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Abstract
Autonomous driving promises to change the way we live. It could save lives, provide
mobility, reduce wasted time driving, and enable new ways to design our cities. One
crucial component in an autonomous driving system is perception, understanding the
environment around the car to take proper driving commands. This dissertation focuses
on two perception tasks: instance segmentation and 3D multi-object tracking (MOT).

In instance segmentation, we discuss different mask representations and propose rep-
resenting the mask’s boundary as Fourier series. We show that this implicit representa-
tion is compact and fast and gives the highest mAP for a small number of parameters
on the dataset MS COCO. Furthermore, during our work on instance segmentation, we
found that the Fourier series is linked with the emerging field of implicit neural represen-
tations (INR). We show that the general form of the Fourier series is a Fourier mapped
perceptron with integer frequencies. As a result, we know that one perceptron is enough
to represent any signal if the Fourier mapping matrix has enough frequencies. Further-
more, we used INR to represent masks in instance segmentation and got results better
than the dominant grid mask representation.

In 3D MOT, we focus on tracklet management systems, classifying them into count-
based and confidence-based systems. We found that the score update functions used
previously for confidence-based systems are not optimal. Therefore, we propose better
score update functions that give better score estimates. In addition, we used the same
technique for the late fusion of object detectors. Finally, we tested our algorithm on the
NuScenes and Waymo datasets, giving a consistent AMOTA boost.
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Kurzfassung
Das autonome Fahren wird unser Leben verändern. Es könnte Leben retten, für mehr
Mobilität zu sorgen, die Zeit, die wir mit dem Autofahren verschwenden, zu verkürzen
und neue Wege für die Gestaltung unserer Städte zu eröffnen. Eine entscheidende Kom-
ponente eines autonomen Fahrsystems ist die Perzeption, d. h. das Verstehen der Um-
welt um das Fahrzeug herum, um angemessene Fahrbefehle zu erteilen. Diese Disser-
tation konzentriert sich auf zwei Aufgaben der Perzeption: Instanzsegmentierung und
3D-Multi-Objekt-Tracking (MOT).

Bei der Instanzsegmentierung diskutieren wir verschiedene Maskendarstellungen und
schlagen vor, die Grenzen der Maske als Fourier-Reihen darzustellen. Wir zeigen, dass
diese implizite Darstellung kompakt und schnell ist und die höchste mAP für eine kleine
Anzahl von Parametern auf dem Datensatz MS COCO liefert. Darüber hinaus haben wir
während unserer Arbeit an der Instanzsegmentierung herausgefunden, dass die Fourier-
Reihe mit dem aufkommenden Feld der impliziten neuronalen Repräsentationen (INR)
verbunden ist. Wir zeigen, dass die allgemeine Form der Fourier-Reihe ein Fourier-
abgebildetes Perzeptron mit ganzzahligen Frequenzen ist. Daraus ergibt sich, dass ein
Perzeptron ausreicht, um ein beliebiges Signal darzustellen, wenn die Fourier-Mapping-
Matrix genügend Frequenzen aufweist. Außerdem haben wir INR zur Darstellung von
Masken bei der Instanzsegmentierung verwendet und dabei bessere Ergebnisse erzielt
als mit der dominanten Gittermasken-Darstellung.

In 3D MOT konzentrieren wir uns auf Tracklet-Management-Systeme, die wir in
zählbasierte und vertrauensbasierte Systeme unterteilen. Wir haben festgestellt, dass die
bisher für vertrauensbasierte Systeme verwendeten Funktionen zur Aktualisierung der
Punktzahl nicht optimal sind. Daher schlagen wir bessere Funktionen zur Aktualisierung
der Punktzahl vor, die eine bessere Schätzung der Punktzahl ermöglichen. Darüber hin-
aus haben wir die gleiche Technik für die späte Fusion von Objektdetektoren verwendet.
Schließlich haben wir unseren Algorithmus an den NuScenes- und Waymo-Datensätzen
getestet, was zu einem konsistenten verbesserung von AMOTA führte.
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Chapter 1

Introduction

1.1 Motivation

Autonomous driving is making vehicles drive without human intervention. Autonomous
driving could transfer the way we live and has many advantages. The most important
advantage is saving lives by reducing road accidents, as they are the leading cause of
death for people between the age of 5 and 29, and the 8-th cause overall as shown in
figure 1.1. And the main reasons for those accidents are speeding, drowsiness, distrac-
tion, intoxication, or not obeying safety rules (WHO, 2018). Another advantage is that
it could provide mobility to people who cannot drive, such as the elderly, people with
special needs, or teenagers. It could also enable new ways of public transportation such
as carpooling and car-sharing, which would eventually reduce the number of cars and
reduce pollution (Ratti, 2021). However, on the other hand, it could lead to a rise in un-
employment, eventually leading to personal and social problems such as poverty, erosion
of self-esteem, and family tensions (Alison McClelland, 1998). Furthermore, there is a
possibility of data privacy problems, where companies can use their car fleet to collect
real-time data of entire cities (VPRO, 2019).

For self-driving cars to run on public roads, they need to reach a specific driving per-
formance. Otherwise, they will do more harm than good. Therefore, we compare it to the
driving performance of current users of the public roads, which are humans. Although
the main contributor to road accidents is poor human driving behavior, their overall driv-
ing performance is good. Statistically, in the USA, one person is killed in an accident for
every 90 million miles (NHTSA, 2019), which is challenging for a machine to achieve.

In addition, humans are excellent at using their accumulated knowledge and can use it
to learn how to behave in unseen environments efficiently. On the other hand, machines
perform poorly in environments they never saw during the training phase; this drop in
performance when given unseen data is called the generalization problem. For example,
suppose we train a self-driving car on data collected in Europe. In that case, we can not
let it run in Africa without further training because of the different general appearance,
weather, road conditions, etc.

Another aspect that humans are good at is negotiating with other traffic participants.
Humans can predict other people’s intent by tiny hints, and if their prediction is wrong,
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Chapter 1 Introduction

Figure 1.1: The estimate of the leading causes of death of all ages in 2016 by the World
health organization (WHO, 2018).

they can act to save the situation. However, this kind of reasoning is still challenging for
machines. Two tasks that the machines would do and humans cannot do are full attention
on driving and total obedience to traffic rules.

1.2 History of Autonomous driving
The history of driverless cars started some time after the invention of the car by Benz in
1886 (MBG, 2022) as shown in figure 1.2a. The first driverless car was made in 1925
and was called the ”American Wonder.” It did not have a driver in the car; however, it
was remote-controlled by an operator sitting in a car following it as shown in figure 1.2b.
A radio company built the car as a marketing strategy to show the capabilities of their
radio control system (Engelking, 2017). Then the idea of self-driving was geared toward
intelligent infrastructure rather than smart cars. For example, one idea was to bury cables
under roads to control cars. This idea was first exhibited in the World’s fair in 1939 and
realized in 1960 by Criterion (KRA, 2014). Unfortunately, the idea of making smart
infrastructure did not continue because it was expensive. Later, scientists decided to go
in the other direction and develop smart cars instead of intelligent infrastructure.

In 1986, there were two parallel efforts to make an autonomous vehicle with no ex-
ternal control. One effort was a project by the NavLab at Carnegie mellon university
(Jochem et al., 1995) as shown in figure 1.2d, and the other effort was the two projects,
VaMoRs (Dickmanns et al., 1994) and VAMP (Maurer et al., 1996), by Dickmann’s
group at Bundeswehr Universität Munich. The Navlab project resulted in the ”No Hands
Across America” trip in 1995, where they could make the car drive semi-autonomously

2



1.2 History of Autonomous driving

(a) Benz patent car (b) American wonder (c) VaMoRs

(d) NavLab (e) VAMP (f) Stanley

Figure 1.2: A historic timeline of autonomous vehicles: (a) Benz patent motor car (MBG,
2022), the invention of the car in 1886 , (b) the first remote controlled car in 1925 En-
gelking (2017), (c) VaMoRs (Dickmanns et al., 1994), (d) NavLab Jochem et al. (1995)
and (e) VAMP Maurer et al. (1996) parallel first attempts to a self contained autonomous
vehicle in 1986. (f) Stanley (Thrun et al., 2006) the car that won the second DARPA
grand challenge in 2005.

(only lateral control) for 2850 miles and 98% of the time. The VaMoRs and VAMP
project resulted in a 1678km trip from Munich to Odense, where they could make the car
drive autonomously for 95% of the time. The van used in the VaMoRs project is shown
in figure 1.2c.

The previous projects showed the potential of autonomous driving; as a result, the US
Defense Advanced Research Projects Agency (DARPA) organized three autonomous
driving challenges in 2004, 2005, and 2007 (Behringer et al., 2004; Tuttle et al., 2007).
In the first DARPA grand challenge, the participants should make a car drive fully au-
tonomous along a 240 km route in the Mojave desert. The organizer gave 2935 Global
Positional System (GPS) points to guide the cars through the desert. Unfortunately, none
of the teams could finish the route. The following year DARPA organized the second
challenge in the same desert but with a different route. This time five teams could finish
the challenge, where Stanley (Thrun et al., 2006) (shown in Figure 1.2f) completed the
route in the shortest time and won the challenge. Finally, in the DARPA urban challenge,
the participants had finished a 96 km route; however, this time in an urban scenario. The
participants had to obey traffic rules, negotiate, avoid obstacles, and merge into traffic.

3
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Figure 1.3: The autonomous driving platform Annieway which was used to record the
KITTI dataset. This car contains multiple cameras, a LIDAR, a GPS, and an IMU
(Geiger et al., 2012).

Six teams finished this challenge, which showed that it is possible to achieve autonomous
driving in a controlled environment. One of the enablers of these achievements was the
development of GPS and IMUs, which allowed vehicles to have a cm range localization
accuracy. In addition, the development of LIght Detection And Ranging (LIDAR) sen-
sors gave accurate 3D reconstructions of the vehicle surroundings (Thrun et al., 2006).

In 2012, the deep learning revolution came with the availability of large datasets and
high computing power, mainly by GPUs. At that time, the Karlsruhe Institute of Tech-
nology and Toyota Technological Institute (KITTI) dataset benchmarked many of the au-
tonomous driving tasks (Geiger et al., 2012), which was recorded with Annieway shown
above 1.3. This benchmarking made it easy for small research groups to focus on small
subtasks and enter the development race. At the same time, there was a massive invest-
ment in autonomous driving. Either by startups like Waymo, NuTonomy, Zoox, etc.,
who want to solve autonomous driving directly, or by car companies like Daimler, Toy-
ota, Ford, etc., who want to introduce the technology gradually. In this deep learning era,
three main approaches appeared to solve autonomous driving, which we will discuss in
the following few sections. Before that, we will discuss the vehicle platform itself.

1.3 The autonomous vehicle platform

An autonomous vehicle is a regular vehicle with additional sensors to perceive the sur-
roundings and onboard computing to run the algorithms. We typically equip the vehicle
with cameras, LIght Detection And Ranging (LIDAR) sensors, RAdio Detection And
Ranging (RADAR) sensors, SOund Detection And Ranging (SONAR) sensors, inertial
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1.4 Approaches to solving autonomous-driving

measurement units (IMU), GPS, and wheel odometry. Annieway is an example of an
autonomous vehicle which is equipped with multiple cameras, A LIDAR, a GPS, and
an IMU, as shown in figure 1.3. Cameras are sensors used to capture the reflected light
from the scene. Cameras are relatively inexpensive and provide rich information about
the environment. Because of their advantages, almost all companies equip their vehicles
with cameras.

LIDARs, RADARs, SONARs are range sensors. They are used to find the distance
of objects in the scene. They do this by sending waves to the environment and then
measuring their reflection, and from the wave’s time of travel and its speed, we can infer
the object’s distance. LIDARs use light waves, and they are the most accurate range
sensors; however, they are bulky, expensive, and have problems when used in foggy and
rainy weather. Therefore, the industry has made a considerable effort to reduce its cost
and size, encouraging adoption. RADARs use electromagnetic waves, and they have
a more extended range than LIDARs, are cheap, and can be used to infer the speed of
objects. On the other hand, we can not recognize the shape of the surrounding objects
because they are not accurate enough. SONAR use sound waves and are the smallest
and cheapest. However, their update speed is slow, so they are mainly used in low-speed
scenarios such as parking.

GPS is used to find the vehicle’s absolute position on earth for localization. The GPS
reads time-stamped satellite signals. Using the time-stamps, it could calculate the dis-
tance from each visible satellite, then using triangulation, it could find its position relative
to the visible satellites. A typical GPS accuracy is 5 meters, so GPS alone can not be
used for localization as this distance is larger than the lane width. IMUs are used along-
side the GPS for localization. These sensors measure the vehicle’s linear acceleration
and rotational velocity; however, they are very noisy sensors, and should be used with
other sensors. The sensors we chose to equip the vehicle determine the algorithms we
can use to solve the driving task and determine its performance’s upper bound.

1.4 Approaches to solving autonomous-driving
Solving autonomous driving can be seen as finding a mapping function between the
high-dimensional sensor inputs and low-dimensional driving commands. There are three
main ways to solve the driving task, as shown in figure 1.4: the classical modular pipeline
approach, end-to-end learning, and direct perception.

In the classical modular pipeline approach, we divide the task into sub-tasks and solve
each independently. These sub-tasks include: perception, which is understanding the
environment around the car to take proper driving commands; perception tasks include
object detection, tracking, instance segmentation, or optical flow. Localization is locat-
ing the vehicle itself on the map. Path-planning is finding a sequence of good moves
that would make the vehicle reach the destination in an optimized way, for example, as
fast and safe as possible. Finally, the control system gives the vehicle low-level com-
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Figure 1.4: The three different approaches to solve autonomous driving.

mands to ensure the high-level plan is accomplished. Today, the modular pipeline is still
used in many autonomous driving systems because it allows the developer to find and
debug problems easily compared to the black box neural networks. In addition, there
are many reliable and robust solutions to some sub-tasks, such as path planning and map
localization. However, many works showed that one could get a performance boost if
the network learns multiple tasks jointly. Nevertheless, the perception sub-task is the
system’s bottleneck, and it is far from being solved, so it is the focus of this thesis and
the research community’s focus in the past couple of years.

The second approach to self-driving is end-to-end learning. Here, the mapping func-
tion between the inputs and outputs is a neural network trained using imitation or rein-
forcement learning. In imitation learning, the network learns to imitate human drivers by
providing cheap human driving data. The challenge in imitation learning is how to make
the vehicle learn what to do in situations it did not witness. In reinforcement learning,
we optimize the network for a predefined reward function representing the ideal driving
behavior. However, finding such a reward function is not straightforward. In addition,
there is an exploration phase when running reinforcement learning, where the car will try
random actions to learn from its mistakes, which could be dangerous in the real physical
world. Usually, we make this exploration phase in simulation; however, there is still the
challenge of closing the gap between simulation and reality.

The third approach is direct perception, a hybrid of the first two methods. First, we
use a neural network to get intermediate representations such as distance to the lanes,
object detection, and optical flow. Then use these intermediate representations to control
the vehicle. Controlling the vehicle can be either classical or learned-based. Zhou et al.
(2019a) showed empirically that intermediate representations help in end-to-end learning
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1.5 Contribution & Outline

tasks, so it looks like the solution will not be an end-to-end approach. In our work in the
thesis on perception tasks, we can use these tasks as a separate module in the modular
pipeline approach or the first step to get intermediate representations in the direct per-
ception approach. Nevertheless, the perception sub-task is the system’s bottleneck, and
it is far from being solved, so it is the focus of this thesis and the research community’s
focus in the past couple of years.

1.5 Contribution & Outline
This dissertation focuses on two perception tasks used in autonomous driving: instance
segmentation and 3D tracking. In instance segmentation, we focus on mask representa-
tions. Furthermore, in 3D tracking, we focus on tracklet management systems and late
fusion in 3D detection. This work is mainly based on the following four peer-reviewed
conference papers:

1. Riaz, Hamd Ul Moqeet*, Nuri Benbarka*, and Andreas Zell. ”FourierNet: Com-
pact mask representation for instance segmentation using differentiable shape de-
coders.” International Conference on Pattern Recognition (ICPR) 2021.

2. Benbarka, Nuri*, Timon Höfer*, Hamd Ul Moqeet Riaz and Andreas Zell. ”See-
ing implicit neural representations as Fourier series.” IEEE/CVF Winter Confer-
ence on Applications of Computer Vision (WACV) 2022.

3. Riaz, Hamd Ul Moqeet*, Nuri Benbarka*, Timon Höfer, and Andreas Zell. ”Fouri-
erMask: Instance Segmentation using Fourier Mapping in Implicit Neural Net-
works.” International Conference on Image Analysis and Processing (ICAIP) 2021.

4. Benbarka, Nuri, Jona Schröder, and Andreas Zell. ”Score refinement for confidence-
based 3D multi-object tracking.” International Conference on Intelligent Robots
and Systems (IROS) 2021.

In addition to the previous works, I contributed to the following works:

5. Höfer, Timon, Faranak Shamsafar, Nuri Benbarka and Andreas Zell. ”Object de-
tection and Autoencoder-based 6D pose estimation for highly cluttered Bin Pick-
ing”. IEEE International Conference on Image Processing (ICIP) 2021.

6. Varga, Leon Amadeus, Martin Messmer, Nuri Benbarka and Andreas Zell. ”Wavelength-
aware 2D Convolutions for Hyperspectral Imaging.” IEEE/CVF Winter Confer-
ence on Applications of Computer Vision (WACV) 2023.

However, these works (Höfer et al., 2021; Varga et al., 2023) are unrelated to the main
topic, so we will not discuss them in this dissertation. We will structure the rest of the
dissertation as follows:
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Chapter 1 Introduction

Chapter 2 We introduce the instance segmentation task and discuss the main approaches
to solving this task. Then we introduce the different mask representations
and the advantages and disadvantages of each representation. In addition, we
introduce the primary datasets used to benchmark this task and the metrics
used to evaluate it.

Chapter 3 We propose a compact mask representation, the Fourier series of the mask
boundary. We show that it gives excellent performance compared to other
masks with few parameters. However, our method is limited to instances with
single star-shaped masks, so we extend our work to use the Fourier series of
level sets to represent the masks.

Chapter 4 We describe the theoretical foundation for the general Fourier series equation
to use it to express level sets. In addition, we show the mathematical connec-
tion between the equation and implicit neural representations. This connec-
tion gave us an understanding of MLPs with Fourier features. For example,
a single Fourier mapped perceptron can represent any signal if it has enough
frequencies, and elements of the mapping matrix represent the frequencies of
the reconstructed signal.

Chapter 5 We discuss our second mask representation, using both a Fourier series and
implicit neural representation to represent the level set. We show that our
representation is better than the widely used grid-based masks.

Chapter 6 We introduce the 3D multi-object tracking task and explain its pipeline. We
also introduce the most popular 3D multi-object tracking datasets and the eval-
uation metrics of this task.

Chapter 7 We discuss the problem with the current count-based and confidence-based
tracklet management systems. Furthermore, we propose score update func-
tions to refine the tracklet scores in confidence-based systems. Furthermore,
we introduce a late fusion algorithm that relies on the confidence of the track-
lets. With this work, we won the NuScenes tracking challenge of 2021. +

Chapter 8 This chapter concludes our work and gives some future work.
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Chapter 2

Instance segmentation

2.1 Introduction

With the recent emergence of deep learning enabled by large datasets and high compu-
tational power, autonomous machines have become a practical option in many decision-
making processes. One example of these decision-making processes is autonomous driv-
ing, and the first and foremost task in autonomous driving is perceiving and understand-
ing the scene before acting.

Instance segmentation is one of the object recognition techniques which we use for
scene understanding (Janai et al., 2017). It is classifying each pixel of an image by a pre-
defined class (or as known by semantic segmentation) and, at the same time, distinguish-
ing different instance occurrences. Figure 2.1 shows the difference between instance and
semantic segmentation. Instance segmentation deals with countable objects only, while
semantic segmentation deals with both. This chapter discusses the main approaches to
solve instance segmentation, and it introduces the different mask representations and
the advantages and disadvantages of each representation. In addition, it introduces the
datasets and metrics used to evaluate the task.

2.2 Convolutional Neural Networks (CNNs)

In recent years, most methods have employed CNNs for instance-segmentation. A CNN
is an artificial neural network (ANN) that we typically use to analyze images. They use
shared-weight convolution kernels that slide along input features and provide translation-
equivariant activations known as feature maps. CNNs are inspired by biological creatures
where the connectivity between neurons resembles the organization of the visual cortex.
Cortical neurons react to stimulations only in a limited visual region known as the re-
ceptive field. The overlap of different neurons’ receptive fields covers the entire visual
field.

A simple CNN architecture is a series of layers sequentially transforming volumes of
activations to another through differentiable functions. The three main layers to build
CNN architectures are the convolutional layer, pooling layer, and activation layer. We
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Chapter 2 Instance segmentation

(a) Image (b) Semantic segmentation (c) Instance segmentation

Figure 2.1: For a given (a) image, we show ground truth for: (b) semantic segmenta-
tion (per-pixel class labels), (c) instance segmentation (per-object mask and class label).
(Kirillov et al., 2019)

Figure 2.2: The architecture used in LeNet (LeCun et al., 1998), a successful CNN for
digit recognition. It has two convolution layers each followed by a pooling layer, then
two fully connected layers and the final output.

convolve kernels to the previous feature map in the convolution layer to get a new feature
map. We apply an elementwise activation function to the feature map in the activation
layer, such as the Rectified Linear Unit (ReLU) function. We reduce the feature map size
along the spatial dimensions (width, height) in the pooling layer by taking the maximum
or average of local areas in the feature map. Finally, we pile these layers to form a
complete CNN architecture.

Several CNN architectures became popular in the field, and one of those was LeNet by
LeCun et al. (1998), they used it to read zip codes and digits. Figure 2.2 shows the archi-
tectures used in LeNet. After that, the most popular architectures were the ones that won
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Krizhevsky et al.,
2012) from 2012 to 2015, and we still use some of them now. Figure 2.3 shows the Ima-
geNet’s classification task’s error over the years and the names of the CNN architectures
that won or were runner-ups in the challenge.

In 2012, Krizhevsky et al. (2012) submitted AlexNet to the ILSVRC, which was the
work that popularized CNNs in the current deep learning era. They significantly outper-
formed the runner-up in the top 5 error of 16% compared to a 26% error. The network
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2.2 Convolutional Neural Networks (CNNs)

Figure 2.3: The ImageNet classification top-5 error from years 2012 to 2015 (He et al.,
2016). We can see the correlation between the reduction in error in blue and the number
of layers of the networks in red.

had similar architecture to LeNet but was deeper and wider. The idea of using deep
networks was novel at the time.

The ILSVRC winner of 2014 was a CNN from Google (Szegedy et al., 2015) named
GoogLeNet. Its main contribution was the Inception Module, which dramatically re-
duced the network’s number of parameters from 60M to 4M. Additionally, their archi-
tecture uses Average Pooling instead of fully connected layers at the end of the CNN,
removing many unneeded parameters. The runner-up in 2014 was VGGNet (Simonyan
and Zisserman, 2014). They showed that the depth of the network is a critical component
for good performance. Their final network contains 16 convolutional layers and features
a homogeneous architecture that only performs 3x3 convolutions and 2x2 pooling.

He et al. (2016) developed the residual network, the winner of the ILSVRC of 2015.
They introduced skip connections which solved the vanishing gradient problem and en-
abled the training of very deep networks (152 layers). ResNets are currently one of
the default choices for using CNNs in practice. Unfortunately, there are no significant
breakthroughs in network architectures for vision other than vision transformers (Liu
et al., 2021). However, some CNN architectures are worth mentioning, like inceptionV4
(Szegedy et al., 2017), ResNeXt (Xie et al., 2017), MobileNet (Howard et al., 2017), and
EfficientNet (Tan and Le, 2019). We use many of these CNN architectures as backbones
for different recognition tasks, such as instance-segmentation in our case.
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Chapter 2 Instance segmentation

Figure 2.4: The Mask R-CNN (He et al., 2017) framework for instance-segmentation.
It contains an RPN that gives object proposals, then RoI-Align to reshape the proposal
features to match the head size, and finally, three branches for the class, box parameters,
and the mask.

2.3 Approaches to solve instance segmentation

We classify approaches to solve instance segmentation into two-stage and single-stage
methods. Furthermore, we classify the two-stage methods into detect-then-segment and
segment-then-cluster methods. The next paragraphs will explore these methods.

2.3.1 The detect-then-segment approach

These methods split the task into two subtasks, object detection, and segmentation. First,
an object detector produces a bounding box, and then a segmentation network classifies
the pixels within that box as foreground or background. The most well-known instance
segmentation method is Mask R-CNN (He et al., 2017), constructed on the object detec-
tor Faster R-CNN (Ren et al., 2015). Faster R-CNN uses a CNN as a Region Proposal
Network (RPN). This network classifies predefined anchor boxes distributed on the im-
age to whether they contain an object or not. Then we reshape the predicted region
proposals using a Region-of-Interest (RoI) pooling layer, which we use to classify the
image within the proposed region and predict the offset values for the bounding boxes.
Mask R-CNN added a mask branch to Faster R-CNN parallel to the bounding box and
the classification branches as shown in figure 2.4 and used RoI-Align instead of RoI-
Pooling.

Most detect-then-segment methods after Mask R-CNN were built on top of it. PANet
(Liu et al., 2018) improved the information flow from the backbone to the heads using
bottom-up paths in the feature pyramid and adaptive feature pooling. In Mask Scoring
R-CNN (Huang et al., 2019), the network estimates the IoU of the predicted mask and
uses it to refine the prediction scores. Hybrid Task Cascade (HTC) (Chen et al., 2019)
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2.3 Approaches to solve instance segmentation

introduced the cascade of masks by merging detection and segmentation features and
achieved enhanced detections. ShapeMask (Kuo et al., 2019) introduced class-dependent
shape priors and used them as preliminary estimates to obtain the final detection.

CenterMask (Lee and Park, 2019) added a spatial attention-guided mask on top of the
Fully Convolutional One-Stage object detector (FCOS)(Tian et al., 2019). This spatial
attention helped focus on critical pixels and diminished noise. After getting an initial
mask, some detect-then-segment methods added a refinement step, such as PolyTrans-
form (Liang et al., 2019) and PointRend (Kirillov et al., 2020). PolyTransform first
converts the initial grid representation mask into a polygon representation mask. Then,
they deform the polygon using a network to obtain the final crisp masks. PointRend pre-
dicts an initial low-resolution mask. Then, in uncertain positions in that mask, they take
corresponding features to that position from the last feature map and pass them into an
Multi-Layer Perceptron (MLP) to predict the occupancy at that position. This process
is repeated recursively until a specific resolution, or there are no uncertain pixels. The
MLP here implicitly represents the mask.

2.3.2 The segment-then-cluster approach

Segment-then-cluster methods first predict the class label of each pixel and then group
them to form instance segmentation results through methods such as clustering and met-
ric learning. These methods are generally less accurate than detect-then-segment meth-
ods. In addition, they need high computing power because of the dense prediction of the
semantic segmentation.

De Brabandere et al. (2017) proposed a pixel-level discriminative loss function to deal
with different instances. The loss function maps each pixel to a point in the feature space,
making the distance between pixel’s features belonging to the same instance close, while
the distance between different instances is very far. Bai and Urtasun (2017) proposed to
combine semantic segmentation with the traditional watershed algorithm in an end-to-
end manner. First, they generate an energy map and then segment each instance in the
map, which they can perform relatively quickly.

Kirillov et al. (2017) proposed to predict both semantic segmentation and instance
boundaries. After predicting both, they perform semantic segmentation to get semantic
information and use an edge detector to differentiate different instances. SSAP (Gao
et al., 2019) proposed to learn the probability that two pixels belong to the same in-
stance. They do this by learning the affinity pyramid of pixel pairs. First, they use high-
resolution images to learn the short-distance affinity and low-resolution images for the
long-distance affinity. Then, they use short- and long-distance affinities to generate the
multi-scale affinity pyramid, which they use with the semantic segmentation predictions
to get instance predictions.
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Chapter 2 Instance segmentation

2.3.3 The single-stage approach

Single-stage instance segmentation methods predict instance masks in a single shot with-
out using any proposed regions/bounding boxes as an intermediate step. These methods
are usually more straightforward, faster than other approaches, but less accurate.

You Only Look At CoefficienTs (YOLACT) (Bolya et al., 2019) generated proto-
type masks and simultaneously produced bounding boxes and combination coefficients.
Then, they cropped the prototype masks with the bounding boxes and made a weighted
sum of the cropped prototype masks using the combination coefficients to construct the
final mask at real-time speeds. Likewise, Embedmask (Ying et al., 2019) generated pixel
embeddings that differentiate each instance in the image and simultaneously produced
bounding boxes and proposal embeddings. Finally, they form the mask by comparing
the proposal embedding with all pixel embeddings in the produced bounding box area.

ExtremeNet (Zhou et al., 2019b) used keypoint detection to obtain the extreme points
of an object. Then a rough mask was created by forming an octagon from the extreme
points. Similarly, Dense RepPoints (Yang et al., 2019) used keypoint detection to obtain
numerous points. They get the mask using a meshing algorithm on the points or taking
their concave hull.

Polarmask (Xie et al., 2020) performed a dense regression of the distances from the
mask center to points on the outer contour in polar coordinates. Additionally, since FCOS
(Tian et al., 2019) showed that the detections near object boundaries were generally inac-
curate, they likewise adopted the concept of centerness, which gave greater importance
to the detections near the center and enhanced the prediction quality. ESE-Seg (Xu et al.,
2019) has encoded the objects’ contours using function approximations such as Cheby-
chev polynomials and Fourier series. First, they predict the function parameters, or what
they call the shape vector, and then they transform these parameters into contour points
in the polar representation.

2.4 Mask representations

We can classify instance segmentation methods according to the mask representation.
Mask representation is an important design choice because it could limit the system’s
performance if we do not choose it appropriately. For example, if the mask represen-
tation can only represent convex masks, all non-convex masks will only have convex
approximations. There are four main mask representation methods as shown in figure
2.5: Grid, point, polygon, and implicit representations. The mask representation should
be accurate, memory efficient, easy to train, and requires minimal post-possessing. Each
of which has its advantages and disadvantages, and the following section we will talk
about these representations.
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2.4 Mask representations

a) Grid b) Point c) Polygon d) Implicit

Figure 2.5: An illustration of mask representations with examples (Mescheder et al.,
2019): a) The grid representation (Mask R-CNN (He et al., 2017)). b)The point represen-
tation (Dense rep points (Yang et al., 2019)). c)The polygon representation (PolarMask
(Xie et al., 2020)) .d)The implicit representation (ESE-Seg (Xu et al., 2019)).

2.4.1 Grid representation
We represent the mask in the grid representation as a grid of pixels where we classify
each pixel as foreground or background as shown in figure 2.5a). It is the most used
representation due to its simplicity. However, it can only provide a discretized output ap-
proximation at low resolutions. Moreover, it needs too much memory for high-resolution
masks, limiting some applications. Examples of grid representation methods are MaskR-
CNN (He et al., 2017) and YOLACT (Bolya et al., 2019).

2.4.2 Point representation
We represent the mask in point representation as a set of pointsas shown in figure 2.5b).
This representation can be accurate if we use a high number of points. However, it needs
a post-processing step to get the actual mask. Dense rep points (Yang et al., 2019) is the
only method using the point representation, and they get the mask either using a meshing
algorithm on the points or taking their concave hull.

2.4.3 Polygon representation
We represent the mask in the polygon representation as a set of connected points or a
polygonas shown in figure 2.5c). The polygon representation can be compact, fast, and
accurate. However, dealing with it in a deep learning framework is complex. Therefore,
some methods made some restrictions to make it easy to deal with this representation.
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For example, Polarmask (Xie et al., 2020) allowed only star-shaped polygons, and Poly-
transform used it in the refinement step.

2.4.4 Implicit representation

We represent the mask in the implicit representation with a parameterized continuous
function that maps the input domain of the mask (e.g., coordinates of a specific pixel in
the image) to the value at that input location (e.g., foreground or background) as shown in
figure 2.5d). This representation can be accurate if we use a proper function. However,
it can be slow if the function takes some time to evaluate. Examples of methods that
use implicit representation are ESE-Seg (Xu et al., 2019), which represents the mask
boundary as a Chebyshev polynomial, and the refinement step of PointRend (Kirillov
et al., 2020), representing the mask as multi layer perceptron.

2.5 Datasets

Datasets are crucial for deep learning algorithms. They contain the data needed for
training along with the labels made by annotators. In addition, public datasets are used
to benchmark algorithms to track the progress in solving the different tasks. Here we
show two general-purpose and two autonomous driving focused instance segmentation
datasets:

2.5.1 Pascal Voc

The Pascal VOC dataset is one of the first datasets for classification, object detection,
action recognition, semantic segmentation, and instance segmentation. It was used in the
PASCAL VOC Challenges between 2005 and 2012. It contains 11530 images with 20
classes. In addition, images have detailed annotation information. Therefore, it has been
the essential benchmark before the large-scale application of the Microsoft Common
Objects in Context dataset.

2.5.2 Microsoft Common Objects in Context (COCO) Dataset

The Microsoft COCO Dataset is a large-scale image dataset to recognize, segment, and
caption images with diverse scenes. It has 82783 training images, 40504 validation im-
ages, and 80000 testing images annotated with 80 object classes. Due to its large scale
and diversity, COCO got much interest since it first appeared. COCO became the stan-
dard benchmark in object detection and instance segmentation.
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2.5 Datasets

Figure 2.6: Samples of annotated images from the dataset (rows from top to bottom):
a) Pascal Voc dataset, b) Microsoft Common Objects in Context Dataset, c) Cityscapes
Dataset, d) The Mapillary Vistas Dataset
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2.5.3 Cityscapes Dataset

The cityscapes dataset focuses on semantic understanding of the street scenes and pro-
vides semantic, instance-specific annotations. It has 30 object classes that have been
grouped into eight categories relevant to urban scenes like vehicles, people, sky, and
roads. It consists of about 5000 high resolution images with refined annotations and
20000 with coarse annotations. The images for the dataset were captured in fifty cities
in Europe over several months during the daytime with good weather. The video frames
were selected to have a diverse number of object classes, scenes, and backgrounds.

2.5.4 The Mapillary Vistas Dataset (MVD)

The MVD is another extensive street scene image dataset. It contains 25000 annotated
images with 66 classes, and its annotations are dense and fine-grained. The dataset is
five times bigger than Cityscapes for fine-annotation. It features images from across the
world that have been captured during different weathers, seasons, and daytimes. In ad-
dition, different photographers have captured the dataset images using different devices
like cell phones and cameras. The aim of developing the database is to further develop
state-of-the-art research in understanding street scenes.

2.6 Evaluation
We evaluate to test the pros and cons of different algorithms. In evaluation, the algo-
rithms are usually tested on the same dataset and the same hardware so that the compar-
ison will be as fair as possible. We evaluate the performance of instance segmentation
algorithms in many aspects, among which the most critical indicators are accuracy, run-
ning speed, and memory consumption.

The most common metric for accuracy is the mean Average Precision (mAP) used in
Pascal VOC and its adjustment used in COCO. However, to understand mAP, we need
to go through other metrics: Intersection-over-union (IoU), precision, and recall. We
decide whether a prediction is correct or not with IoU or Jaccard Index. We define the
IoU as the intersection of the predicted instance mask and the ground truth mask divided
by their union. We consider a prediction as True Positive (TP) if the IoU > threshold and
False Positive (FP) if IoU < threshold. The recall is the percentage of TPs found out from
the ground truths. Precision is the percentage of correct predictions.

We can calculate AP per class now that we know the IoU, precision, and recall. Then,
after calculating the AP per class, we can average them to get the mAP. We will use the
simplified box example shown in figure 2.7a) to understand the AP calculation, where
ground truths are in green and box predictions are in red and the IoU threshold is 0.5.

First, we sort the predictions based on the confidence score. If there is more than one
prediction for a single object, the prediction having the highest IoU is considered TP,
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(a) Example images
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Figure 2.7: An example of two images 2.7a) containing ground truths in green and box
predictions in red (Kumar, 2019), and 2.7b) shows their corresponding actual PR curve
in blue and its approximation in red.

Detection Confidence TP/FP Acc. TP Acc. FP Precision Recall
P4 0.98 TP 1 0 1.0 0.33
P3 0.88 FP 1 1 0.5 0.33
P1 0.78 TP 2 1 0.66 0.66
P2 0.6 FP 2 2 0.5 0.66

Table 2.1: The table used to plot the PR curve 2.7b). It contains sorted detections accord-
ing to their confidence, then the decision whether they are TP or FP and the precision
and recall at each step.

and the rest are FPs. Next, we calculate the accumulated TP encountered from top to
bottom, and we do the same for accumulated FP. Then, we calculate the precision and
recall at each step as shown in table 2.1. Finally, we plot the precision-recall (PR) curve
as in figure 2.7b) and the area under the curve is the AP. This metric captures the overall
performance because it takes into account all other metrics like number of TP, FP, FN,
precision, and recall.

In Pascal VOC, they calculated an approximation of this area. First, they interpolated
the precision at each recall level by taking the maximum precision measured lower than
that recall as shown in the red curve in figure 2.7b). Then, they took the mean of precision
values at 11 equally spaced recall levels [0,0.1, . . . ,1] (0 to 1 at a step size of 0.1). In our
example this would be (1+1+1+1+0.66+0.66+0.66+0+0+0+0)/11 = 0.5454mAP.

The mAP metric was modified in COCO to reward detectors with better localization.
They calculated multiple mAPs with more than one IoU threshold and then averaged
those mAPs to get the new mAP. For example, in Pascal VOC mAP, two predictions of
IoU 0.6 and 0.9 would not change the metric. In COCO evaluation, the IoU thresholds
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range from 0.5 to 0.95, with a step size of 0.05. They also report APs at fixed IoUs such
as IoU = 0.5 and IoU = 0.75 written as AP50 and AP75, respectively. Furthermore, they
report mAP of specific mask sizes to differentiate accuracy across different levels.

Speed and memory consumption are also critical factors in instance segmentation. We
measure speed with processing time and frames per second. The processing time is the
needed time to process a standard resolution image. When we make speed comparisons
of algorithms, we must ensure that we are using the same hardware as processing times
could change massively between different hardware platforms.
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Chapter 3

Instance segmentation with compact
mask representations.

3.1 Motivation
When designing an instance segmentation algorithm, we want it to be as accurate, mem-
ory efficient, and fast as possible. Instance segmentation methods are complex, and there
are many design choices; and one of the critical design choices is the mask represen-
tation. In our work, we will design a compact (or memory-efficient) mask to have an
instance segmentation algorithm that can easily fit the vehicles’ embedded hardware.

We discussed the four mask representations for instance segmentation in section 2.4:
grid, point, polygon, and implicit representations. The grid representation is the most
used and straightforward. However, it is not memory efficient, and we want to ex-
plore more efficient alternative representations. The point representation requires post-
processing, and it is hard to get accurate masks with few points. The polygon and implicit
representations are good candidates for a compact representation. The methods that used
compact representations were PolarMask, ExtremeNet, and ESE-seg, which are polygon
and implicit representation methods.

ExtremeNet (Zhou et al., 2019b) used a keypoint detector to obtain the extreme points
of an object. Extreme points are the outermost points of an object in each direction.
With these points, they formed octagons, giving the object a rough mask, as shown in
figure 3.1a. Although ExtremeNet is primarily an object detection method, the mask
representation is the most compact representation with only eight parameters. We want
to design a better mask with less or the same number of coefficients.

Polarmask (Xie et al., 2020) used a polygon representation and performed a dense
regression of the distances from the mask center to points on the outer contour in polar
coordinates. This method performs well at a high number of points. However, the perfor-
mance deteriorates at a low number of points, and the masks start to look polygon-like,
as shown in figure 3.1b).

ESE-seg (Xu et al., 2019) used an implicit representation and trained a network to
predict a shape vector (a vector of coefficients), in which a numerical transform converts
it into contour points in either the cartesian or polar representations as shown in figure
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(a) ExtremeNet (b) Polarmask (c) ESE-seg

Figure 3.1: Example predictions of methods that use low number of parameters to rep-
resent the mask. Sub-figures 3.1a), 3.1b), and 3.1c) show an example prediction of Ex-
tremeNet, Polarmask, and ESE-seg, respectively.

3.1c). The main advantage of this method is that it requires fewer parameters to represent
the mask than the binary grid or polygon representations. However, ESE-Seg regresses
the shape vector directly. We argue that the direct regression of the shape vector does not
weigh each coefficient according to its impact on the mask and prevents the model from
learning the actual data distribution.

Therefore, we propose an alternative training method in which the network outputs
are passed through a differentiable shape decoder to obtain contour points. This dif-
ferentiable shape decoder enables us to use the losses of polygon representation meth-
ods, e.g., PolarIOUloss (Xie et al., 2019) and Chamfer loss (Fan et al., 2017), and we
train the network for its primary task. The gradients of these losses are back-propagated
through the decoder, which automatically balances the weight of the different shape vec-
tor’s coefficients. We base this chapter on our work in the paper ”FourierNet: Compact
Mask Representation for Instance Segmentation Using Differentiable Shape Decoders
Riaz et al. (2020),” The rest of the chapter will explain our method.

3.2 Method

3.2.1 Architecture

We designed FourierNet to be an anchor-free, fully convolutional, single-stage network,
as illustrated in figure 3.2. Anchor-free means that it does not classify anchor boxes to
whether they have an object or not. As a result, the system is simple as we do not need
to tune the anchor box hyperparameters, such as their size and positions, which highly
influence the performance. Fully convolutional means that the network has only con-
volution and pooling operations and does not have the parameter-heavy fully connected
layers at the end of the network. Moreover, single-stage means that it does not need an
intermediate stage like object detection or semantic segmentation, as discussed in section
2.3. All these design choices make the network fast and straightforward.
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3.2 Method

Figure 3.2: The FourierNet architecture (Note: The head shown in the figure is for polar
representation only).

FourierNet has a CNN backbone, followed by a top-down feature pyramid network
(FPN) (Lin et al., 2017a) with lateral connections, in which we connect five heads with
different spatial resolutions. These heads predict classification scores, centerness, and
Fourier coefficients at each spatial location in the feature map. The classification branch
predicts scores for each class. The centerness branch predicts the closeness of a feature
point to the mask’s center, and we explain it in section 3.2.4. Finally, the coefficients
branch predicts the Fourier coefficients, which we will explain in the following mask
representation section.

3.2.2 Mask representation

In FourierNet, we define the mask as a 2D Fourier series. If the value of that Fourier
series at a specific position is higher than a threshold, it is considered foreground; other-
wise, it is background. We can evaluate the Fourier series at different values depending
on the representation to get the boundary points; however, this is costly. A faster way is to
use the inverse fast Fourier transform (IFFT) to transform the signal from the frequency
domain to the spatial domain. We can do this because the Fourier series coefficients are
the fast Fourier transform (FFT) coefficients multiplied by the number of points. As the
IFFT algorithm gives the same number of points as the coefficients, we pad the coeffi-
cients with zeros at high-frequency locations to get point-rich masks, this is shown in
figure 3.2. The series can represent the boundary either in the cartesian or polar spaces,
and the following sections will describe them in detail.
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Figure 3.3: On the left object, 18 rays are extended by the lengths Pi from a feature point
i (a potential center point). The contour points are the endpoints of these rays. Note that
this figure is simplified for illustration purposes only (the mask has 90 contour points).

Polar representation

In the polar representation, for each feature point i near the contour’s center, we define
the mask boundary as

Pi(θ) =
N
∑

k=−N
(ck,i ⋅e jkθ) , (3.1)

where Pi ∈ R is the distance from the feature point i to the mask boundary at the an-
gle θ from the x-axis, ck,i ∈ C is the k-th exponential form Fourier series coefficient, N
is the number of frequencies used in the Fourier series. The Fourier series coefficients
determine the shape of the function, and the network predicts these coefficients. For
real-valued functions, the Fourier series has a property where ck,i = c∗−k,i ( ∗ denotes com-
plex conjugation.), this property helps in reducing the number of parameters the network
needs to predict. To determine Pi, we can either evaluate 3.1 at different θ values or ap-
ply an Inverse Fast Fourier Transform (IFFT) to the coefficients predicted by the network
(figure 3.2). The inverse discrete Fourier transform is an invertable, linear transformation
defined by

pm,i =
1
M

M−1
∑
k=0

xk,i e
j2πkm

M , (3.2)

where pm,i is the mth point in Pi, M is the number of desired points, and xk,i is the kth
coefficient of Xi, which are the Fourier coefficients padded with zeros at high frequencies.
This is because in most cases, we want to predict more points than Fourier coefficients.
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Figure 3.4: The FourierNet head for cartesian representation.

This is done to equalize the dimensions before and after the IFFT. Note that the IFFT
algorithm is differentiable and therefore the training is done directly on Pi and thus the
name differentiable shape decoder. The resultant Pi = {p0,i, p1,i, ..., pM−1,i} can be seen
as the length of equidistant rays extending from a center point i, as shown in figure 3.3.
The angle between the rays ∆θ is constant and defined by 360○/M.

The emerged contour will be an approximation to the ground truth contour even with
a high number of rays, and we will discuss the effectiveness of this approximation in
section 3.2.3. In addition, because of this approximation, we need to take care of unique
cases during training. One case is when the ray intersects more than one boundary point;
here, we select the point with the longest distance to the center. Furthermore, when the
feature point i is outside or on the contour’s boundary, we assign a constant ε = 10−6 to
the ray that does not have intersection points.

Cartesian representation

The polar representation generates star-shaped masks since, for each angle, there is only
one possible ray length. To represent arbitrary masks, we can use cartesian coordinates.
We represent the mask boundary as two functions for cartesian representation, one for x
and the other for y. We define the functions as follows:

Px
i (t) =

N
∑

k=−N
(cx

k,i ⋅e
jkt) , (3.3)
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Py
i (t) =

N
∑

k=−N
(cy

k,i ⋅e
jkt) , (3.4)

where Px
i (t) and Py

i (t) are distances from the feature point i in the x and y directions,
respectively. cx

k,i and cy
k,i are the k-th exponential form Fourier series coefficients which

we make the FourierNet head to predict. t is a variable that tells which part of the
contour the point is and ranges from 0 to 2π . To get a point the equations 3.3 and 3.4 are
evaluated at the same t value. Figure 3.4 shows the structure of the FourierNet head for
cartesian representation. An IFFT is applied to each of these branches separately. We
pad the output tensor with zeros for cases where contour points are more than Fourier
coefficients, just like in the polar representation.

Figure 3.5: The reconstruction loss against the number of parameters for the polar (in
blue), and the cartesian (in black) representations (Xu et al., 2019). We can see that the
error goes almost to zero for the cartesian representation at high number of points, while
the polar’s error stays constant at about 4%.

3.2.3 Mask representation upper bound
The mask representation we use in our work can be only an approximation of the ground
truth. The cartesian representation is limited to single mask instances. On the other
hand, the polar representation is limited to star-shaped masks. So we should measure
how good these approximations are. One way to do this is to reconstruct the mask with
the representation and compare it to the ground truth masks of a dataset. Xu et al. (2019)
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did this experiment on the PASCAL VOC 2012 dataset, where they reconstructed the
masks using both representations when sampling them with a different number of points.
Figure 3.5 reports the reconstruction error as a function of the number of points. The
cartesian representation has a lower reconstruction error compared to the polar represen-
tation when having the same number of points. In addition, The cartesian error almost
goes to zero after using 90 points, while the polar error stops at around 5%. However,
the cartesian optimization problem is a 2D, while the polar optimization problem is a 1D
which should be easier to solve. In the experiment section, we will compare the two.

3.2.4 Centerness

Centerness is a term that measures the closeness of a feature point to the center of a
mask, and we use it to filter out weak detections. This was an observation by Tian et al.
(2019), where they found that detections at instance edges have bad quality. During in-
ference, we multiply this value with the classification score to keep the locations, which
could produce the best detection. We utilize polar centerness and normalized center-
ness in the case of polar representation and gaussian centerness in the case of cartesian
representation. Both are detailed in the following sections, respectively.

Polar centerness

Polar Centerness (PC) (Xie et al., 2019) is defined for the ith feature point as

PCi =

¿
Á
ÁÀ min(p0,i, p1,i, ..., pN−1,i)

max(p0,i, p1,i, ..., pN−1,i)
, (3.5)

where pn,i are the ray lengths. This metric will have low values if the feature point
is near the boundary, and this would filter out bad detections as was shown by Tian
et al. (2019). On the other hand, this metric will be low if the object’s mask shape is
not circular, and since we multiply it by the classification score, it will lower the prob-
ability of predicting such objects. As a result, PolarMask introduced a hyperparameter
called Centerness Factor (CF) to overcome this problem, which is a constant added to
all centerness values. We think that this offset defeats the purpose of centerness, since
it artificially raises confidence and sometimes even exceeds 1. Moreover, it does not
explicitly solve the problem of low centerness of non-circular objects. Therefore, we
introduce Normalized Centerness (NC) which is defined for a feature point i by

NCi =
PCi

PCmax
, (3.6)

where PCmax is the polar centerness of the center of mass of an instance. The maximum
value of the NCi is clamped to one, when the center of mass does not have the highest
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polar centerness value.

Gaussian Centerness

In the case of centerness for cartesian representations, we can not adopt equation 3.5
directly. Accordingly, we apply a Gaussian distribution to represent the probability of a
point being at the object’s center. For the ith feature point having the location (m,n) in
the feature map, Gaussian centerness (GC) is defined as

GC = e−α(m−µx
σx

)2
e−α( n−µy

σy
)2

, (3.7)

where µx and µy are the means (center points), and σx and σy are the standard devi-
ations of a mask instance in x and y directions, respectively, and α is a hyperparameter
used for controlling the decay rate. Note that we multiply the two Gaussians, which
enforces a probability of 1 only if both m and n are at the object’s center. On all the
other locations, the decaying functions’ product reduces the centerness depending upon
the standard deviation in both x and y directions of the mask instance. Notice that GC
solves the problem of low centerness for non-circular objects, and therefore the center-
ness factor can be completely avoided.

3.2.5 Loss functions

The overall loss function comprises of four components, which is defined as:

Ltotal = Lcls+Lcent +Lmask+Lbox. (3.8)

We use the focal loss (Lin et al., 2017b) for the classification loss Lcls. The focal loss is
given by

FL(p) =
⎧⎪⎪
⎨
⎪⎪⎩

−α(1− p)γ log(p) if correct class
−(1−α)(p)γ log(1− p) otherwise

(3.9)

where p is the class probability predicted by the network, γ is the focusing parameter to
make the network focus on hard or easy examples, and α is the balancing factor which
helps in class imbalance. For centerness loss Lcent in both polar centerness and gaussian
centerness, we employ the binary cross entropy which is given by

CE(p) = −(q ⋅ log(p)+(1−q) ⋅ log(1− p)) (3.10)

where q is the target centerness value and p is the predicted centerness value. For mask
loss Lmask, we utilize two different loss functions for polar and cartesian representations.
For cartesian representation, we employed both an index-wise smooth L1 loss and cham-
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fer distance loss (Fan et al., 2017). The chamfer distance loss is defined as

CD = ∑
a∈S1

min
b∈S2

∥D(a,b) ∥2
2 + ∑

b∈S2

min
a∈S1

∥D(a,b) ∥2
2, (3.11)

where S1 and S2 are the sets of predicted contour points and ground truth contour points
respectively, a and b are elements (individual contour points (x,y)) of the sets S1 and S2
respectively and D(a,b) is the euclidean distance between any two points a and b, re-
spectively. We normalize the chamfer distance by dividing it by the average of the height
and width of the ground truth bounding box. Without the normalization, the chamfer
distance becomes exceptionally large, which leads to overflows and exploding gradients.
Moreover, normalization avoids the problem of manually weighing classification, cen-
terness and mask losses. In case of the polar representation, we adopt the Polar IOU loss
from (Xie et al., 2019), which is defined as

PolarIOU = log(
∑

m
i=0 min(di,d∗i )
∑

m
i=0 max(di,d∗i )

) (3.12)

where di and d∗i are the i-th predicted and the ground truth rays constructing the mask.
Here, the rays are compared index-wise. The Polar IOU loss is able to automatically
keep the balance between classification loss and regression losses. We use the IOU loss
(Yu et al., 2016) for the bounding box loss Lbox. Note that the bounding box branch is an
optional branch and therefore not explicitly shown in the figure 3.2.

3.3 Experiments
We conducted the experiments on the COCO 2017 benchmark (Lin et al., 2014). We
based our work on the mmdetection framework. Unless otherwise stated, we did all the
experiments using a pre-trained ResNet-50 (He et al., 2015) on ImageNet (Krizhevsky
et al., 2012). We trained the networks for 12 epochs with an initial learning rate of 0.01
and a mini-batch of 4 images. The learning rate was reduced by a factor of 10 at epochs
8 and 11. We used Stochastic gradient descent (SGD) with momentum (0.9) and weight
decay (0.0001) for optimization. We resized the input images to 1280×768 pixels.

3.3.1 Cartesian representation vs. polar representation
We compared various networks trained on the cartesian representation using smooth L1
loss and chamfer distance loss and the polar representation with the PolarIOU loss. The
networks trained with Chamfer distance loss were first pre-trained for one epoch on
smooth L1 loss as a warm-up. This warm-up provides a good initialization, since chamfer
loss greatly benefits from elliptical predictions at the start. In all the experiments, we
selected α = 10, which provides a reasonable balance between a high probability for a
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point at the center of the object and low values at the mask edges.

Coeff.
Loss
mask

Loss
centerness mAP

8 Smooth L1 Gaussian 13.6
36 Smooth L1 Gaussian 13.5
8 Chamfer Gaussian 22.9

36 Chamfer Gaussian 22.4
8 Polar IOU Polar 26.9

36 Polar IOU Polar 28.0
Table 3.1: Comparison of mAP for the cartisian and polar representations

Figure 3.6 illustrates the masks generated by the network using cartesian representa-
tion, and table 3.1 reports the quantitative results. The network with smooth L1 loss per-
forms worst as it only makes ellipse-like masks. Moreover, the difference between 8 and
36 coefficients is insignificant, as shown in figures 3.6a) and 3.6b). Counter-intuitively,
the cartesian masks trained with Chamfer loss and 8 coefficients are smoother and have a
better IOU than the masks with 36 coefficients. Figure 3.6d) shows that this is because of
undesired oscillations when using 36 coefficients, which makes the contour worse. One
possible reason could be that the gradients are very low for the higher frequency coef-
ficients during training, because they affect the output very little. This eventually leads
to under-trained higher frequency coefficients, which show fluctuating masks. However,
this hypothesis needs further investigation, which we did not investigate in our work.
The best performance in the cartesian space with 22.9 mAP falls short of the polar rep-
resentation, which achieves 28.0 mAP. Since the polar representation showed superior
performance, we will employ the polar representation in the rest of the work.

3.3.2 Ablation study
All the experiments done in this ablation study section adopt the polar representation for
masks.

Coefficients regression (CR) vs. Differentiable shape decoding (DSD)

The main goal of this section is to show that Differentiable shape decoding is vital to
training explicit representation methods, and unweighted direct coefficient regression
focuses during training equally on all coefficients, which is not optimal for shape de-
coders. On the contrary, when trained on contour points, the optimizer can inherently
learn to prioritize the more essential frequency coefficients of the Fourier series and
achieve automatic weight balancing. We trained a network with 18 coefficients to verify
this hypothesis and regressed the coefficients directly using a smooth L1 loss. The net-
work trained with the smooth L1 loss attained an mAP of 5.3 (table 3.2), which is inferior
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(a) 8 coefficients (Smooth L1) (b) 36 coefficients (Smooth L1)

(c) 8 coefficients (Chamfer distance) (d) 36 coefficients (Chamfer distance)

Figure 3.6: Examples of the network using cartesian coordinates. Sub-figure 3.6a and
3.6b are trained using smooth L1 loss. Sub-figure 3.6c and 3.6d are trained using chamfer
distance loss.

compared to the 26 mAP of a similar network trained on contour points (table 3.2 and
figure 3.10) and this experiment validates our initial intuition. Moreover, the qualitative
results of CR showed out-of-size masks because of mistakes in low-frequency coeffi-
cients, where the lower frequency coefficients of a Fourier series have a higher impact
on the contour. ESE-Seg (Xu et al., 2019) used CR and compared various function

Method mAP AP50 AP75
Coefficient Regression 5.3 14.9 3.1

Differentiable Shape Decoding 26 46.6 25.8
Table 3.2: Coefficients regression (CR) vs. Differentiable shape decoding (DSD)

approximators, including the Fourier series. They reported that the best function ap-
proximator is the Chebyshev polynomial and argued that this is because they have the
best numerical distribution. However, we showed that we could better perform using the
Fourier series and the DSD because it does automatic weight balancing and overcomes
the unsuitable numerical distribution problem. In addition, we argue that the Chebyshev
polynomials have discontinuities that would affect the mask’s shape. Figure 3.8 shows
these discontinuities that look unrealistic compared to the masks of our method.
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Figure 3.7: The relationship between the mAP and the number of sampled points. The
FourierNet in this experiment has 36 coefficients of Fourier series and ResNet-50 back-
bone.

Number of contour points

We trained multiple FourierNets having 18, 36, 60, and 90 contour points and 36 complex
coefficients (72 parameters). Figure 3.7 shows that more contour points generally lead to
a higher mAP until it saturates, and then the performance deteriorates. The FourierNet
with 90 points has a lower mAP (27.6) than a FourierNet with 60 points (28.0), and a
possible reason could be that the added complexity (in terms of contour points) makes
the problem harder for the optimizer to learn. Furthermore, while more contour points
seem more appealing for large and complicated masks, for smaller objects. it means
adding unwanted complexity, which could lower APs if not learned correctly, leading to
an overall negative effect on performance.

Number of coefficients

From the results of the previous section, we choose a FourierNet with 60 contour points
for this study. Figure 3.10 illustrates the relationship between the networks’ accuracy
and the number of parameters representing the mask. We generated the FourierNet curve
using one network, but we tested it multiple times. Each time we take a number of the
predicted coefficients with the lowest frequencies and set the high frequencies to zeros.
We made this step because we trained networks with a low number of coefficients, and
they gave similar results to networks with a high number of coefficients and suppressed
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(a) FourierNet-640 (b) ESE-Seg-416

Figure 3.8: A qualitative comparison between FourierNet-640 and ESE-Seg-416.

high frequencies. This finding helps to find a suitable number of coefficients for a specific
application, and in our case, it reduced the number of experiments.

As the number of parameters increases, the mAP sharply increases until around 18
parameters, and after 36 parameters, it saturates. Our method gives the best performance
compared to all compact mask representations, especially when using a low number of
coefficients. We also observed that the FourierNets with 18, 36, and 90 points showed the
same curve trend as FourierNet with 60 points, so we did not plot them. Furthermore,
We visualize in figure 3.9 the network outputs with a different number of suppressed
higher frequencies. We obtain smooth contours if we use a low number of coefficients,
and when we utilize only two coefficients, all the predictions become ellipses. Figure
3.9 illustrates how suppressing higher frequencies affect the complexity (variations in
ray lengths to angles) of the mask of a particular object. A sinusoidal curve (ellipse) is
observed for two coefficients, while for 20 coefficients, we see a cumulative effect of
multiple sinusoidal components.

Polar centerness (PC) vs. Normalized centerness (NC)

We introduced NC to tackle the effect of low PC values, as explained in section 3.2.4.
We trained two networks with 90 contour points and 36 coefficients on NC and PC. The
results in table 3.3 show that NC is better than PC when we set the CF to zero, which
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(a) 2 coeff. (4 parameters.) (b) 3 coeff. (6 parameters.) (c) 5 coeff. (10 parameters.)

(d) 7 coeff. (14 parameters.) (e) 10 coeff. (20 parameters.) (f) 36 coeff. (72 parameters.)

Figure 3.9: Comparison between the predicted mask of using varying number of Fourier
coefficients using polar representation.

means it is generally a better centerness metric. However, we still need to use the CF
hyperparameter to obtain the best performance.

Method CF mAP AP50 AP75
Polar 0 26.3 42.8 27.7

Normalized 0 27.0 47.8 26.9
Polar 0.5 27.7 46.4 28.6

Normalized 0.5 27.0 47.9 26.9
Table 3.3: Polar centerness vs. Normalized polar centerness

3.3.3 Comparison to state-of-the-art
We trained a FourierNet-640 with an image resolution of 640 × 360 to compare with an
ESE-Seg-416 (Xu et al., 2019), which was trained with a resolution of 416 × 416. With a
comparable backbone and the same number of parameters, our result is 2.7 mAP higher,
and it runs in real-time as we see in table 3.4 and figure 3.9. We trained a FourierNet
with a ResNeXt101 backbone (Xie et al., 2017), 90 contour points, and 36 coefficients
to compare against other state-of-the-art methods and table 3.4 shows the quantitative
results. Compared to ExtremeNet (Zhou et al., 2019b), which uses an eight parameter
mask, our performance is better, especially with APL and AP75, with an increase of 6.1
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Figure 3.10: The Fouriernet in this experiment has a Resnet-50 backbone and 60 contour
points. The number of parameters are the complex (real+imaginary) coefficients of the
fourier series i.e 36 coefficients = 72 parameters. The PolarMask network used in this
experiment has the same backbone as well.

and 7.4, respectively. These results mean that our mask quality is superior when using
a few parameters. FourierNet is comparable to PolarMask when using the same number
of parameters, with a slight loss in speed due to the IFFT. However, the qualitative re-
sults are visually better with smoother contours. Our method is generally comparable to
polygon methods but falls short in performance compared to binary grid methods.

3.4 Conclusion
FourierNet is a single-stage anchor-free method for instance segmentation. It uses a novel
training technique with IFFT as a differentiable shape decoder that decodes the mask
into a cartesian or a polar representation. Theoretically, we showed that the Cartesian
representation has a higher upper bound than the polar representation; however, it was
hard to train and gave a lower performance in experiments. We believe that the reason
for this is that the polar representation is a 1D problem, which is easier to solve than the
2D cartesian optimization problem.

Moreover, we could obtain a compact mask representation with low frequencies be-
cause they contain most of the mask’s information. Therefore, FourierNet outperformed
all methods which use less than 20 parameters quantitatively and qualitatively. Fur-
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thermore, compared to object detectors, FourierNet can yield better approximations of
objects than boxes using slightly more parameters. Furthermore, we showed that our nor-
malized centerness is generally a better centerness metric than the polar centerness when
we do not use the centerness factor. Finally, our FourierNet-640 achieves a real-time
speed of 26.6 FPS, and the FourierNet with ResNext-101 achieved comparable results to
other polygon and implicit representations. We hope this method can inspire the use of
differentiable decoders in other applications.
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C

onclusion

Method B.Bone Rep. Par. mAP AP50 AP75 APS APM APL FPS GPU
two stage

Mask RCNN (He et al., 2017) RX-101 grid 784 37.1 60.0 39.4 16.9 39.9 53.5 5.6 1080Ti
PANet (Liu et al., 2018) RX-101 grid 784 42.0 65.1 45.7 22.4 44.7 58.1 - -
HTC (Chen et al., 2019) RX-101 grid 784 41.2 63.9 44.7 22.8 43.9 54.6 2.1 TitanXp

one stage
ESE-Seg-416 (Xu et al., 2019) DN-53 implicit 20 21.6 48.7 22.4 - - - 38.5 1080Ti

FourierNet-640 R-50 implicit 20 24.3 42.9 24.4 6.2 25.9 42.0 26.6 2080Ti
ExtremeNet (Zhou et al., 2019b) HG-104 polygon 8 18.9 44.5 13.7 10.4 20.4 28.3 3.1 -

FourierNet RX-101 implicit 8 23.3 46.7 21.1 10.3 25.2 34.4 6.9 2080Ti
EmbedMask (Ying et al., 2019) R-101 grid † 37.7 59.1 40.3 17.9 40.4 53.0 13.7 V100

YOLACT-700 (Bolya et al., 2019) R-101 grid † 31.2 50.6 32.8 12.1 33.3 47.1 23.4 TitanXp
PolarMask (Xie et al., 2019) RX-101 polygon 36 32.9 55.4 33.8 15.5 35.1 46.3 7.1* 2080Ti

FourierNet RX-101 implicit 36 30.6 50.8 31.8 12.7 33.7 45.2 6.9 2080Ti
Table 3.4: Comparision with state-of-the-art for instance segmentation on COCO test-dev. † The number of parameters are
dependent on the size of the bounding box cropping the pixel embedding or mask prototype. * speed tested on our machines.
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Chapter 4

Seeing implicit neural representations
as Fourier series

4.1 Introduction

In FourierNet, the mask representation we used was limited to instances with single star-
shaped masks. To solve this problem, we changed our mask design so it is a parametrized
super level set by a 2D Fourier series. However, we found an interesting connection
between the Fourier series and implicit neural representations during our work, which
extended our work even further in mask representations for instance segmentation, as we
will see in detail in chapter 5. This chapter will talk about the connection between the
Fourier series and INR.

Implicit neural representation is a field of research that studies replacing traditional
discrete signal representations with neural networks that map the input domain of the
signal to the information at the input location. For example, instead of representing
images as discrete grids of pixels, we make a coordinate-based MLP, as illustrated in
figure 4.1a), to map the coordinates of a specific pixel to its color. Likewise, instead
of representing 3D shapes as voxel grids or meshes, we map point coordinates to their
occupancy or physical property, as shown in figure 4.1b). INRs are approximations of
those signals, and the goal is to get the approximations as accurate as possible.

An advantage of INRs is that they are not coupled to the spatial resolution (e.g., voxel
size in a 3D scene), and theoretically, they have infinite resolution. Therefore, these
representations are naturally suited to high-dimensional signals and heavy memory con-
sumption applications. Furthermore, they are differentiable, and as a result, they are
suitable for gradient-based optimization and machine learning. In addition, the usage of
INRs for images (Henzler et al., 2020; Stanley, 2007), volume density (Mildenhall et al.,
2020), and occupancy (Mescheder et al., 2019) enhanced the performance on various
tasks such as shape representation (Chen and Zhang, 2019; Deng et al., 2020; Genova
et al., 2019, 2020; Jiang et al., 2020; Michalkiewicz et al., 2019; Park et al., 2019), tex-
ture synthesis (Henzler et al., 2020; Oechsle et al., 2019a), and shape inference from
images (Liu et al., 2020, 2019). With all of these advantages, we wanted to use them to
represent masks for instance segmentation.
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Figure 4.1: a) A visualization of an MLP used to represent images, where it maps the
pixels’ coordinate to thier color. b-e) show different tasks that use INRs to represent
the signal. The top row shows results where the coordinates are passed directly to the
MLP, and the bottom row shows results with a Fourier feature mapping. Fourier features
enable the MLP to represent higher frequency details (Tancik et al., 2020).

Early INR architectures lacked accuracy in high-frequency details. Sitzmann et al.
(2020) proposed Sinusoidal Representation networks (SIRENs) to solve this problem.
SIRENs use sinusoidal instead of ReLU activations in MLPs, while taking into account
weight initialization to enable stable training. They argued that sinusoidal activations
work better than ReLU activations, because ReLU networks are piecewise linear, and
their second derivative is zero. As a result, they cannot model the data contained in
higher-order derivatives of signals.

At the same time, Mildenhall et al. (2020) proposed using positional encoding to en-
able the networks to learn high-frequency information, as shown in the second row of
figure 4.1. The positional encoding uses a heuristic sinusoidal mapping to input coor-
dinates before passing them through a ReLU network. In a consequent work, Tancik
et al. (2020) explored the general Fourier mapping and explained why it worked using
a Neural Tangent Kernel (NTK) framework (Jacot et al., 2018), they found out that the
Fourier mapping transforms the NTK into a shift-invariant kernel. Furthermore, modi-
fying the mapping parameters enables tuning the NTK’s spectrum, controlling the range
of frequencies the network can learn.

They also showed that a random Fourier mapping with low standard deviation learns
only low frequencies of the signal. On the other hand, a high standard deviation lets
the network learn high frequencies only, which leads to over-fitting. Therefore, they
recommended a linear search to find the optimal value of the standard deviation for the
corresponding task. They also showed that increasing the number of parameters in the
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mapping improves the performance constantly. However, we wonder if random Fourier
mapping is the optimal mapping? Will the performance be saturated if we continue to
increase the mapping parameters? What is the difference between SIRENs and Fourier
mapping? Moreover, is there a way to avoid over-fitting when training networks using
Fourier mapping? Finally, can we use INR to represent masks in instance segmentation?

In this chapter, we will answer these questions. First, we determined the d-dimensional
Fourier series’s trigonometric form and showed that it is precisely a single perceptron
with an integer lattice mapping applied to its inputs. The weights of that perceptron
are the Fourier series coefficients. As the Fourier series can theoretically represent any
periodic signal, this perceptron can represent any periodic signal if it has an infinite
number of frequencies in its mapping. Then, we explored the mathematical connection
between Fourier mappings and SIRENs and showed that a Fourier mapped perceptron
is structurally like a hidden layer SIREN. However, in the SIREN case, the mapping is
trainable, and it is represented in the amplitude-phase form instead of the sine-cosine
form in the case of Fourier mappings.

Moreover, we modified the progressive training strategy of Lin et al. (2021), where
we train the lower frequencies in the initial training phase and gradually add the higher
frequency components as the training progresses. As a result, we show that our pro-
gressive training strategy avoids the problem of over-fitting. Finally, the results of this
work gave good signs that it is possible to use INR for mask representations for instance
segmentation. The work in this chapter is based on our paper ”Seeing implicit neural
representations as Fourier series” Benbarka et al. (2022).

4.2 Related work
Inspired by INRs’ recent success, by outperforming grid-, point- and mesh-based repre-
sentations (for the first time in 2018 (Park et al., 2019),(Mescheder et al., 2019),(Chen,
2019)), many works based on INRs achieved state-of-the-art results in 3D computer vi-
sion (Atzmon and Lipman, 2020; Gropp et al., 2020; Jiang et al., 2020; Peng et al.,
2020; Chabra et al., 2020; Sitzmann et al., 2020). Moreover, impressive results are ob-
tained across different input domains, e.g., from 2D supervision (Sitzmann et al., 2019;
Niemeyer et al., 2020; Mildenhall et al., 2020), 3D supervision (Saito et al., 2019; Oech-
sle et al., 2019b), to dynamic scenes (Niemeyer et al., 2019) which can be represented
by space-time INR.

In early architectures, there was a lack of accuracy in fine details of signals. Milden-
hall et al. (2020) proposed positional encodings to tackle this problem, then Tancik et al.
(2020) further explored positional encodings in an NTK framework, showing that map-
ping input coordinates to a representation close to the actual Fourier representation be-
fore passing them to the MLP lead to a good representation of the high-frequency details.
Furthermore, they showed that random Fourier mappings achieved superior results than
if one takes the simple positional encoding. Sitzmann et al. (2020) also attempted to
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solve the problem of getting high-frequency details. They proposed SIRENs and demon-
strated that SIRENs are suited for representing complex signals and their derivatives. In
both solutions, they used a variant of Fourier neural networks (FNN) for the first layer
of the MLP. FNN are neural networks that use either sine or cosine activations to get
their features (Liu, 2013). The first attempt to build an FNN was by Gallant and White
(1988). They proposed a one-layer hidden neural network with a cosine squasher acti-
vation function and showed if they hand-wire certain weights, it will represent a Fourier
series. Silvescu (1999) proposed a network that did not resemble a standard feedforward
neural network. However, they used a cosine activation function to get the features. Liu
(2013) introduced the general form for Fourier neural networks in a feedforward man-
ner. They also proposed a strategy to initialize the frequencies of the embedding, which
helped for convergence. Our work will show another way to initialize the embedding,
which results in a neural network that is precisely a Fourier series.

4.3 Method

4.3.1 Integer lattice mapping

This section explains how a perceptron with an integer lattice Fourier mapping applied to
its inputs is equivalent to a Fourier series. First, we present the Fourier mapped percep-
tron equation and then link it to the Fourier series’s general equation. The fundamental
building block of any neural network is the perceptron, and it is defined as

y(x,W′,b) = g(W′ ⋅x+b). (4.1)

Here y ∈ Rdout is the perceptron’s output, g(⋅) is the activation function (usually non-
linear), x ∈Rdin is the input, W′ ∈Rdout×din is the weight matrix, and b ∈Rdout is the bias
vector. Now, if we let g(⋅) to be the identity function and apply a Fourier mapping to the
input we get

y(x,W) =W ⋅γ(x)+b, (4.2)

where γ(x) is the Fourier mapping defined as

γ(x) = (
cos(2πB ⋅x)
sin(2πB ⋅x) ) . (4.3)

W ∈Rdout×2m is the weight matrix after applying the mapping, B ∈Rm×din is the Fourier
mapping matrix, and m is the number of frequencies. Equation 4.2 is the general equation
of a Fourier mapped perceptron, and we will relate it to the Fourier series’s general
equation.

A Fourier series is a weighted sum of sines and cosines with incrementally increasing
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frequencies that can reconstruct any periodic function when its number of terms goes
to infinity. In applications that use coordinate-based MLPs, the functions we want to
learn are not periodic. However, their inputs are naturally bounded (e.g., height and
width of an image). Accordingly, it doesn’t harm if we assume that the input is periodic
over its input’s bounds to represent it as a Fourier series. We will explain later why this
assumption has many advantages. A function f ∶ Rdin → Rdout is periodic with a period
p ∈Rdin if

f (x+n○p) = f (x) ∀n ∈Zd, (4.4)

where ○ is the Hadamard product. As it is plausible to normalize the inputs to their
bounds, we assume that each variable’s period is 1. The Fourier series expansion of
function (4.4) with p = 1d is defined by Osgood (2019):

f (x) = ∑
n∈Zd

cne2πin⋅x, (4.5)

where cn are the Fourier series coefficients, and they are calculated by:

cn = ∫[0,1]d
f (x)e−2πinxdx. (4.6)

For real-valued functions, it holds that cn = c∗-n where c∗n is the conjugate of cn. We
want to find the sin-cos form for the general case of dimension d ∈N. We use the concept
of mathematical induction for this task. Therefore we show, that the equation is true for
d = 1 and additionally prove, that if the equation holds for dimension d−1 it is also valid
for dimension d.

d = 1:

f (x) = ∑
n∈Z1

cne2πin⋅x
(4.7)

= ∑
n∈N

cne2πin⋅x+∑
n∈N

c−ne−2πin⋅x+c0 (4.8)

c∗n=c−n
== ∑

n∈N
(Re(cn)+ iIm(cn))(cos(2πnx)+ isin(2πnx))

+∑
n∈N

(Re(cn)− iIm(cn))(cos(2πnx)− isin(2πnx))+c0

(4.9)
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= ∑
n∈N

2Re(cn)cos(2πnx)−2Im(cn)sin(2πnx)+c0 (4.10)

= ∑
n∈N0

an cos(2πnx)+bn sin(2πnx), (4.11)

where

a0 = c0, an = 2Re(cn), bn = −2Im(cn). (4.12)

Assumption of the induction:
We will assume that the equation holds for d−1, where d ≥ 2.
s
Induction step: d−1→ d:
As the fourier series of any periodic and continous function is absolutely convergent, we
are allowed to rearrange the sum in (∗) and receive

= ∑
n=(n1,...,nd)∈Zd

cne2πin⋅x
(4.13)

(∗)
= ∑

n1∈N
∑

(n2,...,nd)∈Zd−1

cne2πin⋅x

+ ∑
n1∈N

∑
(n2,...,nd)∈Zd−1

c−ne−2πin⋅x

+
0
∑

n1=0
∑

(n2,...,nd)∈Zd−1

cne2πin⋅x

(4.14)

c∗n=c−n
== ∑

n∈N×Zd−1

2Re(cn)cos(2πn ⋅x)−2Im(cn)sin(2πn ⋅x)

+ ∑
n∈{0}×Zd−1

cne2πin⋅x (4.15)

Ind. asm.
== ∑

n∈N×Zd−1

2Re(cn)cos(2πn ⋅x)−2Im(cn)sin(2πn ⋅x)

+ ∑
n∈{0}×N0×Zd−2

a′n cos(2πn ⋅x)+b′n sin(2πn ⋅x),
(4.16)
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where

a′0 = c0,

a′n =
⎧⎪⎪
⎨
⎪⎪⎩

0 ∃ j ∈ {3, . . . ,d} ∶ n2 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0
2Re(cn) otherwise,

b′n =
⎧⎪⎪
⎨
⎪⎪⎩

0 ∃ j ∈ {3, . . . ,d} ∶ n2 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0
−2Im(cn) otherwise.

(4.17)

Combining these two summands we get

f (x) = ∑
n∈N0×Zd−1

an cos(2πn ⋅x)+bn sin(2πn ⋅x) (4.18)

where

a0 = c0,

an =

⎧⎪⎪
⎨
⎪⎪⎩

0 ∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0
2Re(cn) otherwise,

bn =

⎧⎪⎪
⎨
⎪⎪⎩

0 ∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0
−2Im(cn) otherwise.

(4.19)

And if we write equation (4.18) in vector form, we get

f (x) = (aB,bB) ⋅(
cos(2πB ⋅x)
sin(2πB ⋅x) ) , (4.20)

where aB = (an)n∈B, and bB = (bn)n∈B. Now, if we compare 4.2 and 4.20, we find sim-
ilarities. We see that (aB,bB) is equivalent to W, b is zero, and B = N0 ×Zd−1 is the
concatenation of all possible permutations of n. As a result the perceptron represents a
Fourier series. For practicality we limit B to

B = {0, . . . ,N}×{−N, . . . ,N}d−1∖H, (4.21)

where N will be called the frequency of the mapping, H = {n ∈N0×Zd−1∣∃ j ∈ {2, . . . ,d} ∶
n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}. To find the number of element in the mapping, we will do
the following calculations. We use ∣ ⋅ ∣ to talk about the number of elements in a set.
Furthermore, we use the notation ⟦n⟧ ∶= {0, . . . ,n} for n ∈ N and ⟦m, l⟧ ∶= {m, . . . , l} for
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m, l ∈Z and m < l. We have

B = {0, . . . ,N}×{−N, . . . ,N}d−1∖{n ∈N0×Zd−1 ∶

∃ j ∈ {2, . . . ,d} ∶ n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}.

It is immediately clear, that

∣{0, . . . ,N}×{−N, . . . ,N}d−1∣ = (N +1)(2N +1)d−1,

therefore the only thing we need to show is the number of elements of H. We will find it
with mathematical induction. We start with d = 2:

∣{n ∈ ⟦N⟧×⟦−N,N⟧ ∶ ∃ j ∈ {2} ∶ n1 = 0∧n j < 0}∣
= ∣{n ∈ {0}×⟦−N,−1⟧}∣
=N

Assumption of the induction:
We will assume that the equation holds for some d, where d ≥ 2.
s
Induction step: d → d+1:

∣{n ∈ ⟦N⟧×⟦−N,N⟧d ∶ ∃ j ∈ ⟦2,d+1⟧ ∶ =n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}∣

= ∣{n ∈ ⟦N⟧×⟦−N,N⟧d ∶ ∃ j ∈ ⟦3,d+1⟧ ∶ =n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}∣ +

=∣{n ∈ ⟦N⟧×⟦−N,N⟧d ∶ ∃ j ∈ {2} ∶ =n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}∣

= ∣{n ∈ ⟦N⟧×⟦−N,N⟧d ∶ ∃ j ∈ ⟦3,d+1⟧ ∶ =n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}∣ +

=∣{n ∈ {0}×⟦−N,−1⟧×⟦−N,N⟧d−1}∣

= ∣{n ∈ ⟦N⟧×⟦−N,N⟧d−1 ∶ ∃ j ∈ ⟦2,d⟧ ∶ =n1 = ⋅ ⋅ ⋅ = n j−1 = 0∧n j < 0}∣ +

=N(2N +1)d−1

Ind. asm.
= =

d−2
∑
l=0

N(2N +1)l +N(2N +1)d−1 =
d−1
∑
l=0

N(2N +1)l.

Hence, we calculate the dimension m of all possible permutations.

m = (N +1)(2N +1)d−1−
d−2
∑
l=0

N(2N +1)l. (4.22)

We can find the Fourier series coefficients by sampling the function uniformly with a fre-
quency higher than the Nyquist frequency and applying a Fast Fourier Transform (FFT)
on the sampled signal. The resulting FFT coefficients are the Fourier series coefficients
multiplied by the number of the sampled points. Furthermore, in theory, if we initial-
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ize the weights with the Fourier series coefficients, our network should give the training
target at iteration 0. Moreover, we take advantage of the Fourier series properties, for
example, convergence proofs.

4.3.2 SIRENs and Fourier mapping comparison
In this section we want show that a Fourier mapped perceptron is structurally like a
SIREN with one hidden layer. If we evaluate W ⋅γ(x) in equation (4.2), using (4.3) , we
get:

y(x,W) =W ⋅ (
cos(2πB ⋅x)
sin(2πB ⋅x) )+b.

If we set B = (B1, . . . ,Bm)T , with Bi ∈R1×d , then the first summand is equal to

⎛
⎜
⎝

∑
m
k=1W1,kc(2πBkx)+∑m

k=1W1,m+ks(2πBkx)
⋮

∑
m
k=1Wdo,kc(2πBkx)+∑m

k=1Wdo,m+ks(2πBkx)

⎞
⎟
⎠

T

=
⎛
⎜
⎝

∑
m
k=1W1,ks(2πBkx−π/2)+∑m

k=1W1,m+ks(2πBkx)
⋮

∑
m
k=1Wdo,ks(2πBkx−π/2)+∑m

k=1Wdo,m+ks(2πBkx),

⎞
⎟
⎠

T

where s and c are short forms of sine and cosine. And if we define φ = (−π/2, . . . ,−π/2,
0, . . . ,0)T ∈R2m and C ∶= (B,B)T , we result in

y(x,W) =W ⋅ sin(2πC ⋅x+φ)T +b.

Here we see that C is acting as the weight matrix applied to the input, φ is like the
first bias vector and sin(⋅) is the activation function. Hence, the initial Fourier mapping
can be represented by an extra initial SIREN layer, with the difference that B and φ are
trainable in the SIREN case. This finding closes the bridge between Fourier frequency
mappings and sinusoidal activation functions, which have attracted much attention.

4.3.3 Progressive training
Lin et al. (2021) introduced a training strategy for coarse-to-fine registration for NeRFs
which they called Bundle-Adjusting Neural Radiance Fields (BARF). Their idea is to
mask out the positional encoding’s high-frequency activations at the start of training and
gradually allow them during training. Their work showed how to use this strategy on
positional encodings to improve camera registration. Our work will show how to run this
strategy on an arbitrary Fourier mapping and show that it improves the generalization of
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the interpolation task. We weigh the frequencies of γ as follows:

γ
α(x) ∶= (

wα

B
wα

B
)○γ(x) (4.23)

where wα

B is the element wise application of the function wα(z) on the vector of norms
of B on the input dimension:

wα

B ∶=wα

⎛
⎜
⎝

∣∣B1∣∣2
⋮

∣∣Bm∣∣2

⎞
⎟
⎠
. (4.24)

where wα(z) is defined as:

wα(z) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if α − z < 0
1−cos((α−z)π)

2 if 0 ≤ α − z ≤ 1
1 if α − z > 1

(4.25)

Here, α ∈ [0,max((∣∣Bi∣∣din)i∈{1,...,m})] is a parameter which is linearly increased during
training. This strategy forces the network to train the low frequencies at the start of train-
ing, ensuring that the network will produce smooth outputs. Later, when high-frequency
activations are allowed, the low-frequency components are trained, and the network can
focus on the left details. This strategy should reduce the effect of overfitting, which was
introduced by Tancik et al. (2020) when using mappings with large standard deviations.

4.3.4 Pruning
The standard way of using equation (4.21) is by defining a value N and taking the whole
set BN . High-dimensional tasks lead to high memory consumption, and it is not clear
whether this subset of Zd brings the best performance. We, therefore, propose a way
to select a more appropriate subset through data pruning. A pruning pr(N,M) is done
as follows: Assume we have N,M ∈ N with M >> N and ∣BN ∣ = n, ∣BM ∣ = m. We train
a perceptron with an integer mapping given by BM. After training we define D such
that D contains only those elements of BM where the respective weights are greater than
a margin, that is chosen to yield ∣D∣ = n. While BN and D now have the same size,
we believe that D will yield better performance because it contains the most relevant
frequencies of the signal we want to reconstruct.

4.3.5 Integer lattice mapping applied to MLPs
Although we showed in section 4.3.1 that we could represent any bounded input function
with only one Fourier mapped perceptron, in practice, these networks can become very
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wide to give high performance. As a result, the number of calculations will increase. To
compromise between performance and speed, one can add depth and reduce the width of
the network.

First, it is natural that using MLPs rather than perceptrons increases the performance.
However, it remains unclear why our proposed integer mapping should perform better
than competing mappings for multilayer networks. One could argue that if a mapping
gives the perceptron a high representation power, it will also provide a high representa-
tion power to the MLP and vice versa. First, however, we should verify this claim with
experiments.

In addition, we remind the reader that a periodic function has integer frequencies.
Moreover, because our assumption that the signal we want to reconstruct is periodic, it
will have only integer frequencies. Also, the activation functions we are using only intro-
duce integer frequencies when applied to a periodic function, as we will see in the next
section. With this, we reduce the search space for frequencies from R to Z, which could
make the optimization easier as the search space is more compact and approachable.

4.3.6 Activation functions on periodic signals
We claim that when we apply an integer mapping to the input, we force the network
output to be periodic. This comes from the fact that the frequencies introduced by the
activations are integers, and a periodic signal has only integer frequencies. To prove this
claim, we will first analyze the frequencies in the 1D case and later demonstrate those
findings in 2D experiments. As an initial Fourier mapping involves using a sinus function
on the mapped input, we now discuss the effect of applying an activation function on top
of a sinus representation. Applying a ReLU or sine on a mapped input will produce
frequencies that are multiples of its input frequencies. For example, if we apply a ReLU
to a sine function, we get

ReLU(sin(x)) =
1
π
+

sin(x)
2

+ ∑
n=2k
k∈N

2
π(1−n2)

cos(nx), (4.26)

and if we apply a sine to a sine we get

sin(A ⋅ sin(x)) = 2
∞
∑
n=0

J2n+1(A)sin((2n+1)x), (4.27)

where Ji are Bessel functions. In these cases, we can immediately see that the output fre-
quencies are multiples of the input frequencies. Motivated by these findings, we explore
whether it does generalize to higher dimensional signals.

Finding an analytical solution for the d-dimensional case is complicated, so we de-
cided to show it empirically. We define B in two different ways. First we generate
BN limited by N = 2, responsible for the integer mapping, for the Gauss mapping we
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Figure 4.2: The effect of the common activation functions on the spectrums of functions
with integer and non-integer frequencies.

sample B from a Gaussian distribution with mean, variance and dimension according to
the previous BN , to achieve maximal comparability. We then compare the spectrum of
f1 ∶= γ(x) ⋅1, f2 ∶= ReLu(γ(x) ⋅1) and f3 ∶= sin(γ(x) ⋅1), where 1 represents the weight
matrix, in this example defined to only contain 1’s. We visualize the spectrum of our
results in Fig. 4.2 in the range of (0,10)2.

When we apply a non-linearity to the function with integer frequencies, the output
spectrum has only integer frequencies, which means that it is periodic. Also mentionable
is the beautiful alignment of the high frequencies, which contrasts the Gauss mapping,
where no clear pattern is present. Moreover, we see that the sine activation produces
more high-frequency components than ReLUs, which could explain why sine activations
are more effective in shallow networks.

4.4 Experiments

4.4.1 Weight initialization and progressive training
In this section, we want to prove our mathematical claims through experiments. First, we
will show that the derivation of the integer mapping indeed represents the Fourier series.
Secondly, we want to check whether progressive training helps with generalization.

We conducted our experiments on the image regression task. This task aims to make
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(a) Elephants (b) Spaceship (c) Fox (d) Pyramid (e) Plants

(f) Islamic arch (g) Pattern (h) Football (i) Butterfly (j) COVID-19

Figure 4.3: The images used in the image regression experiments.

a neural network memorize an image by predicting the color at each pixel location. We
use ten images with a resolution of 512×512, which we see in figure 4.3, and report the
mean peak signal-to-noise ratio (PSNR). We divide the image into train and test sets,
where we use every second pixel for training and take the complete image for testing.
We utilize 3 Fourier-mapped perceptrons with N = 128 (Nyquist frequency), one for each
image channel. We normalize the input (x) to have an interval between [0,1] in both
width (x) and height (y) dimensions.

(a) PT=F, WI=F (b) PT=F, WI=T (c) PT=T, WI=F (d) PT=T, WI=T (e) GT

Figure 4.4: A visualization of the outputs of Fourier mapped perceptrons of N = 128. PT
stands for progressive training and WI stands for weight initialization. T/F stands for
True/False, respectively.

In this experiment, we made an ablation study: With and without weight initialization
using the normalized FFT coefficients of the image’s training pixels, with and without
the progressive training scheme explained in section 4.3.3. For progressive training, α

was linearly increased from 0 to its maximum value at 75% of training iterations. In
training, we only make an update step after we accumulate the gradients of the whole
image. We did not study learning schedules in this work, and the reader is encouraged to
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Figure 4.5: The training progress of Fourier mapped perceptrons with N = 128. The left
and the right figures report the train and test PSNR, respectively. Note: The y-axis limits
are different in both plots. WI without PT yields a PSNR of 160, which one can consider
as the ground truth proving that the perceptron is a Fourier series.

try different schedules. Figure 4.4 shows a visualization of one of the images, and figure
4.5 shows the training progress, where the solid line is the mean PSNR and the shaded
area shows the standard deviation.

As can be deducted from figure 4.5, one can see that the training PSNR starts at an
optimum at the start of training when we use weight initialization (WI), and we do not
use progressive training (PT). This fact underlines our claim that a perceptron with an
integer lattice mapping is indeed a Fourier series. Note that in case both WI and PT
are used, the training PSNR is not optimal at the start, because the PT masks out high-
frequency activations.

We can also see from figure 4.5 that whenever we use progressive training, it always
shows a higher test PSNR, which certifies that progressive training helps with general-
ization. Lastly, the perceptron overfits the training pixels when we did not employ PT
and WI. This overfitting can be seen quantitatively with a very low test PSNR (red line
in figure 4.5) and qualitatively with grid-like artifacts (Figure 4.4a)).

4.4.2 Perceptron experiments

In this experiment, we want to compare the representation power of the different map-
pings in the single perceptron case. We conducted our experiments in the same setting as
in section 4.4.1, where we used progressive training and did not use weight initialization.

In the integer mapping, we increased N’s value from 4 to half the training image
dimension (Nyquist frequency) and calculated all possible permutations BN , as discussed
in section 4.3.1. For the Gaussian mapping, we sample m = ∣BN ∣ parameters from a
Gaussian distribution with a standard deviation of 10 (which was the best value for this
task in our experiments). Also, we test a one-layer SIREN with one hidden layer having
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Figure 4.6: Perceptron experiments with different values for the mapping frequency N.
We report the train PSNR on the left and the test PSNR on the right. For high values of
N our integer mapping outperforms all competing mappings.

the same size m. Finally, we adopt the positional encoding (PE) scheme from Mildenhall
et al. (2020) and limit its values to N. Figure 4.6 shows our experiments’ results on the
training and test pixels, respectively. Figure 4.7 shows the networks’ outputs trained on
one of the images.

At low N values (figure 4.7a), we see that the Gaussian mapped perceptrons do not
work because the number of sampled frequencies is too low, so there is a low chance
that samples will be near the image’s critical frequencies. On the other hand, the integer
mapped perceptrons give a blurry image because they can only learn low frequencies.
The SIREN performs relatively well in this case, and we think this is because SIRENs
naturally inherit a learnable Fourier mapping that is not restricted to the initial sampling,
as described in section 4.3.2. PE can only produce horizontal and vertical lines because
it has diagonal frequencies (only one non-zero frequency is allowed), and this effect is
persistent at any value of N.

As N increases, SIREN, Gauss, and integer mapping performance increase, giving
similar performance around N = 16 (figure 4.7b)). For high values of N, we see that
in figure 4.7d), the integer lattice mapping of the Fourier coefficients outperforms the
competing mappings, clearly displaying more details in the reconstruction. On the other
hand, the PSNR of the SIREN and the Gaussian mapped perceptrons saturates. We think
this is because both mappings rely on sampling the frequencies. Although we can get
many of the critical frequencies of the image with sampling, it is improbable to get all
of them simultaneously. Even the trainability of the SIREN mapping did not help in this
case.
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(a) Network predictions using N = 8

(b) Network predictions using N = 16

(c) Network predictions using N = 32

(d) Network predictions using N = 128

Figure 4.7: The visualization of the Fourier mapped perceptrons and the one layer SIREN
with different values of N. GT stands for ground truth.
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Figure 4.8: Visualization of SIREN (Sitzmann et al., 2020), Gauss ReLU (Tancik et al.,
2020) and our method. The top row is the first period and bottom row is the second
period, which shows our method enforcing periodicity.

4.4.3 MLP experiments
Our theory for integer mapping assumes an underlying function that is periodic. How-
ever, it is not clear that we will end up with a periodic function if we use an integer
mapping. In this experiment, we want to check if applying an integer mapping forces
periodicity. Secondly, we want to validate our claim (in section 4.3.5) that if a mapping
gives the perceptron a high representation power, it will also give a high representation
power to the MLP and vice versa. We compared ReLU networks with integer, Gaussian,
PE, and pruned integer mapping (section 4.3.4). We also compared SIRENS with no
mapping (extra layer), integer, pruned mapping. We made a grid search of the param-
eters N = [8,16,32], depth= [0,2,4,6] (depth=0 represents a perceptron), and fixed the
width to 32. We used a pr(N,128) for the pruned mapping.
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Activ. Map.
N=8 m=113 N=16 m=481 N=32 m=1985

d=0 d=2 d=4 d=6 d=0 d=2 d=4 d=6 d=0 d=2 d=4 d=6

Sine
No 16.65 22.15 23.26 24.07 17.07 22.09 23.84 19.76 17.22 14.90 14.67 13.63
Int. 15.68 22.31 22.41 20.94 17.33 27.66 27.06 27.33 19.84 33.78 26.98 23.60
Pr. 15.28 21.03 22.40 23.00 16.76 28.17 27.68 24.66 18.48 37.34 30.41 19.74

Relu

P.E. 11.78 16.61 17.37 17.77 11.78 16.87 17.79 17.95 11.78 17.05 18.15 18.15
Gs. σ10 11.93 21.90 21.68 21.69 17.01 24.53 24.26 25.13 18.48 26.10 26.30 27.48
Gs. σpr 14.06 20.23 20.78 20.88 12.69 26.02 26.40 26.72 13.01 37.69 37.90 37.74

Int. 15.68 20.51 20.65 20.62 17.33 24.42 24.09 24.49 19.84 31.57 32.14 32.79
Pr. 15.28 20.35 20.92 20.96 16.76 25.87 26.23 26.33 18.48 37.70 36.81 37.48

Table 4.1: The mean training PSNR results of network type comparison experiment with varying network depth (d), number of
frequencies (N). We use the following abbreviations: Activ. = Activation function, Map. = Mapping type, Int. = Integer, Pr.=
Pruned Integer, P.E. = Positional Encoding, Gs. = Gaussian. Here, m is the mapping size and σ is the standard deviation.

Activ. Map.
N=8 m=113 N=16 m=481 N=32 m=1985

d=0 d=2 d=4 d=6 d=0 d=2 d=4 d=6 d=0 d=2 d=4 d=6

Sine
No 16.65 21.63 21.85 21.99 17.06 21.28 22.03 18.50 17.22 13.57 13.29 12.37
Int. 15.68 21.75 21.53 20.06 17.31 23.48 22.67 22.28 19.70 16.85 17.89 16.36
Pr. 15.28 20.49 21.22 21.45 16.75 22.00 21.39 22.17 18.39 20.49 15.15 13.13

Relu

P.E. 11.78 16.60 17.33 17.70 11.78 16.85 17.73 17.87 11.79 17.02 18.06 18.02
Gs. σ10 11.93 20.67 21.06 20.90 17.00 22.96 22.78 23.04 18.45 23.66 23.61 23.73
Gs. σpr 14.06 19.89 20.22 20.21 12.69 22.46 22.48 22.16 12.99 23.12 23.48 23.33

Int. 15.68 20.27 20.35 20.23 17.31 22.93 22.65 22.50 19.70 24.36 24.02 23.73
Pr. 15.28 19.98 20.33 20.21 16.75 22.31 22.26 22.09 18.39 23.24 23.18 23.30

Table 4.2: The mean test PSNR results of network type comparison experiment. For abbreviations see table 4.1.
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(a) ReLu w/o pr. (b) ReLu w/ pr. (c) Sine w/o pr. (d) Sine w/ pr. (e) GT

Figure 4.9: View synthesis results using a simplified Nerf. A small MLP with a depth of
4, width of 64 and integer mapping with a frequency of 4 is used. The pruning is done
with pr(4,8). The pruning technique shows qualitative improvements. ”pr” is a shortcut
for pruning.

For the Gaussian mapping, we had two settings. The first one had a standard deviation
of 10 (σ10), which had the best performance in the perceptron experiments. In the second
one, we set the standard deviation the same as the pruned integer mapping’s standard
deviation (σpr) to check its effect. Tables 4.1 and 4.2 show the mean train and test
PSNRs respectively.

Figure 4.8 shows a visualization of the network’s outputs at N = 16, depth = 4 and
width = 32 for the first period and next period in the height and width directions ( f ([x+
1,y+1])). And we see that the integer mapping forces the network’s underlying function
to be periodic unlike others, which proves our first hypothesis.

From the table 4.1 we see that if a mapping at d = 0 gives the highest PSNR, this does
not mean that it will give the highest PSNR for d > 0 and vice versa. One clear example
at N = 32 is the Gauss σpr, where it has a PSNR of 13.01 dB at d = 0, which is lower than
integer mapping (19.84 dB), but has the highest PSNR at d = [4,6]. This result disproves
our initial assumption that if a mapping gives the perceptron a high representation power,
it will also give a high representation power to the MLP. We see also that the pruned
integer mapping has comparable results with the Gauss σpr, and this shows that the main
contributor to the performance is the mappings’ standard deviation.

From the tables, we can also observe some trends. First, networks with sine activations
and large mappings collapse during training. and perform worse than Relu networks.
Second, the integer mapping usually gives the best test PSNR, demonstrating its effec-
tiveness in the MLP case. Third, the pruned integer mapping shows consistently better
train PSNR than the normal integer mapping at d > 0. We believe this is because pruned
mapping has a higher standard deviation. Finally, the PE is worse in every case because
we cannot easily control the standard deviation, and it has very few parameters.

4.4.4 Novel view synthesis experiments
This section wants to see if our findings in the image regression task transfer to the
novel view synthesis (NVS) task. In NVS, we use 2D images of a scene to find its 3D
representation. With this representation, one can render images from new viewpoints. In
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Act. Map.
N = 4 N=8

d=0 d=2 d=4 d=6 d=0

Sine
No 20.37 23.08 23.55 23.35 OM
Int. 18.42 22.22 22.95 22.97 19.31
Pr. 19.15 23.12 23.58 23.36 -

Relu

P.E. 16.30 21.48 22.64 23.51 16.40
Gs. 18.93 22.81 23.64 23.82 19.29
Int. 18.42 21.81 22.68 23.28 19.31
Pr. 19.15 22.78 23.61 23.89 -

Table 4.3: Validation PSNR scores of NVS experiments using a mapping of frequency 4.
OM stands for out of memory. For other abbreviations see table 4.1.

contrast to the 2D experiments, we map the (x,y,z) input coordinates to a 4-dimensional
output, the RGB values, and a volume density. We use a simplified version of the official
Neural radiance fields (NeRF) (Mildenhall et al., 2020) for this experiment, where we
remove the view dependency and hierarchical sampling. Here, we experiment with the
input mappings used in section 4.4.3. Unless otherwise stated, we adopt the settings from
the image regression task. We set the network width to be 64.

As the mapping size increases exponentially, we do our experiments with lower fre-
quencies than in the 2D case. Specifically, we used the integer mapping on four fre-
quencies. The frequencies of our mapping were limited to the maximum network size
which we could fit on NVIDIA GTX-2080Ti. The pruning is given by pr(4,8). We con-
ducted our experiments on the bulldozer scene, commonly used for Nerf experiments.
For training, we used a batch size of 128, 50.000 epochs, and a learning rate of 5×10−4.

As seen in Table 4.3, in the perceptron case (d = 0), SIREN provides the best perfor-
mance, which aligns with our image regression results at low values of N. We observe
that the pruned mapping increases the performance compared to the normal mapping for
both Relu and sinusoidal activation. This increase in performance is because the pruned
mapping has a higher standard deviation than the normal mapping. We see qualitative
improvements in the pruning experiment in figure 4.9. Gauss gives comparable results to
pruned integer mapping because they have the same standard deviation. These findings
align with our conclusions from image regression experiments. However, we could not
test a perceptron with frequencies higher than 8, which was superior in image regression,
due to memory limitations.

4.5 Conclusion
This work showed that a Fourier mapped perceptron with an integer lattice mapping
is precisely the d-dimensional Fourier series. As a result, one perceptron with a large
enough lattice can represent any signal. We demonstrated experimentally on the im-
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age regression task that one perceptron with frequencies equal to the Nyquist rate of the
whole image could reconstruct it perfectly. Furthermore, we showed that our modified
progressive training strategy of adding sequentially low to high frequencies worked on
arbitrary mappings and improved the generalization of the interpolation task. In addi-
tion, we showed that a Fourier mapped perceptron is structurally like a one hidden layer
SIREN but with a trainable mapping. We saw that trainable mappings help if we train
with a low number of frequencies and hurt when we use a high number of frequencies.
Furthermore, in Fourier mapped MLPs, we showed that the integer lattice mapping forces
the neural network’s underlying function periodicity. Lastly, we confirmed experimen-
tally on the image regression and novel view synthesis tasks that the main contributor to
reconstruction performance using a Fourier mapped MLP is the size of its mapping and
the standard deviation of its elements.
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Chapter 5

Instance segmentation using implicit
neural representation

5.1 Motivation

In chapter 4, we showed the connection between INRs and Fourier series. Moreover, we
showed the advantages of using INRs in systems over the traditional discrete represen-
tations. However, these INRs were inherently trained on single objects and have not yet
been adopted for a general task, particularly the task of instance segmentation. In this
chapter, we use INRs to represent masks in instance segmentation. In particular, we will
use them to parameterize a level set function.

Unlike FourierNet (Riaz et al., 2020), which could only represent instances that have
single star-shaped masks, this representation can theoretically represent any mask. More-
over, like FourierNet, as the Fourier series is a special-case INR, the Fourier series? low-
frequency components hold the general mask shape, and high-frequency components
hold the edges of the mask. Therefore, our representation is also meaningful, and we
can compress it according to the use case. Furthermore, as INRs are continuous in the
domain of input coordinates, we can sub-sample the pixel coordinates to generate higher
resolution masks during inference, which is a significant advantage compared to other
mask representations.

Our work will focus on the accuracy aspect of instance segmentation rather than
memory efficiency, because of these advantages. It will build on detect-then-segment
approaches with Mask R-CNN (He et al., 2017) as the baseline. We will show that
our representation performs better than previously dominant grid-based representations.
This chapter is based on our paper ’FourierMask: Instance Segmentation Using Fourier
Mapping in Implicit Neural Networks’ (Riaz et al., 2021).
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Figure 5.1: The overall architecture of FourierMask.

5.2 Method

5.2.1 Architecture

As in this work we focus on accuracy, we designed FourierMask to be a two-stage in-
stance segmentation method. FourierMask builds on Mask R-CNN (He et al., 2017),
and figure 5.1 shows its architecture. It has a backbone followed by a feature pyramid
network (FPN) (Lin et al., 2017a). From all of the feature levels in FPN, we use region
proposal networks (RPN) to generate proposal candidates. Next, we use an ROI align
operation to generate fixed-size feature maps from all selected proposal candidates. Fi-
nally, we provide the feature maps to the network head, which has two branches. One
branch predicts the proposal’s class, box parameters, and the other predicts the function
coefficients. We designed two network head designs, which we will discuss in the next
section along with the mask representation.

5.2.2 Mask representation

We represent the mask as a super level set, as shown in figure 5.2. We consider a location
in the mask as foreground if the level set function is higher than a threshold and back-
ground, if it is lower than the same threshold. We define the super level set as follows:

L+c (y) = {x∣y(x,W) ≥ c} (5.1)

Here y(x,W) ∈R is the level set function, which we parameterize as a Fourier series
or a coordinate-based MLP, x ∈ [0,1]2 is the normalized pixel coordinates vector (i, j) in
the proposal candidate box, W are the parameters that control the level set function, and
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(a) The level set function (b) The output mask

Figure 5.2: An illustration of how the mask is represented. The left image shows the
level set function with the threshold in black, and the right image shows the resulting
mask. We can see that it can represent multi mask instances, unlike FourierNet.

c is the level set threshold. In chapter 4, we proved that a Fourier mapped perceptron
with an integer grid mapping is a Fourier series. So in the case we want to represent the
level set as Fourier series, we use equation 4.2 to define the level set function:

y(x,W) =W.γ(x) (5.2)

where here W ∈R1×2m are weights of the perceptron and at the same time the Fourier
series coefficients, γ(x) is the Fourier mapping defined as

γ(x) = (
cos(2πB ⋅x)
sin(2πB ⋅x) ) . (5.3)

Here B ∈ Rm∗2 is the Fourier mapping matrix, and its elements are the integer grid
elements as given in equation 4.21. We can calculate the number of elements m in the
mapping with equation 4.22, where the number of dimensions is 2 (d = 2).

m = (N +1)(2N +1)−N (5.4)

Here N is the number of frequencies used in the series. Compared to FourierNet, this rep-
resentation can represent any mask, and it is not restricted to single star-shaped instance
masks. The network head predicts the Fourier series coefficients W during inference,
as shown in figure 5.3a). Then we evaluate the level set function (equation 5.2) at the
pixel locations we desire. First, we evaluate pixels in a grid pattern, and then we further
sub-sample in a more refined grid if we need a higher resolution mask.

Furthermore, we designed a second head where we divide the mask into sparse grid
patches, and at each location, we predict the coefficients for that patch, as shown in
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(a) Head design for predicting the mask coefficients for the whole image.

(b) Head design for predicting the mask coefficients for each location in the feature map.

Figure 5.3: The two FourierMask head architecture designs for a ROI align size of 14×
14. The network predicts the Fouier coefficients W for a) the whole image, b) each
location in the feature map.

figure 5.3b). The advantage of this design is that the underlying function to represent the
patch is simpler than the whole mask, so learning the underlying patch function should
be simpler. On the other hand, the memory requirement of the second design is much
higher. Therefore, we should pick either design, depending on the system requirements.
Finally, in case we want to represent it as a coordinate MLP, we pass γ(x) to an MLP
and repeat the same steps during inference. However, because the number of parameters
in the MLP is significant, the network head predicts only the weights of the first layer.

5.2.3 Mask representation upper bound
In this section, we will test the representation power of FourierMask similar to what we
did in FourierNet in section 3.2.3. First, we reconstruct the masks with the representation
at different frequencies and then compare them to the ground truth masks of the data set.
Along with checking the representation power, this experiment gives an insight into the
optimal number of frequencies for a dataset. We performed this experiment by applying
a 2D FFT on all the target object masks in the MS COCO training dataset. This Fourier
transform gave us the coefficients of a Fourier series, which holds the same meaning
as the prediction of the coefficients W of FourierMask. First, we experimented with
only the lower frequency coefficients of the Fourier series and reconstructed the object’s
mask by applying equation 5.2. We did this for all the objects’ masks in the MS COCO
training set and evaluated the IoU loss of the reconstruction compared to the target. Then

64



5.2 Method

Figure 5.4: Spectrum test of the COCO
dataset.

(a) GT (b) 2 (c) 3

(d) 4 (e) 8 (f) 25

Figure 5.5: The ground truth vs. its recon-
structions at various frequencies.

we incrementally added higher frequency coefficients and repeated the above procedure
until we reached the maximum number of frequencies. Figure 5.4 shows the mean IoU
loss at various frequencies. We can see that the loss decreases exponentially, and it is not
saturating, and this is because this representation mathematically can represent any mask.
Figure 5.5 illustrates a visual comparison between the ground truth and reconstructions
using varying frequencies. Note how FourierMask reconstructions can deal with two
masked instances.

5.2.4 Loss functions

The overall loss function comprises of three components, which is defined as:

Ltotal = Lcls+Lbox+Lmask (5.5)

We use the focal loss (Lin et al., 2017b) for the classification loss Lcls, as given by
equation 3.9. For the bounding box loss Lbox, we use the smooth L1 loss. As for the mask
loss Lmask, we tested two losses: the binary cross entropy loss, as defined in equation
3.10, and the IoU loss for training the binary masks defined as:

IoUloss =
∑

N
i=0 min(ypi,yti)

∑
N
j=0 max(yp j ,yt j)

(5.6)

ypi is the predicted value of the pixel i, yti is the ground truth value of the pixel i and N
is the total number of pixels in the predicted mask. In the case of the MLP setup, we train
a perceptron in parallel to the MLP. This parallel training helps, as the Fourier features
we will pass to the MLP will be the Fourier series coefficients.
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(a) Mask R-CNN (b) PointRend (c) FourierMask

Figure 5.6: Comparison between Mask R-CNN, PointRend and FourierMask.

Figure 5.7: The mAP when using a subset
of trained frequencies.

(a) 1 (b) 4 (c) 12

Figure 5.8: Mask predictions using various
frequencies.

5.3 Experiments
For all our experiments we employ a Resnet 50 backbone with feature pyramid network
pre-trained on ImageNet (Deng et al., 2009) unless otherwise stated. We use the Mask
R-CNN default settings from detectron2 (Wu et al., 2019). We train on the MS COCO
(Lin et al., 2014) training set and show the results on its validation set. We predict class
agnostic masks, i.e. rather than predicting a mask for each class in MS COCO, we predict
only one mask per ROI. For the baseline, we trained a Mask R-CNN with class agnostic
masks.

5.3.1 Number of frequencies

In this experiment, we want to see the effect of the number of frequencies on the perfor-
mance. Therefore, we trained a FourierMask to predict a single vector of coefficients for
the whole mask and we did not use the MLP. Figure 5.3a) shows the head architecture
for this experiment. In the head, we applied two 3×3 strided convolutions to reduce the
feature size by 1/4 th and then used a fully connected layer to predict the coefficients. We
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trained the network with twelve frequencies N = 12 and an output resolution of 56×56
using IoU loss. We evaluated the mAP precision of the network using a subset of Fourier
frequencies, where we incrementally added the higher frequency components starting
from the first component during inference. Figure 5.7 shows the result of this test. The
mAP shows a similar trend as seen in figure 5.4 and therefore validates the spectrum
analysis. Figure 5.8 shows how the mask changes when we use a different number of
frequencies. We see that the mask gets more details as we increase the number of fre-
quencies. Moreover, we trained the network using binary cross entropy loss rather than
IoU loss. We used the same network architecture and settings. We reached a maximum
of 32.1 mAP which was clearly lower than the 34.5 mAP using the IoU loss. Therefore,
we used IoU loss for all the rest of our experiments.

5.3.2 Mask representation designs

This section compares the different mask representation designs we proposed in section
5.2.2: A single Fourier series for the whole mask, multiple series one for each spatial
location, and multiple MLPs one for each spatial location. in section 5.3.1, we trained
a network that predicts a single Fourier series for the whole mask. In addition to that
network, we trained two other networks with the architecture shown in figure 5.3b).
In this architecture, the network predicts separate Fourier coefficients for each spatial
location. In the first network we represented the mask patches as Fourier series, and the
second network as a MLP (FM + MLP).

We used 12 Fourier frequencies for both networks and had an output resolution of 28
x 28 pixels. As for the MLP, we employed three hidden layers, where each layer had 256
neurons. The MLP has a single output neuron, on which we apply a sigmoid function to
bound it between 0 and 1 to stabilize training. Furthermore, we investigated if sinusoidal
activations in MLP perform better than a MLP with ReLU activations, as was claimed
by Sitzmann et al. (2020).

Table 5.1: Comparison of various FourierMask’s mask representation designs

Model mAP
FM (single) 34.50
FM (multiple) 34.89
FM + MLP (ReLU) 34.41
FM + MLP (Sine) 34.97

Table 5.1 shows the results, and as can we see, predicting coefficients for each spa-
tial location gives better performance, however, the difference is not big, compared to
the added memory cost. In addition, networks with MLPs show the best performance
among the models and sinusoidal activations showed better performance compared to
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(a) Step = 1 (b) Step = 1/2

(c) Step = 1/4 (d) Step = 1/8

Figure 5.9: Subsampling the pixels smooths out the boundaries of the mask.

ReLU. Overall, we see the trend that whenever we increase the number of parameters to
represent the mask we get better performance.

5.3.3 Higher resolution using pixel sub-sampling

One of the advantages of our mask representation is that it can predict masks at subpixel
resolution, because implicit representations are continuous in the input domain. We an-
alyzed this by evaluating both the trained networks in section 5.3.2 on the MS COCO
validation set on various pixel steps and compared it to our baseline MaskRCNN. For
the input x in the equation 5.2, rather than using integer values of pixels (pixel step of 1),
we used a pixel step of 1/2s−1 , where s ∈Z+ is the scaling factor. This effectively scaled
both the height and width of the input x by a factor of s. Table 5.2 shows the results, we
can see that FourierMask surpasses our baseline, which means that our representation
is better than the grid representation. Furthermore, we can observe that sub-sampling
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Table 5.2: The effect of sub-sampling the pixels during inference. The speed is tested on
Nvidia GTX 2080Ti GPU

Model Pixel Step Resolution mAP Speed (ms)
Mask R-CNN 1 28×28 34.86 48.7
FM 1 28×28 34.89 50.3
FM 1/2 56×56 35.13 59.1
FM 1/4 112×112 35.18 68.3
FM + MLP 1 28×28 34.97 52.1
FM + MLP 1/2 56×56 35.18 67.0
FM + MLP (ResNeXt-101) 1 28×28 39.09 -

always improves the mAP, and widens the gap with the grid representation even more.
Figure 5.9 shows how the mask boundary smooths out when sub-sampling the pixels.
Note that we trained the network on a 28× 28 output resolution, but we can generate
higher resolution output during inference, which is a considerable advantage over other
methods.

5.4 Conclusion
In this chapter, we showed how implicit representations combined with the Fourier series
can be applied to the task of instance segmentation to generate high-quality masks. We
illustrated that the masks generated using our Fourier mapping are compact and mean-
ingful. The lower Fourier frequencies hold the shape and higher frequencies hold the
sharp edges. Furthermore, by sub-sampling the pixel coordinates in our implicit MLP,
we can generate higher resolution masks during inference, which are visually smoother
and improve the mAP over our baseline Mask R-CNN with similar settings and model
capacity.
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Chapter 6

3D multi-object tracking

6.1 Introduction

In the first part of the thesis, we focused on instance segmentation. Now we will focus
on the second task, which is 3D multi-object tracking (MOT). 3D MOT aims to find the
objects surrounding an agent in 3D space and trace them through time. The trajectories
built by the MOT algorithms are used by motion forecasting modules or given directly to
the motion planner to complete navigation successfully. This chapter introduces the 3D
multi-object tracking task and describes the approaches to solving the task. In addition,
we explain the pipeline of online MOT and introduce the most popular 3D multi-object
tracking datasets and the evaluation metrics of this task. It gives the prerequisites for
chapter 7, in which we describe our own methods.

6.2 Approaches to 3D multi object tracking

In general, we divide MOT in terms of data association into batch tracking and online
tracking; batch MOT aims to find the global data association by finding the minimum
cost of a flow graph (Schulter et al., 2017). In online MOT, sometimes called tracking-
by-detection, the goal is to perform data association of the last two frames only, where
it becomes a bipartite matching problem. It is usually solved using the Hungarian algo-
rithm (Kuhn, 1955). For 3D MOT, online MOT has become popular nowadays because
of its simplicity, efficiency, and influence of the 2D MOT methods (Bergmann et al.,
2019; Bewley et al., 2016; Wojke et al., 2017; Zhou et al., 2020a). These algorithms
filter outliers in frame-by-frame object detectors (Lang et al., 2019; Shi et al., 2019b;
Cheng et al., 2020) by utilizing temporal information. Also, because they rely heav-
ily on object detection performance, the notable advancement in 3D object detection
resulted in considerable MOT growth.
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Figure 6.1: he general pipeline for an online MOT system. It consists of three main
modules: 1) The detection module, 2) The matching module, 3) The tracking module.

6.3 multi object tracking pipeline
The general pipeline for 3D MOT has the structure shown in figure 6.1. It has a detection
module, a matching module, and a tracking module. In the following sections, we will
describe the modules in the pipeline.

6.3.1 Detection module

The detection module consists of a 3D object detector. It processes point clouds and/or
images and returns 3D bounding boxes. At each time step t, the detector produces a
number n of detections Dt = {Dt

1,D
t
2, . . . ,D

t
n}. Each detection Dt

i is a tuple of 8 parame-
ters (x,y,z, l,w,h,θ ,s). Here, the parameters (x,y,z) are the object’s center in either the
vehicle’s local frame or the global frame, the parameters (l,w,h) are the bounding box
dimensions, θ is the yaw angle, and s is the detection score. A 3D MOT system’s per-
formance is mainly affected by object detection performance (Weng and Kitani, 2019;
Weng et al., 2020).

One of the first algorithms trained end-to-end on point clouds for the 3D detection task
was VoxelNet (Zhou and Tuzel, 2018). It used PointNets (Qi et al., 2017) to produce
point features inside each voxel. They process these features with 3D sparse convolu-
tions, then passed into a region proposal network. Finally, they use 2D convolutions to
produce the detections. SECOND (Yan et al., 2018) sped up VoxelNet by using spatially
sparse convolutional networks to extract features from the z-axis before they downsam-
ple the 3D data to 2D features. More techniques attempted to eliminate the costly 3D
convolutions. For example, PIXOR (Yang et al., 2018) projected all points onto a 2D
feature map with 3D occupancy and point intensity data encoded in the feature dimen-
sion. PointPillars (Lang et al., 2019) used pillars instead of voxels to give pillar features;
it used 2D convolutions on the pillar feature, which provided an efficient backbone.
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PointRCNN (Shi et al., 2019a) took another approach and avoided voxelization and
directly operated on 3D point clouds. They generate proposals and then refine them to
generate the detections using PointNets. PV-RCNN (Shi et al., 2020) merged the voxel-
based and point-based pipelines to get the advantages of both. Other works focused more
on discovering helpful features for detection. For example, MVF (Zhou et al., 2020b)
fused features from bird’s-eye view (BEV) and perspective views of the same lidar point
cloud and introduced the concept of dynamic voxelization, where there is no need to set
a fixed amount of points per voxel. PointPainting (Vora et al., 2020) added semantic
segmentation information to point clouds as visual features. Hu et al. (2020) used free
space as additional information to the detector. CenterPoint (Yin et al., 2020) considered
object detection as a keypoint estimation problem as was done in (Zhou et al., 2019c)
for 2D detection. It predicts a heatmap for each class and then uses the heatmap’s local
minima features to regress to 3D bounding boxes.

6.3.2 Matching module

This module is responsible for matching the detected 3D bounding boxes and the track-
ing module estimations. There are mainly two algorithms for this task; the Hungarian
algorithm or a greedy algorithm (Chiu et al., 2020; Yin et al., 2020). Both need a metric
to perform the matching, and examples of the metric used are IoU (Weng and Kitani,
2019), euclidean distance (Yin et al., 2020), Mahalanobis distance (Chiu et al., 2020),
and distance in embedding space (Weng et al., 2020; Baser et al., 2019). If the metric
is above a threshold, we consider the detection and the tracklet matched; otherwise, they
are unmatched.

AB3DMOT (Weng and Kitani, 2019) built a simple pipeline where they used a Kalman
filter (Kalman et al., 1960) for tracking objects and the Hungarian algorithm for data
association between the tracklets and detections. They used IoU as a matching metric
and showed a great performance in terms of speed and accuracy. Chiu et al. (2020)
used the Mahalanobis distance (Mahalanobis, 1936) instead of the IoU. They also found
the Kalman filter parameters automatically from the statistics of the detector’s training
results. FANTrack (Baser et al., 2019) integrated 2D appearance features from CNNs
and 3D bounding box features for data association. GNN3DMOT (Weng et al., 2020)
proposed using four features: motion and appearance from 2D and 3D spaces, and used
graph neural networks to learn the interaction between these features.

6.3.3 Tracking module

The tracking module is responsible for four tasks: to give new tracklets an ID and save
them in memory, decide whether a tracklet should be active or not, estimate the tracklet’s
parameters in the next time step, and update the tracklet’s information according to its
matched detection using a filtering algorithm (e.g. a Kalman filter).
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The tracklets’ state depends on the filtering algorithm used. However, it should have at
least ten parameters (x,y,z, l,w,h,θ , id,c,active). The first seven parameters are the first
seven parameters of the detection tuple discussed in section 6.3.1. id is an identifier that
is unique for every instance in the sequence. c is the tracklet score which tells how con-
fident the system is about the tracklet. And active is a Boolean variable stating whether
the tracklet is active or not. When a tracklet is not active, the tracking module does not
consider it an output, yet keeps it in memory. The module sets the tracklet’s active vari-
able to true if it is matched with a detection or it is newly created and has a score higher
than the detection threshold. Also, it sets the active variable of unmatched tracklets kept
by the object death module to false if their score is lower than the active threshold. Min-
hits generally lowers false positives and increases false negatives, and max-age enhances
robustness against missed detections and occlusions but increases false positives.

All unmatched tracklets from the matching module are sent to the death module to de-
cide whether to keep or delete the tracklet. The decision can be count-based, confidence-
based or a mix of both. In count-based, the module deletes the tracklet if it was un-
matched for a number (max-age) of timesteps. In confidence-based, the module deletes
the tracklet if its score goes below the deletion threshold. We can use a combination of
both; however, one will usually dominate the performance.

(a) KITTI
(b) NuScenes (c) Waymo

Figure 6.2: The cars used to collect the autonomous driving datasets. All of the cars
contain cameras and at least one LIDAR.

6.4 Datasets

6.4.1 KITTI

The KITTI vision benchmark suite (Geiger et al., 2012) was one of the first large scale
datasets for autonomous driving perception tasks such as stereo, optical flow, visual
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odometry, SLAM, 3D object detection, and 3D multi object tracking, which we are in-
trested in. They recorded the data using a Volkswagen Passat that is shown in figure
6.2a). It is equipped with two color cameras, two grayscale cameras (resolution: 1392
× 512), a Velodyne HDL-64E LIDAR, and a OXTS RT 3003 localization system which
combines GPS, GLONASS, an IMU and Real-time kinematic (RTK) positioning. They
recorded the data during sunny weather at the city of Karlsruhe, Germany. The dataset
has 22 scenes that cover 39.2km, and has more than 200k 3D abject annotations with 28
different classes. Figure 6.3a) shows some examples from KITTI, illustrating the differ-
ent situations it captures. Until recently, KITTI was still used to benchmark some tasks
but it is currently out-competed by other larger datasets like nuScenes and Waymo’s open
dataset.

6.4.2 NuScenes
The nuScenes dataset (Caesar et al., 2020) is one of the largest datasets used for bench-
marking autonomous driving tasks. The dataset is developed by Motional, and it bench-
marks 3D detection, 3D multi object tracking, motion prediction, LIDAR segmentation,
and planning. They used two Renault Zoe electric cars as shown in figure 6.2b), with an
identical sensor layout to drive in Boston and Singapore. The cars are equiped with six
cameras covering the 360° field-of-view (resolution: 1600 x 900), a 32 beam LIDAR,
five 77GHz Frequency-modulated continuous-wave (FMCW) RADARs, IMU, and GPS
with RTK positioning. They recorded 1000 driving scenes, each with a duration of 20
seconds captured in Boston and Singapore, and have 23 object classes annotated with 3D
bounding boxes at a rate of 2Hz. They recorded at different times of the day and figure
6.3b) shows some examples.

6.4.3 Waymo’s open dataset
Waymo’s open dataset is the largest dataset used for benchmarking autonomous driv-
ing tasks, and it is developed by Waymo. It benchmarks 3D detection, 3D multi object
tracking, motion prediction, LIDAR segmentation, occupancy and flow prediction. They
used the car shown in figure 6.2c) which is equiped with five cameras covering about
270° field-of-view (main camera resolution: 1920 x 1280), five LIDARs, and an IMU.
They recorded 1150 driving scenes, each with a duration of 20 seconds captured in San
Fransisco, Mountian View, and Phoenix. The dataset has four object classes (Vehicle,
Pedestrian, Cyclist, and Sign) annotated with 3D bounding boxes at a rate of 10Hz.
They recorded at different times of the day and figure 6.3c) shows some examples. Com-
pared to nuScenes, Waymo has more annotations because of the higher rate, covers more
geographical area, and has higher resolution LIDARS. On ther other hand nuScenes’s
cameras cover 360°, it has RADAR data, and has a more challenging multi object track-
ing challenge because of the lower rates. There are more datasets that we can use for 3D
multi object tracking which are smaller in size than NuScenes and Waymo or with less
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Figure 6.3: Samples of images from the autonomous driving datasets (rows from top to
bottom): a) KITTI, b) NuScenes, c) Waymo’s open dataset.

labels, but are worth mentioning for example: Argoverse (Chang et al., 2019), ONCE
(Mao et al., 2021), Lyft L5 datasets (Houston et al., 2021). each of which having it own
advantages and disadvantages.

6.5 Evaluation

The primary metrics used for evaluating multi object tracking are the Multi-Object Track-
ing Accuracy (MOTA), Average Multi-Object Tracking Accuracy (AMOTA), and Average
Multi-Object Tracking Precision (AMOTP). MOTA is expressed as:

MOTA = 1−
FP+FN + IDS

GT
(6.1)

FP is the number of false positives, FN is the number of false negatives, IDS is the
number of identity switches, and GT is the number of ground truths. MOTA is found
after fine-tuning the thresholds for each class, and then the maximum value is reported.
On the other hand, AMOTA measures the average performance of different thresholds,
and it is expressed as:

AMOTA = 1
n−1

∑
r∈{ 1

n−1 ,
2

n−1 ... 1}
MOTAR (6.2)
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where r is the recall value, n is the number of recall values to test on, and MOTAR is the
recall-normalized MOTA, and it is given as:

MOTAR =max(0,1 −
IDSr +FPr +FNr +(1− r) ⋅GT

r ⋅GT
) (6.3)

Here IDSr, FPr, and FNr are the id switches, false positives, and false negatives at a
specific recall value r. The AMOTA is a metric that favors algorithms that are robust
against changes in the evaluation thresholds. As for the AMOTP, we define it as:

AMOT P = 1
n−1

∑
r∈{ 1

n−1 ,
2

n−1 ,..,1}

∑i,t di,t

∑t T Pt
(6.4)

Here di,t indicates the position error of track i at time t, and T Pt indicates the true-
positives at time t.
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Chapter 7

Score refinement for confidence based
3D multi object tracking

7.1 Introduction
In online multi object tracking (MOT), the decision of when to initialize and terminate
tracklets is critical to its performance. In the previous works (Weng and Kitani, 2019;
Chiu et al., 2020), this decision was count-based. Those methods only make the tack-
let active if it has a minimum number of consecutive detection matches (min-hits). On
the other hand, they terminate a tracklet if it is not matched for a predefined number of
timesteps (max-age). The problem with the count-based method is that it treats all detec-
tions the same, yet the detection score can indicate the detection quality. For example,
if the detection score is 0.95, it is probably a true positive. In this case, why should
the algorithm wait for more matches if it is already confident about the first detection?
Moreover, if the tracklet’s initial score is low, why should it remain for many timesteps
before we terminate it?

Furthermore, when a detection matches a tracklet, the tracklet’s updated score is the
detection score. Here the tracklet’s previous time step score is not used, and we believe it
is a valuable information source that can improve the score estimation. For these reasons,
we use a confidence-based method for initialization and termination.

The confidence-based method initializes a tracklet and considers its output when its
score is higher than the detection threshold (det-th). It terminates it when its score goes
below the deletion threshold (dlt-th). Moreover, the tracklet’s score decreases in the
estimation step by a constant value (score-decay), and if it is matched with a detection,
it increases by the score update function. In this case, tracklets consistently matched
over time will have high scores, and unmatched tracklets’ scores will decline. Sun et al.
(2019) was the only work that used confidence-based tracking. They added the detection
and tracklet scores to update the tracklet’s scores.

Our work will show that their score update function performance is poor, and in the
best cases, it will work like the count-based method. Consequently, we will show that
confidence-based MOT outperforms count-based MOT if we employ proper score up-
date functions. We propose score update functions by our intuition, and at the same time,
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Figure 7.1: Contour plots of the different update function outputs.

we propose learning them using MLPs. In addition, we found that our method worked
well in refining scores in the time domain, so we decided to refine scores across differ-
ent modalities and used it as a late fusion ensemble method. This chapter is based on
two works: our paper ”Score refinement for confidence based 3D multi-object tracking”
(Benbarka et al., 2021) and the bachelor’s thesis ”Learning score update functions for
confidence-based multi-object tracking” by (Gherri, 2021) supervised by the author.

7.2 Method

This section will explain how we refine the tracklet’s scores. In count-based methods,
the tracklet score is simply the score of the matched detection, as shown in equation 7.1

ct = st . (7.1)

ct is the tracklet score, and st is the matched detection’s score of the current time step
t. And if there is no matched detection, the tracklet score is unchanged ct = ct−1. We
think that this approach has two disadvantages. First, we believe that the algorithm
should believe less in the tracklet presence by time unless continuously matched with
detections. For this reason, the score update module reduces the tracklets’ score by a
constant score-decay σscore to get an estimated score of the current time step, as shown
in equation 7.2.

ĉt = ct−1−σscore (7.2)
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here ĉt is the estimated tracklet score of the current time step. The second disadvantage
of the count-based method is that the new tracklet score does not depend on the previous
time step’s score ct−1 if there is a match. We believe that ct−1 is a valuable information
source that can better measure the current score ct . Therefore, we use update functions
that are dependant on the previous tracklet and detection scores. Furthermore, we argue
that if there is a match, the algorithm should be more confident about its decision than
its detection’s confidence or the previous time step’s confidence. Accordingly, we set the
criterion for selecting an update function to give a score greater than or equal to both the
tracklet and detection scores, as shown in equation 7.3.

ct = f (ĉt ,st) ≥max(ĉt ,st) (7.3)

One function that satisfies this criterion is adding the tracklet and detection scores (equa-
tion 7.4), as was used by Sun et al. (2019).

ct = ĉt + st (7.4)

We reason that adding the scores will make the algorithm overconfident, and as seen in
figure 7.1, it is quite saturated. To tackle this problem of overconfidence, we propose
the functions given in equations 7.5, 7.6, and 7.7, which satisfy the above criterion and
provide more robust scores.

ct =max(ĉt ,st) (7.5)
ct = 1−((1− ĉt) ⋅ (1− st)) (7.6)

ct = 1−
(1− ĉt) ⋅ (1− st)

(1− ĉt)+(1− st)
(7.7)

For equation 7.5, it is the minimum requirement to satisfy the criterion above. And
as for equations 7.6 and 7.7, they are seeking to decrease the scores’ complements. The
intuition is that if the score indicates the detection’s confidence, then the score’s com-
plement indicates its uncertainty. If we multiply (eq. 7.6) or parallel add (eq. 7.7) these
uncertainties, they become smaller, so naturally, the confidence gets higher. These equa-
tions give a middle ground between adding the scores and taking the scores’ maximum,
as shown in figure 7.1. Finally, the new score of unmatched tracklets is the estimated
score ct = ĉt .

Finally, we need to decide whether to keep or delete unmatched tracklets from the
matching module. In count-based, the module deletes the tracklet if it was unmatched for
a number (max-age) of timesteps. In confidence-based, the module deletes the tracklet
if its score goes below the deletion threshold. We can use both; however, only one will
dominate the performance.
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7.2.1 MLP as a score update function
The score update functions we used in section 7.2 are not learned but rather chosen by
intuition. We believe that using an MLP as an update function could outperform these
functions because of its learning capabilities. The MLP task is to update the matched
tracklets score using at least two scores, the estimated tracklet score and the detection
score of the matched detection in the current time step. The multi-layer perceptron input
has at least two variables: two scores, ĉt and st , and it has one output, a newly updated
tracklet score ct . The MLP can have more inputs, such as object classes.

We need to train the MLP to accomplish this task. Therefore, we need to generate
training data. For gathering the train data, we use the following pipeline as shown in
figure 7.2.

Figure 7.2: An overview diagram of the pipline used to generate training data for the
MLP score update function.

First, we run the tracking system, then take the matched detections and tracklets and
pass them to another matching module to match them with the ground truth labels of the
dataset. We only take the matched detections and tracklets because we only apply the
score update function to them in a running system. As a result, the outputs of the second
matching module are divided into three cases:

1. Matched detections, tracklets, and ground truth.

2. Matched detections and tracklets but unmatched with ground truth.

3. Unmatched ground truth.

We take the scores of the first case and set their labels to 1, and we take the scores of
the second case and set their labels to 0. We do not use the third case to generate data
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because it does not have detections and tracklets. After training the MLP on this data, it
should manage to update the score appropriately.

Figure 7.3: An overview diagram of the pipline used in late fusion of detection modules.

7.2.2 Late-fusion ensemble method
Another way to apply score refinement is to use it as a late-fusion ensemble method. We
apply it to detections of two different modalities rather than tracklets and detections of
two consecutive time steps, as shown in figure 7.3. Whenever two modalities detect the
same object, the confidence of its tracklet rises; otherwise, it drops. For comparison,
other ensemble methods use voting strategies (Casado-Garcıa and Heras, 2020): the af-
firmative strategy takes all proposals, the consensus strategy takes those recognized by
the majority, and the unanimous strategy takes those identified by all modalities. Since
we only have two modalities, the consensus and unanimous strategies are the same here.

7.3 Experiments

7.3.1 Ablation study
We did our tests on the nuScenes dataset (Caesar et al., 2020) and used CenterPoint
(Yin et al., 2020) as a 3D detector and its point tracker as the filtering algorithm. We
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choose the greedy algorithm as the matching algorithm and the euclidian distance as the
matching metric. We began with the following hyperparameters: max-age = 3, score-
decay = 0.0, deletion threshold = 0.0 , active threshold = 1.0, detection threshold = 0.0,
min-hits = 1 and the update function was equation 7.1. This configuration produced the
best results as reported in CenterPoint, and we made it our starting point for the ablation
study. The next sections will discuss the impact of each hyperparameter.

(a) AMOTA (b) MOTA

Figure 7.4: Contour plots of a) the AMOTA and b) the MOTA results for the score-decay
experiment.

Score-decay and max-age

We performed a grid search with the values of (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0,4, 0.5)
for score-decay and (1, 2, 3, 4, 5, 15) for max-age, and figures 7.4a and 7.4b show a con-
tour of the AMOTA and MOTA results, respectively. We observe that the system gives
high AMOTA and MOTA results at low score-decay and large max-age. We also see
when we increase the score-decay or lower the max-age, the performance deteriorates.

The reason is that when we use equation 7.1 as a score updating function, the de-
tection score overwrites the tracklet score. Thus, changing the score-decay essentially
affects the tracklet’s lifetime, which is similar to changing max-age. However, there is
a slight difference between score-decay and max-age impacts; tracklets with low scores
are deleted faster with score-decay than with max-age. This difference gave a 0.2 MOTA
improvement at a score-decay of 0.1; however, this improvement is not significant.

Score update

We repeated the experiment in section 7.3.1 but with the other score-update functions
(equations 7.4, 7.5, 7.6, 7.7). Figures 7.5 and 7.6 show the AMOTA and MOTA results,
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Figure 7.5: Contour plots of the AMOTA results of the different score update functions.

Figure 7.6: Contour plots of the MOTA results of the different score update functions.

respectively. We notice that for equations 7.5, 7.6, and 7.7, when we increase the max-
age, the performance improves until it peaks at a value of 4 and remains constant. As for
equation 7.4, the performance is dependent on max-age even at high values. However,
we also see that it performs worse than the other functions, and we can infer that it is
not a proper function for the task. Moreover, we can conclude from these results that
max-age can be neglected.

We also observe that when the score-decay value is approaching zero, the performance
is terrible, and this is more predominant in equations 7.4 and 7.7, which increase the score
a lot in one update. From this observation, we can conclude that using update functions
without the score-decay does not work, and therefore, they should be applied together.

Furthermore, we perceive that the contour’s shape is an inverted parabola in the score-
decay direction for all update functions. However, the difference between the functions is
the value and position of the inverted parabola’s peak. The more the update function can
increase the score in one update step, the higher the score-decay it needs to peak. And in
the extreme case of equation 7.4, it needs a score-decay of 0.5 to peak. This means that it
will most likely floor the estimated tracklet score to zero before adding it to the detection
score. In this case, the algorithm works similarly to count-based methods, where the
detection score overwrites the estimated tracklets score, making it a poor update function
to choose.

To further investigate what happens when changing the score-decay, we plotted the
metric details of class ’CAR’ when using equation 7.6 as an update function in figure
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Figure 7.7: Metric details of class CAR vs score for different score-decay values.

7.7. We use the initial hyperparameters mentioned in section 7.3.1 for the baseline. We
observe from figure 7.7 that when we increase the score-decay, the whole FN curve shifts
to the left, which results in shifting the MOTA peak to higher thresholds and lowering
its value. On the other hand, increasing the score-decay reduces the FP and IDS curves’
slope, which results in increasing the MOTA peak value and shifting its position to lower
thresholds. The MOTA curve shows that its peak moves to lower thresholds and increases
its peak value. This means that the score-decay affects FP and IDS more than FN, which
explains why our method works. In the rest of the ablation study, we pick equation 7.6
as the score update function, set max-age to infinity (or not use it), and use a simple line
search to find score-decay.

The rest of the hyperparameters

We tested the rest of the hyperparameters, and we found that increasing min-hits or the
deletion-threshold always reduces the performance. As for the active-threshold, we
found that decreasing it to 0.75 improved AMOTA by 0.03. And for the detection-
threshold, we found that increasing it to 0.15 further improved AMOTA by 0.05. We
can conclude from the ablation study that our method has only one main hyperparame-
ter, which is the score-decay, and we can find its optimal value easily with a simple line
search. The rest of the hyperparameters are either not needed (max-age, min-hits, and
deletion-threshold) or do not dramatically affect the performance (active-threshold and
detection-threshold).

7.3.2 Method generalization

After finishing the ablation study, we wanted to check if our method generalizes well.
We took the best configuration from the ablation study and applied it to different filtering
algorithms and detectors. We used CBGS (Zhu et al., 2019) as the second detector and
Kalman Filtering as a second filtering algorithm. The state of the Kalman filter is a
6D vector consisting of the center position, velocity, and acceleration in the x and y
directions. Tables 7.1 and 7.2 show that score refinement always improves the results
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Detector Tracker SR AMOTA↑ MOTA↑ FP↓ FN↓ IDS↓
CenterPoint PointTracker - 65.88 56.01 12295 21546 479
CenterPoint PointTracker ✓ 67.51 58.3 13666 18882 494
CenterPoint KalmanFilter - 65.39 55.33 13307 20559 811
CenterPoint KalmanFilter ✓ 67.22 58.29 13072 19534 610

CBGS PointTracker - 60.13 51.82 10729 24116 754
CBGS PointTracker ✓ 61.66 54.20 11408 22518 764

CenterPoint* PointTracker - 63.84 53.66 18612 22928 760
CenterPoint* PointTracker ✓ 64.93 54.51 16469 24092 557

Table 7.1: Summary of the tracking results on the nuScenes dataset. SR is short for Score
Refinement. *evaluated on the test split

Detector Tracker SR MOTA↑ FP↓ FN↓ IDS↓
CenterPoint PointTracker - 48.21 9.57 41.06 1.16
CenterPoint PointTracker ✓ 48.53 9.41 41.31 0.75
CenterPoint KalmanFilter - 50.15 9.75 39.91 0.19
CenterPoint KalmanFilter ✓ 50.76 9.87 39.25 0.12
PointPilllars KalmanFilter - 40.51 9.69 49.66 0.14
PointPilllars KalmanFilter ✓ 41.01 10.19 48.7 0.1

Table 7.2: Summary of the tracking results on the Waymo dataset. SR is short for Score
Refinement.

even without further tuning the hyperparameters. We also uploaded our tracking results
on the test split on the evaluation server, and we got an improvement of 1.1 in AMOTA
against CenterPoint (Yin et al., 2020). We say these improvements are consistent and
computationally free, so there is no reason not to use score refinement.

7.3.3 Max-distance threshold

The matching module uses the max-distance threshold to determine if two detection and
tracklet pairs are matched. We took CenterNet (Yin et al., 2020) with the count-based
method as a baseline for the experiment. After finishing the previous work in this chapter,
we noticed a possibility for improvement by changing the max-distance threshold of each
class, so we did it, and we got a considerable AMOTA improvement. Table 7.3 illustrates
this improvement.

87



Chapter 7 Score refinement for confidence based 3D multi object tracking

max-distance threshold change
State AMOTA↑ MOTA ↑ FP↓ FN↓ IDS ↓

Before 65.9 56 13317 20274 562
After 67.1 57.5 12771 20254 544

Table 7.3: Result of changing the max-distance threshold. evaluated on the val split

Figure 7.8: The training data for the MLP score update function. The figure on the left
with the green points are the data points that are labeled as one, and the red points on the
right are labeled as zero. We can see clearly that the classes are not separable.

7.3.4 MLP as score update function experiments

To generate the MLP’s training data, as discussed in section 7.2.1, we ran CenterPoint
with the hyperparameters that performed best for the count-based method. We used the
point tracker as the filtering algorithm. We choose the greedy algorithm as the matching
algorithm and the euclidean distance as the matching metric.

As for the rest of the hyperparameters: max-age = 3, score-decay = 0.0, deletion
threshold = 0.0 , active threshold = 1.0,detection threshold = 0.0, min-hits = 1 and the
update function was equation 7.1.

Figure 7.8 shows the resulted training data. The green points are data points that
have a label of 1 (Case 1: matched detections, tracklets, and ground truth), and the red
points have a label of 0. We can see three observations from this figure. First, there
is a significant overlap between the two classes, and they are not separable. Second,
zero-labeled points are three times bigger (≈ 300000) than those one-labeled points (≈
90000).

The final notice is that both sets have an maximum which is less than one, the red
points have a maximum of ≈ 0.94, and the green points have a maximum of ≈ 0.96.
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Method Activation AMOTA MOTA FP FN IDS
Count-based - 67.1 57.5 12771 20254 544

MLP score
update

function

Tanh 68.8 58.9 12850 20534 423
Sine 68.4 58.8 13476 19592 495
Relu 69.3 59.9 13152 19332 481

LeakyRelu 69.4 59.6 13543 18896 505
Table 7.4: Summary of the tracking results on the val split of the nuScenes dataset using
MLP as a score update function.

This data distribution causes problems while training the MLP, so we tackled them with
weighted sampling and data augmentation.

Weighted sampling is unequally sampling from classes to reduce the distribution bias.
Our experiments showed that sampling the green data points 134% more than the red
points gave the best performance. Data augmentation is increasing the amount of data
to help the training. In our case, we said it is evident that regions with high confidence
detection or tracking scores must give high confidence in the next time step. So we
added new green data points at scores higher than 0.94, which is the maximum value
in the generated dataset. Our experiments showed that adding 1000 points enhances the
performance. Figure 7.9 shows the training data after applying the weighted sampling
and data augmentation. For the rest of the experiments, we will use these techniques.

Figure 7.9: The training data for the MLP score update function after applying the
weighted sampling and data augmentation. The figure on the left with the green points
are the data points that are labeled as one, and the red points on the right are labeled as
zero.

Now that we have our training data, we start training the MLP. We fixed the learning
rate at 0.01 and used Stochastic gradient descent (SGD) with a momentum value of 0.9 as
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Figure 7.10: Contour plot of the different update function outputs using: a) Tanh, b) Sine,
c) ReLU, and d) Leaky ReLU

an optimizer. We did a hyperparameter search, and we found that the optimized number
of layers and hidden units are 4 and 100, respectively. Furthermore, we did experiments
to find the best activation function. We chose the most popular activation functions:
Relu, Leaky Relu, Tanh, and Sine. Table 7.4 shows the results of the validation split, and
the best results will be evaluated on the test split to check the generalization.

We see that all the tracking systems that used the MLP for score refinement gave higher
AMOTA from the previous work (Yin et al., 2020). The best result with an AMOTA of
69.4 was using leaky ReLU, where it increased the AMOTA by 2.2. In addition to the
results, we wanted to see the embedded function that the networks had learned. We
evaluated the networks at different detection and tracklet scores and plotted their output
as shown in figure 7.10. We can see that the functions that the networks learned are
simple, smooth, and behave like a weighted sum. The activation functions that gave
high results (leaky ReLU and ReLU) give a higher weight to the detection score than the
tracking score.

7.3.5 Class dependent MLP

We also used a three-input MLP, which contains, besides the two scores, an index of the
class of the object. We noticed a significant unbalance between the number of points for
each class during data generation. This can lead to bias in training, leading to inaccurate
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results. Therefore, we performed weighted sampling to sample from each class equally.
We chose the best results in table 7.4and used its hyperparameters. After evaluating the
network, we got an AMOTA of 65.3 and MOTA of 53.5, which are poor compared to our
previous results.

7.3.6 Dynamic max-distance threshold

When we changed the max-distance threshold, the parameter used for matching the de-
tections and tracklets, we significantly improved AMOTA (section 7.3.3). So we decided
to experiment with a max-distance threshold that depends on the object’s state. Is it mov-
ing or not? We think the system must be more confident when an object is not moving.
That is why we think that the max-distance threshold of a moving object should not be
the same as a stationary object. So we reduced the max-distance threshold of stationary
objects by half.

State AMOTA↑ MOTA ↑ FP↓ FN↑ IDS ↓
Before 69.4 59.6 13543 18896 505
After 69.5 60.2 12865 18937 502

Table 7.5: Result of dynamic max-distance threshold on our best result so far. evaluated
on the val split

We have a slight improvement which we believe is a promising one. Still, this change
is not too dynamic because it is the same reduction in all frames. We believe that the
MOT matching will improve more when we get the max-distance threshold of each time
step separately.

7.3.7 Late-fusion ensemble

We tested our score refinement and compared it to the voting ensemble methods. As a
baseline, we used our score refined CenterPoint as a LIDAR-based tracker, and a cor-
rected version of CenterTrack (Zhou et al., 2020a) as a camera-based tracker. Unfor-
tunately, CenterTrack appears to produce an error in its tracking ids. Remanaging its
ids (ensuring the id’s uniqueness) significantly affected its performance. We achieved
an AMOTA of 17.75 on the nuScenes validation set, in contrast to its reported AMOTA
of 6.8 (Zhou et al., 2020a), making it, in fact, one of the best camera-based trackers on
the nuScenes data set at that time. In our previous experiments, we applied score decay
only on tracklets, not on new detections. Whereas with the fusion of two modalities, it
seems more reasonable to apply score decay equally. Thus, we tested by employing a
score-decay of 0.2 to either of the modalities or both.
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Method LIDAR Cam. AMOTA↑ MOTA↑ FP↓ FN↓ IDS↓
No fusion ✓ - 67.51 58.3 13666 18882 494
No fusion - ✓ 17.75 15.04 15783 55009 7576

Affirmative ✓ ✓ 67.35 52.65 18445 23194 360
Consensus ✓ ✓ 50.80 48.73 8980 31573 659

Score σscore ✓ 67.33 52.86 18060 25485 353
refinement ✓ σscore 68.37 54.27 17874 20265 442

σscore σscore 68.73 54.48 15988 23235 529
σscore* σscore∗ 69.18 56.30 17661 20304 459

Table 7.6: Tracking results with different ensemble methods. σscore Score-decay ap-
plied * only if tracklets are unmatched

Table 7.6 shows the results of late-fusion ensemble experiment. Here, we did not
use the optimized max-distance thresholds. We see the improvement of confidence-
based ensemble methods with equal treatment of both modalities against other ensemble
methods. We achieve the most significant improvement of 1.67 in the AMOTA score
against the LIDAR-based tracker, if we treat both modalities equally and only apply a
score-decay if both modalities disagree. The other ensemble methods did not improve
our baseline. While these strategies count the number of agreements between modalities,
they do not account for confidence differences.

7.3.8 Combining everything
In the last section, we did not use the optimized max-distance thresholds and the MLP
score update function. In this section, we want to combine everything we have developed
so far. We used late fusion between the Lidar and the camera detector, optimized max-
distance thresholds, and the different score update functions. Table 7.7 shows a summary
of the experiments we have done so far and shows the contribution of the individual
components. We see that the overall improvement from the baseline is 6.4 AMOTA
points, which is a significant improvement. We see that the most significant contribution
is the late fusion, with an increase of 1.7 AMOTA points. The least significant one
is using an MLP as an update function with an increase of 0.2 AMOTA points and a
decrease of 0.6 in MOTA points.

7.4 Comparison with the state of the art methods
To compare our method against the state-of-the-art methods, we ran our methods on
the test split using the nuScenes challenge evaluation server. We compared our best
LIDAR and multi-modal configurations to the state-of-the-art trackers on the nuScenes
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Update function OMD Mod. AMOTA↑ MOTA ↑ FP↓ FN↓ IDS ↓
- - L 65.9 56 13317 20274 562
- ✓ L 67.1 57.5 12771 20254 544

Eq. 7.6 - L 67.5 58.3 13666 18882 494
Eq. 7.6 - L + C 69.2 56.3 17661 20304 459
Eq. 7.6 ✓ L + C 72.1 58.5 17473 19701 466
MLP ✓ L + C 72.3 57.9 18121 20128 441

Table 7.7: The results of our method with different components on the val split of
nuScenes. OMD, Mod, L and C stand for Optimized Maximum Distance threshold,
Modality, LIDAR and camera, respectively.

Method LIDAR Cam. AMOTA↑ MOTA↑ FP↓ FN↓ IDS↓
(Yin et al., 2020) ✓ - 65.0 54.5 16469 24092 557

Tracker* ✓ - 65.6 54.3 16631 24116 732
MCMOT* ✓ ✓ 66.6 55.6 16322 23065 1803

(Kim et al., 2021) ✓ ✓ 67.7 56.8 17705 24925 1156
Octopus Tracker* ✓ - 67.9 57.2 16970 22272 781

AlphaTrack* ✓ - 69.3 57.6 18421 22996 718
CBMOT (ours) ✓ - 68.0 58.3 15715 21217 548
CBMOT (ours) ✓ ✓ 68.3 55.4 21585 21221 661

Table 7.8: Comparative evaluation on nuScenes test split. * unpublished work

test evaluation, and table 7.8 shows the results. We see that our approach is not far from
the best performing method and was the best-published work. Our Lidar tracker has the
best MOTA, FP, FN, and IDS. We won the NuScenes tracking challenge of 2021 with our
method. Moreover, the good results on the test split show that the MLP did not over-fit
the training data and was able to generalize to the test data.

7.5 Conclusion

This work showed that confidence-based MOT works better than count-based MOT
when using score-decay and a proper score update function. We made an ablation study
to see the effects of the hyperparameters and score update functions. We found out that
we can neglect most hyperparameters but the score-decay. In addition, we found that
using an MLP is the best score update function. Our approach consistently showed im-
provements when using it with different detectors, filtering algorithms, and datasets. We
also revealed that optimizing the max-distance threshold could affect the performance
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significantly, and this optimization played a significant role in our improvement. We also
proposed a dynamic max-distance threshold which we believe will improve the perfor-
mance further. Furthermore, we used score refinement as a late-fusion ensemble method
in a multi-modal pipeline. It reinforced the score of matched tracklets from different
modalities, resulting in an improvement of 1.67 in AMOTA. We demonstrated that the
overall AMOTA improvement is 6.4 points compared to the baseline for the Lidar-camera
tracker with the MLP score update function resulting in an AMOTA score of 68.3 on the
nuScenes test set. We showed that our method is comparable to state-of-the-art methods,
got second place on the leaderboard, and won the nuScenes tracking challenge. Further-
more, our LIDAR tracker had the best MOTA, FN, FP, and IDS. Finally, we believe that
our approach is general and can be applied to even further tasks, such as 2D MOT.
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Chapter 8

Overall Conclusion

8.1 Summary

In this dissertation, we saw how important autonomous driving is and how it could save
lives, provide mobility, reduce wasted time driving, and enable new ways to design our
cities. We focused on the bottleneck of autonomous driving, which is perception and
particularly the instance segmentation and 3D multi-object tracking tasks.

In chapter 3 based on Riaz et al. (2020), we designed FourierNet, which is a single-
stage anchor-free method for instance segmentation. We used a novel training technique
with IFFT as a differentiable shape decoder that decodes the mask into a cartesian or
a polar representation. We showed empirically that the Cartesian representation has a
higher upper bound than the polar representation; however, it was hard to train and gave
a lower performance in experiments. We believe that the reason for that is that the polar
representation is a 1D problem, which is easier to solve than the 2D cartesian optimiza-
tion problem.

Moreover, we could obtain a compact mask representation with low frequencies be-
cause they contain most of the mask?s information. Therefore, FourierNet outperformed
all methods which use less than 20 parameters quantitatively and qualitatively. Fur-
thermore, compared to object detectors, FourierNet can yield better approximations of
objects than boxes, using slightly more parameters. Furthermore, we showed that our
normalized centerness is generally a better centerness metric than the polar centerness
when we do not use the centerness factor. Finally, our FourierNet-640 achieves a real-
time speed of 26.6 FPS, and the FourierNet with ResNext-101 achieved comparable
results to other polygon and implicit representations.

After that in chapter 4 based on Benbarka et al. (2022), we showed that a Fourier
mapped perceptron with an integer lattice mapping is precisely the d-dimensional Fourier
series. As a result, one perceptron with a large enough lattice can represent any signal.
We demonstrated experimentally on the image regression task that one perceptron with
frequencies equal to the Nyquist rate of the whole image could reconstruct it perfectly.
Furthermore, we showed that our modified progressive training strategy of adding se-
quentially low to high frequencies worked on arbitrary mappings and improved the gen-
eralization of the interpolation task. In addition, we showed that a Fourier mapped per-
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ceptron is structurally like a one hidden layer SIREN but with a trainable mapping. We
saw that trainable mappings help if we train with a low number of frequencies and hurt
when we use a high number of frequencies. Furthermore, in Fourier mapped MLPs, we
showed that the integer lattice mapping forces the neural network?s underlying function
periodicity. Lastly, we confirmed experimentally on the image regression and novel view
synthesis tasks that the main contributor to reconstruction performance using a Fourier
mapped MLP is the size of its mapping and the standard deviation of its elements.

In chapter 5 based on Riaz et al. (2021), we showed how implicit representations
combined with the Fourier series can be applied to the task of instance segmentation to
generate high-quality masks. We illustrate that the masks generated using our Fourier
mapping are compact and meaningful. The lower Fourier frequencies hold the shape and
higher frequencies hold the sharp edges. Furthermore, by sub-sampling the pixel coor-
dinates in our implicit MLP, we can generate higher resolution masks during inference,
which are visually smoother and improve the mAP over our baseline Mask R-CNN with
similar settings and model capacity.

In chapter 7 based on Benbarka et al. (2021) and Gherri (2021), we showed that
confidence-based MOT works better than count-based MOT when using score-decay
and a proper score update function. We made an ablation study to see the effects of the
hyperparameters and score update functions. We found out that we can neglect most hy-
perparameters but the score-decay. In addition, we found that using an MLP is the best
score update function. Our approach consistently showed improvements when using it
with different detectors, filtering algorithms, and datasets. We also revealed that opti-
mizing the max-distance threshold could affect the performance significantly, and this
optimization played a significant role in our improvement. We also proposed a dynamic
max-distance threshold which we believe will improve the performance further.

Furthermore, we used score refinement as a late-fusion ensemble method in a multi-
modal pipeline. It reinforced the score of matched tracklets from different modalities, re-
sulting in an improvement of 1.67 in AMOTA. We demonstrated that the overall AMOTA
improvement is 6.4 points compared to the baseline for the Lidar-camera tracker with the
MLP score update function resulting in an AMOTA score of 68.3 on the nuScenes test
set. We showed that our method is comparable to state-of-the-art methods, got second
place on the leaderboard, and won the nuScenes tracking challenge. Furthermore, our LI-
DAR tracker had the best MOTA, FN, FP, and IDS. Finally, we believe that our approach
is general and can be applied to even further tasks, such as 2D MOT.
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Abbreviations

ANN Artificial Neural Network
AMOTA Average Multi Object Tracking Accuracy
BARF Bundle-Adjusting Neural Radiance Fields
CF Centerness Factor
CNN Convolutional Neural Networks
COCO Common Objects in COntext
CR Coefficient Regression
DARPA Defense Advanced Research Projects Agency
DSD differentiable shape decoder
FCOS Fully Convolutional One-Stage object detector
FFT Fast Fourier Transform
FNN Fourier Neural Networks
GC Gaussian Centerness
GPS Global Positional System
HTC Hybrid Task Cascade
IFFT Inverse Fast Fourier Transform
ILSVRC ImageNet Large Scale Visual Recognition Challenge
IMU Inertial inertial measurement units
INR Implicit neural representation
IoU Intersection-over-Union
KITTI Karlsruhe Institute of Technology and Toyota Technological Insti-

tute
LIDAR LIght Detection And Ranging
mAP mean Average Precision
MLP Multi-Layer Perceptron
MRI Magnetic resonance imaging
NC Normalized Centerness
NeRF Neural Radiance Fields
NTK Neural Tangent Kernel
NVS Novel View Synthesis
PC Polar Centerness
PE Positional Encoding
PSNR Peak signal-to-noise ratio
PT Progressive Training
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Abbreviations

RADAR RAdio Detection And Ranging
ReLU Rectified Linear Unit
RoI Region-of-Interest
RPN Region Proposal Network
SIREN SInusoidal REpresentation Networks
SONAR SOund Detection And Ranging
WI Weight Initialization
YOLACT You Only Look At CoefficienTs

98



Bibliography

Alison McClelland, F. M. (1998). The social consequences of unemploy-
ment. https://library.bsl.org.au/jspui/bitstream/1/266/1/
social_consequences_of_unemployment_AMcClelland.pdf.

Atzmon, M. and Lipman, Y. (2020). Sal: Sign agnostic learning of shapes from raw
data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2565–2574.

Bai, M. and Urtasun, R. (2017). Deep watershed transform for instance segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 5221–5229.

Baser, E., Balasubramanian, V., Bhattacharyya, P., and Czarnecki, K. (2019). Fantrack:
3d multi-object tracking with feature association network. In 2019 IEEE Intelligent
Vehicles Symposium (IV). IEEE.

Behringer, R., Sundareswaran, s., Gregory, B., Elsley, R., Addison, B., Guthmiller, W.,
Daily, R., and Bevly, D. (2004). The darpa grand challenge - development of an
autonomous vehicle. pages 226 – 231.

Bergmann, P., Meinhardt, T., and Leal-Taixe, L. (2019). Tracking without bells and
whistles. In Proceedings of the IEEE international conference on computer vision,
pages 941–951.

Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. (2016). Simple online and real-
time tracking. In 2016 IEEE International Conference on Image Processing (ICIP),
pages 3464–3468. IEEE.

Bolya, D., Zhou, C., Xiao, F., and Lee, Y. J. (2019). Yolact: Real-time instance seg-
mentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9157–9166.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y.,
Baldan, G., and Beijbom, O. (2020). nuscenes: A multimodal dataset for autonomous
driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11621–11631.

99

https://library.bsl.org.au/jspui/bitstream/1/266/1/social_consequences_of_unemployment_AMcClelland.pdf
https://library.bsl.org.au/jspui/bitstream/1/266/1/social_consequences_of_unemployment_AMcClelland.pdf


Bibliography

Casado-Garcıa, A. and Heras, J. (2020). Ensemble methods for object detection. In
Proceedings of the ECAI European Conference on Artificial Intelligence, pages 2688–
2695.

Chabra, R., Lenssen, J. E., Ilg, E., Schmidt, T., Straub, J., Lovegrove, S., and Newcombe,
R. (2020). Deep local shapes: Learning local sdf priors for detailed 3d reconstruction.
In European Conference on Computer Vision, pages 608–625. Springer.

Chang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D., Carr,
P., Lucey, S., Ramanan, D., et al. (2019). Argoverse: 3d tracking and forecasting
with rich maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8748–8757.

Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J., Ouyang,
W., et al. (2019). Hybrid task cascade for instance segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4974–
4983.

Chen, Z. (2019). IM-NET: Learning implicit fields for generative shape modeling. Ph.D.
thesis, Applied Sciences: School of Computing Science.

Chen, Z. and Zhang, H. (2019). Learning implicit fields for generative shape model-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5939–5948.

Cheng, S., Leng, Z., et al. (2020). Improving 3d object detection through progressive
population based augmentation. arXiv preprint arXiv:2004.00831.

Chiu, H.-k., Prioletti, A., Li, J., and Bohg, J. (2020). Probabilistic 3d multi-object track-
ing for autonomous driving. arXiv preprint arXiv:2001.05673.

De Brabandere, B., Neven, D., and Van Gool, L. (2017). Semantic instance segmentation
with a discriminative loss function. arXiv preprint arXiv:1708.02551.

Deng, B., Lewis, J. P., Jeruzalski, T., Pons-Moll, G., Hinton, G., Norouzi, M., and
Tagliasacchi, A. (2020). Nasa neural articulated shape approximation. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part VII 16, pages 612–628. Springer.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee.

Dickmanns, E. D., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M.,
Thomanek, F., and Schiehlen, J. (1994). The seeing passenger car’vamors-p’. In
Proceedings of the Intelligent Vehicles’ 94 Symposium, pages 68–73. IEEE.

100



Bibliography

Engelking, C. (2017). The ’driverless’ car era began more than 90 years
ago. https://www.discovermagazine.com/technology/
the-driverless-car-era-began-more-than-90-years-ago.

Fan, H., Su, H., and Guibas, L. J. (2017). A point set generation network for 3d ob-
ject reconstruction from a single image. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 605–613.

Gallant, A. R. and White, H. (1988). There exists a neural network that does not make
avoidable mistakes. In ICNN, pages 657–664.

Gao, N., Shan, Y., Wang, Y., Zhao, X., Yu, Y., Yang, M., and Huang, K. (2019).
Ssap: Single-shot instance segmentation with affinity pyramid. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 642–651.

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving?
the kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3354–3361. IEEE.

Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W. T., and Funkhouser, T. (2019).
Learning shape templates with structured implicit functions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 7154–7164.

Genova, K., Cole, F., Sud, A., Sarna, A., and Funkhouser, T. (2020). Local deep implicit
functions for 3d shape. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4857–4866.

Gherri, A. (2021). Learning score update functions for confidence-based mot.

Gropp, A., Yariv, L., Haim, N., Atzmon, M., and Lipman, Y. (2020). Implicit geometric
regularization for learning shapes. In International Conference on Machine Learning,
pages 3789–3799. PMLR.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969.

Henzler, P., Mitra, N. J., and Ritschel, T. (2020). Learning a neural 3d texture space from
2d exemplars. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8356–8364.

101

https://www.discovermagazine.com/technology/the-driverless-car-era-began-more-than-90-years-ago
https://www.discovermagazine.com/technology/the-driverless-car-era-began-more-than-90-years-ago


Bibliography
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