𝒂 ↦→ 𝒅(𝒂) = 𝒄(𝒃(𝒂)).
The composition’s Jacobian J𝒂𝒅(𝒂) ∈ ℝ𝑟×𝑛 is related to the composite
Jacobians via

J𝒂𝒅(𝒂) = [J𝒃𝒄(𝒃)] J𝒂𝒃(𝒂) . (2.29)

This can be generalized to tensor-valued functions13

13: Proper arrangement of partial deriva-
tives leads to a generalized Jacobian
chain rule for matrices/tensors:

Theorem 2.2 (Generalized Jacobian
chain rule) Let 𝑩 : ℝ𝑛×𝑞 → ℝ𝑚×𝑝
and 𝑪 : ℝ𝑚×𝑝 → ℝ𝑟×𝑠 be differen-
tiable matrix-to-matrix functions. Let
𝑫 = 𝑪 ◦ 𝑩 : ℝ𝑛×𝑞 → ℝ𝑟×𝑠 ,𝑨 →
𝑫(𝑨) = 𝑪(𝑩(𝑨)) be their composi-
tion. Then,

J𝑨𝑫(𝑨) = [J𝑩𝑪(𝑩)] J𝑨𝑩(𝑨) (2.30)

with the generalized Jacobian Defini-
tion 2.5 [103, Chapter 5.15]. The ten-
sor case (𝑫 , 𝑪 , 𝑩,𝑨) → (D,C,B,A)
is analogous.

.

Jacobian Accumulation (Automatic Differentiation Modes)

Given the computation graph G of a function to be differentiated, Equa-
tion (2.28) describes the operations that need to be performed. But there
are different schedules for carrying out these computations, with differing
performance: e.g., it is possible to share accumulated derivative products
between paths that share subpaths (like paths and in Figure 2.5d).
And for a single path in the vector case, the optimal contraction order of
the Jacobian matrix chain (one summand of Equation (2.28)) depends
on the dimension of the nodes (Example 2.7). The following Jacobian
accumulation schedules are of specific interest for AD:

▶ Forward accumulation, or forward mode AD, starts at the leafs,
i. e. the nodes w.r. t. which the function is differentiated. Jacobians
are accumulated in the same order as the function evaluation.
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𝒛(0)

𝑓 (1)
𝜽(1)

𝜽(1)

𝒛(1)

𝑓 (2)
𝜽(2)

𝜽(2)

𝒛(2)

. . .

𝒛(𝐿−1)

𝑓 (𝐿)
𝜽(𝐿)

𝜽(𝐿)

𝒛(𝐿)

ℓ

ℓ

𝒚

Figure 2.6: Computation graph of a sequential feedforward neural network’s loss for a single datum from Equation (2.31a).

▶ Reverse accumulation, or reverse mode AD [62, 99], starts at the
root, i. e. the variable that is differentiated. Jacobians are accumu-
lated from root to leaf nodes, traversing the graph backwards. This
is often called a backward pass.

▶ Optimal Jacobian accumulation computes derivatives according
to the optimal schedule which usually traverses the computation
graph in a nontrivial fashion. For arbitrary computation graphs,
finding this schedule is NP-hard [114].

Due to the specific structure of computation graphs in deep learning,
reverse mode AD is often more practical than forward accumulation.
This is outlined in in the following section, that illustrates reverse mode
for differentiation of a neural network’s loss w.r. t. its parameters, leading
to the famous backpropagation algorithm [137].

2.3.2 Gradient Backpropagation

Gradient backpropagation [137] enables efficient differentiation of the
training objective in deep learning. It is the central algorithm of popular
ML libraries with built-in AD. This section presents backpropagation
for chain-structured computation graphs (see [60, Chapter 6] for the
general case) like the loss of a sequential feedforward neural network.
Starting from the loss of a single datum, the goal is to show that ML
libraries combine AD and batching to maximize efficiency. But this
limits their functionality to computing the gradient, ignoring e.g. the
per-sample structure in the loss. Alleviating this limitation to compute
richer information (Chapter 3) using the existing implementation of
gradient backpropagation is a main goal of Part II in this thesis.

Loss of a Single Datum

Consider the loss implied by a single datum (𝒙 , 𝒚), a loss function ℓ , and
a neural network 𝑓𝜽 depicted in Figure 2.6,

ℓ (𝜽) = ℓ ( 𝑓𝜽(𝒙), 𝒚) with 𝑓𝜽 = 𝑓 (𝐿)
𝜽(𝐿)
◦ 𝑓 (𝐿−1)

𝜽(𝐿−1) ◦ . . . ◦ 𝑓 (1)𝜽(1)
. (2.31a)

Its computation graph G = (V , E) has nodes

V =
{
𝜽(𝑙)

}𝐿
𝑙=1
∪

{
𝒛(𝑙)

}𝐿
𝑙=0
∪ {𝒚, ℓ } (2.31b)
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and edges

E =
{
(𝒛(𝑙−1) , 𝒛(𝑙))

}𝐿
𝑙=1
∪

{
(𝜽(𝑙) , 𝒛(𝑙))

}𝐿
𝑙=1
∪

{
(𝒛(𝐿) , ℓ ), (𝒚, ℓ )

}
. (2.31c)

Each edge implies a Jacobian, categorized as one of the following:

▶ The input-output Jacobian J𝒛(𝑙−1)𝒛(𝑙)(𝒛(𝑙−1)) of a module 𝑙.
▶ The parameter-output Jacobian J𝜽(𝑙)𝒛

(𝑙)(𝜽(𝑙)) of a module 𝑙.
▶ The prediction-loss Jacobian J𝒛(𝐿)ℓ (𝒛(𝐿)) has one column and will

be written as gradient of the loss w.r.t. the model prediction,
J𝒛(𝐿)ℓ (𝒛(𝐿)) = [∇𝒛(𝐿)ℓ (𝒛(𝐿))]⊤.

The goal is to compute parameter-loss Jacobians, i. e. gradients of the loss
w.r. t. parameters J𝜽(𝑙)ℓ (𝜽(𝑙)) = [∇𝜽(𝑙)ℓ (𝜽(𝑙))]⊤ for all layers 𝑙 = 1, . . . , 𝐿.

First, consider only the gradient ∇𝜽(𝑙)ℓ of one parameter 𝜽(𝑙). Equa-
tion (2.28) requires identifying all paths connecting 𝜽(𝑙) to ℓ . Due to the
computation graph’s chain structure, this is only a single path,

[𝜽(𝑙) → ℓ ] = {𝑝} (2.32a)
with

𝑝 =
((
𝜽(𝑙) , 𝒛(𝑙)

)
,
(
𝒛(𝑙) , 𝒛(𝑙+1)

)
, . . .

(
𝒛(𝐿−1) , 𝒛(𝐿)

)
,
(
𝒛(𝐿) , ℓ

))
. (2.32b)

Plugging this into Equation (2.28) simplifies to

J𝜽(𝑙)ℓ (𝜽)︸  ︷︷  ︸
1×𝑑(𝑙)

= [J𝒛(𝐿)ℓ ]︸︷︷︸
1×ℎ(𝐿)

[
J𝒛(𝐿−1)𝒛(𝐿)

]
︸       ︷︷       ︸
ℎ(𝐿)×ℎ(𝐿−1)

· · ·
[
J𝒛(𝑙)𝒛

(𝑙+1)
]

︸       ︷︷       ︸
ℎ(𝑙+1)×ℎ(𝑙)

[
J𝜽(𝑙)𝒛

(𝑙)
]

︸    ︷︷    ︸
ℎ(𝑙)×𝑑(𝑙)

, (2.32c)

and in gradient notation

∇𝜽(𝑙)ℓ (𝜽)︸   ︷︷   ︸
𝑑(𝑙)

=
[
J𝜽(𝑙)𝒛

(𝑙)
]⊤

︸      ︷︷      ︸
𝑑(𝑙)×ℎ(𝑙)

[
J𝒛(𝑙)𝒛

(𝑙+1)
]⊤

︸         ︷︷         ︸
ℎ(𝑙)×ℎ(𝑙+1)

· · ·
[
J𝒛(𝐿−1)𝒛(𝐿)

]⊤
︸         ︷︷         ︸
ℎ(𝐿−1)×ℎ(𝐿)

∇𝒛(𝐿)ℓ︸︷︷︸
ℎ(𝐿)

. (2.32d)

In comparison to the general formulation Equation (2.28), the rather
simple graphs of a neural network’s loss yield much simpler expressions
(Equations (2.32c) and (2.32d)) that are a result of the Jacobian chain rule
(Theorem 2.1) applied to the loss Equation (2.31a). They also illustrate
the impact of contraction order on performance due to the connection to
matrix chains14

14: Assuming no cost to compute a Ja-
cobian, the optimal Jacobian contraction
of Equations (2.32c) and (2.32d) are ma-
trix chain problems that can be solved
with dynamic programming: given 𝑛
matrices 𝑨1 ,𝑨2 , . . . ,𝑨𝑛 , the task is to
find the optimal contraction schedule of
𝑨1𝑨2 · · ·𝑨𝑛 . This is crucial for perfor-
mance, as this example from Cormen et
al. [36, Chapter 15.2] illustrates:

Example 2.7 (Matrix chain con-
traction) Let 𝑨1 ∈ ℝ10×100 ,𝑨2 ∈
ℝ100×5 ,𝑨3 ∈ ℝ5×50. There are two
schedules to evaluate the chain
𝑨1𝑨2𝑨3 (cost for addition neglected
for simplicity):

▶ (𝑨1𝑨2)𝑨3: 𝑩1 = 𝑨1𝑨2 ∈ ℝ10×5

costs 100 multiplications per el-
ement (5, 000 in total). 𝑩1𝑨3 ∈
ℝ10×50 costs 5 multiplications per
element (2, 500 in total).

▶ 𝑨1(𝑨2𝑨3): 𝑩2 = 𝑨2𝑨3 ∈ ℝ100×50

costs 5 multiplications per ele-
ment (25, 000 in total). 𝑨1𝑩2 ∈
ℝ10×50 costs 100 multiplications
per element (50, 000 in total).

The order (𝑨1𝑨2)𝑨3 uses 10x fewer
operations (7, 500 versus 75, 000).

, mentioned in Section 2.3.1.

In forward mode, the matrix chain Equation (2.32d) would be evaluated
from left to right, starting with a 𝑑(𝑙) × ℎ(𝑙) Jacobian that is transformed
into 𝑑(𝑙) × ℎ(𝑙′) matrices where 𝑙′ > 𝑙. Since the parameter count 𝑑(𝑙) in a
layer is large in DNNs, these intermediate matrices are costly to store.

In reverse mode, Equation (2.32d) is evaluated from right to left, starting
with a ℎ(𝐿)-dimensional vector that is transformed into vectors of dimen-
sion ℎ(𝑙′) with 𝐿 > 𝑙′ ≥ 𝑙. These intermediate accumulations require less
memory than forward mode.

Each approach has drawbacks, however. Reverse mode uses a more
efficient matrix multiplication order, but the entire graph must have been
evaluated and stored, or re-computed, to construct the Jacobians. While
this is not needed for forward mode, forward accumulation starts with
the Jacobian of an edge (𝜽(𝑙) , 𝒛(𝑙)) that is not shared with paths for other
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parameters. Therefore, intermediate accumulations can not be reused for
other gradients. This is another crucial property of reverse mode, which
does allow reuse of intermediate results: consider the accumulations to
obtain the gradient ∇𝜽ℓ of all layers,

∇𝜽(1)ℓ =
[
J𝜽(1)𝒛

(1)]⊤ [
J𝒛(1)𝒛(2)

]⊤ [
J𝒛(2)𝒛(3)

]⊤ · · · [J𝒛(𝐿−1)𝒛(𝐿)
]⊤ ∇𝒛(𝐿)ℓ

∇𝜽(2)ℓ =
[
J𝜽(2)𝒛

(2)]⊤ [
J𝒛(2)𝒛(3)

]⊤ · · · [J𝒛(𝐿−1)𝒛(𝐿)
]⊤ ∇𝒛(𝐿)ℓ

... =
...

. . .
...

∇𝜽(𝐿−1)ℓ =
[
J𝜽(𝐿−1)𝒛(𝐿−1)]⊤ [

J𝒛(𝐿−1)𝒛(𝐿)
]⊤ ∇𝒛(𝐿)ℓ

∇𝜽(𝐿)ℓ =
[
J𝜽(𝐿)𝒛

(𝐿)]⊤ ∇𝒛(𝐿)ℓ

The paths for any two parameters 𝜽(𝑙1) , 𝜽(𝑙2) with 𝑙2 > 𝑙1 share edges(
𝒛(𝑙2) , 𝒛(𝑙2+1)

)
, . . . ,

(
𝒛(𝐿−1) , 𝒛(𝐿)

)
,
(
𝒛(𝐿) , ℓ

)
.

Therefore, their matrix chains share the accumulated gradient

∇𝒛(𝑙2)ℓ =
[
J𝒛(𝑙2)𝒛

(𝑙2+1)
]⊤ [

J𝒛(𝑙2+1)𝒛(𝑙2+2)
]⊤
· · ·

[
J𝑣𝑧(𝐿−1)𝒛(𝐿)

]⊤
∇𝒛(𝐿)ℓ .

This gradient w.r.t. hidden features is passed backwards through the
graph and used by a layer, before updating it and passing it to the next.
The interpretation of the described accumulation scheme is therefore
known as gradient backpropagation algorithm [137]:

Definition 2.6 (Gradient backpropagation for sequential feedfor-
ward neural networks) Given the computation graph of a loss
ℓ ( 𝑓𝜽(𝒙), 𝒚) implied by a datum (𝒙 , 𝒚), a loss function ℓ , and a se-
quential feedforward neural network 𝑓𝜽 from Equation (2.31a),
gradient backpropagation recovers the gradient vector ∇𝜽ℓ =((∇𝜽(1)ℓ )⊤ , (∇𝜽(2)ℓ )⊤ , . . . , (∇𝜽(𝐿)ℓ )⊤)⊤ in stages by passing gradients
backward through the graph (Figure 2.7a):

▶ Initialize the backpropagated vector with ∇𝒛(𝐿)ℓ at 𝐿.
▶ For layer 𝑙 = 𝐿, . . . , 1

1. Receive the output gradient ∇𝒛(𝑙)ℓ .
2. Recover the parameter gradient ∇𝜽(𝑙)ℓ =

[
J𝜽(𝑙)𝒛

(𝑙)]⊤ ∇𝒛(𝑙)ℓ .
3. Compute the input gradient ∇𝒛(𝑙−1)ℓ =

[
J𝜽(𝑙)𝒛

(𝑙)]⊤ ∇𝒛(𝑙)ℓ .
4. Free ∇𝒛(𝑙)ℓ and send ∇𝒛(𝑙−1)ℓ to layer 𝑙 − 1.

Definition 2.6 is modular, as mentioned earlier in Section 2.2.2: it only relies
on local derivatives. Supporting a new operation only requires specifying
its forward pass and the vector-Jacobian products (VJPs15

15: During backpropagation, the trans-
posed Jacobian is right-multiplied onto
the backpropagated gradient vector
(Equation (2.32d) from right to left). One
can see this as left-multiplying the Jaco-
bian to a column vector (Equation (2.32c)
from left to right), i. e. computing a vector-
Jacobian product. Forward accumulation
instead left-multiplies the transposed Ja-
cobian onto a matrix (Equation (2.32d)
from left to right). One can view this
as right-multiplying the Jacobian onto
the transposed matrix (Equation (2.32c)
from right to left). This requires multi-
ple Jacobian-vector products (JVPs), or a
Jacobian-matrix product (JMP).

) with its input-
output and parameter-output Jacobians. Given functionality to create
and traverse computation graphs, implementations of backpropagation
are very extensible due to its abstraction to the modular level.

Backpropagation itself performs a VJP with the network’s parameter-
output Jacobian J𝜽𝒛(𝐿). Choosing the vector to be∇𝒛(𝐿)ℓ yields the gradient
∇𝜽ℓ = [J𝜽𝒛(𝐿)]⊤∇𝒛(𝐿)ℓ . But one can also compute VJPs [J𝜽𝒛(𝐿)]⊤𝒗 with
arbitrary vectors 𝒗. The model’s parameter-output Jacobian is crucial for
computing higher-order information (Chapter 3 and Part II).

Although backpropagation only requires VJPs, the Jacobian matrix is
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Table 2.2: Jacobians (Definition 2.5) for common modules in feedforward networks. Input and output are denoted 𝒙 , 𝒛 rather than
𝒛(𝑙) , 𝒛(𝑙+1) to avoid clutter. 𝑰 is the identity matrix. Matrices use bold upper-case symbols (𝑾 ,𝑿 , 𝒁 , . . . ), tensors use bold upper-case
sans serif symbols (W,X, Z, . . . ). Most Jacobians can be elegantly derived with matrix differential calculus, see Appendix A.1 for details.

OPERATION FORWARD JACOBIAN (Definition 2.5) DETAILS

Matrix-vector multiplication 𝒛(𝒙 ,𝑾 ) = 𝑾𝒙 J𝒙𝒛 = 𝑾 , Appendix A.2.1
J𝑾 𝒛 = 𝒙⊤ ⊗ 𝑰

Matrix-matrix multiplication 𝒁(𝑿 ,𝑾 ) = 𝑾𝑿 J𝑿𝒁 = 𝑰 ⊗𝑾 , Appendix A.2.1
J𝑾𝒁 = 𝑿⊤ ⊗ 𝑰

Addition 𝒛(𝒙 , 𝒃) = 𝒙 + 𝒃 J𝒙𝒛 = J𝒃𝒛 = 𝑰 Appendix A.2.1
Elementwise activation 𝒛(𝒙) = 𝝓(𝒙) , s.t. J𝒙𝒛 = diag[𝝓′(𝒙)] Appendix A.2.2

𝑧𝑖(𝒙) = 𝜙(𝑥𝑖)
Skip-connection 𝒛(𝒙 , 𝜽) = 𝒙 + 𝒔(𝒙 , 𝜽) J𝒙𝒛 = 𝑰 + J𝒙𝒔 , Appendix A.2.3

J𝜽𝒛 = J𝜽𝒔

Reshape/view Z(X) = reshape(X) JXZ = 𝑰 Appendix A.4.1
Index select/map 𝜋 𝒛(𝒙) = 𝚷𝒙 , Π𝑗 ,𝜋(𝑗) = 1 J𝒙𝒛 = 𝚷 Appendix A.4.2
Convolution Z(X,W) = X★W , J⟦X⟧Z = 𝑰 ⊗𝑾 , Appendix A.4.3

𝒁(𝑾 , ⟦X⟧) = 𝑾 ⟦X⟧ J𝑾Z = ⟦X⟧⊤ ⊗ 𝑰

Square loss ℓ ( 𝒇 , 𝒚) = 1/𝐶(𝒚 − 𝒇 )⊤(𝒚 − 𝒇 ) J 𝒇 ℓ = 2( 𝒇 − 𝒚)⊤ Appendix A.3.1
Softmax cross-entropy ℓ ( 𝒇 , 𝑦) = −onehot(𝑦)⊤ log[𝒑( 𝒇 )] J 𝒇 ℓ = (𝒚 − 𝒑( 𝒇 ))⊤ Appendix A.3.2

an interesting object for analytical studies into its structure, and for
efficient implementation of functionality that goes beyond computing
gradients (e.g. matrix-Jacobian products (MJPs)). Table 2.2 contains the
Jacobians of the common operations in neural networks from Section 2.2.2.
These Jacobians are conveniently obtained using matrix differential
calculus [103], presented in Appendix A.1.

Backpropagation & Batching

To see the interplay between AD and batching (Section 2.1.2), consider
differentiation of the mini-batch loss (Equation (2.5)). Popular ML libraries
like PyTorch construct the computation graph on the level of tensor-
valued variables with an additional batch axis.

General case: Starting from the previous differentiation of a single
datum loss, the mini-batch scenario follows by the substitutions

𝒙 =: 𝒛(0) ↔ 𝑿 =: 𝒁(0) ∈ ℝ|𝔹|×ℎ(0) ,
𝒚 ↔ 𝒀 ∈ ℝ|𝔹|×𝐶 ,

𝒛(ℓ ) ↔ 𝒁(𝑙) ∈ ℝ|𝔹|×ℎ(𝑙) ,
ℓ ↔ ℓ ∈ ℝ|𝔹| ,

(2.33a)

with stacked data 𝑿 = (𝒙1 𝒙2 . . . 𝒙 |𝔹|) and 𝒀 = (𝒚1 𝒚2 . . . 𝒚 |𝔹|), and
assuming matrix-to-matrix layer functions. To account for the reduction
of per-sample losses ℓ, the graph is extended by

L(ℓ ) = mean(ℓ ) = 1
|𝔹|

|𝔹|∑
𝑛=1
[ℓ]𝑛 . (2.33b)

The computation graph, shown in Figure 2.7b, is G = (E , V)with nodes

V =
{
𝜽(𝑙)

}𝐿
𝑙=1
∪

{
𝒁(𝑙)

}𝐿
𝑙=0
∪ {𝒀 , ℓ ,L} (2.33c)
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(a) One datum

𝒛(0)

𝑓 (1)
𝜽(1)
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∇
𝜽(1)ℓ

𝒛(1)

∇𝒛(1)ℓ 𝑓 (2)
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∇
𝜽(2)ℓ

𝒛(2)
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𝜽(𝐿)

𝜽(𝐿)

∇
𝜽(𝐿)ℓ

𝒛(𝐿)

∇𝒛(𝐿)ℓ ℓ

ℓ

𝒚

(b) Batched data, arbitrary transformations

𝒁(0)

𝐹(1)
𝜽(1)

𝜽(1)

∇
𝜽(1)L

𝒁(1)

∇𝒁(1)L . . .

𝒁(𝐿−1)

∇𝒁(𝐿−1)L 𝐹(𝐿)
𝜽(𝐿)

𝜽(𝐿)

∇
𝜽(𝐿)L

𝒁(𝐿)

∇𝒁(𝐿)L ℓ

ℓ
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𝒀

L
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(c) Batched data, batched instructions

{𝒛(0)𝑛 }
𝒇 (1)
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∇
𝜽(1)L

{𝒛(2)𝑛 }
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Figure 2.7: Gradient backpropagation and (un)awareness of per-sample structure in many ML libraries. (a) Computation graph of of
a neural network’s loss on a single datum (𝒙 , 𝒚). Gradients are backpropagated through the graph as described by Definition 2.6 to
obtain ∇𝜽ℓ . (b) To exploit parallelism in the computations, multiple data are stacked into matrices (𝑿 ,𝒀 ) which are then processed by a
sequence of matrix-to-matrix functions 𝐹(𝑙)

𝜽(𝑙)
into a batch of losses ℓ, and reduced into a scalar L via mean reduction. AD in popular

ML libraries like PyTorch tracks variables on the level of batched tensors. Therefore, operations are allowed to build up dependencies
between data—such that L = 1/|𝔹|∑𝑛[ℓ(𝑿 ,𝒀 , 𝜽)]𝑛 where each component of ℓ may depend on all data (batch normalization [79] is such
a case)—without breaking gradient backpropagation. ML libraries implement VJPS for the matrix-to-matrix functions 𝐹(𝑙)

𝜽(𝑙)
. This loses

structure for operations that treat inputs independently along the batch axis. (c) The empirical risk on a mini-batch (Equation (2.5) is
such a case: all operations in the graph process inputs independently and with the same instructions along the batch axis. The following
connections to the single datum case (a) hold: 𝐹(𝑙)

𝜽(𝑙)
↔ 𝒇 (𝑙)

𝜽(𝑙)
= vmap( 𝑓 (𝑙)

𝜽(𝑙)
), ℓ = vmap(ℓ )with vmap from Definition 2.1. Due to the more

general support of AD in ML libraries for graphs of the form (b), their VJPs cannot be accessed per-sample.

and edges

E =
{
(𝒁(𝑙−1) , 𝒁(𝑙)),

}𝐿
𝑙=1
∪

{
(𝜽(𝑙) , 𝒁(𝑙))

}𝐿
𝑙=1

∪
{
(𝒁(𝐿) , ℓ), (𝒀 , ℓ), (ℓ ,L)

}
.

(2.33d)

Gradient backpropagation (Definition 2.6) carries over the mini-batch
loss graph Equation (2.33) and efficiently recovers the gradient ∇𝜽L.

Popular libraries like PyTorch implement the required functionality, VJPs,
for the matrix-to-matrix functions that process inputs with a batch axis
(see Definition 2.5 for the Jacobian’s generaliation to matrix functions).
Hence, operations 𝒁(𝑙) ↦→ 𝒁(𝑙+1) are allowed to create dependencies
across the batch axis without breaking the gradient computation16

16: E.g. batch normalization [79] intro-
duces dependencies along the batch di-
mension by centering and re-scaling the
input with statistics computed across the
batch axis.

.
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Per-sample structure: This work focuses on empirical risks that are
averages over per-sample losses (recall Equation (2.4b)),

L𝔹(𝜽) = 1
|𝔹|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔹

ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) .

Hence, all operations act independently, and using the same instruc-
tions, along the batch dimension. All variables in the graph inherit this
independence along their batch axis,

𝒁(𝑙) =
(
𝒛(𝑙)1 𝒛(𝑙)2 . . . 𝒛(𝑙)|𝔹|

)
, 𝑙 = 0, . . . , 𝐿 , (2.34a)

ℓ =

©­­­­
«

ℓ ( 𝑓𝜽(𝒙1), 𝒚1)
ℓ ( 𝑓𝜽(𝒙2), 𝒚2)

...
ℓ ( 𝑓𝜽(𝒙 |𝔹|), 𝒚 |𝔹|)

ª®®®®
¬
. (2.34b)

For all layers 𝑙 = 1, . . . , 𝐿, this independence across samples implies
block-diagonal input-output Jacobians,

J𝒁(𝑙−1)𝒁(𝑙) =

©­­­­­­­
«

J
𝒛(𝑙−1)

1
𝒛(𝑙)1 0 . . . 0

0 J
𝒛(𝑙−1)

2
𝒛(𝑙)2

. . .
...

...
. . .

. . . 0
0 . . . 0 J

𝒛(𝑙−1)
|𝔹|

𝒛(𝑙)|𝔹| ,

ª®®®®®®®
¬

(2.34c)

and per-sample block structure in the output-parameter Jacobian

J𝜽(𝑙)𝒁
(𝑙) =

(
J𝜽(𝑙)𝒛

(𝑙)
1 J𝜽(𝑙)𝒛

(𝑙)
2 . . . J𝜽(𝑙)𝒛

(𝑙)
|𝔹| ,

)
. (2.34d)

Many implementations of backpropagation make it difficult to access
this per-sample structure. They only expose VJPs 𝒗 ↦→ [J𝒁(𝑙)𝒁(𝑙+1)]⊤𝒗 and
𝒗 ↦→ [J𝜽(𝑙)𝒁(𝑙+1)]⊤𝒗 for Equations (2.34c) and (2.34d). While this allows
supporting AD of more general graphs than those of an empirical risk
(Equation (2.4b), it limits access to only the average gradient

𝒈𝔹(𝜽) := ∇𝜽L𝔹(𝜽) = 1
|𝔹|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔹

∇𝜽ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) (2.35)

when differentiating an empirical risk. Computing per-sample gradients
is not more demanding than computing the average gradient—the only
difference is taking the average—but their computation is not supported.
More flexible access to the Jacobians Equations (2.34c) and (2.34d)
through per-sample VJPs (or MJPs), enables the computation of various
higher-order quantities. Their efficient realization will be the main focus
of Chapters 4, 5 and 7.

To highlight independence across the batch axis in a computation graph,
a set notation will be preferred over the matrix notation (Equations (2.33a)
and (2.34)) in the following. E.g. the text uses {𝒛(𝑙)𝑛 }𝑛 , or just {𝒛(𝑙)𝑛 }, instead
of 𝒁(𝑙). Figure 2.7c illustrates this set notation17

17: This notation is closer to recent de-
velopments in AD for ML libraries [23,
72] that separate batching and AD more
clearly through vectorization via a vmap
interface (Definition 2.1). A different way
to arrive at the batched computation
graph in Figure 2.7c is to start from the
computation graph of a single datum’s
loss ℓ ( 𝑓𝜽(𝒙), 𝒚) and vectorize it to obtain
the set of graphs {ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛)}, which
can be stacked into a single graph that
produces ℓ. Appending the reduction
node to this graph, one obtains the com-
putation graph for the average loss. .



Higher-order Information 3.
3.1 Popular Deep Learning

Optimizers . . . . . . . . . 32
3.2 Second-order Optimization 35
3.3 Other Applications . . . . 43

The previous chapter highlighted the important structure of deep neural
networks and the empirical risk used to train them:

▶ Sum structure & noise: Given a model 𝑓𝜽, a convex loss function
ℓ , and a dataset 𝔻, the empirical risk is an average over per-
datum losses. Each of these losses is identically computed by
feeding a datum through the model and the loss function. Batching
these computations allows to efficiently evaluate them in parallel.
Doing so on only a random subset of data—a mini-batch—reduces
computational cost in exchange for noise.

▶ Probabilistic interpretation: For specific loss functions, which
include regression and softmax classification, empirical risk mini-
mization can be interpreted as maximum likelihood—or maximum
a posteriori—estimation where the model parameterizes a likeli-
hood distribution 𝑞(𝒚 | 𝑓𝜽(𝒙)).

▶ Layer-structure & modularity: Neural networks consist of layers,
or modules, which are glued together by function composition.
Backpropagation abstract the differentiation by the composition
of the module-level derivatives, which simplifies supporting new
operations and hides the complexity of AD from practitioners.

Popular ML libraries allow for efficient and automated gradient compu-
tation, but combine AD and batching in a way that allows to support
more general computation graphs than the empirical risk. However,
the added optimization complicates efficiently assessing the empirical
risk’s per-sample structure, and higher-order information which requires
slightly more flexible AD operations, like matrix-Jacobian products.

This chapter motivates why relying solely on the gradient has limitations,
and—based on structure in the empirical risk—proposes quantities in the
form of higher-order information that go beyond the gradient. It starts
by presenting currently popular deep learning optimization methods
(Section 3.1) which rely heavily on the average mini-batch gradient
provided through AD in ML libraries. While training algorithms that
use more information than the gradient have been historically mostly
unexplored—because the quantities required are not as optimized and
automated as gradient computations—they have exciting promises.

Second-order methods (Section 3.2) use more information than just the
gradient. They are known to improve over first-order methods in “classic”
optimization problems (convex optimization, general linear models). They
incorporate curvature information in form of the Hessian (Section 3.2.1),
or PSD approximations thereof, such as the generalized Gauss-Newton
(Section 3.2.3) and Fisher information matrix (Section 3.2.4).

While optimization methods for neural networks are one main application
in deep learning, there are other applications to quantities beyond the
gradient. Section 3.3 highlights additional use cases which underline the
relevance of such information beyond optimization. Chapter 6 presents
another use case focused on improving the training of neural networks.
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3.1 Popular Deep Learning Optimizers

Section 2.1 formulates learning as minimizing the empirical risk, for
which an optimization algorithm seeks to find a solution. Deep learning
optimizers are iterative: they start from an initial parameter 𝜽0 and
aim to improve the parameters in iterations, leading to a trajectory
𝜽0 , 𝜽1 , . . . in parameter space. An iteration is described by an update
rule M : 𝜽𝑡 ↦→ 𝜽𝑡+1 that relies on internal states of the optimizer from
the observation history 𝐻𝑡 , local observations at the current iterate 𝜽𝑡 ,
and hyperparameters 𝜙𝑡 [34]. The next iterate results from a simplified
optimization problem where the actual objective is replaced by a compu-
tationally cheap approximation. Often, this direction is further adapted
by outer-loop mechanisms, like line searches, or hyperparameters that
require manual tuning to achieve good performance.

The update quality is influenced by the quality of the local approximation.
Computing exact information about the objective L𝔻 is expensive, but
yields a more accurate local proxy. Due to the large-scale nature of deep
learning, algorithms only rely on stochastic information from a mini-batch
𝔹𝑡 in form of the mini-batch loss L𝔹𝑡 (Section 2.1.2). In addition to locality,
noise further complicates deriving a precise local approximation.

Stochastic Gradient Descent

One of the most popular methods, according to Figure 1.1, is stochastic
gradient descent (SGD, [135]). Its update derives from

M : 𝜽𝑡+1 = arg min
𝜽

𝑚𝜽𝑡 (𝜽) = 𝜽𝑡 − 𝜂𝒈𝔹𝑡 (𝜽𝑡) (3.1a)

where 𝑚𝜽𝑡 (𝜽) is a first-order Taylor around the current iterate 𝜽𝑡 based
on the mini-batch gradient, regularized by a quadratic 𝐿2 penalty to
discourage large steps with a learning rate 𝜂,

𝑚𝜽𝑡 (𝜽) = L𝔹𝑡 (𝜽𝑡) + 𝒈𝔹𝑡 (𝜽𝑡)⊤(𝜽 − 𝜽𝑡) + 1
2𝜂
∥𝜽 − 𝜽𝑡 ∥22 (3.1b)

This leads to Update Rule 3.1, which updates the parameters with the
scaled negative mini-batch gradient. The negative gradient also corre-
sponds to the direction of steepest descent, i. e. along which the loss de-
creases most rapidly around 𝜽𝑡 (see Section 3.2.4 and Equation (3.18)).

Momentum Methods (Incorporating Past Knowledge)

The descent direction in SGD becomes poorer as the mini-batch gradient
is subject to more noise. Incorporating previous gradient observations
can help reduce noise and find a better descent direction [60, Chapter
8.3]. From a physical interpretation, the optimizer builds up a velocity
(referred to as momentum) that is adapted with new gradient observation.
Two variations are the heavy ball [128] and Nesterov [117] momentum
methods (Update Rules 3.2 and 3.3). Another intuition for momentum
is that it suppresses SGD’s oscillating behavior in the presence of two
directions with differing curvature by averaging out gradients that point
in opposite directions (see e.g. central panel of Figure 6.1).
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Update Rule 3.1 (SGD [135])

𝜽𝑡+1 = 𝜽𝑡 − 𝜂𝒈𝔹𝑡 (𝜽𝑡)
with

learning rate 𝜂 ∈ ℝ+

Update Rule 3.2 (Momentum [128])

𝜽𝑡+1 = 𝜽𝑡 − 𝒗𝑡
where

𝒗𝑡 = 𝜌𝒗𝑡−1 + 𝜂𝒈𝔹𝑡 (𝜽𝑡)
with

learning rate 𝜂 ∈ ℝ+
momentum factor 𝜌 ∈ [0; 1)
initial momentum 𝒗0 ∈ ℝ𝐷

Update Rule 3.3 (NAG [117])

𝜽𝑡+1 = 𝜽𝑡 − 𝒗𝑡
where

𝒗𝑡 = 𝜌𝒗𝑡−1 + 𝜂𝒈𝔹𝑡 (𝜽𝑡 − 𝜌𝒗𝑡−1)
with

learning rate 𝜂 ∈ ℝ+
momentum factor 𝜌 ∈ [0; 1)
initial momentum 𝒗0 ∈ ℝ𝐷

Update Rule 3.4 (AdaGrad [44])

𝜽𝑡+1 = 𝜽𝑡 − 𝜂𝒈𝔹𝑡 (𝜽𝑡) ⊘ (𝒔
◦1/2
𝑡 + 𝜖1)

where
𝒔𝑡 = 𝒔𝑡−1 + (𝒈𝔹𝑡 (𝜽𝑡))◦2

with
learning rate 𝜂 ∈ ℝ+
divide-by-zero safe guard 𝜖 ∈ ℝ+
initial 𝒔0 ∈ ℝ𝐷

Update Rule 3.5 (RMSProp [164])

𝜽𝑡+1 = 𝜽𝑡 − 𝜂𝒈𝔹𝑡 (𝜽𝑡) ⊘ (𝒔
◦1/2
𝑡 + 𝜖1)

where
𝒔𝑡 = 𝜌𝒔𝑡−1 + (1 − 𝜌)(𝒈𝔹𝑡 (𝜽𝑡))◦2

with
learning rate 𝜂 ∈ ℝ+
decay rate 𝜌 ∈ [0; 1)
divide-by-zero safe guard 𝜖 ∈ ℝ+
initial 𝒔0 ∈ ℝ𝐷

Update Rule 3.6 (Adadelta [180])

𝜽𝑡+1 = 𝜽𝑡 − 𝜂𝚫𝑡
where

𝚫𝑡 = (𝒅𝑡 + 𝜖1)◦1/2 ⊘ (𝒔𝑡 + 𝜖1)◦1/2 ⊙ 𝒈𝔹𝑡 (𝜽𝑡)
where

𝒔𝑡 = 𝜌𝒔𝑡−1 + (1 − 𝜌)(𝒈𝔹𝑡 (𝜽𝑡))◦2
𝒅𝑡 = 𝜌𝒅𝑡−1 + (1 − 𝜌)𝚫◦2𝑡−1

with
learning rate 𝜂 ∈ ℝ+
decay rate 𝜌 ∈ [0; 1)
divide-by-zero safe guard 𝜖 ∈ ℝ+
initial 𝒔0 , 𝒅0 ,𝚫0 ∈ ℝ𝐷

Update Rule 3.7 (Adam [87])

𝜽𝑡+1 = 𝜽𝑡 − 𝜂𝒎̂𝑡 ⊘ (𝒗̂◦1/2𝑡 + 𝜖1)
where

𝒎̂𝑡 = 𝒎𝑡/(1−𝛽𝑡1)
where

𝒎𝑡 = 𝛽1𝒎𝑡−1 + (1 − 𝛽1)𝒈𝔹𝑡 (𝜽𝑡)
𝒗̂𝑡 = 𝒗𝑡/(1−𝛽𝑡2)

where
𝒗𝑡 = 𝛽2𝒗𝑡−1 + (1 − 𝛽2)(𝒈𝔹𝑡 (𝜽𝑡))◦2

with
learning rate 𝜂 ∈ ℝ+
decay rates 𝛽1 , 𝛽2 ∈ [0; 1)
divide-by-zero safe guard 𝜖 ∈ ℝ+
initial 𝒎0 , 𝒗0 , ∈ ℝ𝐷

Update Rule 3.8 (AMSGrad [132])

𝜽𝑡+1 = 𝜽𝑡 − 𝜂𝒎̂𝑡 ⊘ (𝒗̂◦1/2𝑡 + 𝜖1)
where

𝒎̂𝑡 = 𝒎𝑡/(1−𝛽𝑡1)
where
𝒎𝑡 = 𝛽1𝒎𝑡−1 + (1 − 𝛽1)𝒈𝔹𝑡 (𝜽𝑡)

𝒗̂𝑡 = 𝒗𝑡/(1−𝛽𝑡2)
where
𝒗𝑡 = max(𝛽2𝒗𝑡−1 + (1 − 𝛽2)(𝒈𝔹𝑡 (𝜽𝑡))◦2 , 𝒗𝑡−1)

with
learning rate 𝜂 ∈ ℝ+
decay rates 𝛽1 , 𝛽2 ∈ [0; 1)
divide-by-zero safe guard 𝜖 ∈ ℝ+
initial 𝒎0 , 𝒗0 , ∈ ℝ𝐷

Figure 3.1: Popular deep learning optimizers rely on the average mini-batch gradient. At iteration 𝑡, they incorporate information in
form of the mini-batch average gradient 𝒈𝔹𝑡 . This is a representative subset of popular methods; see [145] for a more complete overview.
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Adaptive Methods (Per-parameter Learning Rate)

Adaptive methods like AdaGrad [44], RMSProp [164], Adadelta [180],
Adam [87] & AMSGrad [132] keep a learning rate for each parameter that
is adapted over time. This rescaling is driven by the elementwise square
of the mini-batch gradient, 𝒈𝔹𝑡 (𝜽𝑡)⊙2 (Update Rules 3.4 to 3.8). These
algorithms use this quantities in different ways, motivated by shortcom-
ings of predecessors (e.g. too aggressive learning rate shrinking [164, 180]
and convergence problems [132]).

No Clear Winner & Mini-batch Gradient as Central Object

Figure 3.1 summarizes the update rules of the above optimization meth-
ods. Their update rules to derive 𝜽𝑡+1 rely on three ingredients:

▶ The history of iterates {𝜽𝑡′}𝑡𝑡′=0
▶ The history of gradients1{𝒈𝔹𝑡′ (𝜽𝑡′)}𝑡𝑡′=01: One mild exception is Nesterov mo-

mentum (Update Rule 3.3). It relies on
the “lookahead” gradient history rather
than the gradient history of iterates.

▶ The history of elementwise gradient squares {𝒈𝔹𝑡′ (𝜽𝑡′)⊙2}𝑡𝑡′=0

In summary, the main ingredient in all of these methods is the average
mini-batch gradient (and its elementwise square). Their updates are
cheap and only require computation of average mini-batch gradients, as
efficiently provided by AD in popular ML libraries (Section 2.3):

M = M(𝐻𝑡 , 𝜙𝑡)
with 𝐻𝑡 = {𝜽𝑡′}𝑡𝑡′=0 ,∪

{
𝒈𝔹𝑡′ (𝜽𝑡′)

}𝑡
𝑡′=0

,∪
{
𝒈𝔹𝑡′ (𝜽𝑡′)⊙2

}𝑡
𝑡′=0

,
(3.2)

While the mentioned methods are a representative subset of popular
algorithms, there are more than one hundred algorithms with struc-
turally similar update rules (see Table 2 in [145] and references therein).
Some adaptive methods like Adam and RMSProp contain simpler meth-
ods like SGD and Momentum as special cases [34]. Therefore, they
should, in principle, be able to perform better. However, recent work
that compares deep learning optimizers through benchmarks to identify
the best-performing method finds that the currently existing methods
perform quite similarly [145].

One reason why newly developed optimizers of the structure Equa-
tion (3.2) seem to not be able to clearly improve over existing methods
could be that their update rules are constrained to using the average
gradient, as it is readily available in software. To overcome these limita-
tions, it might be helpful to study the potential of methods that leverage
information beyond the gradient. Second-order optimization incorporate
curvature information and represent the state-of-the art in “classical”
optimization problems (convex optimization, generalized linear models).
Noise-reduction methods focus on improving the gradient estimator 𝒈𝔹𝑡
by reducing its variance through per-sample information. The rest of this
chapter provides definitions for the information used by such methods,
and provides additional motivation for them by showcasing applications
outside optimization.
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3.2 Second-order Optimization

Second-order methods iteratively optimize an objective L(𝜽) : ℝ𝐷 → ℝ

using a local quadratic approximation L(𝜽) ≈ 𝑚𝜽𝑡 (𝜽) around the current
point 𝜽𝑡 after 𝑡 iterations,

𝑚𝜽𝑡 (𝜽) = 𝑎(𝜽𝑡) + 𝒃(𝜽𝑡)⊤(𝜽 − 𝜽𝑡) + 1
2
(𝜽 − 𝜽𝑡)⊤𝑪(𝜽𝑡)(𝜽 − 𝜽𝑡) , (3.3a)

with an offset 𝑎(𝜽𝑡) ∈ ℝ, a slope vector 𝒃(𝜽𝑡) ∈ ℝ𝐷 , and a curvature
matrix 𝑪(𝜽𝑡) ∈ ℝ𝐷×𝐷 . As described in Section 3.1, the next iterate 𝜽𝑡+1
is obtained by minimizing the local approximation. For this proxy to
possess a minimum, the curvature matrix 𝑪(𝜽𝑡) must be PD. Then,
Equation (3.3a) is minimized by

𝜽𝑡+1 = arg min
𝜽

𝑚𝜽𝑡 (𝜽) = 𝜽𝑡 − 𝑪(𝜽𝑡)−1𝒃(𝜽𝑡) . (3.3b)

This update is computationally challenging, because the size of the
curvature matrix is quadratic in 𝐷 and generally infeasible to store. Addi-
tionally, the computational complexity of matrix inversion scales cubically
in 𝐷. These problems can somewhat be addressed by approximately
solving the linear system

𝑪(𝜽𝑡)𝜽𝑡+1 = −𝒃(𝜽𝑡) (3.3c)

for 𝜽𝑡+1. This can be done with iterative solvers, such as CG, which
only require matrix-vector products with 𝑪(𝜽𝑡), which can often be
implemented without expanding the matrix representation in memory.

The first-order methods from Section 3.1 circumvent these issues by
using a diagonal—and often quite crude—curvature approximation
that is cheap to store and invert (see [34] for an overview). E.g., SGD’s
local approximation, Equation (3.1b), uses 1/2𝜂𝑰 as curvature matrix.
The following sections introduce common curvature matrices for local
approximations of empirical risks.

3.2.1 Newton’s Method & the Hessian Matrix

The Taylor series provides a meaningful local approximation of an
analytic function. Its expansion up to second-order is

L(𝜽) = L(𝜽𝑡)︸︷︷︸
𝑎(𝜽𝑡 )

+∇𝜽𝑡L(𝜽𝑡)︸    ︷︷    ︸
𝒃𝜽𝑡

⊤(𝜽 − 𝜽𝑡)

+ 1
2
(𝜽 − 𝜽𝑡)⊤ ∇2

𝜽𝑡
L(𝜽𝑡)︸    ︷︷    ︸

𝑪(𝜽𝑡 )

(𝜽 − 𝜽𝑡) +O
(
(𝜽 − 𝜽𝑡)3

) (3.4)

where O((𝜽 − 𝜽𝑡)3) denotes polynomial terms in the components of
𝜽 − 𝜽𝑡 of cubic order and above. This reveals the objective’s Hessian
∇2
𝜽𝑡
L(𝜽𝑡), which collects its second-order partial derivatives in a matrix

[∇2
𝜽𝑡
L(𝜽𝑡)]𝑖 , 𝑗 = 𝜕2L(𝜽𝑡 )/𝜕[𝜽𝑡 ]𝑖𝜕[𝜽𝑡 ]𝑗 , as curvature matrix.
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Definition 3.1 (Hessian) Let 𝑏 : ℝ𝐷 → ℝ; 𝒂 ↦→ 𝑏(𝒂)be a differentiable
vector-to-scalar function. The Hessian ∇2

𝒂𝑏 ∈ ℝ𝐷×𝐷 of 𝑏 w.r.t. 𝒂 is a
symmetric matrix containing the second-order partial derivatives

∇2
𝒂𝑏 =

𝜕2𝑏
𝜕𝒂𝜕𝒂⊤

with [∇2
𝒂𝑏]𝑖 , 𝑗 =

𝜕2𝑏
𝜕𝑎𝑖𝜕𝑎 𝑗

(3.5)

Definition 3.2 generalizes this to the matrix/tensor case. The Hessian
will often be denoted by 𝑯 . E.g. 𝑯 𝑝data(𝜽) := ∇2

𝜽L𝑝data(𝜽) for the
Hessian of the population risk Equation (2.3a), and𝑯𝔻(𝜽) := ∇2

𝜽L𝔻(𝜽)
for the Hessian of the empirical risk Equation (2.4b) on a dataset 𝔻
(with 𝔻 = 𝔻train ,𝔹 for the train loss and mini-batch Hessian).

Definition 3.2 (Generalized Hes-
sian) Let 𝑩 : ℝ𝑛×𝑞 → ℝ𝑚×𝑝 be a
twice differentiable matrix function.
The Hessian ∇2

𝑨𝑩(𝑨) is an (𝑚𝑛𝑝𝑞 ×
𝑛𝑞)matrix defined by

∇2
𝑨𝑩(𝑨)
= J𝑨 [J𝑨𝑩(𝑨)]⊤

=
𝜕

𝜕(vec𝑨)⊤ vec

{[
𝜕 vec𝑩(𝑨)
𝜕(vec𝑨)⊤

]⊤}

(3.6)

[103, Chapter 10.2] with flattening
defined by Definition 2.2. In element-
wise notation, this is the matrix-stack
of all output component Hessians

∇2
𝑨𝑩(𝑨) =

©­­­­
«

∇2
vec𝑨[vec𝑩]1
∇2

vec𝑨[vec𝑩]2
...

∇2
vec𝑨[vec𝑩]𝑛𝑝

ª®®®®
¬
,

with the Hessian from Definition 3.1.

The tensor case is analogous but re-
quires cluttered notation and is therefore
omitted. Common forms for neural net-
works include vector-to-vector functions
𝑓 : ℝ𝑚 → ℝ𝑛 , 𝒙 ↦→ 𝑓 (𝒙)with

∇2
𝒙 𝑓 (𝒙) =

𝜕2 𝑓 (𝒙)
𝜕𝒙⊤𝜕𝒙

,

where 𝒙 can be considered the input or
bias vector if a linear layer. In details,

∇2
𝒙 𝑓 (𝒙) =

©­­­
«

∇2
𝒙 𝑓1(𝒙)
...

∇2
𝒙 𝑓𝑚(𝒙)

ª®®®
¬
. (3.7)

Others are matrix-to-vector mappings
𝑓 : ℝ𝑛×𝑞 → ℝ𝑚 ,𝑿 → 𝑓 (𝑿 )with

∇2
𝑿 𝑓 (𝑿 ) =

𝜕

𝜕(vec𝑿 )⊤
𝜕 𝑓 (𝑿 )
𝜕 vec𝑿

,

e. g. with 𝑿 the weight of a linear layer.

Newton’s method uses the Hessian as curvature matrix.

Update Rule 3.9 (Newton’s method (simplified)) A Newton step is

𝜽𝑡+1 = 𝜽𝑡 − 𝑯𝔻(𝜽𝑡)−1𝒈𝔻(𝜽𝑡) (3.8)

with the gradient and Hessian from Definitions 2.4 and 3.1 (practical
implementations vary and often introduce additional hyperparameters
such as a learning rate, damping term, mini-batch size, etc.).

Matrix-free multiplication with the Hessian [127] can been combined with
CG to compute Newton steps via solving the linear system Equation (3.3c).
This idea is known as Hessian-free optimization [106].

While the Taylor expansion motivates using the Hessian as curvature
matrix, it leads to problems for non-convex functions like the empirical
risk, as it is in general indefinite. Therefore Equation (3.3b) does not have
a solution. In practice, PSD curvature matrices that are approximations
of the Hessian are popular substitutes for the Hessian to avoid this issue
(Sections 3.2.2 to 3.2.4).

3.2.2 The Gauss-Newton Method & Matrix

The Gauss-Newton (GN) method [22, chapter 6.3] tackles the nonlinear
least squares regression task (Example 2.1) of fitting a function 𝑓𝜽 to data
in the form of vector-valued inputs 𝒙𝑛 ∈ ℝ𝑀 and scalar-valued outputs
𝑦𝑛 ∈ ℝ by minimizing the mean squared error,

minimize
𝜽

L(𝜽) , where L(𝜽) = 1
|𝔻|

∑
(𝒙𝑛 ,𝑦𝑛 )∈𝔻

( 𝑓𝜽(𝒙𝑛)︸ ︷︷ ︸
:= 𝑓𝑛

−𝑦𝑛)2 , (3.9)

The objective’s gradient is

∇𝜽L(𝜽) = 2
|𝔻|

∑
(𝒙𝑛 ,𝑦𝑛 )∈𝔻

(J𝜽 𝑓𝑛)⊤ ( 𝑓𝑛 − 𝑦𝑛) , (3.10)
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with the Jacobian J𝜽 𝑓𝑛 ∈ ℝ1×𝐷 (Definition 2.4). The Hessian is

∇2
𝜽L(𝜽) =

2
|𝔻|

∑
(𝒙𝑛 ,𝑦𝑛 )∈𝔻

(J𝜽 𝑓𝑛)⊤J𝜽 𝑓𝑛 + 2
|𝔻|

∑
(𝒙𝑛 ,𝑦𝑛 )∈𝔻

∇2
𝜽 𝑓𝑛 ( 𝑓𝑛 − 𝑦𝑛) .

(3.11a)

The first term is the PSD Gauss-Newton matrix (up to scaling)

𝑮𝔻(𝜽) = 2
|𝔻|

∑
(𝒙𝑛 ,𝑦𝑛 )∈𝔻

(J𝜽 𝑓𝑛)⊤J𝜽 𝑓𝑛 , (3.11b)

and the second term is the residual matrix

𝑹𝔻(𝜽) = 2
|𝔻|

∑
(𝒙𝑛 ,𝑦𝑛 )∈𝔻

∇2
𝜽 𝑓𝑛 ( 𝑓𝑛 − 𝑦𝑛) . (3.11c)

The Gauss-Newton matrix approximates the Hessian through first-order
information of the model, (J𝜽 𝑓𝑛)⊤ = ∇𝜽 𝑓𝑛 , which is cheap to compute. For
vanishing residual terms lim( 𝑓𝑛−𝑦𝑛 )→0 (as the model predictions match
the labels), or linear models (∇2

𝜽 𝑓𝜽 = 0) it corresponds to the Hessian.

Update Rule 3.10 (Gauss-Newton method (simplified)) For the
nonlinear least squares task Equation (3.9), a Gauss-Newton step is2 2: Stacking Jacobians and residuals,

𝑱(𝜽) =
©­­­­
«

J𝜽 𝑓1
J𝜽 𝑓2
...

J𝜽 𝑓|𝔻|

ª®®®®
¬
∈ ℝ|𝔻|×𝐷 ,

𝒓(𝜽) =
©­­­­
«

𝑓1 − 𝑦1
𝑓2 − 𝑦2
...

𝑓|𝔻| − 𝑦|𝔻|

ª®®®®
¬
∈ ℝ|𝔻| ,

absorbs the sums into matrix multiplies

𝜽𝑡+1 = 𝜽𝑡 −
(
𝑱(𝜽𝑡 )⊤𝑱(𝜽𝑡 )

)−1
𝑱(𝜽𝑡 )⊤𝒓(𝜽𝑡 )

which can be solved through

𝑱(𝜽𝑡 )⊤𝑱(𝜽𝑡 )𝒙 = −𝑱(𝜽𝑡 )⊤𝒓(𝜽𝑡 )
via JVPs & VJPs in combination with CG.

𝜽𝑡+1 = 𝜽𝑡 − 𝑮𝔻(𝜽𝑡)−1∇𝜽𝑡L(𝜽𝑡) , (3.12)

with the gradient and Gauss-Newton matrix from Definition 2.4
and Equation (3.11b) (practical implementations vary and often intro-
duce additional hyperparameters such as a learning rate, damping
term, mini-batch size, etc.).

3.2.3 The Generalized Gauss-Newton Matrix

The generalized Gauss-Newton (GGN) matrix is a PSD approximation to the
Hessian that generalizes the GN through abstraction via empirical risk
minimization (see Section 2.1.1). The GGN can be understood through
different perspectives, and, using the probabilistic interpretation of the
model, is related to the natural gradient method through its connections
to the Fisher (Section 3.2.4) .

From Gauss-Newton to Generalized Gauss-Newton

The GN matrix from Section 3.2.3 stems from a nonlinear least squares
problem that can be viewed as supervised regression (Example 2.1), i. e.
mean squared error loss function, with scalar-valued labels (𝐶 = 1). For
the general case of empirical risk minimization (Equation (2.4b)), the
Hessian decomposes due to the split between model and loss function,

ℓ (𝜽) = ℓ (·, 𝒚) ◦ 𝑓𝜽(𝒙) (3.13a)
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as a result of the Hessian chain rule Theorem 3.1. For a single datum
(𝒙 , 𝒚)with prediction 𝒇 := 𝑓𝜽(𝒙), this yields

∇2
𝜽ℓ (𝜽) = (J𝜽 𝒇 )⊤

[
∇2
𝒇 ℓ ( 𝒇 , 𝒚)

]
J𝜽 𝒇 +

𝐶∑
𝑐=1

(∇2
𝜽[ 𝒇 ]𝑐

) ∇𝒇 ℓ ( 𝒇 , 𝒚) (3.13b)

The first term carries curvature information of the loss function, whileThe arrangement of partial derivatives
in the generalizations of Jacobian Defini-
tion 2.5 and Hessian Definition 3.2 im-
plies the following chain rule generaliza-
tion for second-order derivatives:

Theorem 3.1 (Chain rule for the gen-
eralized Hessian) Let 𝒃 : ℝ𝑛 → ℝ𝑚

and 𝒄 : ℝ𝑚 → ℝ𝑝 be twice differen-
tiable and 𝒅 = 𝒄◦𝒃 : ℝ𝑛 → ℝ𝑝 , 𝒂 ↦→
𝒅(𝒂) = 𝒄(𝒃(𝒂)). The relation between
the Hessian of 𝒅 and the Jacobians
and Hessians of the constituents 𝒄
and 𝒃 is given by

∇2
𝒂𝒅(𝒂)
=

[
𝑰𝑝 ⊗ J𝒂𝒃(𝒂)

]⊤ [∇2
𝒃 𝒄(𝒃)

]
J𝒂𝒃(𝒂)

+ [J𝒃𝒄(𝒃) ⊗ 𝑰𝑛] ∇2
𝒂𝒃(𝒂)

(3.14)

[restricted from 103, Chapter 6.10].

The matrix/vector case is analogous. Ma-
trix differential calculus [103] is a useful
tool to easily read off the Hessian from
specific expressions, see Appendix A.1.
For applications of the Hessian chain
rule, see Chapter 4.

the second term contains curvature information of the model. Because
ℓ ( 𝒇 , 𝒚) is convex in 𝒇 , the first term is PSD, whereas the second term is
indefinite in general.

The GGN is the first term and neglects curvature information of the
model. For the empirical risk Equation (2.4b), and using the shorthand
𝒇 𝑛 := 𝑓𝜽(𝒙𝑛), the Hessian is

𝑯𝔻(𝜽) = 1
|𝔻|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

∇2
𝜽ℓ ( 𝒇 𝑛 , 𝒚𝑛) = 𝑮𝔻(𝜽) +ℝ𝔻(𝜽) (3.15a)

with the generalized Gauss-Newton matrix

𝑮𝔻(𝜽) :=
1
|𝔻|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

(J𝜽 𝒇 𝑛)⊤
[
∇2
𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚𝑛)

]
J𝜽 𝒇 𝑛 (3.15b)

and the residual matrix

𝑹𝔻(𝜽) :=
1
|𝔻|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

𝐶∑
𝑐=1

(∇2
𝜽[ 𝒇 𝑛]𝑐

) ∇𝒇 𝑛ℓ ( 𝒇 𝑛 , 𝒚𝑛) . (3.15c)

This decomposition reduces to Equation (3.11) for nonlinear least squares,
where ∇2

𝒇 (𝒙)ℓ ( 𝒇 , 𝒚) = 2/𝐶𝑰 (Table 4.1), ∇𝒇 ℓ ( 𝒇 , 𝒚) = 2/𝐶( 𝒇 − 𝒚) (Table 2.2),
and 𝐶 = 1. Therefore, the GGN is a generalization of the GN via the
chain rule applied to the model-loss function split.

From Linearization to Generalized Gauss-Newton

Alternatively, one can replace the model in ℓ ( 𝑓𝜽(𝒙), 𝒚)with a linear Taylor
expansion around 𝜽,

𝑓𝜽(𝒙) ↔ 𝑓𝜽′(𝒙) = 𝑓𝜽(𝒙) + [J𝜽 𝑓𝜽(𝒙)] (𝜽′ − 𝜽) .

This eliminates second-order terms in the model, i. e. ∇2
𝜽′ 𝑓𝜽′(𝒙) = 0.

Application of the Hessian chain rule to the loss with a linearized model,

ℓ̂ (𝜽′) = ℓ (·, 𝒚) ◦ 𝑓𝜽′(𝒙) , (3.16a)

and using the shorthand 𝑓𝜽′(𝒙) := 𝒇 , yields

∇2
𝜽′ℓ̂ (𝜽′) =

(
J𝜽′ 𝒇

)⊤ [
∇2
𝒇
ℓ ( 𝒇 , 𝒚)

]
J𝜽′ 𝒇 . (3.16b)

At the expansion point where model predictions and Jacobians match,
this yields the first term of the decomposition Equation (3.13b)(

∇2
𝜽′ℓ ( 𝑓𝜽′(𝒙), 𝒚)

)���
𝜽′=𝜽

= (J𝜽 𝒇 )⊤
[
∇2
𝒇 ℓ ( 𝒇 , 𝒚)

]
J𝜽 𝒇 . (3.16c)
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This carries over the empirical risk L̂(𝜽′) = 1/|𝔻|∑(𝒙𝑛 ,𝒚𝑛 )∈𝔻 ℓ̂ (𝜽′) under a
linearized model, whose Hessian is the GGN from Equation (3.15b),(

∇2
𝜽′L̂(𝜽′)

)���
𝜽′=𝜽

= 𝑮𝔻(𝜽) (3.16d)

Hence, the GGN is a Hessian approximation that neglects curvature from
the model, and becomes equivalent to the Hessian for linear models.

3.2.4 Natural Gradient Descent & the Fisher

Natural gradient descent [5, NGD] uses the Fisher information matrix as
curvature matrix. The natural gradient provides the direction of steepest
in the space of probability distributions described by a model (Figure 3.2,
recall the probabilistic interpretation of certain empirical risks from
Section 2.1.3). The Fisher is connected to the GGN from Section 3.2.3
and for most models used in modern ML, is equivalent but provides a
probabilistic interpretation.

Steepest Descent Direction & Notion of Distance

{𝜽′ | 𝑑(𝜽, 𝜽′) ≤ 𝜖}

−∇𝜽L
(𝜽)

Parameter space Θ

𝜽

𝑑(𝜽, 𝜽′) = ∥𝜽 − 𝜽′∥2

{𝑝𝜽′ | 𝑑(𝑝𝜽 , 𝑝𝜽′ ) ≤ 𝜖2}

−∇̃𝜽L(𝑝𝜽)

Distribution space {𝑝𝜽 | 𝜽 ∈ Θ}

𝑝𝜽

𝑑(𝑝𝜽 , 𝑝𝜽′ ) = ∥𝜽 − 𝜽′∥𝑭(𝜽)
≈ 𝐷KL(𝑝𝜽 ∥ 𝑝𝜽′ )

Figure 3.2: Gradient descent and nat-
ural gradient descent via steepest de-
scent. Gradient descent (top) follows the
direction of steepest descent in Euclidean
parameter space. NGD (bottom) consid-
ers the space of distributions, where local
distances are measured via a quadratic
expansion of the KL divergence, which
gives rise to the Fisher. Details in the text.
Figure inspired by [107].

Concept (steepest descent direction): Consider an arbitrary objective
function L : Θ → ℝ with Θ = ℝ𝐷 . At a location 𝜽 ∈ Θ, the steepest
descent direction is the direction in which the objective increases at the
fastest rate, i. e. per infinitesimally small distance moved. Formally,

Δ𝜽(steepest) = lim
𝜖→0

1
𝜖

arg min
Δ𝜽

𝑑(𝜽,𝜽+Δ𝜽)≤𝜖
L(𝜽 + Δ𝜽) (3.17)

and depends on the distance measure 𝑑(·, ·) between elements in a small
neighborhood around 𝜽.

Gradient descent as steepest descent: Using the Euclidean 2-norm to
measure distances in Θ via 𝑑(𝜽1 , 𝜽2) = ∥𝜽1 − 𝜽2∥2, the steepest descent
direction points along the negative gradient −∇𝜽L(𝜽) [107, Chapter 6] ,

lim
𝜖→0

1
𝜖

arg min
Δ𝜽:∥Δ𝜽∥2≤𝜖

L(𝜽 + Δ𝜽) = −∇𝜽L(𝜽)∥∇𝜽L(𝜽)∥2 . (3.18)

Natural gradient as steepest descent: Section 2.1.3 showed that in many
tasks, such as regression (Example 2.1) and softmax cross-entropy classi-
fication (Example 2.2), the parameters 𝜽 model a probability distribution
𝑝𝜽(𝒛) over a random variable 𝒛 ∈ Ω. One could therefore establish a
different notion of distance by comparing probability distributions. The
KL divergence is a similarity measure between densities, but it is not a
proper metric; e.g. it is not symmetric in its arguments. The steepest de-
scent direction only requires measuring distances within an infinitesimal
ball though. For this purpose, a metric—described by the Fisher—can be
established through Taylor expansion of the KL divergence.
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Starting from the KL divergence between two infinitesimally close distri-
butions 𝑝𝜽(𝒛), 𝑝𝜽+Δ𝜽(𝒛),

𝐷KL(𝑝𝜽+Δ𝜽 ∥ 𝑝𝜽) =
∫

Ω
𝑝𝜽(𝒛) [log 𝑝𝜽(𝒛) − log 𝑝𝜽+Δ𝜽(𝒛)]d𝒛 (3.19)

the first step is to Taylor-expand the logarithm around 𝜽,

log 𝑝𝜽+Δ𝜽(𝒛) = log 𝑝𝜽(𝒛) + (Δ𝜽)⊤∇𝜽 log 𝑝𝜽(𝒛)
+ 1

2
(Δ𝜽)⊤∇2

𝜽 log 𝑝𝜽(𝒛)(Δ𝜽) +O
((Δ𝜽)3) .

Inserting this into Equation (3.19) results in
Remark 3.1 (The log-probability’s
𝜽-gradient vanishes in expectation)

−
∫

Ω
𝑝𝜽(𝒛)∇𝜽 log 𝑝𝜽(𝒛)d𝒛

= −
∫

Ω
𝑝𝜽(𝒛)

∇𝜽𝑝𝜽(𝒛)
𝑝𝜽(𝒛) d𝒛

= −∇𝜽
(∫

Ω
𝑝𝜽(𝒛)d𝒛

)

= −∇𝜽1 = 0

𝐷KL(𝑝𝜽(𝒛) ∥ 𝑝𝜽+Δ𝜽(𝒛)) = −Δ𝜽⊤
∫

Ω
𝑝𝜽(𝒛)∇𝜽 log 𝑝𝜽(𝒛)d𝒛︸                         ︷︷                         ︸

= 0, see Remark 3.1

− 1
2
Δ𝜽⊤

(∫
Ω
𝑝𝜽(𝒛)∇2

𝜽 log 𝑝𝜽(𝒛)d𝒛
)
Δ𝜽

+O
(
(Δ𝜽)3

)
The Hessian in the second term is expressed as (Remark 3.2)

Remark 3.2 (Decomposition of the
log-probability’s 𝜽-Hessian) Con-
sider element (𝑖 , 𝑗) of the Hessian,

𝜕2 log 𝑝𝜽(𝒛)
𝜕𝜃𝑖𝜕𝜃𝑗

=
𝜕

𝜕𝜃𝑖

(
1

𝑝𝜽(𝒛)
𝜕𝑝𝜽(𝒛)
𝜕𝜃𝑗

)

= − 1
𝑝𝜽(𝒛)2

𝜕𝑝𝜽(𝒛)
𝜕𝜃𝑗

𝜕𝑝𝜽(𝒛)
𝜕𝜃𝑖

+ 1
𝑝𝜽(𝒛)

𝜕2𝑝𝜽(𝒛)
𝜕𝜃𝑖𝜕𝜃𝑗

= − 𝜕 log 𝑝𝜽(𝒛)
𝜕𝜃𝑗

𝜕 log 𝑝𝜽(𝒛)
𝜕𝜃𝑖

+ 1
𝑝𝜽(𝒛)

𝜕2𝑝𝜽(𝒛)
𝜕𝜃𝑖𝜕𝜃𝑗

which, in vector notation, translates
into Equation (3.20).

∇2
𝜽 log 𝑝𝜽(𝒛) = −∇𝜽 log 𝑝𝜽(𝒛) (∇𝜽 log 𝑝𝜽(𝒛))⊤ + 1

𝑝𝜽(𝒛)∇
2
𝜽𝑝𝜽(𝒛) , (3.20)

whose second term again vanishes in expectation (Remark 3.3). Hence,

Remark 3.3 (Hessian of the model
distribution vanishes in expecta-
tion)∫

Ω
𝑝𝜽(𝒛) 1

𝑝𝜽(𝒛) ∇
2
𝜽𝑝𝜽(𝒛)d𝒛

= ∇2
𝜽

(∫
Ω
𝑝𝜽(𝒛)d𝒛

)

= ∇2
𝜽1 = 0

𝐷KL(𝑝𝜽(𝒛) ∥ 𝑝𝜽+Δ𝜽(𝒛)) = 1
2
Δ𝜽⊤𝑭(𝜽)Δ𝜽 +O

(
(Δ𝜽)3

)
(3.21a)

with the two equivalent forms of the Fisher

𝑭(𝜽) = −
∫

Ω
𝑝𝜽(𝒛)∇2

𝜽 log 𝑝𝜽(𝒛)d𝒛 (3.21b)

=
∫

Ω
𝑝𝜽(𝒛)(∇𝜽 log 𝑝𝜽(𝒛))(∇𝜽 log 𝑝𝜽(𝒛))⊤d𝒛 (3.21c)

Equation (3.21b) will be helpful to draw connections to the Hessian, and
Equation (3.21c) provides links to the GGN.

Locally, the KL divergence Equation (3.21a) gives rise to a metric induced
by the Fisher-norm ∥·∥𝑭(𝜽),

𝑑(𝑝𝜽 , 𝑝𝜽+Δ𝜽) = ∥Δ𝜽∥𝑭(𝜽) :=
√
(Δ𝜽)⊤𝑭(𝜽)Δ𝜽 (3.22)

Ollivier et al. [120] show that the steepest descent for a function L(𝑝𝜽)
points along the negative natural gradient−∇̃𝜽L(𝑝𝜽) := −𝑭(𝜽)−1∇𝜽L(𝑝𝜽),

lim
𝜖→0

1
𝜖

arg min
Δ𝜽

∥Δ𝜽∥𝑭(𝜽)≤𝜖2/2

L(𝑝𝜽+Δ𝜽) = − ∇̃𝜽L(𝑝𝜽)

∇̃𝜽L(𝑝𝜽)

𝑭(𝜽)−1

. (3.23)
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Natural Gradient Descent & Fisher in Empirical Risk Minimization

Section 2.1.3 presented connections of empirical risk minimization to
learning 𝑝data(𝒙 , 𝒚) via 𝑝𝜽(𝒙 , 𝒚) = 𝑝𝜽(𝒚 | 𝒙)𝑝(𝒙) = 𝑞(𝒚 | 𝒇 )𝑝(𝒙) with a
negative log-likelihood loss − log 𝑞(𝒚 | 𝒇 ) = ℓ ( 𝒇 , 𝒚) and 𝑓𝜽(𝒙) := 𝒇 . In
these cases, the empirical risk Equation (2.4b) depends on a probability
distribution, and the distribution space’s geometry gives rise to NGD
with 𝒛 = (𝒙 , 𝒚) in the Fisher Equation (3.21). After simplifying the
𝜽-derivatives and grouping dependencies of 𝒙 and 𝒚, the Fisher reads

𝑭(𝜽)

=
∫
𝕏

𝑝(𝒙)
(
−

∫
𝕐

𝑝𝜽(𝒚 | 𝒙)∇2
𝜽 log 𝑝𝜽(𝒚 | 𝒙)d𝒚

)
d𝒙

=
∫
𝕏

𝑝(𝒙)
(∫

𝕐

𝑝𝜽(𝒚 | 𝒙)(∇𝜽 log 𝑝𝜽(𝒚 | 𝒙))(∇𝜽 log 𝑝𝜽(𝒚 | 𝒙))⊤ d𝒚
)

d𝒙 ,

or in short form

𝑭(𝜽) = 𝔼𝒙∼𝑝(𝒙)𝔼𝒚∼𝑝𝜽(𝒚 | 𝒙)
[−∇2

𝜽 log 𝑝𝜽(𝒚 | 𝒙)
]

= 𝔼𝒙∼𝑝(𝒙)𝔼𝒚∼𝑝𝜽(𝒚 | 𝒙)
[∇𝜽 log 𝑝𝜽(𝒚 | 𝒙)(∇𝜽 log 𝑝𝜽(𝒚 | 𝒙))⊤

] (3.24)

Next, replace 𝑝(𝒙) ↔ 𝑝𝔻(𝒙) by empirical approximation through data,

𝑭𝔻(𝜽)
=

1
|𝔻|

∑
(𝒙𝑛 ,_)∈𝔻

𝔼𝒚∼𝑝𝜽(𝒚 | 𝒙𝑛 )
[−∇2

𝜽 log 𝑝𝜽(𝒚 | 𝒙𝑛)
]

=
1
|𝔻|

∑
(𝒙𝑛 ,_)∈𝔻

𝔼𝒚∼𝑝𝜽(𝒚 | 𝒙𝑛 )
[∇𝜽 log 𝑝𝜽(𝒚 | 𝒙𝑛)(∇𝜽 log 𝑝𝜽(𝒚 | 𝒙𝑛))⊤

]
(3.25)

(note that the Fisher is independent of the labels {𝒚𝑛}!). Using the relation
between log-likelihood and loss function leads to (with 𝒇 𝑛 := 𝑓𝜽(𝒙𝑛))

𝑭𝔻(𝜽) = 1
|𝔻|

∑
(𝒙𝑛 ,_)∈𝔻

𝔼𝒚∼𝑞(𝒚 | 𝒇 𝑛 )
[∇2

𝜽ℓ ( 𝒇 𝑛 , 𝒚)
]

=
1
|𝔻|

∑
(𝒙𝑛 ,_)∈𝔻

𝔼𝒚∼𝑞(𝒚 | 𝒇 𝑛 )
[∇𝜽ℓ ( 𝒇 𝑛 , 𝒚)(∇𝜽ℓ ( 𝒇 𝑛 , 𝒚))⊤] .

The second equality views the Fisher as expected gradient outer product.
With the Jacobian chain rule Theorem 2.2 applied to ℓ ◦ 𝑓𝜽 , one obtains

𝑭𝔻(𝜽)
=

1
|𝔻|

∑
(𝒙𝑛 ,_)∈𝔻

𝔼𝒚∼𝑞(𝒚 | 𝒇 𝑛 )
[(J𝜽 𝒇 𝑛)⊤∇𝒇 𝑛ℓ ( 𝒇 𝑛 , 𝒚)((J𝜽 𝒇 𝑛)⊤∇𝒇 𝑛ℓ ( 𝒇 𝑛 , 𝒚))⊤]

=
1
|𝔻|

∑
(𝒙𝑛 ,_)∈𝔻

(J𝜽 𝒇 𝑛)⊤𝔼𝒚∼𝑞(𝒚 | 𝒇 𝑛 )
[∇𝒇 𝑛ℓ ( 𝒇 𝑛 , 𝒚)(∇𝒇 𝑛ℓ ( 𝒇 𝑛 , 𝒚))⊤] J𝜽 𝒇 𝑛

(3.26)

Equation (3.26) offers an interesting perspective to approximate the
Fisher via MC sampling through computing gradients of the loss on
targets drawn from 𝑞 and will be used later, e.g. Chapters 5 and 7
and Appendix B.1.
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The first equality in Equation (3.25) views the Fisher as an expected
Hessian under the model’s likelihood3. However, in general it does not3: It is important to stress the expecta-

tion over the model’s likelihood 𝒚 | 𝒙, and
not over the empirical data. It may be
tempting to replace the expectation over
𝒚 with the empirical distribution 𝑝𝔻(𝒚).
This leads to the empirical Fisher (Sec-
tion 3.2.5), which is often used instead
of the Fisher, but has limitations for ap-
plications like optimization [92].

coincide with the Hessian, 𝑭𝔻(𝜽) ≠ 𝑯𝔻(𝜽), as 𝔼𝒚∼𝑞(𝒚 | 𝒇 𝑛 )[∇2
𝜽ℓ ( 𝒇 𝑛 , 𝒚)] ≠∇2

𝜽ℓ ( 𝒇 𝑛 , 𝒚𝑛). After applying the Hessian chain rule Theorem 3.1 onto
ℓ ◦ 𝑓𝜽,

𝑭𝔻(𝜽) = 1
|𝔻|

∑
(𝒙𝑛 ,_)∈𝔻

(J𝜽 𝒇 𝑛)⊤𝔼𝒚∼𝑞(𝒚 | 𝒇 𝑛 )
[
∇2
𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚)

]
J𝜽 𝒇 𝑛

+ 1
|𝔻|

∑
(𝒙𝑛 ,_)∈𝔻

𝐶∑
𝑐=1
∇2
𝜽([ 𝒇 𝑛]𝑐)𝔼𝒚∼𝑞(𝒚 | 𝒇 𝑛 )

[∇𝑓𝜽(𝒙𝑛 )ℓ ( 𝒇 𝑛 , 𝒚)]︸                             ︷︷                             ︸
=0, same argument as Remark 3.1

=
1
|𝔻|

∑
(𝒙𝑛 ,_)∈𝔻

(J𝜽 𝒇 𝑛)⊤𝔼𝒚∼𝑞(𝒚 | 𝒇 𝑛 )
[
∇2
𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚)

]
J𝜽 𝒇 𝑛 ,

(3.27)

one can see connections to the GGN (Equation (3.15b)).

Connections Between Fisher & GGN

Update Rule 3.11 (Natural gradient
descent (simplified) For empirical
risks with loss functions that have a
probabilistic interpretation, an NGD
step is

𝜽𝑡+1 = 𝜽𝑡 − 𝑭𝔻(𝜽𝑡 )−1𝒈𝔻(𝜽𝑡 )
with the gradient from Definition 2.4
and the Fisher from Equation (3.26)
or Equation (3.27) (practical imple-
mentations vary and often introduce
additional hyperparameters such as
a learning rate, damping term, mini-
batch size, etc.).

The Fisher (Equation (3.27)) and the GGN (Equation (3.15b)) are struc-
turally similar. Both are identical if the expected Hessian of the loss w.r. t.
the model’s prediction under the model is identical to the empirical
Hessian,

∇2
𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚𝑛) = 𝔼𝒚∼𝑞(𝒚 | 𝒇 𝑛 )

[
∇2
𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚)

]
=⇒ 𝑮𝔻 = 𝑭𝔻 . (3.28)

For both softmax cross-entropy and square loss, this 𝒇 -Hessian is inde-
pendent of 𝒚, see Table 4.1. Therefore, the expectation has no effect, and
the above equality is satisfied: for least squares regression (Example 2.1)
and softmax cross-entropy classification (Example 2.1), the Fisher equals
the GGN4. NGD (Update Rule 3.11) for those models is thus equivalent

4: There are more scenarios in which
Fisher and GGN coincide, for instance if
𝑞(𝒚 | 𝒇 ) is an exponential family distribu-
tion with natural parameters 𝒇 , see [107,
Chapter 9] for a detailed presentation.

to the GGN and can be seen as an approximation of Newton’s method
(Update Rule 3.9) with the GGN instead of the Hessian.

3.2.5 The Gradient Covariance Matrix

The Fisher’s form in Equation (3.26) reminds of an uncentered second
moment of “would-be” gradients sampled from the likelihood implied
by the model [124]. The uncentered gradient covariance matrix

𝑲𝔻(𝜽) = 𝔼(𝒙 ,𝒚)∼𝑝𝔻(𝒙 ,𝒚)
[∇𝜽ℓ ( 𝑓𝜽(𝒙), 𝒚)(∇𝜽ℓ ( 𝑓𝜽(𝒙), 𝒚))⊤]

=
1
|𝔻|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

∇𝜽ℓ ( 𝒇 𝑛 , 𝒚𝑛)(∇𝜽ℓ ( 𝒇 𝑛 , 𝒚𝑛))⊤ (3.29)

if often referred to as empirical Fisher in some of the ML literature, because
it follows from replacing the expectation over the model’s distribution
𝑞(𝒚 | 𝒇 𝑛) by the expectation over the empirical data distribution 𝑝𝔻(𝒚)
in the Fisher. However, empirical Fisher and Fisher are, almost always,
not identical. The importance to distinguish them has been expressed in
works like [92] and [162], and it is questionable whether the uncentered
gradient covariance Equation (3.29) approximates curvature.
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However, an alternative perspective to use 𝑲𝔻 for optimization is to make
stochastic gradient-based optimization aware of the noise [9] (sketch in
Figure 3.4). With the centered gradient covariance on data 𝔻

𝚺𝔻(𝜽) = Var(𝒙 ,𝒚)∼𝑝𝔻(𝒙 ,𝒚) [∇𝜽ℓ ( 𝑓𝜽(𝒙), 𝒚)]
=

1
|𝔻|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

(∇𝜽ℓ ( 𝒇 𝑛 , 𝒚𝑛) − 𝒈𝔻(𝜽)
) (∇𝜽ℓ ( 𝒇 𝑛 , 𝒚𝑛) − 𝒈𝔻(𝜽)

)⊤
= 𝑲𝔻(𝜽) − 𝒈𝔻(𝜽)𝒈𝔻(𝜽)⊤ ,

(3.30)

an update step of the form (usually with 𝔻 = 𝔹𝑡)

𝜽𝑡+1 = 𝜽𝑡 − 𝚺𝔻(𝜽𝑡)−1𝒈𝔻(𝜽𝑡)

can be regarded as re-scaling the gradient according to fluctuations:
directions that are subject to stronger noise will be shortened more
strongly than directions of small noise.

(a) Train loss
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Epoch: 49, loss: 0.347

(b) Gradient signal-to-noise ratio

0 20 40

5

10

epoch

Epoch 49, SNR: 01.10

Figure 3.4: Illustration of gradient noise
during training. Evolution of (a) train-
ing loss and (b) gradient signal-to-noise
ratio (computed with BackPACK, Chap-
ter 5) during training (logistic regression
on MNIST). As the loss decreases, the
gradient noise increases.

The gradient covariance has also been proposed to adapt the batch size
during training [6, 11, 19, 26] and to stop training before overfitting sets
in [104]. Similar ideas of variance-adaptation can be found in currently
popular deep learning optimizers such as Adam (Update Rule 3.7), that
keep an exponential average of the squared mini-batch gradient. This
shows up in the diagonal of the gradient covariance (second term)

diag(𝚺𝔻(𝜽)) = 1
|𝔻|

( ∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

(∇𝜽ℓ ( 𝒇 𝑛 , 𝒚𝑛))⊙2

)
− 𝒈𝔻(𝜽)⊙2 . (3.31)

See [10] for a precise analysis of the connections.

The empirical Fisher is formed by the gradients that make up the mini-
batch average gradient ∇𝜽L(𝜽), and therefore basically free to compute
on top of the gradient. But the required per-sample gradients are difficult
to access in popular ML libraries because they are not agnostic to this
per-sample structure (see Section 2.3.2). This complicates efficient usage
of the gradient covariance matrix for applications like optimization,
where performance is key.

3.3 Other Applications

So far, this text showed use cases of higher-order information, in the
form of curvature and gradient covariance, for optimization. While
optimization is one main component of deep learning, there exist many
other applications that require access to richer information. The following
briefly describes some applications (mostly) outside the optimization
field. Another argument for the utility of higher-order information to
better understand the training of neural networks is made by Chapter 6.

3.3.1 Bayesian Deep Learning & Laplace Approximations

Section 2.1.3 described the relation between regularized empirical risk
minimization and maximum a posteriori (MAP) estimation. The MAP
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estimate 𝜽MAP, can be used to approximate the Bayesian posterior for
the deep model’s parameters via 𝑝(𝜽 | 𝔻) ≈ 𝛿(𝜽 − 𝜽MAP). The Laplace
approximation [93] extends this posterior approximation to a multi-
variate Gaussian around 𝜽MAP (see Figure 3.5 for an illustration).

Let LMAP
𝔻
(𝜽) := L𝔻(𝜽) + 𝑟(𝜽) denote the regularized empirical risk from

log 𝑝(𝜃 | 𝔻) Taylor

𝜃MAP

𝑝(𝜃 | 𝔻) Laplace

Figure 3.5: Conceptual sketch of the
Laplace approximation. The goal is to
approximate 𝑝(𝜃 | 𝔻) with a Gaussian
around a mode. (Top) First, one identi-
fies a mode 𝜃MAP of the log-posterior
log 𝑝(𝜃 | 𝔻), then Taylor-expands the lat-
ter around it up to second order. (Bottom)
The exponentiated Taylor expansion is
proportional to a Gaussian. Normalizing
it yields the desired Gaussian approxi-
mation.

Equation (2.18) that gives rise to the MAP estimate 𝜽MAP. Its quadratic
Taylor expansion around 𝜽MAP (assumed to be a stationary point) is

LMAP
𝔻 (𝜽) = LMAP

𝔻 (𝜽MAP) + ∇𝜽LMAP
𝔻 (𝜽MAP)⊤︸               ︷︷               ︸

=0,stationary point

(𝜽 − 𝜽MAP)

+ 1
2
(𝜽 − 𝜽MAP)⊤∇2

𝜽LMAP
𝔻 (𝜽MAP)(𝜽 − 𝜽MAP)

+O
(
(𝜽 − 𝜽MAP)3

)
.

Using up to quadratic term in the posterior Equation (2.19) yields

𝑝(𝜽 | 𝔻) ≈ const(𝔻, 𝜽MAP)

× exp
[
− |𝔻|

2
(𝜽 − 𝜽MAP)⊤∇2

𝜽LMAP
𝔻 (𝜽MAP)(𝜽 − 𝜽MAP)

]
,

which corresponds to a Gaussian

𝑝(𝜽 | 𝔻) ≈ N (𝜽 | 𝝁,𝚺) = 1
𝑍

exp
[
−1

2
(
𝜽 − 𝝁)⊤𝚺−1 (

𝜽 − 𝝁) ]
(3.32a)

with mean, covariance, and normalization constant

𝝁 = 𝜽MAP , (3.32b)

𝚺 =
(|𝔻|∇2

𝜽LMAP
𝔻 (𝜽MAP)

)−1
, (3.32c)

𝑍 = (2𝜋)𝐷/2 det
[ (|𝔻|∇2

𝜽LMAP
𝔻 (𝜽MAP)

)−1
]𝐷/2

. (3.32d)

The Gaussian posterior Equation (3.32a) is useful for Bayesian predictions
with neural networks (Equation (2.14)) and various other tasks (e.g. model
selection [75] and continual learning, see [40] for an overview).

The covariance matrix 𝚺 in the Laplace approximation requires the
Hessian ∇2

𝜽LMAP
𝔻

= ∇2
𝜽L𝔻 + ∇2

𝜽𝑟 (specifically, its inverse). While the
regularization term often has a simple Hessian, computing the empirical
risk’s Hessian is expensive and suffers from the same issues of the Laplace
approximation being undefined if the Hessian is not PSD. Applications
often replace this Hessian with one of the PSD approximations presented
in Section 3.2 because a covariance matrix must be PSD.

3.3.2 Model Compression

Neural networks are extremely overparameterized. Reducing their pa-
rameter count, also referred to as pruning, is important to deploy them
on low-resource devices such as mobile phones and often decreases com-
putational cost of inference. In general, the goal is to reduce parameters,
while keeping the model’s performance (see [18] for a review).
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One classic approach for post-training compression of models is the
Optimal Brain Damage/Surgeon (OBD/OBS) framework of Hassibi and
Stork [67] and LeCun et al. [96] that leverages approximate second-
order information and is still used nowadays[43, 154, 161, 182]. The
idea is to identify unimportant weights through a local quadratic Taylor
approximation of the loss. Assuming the model is trained to a stationary
point 𝜽★, the Taylor expansion’s first-order term vanishes. A perturbation
𝜹 := 𝜽−𝜽★ induces the change ΔL𝔻(𝜹) := L𝔻(𝜹) −L𝔻(𝜽★) in the loss,

ΔL𝔻(𝜹) = (∇𝜽★L𝔻(𝜽★))︸         ︷︷         ︸
=0,stationary point

⊤𝜹 + 1
2
𝜹⊤𝑯𝔻(𝜽★)𝜹 +O

(
𝜹3) . (3.33)

To simplify the discussion, consider eliminating only a single parameter.
For a fixed direction 𝑖, the “best” perturbation 𝜹★(𝑖) that eliminates
parameter [𝜽★]𝑖 through satisfying the constraint 𝒆̂⊤𝑖 𝜹★(𝑖) = [𝜽★]𝑖 (with
𝒆̂ 𝑖 the unit vector in direction 𝑖) introduces the smallest increase in the
loss. This leads to the constrained optimization problem

Remark 3.4 (Optimal perturbation
to prune [𝜽]𝑖 ) The constraint in
Equation (3.33) is incorporated via a
Lagrange multiplier 𝜆,

ΔL𝔻(𝜹,𝜆) = 1
2
𝜹⊤𝑯𝔻(𝜽★)𝜹
− 𝜆 (

𝒆̂⊤𝑖 𝜹 − [𝜽★]𝑖
)
.

The optimal perturbation follows as

∇𝜹ΔL𝔻(𝜹,𝜆) = 𝑯𝔻(𝜽★)𝜹 + 𝜆𝒆̂ 𝑖 !
= 0

=⇒ 𝜹(𝜆) = −𝜆𝑯𝔻(𝜽★)−1 𝒆̂ 𝑖 .

Substituting this into the induced
change yields

ΔL𝔻(𝜆) = − 1
2
𝜆2[𝑯𝔻(𝜽★)−1]𝑖 ,𝑖

+ 𝜆[𝜽★]𝑖
and

∇𝜆ΔL𝔻(𝜆) !
= 0

=⇒ 𝜆 =
[𝜽★]𝑖

[𝑯𝔻(𝜽★)−1]𝑖 ,𝑖
.

Equations (3.34b) and (3.34c) follow
by substitution of 𝛿★(𝑖) := 𝜹(𝜆).

𝜹★(𝑖) = arg min
𝜹

𝒆̂⊤𝑖 𝜹−[𝜽★]𝑖=0

1
2
𝜹⊤𝑯𝔻(𝜽★)𝜹 . (3.34a)

As described in Remark 3.4, the solution to Equation (3.34a) is

𝜹★(𝑖) = −[𝜽★]𝑖𝑯𝔻(𝜽★)−1 𝒆̂ 𝑖

[𝑯𝔻(𝜽★)−1]𝑖 ,𝑖
(3.34b)

which induces the change

ΔL𝔻(𝜹★(𝑖)) =
[𝜽★]2𝑖

2[𝑯𝔻(𝜽★)−1]𝑖 ,𝑖
(3.34c)

Among these perturbations, {𝜹★(𝑖)}𝐷𝑖=1, the one introducing the smallest
change in the loss identifies the parameter to eliminate5. This requires

5: Considering the removal of multiple
parameters becomes prohibitive as the
search space over indices increases expo-
nentially (see [154] for details). It is there-
fore common to consider pruning can-
didates independently by sorting them
according to their induced change.

computing the pruning statistics Equation (3.34c) for all directions, and
therefore evaluation of the inverse Hessian’s diagonal. The perturbation
Equation (3.34b) requires multiplication by the inverse Hessian.

To simplify these computations, the OBD framework [96, Equation
(3)] approximates the Hessian by its diagonal for the induced change
Equation (3.33), i. e. ΔLOBD

𝔻
(𝜹) := 1/2𝜹⊤ diag(𝑯𝔻(𝜽★))𝜹. By substituting

𝑯𝔻(𝜽★) ↔ diag(𝑯𝔻(𝜽★)) into the above discussion, one obtains the
approximate perturbations 𝜹OBD

★ (𝑖) = [𝜽★]𝑖 𝒆̂ 𝑖 and pruning statistics
ΔLOBD

𝔻
(𝜹OBD

★ (𝑖)) = [𝜽★]2𝑖 [𝑯𝔻(𝜽★)]𝑖 ,𝑖/2. The diagonal approximation removes
the need to access elements of the inverse Hessian.

3.3.3 Differential Privacy

The data used for training deep models sometimes contains sensitive
information about individuals, like medical data, personal images etc.,
which is incorporated into the model during training. Adversaries might
be able to reconstruct such personal data given only black box access to
the model [52]. Often though, such adversaries even have access to details
about the training procedure, or explicit access to model parameters6

6: E.g. distributed training on mobile
devices that avoids sending data to a
central server, but transfers the model to
devices, which communicates updates
to a central model.

.
Such knowledge can be leveraged to make attacks more efficient [149].
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Figure 3.6: (Sketch) DP-SGD requires
access to per-sample gradients. (a) The
average gradient (black arrow) might
be dominated by the per-sample gradi-
ents (orange arrows) of a small num-
ber of data. Adversaries might use this
to extract potentially sensitive informa-
tion about that data. (b) Clipping per-
sample gradients before averaging them
limits the influence of individual data.
The dashed circle’s radius corresponds
to the privacy threshold 𝐶.

(a) Individual gradients (b) Clipped individual gradients

Differential privacy [46, DP] aims at preserving privacy of an algorithm
by injecting noise to limit the influence of individual data.

One prominent example for deep learning is differentially-private SGD
(DP-SGD) [2, Algorithm 1], which uses a negative average of processed
individual gradients over a mini-batch. To bound the influence of individ-
ual data, per-sample gradients whose norm exceeds a specific threshold
𝐶 are clipped back to norm 𝐶 (Figure 3.6),

𝒈̃𝑛(𝜽𝑡) =
𝒈𝑛(𝜽𝑡)

max
(
1, ∥𝒈𝑛 (𝜽𝑡 )∥2𝐶

) .
Gaussian noise of scale 𝜎 is then added to each gradient,

𝒈̂𝑛(𝜽𝑡) = 𝒈̃𝑛(𝜽𝑡) + 𝝐𝑛 , 𝝐𝑛 ∼ N (0, (𝜎𝐶)2𝑰) .

DP-SGD performs the update rule of SGD, with 𝒈𝑛 replaced by 𝒈̂𝑛 ,

𝜽𝑡+1 = 𝜽𝑡 − 𝜂𝑡 1
|𝔹|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔹

𝒈̂𝑛(𝜽𝑡) .

This requires access to per-sample gradient norms {∥𝒈𝑛(𝜽𝑡)∥2}𝑛 .

3.3.4 Importance Sampling

(a) Epoch 0, train accuracy 9.83%

0 max0.00

0.02

0.04

0.06

·|𝔻train |
Epoch: 00, accuracy: 09.83%

(b) Epoch 2, train accuracy 83.4%

0 max0.00

0.02

0.04

0.06
·|𝔻train |

Epoch: 02, accuracy: 83.40%

(c) Epoch 49, train accuracy 90.5%

0 max0.00

0.10

0.20

0.30

0.40
·|𝔻train |

∥∇𝜽ℓ𝑛 ∥2

Epoch: 49, accuracy: 90.49%

Figure 3.8: Importance distribution of
samples during training. Importance
is measured by individual gradient 𝐿2
norms, computed with BackPACK (Chap-
ter 5). As training proceeds and more
examples are correctly classified and be-
come “unimportant”. Details: logistic re-
gression on MNIST, trained with SGD,
|𝔹| = 128, and learning rate 0.005.

A hypothesis about learning in ML is that the model first learns to
correctly predict “easy” examples. Only in later phases are the “difficult”
examples learned. Using these harder examples more frequently for
training might help speed up the learning procedure. Put differently,
some data matter more at certain stages of training than other, which
is quantified through a measure of importance. Importance sampling
realizes this idea of selecting important data more frequently. It does so by
adapting the sampling procedure for mini-batches to reduce the gradient
variance, which beneficially influences the convergence of stochastic first-
order methods like SGD, and therefore speeds up training. A common
strategy is to weight the importance of samples by the per-sample 𝐿2
norm (Equation (3.38) and Figure 3.8).

As a starting point to see how the sampling procedure affects optimization,
consider the generalization of uniform sampling from Section 2.1.2 for
|𝔹| = 1. At training iteration 𝑡, a sample 𝑛𝑡 ∼ 𝑝𝑡(𝑛𝑡) is drawn from
a current sampling distribution 𝑝𝑡(𝑛𝑡) over {1, . . . , |𝔻|}. SGD with a
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learning rate 𝜂 uses the unbiased gradient estimator7 7: For uniform sampling 𝑝𝑡 (𝑛𝑡 ) = 1/|𝔻|,

which is the most common case in prac-
tice, the scaling factor cancels and yields
the commonly used gradient estimator
that would be used by “normal” SGD
with |𝔹| = 1.

𝒈̂𝑛𝑡 (𝜽𝑡) :=
1

|𝔻|𝑝𝑡(𝑛𝑡)∇𝜽𝑡ℓ𝑛𝑡 (𝜽𝑡) (3.35a)

with

𝔼𝑛𝑡∼𝑝𝑡 (𝑛𝑡 )
[
𝒈̂𝑛𝑡 (𝜽𝑡)

]
=

1
|𝔻|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔻

∇𝜽𝑡ℓ𝑛𝑡 (𝜽𝑡) = 𝒈𝔻(𝜽𝑡) (3.35b)

to update the parameters
𝜽𝑡+1 = 𝜽𝑡 − 𝜂 𝒈̂𝑛𝑡 (𝜽𝑡) . (3.35c)

Using a non-uniform distribution over stochastic gradients would in-
troduce bias in the update, so in importance sampling the samples are
weighted by their probability of being selected to undo the bias. The
distribution can then be tuned to minimize the variance of the estimator
and improve performance: one can assess convergence of Equation (3.35c)
through the progress towards the minimizer 𝜽★ in terms of squared 𝐿2
distance [85, 169],

∥𝜽𝑡 − 𝜽★∥22 − ∥𝜽𝑡+1 − 𝜽★∥22 . (3.36a)

In expectation, this measure of convergence depends on the gradient
estimator’s variance (more specifically, its trace),

𝔼𝑛𝑡
[∥𝜽𝑡 − 𝜽★∥22 − ∥𝜽𝑡+1 − 𝜽★∥22

]
= 𝔼𝑛𝑡

[∥𝜽𝑡 − 𝜽★∥22 − ∥𝜽𝑡 − 𝜽★ − 𝜂 𝒈̂𝑛𝑡 ∥22
]

= 𝔼𝑛𝑡
[
2𝜂 (𝜽𝑡 − 𝜽★)⊤ 𝒈̂𝑛𝑡 − 𝜂2 𝒈̂⊤𝑛𝑡 𝒈̂𝑛𝑡

]
= 2𝜂 (𝜽𝑡 − 𝜽★)⊤ 𝒈𝔻 − 𝜂2𝔼𝑛𝑡

[∥ 𝒈̂𝑛𝑡 ∥22]
= 2𝜂 (𝜽𝑡 − 𝜽★)⊤ 𝒈𝔻 − 𝜂2∥𝒈𝔻∥22 − 𝜂2𝔼𝑛𝑡

[∥ 𝒈̂𝑛𝑡 − 𝒈𝔻∥22
]

= 2𝜂 (𝜽𝑡 − 𝜽★)⊤ 𝒈𝔻 − 𝜂2∥𝒈𝔻∥22 − 𝜂2 Tr
{
Var𝑛𝑡

[
𝒈̂𝑛𝑡

]}
(3.36b)

For what follows, the intuition is that sampling affects convergence
through the variance term, and minimizing this term improves conver-
gence. Hence, the goal is to identify the optimal sampling via

minimize
𝑝𝑡 (𝑛𝑡 )∑|𝔻|

𝑛=1 𝑝𝑡 (𝑛)=1

Tr
{
Var𝑛𝑡

[
𝒈̂𝑛𝑡

]} ⇔ minimize
𝑝𝑡 (𝑛𝑡 )∑|𝔻|

𝑛=1 𝑝𝑡 (𝑛)=1

𝔼𝑛𝑡
[∥ 𝒈̂𝑛𝑡 ∥22] (3.37)

The solution, outlined in Remark 3.5, is

𝑝𝑡(𝑛𝑡) = ∥∇𝜽𝑡ℓ𝑛𝑡 (𝜽𝑡)∥2∑|𝔻|
𝑛=1∥ℓ𝑛(𝜽𝑡)∥2

. (3.38)

and

Remark 3.5 (Optimal sampling dis-
tribution [116, 184]) (The iteration
index 𝑡 is suppressed for brevity) To
derive Equation (3.38), one incorpo-
rates the constraint in Equation (3.37)
via a Lagrange multiplier𝜇 ∈ ℝ, writ-
ing 𝑝(𝑛) as |𝔻|-dimensional vector 𝒑.
Expanding 𝒈̂ with Equation (3.35a)
leads to,

𝐴(𝒑, 𝜇) :=
1
|𝔻|2

|𝔻|∑
𝑛=1

∥∇𝜽ℓ𝑛(𝜽)∥22
𝑝𝑛

+ 𝜇
( |𝔻|∑
𝑛=1

𝑝𝑛 − 1

)
.

Setting the 𝑝𝑛 -derivative of that to
zero yields

∇𝑝𝑛𝐴(𝒑, 𝜇) = −
∥∇𝜽ℓ𝑛(𝜽)∥22
|𝔻|2𝑝2

𝑛
+ 𝜇 !

= 0

=⇒ 𝑝𝑛 =
∥∇𝜽ℓ𝑛(𝜽)∥2√

𝜇
,

using that all elements 𝑝𝑛 ∈ (0; 1) of
𝒑. Inserting into 𝐴 gives

𝐴(𝜇) = 2
|𝔻|
√
𝜇
|𝔻|∑
𝑛=1
∥∇𝜽ℓ𝑛(𝜽)∥2 − 𝜇

Setting the𝜇-derivative to zero yields

∇𝜇𝐴(𝜇) = 1
|𝔻|√𝜇

|𝔻|∑
𝑛=1
∥∇𝜽ℓ𝑛(𝜽)∥2 − 1 !

= 0

=⇒ √
𝜇 =

1
|𝔻|

|𝔻|∑
𝑛=1
∥∇𝜽ℓ𝑛(𝜽)∥2

This then leads to

𝑝𝑛 =
∥∇𝜽ℓ𝑛(𝜽)∥2∑|𝔻|
𝑛=1∥∇𝜽ℓ𝑛(𝜽)∥2

which equals Equation (3.38) when
switching back notation and intro-
ducing the iteration count.

depends on individual gradient 𝐿2 norms in the entire dataset.
Samples with higher importance, i. e. gradient norm, are drawn more
frequently. Because computing the sampling distribution requires a sweep
over all data, practical versions further approximate Equation (3.38), e.g.
by relaxing the optimization through bounds that are easier to compute,
or updating the distribution only every few iterations [85].
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Abstract

We propose a modular extension of backpropagation for the computation
of block-diagonal approximations to various curvature matrices of the
training objective (in particular, the Hessian, generalized Gauss-Newton,
and positive-curvature Hessian). The approach reduces the otherwise
tedious manual derivation of these matrices into local modules, and is
easy to integrate into existing machine learning libraries. Moreover, we
develop a compact notation derived from matrix differential calculus.
We outline different strategies applicable to our method. They subsume
recently-proposed block-diagonal approximations as special cases, and
are extended to convolutional neural networks in this work. Code and experiments available at the

Github repository f-dangel/hbp







4.1 Introduction

Gradient backpropagation is the central computational operation of
contemporary deep learning. Its modular structure allows easy exten-
sion across network architectures, and thus automatic computation of
gradients given the computational graph of the forward pass [for a
review, see 13]. But optimization using only the first-order information
of the objective’s gradient can be unstable and slow, due to “vanish-
ing” or “exploding” behaviour of the gradient. Incorporating curvature,
second-order methods can avoid such scaling issues and converge in
fewer iterations. Such methods locally approximate the objective function
L by a quadratic L(𝜽) + ∇𝜽L(𝜽)⊤(𝜽★ − 𝜽) + 1/2(𝜽★ − 𝜽)⊤𝑪(𝜽)(𝜽★ − 𝜽)
around the current location 𝜽, using the gradient ∇𝜽L(𝜽) = 𝜕L(𝜽)/𝜕𝜽 and
a positive semi-definite (PSD) curvature matrix 𝑪(𝜽)—the Hessian of L
or approximations thereof. The quadratic is minimized by

𝜽★ = 𝜽 + Δ𝜽 with Δ𝜽 = −𝑪(𝜽)−1∇𝜽L . (4.1)

Computing the update step requires solving the linear system 𝑪(𝜽)Δ𝜽 =
−∇𝜽L. To accomplish this task, providing a matrix-vector multiplication
with the curvature matrix 𝑪(𝜽) is sufficient.

Approaches to Second-order Optimization

For some curvature matrices, exact multiplication can be performed at
the cost of one backward pass by automatic differentiation [127, 148].
This matrix-free formulation can then be leveraged to solve Equation (4.1)
using iterative solvers such as conjugate gradients (CG) [106]. However,
since this linear solver can still require multiple iterations, the increased
per-iteration progress of the resulting optimizer might be compensated by
increased computational cost. Recently, a parallel version of Hessian-free
optimization was proposed in [183], which only considers the content of
Hessian sub-blocks along the diagonal. Reducing the Hessian to a block

https://github.com/f-dangel/hbp
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∇𝒛(3)ℓ 𝑓 (4) . . . 𝑓 (𝐿)
𝜽(𝐿)

𝜽(𝐿)

∇
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𝒛(𝐿)

∇𝒛(𝐿)ℓ ℓ
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Figure 4.1: Standard sequential feedforward network architecture. I. e. the repetition of affine transformations parameterized by
𝜽(𝑙) = ((vec𝑾 (𝑙))⊤ , 𝒃(𝑙)⊤)⊤ followed by element-wise activations. Arrows from left to right and vice versa indicate the data flow during
forward pass and gradient backpropagation, respectively.

diagonal allows for parallelization, tends to lower the required number
of CG iterations, and seems to improve the optimizer’s performance.

There have also been attempts to compute parts of the Hessian in an
iterative fashion [110]. Storing these constituents efficiently often requires
an involved manual analysis of the Hessian’s structure, leveraging its
outer-product form in many scenarios [8, 115]. Recent works developed
different block-diagonal approximations (BDA) of curvature matrices
that provide fast multiplication [21, 31, 63, 109].

These works have repeatedly shown that, empirically, second-order infor-
mation can improve the training of deep learning problems. Perhaps the
most important practical hurdle to the adoption of second-order optimiz-
ers is that they tend to be tedious to integrate in existing ML frameworks
because they require manual implementations. As efficient automated
implementations have arguably been more important for the wide-spread
use of deep learning than many conceptual advances, we aim to develop
a framework that makes computation of Hessian approximations about
as easy and automated as gradient backpropagation.

Contribution

This chapter introduces a modular formalism for the computation of
block-diagonal approximations of Hessian and curvature matrices, to
various block resolutions, for feedforward neural networks. The frame-
work unifies previous approaches in a form that, similar to gradient
backpropagation, reduces implementation and analysis to local mod-
ules. Following the design pattern of gradient backprop also has the
advantage that this formalism can readily be integrated into existing
ML libraries, and flexibly modified for different block groupings and
approximations.

The framework consists of three principal parts:

1. A modular formulation for exact computation of Hessian block di-
agonals of feedforward neural nets. We achieve a clear presentation
by leveraging the notation of matrix differential calculus [103].

2. Projections onto the positive semi-definite cone by eliminating
sources of concavity.

3. Backpropagation strategies to obtain (i) exact curvature matrix-
vector products (with previously inaccessible BDAs of the Hessian)
and (ii) further approximated multiplication routines that save com-
putations by evaluating the matrix representations of intermediate
quantities once, at the cost of additional memory consumption.
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The first two contributions can be understood as an explicit formulation
of well-known tricks for fast multiplication by curvature matrices using
automatic differentiation [127, 148]. However, we also address a new class
of curvature matrices, the positive-curvature Hessian (PCH) introduced
in [31]. Our solutions to the latter two points are generalizations of
previous works [21, 31] to the fully modular case, which become accessible
due to the first contribution. They represent additional modifications
to make the scheme computationally tractable and obtain curvature
approximations with desirable properties for optimization.

4.2 Notation

We consider feedforward neural networks 𝑓𝜽(𝒙) composed of 𝐿 modules
𝑓 (𝑙)
𝜽(𝑙)
, 𝑙 = 1, . . . , 𝐿, which can be represented as a computational graph

mapping the input 𝒛(0) = 𝒙 to the output 𝒛(𝐿) (Figure 4.1). A module 𝑓 (𝑙)
𝜽(𝑙)

receives the parental output 𝒛(𝑙−1), applies an operation involving the
module parameters 𝜽(𝑙), and sends the output 𝒛(𝑙) to its child. Thus, 𝑓 (𝑙)

𝜽(𝑙)

is of the form 𝒛(𝑙) = 𝑓 (𝑙)
𝜽(𝑙)
(𝒛(𝑙−1)). Typical choices include element-wise

nonlinear activation without any parameters and affine transformations
𝒛(𝑙) = 𝑾 (𝑙)𝒛(𝑙−1)+𝒃(𝑙) with parameters given by the weights𝑾 (𝑙) and the
bias 𝒃(𝑙). Affine and activation modules are usually considered as a single
conceptual unit, one layer of the network. However, for backpropagation
of derivatives it is simpler to consider them separately as two modules.

Given the network output 𝒛(𝐿)(𝒙 , 𝜽(1,...,𝐿)) = 𝑓𝜽(𝒙) of a datum 𝒙 with label
𝒚, the goal is to minimize the expected risk of the loss function ℓ (𝒛(𝐿) , 𝒚).
Under the framework of empirical risk minimization, the parameters are
tuned to optimize the loss on the training set 𝔻train = {(𝒙𝑛 , 𝒚𝑛)}𝑁𝑛=1,

min
𝜽(1,...,𝐿)

L𝔻train(𝜽(1,...,𝐿)) = min
𝜽(1,...,𝐿)

1
|𝔻train |

𝑁∑
𝑛=1

ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) . (4.2)

In practice, the objective is typically further approximated stochastically
by drawing a mini-batch 𝔹 ⊂ 𝔻train from the training set. We will treat
both scenarios without further distinction, since the structure relevant
to our purposes is that Equation (4.2) is an average of terms depending
on individual data points. Quantities for optimization, be it gradients
or second derivatives of the loss w.r.t. the network parameters, can be
processed in parallel, then averaged.

4.3 Modular Hessian Backpropagation

First-order auto-differentiation for a custom module requires the defini-
tion of only two local operations, forward and backward, whose outputs
are propagated along the computation graph. This modularity facilitates
the extension of gradient backpropagation by new operations, which can
then be used to build networks by composition. To illustrate the principle,
we consider a single module from the net of Figure 4.1, depicted in
Figure 4.2, in this section1

1: To simplify the presentation, we drop
layer indices, choose distinct variable
names for input and output (𝒙 ← 𝒛(𝑙−1),
𝒛 ← 𝒛(𝑙), 𝜽 ← 𝜽(𝑙), 𝑓𝜽 ← 𝑓 (𝑙)

𝜽(𝑙)
) and

focus on a single datum.
. The forward pass 𝑓𝜽(𝒙)maps the input 𝒙 to

the output 𝒛 by means of the module parameters 𝜽. All quantities are
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assumed to be vector-shaped (tensor-valued quantities can be flattened,
see Definition 2.2). Optimization requires the gradient of the loss function
w.r. t. the parameters, 𝜕ℓ (𝜽)/𝜕𝜽 = ∇𝜽ℓ . We will use the shorthand

𝒙

∇𝒙ℓ
∇2
𝒙 ℓ

𝑓𝜽

𝜽

∇𝜽ℓ
∇2
𝜽ℓ

𝒛

∇𝒛ℓ
∇2
𝒛 ℓ

Figure 4.2: Forward pass, gradient back-
propagation, and Hessian backpropaga-
tion for a single module. Arrows from
left to right indicate the data flow in the
forward pass 𝒛 = 𝑓𝜽(𝒙), while the op-
posite orientation indicates the gradient
backpropagation by Equation (4.4). We
suggest to extend this by the backprop-
agation of the Hessian as indicated by
Equation (4.7).

∇·ℓ = 𝜕ℓ (·)
𝜕 vec(·) . (4.3)

During gradient backpropagation the module receives the loss gradient
with respect to its output, ∇𝒛ℓ , from its child. The backward operation
computes gradients w.r.t. the module parameters and input, ∇𝜽ℓ and
∇𝒙ℓ from ∇𝒛ℓ . Backpropagation continues by sending the gradient w.r. t.
the module’s input to its parent, which proceeds in the same way
(see Figure 4.1). By the chain rule, gradients w.r.t. an element 𝑥𝑖 of the
module’s input can be computed as∇𝑥𝑖ℓ =

∑
𝑗(𝜕𝑧 𝑗/𝜕𝑥𝑖)∇𝑧 𝑗ℓ . The vectorized

version is compactly written in terms of the Jacobian matrix J𝒙𝒛 = 𝜕𝒛/𝜕𝒙⊤
(Definition 2.4), which contains all partial derivatives of 𝒛 w.r.t. 𝒙. The
arrangement of partial derivatives is [J𝒙𝒛]𝑗 ,𝑖 = 𝜕𝑧 𝑗/𝜕𝑥𝑖 , such that

∇𝒙ℓ = (J𝒙𝒛)⊤ ∇𝒛ℓ . (4.4)

Analogously, the parameter gradients are given by ∇𝜃𝑖ℓ =
∑
𝑗(𝜕𝑧 𝑗/𝜕𝜃𝑖)∇𝑧 𝑗ℓ ,

or in vectorized form ∇𝜽ℓ = (J𝜽𝒛)⊤ ∇𝒛ℓ . This reflects the symmetry of
both 𝒙 and 𝜽 acting as input to the module. Implementing gradient
backpropagation thus requires multiplications by (transposed) Jacobians.
We can apply the chain rule a second time to obtain expressions for
second-order partial derivatives of the loss ℓ w.r. t. elements of 𝒙 or 𝜽,

𝜕2ℓ
𝜕𝑥𝑖𝜕𝑥 𝑗

=
𝜕

𝜕𝑥 𝑗

(∑
𝑘

𝜕𝑧𝑘
𝜕𝑥𝑖
∇𝑧𝑘ℓ

)

=
∑
𝑘,𝑙

𝜕𝑧𝑘
𝜕𝑥𝑖

𝜕2ℓ
𝜕𝑧𝑘𝜕𝑧𝑙

𝜕𝑧𝑙
𝜕𝑥 𝑗
+∑

𝑘

𝜕2𝑧𝑘
𝜕𝑥𝑖𝜕𝑥 𝑗

∇𝑧𝑘ℓ ,
(4.5)

by means of 𝜕/𝜕𝑥 𝑗 = ∑
𝑙(𝜕𝑧𝑙/𝜕𝑥 𝑗)𝜕/𝜕𝑧𝑙 and the product rule. The first term

of Equation (4.5) propagates curvature information of the output further
back, while the second term introduces second-order effects of the module
itself. Using the Hessian matrix ∇2

𝒙 ℓ = 𝜕2ℓ/(𝜕𝒙⊤𝜕𝒙) of a scalar function w.r. t.
a vector-shaped quantity 𝒙 (Definition 3.1),

∇2· ℓ (·) =
𝜕2ℓ (·)

𝜕 vec(·)⊤𝜕 vec(·) , (4.6)

results in the matrix version of Equation (4.5),

∇2
𝒙 ℓ = (J𝒙𝑧)⊤ ∇2

𝒛 ℓ (J𝒙𝑧) +
∑
𝑘

(∇2
𝒙 𝑧𝑘

) ∇𝑧𝑘ℓ . (4.7a)

Note that the second-order effect introduced by the module itself via
∇2
𝒙 𝑧𝑘 vanishes if all components [ 𝑓𝜽(𝒙)]𝑘 are linear in 𝒙. Because the layer

parameters 𝜽 can be regarded as inputs to the layer, they are treated in
exactly the same way, replacing 𝒙 by 𝜽 in the above expression,

∇2
𝜽ℓ = (J𝜽𝑧)⊤ ∇2

𝒛 ℓ (J𝜽𝑧) +
∑
𝑘

(∇2
𝜽𝑧𝑘

) ∇𝑧𝑘ℓ . (4.7b)

Equation (4.7) is the central functional expression herein, and will be
referred to as the Hessian backpropagation (HBP) equation. Our suggested
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Figure 4.3: Extension of backpropagation to Hessians. It yields diagonal blocks of the full parameter Hessian.

extension of gradient backpropagation is to also send the Hessian ∇2
𝒛 ℓ

back through the graph. To do so, existing modules have to be extended
by the HBP equation: Given the Hessian ∇2

𝒛 ℓ of the loss w.r. t. all module
outputs, an extended module has to extract the Hessians ∇2

𝜽ℓ ,∇2
𝒙 ℓ by means of

Equation (4.7), and forward the Hessian w.r. t. its input∇2
𝒙 ℓ to the parent module

which proceeds likewise. In this way, backprop of gradients can be extended
to compute curvature information in modules. This corresponds to BDAs
of the Hessian which ignore second-order derivatives w.r. t. parameters
in different modules. Figure 4.3 shows the data flow. The computations
required in Equation (4.7) depend only on local quantities that are, mostly,
already being computed during gradient backpropagation2. 2: By Faà di Bruno’s formula [82]

higher-order derivatives of function com-
positions are expressed recursively in
terms of the composites’ lower-order
derivatives. Recycling these quantities
can give significant speedup compared
to repeatedly applying first-order auto-
differentiation, which represents one key
aspect of our work.

Before we proceed, we highlight the following aspects:

▶ The BDA of the Hessian need not be PSD. But our scheme can be
modified to provide PSD curvature matrices by projection onto the
positive semi-definite cone (see Section 4.3.1).

▶ Instead of evaluating all matrices during backpropagation, we
can define matrix-vector products recursively. This yields exact
curvature matrix multiplications by the block diagonals of the
Hessian, the generalized Gauss-Newton (GGN) matrix and the PCH.
Multiplications by the first two matrices can also be obtained by use
of automatic differentiation [127, 148]. We also get access to the PCH
which, in contrast to the GGN, considers curvature information
introduced by the network (see Section 4.3.1).3 For standard neural 3: Implementations of HBP for exact

matrix-vector products can reuse mul-
tiplication by the (transposed) Jacobian
provided by many ML libraries. The sec-
ond term Equation (4.7) needs special
treatment though.

networks, only second derivatives of nonlinear activations have to
be stored compared to gradient backpropagation.

▶ There are approaches [21, 31] that propagate matrix representations
back through the graph to save repeated computations in the cur-
vature matrix-vector product. The size of the matrices ∇2

𝒛(𝑙)ℓ passed
between layer 𝑙 + 1 and 𝑙 scales quadratically in the number of
layer 𝑙’s output features. For convolutional layers, the dimension of
these quantities exceeds computational budgets. And for batched
computations, such a matrix has to be backpropagated for every
datum in the mini-batch. Like previous schemes [21, 31], we intro-
duce additional approximations for batch learning in Section 4.3.2.
A connection to existing schemes is drawn in Appendix A.2.4.

HBP is easy to integrate into current ML libraries, so that curvature
BDAs can be provided automatically for novel or existing second-order
optimization methods4

4: E.g. the matrix-vector products with
block-diagonal curvature matrices de-
scribed in this work have been integrated
into the BackPACK library that operates
on top of PyTorch and will be presented
in Chapter 5 of this thesis.. Such methods have repeatedly been shown to

be competitive with first-order methods [21, 31, 63, 109, 183].



56 Chapter 4 Modular Block-diagonal Curvature Approximations for Feedforward Architectures

Table 4.1: Hessian backpropagation for common modules used in feedforward networks. 𝑰 denotes the identity matrix. We assign
matrices to upper-case (𝑾 ,𝑿 , . . . ) and tensors to upper-case sans serif symbols (W,X, . . . ).

OPERATION FORWARD HBP (Equation (4.7)) DETAILS

Matrix-vector multiplication 𝒛(𝒙 ,𝑾 ) = 𝑾𝒙 ∇2
𝒙 ℓ = 𝑾⊤(∇2

𝒛 ℓ )𝑾 , Appendix A.2.1
∇2
𝑾 ℓ = 𝒙 ⊗ 𝒙⊤ ⊗ ∇2

𝒛 ℓ

Matrix-matrix multiplication 𝒁(𝑿 ,𝑾 ) = 𝑾𝑿 ∇2
𝑿 ℓ = (𝑰 ⊗𝑾 )⊤∇2

𝒁ℓ (𝑰 ⊗𝑾 ) , Appendix A.2.1
∇2
𝑾 ℓ = (𝑿⊤ ⊗ 𝑰)⊤∇2

𝒁ℓ (𝑿⊤ ⊗ 𝑰)
Addition 𝒛(𝒙 , 𝒃) = 𝒙 + 𝒃 ∇2

𝒙 ℓ = ∇2
𝒃 ℓ = ∇2

𝒛 ℓ Appendix A.2.1
Elementwise activation 𝒛(𝒙) = 𝝓(𝒙) , s.t., ∇2

𝒙 ℓ = diag[𝝓′(𝒙)](∇2
𝒛 ℓ )diag[𝝓′(𝒙)] Appendix A.2.2

𝑧𝑖(𝒙) = 𝜙(𝑥𝑖) + diag[𝜙′′(𝒙) ⊙ ∇𝒛ℓ ]
Skip-connection 𝒛(𝒙 , 𝜽) = 𝒙 + 𝒔(𝒙 , 𝜽) ∇2

𝒙 ℓ = (𝑰 + J𝒙𝒔)⊤∇2
𝒛 ℓ (𝑰 + J𝒙𝒔) Appendix A.2.3

+∑
𝑘 (∇2

𝒙 𝑠𝑘 )∇𝑧𝑘 ℓ ,
∇2
𝜽ℓ = (J𝜽𝒔)⊤∇2

𝒛 ℓ (J𝜽𝒔)
+∑

𝑘 (∇2
𝜽𝑠𝑘 )∇𝑧𝑘 ℓ

Reshape/view Z(X) = reshape(X) ∇2Zℓ = ∇2Xℓ Appendix A.4.1
Index select/map 𝜋 𝒛(𝒙) = 𝚷𝒙 , Π𝑗 ,𝜋(𝑗) = 1 , ∇2

𝒙 ℓ = 𝚷⊤(∇2
𝒛 ℓ )𝚷 Appendix A.4.2

Convolution Z(X,W) = X★W , ∇2
⟦X⟧ℓ = (𝑰 ⊗𝑾 )⊤∇2

𝒁ℓ (𝑰 ⊗𝑾 ) Appendix A.4.3
𝒁(𝑾 , ⟦X⟧) = 𝑾 ⟦X⟧ , ∇2

𝑾 ℓ = (⟦X⟧⊤ ⊗ 𝑰)⊤∇2
𝒁ℓ (⟦X⟧⊤ ⊗ 𝑰)

Square loss ℓ ( 𝒇 , 𝒚) = 1/𝐶(𝒚 − 𝒇 )⊤(𝒚 − 𝒇 ) ∇2
𝒇 ℓ = 2/𝐶𝑰 Appendix A.3.1

Softmax cross-entropy ℓ ( 𝒇 , 𝑦) = −onehot(𝑦)⊤ log [𝒑( 𝒇 )] ∇2
𝒇 ℓ = diag[𝒑( 𝒇 )] − 𝒑( 𝒇 )𝒑( 𝒇 )⊤ Appendix A.3.2

Relationship to Matrix Differential Calculus

To some extent, this paper is a re-formulation of earlier results [21, 31,
109] in the framework of matrix differential calculus [103], leveraged to
achieve a new level of modularity. Matrix differential calculus is a set of
notational rules that allow a concise construction of derivatives without
the heavy use of indices. Equation (4.7) is a special case of the matrix
chain rule of that framework (Theorem 2.1 and Equation (3.14)). A more
detailed discussion of this connection can be found in Appendix A.1
of the Supplements, which also reviews definitions generalizing the
concepts of Jacobian and Hessian in a way that preserves the chain rule.
The elementary building block of our procedure is a module as shown
in Figure 4.2. Like for gradient backprop, the operations required for
HBP can be tabulated. Table 4.1 provides a selection of common modules.
The derivations, which again leverage the matrix differential calculus
framework, can be found in Appendices A.2 to A.4.

4.3.1 Obtaining Different Curvature Matrices

The HBP equation yields exact diagonal blocks ∇2
𝜽(1)
ℓ , . . . ,∇2

𝜽(𝐿)
ℓ of the

full parameter Hessian ∇2
𝜽ℓ . They can be of interest in their own right for

analysis of the loss function, but are not generally suitable for second-
order optimization in the sense of equation 4.1, as they need neither be
PSD nor invertible. For application in optimization, HBP can be modified
to yield semi-definite BDAs of the Hessian. Equation (4.7) again provides
the foundation for this adaptation, which is closely related to the concepts
of KFRA [21], BDA-PCH [31], and, under certain conditions, KFAC [109].
We draw their connections by briefly reviewing them here.
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Generalized Gauss-Newton Matrix

The GGN emerges as the curvature matrix in the quadratic expansion of
the loss function ℓ (𝒛(𝐿) , 𝒚) in the network output 𝒛(𝐿) (Section 3.2.3). It
is also obtained by linearizing the network output 𝒛(𝐿)(𝜽, 𝒙) in 𝜽 before
computing the loss Hessian [107], and reads (Equation (3.15b))

𝑮(𝜽) =
(
J𝜽𝒛(𝐿)

)⊤
∇2
𝒛(𝐿)ℓ

(
J𝜽𝒛(𝐿)

)
.

For diagonal blocks 𝑮(𝜽(𝑙)), the Jacobian is unrolled using its chain rule
(Theorem 2.2) J𝜽(𝑙)𝒛

(𝐿) = (J𝒛(𝐿−1)𝒛(𝐿))(J𝒛(𝐿−2)𝒛(𝐿−1)) · · · (J𝒛(𝑙)𝒛(𝑙+1))(J𝜽(𝑙)𝒛(𝑙)).
This shows that the Hessian ∇2

𝒛(𝐿)ℓ of the loss function w.r. t. the network
output is propagated back through a layer by multiplication from left
and right with its Jacobian. This is accomplished in HBP by ignoring
second-order effects introduced by modules, that is by setting the Hessian
of the module function to zero, therefore neglecting the second term in
Equation (4.7)5. In fact, if all activations in the network are piecewise 5: Recall from Section 2.2 that many com-

mon neural network operations, such
as affine transformations, convolutions,
padding & pooling, have vanishing
second-order derivatives w.r. t. both their
input and parameters. Hence, the second
term in Equation (4.7) vanishes exactly
for these operations.

linear (e.g. ReLUs), the GGN and Hessian blocks are equivalent. Moreover,
diagonal blocks of the GGN are PSD if the loss function is convex (and
thus ∇2

𝒛(𝐿)ℓ is PSD). This is because blocks are recursively left- and right-
multiplied with Jacobians, which does not alter the definiteness. Hessians
of the loss functions listed in Table 4.1 are PSD. The resulting recursive
scheme has been used by Botev et al. [21] under the acronym KFRA to
optimize convex loss functions of fully-connected neural networks with
piecewise linear activation functions.

Positive-curvature Hessian

Another concept of positive semi-definite BDAs of the Hessian (that
additionally considers second-order module effects) was studied in
Chen et al. [31] and named the PCH. It is obtained by modification
of terms in the second summand of Equation (4.7) that can introduce
concavity during HBP. This ensures positive semi-definiteness since the
first summand is semi-definite, assuming the loss Hessian ∇2

𝒛(𝐿)ℓ with
respect to the network output to be positive semi-definite. Chen et al.
[31] suggest to eliminate negative curvature of a matrix by computing
the eigenvalue decomposition and either discard negative eigenvalues or
cast them to their absolute value. This allows the construction of PSD
curvature matrices even for non-convex loss functions. In the setting
of Chen et al. [31], the PCH can empirically outperform optimization
using the GGN. In usual feedforward neural networks, the concavity is
introduced by nonlinear element-wise activations, and corresponds to a
diagonal matrix (Table 4.1). Thus, convexity can be maintained during
HBP by either clipping negative values to zero (PCH-clip), or taking their
magnitude in the diagonal concave term (PCH-abs).

Fisher Information Matrix

If the network output models a conditional probability density on
the labels, 𝑞(y | 𝒛(𝐿)), maximum likelihood learning for the pa-
rameterized density 𝑝𝜽(y | 𝒙) = 𝑞(y | 𝒛(𝐿)(𝒙 , 𝜽)) will correspond
to choosing a negative log-likelihood loss function, i. e. ℓ (𝒛(𝐿) , 𝒚) =
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− log 𝑞(𝒚 | 𝒛(𝐿)) (Section 2.1.3). Common loss functions like square
and cross-entropy loss can be interpreted in this way (Examples 2.3
and 2.4), . Natural gradient descent [5] uses the Fisher information
matrix 𝑭(𝜽) = 𝔼𝒚∼𝑝𝜽(y | 𝒙)

[(𝜕 log 𝑝𝜃(𝒚 | 𝒙)/𝜕𝜽) (𝜕 log 𝑝𝜃(𝒚 | 𝒙)/𝜕𝜽)⊤] as a PSD
curvature matrix approximating the Hessian. It can be expressed
as the log-predictive density’s expected Hessian under 𝑝𝜽 itself:
𝑭(𝜽) = −𝔼𝒚∼𝑝𝜽(y | 𝒛(𝐿))

[∇2
𝜽 log 𝑞(𝒚 | 𝒛(𝐿))] , see Equation (3.24). Assuming

truly i. i.d. samples 𝒙, the log-likelihood of multiple data decomposes
and, after using the chain rule, results in the approximation

𝑭𝔻train(𝜽) ≈
1

|𝔻train |
∑

(𝒙 ,𝒚)∈𝔻train

(
J𝜽𝒛(𝐿)

)⊤
𝑭 𝑞(𝒛(𝐿))

(
J𝜽𝒛(𝐿)

)

with 𝑭 𝑞(𝒛(𝐿)) = −𝔼𝒚∼𝑞(y | 𝒛(𝐿))[∇2
𝒛(𝐿) log 𝑞(𝒚 | 𝒛(𝐿))], see Equation (3.27). In

this form, the computational scheme for Fisher BDAs resembles the HBP
of the GGN. However, instead of propagating back the loss Hessian w.r. t.
the network, it uses the negative log-likelihood’s expected Hessian the
model’s predictive distribution. Martens and Grosse [109] use Monte
Carlo sampling to estimate this matrix in their KFAC optimizer. Relations
between the Fisher and GGN are discussed in [107, 125]; for square and
cross-entropy loss, they are equivalent (Section 3.2.4).

4.3.2 Batch Learning Approximations

In our HBP framework, exact multiplication by the curvature block
of a module’s parameter 𝜽 requires one backpropagation to this layer.
The multiplication is recursively defined in terms of multiplication by
the layer output Hessian ∇2

𝒛 ℓ . If it were possible to have an explicit
representation of this matrix in memory, the recursive computations
hidden in ∇2

𝒛 ℓ could be saved during the solution of the linear system
implied by Equation (4.1). Unfortunately, the size of the backpropagated
exact matrices scales quadratically in both the batch size6 and the num-6: If samples are processed indepen-

dently in every module, these matrices
have block structure and scale linearly in
batch size. Quadratic scaling is caused by
transformations across different samples,
like batch normalization.

ber of layer’s output features. However, instead of propagating back
the exact Hessian, a batch-averaged version can be used instead to cir-
cumvent the batch size scaling (originating from Botev et al. [21]). In
combination with structural information about the parameter Hessian,
this strategy is used in Botev et al. [21] and Chen et al. [31] to further
approximate curvature multiplications, using quantities computed in a
single backward pass and then kept in memory for application of the
matrix-vector product. We can embed these explicit schemes into our
modular approach. To do so, we denote averages over a batch 𝔹 by a bar,
for instance 1/|𝔹|∑(𝒙 ,𝒚)∈𝔹 ∇2

𝜽ℓ ( 𝑓𝜽(𝒙), 𝒚) = ∇2
𝜽ℓ . The modified backward

pass of curvature information during HBP for a module receives a batch
average of the Hessian w.r. t. the output, ∇2

𝒛 ℓ , which is used to formulate
the matrix-vector product with the batch-averaged parameter Hessian
∇2
𝜽ℓ . An average of the Hessian w.r.t. the module input, ∇2

𝒙 ℓ , is passed
back. Existing work [21, 31] differs primarily in the specifics of how
this batch average is computed. In HBP, these approximations can be
formulated compactly within Equation (4.7). Relations to the cited works
are discussed in more detail in Appendix A.2.4. The approximations
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amounting to relations used by Botev et al. [21] read

∇2
𝒙 ℓ ≈ (J𝒙𝒛)⊤ ∇2

𝒛 ℓ (J𝒙𝒛) +
∑
𝑘

(∇2
𝒙 𝑧𝑘

) ∇𝑧𝑘ℓ , (4.8)

and likewise for 𝜽. In case of a linear layer 𝒛(𝒙) = 𝑾𝒙 + 𝒃, this ap-
proximation implies the relations ∇2

𝑾 ℓ = 𝒙 ⊗ 𝒙⊤ ⊗ ∇2
𝒛 ℓ , ∇2

𝒃ℓ = ∇2
𝒛 ℓ , and

∇2
𝒙 ℓ = 𝑾⊤(∇2

𝒛 ℓ )𝑾 . Multiplication by this weight Hessian approximation
with a vector 𝒗 is achieved by storing 𝒙 ⊗ 𝒙⊤, ∇2

𝒛 ℓ and performing the
required contractions 𝒗 ↦→ (𝒙 ⊗ 𝒙⊤ ⊗ ∇2

𝒛 ℓ )𝒗. Note that this approach is
not restricted to curvature matrix-vector multiplication routines only.
Kronecker structure in the approximation gives rise to optimization
methods relying on direct inversion.

A cheaper approximation, used in Chen et al. [31],

∇2
𝒙 ℓ ≈ (J𝒙𝒛)

⊤∇2
𝒛 ℓ (J𝒙𝒛) +

∑
𝑘

(∇2
𝒙 𝑧𝑘

) ∇𝑧𝑘ℓ , (4.9)

leads to the modified relation ∇2
𝑾 ℓ = 𝒙 ⊗ 𝒙⊤ ⊗ ∇2

𝒛 ℓ for a linear layer. As
this approximation is of the same rank as ∇2

𝒛 ℓ , which is typically small,
CG requires only a few iterations during optimization. It avoids large
memory requirements for layers with numerous inputs, since it requires
𝒙 be stored instead of 𝒙 ⊗ 𝒙⊤.

Transformations that are linear in the module parameters (e.g. linear and
convolutional layers), possess constant Jacobians w.r. t. the module input
for each sample (see Table 4.1). Hence, in a network consisting of only
these layers, both Equations (4.8) and (4.9) yield the same backpropagated
Hessians ∇2

𝒙 ℓ . This still leaves the degree of freedom for choosing the
approximation scheme in the analogous equations for 𝜽.

Remark

Both strategies for obtaining curvature matrix BDAs (implicit exact
matrix-vector multiplications and explicit propagation of approximated
curvature) are compatible. Regarding the connection to cited works, we
note that the maximally modular structure of our framework changes the
nature of these approximations and allows a more flexible formulation
and implementation7. 7: The BackPACK library described in

Chapter 5 uses the insights of this section
to implement block-diagonal curvature
approximations as extensions of gradient
backpropagation on the modular level.4.4 Experiments & Implementation

We illustrate the usefulness of incorporating curvature information with
the two outlined strategies by experiments with a fully-connected and
a convolutional neural network (CNN) on the CIFAR-10 dataset [90].
Following the guidelines of Schneider et al. [146], the training loss is
estimated on a random subset of the training set of equal size as the test
set. Each experiment is performed for 10 different random seeds and we
show the mean values with shaded intervals of one standard deviation.
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Figure 4.4: SGD and different Newton-style optimizers based on the PCH-abs with batch approximations. The same fully-connected
neural network of [31] was used to generate the solid baseline results. Our modular approach allows further splitting the parameter
blocks into sub-blocks that can independently be optimized in parallel (dashed lines).

For the loss function we use softmax cross-entropy. Details on the model
architectures and hyperparameters are given in Appendix A.5.

Training Procedure & Update Rule

In comparison to a first-order optimization procedure, the training loop
with HBP has to be extended by a single backward pass to backpropagate
the batch-averaged or exact loss Hessian. This yields matrix-vector
products with a curvature estimate 𝑪(𝑙) for each parameter block 𝜽(𝑙) of
the network. Parameter updates Δ𝜽(𝑙) are obtained by applying CG to
solve the linear system88: We use the same update rule as Chen

et al. [31] since we extend some of the
results shown within this work. [

𝛼𝑰 + (1 − 𝛼)𝑪(𝑙)
]
Δ𝜽(𝑙) = −∇𝜽(𝑙)L , (4.10)

where 𝛼 acts as a step size limitation to improve robustness against noise.
The CG routine terminates if the ratio of residual and gradient norm falls
below a certain threshold or the maximum number of iterations has been
reached. The solution returned by CG is scaled by a learning rate 𝜂, and
parameters are updated by the relation 𝜽(𝑙) ← 𝜽(𝑙) + 𝜂Δ𝜽(𝑙).

FCNN, Batch Approximations & Sub-Blocking

The flexibility of HBP is illustrated by extending the results in Chen et al.
[31]. Investigations are performed on a fully-connected network with
sigmoid activations. Solid lines in Figure 4.4 show the performance of
the Newton-style optimizer and momentum SGD in terms of the training
loss and test accuracy. The second-order method is capable to escape the
initial plateau in fewer iterations.

The modularity of HBP allows for additional parallelism by splitting the
linear system Equation (4.10) into smaller sub-blocks (Figure 4.6, which
then also need fewer iterations of CG. Doing so only requires a minor
modification of the parameter Hessian computation by Equation (4.7).
Consequently, we split weights and bias terms row-wise into a specified
number of sub-blocks. Figure 4.4 shows performance curves. In the initial







Figure 4.6: Illustration of sub-blocking.
Here, each diagonal block is split into
three blocks of equal size.

phase, the BDA can be split into a larger number of sub-blocks without
suffering from a loss in performance. The reduced curvature information
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Figure 4.5: SGD, Adam, KFAC, and Newton-style methods with different exact curvature matrix-vector products (HBP). The
architecture is a CNN with sigmoid activations (see Appendix A.5). (a) Comparison of train and test loss over iterations. SGD cannot
train the net. (b) Wall-clock time comparison (on an RTX 2080 Ti GPU; same colors realize different random seeds).

is still sufficient to escape the initial plateau. However, larger blocks have
to be considered in later stages to further reduce the loss efficiently.

The fact that this switch in modularity is necessary is an argument in
favor of the HBP’s flexibility to efficiently realize such switches: for this
experiment, the splitting for each block was artificially chosen to illustrate
this flexibility. In principle, the splitting could be decided individually
for each parameter block, and even changed at run time.

CNN, Matrix-free Exact Curvature Multiplication

For convolutions, the large number of hidden features prohibits back-
propagating a curvature matrix batch average. Instead, we use exact
curvature matrix-vector products provided within HBP. The CNN pos-
sesses sigmoid activations and cannot be trained by SGD (Figure 4.5a).
For comparison with another second-order method, we experiment with
a public KFAC implementation [63, 109, see Appendix A.5 for details].

The matrix-free second-order methods progress fast in the initial stage of
the optimization. However, progress in later phases stagnates. This may
be caused by the limited sophistication of the update rule equation 4.10:
if a small value for 𝛼 is chosen, the optimizer will perform well in
the beginning (GGN, 𝛼1). As the gradients become smaller, and hence
more noisy, the step size limitation is too optimistic, which leads to
a slow-down in optimization progress. A more conservative step size
limitation improves the overall performance at the cost of fewer initial
progress (GGN, 𝛼2). In the training phase where damping is “effective”,
our illustrative methods, and KFAC, exhibit better progress per iteration
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on the objective than the first-order competitor Adam, underlining the
usefulness of curvature even if only computed block-wise.

For an impression on performance in terms of run time, Figure 4.5b
compares the wall-clock time of one matrix-free method and the baselines.
The HBP-based optimizer can compete with existing methods and offers
potential for further improvements, like sub-blocking and parallelized
CG. Despite the more adaptive nature of second-order methods, their
full power seems to still require adaptive damping, to account for the
quality of the local quadratic approximation and restrict the update if
necessary. The importance of these techniques to properly adapt the
Newton direction has been emphasized in previous works [21, 106,
109] that aim to develop fully fletched second-order optimizers. Such
adaptation, however, is beyond the scope of this text.

4.5 Conclusion

We have outlined a procedure to compute block-diagonal approximations
of different curvature matrices for feedforward neural networks by a
scheme that can be realized on top of gradient backpropagation. In
contrast to other recently proposed methods, our implementation is
aligned with the design of current machine learning frameworks and can
flexibly compute Hessian sub-blocks to different levels of refinement. Its
modular formulation facilitates closed-form analysis of Hessian diagonal
blocks, and unifies previous approaches [21, 31].

Within our framework we presented two strategies: (i) obtaining exact
curvature matrix-vector products that have not been accessible before by
auto-differentiation (PCH), and (ii) backpropagation of further approxi-
mated matrix representations to save computations during training. As
for gradient backpropagation, the Hessian backpropagation for different
operations can be derived independently of the underlying graph. The
extended modules can then be used as a drop-in replacement for exist-
ing modules to construct deep neural networks. Internally, backprop is
extended by an additional Hessian backward pass through the graph to
compute curvature information. It can be performed in parallel to, and
reuse the quantities computed in, gradient backpropagation.
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Abstract

Automatic differentiation frameworks are optimized for exactly one thing:
computing the average mini-batch gradient. Yet, other quantities such as
the variance of the mini-batch gradients or many approximations to the
Hessian can, in theory, be computed efficiently, and at the same time as
the gradient. While these quantities are of great interest to researchers
and practitioners, current deep-learning software does not support their
automatic calculation. Manually implementing them is burdensome,
inefficient if done naïvely, and the resulting code is rarely shared. This
hampers progress in deep learning, and unnecessarily narrows research to
focus on gradient descent and its variants; it also complicates replication
studies and comparisons between newly developed methods that require
those quantities, to the point of impossibility. To address this problem, we
introduce BackPACK, an efficient framework built on top of PyTorch, that
extends the backpropagation algorithm to extract additional information
from first- and second-order derivatives. Its capabilities are illustrated by
benchmark reports for computing additional quantities on deep neural
networks, and an example application by testing several recent curvature
approximations for optimization. Code and experiments available at the

Github repositories
f-dangel/backpack,

f-dangel/backpack-experiments

5.1 Introduction

The success of deep learning and the applications it fuels can be traced to
the popularization of automatic differentiation frameworks. Packages like
TensorFlow [1], Chainer [165], MXNet [32], and PyTorch [126] provide
efficient implementations of parallel, GPU-based gradient computations
to a wide range of users, with elegant syntactic sugar.

However, this specialization also has its shortcomings: it assumes the
user only wants to compute gradients or, more precisely, the average
of gradients across a mini-batch of examples. Other quantities can also
be computed with AD at a comparable cost or minimal overhead to the
gradient backpropagation pass; for example, approximate second-order
information or the variance of gradients within the batch. These quantities
are valuable to understand the geometry of deep neural networks, for
the identification of free parameters, and to push the development of
more efficient optimization algorithms. But researchers who want to
investigate their use face a chicken-and-egg problem: AD tools required
to go beyond standard gradient methods are not available, but there is
no incentive for their implementation in existing deep-learning software
as long as no large portion of the users need it.

Second-order methods for deep learning have been continuously investi-
gated for decades [e.g. 5, 14, 20, 109]. But still, the standard optimizers
used in deep learning remain some variant of stochastic gradient descent
(SGD); more complex methods have not found wide-spread, practical

https://github.com/f-dangel/backpack
https://github.com/f-dangel/backpack-experiments
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use. This is in stark contrast to domains like convex optimization and
generalized linear models, where second-order methods are the default.
There may of course be good scientific reasons for this difference; maybe
second-order methods do not work well in the (non-convex, stochastic)
setting of deep learning. And the computational cost associated with the
high dimensionality of deep models may offset their benefits. Whether
these are the case remains somewhat unclear though, because a much
more direct road-block is that these methods are so complex to implement
that few practitioners ever try them out.

Recent approximate second-order methods such as KFAC [109] show
promising results, even on hard deep learning problems [166]. Their ap-
proach, based on the earlier work of Schraudolph [148], uses the structure
of the network to compute approximate second-order information in a
way that is similar to gradient backpropagation. This work sparked a
new line of research to improve the second-order approximation [21, 54,
63, 108]. However, all of these methods require low-level applications
of automatic differentiation to compute quantities other than the aver-
aged gradient. It is a daunting task to implement them from scratch.
Unless users spend significant time familiarizing themselves with the
internals of their software tools, the resulting implementation is often
inefficient, which also puts the original usability advantage of those
packages into question. Even motivated researchers trying to develop
new methods, who need not be expert software developers, face this
problem. They often end up with methods that cannot compete in run
time, not necessarily because the method is inherently bad, but because
the implementation is not efficient. New methods are also frequently
not compared to their predecessors and competitors because they are so
hard to reproduce. Authors do not want to represent the competition in
an unfair light caused by a bad implementation.

Another example is offered by a recent string of research to adapt to the
stochasticity induced by mini-batch sampling. An empirical estimate of
the (marginal) variance of the gradients within the batch has been found
to be theoretically and practically useful for adapting hyperparameters
like learning rates [105] and batch sizes [11], or regularize first-order
optimization [10, 85, 94]. To get such a variance estimate, one simply has
to square, then sum, the individual gradients after the backpropagation,
but before they are aggregated to form the average gradient. Doing
so should have negligible cost in principle, but is programmatically
challenging in the standard packages.

Members of the community have repeatedly asked for such features1 but1: See e. g. the Github issues github.com
/pytorch/pytorch/issues/1407, 7786,
8897 and forum discussions discuss.py
torch.org/t/1433, 8405, 15270, 17204,
19350, 24955.

the established AD frameworks have yet to address such requests, as
their focus has been—rightly—on improving their technical backbone.
Features like those outlined above are not generally defined for arbitrary
functions, but rather emerge from the specific structure of machine
learning applications. General AD frameworks can not be expected to
serve such specialist needs. This does not mean, however, that it is
impossible to efficiently realize such features within these frameworks:
in essence, backpropagation is a technique to compute multiplications
with Jacobians. Methods to extract second-order information [110] or
individual gradients from a mini-batch [59] have been known to a small
group of specialists; they are just rarely discussed or implemented.

https://github.com/pytorch/pytorch/issues/1407
https://github.com/pytorch/pytorch/issues/1407
https://github.com/pytorch/pytorch/issues/7786
https://github.com/pytorch/pytorch/issues/8897
https://discuss.pytorch.org/t/1433
https://discuss.pytorch.org/t/1433
https://discuss.pytorch.org/t/8405
https://discuss.pytorch.org/t/15270
https://discuss.pytorch.org/t/17204
https://discuss.pytorch.org/t/19350
https://discuss.pytorch.org/t/24955
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Computing the gradient with PyTorch . . .

X, y = load_mnist_data()
model = Linear(784, 10)
lossfunc = CrossEntropyLoss()

loss = lossfunc(model(X), y)

loss.backward()

for param in model.parameters():
print(param.grad)

. . . and the variance with BackPACK

X, y = load_mnist_data()
model = extend(Linear(784, 10))
lossfunc = extend(CrossEntropyLoss())

loss = lossfunc(model(X), y)
with backpack(Variance()):

loss.backward()

for param in model.parameters():
print(param.grad)
print(param.var)

Procedure 5.1: BackPACK integrates
with PyTorch to seamlessly extract more
information from the backward pass.
Instead of the variance (or alongside it,
in the same pass), BackPACK can com-
pute individual gradients in the mini-
batch, their 𝐿2 norm and 2nd moment.
It can also compute curvature approxi-
mations like diagonal or Kronecker fac-
torizations of the GGN such as KFAC,
KFLR & KFRA.

5.1.1 Our Contribution

To address this need for a specialized framework focused on machine
learning, we propose a framework for the implementation of generalized
backpropagation to compute additional quantities. The structure is based
on the conceptual work of Dangel et al. [37] for modular backprop-
agation. This framework can be built on top of existing graph-based
backpropagation modules; we provide an implementation on top of
PyTorch, coined BackPACK, available at

https://f-dangel.github.io/backpack/.

The initial release supports efficient computation of individual gradients
from a mini-batch, their 𝐿2 norm, an estimate of the variance, as well as
diagonal and Kronecker factorizations of the generalized Gauss-Newton
(GGN) matrix (see Table 5.1 for a feature overview). The library was de-
signed to be minimally verbose to the user, easy to use (see Procedure 5.1),
and to have low overhead (see Section 5.3). While other researchers are
aiming to improve the flexibility of AD systems [23, 77, 78], our goal with
this package is to provide access to quantities that are only byproducts
of the backpropagation pass, rather than gradients themselves.

To illustrate the capabilities of BackPACK, we use it to implement pre-
conditioned gradient descent optimizers with diagonal approximations
of the GGN and recent Kronecker factorizations KFAC [109], KFLR, and
KFRA [21]. Our results show that the curvature approximations based
on Monte Carlo (MC) estimates of the GGN, the approach used by KFAC,
give similar progress per iteration to their more accurate counterparts,
but being much cheaper to compute. While the naïve update rule we
implement does not surpass first-order baselines such as SGD with
momentum and Adam [87], its implementation with various curvature
approximations is made straightforward.

5.2 Theory & Implementation

We will distinguish between quantities that can be computed from infor-
mation already present during a traditional backward pass (which we
suggestively call first-order extensions), and quantities that need additional
information (termed second-order extensions). The former group contains
additional statistics such as the variance of the gradients within the
mini-batch or the 𝐿2 norm of the gradient for each sample. Those can

https://f-dangel.github.io/backpack/
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be computed with minimal overhead during the backprop pass. The
latter class contains approximations of second-order information, like the
diagonal or Kronecker factorization of the generalized Gauss-Newton
(GGN) matrix, which require the propagation of additional information
through the graph. We will present those two classes separately:

First-order extensions
Extract more from the standard backward pass.

▶ Individual gradients from a mini-batch
▶ 𝐿2 norm of the individual gradients
▶ Diagonal covariance and 2nd moment

Second-order extensions
Propagate new information along the graph.

▶ Diagonal of the GGN and the Hessian
▶ KFAC [109]
▶ KFRA and KFLR [21]

These quantities are only defined, or reasonable to compute, for a subset
of models: the concept of individual gradients for each sample in a mini-
batch or the estimate of the variance requires the loss for each sample to
be independent. While such functions are common in machine learning,
not all neural networks fit into this category. E.g. if the network uses
batch normalization [79], the individual gradients in a mini-batch are
correlated. Then, the variance is not meaningful anymore, and computing
the individual contribution of a sample to the mini-batch gradient or the
GGN becomes prohibitive. For those reasons, and to limit the scope of the
project for version 1.0, BackPACK currently restricts the type of models
it accepts. The supported models are traditional feedforward networks
that can be expressed as a sequence of modules, for example a sequence of
convolutional, pooling, linear and activation layers. Recurrent networks
like LSTMs [71] or residual networks [68] are not yet supported, but the
framework can be extended to cover them2.2: BackPACK has been continuously de-

veloped since the initial release. Note-
worthy added features include:

▶ New extensions: per-sample Hes-
sian/GGN diagonal (version 1.3),
matrix-free multiplication with
block-diagonal curvature matri-
ces from Chapter 4 (version 1.2),
and GGN low-rank factors (ver-
sions 1.4, 1.5), see Chapter 7.

▶ Broader support of modules and
hyperparameters, especially ba-
sic support for residual and re-
current networks (version 1.4).

We assume a sequential model 𝑓𝜽 : ×𝕏→ 𝔽 and a dataset of 𝑁 samples
(𝒙𝑛 , 𝒚𝑛) ∈ 𝕏 × 𝕐 with 𝑛 = 1, . . . , 𝑁 . The model maps each sample 𝒙𝑛 to
a prediction 𝑓𝜽(𝒙𝑛) using some parameters 𝜽 ∈ Θ. The predictions are
evaluated with a loss function ℓ : 𝔽 × 𝕐 → ℝ, for example the softmax
cross-entropy (Equation (2.4)), which compares them to the ground truth
𝒚𝑛 . This leads to the objective function L : Θ→ ℝ,

L(𝜽) = 1
𝑁

𝑁∑
𝑛=1

ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) . (5.1)

As a shorthand, we will use ℓ𝑛(𝜽) = ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) for the loss and
𝒇 𝑛(𝜽) = 𝑓𝜽(𝒙𝑛) for the model output of individual samples. Our goal is
to provide more information about the derivatives of {ℓ𝑛(𝜽)}𝑁𝑛=1 w.r.t.
the parameters 𝜽 of the model 𝑓𝜽.

5.2.1 Primer on Backpropagation

ML libraries with integrated automatic differentiation use the modular
structure of 𝒇 𝑛(𝜽) to compute derivatives (see [13] for an overview). If 𝑓𝜽
is a sequence of 𝐿 transformations, it can be expressed as

𝒇 𝑛(𝜽) =
(
𝑓 (𝐿)
𝜽(𝐿)
◦ . . . ◦ 𝑓 (1)

𝜽(1)

)
(𝒙𝑛) , (5.2)

where 𝑓 (𝑙)
𝜽(𝑙)

is the 𝑙th transformation with parameters 𝜽(𝑙), such that
𝜽 = (𝜽(1)⊤ , . . . , 𝜽(𝐿)⊤)⊤. The loss function can also be seen as another
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𝜽(𝑙) Figure 5.1: Schematic representation of

the standard backpropagation pass for
module 𝑙 with 𝑁 samples.

transformation, appended to the network. Let 𝒛(𝑙−1)
𝑛 , 𝒛(𝑙)𝑛 denote the input

and output of the operation 𝑓 (𝑙)
𝜽(𝑙)

for sample 𝑛, such that 𝒛(0)𝑛 is the original

data and 𝒛(1)𝑛 , . . . , 𝒛
(𝐿)
𝑛 represent the transformed output of each layer,

leading to the computation graph

𝒛(0)𝑛
𝑓 (1)
𝜽(1) (𝒛

(0)
𝑛 )

−−−−−−−−−→ 𝒛(1)𝑛
𝑓 (2)
𝜽(2) (𝒛

(1)
𝑛 )

−−−−−−−−−→ . . .
𝑓 (𝐿)
𝜽(𝐿) (𝒛

(𝐿−1)
𝑛 )

−−−−−−−−−→ 𝒛(𝐿)𝑛
ℓ (𝒛(𝐿)𝑛 ,𝒚𝑛 )
−−−−−−−−−→ ℓ𝑛(𝜽) .

To compute the gradient of ℓ𝑛 w.r. t. 𝜽(𝑙), one unrolls the chain rule,

∇𝜽(𝑙)ℓ𝑛(𝜽) =
(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤ (
J
𝒛(𝑙)𝑛

𝒛(𝑙+1)
𝑛

)⊤
· · ·

(
J
𝒛(𝐿−1)
𝑛

𝒛(𝐿)𝑛
)⊤
∇
𝒛(𝐿)𝑛
ℓ𝑛(𝜽)

=
(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤
∇𝒛(𝑙)ℓ𝑛(𝜽) ,

(5.3)

where J𝒂𝒃 is the Jacobian of 𝒃 w.r.t. 𝒂, [J𝒂𝒃]𝑖 , 𝑗 = 𝜕[𝒃]𝑖/𝜕[𝒂]𝑗 (see Def-
inition 2.4). A similar expression exists for the module inputs 𝒛(𝑙−1)

𝑛 :
∇
𝒛(𝑙−1)
𝑛
ℓ𝑛(𝜽) = (J𝒛(𝑙−1)

𝑛
𝒛(𝑙)𝑛 )⊤∇𝒛(𝑙)𝑛 ℓ𝑛(𝜽). This recursive structure makes it pos-

sible to extract the gradient by propagating the gradient of the loss. In
the backpropagation algorithm, a module 𝑙 receives the loss gradient
w.r.t. its output, ∇

𝒛(𝑙)𝑛
ℓ𝑛(𝜽). It then extracts the gradient with respect to

its parameters and inputs, ∇𝜽(𝑙)ℓ𝑛(𝜽) and ∇
𝒛(𝑙−1)
𝑛
ℓ𝑛(𝜽), according to Equa-

tion (5.3). The gradient w.r.t. its input is sent further down the graph.
This process, illustrated in Figure 5.1, is repeated for each transformation
until all gradients are computed. To implement backpropagation, each
module only needs to know how to multiply with its Jacobians.

For second-order quantities, we rely on the work of Mizutani and Dreyfus
[110] and Dangel et al. [37], who showed that a scheme similar to Equa-
tion (5.3) exists for the block diagonal of the Hessian. A block w.r.t. the
parameters of a module, ∇2

𝜽(𝑙)
ℓ𝑛(𝜽), can be obtained by the recursion

∇2
𝜽(𝑙)
ℓ𝑛(𝜽) =

(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤
∇2
𝒛(𝑙)𝑛
ℓ𝑛(𝜽)

(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)

+∑
𝑗

(
∇2
𝜽(𝑙)

[
𝒛(𝑙)𝑛

]
𝑗

) [
∇
𝒛(𝑙)𝑛
ℓ𝑛(𝜽)

]
𝑗
.

(5.4)

A similar relation holds for the module’s output Hessian ∇2
𝒛(𝑙)𝑛
ℓ𝑛(𝜽).

Both backpropagations of Equations (5.3) and (5.4) hinge on the multipli-
cation by Jacobians to both vectors and matrices. However, the design
of AD limits the application of Jacobians to vectors only. This prohibits
the exploitation of vectorization in the matrix case, which is needed for
second-order information. The lacking flexibility of Jacobians is one mo-
tivation for our work. Since all quantities needed to compute statistics of
the derivatives are already computed during the backward pass, another
motivation is to provide access to them at minor overhead.
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Figure 5.2: Computing individual gra-
dients in a batch using a for-loop (i. e.
one individual forward and backward
pass per sample) or using vectorized
operations with BackPACK. The plot
shows computation time, comparing to
a traditional gradient computation, on
the 3c3d network (see Section 5.4) for the
CIFAR-10 dataset [146]. For-loop BackPACK Gradient (Ref.)
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5.2.2 First-order Extensions

As the principal first-order extension, consider computing the per-sample
gradients in a batch of size 𝑁 . These individual gradients are implicitly
computed during a traditional backward pass because the batch gradient
is their sum, but they are not directly accessible. The naïve way to compute
𝑁 individual gradients is to do𝑁 separate forward and backward passes,
This (inefficiently) replaces every matrix-matrix multiplication by 𝑁
matrix-vector multiplications. BackPACK batches computations to obtain
large efficiency gains, as illustrated by Figure 5.23.3: The latest developments in ML li-

braries have lead to more efficient al-
ternatives than the for-loop. PyTorch
1.11.0 (released on March 10, 2022) in-
troduced an is_grads_batched argu-
ment in the API of the grad function
of its autograd library, which allows to
compute multiple VJPs in parallel. This
reflects the importance of the feature.

As the quantities necessary to compute the individual gradients are
already propagated through the computation graph, we can reuse them
by inserting code in the standard backward pass. With access to this infor-
mation, before it is cleared for memory efficiency, BackPACK computes
the Jacobian-multiplications for each sample

{∇𝜽(𝑙)ℓ𝑛(𝜽)}𝑁𝑛=1 =
{(

J𝜽(𝑙)𝒛
(𝑙)
𝑛

)⊤
∇
𝒛(𝑙)𝑛
ℓ𝑛(𝜽)

}𝑁
𝑛=1

, (5.5)

without summing the result—see Figure 5.3 for a schematic repre-
sentation. This duplicates some of the computation performed by the
backpropagation, as the Jacobian is applied twice (once by PyTorch and
BackPACK with and without summation over the samples, respectively).
However, the associated overhead is small compared to the for-loop
approach: the major computational cost arises from the propagation of
information required for each layer, rather than the formation of the
gradient within each layer.

This scheme for individual gradient computation is the basis for all first-
order extensions. In this direct form, however, it is expensive in memory:
if the model is 𝐷-dimensional, storing O(𝑁𝐷) elements is prohibitive
for large batches. For the variance, 2nd moment and 𝐿2 norm, BackPACK
takes advantage of the Jacobian’s structure to directly compute them
without forming the individual gradient, reducing memory overhead.
See Appendix B.1.1 for details.

5.2.3 Second-order Extensions

Second-order extensions require propagation of more information
through the graph.

Example 5.1 (Symmetric decomposi-
tion of the softmax cross-entropy
loss Hessian [122]) Consider the
softmax cross-entropy loss (Equa-
tion (2.2)) Hessian from Table Ta-
ble 4.1. Its symmetric decomposition
𝑺 ∈ ℝ𝐶×𝐶 is

𝑺 =
(
𝑰 − 𝒑 1⊤

)
diag

(√
𝒑
)

= diag
(√

𝒑
) − 𝒑
√
𝒑⊤ ,

(5.6)

where
√
𝒑( 𝒇 ) = 𝒑( 𝒇 )⊙1/2. It satisfies

∇2
𝒇 ℓ ( 𝒇 , 𝒚) = 𝑺𝑺⊤,

𝑺𝑺⊤ =
[
diag

(√
𝒑
) − 𝒑
√
𝒑⊤

]
[
diag

(√
𝒑
) − √𝒑𝒑⊤ ]

= diag (𝒑) − 2𝒑𝒑⊤ + 𝒑
√
𝒑⊤√𝒑𝒑⊤

= diag (𝒑) − 𝒑𝒑⊤ ,

using that 𝒑’s elements sum to one,
i. e. √𝒑⊤√𝒑 = 1. This is the expres-
sion from Table 4.1.

As an example, we will focus on the GGN matrix

https://pytorch.org/docs/1.11/generated/torch.autograd.grad.html
https://pytorch.org/docs/1.11/autograd.html
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{∇𝜽(𝑙)ℓ𝑛}𝑛 Figure 5.3: Schematic representation of
the individual gradients’ extraction in
addition to the standard backward pass
at the 𝑙th module for 𝑁 samples.

[148]. It is guaranteed to be PSD and is a reasonable approximation of
the Hessian near the minimum, which motivates its use in approximate
second-order methods. For popular loss functions, it coincides with
the Fisher information matrix used in natural gradient methods [5]; for
a more in depth discussion of the equivalence, see Section 3.2.4 and
the reviews of Martens [107] and Kunstner et al. [92]. For an objective
function that can be written as the composition of a loss function ℓ and a
model 𝑓𝜽, such as Equation (5.1), the GGN of 1/𝑁 ∑

𝑛 ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) is

𝑮(𝜽) = 1
𝑁

∑
𝑛

(
J𝜽 𝒇 𝑛

)⊤∇2
𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚𝑛)

(
J𝜽 𝒇 𝑛

)
. (5.7)

Example 5.2 (MC approximation of
the softmax-cross entropy loss Hes-
sian) Consider the softmax cross-
entropy loss (Equation (2.2)) Hessian
from Table 4.1. An MC approxima-
tion of the symmetric decomposition
(Equation (5.6)) is constructed by the
vectors

𝒔̃ = 𝒚̃(𝑐) − 𝒑( 𝒇 ) (5.8)

with 𝒚̃(𝑐) = onehot(𝑐) and 𝑐 drawn
from a categorical distribution im-
plied by the softmax-probabilities,
𝑐 ∼ Cat(𝑐; 𝒑( 𝒇 )). The random vec-
tor 𝒚̃ satisfies 𝔼𝑐 [𝒚̃] = 𝒑( 𝒇 ) and
𝔼𝑐

[
𝒚̃𝒚̃⊤

]
= diag[𝒑( 𝒇 )]. With these

properties, we can show 𝔼𝒔̃
[
𝒔̃ 𝒔̃⊤

]
=

∇2
𝒇 ℓ , i. e. the expected outer product

of Equation (5.8) is the Hessian,

𝔼𝒔̃
[
𝒔̃ 𝒔̃⊤

]
= 𝔼𝑐[𝒚̃𝒚̃⊤] − 𝔼𝑐[𝒚̃]𝒑⊤
− 𝒑𝔼𝑐[𝒚̃⊤] + 𝒑𝒑⊤

= diag(𝒑) − 𝒑𝒑⊤ .

Instead of using the 𝐶 × 𝐶 matrix
square root 𝑺, we can draw 𝑀 < 𝐶
samples 𝑐1 , . . . , 𝑐𝑀 and stack their 𝒔̃-
vectors into a smaller 𝐶 ×𝑀 matrix

𝑺̃ =
1√
𝑀

(
𝒔̃(𝑐1) . . . 𝒔̃(𝑐𝑀 )

)
(5.9)

that approximates Equation (5.6),

𝑺̃𝑺̃
⊤
=

1
𝑀

𝑀∑
𝑖=1

𝒔̃(𝑐𝑖)𝒔̃(𝑐𝑖)⊤

≈ 𝔼𝒔̃
[
𝒔̃ 𝒔̃⊤

]
= 𝑺𝑺⊤ ,

using less memory. From the con-
nection between Fisher and Hessian,
Equation (5.8) are ‘would-be gradi-
ents’ under targets sampled from
the model’s likelihood, i. e. 𝒔̃⊤ =
J 𝒇 ℓ ( 𝒇 , 𝒚̃) with 𝒚̃ ∼ 𝑞(· | 𝒇 ) and the
Jacobian from Table 2.2.

The full matrix is too large to compute and store. Current approaches
focus on its diagonal blocks, where each block corresponds to a layer
in the network. Every block itself is further approximated, for example
using a Kronecker factorization. The approach used by BackPACK for
their computation is a refinement of the Hessian Backpropagation equations
of Dangel et al. [37]. It relies on two insights: firstly, the computational
bottleneck in the GGN’s computation is the multiplication with the
Jacobian of the network, J𝜽 𝒇 𝑛 , while the network output Hessian is easy
to compute for most popular loss functions. Secondly, it is not necessary
to compute and store each of the 𝑁 𝐷 × 𝐷 matrices for a network
with 𝐷 parameters, as Equation (5.7) is a quadratic expression. Given
a symmetric factorization 𝑺𝑛 of the Hessian, 𝑺𝑛𝑺⊤𝑛 = ∇2

𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚𝑛) (e.g.

Example 5.1), it is sufficient to compute (J𝜽 𝒇 𝑛)⊤𝑺𝑛 and square the result.
A network output is typically small compared to its inner layers; networks
on CIFAR-100 need 𝐶 = 100 class outputs but could use convolutional
layers with more than 100,000 parameters.

The factorization leads to a 𝐷 × 𝐶 matrix, which makes it possible to
efficiently compute GGN block diagonals. Also, the computation is very
similar to that of a gradient, which computes (J𝜽 𝒇 𝑛)⊤∇𝒇 𝑛ℓ𝑛 . A module
𝑓 (𝑙)
𝜽(𝑙)

receives the symmetric factorization of the GGN w.r.t. its output,

𝒛(𝑙)𝑛 , and multiplies it with the Jacobians w.r.t. the parameters 𝜽(𝑙) and
inputs 𝒛(𝑙−1)

𝑛 to produce a symmetric factorization of the GGN w.r. t. the
parameters and inputs, as shown in Figure 5.4.

This propagation serves as the basis of the second-order extensions. If
the full symmetric factorization is not wanted, for memory reasons, it
is possible to extract more specific information such as the diagonal. If
𝑩 is the symmetric factorization for a GGN block, the diagonal can be
computed as [diag(𝑩𝑩⊤)]𝑖 = [𝑩𝑩⊤]𝑖 ,𝑖 =

∑
𝑗 [𝑩]2𝑖 , 𝑗 .

This framework can be used to extract the main Kronecker factorizations
of the GGN, KFAC and KFLR, which we extend to convolution using
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Figure 5.4: Schematic of the additional
backward pass to compute a symmetric
factorization of the GGN,
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)
alongside the gradient at the 𝑙th module,
for 𝑁 samples.
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the approach of Grosse and Martens [63]. The important difference
between the two methods is the initial matrix factorization 𝑺𝑛 . Using
a full symmetric factorization of the initial Hessian, 𝑺𝑛𝑺⊤𝑛 = ∇2

𝒇 𝑛
ℓ𝑛 ,

yields the KFLR approximation. KFAC uses an MC approximation by
sampling a vector 𝒔𝑛 such that 𝔼𝒔𝑛 [𝒔𝑛𝒔⊤𝑛 ] = ∇2

𝒇 𝑛
ℓ𝑛 (see Example 5.2).

KFLR is therefore more precise but more expensive than KFAC, especially
for networks with high-dimensional outputs, which is reflected in our
benchmark on CIFAR-100 in Section 5.3. The technical details on how
Kronecker factors are extracted and information is propagated for second-
order BackPACK extensions are documented in Appendix B.1.2.

5.3 Evaluation & Benchmarks

We benchmark the overhead of BackPACK on CIFAR-10 and CIFAR-100,
using the 3c3d network and the All-CNN-C network of Springenberg
et al. [157] provided by DeepOBS [146]4. Figure 5.5 shows the results.4: 3c3d is a sequence of three convo-

lutions and three dense linear layers
with 895,210 parameters. All-CNN-C is
a sequence of nine convolutions with
1,387,108 parameters.

For first-order extensions, the computation of individual gradients from
a mini-batch adds noticeable overhead due to the additional memory
requirements to store them. But more specific quantities such as the 𝐿2
norm, 2nd moment and variance can be extracted efficiently. Regarding
second-order extensions, the GGN computation can be expensive for
nets with large outputs like CIFAR-100, regardless of the approximation
being diagonal of Kronecker-factored. Thankfully, the MC approximation
used by KFAC, which we also implement for a diagonal approximation,
can be computed at minimal overhead—much less than two backward
passes. This last point is encouraging, as our optimization experiment in
Section 5.4 suggest that this approximation is reasonably accurate.

5.4 Experiments

To illustrate the utility of BackPACK, we implement preconditioned gra-
dient descent optimizers using diagonal and Kronecker approximations
of the GGN. To our knowledge, and despite their apparent simplicity,
results using diagonal approximations or the naïve damping update rule
we chose have not been reported in publications so far. However, this
section is not meant to introduce a bona-fide new optimizer. Our goal
is to show that BackPACK can enable research of this kind. The update
rule we implement uses a curvature matrix 𝑪(𝜽(𝑙)𝑡 ), which could be a



5.4 Experiments 71
(a) 3c3d, CIFAR-10
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(b) All-CNN-C, CIFAR-100
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Figure 5.5: Overhead benchmark for computing the gradient and first- or second-order extensions on real networks, compared to just
the gradient. Most quantities add little overhead. KFLR and DiagGGN propagate 100×more information than KFAC and DiagGGN-MC
on CIFAR-100 and are two orders of magnitude slower. We report benchmarks on those, and the Hessian’s diagonal, in Appendix B.2.

diagonal or Kronecker factorization of the GGN blocks, and a damping
parameter 𝜆 to precondition the gradient:

𝜽(𝑙)𝑡+1 = 𝜽(𝑙)𝑡 − 𝜂
(
𝑪(𝜽(𝑙)𝑡 ) + 𝜆𝑰

)−1
∇
𝜽(𝑙)𝑡

L(𝜽(𝑙)𝑡 ) , 𝑙 = 1, . . . , 𝐿 . (5.10)

We run the update rule with the following approximations of the general-
ized Gauss-Newton: the exact diagonal (DiagGGN) and an MC estimate
(DiagGGN-MC), and the Kronecker factorizations KFAC [109], KFLR and
KFRA 5 [21].The inversion required by the update rule is straightforward 5: KFRA was not originally designed

for convolutions; we extend it using the
Kronecker factorization of Grosse and
Martens [63]. While it can be computed
for small networks on MNIST, which we
report in Appendix B.3.4, the approxi-
mate backward pass of KFRA does not
seem to scale to large convolution layers.

for the diagonal curvature. For the Kronecker-factored quantities, we use
the approximation introduced by [109] (see Appendix B.3.3).

These curvature estimates are tested for the training of deep neural
networks by running the corresponding optimizers on the main test
problems of the benchmarking suite DeepOBS 6 [146]. We use the setup

6: deepobs.github.io. We cannot run
BackPACK on all test problems in this
benchmark due to the limitations out-
lined in Section 5.2. Despite this limita-
tion, we still run on models spanning a
representative range of image classifica-
tion problems.

(batch size, number of training epochs) of DeepOBS’ baselines, and tune
the learning rate 𝜂 and damping parameter 𝜆 with a grid search for each
optimizer (details in Appendix B.3.2). The best hyperparameter settings
is chosen according to the final accuracy on a validation set. We report
the median and quartiles of the performance for ten random seeds.

Figure 5.6a shows the results for the 3c3d network trained on CIFAR-10.
The optimizers that leverage Kronecker-factored curvature approxima-
tions beat the baseline performance in terms of per-iteration progress on
the training loss, training and test accuracy. Using the same hyperparam-

https://deepobs.github.io/
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(a) CIFAR-10: 3c3d
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(b) CIFAR-100: All-CNN-C
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Figure 5.6: Median performance with shaded quartiles of the DeepOBS benchmark for (a) 3c3d (895,210 parameters) on CIFAR-10 and
(a) All-CNN-C (1,387,108 parameters) on CIFAR-100. Solid lines show DeepOBS’ baselines of momentum SGD and Adam.

eters, there is little difference between KFAC and KFLR, or DiagGGN
and DiagGGN-MC. Given that the quantities based on MC-sampling
are considerably cheaper, this experiment suggests it being an important
technique to reduce the computational burden of curvature proxies.

Figure 5.6b shows benchmarks for the All-CNN-C network trained on
CIFAR-100. Due to the high-dimensional output, the curvatures using
a full matrix propagation rather than an MC sample cannot be run on
this problem due to memory issues. Both DiagGGN-MC and KFAC can
compete with the baselines in terms of progress per iteration. As the
update rule we implemented is simplistic on purpose, this is promising
for future applications of second-order methods that can more efficiently
use the additional information given by curvature approximations.
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Feature Details

Individual gradients 1
𝑁 ∇𝜽(𝑙)ℓ𝑛(𝜽), 𝑛 = 1, . . . , 𝑁

Batch variance 1
𝑁

∑𝑁
𝑛=1

[∇
𝜽(𝑙)ℓ𝑛(𝜽)

]2
𝑗
− [∇

𝜽(𝑙)L(𝜽)
]2
𝑗

2nd moment 1
𝑁

∑𝑁
𝑛=1

[∇
𝜽(𝑙)ℓ𝑛(𝜽)

]2
𝑗
, 𝑗 = 1, . . . , 𝑑(𝑙).

Indiv. gradient 𝐿2 norm



 1
𝑁 ∇𝜽(𝑙)ℓ𝑛(𝜽)




2

2
, 𝑛 = 1, . . . , 𝑁

DiagGGN diag
(
𝑮(𝜽(𝑙))

)
DiagGGN-MC diag

(
𝑮̃(𝜽(𝑙))

)
Hessian diagonal diag

(
∇2
𝜽L(𝜽)

)
KFAC 𝑮̃

(𝑙)(𝜽(𝑙)) ≈ 𝑨(𝑙) ⊗ 𝑩(𝑙)KFAC
KFLR 𝑮(𝑙)(𝜽(𝑙)) ≈ 𝑨(𝑙) ⊗ 𝑩(𝑙)KFLR
KFRA 𝑮(𝑙)(𝜽(𝑙)) ≈ 𝑨(𝑙) ⊗ 𝑩(𝑙)KFRA

Table 5.1: Overview of the features sup-
ported in the first release of BackPACK.

5.5 Conclusion

Machine learning’s coming-of-age has been accompanied, and in part
driven, by a maturing of the software ecosystem. This has drastically
simplified the lives of developers and researchers alike, but has also
crystallized parts of the algorithmic landscape. This has dampened
research in cutting-edge areas that are far from mature, like second-
order optimization for deep neural networks. To ensure that good ideas
can bear fruit, researchers must be able to compute new quantities
without an overwhelming software development burden. To support
research and development in optimization for deep learning, we have
introduced BackPACK, an efficient implementation in PyTorch of recent
conceptual advances and extensions to backpropagation (Table 5.1 lists
all features). BackPACK enriches the syntax of AD packages to offer
additional observables to optimizers beyond the batch-averaged gradient.
Our experiments demonstrate that BackPACK’s implementation offers
drastic efficiency gains over the kind of naïve implementation within reach
of the typical researcher. As a demonstrative example, we “invented”
a few optimization routines that, without BackPACK, would require
demanding implementation work and can now be tested with ease.
We hope that studies like this allow BackPACK to help mature the ML
software ecosystem further.
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Abstract

When engineers train deep learning models, they are very much “flying
blind”. Commonly used methods for real-time training diagnostics,
such as monitoring the train/test loss, are limited. Assessing a net’s
training process solely through these performance indicators is akin to
debugging software without access to internal states through a debugger.
To address this, we present Cockpit, a collection of instruments that
enable a closer look into the inner workings of a learning machine, and
a more informative and meaningful status report for practitioners. It
facilitates the identification of learning phases and failure modes, like
ill-chosen hyperparameters. The instruments leverage novel higher-order
information about the gradient distribution and curvature, which has only
recently become efficiently accessible. We believe that such a debugging
tool, which we open-source for PyTorch, is valuable in troubleshooting
the training process. By revealing new insights, it also more generally
contributes to explainability and interpretability of deep nets. Code and experiments available at the

Github repositories f-dangel/cockpit,
f-dangel/cockpit-experiments

6.1 Introduction & Motivation

Deep learning represents a new programming paradigm: instead of
deterministic programs, users design models and “simply” train them
with data. In this metaphor, deep learning is a meta-programming form,
where coding is replaced by training. Here, we ponder the question how
we can provide more insight into this process by building a debugger
specifically designed for deep learning.

Debuggers are crucial for traditional software development. When things
fail, they provide access to the internal workings of the code, allowing
a look “into the box”. This is much more efficient than re-running
the program with different inputs. And yet, deep learning is arguably
closer to the latter. If the attempt to train a deep net fails, a machine
learning engineer faces various options: should they change the training
hyperparameters (how?); the optimizer (to which one?); the model (how?);
or just re-run with a different seed? Machine learning toolboxes provide
scant help to guide these decisions.

Of course, traditional debuggers can be applied to deep learning. They
will give access to every single weight of a neural net, or the individ-
ual pixels of its training data. But this rarely yields insights towards
successful training. Extracting meaningful information requires a sta-
tistical approach and distillation of the bewildering complexity into a
manageable summary. Tools like TensorBoard [1] or Weights & Biases [17]
were built in part to streamline this visualization. Yet, the quantities that
are widely monitored (mainly train/test loss & accuracy), provide only
scant explanation for relative differences between multiple training runs,
because they do not show the network’s internal state. Figure 6.1 illustrates

https://github.com/f-dangel/cockpit
https://github.com/f-dangel/cockpit-experiments
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Figure 6.1: Illustrative example: learning curves do not tell the whole story. Two different optimization runs (—/—) can lead to
virtually the same loss curve (left). However, the actual optimization trajectories (middle), exhibit vastly different behaviors. In practice,
the trajectories are intractably large and cannot be visualized directly. Recommendable actions for both scenarios (increase/decrease the
learning rate) cannot be inferred from the loss curve. The 𝛼-distribution, one Cockpit instrument (right), not only clearly distinguishes
the two scenarios, but also allows for taking decisions how the learning rate should be adapted. See Section 6.3.3 for further details.

Figure 6.2: Screenshot of Cockpit’s full view while training the All-CNN-C [157] on CIFAR-100 with SGD using a cyclical learning rate
schedule. This figure and its labels are not meant to be legible, but rather give an impression of Cockpit’s user experience. Gray panels
(bottom row) show the information currently tracked by most practitioners. The individual instruments are discussed in Section 6.2, and
observations are described in Section 6.4. An animated version can be found in the accompanying Github repository.

how such established learning curves can describe the current state of the
model – whether it is performing well or not – while failing to inform
about training state and dynamics. They tell the user that things are going
well or badly, but not why. The situation is similar to flying a plane by
sight, without instruments to provide feedback. It is not surprising, then,
that achieving state-of-the-art performance in deep learning requires
expert intuition, or plain trial & error.

We aim to enrich the deep learning pipeline with a visual and statistical
debugging tool that uses newly proposed observables as well as several
established ones (Section 6.2). We leverage and augment recent extensions
to AD (i. e. BackPACK [38] for PyTorch [126]) to efficiently access second-
order statistical (e.g. gradient variances) and geometric (e.g. Hessian)
information. We show how these quantities can aid the deep learning
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engineer in tasks, like learning rate selection, as well as detecting common
bugs with data processing or model architectures (Section 6.3).

Concretely, we introduce Cockpit, a flexible and efficient framework for
online-monitoring these observables during training in carefully designed
plots we call “instruments” (Figure 6.2). To practical, such visualization
must have a manageable computational overhead. We show that Cockpit
scales well to real-world deep learning problems (see Figure 6.2 and
Section 6.4). We also provide three different configurations of varying
computational complexity and demonstrate that their instruments keep
the computational cost well below a factor of 2 in run time (Section 6.5). It
is available as open-source code, extendable, and seamlessly integrates
into existing PyTorch training loops (Appendix C.1).

6.2 Cockpit’s Instruments

Setting

We consider supervised regression/classification with labeled data
(𝒙 , 𝒚) ∈ 𝕏 × 𝕐 generated by a distribution 𝑝data(𝒙 , 𝒚). The training
set 𝔻 = {(𝒙𝑛 , 𝒚𝑛)}𝑁𝑛=1 consists of 𝑁 i. i.d. samples from 𝑝data and the deep
model 𝑓𝜽 : 𝕏→ 𝔽 maps inputs 𝒙𝑛 to predictions 𝑓𝜽(𝒙𝑛) by parameters
𝜽 ∈ Θ := ℝ𝐷 . This prediction is evaluated by a loss function ℓ : 𝔽 ×𝕐 → ℝ

which compares to the label 𝒚𝑛 . The goal is minimizing an inaccessi-
ble expected risk L𝑝data(𝜽) =

∫
ℓ ( 𝑓𝜽(𝒙), 𝒚) d𝑝data(𝒙 , 𝒚) by empirical ap-

proximation through L𝔻(𝜽) = 1/𝑁 ∑𝑁
𝑛=1 ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) := 1/𝑁 ∑𝑁

𝑛=1 ℓ𝑛(𝜽),
which in practice is stochastically sub-sampled on mini-batches 𝔹 ⊂ 𝔻,

L𝔹(𝜽) = 1
|𝔹|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔹

ℓ𝑛(𝜽) . (6.1)

As is standard practice, we use first- and second-order information of the
mini-batch loss, described by its gradient 𝒈𝔹(𝜽) and Hessian 𝑯𝔹(𝜽),

𝒈𝔹(𝜽) =
1
|𝔹|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔹

∇𝜽ℓ𝑛(𝜽) , 𝑯𝔹(𝜽) = 1
|𝔹|

∑
(𝒙𝑛 ,𝒚𝑛 )∈𝔹

∇2
𝜽ℓ𝑛(𝜽) . (6.2)

Design Choices

To minimize computational and design overhead, we restrict the metrics
to quantities that require no additional model evaluations. This means
that, at training step 𝑡 → 𝑡+1 with mini-batches𝔹𝑡 ,𝔹𝑡+1 and parameters
𝜽𝑡 , 𝜽𝑡+1, we access information about the mini-batch losses L𝔹𝑡 (𝜽𝑡) and
L𝔹𝑡+1(𝜽𝑡+1), but no cross-terms that require additional forward passes.

Key Point

L𝔹(𝜽), 𝒈𝔹(𝜽), and𝑯𝔹(𝜽) are just expected values of a distribution over the
batch. Only recently, this distribution has begun to attract attention [48]
as its computation has become more accessible [23, 38]. Contemporary
optimizers leverage only the mean gradient and neglect higher moments.
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Table 6.1: Overview of Cockpit quantities. They range from cheap byproducts, to nonlinear transformations of first-order information
and Hessian-based measures. Some quantities have already been proposed, others are first to be considered in this work. They are
categorized into configurations economy ⊆ business ⊆ full based on their run time overhead (see Section 6.5 for a detailed evaluation).

Name Short Description Config Pos. in Fig. 6.2

Alpha Normalized step size on a noisy quadratic interpolation between 𝜽𝑡 , 𝜽𝑡+1 economy top left
Distance Distance from initialization ∥𝜽𝑡 − 𝜽0∥2 economy middle left
UpdateSize Update size ∥𝜽𝑡+1 − 𝜽𝑡 ∥2 economy middle left
GradNorm Mini-batch gradient norm ∥𝒈𝔹(𝜽)∥2 economy bottom left
NormTest Normalized fluctuations of residual norms ∥𝒈𝔹 − 𝒈𝑛 ∥2, proposed in [26] economy top center
InnerTest Normalized fluctuations of 𝒈𝑛 ’s parallel to 𝒈𝔹, proposed in [19] economy top center
OrthoTest Like InnerTest but using the orthogonal components, proposed in [19] economy top center
GradHist1d Histogram of individual gradient elements, {[𝒈𝑛]𝑗} 𝑗=1,...,𝐷

(𝒙𝑛 ,𝒚𝑛 )∈𝔹 economy middle center

TICDiag Relation of (diagonal) curvature and gradient noise, inspired by [162] business bottom right
HessTrace Exact or approximate Hessian trace, Tr(𝑯𝔹(𝜽)), inspired by [177] business middle right
HessMaxEV Maximum Hessian eigenvalue, 𝜆max(𝑯𝔹(𝜽)), inspired by [177] full top right
GradHist2d Histogram of weights & per-sample gradients, {(𝜃𝑗 , [𝒈𝑛]𝑗)} 𝑗=1,...,𝐷

(𝒙𝑛 ,𝒚𝑛 )∈𝔹 full bottom center

One core point of our work is making extensive use of these distribution
properties, trying to visualize them in various ways. This distinguishes
Cockpit from being “just a collection of plots” that could be built in
tools like TensorBoard. Leveraging these distributional quantities, we
create instruments and show how they can help adapt hyperparameters
(Section 6.2.1), analyze the loss landscape (Section 6.2.2), and track
network dynamics (Section 6.2.3). Instruments can sometimes be built
from already-computed information or are efficient variants of previously
proposed observables. To keep the presentation concise, we highlight the
instruments shown in Figure 6.2 and listed in Table 6.1. Appendix C.3
defines them formally and contains more extensions, such as the mean
GSNR [100], the early stopping [104] and CABS [11] criterion, which can
all be used in Cockpit.

6.2.1 Adapting Hyperparameters

One big challenge in deep learning is setting the hyperparameters cor-
rectly, which is currently mostly done by trial & error through parameter
searches. We aim to augment this process with instruments that inform
the user about the effect that the chosen parameters have on the current
training process.

Alpha : Are We Crossing the Valley?

Using individual loss and gradient observations at the start and end
point of each iteration, we build a noise-informed uni-variate quadratic
approximation along the step direction (i. e. the loss as a function of
the step size), and assess to which point on this parabola our optimizer
moves. We standardize this value 𝛼 such that stepping to the valley-
floor is assigned 𝛼 = 0, the starting point is at 𝛼 = −1 and updates
to the point exactly opposite of the starting point have 𝛼 = 1 (see
Appendix C.3.2 for a more detailed visual and mathematical description
of 𝛼). Figure 6.1 illustrates the scenarios 𝛼 = ±1 and how monitoring the
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𝛼-distribution (right panel) can help distinguish between two training
runs with similar performance but distinct failure sources. By default,
this Cockpit instrument shows the 𝛼-distribution for the last 10 % of
training and the entire training process (top left plot in Figure 6.2). In
Section 6.3.3 we show empirically that, counter-intuitively, it is generally
not a good idea to choose the step size such that 𝛼 is close to zero.

Distances: Are We Making Progress?

Another way to discern the trajectories in Figure 6.1 is by measuring the
𝐿2 distance from initialization [113] and the update size [4, 51] in parameter
space. Both are shown together in one Cockpit instrument (see also
center-left plot in Figure 6.2) and are far larger for the blue line in
Figure 6.1. These distance metrics are also able to disentangle phases
for the blue path. Using the same step size, it will continue to “jump
back and forth” between the loss valley’s walls but at some point cease
to make progress. During this “surfing of the walls”, the distance from
initialization increases, ultimately though, it will stagnate, with the update
size remaining non-zero, indicating diffusion. While the initial “surfing
the wall”-phase benefits training (see Section 6.3.3), achieving stationarity
may require adaptation once the optimizer reaches that diffusion.

Gradient Norm: How Steep Is the Wall?

The update size will show that the orange trajectory is stuck. But why?
Such slow-down can result from both a bad learning rate and from loss
landscape plateaus. The gradient norm (bottom left panel in Figure 6.2)
distinguishes these two causes.

Gradient Tests: How Noisy Is the Batch?

The batch size trades off gradient accuracy versus computational cost.
Recently, adaptive sampling strategies based on testing geometric con-
straints between mean and individual gradients have been proposed [19,
26]. The norm, inner product, and orthogonality tests use a standardized
radius and two band widths (parallel and orthogonal to the gradient
mean) that indicate how strongly individual gradients scatter around the
mean. The original works use these values to adapt batch sizes. Instead,
Cockpit combines all three tests into a single gauge (top middle plot
of Figure 6.2) using the standardized noise radius and band widths
for visualization. These noise signals can be used to guide batch size
adaptation on- and offline, or to probe the influence of gradient alignment
on training speed [142] and generalization [27, 28, 100].

6.2.2 Hessian Properties for Local Loss Geometry

An intuition for the local loss landscape helps in many ways. It can
help diagnose whether training is stuck, to adapt the step size, and
explain stability or regularization [56, 81]. The key challenge is the large
number of weights: low-dimensional projections of surfaces can behave
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unintuitively [112], but tracking the extreme or average behaviors may
help in debugging, especially if first-order metrics fail.

Hessian Eigenvalues: A Gorge or a Lake?

In convex optimization, the maximum Hessian eigenvalue crucially
determines the appropriate step size [144]. Many works have studied
the Hessian spectrum in machine learning [e.g. 55, 56, 112, 139, 140,
177]. In short: curvature matters. Established [127] and recent autodiff
frameworks [38] can compute Hessian properties without requiring
the full matrix. Cockpit leverages this to provide the Hessian’s largest
eigenvalue and trace (right top and middle plots in Figure 6.2). The former
resembles the loss surface’s sharpest valley and can thus hint at training
instabilities [81]. The trace describes a notion of “average curvature”,
since the eigenvalues 𝜆𝑖 relate to it by ∑

𝑖 𝜆𝑖 = Tr(𝑯𝔹(𝜽)), which might
correlate with generalization [80].

TIC: How Do Curvature & Gradient Noise Interact?

There is an ongoing debate about curvature’s link to generalization [e.g.
42, 70, 86]. The Takeuchi Information Criterion (TIC) [160, 162] estimates the
generalization gap by a ratio between Hessian and non-central second
gradient moment. It also provides intuition for changes in the objective
function implied by gradient noise. Inspired by [162], Cockpit provides
mini-batch TIC estimates (bottom right plot of Figure 6.2).

6.2.3 Visualizing Internal Network Dynamics

Histograms are a natural visual compression of the high-dimensional
|𝔹| × 𝐷 individual gradient values. They give insights into the gradient
distribution and hence offer a more detailed view of the learning signal.
Together with the parameter associated to each individual gradient, the
entire model status and dynamics can be visualized in a single plot and
be monitored during training. This provides a more fine-grained view of
training compared to tracking parameters and gradient norms [51].

Gradient & Parameter Histograms: What Is Happening in Our Net?

Cockpit offers a uni-variate histogram of the gradient elements, i. e. the num-
bers {[𝒈𝑛(𝜽)]𝑗} 𝑗=1,...,𝐷

(𝒙𝑛 ,𝒚𝑛 )∈𝔹. Additionally, a combined histogram of parameter-

gradient pairs {([𝜽]𝑗 , [𝒈𝑛(𝜽)]𝑗} 𝑗=1,...,𝐷
(𝒙𝑛 ,𝒚𝑛 )∈𝔹 provides a two-dimensional look

into the network’s gradient and parameter values in a mini-batch. Sec-
tion 6.3.1 shows an example use-case of the gradient histogram; Sec-
tion 6.3.2 makes the case for the layer-wise variants of the instruments.
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6.3 Experiments

The diverse information provided by Cockpit can help users and re-
searchers in many ways, some of which, just like for a traditional debug-
ger, only become apparent in practical use. In this section, we present a
few motivating examples, selecting specific instruments and scenarios
in which they are practically useful. Specifically, we show that Cockpit
can help the user discern between, and thus fix, common training bugs
(Sections 6.3.1 and 6.3.2) that are otherwise hard to distinguish as they
lead to the same failure: bad training. We demonstrate that Cockpit can
guide practitioners to choose efficient hyperparameters within a single
training run (Sections 6.3.2 and 6.3.3). Finally, we highlight that Cockpit’s
instruments can provide research insights about the optimization process
(Section 6.3.3). Our empirical findings are demonstrated on problems
from the DeepOBS [146] benchmark collection.

6.3.1 Incorrectly Scaled Data

One prominent source of bugs is the data pipeline. To pick a relatively
simple example: for standard optimizers to work at their usual learning
rates, network inputs must be standardized (i. e. between zero and one, or
have zero mean and unit variance [e.g. 15]). If the user forgets to do this,
optimizer performance is likely to degrade. It can be difficult to identify
the source of this problem as it does not cause obvious failures, NaN or
Inf gradients, etc.. We now construct a semi-realistic example, to show
how using Cockpit can help diagnose this problem upon observing slow
training performance.

By default1, the popular image datasets CIFAR-10/100 [90] are provided 1: See the documentation, available at
cs.toronto.edu/~kriz/cifar.htmlas NumPy [66] arrays that consist of integers in the interval [0, 255]. This

raw data, instead of the widely used version with floats in [0, 1], changes
the data scale and thus the gradients by a factor of 255. Therefore, the
optimizer’s optimal learning rate is scaled as well. In other words, the
default parameters of popular optimization methods may not work well
anymore, or good hyperparameters may take extreme values. Even if
the user directly inspects the training images, this may not be apparent
(Figure 6.3). But the gradient histogram instrument of Cockpit, which
has a deliberate default plotting range around [−1, 1] to highlight such
problems, immediately and prominently shows that there is an issue.

Of course, this particular data is only a placeholder for real practical
data sets. While this problem may not frequently arise in the highly pre-
processed, packaged CIFAR-10, it is not a rare problem for practitioners
who work with their personal datasets. This is particularly likely in
domains outside standard computer vision, e.g. when working with
mixed-type data without obvious natural scales.

6.3.2 Vanishing Gradients

The model itself can be a source of training bugs. As before, such problems
mostly arise with novel datasets, where well-working architectures are

https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 6.3: Same inputs, different gradients; Catching data bugs with Cockpit. (a) normalized ([0, 1]) and (b) raw ([0, 255]) images look
identical in auto-scaled front-ends like matplotlib’s imshow . The gradients on 3c3d, however, are crucially affected by this scaling.
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Figure 6.4: Gradient distributions of two similar architectures on the same problem. (a) Distribution of individual gradient elements
summarized over the entire network. Both seem similar. (b) Layer-wise histograms for a subset of layers. Parameter 0 is the layer closest
to the network’s input, parameter 10 closest to its output. Only the layer-wise view reveals that there are several degenerated gradient
distributions for the orange network making training unnecessary hard.

unknown. The following example shows how even small (in terms of
code) model modifications may severely harm the training.

Figure 6.4a shows the distribution of gradient values of two different
network architectures in blue and orange. Although the blue model trains
considerably better than the orange one, their gradient distributions
look quite similar. The difference becomes evident when inspecting the
histogram layer-wise. We can see that multiple layers have a degenerated
gradient distribution with many elements being practically zero (see
Figure 6.4b, bottom row). Since the fully connected layers close to the
output have far more parameters (a typical pattern of convolutional
networks), they dominate the network-wide histogram. This obscures
that a major part of the model is effectively unable to train.

Both the blue and orange networks follow DeepOBS’s 3c3d architecture.
The only difference is the non-linearity: the blue net uses standard ReLU
activations, while the orange one has sigmoid activations. Here, the
layer-wise histogram instrument of Cockpit highlights which part of the
architecture makes training unnecessarily hard. Accessing information
layer-wise is also essential due to the strong overparameterization in deep
models where training can happen in small subspaces [65]. Again, this is
hard to do with common monitoring tools, such as the loss curve.
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Figure 6.5: Test accuracy as a function of standardized step size 𝛼. For four DeepOBS problems (see Appendix C.5), final test accuracy
is shown versus the median 𝛼-value over the entire training. Marker size indicates the magnitude of the raw learning rate, marker color
identifies tasks (see legend). For each problem, the best-performing setting is highlighted by a vertical colored line.

6.3.3 Tuning Learning Rates

Once the architecture is defined, the optimizer’s learning rate is the most
important hyperparameter to tune. Getting it right requires extensive
hyperparameter searches at high resource costs. Cockpit’s instruments
can provide intuition and information to streamline this process: in
contrast to the raw learning rate, the curvature-standardized step size
𝛼-quantity (see Section 6.2.1) has a natural scale.

Across multiple optimization problems, we observe, perhaps surprisingly,
that the best runs and indeed all good runs have a median 𝛼 > 0
(Figure 6.5). This illustrates a fundamental difference between stochastic
optimization, as is typical for machine learning, and classic deterministic
optimization. Instead of locally stepping “to the valley floor” (optimal in
the deterministic case), stochastic optimizers should overshoot the valley
somewhat. This need to “surf the walls” has been hypothesized before [e.g.
173, 176] as a property of neural network training. Frequently, learning
rates are adapted during training, which fits with our observation about
positive 𝛼-values: “overshooting” allows fast early progression towards
areas of lower loss, but it does not yield convergence in the end. Real-time
visualizations of the training state, as offered by Cockpit, can augment
these fine-tuning processes.

Figure 6.5 also indicates a major challenge preventing simple automated
tuning solutions: the optimal 𝛼-value is problem-dependent, and sim-
pler problems, such as a multi-layer perceptron (MLP) on MNIST [95],
behave much more similar to classic optimization problems. Algorithmic
research on small problems can thus produce misleading conclusions.
The figure also shows that the 𝛼-gauge is not sufficient by itself: extreme
overshooting with a too-large learning rate leads to poor performance,
which however can be prevented by taking additional instruments into
account. This makes the case for the cockpit metaphor of increasing
interpretability from several instruments in conjunction. By combining
the 𝛼-instrument with other gauges that capture the local geometry
or network dynamics, the user can better identify good choices of the
learning rate and other hyperparameters.
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6.4 Showcase

Having introduced the tool, we can now return to Figure 6.2 for a closer
look. The figure shows a snapshot from training the All-CNN-C [157]
on CIFAR-100 using SGD with a cyclic learning rate schedule (bottom
left panel). Diagonal curvature instruments are configured to use an MC
approximation to save run time (here, 𝐶 = 100, compare Section 6.5).

A glance at all panels shows that the learning rate schedule is reflected
in the metrics. However, the instruments also provide insights into the
early phase of training (first ∼ 100 iterations), where the learning rate is
still unaffected by the schedule: there, the loss plateaus and the optimizer
takes relatively small steps (compared to later, as can be seen in the
small gradient norms, and small distance from initialization). Based on
these low-cost instruments, one may thus at first suspect that training
was poorly initialized; but training indeed succeeds after iteration 100!
Viewing Cockpit entirely though, it becomes clear that optimization in
these first steps is not stuck at all: while loss, gradient norms, and distance
in parameter space remain almost constant, curvature changes, which
expresses itself in a clear downward trend of the maximum Hessian
eigenvalue (top right panel).

The importance of early training phases has recently been hypothesized
[51], suggesting a logarithmic timeline. Not only does our showcase
support this hypothesis, but it also provides an explanation from the
curvature-based metrics, which in this particular case are the only mean-
ingful feedback in the first few training steps. It also suggests monitoring
training at log-spaced intervals. Cockpit provides the flexibility to do so,
indeed, Figure 6.2 has been created with log-scheduled tracking events.

As a final note, we recognize that the approach taken here promotes an
amount of manual work (monitoring metrics, deliberately intervening,
etc.) that may seem ironic and at odds with the paradigm of automation
that is at the heart of machine learning. However, we argue that this
might be what is needed at this point in the evolution of the field. Deep
learning has been driven notably by scaling compute resources [163], and
fully automated one-shot training may still be some way out. To develop
better training methods, researchers, not just users, need algorithmic
interpretability and explainability: direct insights and intuition about the
processes taking place “inside” neural nets. To highlight how Cockpit
might provide this, we contrast in Appendix C.6 the view of two convex
DeepOBS problems (noisy quadratic & logistic regression on MNIST).
In both cases, the instruments behave differently compared to the deep
learning problem in Figure 6.2. In particular, the gradient norm increases
(left column, bottom panel) during training, and individual gradients
become less scattered (center column, top panel). This is diametrically
opposed to the convex problems and shows that deep learning differs
even qualitatively from well-understood optimization problems.

6.5 Benchmark

Section 6.3 made a case for Cockpit as an effective debugging and tuning
tool. To make the library useful in practice, it must also have limited
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computational cost. We now show that it is possible to compute all
quantities at reasonable overhead. The user can control the absolute cost
along two dimensions, by reducing the number of instruments, or by
reducing their update frequency.

All benchmark results show SGD without momentum. Cockpit’s quan-
tities, however, work for generic optimizers and can mostly be used
identically without increased costs. One current exception is Alpha

which can be computed more efficiently given the update rule.2 2: This is currently implemented for
vanilla SGD. Otherwise, Cockpit falls
back to a less efficient scheme.

Complexity Analysis

Computing more information adds computational overhead, of course.
However, recent work [38] has shown that first-order information, like
distributional statistics on the batch gradients, can be computed on
top of the mean gradient at little extra cost. Similar savings apply for
most quantities in Table 6.1, as they are (non-)linear transformations of
individual gradients. A subset of Cockpit’s quantities also uses second-
order information from the Hessian diagonal. For ReLU networks on a
classification task with 𝐶 classes, the additional work is proportional
to 𝐶 gradient backpropagations (i. e. 𝐶 = 10 for CIFAR-10, 𝐶 = 100
for CIFAR-100). Parallel processing can, to some extent, process these
extra backpropagations in parallel without significant overhead. If this
is no longer possible, we can fall back to a Monte Carlo (MC) sampling
approximation, which reduces the number of extra backprop passes to
the number of samples (1 by default).3 3: An MC-sampled approximation of the

Hessian/generalized Gauss-Newton has
been used in Figure 6.2 to reduce the
prohibitively large number of extra back-
props on CIFAR-100 (𝐶 = 100).

While parallelization is possible for the gradient instruments, computing
the maximum Hessian eigenvalue is inherently sequential. Similar to
Yao et al. [177], we use matrix-free Hessian-vector products by automatic
differentiation [127], where each product’s costs are proportional to one
gradient computation. Regardless of the underlying iterative eigensolver,
multiple such products must be queried to compute the spectral norm (the
number depends on the spectral gap to the second-largest eigenvalue).

Run Time Benchmark

Figure 6.6a shows the wall-clock computational overhead for individual
instruments (details in Appendix C.5).4 As expected, byproducts are 4: To improve readability, we exclude

HessMaxEV here, because its overhead
is large compared to other quantities. Sur-
prisingly, we also observed significant
cost for the 2D histogram on GPU. It is
caused by an implementation bottleneck
for histogram shapes observed in deep
models. We thus also omit GradHist2d

here, as we expect it to be eliminated
with future implementations (see Ap-
pendix C.5.2 for a detailed analysis and
further benchmarks). Both quantities,
however, are part of the benchmark
shown in Figure 6.6b.

virtually free, and quantities that rely solely on first-order information
add little overhead (at most roughly 25 % on this problem). Thanks
to parallelization, the ten extra backward passes required for Hessian
quantities reduce to less than 100 % overhead. Individual overheads also
do not simply add up when multiple quantities are tracked, because
quantities relying on the same information share computations.

To allow a rough cost control, Cockpit currently offers three configu-
rations, called “economy” , “business” , and “full” , in increasing order
of cost (Table 6.1). As a basic guideline, we consider a factor of two to
be an acceptable limit for the increase in training time and benchmark
the configurations’ run times for different tracking intervals. Figure 6.6b
shows a run time matrix for the CIFAR-10 3c3d problem, where settings
that meet this limit are set in blue (more problems including ImageNet
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Figure 6.6: Run time overhead for individual Cockpit instruments and configurations as shown on CIFAR-10 3c3d on a GPU. (a) The
run time overheads for individual instruments are shown as multiples of the baseline (no tracking). Most instruments add little overhead.
This plot shows the overhead in one iteration, determined by averaging over multiple iterations and random seeds. (b) Overhead for
different Cockpit configurations. Adjusting the tracking interval and re-using the computation shared by multiple instruments can make
the overhead orders of magnitude smaller. Blue fields mark settings that allow tracking without doubling the training time.

are shown in Appendix C.5). Speedups due to shared computations
are easy to read off: summing all the individual overheads shown in
Figure 6.6a would result in a total overhead larger than 200 %, while the
joint overhead (business) reduces to 140 %. The economy configuration can
easily be tracked at every step of this problem and stay well below our
threshold of doubling the execution time. Cockpit’s full view, shown in
Figure 6.2, can be updated every 64-th iteration without a major increase
in training time (this corresponds to about five updates per epoch). Finally,
tracking any configuration about once per epoch—which is common in
practice—adds overhead close to zero (rightmost column).

This good performance is largely due to the efficiency of the BackPACK
package [38], which we leverage with custom and optimized modifica-
tion, that compacts information layer-wise and then discards unneeded
buffers. Using layer-wise information (Section 6.3.2) scales better to large
networks, where storing the entire model’s individual gradients all at
once becomes increasingly expensive (see Appendix C.5). To the best
of our knowledge, many of the quantities in Table 6.1, especially those
relying on individual gradients, have only been explored on rather small
problems. With Cockpit they can now be accessed at a reasonable rate
for deep learning models outside the toy problem category.

6.6 Conclusion

Contemporary machine learning, in particular deep learning, remains a
craft and an art. High dimensionality, stochasticity, and non-convexity
require constant tracking and tuning, often resulting in a painful process
of trial and error. When things fail, popular performance measures, like
the training loss, do not provide enough information by themselves. These
metrics only tell whether the model is learning, but not why. Alternatively,
traditional debugging tools can provide access to individual weights
and data. However, in models whose power only arises from possessing
myriad weights, this approach is hopeless, like looking for the proverbial
needle in a haystack.

To mitigate this, we proposed Cockpit, a practical visual debugging tool
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for deep learning. It offers instruments to monitor the network’s internal
dynamics during training, in real-time. In its presentation, we focused
on two crucial factors affecting user experience: Firstly, such a debugger
must provide meaningful insights. To demonstrate Cockpit’s utility, we
showed how it can identify bugs where traditional tools fail. Secondly, it
must come at a feasible computational cost. Although Cockpit uses rich
second-order information, efficient computation keeps the necessary run
time overhead cheap. The open-source PyTorch package can be added to
many existing training loops.

Obviously, such a tool is never complete. Just like there is no perfect
universal debugger, the list of current instruments is naturally incomplete.
Further practical experience with the tool, for example in the form of
a future larger user study, could provide additional evidence for its
utility. However, our analysis shows that Cockpit provides useful tools
and extracts valuable information presently not accessible to the user.
We believe that this improves algorithmic interpretability – helping
practitioners understand how to make their models work – but may
also inspire new research. The code is designed flexibly, deliberately
separating the computation and visualization. New instruments can be
added easily and also be shown by the user’s preferred visualization tool,
e.g. TensorBoard. Of course, instead of just showing the data, the same
information can be used by novel algorithms directly, side-stepping the
human in the loop.
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Abstract

Curvature in form of the Hessian or its generalized Gauss-Newton (GGN)
approximation is valuable for algorithms that rely on a local model for the
loss to train, compress, or explain deep networks. Existing methods based
on implicit multiplication via automatic differentiation or Kronecker-
factored block diagonal approximations do not consider noise in the
mini-batch. We present ViViT, a curvature model that leverages the GGN’s
low-rank structure without further approximations. It allows for efficient
computation of eigenvalues, eigenvectors, as well as per-sample first- and
second-order directional derivatives. The representation is computed in
parallel with gradients in one backward pass and offers a fine-grained
cost-accuracy trade-off, which allows it to scale. We demonstrate this by
conducting performance benchmarks and substantiate ViViT’s usefulness
by studying the impact of noise on the GGN’s structural properties during
neural network training. Code and experiments available at the

Github repositories f-dangel/vivit,
f-dangel/vivit-experiments

T 

7.1 Introduction & Motivation

The large number of trainable parameters in deep neural networks
imposes computational constraints on the information that can be made
available to optimization algorithms. Standard machine learning libraries
[1, 126] mainly provide access to first-order information in the form of
average mini-batch gradients. This is a limitation that complicates the
development of novel methods that may outperform the state-of-the-art:
They must use the same objects to remain easy to implement and use,
and to rely on the highly optimized code of those libraries. There is
evidence that this has led to stagnation in the performance of first-order
optimizers [145]. Here, we thus study how to provide efficient access to
richer information, namely higher-order derivatives and their distribution
across the mini-batch.

Recent advances in AD [23, 38] have made such information more readily
accessible through leveraging algebraic structure in the differentiated
loss. We use and extend this functionality to efficiently access curvature in
form of the Hessian’s generalized Gauss-Newton (GGN) approximation.
It offers practical advantages over the Hessian and is established for
training [106, 109], compressing [154], or adding uncertainty to [89, 133,
134] neural networks. It is also linked theoretically to the natural gradient
method [5] via the Fisher information matrix [107, Section 9.2].

Traditional ways to access curvature fall into two categories. Firstly,
repeated automatic differentiation allows for matrix-free exact multi-
plication with the Hessian [127] and GGN [148]. Iterative linear and
eigensolvers can leverage such functionality to compute Newton steps
[53, 106, 183] and spectral properties [3, 55, 61, 123, 139, 140, 177] on

https://github.com/f-dangel/vivit
https://github.com/f-dangel/vivit-experiments
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Figure 7.1: Overview of ViViT’s quantities: (a) GGN eigenvalue distribution of DeepOBS’ 3c3d architecture on CIFAR-10 [146] for
settings with different costs on a mini-batch of size 𝑁 = 128. From left to right: exact GGN, exact GGN on a mini-batch fraction, MC
approximation of the GGN. (b) Pictorial illustration: loss function L from Equation (7.1), quadratic model 𝑚𝜽𝑡 around 𝜽𝑡 ∈ ℝ2 from
Equation (7.6) (both represented by their contour lines). The low-rank structure provides efficient access to the GGN’s eigenvectors
{𝒆𝑘 }, along which 𝑚𝜽𝑡 decouples into one-dimensional parabolas characterized by the directional derivatives 𝛾𝑘 ,𝜆𝑘 and per-sample
contributions 𝛾𝑛,𝑘 ,𝜆𝑛,𝑘 (Equation (7.8)). E is the GGN’s top-1 eigenspace.

arbitrary architectures thanks to the generality of AD. However, repeated
matrix-vector products are potentially detrimental to performance.

Secondly, K-FAC (Kronecker-factored approximate curvature) [21, 63, 108,
109] constructs an explicit light-weight representation of the GGN based
on its algebraic Kronecker structure. The computations are streamlined
via gradient backpropagation and the resulting matrices are cheap to
store and invert. This allows K-FAC to scale: It has been used successfully
with large mini-batches [121]. One reason for this efficiency is that K-FAC
only approximates the GGN’s block diagonal, neglecting interactions
across layers. Such terms could be useful, however, for applications like
uncertainty quantification with Laplace approximations [40, 89, 133,
134] that currently rely on K-FAC. Moreover, due to its specific design
for optimization, the Kronecker representation does not become more
accurate with more data. It remains a simplification, exact only under
assumptions unlikely to be met in practice [109]. This might be a downside
for applications that depend on a precise curvature proxy.

Here, we propose ViViT (inspired by 𝑽𝑽⊤ in Equation (7.3)), a curvature
model that leverages the GGN’s low-rank structure. Like K-FAC, its
representation is computed in parallel with gradients. But it allows a
cost-accuracy trade-off, ranging from the exact GGN to an approximation
that costs a single gradient computation. Our contributions are:

▶ We highlight the GGN’s low-rank structure, and the structural limit
for the inherent curvature information contained in a mini-batch.

▶ We present how to compute various GGN properties efficiently
by exploiting this structure (Figure 7.1): The exact eigenvalues,
eigenvectors, and per-sample directional derivatives. In contrast to
other methods, these quantities allow modeling curvature noise.

▶ We introduce approximations that allow a flexible trade-off between
computational cost and accuracy. We also provide a fully-featured
efficient implementation in PyTorch [126] on top of BackPACK [38].
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▶ We empirically demonstrate scalability and efficiency of leveraging

the GGN’s low-rank structure through benchmarks on different
deep neural network architectures. Finally, we use ViViT’s quantities
to study the GGN, and how it is affected by noise, during training.

The main focus is demonstrating that many interesting curvature proper-
ties, including uncertainty, can be computed efficiently. Practical applica-
tions of this curvature uncertainty are discussed in Section 7.5.

7.2 Notation & Method

Consider a model 𝑓𝜽 : 𝕏→ 𝕐 and a dataset {(𝒙𝑛 , 𝒚𝑛) ∈ 𝕏 × 𝕐 }𝑁𝑛=1. For
simplicity we use 𝑁 for both the mini-batch and training set size. The
network, parameterized by 𝜽 ∈ Θ, maps a sample 𝒙𝑛 to a prediction
𝑓𝜽(𝒙𝑛) ∈ 𝔽 . Predictions are scored by a convex loss function ℓ : 𝔽 ×𝕐 → ℝ

(e.g. cross-entropy or square loss), which compares to the ground truth
𝒚𝑛 . The training objective L : Θ→ ℝ is the empirical risk

L(𝜽) = 1
𝑁

𝑁∑
𝑛=1

ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) . (7.1)

We use ℓ𝑛(𝜽) = ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) and 𝒇 𝑛(𝜽) = 𝑓𝜽(𝒙𝑛) for per-sample losses
and predictions. For gradients, we write 𝒈𝑛(𝜽) = ∇𝜽ℓ𝑛(𝜽) and 𝒈(𝜽) =
∇𝜽L(𝜽), suppressing 𝜽 if unambiguous. We also set Θ = ℝ𝐷 and 𝔽 =
ℝ𝐶 with 𝐷, 𝐶 the model parameter and prediction space dimension,
respectively. For classification, 𝐶 is the number of classes.

Hessian & GGN

Two-fold chain rule application to the split ℓ ◦ 𝑓 decomposes the Hessian
of Equation (7.1) into two parts ∇2

𝜽L(𝜽) = 𝑮(𝜽) + 𝑹(𝜽) ∈ ℝ𝐷×𝐷 ; the
positive semi-definite GGN

𝑮(𝜽) = 1
𝑁

𝑁∑
𝑛=1

(
J𝜽 𝒇 𝑛

)⊤ ∇2
𝒇 𝑛
ℓ𝑛

(
J𝜽 𝒇 𝑛

)
=

1
𝑁

𝑁∑
𝑛=1

𝑮𝑛(𝜽) (7.2)

and a residual 𝑹 = 1/𝑁 ∑𝑁
𝑛=1

∑𝐶
𝑐=1(∇2

𝜽[ 𝒇 𝑛]𝑐)[∇𝒇 𝑛ℓ𝑛]𝑐 . Here, we use the Ja-
cobian J𝒂𝒃 that contains partial derivatives of 𝒃 w.r. t. 𝒂, [J𝒂𝒃]𝑖 , 𝑗 = 𝜕𝑏𝑖/𝜕𝑎 𝑗
(Definition 2.4. As the residual may alter the Hessian’s definiteness—
undesirable in many applications—we focus on the GGN. Section 7.3.2
provides empirical evidence that the curvature’s top eigenspace is largely
unaffected by this simplification.

Low-rank Structure

By basic inequalities, Equation (7.2) has rank(𝑮) ≤ 𝑁𝐶.1 To make 1: We assume the overparameterized
deep learning setting (𝑁𝐶 < 𝐷) and
suppress the trivial rank bound 𝐷.

this explicit, we factorize the positive semi-definite Hessian ∇2
𝒇 𝑛
ℓ𝑛 =∑𝐶

𝑐=1 𝒔𝑛,𝑐𝒔
⊤
𝑛,𝑐 , where 𝒔𝑛,𝑐 ∈ ℝ𝐶 and denote its backpropagated version by

𝒗𝑛,𝑐 = (J𝜽 𝒇 𝑛)⊤𝒔𝑛,𝑐 ∈ ℝ𝐷 . Absorbing sums into matrix multiplications,
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we arrive at the GGN’s outer product representation that lies at the heart
of the ViViT concept,

𝑮 =
1
𝑁

𝑁∑
𝑛=1

𝐶∑
𝑐=1

𝒗𝑛,𝑐𝒗⊤𝑛,𝑐 = 𝑽𝑽⊤ (7.3)

with𝑽 = 1/√𝑁 (
𝒗1,1 𝒗1,2 . . . 𝒗𝑁,𝐶

) ∈ ℝ𝐷×𝑁𝐶 .𝑽 allows for exact com-
putations with the explicit GGN matrix, at linear rather than quadratic
memory cost in 𝐷. We first formulate the extraction of relevant GGN
properties from this factorization, before addressing how to further
approximate 𝑽 to reduce memory and computation costs.

7.2.1 Computing the Full GGN Eigenspectrum

Each GGN eigenvalue 𝜆 ∈ ℝ is a root of the characteristic polyno-
mial det(𝑮 − 𝜆𝑰𝐷) with identity matrix 𝑰𝐷 ∈ ℝ𝐷×𝐷 . Leveraging the
factorization of Equation (7.3) and the matrix determinant lemma, the
𝐷-dimensional eigenproblem reduces to that of the much smaller Gram
matrix 𝑮̃ = 𝑽⊤𝑽 ∈ ℝ𝑁𝐶×𝑁𝐶 which contains pairwise scalar products of
𝒗𝑛,𝑐 (see Appendix D.1.1),

det(𝑮 − 𝜆𝑰𝐷) = 0 ⇔ det(𝑮̃ − 𝜆𝑰𝑁𝐶) = 0 . (7.4)

With at least 𝐷 − 𝑁𝐶 trivial solutions, the GGN curvature is zero along
most directions in parameter space. Nontrivial solutions that give rise
to curved directions are fully-contained in the Gram matrix, and hence
much cheaper to compute.

Despite various Hessian spectral studies which rely on iterative eigen-
solvers and implicit matrix multiplication [3, 55, 61, 123, 139, 140, 177], we
are not aware of works that efficiently extract the exact GGN spectrum
from its Gram matrix. In contrast to those techniques, this matrix can be
computed in parallel with gradients in a single backward pass, which
results in less sequential overhead. We demonstrate in Section 7.3.1 that
exploiting the low-rank structure for computing the leading eigenpairs
is superior to a power iteration based on matrix-free multiplication in
terms of run time.

Eigenvalues themselves can help identify reasonable hyperparameters,
like learning rates [97]. But we can also reconstruct the associated eigen-
vectors. These are directions along which curvature information is con-
tained in the mini-batch. Let 𝕊̃+ = {(𝜆𝑘 , 𝒆̃𝑘) | 𝜆𝑘 ≠ 0, 𝑮̃𝒆̃𝑘 = 𝜆𝑘 𝒆̃𝑘}𝐾𝑘=1
denote the nontrivial Gram spectrum2 with orthonormal eigenvectors2: In the following, we assume ordered

eigenvalues, i. e. 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝐾 , for
convenience.

𝒆̃⊤𝑗 𝒆̃𝑘 = 𝛿 𝑗 ,𝑘 (𝛿 represents the Kronecker delta and 𝐾 = rank(𝑮)). Then,
the transformed vectors 𝒆𝑘 = 1/√𝜆𝑘𝑽 𝒆̃𝑘 (𝑘 = 1, ..., 𝐾) are orthonormal
eigenvectors of 𝑮 associated to eigenvalues 𝜆𝑘 (see Appendix D.1.2), i. e.
for all (𝜆𝑘 , 𝒆̃𝑘) ∈ 𝕊̃+

𝑮̃𝒆̃𝑘 = 𝜆𝑘 𝒆̃𝑘 =⇒ 𝑮𝒆𝑘 = 𝜆𝑘𝒆𝑘 . (7.5)

The eigenspectrum also provides access to the GGN’s pseudo-inverse
based on 𝑽 and 𝕊̃+, required by e.g. second-order methods.3

3: Appendix D.3.2 describes implicit
multiplication with 𝑮−1.
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7.2.2 Computing Directional Derivatives

Various algorithms rely on a local quadratic approximation of the loss
landscape. For instance, optimization methods adapt their parameters
by stepping into the minimum of the local proxy. Curvature, in the form
of the Hessian or GGN, allows to build a quadratic model given by the
Taylor expansion. Let𝑚𝜽𝑡 denote the quadratic model for the loss around
position 𝜽𝑡 ∈ Θ that uses curvature represented by the GGN,

𝑚𝜽𝑡 (𝜽) = const + (𝜽 − 𝜽𝑡)⊤𝒈(𝜽𝑡) + 1
2
(𝜽 − 𝜽𝑡)⊤𝑮(𝜽𝑡)(𝜽 − 𝜽𝑡) . (7.6)

At its base point 𝜽𝑡 , the shape of 𝑚𝜽𝑡 along an arbitrary normalized
direction 𝒆 ∈ Θ (i. e. ∥𝒆∥2 = 1) is determined by the local gradient and
curvature. Specifically, the projection of Equation (7.6) onto 𝒆 gives rise
to the (scalar) first-and second-order directional derivatives

𝛾𝒆 = 𝒆⊤∇𝜽𝑚𝜽𝑡 (𝜽𝑡) = 𝒆⊤𝒈(𝜽𝑡) ∈ ℝ , (7.7a)

𝜆𝒆 = 𝒆⊤∇2
𝜽𝑚𝜽𝑡 (𝜽𝑡) 𝒆 = 𝒆⊤𝑮(𝜽𝑡) 𝒆 ∈ ℝ . (7.7b)

As 𝑮’s characteristic directions are its eigenvectors, they form a natural
basis for the quadratic model. Denoting 𝛾𝑘 = 𝛾𝒆𝑘 and 𝜆𝑘 = 𝜆𝒆𝑘 the
directional gradient and curvature along eigenvector 𝒆𝑘 , we see from
Equation (7.7b) that the directional curvature indeed coincides with the
GGN’s eigenvalue.

Analogous to the gradient and GGN, the directional derivatives 𝛾𝑘 and
𝜆𝑘 inherit the sum structure of the loss function from Equation (7.1), i. e.
they decompose into contributions from individual samples. Let 𝛾𝑛,𝑘
and 𝜆𝑛,𝑘 denote these first- and second-order derivatives contributions
of sample 𝒙𝑛 in direction 𝑘, i. e.

𝛾𝑛,𝑘 = 𝒆⊤𝑘 𝒈𝑛 =
𝒆̃⊤𝑘 𝑽

⊤𝒈𝑛√
𝜆𝑘

, (7.8a)

𝜆𝑛,𝑘 = 𝒆⊤𝑘 𝑮𝑛𝒆𝑘 =
∥𝑽⊤𝑛𝑽 𝒆̃𝑘 ∥22

𝜆𝑘
, (7.8b)

where 𝑽 𝑛 ∈ ℝ𝐷×𝐶 is a scaled sub-matrix of 𝑽 with fixed sample in-
dex. Note that directional derivatives can be evaluated efficiently with
the Gram matrix eigenvectors without explicit access to the associated
directions in parameter space.

In Equation (7.7), gradient 𝒈 and curvature 𝑮 are sums over 𝒈𝑛 and
𝑮𝑛 , respectively, from which follows the relationship between direc-
tional derivatives and per-sample contributions 𝛾𝑘 = 1/𝑁 ∑𝑁

𝑛=1 𝛾𝑛,𝑘 and
𝜆𝑘 = 1/𝑁 ∑𝑁

𝑛=1 𝜆𝑛,𝑘 . Figure 7.1b shows a pictorial view of the quantities
provided by ViViT.

Access to per-sample directional gradients 𝛾𝑛,𝑘 and curvatures 𝜆𝑛,𝑘
along 𝑮’s natural directions is a distinct feature of ViViT. They provide
geometric information about the local loss landscape as well as about the
model’s directional curvature stochasticity over the mini-batch.
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7.2.3 Computational Complexity

So far, we have formulated the computation of the GGN’s eigenvalues
(Equation (7.4)), eigenvectors (Equation (7.5)), and per-sample directional
derivatives (Equation (7.8)). Now, we analyze their computational com-
plexity in more detail to identify critical performance factors. Those
limitations can effectively be addressed with approximations that allow
the costs to be decreased in a fine-grained fashion. We substantiate
our theoretical analysis with empirical performance measurements in
Section 7.3.1.

Relation to Gradient Computation

Machine learning libraries are optimized to backpropagate signals
1/𝑁∇𝒇 𝑛ℓ𝑛 and accumulate the result into the mini-batch gradient 𝒈 =
1/𝑁 ∑𝑁

𝑛=1[J𝜽 𝒇 𝑛]⊤∇𝒇 𝑛ℓ𝑛 . Each column 𝒗𝑛,𝑐 of 𝑽 also involves applying the
Jacobian, but to a different vector 𝒔𝑛,𝑐 from the loss Hessian’s symmetric
factorization. For popular loss functions, like square and cross-entropy
loss, this factorization is analytically known and available at negligible
overhead. Hence, computing 𝑽 basically costs 𝐶 gradient computations
as it involves 𝑁𝐶 backpropagations, while the gradient requires 𝑁 . How-
ever, the practical overhead is expected to be smaller: computations can
re-use information from BackPACK’s vectorized Jacobians and enjoy
additional speedup on parallel processors like GPUs.

Stage-wise Discarding 𝑽

𝑽 ’s columns correspond to backpropagated vectors. During backpropa-
gation, sub-matrices of 𝑽 , associated to parameters in the current layer,
become available once at a time and can be discarded immediately after
their use. This allows for memory savings without any approximations.

One example is the Gram matrix 𝑮̃ formed by pairwise scalar products of
{𝒗𝑛,𝑐}𝑁,𝐶𝑛=1,𝑐=1 in O((𝑁𝐶)2𝐷) operations. The spectral decomposition 𝕊̃+
has additional cost of O((𝑁𝐶)3). Similarly, the terms for the directional
derivatives in Equation (7.8) can be built up stage-wise: first-order
derivatives {𝛾𝑛,𝑘}𝑁,𝐾𝑛=1,𝑘=1 require the vectors {𝑽⊤𝒈𝑛 ∈ ℝ𝑁𝐶}𝑁𝑛=1 that cost
O(𝑁2𝐶𝐷) operations. Second-order derivatives are basically for free, as
{𝑽⊤𝑛𝑽 ∈ ℝ𝐶×𝑁𝐶}𝑁𝑛=1 is available from 𝑮̃.

GGN Eigenvectors

Transforming an eigenvector 𝒆̃𝑘 of the Gram matrix to the GGN eigenvec-
tor 𝒆𝑘 through application of𝑽 (Equation (7.5)) costsO(𝑁𝐶𝐷) operations.
However, repeated application of 𝑽 can be avoided for sums of the form∑
𝑘(𝑐𝑘/√𝜆𝑘)𝒆𝑘 with arbitrary weights 𝑐𝑘 ∈ ℝ. The summation can be

performed in the Gram space at negligible overhead, and only the re-
sulting vector ∑

𝑘 𝑐𝑘 𝒆̃𝑘 needs to be transformed. For a practical example –
computing damped Newton steps – see Appendix D.2.1.



7.3 Experiments 95
7.2.4 Approximations & Implementation

Although the GGN’s representation by 𝑽 has linear memory cost in 𝐷,
it requires memory equivalent to 𝑁𝐶 model copies.4 Of course, this is 4: Our implementation uses a more

memory-efficient approach that avoids
expanding 𝑽 for linear layers by leverag-
ing structure in their Jacobian (see Ap-
pendix D.3.1).

infeasible for many networks and datasets, e.g. ImageNet (𝐶 = 1000). So
far, our formulation was concerned with exact computations. We now
present approximations that allow 𝑁 , 𝐶 and 𝐷 in the above cost analysis
to be replaced by smaller numbers, enabling ViViT to trade-off accuracy
and performance.

MC approximation & Curvature Sub-sampling

To reduce the scaling in 𝐶, we can approximate the factorization
∇2

𝒇 𝑛
ℓ𝑛(𝜽) = ∑𝐶

𝑐=1 𝒔𝑛,𝑐𝒔
⊤
𝑛,𝑐 by a smaller set of vectors. One principled

approach is to draw MC samples {𝒔̃𝑛,𝑚} with 𝔼𝑚[𝒔̃𝑛,𝑚 𝒔̃⊤𝑛,𝑚] = ∇2
𝒇 𝑛
ℓ𝑛(𝜽)

as in [38] or Example 5.2. This reduces the scaling of backpropagated
vectors from 𝐶 to the number of MC samples 𝑀 (= 1 in the following
if not specified). A common independent approximation to reduce the
scaling in 𝑁 is computing curvature on a mini-batch subset [25, 183].

Parameter Groups (Block-diagonal Approximation)

Some applications, e.g. computing Newton steps, require 𝑽 to be kept in
memory for performing the transformation from Gram space into the
parameter space. Still, we can reduce costs by using the GGN’s diagonal
blocks {𝑮(𝑙)}𝐿𝑙=1 of each layer, rather than the full matrix 𝑮. Such blocks
are available during backpropagation and can thus be used and discarded
step by step. In addition to the previously described approximations for
reducing the costs in 𝑁 and 𝐶, this technique tackles scaling in 𝐷.

Implementation Details

BackPACK’s functionality allows us to efficiently compute individual
gradients and 𝑽 in a single backward pass, using either an exact or
MC-factorization of the loss Hessian. To reduce memory consumption,
we extend its implementation with a protocol to support mini-batch sub-
sampling and parameter groups. By hooks into the package’s extensions,
we can discard buffers as soon as possible during backpropagation, effec-
tively implementing all discussed approximations and optimizations.

In Section 7.3, we specifically address how the above approximations
affect run time and memory requirements, and study their impact on
structural properties of the GGN.

7.3 Experiments

For the practical use of the ViViT concept, it is essential that (i) the
computations are efficient and (ii) that we gain an understanding of how
sub-sampling noise and the approximations introduced in Section 7.2.4
alter the structural properties of the GGN. In the following, we therefore
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empirically investigate ViViT’s scalability and approximation properties
in the context of deep learning. The insights from this analysis substantiate
ViViT’s value as a monitoring tool for deep learning optimization.

Experimental Setting

Architectures include three deep CNNs from DeepOBS [146] (2c2d on
Fashion-MNIST, 3c3d on CIFAR-10 and All-CNN-C on CIFAR-100), as
well as ResNets from He et al. [68] on CIFAR-10 based on Idelbayev [74]—
all architectures use cross-entropy loss. Based on the approximations
presented in Section 7.2.4, we distinguish the following cases:

▶ mb, exact: Exact GGN with all mini-batch samples. Backpropagates
𝑁𝐶 vectors.

▶ mb, mc: MC-approximated GGN with all mini-batch samples.
Backpropagates 𝑁𝑀 vectors with 𝑀 the number of MC-samples.

▶ sub, exact: Exact GGN on a subset of mini-batch samples (⌊𝑁/8⌋ as
in [183]). Backpropagates ⌊𝑁/8⌋𝐶 vectors.

▶ sub, mc: MC-approximated GGN on a subset of mini-batch sam-
ples. Backpropagates ⌊𝑁/8⌋𝑀 vectors with 𝑀 the number of MC-
samples.

7.3.1 Scalability

We now complement the theoretical computational complexity analysis
from Section 7.2.3 with empirical studies. Results were generated on a
workstation with an Intel Core i7-8700K CPU (32 GB) and one NVIDIA
GeForce RTX 2080 Ti GPU (11 GB). We use 𝑀 = 1 in the following.

Memory Performance

We consider two tasks:

1. Computing eigenvalues: The nontrivial eigenvalues {𝜆𝑘 | (𝜆𝑘 , 𝒆̃𝑘) ∈
𝕊̃+} are obtained by forming and eigen-decomposing the Gram
matrix 𝑮̃, allowing stage-wise discarding of 𝑽 (see Sections 7.2.1
and 7.2.3).

2. Computing the top eigenpair: For (𝜆1 , 𝒆1), we compute the Gram
matrix spectrum 𝕊̃+, extract its top eigenpair (𝜆1 , 𝒆̃1), and transform
it into parameter space by Equation (7.5), i. e. (𝜆1 , 𝒆1 = 1/√𝜆1𝑽 𝒆̃1).
This requires more memory than task 1 as 𝑽 must be stored.

As a comprehensive memory performance measure, we use the largest
batch size before our system runs out of memory—we call this the critical
batch size 𝑁crit.

Figure 7.2a tabularizes the critical batch sizes on GPU for the 3c3d
architecture on CIFAR-10. As expected, computing eigenpairs requires
more memory and leads to consistently smaller critical batch sizes in
comparison to computing only eigenvalues. Yet, they all exceed the
traditional batch size used for training (𝑁 = 128, see [146]), even when
using the exact GGN. With ViViT’s approximations, the memory overhead
can be reduced to significantly increase the applicable batch size.
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(a) Memory performance

𝑁crit (eigenvalues)

GGN
Data mb sub

exact 909 4375
mc 3840 6626

𝑁crit (top eigenpair)
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mc 3060 6029

(b) Run time performance
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Figure 7.2: GPU memory and run
time performance: Performance mea-
surements for the 3c3d architecture (𝐷 =
895,210) on CIFAR-10 (𝐶 = 10). (a) Criti-
cal batch sizes 𝑁crit for computing eigen-
values and the top eigenpair. (b) Run
time comparison with a power iteration
for extracting the 𝑘 leading eigenpairs
using a batch of size 𝑁 = 128.

We report similar results for more architectures, a block-diagonal approx-
imation (as in Zhang et al. [183]), and on CPU in Appendix D.2.1, where
we also benchmark a third task—computing damped Newton steps.

Run Time Performance

Next, we consider computing the 𝑘 leading eigenvectors and eigenvalues
of a matrix. A power iteration that computes eigenpairs iteratively via
matrix-vector products serves as a reference. For a fixed value of 𝑘, we
repeat both approaches 20 times and report the shortest time.

For the power iteration, we adapt the implementation from the PyHessian
library [177] and replace its Hessian-vector product by a matrix-free GGN-
vector product [148] through PyTorch’s AD. We use the same default
hyperparameters for the termination criterion. Similar to task 1, our
method obtains the top-𝑘 eigenpairs5 by computing 𝕊̃+, extracting its 5: In contrast to the power iteration that

is restricted to dominating eigenpairs,
our approach allows choosing arbitrary
eigenpairs.

leading eigenpairs and transforming the eigenvectors 𝒆̃1 , 𝒆̃2 , . . . , 𝒆̃𝑘 into
parameter space by application of 𝑽 (see Equation (7.5)).

Figure 7.2b shows the GPU run time for the 3c3d architecture on CIFAR-
10, using a mini-batch of size 𝑁 = 128. Without any approximations
to the GGN, our method already outperforms the power iteration for
𝑘 > 1 and increases much slower in run time as more leading eigenpairs
are requested. This means that, relative to the transformation of each
eigenvector from the Gram space into the parameter space through 𝑽 ,
the run time mainly results from computing 𝑽 , 𝑮̃, and eigendecompos-
ing the latter. This is consistent with the computational complexity of
those operations in 𝑁𝐶 (compare Section 7.2.3) and allows for efficient
extraction of a large number of eigenpairs. The run time curves of the
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Figure 7.3: Full-batch GGN versus full-
batch Hessian: Overlap between the top-
𝐶 eigenspaces of the full-batch GGN and
full-batch Hessian during training of the
3c3d network on CIFAR-10 with SGD.
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approximations confirm this behavior by featuring the same flat profile.
Additionally, they require significantly less time than the exact mini-batch
computation. Results for more network architectures, a block-diagonal
approximation and on CPU are reported in Appendix D.2.1.

7.3.2 Approximation Quality

ViViT is based on the Hessian’s generalized Gauss-Newton approximation
(see Equation (7.2)). In practice, the GGN is only computed on a mini-
batch which yields a statistical estimator for the full-batch GGN (i. e. the
GGN evaluated on the entire training set). Additionally, we introduce
curvature sub-sampling and an MC approximation (see Section 7.2.4), i. e.
further approximations that alter the curvature’s structural properties. In
this section, we compare quantities at different stages within this hierarchy
of approximations. We use the test problems from above and train the
networks with both SGD and Adam (details in Appendix D.2.2).

GGN Versus Hessian

First, we empirically study the relationship between the GGN and the
Hessian in the deep learning context. To capture solely the effect of
neglecting the residual 𝑹 (see Equation (7.2)), we consider the noise-free
case and compute 𝑯 and 𝑮 on the entire training set.

We characterize both curvature matrices by their top-𝐶 eigenspace: the
space spanned by the eigenvectors to the 𝐶 largest eigenvalues. This is
a 𝐶-dimensional subspace of the parameter space Θ, on which the loss
function is subject to particularly strong curvature. The overlap between
these spaces serves as the comparison metric. Let {𝒆𝑼𝑐 }𝐶𝑐=1 the set of
orthonormal eigenvectors to the 𝐶 largest eigenvalues of some symmetric
matrix 𝑼 and E𝑼 = span(𝒆𝑼1 , ..., 𝒆𝑼𝐶 ). The projection onto this subspace
E𝑼 is given by the projection matrix𝑷𝑼 = (𝒆𝑼1 , ..., 𝒆𝑼𝐶 )(𝒆𝑼1 , ..., 𝒆𝑼𝐶 )⊤. As in
Gur-Ari et al. [65], we define the overlap between two top-𝐶 eigenspaces
E𝑼 and E𝑽 of the matrices 𝑼 and 𝑽 by

overlap(E𝑼 , E𝑽 ) = Tr (𝑷𝑼𝑷𝑽 )√
Tr (𝑷𝑼 )Tr (𝑷𝑽 )

∈ [0, 1] . (7.9)
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Figure 7.4: Mini-batch GGN versus full-
batch GGN: Overlap between the top-𝐶
eigenspaces of the mini-batch GGN and
full-batch GGN during training of the
3c3d network on CIFAR-10 with SGD.
For each mini-batch size, 5 different mini-
batches are drawn.

If overlap(E𝑼 , E𝑽 ) = 0, then E𝑼 and E𝑽 are orthogonal to each other; if
the overlap is 1, the subspaces are identical.

Figure 7.3 shows the overlap between the full-batch GGN and Hessian
during training of the 3c3d network on CIFAR-10 with SGD. Except for a
short phase at the beginning of the optimization procedure (note the log
scale for the epoch-axis), a strong agreement (overlap ≥ 0.85) between
the top-𝐶 eigenspaces is observed. We make similar observations with the
other test problems (see Appendix D.2.3), yet to a slightly lesser extent for
CIFAR-100. Consequently, we identify the GGN as an interesting object,
since it consistently shares relevant structure with the Hessian matrix.

Eigenspace Under Noise & Approximations

ViViT uses mini-batching to compute a statistical estimator of the full-
batch GGN. This approximation alters the top-𝐶 eigenspace, as shown in
Figure 7.4: with decreasing mini-batch size, the approximation carries less
and less structure of its full-batch counterpart, as indicated by dropping
overlaps. In addition, at constant batch size, a decrease in approximation
quality can be observed over the course of training. This might be a
valuable insight for the design of second-order optimization methods,
where this structural decay could lead to performance degradation over
the course of the optimization, which has to be compensated for by a
growing batch-size (e.g. Martens [106] reports that the optimal batch size
grows during training).

To allow for a fine-grained cost-accuracy trade-off, ViViT introduces fur-
ther approximations to the mini-batch GGN (see Section 7.2.4). Figure 7.5
shows the overlap between these GGN approximations and the full-batch
GGN6. The order of the approximations is as expected: with increas- 6: A comparison with the mini-batch

GGN as ground truth can be found in
Appendix D.2.4

ing computational effort, the approximations improve and, despite the
greatly reduced computational effort compared to the exact mini-batch
GGN, significant structure of the top-𝐶 eigenspace is preserved. Details
and results for the other test problems are reported in Appendix D.2.4.

So far, our analysis is based on the top-𝐶 eigenspace of the curvature ma-
trices. We extend it by studying the effect of noise and approximations on
the curvature magnitude along the top-𝐶 directions in Appendix D.2.5.
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Figure 7.5: Approximations versus full-
batch GGN: Overlap between the top-
𝐶 eigenspaces of the mini-batch GGN,
ViViT’s approximations and the full-
batch GGN during training of the 3c3d
network on CIFAR-10 with SGD. Each
approximation is evaluated on 5 mini-
batches.
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Figure 7.6: Directional curvature SNRs:
Curvature SNRs along each of the mini-
batch GGN’s top-𝐶 eigenvectors during
training of the 3c3d network on CIFAR-
10 with SGD. At fixed epoch, the SNR for
the most curved direction is shown in
and the SNR for the direction with the
smallest curvature is shown in .
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7.3.3 Per-sample Directional Derivatives

A unique feature of ViViT’s quantities is that they provide a notion of
curvature uncertainty through per-sample first- and second-order directional
derivatives (Equation (7.8)). To quantify noise in these derivatives, we
compute their signal-to-noise ratios (SNRs). For each direction 𝒆𝑘 , the SNR
is given by the squared empirical mean divided by the empirical variance
of the 𝑁 mini-batch samples {𝛾𝑛,𝑘}𝑁𝑛=1 and {𝜆𝑛,𝑘}𝑁𝑛=1, respectively.

Figure 7.6 shows curvature SNRs during training the 3c3d network on
CIFAR-10 with SGD. The curvature signal along the top-𝐶 eigenvectors
decreases from SNR > 1 by two orders of magnitude. In comparison, the
directional gradients do not exhibit such a pattern (see Appendix D.2.6).
Results for the other test cases can be found in Appendix D.2.6.

In this section, we have given a glimpse of the very rich quantities that
can be efficiently computed under ViViT’s concept. In Section 7.5, we
discuss their practical use—curvature uncertainty in particular.
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GGN Spectrum & Low-rank Structure

Other works point out the GGN’s low-rank structure. Botev et al. [21]
present the rank bound (𝑁𝐶) and propose an alternative to K-FAC based
on backpropagating a decomposition of the loss Hessian. Papyan [122]
presents the factorization in Equation (7.3) and studies the eigenvalue
spectrum’s hierarchy for cross-entropy loss. In this setting, the GGN
further decomposes into summands, some of which are then analyzed
through similar Gram matrices. These can be obtained as contractions
of 𝑮̃, but our approach goes beyond them as it does not neglect terms.
We are not aware of works that obtain the exact spectrum and leverage
a highly-efficient fully-parallel implementation. This may be because,
until recently [23, 38], vectorized Jacobians required to perform those
operations efficiently were not available.

Efficient Operations with Low-rank Matrices in Deep Learning

Chen et al. [30] use Equation (7.3) for element-wise evaluation of the
GGN in FCNNs. They also present a variant based on MC sampling. This
element-wise evaluation is then used to construct hierarchical matrix
approximations of the GGN. ViViT instead leverages the global low-rank
structure that also enables efficient eigendecomposition.

Another prominent low-rank matrix in deep learning is the un-centered
gradient covariance (sometimes called empirical Fisher). Singh and
Alistarh [154] describe implicit multiplication with its inverse and apply
it for neural network compression, assuming the empirical Fisher as a
Hessian proxy. However, this assumption has limitations, specifically
for optimization [92]. In principle though, the low-rank structure also
permits the application of our methods from Section 7.2.

7.5 Use Cases

Aiming to provide a well-founded, theoretical and empirical evaluation,
we have consciously focused on studying the approximation quality of
ViViT’s quantities, as well as on demonstrating the efficiency of their
computation. We believe it is interesting in itself that the low-rank
structure provides access to quantities that would otherwise be costly.
Still, we want to briefly address possible use cases—their full development
and assessment, however, will amount to separate paper(s):

▶ Monitoring tool: Our computationally efficient curvature model
provides geometric and stochastic information about the local loss
landscape and can be used by tools like Cockpit [147] to debug
optimizers or to gain insights into the optimization problem itself
(as in Sections 7.3.2 and 7.3.3).

▶ Second-order optimization: The quantities provided by ViViT, in
particular the first- and second-order directional derivatives, can be
used to build a stochastic quadratic model of the loss function and
perform Newton-like parameter updates. In contrast to existing
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second-order methods, per-sample quantities contain information
about the reliability of that quadratic model. This offers a new
dimension for improving second-order methods through statistics
on the mini-batch distribution of the directional derivatives (e.g. for
variance-adapted step sizes), potentially increasing the method’s
performance and stability.

7.6 Conclusion

We have presented ViViT, a curvature model based on the low-rank struc-
ture of the Hessian’s generalized Gauss-Newton (GGN) approximation.
This structure allows for efficient extraction of exact curvature properties,
such as the GGN’s full eigenvalue spectrum and directional gradients
and curvatures along the associated eigenvectors. ViViT’s quantities scale
by approximations that allow for a fine-grained cost-accuracy trade-off.
In contrast to alternatives, these quantities offer a notion of curvature
uncertainty across the mini-batch in the form of directional derivatives.

We empirically demonstrated the efficiency of leveraging the GGN’s low-
rank structure and substantiated its usefulness by studying characteristics
of curvature noise on various deep learning architectures.

The low-rank representation is efficiently computed in parallel with
gradients during a single backward pass. As it mainly relies on vec-
torized Jacobians, it is general enough to be integrated into existing
machine learning libraries in the future. For now, we provide an efficient
open-source implementation in PyTorch [126] by extending the existing
BackPACK [38] library.
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Contemporary deep learning is powered by methods that solely rely
on the gradient. This is reflected in popular machine learning libraries
which prioritize its computation. However, it narrows research to focus
on gradient-based algorithms that are not agnostic to the empirical
risk’s stochasticity and geometry beyond first order. To advance the field,
we need to explore the potential of higher-order information beyond
the gradient. One main hindrance to further explore its utility has
been that it is complicated to implement, which makes it difficult for
practitioners to try it out. Therefore, one major goal of this work was
to ease experimentation with higher-order information by making it as
conveniently accessible as the gradient. This thesis demonstrates that
rich information beyond the gradient is affordable, can be made readily
available in existing machine learning libraries, and is useful to enable
novel approaches for advancing deep learning:

(Q1)Which information beyond the gradient is efficiently accessible?

Figure 8.1 provides an overview of the higher-order information made
accessible in this work: per-sample gradients—whose empirical mean is
the mini-batch gradient—can be explicitly computed, or reduced into
higher-order statistics like the gradient variance. Light-weight structural
approximations through diagonal and Kronecker matrices enable the
computation of per-layer second-order derivatives in the Hessian or gen-
eralized Gauss-Newton. The generalized Gauss-Newton’s outer product
structure allows to go beyond per-layer terms, even to compute with the
full matrix, and to access curvature noise.

(Q2) How to compute this information—conveniently, automatically, and
efficiently—re-using the existing backpropagation implementation of ML
frameworks?

All quantities presented in this thesis are phrased as extensions of a
standard backward pass.

Therefore, they can be computed efficiently and at the same time as the
gradient (Figure 8.2). Gradient statistics share most computations with
the gradient, and can recycle information from the standard backward
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Figure 8.1: Higher-order information
made available by this work (extends
Figure 1.2). Quantities are roughly
mapped onto the landscape spanned by
the stochasticity and geometry of the
loss. They can be categorized as (i) gra-
dient statistics, (ii) diagonal curvature
approximations, (iii) Kronecker-factored
curvature approximations, and (iv) noise-
aware curvature from the generalized
Gauss-Newton’s low-rank structure.
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Figure 8.2: All information in Figure 8.1 is an extension of the standard backward pass for the gradient. Forward ( ) and backward
( ) pass are implemented by machine learning libraries. Minimal invasion by adding an extended backward pass ( ) allows to compute
various other quantities. The specifics ( ) on what and how to backpropagate depend on the quantity of interest.

pass. Approximate second-order derivatives require sending additional
information through the computation graph. In runtime, the additional
work is often significantly reduced through hardware parallelism.
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Figure 8.3: Modularity is crucial for au-
tomation and extensibility. Given a func-
tioning backpropagation procedure, the
extended backward pass in Figure 8.2
reduces to specifying a set of rules for
each module and each quantity. This sim-
plifies adding new operations, while pre-
serving automatic computation.

Their formulations vary in what, and how, objects are being backpropa-
gated through layers, and how the target quantities are extracted for each
parameter. As these rules are defined on a per-module basis (Figure 8.3),
the approach is extensible and guarantees automatic computation.

From an implementation perspective, this is achieved through light-
weight extension of an existing gradient backpropagation implementation
without implementing a new framework. This enables easy integration
into existing machine learning libraries, and makes it convenient for
practitioners to extend their code at minimal overhead.

(Q3) How to use this information to advance gradient-based deep learning?

In addition to second-order optimization, various deep learning meth-
ods require higher-order information: Laplace approximations [e.g. 40],
model compression (pruning) [e.g. 154], differential privacy [e.g. 2],
importance sampling [e.g. 85], variance adaptation [e.g. 9], parameter
initialization [e.g. 155], batch size adaptation [e.g. 11], etc. Some of them
were briefly outlined in this thesis to motivate the demand that this infor-
mation be more readily available. Easier access to this information enables
more efficient and creative research in these areas and helps establish
the resulting methods through user-friendly implementations.

As a use case, this thesis focused on enabling a deeper look into the
inner workings of neural networks during training through the lens of
higher-order information. This allows to identify common failure modes,
which makes training less painful, and thereby highlights the utility of
higher-order information for deep learning.

Going further, this work also underlines the unexplored nature of higher-
order information: the developed extended automatic differentiation
functionality enables novel efficient computational schemes that address
shortcomings in existing approaches. This allows to build more powerful
local approximations of the loss landscape which are agnostic to noise,
curvature, and even noise in the curvature. Such works help to identify
important techniques to reduce run time, make algorithms that rely on
such information more competitive with gradient-based methods, and
shape the development of future machine learning frameworks.
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Extending Backpropagation to the Hessian

Gradient backpropagation is efficient, automated, and extensible. Chap-
ter 4 presented how—for sequential feedforward architectures—this
carries over to second-order derivatives: just like backpropagation re-
covers the layer-wise gradients, Hessian backpropagation recovers the
per-layer Hessians. It fully aligns the computation of local Hessians with
gradients and unifies the view on block-diagonal curvature approxima-
tions like the block-diagonal generalized Gauss-Newton [148], Fisher [5],
and its Kronecker-factorized approximations [21, 31, 63, 109].

Packing More into Backprop

The BackPACK library, presented in Chapter 5, provides efficient access
to various deep learning quantities through implementing the insights on
extended backpropagation for the Hessian on top of PyTorch. During a
standard backward pass that computes the average gradient, it extracts (i)
per-sample gradients and gradient statistics, and (ii) approximate second-
order derivatives in the form of diagonal and Kronecker-factorized
curvature. This often adds only little overhead. BackPACK easily inte-
grates into existing code and simplifies experimentation with the above
quantities: it powers other libraries for Bayesian applications with Laplace
approximations [40, 76], out-of-distribution generalization [64, 130], and
differential privacy [179], as well as the follow-up works in this thesis
(Cockpit [147], ViViT [39]). More than two years after its release, the
library is still actively used, with multiple hundred downloads per week
at the time of writing (July 2022).

Enabling a Closer Look Into Neural Nets

Higher-order information as provided by BackPACK is valuable to
guide neural network training. Common methods for real-time training
diagnostics, such as monitoring the loss, are limited because they only
indicate whether a model is training, but not why. The Cockpit library,
presented in Chapter 6, enables a closer look into neural networks
during training. The live-monitoring tool visualizes established, recently
proposed [11, 19, 26, 100, 104, 162, 177], and novel summary statistics that
are efficiently computed by BackPACK. It allows to identify common bugs
in the machine learning pipeline, such as improper data pre-processing
or vanishing gradients, but also to guide learning rate selection, and to
study implicit regularization [56, 112]. This showcases the potential of
higher-order information to assist practitioners.

Enabling Novel Ways to Compute with Curvature

BackPACK’s extended automatic differentiation functionality enables
algorithmic advances to tackle limitations of existing curvature proxies:
diagonal or Kronecker-factorized curvatures are (i) not agnostic to noise
in the mini-batch, (ii) strict approximations that do not become exact in

https://pypistats.org/packages/backpack-for-pytorch
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any limit, and (iii) restricted to the block diagonal. ViViT’s quantities,
presented in Chapter 7, address this through the generalized Gauss-
Newton’s low-rank structure, which allows for exact computation with the
full—rather than block-diagonal—matrix, and principled approximations
to reduce cost in exchange for less accuracy. ViViT enables efficient
computation of spectral properties, as well as directional gradients and
curvatures on a per-sample basis that quantify noise. Monitoring this
noise through signal-to-noise ratios helps understand its characteristics
in deep learning [48] and to identify challenges for optimization and
generalization from the interplay between noise and curvature [162].

8.2 Future Work

Deep learning needs more than just the gradient. To leverage the full
potential of higher-order information, we need to (i) build more—and
refine existing—tools to (ii) study and better understand algorithmic
challenges in deep learning, and (iii) amplify the practicality of such
next-generation algorithms through user-friendly and highly-efficient
implementations like gradient-based methods.

Extending Cockpit

Chapter 6 demonstrated Cockpit’s utility for identifying common bugs in
the machine learning pipeline. These failures were deliberately designed
on well-known, standardized machine learning problems, to illustrate
Cockpit’s purpose. Since they were implicitly tuned over many years to
work well with currently popular methods, they rarely exhibit failure
modes. Cockpit will be even more useful for debugging unknown, non-
standardized problems that have not undergone such tuning, and are
therefore extremely likely to exhibit failures. We want to establish Cockpit
as a tool for practitioners facing such problems and are looking forward
to its first success stories “in the wild”.

Cockpit also provides functionality for scientific analyses of neural
networks. Training such models is often wasteful in computation, e.g.
using large grid searches whose computations are effectively discarded
after identifying one well-performing set of hyperparameters. Cockpit’s
summary statistics are condensed and could be stored for a large number
of training trajectories corresponding to different hyperparameter settings.
These trajectories could be collected into a dataset that could serve for
the analysis of optimization algorithms to understand their implicit
bias, to study properties of neural networks that generalize well, or for
meta-learning optimization strategies.

To further improve the meaningfulness and interpretability of Cockpit’s
instruments, its control over parts of the network could be made more
customizable: currently, most quantities can be computed either on all
parameters, or per parameter. For very large networks, it will be more
practical to group parameters, and to compute and visualize Cockpit’s
instruments per parameter group.
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Noise-aware Second-order Methods

Newton steps are powerful, but their stability is strongly affected by
noise: one corrupted step might undo all previous progress. Improving
their stability is thus one key challenge to make them work in the mini-
batch setting. To do that, we need to quantify noise in the mini-batch.
But popular curvature proxies used in second-order methods are not
noise-agnostic. Therefore, we need curvature approximations that give
access to noise, e.g. through per-sample information as provided through
ViViT. Such information could be used to develop noise-aware stabilizing
mechanisms for Newton steps, like damping.

Optimizing Run Time & Advancing Automatic Differentiation

In contrast to gradient-based methods, the run time performance of
higher-order methods can still be significantly improved: e.g. BackPACK
outperforms naive implementations (like for-loops) and achieves practical
overheads. But it relies on PyTorch’s Python API, which is sometimes not
flexible enough, and therefore realizes some functionality through less
efficient workarounds. Recent advances in automatic differentiation, like
JAX [23] and functorch [72], rely on function transformation to achieve a
clean separation of automatic differentiation and batching, and allow for
more efficient implementations through just-in-time compilation.

Often, performance improvements are achieved through leveraging lin-
ear algebra, like properties of the Kronecker product [101] and matrix
decompositions [e.g. 38, 39]. Recent work suggests that there is potential
for further improvements, as a number of these optimizations are not
yet realized [141]. Therefore, one direction would be to improve the
automated optimization of operations in second-order methods in these
libraries. This would further reduce the overhead of second-order meth-
ods stemming from poor implementation, and make these performance
gains widely available to the machine learning community.
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Here, we provide additional details and derivations for Hessian back-
propagation (HBP).

Appendix A.1 relates the HBP Equation (4.7) to the chain rule for matrix
derivatives [103]. It relies on the clean definitions of generalized Jaco-
bian and Hessian matrices for multi-variate functions (Equations (2.27)
and (3.6)), and their chain rules (Theorems 2.2 and 3.1).

With matrix derivatives, the HBP equation for a variety of module
functions can be derived elegantly. Appendices A.2 to A.4 contain the
HBP derivations for all operations in Table 4.1. We split the considered
operations into different categories to achieve a cleaner structure. Ap-
pendix A.2 contains details on operations used for the construction of
fully-connected neural networks (FCNNs) and skip-connections. Ap-
pendix A.2.4 illustrates the analytic composition of multiple modules by
combining the backward passes of a nonlinear elementwise activation
function and an affine transformation. This yields the recursive schemes
of Botev et al. [21] and Chen et al. [31], the latter of which has been used
in the experiment of Section 4.4. The analysis of the Hessian for common
loss functions is provided in Appendix A.3. Operations occurring in
convolutional neural networks (CNNs) are subject of Appendix A.4.

Appendix A.5 provides details on model architectures, training proce-
dures used in the experiments of Section 4.4, and an additional experiment
on a modified test problem of the DeepOBS benchmark library [146].

A.1 Matrix Derivatives

Index notation for higher-order derivatives of multi-variate matrix func-
tions can become heavy [8, 31, 110, 115]. We tackle this by embedding our
approach in the notation of matrix differential calculus, which

1. yields notation consistent with established literature on matrix
derivatives [103] and clarifies the origin of the symbols J and ∇2,
used extensively in the main text (Equations (2.27) and (3.6))1. 1: Magnus and Neudecker [103] use

D𝑩(𝑨),H𝑩(𝑨) for the Jacobian J𝑨𝑩 and
Hessian ∇2

𝑨𝑩 of matrix variables 𝑨, 𝑩.
2. allows for using a multi-dimensional generalization of the chain

rule (Theorems 2.2 and 3.1).
3. lets us extract first- and second-order derivatives from differentials

using the identification rules of Magnus and Neudecker [103]
without bothering to deal with index notation.

With these techniques it is easy to see how structure, like Kronecker
products, appears in the derivatives.
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Preliminaries & Notation

Equations (2.27) and (3.6) and theorems 2.2 and 3.1 represent a collection
of results from the book of Magnus and Neudecker [103]. They generalize
the concept of first- and second-order derivatives to multi-variate matrix
functions in terms of the Jacobian and Hessian matrix. While there exist
multiple ways to arrange the partial derivatives, the presented definitions
allows for a multi-variate generalization of the chain rule.

We denote matrix, vector, and scalar functions by 𝑭 , 𝒇 , and 𝜙, respec-
tively. Matrix (vector) arguments are written as 𝑿 (𝒙). Vectorization (vec,
Definition 2.2) applies column-stacking, such that for matrices 𝑨, 𝑩, 𝑪,

vec(𝑨𝑩𝑪) = (
𝑪⊤ ⊗ 𝑨

)
vec(𝑩) . (A.1)

We assign vectors to bold lower-case (𝒙 , 𝜽, . . . ), matrices to bold upper-
case (𝑾 ,𝑿 , . . . ), and tensors to bold upper-case sans serif symbols
(W,X, . . . ). ⊙means elementwise multiplication (Hadamard product).

Remark on Vectorization

The generalized Jacobian and Hessian from [103] rely on vectoriza-
tion of matrices. Convolutional neural networks usually act on ten-
sors and we incorporate these by assuming them to be flattened
such that the first index varies fastest. For a matrix (tensor of or-
der two), this is consistent with column-stacking. E.g., the vector-
ized version of the tensor A ∈ ℝ𝑛1×𝑛2×𝑛3 with 𝑛1 , 𝑛2 , 𝑛3 ∈ ℕ is
vecA = (A1,1,1 ,A2,1,1 , . . . ,A𝑛1 ,1,1 ,A1,2,1 , . . . ,A𝑛1 ,𝑛2 ,𝑛3)⊤. To formulate
the generalized Jacobian or Hessian for tensor operations, its action on a
vector or matrix view of the original tensor is considered. Consequently,
all operations can be reduced to vector-valued functions, which we
consider in the following.

The vectorization scheme is not unique. Most of the linear algebra
literature assumes column-stacking. However, when it comes to imple-
mentations, a lot of programming languages store tensors in row-major
order, corresponding to row-stacking vectorization (last index varies
fastest). Thus, special attention has to be paid in implementations.

A.1.1 Relation to the Modular Approach

Theorem 3.1 can directly be applied to the graph ℓ ◦ 𝑓 (𝐿)
𝜽(𝐿)
◦ 𝑓 (𝐿−1)

𝜽(𝐿−1) ◦ . . .◦ 𝑓 (1)𝜽(1)
of the sequential feedforward net under investigation. For any module
function 𝑓 (𝑙)

𝜽(𝑙)
, the loss can be expressed as a composition of two functions

by squashing preceding modules in the graph into a single function
𝑓 (𝑙−1)
𝜽(𝑙−1) ◦ . . . ◦ 𝑓 (1)𝜽(1)

, and likewise composing the module itself and all

subsequent functions, i. e. ℓ ◦ 𝑓 (𝐿)
𝜽(𝐿)
◦ . . . ◦ 𝑓 (𝑙)

𝜽(𝑙)
.

The analysis can therefore be reduced to the module shown in Figure 4.2
receiving an input 𝒙 ∈ ℝ𝑛 that is used to compute the output 𝒛 ∈ ℝ𝑚 .
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The scalar loss is then expressed as a mapping ℓ (𝒛(𝒙), 𝒚) : ℝ𝑛 → ℝ𝑝

with 𝑝 = 1. Suppressing the label 𝒚 , Equation (3.14) implies

∇2
𝒙 ℓ =

(
𝑰𝑝 ⊗ J𝒙𝒛

)⊤ (∇2
𝒛 ℓ

)
J𝒙𝒛 + (J𝒛ℓ ⊗ 𝑰𝑛) ∇2

𝒙 𝒛

= (J𝒙𝒛)⊤
(∇2

𝒛 ℓ
)

J𝒙𝒛 + (J𝒛ℓ ⊗ 𝑰𝑛) ∇2
𝒙 𝒛 .

(A.2)

The HBP Equation (4.7), which contains Hessians of elements of 𝒛, is
obtained by substituting the form Equation (3.7) into Equation (A.2).

A.2 HBP for FCNNs

A.2.1 Linear Layer (Matrix-vector Multiplication,
Matrix-Matrix Multiplication, Addition)

Consider the function 𝒇 of a module applying an affine transformation
to a vector. Apart from the input 𝒙, additional parameters of the module
are given by the weight matrix 𝑾 and the bias term 𝒃,

𝒇 : ℝ𝑛 ×ℝ𝑚×𝑛 ×ℝ𝑚 → ℝ𝑚

(𝒙 ,𝑾 , 𝒃) ↦→ 𝒛 = 𝑾𝒙 + 𝒃 .

To compute the Jacobians w.r. t. each variable, we use the differentials

d𝒛(𝒙) = 𝑾d𝒙 ,
d𝒛(𝒃) = d𝒃 ,

d𝒛(𝑾 ) = (d𝑾 )𝒙 =⇒ d vec 𝒛(𝑾 ) = (
𝒙⊤ ⊗ 𝑰𝑚

)
vec(d𝑾 ) ,

using Equation (A.1) to establish the implication in the last line. With
the first identification tables provided in Magnus and Neudecker [103,
Chapter 9.6], the Jacobians can be read off from the differentials as
J𝒙𝒛 = 𝑾 , J𝒃𝒛 = 𝑰𝑚 , J𝑾 𝒛 = 𝒙⊤ ⊗ 𝑰𝑚 . All second module derivatives
∇2
𝒙 𝒛, ∇2

𝑾 𝒛, and ∇2
𝒃 𝒛 vanish since 𝒇 is linear in all inputs. Inserting the

Jacobians into Equation (4.7) results in

∇2
𝒙 ℓ = 𝑾⊤ (∇2

𝒛 ℓ
)
𝑾 , (A.3a)

∇2
𝒃ℓ = ∇2

𝒛 ℓ , (A.3b)

∇2
𝑾 ℓ =

(
𝒙⊤ ⊗ 𝑰𝑚

)⊤ (∇2
𝒛 ℓ

) (
𝑥⊤ ⊗ 𝑰𝑚

)
= 𝒙𝒙⊤ ⊗ ∇2

𝒛 ℓ = 𝒙 ⊗ 𝒙⊤ ⊗ ∇2
𝒛 ℓ .

(A.3c)

The HBP relations for matrix-vector multiplication and addition listed
in Table 4.1 are special cases of Equation (A.3). HBP for matrix-matrix
multiplication is derived in a completely analogous fashion.

A.2.2 Elementwise Activation

Next, consider the elementwise application of a nonlinear function 𝜙,

𝝓 : ℝ𝑚 → ℝ𝑚

𝒙 ↦→ 𝒛 = 𝝓(𝒙) such that [𝝓(𝒙)]𝑘 = 𝜙([𝒙]𝑘) ,
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For the matrix differential w.r. t. 𝒙, this implies

d𝝓(𝒙) = 𝝓′(𝒙) ⊙ d𝒙 = diag [𝝓′(𝒙)]d𝒙 ,

where 𝝓′ means elementwise application of 𝜙′, and consequently, the
Jacobian is a diagonal matrix J𝒙𝝓(𝒙) = diag [𝝓′(𝒙)] . For the Hessian,
note that the function value 𝜙𝑘(𝒙) := [𝝓(𝒙)]𝑘 only depends on 𝑥𝑘 := [𝒙]𝑘
and thus ∇2

𝒙𝜙𝑘 = 𝜙′′(𝑥𝑘)𝒆̂𝑘 𝒆̂⊤𝑘 , with the one-hot unit vector 𝒆̂𝑘 ∈ ℝ𝑚 in
coordinate direction 𝑘. Inserting all quantities into Equation (4.7) yields

∇2
𝒙 ℓ = diag [𝝓′(𝒙)] (∇2

𝒛 ℓ
)

diag [𝝓′(𝒙)] +
∑
𝑘

𝜙′′(𝑥𝑘)𝒆̂𝑘 𝒆̂⊤𝑘
(∇𝑧𝑘ℓ )

= diag [𝝓′(𝒙)] (∇2
𝒛 ℓ

)
diag [𝝓′(𝒙)] + diag [𝝓′′(𝒙) ⊙ ∇𝒛ℓ ] ,

(A.4)

where 𝝓′′ means elementwise application of 𝜙′′.

A.2.3 Skip-connection

Residual learning [68] uses skip-connection units to facilitate the training
of DNNs. In its simplest form, the mapping 𝒇 : ℝ𝑚 → ℝ𝑚 reads

𝒛(𝒙 , 𝜽) = 𝒙 + 𝒔(𝒙 , 𝜽) ,

with a potentially nonlinear operation (𝒙 , 𝜽) ↦→ 𝒔. The input and param-
eter Jacobians are given by J𝒛𝒛(𝑥) = 𝑰𝑚 + J𝒙𝒔(𝒙) and J𝜽𝒛(𝜽) = J𝜽𝒔(𝜽).
Using Equation (4.7), one finds

∇2
𝒙 ℓ = [𝑰𝑚 + J𝒙𝒔(𝒙)]⊤

(∇2
𝒛 ℓ

) [𝑰𝑚 + J𝒙𝒔(𝒙)] +
∑
𝑘

[∇2
𝒙 𝑠𝑘(𝒙)

] (∇𝑧𝑘ℓ ) ,
∇2
𝜽ℓ = [J𝜽𝒔(𝜽)]⊤

(∇2
𝒛 ℓ

) [J𝜽𝒔(𝜽)] +∑
𝑘

[∇2
𝜽𝑠𝑘(𝜽)

] (∇𝑧𝑘ℓ ) .

A.2.4 Relation to Recursive Schemes in Previous Work

The modular decomposition of curvature backpropagation facilitates the
analysis of modules composed of multiple operations. Now, we analyze
the composition of two modules. This yields the recursive schemes
presented by Botev et al. [21] (KFRA) and Chen et al. [31] (BDA-PCH).

Analytic Composition of Multiple Modules

Consider the module 𝒈 = 𝒇 ◦ 𝝓, 𝒙 ↦→ 𝒚 := 𝝓(𝒙) ↦→ 𝒛 = 𝒇 (𝒚(𝒙)).
Assume 𝝓 to act elementwise on the input, followed by a linear layer
𝒇 : 𝒛(𝒚) = 𝑾𝒚+𝒃 (Figure A.1a). Analytic elimination of the intermediate
backward pass recovers the backward pass of the fused module that
consists of both operations (Figure A.1b). The first Hessian backward
pass through the linear module 𝒇 (Equation (A.3)) implies

∇2
𝒚ℓ = 𝑾⊤ (∇2

𝒛 ℓ
)
𝑾 ,

∇2
𝑾 ℓ = 𝒚 ⊗ 𝒚⊤ ⊗ ∇2

𝒛 ℓ = 𝝓(𝒙) ⊗ 𝝓(𝒙)⊤ ⊗ ∇2
𝒛 ℓ , (A.5a)

∇2
𝒃ℓ = ∇2

𝒛 ℓ . (A.5b)
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(a) Activation and linear layer as two separate modules
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∇2
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𝝓 𝒛 = 𝑾𝒚

𝑾
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∇𝒃ℓ
∇2
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𝒛

∇𝒛ℓ
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(b) Activation and linear layer fused into a single module

Figure A.1: The sequence of element-
wise activation 𝝓 and linear layer can
be interpreted as two modules, or a sin-
gle one. (a) Both operations are analyzed
separately to derive the HBP. (b) Back-
propagation of ∇2

𝒛 ℓ is expressed in terms
of ∇2

𝒙 ℓ without intermediate message.

Further backpropagation through 𝝓 with Equation (A.4) results in

∇2
𝒙 ℓ = diag [𝝓′(𝒙)]

(
∇2
𝒚ℓ

)
diag [𝝓′(𝒙)] + diag

[
𝝓′′(𝒙) ⊙ (∇𝒚ℓ )

]
= diag [𝝓′(𝒙)] [𝑾⊤ (∇2

𝒛 ℓ
)
𝑾

]
diag [𝝓′(𝒙)]

+ diag
[
𝝓′′(𝒙) ⊙𝑾⊤(∇𝒛ℓ )

]
= {𝑾 diag [𝝓′(𝒙)]}⊤ (∇2

𝒛 ℓ
) {𝑾 diag [𝝓′(𝒙)]}

+ diag
[
𝝓′′(𝒙) ⊙𝑾⊤(∇𝒛ℓ )

]
.

(A.5c)

We use invariance of a diagonal matrix under transposition and
∇𝒚ℓ = 𝑾⊤(∇𝒛ℓ ) for the backpropagated gradient for the last equal-
ity. The Jacobian J𝒙 𝒈(𝒙) of the module shown in Figure A.1b is
J𝒙 𝒈(𝒙) = 𝑾 diag[𝝓(𝑥)] = [𝑾⊤ ⊙ 𝝓′(𝒙)]⊤ (broadcasting 𝝓′(𝒙)). In
summary, HBP for the composite layer 𝒛(𝒙) = 𝑾𝝓(𝒙) + 𝒃 is given
by Equation (A.5).

Obtaining the Relations of KFRA and BDA-PCH

The derivations for the composite module given above are closely related
to the recursive schemes of Botev et al. [21] and Chen et al. [31]. Their
relations are obtained from a straightforward conversion of the HBP
rules equation A.5. Consider a sequence of a linear layer 𝑓 (1)

𝜽(1)
and multiple

composite modules 𝑓 (2)
𝜽(2)
, . . . , 𝑓 (𝐿)

𝜽(𝐿)
as shown in Figure A.2.

According to Equation (A.5b) both the linear layer and the composite
𝑓 (𝑙)
𝜽(𝑙)

identify the gradient (Hessian) w.r. t. their outputs, ∇𝒛(𝑙)ℓ (∇2
𝒛(𝑙)ℓ ), as

the gradient (Hessian) w.r.t. their bias term, ∇𝒃(𝑙)ℓ (∇2
𝒃(𝑙)
ℓ ). Introducing

layer indices for all quantities, one finds the recursion

∇2
𝒃(𝑙)
ℓ = ∇2

𝒛(𝑙)ℓ , (A.6a)

∇2
𝑾 (𝑙)

ℓ = 𝝓(𝒛(𝑙−1)) ⊗ 𝝓(𝒛(𝑙−1))⊤ ⊗ ∇2
𝒃(𝑙)
ℓ , (A.6b)
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Figure A.2: Grouping scheme for the recursive Hessian computation proposed by KFRA and BDA-PCH. The backward messages
between the linear layer and the preceding nonlinear activation are analytically fused.

for 𝑙 = 𝐿 − 1, . . . , 1, and

∇2
𝒛(𝑙−1)ℓ =

{
𝑾 (𝑙) diag

[
𝝓′(𝒛(𝑙−1))

]}⊤
∇2
𝒃(𝑙)
ℓ
{
𝑾 (𝑙) diag

[
𝝓′(𝒛(𝑙−1))

]}
+ diag

[
𝝓′′(𝒛(𝑙−1)) ⊙𝑾 (𝑙)⊤∇𝒃(𝑙)ℓ

]
=

{
𝑾 (𝑙)⊤ ⊙ 𝝓′(𝒛(𝑙−1))

}
∇2
𝒃(𝑙)
ℓ
{
𝑾 (𝑙)⊤ ⊙ 𝝓′(𝒛(𝑙−1))

}⊤
+ diag

[
𝝓′′(𝒛(𝑙−1)) ⊙𝑾 (𝑙)⊤∇𝒃(𝑙)ℓ

]
(A.6c)

for 𝑙 = 𝐿 − 1, . . . , 2. It is initialized with the loss function’s gradient
(Hessian) ∇𝒛(𝐿)ℓ (∇2

𝒛(𝐿)ℓ ).

Equation (A.6) are equivalent to the expressions provided in [21, 31]. Their
emergence from compositions of HBP equations of simple operations
represents one key insight of Chapter 4. Both works use the batch average
strategy presented in Section 4.3.2 to obtain curvature estimates.

A.3 HBP for Loss Functions

A.3.1 Square Loss

Square loss of the model prediction 𝒇 ∈ ℝ𝐶 and the true label 𝒚 ∈ ℝ𝐶 is
computed by (Equation (2.1))

ℓ ( 𝒇 , 𝒚) = 1
𝐶
(𝒚 − 𝒇 )⊤(𝒚 − 𝒇 ) .

Differentiating

dℓ ( 𝒇 ) = 1
𝐶

[−(d 𝒇 )⊤ (𝒚 − 𝒇 ) − (𝒚 − 𝒇 )⊤ d 𝒇
]
= − 2

𝐶
(𝒚 − 𝒇 )⊤ d 𝒇

once more yields

d2ℓ ( 𝒇 ) = 2
𝐶
(d 𝒇 )⊤d 𝒇 =

2
𝐶
(d 𝒇 )⊤𝑰𝐶(d 𝒇 ) .

The Hessian is extracted with the second identification tables from Magnus
and Neudecker [103, Chapter 10.4] and reproduces the expected result

∇2
𝒇 ℓ ( 𝒇 ) =

2
𝐶
𝑰𝐶 . (A.7)
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A.3.2 Softmax Cross-entropy Loss

The computation of cross-entropy from logits (Equation (2.2)) is composed
of two operations. First, the neural network outputs are transformed into
log-probabilities by the softmax function. Then, the cross-entropy with
the distribution implied by the label is computed.

Log-softmax

The output’s elements 𝒇 ∈ ℝ𝐶 of a neural network are assigned to
log-probabilities 𝒛( 𝒇 ) = log 𝑝( 𝒇 ) ∈ ℝ𝐶 by means of the softmax function
𝑝( 𝒇 ) = exp( 𝒇 )/∑𝑖 exp( 𝑓𝑖 ). Consequently,

𝒛( 𝒇 ) = 𝒇 − log

[∑
𝑖

exp( 𝑓𝑖)
]
,

and the Jacobian reads J 𝒇 𝒛( 𝒇 ) = 𝑰𝐶 − 1𝐶𝑝( 𝒇 )⊤ with 1𝐶 ∈ ℝ𝐶 denoting a
vector of ones. The log-probability Hessians w.r. t. 𝒇 are given by

∇2
𝒇 [𝒛( 𝒇 )]𝑘 = −diag [𝑝( 𝒇 )] + 𝑝( 𝒇 )𝑝( 𝒇 )⊤ .

Cross-entropy

The negative log-probabilities are used for the cross-entropy with the
probability distribution of the label 𝑦 ∈ {1, . . . , 𝑐},

ℓ (𝒛, 𝑦) = −onehot(𝑦)⊤𝒛 .

Since ℓ is linear in the log-probabilities 𝒛, i. e. ∇2
𝒛 ℓ (𝒛) = 0, the HBP is

∇2
𝒇 ℓ ( 𝒇 ) =

[
J 𝒇 𝒛( 𝒇 )

]⊤ ∇2
𝒛 ℓ (𝒛)

[
J 𝒇 𝒛( 𝒇 )

] +∑
𝑘

∇2
𝒇 [𝒛( 𝒇 )]𝑘

𝜕ℓ (𝒛)
𝜕[𝒛]𝑘

=
{−diag [𝑝( 𝒇 )] + 𝑝( 𝒇 )𝑝( 𝒇 )⊤} ∑

𝑘

[−onehot(𝑦)]𝑘

= diag [𝑝( 𝒇 )] − 𝑝( 𝒇 )𝑝( 𝒇 )⊤ .

A.4 HBP for CNNs

The recursive approaches in [21, 31] tackle the computation of curvature
blocks for FCNNs. To the best of our knowledge, an extension to CNNs
has not been achieved so far. One reason might be that convolutions come
with heavy notation that is difficult to deal with in index notation.

Martens and Grosse [109] provide a procedure for computing a Kronecker-
factored approximation of the Fisher for convolutions (KFC). This scheme
relies on the property of the Fisher to describe the covariance of the
log-likelihood’s gradients under the model’s distribution. Curvature
information is thus encoded in the expectation value, and not by back-
propagation of second-order derivatives.

To derive the HBP for convolutions, we use that an efficient implemen-
tation of the forward pass is decomposed into multiple operations (see
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Figure A.4), which can be considered independently by means of our
modular approach (see Figure A.5 for details). Our analysis starts by con-
sidering the backpropagation of curvature through operations that occur
frequently in CNNs. This includes the reshape (Appendix A.4.1) and
extraction operation (Appendix A.4.2). In Appendix A.4.3 we outline the
modular decomposition and curvature backpropagation of convolution
in two dimensions. The approach carries over to other dimensions.

All operations under consideration in this section are linear. Hence the
second terms in Equation (4.7) vanish. Again, we use the framework of
matrix differential calculus [103] to avoid index notation.

A.4.1 Reshape/View

The reshape operation reinterprets a tensor X ∈ ℝ𝑛1×···×𝑛𝑥 as another
tensor Z ∈ ℤ𝑚1×···×𝑚𝑧 (Definition 2.3)

Z(X) = reshape(X) ,
which possesses the same number of elements, i. e.

∏
𝑖 𝑛𝑖 =

∏
𝑖 𝑚𝑖 . One

example is given by the vec operation from Definition 2.2. It corresponds
to a reshape into a tensor of order one. As the arrangement of elements
remains unaffected, vecZ = vecX, and reshaping corresponds to the
identity map on the vectorized input. Consequently, one finds (remember
that ∇2Xℓ is a shorthand notation for ∇2

vecXℓ )
∇2Xℓ = ∇2Zℓ .

A.4.2 Index Select/Map

Selecting elements of a tensor can be phrased as matrix-vector multi-
plication of a binary matrix 𝚷 and the vectorized tensor. The mapping
is described by an index map 𝜋. Element 𝑗 of the output 𝒛 ∈ ℝ𝑚 is
selected as element 𝜋(𝑗) from the input 𝒙 ∈ ℝ𝑛 . Only elements [𝚷]𝑗 ,𝜋(𝑗)
in the selection matrix 𝚷 ∈ ℝ𝑚×𝑛 are one, while all other entries vanish.
Consequently, index selection can be expressed as

[𝒛]𝑗 = [𝒙]𝜋(𝑗) ⇔ 𝒛(𝒙) = 𝚷𝒙 with [𝚷]𝑗 ,𝜋(𝑗) = 1 .

The HBP is equivalent to the linear layer discussed in Appendix A.2.1,

∇2
𝒛 ℓ = 𝚷⊤(∇2

𝒙 ℓ )𝚷 .

Applications include max-pooling and the im2col / unfold operation
(see Appendix A.4.3). Average-pooling represents a weighted sum of
index selections and can be treated analogously.

A.4.3 Convolution

The convolution operation acts on local patches of a multi-channel
input of sequences, images, or volumes. In the following, we restrict the
discussion to two-dimensional convolution. Figure A.3a illustrates the
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(c)

Figure A.3: Two-dimensional convolu-
tion Y = X★W without bias term. (a)
The input X consists of 𝐶in = 3 channels
(different colors) of (3 × 3) images. Filter
maps of size (2 × 2) are provided by the
kernel W for the generation of 𝐶out = 2
output channels. Patch and kernel vol-
umes that are contracted in the first step
of the convolution are highlighted. As-
suming no padding and a stride of one
results in four patches. New features Y
consist of 𝐶out = 2 channels of (2 × 2)
images. (b) Detailed view. All tensors are
unrolled along the first axis. (c) Convolu-
tion as matrix multiplication. From left
to right, the matrices ⟦X⟧⊤ ,𝑾⊤ , and𝒀⊤
are shown.

setting. A collection of filter maps, the kernel W, is slid over the spatial
coordinates of the input tensor X. In each step, the kernel is contracted
with the current area of overlap (the patch).

Both the sliding process as well as the structure of the patch area can
be controlled by hyperparameters of the operation (kernel size, stride,
dilation). Moreover, it is common practice to extend the input tensor,
for instance by zero-padding [for an introduction to the arithmetics of
convolutions, see 45]. The approach presented here is not limited to a
certain choice of convolution hyperparameters.

Forward Pass & Notation

We now introduce the quantities involved in the process along with their
dimensions. For a summary, see Table A.1. A forward pass of convolution
proceeds as follows (see Figure A.3b for an example):

▶ The input X, a tensor of order three, stores a collection of two-
dimensional data. Its componentsX𝑐in ,𝑥1 ,𝑥2 are referenced by indices
for the channel 𝑐in and the spatial location (𝑥1 , 𝑥2). 𝐶in , 𝑋1 , 𝑋2
denote input channels, width & height of the image, respectively.

▶ The kernelW is a tensor of order four with shape (𝐶out , 𝐶in , 𝐾1 , 𝐾2).
Kernel width 𝐾1 and height 𝐾2 determine the patch size 𝑃 = 𝐾1𝐾2
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Table A.1: Important quantities for the
convolution operation. The number of
patches equals the product of the out-
puts’ spatial dimensions, i. e. 𝑃 = 𝑌1𝑌2.

Tensor Dimensionality Description

X (𝐶in , 𝑋1 , 𝑋2) InputW (𝐶out , 𝐶in , 𝐾1 , 𝐾2) KernelY (𝐶out , 𝑌1 , 𝑌2) Output
⟦X⟧ (𝐶in𝐾1𝐾2 , 𝑃) Expanded input
𝑾 (𝐶out , 𝐶in𝐾1𝐾2) Matricized kernel
𝒀 (𝐶out , 𝑃) Matricized output
𝒃 𝐶out Bias vector
𝑩 (𝐶out , 𝑃) Bias matrix

for each channel. New features are obtained by contracting the
patch and kernel. This is repeated for a collection of 𝐶out output
channels stored along the first axis of W.

▶ Each output channel 𝑐out is shifted by a bias 𝑏𝑐out , stored in the
𝐶out-dimensional vector 𝒃.

▶ The output Y = X★W with components [Y]𝑐out ,𝑦1 ,𝑦2 is of the same
structure as the input. We denote the spatial dimensions of Y by
𝑌1 , 𝑌2, respectively. Hence Y is of dimension (𝐶out , 𝑌1 , 𝑌2).

input im2col /
unfold matmul

col2im /
reshape

output

reshapekernel

copybias

Figure A.4: Decomposition of the con-
volution operation’s forward pass.

Example (index notation): A special case where input and output have
the same spatial dimensions [63] uses a stride of one, kernel widths 𝐾1 =
𝐾2 = 2𝐾+1, (𝐾 ∈ ℕ), and padding𝐾. Elements of the filter [W]𝑐out ,𝑐in ,:,: are
addressed with the index set {−𝐾, . . . , 0, . . . , 𝐾}× {−𝐾, . . . , 0, . . . , 𝐾}:

[Y]𝑐out ,𝑦1 ,𝑦2 =
𝐾∑

𝑘1=−𝐾

𝐾∑
𝑘2=−𝐾

[X]𝑐in ,𝑥1+𝑘1 ,𝑥2+𝑘2[W]𝑐out ,𝑐in ,𝑘1 ,𝑘2 + [𝑏]𝑐out . (A.8)

Elements of X addressed out of bounds evaluate to zero. Arbitrary
convolutions come with even heavier notation.

Convolution as Matrix Multiplication

Evaluating convolutions by sums of the form Equation (A.8) leads to
poor memory locality [63]. For improved performance, the computation
is mapped to a matrix multiplication [29]. To do so, patches of the
input X are extracted and flattened into columns of a matrix. The patch
extraction is indicated by the operator ⟦·⟧ and the resulting matrix ⟦X⟧ is
of dimension (𝐶in𝐾1𝐾2 × 𝑃) (see left part of Figure A.3c showing ⟦X⟧⊤).
In other words, elements contracted with the kernel are stored along the
first axis of ⟦X⟧. ⟦·⟧ is also referred to as im2col or unfold operation2,2: Our definition of the unfold opera-

tor slightly differs from [63], where flat-
tened patches are stacked rowwise. This
lets us achieve an analogous form to a
linear layer. Conversion is achieved by
transposition.

and accounts for padding.

The kernel tensor W is reshaped into a (𝐶out × 𝐶in𝐾1𝐾2)matrix 𝑾 , and
elements of the bias vector 𝑣𝑏 are copied columnwise into a (𝐶out × 𝑃)
matrix 𝑩 = 𝒃1⊤𝑃 , where 1𝑃 is a 𝑃-dimensional vector of ones. Patchwise
contractions are carried out by matrix multiplication and yield a matrix
𝒀 of shape (𝐶out , 𝑃)with 𝑃 = 𝑌1𝑌2,

𝒀 = 𝑾 ⟦X⟧ + 𝑩 (A.9)

(Figure A.3c shows 𝑾⊤ , ⟦X⟧⊤, and 𝒀 from left to right). Reshaping 𝒀
into a (𝐶out , 𝑌1 , 𝑌2) tensor, referred to as col2im , yields Y. Figure A.4
summarizes the outlined decomposition of the forward pass.
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X

∇2Xℓ
unfold

⟦X⟧

∇2
⟦X⟧ℓ

matmul

W

∇2Wℓ
𝒁

∇2
𝒁ℓ

add

𝒃

∇2
𝒃 ℓ

𝒀

∇2
𝒀 ℓ

col2im

Y

∇2Yℓ

Figure A.5: Decomposition of convolution with notation for the study of curvature backpropagation.

A.4.4 HBP for Convolution

We now compose the HBP for convolution, proceeding from right to left
with the operations depicted in Figure A.5, by analyzing the backpropa-
gation of curvature for each module, adopting the figure’s notation.

Reshape/ col2im

The col2im operation takes a matrix 𝒀 ∈ ℝ𝐶out×𝑌1𝑌2 and reshapes it into
the tensor Y ∈ ℝ𝐶out×𝑌1×𝑌2 . According to Appendix A.4.1, ∇2

𝒀ℓ = ∇2Yℓ .

Bias Hessian

Forward pass 𝒀 = 𝒁 + 𝑩 and Equation (A.3b) imply ∇2
𝒀ℓ = ∇2

𝑩ℓ = ∇2
𝒁ℓ .

To obtain the Hessian w.r.t. 𝒃 from ∇2
𝑩ℓ , consider the columnwise copy

operation 𝑩(𝒃) = 𝒃 1⊤𝑃 , whose matrix differential is d𝑩(𝒃) = (d𝒃) 1⊤𝑃 .
Vectorization yields d vec𝑩(𝒃) = (1𝑃 ⊗ 𝑰𝐶out)d𝒃. Hence, the Jacobian is
J𝒃𝑩(𝒃) = 1𝑃 ⊗ 𝑰𝐶out , and Equation (4.7) yields

∇2
𝒃ℓ = (1𝑃 ⊗ 𝑰𝐶out)⊤ ∇2

𝑩ℓ (1𝑃 ⊗ 𝑰𝐶out) .

This performs a linewise and columnwise summation over∇2
𝑩ℓ , summing

entities that correspond to copies of the same entry of 𝒃 in the matrix 𝑩.
It can also be regarded as a reshape of ∇2

𝑩ℓ into a (𝐶out , 𝑃, 𝐶out , 𝑃) tensor,
which is then contracted over the second and fourth axis.

Weight Hessian

HBP for the matrix-matrix multiplication 𝒁(𝑾 , ⟦X⟧) = 𝑾 ⟦X⟧ was
discussed in Appendix A.2.1. The Jacobians are given by J⟦X⟧𝒁(⟦X⟧) =
𝑰𝑃 ⊗𝑾 and J𝑾𝒁(𝑾 ) = ⟦X⟧⊤ ⊗ 𝑰𝑆 with the patch size 𝑆 = 𝐶in𝐾1𝐾2.
Hence, HBP for the weight matrix & unfolded input are

∇2
⟦X⟧ℓ = (𝑰𝑃 ⊗𝑾 )⊤ ∇2

𝒁ℓ (𝑰𝑃 ⊗𝑾 ) ,
∇2
𝑾 ℓ =

(
⟦X⟧⊤ ⊗ 𝑰𝑆

)⊤ ∇2
𝒁ℓ

(
⟦X⟧⊤ ⊗ 𝑰𝑆

)
.

From what has been said about the reshape operation in Appendix A.4.1,
it follows that ∇2Wℓ = ∇2

𝑾 ℓ .
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Im2col/Unfold

The patch extraction operation ⟦·⟧ copies all patch elements into the
column of a matrix. It thus represents a selection of elements by an index
map which is hard to express in notation. Numerically, it is obtained by
calling im2col on a (𝐶in , 𝑋1 , 𝑋2) index tensor whose entries correspond
to the indices. The resulting tensor contains all information about the
index map. HBP follows the relation of Appendix A.4.2.

Discussion

Although convolution can be understood as a matrix multiplication, the
parameter Hessian is not identical to that of the linear layer discussed in
Appendix A.2.1. The difference is due to the parameter sharing of the
convolution. In the case of a linear layer 𝒛 = 𝑾𝒙 + 𝒃, the Hessian of the
weight matrix for a single sample possesses Kronecker structure [8, 21,
31], i. e. ∇2

𝑾 ℓ = 𝒙 ⊗ 𝒙⊤ ⊗ ∇2
𝒛 ℓ . For convolutional layers, however, it has

been argued by [8] that block diagonals of the Hessian do not inherit the
same structure. Rephrasing the forward pass equation A.9 in terms of
vectorized quantities, we find

vec𝒀 = (𝐼𝑃 ⊗𝑾 ) vec⟦X⟧ + vec𝑩 .

In this perspective, convolution corresponds to a fully-connected linear
layer, with the additional constraints that the weight and bias matrix
be circular. Defining 𝑾̂ := 𝑰𝑃 ⊗𝑾 , one then finds the Hessian ∇2

𝑾̂
ℓ

to possess Kronecker structure. Parameterization with a kernel tensor
encodes the circularity constraint in weight sharing.

For the kernel Hessian ∇2
𝑾 ℓ to possess Kronecker structure, the output

Hessian ∇2
𝒁ℓ must be assumed to factorize into a Kronecker product

of 𝑆 × 𝑆 and 𝐶out × 𝐶out matrices. These assumptions are somewhat in
parallel with the approximations introduced in [63] to obtain KFC.

A.5 Experimental Details

Fully-connected Neural Network

The same model as in [31] (see Table A.2a) is used to extend the experiment
performed therein. The weights of each linear layer are initialized with
the Xavier method of Glorot and Bengio [57]. Bias terms are intialized to
zero. Backpropagation of the Hessian uses approximation Equation (4.9)
of Equation (A.6) to compute the curvature blocks ∇2

𝑾 (𝑙)
ℓ and ∇2

𝒃(𝑙)
ℓ .

Hyperparameters are chosen as follows to obtain consistent results
with the original work: all runs shown in Figure 4.4 use a batch size
of |𝔹| = 500. For SGD, the learning rate is assigned to 𝜂 = 0.1 with
momentum 𝜌 = 0.9. Block-splitting experiments with the second-order
method use the PCH-abs. All runs were performed with a learning rate
𝜂 = 0.1 and a regularization strength of 𝛼 = 0.02. For the convergence
criterion of CG, the maximum number of iterations is restricted to
𝑛CG = 50; convergence is reached at a relative tolerance 𝜖CG = 0.1.
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Table A.2: Model architectures under consideration. We use Conv2d(in_channels, out_channels, kernel_size, padding) ,
ZeroPad2d(padding_left, padding_right, padding_top, padding_bottom) , Linear(in_features, out_features) , and
MaxPool2d(kernel_size, stride) as patterns to describe module hyperparameters. Convolution strides are always one. (a) FCNN

used to extend the experiment in Chen et al. [31] (3 846 810 parameters). (b) CNN architecture (1 099 226 parameters). (c) DeepOBS 3c3d
test problem with three convolutional and three dense layers (895 210 parameters). ReLU activation functions are replaced by sigmoids.

(a) FCNN (Figure 4.4)

# Module

1 Flatten()

2 Linear(3072, 1024)

3 Sigmoid()

4 Linear(1024, 512)

5 Sigmoid()

6 Linear(512, 256)

7 Sigmoid()

8 Linear(256, 128)

9 Sigmoid()

10 Linear(128, 64)

11 Sigmoid()

12 Linear(64, 32)

13 Sigmoid()

14 Linear(32, 16)

15 Sigmoid()

16 Linear(16, 10)

(b) CNN (Figure 4.5)

# Module

1 Conv2d(3, 16, 3, 1)

2 Sigmoid()

3 Conv2d(16, 16, 3, 1)

4 Sigmoid()

5 MaxPool2d(2, 2)

6 Conv2d(16, 32, 3, 1)

7 Sigmoid()

8 Conv2d(32, 32, 3, 1)

9 Sigmoid()

10 MaxPool2d(2, 2)

11 Flatten()

12 Linear(2048, 512)

13 Sigmoid()

14 Linear(512, 64)

15 Sigmoid()

16 Linear(64, 10)

(c) DeepOBS 3c3d (Figure A.6)

# Module

1 Conv2d(3, 64, 5, 0)

2 Sigmoid()

3 ZeroPad2d(0, 1, 0, 1)

4 MaxPool2d(3, 2)

5 Conv2d(64, 96, 3, 0)

6 Sigmoid()

7 ZeroPad2d(0, 1, 0, 1)

8 MaxPool2d(3, 2)

9 ZeroPad2d(1, 1, 1, 1)

10 Conv2d(96, 128, 3, 0)

11 Sigmoid()

12 ZeroPad2d(0, 1, 0, 1)

13 MaxPool2d(3, 2)

14 Flatten()

15 Linear(1152, 512)

16 Sigmoid()

17 Linear(512, 256)

18 Sigmoid()

19 Linear(256, 10)

Convolutional Neural Net

The CNN architecture shown in Table A.2b is trained on a hyperparameter
grid. Runs with smallest final training loss are selected to rerun on
different random seeds. The curves in Figure 4.5b represent mean values
and standard deviations for ten different realizations over the random
seed. All layer parameters were initialized with PyTorch’s default.

For the first-order methods (SGD, Adam), we considered batch sizes
|𝔹| ∈ {100, 200, 500}. For SGD, momentum 𝜌 was tuned over the set
{0, 0.45, 0.9}. Although we varied the learning rate over a large range of
values 𝜂 ∈ {

10−3 , 10−2 , 0.1, 1, 10
}
, losses kept plateauing and did not de-

crease. In particular, the loss even increased for the large learning rates. For
Adam, we only vary the learning rate 𝜂 ∈ {

10−4 , 10−3 , 10−2 , 0.1, 1, 10
}
.

As second-order methods scale better to large batch sizes, we used
|𝔹| ∈ {200, 500, 1000} for them. The CG convergence parameters were
set to 𝑛CG = 200 and 𝜖CG = 0.1. For all curvature matrices, we varied the
learning rates over 𝜂 ∈ {0.05, 0.1, 0.2} and 𝛼 ∈ {

10−4 , 10−3 , 10−2}.

To compare with another second-order method, we experimented with
a public PyTorch implementation of the KFAC optimizer [63, 109]
(github.com/alecwangcq/KFAC-Pytorch). All hyperparameters were
kept at their default setting. The learning rate was varied over 𝜂 ∈{
10−4 , 10−3 , 10−2 , 0.1, 1, 10

}
.

The hyperparameters of results shown in Figure 4.5 read as follows:

https://github.com/alecwangcq/KFAC-Pytorch
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Figure A.6: Comparison of SGD, Adam, and Newton-style methods with different exact curvature matrix-vector products (HBP). The
architecture is the DeepOBS 3c3d network [146] with sigmoid activations (Table A.2c).

▶ SGD (|𝔹| = 100, 𝜂 = 10−3 , 𝜌 = 0.9). The particular choice of these
hyperparameters is artificial. This run is representative for SGD,
which does not achieve any progress at all.

▶ Adam (|𝔹| = 100, 𝜂 = 10−3)
▶ KFAC (|𝔹| = 500, 𝜂 = 0.1)
▶ PCH-abs (|𝔹| = 1000, 𝜂 = 0.2, 𝛼 = 10−3),

PCH-clip (|𝔹| = 1000, 𝜂 = 0.1, 𝛼 = 10−4)
▶ GGN, 𝛼1 (|𝔹| = 1000, 𝜂 = 0.1, 𝛼 = 10−4). This run does not yield

the minimum training loss on the grid; it is shown to illustrate that
the second-order method can escape the flat regions in early stages.

▶ GGN, 𝛼2 (|𝔹| = 1000, 𝜂 = 0.1, 𝛼 = 10−3). Compared to 𝛼1, the
second-order method requires more iterations to escape the initial
plateau, caused by the larger regularization strength. However, this
leads to improved robustness against noise in later training stages.

Additional experiment: Another experiment conducted with HBP
considers the 3c3d architecture (Table A.2c) of DeepOBS [146] on CIFAR-
10. ReLU activations are replaced by sigmoids to make the problem
more challenging. The hyperparameter grid is chosen identically to the
CNN experiment above, and results are summarized in Figure A.6. In
particular, the hyperparameter settings for each competitor are:

▶ SGD (|𝔹| = 100, 𝜂 = 1, 𝜌 = 0)
▶ Adam (|𝔹| = 100, 𝜂 = 10−3)
▶ PCH-abs (|𝔹| = 500, 𝜂 = 0.1, 𝛼 = 10−3),

PCH-clip (|𝔹| = 500, 𝜂 = 0.1, 𝛼 = 10−2)
▶ GGN (|𝔹| = 500, 𝜂 = 0.05, 𝛼 = 10−3)
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B.1 BackPACK Extensions

This section provides technical details on BackPACK’s quantities.

Notation

Consider an arbitrary module 𝑓 (𝑙)
𝜽(𝑙)

of a network 𝑙 = 1, . . . , 𝐿, parame-
terized by 𝜽(𝑙). It transforms the output of its parent layer for sample 𝑛,
𝒛(𝑙−1)
𝑛 , to its output 𝒛(𝑙)𝑛 , i. e.

𝒛(𝑙)𝑛 = 𝑓 (𝑙)
𝜽(𝑙)
(𝒛(𝑙−1)
𝑛 ) , 𝑛 = 1, . . . , 𝑁 , (B.1)

where 𝑁 is the number of samples. In particular, 𝒛(0)𝑛 = 𝒙𝑛 and 𝒛(𝐿)𝑛 (𝜽) =
𝒇 𝑛 , where 𝑓𝜽 is the transformation of the whole network. The dimension
of the hidden layer 𝑙’s output 𝒛(𝑙)𝑛 is written ℎ(𝑙) and 𝜽(𝑙) is of dimension
𝑑(𝑙). The dimension of the network output, the prediction 𝒛(𝐿), is ℎ(𝐿) = 𝐶.
For classification, 𝐶 corresponds to the number of classes.

All quantities are assumed to be vector-shaped. For image-processing
transformations that usually act on tensor-shaped inputs, we can reduce
to the vector scenario by vectorizing all quantities (Definition 2.2); this
discussion does not rely on a specific flattening scheme. However, for an
efficient implementation, vectorization should match the layout of the
memory of the underlying arrays.

Jacobian

The Jacobian (Definition 2.4) J𝒂𝒃 of a vector 𝒃 ∈ ℝ𝐵 w.r. t. another vector
𝒂 ∈ ℝ𝐴 is a [𝐵×𝐴]matrix of partial derivatives, [J𝒂𝒃]𝑖 , 𝑗 = 𝜕 [𝒃]𝑖 /𝜕 [𝒂]𝑗 .

B.1.1 First-order Quantities

The basis for the extraction of additional information about first-order
derivatives is Equation (5.3), which we state again for multiple samples,

∇𝜽(𝑙)L(𝜽) =
1
𝑁

𝑁∑
𝑛=1
∇𝜽(𝑙)ℓ𝑛(𝜽) =

1
𝑁

𝑁∑
𝑛=1

(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤ (
∇
𝒛(𝑙)𝑛
ℓ𝑛(𝜽)

)
.

During the backpropagation step of module 𝑙, we have access to ∇
𝒛(𝑙)𝑛
ℓ (𝜽),

𝑛 = 1, . . . , 𝑁 . To extract more quantities involving the gradient, we
use additional information about the transformation 𝑓 (𝑙)

𝜽(𝑙)
in our custom

implementation of Jacobian J𝜽(𝑙)𝒛
(𝑙)
𝑛 and transposed Jacobian (J𝜽(𝑙)𝒛(𝑙)𝑛 )⊤.
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Individual Gradients

The contribution of each sample to the overall gradient, 1/𝑁∇𝜽(𝑙)ℓ𝑛(𝜽), is
computed by application of the transposed Jacobian,

1
𝑁
∇𝜽(𝑙)ℓ𝑛(𝜽) =

1
𝑁

(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤ (
∇
𝒛(𝑙)𝑛
ℓ𝑛(𝜽)

)
, 𝑛 = 1, . . . , 𝑁 . (B.2)

For each parameter 𝜽(𝑙) the individual gradients are of size [𝑁 × 𝑑(𝑙)].

Individual Gradient 𝐿2 Norm

The quantity ∥1/𝑁∇𝜽(𝑙)ℓ𝑛(𝜽)∥22, for 𝑛 = 1, ..., 𝑁 , could be extracted from
the individual gradients (Equation (B.2)) as





 1
𝑁
∇𝜽(𝑙)ℓ𝑛(𝜽)






2

2

=
[

1
𝑁

(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤ (
∇
𝒛(𝑙)𝑛
ℓ𝑛(𝜽)

)]⊤ [
1
𝑁

(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤ (
∇
𝒛(𝑙)𝑛
ℓ𝑛(𝜽)

)]
,

which is an 𝑁-dimensional object per parameter 𝜽(𝑙). However, this is
memory inefficient as the individual gradients are [𝑁 × 𝑑(𝑙)]. BackPACK
circumvents this by using the Jacobian’s structure whenever possible.

For a specific example, take a linear layer with parameters 𝜽 as an [𝐴×𝐵]
matrix. The layer transforms the inputs {𝒛(𝑙−1)

𝑛 }𝑁𝑛=1, an [𝑁 × 𝐴] matrix
which we will now refer to as 𝑨. During the backward pass, it receives the
gradient of the individual losses w.r.t. its output, {1/𝑁∇

𝒛(𝑙)𝑛
ℓ𝑛}𝑁𝑛=1, as an

[𝑁×𝐵]matrix which we will refer to as 𝑩. The overall gradient, an [𝐴×𝐵]
matrix, can be computed as 𝑨⊤𝑩, and the individual gradients are a set
of 𝑁 [𝐴 × 𝐵]matrices, {[𝑨]𝑛,:[𝑩]⊤𝑛,:}𝑁𝑛=1. We want to avoid storing that
information. To reduce the memory requirement, note that the individual
gradient norm can be written as





 1
𝑁
∇𝜽ℓ𝑛






2

=
∑
𝑖

∑
𝑗
([𝑨]𝑛,𝑖[𝑩]𝑛,𝑗)2 ,

and that the summation can be done independently for each matrix, as∑
𝑖
∑
𝑗([𝑨]𝑛,𝑖[𝑩]𝑛,𝑗)2 = (∑𝑖[𝑨]𝑛,𝑖)2(∑𝑗[𝑩]2𝑛,𝑗). Therefore, we can square

each matrix (element-wise) and sum over non-batch dimensions. This
yields vectors 𝒂 , 𝒃 of 𝑁 elements, where [𝒂]𝑛 =

∑
𝑖[𝑨]2𝑛,𝑖 . The individual

gradients’ 𝐿2 norm is then given by 𝒂 ⊙ 𝒃.

Second moment

The gradient second moment (or more specifically, the diagonal of the
second moment) is the sum of the squared elements of the individual
gradients in a mini-batch, i. e.

1
𝑁

𝑁∑
𝑛=1

[∇𝜽(𝑙)ℓ𝑛(𝜽)]2
𝑗 , 𝑗 = 1, . . . , 𝑑(𝑙) . (B.3)
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It can be used to evaluate the variance of individual elements of the
gradient (see below). The second moment is of dimension 𝑑(𝑙), like the
layer parameter 𝜽(𝑙). Similarly to the 𝐿2 norm, it can be computed from
individual gradients, but is more efficiently computed implicitly.

Revisiting the linear layer example from the individual 𝐿2 norm com-
putation, the second moment of the parameters 𝜽[𝑖 , 𝑗] is given by∑
𝑛([𝑨]𝑛,𝑖[𝑩]𝑛,𝑗)2, which can be directly computed by taking the element-

wise square of 𝑨 and 𝑩, 𝑨⊙2 , 𝑩⊙2, and computing (𝑨⊙2)⊤𝑩⊙2.

Variance

Gradient variances over a mini-batch (or more precisely, the covariance
diagonal) are computed from the second moment and the gradient,

1
𝑁

𝑁∑
𝑛=1

[∇𝜽(𝑙)ℓ𝑛(𝜽)]2
𝑗 −

[∇𝜽(𝑙)L(𝜽)]2
𝑗 , 𝑗 = 1, . . . , 𝑑(𝑙) . (B.4)

The element-wise gradient variance is of same dimension as the layer
parameter 𝜽(𝑙), i. e. 𝑑(𝑙).

B.1.2 Second-order Quantities Based on the GGN

Backpropagation for the GGN’s Block Diagonal

The computation of quantities that originate from approximations of the
Hessian require an additional backward pass (see [37]). Most curvature
approximations supported by BackPACK rely on the generalized Gauss-
Newton (GGN) matrix [148] from Equation (3.15b)

𝑮(𝜽) = 1
𝑁

𝑁∑
𝑛=1

(
J𝜽 𝒇 𝑛

)⊤ ∇2
𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚𝑛)

(
J𝜽 𝒇 𝑛

)
. (B.5)

One interpretation of the GGN is that it corresponds to the empirical risk
Hessian when the model is replaced with its first-order Taylor expansion,
i. e. by linearizing the network and ignoring second-order effects. Hence,
the effect of module curvature in the recursive scheme of Equation (5.4)
can be ignored to obtain the simpler expression

𝑮(𝜽(𝑙)) = 1
𝑁

𝑁∑
𝑛=1

(
J𝜽(𝑙) 𝒇 𝑛

)⊤ ∇2
𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚𝑛)

(
J𝜽(𝑙) 𝒇 𝑛

)

=
1
𝑁

𝑁∑
𝑛=1

(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤
𝑮(𝒛(𝑙)𝑛 )

(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

) (B.6)

for the exact block diagonal of the full GGN. In analogy to 𝑮(𝜽(𝑙)) we
have introduced the [𝑑(𝑙) × 𝑑(𝑙)]-dimensional quantity

𝑮(𝒛(𝑙)𝑛 ) =
(
J
𝒛(𝑙)𝑛

𝒇 𝑛

)⊤
∇2

𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚𝑛)

(
J
𝒛(𝑙)𝑛

𝒇 𝑛

)
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that needs to be backpropagated following Equation (5.4) as

𝑮(𝒛(𝑙−1)
𝑛 ) =

(
J
𝒛(𝑙−1)
𝑛

𝒛(𝑙)𝑛
)⊤

𝑮(𝒛(𝑙)𝑛 )
(
J
𝒛(𝑙−1)
𝑛

𝒛(𝑙)𝑛
)
, 𝑙 = 1, . . . , 𝐿 , (B.7a)

initialized with the loss Hessian w.r. t. to the network prediction, i. e.

𝑮(𝒛(𝐿)𝑛 ) = ∇2
𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚𝑛) . (B.7b)

Although this scheme is exact, it is computationally infeasible as it
requires backpropagation of𝑁 [ℎ(𝑙)×ℎ(𝑙)]matrices between layer 𝑙+1 and
𝑙. Even for small 𝑁 , this is impossible for nets with large convolutions.

As an example, the first layer of the All-CNN-C network outputs 29 × 29
images with 96 channels, which already gives ℎ(𝑙) = 80,736, which
leads to half a Gigabyte per sample. Moreover, storing all the [𝑑(𝑙) ×
𝑑(𝑙)]-dimensional blocks 𝑮(𝜽(𝑙)) is not possible. BackPACK implements
different approximation strategies, developed by Martens and Grosse
[109] and Botev et al. [21] that address both of these complexity issues
from different perspectives.

Symmetric Factorization Scheme

One way to improve the memory footprint of the backpropagated matrices
in the case where the model prediction’s dimension 𝐶 (the number of
classes in an image classification task) is small compared to all hidden
features ℎ(𝑙) is to propagate a symmetric factorization of the GGN instead.
It relies on the observation that if the loss function itself is convex, even
though its composition with the network might not be, its Hessian w.r. t.
the network output can be decomposed as (e.g. Example 5.1)

∇2
𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚𝑛) = 𝑺(𝒛(𝐿)𝑛 )𝑺(𝒛(𝐿)𝑛 )⊤ (B.8)

with the [𝐶 × 𝐶]-dimensional matrix factorization of the loss Hessian,
𝑺(𝒛(𝐿)𝑛 ), for sample 𝑛. Consequently, the GGN in Equation (B.5) reduces
to an outer product,

𝑮(𝜽) = 1
𝑁

𝑁∑
𝑛=1

[ (
J𝜽 𝒇 𝑛

)⊤ 𝑺(𝒛(𝐿)𝑛 )] [ (
J𝜽 𝒇 𝑛

)⊤ 𝑺(𝒛(𝐿)𝑛 )]⊤ . (B.9)

The analogue for diagonal blocks follows from Equation (B.6) and reads

𝑮(𝜽(𝑙)) = 1
𝑁

𝑁∑
𝑛=1

[(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤
𝑺(𝒛(𝑙)𝑛 )

] [(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤
𝑺(𝒛(𝑙)𝑛 )

]⊤
, (B.10)

where we defined the [ℎ(𝑙)×𝐶]-dimensional matrix square root 𝑺(𝒛(𝑙)𝑛 ) :=
(J
𝒛(𝑙)𝑛

𝒇 𝑛)⊤𝑺(𝒛(𝐿)𝑛 ). Instead of having layer 𝑙 backpropagate 𝑁 objects of
shape [ℎ(𝑙) × ℎ(𝑙)] according to Equation (B.7), we instead backpropagate
the matrix square root via

𝑺(𝒛(𝑙−1)
𝑛 ) =

(
J
𝒛(𝑙−1)
𝑛

𝒛(𝑙)𝑛
)⊤

𝑺(𝒛(𝑙)𝑛 ) , 𝑙 = 1, . . . , 𝐿 , (B.11)

starting with Equation (B.8). This reduces the backpropagated matrix of
layer 𝑙 to [ℎ(𝑙) × 𝐶] for each sample.
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Diagonal Curvature Approximations

Diagonal of the GGN (DiagGGN): The factorization trick for the loss
Hessian reduces the size of the backpropagated quantities, but does not
address the intractable size of the GGN diagonal blocks 𝑮(𝜽(𝑙)). In Back-
PACK, we can extract diag(𝑮(𝜽(𝑙))) given the backpropagated quantities
𝑺(𝒛(𝑙)𝑛 ), 𝑙 = 1, . . . , 𝑁 , without building up the matrix representation of
Equation (B.10). In particular, we compute

diag
[
𝑮(𝜽(𝑙))

]

=
1
𝑁

𝑁∑
𝑛=1

diag
{[(

J𝜽(𝑙)𝒛
(𝑙)
𝑛

)⊤
𝑺(𝒛(𝑙)𝑛 )

] [(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤
𝑺(𝒛(𝑙)𝑛 )

]⊤}
.

(B.12)

Diagonal of the GGN with MC-sampled loss Hessian (DiagGGN-MC):
We use the same backpropagation strategy of Equation (B.11), replacing
the symmetric factorization of Equation (B.8) with an approximation by
a smaller matrix 𝑺̃(𝒛(𝐿)𝑛 ) of size [𝐶 × 𝐶̃] and 𝐶̃ < 𝐶 (e.g. Example 5.2),

∇2
𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚𝑛) ≈ 𝑺̃(𝒛(𝐿)𝑛 )

(
𝑺̃(𝒛(𝐿)𝑛 )

)⊤
. (B.13)

This further reduces the size of backpropagated curvature quantities.
Martens and Grosse [109] introduced such a sampling scheme with KFAC
based on the connection between the GGN and the Fisher. Most loss
functions used in machine learning have a probabilistic interpretation as
negative log-likelihood of a probabilistic model (see Section 2.1.3). The
squared error of regression is equivalent to a Gaussian noise assumption
and the cross-entropy is linked to the categorical distribution. In this case,
the loss Hessian w.r. t. the network output is equal, in expectation, to the
outer products of gradients if the target is sampled according to a particular
distribution, 𝑞(𝒚 | 𝒇 ), defined by the network output. Sampling targets
𝒚̂ ∼ 𝑞(𝒚 | 𝒇 ) for a datum (𝒙 , 𝒚)with 𝒇 := 𝑓𝜽(𝒙), we have

𝔼𝒚̂∼𝑞(· | 𝒇 )
[ (∇ 𝒇 ℓ ( 𝒇 , 𝒚̂)

) (∇ 𝒇 ℓ ( 𝒇 , 𝒚̂)
)⊤] = ∇2

𝒇 ℓ ( 𝒇 , 𝒚) . (B.14)

Sampling one such gradient leads to a rank-1 MC approximation of
the loss Hessian. With the substitution 𝑺 ↔ 𝑺̃, we compute an MC
approximation of the GGN diagonal in BackPACK as

diag
[
𝑮(𝜽(𝑙))

]

≈ 1
𝑁

𝑁∑
𝑛=1

diag
{[(

J𝜽(𝑙)𝒛
(𝑙)
𝑛

)⊤
𝑺̃(𝒛(𝑙)𝑛 )

] [(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤
𝑺̃(𝒛(𝑙)𝑛 )

]⊤}
.

(B.15)

Kronecker-factored Curvature Approximations

A different approach to reduce memory complexity of the GGN blocks
𝑮(𝜽(𝑙)), apart from diagonal curvature approximations, is representing
them as Kronecker products (KFAC for linear [109] and convolutional
layers [63] KFLR and KFRA for linear layers by [21]),

𝑮(𝜽(𝑙)) ≈ 𝑨(𝑙) ⊗ 𝑩(𝑙) . (B.16)
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For both linear and convolutional layers, the first Kronecker factor 𝑨(𝑙) is
obtained from the inputs 𝒛(𝑙−1)

𝑛 to layer 𝑙. Instead of repeating the technical
details of the aforementioned references, we will focus on how they differ
in (i) the backpropagated quantities and (ii) the backpropagation strategy.
As a result, we will be able to extend KFLR and KFRA to CNNs1.1: We keep the PyTorch convention that

weights and bias are treated as separate
parameters. For the bias terms, we can
store the full matrix representation of
the GGN. This factor reappears in the
Kronecker factorization of the GGN w.r. t.
the weights.

KFAC & KFLR: KFAC uses an MC-sampled estimate of the loss Hessian
with a square root factorization 𝑺̃(𝒛(𝐿)𝑛 ) like in Equation (B.13). The
backpropagation is equivalent to the computation of the GGN diagonal.
For the weights of a linear layer 𝑙, the second Kronecker term is

𝑩(𝑙)KFAC =
1
𝑁

𝑁∑
𝑛=1

𝑺̃(𝒛(𝑙)𝑛 )
(
𝑺̃(𝒛(𝑙)𝑛 )

)⊤
,

which at the same time corresponds to the GGN of the layer’s bias2.2: In the case of convolutions, one has to
sum over the spatial indices of a single
channel of 𝒛(𝑙)𝑛 as the bias is added to an
entire channel, see [63] for details.

In contrast to KFAC, KFLR backpropagates the exact square root factor-
ization 𝑺(𝒛(𝐿)𝑛 ), i. e. for the weights of a linear layer2 (details in [21])

𝑩(𝑙)KFLR =
1
𝑁

𝑁∑
𝑛=1

𝑺(𝒛(𝑙)𝑛 )
(
𝑺(𝒛(𝑙)𝑛 )

)⊤
.

KFRA: The backpropagation strategy for KFRA eliminates the scaling
of the backpropagated curvature quantities with the batch size 𝑁 in
Equation (B.7). Instead of layer 𝑙 receiving the𝑁 exact [ℎ(𝑙)×ℎ(𝑙)]matrices
𝑮(𝒛(𝑙)𝑛 ), 𝑛 = 1, . . . , 𝑁 , only a single averaged object, denoted 𝑮

(𝑙)
, is used

as an approximation. In particular, the recursion changes to

𝑮
(𝑙−1)

=
1
𝑁

𝑁∑
𝑛=1

(
J
𝒛(𝑙−1)
𝑛

𝒛(𝑙)𝑛
)⊤

𝑮
(𝑙) (

J
𝒛(𝑙−1)
𝑛

𝒛(𝑙)𝑛
)
, 𝑙 = 1, . . . , 𝐿 , (B.17a)

and is initialized with the batch-averaged loss Hessian

𝑮
(𝐿)

=
1
𝑁

𝑁∑
𝑛=1
∇2

𝒇 𝑛
ℓ ( 𝒇 𝑛 , 𝒚𝑛) . (B.17b)

For a linear layer, KFRA uses2 (see [21] for more details)

𝑩(𝑙)KFRA = 𝑮
(𝑙)
.

B.1.3 The Exact Hessian Diagonal

For neural networks consisting only of piecewise linear activation func-
tions, computing the diagonal of the Hessian is equivalent to computing
the GGN diagonal. This is because for these activations the second term
in the Hessian backpropagation recursion (Equation (5.4)) vanishes.

However, for activation functions with non-vanishing second derivative,
these residual terms have to be accounted for in the backpropagation.



B.1 BackPACK Extensions 133
The Hessian backpropagation for module 𝑙 reads

∇2
𝜽(𝑙)
ℓ (𝜽) =

(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤
∇2
𝒛(𝑙)𝑛
ℓ (𝜽)

(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)
+ 𝑹(𝑙)𝑛 (𝜽(𝑙)) , (B.18a)

∇2
𝒛(𝑙−1)
𝑛
ℓ (𝜽) =

(
J
𝒛(𝑙−1)
𝑛

𝒛(𝑙)𝑛
)⊤
∇2
𝒛(𝑙)𝑛
ℓ (𝜽)

(
J
𝒛(𝑙−1)
𝑛

𝒛(𝑙)𝑛
)
+ 𝑹(𝑙)𝑛 (𝒛(𝑙−1)

𝑛 ) , (B.18b)

for 𝑛 = 1, . . . , 𝑁 . Those [ℎ(𝑙) × ℎ(𝑙)] residuals are

𝑹(𝑙)𝑛 (𝜽(𝑙)) =
∑
𝑗

(
∇2
𝜽(𝑙)
[𝒛(𝑙)𝑛 ]𝑗

) [
∇
𝒛(𝑙)𝑛
ℓ (𝜽)

]
𝑗
,

𝑹(𝑙)𝑛 (𝒛(𝑙−1)
𝑛 ) = ∑

𝑗

(
∇2
𝒛(𝑙−1)
𝑛
[𝒛(𝑙)𝑛 ]𝑗

) [
∇
𝒛(𝑙)𝑛
ℓ (𝜽)

]
𝑗
.

Common parameterized layers (linear and convolution) have 𝑹(𝑙)𝑛 (𝜽(𝑙)) =
0. For elementwise activations, 𝑹(𝑙)𝑛 (𝒛(𝑙−1)

𝑛 ) are diagonal matrices.

Storing these quantities becomes very memory-intensive for high-
dimensional nonlinear activation layers. In BackPACK, this complexity
is reduced by application of the aforementioned matrix square root
factorization trick. To do so, we divide the symmetric factorization of
𝑹(𝑙)𝑛 (𝒛(𝑙−1)

𝑛 ) into the positive- and negative-definite terms

𝑹(𝑙)𝑛 (𝒛(𝑙−1)
𝑛 )

= 𝑷(𝑙)𝑛 (𝒛(𝑙−1)
𝑛 )

(
𝑷(𝑙)𝑛 (𝒛(𝑙−1)

𝑛 )
)⊤
− 𝑵 (𝑙)𝑛 (𝒛(𝑙−1)

𝑛 )
(
𝑵 (𝑙)𝑛 (𝒛(𝑙−1)

𝑛 )
)⊤

.
(B.19)

𝑷(𝑙)𝑛 (𝒛(𝑙−1)
𝑛 ),𝑵 (𝑙)𝑛 (𝒛(𝑙−1)

𝑛 ) represent the matrix square root of 𝑹(𝑙)𝑛 (𝒛(𝑙−1)
𝑛 )

projected on its positive and negative eigenspace, respectively.

This composition allows for the extension of the GGN backpropagation:
in addition to 𝑺(𝒛(𝑙)𝑛 ), the residual decompositions 𝑷(𝑙)𝑛 (𝒛(𝑙−1)

𝑛 ),𝑵 (𝑙)𝑛 (𝒛(𝑙−1)
𝑛 )

also have to be backpropagated according to Equation (B.11). All diag-
onals are extracted from the backpropagated matrix square roots (see
Equation (B.12)). Diagonals from decompositions in the negative residual
eigenspace have to be weighted by a factor of −1 before summation.

In terms of complexity, one backpropagation for 𝑹(𝑙)𝑛 (𝒛(𝑙−1)) changes the
dimensionality as follows

𝑹(𝑙)𝑛 (𝒛(𝑙−1)) : [ℎ(𝑙) × ℎ(𝑙)] → [ℎ(𝑙−1) × ℎ(𝑙−1)] → [ℎ(𝑙−2) × ℎ(𝑙−2)] → . . . .

With the square root factorization, one instead obtains

𝑷(𝑙)𝑛 (𝒛(𝑙−1)
𝑛 ) : [ℎ(𝑙) × ℎ(𝑙)] → [ℎ(𝑙−1) × ℎ(𝑙)] → [ℎ(𝑙−2) × ℎ(𝑙)] → . . . ,

𝑵 (𝑙)𝑛 (𝒛(𝑙−1)
𝑛 ) : [ℎ(𝑙) × ℎ(𝑙)] → [ℎ(𝑙−1) × ℎ(𝑙)] → [ℎ(𝑙−2) × ℎ(𝑙)] → . . . .

Roughly speaking, this is more efficient if the hidden dimension of a
nonlinear activation layer deceeds the net’s largest hidden dimension.

Algorithm

Consider one backpropagation step of module 𝑙. Assume 𝑹(𝑙)𝑛 (𝜽(𝑙)) = 0,
i. e. a linear, convolution, or non-parameterized layer. Then the following



134 Appendix B Additional Material for Chapter 5

computations are performed in the protocol for the diagonal Hessian:

▶ Receive the following from the child module 𝑙+1 (for 𝑛 = 1, . . . , 𝑁):

Φ =
{
𝑺(𝒛(𝑙)𝑛 ) ,
𝑷(𝑙+1)
𝑛 (𝒛(𝑙)𝑛 ) ,

𝑵 (𝑙+1)
𝑛 (𝒛(𝑙)𝑛 ) ,
(J
𝒛(𝑙)𝑛

𝒛(𝑙+1)
𝑛 )⊤𝑷(𝑙+2)

𝑛 (𝒛(𝑙+1)
𝑛 ) ,

(J
𝒛(𝑙)𝑛

𝒛(𝑙+1)
𝑛 )⊤𝑵 (𝑙+2)

𝑛 (𝒛(𝑙+1)
𝑛 ) ,

. . .

(J
𝒛(𝑙)𝑛

𝒛(𝑙+1)
𝑛 )⊤(J

𝒛(𝑙+1)
𝑛

𝒛(𝑙+2)
𝑛 )⊤ . . . (J

𝒛(𝐿−3)
𝑛

𝒛(𝐿−2)
𝑛 )⊤𝑷(𝐿−1)

𝑛 (𝒛(𝐿−2)
𝑛 ) ,

(J
𝒛(𝑙)𝑛

𝒛(𝑙+1)
𝑛 )⊤(J

𝒛(𝑙+1)
𝑛

𝒛(𝑙+2)
𝑛 )⊤ . . . (J

𝒛(𝐿−3)
𝑛

𝒛(𝐿−2)
𝑛 )⊤𝑵 (𝐿−1)

𝑛 (𝒛(𝐿−2)
𝑛 )

}

▶ Extract the parameter Hessian diagonal diag(∇2
𝜽(𝑙)

L(𝜽))
• For each quantity 𝑨 ∈ Φ extract the diagonal from the square

root factorization and sum over the samples, i. e. compute

1
𝑁

𝑁∑
𝑛=1

diag
{[(

J𝜽(𝑙)𝒛
(𝑙)
𝑛

)⊤
𝑨𝑛

] [(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤
𝑨𝑛

]⊤}
.

Multiply the expression by −1 if 𝑨 stems from backpropaga-
tion of a residual’s negative eigenspace’s factorization.

• Sum all expressions to obtain the block Hessian’s diagonal
diag(∇2

𝜽(𝑙)
L(𝜽))

▶ Backpropagate the received quantities to the parent module 𝑙 − 1

• For each quantity 𝑨𝑛 ∈ Φ, apply (J
𝒛(𝑙−1)
𝑛

𝒛(𝑙)𝑛 )⊤𝑨𝑛

• Append 𝑷(𝑙+1)
𝑛 (𝒛(𝑙)𝑛 ) and 𝑵 (𝑙+1)

𝑛 (𝒛(𝑙)𝑛 ) to Φ

B.2 Benchmark Details

KFAC versus KFLR: As the KFLR of Botev et al. [21] is orders of
magnitude more expensive to compute than the KFAC of Martens and
Grosse [109] on CIFAR-100, it was not included in the main plot. This is not
an implementation error; it follows from the definition of those methods.
To approximate the GGN, 𝑮(𝜽) = 1/𝑁 ∑

𝑛[J𝜽 𝒇 𝑛]⊤∇2
𝒇 𝑛
ℓ𝑛 [J𝜽 𝒇 𝑛], KFAC

uses a rank-1 approximation for each of the inner Hessian ∇2
𝒇 𝑛
ℓ𝑛 ≈ 𝒔𝑛𝒔⊤𝑛 ,

and needs to propagate a vector through the computation graph for each
sample. KFLR uses the complete inner Hessian instead. For CIFAR-100,
the network has 100 output nodes—one for each class—and the inner
Hessians are [100 × 100] matrices. KFLR needs to propagate a matrix
through the computation graph for each sample, which is 100× more
expensive as shown in Figure B.1.

GGN diagonal versus Hessian diagonal: Most nets used in deep
learning use ReLU activations. ReLU functions have no curvature as
they are piecewise linear. Because of this, the diagonal of the GGN is
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Figure B.1: KFLR and DiagGGN are more expensive to run on large networks. The gradient takes less than 20 ms to compute, but
KFLR and DiagGGN are approximately 100×more expensive.
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Figure B.2: Diagonal of the Hessian ver-
sus the GGN. If the network contains a
single sigmoid activation function, the
diagonal of the Hessian is an order of
magnitude more computationally inten-
sive than the diagonal of the GGN.

equivalent to the diagonal of the Hessian [107]. However, for networks
that use non piecewise linear activation functions like sigmoids or tanh,
computing the Hessian diagonal can be much more expensive than the
GGN diagonal. To illustrate this, we modify the smaller net used in our
benchmarks to include a single sigmoid activation function before the
last classification layer. The results in Figure B.2 show that the Hessian
diagonal computation is already an order of magnitude more expensive
than for the GGN.

B.3 Experimental Details

B.3.1 Protocol

The optimizer experiments are performed according to the protocol
suggested by DeepOBS:

▶ Train the neural network with the investigated optimizer and vary
its hyperparameters on a specified grid. This training is performed
for a single random seed only.
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▶ DeepOBS evaluates metrics during the training procedure. From
all runs of the grid search, it selects the best run automatically. The
results shown in this work were obtained with the default strategy,
favoring highest final accuracy on the validation set.

▶ For a better understanding of the optimizer performance with
respect to randomized routines in the training process, DeepOBS
reruns the best hyperparameter setting for ten different random
seeds. The results show mean values over these repeated runs, with
standard deviations as uncertainty indicators.

▶ Along with the benchmarked optimizers, we show the DeepOBS
base line performances for Adam and momentum SGD (Momen-
tum). They are provided by DeepOBS.

The optimizers built upon BackPACK’s curvature estimates were bench-
marked on DeepOBS’s image classification problems from Table B.1.

Table B.1: Image classification test problems considered from the DeepOBS library [146].

Codename Description Dataset # Parameters

LogReg Linear model MNIST 7,850
2c2d 2 convolutional and 2 dense linear layers Fashion-MNIST 3,274,634
3c3d 3 convolutional and 3 dense linear layers CIFAR-10 895,210
All-CNN-C 9 convolutional layers [157] CIFAR-100 1,387,108

B.3.2 Grid Search & Best Hyperparameter Setting

Both the learning rate 𝜂 and damping 𝜆 are tuned over the grid

𝜂 ∈ {
10−4 , 10−3 , 10−2 , 10−1 , 1

}
, 𝜆 ∈ {

10−4 , 10−3 , 10−2 , 10−1 , 1, 10
}
.

We use the same batch size (𝑁 = 128 for all problems, except 𝑁 = 256
for All-CNN-C on CIFAR-100) as the base lines and the optimizers run
for the identical number of epochs.

The best hyperparameter settings are summarized in Table B.2.

B.3.3 Update rule

We use a simple update rule with a constant damping parameter 𝜆.
Consider the parameters 𝜽 of a single module in a neural network with

Table B.2: Best hyperparameter settings for optimizers and baselines shown in this work. In the Momentum baselines, the momentum
was fixed to 0.9. Parameters for computation of the running averages in Adam use the default values (𝛽1 , 𝛽2) = (0.9, 0.999). The symbols
✓ and ✗ denote whether the hyperparameter setting is an interior point of the grid or not, respectively.

Curvature mnist_logreg fmnist_2c2d cifar10_3c3d cifar100_allcnnc

𝜂 𝜆 int 𝜂 𝜆 int 𝜂 𝜆 int 𝜂 𝜆 int

DiagGGN 10−3 10−3 ✓ 10−4 10−4 ✗ 10−3 10−2 ✓ - - -
DiagGGN-MC 10−3 10−3 ✓ 10−4 10−4 ✗ 10−3 10−2 ✓ 10−3 10−3 ✓

KFAC 10−2 10−2 ✓ 10−3 10−3 ✓ 1 10 ✗ 1 1 ✓

KFLR 10−2 10−2 ✓ 10−2 10−3 ✓ 1 10 ✗ - - -
KFRA 10−2 10−2 ✓ - - - - - - - - -

Baseline 𝜂 𝜂 𝜂 𝜂

Momentum ≈ 2.07 · 10−2 ≈ 2.07 · 10−2 ≈ 3.79 · 10−3 ≈ 4.83 · 10−1

Adam ≈ 2.98 · 10−4 ≈ 1.27 · 10−4 ≈ 2.98 · 10−4 ≈ 6.95 · 10−4



B.3 Experimental Details 137
𝐿2-regularization of strength 𝛿. Let 𝑪(𝜽𝑡) denote the curvature matrix
and ∇𝜽𝑡L(𝜽𝑡) the gradient at step 𝑡. One iteration applies

𝜽𝑡+1 ← 𝜽𝑡 + [𝑪(𝜽𝑡) + (𝜆 + 𝛿)𝑰]−1 [∇𝜃𝑡L(𝜽𝑡) + 𝛿𝜽𝑡] . (B.20)

The inverse cannot be computed exactly (in reasonable time) for the
Kronecker-factored curvatures KFAC, KFLR, and KFRA. We use the
scheme of [109] to approximately invert 𝑪(𝜽𝑡) + (𝜆 + 𝛿)𝑰 if 𝑪(𝜽𝑡) is
Kronecker-factored; 𝑪(𝜽𝑡) = 𝑨(𝜽𝑡) ⊗ 𝑩(𝜽𝑡). It replaces the expression
(𝜆 + 𝛿)𝑰 by diagonal terms added to each Kronecker factor. In summary,
this replaces

[𝑨(𝜽𝑡) ⊗ 𝑩(𝜽𝑡) + (𝜆 + 𝛿)𝑰]−1

by
[
𝑨(𝜽𝑡) + 𝜋𝑡

√
𝜆 + 𝛿𝑰

]−1
⊗

[
𝑩(𝜽𝑡) + 1

𝜋𝑡

√
𝜆 + 𝛿𝑰

]−1

.
(B.21)

A principled choice for the parameter 𝜋𝑡 is 𝜋𝑡 =
√
∥𝑨(𝜽𝑡 )⊗𝑰𝐵 ∥/∥𝑰𝐴⊗𝑩(𝜽𝑡 )∥ for

any matrix norm ∥·∥. We follow [109] and choose the trace norm,

𝜋𝑡 =

√
Tr(𝑨(𝜽𝑡))dim(𝑩)

dim(𝑨) ⊗ Tr(𝑩(𝜽𝑡)) . (B.22)

B.3.4 Additional results

This section presents the results for MNIST using a logistic regression in
Figure B.3a and Fashion-MNIST using the 2c2d network, composed of
two convolutional and two linear layers, in Figure B.3b.
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(a) LogReg (7,850 parameters) on MNIST
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(b) 2c2d (3,274,634 parameters) on Fashion-MNIST

Figure B.3: Additional results. Median performance with shaded quartiles of the best hyperparameter settings chosen by DeepOBS.
Solid lines show well-tuned baselines of momentum SGD and Adam that are provided by DeepOBS.
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B.4 BackPACK Cheat Sheet

▶ Assumptions

• Sequential feedforward network

𝒛(0)𝑛
𝑓 (1)
𝜽(1) (𝒛

(0)
𝑛 )

−−−−−−−−−→ 𝒛(1)𝑛
𝑓 (2)
𝜽(2) (𝒛

(1)
𝑛 )

−−−−−−−−−→ . . .
𝑓 (𝐿)
𝜽(𝐿) (𝒛

(𝐿−1)
𝑛 )

−−−−−−−−−→ 𝒛(𝐿)
ℓ (𝒛(𝐿)𝑛 ,𝒚)
−−−−−−−−−→ ℓ (𝜽)

• 𝑑(𝑙) : Dimension of parameter 𝜽(𝑙)

• Empirical risk

L(𝜽) = 1
𝑁

𝑁∑
𝑛=1

ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛)

▶ Shorthands

ℓ𝑛(𝜽) := ℓ ( 𝑓𝜽(𝒙𝑛), 𝒚𝑛) , 𝑛 = 1, . . . , 𝑁 ,

𝒇 𝑛 := 𝑓𝜽(𝒙𝑛) = 𝒛(𝐿)𝑛 (𝜽) , 𝑛 = 1, . . . , 𝑁

▶ Generalized Gauss-Newton matrix

𝑮(𝜽) = 1
𝑁

𝑁∑
𝑛=1

(
J𝜽 𝒇 𝑛

)⊤ ∇2
𝒇 𝑛
ℓ𝑛(𝜽)

(
J𝜽 𝒇 𝑛

)

▶ Approximative GGN via MC sampling

𝑮̃(𝜽) = 1
𝑁

𝑁∑
𝑛=1

(
J𝜽 𝒇 𝑛

)⊤ [ (∇ 𝒇 𝑛ℓ ( 𝒇 𝑛 , 𝒚̂)
) (∇ 𝒇 𝑛ℓ ( 𝒇 𝑛 , 𝒚̂𝑛)

)⊤]
𝒚̂𝑛∼𝑞(· | 𝒇 𝑛 )

(
J𝜽 𝒇 𝑛

)

Table B.3: Overview of the features supported in the first release of BackPACK. The quantities are computed separately for all module
parameters, i. e. 𝑙 = 1, . . . , 𝐿.

Feature Details

Individual gradients 1
𝑁 ∇𝜽(𝑙)ℓ𝑛(𝜽), 𝑛 = 1, . . . , 𝑁

Batch variance 1
𝑁

∑𝑁
𝑛=1

[∇
𝜽(𝑙)ℓ𝑛(𝜽)

]2
𝑗
− [∇

𝜽(𝑙)L(𝜽)
]2
𝑗
, 𝑗 = 1, . . . , 𝑑(𝑙)

2nd moment 1
𝑁

∑𝑁
𝑛=1

[∇
𝜽(𝑙)ℓ𝑛(𝜽)

]2
𝑗
, 𝑗 = 1, . . . , 𝑑(𝑙).

Individual gradient 𝐿2 norms



 1
𝑁 ∇𝜽(𝑙)ℓ𝑛(𝜽)




2

2
, 𝑛 = 1, . . . , 𝑁

DiagGGN diag
(
𝑮(𝜽(𝑙))

)
DiagGGN-MC diag

(
𝑮̃(𝜽(𝑙))

)
Hessian diagonal diag

(
∇2
𝜽(𝑙)

L(𝜽)
)

KFAC 𝑮̃(𝜽(𝑙)) ≈ 𝑨(𝑙) ⊗ 𝑩(𝑙)KFAC
KFLR 𝑮(𝜽(𝑙)) ≈ 𝑨(𝑙) ⊗ 𝑩(𝑙)KFLR
KFRA 𝑮(𝜽(𝑙)) ≈ 𝑨(𝑙) ⊗ 𝑩(𝑙)KFRA
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C.1 Code Example

One design principle of Cockpit is its easy integration with conventional
PyTorch training loops. Procedure C.1 shows a working example of
a standard training loop with Cockpit. More examples and tutorials
are described in the documentation. Cockpit’s syntax is inspired by
BackPACK: it can be used interchangeably with the library responsible for
most back-end computations. Changes to the code are straightforward:

Procedure C.1: Complete training loop
with Cockpit in PyTorch. Line changes
are highlighted in blue (❚).

1 """Example: Training Loop using Cockpit."""

2

3 import torch

4 from _utils_examples import cnn, fmnist_data, get_logpath

5 from backpack import extend

6 from cockpit import Cockpit, CockpitPlotter

7 from cockpit.utils.configuration import configuration as config

8

9 fmnist_data = fmnist_data()

10 model = extend(cnn())

11 loss_fn = extend(torch.nn.CrossEntropyLoss(reduction="mean"))

12 losses_fn = torch.nn.CrossEntropyLoss(reduction="none")

13 opt = torch.optim.SGD(model.parameters(), lr=1e-2)

14

15 cockpit = Cockpit(model.parameters(), quantities=config("full"))

16 plotter = CockpitPlotter()

17

18 max_steps, global_step = 50, 0

19 for inputs, labels in iter(fmnist_data):

20 opt.zero_grad()

21

22 outputs = model(inputs)

23 loss = loss_fn(outputs, labels)

24 losses = losses_fn(outputs, labels)

25

26 with cockpit(

27 global_step,

28 info={

29 "batch_size": inputs.shape[0],

30 "individual_losses": losses,

31 "loss": loss,

32 "optimizer": opt,

33 },

34 ):

35 loss.backward(

36 create_graph=cockpit.create_graph(global_step),

37 )

38

39 opt.step()

40 global_step += 1

41

42 if global_step >= max_steps:

43 break

44

45 cockpit.write(get_logpath())

46 plotter.plot(get_logpath())

▶ Importing (Lines 5, 6 and 7): besides importing Cockpit we also
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need to import BackPACK which is required for extending (parts
of) the model (see next step).

▶ Extending (Lines 10 and 11): when defining the model and the loss
function, we need to extend both of them using BackPACK. This
is as trivial as wrapping them in the extend() function provided
by BackPACK and lets BackPACK know that additional quantities
(such as the individual gradients) should be computed for them.
Note, that while applying BackPACK is easy, it currently does not
support all possible model architectures and layer types. Specifi-
cally, batch norm layers are not supported since using them results
in ill-defined individual gradients.

▶ Individual losses (Line 12): for the Alpha quantity, Cockpit also
requires the individual loss values (to estimate the variance of the
loss estimate). This can be computed cheaply but is not usually
part of a conventional training loop. Creating this loss is done
analogously to creating any other loss, with the only exception of
setting reduction="none" . Since we don’t differentiate this loss, we
don’t need to extend it.

▶ Cockpit configuration (Line 15 and 16): Initializing the Cockpit
requires passing them (extended) model parameters as well as
a list of quantities that should be tracked. Table 6.1 provides an
overview of all possible quantities. In this example, we use one of
the pre-defined configurations offered by Cockpit. Separately, we
initialize the plotting part of Cockpit. We deliberately detached the
visualization from the tracking to allow greater flexibility.

▶ Quantity computation (Line 26 to 37): Performing the training is
very similar to a regular training loop, with the only difference
being that the backward pass should be surrounded by the Cockpit
context ( with cockpit(): ). Additionally to the global_step we also
pass a few additional information to the Cockpit that are computed
anyway and can be re-used, such as the batch size, the individual
losses, or the optimizer itself. After the backward pass (when the
context is left) all Cockpit quantities are automatically computed.

▶ Logging & visualizing (Line 45 and 46): at any point during
training—here at the end—we can write all quantities to a log file.
We can use this log file, or alternatively the Cockpit directly, to
visualize all quantities in a status screen similar to Figure 6.2.

C.2 Instrument Overview

Table C.1 lists all quantities available in the first public release of Cockpit.
If necessary, we provide references to their mathematical definition. This
table contains additional quantities, compared to Table 6.1 in the main
text. To improve the presentation of this work, we decided to not describe
every quantity available in Cockpit in the main part and instead focus on
the investigated metrics. Custom quantities can be added easily without
having to understand the inner-workings.
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Table C.1: Overview of all Cockpit quantities with a short description and, if necessary, a reference to mathematical definition.

Name Description Math

Loss Mini-batch training loss at current iteration, L𝔹(𝜽) (6.1)
Parameters Parameter values 𝜽𝑡 at the current iteration -
Distance 𝐿2 distance from initialization ∥𝜽𝑡 − 𝜽0∥2 -
UpdateSize Update size of the current iteration ∥𝜽𝑡+1 − 𝜽𝑡 ∥2
GradNorm Mini-batch gradient norm ∥𝒈𝔹(𝜽)∥2 -
Time Time of the current iteration (e. g. used in benchmark of Appendix C.5) -
Alpha Normalized step on a noisy quadratic interpolation between two iterates 𝜽𝑡 , 𝜽𝑡+1 (C.7)
CABS Adaptive batch size for SGD, optimizes expected objective gain per cost, from [11] (C.9)
EarlyStopping Evidence-based early stopping criterion for SGD, proposed in [104] (C.11d)
GradHist1d Histogram of individual gradient elements, {[𝒈𝑛(𝜽)]𝑗} 𝑗=1,...,𝐷

𝑛∈𝔹 (C.12)
GradHist2d Histogram of weights and individual gradient elements, {([𝜽]𝑗 , [𝒈𝑛(𝜽)]𝑗)} 𝑗=1,...,𝐷

𝑛∈𝔹 (C.13)
NormTest Normalized fluctuations of the residual norms ∥𝒈𝔹 − 𝒈𝑛 ∥, proposed in [26] (C.16c)
InnerTest Normalized fluctuations of 𝒈𝑛 ’s parallel components along 𝒈𝔹, proposed in [19] (C.19c)
OrthoTest Normalized fluctuations of 𝒈𝑛 ’s orthogonal components along 𝒈𝔹, proposed in [19] (C.22b)
HessMaxEV Maximum Hessian eigenvalue, 𝜆max(𝑯𝔹(𝜽)), inspired by [177] (C.23)
HessTrace Exact or approximate Hessian trace, Tr(𝑯𝔹(𝜽)), inspired by [177] -
TICDiag Relation between (diagonal) curvature and gradient noise, inspired by [162] (C.26)
TICTrace Relation between curvature and gradient noise trace, inspired by [162] (C.25)
MeanGSNR Average gradient signal-to-noise ratio (GSNR), inspired by [100] (C.28b)

C.3 Mathematical Details

Here, we provide the mathematical background for each instrument in
Table C.1. This complements the more informal description presented in
Section 6.2, which focused more on the expressiveness of the individual
quantities. We start by setting up the necessary notation in addition to the
one introduced in Section 6.2. See Sections 2.1 and 3.2 for more details.

C.3.1 Additional Notation

Population Properties

The population risk L𝑝data(𝜽) ∈ ℝ and its variance Λ(𝜽) ∈ ℝ are given by

L𝑝data(𝜽) = 𝔼(𝒙 ,𝒚)∼𝑝data [ℓ ( 𝑓𝜽(𝒙), 𝒚)]
=

∫
ℓ ( 𝑓𝜽(𝒙), 𝒚)𝑝data(𝒙 , 𝒚)d𝒙d𝒚 ,

(C.1a)

Λ𝑝data(𝜽) = Var(𝒙 ,𝒚)∼𝑝data [ℓ ( 𝑓𝜽(𝒙), 𝒚)]
=

∫ (
ℓ ( 𝑓𝜽(𝒙), 𝒚) − L𝑝data(𝜽)

)2 𝑝data(𝒙 , 𝒚)d𝒙d𝒚 ,
(C.1b)
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and its gradient 𝒈𝑝data
(𝜽) ∈ ℝ𝐷 and variance 𝚺𝑝data(𝜽) ∈ ℝ𝐷×𝐷 are

𝒈𝑝data
(𝜽) = 𝔼(𝒙 ,𝒚)∼𝑝data [∇𝜽ℓ ( 𝑓𝜽(𝒙), 𝒚)]

=
∫
∇𝜽ℓ ( 𝑓 (𝜽, 𝒙), 𝒚)𝑝data(𝒙 , 𝒚)d𝒙d𝒚 ,

(C.2a)

𝚺𝑝data(𝜽) = Var(𝒙 ,𝒚)∼𝑝data [∇𝜽ℓ ( 𝑓𝜽(𝒙), 𝒚)]
=

∫ (
∇𝜽ℓ ( 𝑓𝜽(𝒙), 𝒚) − 𝒈𝑝data

(𝜽)
)

(
∇𝜽ℓ ( 𝑓𝜽(𝒙), 𝒚) − 𝒈𝑝data

(𝜽)
)⊤
𝑝data(𝒙 , 𝒚)d𝒙d𝒚 .

(C.2b)

Empirical Approximations

Let 𝔻 denote a set of samples drawn i. i.d. from 𝑝data, i. e. 𝔻 =
{(𝒙𝑛 , 𝒚𝑛)} |𝔻|𝑛=1. With a slight abuse of notation (𝑛 ∈ 𝔻 instead of
(𝒙𝑛 , 𝒚𝑛) ∈ 𝔻) the empirical risk approximated with 𝔻 is

L𝔻(𝜽) = 1
|𝔻|

∑
𝑛∈𝔻

ℓ𝑛(𝜽) (C.3a)

(later, 𝔻 will represent either a mini-batch B, or the train set 𝔻train). The
empirical risk gradient 𝒈𝔻(𝜽) ∈ ℝ𝐷 on 𝔻 is

𝒈𝔻(𝜽) = ∇𝜽L𝔻(𝜽) = 1
|𝔻|

∑
𝑛∈𝔻
∇𝜽ℓ𝑛(𝜽) = 1

|𝔻|
∑
𝑛∈𝔻

𝒈𝑛(𝜽) , (C.3b)

with individual gradients 𝒈𝑛(𝜽) := ∇𝜽ℓ𝑛(𝜽) ∈ ℝ𝐷 from a sample 𝑛. Pop-
ulation risk and gradient variances Λ𝑝data(𝜽),𝚺𝑝data(𝜽) can be empirically
estimated on 𝔻 with the sample variances Λ̂𝔻(𝜽) ∈ ℝ, 𝚺̂𝔻(𝜽) ∈ ℝ𝐷×𝐷 ,

Λ𝑝data(𝜽) ≈
1

|𝑆 | − 1
∑
𝑛∈𝔻
(ℓ𝑛(𝜽) − L𝔻(𝜽))2 := Λ̂𝔻(𝜽) , (C.4a)

𝚺𝑝data(𝜽) ≈
1

|𝔻| − 1
∑
𝑛∈𝔻

(
𝒈𝑛(𝜽) − 𝒈𝔻(𝜽)

) (
𝒈𝑛(𝜽) − 𝒈𝔻(𝜽)

)⊤ := 𝚺̂𝔻(𝜽)

≈ 1
|𝔻| − 1

[(∑
𝑛∈𝔻

𝒈𝑛(𝜽)𝒈𝑛(𝜽)⊤
)
− |𝔻|𝒈𝔻(𝜽)𝒈𝔻(𝜽)⊤

]
.

(C.4b)

Often, gradient elements are assumed independent and hence their
variance is diagonal (⊙2 denotes element-wise square),

diag [𝚺𝑃(𝜽)] ≈ 1
|𝑆 | − 1

∑
𝑛∈𝔻

(
𝒈𝑛(𝜽) − 𝒈𝔻(𝜽)

)⊙2 = diag
[
𝚺̂𝔻(𝜽)

] ∈ ℝ𝐷 .

(C.5)

Slicing

To avoid confusion between 𝜽𝑡 (parameter at iteration 𝑡) and 𝜃𝑗 (𝑗-th
parameter entry), we denote the latter as [𝜽]𝑗 .



C.3 Mathematical Details 145

θt θt+1
0.00

0.25

0.50

0.75

1.00

Lo
ss

Understepping: α < 0

θt θt+1

Minimizing: α ≈ 0

θt θt+1

Overshooting: α > 0

Figure C.1: Motivational sketch for the 𝛼 quantity. In each iteration of the optimizer we observe the loss function at two positions 𝜽𝑡
and 𝜽𝑡+1 (shown in ●). The black lines (—) show the observed slope at this position, which we can get from projecting the gradients onto
the current step direction 𝜽𝑡+1 − 𝜽𝑡 . Note, that all four observations (two loss and two slope values) are noisy, due to being computed on
a mini-batch. With access to the individual losses and gradients (some samples shown in ●/—), we can estimate their noise level and
build a noise-informed quadratic fit (—). Using this fit, we determine whether the optimizer minimizes the local uni-variate loss (middle
plot), or whether we understep (left plot) or overshoot (right plot) the minimum.

C.3.2 Normalized Step Length ( Alpha )

Motivation

The goal of the 𝛼-quantity is to estimate and quantify the effect that a
selected learning rate has on the optimizer’s steps. Consider the opti-
mizer’s step at training iteration 𝑡. This parameter update from 𝜽𝑡 to 𝜽𝑡+1
happens in a one-dimensional space, defined by the update direction
𝜽𝑡+1 − 𝜽𝑡 = 𝒔𝑡 . The update direction depends on the update rule of the
optimizer, e.g. for SGD with learning rate 𝜂 it is simply 𝒔𝑡 = −𝜂𝒈𝔹𝑡 (𝜽𝑡).

We build a noise-informed uni-variate quadratic approximation along
this update step (𝜽𝑡 → 𝜽𝑡+1) based on the two noisy loss function
observations at 𝜽𝑡 and 𝜽𝑡+1 and the two noisy slope observation at these
two points. Examining this quadratic fit, we are able to determine where
on this parabola our optimizer steps. Standardizing this, we express
a step to the minimum of the loss in the update direction as 𝛼 = 0.
Analogously, steps that end short of this minimum result in 𝛼 < 0, and
a step over the minimum in 𝛼 > 0. These three different scenarios are
illustrated in Figure C.1 also showing the underlying observations that
would lead to them. Figure 6.1 shows the distribution of 𝛼-values for two
very different optimization trajectories.

Noisy Observations

In order to build an approximation for the loss function in the update
direction, we leverage the four observations of the function (and its
derivative) that are available in each iteration. Due to the stochasticity
of deep learning optimization, we also take into account the noise-level
of all observations by estimating them. The first two observations are
the mini-batch training losses L𝔹𝑡 (𝜽𝑡),L𝔹𝑡+1(𝜽𝑡+1) at point 𝜽𝑡 and 𝜽𝑡+1,
which are computed in every standard training loop. The mini-batch
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losses are averages over individual losses,

L𝔹𝑡 (𝜽𝑡) = 𝔼𝔹𝑡 [ℓ (𝜽𝑡)] =
1
|𝔹𝑡 |

∑
𝑛∈𝔹𝑡

ℓ𝑛(𝜽𝑡) ,

L𝔹𝑡+1(𝜽𝑡+1) = 𝔼𝔹𝑡+1 [ℓ (𝜽𝑡+1)] = 1
|𝔹𝑡+1 |

∑
𝑛∈𝔹𝑡+1

ℓ𝑛(𝜽𝑡+1) ,

and using these individual losses, we can also compute the variances to
estimate the noise-level of our loss observation,

Var𝔹𝑡 [ℓ (𝜽𝑡)] =
(

1
|𝔹𝑡 |

∑
𝑛∈𝔹𝑡

ℓ𝑛(𝜽𝑡)2
)
−

(
1
|𝔹𝑡 |

∑
𝑛∈𝔹𝑡

ℓ𝑛(𝜽𝑡)
)2

,

Var𝔹𝑡+1 [ℓ (𝜽𝑡+1)] =
(

1
|𝔹𝑡+1 |

∑
𝑛∈𝔹𝑡+1

ℓ𝑛(𝜽𝑡+1)2
)
−

(
1
|𝔹𝑡+1 |

∑
𝑛∈𝔹𝑡+1

ℓ𝑛(𝜽𝑡+1)
)2

.

Similarly, we proceed with the slope in the update direction. To compute
the slope of the loss function in the direction of the optimizer’s update
𝒔𝑡 , we project the current gradient along this update direction

𝔼𝔹𝑡

[
𝒔⊤𝑡 𝒈(𝜽𝑡)
∥𝒔𝑡 ∥2

]
=

1
|𝔹𝑡 |

∑
𝑛∈𝔹𝑡

𝒔⊤𝑡 𝒈𝑛(𝜽𝑡)
∥𝒔𝑡 ∥2 ,

𝔼𝔹𝑡+1

[
𝒔⊤𝑡 𝒈(𝜽𝑡+1)
∥𝒔𝑡 ∥2

]
=

1
|𝔹𝑡+1 |

∑
𝑛∈𝔹𝑡+1

𝒔⊤𝑡 𝒈𝑛(𝜽𝑡+1)
∥𝒔𝑡 ∥2 .

Just like before, we can also compute the variance of this slope, by
leveraging individual gradients,

Var𝔹𝑡

[
𝒔⊤𝑡 𝒈(𝜽𝑡)
∥𝒔𝑡 ∥2

]

=
1
|𝔹𝑡 |

∑
𝑛∈𝐵𝑡

(
𝒔⊤𝑡 𝒈𝑛(𝜽𝑡)
∥𝒔𝑡 ∥2

)2

−
(

1
|𝔹𝑡 |

∑
𝑛∈𝔹𝑡

𝒔⊤𝑡 𝒈𝑛(𝜽𝑡)
∥𝒔𝑡 ∥2

)2

,

Var𝔹𝑡+1

[
𝒔⊤𝑡 𝒈(𝜽𝑡+1)
∥𝒔𝑡 ∥2

]

=
1
|𝔹𝑡+1 |

∑
𝑛∈𝔹𝑡+1

(
𝒔⊤𝑡 𝒈𝑛(𝜽𝑡+1)
∥𝒔𝑡 ∥2

)2

−
(

1
|𝔹𝑡+1 |

∑
𝑛∈𝔹𝑡+1

𝒔⊤𝑡 𝒈𝑛(𝜽𝑡+1)
∥𝒔𝑡 ∥2

)2

.

Quadratic Fit & Normalization

Using our (noisy) observations, we are now ready to build an approxi-
mation for the loss as a function of the step size, which we will denote
as 𝑓 (𝜏). We assume a quadratic function for 𝑓 , which follows recent
reports for the loss landscape of neural networks [176], i. e. a function
𝑓 (𝜏) = 𝑤0 + 𝑤1𝜏 + 𝑤2𝜏2 parameterized by 𝒘 ∈ ℝ3. We further assume a
Gaussian likelihood of the form

𝑝
(
𝒇 | 𝒘 ,𝚽

)
= N

(
𝒇 | 𝚽⊤𝒘 ,𝚲

)
(C.6)
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for observations 𝒇 of the loss and its slope. The observation matrix 𝚽
and the noise matrix of the observations 𝚲 are

𝚽 = ©­
«

1 1 0 0
𝜏1 𝜏2 1 1
𝜏2

1 𝜏2
2 2𝜏1 2𝜏2

ª®
¬
, 𝚲 =

©­­­­
«

𝜎 𝑓1 0 0 0
0 𝜎 𝑓2 0 0
0 0 𝜎 𝑓 ′1

0
0 0 0 𝜎 𝑓 ′2

ª®®®®
¬
,

where 𝜏 denotes the position and 𝜎 denotes the noise-level estimate of
the observation. The maximum likelihood solution of Equation (C.6) for
the parameters of our quadratic fit is given by

𝒘 =
(
𝚽𝚲−1𝚽⊤

)−1
𝚽𝚲−1 𝒇 . (C.7)

Once we have the quadratic fit of the uni-variate loss along the update
direction, we normalize the scales such that the resulting 𝛼 expresses the
effective step taken by the optimizer sketched in Figure C.1.

Usage

The 𝛼-quantity is related to recent line search approaches [105, 168].
However, instead of searching for an acceptable step by repeated at-
tempts, we instead report the effect of the current step size selection.
This could, for example, be used to disentangle the two optimization
runs in Figure 6.1. Additionally, this information could also be used to
automatically adapt the learning rate during the training process. But, as
discussed in Section 6.3.3, it isn’t trivial what the “correct” decision is, as
it might depend on the optimization problem, the training phase, and
other factors. Having this 𝛼-quantity can, however, provide more insight
into what kind of steps are used in well-tuned runs with traditional
optimizers such as SGD.

C.3.3 CABS Criterion: Coupling Adaptive Batch Sizes with
Learning Rates ( CABS )

The CABS criterion, proposed by Balles et al. [11], can be used to adapt
the mini-batch size during training with SGD. It relies on the gradient
noise and approximately optimizes the objective’s expected gain per cost.
The adaptation rule is (with learning rate 𝜂)

|𝔹| ← 𝜂
Tr(𝚺𝑝data(𝜽))
L𝑝data(𝜽)

, (C.8)

and the practical implementation approximates L𝑝data(𝜽) ≈ L𝔹(𝜽)and
Tr(𝚺𝑝data(𝜽)) ≈ (|𝔹|−1)/|𝔹| Tr(𝚺̂𝔹(𝜽)) (compare equations (10, 22) and first
paragraph of Section 4 in [11]). This yields the quantity computed in
Cockpit’s CABS instrument,

|𝔹| ← 𝜂

1
|𝔹|

∑𝐷
𝑗=1

∑
𝑛∈𝔹

[
𝒈𝑛(𝜽) − 𝒈𝔹(𝜽)

]2
𝑗

L𝔹(𝜽) . (C.9)
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Usage

The CABS criterion suggests a batch size which is optimal under certain
assumptions. This suggestion can support practitioners in the batch size
selection for their deep learning task.

C.3.4 Early-stopping Criterion for SGD ( EarlyStopping )

The empirical risk L𝔻(𝜽), and the mini-batch loss L𝔹(𝜽) are only esti-
mators of the target objective L𝑝data(𝜽). Mahsereci et al. [104] motivate
𝑝(𝒈𝔹,𝔻(𝜽) | 𝒈𝑝data

(𝜽) = 0) as a measure for detecting noise in the finite
datasets 𝔹,𝔻 due to sampling from 𝑝data. They propose an evidence-
based (EB) criterion for early stopping the training procedure based
on mini-batch statistics, and model 𝑝(𝒈𝔹(𝜽)) with a sampled diagonal
variance approximation (compare Equation (C.5)),

𝑝(𝒈𝔹(𝜽)) ≈
𝐷∏
𝑗=1

N ©­
«
𝒈𝔹(𝜽) |

[
𝒈𝑝data
(𝜽)

]
𝑗
,

[
𝚺̂𝔹(𝜽)

]
𝑗 , 𝑗

|𝔹|
ª®
¬
. (C.10)

Their SGD stopping criterion is

2
𝐷

[
log 𝑝(𝒈𝔹(𝜽)) − 𝔼𝒈𝔹(𝜽)∼𝑝(𝒈𝔹(𝜽))

[
log 𝑝(𝒈𝔹(𝜽))

] ]
> 0 , (C.11a)

and translates into

1 − |𝔹|
𝐷

𝐷∑
𝑑=1

[
𝒈𝔹(𝜽)

]2
𝑑[

𝚺̂𝔹(𝜽)
]
𝑑,𝑑

> 0 , (C.11b)

1 − |𝔹|
𝐷

𝐷∑
𝑑=1

[
𝒈𝔹(𝜽)

]2
𝑑

1
|𝔹|−1

∑
𝑛∈𝔹

[
𝒈𝑛(𝜽) − 𝒈𝔹(𝜽)

]2
𝑑

> 0 , (C.11c)

1 − |𝔹|(|𝔹| − 1)
𝐷

𝐷∑
𝑑=1

[
𝒈𝔹(𝜽)

]2
𝑑(∑

𝑛∈𝔹
[
𝒈𝑛(𝜽)

]2
𝑑

)
− |𝔹| [𝒈𝔹(𝜽)]2

𝑑

> 0 . (C.11d)

Cockpit’s EarlyStopping quantity computes the left side of Equa-
tion (C.11d).

Usage

Cockpit’s EarlyStopping quantity can inform practitioners that training
is about to be completed and the model might be at risk of overfitting.

C.3.5 Individual Gradient Element Histograms ( GradHist1d ,
GradHist2d )

For the |𝔹| × 𝐷 individual gradient elements, Cockpit’s GradHist1d

instrument displays a histogram of{[𝒈𝑛(𝜽)]𝑑}𝑛∈𝔹,𝑑=1,...,𝐷 . (C.12)
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Cockpit’s GradHist2d instrument displays a two-dimensional histogram
of the |𝔹| × 𝐷 tuples{([𝜽]𝑑 , [𝒈𝑛(𝜽)]𝑑 )}𝑛∈𝔹,𝑑=1,...,𝐷 (C.13)

and the marginalized one-dimensional histograms over the parameter
and gradient axes.

Usage

Sections 6.3.1 and 6.3.2 provide use cases (identifying data pre-processing
issues and vanishing gradients) for both the gradient histogram as well
as its layer-wise extension.

C.3.6 Gradient Tests ( NormTest , InnerTest , OrthoTest )

Bollapragada et al. [19] and Byrd et al. [26] propose batch size adapta-
tion schemes based on the gradient noise. They formulate geometric
constraints between population and mini-batch gradient and accessible
approximations that can be probed to decide whether the mini-batch
size should be increased. Because mini-batches are i. i.d. from 𝑝data, it
holds that

𝔼
[
𝒈𝔹(𝜽)

]
= 𝒈𝑝data

(𝜽), (C.14a)

𝔼
[
𝒈𝔹(𝜽)⊤𝒈𝑝data

(𝜽)
]
= ∥𝒈𝑝data

(𝜽)∥2. (C.14b)

The above works propose enforcing other weaker similarity in expectation
during optimization. These geometric constraints reduce to basic vector
geometry (see Figure C.2a for an overview of the relevant vectors). We
recall their formulation here for consistency and derive the practical
versions, which can be computed from training observables and are used
in Cockpit (consult Figure C.2b for the visualization).

𝒈𝑝data

𝒈𝔹

𝒈𝔹 − 𝒈𝑝data

proj𝒈𝑝data

(
𝒈𝔹

)

𝒈𝔹 − proj𝒈𝑝data

(
𝒈𝔹

)

(a) Relevant vectors

𝜃norm2𝜃inner

2𝜈ortho

(b) Cockpit’s gradient test visualization.

Figure C.2: Conceptual sketch for gradient tests. (a) Relevant vectors to formulate the geometric constraints between population and
mini-batch gradient probed by the gradient tests. (b) Gradient test visualization in Cockpit.
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Usage

All three gradient tests describe the noise level of the gradients. Bol-
lapragada et al. [19] and Byrd et al. [26] adapt the batch size so that the
proposed geometric constraints are fulfilled. Practitioners can use the
combined gradient test plot, i. e. top center plot in Figure 6.2, to monitor
gradient noise during training and adjust hyperparameters such as the
batch size.

Norm Test ( NormTest )

The norm test [26] constrains the residual norm ∥𝒈𝔹(𝜽) − 𝒈𝑝data
(𝜽)∥,

rescaled by ∥𝒈𝑝data
(𝜽)∥. This gives rise to a standardized ball of radius

𝜃norm ∈ (0,∞) around the population gradient, where the mini-batch
gradient should reside. Byrd et al. [26] set𝜃norm = 0.9 in their experiments
and increase the batch size if (in the practical version, see below) the
following constraint is not fulfilled

𝔼






𝒈𝔹(𝜽) − 𝒈𝑝data
(𝜽)




2




𝒈𝑝data
(𝜽)




2


≤ 𝜃2

norm . (C.15a)

Instead of taking the expectation over mini-batches, Byrd et al. [26] note
that the above will be satisfied if

1
|𝔹|𝔼






𝒈𝑛(𝜽) − 𝒈𝑝data
(𝜽)




2




𝒈𝑝data
(𝜽)




2


≤ 𝜃2

norm . (C.15b)

They propose a practical form of this test,

1
|𝔹|(|𝔹| − 1)

∑
𝑛∈𝔹



𝒈𝑛(𝜽) − 𝒈𝔹(𝜽)


2



𝒈𝔹(𝜽)

2 ≤ 𝜃2
norm , (C.16a)

which can be computed from mini-batch statistics. Rearranging

∑
𝑛∈𝔹



𝒈𝑛(𝜽) − 𝒈𝔹(𝜽)


2

=

(∑
𝑛∈𝔹



𝒈𝑛(𝜽)

2
)
− |𝔹| 

𝒈𝔹(𝜽)

2

, (C.16b)

we arrive at

1
|𝔹|(|𝔹| − 1)

[∑
𝑛∈𝔹



𝒈𝑛(𝜽)

2



𝒈𝔹(𝜽)

2 − |𝔹|
]
≤ 𝜃2

norm (C.16c)

that leverages the norm of both the mini-batch and the individual
gradients, which can be aggregated over parameters during a backward
pass. Cockpit’s NormTest corresponds to the maximum radius 𝜃norm for
which the above inequality holds.
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Inner Product Test ( InnerTest )

The inner product test [19] constrains the projection of 𝒈𝔹(𝜽) onto
𝒈𝑝data
(𝜽) (compare Figure C.2a),

proj𝒈𝑝data
(𝜽)

(
𝒈𝔹(𝜽)

)
:=

𝒈𝔹(𝜽)⊤𝒈𝑝data
(𝜽)


𝒈𝑝data

(𝜽)



2 𝒈𝑝data

(𝜽) , (C.17)

rescaled by ∥𝒈𝑝data
(𝜽)∥. This restricts the mini-batch gradient to reside

in a standardized band of relative width 𝜃inner ∈ (0,∞) around the
population risk gradient. Bollapragada et al. [19] use 𝜃inner = 0.9 (in
the practical version, see below) to adapt the batch size if the parallel
component’s variance does not satisfy the condition

Var
©­­
«
𝒈𝔹(𝜽)⊤𝒈𝑝data

(𝜽)


𝒈𝑝data
(𝜽)




2

ª®®
¬
= 𝔼


©­­
«
𝒈𝔹(𝜽)⊤𝒈𝑝data

(𝜽)


𝒈𝑝data
(𝜽)




2 − 1
ª®®
¬

2
≤ 𝜃2

inner (C.18a)

(note that by Equation (C.14) we have 𝔼[𝒈𝔹(𝜽)⊤𝒈𝑝data
(𝜽)/


𝒈𝑝data

(𝜽)



2] = 1).

Bollapragada et al. [19] bound Equation (C.18a) by the individual gradient
variance,

1
|𝔹|Var

©­­
«
𝒈𝑛(𝜽)⊤𝒈𝑝data

(𝜽)


𝒈𝑝data
(𝜽)




2

ª®®
¬

=
1
|𝔹|𝔼


©­­
«
𝒈𝑛(𝜽)⊤𝒈𝑝data

(𝜽)


𝒈𝑝data
(𝜽)




2 − 1
ª®®
¬

2
≤ 𝜃2

inner .
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They then propose a practical form of Equation (C.18b), which uses the
mini-batch sample variance,

1
|𝔹|Var
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𝒈𝑛(𝜽)⊤𝒈𝔹(𝜽)

𝒈𝔹(𝜽)

2
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=
1

|𝔹|(|𝔹| − 1)
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Expanding

∑
𝑛∈𝔹

(
𝒈𝑛(𝜽)⊤𝒈𝔹(𝜽)

𝒈𝔹(𝜽)
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=
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𝒈𝑛(𝜽)⊤𝒈𝔹(𝜽)

)2



𝒈𝔹(𝜽)

4 − |𝔹| (C.19b)

and inserting Equation (C.19b) into Equation (C.19a) yields

1
|𝔹|(|𝔹| − 1)

[∑
𝑛∈𝔹

(
𝒈𝑛(𝜽)⊤𝒈𝔹(𝜽)

)2



𝒈𝔹(𝜽)

4 − |𝔹|
]
≤ 𝜃2

inner . (C.19c)

It relies on pairwise scalar products between individual gradients,
which can be aggregated over layers during backpropagation. Cock-
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pit’s InnerTest quantity computes the maximum band width 𝜃inner that
satisfies Equation (C.19c).

Orthogonality Test ( OrthoTest )

In contrast to the inner product test (Appendix C.3.6) which constrains
the projection (Equation (C.17)), the orthogonality test [19] constrains the
orthogonal part (see Figure C.2 (a))

𝒈𝔹(𝜽) − proj𝒈𝑝data
(𝜽)

(
𝒈𝔹(𝜽)

)
, (C.20)

rescaled by ∥𝒈𝑝data
(𝜽)∥. This restricts the mini-batch gradient to a stan-

dardized band of relative width 𝜈ortho ∈ (0,∞) parallel to the population
gradient. Bollapragada et al. [19] use 𝜈 = tan(80◦) ≈ 5.84 (in the practical
version, see below) to adapt the batch size if the following condition is
violated,
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Expanding the norm, and inserting Equation (C.17), this simplifies to
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Bollapragada et al. [19] bound this inequality with individual gradients,
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They propose the practical form
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which simplifies to

1
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≤ 𝜈2

ortho . (C.22b)

It relies on pairwise scalar products between individual gradients
which can be aggregated over layers during a backward pass. Cock-
pit’s OrthoTest quantity computes the maximum band width 𝜈ortho
which satisfies Equation (C.22b).
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Relation to Acute Angle Test

Recently, a novel “acute angle test” was proposed by Bahamou and
Goldfarb [6]. While the theoretical constraint between 𝒈𝔹(𝜽) and 𝒈𝑝data

(𝜽)
differs from the orthogonality test, the practical versions coincide. Hence,
we do not incorporate the acute angle here.

C.3.7 Hessian Maximum Eigenvalue ( HessMaxEV )

The Hessian’s maximum eigenvalue 𝜆max(𝑯𝔹(𝜽)) is computed with an
iterative eigensolver from Hessian-vector products through PyTorch’s
automatic differentiation [127]. Like Yao et al. [177], we employ power
iterations with similar default stopping parameters (stop after at most
100 iterations, or if the iterate does converged with a relative and absolute
tolerance of 10−3 , 10−6, respectively) to compute 𝜆max(𝑯𝔹(𝜽)) through
the HessMaxEV quantity in Cockpit.

In principle, more sophisticated eigensolvers (for example Arnoldi’s
method) could be applied to converge in fewer iterations or compute eigen-
values other than the leading ones. Warsa et al. [170] empirically demon-
strate that the FLOP ratio between power iteration and implicitly restarted
Arnoldi method can reach values larger than 100. While we can use such
a beneficial method on a CPU through scipy.sparse.linalg.eigsh we
are restricted to the GPU-compatible power iteration for GPU training.
We expect that extending the support of popular machine learning li-
braries like PyTorch for such iterative eigensolvers on GPUs can help to
save computation time.

𝜆max(𝑯𝔹(𝜽)) = max
∥𝒗∥2=1

∥𝑯𝔹(𝜽)𝒗∥2 = max
𝒗∈ℝ𝐷

𝒗⊤𝑯𝔹(𝜽)𝒗
𝒗⊤𝒗

. (C.23)

Usage

The Hessian’s maximum eigenvalue describes the loss surface’s sharpest
direction and thus provides an understanding of the current loss land-
scape. Additionally, in convex optimization, the largest Hessian eigen-
value crucially determines the appropriate step size [144]. In Section 6.4,
we can observe that although training seems stuck in the very first few
iterations progress is visible when looking at the maximum Hessian
eigenvalue.

C.3.8 Hessian Trace ( HessTrace )

In comparison to Yao et al. [177], who leverage Hessian-vector products
[127] to estimate the Hessian trace, we compute the exact value Tr(𝑯𝔹(𝜽))
with the HessTrace quantity in Cockpit by aggregating the output of
BackPACK’s DiagHessian extension, which computes the diagonal entries
of 𝑯𝔹(𝜽). Alternatively, the trace can also be estimated with the GGN
matrix, or an MC-sampled approximation thereof.

https://github.com/amirgholami/PyHessian/blob/0f7e0f63a0f132998608013351ba19955fc9d861/pyhessian/hessian.py#L111-L158
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html
https://docs.backpack.pt/en/master/extensions.html#backpack.extensions.DiagHessian
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Usage

The Hessian trace equals the sum of the eigenvalues and thus provides
a notion of “average curvature” of the current loss landscape. It has
long been theorized and discussed that curvature and generalization
performance may be linked [70, e.g. ].

C.3.9 Takeuchi Information Criterion ( TICDiag , TICTrace )

Recent work by Thomas et al. [162] suggests that optimizer convergence
speed and generalization is mainly influenced by curvature and gra-
dient noise; and hence their interaction is crucial to understand the
generalization and optimization behavior of deep neural networks. They
reinvestigate the Takeuchi Information criterion [160], an estimator for the
generalization gap in overparameterized maximum likelihood estimation.
At a local minimum 𝜽★, the generalization gap is estimated by the TIC

1
|𝔻| Tr

(
𝑯 𝑝data(𝜽★)−1𝑲𝑝data(𝜽★)

)
, (C.24)

where𝑯 𝑝data(𝜽★) is the population Hessian and𝑲𝑝data(𝜽★) is the gradient’s
uncentered second moment,

𝑲𝑝data(𝜽★) =
∫
∇𝜽★ℓ ( 𝑓𝜽★(𝒙), 𝒚) (∇𝜽★ℓ ( 𝑓𝜽★(𝒙), 𝒚))⊤ 𝑝data(𝒙 , 𝒚)d𝒙d𝒚.

Both matrices are inaccessible in practice. In their experiments, Thomas
et al. [162] propose the approximation Tr(𝑲)/Tr(𝑯) for Tr(𝑯−1𝑲). They
also replace the Hessian by the Fisher as it is easier to compute. With
these practical simplifications, they investigate the TIC of trained neural
networks where the curvature and noise matrix are evaluated on a large
dataset.

The TIC provided in Cockpit differs from this setting, since by design
we want to observe quantities during training, while avoiding additional
model predictions. Also, BackPACK provides access to the Hessian;
hence we don’t need to use the Fisher. We propose the following two
approximations of the TIC from a mini-batch:

▶ TICTrace : uses the approximation of Thomas et al. [162] which
replaces the matrix-product trace by the product of traces,

Tr (𝑲𝔹(𝜽))
Tr (𝑯𝔹(𝜽)) =

1
|𝔹|

∑
𝑛∈𝔹∥𝒈𝑛(𝜽)∥2

Tr (𝑯𝔹(𝜽)) . (C.25)

▶ TICDiag : uses a diagonal approximation of the Hessian, which is
cheap to invert,

Tr
(
diag (𝑯𝔹(𝜽))−1 𝑲𝔹(𝜽)

)

=
1
|𝔹|

𝐷∑
𝑑=1
[𝑯𝔹(𝜽)]−1

𝑑,𝑑

[∑
𝑛∈𝔹

𝒈𝑛(𝜽)⊙2

]
𝑑

.
(C.26)
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Usage

The TIC is a proxy for the generalization gap, see Thomas et al. [162].

C.3.10 Gradient Signal-to-noise Ratio ( MeanGSNR )

The gradient signal-to-noise ratio GSNR([𝜽]𝑑) ∈ ℝ for a single parameter
[𝜽]𝑑 is defined as

GSNR([𝜽]𝑑) =
𝔼(𝒙 ,𝒚)∼𝑃

[[∇𝜽ℓ ( 𝑓𝜽(𝒙), 𝒚)]𝑑]2

Var(𝒙 ,𝒚)∼𝑃
[[∇𝜽ℓ ( 𝑓𝜽(𝒙), 𝒚)]𝑑] =

[
𝒈𝑃(𝜽)

]2
𝑑

[𝚺𝑃(𝜽)]𝑑,𝑑
. (C.27)

Liu et al. [100] use it to explain generalization properties of models in the
early training phase. We apply their estimation to mini-batches,

GSNR([𝜽]𝑑) ≈
[
𝒈𝔹(𝜽)

]2
𝑑

|𝔹|−1
|𝔹|

[
𝚺̂𝔹(𝜽)

]
𝑑,𝑑

=

[
𝒈𝔹(𝜽)

]2
𝑑

1
|𝔹|

(∑
𝑛∈𝔹

[
𝒈𝑛(𝜽)

]2
𝑑

)
− [

𝒈𝔹(𝜽)
]2
𝑑

.

(C.28a)

Inspired by Liu et al. [100], Cockpit’s MeanGSNR computes the average
GSNR over all parameters,

1
𝐷

𝐷∑
𝑗=1

GSNR([𝜽]𝑗) . (C.28b)

Usage

The GSNR describes the gradient noise level which is influenced, among
other things, by the batch size. Using the GSNR, perhaps in combination
with the gradient tests or the CABS criterion could provide practitioners
a clearer picture of suitable batch sizes for their particular problem. As
shown by Liu et al. [100], the GSNR is also linked to generalization of
neural networks.

C.4 Additional Experiments

In this section, we present additional experiments and use cases that
showcase Cockpit’s utility. Appendix C.4.1 shows that Cockpit is able
to scale to larger datasets by running the experiment with incorrectly
scaled data (see Section 6.3.1) on ImageNet instead of CIFAR-10. Ap-
pendix C.4.2 provides another concrete use case similar to Figure 6.1:
detecting regularization during training.

C.4.1 Incorrectly Scaled Data for ImageNet

We repeat the experiment of Section 6.3.1 on the ImageNet [41] dataset
instead of CIFAR-10. We also use a larger neural network model, switching
from 3c3d to VGG16 [153]. This demonstrates that Cockpit is able to scale
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Figure C.3: Same inputs, different gradients on ImageNet. This is structurally the same plot as Figure 6.3, but using ImageNet and
VGG16. (a) normalized ([0, 1]) and (b) raw ([0, 255]) images look identical in auto-scaled front-ends like matplotlib’s imshow . The gradient
distribution on the VGG16 model, however, is affected by this scaling.

to both larger models and datasets. The input size of the images is almost
fifty times larger (224 × 224 instead of 32 × 32). The model size increased
by roughly a factor of 150 (VGG16 for ImageNet has roughly 138 million
parameters, 3c3d has less than a million).

Similar to the example in the main text, the gradients are affected by
the scaling introduced via the input images, albeit less drastically (see
Figure C.3). Due to the gradient scaling, default optimization hyper-
parameters might not work well anymore for the model using the raw
data.

C.4.2 Detecting Implicit Regularization of The Optimizer

In non-convex optimization, optimizers can converge to local minima
with different properties. Here, we illustrate this by investigating the
effect of sub-sampling noise on a simple task from [56, 112].

We generate synthetic data 𝔻 = {(𝑥𝑛 , 𝑦𝑛) ∈ ℝ×ℝ}𝑁=100
𝑛=1 for a regression

task with 𝑥 ∼ N (𝑥 | 0, 1)with noisy observations 𝑦 = 1.4𝑥+ 𝜖 where 𝜖 ∼
N (𝜖 | 0, 1). The model is a scalar net with parameters 𝜽 =

(
𝑤1 𝑤2

)⊤ ∈
ℝ2, initialized at 𝜽0 =

(
0.1 1.7

)⊤, that produces predictions 𝑓𝜽(𝑥) =
𝑤2𝑤1𝑥. We seek to minimize the mean squared error

L𝔻(𝜽) = 1
𝑁

𝑁∑
𝑛=1
( 𝑓𝜽(𝑥𝑛) − 𝑦𝑛)2

and compare SGD (|𝔹| = 95) with GD (|𝔹| = 𝑁 = 100) at a learning rate
of 0.1 (see Figure C.4).

We observe that the loss of both SGD and GD is almost identical. Using a
noisy gradient regularizes the Hessian’s maximum eigenvalue though.
It decreases in later stages where the loss curve suggests that train-
ing has converged. This regularization effect constitutes an important
phenomenon that cannot be observed by monitoring only the loss.
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Figure C.4: Observing implicit regular-
ization of the optimizer with Cockpit
through a comparison of SGD and GD
on a synthetic problem inspired by [56,
112] (details in the text). Top left: The
mini-batch loss of both optimizers looks
similar. Top right: Noise due to mini-
batching regularizes the Hessian’s maxi-
mum eigenvalue in stages where the loss
suggests that training has converged. Bot-
tom: Optimization trajectories in parame-
ter space. SGD is attracted to the flattest
minimum.

C.5 Implementation Details & Additional
Benchmarks

In this section, we provide more details about our implementation (Ap-
pendix C.5.1) to access the desired quantities with as little overhead as
possible. Additionally, we present more benchmarks for individual instru-
ments (Appendix C.5.2) and Cockpit configurations (Appendix C.5.2).
These are similar but extended versions of the ones presented in Fig-
ures 6.6a and 6.6b in the main text. Lastly, we benchmark different
implementations of computing the two-dimensional gradient histogram
(Appendix C.5.3), identifying a computational bottleneck for its current
GPU implementation.

Hardware Details

We conducted benchmarks on the following setup:

▶ CPU: Intel Core i7-8700K CPU @ 3.70 GHz × 12 (32 GB)
▶ GPU: NVIDIA GeForce RTX 2080 Ti (11 GB)

Test Problem Details

The experiments in this paper rely mostly on optimization problems
provided by the DeepOBS benchmark suite [146]. If not stated otherwise,
we use the default training details suggested by DeepOBS, that are
summarized below. For more details see the original paper.
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▶ Quadratic Deep: A stochastic quadratic problem with an eigen-
spectrum similar to what has been reported for neural nets. Default
batch size 128, default number of epochs 100.

▶ MNIST Log. Reg.: Multinomial logistic regression on MNIST [95].
Default batch size 128, default number of epochs 50.

▶ MNIST MLP: Multi-layer perceptron on MNIST. Default batch
size 128, default number of epochs 100.

▶ Fashion-MNIST MLP: Multi-layer perceptron on Fashion-MNIST
[175]. Default batch size 128, default number of epochs 100.

▶ Fashion-MNIST 2c2d: A two convolutional and two dense layered
neural network on Fashion-MNIST. Default batch size 128, default
number of epochs 100.

▶ CIFAR-10 3c3d: A three convolutional and three dense layered
neural network on CIFAR-10 [90]. Default batch size 128, default
number of epochs 100.

▶ CIFAR-100 All-CNN-C: All Convolutional Neural Network C (All-
CNN-C [157]) on CIFAR-100 [90]. Default batch size 256, default
number of epochs 350.

▶ SVHN 3c3d: A three convolutional and three dense layered neural
network on SVHN [118]. Default batch size 128, default number of
epochs 100.

C.5.1 Hooks & Memory Benchmarks

To improve memory consumption, we compact information during the
backward pass by adding hooks to the neural network’s layers. These are
executed after BackPACK extensions and have access to the quantities
computed therein. They compress information to what is requested by
a quantity and free the memory occupied by BackPACK buffers. Such
savings primarily depend on the parameter distribution over layers, and
are bigger for more balanced architectures (compare Figure C.5).

Example

Say, we want to compute a histogram over the |𝔹| × 𝐷 individual gra-
dient elements of a network. Suppose that |𝔹| = 128 and the model is
DeepOBS’s CIFAR-10 3c3d test problem with 895, 210 parameters. Given
that every parameter is stored in single precision, the model requires
895, 210 × 4 Bytes ≈ 3.41 MB. Storing the individual gradients will re-
quire 128 × 895, 210 × 4 Bytes ≈ 437 MB (for larger networks this quickly
exceeds the available memory as the individual gradients occupy |𝔹|
times the model size). If instead, the layer-wise individual gradients
are condensed into histograms of negligible size and immediately freed
afterwards during backpropagation, the maximum memory overhead
reduces to storing the individual gradients of the largest layer. For our
example, the largest layer has 589, 824 parameters, and the associated in-
dividual gradients will require 128× 589, 824× 4 Bytes ≈ 288 MB, saving
roughly 149 MB of RAM. In practice, we observe these expected savings,
see Figure C.5c.
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Figure C.5: Memory consumption and
savings with hooks during one forward-
backward step on a CPU for differ-
ent DeepOBS problems. We compare
three settings; i) without Cockpit (base-
line); ii) Cockpit with GradHist1d with
BackPACK (expensive); iii) Cockpit with
GradHist1d with BackPACK and addi-

tional hooks (optimized). Peak memory
consumptions are highlighted by hori-
zontal dashed bars and shown in the
legend. Shaded areas, if visible, fill two
standard deviations above and below
the mean value, all of them result from
ten independent runs. Dotted lines in-
dicate individual runs. Our optimized
approach allows to free obsolete tensors
during backpropagation and thereby re-
duces memory consumption. From top
to bottom: the effect is less pronounced
for architectures that concentrate the ma-
jority of parameters in a single layer
((a) 3, 274, 634 total, 3, 211, 264 largest
layer) and increases for more balanced
networks (b) 1, 336, 610 total, 784, 000
largest layer, (c): 895, 210 total, 589, 824
largest layer).

C.5.2 Additional Run Time Benchmarks

Individual Instrument Overhead

To estimate the computational overhead for individual instruments, we
run Cockpit with that instrument for 32 iterations, tracking at every step.
Training proceeds with the default batch size specified by the DeepOBS
problem and uses SGD with learning rate 10−3. We measure the time
between iterations 1 and 32, and average for the overhead per step. Every
such estimate is repeated over 10 random seeds to obtain mean and error
bars as reported in Figure 6.6a.

Note that this protocol does not include initial overhead for setting up
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data loading and also does not include the time for evaluating train/test
loss on a larger dataset, which is usually done by practitioners. Hence,
we even expect the shown overheads to be smaller in a conventional
training loop which includes the above steps.

Individual Overhead on GPU Versus CPU

Figure C.6 and Figure C.7 show the individual overhead for four different
DeepOBS problems on GPU and CPU, respectively. The left part of Fig-
ure C.6 (c) corresponds to Figure 6.6a. Right panels show the expensive
quantities, which we omitted in the main text as they were expected to be
expensive due to their computational work ( HessMaxEV ) or bottlenecks in
the implementation ( GradHist2d , see Appendix C.5.3 for details). We see
that they are in many cases equally or more expensive than computing all
other instruments. Another expected feature of the GPU-to-CPU compari-
son is that parallelism on the CPU is significantly less pronounced. Hence,
we observe an increased overhead for all quantities that contain non-linear
transformations and contractions of the high-dimensional individual
gradients, or require additional backpropagations (curvature).

Configuration Overhead

For the estimation of different Cockpit configuration overheads, we use
almost the same setting as described above, training for 512 iterations
and tracking only every specified interval.

Configuration Overhead on GPU Versus CPU

Figure C.8 and Figure C.9 show the configuration overhead for four differ-
ent DeepOBS problems. The bottom left part of Figure C.8 corresponds
to Figure 6.6b. In general, increased parallelism can be exploited on a
GPU, leading to smaller overheads in comparison to a CPU.

Cockpit can even scale to significantly larger problems, such as a ResNet-
50 on ImageNet-like data. Figure C.10 shows the computational overhead
for different tracking intervals on such a large-scale problem. Using
the economy configuration, we can achieve our self-imposed goal of
at most doubling the run time even when tracking every fourth step.
More extensive configurations (such as the full set) would indeed have
almost prohibitively large costs associated. However, these costs could
be dramatically reduced when one decides to only inspect a part of
the network using Cockpit. Note, individual gradients are not properly
defined when using batch norm, therefore, we replaced these batch norm
layers with identity layers when using the ResNet-50.
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(a) Computational overhead for MNIST LogReg (GPU)
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(b) Computational overhead for MNIST MLP (GPU)
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(c) Computational overhead for CIFAR-10 3c3d (GPU)
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(d) Computational overhead for Fashion-MNIST 2c2d (GPU)
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Figure C.6: Individual overhead of Cockpit’s instruments on GPU for four different problems. All run times are shown as multiples of
the baseline without tracking. Expensive quantities are displayed in separate panels on the right. Experimental details in the text.
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(a) Computational overhead for MNIST LogReg (CPU)
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(b) Computational overhead for MNIST MLP (CPU)
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(c) Computational overhead for CIFAR-10 3c3d (CPU)
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(d) Computational overhead for Fashion-MNIST 2c2d (CPU)
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Figure C.7: Individual overhead of Cockpit’s instruments on CPU for four different problems. All run times are shown as multiples of
the baseline without tracking. Expensive quantities are displayed in separate panels on the right. Experimental details in the text.
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(a) MNIST LogReg (GPU)
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(b) MNIST MLP (GPU)
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(c) CIFAR-10 3c3d (GPU)
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(d) Fashion-MNIST 2c2d (GPU)
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Figure C.8: Overhead of Cockpit configurations on GPU for four different problems with varying tracking interval. Color bar is the
same as in Figure 6.6.

(a) MNIST LogReg (CPU)
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(b) MNIST MLP (CPU)
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(c) CIFAR-10 3c3d (CPU)
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(d) Fashion-MNIST 2c2d (CPU)
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Figure C.9: Overhead of Cockpit configurations on CPU for four different problems with varying tracking interval. Color bar is the
same as in Figure 6.6.
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Figure C.10: Overhead of Cockpit con-
figurations on GPU for ResNet-50 on
ImageNet. Cockpit’s instruments scale
efficiently even to very large problems
(here: 1000 classes, (3, 224, 224)-sized in-
puts, and a batch size of 64. For individ-
ual gradients to be defined, we replaced
the batch norm layers of the ResNet-50
model with identities.) Color bar is the
same as in Figure 6.6.
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Figure C.11: Performance of two-dimensional histogram GPU implementations depends on the data. (a) Run time for two different
GPU implementations with histograms of different imbalance. Cockpit’s implementation outperforms the third party solution by more
than one order of magnitude in the deep learning regime (𝑏 ≪ 1). (b) On CPU, performance is robust to histogram balance. The run
time difference between NumPy and PyTorch is due to multi-threading. Data has the same size as DeepOBS’s CIFAR-10 3c3d problem
(𝐷 = 895, 210, |𝔹| = 128). Curves represent averages over 10 independent runs. Error bars are omitted to improve legibility.

C.5.3 Performance of Two-dimensional Histograms

Both one- and two-dimensional histograms require |𝔹| × 𝐷 elements be
accessed, and hence perform similarly. However, we observed different
behavior on GPU and decided to omit the two-dimensional histogram’s
run time in the main text. As explained here, this performance lack is not
fundamental, but a shortcoming of the GPU implementation. PyTorch pro-
vides built-in functionality for computing one-dimensional histograms at
the time of writing, but is not yet featuring multi-dimensional histograms.
We experimented with three implementations:

▶ PyTorch (third party): A third party implementation* under review
for being integrated into PyTorch†. It relies on torch.bincount,
which uses atomicAdd s that represent a bottleneck for histograms
where most counts are contained in one bin.‡ This occurs often for
over-parameterized deep models, as most of the gradient elements
are zero.

▶ PyTorch (Cockpit): Our implementation uses a workaround, com-
putes bin indices and scatters the counts into their associated bins
with torch.Tensor.put_ . This circumvents atomicAdd s, but has poor
memory locality.

▶ NumPy: The single-threaded numpy.histogram2d serves as baseline,
but does not run on GPUs.

* Permission granted by the authors of github.com/miranov25/.../histogramdd_-
pytorch.py.

† See https://github.com/pytorch/pytorch/pull/44485.
‡ Seehttps://discuss.pytorch.org/t/torch-bincount-1000x-slower-on-cuda/42654

cockpit::https://github.com/miranov25/RootInteractive/blob/7019e4c2b9f291551aeeb8677a969cfcfde690d1/RootInteractive/Tools/Histograms/histogramdd_pytorch.py
cockpit::https://github.com/miranov25/RootInteractive/blob/7019e4c2b9f291551aeeb8677a969cfcfde690d1/RootInteractive/Tools/Histograms/histogramdd_pytorch.py
https://github.com/pytorch/pytorch/pull/44485
https://discuss.pytorch.org/t/torch-bincount-1000x-slower-on-cuda/42654
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To demonstrate the strong performance dependence on the data, we
generate data from a uniform distribution over [0, 𝑏] × [0, 𝑏], where
𝑏 ∈ (0, 1) parametrizes the histogram’s balance, and compute two-
dimensional histograms on [0, 1] × [0, 1]. Figure C.11a shows a clear
increase in run time of both GPU implementations for more imbalanced
histograms. Note that even though our implementation outperforms the
third party by more than one order of magnitude in the deep neural
network regime (𝑏 ≪ 1), it is still considerably slower than a one-
dimensional histogram (see Figure C.6 (c)), and even slower on GPU
than on CPU (Figure C.11 (b)). As expected, the CPU implementations
do not significantly depend on the data (Figure C.11b). The performance
difference between PyTorch and NumPy is likely due to multi-threading
versus single-threading.

Although a carefully engineered histogram GPU implementation is
currently not available, we think it will reduce the computational overhead
to that of a one-dimensional histogram in future releases.
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C.6 Cockpit View of Convex Stochastic Problems

Figure C.12: Screenshot of Cockpit’s full view for convex DeepOBS problems. Top Cockpit shows training on a noisy quadratic loss
function. Bottom shows training on logistic regression on MNIST. Figure and labels are not meant to be legible. It is evident, that there is
a fundamental difference in the optimization process, compared to training deep networks, i. e. Figure 6.2. This is, for example, visible
when comparing the gradient norms, which converge to zero for convex problems but not for deep learning.
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D.1 Mathematical Details

D.1.1 The GNN’s Eigenvalues & the Gram Matrix

For Equation (7.4), consider the left hand side of the GGN’s character-
istic polynomial det(𝑮 − 𝜆𝑰𝐷) = 0. Inserting the ViViT factorization
(Equation (7.3)) and using the matrix determinant lemma yields

det (−𝜆𝑰𝐷 + 𝑮)
= det

(−𝜆𝑰𝐷 + 𝑽𝑽⊤
)

(Low-rank structure (7.3))

= det
(
𝑰𝑁𝐶 + 𝑽⊤(−𝜆𝑰𝐷)−1𝑽

)
det(−𝜆𝑰𝐷) (Matrix determinant lemma)

= det
(
𝑰𝑁𝐶 − 1

𝜆
𝑽⊤𝑽

)
(−𝜆)𝐷

=
(
− 1
𝜆

)𝑁𝐶
det

(
𝑽⊤𝑽 − 𝜆𝑰𝑁𝐶

) (−𝜆)𝐷
= (−𝜆)𝐷−𝑁𝐶 det

(
𝑮̃ − 𝜆𝑰𝑁𝐶

)
. (Gram matrix)

Setting the above expression to zero reveals that the GGN’s spectrum
decomposes into𝐷−𝑁𝐶 zero eigenvalues and the Gram matrix spectrum
obtained from det(𝑮̃ − 𝜆𝑰𝑁𝐶) = 0.

D.1.2 Relation Between GGN & Gram Matrix Eigenvectors

Assume the nontrivial Gram matrix spectrum 𝕊̃+ := {(𝜆𝑘 , 𝒆̃𝑘) | 𝜆𝑘 ≠
0, 𝑮̃𝒆̃𝑘 = 𝜆𝑘 𝒆̃𝑘}𝐾𝑘=1 with orthonormal eigenvectors 𝒆̃⊤𝑗 𝒆̃𝑘 = 𝛿 𝑗 ,𝑘 (𝛿 is the
Kronecker delta) and 𝐾 = rank(𝑮). We now show that 𝒆𝑘 = 1/√𝜆𝑘𝑽 𝒆̃𝑘 are
normalized eigenvectors of 𝑮 and inherit orthogonality from 𝒆̃𝑘 .

To see the first, consider right-multiplication of the GGN with 𝒆𝑘 , then
expand the low-rank structure,

𝑮𝒆𝑘 =
1√
𝜆𝑘

𝑽𝑽⊤𝑽 𝒆̃𝑘 (Equation (7.3) and definition of 𝒆𝑘 )

=
1√
𝜆𝑘

𝑽𝑮̃𝒆̃𝑘 (Gram matrix)

= 𝜆𝑘
1√
𝜆𝑘

𝑽 𝒆̃𝑘 (Eigenvector property of 𝒆̃𝑘 )

= 𝜆𝑘𝒆𝑘 .

Orthonormality of the 𝒆𝑘 results from the Gram matrix eigenvector
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orthonormality,

𝒆⊤𝑗 𝒆𝑘 =

(
1√
𝜆 𝑗

𝒆̃⊤𝑗 𝑽
⊤
) (

1√
𝜆𝑘

𝑽 𝒆̃𝑘

)
(Definition of 𝒆 𝑗 , 𝒆𝑘 )

=
1√
𝜆 𝑗𝜆𝑘

𝒆̃⊤𝑗 𝑮̃𝒆̃𝑘 (Gram matrix)

=
𝜆𝑘√
𝜆 𝑗𝜆𝑘

𝒆̃⊤𝑗 𝒆̃𝑘 (Eigenvector property of 𝒆̃𝑘 )

= 𝛿 𝑗 ,𝑘 . (Orthonormality)

D.2 Experimental Details

This section uses the notation from Section 7.3 (see Table D.1).

Table D.1: Notation for curvature ap-
proximations. The notation is intro-
duced in Section 7.3. This table reca-
pitulates the abbreviations (referring to
the approximations introduced in Sec-
tion 7.2.4) and provides corresponding
explanations.

Abbreviation Explanation

mb, exact Exact GGN with all mini-batch samples.
Backpropagates 𝑁𝐶 vectors.

mb, mc MC-approximated GGN with all mini-batch samples.
Backpropagates 𝑁𝑀 vectors with 𝑀 the number of MC-samples.

sub, exact Exact GGN on a subset of mini-batch samples (⌊𝑁/8⌋ as in [183]).
Backpropagates ⌊𝑁/8⌋𝐶 vectors.

sub, mc MC-approximated GGN on a subset of mini-batch samples.
Backpropagates ⌊𝑁/8⌋𝑀 vectors with 𝑀 the number of MC-samples.

GGN Spectra (Figure 7.1a)

To obtain the spectra of Figure 7.1a we initialize the respective architecture,
then draw a mini-batch and evaluate the GGN eigenvalues under the
described approximations, clipping the Gram matrix eigenvalues at 10−4.
Figure D.1 provides the spectra for all used architectures with both the
full GGN and a per-layer block-diagonal approximation.

D.2.1 Performance Evaluation

Hardware Details

Results were generated on a workstation with an Intel Core i7-8700K
CPU (32 GB) and one NVIDIA GeForce RTX 2080 Ti GPU (11 GB).

Note

ViViT’s quantities are implemented through BackPACK, which is trig-
gered by PyTorch’s gradient computation. Consequently, they can only
be computed together with PyTorch’s mini-batch gradient.
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Full network Block-diagonal approximation
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Figure D.1: GGN spectra of different architectures under ViViT’s approximations: Left and right columns contain results with the full
network’s GGN and a per-layer block-diagonal approximation, respectively.
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Full network Block-diagonal approximation

(d) CIFAR-10 ResNet-56
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(e) CIFAR-100 All-CNN-C
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Figure D.1: GGN spectra of different architectures under ViViT’s approximations: Left and right columns contain results with the full
network’s GGN and a per-layer block-diagonal approximation, respectively.

Architectures

We use untrained deep convolutional and residual networks from Deep-
OBS [146] and [74]. If a net has batch normalization layers, we set them to
evaluation mode. Otherwise, the loss would not obey the sum structure of
Equation (7.1). The batch normalization layers’ internal moving averages,
required for evaluation mode, are initialized by performing five forward
passes with the current mini-batch in training mode before.

In experiments with fixed mini-batches the batch sizes correspond to
DeepOBS’ default value for training where possible (CIFAR-10: 𝑁 = 128,
Fashion-MNIST: 𝑁 = 128). The ResNets use a batch size of 𝑁 = 128. On
CIFAR-100 (trained with 𝑁 = 256), we reduce the batch size to 𝑁 = 64
to fit the exact computation on the full mini-batch, used as baseline,
into memory. If the GGN approximation is evaluated on a subset of the
mini-batch (sub), ⌊𝑁/8⌋ of the samples are used (as in [183]). The MC
approximation is always evaluated with a single sample (𝑀 = 1).
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Memory Performance (Critical Batch Sizes)

Two tasks are considered (see Section 7.3.1):

1. Computing eigenvalues: Compute the nontrivial eigenvalues
{𝜆𝑘 | (𝜆𝑘 , 𝒆̃𝑘) ∈ 𝕊̃+} .

2. Computing the top eigenpair: Compute the top eigenpair (𝜆1 , 𝒆1).
We repeat the tasks above and vary the mini-batch size until the device
runs out of memory. The largest mini-batch size that can be handled by
our system is denoted as 𝑁crit, the critical batch size. We determine this
number by bisection on the interval [1; 32768].
Subfigures (a) and (b) of Figures D.2 to D.11 present the results. As
described in Section 7.2.3, computing eigenvalues is more memory-
efficient than computing eigenvectors and exhibits larger critical batch
sizes. In line with the description in Section 7.2.4, a block-diagonal
approximation is usually more memory-efficient and results in a larger
critical batch size. Curvature sub-sampling and MC approximation
further increase the applicable batch sizes.

In summary, there always exists a combination of approximations which
allows for critical batch sizes larger than the traditional size used for
training (some architectures even permit exact computation). Different
accuracy-cost trade-offs may be preferred, depending on the application
and the computational budget. By the presented approximations, ViViT’s
representation is capable to adapt over a wide range.

Run Time Performance

Here, we consider the task of computing the 𝑘 leading eigenvectors and
eigenvalues of a matrix. ViViT’s eigenpair computation is compared with
a power iteration that computes eigenpairs iteratively via matrix-vector
products. The power iteration baseline is based on the PyHessian library
[177] and uses the same termination criterion (at most 100 matrix-vector
products per eigenvalue; stop if the eigenvalue estimate’s relative change
is less than 10−3). In contrast to PyHessian, we use a different data
format and stack the computed eigenvectors. This reduces the number
of for-loops in the orthonormalization step. We repeat each run time
measurement 20 times and report the shortest execution time as result.

Subfigures (c) and (d) of Figures D.2 to D.11 show the results. For most
architectures, our exact method outperforms the power iteration for 𝑘 > 1
and increases only marginally in run time as the number of requested
eigenvectors grows. The proposed approximations share this property,
and further reduce run time.

Note On CIFAR-100 (Large 𝐶)

For datasets with a large number of classes, like CIFAR-100 (𝐶 = 100),
computations with the exact GGN are costly. In particular, constructing
the Gram matrix 𝑮̃ has quadratic memory cost in 𝐶, and its eigendecom-
position has cubic cost in time with 𝐶 (see Section 7.2.3).
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Full network Block-diagonal approximation

(a) Memory performance
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Figure D.2: GPU memory and run time performance for the 2c2d architecture on Fashion-MNIST. Left and right columns show
results with the full network’s GGN (𝐷 = 3,274,634, 𝐶 = 10) and a per-layer block-diagonal approximation, respectively. (a),(b) Critical
batch sizes 𝑁crit for computing eigenvalues and the top eigenpair. (c),(d) Run time comparison with a power iteration for extracting the 𝑘
leading eigenpairs using a mini-batch of size 𝑁 = 128.

As a result, the exact computation only works with batch sizes smaller
than DeepOBS’ default (𝑁 = 256 for CIFAR-100, see subfigures (a) and
(b) of Figures D.10 and D.11). For the GGN block-diagonal approximation,
which fits into CPU memory for 𝑁 = 64, the exact computation of top
eigenpairs is slower than a power iteration and only becomes comparable
if a large number of eigenpairs is requested, see Figure D.11d.

For such datasets, the approximations proposed in Section 7.2.4 are
essential to reduce costs. The most effective approximation to eliminate
the scaling with 𝐶 is using an MC approximation. Figures D.10 and D.11
confirm that the approximate computations scale to batch sizes used
for training and that computing eigenpairs takes less time than a power
iteration.

Computing Damped Newton Steps

A Newton step −(𝑮 + 𝛿𝑰)−1𝒈 with damping 𝛿 > 0 can be decomposed
into updates along the eigenvectors of the GGN 𝑮,

−(𝑮 + 𝛿𝑰)−1𝒈 =
𝐾∑
𝑘=1

−𝛾𝑘
𝜆𝑘 + 𝛿

𝒆𝑘 +
𝐷∑

𝑘=𝐾+1

−𝛾𝑘
𝛿

𝒆𝑘 . (D.1)

It corresponds to a Newton update along nontrivial eigendirections
that uses the first- and second-order directional derivatives described
in Section 7.2.2 and a gradient descent step with learning rate 1/𝛿 along
trivial directions (with 𝜆𝑘 = 0). In the following, we refer to the first
summand of Equation (D.1) as Newton step. As described in Section 7.2.3,
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Full network Block-diagonal approximation

(a) Memory performance
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Figure D.3: CPU memory and run time performance for the 2c2d architecture on Fashion-MNIST. Left and right columns show results
with the full network’s GGN (𝐷 = 3,274,634, 𝐶 = 10) and a per-layer block-diagonal approximation, respectively. (a),(b) Critical batch
sizes 𝑁crit for computing eigenvalues and the top eigenpair. (c),(d) Run time comparison with a power iteration for extracting the 𝑘
leading eigenpairs using a mini-batch of size 𝑁 = 128.

we can perform the weighted sum in the Gram matrix space, rather than
the parameter space, by computing

𝐾∑
𝑘=1

−𝛾𝑘
𝜆𝑘 + 𝛿

𝒆𝑘 =
𝐾∑
𝑘=1

−𝛾𝑘
𝜆𝑘 + 𝛿

1√
𝜆𝑘

𝑽 𝒆̃𝑘 = 𝑽

(
𝐾∑
𝑘=1

−𝛾𝑘
(𝜆𝑘 + 𝛿)√𝜆𝑘

𝒆̃𝑘

)
.

This way, only a single vector needs to be transformed from Gram space
into parameter space.

Table D.2 shows critical batch sizes for the Newton step computation
(first term on the right side of Equation (D.1)), using Gram matrix
eigenvalues larger than 10−4 and constant damping 𝛿 = 1. Second-order
directional derivatives 𝜆𝑘 are evaluated on the same samples as the GGN
eigenvectors, but we always use all mini-batch samples to compute the
directional gradients 𝛾𝑛 . Using our approximations, the Newton step
computation scales to batch sizes beyond the traditional sizes used for
training.
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Full network Block-diagonal approximation

(a) Memory performance
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Figure D.4: GPU memory and run time performance for the 3c3d architecture on CIFAR-10. Left and right columns show results with
the full network’s GGN (𝐷 = 895,210, 𝐶 = 10) and a per-layer block-diagonal approximation, respectively. (a),(b) Critical batch sizes
𝑁crit for computing eigenvalues and the top eigenpair. (c),(d) Run time comparison with a power iteration for extracting the 𝑘 leading
eigenpairs using a mini-batch of size 𝑁 = 128.

Full network Block-diagonal approximation
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Figure D.5: CPU memory and run time performance for the 3c3d architecture on CIFAR-10. Left and right columns show results with
the full network’s GGN (𝐷 = 895,210, 𝐶 = 10) and a per-layer block-diagonal approximation, respectively. (a),(b) Critical batch sizes
𝑁crit for computing eigenvalues and the top eigenpair. (c),(d) Run time comparison with a power iteration for extracting the 𝑘 leading
eigenpairs using a mini-batch of size 𝑁 = 128.
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Full network Block-diagonal approximation

(a) Memory performance
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Figure D.6: GPU memory and run time performance for the ResNet-32 architecture on CIFAR-10. Left and right columns show results
with the full network’s GGN (𝐷 = 464,154, 𝐶 = 10) and a per-layer block-diagonal approximation, respectively. (a),(b) Critical batch
sizes 𝑁crit for computing eigenvalues and the top eigenpair. (c),(d) Run time comparison with a power iteration for extracting the 𝑘
leading eigenpairs using a mini-batch of size 𝑁 = 128.
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Figure D.7: CPU memory and run time performance for the ResNet-32 architecture on CIFAR-10. Left and right columns show
results with the full network’s GGN (𝐷 = 464,154, 𝐶 = 10) and a per-layer block-diagonal approximation, respectively. (c),(d) Run time
comparison with a power iteration for extracting the 𝑘 leading eigenpairs using a mini-batch of size 𝑁 = 128.
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Full network Block-diagonal approximation

(a) Memory performance
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Figure D.8: GPU memory and run time performance for the ResNet-56 architecture on CIFAR-10. Left and right columns show
results with the full network’s GGN (𝐷 = 853,018, 𝐶 = 10) and a per-layer block-diagonal approximation, respectively. (c),(d) Run time
comparison with a power iteration for extracting the 𝑘 leading eigenpairs using a mini-batch of size 𝑁 = 128.
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Figure D.9: CPU memory and run time performance for the ResNet-56 architecture on CIFAR-10. Left and right columns show results
with the full network’s GGN (𝐷 = 853,018, 𝐶 = 10) and a per-layer block-diagonal approximation, respectively. (a, b) (c),(d) Run time
comparison with a power iteration for extracting the 𝑘 leading eigenpairs using a mini-batch of size 𝑁 = 128.
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Full network Block-diagonal approximation

(a) Memory performance
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Figure D.10: GPU memory and run time performance for the All-CNN-C architecture on CIFAR-100. Left and right columns show
results with the full network’s GGN (𝐷 = 1,387,108, 𝐶 = 100) and a per-layer block-diagonal approximation, respectively. (a),(b) Critical
batch sizes 𝑁crit for computing eigenvalues and the top eigenpair. (c),(d) Run time comparison with a power iteration for extracting the 𝑘
leading eigenpairs using a mini-batch of size 𝑁 = 64.
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Figure D.11: CPU memory and run time performance for the All-CNN-C architecture on CIFAR-100. Left and right columns show
results with the full network’s GGN (𝐷 = 1,387,108, 𝐶 = 100) and a per-layer block-diagonal approximation, respectively. (a),(b) Critical
batch sizes 𝑁crit for computing eigenvalues and the top eigenpair. (c),(d) Run time comparison with a power iteration for extracting the 𝑘
leading eigenpairs using a mini-batch of size 𝑁 = 64.
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Table D.2: Memory performance for computing damped Newton steps: Left and right columns show the critical batch sizes with the
full network’s GGN and a per-layer block-diagonal approximation, respectively.

Fashion-MNIST 2c2d
Full network Block-diagonal approximation

𝑁crit (GPU)

GGN
Data mb sub

exact 66 159
mc 362 528

𝑁crit (CPU)

GGN
Data mb sub

exact 202 487
mc 1107 1639

𝑁crit (GPU)
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𝑁crit (CPU)
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CIFAR-10 3c3d
Full network Block-diagonal approximation
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CIFAR-10 ResNet-32
Full network Block-diagonal approximation
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-
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.

CIFAR-10 ResNet-56
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𝑁crit (GPU)

GGN
Data mb sub
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.
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.

CIFAR-100 All-CNN-C
Full network Block-diagonal approximation
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D.2.2 Training of Neural Networks

Procedure

We train the following DeepOBS [146] architectures with SGD and
Adam: 3c3d on CIFAR-10, 2c2d on Fashion-MNIST and All-CNN-C on
CIFAR-100; all are equipped with cross-entropy loss. To ensure successful
training, we use the hyperparameters from [38] (see Table D.3).

We also train a residual network ResNet-32 [68] with cross-entropy loss
on CIFAR-10 with both SGD and Adam. For this, we use a batch size
of 128 and train for 180 epochs. Momentum for SGD was fixed to 0.9,
and Adam uses the default parameters (𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8).
For both optimizers, the learning rate was determined via grid search.
Following [146], we use a log-equidistant grid from 10−5 to 102 and 36
grid points. As performance metric, the best test accuracy during training
(evaluated once every epoch) is used.

Results

The results for the hyperparameter grid search are reported in Table D.3.
The training metrics training/test loss/accuracy for all eight test problems
are shown in Figures D.12 and D.13.

Problem SGD Adam Batch size Epochs

Fashion-MNIST 2c2d 𝜂 ≈ 2.07 · 10−2 𝜂 ≈ 1.27 · 10−4 𝑁 = 128 100
CIFAR-10 3c3d 𝜂 ≈ 3.79 · 10−3 𝜂 ≈ 2.98 · 10−4 𝑁 = 128 100
CIFAR-10 ResNet-32 𝜂 ≈ 6.31 · 10−2 𝜂 ≈ 2.51 · 10−3 𝑁 = 128 180
CIFAR-100 All-CNN-C 𝜂 ≈ 4.83 · 10−1 𝜂 ≈ 6.95 · 10−4 𝑁 = 256 350

Table D.3: Hyperparameter settings for
training runs. For both SGD and Adam,
we report their learning rates 𝜂 (taken
from the baselines in [38] or, for ResNet-
32, determined via grid search). Mo-
mentum for SGD is fixed to 0.9. Adam
uses the default parameters 𝛽1 = 0.9,
𝛽2 = 0.999, 𝜖 = 10−8. We also report the
batch size used for training and the num-
ber of training epochs.

D.2.3 GGN versus Hessian

Checkpoints

During training of the neural networks (see Appendix D.2.2), we store
a copy of the model (i. e. the network’s current parameters) at specific
checkpoints. This grid defines the temporal resolution for all subsequent
computations. Since training progresses much faster in the early training
stages, we use a log-grid with 100 grid points between 1 and the number
of training epochs and shift this grid by −1.

Overlap

Recall from Section 7.3.2: for the set of orthonormal eigenvectors {𝒆𝑼𝑐 }𝐶𝑐=1
to the 𝐶 largest eigenvalues of some symmetric matrix 𝑼 , let 𝑷𝑼 =
(𝒆𝑼1 , . . . , 𝒆𝑼𝐶 )(𝒆𝑼1 , . . . , 𝒆𝑼𝐶 )⊤. As in [65], the overlap between two subspaces



180 Appendix D Additional Material for Chapter 7

(a) Fashion-MNIST 2c2d SGD
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(b) Fashion-MNIST 2c2d Adam
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(c) CIFAR-10 3c3d SGD
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(d) CIFAR-10 3c3d Adam
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Figure D.12: Training metrics (1). Training/test loss/accuracy for all test problems.
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(a) CIFAR-10 ResNet-32 SGD
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(b) CIFAR-10 ResNet-32 Adam
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(c) CIFAR-100 All-CNN-C SGD
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(d) CIFAR-100 All-CNN-C Adam
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Figure D.13: Training metrics (2). Training/test loss/accuracy for all test problems.
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E𝑼 = span (𝒆𝑼1 , . . . , 𝒆𝑼𝐶 ) and E𝑽 = span (𝒆𝑽1 , . . . , 𝒆𝑽𝐶 ) of the matrices 𝑼
and 𝑽 is defined by

overlap(E𝑼 , E𝑽 ) = Tr (𝑷𝑼𝑷𝑽 )√
Tr (𝑷𝑼 )Tr (𝑷𝑽 )

∈ [0, 1] .

The overlap can be computed efficiently by using the trace’s cyclic prop-
erty: it holds Tr (𝑷𝑼𝑷𝑽 ) = Tr (𝑾⊤𝑾 )with𝑾 = (𝒆𝑼1 , . . . , 𝒆𝑼𝐶 )⊤(𝒆𝑽1 , . . . , 𝒆𝑽𝐶 ) ∈
ℝ𝐶×𝐶 . Note that this is a small 𝐶 × 𝐶 matrix, whereas 𝑷𝑼 ,𝑷𝑽 ∈ ℝ𝐷×𝐷 .
Since

Tr (𝑷𝑼 ) = Tr ((𝒆𝑼1 , . . . , 𝒆𝑼𝐶 )(𝒆𝑼1 , . . . , 𝒆𝑼𝐶 )⊤)
= Tr ((𝒆𝑼1 , . . . , 𝒆𝑼𝐶 )⊤(𝒆𝑼1 , . . . , 𝒆𝑼𝐶 )) (Cyclic property of trace)

= Tr (𝑰𝐶) (Orthonormality of the eigenvectors)

= 𝐶

(and analogous Tr (𝑷𝑽 ) = 𝐶), the denominator simplifies to 𝐶.

Procedure

For each checkpoint, we compute the top-𝐶 eigenvalues and associated
eigenvectors of the full-batch GGN and Hessian (i. e. GGN and Hessian
are both evaluated on the entire training set) using an iterative matrix-free
approach. We then compute the overlap between the top-𝐶 eigenspaces as
described above. The eigspaces (i. e. the top-𝐶 eigenvalues and associated
eigenvectors) are stored on disk such that they can be used as a reference
by subsequent experiments.

Results

The results for all test problems are presented in Figure D.14. Except
for a short phase at the beginning of the optimization procedure (note
the log scale for the epoch-axis), a strong agreement (note the different
limits for the overlap-axis) between the top-𝐶 eigenspaces is observed.
We make similar observations for all test problems, yet to a slightly
lesser extent for CIFAR-100. A possible explanation for this would be that
the 100-dimensional eigenspaces differ in the eigenvectors associated
with relatively small curvature. The corresponding eigenvalues already
transition into the bulk of the spectrum, where the "sharpness of separa-
tion" decreases. However, since all directions are equally weighted in the
overlap, overall slightly lower values are obtained.
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Figure D.14: Full-batch GGN versus full-batch Hessian. Overlap between the top-𝐶 eigenspaces of the full-batch GGN and full-batch
Hessian during training for all test problems.
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D.2.4 Eigenspace Under Noise & Approximations

Procedure (1)

We use the checkpoints and the definition of overlaps between eigenspaces
from Appendix D.2.3. For the approximation of the GGN, we consider
the cases listed in Table D.4.

Table D.4: Considered cases for approximation of the eigenspace: We use a different set of cases for the approximation of the GGN’s
full-batch eigenspace depending on the test problem. For the test problems with 𝐶 = 10, we use 𝑀 = 1 MC-sample, for the CIFAR-100
All-CNN-C test problem (𝐶 = 100), we use 𝑀 = 10 MC-samples in order to reduce the computational costs by the same factor.

Problem Cases

Fashion-MNIST 2c2d
CIFAR-10 3c3d and
CIFAR-10 ResNet-32

mb, exact with mini-batch sizes 𝑁 ∈ {2, 8, 32, 128}
mb, mc with 𝑁 = 128 and 𝑀 = 1 MC-sample
sub, exact using 16 samples from the mini-batch
sub, mc using 16 samples from the mini-batch and 𝑀 = 1 MC-sample

CIFAR-100 All-CNN-C mb, exact with mini-batch sizes 𝑁 ∈ {2, 8, 32, 128}
mb, mc with 𝑁 = 128 and 𝑀 = 10 MC-samples
sub, exact using 16 samples from the mini-batch
sub, mc using 16 samples from the mini-batch and 𝑀 = 10 MC-samples

For every checkpoint and case, we compute the top-𝐶 eigenvectors of
the respective approximation to the GGN. The eigenvectors are either
computed directly using ViViT (by transforming eigenvectors of the
Gram matrix into parameter space, see Section 7.2.1) or, if not applicable
(because memory requirements exceed 𝑁crit, see Section 7.3.1), using
an iterative matrix-free approach. The overlap is computed in reference
to the GGN’s full-batch top-𝐶 eigenspace (see Appendix D.2.3). We
extract 5 mini-batches from the training data and repeat the above
procedure for each mini-batch (i. e. we obtain 5 overlap measurements
for every checkpoint and case). The same 5 mini-batches are used over
all checkpoints and cases.

Results (1)

The results can be found in Figure D.15 and D.16. All test problems
show the same characteristics: with decreasing computational effort, the
approximation carries less and less structure of its full-batch counterpart,
as indicated by dropping overlaps. In addition, for a fixed approximation
method, a decrease in approximation quality can be observed over the
course of training.

Procedure (2)

Since ViViT’s GGN approximations using curvature sub-sampling and/or
the MC approximation (the cases mb, mc as well as sub, exact and sub,
mc in Table D.4) are based on the mini-batch GGN, we cannot expect
them to perform better than this baseline. We thus repeat the analysis
from above but use the mini-batch GGN with batch-size 𝑁 = 128 as
ground truth instead of the full-batch GGN. Of course, the mini-batch
reference top-𝐶 eigenspace is always evaluated on the same mini-batch
as the approximation.
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Impact of batch size Impact of batch size & approximations
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Figure D.15: ViViT versus full-batch GGN (1). Overlap between the top-𝐶 eigenspaces of different GGN approximations and the
full-batch GGN during training for all test problems. Each approximation is evaluated on 5 different mini-batches.
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Impact of batch size Impact of batch size & approximations
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(b) CIFAR-10 ResNet-32 Adam
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(c) CIFAR-100 All-CNN-C SGD
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100 101 102
0

0.5

1

epoch (log scale)

ov
er

la
p

mb 2, exact mb 8, exact
mb 32, exact mb 128, exact

100 101 102
0

0.5

1

epoch (log scale)

ov
er

la
p

mb 128, exact sub 16, exact
mb 128, mc 10 sub 16, mc 10

Figure D.16: ViViT versus full-batch GGN (2). Overlap between the top-𝐶 eigenspaces of different GGN approximations and the
full-batch GGN during training for all test problems. Each approximation is evaluated on 5 different mini-batches.
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Results (2)

Figure D.17 shows the results. Over large parts of the optimization
(note the log scale for the epoch-axis), the MC approximation seems to
be better suited than curvature sub-sampling (which has comparable
computational cost). For the CIFAR-100 All-CNN-C problem, the MC ap-
proximation stands out particularly early from the other approximations
and consistently yields higher overlaps with the mini-batch GGN.

D.2.5 Curvature Under Noise & Approximations

GGN and Hessian are predominantly used to locally approximate the
loss by a quadratic model 𝑞 (see Equation (7.6)). Even if the curvature’s
eigenspace is completely preserved in spite of the approximations, they
can still alter the curvature magnitude along the eigenvectors.

Procedure

Table D.5 shows the cases considered in this experiment.

Table D.5: Considered cases for approximation of curvature: We use a different set of cases for the approximation of the GGN depending
on the test problem. For the test problems with 𝐶 = 10, we use 𝑀 = 1 MC-sample, for the CIFAR-100 All-CNN-C test problem (𝐶 = 100),
we use 𝑀 = 10 MC-samples in order to reduce the computational costs by the same factor.

Problem Cases

Fashion-MNIST 2c2d
CIFAR-10 3c3d and
CIFAR-10 ResNet-32

mb, exact with mini-batch size 𝑁 = 128
mb, mc with 𝑁 = 128 and 𝑀 = 1 MC-sample
sub, exact using 16 samples from the mini-batch
sub, mc using 16 samples from the mini-batch and 𝑀 = 1 MC-sample

CIFAR-100 All-CNN-C mb, exact with mini-batch size 𝑁 = 128
mb, mc with 𝑁 = 128 and 𝑀 = 10 MC-samples
sub, exact using 16 samples from the mini-batch
sub, mc using 16 samples from the mini-batch and 𝑀 = 10 MC-samples

Due to the large computational effort for evaluating the full-batch direc-
tional derivatives, a subset of the checkpoints from Appendix D.2.3 is
used for two problems: we use every second checkpoint for CIFAR-10
ResNet-32 and every forth checkpoint for CIFAR-100 All-CNN-C.

For each checkpoint and case, we compute the top-𝐶 eigenvectors {𝒆𝑘}𝐶𝑘=1
of the GGN approximation 𝑮(ap) either with ViViT or using an iterative
matrix-free approach (as in Appendix D.2.4). The second-order direc-
tional derivative of the corresponding quadratic model along direction
𝒆𝑘 is then given by 𝜆

(ap)
𝑘 = 𝒆⊤𝑘 𝑮

(ap)𝒆𝑘 (see Equation (7.7)). As a refer-
ence, we compute the full-batch GGN 𝑮(fb) and the resulting directional
derivatives along the same eigenvectors {𝒆𝑘}𝐶𝑘=1, i. e. 𝜆(fb)𝑘 = 𝒆⊤𝑘 𝑮

(fb)𝒆𝑘 .
The average (over all 𝐶 directions) relative error is given by

𝜖 =
1
𝐶

𝐶∑
𝑘=1

|𝜆(ap)
𝑘 − 𝜆(fb)𝑘 |
𝜆(fb)𝑘

.

The procedure above is repeated on 3 mini-batches from the training data
(i. e. we obtain 3 average relative errors for every checkpoint and case) –
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Figure D.17: ViViT versus mini-batch GGN. Overlap between the top-𝐶 eigenspaces of different GGN approximations and the
mini-batch GGN during training for all test problems. Each approximation is evaluated on 5 different mini-batches.
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except for the CIFAR-100 All-CNN-C test problem, where we perform
only a single run to keep the computational effort manageable.

Results

Figure D.18 shows the results. We observe similar results as in Ap-
pendix D.2.4: with increasing computational effort, the approximated
directional derivatives become more precise and the overall approxi-
mation quality decreases over the course of the optimization. For the
ResNet-32 architecture, the average errors are particularly large.

D.2.6 Directional Derivatives

Procedure

We use the checkpoints from Appendix D.2.3. For every checkpoint, we
compute the top-𝐶 eigenvectors of the mini-batch GGN (𝑁 = 128) using
an iterative matrix-free method. We also compute the mini-batch gradi-
ent. The first- and second-order directional derivatives of the resulting
quadratic model (Equation (7.6)) are given by Equation (7.8).

We use these directional derivatives {𝛾𝑛,𝑘}𝑁,𝐶𝑛=1,𝑘=1, {𝜆𝑛,𝑘}𝑁,𝐶𝑛=1,𝑘=1 to com-
pute signal-to-noise ratios (SNRs) along the top-𝐶 eigenvectors. The
curvature SNR along direction 𝒆𝑘 is given by the squared sample mean
divided by the empirical variance of the samples {𝜆𝑛,𝑘}𝑁𝑛=1, i. e.

SNR =
𝜆2
𝑘

1/𝑁−1
∑𝑁
𝑛=1(𝜆𝑛,𝑘 − 𝜆𝑘)2

where 𝜆𝑘 =
1
𝑁

𝑁∑
𝑛=1

𝜆𝑛,𝑘 .

(and similarly for {𝛾𝑛,𝑘}𝑁𝑛=1).

Results

Figures D.19 and D.20 show the results. These plots show the SNRs in
𝐶 distinct colors that generated from linear interpolation in the RGB
color space from black ( ) to light red ( ). At each checkpoint, the colors
are assigned based on the order of the respective directional curvature
𝜆𝑘 : the SNR that belongs to the direction with the smallest curvature is
shown in black and the SNR that belongs to the direction with the largest
curvature is shown in light red. The color thus encodes only the order of
the top-𝐶 directional curvatures – not their magnitude. We use this color
encoding to reveal potential correlations between SNR and curvature.

We find that the gradient SNR along the top-𝐶 eigenvectors is consistently
small (in comparison to the curvature SNR) and remains roughly on
the same level during the optimization. The curvature signal decreases
as training proceeds. The SNRs along the top-C eigendirections do
not appear to show any significant correlation with the corresponding
curvatures. Only for the CIFAR-100 test problems we can suspect a
correlation between strong curvature and small curvature SNR.
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Figure D.18: ViViT’s versus full-batch quadratic model. Comparison between approximations to the quadratic model and the full-batch
model in terms of the average relative error for the directional curvature during training for all test problems.
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First-order derivatives Second-order derivatives
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(d) CIFAR-10 3c3d Adam
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Figure D.19: Directional SNRs (1). SNR along each of the mini-batch GGN’s top-𝐶 eigenvectors during training for all test problems. At
fixed epoch, the SNR for the most curved direction is shown in and for the least curved direction in .
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First-order derivatives Second-order derivatives
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(b) CIFAR-10 ResNet-32 Adam
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(c) CIFAR-100 All-CNN-C SGD
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(d) CIFAR-100 All-CNN-C Adam
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Figure D.20: Directional SNRs (2). SNR along each of the mini-batch GGN’s top-𝐶 eigenvectors during training for all test problems. At
fixed epoch, the SNR for the most curved direction is shown in and for the least curved direction in .
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D.3 Implementation Details

Layer View of Backpropagation

Consider a single layer 𝑓 (𝑙)
𝜽(𝑙)

that transforms inputs 𝒛(𝑙−1)
𝑛 ∈ ℝℎ(𝑙−1) into

outputs 𝒛(𝑙)𝑛 ∈ ℝℎ(𝑙) by means of a parameter 𝜽(𝑙) ∈ ℝ𝑑(𝑙) . During back-
propagation for𝑽 , the layer receives vectors 𝒔(𝑙)𝑛,𝑐 = (J𝒛(𝑙)𝑛 𝒇 𝑛)⊤𝒔𝑛,𝑐 from the
previous stage (recall ∇2

𝒇 𝑛
ℓ𝑛 =

∑𝐶
𝑐=1 𝒔𝑛,𝑐𝒔

⊤
𝑛,𝑐). Parameter contributions

𝒗(𝑙)𝑛𝑐 to 𝑽 are obtained by application of its Jacobian,

𝒗(𝑙)𝑛𝑐 =
(
J𝜽(𝑙) 𝒇 𝑛

)⊤ 𝒔𝑛,𝑐
=

(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤ (
J
𝒛(𝑙)𝑛

𝒇 𝑛

)⊤
𝒔𝑛,𝑐 (Chain rule)

=
(
J𝜽(𝑙)𝒛

(𝑙)
𝑛

)⊤
𝒔(𝑙)𝑛,𝑐 . (Definition of 𝒔(𝑙)𝑛,𝑐 ) (D.2)

Consequently, 𝜽(𝑙)’s contribution to 𝑽 , denoted by 𝑽 (𝑙) ∈ ℝ𝑑(𝑙)×𝑁𝐶 , is

𝑽 (𝑙) =
1√
𝑁

(
𝒗(𝑙)1,1 𝒗(𝑙)1,2 . . . 𝒗(𝑙)𝑁,𝐶

)
with 𝒗(𝑙)𝑛𝑐 =

(
J𝜽(𝑙) 𝒇 𝑛

)⊤ 𝒔𝑛,𝑐 .
(D.3)

D.3.1 Optimized Gram Matrix for Linear Layers

Our goal is to efficiently extract 𝜽(𝑙)’s contribution to the Gram matrix,

𝑮̃
(𝑙)

= 𝑽 (𝑙)
⊤
𝑽 (𝑙) ∈ ℝ𝑁𝐶×𝑁𝐶 . (D.4)

Gram Matrix via Expanding 𝑽 (𝑙)

One way to construct 𝑮(𝑙) is to first expand 𝑽 (𝑙) (Equation (D.3)) via the
Jacobian J𝜽(𝑙)𝒛

(𝑙)
𝑛 , then contract it (Equation (D.4)). This can be a memory

bottleneck for large linear layers which are common in many architectures
close to the network output. However if only the Gram matrix rather
than 𝑽 is required, structure in the Jacobian can be used to construct 𝑮̃(𝑙)

without expanding 𝑽 (𝑙) and thus reduce this overhead.

Optimization for Linear Layers

Now, let 𝑓 (𝑙)
𝜽(𝑙)

be a linear layer with weights 𝑾 (𝑙) ∈ ℝℎ(𝑙)×ℎ(𝑙−1) , i. e. 𝜽(𝑙) =

vec(𝑾 (𝑙)) ∈ ℝ𝑑(𝑙)=ℎ(𝑙)ℎ(𝑙−1) with column stacking as flattening,

𝑓 (𝑙)
𝜽(𝑙)

: 𝒛(𝑙)𝑛 = 𝑾 (𝑙)𝒛(𝑙−1)
𝑛 .

The Jacobian is

J𝜽(𝑙)𝒛
(𝑙)
𝑛 = 𝒛(𝑙−1)

𝑛
⊤ ⊗ 𝑰ℎ(𝑙) , (D.5)
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and can be used to compute Gram matrix entries without expanding
𝑽 (𝑙),[

𝑮̃
(𝑙)]
(𝑛,𝑐),(𝑛′ ,𝑐′)

= 𝒗(𝑙)𝑛,𝑐
⊤
𝒗(𝑙)𝑛′ ,𝑐′ (Equation (D.4))

= 𝒔(𝑙)𝑛,𝑐
⊤ (

J𝜽(𝑙)𝒛
(𝑙)
𝑛

) (
J𝜽(𝑙)𝒛

(𝑙)
𝑛′

)⊤
𝒔(𝑙)𝑛′ ,𝑐′

= 𝒔(𝑙)𝑛,𝑐
⊤ (

𝒛(𝑙−1)
𝑛

⊤ ⊗ 𝑰ℎ(𝑙)
) (

𝒛(𝑙−1)
𝑛′

⊤ ⊗ 𝑰ℎ(𝑙)
)⊤

𝒔(𝑙)𝑛′ ,𝑐′ (Equation (D.5))

= 𝒔(𝑙)𝑛,𝑐
⊤ (

𝒛(𝑙−1)
𝑛

⊤
𝒛(𝑙−1)
𝑛′ ⊗ 𝑰ℎ(𝑙)

)
𝒔(𝑙)𝑛′ ,𝑐′ (Equation (D.2))

= 𝒛(𝑙−1)
𝑛

⊤
𝒛(𝑙−1)
𝑛′ 𝒔(𝑙)𝑛,𝑐

⊤
𝑰ℎ(𝑙)𝒔

(𝑙)
𝑛′ ,𝑐′ (𝒛(𝑙−1)

𝑛
⊤
𝒛(𝑙−1)
𝑛′ ∈ ℝ)

=
(
𝒛(𝑙−1)
𝑛

⊤
𝒛(𝑙−1)
𝑛′

) (
𝒔(𝑙)𝑛,𝑐

⊤
𝒔(𝑙)𝑛′ ,𝑐′

)
.

We see that the Gram matrix is built from two Gram matrices based on
{𝒛(𝑙−1)

𝑛 }𝑁𝑛=1 and {𝒔(𝑙)𝑛,𝑐}𝑁,𝐶𝑛=1,𝑐=1, that require O(𝑁2) and O((𝑁𝐶)2)memory,
respectively. In comparison, the naïve approach via𝑽 (𝑙) ∈ ℝ𝑑(𝑙)×𝑁𝐶 scales
with the number of weights, which is often comparable to𝐷. For instance,
the 3c3d architecture on CIFAR-10 has𝐷 = 895,210 and the largest weight
matrix has 𝑑(𝑙) = 589,824, whereas 𝑁𝐶 = 1,280 during training [146].

D.3.2 Implicit Multiplication by the Inverse
(Block-Diagonal) GGN

Inverse GGN-Vector Products

A damped Newton step1 requires multiplication by (𝑮 + 𝛿𝑰𝐷)−1. By1: Instead of 𝛿𝑰𝐷 , any other easy-to-
invert matrix can be used. means of Equation (7.3) and the matrix inversion lemma,

(𝛿𝑰𝐷 + 𝑮)−1

=
(
𝛿𝑰𝐷 + 𝑽𝑽⊤

)−1
(Equation (7.3)) (D.6)

=
1
𝛿

(
𝑰𝐷 + 1

𝛿
𝑽𝑽⊤

)−1

=
1
𝛿

[
𝑰𝐷 − 1

𝛿
𝑽

(
𝑰𝑁𝐶 + 𝑽⊤ 1

𝛿
𝑽

)−1

𝑽⊤
]

(Matrix inversion lemma)

=
1
𝛿

[
𝑰𝐷 − 𝑽

(
𝛿𝑰𝑁𝐶 + 𝑽⊤𝑽

)−1 𝑽⊤
]

(Gram matrix)

=
1
𝛿

[
𝑰𝐷 − 𝑽

(
𝛿𝑰𝑁𝐶 + 𝑮̃

)−1
𝑽⊤

]
. (D.7)

Inverse GGN-vector products require inversion of the damped Gram
matrix as well as applications of 𝑽 ,𝑽⊤ for the transformations between
Gram and parameter space.
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Inverse Block-Diagonal GGN-Vector Products

Next, we replace the full GGN by its block diagonal approximation
𝑮 ≈ 𝑮BDA = diag(𝑮(1) ,𝑮(2) , . . . )with

𝑮(𝑙) = 𝑽 (𝑙)𝑽 (𝑙)
⊤ ∈ ℝ𝑑(𝑙)×𝑑(𝑙)

and 𝑽 (𝑙) as in Equation (D.3). Then, inverse multiplication reduces to
each block,

𝑮−1
BDA = diag

(
𝑮(1)

−1
,𝑮(2)

−1
, . . .

)
.

If again a damped Newton step is considered, we can reuse Equation (D.7)
with the substitutions

(
𝑮, 𝐷,𝑽 ,𝑽⊤ , 𝑮̃

) ↔ (
𝑮(𝑙) , 𝑑(𝑙) ,𝑽 (𝑙) ,𝑽 (𝑙)

⊤
, 𝑮̃
(𝑙))

to apply the inverse and immediately discard the ViViT factors: At
backpropagation of layer 𝑇(𝑙)

𝜽(𝑙)

1. Compute 𝑽 (𝑙) using Equation (D.3).
2. Compute 𝑮̃

(𝑙) using Equation (D.4).

3. Compute
(
𝛿𝑰𝑁𝐶 + 𝑮̃

(𝑙))−1
.

4. Apply the inverse in Equation (D.7) with the above substitutions to
the target vector.

5. Discard𝑽 (𝑙),𝑽 (𝑙)⊤ , 𝑮̃(𝑙) , and
(
𝛿𝑰𝑁𝐶 + 𝑮̃

(𝑙))−1
. Proceed to layer 𝑖−1.

Note that the above scheme should only be used for parameters that satisfy
𝑑(𝑙) > 𝑁𝐶, i. e. dim(𝑮(𝑙)) > dim(𝑮̃(𝑙)). Low-dimensional parameters can
be grouped with others to increase their joint dimension, and to control
the block structure of 𝑮BDA.
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