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I. Summary 
Protein kinases were brought to the scientific community's attention with the remarkable 

approval of imatinib more than 20 years ago. This approval was not only a breakthrough in 

targeted cancer therapies but also laid the foundation for in-depth exploration of protein 

kinases. Since then, enormous efforts have been made to identify, characterise, and investigate 

the dynamic and function of this broad protein family. Nowadays, protein kinases are 

associated with numerous human diseases, including the origin of cancer and beyond. In 

addition, mutations in the highly dynamic catalytic domain of protein kinases can lead to the 

deregulation of the cell machinery, whilst the key role of protein kinases in the phosphorylation 

of the downstream protein is crucial for numerous regulation pathways.  

Extensive research of protein kinases led not only to the steady development and approval of 

new inhibitors and therapeutics, but also to the awareness that there are still plenty of questions 

to be answered about these dynamic proteins. Dimerisation effects, hydrophobic interaction 

networks, and modest geometrical alterations in the catalytic domain (and beyond) lead to 

numerous effects that are still to be understood. Worth mentioning is the existence of the so-

called dark kinome, which contains understudied kinases. Together, this basis makes protein 

kinases an intriguing yet demanding research topic. One of the reasons for this challenge  is 

their highly dynamic nature, which is hard to capture with current experimental methods, 

especially on the atomistic level. 

Hence, the In Silico methods come in hand to study their dynamics. Offering a wide range of 

novel computational techniques, they provide a possibility to lift the veil of secrecy and glance 

into the minor details of kinase behavior. Therefore, the introduction of this thesis is composed 

of two chapters, covering the main research focus – protein kinases, and the central 

methodology – computer-aided drug design. The first chapter is dedicated to protein kinases 

and offers a broad overview of classification, function, and drug discovery trends, along with 

a detailed review of the kinase domain's structural features. Finally, the In Silico drug discovery 

chapter provides a comprehensive overview of computational chemistry methods, with the 

main emphasis on the application and analyses of molecular dynamics. 

This thesis has resulted in three scientific publications, included in the results and discussion 

section. In the first manuscript, long-scale molecular dynamics is utilized to gain insights into 

the impact of phosphorylation and mutation on the autoinhibition and dimerization of mitogen-

activated protein kinase kinase 4 (MKK4). The second publication investigates the statistical 

trends and patterns related to protein kinase regulatory hydrophobic spine (R-spine), 

emphasizing the alfa-helical hydrophobic spine residue three (RS3). Finally, the third 
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publication presents the long-scale molecular dynamic application for studying the inhibition 

impact on the tetramerization of the enzyme enoyl-ACP reductase (FabI).   

The results of these publications demonstrate the successful application of In Silico methods –

specifically molecular dynamics for drug design purposes. Additionally, a few framework 

modifications are provided in the first and third publications for the exploration of geometrical 

motions within protein structure throughout molecular dynamics simulation. 
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II. Zusammenfassung  
Proteinkinasen erlangten vor mehr als 20 Jahren durch die bemerkenswerte Zulassung von 

Imatinib die Aufmerksamkeit der wissenschaftlichen Gemeinschaft. Diese Zulassung war nicht 

nur ein Durchbruch bei zielgerichteten Krebstherapien, sondern legte auch den Grundstein für 

eine eingehende Erforschung von Proteinkinasen. Seitdem wurde intensive Forschung 

betrieben, um die Dynamik und Funktion dieser breiten Proteinfamilie zu identifizieren, zu 

charakterisieren und zu untersuchen. Heutzutage werden Proteinkinasen mit zahlreichen 

menschlichen Krankheiten in Verbindung gebracht, einschließlich der Onkologie und auch 

weit darüber hinausgehend. Weiter führen Mutationen in der hochdynamischen katalytischen 

Domäne von Proteinkinasen zur Deregulierung der Zellmaschinerie, wobei die Schlüsselrolle 

von Proteinkinasen bei der Phosphorylierung des nachgeschalteten Proteins für zahlreiche 

Signalwege entscheidend ist. 

Die langjährige Erforschung der Proteinkinasen führte nicht nur zur stetigen Entwicklung und 

Zulassung neuer Hemmstoffe und Therapeutika, sondern auch zu der Gewißheit, daß es noch 

viele Fragen über diese dynamischen Proteine zu beantworten gibt. Dimerisierungseffekte, 

hydrophobe Interaktionsnetzwerke und bescheidene geometrische Veränderungen in der 

katalytischen Domäne (und auch außerhalb) führen zu zahlreichen Effekten, die es noch zu 

verstehen gilt. Hervorzuheben ist auch die Existenz des sogenannten Dark Kinome, welches 

nicht annotierte und nicht erforschte Kinasen enthält. Zusammengenommen macht dies die 

Proteinkinasen zu einem äußerst interessanten, aber auch herausfordernden Forschungsthema. 

Einer der Gründe dafür ist ihre hochdynamische Natur, die mit den derzeitigen experimentellen 

Methoden, insbesondere auf atomistischer Ebene, nur schwer zu erfassen ist. 

Daher kommen die In-Silico-Methoden zum Einsatz, um  dynamisch verändernde Objekte  zu 

untersuchen. Sie bieten eine breite Palette neuartiger Rechentechniken und ermöglichen einen 

Blick auf die kleinen Details der Kinase-Lebensdauer. 

Daher besteht die Einleitung dieser Dissertation aus zwei Kapiteln, die den 

Forschungsschwerpunkt der Proteinkinasenund die zentrale Methodikdes computergestützten 

Wirkstoffdesigns behandeln. Das erste Kapitel ist den Proteinkinasen gewidmet und bietet 

einen umfassenden Überblick über die Klassifizierung, die Funktion und die Trends in der 

Arzneimittelentwicklung sowie einen detaillierten Überblick über die strukturellen Merkmale 

der Kinasedomäne. Das Kapitel über die In-Silico-Wirkstoffentdeckung schließlich bietet 

einen umfassenden Überblick über die Methoden der Computerchemie, wobei der 

Schwerpunkt auf der Anwendung und der Analyse der Molekulardynamik liegt. 
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Diese Dissertation hat zu drei wissenschaftlichen Publikationen geführt, die im Kapitel 

Ergebnisse und Diskussion vorgestellt werden. Im ersten Manuskript wird die 

Molekulardynamik eingesetzt, um Einblicke auf die Einflüsse von Phosphorylierungen und 

Mutationen der Autoinhibition und der Dimerisierung der Mitogen-aktivierten Proteinkinase 

Kinase 4 (MKK4) zu gewinnen. In der zweiten Publikation werden die statistischen Trends 

und Muster im Zusammenhang mit dem regulatorischen hydrophoben Spine (R-Spine) der 

Proteinkinase untersucht, wobei der alfa-helische hydrophobe Spine-Residue drei (RS3) im 

Vordergrund steht. Schließlich wird in dem dritten Manuskript die Anwendung der 

molekularen Dynamik im großen Maßstab zur Untersuchung der Auswirkungen der Hemmung 

auf die Tetramerisierung des Enzyms Enoyl-ACP-Reduktase (FabI) vorgestellt. 

Die Ergebnisse dieser Veröffentlichungen zeigen die erfolgreiche Anwendung von In-Silico-

Methoden, insbesondere der Molekulardynamik, für die Entwicklung von Arzneimitteln. 

Darüber hinaus werden in der ersten und dritten Veröffentlichung einige Modifikationen der 

Rahmenbedingungen für die Erforschung geometrischer Bewegungen innerhalb der 

Proteinstruktur durch die Simulation der Molekulardynamik vorgestellt. 
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1. Introduction 
1.1 protein kinases 

Eukaryotic protein kinases (ePKs) are a significant family of regulatory enzymes which act as 

switches in the cell. Kinases catalyse the transfer of ATP γ-phosphate to the target proteins. 

ePKs are involved in the regulation of the major cell biology events by phosphorylation, which 

controls the activity of the downstream targets 1–3.  

Due to the existence of protein kinases dysregulation in a number of illnesses, such as cancer, 

inflammation, and autoimmune disorders2, as well as the fact that function distortion leads to 

dysregulated cellular signalling and disease development 4,5, this druggable protein family is 

of great interest. The prominence of ePKs in the signalling pathways that control the traits of 

malignant cells, taken together with their druggability, underline protein kinases as important 

drug targets 6,7. This fact led to the creation of a significant body of sequence, structure, 

bioactivity, and mutation data by the scientific community. Nevertheless, attempts are still 

being made to elucidate the biological function of the poorly understood kinases, also referred 

to as the dark kinome 8. In recent years, the hunt for additional targets has increased due to the 

advent of resistance mechanisms to currently available kinase-targeting treatments 9. 

 

1.1.1 The kinome 

One of the largest superfamilies of homologous proteins, the kinome, is encoded by 

approximately 2% of the human genome and comprises over 500 proteins10. The majority of 

protein and atypical kinases were identified as a result of human genome sequencing10. Based 

on the sequence similarity, the human kinome is divided into eight main groups, complemented 

by 13 atypical families10. However, the number of groups may vary based on the chosen 

classification method and the rapidly increasing pool of data regarding kinases. The names of 

kinases frequently originate from the modulators that regulate their activity. For instance, the 

kinases modulated by cyclin are termed CDK or cyclin-dependent kinases. Another example 

is the kinases regulated by Ca2+–calmodulin, that form CAMK or Calmodulin-dependent kinase 

group. Sometimes the further subdivision of a kinase group is based on the presence of 

isoenzymes, as with the type I (PKRAR1) and type II (PRKAR2) cyclic-AMP dependent 

protein kinases, which share homologous catalytic subunits but distinct regulatory subunits that 

bind cyclic AMP11. 

In particular cases, the kinase classification follows the biological function rather than relies 

on the sequence similarity within the group members. Examples of this phenomenon are the 

Mitogen-activated protein kinases (MAPKs), which form a signalling cascade of sequentially 
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phosphorylated kinases 12. Each cascade starts with an extracellular stimulus that leads to 

activation of MAPK kinase kinase (MAPKK), followed by phosphorylation of MAPK kinase 

(MAPKK), and finally resulting in the activation of a particular MAPK (i.e. ERK, p38 or JNK 

kinase) 13. While the MAPK kinases are involved in the same transducing pathway, the MAPK 

genes belong to the CMGC group, MAP2K and MAP2K3 to the STE group, and finally, 

MAP2K4 genes originate from both STE and TKL groups8.  

 

Figure 1. Kinase distribution by groups in the human kinome. The colours of the chart bars 

are as the groups in the kinome. The human kinome tree illustration was made with the help of 

KinMap14. RGC group is not present on the kinome tree. 

 

Protein kinases are divided into eight main groups: tyrosine kinases (TK), Calcium/calmodulin-

dependent kinases (CAMK), AGC, CMGC, serine/threonine kinases (STE), tyrosine kinase-

like (TKL), casein kinase 1 (CK1), and receptor Guanylate Cyclases (RGC). ePKs without 

conserved kinase motifs or altered regulatory and catalytic spines comprise Atypical kinases 

group 15. Finally, ePKs that could not be categorised into the above groups form an additional 

'Other' group. Further, each kinase group will be described separately. 

1. TK group 

TK is the most populated kinase group according to KinMap14, comprising 94 kinases or 17% 

of the total kinome (Figure 1, pink). In contrast to the majority of other kinases, which are 
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selective for serine or threonine residues, this group nearly exclusively catalyses the 

phosphorylation of tyrosine residues in the target protein 10.  

2. CAMK 

CAMK is the second most populated group, with 82 members or 15% of the total kinome 

(Figure 1, violet). CAMK kinases phosphorylate either serine or threonine residues in the target 

proteins and are regulated by the concentration fluctuation of intracellular calcium ions16. 

3. AGC 

The term AGC is formed from the names of subsequent kinase families. Namely, cAMP-

dependent protein kinase 1(PKA, alternatively referred to as PKAC), protein kinase C (PKC), 

and cGMP-dependent protein kinase (PKG, alternatively referred to as CGK1α)17. The AGC 

group includes 63 protein kinases, constituting 13% of the total kinome (Figure 1, cyan). The 

unique feature of the AGC group is in the activation mechanism. The activation of AGC kinases 

frequently involves phosphorylation in the co-called hydrophobic motif, which is located 

outside the kinase domain 17. 

4. CMGC 

CMGC group name originates from a set of member families, where ‘c’ stands for cyclin-

dependent kinase (CDK), ‘m’ for mitogen-activated protein kinase (MAPK), ‘g’ for glycogen 

synthase kinase (GSK3), and ‘c’ for CDC like kinase kinase (CLK). CMGC consists of 63 

protein kinases, comprising 13% of the total kinome (Figure 1, beige). Special features of 

CMGC kinases include the co-called CMGC-insert region and the CMGD arginine. These 

regions are found in the activation loop, close to the phosphorylation site 18,19. 

5. STE 

STE, or serine/threonine kinases with 48 members, comprise 9% of the total kinome (Figure 

1, green). One of the main functions of the STE kinases is the MAPK cascade signal 

transduction 20. 

6. TKL 

The tyrosine kinase-like (TKL) group, with 43 members or 8% of the total kinome, comprises 

diverse functions and contains a range of families with low correlation to each other (Figure 1, 

dusty pink). Furthermore, the TKL and TK groups share high sequence similarity. One example 

of TKL kinases is the RAF family, a crucial component of the MAPK kinase pathway. 

 

7.CK1 

The casein kinase 1 (CK1) group is a small group with 12 members or 2% of the total kinome 

(Figure 1 blue). CK1 is a group of kinases that share high sequence similarity and differ 
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significantly from the other kinase groups 21. The known activation mechanisms of CK1 

include autophosphorylation and activation via interaction with cellular proteins 22. 

8. RGC 

Receptor Guanylate Cyclases is the smallest kinome group, consisting of just seven kinases 

(Figure 1, light grey). RGC are transmembrane proteins with an intracellular kinase domain 

that is catalytically inactive23. 

9. Other kinases 

Besides kinases that could not be classified into the above groups, this group include several 

unique kinases 23. Other kinases form the third largest group in the kinome, with 82 members, 

comprising 8% of the total kinome (Figure 1, grey). 

10. Atypical kinases 

Atypical kinases comprise 44 proteins, constituting 8% of the total kinome (Figure 1, indicated 

with yellow squares). These proteins exhibit conventional kinase function and activity but lack 

the usual highly conserved kinase domain or possess a low degree of sequence similarity 10,15.  

 

1.1.2 Kinase structural features 

Protein kinases can be soluble (nuclear or cytoplasmatic) or transmembrane proteins, 

containing several domains that manage kinase activity, multimerisation, or serve as a 

regulatory module to control the recruitment of binding partners24,25. The architecture of a 

protein kinase can be divided into three major parts: the intracellular, the transmembrane, and 

the extracellular domains. The precise mechanism of the domains’ machinery is unknown to 

date 26. The intracellular domain is described as responsible for the substrate phosphorylation 

and formation of multimers. The kinase transmembrane region consists of a single helix and 

serves as a link for signal transduction between the domains27. The extracellular domain 

contains a ligand's binding site and is primarily known as the kinase catalytic domain. Upon 

the ligand binding complex, conformational rearrangements occur in other domains, leading to 

oligomerisation and activating signalling cascades 26,28. Further information in this thesis is 

dedicated to the catalytic kinase domain. 

The remarkable conservation of kinases' catalytic domain has already been known for several 

decades, with sequencing analyses identifying prominent motifs (hinge, catalytic Lysine, DFG 

(Asp-Phe-Glu), and APE (Ala-Pro-Glu) motifs) were identified 10. A few years later, the first 

crystal structure of a kinase catalytic domain was solved (cAMP-dependent protein kinase PDB 

ID: 2cpk 29, 1991), which supported the initial sequence analysis with 3D data and allowed for 

the first function predictions 11. The following structure, published in 1993, described the 
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rigorous process for docking ATP into the active site cleft 30 (cAMP-dependent protein kinase 

PDB ID: 1amp 30). Ever since, various unique structural characteristics of protein kinases have 

been identified, including dynamic regulatory elements, activation mechanisms, and violin 

models of kinase allostery. A comprehensive historical overview of development in the area of 

protein kinases is presented by Taylor et al. 31  and R. Roskoski32. The kinase exists in an active 

or inactive state depending on how the conserved structural components are arranged 13–15. 

Since eukaryotic kinases are highly dynamic, with numerous conformations occupying the two 

functional states, rather than having a single defined active and inactive conformation like 

many enzymes, this categorisation is immensely challenging 16. The transfer of ATP γ-

phosphate is the event that all kinases share with the active state. 

 

1.1.2.1 Kinase catalytic domain 

Figure 2. The structural overview of the conserved kinase catalytic domain (cAMP-

dependent protein kinase, PDB ID: 4wb533). ATP, β3-Lys, GK, and DFG are shown with the 

stick model. GK- gatekeeper residue. The αC-helix is depicted with a yellow cartoon, the DFG 

motif with violet, the activation loop with pink, and the hinge region with cyan. 
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A protein kinase's core is composed of two domains linked together via the hinge region: the 

highly dynamic N-lobe, which contains five antiparallel β-sheet strands, and the more stable 

C-lobe, which in most cases contains αD-αI helices connected via loops (Figure 2)31,34,35. The 

role of the C-lobe in substrate phosphorylation is to bind the substrate and move it in close 

proximity to the ATP, which enables substrate phosphorylation31,34. Indeed, the deep cleavage 

that separates the two lobes serves as the binding site for ATP (Figure 3), which is also the 

primary site for inhibitor development.  

Figure 3. The ATP binding pocket of protein kinase (cAMP-dependent protein kinase, PDB 

ID: 4wb533). ATP, β3-Lys, GK, and DFG are shown with the stick model. GK- gatekeeper 

residue. The αC-helix is depicted with a yellow cartoon, the DFG motif with violet, the 

activation loop with pink, and the hinge region with cyan. 

 

The disruption of the interaction network between the lobes is associated with a protruding 

movement of the αC-helix away from the ATP-binding site, which leads to physiological 

kinase inactivation. The P-loop, a component of the activation segment, is found next to the 

αC-helix following the phosphorylation sites (Figure 3). The activation segment is one of the 

key regulatory elements of the kinase; upon the change of position, it can affect both kinase 

catalytic performance and substrate binding 36. The αC-helix performs its regulatory function 

with the help of a salt bridge between a conserved glutamate residue and the catalytic lysine, 

another conserved residue in the β3 sheet 37. When this salt bridge occurs, the αC-helix closes, 

covering the binding site- this state, known as αC-in conformation, is a sign of the active state 

of kinase. In the inactive state, the αC-helix moves in the opposite direction, achieving the co-

called αC-out state 38. 
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The activation segment consists of two function-related parts: the activation loop and the DFG 

motif (Figure 2). The term DFG comes from the three residues that constitute this motif and 

are consistent in most kinases: aspartic acid, phenylalanine, and glycine. The loop where DFG 

is found is characterised as the magnesium positioning loop due to the interaction between the  

Figure 4. Two key subcategories of the DFG-motif position: DFG-in (BRAF, PDB ID: 

2fb839) and DFG-out (BRAF, PDB ID: 4xv940). The outward movement of DFG towards the 

ATP-binding site is indicated with the dashed line. Asp, Gly, and Phe from DFG are shown 

with the stick model. 

 

aspartate from the DFG motif and the magnesium inside the binding site41. Another feature of 

the DFG motif is the ability to support the identification of kinase state (active or inactive), 

depending on its orientation concerning ATP38 (Figure 4).  

Two key subcategories stand out from the numerous classifications based on the locations of 

residues in DFG: the active, DGF-in and inactive DFG-out37 (Figure 4). In active DFG-in 

conformation, the aspartate's side-chain points to the phosphates of ATP, therefore 

coordinating the magnesium ion 38,42,43. In inactive DFG-out conformation, the phenylalanine 

is then switched outwards the ATP-binding site. This outward movement opens a deep 
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hydrophobic pocket and is followed by a series of events that result in the disorganisation of 

kinase substructures, such as the activation loop 38,42.  

The activation loop comprises the phosphorylation site of the kinase. The phosphorylation site 

generally refers to either serine and threonine residues or single tyrosine that undergo 

phosphorylation upon activation. Nevertheless, the phosphorylation mechanisms are highly 

diverse among the kinases44, some of which may also employ cis phosphorylation in 

conjunction with the extra scaffold protein 45. Moreover, the activation loop encompasses one 

highly conserved motif consisting of tyrosine or histidine, followed by arginine and aspartate20. 

This motif, termed Y/HRD, participate in the catalytic activation of protein kinases, supporting 

the ATP’s phosphate transfer29,31,46. The HRD-Asp is a highly conserved residue that regulates 

the substrate peptide's correct orientation and acts as a catalytic base36,47,48. The end of the 

activation loop is marked with another motif consisting of alanine, proline, and glutamic acid 

(APE )37. In turn, the APE motif supports the kinase transition to the active state by anchoring 

the activation loop to the α-F helix49. 

Lastly, the conserved hinge region (Figure 3) harbours the essential gatekeeper, which was 

early acknowledged as important for inhibitor design50. The name 'gatekeeper' originates from 

the fact that the size and shape of the amino acid that defines the gatekeeper characterise the 

accessibility to the buried hydrophobic region of the ATP-binding pocket 51. Important to 

notice that the variations in gatekeeper amino acid do not influence ATP binding itself but 

control the ATP analogues (or inhibitors) recognition52,53. The gatekeeper residues' control over 

the buried hydrophobic pocket accessibility is frequently used in drug design approaches for 

achieving compound selectivity across kinases54. Moreover, mutation of the gatekeeper residue 

frequently results in a kinase that can possess normal functioning but is unable to bind an 

inhibitor or results in significantly weaker inhibitor-kinase interactions55. 
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1.1.2.2 Dynamic regulatory elements 

Figure 5. A typical structure of a protein kinase with a highlighted catalytic spine (C-

spine) and regulatory spine (R-spine) (BRAF, PDB ID: 4e2656). C-spine residues are 

illustrated with violet surfaces, and R-spine residues are shown with the stick model, coloured 

in yellow. The ATP binding pocket is highlighted with the dashed oval. CS1–CS8 indicate 

catalytic spine residue 1–8. 

 

As highly dynamic molecular switches, protein kinases feature a set of conserved motifs that 

function as a framework to span the entire kinase core 57. Namely, the regulatory spine (R-

spine) and the catalytic spine (C-spine) are the two key dynamic components found in kinases 

(Figure 5)58,59.  Located parallel to each other, the spines connect the N and C-lobe of a kinase 

with a joint point at the α-F helix. The spines’ arrangement and machinery have led to frequent 

comparisons to the human vertebral column, which provides rigidity yet permits multiple 

independent motions. Though they are attached to the same α-F helix, the two spines serve 

very different functions. As a component of the kinase dynamic architecture, the R-spine acts 

as a trigger for the transition into the kinase's active state, while ATP binding then completes 

the C-spine60,61. Even though the spines are conserved structural motifs, they do not share 

notable sequence similarity among kinases 34.  
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Figure 6. Zoomed image of ATP-binding site in a protein kinase (BRAF, PDB ID: 4e2656). 

The tight and aligned packing of the R-spine indicates the active state of kinase. C-spine 

residues (violet surfaces) are located next to the R-spine (yellow surfaces), GK – Gatekeeper 

residue. Spine residues are shown with the stick model. 

 

 

Figure 7. The regulatory spine (R-spine) in active or assembled conformation (BRAF, 

PDB ID: 4e2656) and inactive or dissembled conformation (BRAF, PDB ID: 1uwh62). R-

spine residues are illustrated with yellow surfaces and C-spine with violet. 

 

Four residues make up the hydrophobic R-spine, two of which are located in the C-lobe (RS1 

and RS2), and the other two are found in the N-lobe (RS3 and RS4) (Figure 6).  Therefore R-

spine provides the connection between the two lobes34. It is noteworthy that the RS1 is the first 

residue of the HRD motif, the RS2 residue is the second residue in DFG, and  
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the RS3 residue is in the αC-helix, which is crucial for kinase activation. This observation 

underlines the correlation between conserved structural elements and a consistent sequence 

pattern of kinases. Coming from an essential activity element of kinase, the R-spine is amassed 

upon the active conformation of the kinase and is triggered by phosphorylation or kinase 

interaction with other activating agents, as cyclin in cyclin-dependent kinases 59,63,64 (Figure 

7). The R2 residue shifts position in response to activation, supporting the opening and 

expansion of the activation loop. However, the overall geometry of the R-spine remains 

unaltered during the phosphoryl transfer process. Moreover, the increased catalytic activity of 

kinases was associated with mutations in the R-spine, which resulted in its additional 

stabilisation64,65.  

The C-spine comprises eight hydrophobic residues, with two located in the N-lobe and six in 

C-lobe and assembled upon the ATP binding 34 (Figure 5). The role of ATP binding for the 

assembly is related to the ATP's adenine ring, which links the C- and N-lobe parts of the C-

spine. When the C-spine is assembled, the kinase aligns both lobes, sealing itself. Summing 

up, assembled R-spine is a sign of kinase activation, while the assembly of the C-spine indicates 

kinase preparation for catalysis. 

 

1.1.3 Kinase drug discovery 

Protein kinases over decades have been recognised as highly relevant drug targets. Drug design 

options were first believed to be restricted to ATP displacement in the binding site37. The 

development of ATP competitors is not trivial due to the well-established role of ATP in the 

cell. Twenty years after the kinases' acknowledgement as drug targets are marked by a series 

of simultaneous discoveries in a scientific society. Among others are the approval of the 

ROCK1, ROCK2, and mTOR inhibitors fasudil and sirolimus, along with the discovery of the 

revolutionary imatinib37. Imatinib's clinical success was a driving force behind the outbreak of 

activity in targeted oncology therapy, where kinase inhibition remains a dominant force to this 

day. 

 
1.1.3.1 Types of kinase inhibitors 
The dynamic nature of protein kinases allowed for the development of inhibitors that can 

distinguish between various inactive conformations or active state. However, initially should 

be mentioned that the small molecule kinase inhibitors can be divided into two major classes: 

reversible binders and covalent inhibitors66–68. The complexity of the conformational states and 

features in the kinase catalytic domain, as well as the range of insights that are continuously 
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revealed in their dynamics, make further categorization of reversible binders a challenging task 
69. However, the reverse kinase inhibitors can be introduced as following: ATP-mimetic 

inhibitors, which target the active state of the kinase belong to Type I, to the inactive – Type 

II; allosteric inhibitors make up the Type III, and surface-pocket binders the Type IV 70. Several 

intermediate binding modes do not fit the Type I and II definition. Due to this, type 1.5 

inhibition was proposed and is generally used. Further, each type of inhibition is described 

separately. 

 

Type I. The target of type 1 inhibitors is the active state of a kinase. By interacting with the 

active conformational site, these kinase inhibitors change the structural conformation that 

would otherwise be utilised for phosphate transfer72. The purine moiety, meant to imitate the 

ATP hinge-binding, is frequently included in type 1 inhibitors. However, it is important to note 

that the αC-helix and DFG-motif are in the "in" position with type 1 inhibition (Figure 8). 

Among various approved type 1 inhibitors in cancer treatment are vemurafenib73 (BRAF 

V600E) and gefitinib74 (EGFR L858R). 

 

 

Figure 8. An example of type I kinase inhibitor binding mode: Vandetanib bound to 

VEGFR (PDB ID: 2ivu 71). DFG (purple) and αC helix (yellow) exhibit the "in" position. 

Vandetanib, the DFG residues, αC-Glu, and β3-Lys are shown in the ball and stick 

representation. Hydrogen bonds are shown as dotted yellow lines. 
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Type II. The inactive, or DFG-out state of a kinase is targeted by type 2 inhibitors and is 

connected to the outward movement of DFG moiety, which results in the formation of a large 

hydrophobic pocket, that may be occupied by the inhibitor. These inhibitors establish 

additional interactions in the open DFG-out conformation as well as multiple hydrogen bonds 

in the hinge region of the target kinase75 (Figure 9). Type 2 inhibitors encompass imatinib and 

sorafenib, which have become iconic in kinase drug design. 

 

Figure 9. An example of type II kinase inhibitor binding mode: Tivozanib bound to VEGFR 

(PDB ID: 4ase76). DFG (purple) is in the "out" position, while αC helix (yellow) shows the "in" 

position. Tivozanib, the DFG residues, αC-Glu, and β3-Lys are shown in the ball and stick 

representation. Hydrogen bonds are shown as dotted yellow lines. 

 

Type 1.5. The concept of type 1.5 inhibition is ambiguous (Figure 10), with several common 

indications37. Namely, the canonical G-loop location or the activation loop may change due to 

the ligand binding, leading to an abnormal active conformation55.  
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Figure 10. Examples of type 1.5 inhibitor binding modes. Lenvatinib bound to DFG-in, αC-

in FGFR1 (PDB ID: 5zv2 77), and Vemurafenib bound to DFG-in αC-out BRAF (PDB ID: 4rzv 
78) underline the variation in the binding modes of type 1.5 inhibitors. The ligands and the DFG 

residues, αC-Glu, and β3-Lys are shown in the ball and stick representation. Hydrogen bonds 

are shown as dotted yellow lines. 

 

Recently, in the work of Attwood et al.37, the distortion of the R-spine without occupancy of 

the hydrophobic DFG-out pocket has been mentioned as a type 1.5 inhibition indicator (Figure 

11). The influence or disruption of a particular structural element of a kinase can enhance 

selectivity and reduce the number of off-targets, making type 1.5 inhibition an appealing 

strategy for designing novel compounds. For example, the high selectivity of EGFR inhibitor 

lapatinib is described as connected with the structural rearrangements upon binding to a DFG-

in conformation79. 
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Figure 11. Type 1.5 inhibitors influence regulatory R-spine differently. With the 

Vemurafenib-BRAF complex (PDB ID: 4rzv78, the αC-helix protrudes outside, which leads to 

a shift in the RS3 residue position and results in a disordered R-spine. DFG motif maintains 

the DFG-in position for both complexes. With the Lenvatinib-FGFR1 complex (PDB ID: 

5zv277), the R-spine remains in the ordered conformation. 

 

Type III. Type III inhibitors are classified as allosteric, meaning that the inhibitors' binding 

site lies outside the ATP-binding pocket. Type III inhibitors bind next to ATP cleft, therefore 

not interfering with ATP binding80. Examples of this inhibition type encompass targeting 

CHEK1 81, Akt 82, and MEK183 kinases. 

 

Type IV. As Type III, Type IV inhibitors are classified as allosteric, with the characteristic 

feature in binding to remote from ATP sites80. An example of a type IV inhibitor is GNF-2 

(BCR-Abl inhibitor) which locks kinase in the inactive state without binding to the ATP-cleft 
84. A total of 10 allosteric inhibitors are now undergoing clinical trials; three of these, including 

the pioneer in allosteric inhibition trametinib (MEK1/2 inhibitor), are already approved85. 

 

Covalent inhibitors. Another approach of kinase inhibition that has gained interest during the 

last decade is the covalent targeting 68,86. Covalent inhibitor opts for targeting nucleophilic 

amino acids (primarily, but not limited to, cysteines) within the ATP-binding pocket. To date, 

this approach resulted in six approved kinase inhibitors 68. Additionally, there are entirely 

distinct methods of achieving kinase inhibition. For example, macrocycles (ALK inhibitor 
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lorlatinib 87), proteolysis-targeting chimeras, or PROTACs, (targeting BRAF V600E mutant 
88). 

 

1.1.3.2 Approved kinase inhibitors in oncology 

To date (November 2022), 89 kinase inhibitors targeting over 20 kinase families have received 

FDA clinical approval89. This number represents around 20% of the originally proposed 

druggable human kinome 32,90. Tyrosine kinase inhibitors are the most commonly approved 

kinase inhibitors, although only 30% of all known human protein kinases belong to the tyrosine 

kinase family37. This demonstrates great potential in developing new kinase inhibitors against 

other understudied families. The driving function of kinases in cancer is supported by 

comprehensive clinical data related to kinase activation by either activating mutations or 

translocations 91,92. One of the aspects of carcinogenesis is genomic instability, which is 

characterised by a high frequency of mutations and chromosomal alterations across the cellular 

lineages93. The genomic instability frequently results in the appearance of cancer mutations, 

which are divided into driver and passenger ones. Driver mutations lead the somatic cells to 

altered, frequently pathologically increased cell proliferation, which in turn affects the tissue 

microenvironment and contribute to the tumour development and progression94. On the 

contrary, the passenger mutations do not promote this proliferative benefit94. According to 

sequencing data, nearly 97% of cancer mutations are passenger mutations95. The development 

and approval of cancer therapies have been made simpler by identifying and characterising 

these cancer drivers, starting with the ground-breaking approval of imatinib to treat chronic 

myelogenous leukaemia (CML) caused by the BCR-ABL translocation, which prompts 

increased tyrosine kinase activity 97.  

Cancer with the leading amount of approved kinase inhibitors is the NSCLC (non-small-cell 

lung cancer). The most prevalent form of lung cancer, NSCLC, accounts for 82% of all lung 

cancer diagnoses with a significant mortality rate98,99. This correlation exemplifies a pattern in 

the development of kinase inhibitors and oncology in general. The molecular characterisation 

of tumours guides subsequent drug discovery to combat the emergence of drug resistance and 

stimulates the development of small molecule inhibitors. Moreover, 70% of the FDA-approved 

kinase inhibitors address various resistance mutations37. 
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1.1.3.3 Kinase inhibition beyond oncology 

Despite kinase inhibition being dominantly applied in the area of cancer, the application is 

being rapidly and widely spread to other therapeutic areas of interest, such as immune-related 

and degenerative diseases (Figure 12). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Kinase inhibitors in various therapeutic areas. 

Deregulation of the immune system regularly results in the overproduction of inflammatory 

mediators, which commonly underlies the development of inflammatory and autoimmune 

disorders, such as arthritis, asthma, psoriasis, or sepsis 100. One of the strategies against these 

diseases is targeting protein kinases that either mediate the intracellular activities of cytokines 

or are crucial for their secretion. For example, the FDA has authorised the pan-JAK inhibitor 

tofacitinib to treat rheumatoid and psoriatic arthritis, indicating that kinase inhibitors may apply 

in chronic inflammatory diseases101. Targeting protein kinases that restrict the release of 

inflammatory cytokines is becoming of interest in scientific society. One such target in this 

field is IRAK4 which is necessary for the generation of pro-inflammatory cytokines and 

chemokines generated by the activation of Toll-like receptors102; the other example is the SYK 

pathway targeting, which includes fostamatinib that is currently under clinical trials against 

immunoglobulin related neuropathy 103.  

The field of degenerative diseases is the other area where kinase inhibition can contribute to 

disease suppression. Several kinase inhibitors have entered clinical trials in this field despite 

the lack of common knowledge of the disease's progression mechanism104. Namely, a small 

molecule inhibition of inositol-requiring enzyme 1α (IRE1α) for treating retinitis pigmentosa105  
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and VEGFR/PDGFR inhibitor for disrupting the angiogenesis in wet age-related macular 

degeneration106. 

In addition, a few kinase inhibitors were applied in infectious diseases, namely for malaria 

therapy107, along with viral diseases: ABL inhibition against dengue virus108, PkA and PkB 

against Mycobacterium tuberculosis109. Moreover, ABL, MAPK, and CDK kinase families 

were recently studied as potential therapeutic targets against Coronavirus infections 110. 

 

1.2. In silico Drug Discovery 

1.2.1 Introduction and perspective 
Since its debut in the early 1980s, in silico or computer-aided drug design (CADD), has gained 

recognition as a methodology that influences almost every step of drug discovery. CADD has 

become integral to the industry and academic research since the constant development of its 

techniques brings a layer of structural rationality to the hit identification and development 111. 

The relevance of molecular modelling and its fundamentals are found in the understanding of 

protein-ligand interactions, which is also the foundation of medicinal chemistry. CADD offers 

a wide range of methods and techniques to gain insights into protein-ligand binding and provide 

valuable data to support medicinal chemistry efforts. For instance, one of the very fundamental 

principles of molecular modelling is to achieve a good geometric fit. This concept, introduced 

by Emil Fischer as the "lock-and-key"112, remains to be relevant a century after the publishing 

date. The lock-and-key concept as CADD is not only about a good geometrical fit but also 

about substantial complementarity within the hydrophobic and polar interactions of the protein 

binding site and the ligand. Apart from its interactions, molecular modelling often considers 

ligand and binding site flexibility, binding and distortion energies, solvation effects, entropy, 

and complementarity of the molecular force field 113. CADD techniques allow gaining insights 

into the atomistic details beyond what can be obtained with the current experimental methods. 

Additionally, molecular modelling works with large pools of chemical data, allowing great 

chemical diversity to be reasonably analysed and generating new hypotheses capitalising on 

large datasets. The research & development process is steadily modernised through the rapid 

adoption of technologies and techniques that have the potential to drastically improve the drug 

development pipeline. Despite the speed at which these approaches are emerging, a 

comprehensive understanding of their applicability and limitation is to be achieved 114. 

However, this brief description tells only a part of the story, providing a glance into molecular 

modelling. The overview of sample CADD workflows is presented further in this thesis, 

emphasising molecular dynamics techniques. 
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1.2.2 Sample drug discovery workflows 

1.2.2.1 Structure-based drug discovery (SBDD) 

SBDD is a drug design method which utilizes 3D structures of target proteins and focuses on 

the design and optimisation of a ligand that fits accurately inside the binding pocket and results 

in beneficial protein-ligand interactions115. Structure-based drug discovery is a rapidly growing 

area due to steadily increasing structural information available, arising not only from genomics 

and proteomics data but also powered with AI systems and novel machine learning approaches 
116. The SBDD process is iterative and frequently requires multiple cycles before an optimal 

initial hit compound can proceed to experimental validation. Figure 13 describes the essential 

steps that are involved in the structure-based pipeline. Following the initial step of target 

selection, the appropriate computational model has to be developed. One of the key factors at 

this stage is to avoid the creation of misleading and biologically irrelevant models that will 

result in the pipeline being ruined in the early phases. Important to notice that one should 

consider the possibility of the target protein exploiting dimerisation and/or multimerisation, as 

well as interaction with other proteins and macromolecules such as nucleic acids and/or 

membranes. The formation of functional assemblies frequently leads to alterations in the 

geometry of protein substructures, which can cause the shift of size or interactions near the 

binding site. Understanding the functional changes that a target protein undergoes upon 

modulation/activation is crucial for creating an initial representative model that aligns with 

real-world conditions. In the next step, the target protein 3D structure is generated or obtained 

upon availability from the Protein Data Bank (PDB). Whether the crystal structure or NMR of 

the target is not resolved to date, the 3D structure can be predicted by leveraging other 

structures with the highest sequence similarity to the target. The tools of choice at this step are 

homology modelling and AI-powered approaches, such as AlphaFold, chosen according to the 

uniqueness of the target and the system's complexity. In the next step, the binding site of the 

target needs to be identified to facilitate further optimization of hit compounds down the line. 

In some cases, the approximate location of the binding site is well-established within a protein 

family. It provides the structural features or specific residues that can be a starting point for the 

target binding pocket generation. For instance, in protein kinases, various subcultural elements 

can be used as landmarks within the binding site, such as the gatekeeper, DFG-motif or G-rich 

loop. If applicable, the binding site can be obtained with the localisation of natural substrate, 

for example, ATP binding site, in the event of kinases. Whether the binding site is unknown 

for the target protein and other members within the protein family of interest, computational 
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methods can be applied to suggest the probable locations. One can choose between the methods 

relying on geometrical properties, such as POCKET117, PASS118, LIGSITE119, or combined 

with the physics approach, such as PocketFinder120 or SiteMap 121,122. The software of choice 

for project utilisation was SiteMap as a part of Schrödinger Maestro. 

There are several options to pursue after the binding site is identified. For instance, one can 

establish a pharmacophore model, which offers an additional opportunity to validate the model 

before proceeding with pharmacophore-based virtual screening. Another option is to carry out 

the docking of a substantial chemical library (more on this topic in section 1.2.5. Molecular 

docking). Once the method is chosen, and the screening database is selected and prepared 

according to the requirements of the method, the virtual screening can be utilised. Next, when 

the initial hits are obtained, the compound set should be scored and filtered according to the 

properties required for project purposes. The essential pharmacokinetic properties for the hits 

list validation include Physico-chemical parameters (MW, number of heavy atoms, hydrogen 

bond donors and acceptors, and rotatable bonds), lipophilicity (Log Po/w), water solubility (log 

S), pharmacokinetics, drug-likeness (Lipinski, Violation), and synthesis accessibility for 

medicinal chemistry 123. The cycle between model validation and the top hits choice is 

frequently repetitive and requires refinement. Once the initial hits satisfy the criteria, the 

optional short-scale MD simulations (200ns - 500ns) can be performed to validate the ligand 

stability within the target binding pocket, ensuing with selecting top hit compounds for 

experimental validation. 

 

Figure 13: An example of a structure-based drug discovery workflow. The thick yellow 

line illustrates the path from the target selection to experimental validation, while the brunches 

highlight the variety of methods that might be used along the journey. The dashed green arrows 
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indicate that LBDD is an iterative process, emphasizing the necessity of extra computations 

and revalidation along the way. 

 

1.2.2.2 Ligand-based drug design (LBDD) 

The premise of ligand-based drug design originates from the foundation concept of medicinal 

chemistry, which asserts that molecules with a high degree of structural similarity possess 

comparable bioactivity124. LBDD approaches utilise primary data on active compounds 

(approved drugs, published reports, etc.) to predict or generate novel drug-like compounds with 

similar biological effects. The inactive compounds are also beneficial for the predictions, while 

they can be used to identify undesirable ligand features and validate the accuracy of the 

computational model. In this sense, the typical workflow starts with an initial set of compounds 

with known potency that proceeds to a chosen computational method for the similarity search. 

The similarity search may be conducted using a wide range of molecular descriptors or filters. 

Molecular descriptors are categorised based on the search's dimensionality. Molecular weight 

and logP are typical 1D descriptors, whereas topological indications and fingerprints are 2D 

descriptors. The characteristics covered by 3D descriptors encompass a broad range of 

properties from electrostatic potential to the 3D geometry of ligand moieties. Furthermore, the 

3D descriptors are integrated into pharmacophore modelling. According to IUPAC 

recommendations, a pharmacophore is "an ensemble of steric and electronic features that is 

necessary to ensure the optimal supramolecular interactions with a specific biological target 

and to trigger (or block) its biological response" 125. The ideal scenario for pharmacophore 

modelling is when a protein-ligand complex is co-crystallised, and the ligand shows sufficient 

potency and bioactivity. An additional step using Quantitative Structure-Activity Relationships 

(QSAR) or machine learning can be added to the pipeline if a comprehensive dataset of active 

compounds is available. The most popular metric to quantify the similarity of new compounds 

to the initial set is the Tanimoto coefficient 126,127. 

 
1.2.3 Protein structure preparation 
The emerging problem of refining protein crystal structures with initial low resolution is a 

relevant question in computational chemistry due to the rapidly increasing number of structures 

in the Protein Data Bank (PDB). The need for protein preparation arises from several factors, 

such as the absence of hydrogens in most X-ray crystal structures, tautomer uncertainties and 

the influence of crystal packing. The quality of the upcoming model and the stability of protein-

ligand complexes are both significantly influenced by hydrogen bonds, in addition to having 
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an impact on the binding specificity. The hydrogen bond composition of a molecule affects 

how small molecules are transported, distributed, metabolized, and absorbed 128. Nevertheless, 

hydrogens are absent in most structures solved by X-ray crystallography due to the method 

limitations 129. However, some hydrogen atoms may be assigned with high-resolution 

crystallography130. The absent hydrogens are less common in PDB files that are solved via 

NMR crystallography since hydrogens are typically modelled in before the molecule is folded 

to meet the requirements of the NMR interatomic distance128. Crystal packing may affect the 

protein side-chain conformations and lead to a misleading interpretation of the protein binding 

pocket 131. For instance, the angles of the backbone, which characterise the overall tertiary 

structure, are one of the most crucial variables governing conformational specification and 

determining the interaction network in a protein 132. Therefore, selecting a correct rotamer for 

residues such as asparagine and glutamine can significantly affect the overall structural stability 

and define the interaction network 133. Abnormal residue conformation impacts not only the 

energy landscape of a protein but also the shape of the binding pocket 133. Moreover, potential 

side-chain rearrangements around a single point mutation can be associated with mutation itself 

or due to variations in crystal packing forces134–136. Whether the errors in the original data 

derived from experiments are left untreated can lead to misleading results and the wrong 

creation of the initial model. The protein preparation may be carried out using a variety of 

applications; moreover, it is frequently incorporated into molecular docking software as an 

essential and initial step in creating reliable protein-ligand interaction models. Examples of 

such software include GROMACS137, AutoDock138, HADDOCK139,140, and Protein 

Preparation Wizard141 (Schrödinger, LLC). Although the exact protocols for protein 

preparation differ based on the software, several aspects are universal. The first aspect is the 

correct allocation of missing hydrogens, which addresses the common lack of those in the 

crystal structures. The second aspect is dedicated to correcting hydrogen bonds following their 

energy profiles. The hydrogen bond optimization process generally starts with a sampling of 

the angle rotation in the terminal rotatable bonds of the residues and is followed by an 

examination of the whole hydrogen bond network. Often protein preparation packages base 

their hydrogen assignment protocols on cluster combination and Monte Carlo sampling141. 

Further, the protein undergoes the minimisation protocol with a chosen force field. 

 

1.2.4. Homology modelling 

Homology modelling is a technique that allows predicting the secondary protein structure 

based on the sequence similarity to the template protein. The baseline concept stands that 
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proteins with a high degree of sequence similarity would have comparable folding142,143; when 

homology modelling applied together with molecular dynamics can serve for in silico design 

of mutagenesis experiments and the study of protein conformational changes as well as 

allosteric effects.  

One can generate the homology models on the template of experimentally established protein 

structure, complemented with a homologous sequence of sufficient similarity or alternatively 

with another protein template structure that shares family-specific structural features with the 

future model. For instance, class A GPCRs partake seven transmembrane helices that traverse 

the membrane. Therefore, homology modelling of GPCR with unknown crystal structure can 

be supported by the seven transmembrane helices, which are used as a template, or skeleton 

for modelling144. This way, one can compensate for low sequence similarity between the target 

protein and existing template crystal structures by finding a well-established feature that is 

common within the protein family of interest. The other alternative is composite or chimera 

homology modelling, which allows using multiple structures as a template after the sequence 

alignment to the target one. The process of homology modelling can be roughly divided into 

the following steps: selection of the template 3D structure, or structures (in Chimera approach); 

sequence alignment of the target protein with the template; construction of the model, based 

on the 3D structures and alignment; Refining and evaluation of the model. 

The final evaluation step is as crucial for the quality of the obtained model as the initial 

selection of the templates. For this reason, various techniques and software are available for 

this purpose. One example of software for evaluating homology models is PROCHECK, which 

compares models' stereochemical parameters against high-resolution and previously validated 

crystal structures to assess the overall quality of the protein model and individual residue 

geometries 145. Web-based server examples for structure validations include such platforms as 

PDBsum 146 and MolProbity 147. 
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Figure 14. Example of Ramachandran plot of the autoinhibited MKK4 model, adapted from 

Shevchenko et al.148. The model is based on PDB ID: 3alo149. The plot area describes the 

dihedral angles of all residues in MKK4. Glycine residues are plotted as triangles, proline as 

squares, and other residues as circles. The areas inside the dashed line are considered favoured, 

the beige area as favoured, and the white as disallowed. 

 

Another method for evaluating the accuracy of an obtained model is the Ramachandran plot 
150. Software packages like those mentioned above typically include the Ramachandran plot, 

although it is worthwhile to describe separately. Ramachandran plot allows the description of 

residue geometry by plotting φ and ψ torsional angles of amino acids. The fundamental 

principle of this approach is based on the finding that computationally calculated angles that 

prevent steric collisions can be divided into several groups that correspond to the secondary 

structure elements 150,151. According to Ramachandran Principe, α-helices, β-strands, and loops 

are the conformations that polypeptide chains are likely to form because the steric clashes 

between atoms prevent the formation of other conformations150,151. Thus, the Ramachandran 

plot area is divided into α-helical (Figure 14, blue area), β-strand (Figure 14, gray area), and 

loop area (Figure 14, green area). Each point on the plot represents the φ–ψ angle combination 

for one amino acid. The core regions (Figure 14, dashed line areas) represent the most favoured 

angle combinations, the allowed regions (Figure 14, beige area) are located around the core, 

while the remaining space is disallowed area (Figure 14, white area) is considered to indicate 
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improper φ–ψ combinations. This plot can be utilised for on-the-fly modification of the protein 

geometry by finding residues that are plotted in the forbidden area of protein dihedrals using 

interactive Ramachandran plots (as implemented, for instance, in Schrödinger Maestro Suite) 

with further minimisation. 

It is important to notice that homology modelling is frequently a recurring procedure: one 

should ensure that the obtained model is representative and not biased due to the template 

choice. In other words, different templates yield different models and may arise various errors. 

Therefore, good practice calls for constructing several homology models based on different 

template structures, followed by structural comparison and validation. Various tools and online 

recourses are available for homology modelling, for example, SwissModel152, MODELER153, 

Modweb154, Phyre2155, and Prime homology modelling module131,156. One of the newest 

methods is AlphaFold116, an artificial intelligence that predicts the three-dimensional structure 

of a protein from its amino acid sequence.  

 

1.2.5 Molecular Docking 

The docking methodology, especially in small molecule drug design, remains the pioneer 

computational tool for ligand orientation prediction within a protein binding site since its 

invention in the early 1980s157. The molecular docking approach includes several stages, 

roughly divided into the following steps: ligand preparation and generation of ligand 

conformations; protein preparation with the selection of the docking area; initial pose 

generation and, at last, the pose scoring158. To date, abundant studies have been performed to 

distinguish the most proper protocol and scoring function, while scoring of the docking poses 

is a crucial aspect for the evaluation of the results. The scoring functions can be roughly divided 

into three subclasses: empirical, knowledge-based and force field-based157. 

Diverse approaches exist in the field of molecular docking: one requires beforehand separate 

preparation of the protein structure and the set of ligands in the relevant force field (Glide159–

161). At the same time, the other software combines the stages under one protocol 

(HADDOCK139, AutoDock Vina138,162,163). Nonetheless, ligand preparation protocols generally 

include the generation of 3D geometry and tautomer and ionisation states prediction. After the 

ligand poses are generated with the selected algorithm, the validation of the results is to be 

conducted.  

Additionally, if the known active binding compounds are available for the protein of interest, 

they can be included in a validation round dataset before the docking. In this respect, the known 

actives hypothetically show a suitable binding mode and are among the high-ranked 
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compounds according to the docking score.  Moreover, the known negatives (or decoys) can 

be included in the ligand dataset prior to the docking to evaluate the precision of the model and 

minimise false positives and avoid artificial enrichment164. The enrichment factor, therefore, 

represents the model's ability to detect the true positives, avoiding the inclusion of decoy 

compounds165.  

Important to notice that the enrichment factor has a restricted use because of its substantial 

dependency on the number of known actives in the initial dataset. A ROC curve (receiver 

operating characteristics) is another way of estimating docking efficiency. When combined 

with plot visualisation, the area under the curve (AUC) determines the degree of enrichment 
164. Besides the need for actives compounds to be present for the target, the application of ROC  

curves has several restrictions166. There are, however, published methods to prevent obtaining 

biased data from curve167. When the docking is carried out against a novel target, with no 

primary data on active compounds available, the docking validation relies on the scoring 

function, the prediction of binding energy, and especially the visual evaluation of docking 

poses. Prior to the in vitro validation of the top compounds, the docking output may be 

additionally filtered based on other chemical characteristics (such as ADME) with optional 

protein-ligand stability validation by short MD simulations. 

Each docking software has a unique protocol that specifies the sequence and methodology of 

common docking steps, from ligand preparation to initial pose scoring. The Glide159–161 

protocol is described below as an example of a pipeline within the docking software. In Glide 
159–161, docking is further categorized according to its precision. The first category is known as 

high throughput virtual screening or HTVS and is typically used for screening substantial 

amounts of compounds, starting at a library size of a few hundred thousand and going up to a 

few million. The number of intermediate conformations and the accuracy of the final torsional 

refinement and sampling are reduced by HTVS since it is designed to produce quick screening 

output, focusing on speed rather than quality. Standard precision (or SP) docking is the next 

category. The scoring function used by SP and HTVS is identical. However, SP generates more 

intermediate conformation samplings. SP is frequently applied to a fraction of the top hits from 

the HTVS output to improve prediction accuracy. Next in the order is the XP or extra precision 

docking, which is more profound and discriminating but takes significantly more time to 

execute. Compared to SP, XP does more thorough sampling by starting with SP sampling 

before initiating its own anchor-and-grow approach. Additionally, XP utilises a more complex 

scoring algorithm and places higher demands on the complementarity of ligand-receptor 

shapes. These differences eliminate the false positives that SP-precision permits. To ensure that 
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the more expensive docking algorithm is carried out on valuable poses, it is advised to run the 

compound database using HTVS-SP docking first, then take the top 10% to 30% of the 

resultant hits and dock them using XP precision. 

 

1.2.6 Virtual Screening. 

Virtual screening campaigns are broadly used in industry and academic research environments; 

the number of successful examples of virtual screening applications for drug discovery is 

steadily rising157,168–170. The primary goal of virtual screening is to obtain the maximum amount 

of potentially active compounds from a chemical database with great chemical diversity that 

can be further scored, ranked, filtered, and experimentally evaluated. The main benefit of 

virtual screening is the possibility to access and filter a vast chemical space, which would be 

challenging and resource-intensive with experimental techniques. By definition, virtual 

screening is much more than docking an extensive library of compounds. The variety of 

methods that can be attributed to virtual screening allows for several predictions. For instance, 

shape screening can be used to explore the geometrical features of the binding pocket. 

Pharmacophore screening allows finding the optimal geometrical ligand-protein fit while 

focusing on the desirable protein-ligand interactions. Fragment and fingerprint screening aids 

in increasing the chemical diversity of compounds. Virtual screening is commonly carried out 

on a library of compounds that may be purchased and subjected to experimental testing. 

Utilising the In Silico approach can significantly cut expenses and resource waste during the 

initial screening phase. 

Additionally, the suppliers of compound libraries typically offer classified sets of compounds 

according to, for instance, therapeutic area or bioactivity. Presumably, the virtual screening can 

be applied to an in-house database or made entirely virtual with further synthesis. This thesis 

further describes two broad categories of virtual screening: ligand-based (section 1.2.2.1) and 

structure-based (section 1.2.2.2). 

 

1.2.7 Molecular Dynamics 

Molecular dynamics (MD) simulations empower the studying of the structure within molecular 

systems at the atomic scale in a dynamic manner. The MD simulation generates a trajectory 

that allows observing an atom's individual movement as a function of time. The forces between 

interacting atoms are estimated using a force field, and the system's total energy is computed 

according to Newton's law of classical mechanics. The integration of Newton's laws of 

movements produces subsequent configurations of the developing system during MD 
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simulations, producing trajectories that describe the locations and velocities of the particles 

throughout time. The applications of MD simulations cover a wide range of possibilities within 

in silico drug design. Among others are the docking postprocessing of protein-ligand 

complexes171,172, drug binding studies173,174, protein-protein interactions175, and the discovery 

of structural states and binding sites176. 

One of the essential aspects that can be carefully considered when the MD simulation is 

conducted is the timescale, as different types of protein motions occur at distinct timescales. 

For instance, the side-chain rotamer movements can be observed in the range of ps to µs, 

followed by the loop motions in the field of ns to µs, with more significant domain movements 

starting to be evident in µs+ timescale177. Thus, one should consider the reasonable timescale 

of the MD simulation in accordance with the movements to be observed to deliver valuable 

results. The other crucial point for comprehensive MD simulation is the number of replicas of 

the single system to be conducted to avoid false positive conclusions178. The term 'replica' 

refers to the simulations of the identical system, sharing the same number of atoms, initial 

structure and preparation protocol, repeated several times. The difference between replicas is 

in the velocities generated randomly according to the Maxwell distribution178. As a result, the 

velocities are unique for each replica, which leads to the production of different simulation 

trajectories. However, even replicas with identical velocities can produce distinct trajectories 

for various reasons, including machine-specific settings and the specification of the 

compiling178. In theory, the ergodic principle claim that the velocities have no impact on 

infinite dynamic simulations179. While molecular dynamics are not run eternally in real life, 

random velocities are strictly important, especially for short-scale MDs. The random initial 

velocity assignment ensures that the results of every simulation are slightly different, even if 

the other settings are identical. In other words, the random velocities provide the opportunity 

to observe real-world phenomena happening with the same system at different time points. 

Moreover, multiple replicas ensure a specific movement or interaction observed not in a single 

simulation but in a statistically significant amount of replicas is not biased or artificially 

generated but related to the real-world evidence. The choice between the multiple simulation 

replicas over a single but long-scale one is frequently a question that should be answered prior 

to the initiation of the MD according to the aims and resources of the project. 

 

1.2.7.1 System preparation 

A basic pipeline for setting up a system for MD simulation requires the protein of interest to 

be prepared in accordance with the simulation software and chosen force field. While specific 
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variations and step order may vary, the system preparation step is essential for building an MD 

system. System preparation follows the structure preparation (1.2.3) with additional 

examination of crystallisation artefacts, correct bond orders and the presence of ions and 

unassociated molecules. Next, the solvation model is to be chosen. Many types of water models 

have been developed regarding the system solvation with water. These models are categorised 

based on several important factors, including the number of interaction points the molecule can 

make (site), the inclusion of polarisation effects, and flexibility or rigidity. The water model 

chosen for the articles in this thesis was TIP3P, a three-site rigid water molecule with assigned 

Lennard-Jones parameters and potential100.  

 

Figure 15. Thermodynamic ensembles in Molecular Dynamics. (A) A Microcanonical 

(NVE) ensemble is an isolated system with a fixed amount of particles, total volume, and 

energy. (B) Canonical (NVT) ensemble as a system with fixed total volume but with 

temperature-dependent boundary energy transfer. (C) Isothermal-Isobaric (NpT) ensemble as 

a system allowing volume alteration for the pressure equilibration. Ext – external, 

environmental; in – internal, model system value. 

 

A thermodynamics ensemble used to characterise the system must be chosen during the system 

preparation step. The thermodynamics ensemble is an idealisation of the model system 

composed of multiple replicas of this system, all taken into account simultaneously, and each 

reflects a potential state in which the actual system may be 180. In other words, the 

thermodynamics ensemble is a statistical approximation that allows to extrapolate the 

fundamental features of the thermodynamic system through classical and quantum mechanics 
181,182. The ensemble classification is based on how the model system is separated from the 

outer environment. The first category is the microcanonical ensemble, which depicts the model 

system as entirely isolated from the environment (Figure 15A). The microcanonical ensemble 

refers to the acronym NVE, which means that the total number of particles N, volume V, and 
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energy E remains constant183. As a factor that assumes the thermodynamic interaction of the 

model system with its surroundings, the temperature cannot be defined for the NVE ensemble. 

NVE is used for describing states of a system with defined total energy. The next ensemble 

category is termed canonical and provides the option to determine the system temperature, 

therefore referring to the acronym NVT, where N stands for the total number of particles, V 

for volume and T for temperature. NVT allows the energy transfer between the boundaries of 

the model system and the environment while prohibiting substance exchange (Figure 15B)183. 

In other words, this ensemble addresses the model system's potential states that are in thermal 

equilibrium with the environment, which can be visualised as a heat bath with constant 

temperature, which is several magnitudes larger than the model system184. The difference in 

size ensures that no amount of heat produced by the model system will cause the heat bath's 

temperature to rise considerably. As a result of the thermal contact between the model system 

and the environment, the system will now transmit heat to and across the environment until 

they reach thermal equilibrium185. The last ensemble category is the isothermal-isobaric, which 

as with the canonical ensemble, allows the energy transfer between the model system and 

environment, but allows the volume change. The system's volume fluctuates to equilibrate the 

system's internal pressure with the pressure applied to the system by its environment (Figure 

15C)185. The acronym for the isothermal-isobaric ensemble is NpT, where N stands for the 

persistent total number of particles, p for pressure and T for temperature. 

Moreover, NpT is the most used ensemble. However, prior to the start of MD, the so-called 

model relaxation step is conducted. The model relaxation is an essential step which ensures the 

proper system equilibration and removal of the high strain degree from the newly constructed 

system. The model relaxation involves several phases, where a particular ensemble is combined 

with specific pressure, temperature, and timestep until the equilibration is achieved. The 

placement and selection of ions and the specification of temperature and pressure are all 

components of the system preparation process. It is frequently desirable to have an electrically 

neutral system for MD simulation. However, it is not strictly necessary, for example, with the 

Desmond MD engine 186, which applies a uniform background charge distribution to neutralize 

the system in the Ewald summation 187. Moreover, the system can be set up in a salt solution 

rather than a pure solvent. 

The periodic boundary conditions (PBC) are then applied to the system by selecting the 

simulation box's form and cut-off. It is necessary to note that to account for potential protein 

movements, the distance from the simulation box's edge to the protein must be considerable. If 

the simulation box size is insufficient, MD-derived findings can frequently be artefactual or 
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misleading. The force field should be chosen to continue with MD simulation once a system 

has been solvated and configured for boundary conditions. 

 

1.2.7.2 Force fields  

While in classical physics, force fields evaluate a system's potential energy, the fundamental 

distinction between the two in molecular modelling is that the energy landscape is depicted as 

an energy gradient dispersed across the particle positions 188. Reconstructing a realistic 

simulation of a molecular system on an atomistic level is strongly dependent on force field 

parameters, which are the core for deriving meaningful structural information and relative 

energies from MD simulation. 

To date, additive or non-polarizable force fields are the most prevalent in small molecule drug 

design, frequently sharing the basic potential energy function and the parameters comprising 

the function itself 189. The name 'additive' originates from Coulomb's equation for electrostatic 

interactions, which states that a system's potential energy is the sum of all atom-atom individual 

interactions (Equation 1) 189. The potential functions, which are essentially an array of 

equations representing the potential energy, and its components, form the basis of the force 

field core. The parameters in this set of equations are another component distinguishing a force 

field. 

In the vast majority of condensed-phase simulations, the total potential energy of a cohort of 

molecules is determined as a sum of inter- and intra- molecular interaction energies between 

all components of the system (Equation 1)190,191.  
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Equation 1. The total potential energy of a set of constituents 𝑎𝑏 with coordinates�⃗�. 𝑎𝑏 

refers to a set of molecules and/or ions. 

 

The following terms commonly describe the intramolecular potential energy: harmonic bond 

stretching (Equation 2), angle bending (Equation 3), torsional angle definition as Fourier series 

(Equation 4), Coulomb electrostatics and Lennard-Jones potential (Equation 5)191. 
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Equation 2. The first force field term defines bond stretching energies in harmonic (ideal) 

conditions, where 𝑘# is the bond-stretching constant, which regulates the rigidity of the bond 

spring.  

 

𝐸#,%( =	( 𝑘-,$ 	"𝜗$ − 𝜗*,$%
+

$
 

Equation 3. The second force field term defines the angle bending energy, where 𝑘- is the 

angle bending constant, determining the rigidity of the angle spring. 
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Equation 4. The third force field term represents the torsional energies as a Fourier series. 

 

𝐸%# =	( {
𝑞$𝑞3𝑒+

𝒓𝒊𝒋
+ 𝟒𝜺𝒊𝒋[

𝝈𝒊𝒋
𝒓𝒊𝒋

𝟏𝟐
−	
𝝈𝒊𝒋
𝒓𝒊𝒋

𝟔
]}

$"3
 

Equation 5. The fourth force field term represents the non-bonded energy between all atom 

pairs, where 𝝈𝒊𝒋 is the equilibrium distance and 𝒓𝒊𝒋 is the distance between interacting atoms. 

 

Force fields can be roughly divided into three major classes. One of the defining characteristics 

of class one is the utilisation of harmonic movements to depict bond stretching and angle 

bending. According to the assumption, the amount of restoring force is proportional to the 

displacement from the equilibrium position for class one force fields 192. The approximation in 

class one force fields is referred to as quadratic because the square of the displacement energy 

is linearly associated with the harmonic energy of oscillator 193. Moreover, the parametrisation 

of bond stretching and the angle bending often approach harmonic behaviour only close to the 

equilibrium. The most famous examples of the class one force fields are the Optimized 

Potentials for Liquid Simulations (OPLS) 194, AMBER 195,196, CHARMM 197, and GROMOS 
198. One of the first techniques to be established with constant parameter optimisation for the 

propagation of thermodynamic characteristics in the liquid state applied to small molecules 

was OPLS, which stands for optimised potentials for liquid simulations 194. On the OPLS core, 

the next generation of force fields was built: OPLS3199, OPLS3e200 and OPLS4201 with the 

maintenance of the nonbonded parameters. In general, AMBER refers to a collection of force 

fields that can be split according to the simulated biomolecular system. For instance, for protein 

simulations, AMBER suggests ff19SB202, for lipids or complex membrane simulations – 
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LIPID21203, and for nucleic acids – DNA OL15204, and RNA OL3205. As AMBER CHARMM 

also represents a set of force fields, for instance, the all-atom CHARMM22206 and extended 

atom force field CHARMM19.  

Class two provides additional anharmonic cubic and quartic components for the potential 

energy of bonds, resulting in a more detailed geometrical modelling of the vibrations of bonds. 

In addition, these force fields include cross-terms that describe the interactions between nearby 

located angles and dihedrals. Class two force fields include MMFF94 207, commonly referred 

to as Merck Molecular Force Field), which parameters are primarily derived from quantum 

calculations rather than experimental data 208. Another example is UFF 209 (Universal Force 

Field), which application is somewhat restricted since the parameters, particularly for metals 

and inorganic substances, have not been sufficiently validated 210. 

Class three includes force fields that contain extended parameters applicable to organic 

chemistry, such as the Jahn-Teller effect or stereoelectronic effects. For example, AMOEBA 
211 is a polarisable force field that employs atomic-induced dipole to model polarisation while 

assuming that averaging polarisation is insufficient 212. Another example is DRUDE 213, which 

uses non-polarizable force fields to leverage atom-to-atom Coulomb electrostatic interactions 

as its core while integrating polarisation effects via NAMD and a dual-Langevin thermostat 

approach 214. Important to highlight another class of force fields, known as coarse-grained force 

fields, which employ a distinct strategy in molecular dynamics simulations. 

The idea behind the coarse-grained approach is the reduction of the number of degrees of 

freedom within a system. This is achieved by parametrising the most significant interactions 

with the force field while representing a particular set of atoms as a single bead. The definition 

of the most significant interactions might be intricate depending on the parametrisation method, 

hence tabulated potentials are frequently employed. The purpose of coarse-grained models is 

to replicate specific characteristics of a given system, which can encompass an atomistic 

protein model or experimental data. The properties one intends to replicate in the model 

determine the classification of the coarse-grained force fields.  For instance, free energy 

conservation is the focus of the MARTINI 215 force field and the simplex method 216. Another 

example is inverse Monte Carlo with structure-based coarse-grained modelling, emphasising 

the radial distribution 217. 

 

 

 

 



 34 

1.2.7.3 Molecular Dynamics analysis  

The vast spectrum of MD analysis methods can be divided into two primary perspectives, 

which encompass the ligand and the protein. Further, each subcategory is described with 

examples of frequently applied techniques. 

 

1.2.7.3.1 Protein perspective 

Protein Root mean square deviation (RMSD) 

RMSD is a measurement of the average distance between given groups of atoms as Cα atoms 

or protein backbone commonly used in analyses of MD 218. RMSD provides insights into the 

deviations in the protein conformation along the MD trajectory, which correlates with the 

indication of protein stability. Namely, the values are calculated for atomic coordinates at each 

frame of the MD trajectory, which allows seeing the value variation along the timescale. One 

crucial factor in RMSD is the choice of the reference point to which the subsequent RMSD 

values are compared. This is because the quality and reliability of the reference point 

determines how accurate the RMSD calculations will be. For instance, the simulation's starting 

frame is commonly designated as the reference point in MD. Further, if the starting frame 

contains any poor contacts, clashes or ambiguities in the ligand pose, one will obtain high 

RMSD values. High values in this regard point back to the poor choice of the reference point 

rather than necessarily indicating ligand instability or poor model quality. Moreover, RMSD 

indicates the approximate timeline of system equilibration, which can be observed from higher-

than-average RMSD values at the beginning of MD (generally restricted to 200 ns with 

Desmond MD engine). RMSD can be calculated in the majority of drug discovery software, 

such as GROMACS 74, Maestro Simulation interaction analysis tool, or for complex selections 

can be scripted with MDAnalysis.analysis.rms 219 module for Python. 

 

Protein Root mean square fluctuation (RMSF) 

RMSF is a measurement of deviation from a selected group of atoms reference position that 

occurs along the MD trajectory and is averaged over the total amount of atoms 220. Thus, the 

RMSF values indicate which structural elements of a protein fluctuate most compared to their 

reference positions. Conceptually fluctuations of RMSF values in a particular part of the 

protein align with B-factor values from the experimental x-ray structures, allowing direct 

comparison between the computational and empirical data. Generally, RMSF and RMSD 

calculations are bound together as an essential basis for trajectory analysis; therefore, they can 

be calculated within the same software. 
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Protein secondary structure analysis  

The initial classification of the secondary structure was based on distinct hydrogen bonding 

modes. It encompassed three elements: helix, strand and coil 221, further this classification was 

extended to eight states: α-helix, 310 helix, π-helix, β-strand, β-bridge, β-turn, bend, and loop 

or others 222. As the physical process of protein folding is tightened up with the various 

biological events and processes 223, deriving secondary structure information from MD 

trajectories can provide insights into the structural behaviour of the protein. Although to date, 

the possibility of computational prediction is limited to helix, strand, or loop (coil), the results 

can highlight valuable changes in the investigated structure correlated with the impact of the 

ligand, mutation or normal protein function. The computational results of the secondary 

structure prediction can be further supported with circular dichroism (CD), which provides an 

experimental evaluation of proteins' secondary structure. Up to this point, secondary structure 

calculations along MD trajectories are somewhat rare and frequently require custom coding for 

a system. However, the starting data for these calculations can be extracted as raw output from 

the Maestro Simulation interaction analysis tool (Schrödinger, LLC, New York, NY). 

 

Principal component analysis (PCA) 

Principal component analysis (PCA) is a prominent approach for evaluating large datasets with 

several dimensions or variables per observation. PCA enhances the readability of data while 

maintaining the most information, besides facilitating visualisation. In other words, PCA 

retains the greatest amount of statistically significant data within a given dataset that results in 

dimensionality while reducing the "noisy" data that causes valuable statistical trends to be 

overseen. This is conducted by the linear translation of the dataset to a new coordinate system, 

which produces a two or three-dimensional plot with data points that allows deriving the 

clusters of nearby data points visually. The number of principle components chosen for the 

visualisation is the main difference between 2D and 3D PCA. The construction of principle 

components in PCA aims to capture the most variety in the dataset: PC1 depicts the greatest 

variety, PC2 describes the next-greatest variety, and so forth. Most of the variation may 

therefore be captured by the first two to three PCAs, and the remaining ones can be eliminated 

without losing valuable for analysis data. The linear translation (linear reduction) is a process 

of finding new uncorrelated variables that represent linear functions of the initial set and 

sequentially optimising the variance224. In addition, PCAs are widely used in a variety of 
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disciplines where large datasets must be statistically analysed. Among these disciplines are 

genomics, astrophysics, machine learning and data science. 

Moreover, PCA is a widely used approach for analysing MD trajectories, where it applies the 

same principle: a linear transformation that diagonalises the covariance matrix and eliminates 

the spontaneous linear correlations between the coordinates225,226. The PCA results can be 

utilised for the free energy landscape construction, which describes the metastable 

conformational states and the transition states227. These states contribute to understanding 

functionally relevant motions within the investigated system, which can be hard to derive by 

visual examination due to numerous other motions simultaneously occurring within the MD 

trajectory. The PCA analysis can be conducted with GROMACS74 covariance tool (gmx covar 

and gmx anaeig scripts). 

 

Markov State Modelling 

Markov modelling (MSM) plays a significant role in the modelling and interpretation of MD 

simulation data, while it allows pinpointing of statistically significant events in the MD 

trajectories228. MSM is a robust framework for analysing long-scale MDs, where it becomes 

more challenging to visually observe changes in protein dynamics and substructural 

geometrical variations.  

MSM stands for a master equation framework, indicating that the system's complete dynamics 

can be highlighted using just the MSM. The master equation formalism has also been applied 

in a wide range of scientific disciplines229. By definition, MSM is a n x n square matrix (often 

referred to as transition probability matrix), in which the n states represent the total number of 

configurations that the system may exist in 230. The dynamical change of the system can be 

observed by defining the states at time points separated by the lag of time (τ). This separation 

of the states ensures the lag of time to be a Markov process230. The term “Markov process” 

refers to a random process in which, given the present, the future is independent from the 

past228. In terms of MD, the Markov process means that the probability of the system transition 

from state x to state y does not depend on where the system was before state x.  

The obstacles in building an MSM may be divided into two main categories: the definition of 

the states in a kinetically relevant order and the effective employment of the state 

decomposition for building an efficient transition matrix231. Additionally, a bias-variance 

problem related to the choice of the number of states is a dilemma with MSMs. When utilizing 

a limited number of states, one knows analytically that the predicted value of the relaxation 

timescales is less than the real value and that this bias gets less as the number of states increases. 
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On the other hand, with a given data set, as the number of states rises, the statistical error in the 

MSM grows231. Although some sufficient algorithms have been developed, to date, there are 

no algorithms in the literature that automatically and effectively balance these conflicting 

sources of errors232. 

 

Distance calculations 

Distance analysis allows measuring the distances between pairs within a selection as a function 

of time. For example, the selection may encompass two atoms (Cα), two residues or two 

structural elements of a protein (helix/chain/lobe). These230 calculations allow promptly 

visualising the change relevant to the project distances; derived knowledge can be used to 

understand substructure stability or behaviour related to ligand binding. In addition, with 

GROMACS74 gmx distance script, the reference positions for the distance calculations can be 

defined by the centre of mass or the centre of geometry for both atom, residue or custom 

selection. This option allows extracting relevant results from dynamically changing reference 

selection, which is highly important for the MD trajectory analysis. 

 

Angle and plane calculations 

Angle or plane calculations are beneficial to support visually perceived motions within the MD 

trajectory with the numerical values. There are various examples of possible practical 

applications of this method. For instance, angle calculations can be utilised to define the 

protruding outward movement of αC-helix in kinases quantitatively, justify the opening or 

closure of Switch-II in RAS proteins or assist the hit-to-lead identification by defining the 

degree of pocket opening in MD simulations. 

The reference positions of the vertex and apex points can be defined using several methods, as 

seen with the distance calculations—namely, the centre of mass or geometry for an atom, 

residue, or substructure. The validation of the residues chosen for the computation of the angle 

value is an optional step that allows to verify if the calculated value is biased or whether a 

particular selection has no impact on the average angle value along the trajectories. This is 

accomplished by selecting the neighbouring to the reference selection residues and repeating 

the calculation. The average values from the reference and validation calculations should 

appear to be in the same range. Another way to produce reliable angle calculation between 

moving helices or domains is to choose the stable residue interval for the apex. The MD-derived 

RMSD values can be used to support the interval stability. Python is the primary tool for 

carrying out these computations for an MD trajectory since they are highly dependent on the 
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investigated system. Additionally, the classes required to access data in the MD trajectories are 

provided by the MDAnalysis package for Python 233,234. 

 

1.2.7.3.2 Ligand perspective 

Ligand Root mean square deviation (RMSD) 

The theoretical background of RMSD calculations is the same for both ligand and protein, 

although the RMSD results are interpreted somewhat differently when a ligand is involved. For 

instance, if RMSD values of the ligand can be aligned on the ligand itself, the graph will 

reproduce the ligand's internal fluctuations as a function of time. When a shift of values is 

observed, the ligand's conformation changes during the trajectory. Alternately, the ligand can 

be aligned on the protein, in which case the plot will demonstrate how the ligand fluctuates 

concerning the protein. In this case, a significant shift in values may indicate that the ligand is 

unstable inside the binding site or moving outside of it. Additionally, RMSD calculations can 

be used to compare the difference between a docking output to a known binding pose from a 

crystal structure to validate the docking precision. 

 

Ligand Root mean square fluctuation (RMSF) 

Ligand RMSF shares the theoretical background with the protein RMSF and indicates the atom 

fluctuations in the ligand. Similar to ligand RMSD, ligand RMSF can be aligned either on the 

ligand itself or on the protein. The data in the first case indicates ligand fluctuations, whereas, 

in the second, it depicts fluctuations in correspondence to the binding site. The flexibility or 

conformational alterations of a ligand inside a binding site are often evaluated using the ligand 

RMSF. 

 

Interaction pattern determination 

The analysis of the interaction network that the ligand is forming with the protein is the 

fundamental part of the simulation analysis as the non-covalent interactions, namely hydrogen 

bonds and hydrophobic interactions, are the core of the ligand-protein binding 235. Unlike 

docking, MD-derived interaction analysis gives not a single-point calculation but the statistical 

range of the simulation time when the ligand is in contact with a particular protein residue. 

Moreover, the interaction can be plotted as a function of time. The derived knowledge can be 

further applied for SAR analysis and hit-to-lead optimisation. Finally, distinct software may 

have different definitions of distance and angle thresholds that characterise specific 

interactions, particularly in the case of hydrophobicity. 
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MM-GBSA Energy calculations 

Molecular mechanics energies combined with the generalised Born and surface area continuum 

solvation (MM-GBSA) allow estimating binding free energy ΔG, which determines the 

strength of protein-ligand binding236. This technique has been effectively utilised to explain 

experimental results as well as to enhance virtual screening and docking outcomes 237. When 

derived from the MD trajectory, MM-GBSA offers data on the interactions the ligand employs 

to anchor itself inside the binding pocket. These calculations may be used in the hit-to-lead 

approach to guide synthetic chemists' efforts toward improving the weakest feature of the 

ligand or to indicate which moiety should be modified to boost binding affinity. 

In computational chemistry, ΔG Binding Energy is frequently calculated in accordance with 

the thermodynamic cycle (Equation 6)238. 

 

∆𝐺#$%(,/'89 =	∆𝐺#$%(,9!:;;< + ∆𝐺/'89,:'<=8,> − (∆𝐺/'89,8$?!%( + ∆𝐺/'89,.,:,=&'.) 

Equation 6. Binding-free energy in computational approaches 

 

In turn, the solvation-free energy (ΔGsolv) is described as a sum of the polar (ΔGpol) and non-

polar (ΔGnonpol) components. When MM/GBSA is applied on the MD trajectory, the 

calculations are performed for every simulation frame in accordance with Equation 7. 
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Equation 7. Binding-free energy applied for MD trajectory, where <...>i indicates that 

calculations are conducted over i simulation frames. 

 

Next, each ΔG in Equation 7 is decomposed to the terms described in Equation 8. 
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Equation 8. Decomposition of Binding-free energy into physicochemical terms 

 

In equation 8, Eint stands for the molecular mechanic internal energy, Eele for electrostatic 

energy, and Evdw for Van der Waals energies. The last three terms of this equation mean the 

following: The ΔGpol and ΔGnp are the polar and nonpolar solvation-free energies, T is the 

absolute temperature, and ΔS represents the entropy estimate. While in MD, the protein is 
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frequently solvated in a water box, before the MM/GBSA computations, the water molecules 

are removed and replaced with an implicit representation239. The generalised Born (GB, reflects 

term MM/GBSA) or Poisson-Boltzmann (PB, reflects MM/PBSA) can be used as implicit 

representation240. For the GB model, the polar solvation energy is described with Equation 9 
238. 
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Equation 9. The polar solvation energy for the GB model. 

 

In equation 9, εin = 1 (dielectric constant of the solute) and εout = 80 (dielectric constant of the 

solvent); b = εin/εout; a = 0.571412. The A corresponds to the molecule’s electrostatic 

dimensions. The 𝑓$3AB functional form (Equation 10) describes the distance between atomic 

charges (rij) and effective Born radii (R), which in turn indicates the depth with how each atom 

is buried in the solvent (Equation 11)241,242. 

 

𝒇𝒊𝒋𝑮𝑩 = [𝒓𝒊𝒋𝟐 + 𝑹𝒊𝑹𝒋𝒆𝒙𝒑(−
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)]
𝟏
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Equation 10.  
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Equation 11. Effective Born radii. Contour integral is limited to the dielectric boundary 

(∂V) of the molecule, r and ri describe the molecule's position per the surface vector element 

dS. 

 

The ΔGnp from equation 8 is estimated as proportional to the molecules’ solvent accessible area 

(SASA) multiplied by the factor g243. 

Once conducted, MM-GBSA calculations generate plenty of energy properties. These 

properties, which are broken down into contributions from different components in the energy 

expression, report energies for the ligand, receptor, and complex structures, as well as energy 

changes related to strain and binding. Moreover, MM-GBSA can report the ligand efficiency, 
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which is calculated as divided by the number of heavy atoms. This, in turn, allows to indicate 

the energy penalty to adopt the conformation of the ligand into the binding conformation. 

Ligand properties 

Plenty of ligand properties or quantitative descriptors are routinely applied for compound 

filtering before or after virtual screenings, and large-scale dockings can be used for calculation 

on an MD trajectory. However, the number of properties that are worth calculating as a function 

of time is quite limited and primarily used for purposes in industrial drug development. The 

typical examples of such descriptors are polar surface area (PSA) or solvent-accessible surface 

area (SASA). PSA is used to examine such parameters as oral absorption or blood-brain barrier 

permeation 244. Not until the very late stages of drug development does the practical application 

of this knowledge become significant for medicinal chemistry. 

 

1.3. Concluding Remarks and Outlook 

For over 30 years, kinases have been sought as therapeutic targets in cancer. These initiatives 

have transformed cancer therapy and significantly increased the range of available treatments. 

Kinase inhibitors have the potential to play a significant role in the treatment of inflammatory 

and autoimmune diseases, while the clinical pipelines are now growing in various directions. 

Kinase drug design is constantly increasing, driven by the joint effort of medicinal and 

computational chemistry, supported by clinical practitioners, biophysicists, and many other 

specialists. The discipline continues to expand at this high rate because of the propensity for 

ongoing discoveries and innovative insights connected to protein kinases, while innovative In 

Silico approaches continue to facilitate the expansion of possibilities in kinase drug design into 

a novel target space. 

The addressed above In Silico drug design approaches fall into two main categories: one 

focuses on comprehending the processes and subprocesses involved in disease development, 

and the other offers brand-new methods for disease intervention. In other words, the first is the 

use of computing to aid in elucidating the molecular mechanisms underlying abnormal 

biological processes. Specifically, locating previously undiscovered biomolecular events that 

might be connected to the pathophysiological mechanisms in potentially curable diseases, 

determining the ligand binding mode at a particular binding site with potential modulation of 

a protein's function for a specific circumstance, and investigating the mutational consequences 

related to disease progression. 

It is important to emphasise additional issues that can be accomplished with the In Silico 

approach while addressing the second point of new molecular strategy identification. These 
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include the design of novel and highly selective drugs via virtual screening campaigns 

combined with experimental techniques; prediction and simultaneous optimisation of 

biopharmaceutical properties, such as solubility and toxicity predictions; discovery of novel 

and potentially druggable protein pockets. In addition, the stabilisation of a specific protein 

substructure or residue that encourages system-specific interactions can be used for drug 

development employing ligand feature identification.  

The published manuscripts demonstrate how In Silico methods contribute to the drug discovery 

area by highlighting minor events occurring in the atomistic level of protein structures. For 

instance, the first manuscript demonstrates the mechanism and importance of dimerization for 

MKK4 functioning. Furthermore, it proposes how cancer's most frequent MKK4 mutation 

influences the protein structure and leads to pathogenic effects. This knowledge provides a 

basis for further research and development of novel therapeutics and inhibitors. The second 

manuscript offers a comprehensive overview of the hydrophobic regulatory spine (R-spine), a 

core element of protein kinases. The deep focus on the RS3 R-spine residue is substantiated by 

its location deep in the ATP-binding cleft, hence to the chief inhibitors binding site. Finally, 

the presented data provide an overview and correlation between the FDA-approved inhibitors 

and the frequently overlooked hydrophobic interactions with the R-spine. The third publication 

demonstrates extensive molecular dynamics studies, resulting in an understanding of the 

inhibition effect on tetramerization and providing a glance into the water interaction network 

of FABI. 

Together, these published works underline the importance of the subtle details in the protein 

function and cell machinery. Providing the knowledge that fills the understanding gaps, In 

Silico methods emphasize the development of new therapeutics as composed of minor details, 

each of which contributes to the broader picture. 
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a b s t r a c t

Protein kinases are crucial components of the cell-signalling machinery that orchestrate and convey mes-
sages to their downstream targets. Most often, kinases are activated upon a phosphorylation to their acti-
vation loop, which will shift the kinase into the active conformation. The Dual specificity mitogen-
activated protein kinase kinase 4 (MKK4) exists in a unique conformation in its inactive unphosphory-
lated state, where its activation segment appears in a stable a-helical conformation. However, the precise
role of this unique conformational state of MKK4 is unknown. Here, by all-atommolecular dynamics sim-
ulations (MD simulations), we show that this inactive state is unstable as monomer even when unphos-
phorylated and that the phosphorylation of the activation segment further destabilizes the autoinhibited
a-helix. The specific phosphorylation pattern of the activation segment has also a unique influence on
MKK4 dynamics. Furthermore, we observed that this specific inactive state is stable as a dimer, which
becomes destabilized upon phosphorylation. Finally, we noticed that the most frequent MKK4 mutation
observed in cancer, R134W, which role has not been disclosed to date, contributes to the dimer stability.
Based on these data we postulate that MKK4 occurs as a dimer in its inactive autoinhibited state, provid-
ing an additional layer for its activity regulation.
! 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

One of the key processes in the regulation of complex cellular
signalling networks is protein phosphorylation [1]. This phospho-
rylation is conducted by protein kinases, which transfer a phos-
phate from an ATP molecule to a target protein, modulating the
activity of their downstream target. To maintain the cellular home-
ostasis, kinase activity is under a strict regulation in the cells. This
highly regulated kinase activity is severely distorted in a wide vari-
ety of diseases, such as in cancer, resulting in deregulated cellular
signalling and disease progression [2,3]. Already several kinase
inhibitors are available in the clinical use with the main indication
in cancer and oncology, while emerging therapeutic areas include
autoimmune and inflammatory diseases [4]. As the therapeutic
potential of the protein kinases is enormous, there is a growing

need to understand the function and behaviour of these dynamic
proteins and their subtle discrepancies in more detail.

Protein kinases not only modulate their target proteins’ activity
by phosphorylation, but also kinases’ activity itself is most often
regulated via phosphorylation [5]. Most of the kinases are phos-
phorylated in their activation loop that transform the kinase from
its inactive state to its active state, where the kinase is able to bind
and phosphorylate its substrate(s). Interestingly, some kinases
have a secondary phosphorylation site in close proximity to the
primary site in their activation loop. For instance, two phosphory-
lation sites are found in ERK2 (THR183/TYR185) with one-residue
in between [6], whereas CHK2 (THR383/THR387) exhibits three-
residues in between [7,8], while SLK (THR183/SER189) and LOK
(THR185/SER191) kinases show a five-residue distance in their
activation loop phosphorylation sites [8,9]. Although dual phos-
phorylation is required, for instance, for full activation of ERK2
[6], the exact result from different phosphorylation patterns of
two nearby phosphorylation sites is generally not well understood

https://doi.org/10.1016/j.csbj.2020.09.017
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with most of the kinases. Furthermore, protein kinases may exploit
dimerization and/or multimerization as a way to control their
kinase activity [10]. For example, kinase dimerization is related
to active state with CHK2 [11], DAPK3 [8], RAF kinases and
RIPK1 [12–15], whereas inactive dimers exist, e.g., with ligand-
free EGFR (inactive symmetric kinase domain dimer) and PDZ-
binding kinase (PBK/TOPK) [16–19].

One of the kinases, which has two phosphorylation sites in the
close proximity of each other in its activation segment, is the dual
specificity mitogen-activated protein kinase kinase 4 (MKK4).
MKK4 is encoded by the MAP2K4 gene, consist of 399 residues
and has one isoform with 97.3% identity (410 residues, with an
11 residue insert in the N-terminal part). MKK4 has a serine
(SER257) and a threonine (THR261) residues in its activation seg-
ment that can be phosphorylated [20]. The phosphorylation of
the SER257 is essential for MKK40s activation, but the THR261
phosphorylation is required for its full activation [21]. The dual
specificity name originates from the fact that MKK4 is able to phos-
phorylate and activate both, c-Jun NH2-terminal kinases (JNKs)
and p38 MAP kinases, displaying preference in phosphorylating
tyrosine in JNKs activation loop and threonine in the latter [22].
In turn, activated JNKs and p38 MAP kinases are involved in such
biological processes like proliferation, apoptosis and cell differenti-
ation [23]. Not much is known about possible dimerization of
MKK4.

MKK4 has been suggested to play a crucial role in certain phys-
iological functions and disease development; notably, it has a deci-
sive function in liver regeneration [24]. In tumour development, its
role is somewhat controversial, or at least appears to be tissue
dependent. Generally, however, MKK4 is considered as a tumour
suppressor [25]. Inactivation of MKK4 can exert tumour suppressor
activity at both early and late stages of lung tumorigenesis [26].
Also, decreased expression of MKK4 is related to ovarian cancer
metastasis and its downregulated phosphorylation levels are asso-
ciated with a poor prognosis in colorectal cancer patients [27,28].
Conversely, increased activity of MKK4 was shown to promote
prostate cancer [29]. In tumours across the primary tissue types,
MKK4 is underexpressed in the ovary (84.21%), in the large intes-
tine (23.28%) and in the pancreas (21.23%) [30,31]. Loss of function
mutations in the MKK4 gene were reported in approximately 5% of
tumours from a variety of tissues [32]. Moreover, it was recently
noted as a significantly mutated gene in the colorectal cancer
[33]. Based on COSMIC database, 2% of all tumours harbour
MKK4 mutation, highlighting two hot-spot mutations: R134W
and S184L (COSMIC v.91) [31]. The S184L is located in the ATP-
binding site, most likely compromising nucleotide binding, and is
an inactivating mutation [34]. The most frequent MKK4 mutation
R134W, where an arginine residue is replaced with a tryptophan,
is located in the loop between b3-sheet and aC-helix. However,
no functional data of the R134W mutation exist to date and its
effect on MKK40s function is unclear.

Currently three MKK4 structures are available in the RCSB Pro-
tein Data Bank (PDB IDs: 3alo [35], 3aln [35], 3vut [36]) (SI Fig. S1).
All of the structures represent the inactive unphosphorylated form
of the protein, where 3vut is the apo-structure and 3aln and 3alo
are co-crystallized with the non-hydrolysable ATP analogue,
AMP-PNP. In addition, 3alo (resolution 2.6 Å, Rfree 0.271) is crystal-
lized with a short p38 peptide that is bound on top of the N-
terminal lobe. This structure is particularly interesting, as a part
of its activation segment (ILE250–ARG264) appears in an ordered
autoinhibited conformation, forming a long a-helix that protrudes
from the kinase (SI Fig. S1). The other structures, 3aln (resolu-
tion 2.3 Å, Rfree 0.378) and 3vut (resolution 3.5 Å, Rfree 0.407), are
lower quality with two disordered regions: ASP263–GLY283 and
GLN316–VAL320. Furthermore, 3vut is missing its C-terminal part
after ALA374.

Not much is known of MKK40s conformational dynamics.
Recently, MKK4 was studied by small angle X-ray scattering (SAXS)
with Ensemble Optimization Method (EOM) [37], revealing an
ensemble of conformations in solution for all three structures. Only
one study has been reported to date, where MD simulations were
applied to investigate MKK4 [38]. In the study, a homology model
based on 3aln structure was used and a single 400 ns simulation
for wild-type MKK4 and G265D mutant was conducted. Overall,
there is a lack of knowledge in the MKK4 dynamics, especially
related to the specific autoinhibited state.

Here, we conducted microsecond timescale (a total of 40 ls)
all-atom MD simulations to study the dynamics of autoinhibited
MKK4. We studied the role and influence of all phosphorylation
patterns in the activation segment. Finally, we investigated puta-
tive dimerization of MKK4 and the effect of phosphorylation to
the stability of the homodimer, including the most common
MKK4 mutant R134W to these simulations. Our results highlight
the instability of the autoinhibited state as a monomer and sug-
gest that it may exist as a stable dimer only when
unphosphorylated.

2. Methods

2.1. MD simulations of monomer MKK4

For the simulations we used the autoinhibited MKK4 structure
3alo [35]. System preparation was done with Maestro 2017-2
(Schrödinger, LLC, New York, NY) with OPLS3 force field [39]. The
disordered residues of the activation segment in the 3alo structure
(residues SER277–GLY283) were added with Maestro’s cross link
proteins tool. First, the PRO277 residue was deleted, the rotamer
of TYR284 was changed (to prevent the clash) and the sequence
PRO277–GLY283 (PSASRQG) was added to link the chain. The ter-
minal PRO389 was mutated to ALA as a terminal PRO residue dis-
torts the dynamics (the C-terminal part ALA390–ASP399 that is
missing from the structure was omitted). The systems were pre-
pared with Protein Preparation Wizard with default settings
(Cap-termini) [40]. We left out the disordered N-terminal part of
MKK4 (residues 1–94), which is suggested to play a role in sub-
strate recognition [41] and therefore was not considered critical
for our simulations. For the phosphorylated systems, SER257 and
THR261 were changed to the corresponding phosphoresidues
pSER257 and pTHR261.

DesmondMD engine was used for the simulations [42]. Systems
were solvated in a cubic box (minimum distance of 13 Å to the
edges from the protein), and the total net charge was neutralized
using Na+-ions. The water was described with TIP3P model [43].
The final systems comprised ~59 k atoms. All simulations were
run in NpT ensemble (T = 310 K, Nosé-Hoover method; p = 1.013
25 bar, Martyna-Tobias-Klein method) with default Desmond set-
tings. RESPA integrator with 2 fs, 2 fs and 6 fs timesteps were used
for bonded, near and far, respectively. The default value of 9 Å was
used for Coulombic cut-off. All systems were relaxed using the
default Desmond protocol prior to the production simulations. To
obtain better sampling and to remove the potential initial bias in
the systems, the ARG134 rotamer was changed to different ones
for each replica (according to the rotamer library) as it was point-
ing towards the phosphoresidues in its initial configuration (in the
unphosphorylated crystal structure there is no clear electron den-
sity for the side-chain of ARG134). Five replicas of production sim-
ulations were carried out for each system for 1000 ns
(5 ! 4 ! 1000 ns = 20 ls). For each replica, a random seed was
used. All replica simulations were run using OPLS3 force field,
except three individual replicas were run with updated OPLS3e
force field (using Maestro 2018-2) [44].
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2.2. MD simulations of dimer MKK4

The dimer assembly (lowest energy assembly) was obtained
with PDBePISA server (v.1.52) [45]. The dimer complexes were
prepared as monomers, except the force field OPLS3e [44] was
used (with Schrödinger Maestro 2018-2 and 2019-3). For the dimer
simulations the cubic box was set to 15 Å from the protein. Final
systems comprised ~120 k atoms. Five replicas of production sim-
ulations were carried out with same settings as mentioned above.
Each system was simulated for 1000 ns (5 ! 4 ! 1000 ns = 20 ls).
For each replica a random seed was used.

2.3. RMSD and RMSF

Root-mean-square fluctuations (RMSFs) of protein backbone
and Root-mean-square deviations (RMSDs) of Ca-atoms were cal-
culated using Maestro Simulation interaction analysis tool
(Schrödinger, LLC, New York, NY). RMSDs of residue intervals used
for angle calculations were conducted with MDAnalysis.analysis.
rms module [46] of MDAnalysis library [47,48] for Python 3.7.

2.4. Principal component analysis (PCA)

The PCA was conducted with GROMACS (version 2019) covari-
ance analysis tools (gmx covar, gmx anaeig) [49]. The PCA was con-
ducted for all backbone atoms, excluding the residues SER257 and
THR261 which differed among the systems (as a single PCA was
conducted for all systems). For the further analysis we included
the PCs that displayed >9% individual contribution: PC1 20.0%;
PC2 11.8%; PC3 9.4% and PC4 9.1% (all combined 50.3%). The indi-
vidual PC movements were illustrated with PyMOL-script Mode-
vectors [50].

2.5. Secondary structure analysis

Secondary structure analysis was conducted with Maestro Sim-
ulation interaction analysis tool (Schrödinger, LLC, New York, NY).
The percentage of secondary structure elements (%SSE) throughout
the simulations was calculated with Python 3.7.

2.6. Angle calculations

Angle calculations between subunits of MKK4 were conducted
using open-source MDAnalysis library for Python 3.7 [47,48]. For
both monomer and dimer systems, first 250 ns were excluded from
the analysis based on the system stabilization (SI Fig. S2–4). Sides
of the angle are formed by: ILE250–ALA264 (ASH), GLU139–
ARG154 (aC-Helix), the vertex is represented by GLU179–SER182
(HR). Calculated centre of geometry (cog) was used as an apex
point for the angle calculations. The data from all frames for each
system replica was combined and used for calculation of average
(mean) and standard deviation for both mono- and dimer system
of MKK4. In dimer system calculations were performed individu-
ally for both subunits A and B. Reference angles were calculated
from frame 0 for dimer systems that are 14.9! and 17.9! for subunit
A and B, respectively. For monomer systems 14.9! (subunit A) was
chosen as reference value, that corresponds to the autoinhibited
crystal conformation.

In order to confirm that the selection of particular ASH residues
is not critical for angle value, we performed validation by testing
different intervals. Residues ILE250–ALA264 (ASH), that are form-
ing one side of the angle, were switched to ILE250–ALA259 and
VAL255–ALA264 (SI Fig. S5). This way we shifted the selected
residue interval of ASH by five residues back and forth. When com-
pared to the switched ones, ILE250–ALA259 interval showed devi-
ation of - ~1–2! from reference and VAL255–ALA264 of + ~1–2!. As

a result, the selection of the residues itself do not play a critical role
on the angle value as the two rays lie in a plane, but this plane does
not have to be Euclidian one.

2.7. Distance calculations

The distances between subunits of MKK4 were calculated using
GROMACS (version 2019) gmx distance tool [49]. Points for calcu-
lation were defined by cog of selected residue intervals. Following
residues of each subunit were used for cog calculations: LEU102–
GLN126 (N-lobe section), ILE250–ALA264 (ASH), VAL286–THR302
(aF-helix). The choice of this particular residues was based on that
each of these intervals represent a specific region within MKK4
interface. Thus, N-terminal lobe, includes allosteric region, that
predominantly bound the p38a peptide [35]; activation segment
includes two phosphorylation sites of MKK4 (SER257, THR261),
and aF-helix represents stable helix in lower part of C-lobe. Conse-
quently, distance of the cog for chosen intervals represent three
points within the dimer interface: upper, middle and lower part,
where the middle part distance is perpendicular to others.

Distance calculations within the N-lobe MKK4 were done as
above, using the following residue intervals of each subunit:
VAL116–VAL120; VAL120–ILE127; PHE164–LEU168; ALA111–
GLY114.

2.8. Interaction analysis

The interaction networks analysis related to Fig. 4 was con-
ducted with Maestro (Schrödinger, LLC, New York, NY) scripts,
analyse_trajectory_ppi.py for salt-bridges and trajectory_asl_mon-
itor.py for hydrophobic interactions. Default salt-bridge interaction
cut-off of 4.0 Å was used. For hydrophobic interaction definition,
we used a sidechain atom distance below 2.5 Å. Residue 134 inter-
action analysis related to Fig. 7 was conducted with simulation
interaction analysis tool of Maestro.

2.9. Data visualization

Results were plotted with Seaborn library for Python 3.7 [51].
Protein structures were visualized with PyMOL (The PyMOLMolec-
ular Graphics System, Version 2.0 Schrödinger, LLC.) Graphical rep-
resentations of figures were arranged using Adobe Illustrator".
Supplementary movies were generated with PyMOL.

3. Results

3.1. Conformational dynamics of monomeric autoinhibited MKK4 with
different phosphorylation states

3.1.1. MKK4’s activation segment and C-lobe loop are highly dynamic
First, we investigated dynamics of autoinhibited MKK4 with all

possible phosphorylation patterns in its activation segment (a total
of 20 ls MD simulations). Four different phosphorylation states of
MKK4 in this region are possible: unphosphorylated (Up),
monophosphorylated at SER257 (pS257) or at THR261 (pT261)
and double phosphorylated (pS257 + pT261) (Fig. 1A). Overall,
these systems exhibit similar root-mean-square fluctuation
(RMSF) values (Fig. 1B). All systems display the highest RMSF-
values at two specific loop-regions, particularly among the resi-
dues CYS266–ARG281 of the activation segment and residues
ASP315–LYS322 in a loop of the C-lobe. Generally, kinases have
aG-helix located on this C-lobe loop location [5], but it appears
as a loop in available MKK4 structures. We next compared how
the observed dynamics based on RMSF is in agreement with
observed B-factors and disorder of the MKK4 crystal structure.
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Indeed, disorder (residues 278–283) or high B-factor values are
observed in these regions (SI Fig. S6). Although generally a similar
trend in RMSF values is observed among all systems, slightly differ-
ent RMSF patterns are evident (see details in SI Table S1). For
instance, higher RMSF (>0.1 nm compared to Up) of SER251–
ALA259 is observed only in monophosphorylated pS257. This indi-
cates an individual change in dynamics related to particular phos-
phorylation state of MKK4.

3.1.2. Phosphorylation defines MKK4 dynamics
To gain further insights into the protein dynamics and possible

differences among the systems, we conducted principal compo-
nent analysis (PCA). According to the PCA phosphorylation affects
to the MKK4 dynamics, as each system displays individual profile
in their PC (principal component) score plots (Fig. 2A). In PC1 the
largest movements appear in activation segment and C-lobe loop,
which also displayed the highest RMSF values (Fig. 2B, SI Mo-
vie M1). Moreover, considerable movement is observed in other
regions of the protein: aC-helix and in C-lobe helices aF, aH, aI
and aJ. Clearly lower values of PC1 are observed with the
pS257 + pT261 in comparison to other systems. This indicates that
the protruding movement of the activation segment (elongation of
the ASH towards solvent i.e. original crystal structure conforma-
tion) is clearly disfavoured with the double phosphorylated sys-
tem. In PC2, movements of activation segment and C-lobe loop
are dominating (Fig. 2C, SI Movie M2). Both are folding towards
the centre of the kinase. With this component the monophospho-
rylated pS257 system shows the highest values (Fig. 2A). With
PC3 and PC4 (SI Fig. S7, SI Movies M3–4), pT261 is showing a

unique subpopulation with high PC3 and low PC4 values. Overall,
the areas displaying the highest contribution to the PCs occur in
the regions that are responsible of the activation, substrate binding
and regulatory actions in the kinase [52].

3.1.3. Activation segment helix movement is defined by its
phosphorylation

In addition to the differences among the systems observed by
RMSF and PCA, a system-specific movement is evident even by
visual examination of the simulation trajectories. The activation
segment appears to display a system specific shift that clearly devi-
ates from the crystal conformation. This is also demonstrated by
the resulting end conformations of the simulations (SI Fig. S8,
SI Movie M5). Moreover, the intactness of the a-helical secondary
structure in the activation segment deviates among the systems
(SI Fig. S9).

To validate these visual observations, we further evaluated this
movement by angle calculations (Fig. 3; SI Fig. S4). This allowed us
to describe the activation segment movement in easily inter-
pretable geometrical values. For these angle calculations, we
applied centre of geometry (cog) of selected protein segments:
activation segment helix (ASH; ILE250–ALA264), aC-helix
(GLU139–ARG154) and hinge region (HR; GLU179–SER182). As
hinge region and aC-Helix are relatively stable elements of the
kinase, this angle-change provides information about the move-
ment of ASH in respect to the protein and filters out their synchro-
nized fluctuations. For instance, in monophosphorylated pS257
system ASH is constantly fluctuating towards the C-lobe, away
from the aC-helix. This movement is directly related to the angle:

Fig. 1. Structure and dynamics of MKK4 with different phosphorylation states in its autoinhibited state. (A) Conformation of MKK4 in its autoinhibited state (PDB ID: 3alo). In
its autoinhibited state, part of the activation (loop) segment is forming a helical structure; activation segment helix (ASH). Different phosphorylation patterns in its activation
segment are colour coded throughout this article as: Up, teal; pS257 + pT261, red; pS257, violet; pT261, brown. (B) Root-mean-square fluctuation (RMSF) of protein backbone.
Average of five replicas is shown with standard deviation (thin vertical lines). Highlighted regions, represented in same colours as in A, indicate activation segment (ILE250–
SER292), green; C-lobe loop (PRO308–PHE340), dark orange. RMSF value of 0.4 nm is indicated with the horizontal dashed black line. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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the more down along the Y-axis ASH moves, the wider the angle
(Fig. 3A). Remarkably, none of the systems stay in the autoinhib-
ited crystal conformation (reference angle 14.9!) (Fig. 3B). The
highest variation of this angle exists with pS257 (~37–56!), which
reflects to the visually observed high fluctuation of the ASH with
this system. Interestingly, the double phosphorylation appears to
fix MKK4 in a more specific configuration, as clearly less variation
in the angle is observed with pS257 + pT261 system. To note, the
beginning of ASH is relatively stable in all systems (Fig. 1B); there-
fore, even small angle variations indicate a considerable movement
in the end part of ASH. We anticipate that the higher overall angle
values of pS257 system are indeed related to the increased move-
ment of the SER251–ALA259 residues, for which it shows higher
RMSF values compared to other systems. These observations high-
light clear influence of phosphorylation states on MKK4 dynamics,
especially on the ASH region.

3.1.4. MKK4 interaction networks are phosphorylation state specific
As phosphorylation status clearly affects MKK4 dynamics, we

next conducted interaction network analysis to determine the
potential changes in the protein’s interaction patterns. First, we
analysed the salt-bridges and their frequencies in the close prox-
imity of the ASH of each individual system (Fig. 4A). Especially in
the monophosphorylated system pS257, LYS260 is fixed to the
phosphorylated residue (90.4%). In the pS257 + pT261 system,

LYS260 seems to be balancing between both of the phospho-
residues; still the major interaction occurring with pS257 (69.3%
vs. 21.6%). The monophosphorylated pT261 displays the LYS260–
pTHR261 interaction with 43.9% frequency. Interestingly, with
pT261 system LYS260 displays 29.7% interaction to ASP138 that
is located in the small loop connected to the aC-helix. This interac-
tion is also present with Up (14.8%), but almost missing in pS257
(0.05%) and pS257 + pT261 (0.1%). Contact between LYS260 and
ASP138 may explain the lower angle values observed in Up and
pT261 systems (Fig. 3B), as it would fix and thus prevent the
ASH bending, away from the aC-helix. ARG134, which is located
in the same loop with ASP138, interacts with the pTHR261
(21.4% and 38.8% in pT261 and pS257 + pT261 systems, respec-
tively). Interaction between ARG134 and pSER257 is almost non-
existing with double phosphorylated system (0.1%), whereas with
monophosphorylated system (pS257) it occurs with 15.7%.
ARG274 displays interaction with pSER257 only in the double
phosphorylated system (18.9%). In addition, ARG228 interacts with
the pSER257 in monophosphorylated pS257 system (11.9%), but
not in double phosphorylated system (0.4%). Salt-bridge interac-
tion frequencies are also altered among the systems with other
residues than phosphoresidues in the ASH.

Systems also display differences in their hydrophobic interac-
tions (Fig. 4B). A specific type of extensive bending of ASH towards
G-loop occurs in pS257 + pT261 system, which can be traced to the

Fig. 2. MKK4 shows individual conformational dynamics with different phosphorylation states. (A) Principal component analysis (PCA) score plot of PC1 and PC2. A single
PCA was conducted for all systems, ensuring the comparability of the score-plots. (B) The extreme movements of PC1. (C) The extreme movements of PC2. In B and C, protein
is illustrated with rainbow colour (as in Fig. 1A) and the purple arrows indicate the extreme movements related to each principal component. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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formation of hydrophobic interaction between ALA259–ALA112
(9.2%). The more stable conformations of the beginning of ASH
appearing with Up and pT261 are manifested by the elevated inter-
action frequencies of ILE133–LEU254. Furthermore, pS257 system
displays a clear shift in its interaction preferences in its aC-helix
associated hydrophobic residues (orange spheres) in comparison
to other systems.

3.2. Putative MKK4 homodimer and R134W mutation

3.2.1. MKK4 homodimer
As the autoinhibited MKK4 structure exhibits a long protruding

activation segment, which appeared unstable in the monomer sim-
ulations, we evaluated the crystal assemblies of 3alo utilizing the
PDBePISA server [45]. Indeed, the lowest energy assembly of the
structure is identified as a dimer (DGint = !53.5 kcal/mol; DGdiss =
10.3 kcal/mol) and not as a monomer (DGint = –23.0 kcal/mol;
DGdiss = 5.2 kcal/mol). In this homodimer assembly the apical acti-
vation segment region is stabilized and buried within the dimer
interface (Fig. 5A). Therefore, we considered the possibility of
MKK4 existing as a dimer in its autoinhibited state and decided
to investigate this dimer and its stability by MD simulations. We
conducted simulations of dimer MKK4 (a total of 20 ls) with dif-
ferent phosphorylation patterns: unphosphorylated (Up-DIM),
double phosphorylated at SER257 and THR261 in one subunit
(ppSA-DIM), double phosphorylated in both subunits (ppSA/
ppSB-DIM) (Fig. 5A). In addition, as we noticed that the most fre-
quent mutation of MKK4, R134W, is located in the dimer interface,
we included unphosphorylated system accompanied with this
mutation in both of the subunits (Up(R134W)-DIM).

First, we investigated the overall dynamics of the protein by
RMSF. Compared to monomer systems, homodimer MKK4 displays
significantly lower RMSF-values in its activation segment (Fig. 5B).
This is perhaps not surprising, as the activation segment move-

ments are hindered in the dimer by the other subunit. The C-lobe
loop displays more comparable RMSF values with the monomer
systems, although those are also generally lower.

3.2.2. MKK4 homodimer is stable only when unphosphorylated
Next, we evaluated the stability of the dimer complexes via a

distance analysis. Three regions of MKK4 were selected for dis-
tance calculation with the following residue intervals: LEU102–
GLN126 (N-lobe section), ILE250–ALA264 (ASH), VAL286–THR302
(aF-helix) (Fig. 6A). To note, distance between ASH is perpendicu-
lar compared to the other two selected intervals. Distances
between aF-helices, which are buried deeply in the dimer interface
in the C-lobe, remain close to the reference value of the crystal
structure (Fig. 6B; SI Table S2). The ASH distance values indicate
even tighter packing in the middle compared to the crystal. Here
the shortest distance among wild-type dimer systems is displayed
by Up-DIM, where with the unphosphorylated mutant it is even
shorter. Overall, N-lobe from different subunits tends to come clo-
ser to each other with increase of simulation time among all wild-
type systems. Remarkably, with R134W this is not the case; even
increased distance compared to the crystal structure is observed.
In the N-lobe the unphosphorylated mutant displays a striking dif-
ference compared to other systems (0.93 nm compared to Up-
DIM), having the longest distance (2.90 nm) between N-lobes.

Next, we evaluated the relative movement of function-related
structural elements in the dimer using angle calculations as
described for monomer systems (Fig. 6C). Strikingly, here the dif-
ference between the angles of unphosphorylated and phosphory-
lated dimer is evident. Median value of Up-DIM is close to the
reference value of the crystal ~14! and for ppSA/ppSB-DIM this is
clearly higher ~26!. Thus, the relative position of these structural
elements is well maintained only in the unphosphorylated dimer,
suggesting that the phosphorylation leads to unstable dimer. Inter-
estingly, both the highest value and variation of the angle occur

Fig. 3. Activation segment helix movement depends on its phosphorylation status. (A) Plane projection of residue intervals used for angle calculations. The change in the
angle value describes a relative movement of these elements in respect to others. Apex points of the angle are represented by centre of geometry (cog) for each of the selected
residue intervals throughout simulation time. Cog is visualised on the plane projection with semi-transparent ovals of the same colours as displayed residue intervals.
Reference angle value (14.9!) corresponds to the autoinhibited crystal conformation. (B) Boxplot representation of observed angle values in MKK4 systems with different
phosphorylation patterns (excluding the data of the first 250 ns of each simulation). The dashed black line in the box represents the median. Box displays the quartiles of the
dataset (25–75%) and whiskers the rest of the data within 1.5 times of the interquartile range (IQR). Outliers are indicated with black diamonds. Reference angle value (14.9!)
of the autoinhibited state is indicated with yellow line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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with Up(R134W)-DIM system, which clearly indicate that the
mutation has influence on the unphosphorylated dimer stability
and behaviour. Also, only the phosphorylation appears to distort
the alpha-helical secondary structure of ASH, where in the
R134W mutant this is stable as in the Up-DIM (SI Fig. S10). Similar
root-mean-square deviation (RMSD) values are also observed for
these structural elements in both subunits of the dimer, indicating
synchronized movements between the subunits (SI Fig. S11).

The distance analysis did not reveal distortion in the dimer with
the phosphorylated wild-type systems, whereas the angle calcula-
tions suggested that it clearly exists. Average end conformations of
the systems reveal that in the systems where the ASH is unstable
(based on angles), the dimer subunits begin to twist related to each
other (SI Movies M6–8; SI Fig. S12). This explains the observation
that even if the distances are comparable among the systems, the
angle values reveal the distortion of the dimer. Therefore, simulta-
neous usage of both angle and distance calculations can provide
more reliable information about protein movement. Each of these
methods describe the motion along different geometric plane
within the protein interface: distance calculations describe transla-
tional movements, whereas angle calculations consider rotations.

3.2.3. R134W mutant distort the dimer interactions in the N-lobe
Based on the distance and angle analysis, R134W clearly affects

to dynamics of the unphosphorylated dimer. This occurs especially
on the N-lobe interface where R134W is located in the loop
between b3-sheet and aC-helix (Fig. 5A; SI Movie M8). Therefore,
we decided to study in more detail this section of MKK4 and its
interactions. In the dimer, the most frequent interaction of
ARG134 in wild-type MKK4 occurs with TYR113 of the same sub-
unit, via a water bridge (Fig. 7A, 7C). This water bridge occurs in
all replicas of wild-type systems with ~56% on average. Interest-
ingly, corresponding interaction between TRP134 and backbone
amino group of TYR113 of the same subunit is direct, unlike in
wild-type systems where the interaction is water-mediated
(Fig. 7A). Overall, we see a clear difference in a number of interac-
tions with the R134W mutant. In four out of five replicas, the
mutated residue connects the subunits TRP134(SA)–TRP134(SB)
via p-p interaction (~50% frequency) and/or hydrogen bonding
(17%) (Fig. 7A). In the wild-type systems, ARG134s do not show
interactions between each other and are located far apart
(Fig. 7B). Moreover, interaction between TRP134 from subunit B
and TYR113 from subunit A occurs in three mutant replicas

Fig. 4. Differences in protein interaction networks among different phosphorylation states. (A) Salt-bridges of the activation segment residues ILE250–ALA264 with their
interaction frequencies (%). Only the salt-bridges with > 20% differences in their interaction frequencies among systems are shown. (B) Selected hydrophobic interactions of
MKK4 and their interaction frequencies among different systems. The locations of the Ca-atoms of the hydrophobic residues are shown in spheres, which are coloured
according to different hydrophobic clusters that exhibit linked interactions.
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(Fig. 7C), providing an additional link between the subunits. In
double phosphorylated monomer MKK4, ARG134 forms a salt-
bridge mainly with pTHR261 (Fig. 4A), and this interaction is also
frequently observed with the phosphorylated dimers.

To get more comprehensive picture of the relative movements
in N-lobe, we conducted additional distance calculations with four
chosen intervals (Fig. 7D). The mutant system exhibits a notable
difference especially in the upper part of N-lobe (VAL120–
ILE127) compared to other systems (Fig. 7E; SI Table S3). Overall,
the R134W mutation disrupts local contacts in the dimer interface
and clearly modifies the N-lobe association between the unphos-
phorylated subunits.

4. Discussion

Here we investigated conformational dynamics of autoinhibited
MKK4 with different phosphorylation states, putative dimer stabil-
ity and the effect of R134W mutation by MD simulations. The two
other publicly available crystal structures of MKK4 have a disor-
dered activation segment, where only the 3alo exists in ordered
autoinhibited conformation, forming a long a-helix with unphos-
phorylated SER257 and THR261 (SI Fig. S1). Based on our simula-
tions, this autoinhibited conformation of unphosphorylated
MKK4 appears unstable as a monomer.

Biggest movements in the MKK4 monomer occur in the activa-
tion segment helix and in the C-lobe loop between the aF- and aH-
helices. This high flexibility observed in simulations perhaps reflect
to the fact why high-quality MKK4 crystal structures are unavail-
able. Moreover, the results here are in agreement with the recent
solution structure analysis of MKK4 by SAXS [37]. Interestingly,
the movement pattern of these most dynamic regions of MKK4
appears phosphorylation dependent as different phosphorylation

states exhibit unique effect on MKK4 dynamics. For instance,
monophosphorylated pS257 displays high fluctuation of ASH,
while double phosphorylated pS257 + pT261 appears to fix ASH
in a relatively stable configuration. These dynamic differences of
individual phosphorylation states may reflect to the observed
MKK4 activity levels (e.g. double phosphorylation is required for
full activation) [22]. To note, there is currently no data available
of the relevance and biological activity of the monophosphorylated
pT261 MKK4; therefore, it may represent an artificial system.

Although the autoinhibited MKK4 conformation is unstable as
monomer even when unphosphorylated, our simulation results
support the possibility that this unique inactive autoinhibited state
is stable as a dimer. This observation is in agreement with the
results obtained from the PDBePISA assembly evaluation [45].
Our simulation results indicate that this dimer configuration is
stable only when these ASH residues are unphosphorylated. In
these microsecond timescale simulations, the distortion of the
dimer configuration with phosphorylated or mutated MKK4 is
clearly demonstrated by the angle calculations. Here a distance
analysis was unable to capture the distortion. This is probably
due to the fact that a full dissociation of the dimer with a clear
translational movement is not expected to occur within this time-
scale. Interestingly, a somewhat similar type of dimerization is
observed with MEK1 and MEK2 in complex with inhibitors, where
allosteric inhibitors occupy partially the corresponding autoinhib-
ited ASH position in MKK4 (SI Fig. S13) [53].

The origin of the autoinhibited MKK4 configuration is from the
co-crystallized complex with ANP and p38a peptide [37]. This fact
leads us to speculate the potential existence of a N-lobe binding
scaffold protein which stabilizes the inactive MKK4 dimer. This
scaffold protein would provide an additional regulation mecha-
nism for MKK4́s activity. A putative candidate for this would be

Fig. 5. Putative MKK4 homodimer and its dynamics. (A) Assembly of autoinhibited MKK4 homodimer. Phosphorylation patterns in simulated MKK4 dimer systems. Systems
are coloured as: Up-DIM, blue; ppSA-DIM, green; ppSA/ppSB-DIM, pink; Up(R134W)-DIM, yellow. (B) Root-mean-square fluctuation (RMSF) of protein backbone. Average of
five replicas is shown with standard deviation (thin vertical lines). Highlighted regions indicate activation segment (ILE250–SER292), green; C-lobe loop (PRO308– PHE340),
dark orange. RMSF value of 0.4 nm is indicated with the horizontal dashed black line. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Scaffold protein C-Jun N-terminal kinase-interacting protein 4
(JIP4), which is known to interact with MKK4 and an increased
association between these two proteins suppresses MKK4 phos-
phorylation [54]. This hypothesis of inactive MKK4 dimerization
and the existence of a scaffold protein should be confirmed in fur-
ther studies.

The most frequent MKK4 mutation in cancer, R134W, which
role has not been disclosed to date, affects MKK4 dynamics on
the putative inactive dimer interface. This mutation leads to dra-
matic alterations in the N-lobe interactions, demonstrated by the
changes in frequency and nature of the interactions within the
residue 134 in the N-lobe. Based on this, R134Wmay be an activat-
ing mutation via distorting the autoinhibited dimer state of MKK4.
On the other hand, the timescale of the simulations is not sufficient
to disclose a full disruption of the dimer complex. Therefore, this
alteration with its shifted N-lobe interactions may even lead to
enhanced stability of the inactive dimer regardless of the putative
scaffold protein. This would mean that R134W is an inactivating
MKK4 mutation. Overall, additional experimental evidence is
required to disclose the role of this cancer associated mutation.

Our results demonstrate that the autoinhibited state of MKK4
is unstable as monomer and stable as dimer. Moreover, different
phosphorylation patterns and the R134W mutation have all indi-
vidual consequences for MKK4 dynamics. Better understanding
of conformational changes and dimerization of protein kinases,
occurring either due to phosphorylation (activation) processes
or oncogenic mutations, is needed to provide comprehensive
framework for disease causality. This will ensure and support a
rational inhibitor design in a disease specific context related to
aberrantly behaving protein kinases, which are currently the
main target class in ongoing projects of the pharmaceutical
industry [55].
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Fig. 6. Conformational stability of MKK4 homodimer. (A) Selected residue intervals and their locations for distance calculation between the subunits: LEU102–GLN126 (N-
lobe section), ILE250–ALA264 (ASH) and VAL286–THR302 (aF-helix). (B) Average distance (nm) with standard deviation of the selected residue intervals between subunit A
and B in MKK4 dimer systems. First 250 ns of the simulations were excluded from the analysis. See more details in SI Table S2. (C) Boxplot representation of aC-helix–HR–
ASH angle values in dimer MKK4. Reference values of the corresponding angles are illustrated with orange line for subunit A (14.9!) and violet line for subunit B (17.34!). The
black dashed horizontal line in the box represents the median. Box displays the quartiles of the dataset (25–75%) and whiskers the rest of the data within 1.5 times of the IQR.
Outliers are indicated with black diamonds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Impact of phosphorylation and R134W mutation on N-lobe interactions. (A) A representative snapshot of the top view of N-lobe, displaying difference in contact
pattern between Up-DIM and Up(R134W)-DIM at 500 ns. Water-bridged interactions are indicated with dashed cyan line; hydrogen bonds with dashed grey line; p-p
interaction with dashed violet line. (B) Boxplot representation of distance between the residue 134 Ca-carbons of different subunits. Simulation time of 250–1000 ns from all
replicas was included in the distance analysis. The black dashed horizontal line in the box represents the median values: 1.5 nm in wild-type and 1.08 nm in R134W.
Box displays the quartiles of the dataset (25–75%) and whiskers the rest of the data within 1.5 times IQR. Outliers are indicated with black diamonds. (C) Heatmap of contacts
with the residue R134/W134. Numbers (0–5) represent the number of individual replicas where the interaction occurs >30% of the simulation time. (D) Selected intervals for
distance analysis within dimer N-lobe interface. (E) Average distances between selected N-lobe intervals (nm) with standard deviation (SD). Reference values are calculated
for 3alo crystal structure. See more details in SI Table S3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Figure S1. Superimposed MKK4 structures. (A) Three MKK4 structures are available in the RCSB Protein Data 
Bank (PDB IDs: 3alo, 3aln, 3vut). In the superimposed (left) structures 3alo is shown as green, 3aln as orange and 
3vut as yellow. Sequence alignment (B) with secondary structure assignment: black lines indicate loop regions; 
blue arrows, b-strands; red barrels, a-helices. All structures are in inactive unphosphorylated form with length of 
327 amino acids. 3alo (resolution 2.6Å) is crystallized with p38 peptide, bounded on top of N-terminal lobe of 
kinase. ASH (ILE250-ARG264) is in ordered autoinhibited conformation that is forming an a-helix. 3aln (resolution 
2.3Å) has disordered regions: LEU254-GLY283 (alignment index 176-205), LYS309-GLY323 (alignment index 
231-245). 3vut (resolution 3.5Å) is an apo structure has disordered regions: ASP263-ASP285 (alignment index 
185-207), GLN316-VAL320 (alignment index 238-242), C-terminal part after ALA374 (alignment index 296) is 
missing. 
 
 
 
 

 
Figure S2. RMSD values of monomer MKK4 systems. (A) Up; (B) pS257+pT261; (C) pS257 and 
(D) pT261. RMSD was calculated for Ca-atoms. First 250 ns is highlighted with grey colour. The black line indicates 
the average and the other colours indicate individual replicas. 
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Figure S3. RMSD values of homodimer MKK4 systems. (A) Up-DIM; (B) ppSA-DIM; (C) ppSA/ppSB-DIM and 
(D) Up(R134W)-DIM. RMSD was calculated for Ca-atoms. First 250 ns is highlighted with grey colour. The black 
line indicates the average and the other colours indicate individual replicas. 

 
Figure S4. Observed angle values (aC-helix–HR–ASH) in monomer MKK4 systems. First 250 ns, which 
was excluded from the analysis related to Figure 3, is highlighted with grey colour. R1 = replica 1, R2 = replica 2, 
etc. 
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Figure S5. Plane projection of residue intervals used for angle calculation and validation. Monomer MKK4 
system in three-dimensional space with flat representation of XZ-plane with different residue interval selections. 
Default selection of ASH defining residues ILE250–ALA264 (green) is switched to ILE250–ALA259 (red) and 
VAL255–ALA264 (purple). Black arrow heads on the XZ-plane indicate centre of geometry in each residue interval. 
Black curve indicates the reference angle (39.05°), from which red and purple display deviation of ~ -1–2° (ILE250–
ALA259) and ~ +1–2° (VAL255–ALA264). Colours of selected residue intervals are consistent for both left and right 
images. 
 

Figure S6. B-factor of 3alo crystal structure. Highest B factor values are indicated with red and lowest with blue 
colour. Disordered region is shown in dashed red line in the cartoon representation. 
 
 
Table S1. Notable RMSF differences (> 0.1 nm) compared to the Up system. The most proximal residues of 
the C- and N-terminus (< ASP96 and > MET388) are excluded here. 

 

 pS257 + pT261 pS257 pT261 

Activation loop 

K260, R262, R267–A271 
(higher); 

I275–P277, R281, S288 
(lower) 

S251–K260, R262, P268–
I275, S278–A279, Y284 

(higher) 

P268–M270, Q282–Y284 
(higher) 

C-terminal loop 
P308–L317, (higher); 

V321, P325–L328 (lower) 
W310–T318 (higher) V313–G323 (higher) 
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Figure S7. Principal components analysis: PC3 and PC4. (A) Principal component analysis (PCA) score plot of 
PC3 and PC4. (B) The extreme movements of PC3. (C) The extreme movements of PC4. In B and C protein is 
illustrated with rainbow colour and the purple arrows indicate the extreme movements. 
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Figure S8. Average monomer conformations at 1 µs of the simulations. All systems are superimposed in A 
and each average conformation is shown as individually in B–E. Dashed square indicates position of SER257 and 
THR261. See also SI Movie M5 for the conformations. (F) RMSD of different systems compared to their average 
1 µs conformations. 

 
Figure S9. Secondary structure analysis of activation segment helix (ASH; I250–A264) in monomer 
MKK4. Plots display the percentage of time each residue contributes to each of the two secondary structure 
elements (%SSE): helix (coloured space inside the graphs), and loop (white space). Each replica (five replicas for 
each system in total) is represented with 20% colour opacity. The colour intensity is directly depended on the 
number of replicas, where particular secondary structure occurs. Up: helix 78%, loop 22%; pS257+pT261: helix 
62%, loop 38%; pS257: helix 63%, loop 37%; pT261: helix 69%, loop 31%. 
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Figure S10. Secondary structure analysis of activation segment helix (ASH; I250–A264) in homodimer 
MKK4. Plots display the percentage of time each residue contributes to each of the two secondary structure 
elements (%SSE): helix (coloured space inside the graphs), and loop (white space). Analysis was performed 
separately for subunit A (SA) and subunit B (SB). Each replica (five replicas for each system in total) is represented 
on the graph with 20% colour opacity. The colour intensity is directly depended on the number of replicas, where 
particular secondary structure occurs. Up-DIM SA: helix 84%, loop 16%; SB: helix 83%, loop 17%; ppSA-DIM SA 
(phosphorylated): helix 50%, loop 50%; SB (unphosphorylated): helix 92%, loop 8%; ppSA/ppSB-DIM SA: helix 
70%, loop 30%; SB: helix 52%, loop 48%. Up(R134W)-DIM SA: Helix 97%, loop 3%; SB: helix 86%, loop 14%. 
 
 

 
Figure S11. RMSD of residue intervals used for angle calculation in homodimer MKK4. RMSD is calculated 
for hinge region (HR; E179-S182; green), Activation segment helix (ASH; I250–A264; grey/yellow) and a-C-helix 
(a-C-H; E139–R154; blue) separately. (A) Up-DIM, (B) ppSA-DIM, (C) ppSA/ppSB-DIM and (D) Up(R134W)-DIM. 
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Fig S12. Average homodimer conformations at 1 µs of the simulations. All systems are superimposed in A 
and each average conformation is shown as individually in B–E. Dashed square indicates position of SER257 and 
THR261. See also SI Movies M6–M7 for the conformations. (F) RMSD of different systems compared to their 
average 1 µs conformations. 
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Fig S13. Superimposed structures of MKK4, MEK1 and MEK2. In the superimposed structures MKK4 is shown 
as grey (Subunit A) and dark grey (Subunit B), MEK1 is shown as purple, and MEK2 as orange. Activation segment 
helix (ASH) is shown in green. Allosteric MEK1/MEK2 inhibitors that partially occupy the corresponding ASH 
location in MKK4 are represented with red spheres. PDB IDs: 3alo (MKK4); 3eqb (MEK1),1s9i (MEK2). 
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Table S2. Distances between subunit A and subunit B of MKK4. R1 = replica 1; R2 = replica 2, etc.; SD = 
standard deviation 

 
  

Distance (nm) Up-DIM 

Element 
Replica N-lobe SD C-lobe SD Activation 

Segment SD 

R1 1.979 0.050 4.282 0.127 1.646 0.039 

R2 2.040 0.068 3.998 0.083 1.218 0.041 

R3 1.888 0.063 4.746 0.084 1.494 0.087 

R4 1.901 0.047 4.035 0.078 1.496 0.043 

R5 2.081 0.109 4.585 0.073 1.482 0.056 

Average 1.977  4.329  1.467  

Distance (nm) ppSA-DIM 

Element 
Replica N-lobe SD C-lobe SD Activation 

Segment SD 

R1 1.909 0.128 4.417 0.092 1.852 0.061 

R2 1.900 0.082 4.523 0.089 1.720 0.073 

R3 1.888 0.063 4.746 0.084 1.494 0.087 

R4 1.890 0.058 4.631 0.080 1.423 0.036 

R5 1.798 0.048 4.522 0.079 1.384 0.034 

Average 1.870  4.567  1.574  

Distance (nm) ppSA/ppSB-DIM 

Element 
Replica N-lobe SD C-lobe SD Activation 

Segment SD 

R1 1.877 0.061 4.205 0.087 1.514 0.066 

R2 1.896 0.067 4.245 0.079 2.217 0.089 

R3 1.954 0.065 4.233 0.072 1.759 0.089 

R4 1.917 0.046 4.006 0.065 1.752 0.036 

R5 2.382 0.125 4.322 0.057 1.706 0.047 

Average 2.005  4.202  1.789  

Distance (nm) Up(R134W)-DIM 

Element 
Replica N-lobe SD C-lobe SD Activation 

Segment SD 

R1 4.137 0.240 4.238 0.071 1.351 0.062 

R2 2.850 0.187 4.145 0.099 1.170 0.106 

R3 2.011 0.081 4.417 0.092 1.581 0.106 

R4 2.635 0.068 4.376 0.135 1.510 0.036 

R5 2.889 0.091 4.146 0.065 1.345 0.071 

Average 2.904  4.264  1.391  
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Table S3. Distances within the N-lobe of dimer MKK4. Overall table of distance statistics (nm) for each dimer 
system. R1 = replica 1, R2 = replica 2, etc.; SD = standard deviation 

 R1 R2 R3 R4 R5  

Distance (nm) Up-DIM 

Distance Average SD Average SD Average SD Average SD Average SD Total 
average 

V116-
V120 2.102 0.055 2.177 0.075 1.980 0.050 2.004 0.053 2.227 0.132 2.098 

V120- 
I127 3.525 0.086 3.607 0.124 3.188 0.097 3.444 0.084 3.540 0.148 3.461 

F164-
L168 3.653 0.038 3.582 0.048 3.620 0.035 3.477 0.035 3.704 0.074 3.607 

A111-
G11           0.567 0.027 0.614 0.026 0.617 0.031 0.550 0.019 0.586 0.030 0.587 

Distance (nm) ppSA-DIM 

Distance Average SD Average SD Average SD Average SD Average SD Total 
average 

V120- 
I127 3.070 0.221 3.462 0.110 3.430 0.126 3.367 0.094 3.194 0.134 4.288 

F164-
L168 3.592 0.078 3.497 0.048 3.615 0.060 3.465 0.038 3.494 0,071 3.951 

A111-
G11           0.809 0.059 0.579 0.024 0.679 0.030 0.585 0.021 0.582 0.069 0.879 

Distance (nm) ppSA/ppSB-DIM 

Distance Average SD Average SD Average SD Average SD Average SD Total 
average 

V120- 
I127 3.254 0.114 3.349 0.141 3.258 0.124 3.231 0.088 3.789 0.201 3.376 

F164-
L168 3.591 0.039 3.827 0.046 3.755 0.054 3.713 0.040 3.898 0.128 3.757 

A111-
G11           0.681 0.052 0.856 0.045 0.771 0.044 0.773 0.025 0.529 0.049 0.722 

Distance (nm) Up(R134W)-DIM 

Distance Average SD Average SD Average SD Average SD Average SD Total 
average 

V116-
V120 4.390 0.244 2.177 0.075 2.148 0.091 2.878 0.067 3.121 0.093 2.943 

V120- 
I127 5.895 0.268 3.607 0.124 3.439 0.114 4.100 0.120 4.398 0.134 4.288 

F164-
L168 5.032 0.155 3.582 0.048 3.554 0.073 3.786 0.049 3.804 0.070 3.951 

A111-
G11           1.650 0.1626 0.616 0.026 0.560 0.034 0.769 0.099 0.802 0.069 0.879 
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Review Article

Regulatory spine RS3 residue of protein kinases: a
lipophilic bystander or a decisive element in the
small-molecule kinase inhibitor binding?
Ekaterina Shevchenko1 and Tatu Pantsar2
1Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, Tübingen, DE 72076, Germany; 2School of Pharmacy, Faculty of Health Sciences,
University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland

Correspondence: Tatu Pantsar (tatu.pantsar@uef.fi)

In recent years, protein kinases have been one of the most pursued drug targets. These
determined efforts have resulted in ever increasing numbers of small-molecule kinase
inhibitors reaching to the market, offering novel treatment options for patients with dis-
tinct diseases. One essential component related to the activation and normal functionality
of a protein kinase is the regulatory spine (R-spine). The R-spine is formed of four con-
served residues named as RS1–RS4. One of these residues, RS3, located in the C-ter-
minal part of αC-helix, is usually accessible for the inhibitors from the ATP-binding cavity
as its side chain is lining the hydrophobic back pocket in many protein kinases. Although
the role of RS3 has been well acknowledged in protein kinase function, this residue has
not been actively considered in inhibitor design, even though many small-molecule
kinase inhibitors display interactions to this residue. In this minireview, we will cover the
current knowledge of RS3, its relationship with the gatekeeper, and the role of RS3 in
kinase inhibitor interactions. Finally, we comment on the future perspectives how this
residue could be utilized in the kinase inhibitor design.

Introduction
Protein kinases are dynamic proteins that regulate a multitude of cellular signalling processes. They
control the activity of their downstream targets mainly by phosphorylation, and their own activity is
also usually controlled in the same manner. The human kinome comprises more than 500 protein
kinases [1], and nearly 500 proteins contain a typical kinase domain [2]. Still, the biological role of
many protein kinases is largely unknown, and there are ongoing efforts aiming to characterize these
poorly understood protein kinases [3]. Although protein kinases display high similarity in their kinase
domain, there is a higher level diversity in their structures; while some kinases consist (almost) solely
of the kinase domain (e.g. MAPK14, GSK3B), other are larger multidomain proteins (e.g. LRRK2 [4]).
The structure and function of the protein kinase domain is well-established (Figure 1A). For a com-
prehensive view of structural history of protein kinases, the reader is recommend a recent review by
Taylor et al. [5].
In the protein kinase domain, one of the key dynamic elements in regulating protein kinase func-

tion is the hydrophobic regulatory-spine (R-spine), which was discovered already 15 years ago in 2006
[6]. The R-spine consists of four residues, named RS1–RS4, which connects the two lobes of the
kinase domain (Figure 1A,B). Two of these residues, RS1 and RS2, belong the C-lobe. RS1 is His
(sometimes Tyr) residue from the HRD (or YRD) motif [7]. RS2 is Phe (or Leu) from the DFG-motif,
which is part of the activation loop of a protein kinase. The other two R-spine residues belong to the
N-lobe of the protein kinase. RS4 is a residue from the β4-strand, which is less conserved but fre-
quently Leu can be found in this position. Finally, RS3 is located four residues C-terminal from the
αC-helix Glu that forms a salt-bridge to the Lys of β3-sheet. RS3 is usually (not always) accessible
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from the ATP binding site as its side chain lines the active site cleft. Overall, αC-helix, where RS3 is located,
has a central role in the kinase activation process [8]. In the catalytically active form of a protein kinase,
R-spine is assembled and in the inactive state it is disassembled (Figure 1C). In the active state the location of
RS2 as part of the assembled R-spine results in an open and extended conformation of the activation loop
(A-loop), while a closed A-loop configuration is preferred in the inactive state. Notably, additional stabilization
of the R-spine, such as via in-frame insertions or RS3 mutations [9,10], may result in increased catalytic activity
of the protein kinase.
Next to the R-spine in the N-lobe are located three conserved residues, named as Shell (SH) residues

(Figure 1C) [9]. These residues, which are usually hydrophobic, have a role in supporting R-spine and are
therefore important for kinase activity. One of these residues, SH2, is found close to RS3. This SH2 residue is
more commonly known as the gatekeeper residue, which is named due to its role in controlling access to the

Figure 1. Protein kinase domains are important drug targets.
(A) A typical structure of a protein kinase domain. ATP-binding cleft is located between the N- and C-lobes of the kinase. In the
figure, structure of cAMP-dependent protein kinase catalytic subunit alpha is depicted (PDB ID: 4wb5 [20]; inhibitory peptide is
hidden). R-spine residues are illustrated with black surface. ATP, β3-Lys and αC-Glu are shown with stick model. (B) Shell
residues SH1–SH3 (grey surface) are located next to the R-spine RS3 and RS4 residues. Shell residue SH2 (gatekeeper) is
located close to RS3 (yellow surface). (C) The R-spine of a protein kinase is assembled in active conformation and
disassembled in inactive conformation. In the figure, active and inactive configurations are illustrated with BRAF (PDB IDs: 4e26
[21] and 1uwh [22]). (D) Several small-molecule kinase inhibitors are already in clinical use, and dozens are in clinical trials.
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hydrophobic pocket [11]. This shell residue participates in regulating R-spine dynamics, and gatekeeper muta-
tions may stabilize the R-spine promoting the kinase activation [12].
In recent years, ever increasing efforts have been conducted by the pharmaceutical industry to target protein

kinases [13]. These efforts have resulted in numerous small-molecule kinase inhibitors, totalling now over 70
FDA approved small-molecule inhibitors (Figure 1D). According to the Protein Kinase Inhibitors in Clinical
Trials database (PKIDB) [14,15], approximately 300 small-molecule kinase inhibitors are either in clinical trials
or already approved. Comprehensive reviews of the kinase inhibitor drug discovery and kinase inhibitor devel-
opment are available [16–18]. Currently, oncology is dominating indication for the kinase inhibitors, but there
is potential also in other therapeutic areas such as autoimmune and inflammatory diseases, and degenerative
disorders [19].

Figure 2. RS3 in human protein kinases with available structures.
(A) Occurrence of RS3 residues in human protein kinases with publicly available structural data (289 kinases). The location of
RS3 is highlighted in IGFR1 kinase domain (PDB ID: 3qqu [28]). The shown frequencies are rounded up to the nearest %, for
residues with <1% frequency, percentage is not shown. (B) RS3 residue distribution in human kinome. Colours of the residue
types are as in A. Eight structures with KLIFS annotation errors that were manually curated (RS3 was properly assigned) are
indicated with an asterisk. Data in A and B consist of human protein kinases with publicly available structures with (with lipid
kinases excluded). Human kinome tree illustration was made with the help of KinMap [29].
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Here, we review the characteristics of RS3 and its relationship with the neighbouring gatekeeper (SH2) based
on the publicly available structural data. We also have a look at RS3 interactions to small-molecule kinase inhi-
bitors, including the approved drugs. Finally, we end the review with available mutational data of RS3.

RS3 in the human kinome
A majority of the human protein kinases with publicly disclosed structures display a nonpolar aliphatic RS3
residue (Figure 2). Nearly half of these kinases exhibit Leu in RS3, and almost a third have Met (Figure 2A). In
the overall human proteome Leu is also the most abundant residue (9.97%), while Met has the second lowest
frequency (2.13%) of all amino acids [23]. Following the abundant Leu and Met in RS3, next preferred are aro-
matic residues. Tyr, His and Phe appear with the frequencies of 3–6%. Cys and Gln exist in 2%, Ile and Ser in
1%. Even more rare residues that are observed in this location are Val, Thr, Asn and Ala. The charged residues,
Asp, Glu, Lys and Arg, as well as structurally more unique Trp, Gly or Pro are not present in the analysed set
of human protein kinases in RS3. Based on the sequence alignment of a larger set of eucaryotic protein kinases
these residues have been suggested to exist as RS3 residues, although rarely [7]. Regardless of the high existence
of hydrophobic residues in RS3, there exists no clear trend related to the hydrophobicity ranking of the residues
and their observed frequencies [24,25].
Protein kinases of different groups and families display distinct preferences for RS3 residues (Figure 2B). The

majority of the kinases (72%) belonging to the TK group display Met RS3. More than a fifth (22%) of this
group present Leu in this position, including protein kinases belonging to JakA family ( JAK1–3; TYK2) and
Trk family (NTRK1–3 also known as TRKA–C). Four protein kinases have either Ile (ALK; ERBB3 (ErbB3)) or
a Phe (PTK7 (CCK4); LMTK3 (LMR3)). In EGFR family Met is preferred in RS3, except ErbB3 has Ile.
Interestingly, ErbB3 has been identified to display considerably lower kinase activity [26,27]. However, ErbB3
displays also other unique characteristics that differ from other EGFRs (for instance, instead of αC-Glu ErbB3
has a His in this location). In the PDGFR family, KIT displays Leu instead of Met that is observed in other
family members (FLT, PDGFRA, CSF1R (FMS)).
In contrast with the TKs, in the CMGC group Leu is clearly dominating RS3 (90%). Only three protein

kinases have Met in RS3 (MAPK8 ( JNK1); MAPK10( JNK3); GSK3B), and MAPK6 (Erk3) displays Ile in this
position.
The TKLs prefer quite diversely Leu, Met, Tyr and Phe in their RS3. Members of the STKR family prefer an

aromatic residue in this position: Tyr is observed in ACVR1 (ALK2), ACVR2A (ACTR2), ACVRL1 (ALK1),
BMBR1B, BMBR2 and TGFBR1 (TGFbR1); Phe in ACVR2B (ACTR2B) and TGFBR2 (TGFbR2). Aromatic
Phe is also present in two MLK family members: MAP3K9 (MLK1) and MAP3K21 (MLK4), while other
kinases in this family display Leu (ILK; MAP3K12 (DLK); MAP3K20 (ZAK); MAP3K7 (TAK1); TNNI3K
(HH498)).
Kinases of the STE group display mainly Leu and Met in RS3. However, also other RS3 residues are observed

in this group, including His (STE11) and Ser (STRADA (STLK5); MAP2K6), Gln (MAP3K8 (COT)), Cys
(MAP3K14 (NIK)) and Val (MAP2K4; MAP2K7). From these, MAP3K14 (NIK) and MAP3K8 (COT) belong
to the STE-Unique family. Three members of the STE7 family display rare RS3 residues. These kinases are
MAP2K6 (Ser), MAP2K4 also known as MKK4 (Val) and MAP2K7 also known as MKK7 (Val). Interestingly,
unique autoinhibited conformational states have been reported for these kinases state [30–32]; with MKK4 this
state may be related to its dimer form [33].
In the CK1 group, Tyr is dominating in RS3 (73%). VRK3 displays an aromatic Phe in this position. TTBK

family kinases (TTBK1, TTBK2) are more diverse in this group with their aliphatic Leu in RS3.
The majority of the AGC and CAMK group kinases exhibit Leu in RS3, which is followed by Met with lower

frequencies. Two kinases with an aromatic RS3 (Phe) are observed in AGC group, in PKN2 and PRKCI
(PKCi). In CAMK group, kinases of the CAMK2 family (CAMK2A, CAMK2B, CAMK2D, CAMK2G) display
Cys in RS3, as well as CASK. His is observed in MAPKAP family (MAPKAP2, MAPKAP3). TRIB1 (Trb1)
represents Ile in RS3; however, in this pseudokinase the neighbouring Tyr may actually occupy the canonical
RS3 position [34,35].
The protein kinases that are not belonging to any specific group display also family specific preferences. For

instance, protein kinases of WEE family and PLK family exhibit His in RS3 (located above and below CK1
group in the kinome tree). Of the Atypical kinases, COQ8A that is also known as ADCK3 [36], is the only
structure in the dataset that displays Ala in RS3.
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Polar RS3 are rare
Not only hydrophobic RS3 residues exist, but also polar residues are observed in this position. AURKA is an
example of a widely studied kinase that has a polar RS3 (Gln) is. It was disclosed by Levinson et al. that this
polar residue has a specific role in AURKA activation via a water-network [37]. Similarly, AURKB and
AURKB have also Gln as their RS3. In addition, Gln is observed in MAP3K8 (COT, TPL2) and ATM.
MAP3K8 controls inflammation [38] and ATR DNA damage responses [39].
In the available data, Ser is observed in three kinases. While in STRADA (STLK5, STE20) this residue

appears unreachable from the binding cleft (PDB ID: 3gni [40], 2wtk [41]), in Haspin Ser is accessible (partici-
pates in water coordination next to αC-Glu (PDB ID: 4ouc [42]). RS3 Ser may also be accessible in MAP2K6
when it is not in its autoinhibited state (PDB ID: 3fme). In the autoinhibited state its neighbouring Met
appears to take the regular RS3 position (PDB ID: 3vn9 [32]).
Two unique polar RS3 residues are present in the data. Asn is observed in the RS3 of CHK1, while all the

other kinases belonging to the same CAMKL family have either a lipophilic Leu or Met in this position. CHK1
inhibition could be useful in the treatment of KRAS driven pancreatic ductal adenocarcinoma [43]. Thr is
observed in ULK4, while other members of the ULK family (ULK1–ULK3) have Leu in the respective position.

Figure 3. Gatekeeper and RS3.
(A) Gatekeeper is located near RS3, and in some cases these residues are in contact. In the figure, gatekeeper of the protein
kinase IGF1R (PDB ID: 3qqu [28]) is shown with orange surface and RS3 with blue surface. (B) Distribution of gatekeeper
residues according to their RS3 residue (in parenthesis) represented in pie charts. (C) Correlation matrix of RS3 and gatekeeper
residues. The unique RS3-gatekeeper combination containing kinases are labelled.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 637

Biochemical Society Transactions (2022) 50 633–648
https://doi.org/10.1042/BST20210837

D
ow

nloaded from
 http://portlandpress.com

/biochem
soctrans/article-pdf/50/1/633/930260/bst-2021-0837c.pdf by E

berhard K
arls U

niversitat T
ubingen user on 08 N

ovem
ber 2022



 84 

  

ULK4 is a pseudokinase and has an unusual structural characteristic in its αC-helix: it exhibits Trp residue in
the location of αC-Glu. This Trp appears to participate in its R-spine formation [44].

RS3 relationship with gatekeeper
The access towards the hydrophobic pocket (and towards RS3) is controlled by gatekeeper, also known as SH2
residue. This residue may also influence R-spine dynamics and it can be found in close contact to RS3
(Figure 3A). Generally, protein kinases prefer Met, Leu, Phe and Thr gatekeepers (Figure 3B,C). In the available
structures, Met is the most abundant gatekeeper (40%), followed by Leu (18%), Phe (16%) and Thr (15%). Less
frequent gatekeepers — but presented in more than eight kinase domains — are Ile 4%, Tyr 3%, Val 3%.
Kinases with different RS3 residues display also distinct gatekeeper preferences (Figure 3B,C). With Met in

RS3, less Phe gatekeepers are observed in comparison with when RS3 is Leu. Bulky aromatic RS3 residues (Tyr,
His, Phe) do not exist in combination with aromatic gatekeepers. The kinase domains with Cys in RS3 appear
to prefer Phe gatekeepers. Polar Gln and Asn display either Leu or Met as their gatekeepers. While Thr is rare
RS3 residue, as a gatekeeper it is common with Leu, Met and Tyr in RS3. In addition to Thr, other polar gate-
keepers do exist. Asn gatekeeper is observed only in combination with His RS3 in WEE1 (Wee1) (PDB ID:
3biz [45]) and WEE2 (Wee1B) (PDB ID: 5vdk [46]). Gln gatekeeper is observed in four kinases, including
MAPK1 (Erk2) (PDB ID: 5hnv [47]), MAPK3 (Erk1) (PDB ID: 4qtb [48]), MAPK6 (Erk3) (PDB ID: 7aqb
[49]), and pseudokinase domain JAK2-b (PDB ID: 4fvq [50]). Pseudokinase domain Jak1-b has a unique polar
Glu as its gatekeeper (PDB ID: 4l00 [51]). Overall, thirteen protein kinases in the analysed dataset display
unique RS3-gatekeeper combinations (Figure 3C).

RS3 and small-molecule kinase inhibitors
We searched the KLIFS database [52] and complemented our search using Protein–Ligand Database (PLDB)
tool of Maestro (Schrödinger LLC) to map out all the existing protein kinase–ligand complexes that have con-
tacts between RS3 and the ligand (Figure 4). In KLIFS, RS3 is named as residue #28 (αC-Glu is #24) [53].
Over 100 protein kinases have structures where RS3–ligand interactions are observed (Figure 4B). In total,
more than 1000 structures with RS3–ligand interactions are available.
RS3–ligand interactions are observed with kinases containing Leu, Met, Tyr, Asn, Val, Gln, Ile or Ser in their

RS3. No direct RS3–ligand contacts were observed for kinases with Ala, Cys, Phe, His and Thr. Polar interac-
tions to RS3 are extremely rare. H-bond interaction occurs between inhibitor and RS3 only in 12 structures,
including AURKA (Gln) (PDB ID: 4uzd [57]); CHK1 (Asn) (PDB IDs: 4fsq, 4fst, 4ftk, 4ftl, 4ftm, 4ftn); Haspin
(Ser) (PDB ID: 6z5a); VRK1 (Tyr) (PDB IDs: 6btw, 6cfm, 6cnx, 6npn). Hydrophobic interactions are abundant,
and hydrophobic contacts to Leu and Met appear in 551 and 410 structures, respectively. This is not surprising,
based on their high frequency in RS3 (79%) among the available structures. Interactions to Tyr appear in 41
structures, while other RS3 residues with interactions are represented each with 10 or less structures.
Interactions to RS3 appear independent on the kinase conformation (Figure 4C,D) [55]. Based on the

KinaMetrix [56], ‘αC-helix in’ conformations are dominating in the structures. CIDI is the most populated
with 459 structures and CIDO appears in 323 structures. CODI and CODO structures with αC-helix out con-
figuration exist in 148 and 42 structures, respectively. The ambiguous ωCD occurs in 47 structures. Leu and
Met RS3–ligand interaction structures display all configurations, albeit less structures of CODI (16%), CODO
(4%) and ωCD (4%) conformations exists. With less structural information containing RS3 residues the con-
formational representation does not cover all configurations. Nevertheless, all conformations are present in the
structures with RS3–ligand interactions. As there exists distinct protein kinase conformation classifications, we
also analysed the conformational distribution of RS3 contact structures with Kincore [58]. Table 1 shows the
conformational distribution of these structures assigned with the Kincore. Overall, majority of the available
compounds with the RS3 interactions exist in DFGin and DFGout spatial classes, covering different conform-
ational classes (dihedrals).

Approved small-molecule kinase inhibitors and RS3
A publicly available structure exists for 49 out of the 71 FDA-approved small-molecule kinase inhibitors. From
these, interaction to RS3 is displayed by 26 inhibitors (55%). These structures include targets with Met
(Figure 5) and Leu RS3 residues (Figure 6). Inhibitors which exhibit RS3 interactions represent all types of
kinase inhibitors that bind to the ATP-binding cleft. Of note, inhibitors of different type may engage RS3 site
in a different manner. For instance, type II inhibitors, which bind the kinase in its inactive conformation, reach
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beyond the RS3 on the αC-helix side, and thereby can interact with the side chain to its ‘side’ or ‘head’ or
both. Conversely, type I inhibitors, which bind to the active conformation of the kinase, interact mainly with
the head of the RS3 side chain.
In occupying the region next to RS3, mainly six membered aromatic ring containing structural moieties are

preferred (Figures 5, 6). Correspondingly, these aromatic rings participate in RS3 interactions in most cases.
Tivozanib is the only inhibitor that presents a five-membered heteroaromatic ring in this location.
Furthermore, aromatic ring attached halogens, Cl with RS3 Met (bosutinib; afatinib) and Br or I with RS3 Leu
(vandetanib; trametinib, cobimetinib), display contacts to RS3. Vemurafenib and lenvatinib are the only excep-
tions that utilize nonaromatic moieties to interact with RS3. In addition to VEGFRs (Leu), lenvatinib also binds
and inhibits FGFR-1 (Met). To both, Leu or Met, lenvatinib is in contact from its cyclopropyl urea moiety
(PDB IDs: 3wzd [59], 5zv2 [60]). Vemurafenib displays contacts to RS3 Leu from aliphatic carbons of its pro-
pylsulfonamide group (PDB ID: 4rzv [61]).

Figure 4. Publicly available structures that display RS3–ligand contacts.
(A) An example of a structure displaying hydrophobic contacts to RS3 (PDB ID: 4lqm [54]) (B) Structures with RS3–ligand
interactions. Results of the KLIFS search, which was complemented with Protein–Ligand database (PLDB) (Schrödinger LLC)
that identified 197 additional structures. (C) Conformation classification of protein kinases based on DFG and αC-helix
conformations as disclosed by Ung et al.[55]. The ambiguous conformations are named as ωCD, which may represent the
transition conformations between the four states. Location of RS3 Cα-atom is illustrated with a blue sphere. (D) Number of
structures with RS3–ligand contacts and divided by RS3 residue type and KinaMetrix [56] defined kinase conformations. For
11 structures the conformation was undefined and those were excluded.
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Some of these drugs display interactions with other kinases RS3 that are distinct from their main target.
Bosutinib displays hydrophobic contacts to RS3 with MST3 (Leu) (PDB ID: 4qmn [62]), as well as dasatinib to
Leu with MAPK14 (p38a) (PDB ID: 3lfa). Ponatinib displays hydrophobic interactions to Leu with RIPK2
(PDB ID: 4c8b [63]), KIT (PDB ID: 4u0i [64]) and BRAF (PDB ID: 6p3d [65]). Nilotinib to Leu with
MAPK11 (p38b) (PDB ID: 3gp0). Imatinib displays contact to Leu when bound to KIT (PDB ID: 1t46 [66])
and MAPK14 (p38a) (PDB ID: 3hec [67]). Also, Pexidartinib exhibits contact to RS3 Leu with KIT (PDB ID:
7khg [68]). For inhibitors which main targets display Leu in RS3, apart from lenvatinib no Met RS3 interaction
containing structures are available.
RS3 interaction is kinase dependent. Approved drugs with interactions to RS3 do not necessarily exhibit con-

tacts to RS3 with other kinases that they bind to. For instance, gefitinib has been co-crystallized with GAK
(Met), where it displays no contact to RS3 (PDB ID: 5y7z [69]). Ibrutinib has been also co-crystallized with
MAP2K7 that has Val in RS3, but it does not display any contacts to this residue in this complex (PDB ID:
6yg2 [70]).

Mutations in RS3 exist rarely
According to the Catalogue of Somatic Mutations In Cancer (COSMIC; v.95) database [71], no clear tendency
for mutations in RS3 exists. In total 82 kinases display at least one mutation (missense or silent) (Table 2).
Only with ALK, several mutations at this location appear in the data. These mutations include, I1171N, I1171T
and I1171S. For BRAF, L505H mutation is found in eight samples. Perhaps the low number of observed RS3
mutations is not surprising, due to the crucial role of this residue in the kinase function. In comparison, RS2
mutations are also rare, with BRAF F595L (13 samples in COSMIC v.95) being the most frequent in the ana-
lysed kinases. Meanwhile, RS2 flanking residues are common oncogenic drivers; for instance, BRAF V600E is
found in 52 733 samples and EGFR L858R is present in 10 642 samples. Mutations at αC-helix may activate
the kinase via destabilizing the kinase inactive conformation [72], but they are mainly found in other locations
on the αC-helix than on RS3 [73].
In the literature, only few cases of studies including RS3 mutations have been reported. With BRAF, a sec-

ondary mutation in RS3 (L505H) induces resistance to vemurafenib [74]. Also, in another study resistance to
dabrafenib or vemurafenib was demonstrated with BRAF L505H mutation [10]. Moreover, alectinib resistance
was reported with I1171S and I1171N mutations in ALK [75]. The I1171N mutation was demonstrated to
increase autophosphorylation level of ALK in vitro [76]. I1171T has been identified to induce crizotinib resist-
ance [77]. Interestingly, these two inhibitors, crizotinib and alectinib do not display direct contacts to RS3.
EGFR M766T mutation was reported to induce resistance to gefitinib and erlotinib [78].

Table 1 RS3–ligand contact structures with Kincore defined conformations

Spatial Label Dihedral label Annotation Leu1 Met1 Tyr Asn Val Gln Ile Ser

DFGin BLAminus Active 71 96 39 9 - - - 1

BLBplus SRC-inactive 120 50 - - - - - -

ABAminus Active-like 21 21 1 - - - 3 -

BLBminus 36 33 - - - - - -

BLAplus FGFR-inactive 23 39 - - - - - -

BLBtrans CDK-inactive - 7 - - - - - -

None 38 12 - - - 2 1 -

DFGinter BABtrans - - - - - - - -

None AURKA-inactive 13 6 - - - 3 - -

DFGout BBAminus Type-2 binding 151 101 1 - 1 1 2 -

None DFGout-like 59 32 - - 1 2 1 -

None None 13 4 - - - 2 - -

Total 545 401 41 9 2 10 7 1

1Conformation definitions were unavailable in Kincore for six (Leu) and nine (Met) individual structures included in Figure 4D.
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Figure 5. FDA approved small-molecule kinase inhibitors with Met RS3 contacts.
(A) ABL inhibitors. (B) FGFR, BTK and CSF1R inhibitors. (C) EGFR inhibitors. In 3D images, structures of the superimposed
kinases are shown with their bound inhibitors. Full kinase inhibitor structures are represented with transparent white surface
and stick models. RS3 Met is shown with transparent blue surface and sticks. The RS3 interacting atoms of the inhibitors are
highlighted in 2D-structures of the structural moieties that are located near the RS3 residue. Hydrophobic interaction was
defined based on a 3.6 Å (or shorter) distance between two hydrophobic atoms.
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Conclusions
The function of the R-spine and the role of RS3 is quite conserved with typical protein kinases. Couple of resi-
dues are dominating RS3 in the available protein kinase domain structures. Nevertheless, also unique RS3 resi-
dues are observed, and in combination with gatekeeper even more kinase specific profiles for these residues are
observed. Obviously, even with identical RS3–gatekeeper combinations the 3D-environment within this region
can be quite different between two kinases. Kinase specific angles and absolute positions of these residues may
provide important opportunities for selective targeting. Obviously, one must carefully consider this
case-by-case, as RS3 is not targetable in all kinases. With pseudokinases [79–81], which compared with regular
protein kinases can vary more in their structure in this region, the role of RS3 and its targeting would require
further research.
The general understanding of RS3–ligand interactions are quite limited, even though numerous structures

that contain these mainly hydrophobic interactions are available. Currently, no studies investigating specific
effect of RS3 on ligand binding affinity exist that directly compare a set of ligands with selected mutations of
this residue. Further research is needed to disclose the influence of RS3 residue for ligand binding and should
be also extended to the cases where no direct contact between the residue and inhibitor exists. Of note, even
with hydrophobic interactions (in the case of hydrophobic RS3) this should not be overlooked as these interac-
tions may be crucial for the inhibitor binding [82]. For example, non-canonical interactions play a detrimental
role in binding affinity of the ultra-potent small-molecule biotin [83]. There may be good possibilities available
to optimize RS3-specific interactions, for instance, with enhanced interactions with the sulfur atom of Met
[84].

Figure 6. FDA approved small-molecule kinase inhibitors with Leu RS3 contacts.
(A) VEGFR and KIT inhibitors. (B) BRAF inhibitors. (C) MEK inhibitors. In 3D images, structures of the superimposed kinases
are shown with their bound inhibitors. Full kinase inhibitor structures are represented with transparent white surface and stick
models. RS3 Leu is shown with transparent yellow surface and sticks. The RS3 interacting atoms of the inhibitors are
highlighted in 2D-structures of the structural moieties that are located near the RS3 residue. Hydrophobic interaction was
defined based on a 3.6 Å (or shorter) distance between two hydrophobic atoms.
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Table 2 Missense mutations in RS3 (COSMIC v.95) Part 1 of 3

Kinase RS3 RS3-contact1

Mutation

N Q M D T S V I R F K H W P L -2 Total

TK

1 ABL1 M290 + 1 1

2 ALK I1171 + 18 11 5 2 36

3 DDR2 M629 + 2 2

4 EGFR M766 + 1 1 1 1 4

5 FGFR2 M538 + 1 1 1 3

6 FLT1 L882 + 1 1

7 JAK2 L902 + 1 1

8 TYK2 L951 + 1 1

9 KDR L889 + 1 1 2

10 KIT L644 + 1 1

11 PDGFRa M648 + 1 1

12 LCK M292 + 4 4

13 SYK M424 + 1 1

14 AXL M589 - 2 1 2 5

15 EphA3 M674 - 2 2

16 EphA7 M686 - 1 1

17 EphB3 M686 - 1 1

18 ErbB3 I744 - 2 2

19 ITK M410 - 1 1

20 JAK3 L875 - 2 1 5 8

21 ROR2 M526 - 1 1

22 ROS1 M2001 - 1 1

23 ZAP70 M390 - 1 1

TKL

N Q M D T S V I R F K H W P L -

24 MAP3K7 L81 + 1 1

25 BRAF L505 + 8 8

26 ACVR2B F234 - 4 4

27 MAP3K9 F195 - 3 3

28 RAF1 L397 - 1 1

29 HH498 L513 - 2 1 1 4

STE

N Q M D T S V I R F K H W P L -

30 PAK1 M319 + 1 1 2

31 PAK4 M370 + 1 1

32 STK10 L85 + 1 1

33 SLK L83 + 1 1 2

34 MAP2K1 L118 + 1 2 3

35 MAP2K6 S103 - 2 2

36 MAP3K14 C444 - 1 1

Continued

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 643

Biochemical Society Transactions (2022) 50 633–648
https://doi.org/10.1042/BST20210837

D
ow

nloaded from
 http://portlandpress.com

/biochem
soctrans/article-pdf/50/1/633/930260/bst-2021-0837c.pdf by E

berhard K
arls U

niversitat T
ubingen user on 08 N

ovem
ber 2022



 90 

  

Table 2 Missense mutations in RS3 (COSMIC v.95) Part 2 of 3

Kinase RS3 RS3-contact1

Mutation

N Q M D T S V I R F K H W P L -2 Total

37 OXSR1 M67 - 1 1

38 PAK5 M498 - 1 1

39 TNIK L73 - 1 1

AGC

N Q M D T S V I R F K H W P L -

40 AKT2 L204 + 1 1

41 ROCK1 M128 + 1 1

42 AKT1 L202 - 2 2

43 CDC42BPB L128 - 1 1

44 DMPK1 L123 - 1 1 2

45 GPRK5 L238 - 1 1

46 MASTL L85 - 1 1

47 PRKCh L407 - 1 1

48 SGK1 L150 - 2 1 1 2 6

CAMK

N Q M D T S V I R F K H W P L -

49 CHEK1 N59 + 1 1

50 DRAK2 L84 + 1 1

51 PIM1 L93 + 1 3 4

52 RPS6KA3 L467 + 1 1 2

53 CAMK1d L73 - 1 1

54 CAMK4 L93 - 3 1 3 7

55 MARK2 M104 - 1 1

56 MNK1 L98 - 2 2

57 MNK2 L133 - 1 1

58 SgK085 M155 - 2 2

59 PHKg2 L81 - 1 1 2

60 AMPKa2 L68 - 1 1

61 RPS6KA2 L113 - 2 2

62 SNRK M67 - 1 1

63 STK17B L84 - 1 1

CDK

N Q M D T S V I R F K H W P L -

64 GSK3B M101 + 1 1

65 JNK3 M115 + 1 1

66 Erk5 L106 + 2 2

67 CDK4 L60 - 1 3 4

68 CDK6 L65 - 2 2

69 CK2a1 L85 - 1 1

70 DYRK1A L207 - 1 1 2

71 HIPK2 L247 - 1 1

Continued
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Infrequency of mutations in RS3 may indicate a defiance against plausible point mutation in this position
that could cause drug resistance [85]. Perhaps the somewhat buried location of RS3 in the quite rigid αC-helix
position that offers a limited flexibility, renders the mutations in this location (at least in most cases) incompe-
tent to drive kinase activation. This motivates further to optimize protein–ligand interactions for RS3.
However, the data at hand may not necessarily cover potential drug therapy induced mutations in cancer
patients. We believe that in near future, with accumulation of this data, this information will be more access-
ible, and a better estimate can be provided.
The full data presented in this review are freely available at https://doi.org/10.5281/zenodo.5796550

Perspectives
• The role of the conserved R-spine and RS3 residue in protein kinase function is well

established.

• Protein kinases display diversity in their RS3 residue and in its surroundings. Many small-
molecule protein kinase inhibitors, including approved drugs, display contacts to RS3.

• Considering the RS3 residue more carefully in the design of small-molecule kinase inhibitors
may offer important advantage for the inhibitor binding and selectivity.
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Table 2 Missense mutations in RS3 (COSMIC v.95) Part 3 of 3

Kinase RS3 RS3-contact1

Mutation

N Q M D T S V I R F K H W P L -2 Total

72 JNK1 M77 - 1 1

Atypical

N Q M D T S V I R F K H W P L -

73 ATM Q2729 - 1 2 3

74 ATR M2339 - 1 1

75 ADCK3 A415 - 4 4

Other

N M D T S V I R F K H W P L -

76 TTK L575 + 1 1 2

77 Haspin S539 - 1 1

78 NEK7 H86 - 1 1

79 TBK1 L59 - 2 2

80 TLK2 H518 - 2 2

81 ULK1 L67 - 1 1

82 WEE2 H263 - 3 3

1Hydrophobic interaction between ligand and RS3: +at least one structure with RS3–ligand contact available; - no contacts observed in available
structures;
2Silent mutation.
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ABSTRACT: The enzyme enoyl-ACP reductase (FabI) is the limiting step of the membrane’s fatty acid biosynthesis in bacteria and
a druggable target for novel antibacterial agents. The FabI active form is a homotetramer, which displays the highest a!nity to
inhibitors. Herein, molecular dynamics studies were carried out using the structure of FabI in complex with known inhibitors to
investigate their e"ects on tetramerization. Our results suggest that multimerization is essential for the integrity of the catalytic site
and that inhibitor binding enables the multimerization by stabilizing the substrate binding loop (SBL, L:195-200) coupled with
changes in the H4/5 (QR interface). We also observed that AFN-1252 (naphtpyridinone derivative) promotes unique
conformational changes a"ecting monomer−monomer interfaces. These changes are induced by AFN-1252 interaction with key
residues in the binding sites (Ala95, Tyr146, and Tyr156). In addition, the analysis of water trajectories indicated that AFN-1252
complexes allow more water molecules to enter the binding site than triclosan and MUT056399 complexes. FabI−AFN-1252
simulations show accumulation of water molecules near the Tyr146/147 pocket, which can become a hotspot to the design of novel
FabI inhibitors.

1. INTRODUCTION
In the past decades, several new antibiotic classes have been
approved by the Food and Drug Administration (FDA);
however, most of them have limited usefulness against the
most problematic “ESKAPE” pathogens.1,2 The ESKAPE group,
namely, Staphylococcus aureus, Klebsiella pneumoniae, Acineto-
bacter baumannii, Pseudomonas aeruginosa, and Enterobacter
species, contribute to ∼75% of infections and deaths from
antibiotic-resistant bacteria.3 Further, most of the recently
discovered antibiotics target Gram-positive bacteria, as the
Gram-negative pathogens have more impermeable cell mem-
branes and promiscuous e#ux pumps. In this sense, expanding
the knowledge of relevant drugs for both groups and establishing
comparative studies are relevant.
Enoyl-ACP reductase (FabI, Figure 1A) is a bacterial enzyme

responsible for the limiting step of the cellular membrane’s fatty
acid biosynthesis. FabI catalyzes the final reductive step in the
bacterial fatty acid synthesis cycle, with NAD(P)H as a hydride

donor to an enoyl-ACP substrate and releasing the oxidized
coenzyme (NAD(P)+) with the product acyl-ACP. In that sense,
FabI plays a major role in the elongation cycle of the bacterial
fatty acid biosynthesis pathway (FAS-II) and the regulation of
bacterial membrane homeostasis.4 The FAS-II pathway is
essential for Gram-negative pathogens’ survival.5 Its inhibition
cannot be bypassed during infections through the uptake of
exogenous nutrients.5 Since mammalians rely on the FAS-I
multicomplex, which has no similarity to FAS-II, the latter
becomes the attractive target for antimicrobial development.
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FAS-II and, therefore, FabI relevance is showcased by the
success of triclosan and isoniazid.6,7
The FabI structure is composed of a seven-stranded parallel β-

sheet and eight α-helices forming a single domain (Figure 1B).
Moreover, the Tyr-Xaa6-Lys catalytic dyad is conserved in
practically all FabI structures and placed in similar active site
locations. The FabI catalytic site is covered by a flexible loop
(substrate binding loop, or SBL, Figure 1B), which is very
flexible and has been reported in various distinct conformations
in di!erent experiments.8−10 Several FabI structures from S.
aureus (Sa), Escherichia coli (Ec), and other organisms were
reported in the past years comprising monomers,8 dimers,9,11,12
and tetramers.10,13,14 FabI homodimerization relies on the PR
interface composed of the interactions between helix 8 and β-
sheet 7 of two monomers. Meanwhile, the QR interface is
composed of the contact between helices 4/5 and 6 of two
chains and is responsible for the final tetramerization (Figure
1A,B). PR andQR nomenclature was defined in previous work15
and used this way since then to locate the mentioned structures.
To date, all available structures in active or inhibited states

were reported as homotetramers, except the apo form of SaFabI
(PDB IDs: 3GNS and 3GNT11) and Bacillus cereus FabI (PDB
ID: 3OJE12). This highlights the relationship between the
ligand-bound state and tetramer formation. It is speculated that
the cooperativity behavior of the overall tetramer depends on
the interactions between the individual subunits. This is
supported by mutations in the interface of tetramer subunits
that promote resistance to FabI in clinical strains, such as
Gly113Val of S. aureus enzyme.16
Triclosan (TCL, Figure 1C) is the most well-known FabI

inhibitor with antibacterial properties. TCL is widely employed
in healthcare products, and until the end of the 1990s, it was
believed to act directly on the bacterial membrane without
relying on specific protein targets. This changed with the work
from McMurry et al. (1998) describing TCL as a FabI

inhibitor.6,13 Since then, many novel classes of FabI inhibitors
with antibacterial properties and structure−activity studies of
those compounds were reported.17,21,22 We highlight two
relevant inhibitors: MUT056399 (MUT) and Debio-1452,
formerly known as AFN-1252 (AFN), which reached clinical
trials as a treatment for bacterial infections.23−26 TCL andMUT
are diphenyl ether derivatives, with a phenolate that interacts
with the catalytic tyrosine residue. AFN poses a lactam group
(present in the naphtpyridinone ring) that forms an extra
hydrogen bond with Ala97 from SaFabI. MUT, despite being
classified according to the same chemical class as TCL, was also
designed to have an amide side chain to mimic this interaction
with Ala97.18
The binding of these inhibitors to FabI leads to the SBL

organization in a closed conformation, which until recently, was
believed to be the only inhibition mode for this enzyme.
However, recently, oligomeric transition was shown to be
coupled with ligand binding in SaFabI,15 which supports a more
complex inhibition mechanism. This cooperativity is supported
by the increased ligand a"nity depending on FabI’s oligome-
rization state27 and the observation of TCL-resistant mutants
displaying substitutions in the dimer interface.8 Until now,
computational studies have focused only on the FabI
monomeric state or employed subrelevant timescales to study
large conformational changes.28−30

Our work aimed to investigate the binding mode of selected
FabI inhibitors using simulations of a full tetramer in
comparison with monomers. We considered that di!erent
ligands may a!ect the oligomerization of FabI by indirectly
triggering protein−protein interactions ranging from binding
site residues toward the interface.

2. MATERIALS AND METHODS
In this work, molecular dynamics simulations were carried out
using SaFabI and EcFabI in the apo form and complexes with

Figure 1. Tetrameric structure of FabI with the four chains represented in di!erent shades of gray and the identification of the monomer−monomer
(PR) and dimer−dimer (QR) interface positions (A). Structure of a FabI monomer identifying the eight helices (blue), seven strands (orange),
inhibitor and NAD(P)+ binding sites (represented as spheres models), and the substrate binding loop (SBL, in purple, L:195-200) (B). Structure and
activities of studied FabI inhibitors (C). The reported activities were retrieved from (a) Lu and Tonge, 2008;17 (b) Gerusz et al., 2012,18 (c) Bryskier,
2010;19 (d) Kaplan et al., 2012;8 and (e) Parker et al., 2020.20
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TCL, MUT, and AFN. Those systems were simulated using
both a tetramer and monomer. Furthermore, apo forms of
triclosan-resistant mutant SaFabI-Gly112Val and EcFabI-
Gly113Val models were generated (tetramers/monomers) as
control simulations for interface disruption.16
2.1. Modeling and Structure Preparation. SaFabI and

EcFabI were simulated as tetramers in the apo form and
complexes with TCL, MUT, and AFN. For that, SaFabI and
EcFabI structures were modeled using SwissModel31 and PDB
ID 4ALI15 and 1QG610 structures as templates, respectively;
both tetramers bound to TCL. The initial validations of
individual models were accessed using the Ramachandran
plot, QMEANS score, and local similarity to the target protein
(Supporting Information, Figure S1). Tetramer structures were
assembled using PISA webserver32 and compared with
crystallographic structures.
The coordinates for TCL (PDB ID: 1QG610), MUT (MD

frame previously reported28), and AFN (PDB ID: 4FS3) were
retrieved from respectives referenced structures.8 The coor-
dinates of NADP+ (S. aureus) and NAD+ (E. coli) were retrieved
from the template structures. Further, steric bumps were
minimized using Maestro (2021.4). Protein structures were
prepared by adding hydrogen atoms and fixing missing side
chains using Protein Preparation Wizard33 (Maestro 2021.4,
Schrödinger LLC, New York, NY, USA). Ionization states of
amino acids were optimized with PROPKA (pH 7.4,
Schrödinger), and as for the ligands, TCL and MUT were
considered phenolates.28
2.2. Molecular Dynamics Simulations. Molecular

dynamics (MD) simulations were carried out using the
Desmond engine34 with the OPLS4 force field.35 Simulated
systems encompassed the protein−ligand/cofactor complex,
solvent (TIP3P36), and counterions (Na+ or Cl− adjusted to
neutralize the overall system charge). The entire system was
treated in a cubic box with periodic boundary conditions,
specifying the size of the box as 13 Å distance from the box edges
to any atom of the protein. Short-range coulombic interactions
were calculated using 1 fs time steps and 9.0 Å cut-o! value,
whereas long-range coulombic interactions were estimated
using the Smooth Particle Mesh Ewald method, which is a
su"ciently good approximation to treat long-range interactions
on large timescales.37,38 Each system was subjected to at least 15
μs simulations (split among five replicas), which should be
su"cient to observe the protein conformational changes of
interest.39,40
2.3. Molecular Dynamics Trajectory Analyses.

2.3.1. Root Mean Square Deviation (RMSD). Root mean
square deviation (RMSD) values of the protein backbone were
used to monitor simulation equilibration and protein folding
changes (Supporting Information, Figure S2). The fluctuation
(RMSF) by residues was calculated using the initialMD frame as
a reference and compared between ligand-bound and apo
structure simulations (Supporting Information, Figure S3). The
datasets generated and/or analyzed during the current study are
available in the Zenodo repository (DOIs: 10.5281/zenodo.
6917091, 10.5281/zenodo.6917244, and 10.5281/zenodo.
7032391). Data available include the trajectory raw data. MD
trajectories were visualized, and figures were generated using
PyMOL v.2.5.2 (Schrödinger LCC, New York, NY, USA).
The obtained trajectories were initially analyzed by their

protein backbone’s RMSD variations, both for full complexes
and individual chains (Figure S2), RMSF of single chains
(Figure S3), and the radius of gyration, to investigate large

changes. We also used the minimum distance between ligands
and relevant residues for the binding (Ala95/97, Tyr146/147,
and Tyr156/157, Figure S4) as a control for the ligand residence
within the binding site. Those results show the stability of our
simulated complexes and their suitability to further analyses.
One single replica from all simulated systems (chain D of the
MUT-SaFabI complex) displayed high RMSF values due to
instability at the end of the trajectory; therefore, this replica was
removed for RMSF calculations and removed from further
analyses. The same issue was noted for MUT binding to SaFabI:
in one single replica and one chain, the inhibitor left the binding
site. However, these observations represent less than 5% of the
total sampling.

2.3.2. Protein−Ligand Interactions.Atomic interactions and
distances were determined using the Simulation Event Analysis
pipeline as implemented in Maestro 2019v.4 (Schrödinger
LCC). The criteria for the protein−ligand H-bond are 2.5 Å
distance between the donor and acceptor atoms (DH···A),
≥120° angle between the donor−hydrogen−acceptor atoms
(DH···A), and ≥90° angle between the hydrogen−acceptor-
bonded atoms (H···AX). Corresponding requirements for
protein−water and water−ligand H-bonds are 2.8 Å (DH···
A), ≥110° (DH···A), and ≥90° (H···AX). Nonspecific
hydrophobic interactions are defined by the presence of a
hydrophobic side chain within 3.6 Å of the ligand’s aromatic or
aliphatic carbons. π−π interactions are recorded when two
aromatic groups are stacked face-to-face or face-to-edge and
within 4.5 Å of distance.41

2.3.3. Principal Component Analysis (PCA). Principal
component analysis (PCA) was used to study the main features
of FabI backbone movements. PCA was conducted for all
backbone atoms, which were selected and aligned using scripts
(trj_selection_dl.py and trj_align.py) from Schrodinger pack-
age 2021v.4. Individual simulations from all runs were merged
using the trj_merge.py script into a final trajectory and CMS file.
Then, Desmond trajectories were aligned and transformed to
the xtc format, keeping only backbone atoms, which were further
used to generate the principal components. PCA was conducted
for the backbone atoms using GROMACS tools (version 2019)
(gmx covar and gmx anaeig).42 For GROMACS analysis, figures
representing the extreme motions were generated and visualized
using the PyMOL script Modevectors (https://github.com/
Pymol-Scripts/Pymol-script-repo/blob/master/modevectors.
py), with motions with less than 5 Å distance between the initial
point and the last point of the extreme motion frames not
considered. For further analysis, we included the PCs that
displayed >15% individual contribution. PCA graphics for the
2D projections were generated using a Python script. All
commands were generated using JuPyter (Matplotlib, Seaborn,
Numpy, and Pandas).

2.3.4. Domain Movement Analyses. The distance analysis
scripts were used to study loop movements. The distance
between selected regions was calculated by their center of mass
distance using the script (trj_asl_distance.py) available on
Schrodinger package 2021v.4. The amino acid ranges employed
for calculations are mentioned in the respective sessions and
figure legends.

2.3.5. Water Distribution and Water Occupancy Cluster.
For each frame, the distance of all water oxygen atoms in relation
to the COM of the tetramer’s chains was calculated. Then, the
distance distribution was plotted and normalized by the number
of analyzed frames, generating a water distance distribution for
each tetramer. Finally, the di!erent chains of the same tetramer
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weremerged, that is, an averaged water distance distribution was
generated. The area under the curve of the averaged water
distribution up to a distance of 1 nm was estimated using the
trapezoidal method. Waters that were found within a radius of 1
nm or less of the COM of the tetramer’s chains in at least one
frame of the trajectory had their coordinates extracted. Thus, a
simple PDB was generated with only the coordinate of the
oxygen atoms of the water located within this radius.
2.4. Markov State Model (MSM) Analysis. The extended

sampling individual concatenated trajectories of monomeric
states of apo SaFabI and EcFabI (see Figure 2C) were used as an
input for MSM generation. Briefly, 16 replicas (1 × 10 μs, 5 × 2

μs, and 10 × 1 μs) shared the same starting frame, while 20
replicas used the final frames of 1 μs trajectories as an input, and
the last 10 replicas used two high RMSD frames from 10 μs-long
trajectories as a starting point.
MSM generation was conducted with PyEMMA243 according

to ref 44. For featurization, we used the backbone torsions of
whole protein. Initially, the obtained VampScores for each
system (3.51 for SaFabI and 3.62 for EcFabI) suggest the
reliability of calculated states, their probabilities, and the free
energy conformational landscape.45 The dimensional reduction
was conducted with time-lagged independent component
analysis (TICA).46 Lag time τ = 800 step density and 273

Figure 2. Experimental design of the simulations generated within this work. For each set of simulations, the hypothesis and developed analyses are
highlighted in yellow boxes. (A) Study of the influence of di!erent inhibitors (TCL, blue; MUT, turquoise; AFN, gold) on the tetramer stability for S.
aureus (gray spheres) and E. coli (blue spheres) in comparison to their monomeric counterparts. Similar analyses were performed for the mutant
Gly112/113Val (B), which is known to confer inhibitor resistance. The mutation spot in the dimerization interface is depicted as a purple sphere. (C)
Monomeric apo structure simulations were performed in various lengths and number of replicas to generate a large and diverse set of conformations for
Markov State Models.
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dimensions were selected (Figure S4), where the implied
timescales were converged. Discretization of the data to
microstates was done by k-means clustering (√N used for the
number of clusters). Finally, a spectral clustering using the
Perron-cluster cluster analysis (PCCA++)47 assigned the micro-
states to macrostates. Transition-path theory (TPT) was applied
to investigate state transitions and the flux between metastable
states.48,49 The validation of MSM models and percentages of
probability among the states are shown in Figures S5.

2.5. 3D Visualization of Sequence Similarity (SS3D).
The algorithm used was inspired by a previously published
study.50 Initially, a contact map of α-carbons was generated with
a cut-o! distance of 0.6 nm, in each frame, for all tetramers.
Subsequently, contacts that remained present for less than 75%
of the frames (3761 frames) were eliminated. The SS3D value
for each of the selected contacts was calculated, having the apo
protein tetramer as a reference among all the other structures
compared. For that, we selected residues whose α-carbon was

Figure 3. Simulation diagram interactions (SIDs) for TCL, MUT, and AFN complexes with SaFabI (A−C, respectively) and EcFabI (D−F,
respectively). Green amino acid residues are involved in H-bonds, blue ones are involved in ionic interactions, and orange residues are involved in π-
stacking interactions. Furthermore, percent values near arrows indicate the interaction frequency (with a cut-o! of at least 30% of the trajectory) for
chains A (green), B (cyan), C (magenta), and D (yellow). Dashed arrows represent the H-bond from the donor (tail) to the acceptor (arrow), solid
arrows represent ionic interaction, and solid gray lines connecting gray circles represent π-stacking interactions.
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within a radius of 1 nm from any of the residues in contact,
considering only residues that persisted for more than 75% of
the frames within this radius. Originally, SS3D was intended to
be used to highlight di!erences between homologous proteins
by combining the sequence and structure information to do so.

Since we are comparing the same tetramer interacting with
di!erent ligands, instead of calculating the SS3D using a
substitution matrix, we are simply counting the number of
common residues around the contact as a score, removing the
substitution weight. Finally, all the di!erent chains were merged

Figure 4. Proteinmovements (represented by yellow arrows) are described from the first and second PCs for SaFabI tetramers (A) andmonomers (C)
and EcFabI tetramers (E) and monomers (G). Distribution of frames’ scatter plot histogram for the apo system (gray), TCL complexes (blue), MUT
complexes (cyan), and AFN complexes (orange) along with the first PC for SaFabI tetramers (B) and monomers (D) and EcFabI tetramers (F) and
monomers (H). NAD and AFN are presented in a transparent ball-and-sticks model as an indication of binding site position.
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and the resulting SS3D value was mapped between 0 and 1.
Contacts that were not common between the di!erent chains
were discarded.

3. RESULTS
3.1. Tetrameric FabI Inhibitor Simulations Reveal

Asymmetry among Subunits. Simulated trajectories are
displayed in Figure 2, encompassing FabI in complex with TCL,

MUT, and AFN inhibitors either as tetramers or monomers,
both from S. aureus and E. coli (Figure 2A). Also, two clinically
relevant mutants, G113V SaFabI and G112V EcFabI, were
simulated in monomeric and tetrameric states as the control of
interfaces (5 × 1 μs, Figure 2B).
Our simulations reproduce the key protein−ligand inter-

actions of experimentally determined binding modes (Figure
3).8,10,18 All compounds maintain hydrogen bonds between

Figure 5. Illustration of the angle between α-helices 4 and 5 (A), with extreme bending (B) and stretching (C) conformations. The angle was
calculated between the α-carbon of H4’s first residue, the hinge residue (Ser121/122), and the α-carbon of the last H5’s residue. Structures were
selected from visually inspected relevant frames. Box plots of the angle measurements of H4−H5 bending for apo SaFabI (D) and the complexes with
TCL, MUT, and AFN and the same comparison for the EcFabI systems (E). Box plots colored with lighter shades are from monomers and the darker
ones are tetramers. (F) Heatmap with RMSF values for the loop 146−154 of SaFabI and EcFabI tetramers and monomers. (G) RMSF plots of the apo
structure of wt FabI tetramer (black) andmonomer (dark gray) and G112/113V interface mutant tetramer (dark purple) and monomer (light purple)
for SaFabI and EcFabI. The gray shade represents the loop 99−109, while the yellow shade represents the loop 146−156. For both systems, the RMSF
values of Ala97/95 and Tyr157/156 are also plotted as the control because they directly interact with ligands and show no di!erences between
inhibited systems and apo structures for tetramers.
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their phenolate (TCL/MUT > 80%) or carbonyl (AFN, >30%
in most cases) and Tyr157/156. Interestingly, MUT and AFN
(but not TCL) display π-stacking interactions with Tyr157/156.
Specific for AFN, π-stacking with Tyr157/156 is present even
when the H-bond with the very same amino acid is less frequent
than 30% of the trajectory. The TCL/MUT phenolate displays
additional ionic interactions with Lys164/163. Additionally,
MUT and AFN extended side-chain groups (an amide and a
lactam, respectively) form a H-bond with Ala97/95, either

directly or water-mediated. Finally, π-stacking interactions are
observed between Tyr157/156, Tyr147/146, and/or Phe204
(SaFabI) being complemented by hydrophobic pockets near the
active site.

3.2. Tetramerization Stabilizes Substrate Binding
Loop Movements. We individually analyzed the SaFabI and
EcFabI trajectories using principal component analyses (PCAs),
concatenating both monomer trajectories and each monomer in
the tetramers. The first two components account for

Figure 6.Cartoon representation of SBL and sticks representation of Ala97/95 and Ser197/198 (A). Comparison of SBL folding of experimental FabI
structures deposited in PDB under IDs 4FS38 (gray), 1QG610 (blue), and 1I2Z9 (orange) (B). Violin plots of the distance between SBL Ser197/198
and reference Ser97/95 for SaFabI (C) and EcFabI (D). Average percentage of SBL folding for the four monomers for SaFabI (E) and EcFabI (F).
Distance between Ala97 and Ser197 (representing the COMof the SBL) of SaFabI’s centers of mass for wt and G113Vmutant apo structures (G) and
Ala95-Ser198 of EcFabI for wt and G112V mutant apo structures’ centers of mass (H).
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approximately between 38 and 52% in all simulations. Details of
the PCA results are shown in Figure 4.
All tetrameric SaFabI inhibitor simulations di!er from the apo

structure regarding SBL (L:195-200) movements (Figure
4A,B), which are explained by both PC1 and PC2 extreme

motions. While the apo system transits between SBL-open and
SBL-closed conformations, inhibited systems mainly stay in the
closed state. For comparison, monomeric simulations presented
additional motions of N- and C-termini and H4, besides the
SBL, suggesting that the tetramer restricts their movement. The

Figure 7. SaFabI and EcFabI structures separated by states and their probabilities alongMSMcomponents plus a graph in the top-right highlighting the
relative free-energy landscape of structure transition (A and B, respectively). Twomost probable states of SaFabI (C andD) and EcFabI (D and F) with
disordered regions colored.
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same extreme motions and relevant regions were observed for
EcFabI (Figure 4E,F). The distribution of PC1 scores shows that
EcFabI-MUT and EcFabI-AFN complexes are more likely to
have a closed SBL and C-terminus stabilized toward the protein
core instead of the solvent. In contrast to SaFabI complexes, the
PC1 and PC2 score distributions of EcFabI-TCL are distinct
from the other systems. In addition, EcFabI-TCL presents a
conformation with an extended C-terminus, suggesting
interaction with other subunits of the tetramer (Figure 4E,F).
Further, PCA indicated that monomeric simulations of

SaFabI with MUT and AFN display a distinct dynamic from
TCL-bound and apo structures, where the SBL transits between
open and closed conformations. In addition, PC1 motions
display movements in the H4 and C-terminal substructures for
both FabIs. Since these substructures compose the tetramer
interfaces, their geometry was also investigated in the tetrameric
trajectories by tracking the distances of the chain’s centers of
mass (COMs, Figure S6).
Only minor variations among apo, TCL, MUT complex, and

AFN simulations were observed, suggesting inhibitors’ influence
on the dimer−dimer interfaces. However, distinct changes were
observed in the PR and QR interfaces, which were previously
considered symmetrical. The QR interface is composed of the
helices 4/5 and 6 from two chains. Due to this, we decided to
analyze in more detail ligand binding e!ects upon helices 4/5 as
the main mechanism for the tetramer stabilization.
3.3. Indirect E!ects of Interface Substructures on

FabI’s Binding Site. Interestingly, examples of extreme
movements of H4 and H5 indicated that the loop directly
attached to H4 (loop 99−109) moves as a “whip”, inducing
conformational changes to the loop 146−154, which forms an
interface with the C-terminus. Therefore, we tracked the
bending angle of H4/H5 (Figure 5A−C). All tetrameric systems
have lower H4/H5 movement distribution compared to their
monomeric counterparts (Figure 5D,E), as well as lower
flexibility of the loop 146−154 (Figure 5F). The H4-connected
loop 146−154 is directly attached to catalytic residues Tyr146/
147 and Tyr156/157 (Figure 5B,C), suggesting that changes in
these two substructures would propagate to the active site.
Consistently, the RMSF of FabI-G113/112V mutant, a
mutation at the PR interface, also showed higher fluctuation
of loop 99−109 (Figure 5G) and this e!ect was more
pronounced for monomer simulation.
AFN simulations displayed a distinct behavior, in comparison

with all other simulated complexes, increasing the stretching of
H4 and H5 movement for SaFabI or bending in EcFabI (Figure
5D,E). This AFN flexibility was confirmed by higher RMSF
values of loop 146−154. Further, the distances between the twin
tyrosine residues 147/146 and 157/156 toH4/5 show that AFN
complexes promote larger movements in this region (Figure
S7).
Further, PCA extreme motions suggest a larger amplitude of

movement in the C-terminus, in comparison to other
substructures. Interestingly, recent findings using truncated
mutants at the C-terminus51 suggest the loss of interactions with
other subunits in the tetramer. In our simulations, the C-
terminus interacts with the L:146−154 loop of another
monomer (see the Supporting Information, Table S1 and
associated discussion), displaying an additional indirect e!ect on
the monomer’s conformational changes (see Figure 4).
We also calculated movements and folding of the SBL

(L:195−200) given that di!erent crystals have shown its
conformation changes upon ligand binding (Figure 6A,B). For

both SaFabI and EcFabI in complex with AFN, the distance
between the SBL and the core protein (Ala97/95) follows a
unimodal distribution, while the others present bi- or even
trimodal behavior (Figure 6C,D). SaFabI’s SBL has less helical-
folding property for AFN and MUT, in comparison with other
systems (Figure 6E). The SBL average folding of EcFabI-AFN is
very similar to the apo system but with a very narrow standard
deviation (Figure 6F). Finally, the distance of Ala95/97 and
Ser197/198 (Figure 6G,H) for the wild type and mutants
suggests similar structural movements, except for the FabI
mutant monomer. This indicates that the SBL movement of
monomers is more susceptible to the interface mutation e!ects,
further connecting these two regions. In this sense, FabI
tetramerization is linked to the SBL movements, which depends
on the presence of inhibitors to occur, a fact that explains the
resistance generated by the PR interface mutation.

3.4. Markov State Models Identify Coordination
between Ala97/95, Loop 146−154, and C-Terminus. At
this point, our findings indicate that the FabI interface showed
di!erent movements for apo and inhibited simulations.
However, there are several coordinated motions of the C-
terminus, SBL, and loops 99−109 and 146−154, which imply an
interaction network changing the conformational states of
binding site elements. In other words, there are interactions in
the PR and QR interfaces of FabI that impact the monomeric
structure of the enzyme and, consecutively, the binding of
inhibitors. PCA followed by calculations of specific distances
and angles suggested that conformational states are able to
distinguish apo structure systems from inhibited ones. This
shows the mechanistic connection between the tetramer
stabilization and inhibitor binding. However, at this point, we
are not able to calculate the energy transition between those
states nor their probabilities. Then, in parallel, several replicas
with di!erent timescales and starting frames of apo structures of
SaFabI and EcFabI monomers were simulated, resulting in a
concatenated trajectory of 60 μs for each protein (see Figure
2C), which were used as an input for Markov State Model
analyses.
MSM suggested that themost probable state, S2 (30.8%), is in

the region with the lowest relative free energy (Figure 7A) and
presents disordered relevant structural features, Ala97, Tyr147,
and Tyr157 as well as H4, N- and C-termini, SBL, and loop
146−154 (Figure 7C). Further, S5 (30.7%; the second-most
probable state) kept H4 and SBL ordered and Ala97 and N- and
C-termini remain disordered. Similar behavior was observed for
EcFabI (Figure 7B), where the most probable state (S5, 58.3%)
is located at the lowest relative energy and presents a stable
protein core, however with the C-terminus, Ala95, and Tyr146
being disordered. This state could transit to state S4 (18.4%),
which displays a disordered C-terminus, or state S3 (13.2%)
(Figure 7E,F).
Interestingly, a modified version of the Sequence Similarity

3D (SS3D)50 analysis of full tetramer trajectories indicated that
both complexes have conserved regions according to the protein
movement and contacts, except the SBL, C-terminus, loops 99−
109 and 146−154, Ala97/95, and helices H4/H5 (Figures S8
and S9). In other words, global analyses such as SS3D, MSM,
and PCA corroborated the geometric and local distance
analyses.

3.5. Water Molecule Occupancy Suggests Di!erent
Hydration Profiles and Potential Pockets. In parallel, the
tetramer trajectories were analyzed, aiming at calculation of the
frequency of water molecules around the monomer’s COM
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using a water clustering algorithm. The obtained results indicate
that both SaFabI and EcFabI have similar behavior: the apo
structure is more hydrated followed by FabI-AFN and, last,
FabI-TCL and MUT (Figure 8A,D). In this sense, the average
number of water molecules at 10 Å from the COM is optimal to
represent those di!erences (Figure 8B,E). The observed water
clusters at 10 Å from the COM (Figure 8C,F) indicate that in
both the apo structure and FabI-AFN complexes, water

molecules tend to more frequently occupy ligand binding
pockets near SBL and Tyr147/146 in comparison to TCL and
MUT complexes.

4. DISCUSSION
Previous FabI inhibitor studies employed shorter monomeric
simulations focusing on protein−ligand interactions.14,28,52−54

For instance, our group carried out short molecular dynamics of

Figure 8. Average number of water molecules per frame versus the distance around the center of mass of each monomer during whole tetramer
trajectories for all SaFabI (A) and EcFabI (D) simulated systems. Calculated area under the curve (AUC) values at 1.0 nm from COM (considered
optimum value to distinguish the systems) for SaFabI (B) and EcFabI (E) simulated systems. Water clusters at 1.0 nm from COM for SaFabI (B) and
EcFabI (E) apo structures and inhibitor complexes.
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1 μs (5 × 200 ns), studying EcFabI monomers with diphenyl
ether derivatives,28 where we established a relationship between
protein−ligand interactions and compound potency. Previous
SaFabI full tetramer simulations (four individual chains with 25
ns each) identified structural determinants, such as the folding of
H6/H7, that led to di!erences in the ligand residence time.30
Our current work discloses the longest published all-atom

simulations of S. aureus and E. coli’s FabI to date, encompassing
di!erent inhibitor classes and oligomerization states. We
decided to use longer simulations to investigate the extension
of FabI conformation changes. Our current simulations allowed
us to analyze relevant structural features, such as the
dimerization interface (H2 and H4), changes in the substrate
binding loop and C-terminal conformation diversity, and the
network of interactions responsible for triggering conforma-
tional changes.55−57

Also, metastable states derived from monomeric simulations
showed multiple conformations for the substrate binding loop,
N- and C-termini, and helices H2 and H4 (QR interface). Some
of these conformations were recapitulated by PCA and distance
measurements in the tetramer simulations, while others were
unique to the monomers. This prompts us to suggest that the
stabilization of those substructures by inhibitor binding could
occur before further dimerization/tetramerization. In the
following sessions, we discuss the conformational changes in
these individual regions.
4.1. Bending Movement of H4/H5 Influences the QR

Interface. The formation of monomer−monomer and dimer−
dimer interfaces of FabI was experimentally assessed, suggesting
that multiple oligomeric states exist in equilibrium. For example,
Rafi and colleagues14 observed experimentally the FabI:ACP
(2:1) stoichiometry in the FabI tetramer crystal and they were
not able to find a 1:1 ratio by docking simulations due to steric
bumps between monomers.
Later, it was shown that the oligomeric transition is coupled to

ligand binding in SaFabI,15 which is supported by the increased
ligand a"nity depending on FabI’s oligomerization state.27 The
link between interface stabilization and ligand binding was
finally established for SaFabI15 and BaFabI,58 where inactive
dimers displayed a large H5 inward bending (55°), blocking the
NADH binding site. This is supported by the SaFabI mutant
Met99Thr, located at the loop between H4/5 and the loop with
twin tyrosine residues, which induces a decrease in AFN activity
by 2-fold but not TCL.8
It is worth noting that our measurements for H4/H5 bending

angles (Figure 5D,E) in the SaFabI-AFN complex repeat this
phenomenon, while in the EcFabI-AFN complex, these same
helices undergo elongation in comparison to the apo form. This
is the first report of those movements for EcFabI complexes,
which suggests that this could be a more general mechanism for
FabI from di!erent species. Furthermore, we propose that the
AFN inhibition mechanism involves an indirect net of
interactions from the active site toward the QR interface,
which is di!erent from the direct competitive behavior of
inhibitors.
4.2. SBL Movements and Folding Changes upon

Ligand Binding.The di!erent inhibitory mechanisms between
AFN/MUT and TCLweremainly attributed to the formation of
H-bonds with Ala97/95.8 However, these interactions were not
stable in our simulations (Figure 3) and the bulkier
naphtpyridinone ring seems to fit the hydrophobic pocket
between Ala97/95 and SBL, rather than only interacting with
them. These SBL interactions stabilize it in closed conformation

simulations (Figure 6). This is consistent with the smaller
distances between Ala97/95 and Ser198/197, as well as a
unimodal distribution of those distances (Figure 6C,D,G,H),
and di!erences in the SBL folding (Figure 6E,F). We observed
that SBL movements are important to distinguish inhibited
states (closed SBL) from apo structures (switching between
open and closed states) in tetrameric forms (Figure 4).
Meanwhile, the monomer simulations showed disordered
movements of the SBL and active site (Figure 7). This
conformation diversity was previously observed, to a lesser
extent, in shorter simulations (50 ns), where the SBL assumed
di!erent folding profiles (α-helix or 3-10 helix).52 The relevance
of these states is also corroborated by structural information
from other organisms’ crystal structures, such as Burkholderia
pseudomallei and A. baumannii.59,60 In these structures, the SBL
conformation shows great di!erence, especially when compared
to SaFabI and EcFabI crystal structures. Strikingly, the FabI-
kalimantacin A complex, which is a very large inhibitor
compared to commonly reported small molecules, does not
rely on H-bonds with Ala95 and Ser197 linking these two
flexible loops.29
In summary, the SBL conformation displays a di!erent

movement/folding profile in the AFN simulations in compar-
ison with TCL complexes and apo structures. However, since
the selected ligands do not greatly di!er in terms of potency
(Figure 1), we hypothesized that those observations may be
related to their residence time.61−64

4.3. The Water Occupancy Changes in the Active Site
Changes upon Ligand Binding. Last, we tracked the water
molecules around the COM of the FabI tetramer to investigate
their hydration level and relevant water channels. Surprisingly,
AFN forms more hydrated complexes than TCL/MUT and as
hydrated as apo structures despite being larger than
diphenylether inhibitors. We could interpret this result as a
hydrophobic e!ect promoted by diphenylether derivatives,
which contributed to expelling water molecules from the
binding site. Since AFN has the lowest predicted log P, followed
by MUT and TCL (consensus log P values predicted with
SwissADME65 equal to 2.86, 3.17, and 4.32, respectively), these
water molecules around AFN are energetically allowed to stay in
a pocket near Tyr146/147.
Interestingly, recent naphtpyridinone derivatives (including

direct AFN analogues) help to illustrate the hypothesis that
moderate lipophilicity contributes to allowing water molecules
at FabI’s binding site. The introduction of a −NH3

+ group to
AFN’s naphtpyridinone ring resulted in a broad-spectrum
compound against both Gram-positive and Gram-negative
pathogens.20 Molecular docking of this series suggests that the
charged primary amine points toward the solvent.20 Further
development of these inhibitors66 by changing the size and
shape of the −NH3

+ substituent resulted in a more potent
derivative, namely, fabimycin. The EcFabI-fabimycin cocrystal
structure showed a favorable water network between the ligand,
the NADH cofactor, and the enzyme. This novel water network
justified the increase in antimicrobial activity, showcasing that
this could be explored to improve the a"nity of novel FabI
inhibitors.
Finally, the complex dynamics herein reported will be valuable

for future drug design e!orts since identified hotspots and
specific substructures could be targeted for the development of
novel FabI inhibitors.67 Our findings suggest di!erent conserved
binding modes for compounds from distinct chemical classes.
Those binding modes rely not only upon direct interaction with
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binding site residues but also on promoting a network of
intramolecular interactions that a!ects tetramer interfaces
(clearly the QR interface but also others), suggesting
cooperativity among FabI’s subunits. Last but not least, the
observed protein motions and their related mechanistic
implications in addition to experimental data51,58 could open a
brand new possibility to target allosteric sites, aiming to increase
the specificity and diversity of novel inhibitors.68,69

5. CONCLUSIONS
Our findings suggest that di!erent inhibitors promote distinct
motions in the oligomerization interfaces. FabI tetramerization
into a catalytically competent homotetramer is a reversible
process that relies on conserved structural elements. Our results
suggest that multimerization is essential for the catalytic site’s
integrity and that inhibitor binding enables this multimerization
by stabilizing not only the SBL but also the QR interface (H4/
5). This proposed mechanism is consistent with inhibitor
resistance caused by non-active site mutation, which we suggest
is due to multimerization interference. Furthermore, there are
significant changes in the hydration profiles between AFN
complexes and diphenylether inhibitor complexes, especially
near Tyr146/147, suggesting that water-mediated interactions
could be explored (the chase for waterfall) to improve inhibitors’
potency. For example, substitutions to promote and mediate
those water-mediated hydrogen bonds (e.g., inclusion of polar
groups such as hydroxyls, amines, etc.) could be done in the
future design of novel FabI inhibitors.
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DE72076 Tübingen, Germany; Tübingen Center for Academic
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Farmaceûticos, Faculdade de Farmácia, Universidade Federal
de Minas Gerais (UFMG), 31270-901 Belo Horizonte, Minas
Gerais, Brazil

Ekaterina Shevchenko − Institute of Pharmacy,
Pharmaceutical/Medicinal Chemistry and Tübingen Center
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24

25

26 Figure S1. Ramachandran plots (upper graphs), QMEANS Z-score (medium panel), and 

27 local similarity to the target protein (lower graphs) generated by SWISS-Model.

28
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29

30

31 Figure S2. RMSD values of entire tetramer (black lines), and individual chains A (green 

32 lines), B (cyan lines), C (magenta lines), and D (yellow lines) of SaFabI and EcFabI 

33 systems.

34
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35

36 Figure S3. RMSF values of individual chains A (green lines), B (cyan lines), C (magenta 

37 lines), and D (yellow lines) of SaFabI and EcFabI systems.

38

39

40

41
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42

43 Figure S4. Radius of gyration (black lines) and distance of ligands’ center of mass and 

44 Ala97/95, Tyr147/146, and Tyr157/156 for chains A (shades of green), B (shades of 

45 cyan), C (shades of magenta), and D (shades of yellow).

46

47
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48

49 Figure S5. Validation of Markov State Models: Chapman-Kolmogorov tests demonstrate 

50 that the models follow expected estimates (A = SaFabl and B = EcFabl). In the selected 

51 lag times the implied timescales are converged (C = SaFabl and D = EcFabl).

52
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53

54

55 Figure S6. FabI tetramer highlighting substructures of chain A’s QR and PR interfaces 

56 as well as the other B, C, and D chains represented in transparent cartoons (A). 

57 Representations of substructures present in QR interface (B), PR interface (C), and loop 

58 146-154 / C-terminal interface (D). Violin plot of the distances between the centre of 

59 mass of each chain for SaFabI (E) and EcFabI (F), and the secondary structures present 

60 in the analysed interfaces for SaFabI (G) and EcFabI (H).

61

62 Comments: The folding of individual chains of tetramers was conserved without major 

63 changes during the trajectories. However, the distance between the centre of masses 

64 (COMs) of entire individual chains which compose the QR interface is on average smaller 
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65 for apo systems, indicating that the presence of inhibitors seems to change the overall 

66 conformation of the entire tetramer (Figures S4E,F). To illustrate it, the distance of chains 

67 A and B present in the QR interface of SaFabI ranged from 33.3 Å in apo structure to 

68 33.5 Å in AFN complex (Figure 4E). For EcFabI, the average distance between chains A 

69 and B is equal to 32.1 Å (apo), 32.2 Å (TCL complex), 32.3 Å (MUT complex), and 

70 32.6 Å (AFN complex). For chains C and D distances, the same finding was observed 

71 ranging from 32.2 Å (apo) to 32.6 Å (AFN complex). The same effect, but more slightly, 

72 was observed in the PR interface in the presence of inhibitors. This finding could be 

73 confirmed by the specific distances of secondary structures of QR interfaces (Figure 

74 S4G,H), specifically for the AFN complex. Interestingly, both SaFabI and EcFabI 

75 complexes with AFN stabilize more the C-terminal/loop (residues 146-154) interface than 

76 apo structures and other complexes.
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77 C-terminal conformational changes and interactions

78 We studied the interaction frequency between the C-terminal’s amino acids with other 

79 parts of FabI. We observed fewer interactions in the inhibitor-bound complexes when 

80 compared to the apo system. In particular, the C-terminal of AFN and SaFabI complex 

81 lost two out of four pi-cation interactions between Lys256 and Phe152 from distinct 

82 chains (Table S1). Furthermore, one chain decreased by at least 20% the frequency of H-

83 bonds between the very same lysine and Ala153 from other chains. The same effect was 

84 observed in the AFN and EcFabI complex in comparison with other systems (Table S1). 

85 In that case, the H-bond between Ala254 and Arg151 from distinct chains was lost for all 

86 four chains.

87 As observed in our simulations, in both Sa and EcFabI, C-terminal plays a role in 

88 interactions (Table S1) with loop 146-154 of another monomer, that indirectly drive 

89 active site conformational changes (see Figure 4). Until now, there are some indications 

90 discussing the C-terminal effects over FabI activity. For example, the Bacillus anthracis 

91 (Ba) FabI, when recombinantly expressed with a C-terminal tag, was reported as a dimer 

92 while the untagged enzyme was reported as a tetramer. [1] In this work, Kim and 

93 colleagues speculated that His6-tag may block the dimer-tetramer BaFabI transition. In 

94 other words, they highlight the role of C-terminal interactions with other chains in 

95 tetramer stabilization. Furthermore, the work of Radka and colleagues generated a series 

96 of truncated mutants at C-terminal regions of AfFabI and found that mutants have 

97 decreased catalytic efficiencies. Those mutations that prevented a disordered C-terminal 

98 may decrease the interactions with other subunits in tetramer form and/or sealed water 

99 channels related to enzymatic function. [2]

100
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101 Table S1. Interactions of C-terminal amino acids from SaFabI and EcFabI and other parts 

102 of the tetramer are calculated by the simulation interaction diagram.

SaFabI Apo (%) TCL (%) MUT (%) AFN (%)

Ala254A-Ala153D H-bond 99 99 99 99

Lys256A-Ala153D H-bond 73 65 65 67

Lys256A-Phe152D Pi-cation 38 35 32 -

Ala254B-Ala153C H-bond 99 99 99 96

Lys256B-Ala153C H-bond 58 62 52 69

Lys256B-Phe152C Pi-cation 44 31 38 40

Ala254C-Ala153B H-bond 99 99 99 99

Lys256C-Ala153B H-bond 75 66 72 41

Lys256C-Phe152B Pi-cation 80 33 - 31

Ala254D-Ala153A H-bond 99 99 99 98

Lys256D-Ala153A H-bond 61 74 59 60

Lys256D-Phe152A Pi-cation 30 31 45 -

EcFabI Apo (%) TCL (%) MUT (%) AFN (%)

Ser252A-Arg151D H-bond 45 55 52 31

Ala254A-Arg151D H-bond 39 48H2O 52 -
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Ser252B-Arg151C H-bond 46 59 - 30

Ala254B-Arg151C H-bond 31 64H2O 52H2O -

Ser252C-Arg151B H-bond 45 36 45 66

Ala254C-Arg151B H-bond 40 50 75 -

Ser252D-Arg151A H-bond 58 60 44 44

Ala254D-Arg151A H-bond 53 68 41H20 -

103 For EcFabI Ser252 and Ala254 = mainchain / Gln258, Arg151 and Asn175 = sidechain. 

104 (-) means that interactions were present in less than 30% of trajectory. H2O indicates 

105 water-mediated hydrogen bonds 

106
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107

108 Figure S7. Distances between the carbon alpha atoms’ for Tyr146 and Tyr156 towards 

109 the centre of mass of the H4/H5 (represented by Ser122/121’s Cα), for SaFabI (A) and 

110 EcFabI (B) simulations.

111
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112

113 Figure S8. Metastable states of EcFbl and SaFbl structure revealed by Markov state 

114 modelling. (A = SaFabl and B = EcFabl) Committor probability of the most representative 

115 metastable states. (C) Each metastable state (S) is illustrated with ten representative 

116 structures (coloured cartoons and ribbons), superimposed to a transparent cartoon with 

117 the original crystal structure. 

118

119
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120

121 Figure S9. SS3D contact matrices for TCL-, MUT-, and AFN-FabI complexes in 

122 comparison with apo structures from both S. aureus and E. coli. Below contact plots, the 

123 structures of correspondent complexes were coloured according to 3D similarity ranging 

124 from brown (maximum dissimilarity), passing through grey and reaching blue regions 

125 (maximum similarity) are presented.

126
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