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Abstract 

 

Folds are common structures in deformed rocks and ice sheets from the microscale to 

lithospheric scale. This thesis present numerical studies on folds and related deformation 

structures in anisotropic viscous materials undergoing ductile deformation with various 

boundary conditions. Mechanical anisotropy considered her is due to a crystallographic 

preferred orientation (CPO), for example by of alignment of micas or the basal planes of ice 

crystals. The modelling aims to numerically better understand the various fold geometries that 

are observed in natural rocks or ice drill cores. This thesis covers two main topics: (i) the 

influence of an initial CPO and intensity of anisotropy on resulting crenulation geometries in a 

single-phase material that deforms in moderate strain in dextral simple shear deformation, and 

(ii) the influence of an initial CPO, intensity of anisotropy and viscosities on evolving fold 

geometries of single-phase or poly-phase materials that deform in layer-parallel pure shear. 

The modelling is performed with the Viscoplastic Full-Field Transform (VPFFT) crystal 

plasticity code coupled with the two-dimensional platform modelling platform Elle.  

Mechanical anisotropy can enhance shear localisation and redistribute the strain, resulting in 

localised shear domains with strain concentration and low-strain domains in between. This 

strain localisation dominates the formation of structures in anisotropic materials and is 

visualised by foliated layers or foliations. The fold and crenulation geometries displayed in this 

thesis are made by systematically varying (i) the initial orientation of the anisotropy (CPO), (ii) 

the intensity of anisotropy, and (iii) the viscous property differences of materials.  

In simple shear with a CPO in the stretching field from the beginning, three types of localisation 

behaviour are synthetic shear localisation, antithetic shear localisation and distributed 

localisation. However, the resulting visible crenulation geometries are very varied and include 

‘S-C’ structure (C & C’ bands), ‘anti S-C’ structure (C’’ bands), or mixes of both, or even in 

some cases no crenulation at all. This highlights that crenulation geometries are primarily due 

to the strong mechanical anisotropy of rocks.  

Mechanical anisotropy also affects layer-parallel pure shear shortening simulations. Here we 

observe two end-member geometries: The first is buckle folding and thickening of a competent 

layer similar to classical Biot-type buckle folds. An axial planar crenulation cleavage forms in 

the anisotropic matrix. In the absence of a competent layer, folds in the anisotropic matrix are 

self-similar with no characteristic length scale. This is observed in polar ice sheets.  
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In this case it was also observed that fold amplification ceased after some strain, due to the 

rotation of the CPO. This confirms the hypothesis proposed for the shear margins of the 

Northeast Greenland Ice Stream (NEGIS), where fold amplification ceased about 2000 a BP. 

The second end member is layer-extension folding with strong amplification of fold amplitudes 

due to the formation of conjugate, localised bands in the matrix. Other geometries are in 

between. 
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Zusammenfassung 

 

Falten sind häufige Strukturen in deformierten Gesteinen und Eisschilden von der Mikro- bis 

zur Lithosphärenskala. In dieser Dissertation werden numerische Studien über Falten und 

verwandte Verformungsstrukturen in anisotropen viskosen Materialien vorgestellt, die sich 

unter verschiedenen Randbedingungen duktil verformen. Die hier betrachtete mechanische 

Anisotropie ist auf eine kristallographische Vorzugsorientierung zurückzuführen (CPO), zum 

Beispiel durch die Ausrichtung von Glimmern oder die Basalebenen von Eiskristallen. Ziel der 

Modellierung ist es, die verschiedenen Faltengeometrien, die in natürlichen Gesteinen oder 

Eisbohrkernen beobachtet werden, numerisch besser zu verstehen. Diese Dissertation 

behandelt zwei Hauptthemen: (i) der Einfluss eines anfänglichen CPO und der Intensität der 

Anisotropie auf die resultierenden Krenulierungsgeometrien in einem einphasigen Material, 

das sich unter mäßiger Dehnung bei dextraler einfacher Scherverformung verformt, und (ii) 

der Einfluss eines anfänglichen CPO, der Intensität der Anisotropie und der Viskositäten auf 

sich entwickelnde Faltengeometrien von ein- oder mehrphasigen Materialien, die sich bei 

schichtparalleler reiner Scherung verformen. Die Modellierung erfolgt mit dem 

Kristallplastizitätscode Viskoplastische Vollfeldtransformation (VPFFT, Viscoplastic Full-Field 

Transform), Die Modellierung erfolgt mit dem Kristallplastizitätscode VPFFT (Viscoplastic Full-

Field Transform), der mit der zweidimensionalen Modellierungsplattform Elle.  

Mechanische Anisotropie kann die Scherlokalisierung verbessern und die Dehnung 

umverteilen, was zu lokalisierten Scherdomänen mit Dehnungskonzentration und Domänen 

mit geringer Dehnung führt, die arm an Dehnung sind. Diese Dehnungslokalisierung dominiert 

die Bildung von Strukturen in anisotropen Materialien und wird durch schichtförmige Schichten 

oder Folierungen sichtbar gemacht Die in dieser Dissertation gezeigten Falten- und 

Rillengeometrien werden durch systematisches Variieren (i) der anfänglichen Orientierung der 

Anisotropie (CPO), (ii) der Intensität der Anisotropie und (iii) der viskosen 

Eigenschaftsunterschiede von Materialien hergestellt.  

Bei einfacher Scherung mit einem CPO, das sich von Anfang an im Streckfeld befindet, gibt 

es drei Arten von Lokalisierungsverhalten: synthetische Scherlokalisierung, antithetische 

Scherlokalisierung und verteilte Lokalisierung. Die daraus resultierenden sichtbaren 

Zackengeometrien sind jedoch sehr unterschiedlich, und umfassen eine "S-C"-Struktur (C- 

und C-Bänder), eine "Anti-S-C"-Struktur (C''-Bänder), Mischungen aus beiden, oder in einigen 

Fällen sogar überhaupt keine Krenulierung. Dies macht deutlich, dass die 
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Krenulierungsgeometrien in erster Linie auf die starke mechanische Anisotropie des Gesteins 

zurückzuführen sind. 

Mechanische Anisotropie wirkt sich auch auf schichtparallele reine 

Scherverkürzungssimulationen aus. Hier beobachten wir zwei Endgliedgeometrien: Bei der 

ersten handelt es sich um eine Knickfaltung und Verdickung einer kompetenten Schicht, die 

der klassischen Biot-Knickfaltung ähnelt. In der anisotropen Matrix bildet sich eine axiale 

planare Krenulierungsspaltung. In Abwesenheit einer kompetenten Schicht sind die Falten in 

der anisotropen Matrix selbstähnlich und haben keine charakteristische Längenskala. Dies 

wird bei polaren Eisschilden beobachtet. In diesem Fall wurde auch beobachtet, dass die 

Faltamplifikation aufgrund der Rotation des CPO nach einer gewissen Belastung aufhörte. 

Dies bestätigt die Hypothese, die für die Scherränder des Nordostgrönland-Eisstroms (NEGIS) 

vorgeschlagen wurde, wo die Faltamplifikation um 2000 a BP aufhörte. Das zweite 

Endelement ist eine Schichterweiterungsfaltung mit starker Verstärkung der 

Faltungsamplituden aufgrund der Bildung von konjugierten, lokalisierten Bändern in der Matrix. 

Andere Geometrien liegen dazwischen. 
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Introduction 

1 Background of fold 

The study of rock deformation is one of the main topics in Structural Geology and 

Microtectonics, which is of high importance of analysing with respect to geometries (e.g., 

structural orientation, shape, layering, scale, etc.), kinematics (displacement, velocity, sense 

of shear, etc.) and even dynamics (stress, strain, endotectonic, exogenetic and their relations), 

to investigate historical development, especially the deformation stages and tectonic 

secquences along this development. The mentioned factors are not individual but inter-

relevant and mutually accomplished. 

Deformation structures, such as folds, lineations, are typically used by geologists to 

understand how rocks deform and their quantification in related to the describing parameters. 

Rocks can deform in different ways depending on their (i) physical environment where the 

objective rocks located, such as pressure 𝑃 , temperature 𝑇  related to the depth and, in 

Geology, as metamorphic rocks in orogens and fold-thrust belts, volcanic rocks in strike-slip 

systems, and sediments in the margin of divergent / convergent massifs or continents, etc. (ii) 

rheological properties, which are related to rock types with different mineral compositions, such 

as elasticity 𝐸 , viscosity 𝜇 , viscosity contrast 𝑅 , cohesion 𝐶 , intrinsic anisotropy 𝐴 , like 

hexagonal crystal system has different habit with tetragonal crystal system, and (iii) boundary 

conditions 𝑏 , etc., both these four main factors contributing to get into different tectonic 

environment or form various structural geometries. The geometric parameters of folds can be 

used to qualify and quantify rheological properties and strain during deformation (e.g., 

Hudleston and Lan, 1993; Lan and Hudleston, 1995), so they have a relation that,  

𝜀 = 𝑓(𝑃, 𝑇, 𝐸, 𝜇, 𝑅, 𝐶, 𝐴, 𝑏 … )          (1) 

and also, a detailed relation (Glen, 1952; 1955) between strain rate and other parameters as 

𝜀̇ = 𝐴0 𝑒𝑥𝑝
(

−𝑄

𝑅 𝑇
)

 
𝜎𝑛

𝑔𝑚           (2) 

where the 𝐴0 is pre-exponential factor material property of deformation material, 𝑄 is activation 

energy, 𝑅 is universal gas constant, 𝑇 is temperature, 𝑛 is stress exponent (typically 1 to 5), 𝑔 

is grain size and 𝑚 is grain size exponent (usually 1 to 3.).  
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1.1 Folds and crenulations undergoing simple shear / pure shear deformation 

Folds are common deformation structures in deformed rocks distributed almost all tectonic 

related places, leading layered and foliated rocks to the curved planer structures, and giving 

information on shortening direction, kinematics, rheological properties, deformation histories, 

etc. (Sherwin and Chapple, 1968; Treagus, 1982; Hudleston, 1986; Ramsay and Huber, 1987; 

Hudleston and Lan, 1993; Lan and Hudleston, 1995; Bobillo-Ares et al., 2004; Passchier and 

Trouw, 2005; Hudleston and Treagus, 2010; Adamuszek et al., 2011; Llorens et al., 2013a, 

2013b; Schmalholz and Mancktelow, 2016; Llorens, 2019b; Nabavi & Fossen, 2021). The 

review papers of the different equations for the dominant wavelength and amplitude can be 

found in Hudleston and Treagus (2010), Schmalholz and Mancktelow (2016), the fold 

geometries clarification can be found in review of Nabavi and Fossen (2021).  

Here in this study, the mechanisms of deformation behaviours are assumed to be ductile in 

viscous and plastic states. The deformation processes are assumed to deform under 

rheological circumstances as a power-law fluid (Price and Cosgrove, 1990; Johnson and 

Fletcher, 1994; Pollard and Fletcher, 2005; Hudleston and Treagus, 2010; Burov, 2011; 

Cloetingh and Burov, 2011), so the brittle deformation is not much considered. In strength of 

the crust, the viscous deformation always occurs under the “Brittle-Ductile transition”, where 

the deformation environment is higher pressure and higher temperature within deeper crust by 

ductile flow. But there are still exceptions, some rocks can also deform in ductile at shallow 

crust which depend on their material properties, and also ice, who has a special lattice structure 

like ice 1h with respect to its typical environment, deforms in ductile at earth surface in e.g., 

Antarctic and Greenland, as ice sheets or glaciers. 

The deformation structures of crenulations (micro-folds) and folds have numerous of different 

geometries, which also could be clarified by different describing parameters, such as interlimb 

angle, asymmetry, harmony, surface shape, cylindrical degree, etc., details can be found in 

detail in Nabavi and Fossen (2021). The thin plate theory for single layer folding (Biot, 1957, 

1961; Ramberg, 1962, 1963, 1964; Fig. 1) and multilayer folding (Biot, 1964a, 1964b, 1965a; 

Ramberg, 1962, 1970; Ramsay and Huber, 1987; Price and Cosgrove, 1990; Fig. 1) has a 

dominate positions on number of research of layer-parallel shortening models with rocks or 

materials assumed at least are two phases. But later, geologists also found the different 

characters on various kinematics, such as synthetic movement and antithetic movement of 

high strain localised areas / domains within one model and forming crenulations, which could 

deform locally and simultaneously by single phase or multi-phase in a simple shear boundary 

condition of the whole model or natural outcrops. These high strain localised areas / domains  

  



Introduction 

3 

 

Fig.1 Buckling of single layer and multilayer that infer effects of layer thickness and layer spacing on 

fold geometries (from Currie et al., 1962, after Nabavi and Fossen, 2021, Fig.3.r) 

 

 

Fig.2 Shear localisation on all scales. (a) Shear bands in deformed metapelite at LongMen Mountain 

structural belt, China. (b) Shear zone in meta-turbidites at Cap de Creus, Spain.  
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deform together with the low strain areas / domains, where low strain areas / domains have 

less or very little deformation (Marshak et al., 2006; Carreras et al., 2010, 2013; Ponce et al., 

2013; Llorens et al., 2013a, 2013b; Tanner, 2016; de Riese et al., 2019; Finch et al., 2020; 

2022; Fig. 2).  

Folds are indeed useful when investigating tectonic cycles because they experienced at least 

one or more stages of tectonic processes and formed over the whole range of geological scales 

(Schmalholz and Mancktelow, 2016). The deformation of folds probably recorded the 

information to (i) determine tectonic shortening directions, (ii) calculate the amount of tectonic 

shortening, (iii) interpret the geometry of lithospheric structures, (iv) identification of boundary 

conditions, and (v) investigate the rheological properties of the folded rocks (Nabavi and 

Fossen, 2021). Folds themselves bring the information about the deformation circumstances 

where they settled, and prediction of deep crust structures and relations to regional geological 

settings.  

Nabavi and Fossen (2021) came up with that “…Several questions about folds should be 

raised to identify, analyse and interpret of fold structure. … Which parameters exert the 

greatest control on the observed fold geometry and folding mechanism? Which parameters 

need to be analysed? … How can fold analysis provide an estimate of strain? How did the fold 

evolve? What is needed to improve the mapping, analysis and understanding of folds and 

folding in the future? ...”. Here I want to focus on several factors which are contribute to these 

processes and resulting geometries by using numerical simulation. 

Complementary to field studies (e.g., Quinquis et al., 1978; Ramsay and Huber, 1987; Ormond 

and Hudleston, 2003; Alsop and Carreras, 2007; Alsop and Holdsworth, 2007; Torremans et 

al., 2014; Pérez-Alonso et al., 2016; Tanner, 2016) and analogue experiments (e.g., Biot et al., 

1961; Ghosh, 1966; Hudleston, 1973; Cobbold, 1975; Manz and Wickham, 1978; Abassi and 

Mancktelow, 1990, 1992; Bons and Urai, 1996; Hunt et al., 1997; Tikoff and Peterson, 1998), 

numerical simulations have been applied to investigate how and by what mechanisms fold 

structures that we observe in nature form. The deformation simulated in this thesis is assumed 

to be within viscous flow that the stress depends on the invariable strain rate increment. And 

the strain can be redistributed randomly within a system or can concentrate locally (Llorens, 

2015), e.g., the tip of the shear band (Bordignon et al., 2015).  

Using numerical studies on folding research is a tendency not only to reveal the tectonic 

histories by using the constitutive equations, but also to find out the potential area for economy 

related objects as well as to predict of changing some inherent thoughts on previous studies. 

Here the numerical studies of folds have included many parameters, but the main parameters 

in this study concentrate on the effects of mechanical anisotropy (Lan and Hudleston, 1996; 
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Kocher et al., 2006; Ran et al. 2018; de Riese et al., 2019), which is the one of most important 

rheological parameter, then non-linear rheology (Parrish, 1973; Lan and Hudleston, 1991; 

Mancktelow, 1999; Schmalholz and Podladchikov, 2000; Kocher et al., 2006; Llorens et al., 

2013a, 2013b), and viscoplastic behaviour (Zhang et al., 1996; Mancktelow, 1999; Schmalholz 

et al., 2001) of rocks, ice, or other assumed materials.  

1.2 Single layer folding 

The single layer folding theory beginning with the work of Biot (1957, 1961), Ramberg (1963, 

1964) and Currie et al. (1962), who developed the theory and equations for single layer 

embedded in viscous, elastic or viscoelastic media, these base studies made fold describing 

by using rheological parameters based on layer-parallel shortening. 

Biot (1957) created the describing equations on sinusoidal waveform folding structures, these 

procedures are concluded by the field observation (Biot, 1957, 1961, 1965c; Fletcher, 1977; 

Treagus, 1982; Ramsay and Huber, 1987; and abovementioned), analogue physics 

experiment (references abovementioned) and computing numerical modelling (Parrish, 1973; 

Parrish et al., 1976; Anthony and Wickham, 1978; Lan and Hudleston, 1991; Hudleston and 

Lan, 1994; Zhang et al., 1996, 2000; Mühlhaus et al., 1998; Mancktelow, 1999; Schmalholz 

and Podladchikov, 2000; Schmalholz et al., 2001; Viola and Mancktelow, 2005; Frehner and 

Schmalholz, 2006; Schmalholz, 2008; Hobbs et al., 2008; Kocher et al., 2006, 2008; Llorens 

et al., 2013a, 2013b; Griera et al., 2018; Llorens, 2019b). The studies on folds involves more 

parameters in the processes of formation variable geometries and forms different moving 

characteristics, which gave information back to researchers. 

Based on the field studies and analogue experiments, layers become folded because of the 

amplification of instabilities that arise from the layer-parallel shortening competent (strong) 

layers and surrounding incompetent (weak) layers or a matrix. For Newtonian (linear) viscous 

layer and matrix in layer-parallel shortening, the dominant wavelength (𝜆𝑑) is depends on the 

viscosity of two layered materials (𝜇𝐿and 𝜇𝑀) and the layer thickness (𝐻):  

𝜆𝑑 =  2π H (
𝜇𝐿

6 𝜇𝑀
)

1 3⁄
           (3) 

Later, geologists carried out relevant describing equations of elastic materials (Currie et al., 

1962; Jeng and Huang, 2008), elastic-viscous materials (Biot, 1961; Turcotte and Schubert, 

1982).  

A layer will shorten without folding if this thin plate layer is perfect, this process requires much 

work. However, folding is the preferred deformation procedures and results because they 

minimise the mechanical work required to shorten mechanically layered rock or even other 
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materials from microscale to macroscale (England and McKenzie, 1982; Schmalholz et al., 

2002; Schmalholz and Mancktelow, 2016). An initial perturbation of this thin plate layer would 

lead to the layer folding under layer-parallel shortening, or in Geology, layer-parallel pure shear. 

These kinds of perturbation would influence the fold geometries along the shortening process 

or stage (Abbassi and Mancktelow, 1990, 1992; Mancktelow, 1999; Griera et al., 2018). This 

process results from initial instabilities or perturbations of competent layer embedded in elastic, 

plastic, and viscous material by layer-parallel compression (Abbassi and Mancktelow, 1990, 

1992; Mancktelow, 1999; Hudleston and Treagus, 2010; Schmalholz and Mancktelow, 2016) 

or layer-isocline simple shear (Llorens et al., 2013a, 2013b).  

After Fletcher (1974), mechanical anisotropy and non-linearity are taken into consider as 

parameters that can largely affect fold geometries. What has not yet been deeply investigated 

is how the orientation of a mechanical anisotropy due to a Crystallographic Preferred 

Orientation (CPO) (as in a cleavage in a micaceous rock) that can affect the developing folding 

geometries with different initial settings under different boundary condition, such as (i) a perfect, 

relatively competent planar structure, such as a layer, vein or dyke as well as layered ice, 

under layer-parallel shortening (PAPER II, III and IV) and (ii) single phase planar structure 

undergoing simple shear deformation (PAPER I).  

Using numerical simulations in thesis, some disharmonious fold geometries are discovered, 

e.g., big amplitude fold with small wavelength, or large wavelength with small amplitude. And 

the different stages of fold growth by using the amplification rate and layer thickness. 

Schmalholz and Mancktelow (2016) carried out three situations of amplification: (i) if the initial 

irregularities is small and/or dynamic amplification rate is low, the layer would shortening and 

thickening, (ii) if the dynamic amplification rate increase there would be a quickest amplification 

(Ramsay, 1967; Schmalholz and Podladchikov, 2001), and then (iii) after previous 

amplification, the amplification rate would decrease to ≈0, the amplification remains little with 

compression in matrix.  

 

1.3 Multilayer folding 

For multilayers consisting of many alternating competent and incompetent layers, with 

parameters such as (i) basic settings: layer thickness, layer spacing (the spacing interval of 

alternative competent and incompetent layers), number of layers, (ii) rheological properties: 

viscosity, elasticity, mechanical anisotropy, and (iii) boundary conditions, etc. of both 

competent layers and soft layered matrix, that have different contact relationships carry out 

resulting folds geometries vary like similar or disharmonic etc. (Ramberg, 1963; Ramsay and 
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Huber, 1987; Price and Cosgrove, 1990; Johnson and Fletcher, 1994; Schmid and 

Podladchikov, 2006; Hudleston and Treagus, 2010; de Riese, 2014; Schmalholz and 

Mancktelow, 2016), Johnson and Pfaff (1989) also came up with three end-member forms in 

multilayers: parallel, constrained and similar folds. 

Biot (1964a, b, 1965a, b) developed a theory with functions to describe and to quantity the 

folding geometries, with realisation the importance of anisotropy, both the intensity of 

anisotropy and orientation of anisotropy, of rocks or materials. Previous study concluded 

several more questions or parameters that controlling multilayer folding (Hudleston and 

Treagus, 2010): (i) Layer spacing, which have an impaction that whether the “multilayer” can 

be considered as a package “single layer” or real multiple layers (Schmid and Podladchikov, 

2006). (ii) Thick layers with relative thinner matrix, or can be considered as incompetent layer 

surrounded by competent matrix (Biot, 1964b). (iii) Large layer spacing, no layer interactions 

in between, with different viscous properties between each layer with matrix (Ramberg, 1964). 

(iv) Internal buckling of laminated medium (Biot, 1964a, 1965a). Johnson and Fletcher (1994) 

showed that the amplification rate of multilayer folds having free slip interfaces between each 

layer is indeed greater than for multilayers having no slip interfaces. This is a similar property 

of crystal slip system, which involves the definition of how to make the mechanical anisotropy 

as a parameter involving. The instability of multilayer folding is discussed by Biot (1965b), 

Schmid and Podladchikov (2006), as the multilayer folding geometries are dependence on 

each of their amplification rate. 

 

2 Motivation of this thesis 

From the Alps and Pyrenees to Andes, and to Tibet plateau, the orogenic structural belts attract 

geologists to progressively understand earth. As mentioned before, the necessity for further 

investigation on the fold structures that related to the rock physics benefits this quantitively 

earth-understanding. The fantastic fold geometries (Fig. 3) at field observations offer only the 

current dependent information and state of rocks, and cannot backtrack the microtectonics 

development over time or strain, or one want to know the initial state and process. The 

requirement of numerical simulation offers a selection to reveal the micro-dynamic processes, 

give potential possibilities with variable beginning settings to the final geometries.  

The ongoing work on variable folds with surrounding schistosity from meta-turbidite of Cap de 

Creus, Spain (Fig. 3. a-e) and schist of Long-Men Mountain structural belt, China (Fig. 3. f-h) 

may provide a different way to understand how rocks evolved. The folds here have at least 

one or several characteristics among: (i) Folding with cleavage and microlithon are widely 
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distributed in ductile deformation, but the foliations in surrounding matrix have different angles 

respect to the layers (PAPER II), foliations parallel to the layer (Fig. 3. a, b, f), foliations incline 

to the layer (Fig. 3. c, d) and foliations normal to the layer (Fig. 3. e). (ii) Folds unfolding (Llorens 

et al., 2013a, 2013b). (iii) Folds are distributed in all scale levels, from thin sections to km-scale 

(de Riese et al., 2019). (iv) Folds / crenulations deform differently, forming a variety of widths 

and even shapes. The folds are disharmonic, as axial planes cannot be traced for over more 

than a few times the fold wavelength at the most (PAPER I, II, III, IV). (v) Progressive 

deformation is identified to be more than one tectonic cycle, but intrinsic anisotropy of material 

may lead different geometries within one cycle (Fig. 3. g, h; PAPER I). (vi) During rock flow 

leads to an evolving of CPO, which lead a shear localisation within it (PAPER I, II). The flow of 

rock related a rheological process (PAPER I, II, III, IV).  

Numerical modelling with given deformation conditions, provide time-independent 

microstructural evolution with fold amplification, planner rotation, and insights into micro-

dynamics with strain, strain-rate distribution, stress evolving, which are nice complementary to 

the field observations and better interpretation corresponding to the natural examples. In this 

thesis, these processes are investigated by the multi-process numerical simulations based on 

the full-field platform Elle (Bons et al., 2008).  

Several general objectives of this thesis: 

(i) Fold geometry and rheology. The shapes of folds are generally and directly the first 

impression for observers. Accurately describing the fold geometries provides the base to 

identify the folding kinematics and folding mechanisms. Folding description with amplitudes, 

thickness, dominate wavelength, arclength, waveform etc. give out the relations to the 

rheological properties, e.g., viscosity ratio, elasticity ratio, which could be estimated, as well as 

some microstructures can be used as an indicator for sense of shear and deformation condition. 

The thesis analysis the fold shapes and get related rheology properties with the previously 

published constitutive equations, but the comparison with the initial setting of simulations is 

quite different. This supports the intrinsic properties of material, in this thesis the CPO, cannot 

be independent to the other rheological properties.  

(ii) CPO evolving. Systematically analyse the influence of the initially different intensity of 

anisotropy and the variable initial angle between the CPO and deformation circumstances 

related to the boundary conditions. The CPO evolving along the simulation process observed 

by frequencies of c-axes evolving, that is of basal plane activities.  
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Fig. 3: The natural fold geometries at field observations and thin sections at east Pyrenees, Cap de 

Creus, Spain (a-e), and east margin of Tibet, LongMen mountain structural belt, China (f-h).   
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(iii) Stress evolving and strain-rate field. The von Mises stress and von Mises strain-rate field 

are used to relate to the progressive stages of fold geometries variation. This helps the 

investigation of strain distributions and stress reactions, which indicates an influence of the 

variable rheological parameters not only affect the fold geometries, but also make a difference 

between stages (periods) along the progressive (simulated) deformation.  

(iv) Link with natural examples. Comparison between the simulated results and natural 

examples (both rocks and ice) gives potential approaches to the final fold geometries. All kinds 

of simulated results should be clarified to several deformed mechanisms with respect to their 

processes and final shapes, this helps on scientific identification on folding mechanism and 

the (relatively) physical properties of field objects in future field observation.  

(v) Identification on periods of tectonic. Due to anisotropy applied into the simulations lead to 

resulting folding with different strain localisation behaviours and distributions, both which 

simultaneously deform the high strain area and low strain area in one tectonic period. Study 

about the characteristic on identify tectonic period on microstructures.  

 

3 Rheological properties 

The deformation behaviour of rock depends on the environment where the rock placed, the 

temperature, confining stress, pressure, as well as the rock physics itself, all of which affect 

the rocks or materials behave in brittle or in ductile, so the effects of elasticity or viscosity are 

considered (Mancktelow, 1999). The previous studies have summarised by Jeng et al. (2002) 

that the different groups of material models which consist of elastic properties, viscous 

properties and elasto-viscous properties of layer and matrix, respectively, are behave variably.  

The initial stage along the deformation of a rock is firstly behave on its elastic property (Price 

and Cosgrove, 1990), which relative to the Young's modulus (𝐸) of materials. A rock placed at 

relatively low temperature and low stress environment, like shallow crust, would behave 

brittlely while the stress beyond the limitation of elastic property. The deformation of folds is 

always taking place at a relatively deep crust or even deeper to lower crust where has a high 

temperature and high confining stress environment that makes the rock deforms viscously in 

ductility, so the Eq.(1) (Biot, 1957, 1961; Ramberg, 1963, 1964) is considered to use with their 

dynamic viscosities, especially for a long wavelengths, harmonious waveform folding which 

the thin plate theory is appropriate (BIot, 1961; Fletcher, 1974, 1977). An exception that ice 

can deform on earth surface as ice sheet or glacier in ductility.  
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The equations for elastic and viscous folding are linear, and the output planar foliations are 

periodic that can be expressed with trigonometric functions such as sinusoidal function or 

cosine function, and reflect as constant relation between dominate wavelength, thickness and 

viscosity ratio such as the Biot’s folding equation (Biot, 1961). However, due to the composite 

differences the natural fold geometries are always not strictly periodic but irregular, 

discontinuous and form strain localisations (Hunt et al., 1996; Whiting and Hunt, 1997; Hobbs 

and Ord, 2012; Schmalholz and Mancktelow, 2016). The reason for irregular fold geometries 

with different strain localisation behaviours has been controversially discussed and modelled 

(e.g., Zhang et al., 1996; Hunt et al., 1997; Mancktelow, 1999; Hobbs and Ord, 2012, Llorens 

et al., 2013a, 2013b, 2013c). There are essentially two fundamental rheological parameters of 

materials that affecting fold geometries discussed in this thesis: (1) viscosity and (2) 

mechanical anisotropy.  

 

3.1 Viscosity and non-linearity of viscous material 

For power-law non-linear fluids it is not meaningful to talk about a single viscosity contrast 

between two rock types because viscosities are dynamic which varies as function of stress or 

strain rate, and thus viscosity ratio will vary as stress or strain-rate vary (Treagus, 1993), affects 

the dominate wavelength and amplification rate of the resulting fold geometries (Fletcher, 1974; 

Schmalholz and Mancktelow, 2016). Furthermore, a non-linearity of viscous materials leads 

the strain rate is exponential to the stress to the power 𝑛, which also resulting fold geometries 

vary (Fletcher, 1974; Abassi and Mancktelow, 1992; Hudleston and Lan, 1994; Schmalholz 

and Schmid, 2012).  

The folding theory for ductile deformation under rheological conditions, are based on the 

mechanical and rheological properties of natural rocks or ice, suggests that these materials 

would deform following non-linear flow laws (Heard and Raleigh, 1972; Smith, 1977; 

Watkinson, 1983; Carter and Tsenn, 1987; Mühlhaus et al., 1998; Llorens et al, 2013a, 2013b; 

Hudleston and Treagus, 2010; Kocher et al., 2008) suggested by introduction the rheology of 

the lithosphere (Kirby, 1983; Kirby and Kronenberg, 1987; Rutter, 1993; Kohlstedt et al., 1995; 

Hirth et al., 2001; Burov, 2011), and some tried to quantity the value of non-linearity of materials 

(Bayly, 1970; Fletcher, 1974; Schmalholz and Mancktelow, 2008; Bons et al., 2018). Power-

law rheology of the layer deformation both enhances the amplification rate, growth rate and 

decreases the dominant wavelength compared to linear behaviour (Hudleston and Treagus, 

2010).  
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A resulting fold with a non-Newtonian material form to cylindricity increases with amplification 

rate and is stronger than a Newtonian layer (Fletcher, 1995; Hudleston and Treagus, 2010), 

and even higher non-linearity. The folding amplitude grows more rapid with increasing stress 

exponent under shortening (Kaus and Schmalholz, 2006), but not linear.  

 

3.2 Mechanical anisotropy 

Another key factor investigated in thesis in rheological process that controlling strain 

localisation is the anisotropy, as anisotropy of the matrix increases both the amplification rate 

and the dominant wavelength of folds, and the intensity to which the amplification rate and 

dominant wavelength are affected obviously depends on the intensity of anisotropy (Hudleston 

and Treagus, 2010). Rocks and materials are generally anisotropic in both their brittle and 

ductile properties. In case of planar mineral mica, the anisotropy is very strong (Kronenberg et 

al., 1990; Mares and Kronenberg, 1993; Shea and Kronenberg, 1993; Aslin et al., 2019; Finch 

et al., 2020).  

Two types of anisotropy including composite and intrinsic anisotropy in geological materials 

are usually in consider. Composite anisotropy is an anisotropy due to layers of different 

composition or material properties (Dabrowski et al., 2012; Wang et al., 2022), or stratigraphic 

layers, veins, dykes are always be considered as composite anisotropy. Here each individual 

material may be isotropic, or anisotropic. Another type of anisotropy is the intrinsic anisotropy 

(Griera et al., 2011; 2013), which is a single composition material due to a crystallographic 

preferred orientation (CPO), which produced after plastic flow with or without recrystallisation, 

or after viscous flow and anisotropic crystal growth (Mainprice and Nicolas, 1989), such as 

pure ice, shale, schist, of alignment of minerals.  

A rock as a whole can become anisotropic when crystallographic orientations align in a CPO 

(Mainprice and Nicolas, 1989; Passchier and Trouw, 2005). Tectonic foliations are often 

formed by the alignment of micas so that tectonically foliated rocks can be expected to be 

highly anisotropic. 

Anisotropy has been recognised as a factor in the formation of geological structures and a 

cause for strain localisation (Cobbold et al., 1971; Ramsay, 1980; Passchier and Trouw. 2005; 

Kocher et al., 2006, 2008; Naus-Thijssen, et al., 2010; Griera et al., 2013; Bordignon et al., 

2015; Steinbach et al., 2016; Gardner et al., 2017; Ran et al., 2019; de Riese et al., 2019; 

Torvela and Kurhila, 2020). In progressive deformation, mechanical anisotropy causes 

heterogeneity, then forming shear localisation by making shear bands, which are influenced 

by the intensity of anisotropy (𝐴), the nature property of the anisotropy, the initial orientation of 
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the anisotropy (CPO) etc. (Cosgrove, 1976; Carreras et al., 2013; Steinbach et al., 2016; 

Llorens et al., 2017; de Riese et al., 2019; Griera et al., 2020). All above properties of 

anisotropy controlling the kinematics of shear bands, which performing two distinct types of 

kinematical behaviours in rocks are (1) synthetic shearing (Berthé et al., 1979; Lister and 

Snoke, 1984; Bell, 1986; Ramsay and Huber, 1987; Ham and Bell, 2004; Mandal et al., 2004;  

Passchier and Trouw, 2005; Ponce et al., 2013) and (2) antithetic shearing (Carreras et al., 

2010, 2013; Ponce et al., 2013; Tanner, 2016). Both types show that from initial angle between 

layers and shear plane together with duration of shearing give strong influence on the final 

geometries of crenulation. Unfortunately, relatively few studies are only concentrated on the 

issue that about shear localised behaviours controlling deformation geometries.  

Anisotropy is properties depend on direction in crystal. The anisotropy can be understood in 

this thesis by using the transverse isotropy. “… A transversely isotropic material is one with 

physical properties that are symmetric about an axis that is normal to a plane of isotropy. This 

transverse plane has infinite planes of symmetry and thus, within this plane, the material 

properties are the same in all directions. Hence, such materials are also known as ‘polar 

anisotropic’ materials …” (wikipedia/Transverse_isotropy). This is often good approximation of 

mechanical anisotropy of foliated rock.  

Anisotropy was achieved by glide of dislocations along slip planes of crystal system, which is 

assumed have basal plane, prismatic plane, and pyramidal plane of a hexagonal crystal. The 

intensity of anisotropy in this thesis was defined as shear resistances, that related to the critical 

resolved shear stress (Gottstein, 2004), in times between basal plane and non-basal planes 

gliding system. 

 

4 Numerical simulations with software platform Elle 

4.1 Numerical procedures association with Elle 

As for the purpose of numerical modelling for shortening or extension of rocks and ice, the 

applications of both (i) single phase or polyphase setting and (ii) regarding rheological 

parameters are required certainly. To investigate these different parameters, series of 

numerical simulations were chosen to be done with the modelling platform Elle. Elle is an open-

source full-filed modelling platform used to simulate the development of deformation structures 

during microtectonic and microdynamic processes in rocks and ice (http://www.elle.ws; Bons 

et al. 2008). Numerous microtectonic processes have been done with Elle, such as dynamic 

recrystallisation (Montagnat et al., 2014, Jansen et al., 2016; Llorens et al., 2016a, 2016b, 

https://en.wikipedia.org/wiki/Transverse_isotropy
http://www.elle.ws/
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2017, 2019a; Steinbach et al., 2016), grain growth (Jessell et al., 2001, 2003; Jessell, 2004; 

Roessiger et al., 2014), porphyroclasts / porphyroblasts rotation (Griera et al., 2013; Ran et al., 

2018, 2022), strain localisation (Griera et al., 2011; Steinbach et al., 2016; Gardner et al., 2017; 

de Riese et al., 2019), and deformation of poly-phase materials (Finch et al., 2009, 2022). Elle 

is a 2D platform, which could be recognised as a section of structures.  

Elle (Bons et al., 2008) runs simulations as a progressively stepping with incremental strain, 

every step is a loop which the object simulated system must go through all processes 

(Steinbach, 2017). Every pixel in Elle platform can be treated as a single crystal or a mineral, 

termed “unode”, a group of pixels is a grain or cluster, termed “flynn”, and the node sits at the 

grain boundary is termed “bnode”. One bnode can be connected to either two or three 

neighbour bnodes depend on the position it placed, so the unode is the unconnected node. 

The properties of objects can be added to the unodes or flynns so that crystals or grains can 

be different with their neighbours. Elle can be coupled with different codes to achieve different 

simulated goals, such as BASIL (Houseman et al., 2008), FFT (Griera et al., 2011), etc.  

4.2 Numerical simulation with VPFFT+ELLE method 

To introduce the anisotropy of material property (glide system of lattices) into the Elle, the 

Viscoplastic Fast Fourier (VPFFT) (Lebensohn, 2001, Lebensohn et al., 2008, Lebensohn and 

Rollett, 2020) crystal plasticity code, is coupled by Griera et al. (2013) with the modelling 

platform Elle (Griera et al., 2013; Llorens et al., 2016a; Steinbach et al., 2016; Llorens et al., 

2017; Piazolo et al., 2019; Ran et al., 2018; de Riese et al., 2019), based on the Full-Field 

Theory. VPFFT assumes deformation by dislocation glide including the CPO re-orientation and 

using a non-linear viscous rate-dependent law (Llorens, 2015; Steinbach, 2017).  

As the setting of simulations are bulk strain-rate constant, the distribution of stress field and 

strain-rate fields are initially unknown, an iterative solver in order to minimise the calculating 

errors is based on Fast Fourier Transformation is implemented as number of corrections of 

calculation. Addition to the mechanical fields, VPFFT predicts dislocation glide, strain-rate and 

stress field, lattice re-orientation and dislocation densities following the model by Brinckmann 

et al. (2006). In the Elle file (*.elle), the bnode and flynns were updated according to the local 

strain-rate field after each deformation step by VPFFT. 

The constitutive equation (Eq. 4) of Elle process predicts the strain rate 𝜀𝑖̇𝑗(𝑥) at each unode 

position in the grid 𝑥 as a function of the deviatoric stress (𝜎𝑖𝑗
′ ), a reference shear strain rate 

(𝛾̇0) and the sum of the shear strain rates (𝛾̇𝑠) on N individual slip systems. 

𝜀𝑖̇𝑗(𝑥)  =  ∑  𝑚𝑖𝑗
𝑠 (𝑥)𝛾̇𝑠(𝑥)

𝑁𝑆

𝑠=1
=  𝛾̇0 ∑ 𝑚𝑖𝑗

𝑠 (𝑥) |
𝑚𝑠∶ 𝜎′(𝑥)

𝜏𝑠(𝑥)
|
𝑛

 𝑠𝑔𝑛(𝑚𝑠(𝑥) ∶  𝜎′(𝑥))
𝑁𝑆

𝑠=1
   (4) 
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In VPFFT, each individual slip system s is defined by a shear resistance or critical resolved 

shear-stress (𝜏𝑠) and its orientation is dependent the symmetric Schmidt tensor (𝑚𝑖𝑗
𝑠 ). This 

equation can be simplified to:  

𝛾̇𝑠 = 𝛾̇0 (
𝜎𝑠

𝜏𝑠
)

𝑛
            (5) 

A symmetrical hexagonal crystal lattice of ice 1h is used as an analogue for anisotropic 

minerals, such as of alignment of mica, quartz, ice 1h, etc. (as in Griera et al. 2013; Ran et al., 

2019; de Riese et al., 2019). Deformation assumed to be accommodated by dislocation glide 

along the basal, prismatic and pyramidal slip systems only for hexagonal crystal lattice. Here 

the intensity of anisotropy (𝐴) is defined by the ratio of the shear resistance of the non-basal 

and basal slip systems: 

𝐴 =
𝜏(𝑛𝑜𝑛−𝑏𝑎𝑠𝑎𝑙)

𝜏(𝑏𝑎𝑠𝑎𝑙)             (6) 

If 𝐴 = 1, which makes the material is effectively isotropic (Griera et al, 2013). If 𝐴 ≠ 1, the 

material is anisotropic. Here we choose to use 𝐴 = 64, 𝐴 = 16, 𝐴 = 4 which simulates a highly 

or moderately anisotropic rock or material with an approximately transverse isotropy, in which 

shear deformation along the basal plane is much softer than non-basal planes. 

As the boundary of Elle simulations is infinite, the results can be repeated to their surroundings 

infinitely, which has been introduced by e.g., Ran et al. (2018), Finch et al. (2020), Hu et al. 

(PAPER I). The von Mises strain rate (𝜀𝑣̇𝑚) and von Mises stress (𝜎𝑣𝑚) is defined as: 

𝜀𝑣̇𝑚 =  √
2

3
 𝜀𝑖̇𝑗 𝜀𝑖̇𝑗           (7) 

and  

𝜎𝑣𝑚 =  √
3

2
 𝜎𝑖𝑗

′  𝜎𝑖𝑗
′            (8) 

where 𝜀𝑖̇𝑗 is the strain-rate tensor, 𝜎𝑖𝑗
′  is the stress tensor, and 𝑖 and 𝑗 summation indices. 

The numerical simulations in this thesis are made by the VPFFT + Elle to investigate the fold 

geometries and strain-field differences resulting from an intrinsically mechanical material. The 

theoretically infinite AIR phase is numerically described as a mechanically anisotropic material 

with relatively lower viscosity, while the ICE phase is numerically described as a mechanically 

isotropic or anisotropic material with relatively high viscosity, depends on the basic settings of 

our simulated goals in several papers.  
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Fig.4: Preliminary simulation in dextral simple shear deformation with an initial CPO (intensity of anisotropy 𝐴 = 64, stress exponent 𝑛 = 3, and different initial angles 𝛼0 of 

basal planes) in 𝛾 = 1, 2, 3 and 4, notice that all passive mark lines (black curved lines) are initially horizontal. Initial state with passive mark lines shows in Fig.6.  
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Fig.5: von Mises strain-rate filed of preliminary simulation in dextral simple shear deformation with an initial CPO (same as Fig.4) in 𝛾 = 0.02, 1, 2, 3 and 4. 



Introduction 

18 

4.3 Preliminary simulation results 

Attempts simulations have been done with the in both dextral simple shear (Fig. 4 and Fig. 5) 

and pure shear (Fig. 7) with a mechanical anisotropic material.  

Initial simulated setting for dextral simple shear deformation includes the intensity of anisotropy 

𝐴 = 64, power law stress exponent of material 𝑛 = 3, initial orientation of anisotropy (basal 

plane) 𝛼0 = 0°, +11.25°, +22.5°, …, +78.75°, +90° and -11.25°, -22.5°, …, -78.75° (a horizontal 

layer is 0° respect to the x-axis, the layer rotate anticlockwise means the layer has a positive 

angle respect to the x-axis, while rotate clockwise means the layer has a negative angle), the 

simple shear strain rate is 𝛾̇= 0.02 per step in Elle. Fig. 6 gives the initial state for this series of 

simple shear simulation. Fig. 5 shows von Mises strain-rate field of partial simulated results. 

The geometrical differences in Fig. 4 are due to different strain rate distribution in Fig. 5, which 

are caused by the initial setting of CPO. 

 

 

Fig. 6: Initial state for simple shear simulation, black lines are passive marker layer without any physical 

property and meaning. The relative simulated results are displayed in Fig. 4 and Fig. 5, controlled the 

strain redistribution.  

 

Initial simulated setting for pure shear deformation includes the intensity of anisotropy 𝐴 = 64, 

power law stress exponent of material 𝑛 = 3, initial orientation of anisotropy (basal plane) 𝛼0 = 

0° and +90°. The pure shear strain rate is 𝜀̇= 0.01 both for horizontal compression and vertical 

extension per step in Elle. The deformation geometries displayed in Fig. 7 also indicates a 

difference of strain rate distributions lead two diverse kinds of deformation behaviours and two 

folding processes.  



Introduction 

19 

The two series simulations verify the influence of CPO and can be compared with Ran et al. 

(2018), de Riese et al. (2019), and Finch et al. (2020) that strain-rate field and deformation 

geometries are CPO dependent. 

 

 

Fig. 7: Preliminary simulation in pure shear deformation with an initial CPO (intensity of anisotropy 𝐴 = 

64, stress exponent 𝑛 = 3, and basal planes orientation 𝛼0 = 0° and 90°) in 50% and 70% shortening, 

note that all passive mark lines (black curved lines) are initially parallel to the initial CPO (basal plane), 

reflect the CPO rotations.  

 

Driving from these simulated results, this thesis further invests the influence on deformation 

structures in rocks and ice by systematically controlling the anisotropy in simple shear and 

pure shear deformations. 

In PAPER I, the Elle simulations are made with boundary condition of dextral simple shear to 

investigate how a single-phase material (ICE phase, here using ice 1h, please see Appendix 

for further information) with an intrinsic mechanical anisotropy affect the strain rate field, which 
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could be roughly divided to the high strain domains with strain localisation and low strain 

domains with crenulation geometries.  

In PAPER II, III and IV, the Elle simulations are made with layer parallel shortening, to study 

(i) the processes of folding geometries evolution that growth together with the matrix 

deformation, made by an initial setting of a competent, isotropic layer (ICE phase, please see 

Appendix for further information) embedded in a viscos, mechanically anisotropic matrix (AIR 

phase) (PAPER II), (ii) how a single-phase ice 1h (ICE phase) with mechanically anisotropy 

induce to a folding geometries to a low value of dominate wavelength against layer thickness 

compared to the cloudy bands in polar ice (EGRIP ice drill core, PAPER III), and (iii) a single-

phase ice 1h (ICE phase) with mechanically anisotropy undergoing pure shear that leads a 

rotation of CPO and fold amplification related to the northeast Greenland icesheet NEGIS 

(PAPER IV). 

 

5 Outcome and conclusion of the thesis 

This thesis investigates the how (i) mechanical anisotropy, includes the intensity of anisotropy 

and the orientation of initial anisotropy, (ii) viscous properties, contains viscosity differences 

and stress exponent related to the non-linearity of materials, affect from microstructures to 

macro tectonic structures. By using the simulated method, the processes of simulation results 

reflect the evolutions of structural geometries, kinematics, and even strain-rate fields and 

stress evolutions, which influence strain distribution with different deformation characteristics, 

localisation behaviours, rheological processes difference in pure polycrystalline material or 

polyphase competent and incompetent materials. 

1. For simple shear simulation, the results crenulation (micro-folds) geometries are strongly 

dependent on the abovementioned parameters which are the set initial intensity of anisotropy 

(CPO, 𝐴), the initial orientation of initial anisotropy (basal plane, 𝛼0). Simple shear simulation 

within foliated single-phase material, the CPO controls the shear localisation behaviours which 

would lead different shearing movement respect to the simple shear boundary condition that 

lead to extensional fields. The shear bands, or in some cases the high strain areas, can move 

synthetically, antithetically, or first antithetically then synthetically, with different velocities and 

rotation rates (PAPER I). There are big differences of shear localisation behaviours between 

𝛼0 < 45° and 𝛼0 >= 45°, and resulting various crenulation geometries.  

2. For layer-parallel shortening, except the initial intensity of anisotropy (𝐴) and the initial 

orientation of initial anisotropy (𝛼0), the initial set viscosity ratio (𝑅) and the non-linearity (𝑛) in 
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a certain range also has tiny influence on folding geometries. Two basic end-member types of 

behaviour and resulting fold geometries in both the competent layer and matrix are 

compressed buckle folds and extensional folds (PAPER II). Strain localisation behaviours also 

largely vary with 𝛼0 < 45° and 𝛼0 > 45°. Within matrix, Low 𝛼0 cases cause the formation of 

random, tiny, discontinuous strain localisation related to the 𝛼0 . High 𝛼0  cases cause the 

formation of strain localisation together with lenticular microlithons on the scale of the fold 

wavelength.  

3. A single phase material with CPO and non-linearity property also leads the development of 

self-similar folds with a power-law power spectrum (PAPER III, IV), which could compare with 

the folded biotite schist and the cloudy bands in ice drill core. The small cloudy bands in micro-

scale and lithospheric ice fold in large-scale resulted in a self-affine trend, that amplify the fold 

in several times on their amplitudes, while elongate the fold in thousand times on their 

arclengths where largest folds are relatively flat.  

4. Deformation of the CPO foliations may also develop crenulations and folds within low strain 

domains, where the geometries controlled by the kinematics of high strain domains (PAPER I, 

II). Apart from the obvious behaviours in high strain localisation domains, the foliations 

preferred to keep relatively constant geometries within low strain domains. When strain 

concentrate in high strain rate area, only little strain distributed in the low strain domains with 

little rotation driven by shear movement of high strain area. These low strain areas may rotate 

as a whole cluster like a bubble / grain, or rotate with different velocities between the edges 

and centres. The rotation velocities of edges are sometimes quicker than centres, lead to a 

crenulation not only between edges and centres but also between edges and high strain 

localised bands. 

5. Evolving of CPO relies on the boundary condition of deformation system, and influences the 

micro dynamic processes. Boundary condition of simple shear and layer-parallel pure shear 

carry out different stress evolving can be compared with de Riese et al. (2019) and PAPER II 

in this thesis, as the bulk stress variations until the material yields and stresses drop due to the 

formation of the shear bands, so that geometrical softening and hardening forms at different 

deformation stages of simple shear and pure shear. Anisotropy dominates both endmembers 

and processes. By plotting the C-axes of basal plane, the two routines of CPO evolve, one is 

single point-maximum shifting to the fabric attractor, another is from one point-maximum split 

to two sub-symmetrical point-maximum and reunion.  
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Abstract 

Deformation of foliated rocks commonly leads to crenulation or micro-folding, with the 

development of cleavage domains and microlithons. We here consider the effect of mechanical 

anisotropy due to a crystallographic preferred orientation (CPO) that defines the foliation, for 

example by of alignment of micas. Mechanical anisotropy induces shear localisation, resulting 

in low-strain domains (with microlithons) and high-strain shear bands or cleavage domains. 

We investigate the crenulation patterns that result from moderate strain in dextral simple shear 

deformation, varying the initial orientation of the mechanical anisotropy (CPO) relative to the 

shear plane of an anisotropic single-phase material by using the numerical simulation. An 

initially point-maximum CPO at variable angles to the shear plane defines the initial straight 

localised bands at different angles to the shear plane, limiting themselves to orientations in 
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which the localised bands are in the stretching field. The resulting crenulation geometries 

strongly depend on the orientation of the foliation (CPO) and we observe four types of 

localisation behaviour: (1) synthetic shear localisation, (2) antithetic shear localisation, (3) 

initial formation of antithetic shear localisation and subsequent development of synthetic shear 

localisation, and (4) distributed, approximately shear-margin parallel and normal strain 

localisation. The numerical simulations not only show the evolving strain-rate field, but also the 

predicted finite strain pattern of existing visible layers or foliations. We display the results for 

passive layers parallel to the orientation of anisotropy (CPO), together with passive layers 

parallel to the shear plane (e.g., the case of sedimentary layers and a cleavage that controls 

the mechanical anisotropy). A wide range of crenulation geometries form as a function of the 

initial orientation of the visible layering and mechanical anisotropy. Most importantly, some of 

these may be highly misleading and may easily be interpreted as indicating the opposite sense 

of shear. 

 

Keywords: Crenulation geometries, Micro-fold, Anisotropy, Crystallographic preferred 

orientation, Strain-rate redistribution, Extensional field. 

 

1 Introduction  

Most rocks are foliated in the sense that they have some compositional or stratigraphic layering, 

or a planar anisotropy, such as cleavages or schistosity. Ductile shortening of such foliations 

typically leads to folding (Ramsay and Huber, 1987). Folds can vary in scale, depending on 

what foliation is folded (Biot, 1961). Fine foliations form micro-folds, also termed 'crenulations' 

(Rickard, 1961; Passchier and Trouw, 2005). Crenulations, similar to folds, are very useful 

structures to unravel the history and evolution of deformation in rocks (Hudleston, 1986; 

Ramsay and Huber, 1987; Hudleston and Lan, 1993; Passchier and Trouw, 2005; Hudleston 

and Treagus, 2010; Adamuszek et al., 2011; Llorens et al., 2013a, 2013b; Schmalholz and 

Mancktelow, 2016). Many studies have investigated fold development based on theory (Biot, 

1961; Ramberg, 1961), field studies (Ramsay and Huber, 1987; Passchier and Trouw, 2005; 

and relevant references therein), laboratory models (Ghosh, 1966; Cobbold, 1975; Dubey and 

Cobbold, 1977; Manz and Wickham, 1978), or numerical simulation (Ramsay, 1974; Casey 

and Huggenberger, 1985; Hudleston and Lan, 1994; Mancktelow, 1999; Frehner and 

Schmalholz, 2006; Schmid and Podladchikov, 2006; Naus-Thijssen et al., 2010; Llorens et al, 

2013a, 2013b). 
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According to the classical fold theory of Biot (1957, 1961, 1964a, b, 1965a, b), layers become 

folded because of the amplification of instabilities that arise from the layer-parallel shortening 

of one or more competent (strong) layers and surrounding incompetent (weak) layers or a 

matrix (Fig.1a, b). The wavelength of the folds is determined by relative strength or 

competence of the layers and their thickness. Other authors have since further developed and 

refined the basic fold theory, including factors such as non-linearity of materials (Cobbold, 1975; 

Gray, 1979; Schmid and Podladchikov, 2006; Schmalholz and Podladchikov, 1999, Llorens et 

al, 2013a, 2013b).  

Folds and crenulations can also form in rocks without layering, but with a planar anisotropy 

instead. For example, the ice sheets of Greenland and Antarctica are probably among the most 

homogeneous mono-mineralic rocks on earth, consisting of almost pure of ice 1h. However, 

folds occur on mm to 100-m scales (Wolovick et al., 2014; Leyinger Vieli et al., 2011; Jansen 

et al., 2016; Bons et al., 2016; Westhoff et al., 2021), which can be explained by the strong 

mechanical anisotropy - a foliation - due to alignment of the easy-glide basal planes (Jansen 

et al., 2016; Bons et al., 2016). There is no fully developed theory for folding or crenulation due 

to intrinsic mechanical anisotropy (Griera et al., 2013), although several studies have 

recognised and addressed the issue (Ran et al., 2019; de Riese et al., 2019). Folds and 

crenulations, however, do not only form by Biot-type folding. Folding is essentially caused by 

heterogeneous deformation in which an originally planar surface becomes non-planar. 

Heterogeneous strain, or strain localisation, can thus also produce folds or crenulations in both 

compressional and extensional circumstances. 

Strain localisation can result from many processes, such as shear heating (Brun and Cobbold, 

1980; Tullis and Yund, 1985; Hirth and Tullis, 1992; Montési, 2013), strain and geometrical 

hardening and/or softening weakening (White et al., 1980; Hobbs et al., 1990; Hirth and Tullis, 

1992), grain-size reduction (Tullis and Yund, 1985; Braun et al., 1999; de Bresser et al., 2001; 

Warren and Hirth, 2006; Platt and Behr, 2011 ), etc. Mechanical anisotropy can also play an 

important role in causing strain localisation (Cobbold et al., 1971; Cosgrove, 1976, 1989; 

Williams and Price, 1990; Carreras, 2001; Dabrowski et al., 2012; Ponce et al., 2013; Llorens 

et al., 2017; Bons et al., 2016; Gardner et al., 2017; Ran et al., 2019; de Riese et al., 2019).  

Minerals are generally (intrinsically) anisotropic both in their brittle and ductile properties if 

deformation is by dislocation glide on crystallographic planes. In case of micas, this anisotropy 

is very strong (Kronenberg et al., 1990; Mares and Kronenberg, 1993; Shea and Kronenberg, 

1993; Aslin et al., 2019; Finch et al., 2020). A rock as a whole can become anisotropic when 

crystallographic orientations align in a crystallographic preferred orientation (CPO). Tectonic 

foliations are often formed by the alignment of micas so that tectonically foliated rocks can be 
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expected to be highly anisotropic. Anisotropy has been recognised as a key factor in the 

formation of geological structures and a cause for strain localisation (Cobbold et al., 1971; 

Ramsay, 1980; Passchier and Trouw. 2005; Naus-Thijssen, et al., 2011; Griera et al., 2013; 

Tanner, 2016; Ran et al., 2019; de Riese et al., 2019; Torvela and Kurhila, 2020) in 

crenulations, folds and other micro-structures. 

Shear localisation tends to result in low-strain domains and high-strain domains in both pure 

shear and simple shear by strain rate redistribution (de Riese et al., 2019). Strain localisation 

zones can have different characteristics of movement, rotation and velocity, while these also 

affect the movements and rotations in low-strain areas. This can happen on all scales 

(Carreras, 2001; Ponce et al., 2013; Steinbach et al., 2016, de Riese et al., 2019). On the small 

scale the localisation leads to the formation of so-called 'microlithons' (low-strain domains) and 

'shear bands' (high strain zones) (Berthé et al, 1979, Passchier and Trouw, 2005). The 

localised high-strain domains form conjugated shear bands in pure shear (Steinbach et al., 

2016), and form C, C' (synthetic, Fig.1c, Berthé et al., 1979; Lister and Snoke, 1984; Ramsay 

and Huber, 1987; Mandal et al., 2004; Passchier and Trouw, 2005) and C'' (antithetic, Fig.1d, 

Carreras et al., 2005; Carreras et al., 2013; Ponce et al., 2013; Ran et al., 2019; Finch et al., 

2020, 2022) shear bands in simple shear. 

 

 

Fig.1 Three types of formation of crenulations or folds under dextral simple shear. (a) & (b) Competent 

layers embedded in soft matrix from (figure from Ran et al., 2019, Fig.1). (a) Under progressive shearing 

the competent layer folds, and the isotropic matrix mimics this folding close to the competent layer. 

Deformation in the matrix is realtively homogeneous. (b) Heterogeneous deformation resulting in 

crenulation of the matrix foliation develops in an anisotropic matrix. (c) Synthetic shearing and (d) 

antithetic shearing results in extensional field crenulations that are the topic of this study. 

 

Generally, structural geologists analyse geometries and patterns in rocks to determine the 

deformation these rocks experienced, and to relate these with, for example, tectonic events or 

phases. In case of shear zones or shear bands, the sense of shear is an important parameter 

that is, unfortunately, not always easily determined. When rocks are foliated, the patterns we 
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see are often folds and crenulations of the foliation (Ez, 2000; Carreras et al., 2005). In that 

case it is not always clear if an observed sense of shear is synthetic (Fig.1c) or antithetic 

(Fig.1d) to the overall, larger-scale kinematics (Carreras et al., 2005; Carreras et al., 2013; 

Ponce et al., 2013; Tanner, 2016; Carreras and Druguet, 2019).  

de Riese et al. (2019) investigated the amount and patterns of shear localisation in simple 

shear due to an intrinsic mechanical anisotropy in power-law viscous materials. They simulated 

the deformation of an initially non-foliated material. In de Riese et. al (In preparation) they 

systematically investigated the effect of an initial CPO on the localisation and deformation 

behaviour in an anisotropic material and the role of passive material markers on the 

development of deformation structures. This contribution presents a part of this set of 

simulations. The aim of the paper is to determine the effects of anisotropy on patterns of 

crenulations or folds. We present a series of numerical simulations in simple shear in which 

the orientation of the anisotropy relative to the shear plane is varied. The focus here is not on 

the mechanical aspects of such shearing (see de Riese et al. In preparation), but the visible 

patterns that develop in a foliated rock at a low shear strain of up to about 2. Layering that is 

visible in a rock can, but must not be parallel to the mechanical anisotropy. This may be the 

case when the visible layering is bedding, but the mechanical anisotropy is dominated by a 

cleavage at an angle to bedding. We not only consider fold patterns for when the visible 

layering is parallel to the anisotropy, but also cases where the visible layering is originally 

oriented differently, in particular parallel to the shear direction. We restrict ourselves here to 

foliation orientations that are always in the stretching field. This way, Biot-type buckling can be 

excluded as a cause of folding. In the absence of any other localisation mechanisms (shear 

heating, hardening/softening, etc.) all folding that does arise is now purely due to the 

mechanical anisotropy (𝐴) of the material. We use the same numerical approach to model an 

intrinsically anisotropic material as in Griera et al. (2013), Llorens et al. (2017), Piazolo et al. 

(2019), Ran et al. (2019, 2022), de Riese et al. (2019), Finch et al., (2020, 2022). 

2 Method 

We use the full-field, Viscoplastic Fast-Fourier Transform (VPFFT, Lebensohn, 2001; 

Lebensohn et al., 2008; Lebensohn and Rollett, 2020) crystal plasticity code coupled with the 

modelling platform ELLE (http://www.elle.ws; Griera et al., 2013; Steinbach et al., 2016; 

Llorens et al., 2017; Piazolo et al., 2019; Ran et al., 2019; de Riese et al., 2019) to simulate 

the deformation of an anisotropic single-phase material with an intrinsic mechanical anisotropy 

due to an initial CPO. 
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ELLE is an open-source modelling platform and aims to provide a generalized framework for 

the numerical simulation of the evolution of microstructures during deformation and 

metamorphism. The VPFFT + ELLE code has been used for the numerical simulation of the 

deformation and recrystallisation of polycrystalline ice (Steinbach et al., 2016; Llorens et al., 

2017; Gomez-Rivas et al., 2017), development of porphyroclasts /-blasts or hard inclusions 

(Griera et al., 2011, 2013; Ran et al., 2018, 2022), shear band development (Ran et al., 2019; 

de Riese et al., 2019; Finch et al., 2020, 2022). etc. The numerical procedure used in this study 

is identical to that of de Riese et al. (2019) and Finch et al. (2020), and is therefore described 

only briefly here. 

The 2D models consist of a square grid of so-called unodes (Bons et al., 2008). The unodes 

effectively represent crystallites or single grains with a constant internal crystal orientation, 

defined by three Euler angles. All simulations were run with a resolution of 256 x 256 unodes. 

Deformation is assumed to occur by slip on crystallographic planes. Such slip produces simple-

shear deformation parallel to the slip plane. The shear-strain rate (𝛾𝑠̇) along a slip plane of a 

slip system is related to shear stress (𝜎𝑠) and the shear-stress component (𝜏) parallel to that 

plane with a power law:  

𝛾̇𝑠 = 𝛾̇0 (
𝜏

𝜏𝑠
)

𝑛
         (1) 

Here 𝛾0̇ is a reference shear rate that is set at the same value for all simulations. 𝑛 is the stress 

exponent, always set to 𝑛 = 3. A mechanical anisotropy is achieved by assigning a different 

value for 𝜏𝑠 to each slip system. This is the resistance to slip, also referred to as the critical 

resolved shear stress. The strain rate of one unode is the sum of the shear rates along the 

individual slip planes, taking into consideration their orientations. 

For given boundary conditions, the code calculates the stress and strain rate field that 

minimises the work rate and obeys compatibility requirements between unodes. In all 

simulations velocities are applied to the boundaries such that the average deformation is 

dextral simple shear along the horizontal axis. Boundaries are wrapping in both directions: 

material leaving the model on one side enters it on the opposite side. The velocity field that is 

derived from the strain rate field is linearly integrated for a small time step to obtain the 

displacement field. The time step is set such that each deformation step is a shear increment 

of ∆𝛾 = 0.02. Each unode is first displaced according to the displacement field and its lattice 

orientation is updated according to its strain rate. As the FFT spectral solver requires an 

orthogonal grid of unodes, the deformed grid is remapped every calculation step. The 

displacement field is further used to track passive markers to visualise finite strain and the 

deformation of originally straight layers. 
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We use the crystal symmetry of ice 1h with a hexagonal lattice as an analogue for highly 

anisotropic minerals, such as micas, as in Ran et al. (2019) and de Riese et al. (2019). 

Deformation is assumed to be accommodated by glide along the basal and non-basal prismatic 

and pyramidal slip systems only. The intensity of anisotropy (𝐴) is defined by the ratio between 

the critical resolved shear stresses of the non-basal and the basal slip systems:  

𝐴 =
𝜏𝑠

(𝑛𝑜𝑛−𝑏𝑎𝑠𝑎𝑙)

𝜏𝑠
(𝑏𝑎𝑠𝑎𝑙)          (2) 

If A=1, the material is effectively isotropic (Griera et al., 2011). Here we use A=64, which 

simulates a highly anisotropic material with an approximately transverse isotropy, in which 

shear deformation along the basal plane is much easier than any other deformation. 

de Riese et al. (2019) started simulations with random initial lattice orientations assigned to 

the unodes. Here the basal-plane orientations are initially aligned within ±5° to a plane rotated 

anticlockwise by an angle 𝛼0 relative to the shear plane (Fig.2). We refer to these aligned basal 

planes as the foliation. We present simulation for 𝛼0 = 0°, 33°, 45° and 73° as it was found that 

these represent the four basic types of behaviour that we describe below. In all these four 

cases, the initial foliation is in the extensional field. 

The initial orientation of layers is defined by the angle 𝜃0, also taken anticlockwise relative to 

the shear plane (Fig.2). Note that the layers are deforming passively and that, therefore, one 

simulation with a set initial angle for the foliation can be used to calculate the resulting 

deformation patters in layers with varying initial angle 𝜃0.  

Results are presented in the form of maps of the Von Mises strain rate field and of images of 

the deformed passive layers. As the boundaries in the model are wrapping, the sheared model 

can always be remapped onto a square and is presented as such (Fig.3). The Von Mises strain 

rate (𝜀𝑣̇𝑚) is defined as: 

𝜀𝑣̇𝑚 = √
2

3
𝜀𝑖̇𝑗𝜀𝑖̇𝑗         (3) 

where 𝜀𝑖̇𝑗  is the strain-rate tensor and i and j summation indices. To better visualise the 

patterns in the deformed layers, images are composed of 2x2 or 3x3 tiles of the result of a 

simulation, again using the wrapping in both directions (Fig.2d, e). 
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Table.1 Symbols in use presented in this study 

𝜃 
Orientation of passive marker layering, we assume a horizontal layering is 𝜃=0°, a 

rotation in anticlockwise of the layering is a positive value 

𝛼 

Crystallographic preferred orientation (CPO, lattice preferred orientation, basal plane 

orientation, the orientation of foliation in this paper), we assume a horizontal plane is 

𝛼=0° to the x-axis, a rotation in anticlockwise of the plane is a positive value 

𝛽 

Orientation of localised band, we assume a horizontal plane is 𝛽=0° to the x-axis, a 

rotation in anticlockwise of the plane is a positive value. 𝛽𝑆  is the angle between 

localised bands and x-axis, always equal to 0°, using in initially synthetic shearing, 𝛽𝐴  

is the angle between antithetic localised bands and x-axis, using in initially antithetic 

shearing 

𝜏 
The shear component of strain, 𝜏𝑆  is the shear component of strain in synthetic 

localised bands, 𝜏𝐴  is the shear component of strain in antithetic localised bands 

𝛾 Value of strain, we discuss the strain from 0-2 in this paper 

𝜆 Layering in the microlithons relative to 𝛽 

   

 

 

                     

Fig.2 (a) A grid of 256 × 256 unconnected unodes was used in our 2D models to define the deforming 

square unit cell in Elle. A simulation is defined by the given CPO (basal plane orientation (0), the purple 

dashed lines) and the orientation of visualised passive marker layers (𝜃, the black line). (b) The Elle 

data structure allows for wrapping of the boundaries (Bons et al., 2008). When material moves outside 

of the square box, it is moved to within the box according to the finite strain. This is illustrated for =1, 

but is in reality done every time step of =0.02. (c) high strain domains may form and rotate during 

deformation. Their orientation is defined by the angle . (d) and (e) Because of the wrapping boundaries, 

the map of a single simulation can be tiled to make 2x2 or 3x3 images that better illustrate the developing 

structure.  
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3 Results 

3.1 Strain localisation in shear bands 

The normalised von Mises strain rate fields for the four simulations and at 3 deformation stages 

up to a shear strain of 2 are shown in Fig.3. The four simulations show remarkably different 

strain-rate fields (Fig.3).  

There is no discernible shear localisation up to 𝛾 =2 when the foliation is initially parallel to the 

shear plane (𝛼0=0°).  

A shear-plane parallel high-strain rate zone forms when 𝛼0=33° (Fig.4b). Von Misses strain 

rates inside this zone, which we will refer to as a shear band, are >10 times higher than in the 

remainder of the model. The shear band is stable up to 𝛾 =2, as it does not rotate, nor does 

the strain-rate localisation change significantly. Deformation inside the shear band is 

approximately simple shear, i.e., it has the same kinematics as the bulk deformation. The shear 

band can thus be classified as a synthetic, C-type shear band (Berthé et al., 1979; Passchier 

and Trouw, 2005; Finch et al., 2020, 2022). We define the orientation of the shear band with 

the angle 𝛽, measured anticlockwise from the shear plane. In this case 𝛽 remains zero. 

A shear band also forms at 𝛼0 =45°, but originally at an angle of 𝛽≈90° and then rotating 

clockwise with increasing shear strain (Fig.4c). As it rotates it stretches and thins, and the 

localisation of strain rate inside the shear band decreases. It should be noted that the thin 

shear bands at 𝛾 =2 are in fact the same shear band if one considers the wrapping boundaries. 

Deformation inside the shear band is initially simple shear, but antithetic with respect to the 

bulk sense of shear, making it a C''-type shear band (Finch et al., 2020, 2022). 

Finally, 𝛼0 =73° results in the most complex type of strain-localisation evolution (Fig.4d). Shear 

bands first develop at high angles to the shear plane. Contrary to the previous two cases, the 

shear bands are more diffuse. The dominant localisation is initially in an antithetic, C''-type 

shear band with 𝛽 >90°. As it rotates with the applied bulk simple shear its activity decreases 

and at a shear strain of about one there is a transition to synthetic shear parallel the shear 

plane. A synthetic, C-type shear band is fully established by 𝛾 =2. 
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Fig.3 Normalised von Mises strain rate field of the simulations shown in Figs. 4 and 5 for top-to-the-right 

simple shear. (a) Random distributed bands with no distinct localisation are observed for 0=0°. (b) At 

0=33° a single zone with highly localised strain rate forms. This shear band is synthetic with persistent 

dextral shearing. (c) Initially antithetic shear localisation is observed when 0=45°, which then rotates 

until the shear sense reverses to synthetic shearing. (d) Finally, 0=73° shows the initial formation of 

antithetic shear localisation. The C''-shear band deactivates with rotation, while another shear band with 

synthetic shear localisation develops. In (b), (c), and (d), strain is strongly localised in high strain 

domains, showing that the initial CPO has a strong influence on the formation of high strain domains. 

 

3.2 Deformation of the foliation 

3.2.1. Visible foliation parallel to foliation (𝛼0 =𝜃0) 

The deformation patterns that result if the visible layering is initially parallel to the mechanical 

foliation (𝛼0 =𝜃0) reflects the four very different types of strain localisation behaviour (Fig. 4). 

In case 𝛼0 = 𝜃0=0° the layers remain unchanged due to the absence of significant localisation 

and because planes parallel to the shear plane do not rotate, nor stretch in simple shear. An 

S-C structure geometry forms at 𝛼0 = 𝜃0=33° with the foliation remaining at approximately 

𝑎=45° in the microlithons, e.g., the low-strain zones between the shear bands. Inside the C-
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type shear bands the foliation quickly rotates towards 𝑎 =0°. As a result, there is little change 

in the structure once the shear bands have developed. 

The cases where 𝛼0 = 𝜃0=45° or 73° are the most dynamic with a rapidly changing structure 

at low shear strain. At 𝛼0 = 𝜃0=45° the antithetic C''-type shear bands offset the layering to 

parallelism with the shear bands (Fig. 4c). Layering in the microlithons makes an initial angle 

of 𝜆 =  𝛽 − 𝜃 =  45°. As the shear bands and microlithons rotate in the dextral simple-shear 

field, they get stretched parallel to the shear bands. This leads to a rapid rotation of the layering 

inside the microlithons towards the shear plane and a decrease in 𝜆. Antithetic C''-type shear 

bands are also visible in case 𝛼0 = 𝜃0=73° (Fig. 4d), but the finite shear strain in these bands 

is much less than in the cases 𝛼0 = 𝜃0= 45°. Synthetic, C-type shear-band activity already 

starts to dominate the finite-strain geometry at 𝛾  ≈1. By 𝛾  =2 the interaction of the early 

antithetic shear bands and the later synthetic ones creates a pattern of lozenge-shaped 

microlithons. 

3.2.2. Visible foliation parallel to the shear plane (𝜃0 =0°) 

The deformation patterns that result if the visible layering is initially parallel to the shear plane 

(𝜃0 = 0°) also reflects the four very different types of strain localisation behaviour (Fig. 5). The 

case 𝛼0 = 𝜃0=0° is already mentioned, and Fig. 5a is the same as Fig. 4a. A similar geometry 

forms at 𝛼0 =33° with the visible foliation remaining at 𝜃 ≈0°. The =0° shear zones are hardly 

visible, as they are parallel to the visible layering. The shear bands only cause minor, but 

increasing disturbances of the layering. 

The cases 𝛼0 =45° or 73° with constant 𝜃0=0° are the most dynamic and rotational structure 

at low shear strain. At 𝛼0 =45° the antithetic C''-type shear bands are now clearly visible in the 

structure as they form at a high angle to the layering (Fig. 5c). Layering in the microlitons 

makes an angle 𝜆 = 𝜃 = 0°. As the shear bands and microlitons rotate in the dextral simple-

shear field, they get stretched parallel to the shear bands. This leads to a rapid rotation of the 

layering inside the microlithons offset the shear plane and an increase in 𝜆. Flattening of the 

microlithons leads to folding of the layering that becomes visible by 𝛾 =2. Antithetic C''-type 

shear bands are initially the most prominent at 𝛼0 =73° (Fig. 5d), but not as distinct as for the 

𝛼0 =45° case as the finite shear strain in these bands is much less than in the cases 𝛼0 =33 

and 45°. The synthetic, C-type shear-band activity already starts to take over the finite-strain 

geometry at 𝛾 ≈1. Relative shifting of the crenulations due to the antithetic shearing leads to 

complex fold patterns by 𝛾 =2. 
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Fig.4 Results for passive marker layers parallel to the given CPO (𝜃0 = 𝛼0), as illustrated at the top of 

the image, where purple dashed lines show the orientation of the CPO and solid black lines that of the 

visible passive marker layers. (a) When CPO and marker layers parallel to shear plane (𝛼0=𝜃0=0°) the 

visible structure remains unchanged. (b) At (𝛼0=𝜃0=33°) the developing structure is dominated by 

straight localised synthetic (C-type) shear bands. Passive marker layers rotate rapidly in the shear bands, 

but only very slowly in the low-strain domains. (c) When 𝛼0=45°, high- shear bands form. These have 

an antithetic sense of shear for 𝛾 <1, when 𝛽𝐴 decreases from 90° to 45°. These are thus C''-type shear 

bands. However, there sense-of shear reverses and becomes synthetic when 𝛾 >1. Low and high strain 

domains rotate together and flatten with increasing strain. (d) At 𝛼0=73°, antithetic localised-shear bands 

are observed up to about 𝛾<1.5. These rotate rapidly with 𝛽𝐴 decreasing from about 130° to 45°. After 

about 𝛾 ≥1.5, new synthetic shear bands form, while the antithetic one become deactivated. 
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Fig.5 Results for passive marker layers parallel to the shear plane (𝜃0 = 0 ≠ 𝛼0), as illustrated at the top 

of the image, where purple dashed lines show the orientation of the CPO and solid black lines that of 

the visible passive marker layers. (a) When CPO and marker layers parallel to shear plane (𝛼0= 𝜃0 =0°), 

same to Fig.4 a. (b) When 𝛼0=33° & 𝜃=0°, high strain localised bands behaved synthetically with 𝛽𝑆=0°, 

passive marker layers subparallel to the straight localised synthetic (C-type), micafish structures form 

within localised bands, no instinct crenulation. (c) When 𝛼0=45°, high- shear bands form, initially 

passive maker layers vertical to localised bands, which have an antithetic sense of shear for 𝛾 <1, when 

𝛽𝐴 decreases from 90° to 45°. These are thus C''-type shear bands. However, there sense-of shear 

reverses and becomes synthetic when 𝛾 >1. Low and high strain domains rotate together, due to the 

high strain domains getting close, passive marker layers in low strain domains are locally in a pure shear 

circumstances and form subfolds. (d) At 𝛼0=73°, antithetic localised-shear bands are observed up to 

about 𝛾<1.5. These rotate rapidly with 𝛽𝐴 decreasing from about 130° to 45°. After about 𝛾 ≥1.5, new 

synthetic shear bands form, while the antithetic one become deactivated. Low strain domains rotate with 

a velocity depend on the movement of high strain localised bands. Deformation of marker layering in 

low strain domains get refolding due to the localised behaviour of high stain domains and the big angle 

between the marker layering and antithetic localised bands. 
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4 Discussion  

4.1 Shear band types and shear localised behaviour in anisotropic materials 

The Normalised von Mises strain rate fields in Fig.3 illustrate the main shear localisation types 

that develop as a function of the two setting of simulations here are under the same boundary 

condition relate to the initial foliation (CPO). As we mentioned in early section, foliations and 

passive marker layers and shear bands gets into competition to be shearing and rotation in 

movement direction and velocity. Mechanical anisotropy induces shear localisation (Ran et al., 

2019; de Riese et al., 2019), resulting in low-strain domains (microlithons) and high-strain 

shear bands or cleavage domains. The formation of localised, high-strain domains in a single 

material is affected by the development of foliation in anisotropic materials or the presence of 

a foliation already at the start of the (next) deformation event. The latter is here simulated with 

an initially point-maximum CPO (defining the foliation perpendicular to it at 𝛼0) at variable 

angles to the shear plane. We limit ourselves to orientations in which the foliation is in the 

stretching field, thus excluding buckling as a result of shortening (see Chapter 3). The resulting 

extensional field crenulation geometries strongly depend on the orientation of the localised 

bands. Their orientation is defined by the angle . We observe four types of localisation 

behaviour: (1) distributed, approximately shear-margin parallel strain localisation (≈0°); (2) 

synthetic shear localisation (≈0°); (3) antithetic shear localisation starting at ≥90°, and (4) 

initial formation of antithetic shear localisation at high , and subsequent development of 

synthetic shear localisation at low , and.  

4.1.1 Distributed shear bands 

When 𝛼0=0°, the easy, foliation parallel glide direction is on average parallel to the overall 

shear direction. This is close to the CPO that develops at very high finite shear strain when 

starting with a random CPO (de Riese et al. 2019). The 𝛼0=0° CPO is therefore the most stable 

and we indeed observe much more homogenous deformation (Fig.3a, Fig.4a, Fig.5a) than for 

the other starting CPOs. Diffuse and small-scale localisation that is both parallel and 

perpendicular to the shear plane is observed (Fig. 3a) but does not lead to significant variability 

of the finite strain field. These minor shear bands may be related to the variability of the initial 

5° noise in the CPO. 

4.1.2 Synthetic shear bands 

The simulation with 𝛼0=33° results in a classical S-C structure with synthetic shear bands 

parallel to the shear plane (Fig.4b & Fig.5b, 𝛼0=33°; Berthé et al., 1979; Lister and Snoke, 

1984; Ramsay and Huber, 1987; Mandal et al., 2004; Passchier and Trouw, 2005). Clockwise 
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rotation of the CPO from 𝛼0 =33° towards 0° softens the material. The shear bands thus 

experience geometrical softening and can increasingly accommodate a larger fraction of the 

total shearing. This reduces the shear strain in the low-strain zones in between, where the 

foliation remains at a distinct angle to the shear plane (Fig. 4b). As the synthetic, C-type shear 

bands at 𝛽𝑆=0° are in the orientation of both zero rotation and zero stretching, they are stable 

(Fig. 3b).  

When 𝛼0=73°, we also observe the formation of C-type shear bands, but only after some strain 

(>1). At this stage the foliation in the microlithons has rotated to ≤45°, which makes the 

material comparable to the initial 𝛼0=33° simulation.  

4.1.3 Antithetic shear bands 

At high 𝛼0 shear localises in antithetic, C''-type shear bands that form at low strain at angles 

𝛽𝐴≥90°. The rotation rate is highest for lines and planes at a high angle to the shear plane and 

these antithetic shear bands thus show a rapid clockwise rotation towards the shear plane 

(Ponce et al., 2013). However, as the shear bands are antithetic, the foliation within the shear 

bands rotates anticlockwise relative to the shear bands. This is in contrast to synthetic shear 

bands, where both rotations are clockwise. 

Localised shear bands form with 𝛽𝐴 ≈90° (Fig.6a), then rotate clockwise with progressive 

deformation to finally become approximately horizontal, synthetic shear bands (𝛽𝐴→0°) (Ponce 

et al., 2013). This behaviour is illustrated in Fig. 6a. The solid orange line shows the rotation 

rate of a passive line that starts at 𝛽𝐴=90°, which is the maximum rotation rate. The dashed 

orange line shows the resolved shear stress 𝜏𝐴. This is the shear stresss component of the 

overall stress field, here assumed to be with the maximum compressive stress at 45° to the 

shear plane. At first 𝜏𝐴 is negative (antithetic) and the layering is offset by an anticlockwise 

sense of shear. The shear bands quickly rotate to 𝛽𝐴=45° (at 𝛾 =1) when the resolved shear 

stress 𝜏𝐴  is zero and then changes sign. At this point the principal compressive stress is 

approximately perpendicular to the shear bands. In this stage, shear bands and the low-strain 

domains in between experience an approximately a pure shear environment with stretching 

for both. This is reflected by the thin and conjugate shear bands that are distributed within the 

low-strain domains (Fig.3c, 𝛾=1 and 𝛾=2). With continuing of rotation  becomes <45° and 𝜏𝐴 

increases further but at a decreasing rate. This is because the rotation rate of the shear bands 

decreases with decreasing . The sense of shear of the shear bands is now reverses to 

synthetic shearing. 
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Fig.6 Rotation of localised bands divided by incremental strain (−𝑑𝛽𝐴 𝑑𝛾⁄ ) and shear stress component 

(𝜏) along the increasing strain, relative to the two types of shear bands that initial formation of antithetic 

shear localisation (Fig. 3. c & d, Fig. 4. c & d, Fig. 5. c & d). Note that we only discuss strain from 0 to 2 

in this study. (a) 𝛼0=45°, Initially antithetic shear localisation, then rotating and reversing to synthetic 

(orange lines), with decreasing rotation rate −𝑑𝛽𝐴 𝑑𝛾⁄  and variable shear stress 𝜏𝐴 of localised bands. 

Localised bands initially vertical to the shear plane, with maximum anticlockwise rotation rate and 

antithetic movement. When 𝛾  =0.4, continually rotating and antithetically moving, with decreasing 

rotating rate and shear stress. When 𝛾  =1 and now 𝛽𝐴 =45°, only normal stress contributes to the 

localised bands with no shear stress component, so current 𝜏𝐴=0. When 𝛾 >1, the opposite shear stress 

𝜏𝐴 drives the localised bands move synthetically, then shear stress increases along the incremental 

strain. When the −𝑑𝛽𝐴 𝑑𝛾⁄  →0° and 𝛽𝐴  →0°, the localised bands reach approximately maximum 

synthetic velocity. (b) 𝛼0=73°, Initial formation of antithetic shear localisation with rotation (orange lines), 

and subsequent development of another synthetic shear localisation (green lines), with decreasing 

rotation rate −𝑑𝛽𝐴 𝑑𝛾⁄  and shear stress 𝜏𝐴 of antithetic localised bands and a new constant 𝛽𝑆=0° and 

𝜏𝑆 of synthetic localised bands, simultaneously and respectively. Localised bands initially have an angel 

𝛽𝐴0 ≈130° to the simple shear plane (normal x-axis), with increasing anticlockwise rotation rate 

−𝑑𝛽𝐴 𝑑𝛾⁄  (orange line) and approximately maximum antithetic shear stress (orange dash line). when 𝛾 

=0.4, continually rotating and antithetically moving, with beginning of both rotating rate and shear stress 

decrease. When 𝛾 =1 and now 𝛽𝐴≈70°, continually rotating and antithetically moving, with rotating rate 

and shear stress decrease. When 𝛾  ≈1.5, 𝛽𝐴 ≈45°, only normal stress contributes to the antithetic 

localised bands with no shear stress (𝜏𝐴 =0), meanwhile, system staring forming another synthetic 

localised bands with 𝛽𝑆=0° with no rotation (green lines) but maximum shear stress (green dash line), 

and most strain concentrate on the new localised bands. When 𝛾 >1.5, the former antithetic bands tend 
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to deactivate, the shear stress 𝜏𝑆  drives the localised bands move synthetically. The strain in former 

localised bands extinct with bands absence. 

 

4.1.4 Initial antithetic shear bands and subsequent development of synthetic shear bands 

The simulation with 𝛼0=73° shows development of both antithetic (C'') and synthetic (C') shear 

bands as has also been observed in natural rocks (Marshak et al., 2006; Carreras et al., 2010, 

2013; Ponce et al., 2013). The initially antithetic localised shear bands form with 𝛽𝐴≈130° at 

beginning. In this orientation 𝜏𝐴 is small, but negative and the sense of shear is antithetic (Fig. 

6b). Rotation of the shear bands initially increases, while shear bands and low-strain domains 

in between shorten until 𝛽𝐴=90°. As a result, the angle between shear band and microlithon 

foliation increases during this stage. From 𝛽𝐴=90°, rotation rate and resolved shear stress both 

decrease and microlithons start stretching again. At 𝛾 ≈1.5, while activity of the shear bands 

at 𝛽𝑆>45° is still anticlockwise, the foliation inside the microlithons is already rotated to >45°, 

i.e., a situation similar to the start of the 0=33° simulation. As the antithetic shear bands 

become deactivated because resolved shear stress on the shear bands approaches zero, the 

CPO outside them in the microlithons becomes amenable to the development of synthetic, C-

type shear bands parallel to the shear plane. This means that the rotation rate of the antithetic 

shear bands drops to close to zero and the resolved shear stress remains close to zero (Fig. 

6b). 

 

4.2 The resulting crenulation geometries 

The simulation results provide instructive examples on how mechanical anisotropy 

redistributes the strain rate and rotation rate of high- and low-strain domains (Fig.3). The 

relationships between crenulation and shear band are not isolated parts but simultaneously 

form by strain redistribution. How materials behave to redistribute strain under a variety of 

conditions with an intrinsic anisotropy (CPO) is discussed above. These numerical simulations 

demonstrate that strain rate distribution depends on the orientation of the initial CPO relative 

to the shear plane (Fig.3). However, the visible passive marker layers may show different finite 

strain structures even for one and the same strain-rate field under simple shear (Figs. 4 & 5). 

4.2.1 First foliation parallel to layering 

Shearing parallel to layering (𝜃0= 𝛼0=0°) is very difficult to recognise as there are no offset 

marker lines. Strain localisation may be overlooked in such a situation. 
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Cases 𝜃0= 𝛼0=33° or 45° result in almost identical geometries, but rotated and mirrored relative 

to the bulk sense of shear (the boundary condition). Both conform to the classical S-C 

geometry. Classical sense-of-shear analysis (Ramsay and Huber, 1987; Passchier and Trouw, 

2005; Fossen, 2016) would result in opposite sense of shear: top to the right in case of 𝜃0= 

𝛼0=33° (Fig. 4b) and top-left moving down in case of 𝜃0= 𝛼0=45° (Fig. 4c). This is because in 

both cases the angle  between shear bands and microlithon layers is <45°. This angle is 

relatively constant in case of synthetic shear bands, because there is less flattening of the 

passive layers within microlithons. If bulk shear strain varies, little variation in angle 𝜆  is 

therefore expected if the shear bands are synthetic, while more variation is to be expected if 

they are antithetic, due to flattening of the rotating microlithons (Fig.4c, 𝛼0=45°).  

Case 𝜃0 = 𝛼0 =73° is the most complex. After 𝛾  >1.5, the microlithons are sigma-clast or 

lozenge shaped, and surrounded by the four shear localisation bands, two synthetic bands 

above and below and two antithetic bands on either side (Marshak et al., 2006; Carreras et al., 

2010, 2013; Ponce et al., 2013). Layering inside the low-strain microlithons pinches towards 

the tips of the domains and is subparallel to the antithetic shear bands (Fig.4d) (Marshak et al., 

2006). The antithetic shear bands may thus be difficult to recognise. The structure could also 

be mistaken for a case with two deformation stages with different kinematics. The sigma-clast 

shape of the low-strain domains forms the only reliable indicator of the sense of shear, but only 

develops after a shear strain of ≈1.5. At low strain the antithetic shear movement may be 

erroneously mistaken for top-right moving up shear if the shear bands are not recognised as 

C''-type bands. At ≈1, just before the onset of synthetic shear-band activity, the structure 

suggests pure-shear SW-NE stretching with foliation boudinage (Platt and Vissers, 1980).  
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Fig.7 Natural examples, in correspond to the simulated results respectively. Green arrows are synthetic 

shearing, while red arrows are antithetic shearing. (a) Antithetic shear bands: This sample was first 

interpreted as faults with associated drag folds in brittle-ductile banded quartzite (at Cap de Creus, Spain) 

with the sense of shear that is top to the right by Gomez-Rivas et al. (2007). Even this sample is come 

from a brittle-ductile geological setting, we can assume the small-scale fractures as high-strain localised 

bands which have antithetic movement. (b) Synthetic bands with crenulation: High strain domains are 

subparallel to the shear plane, which is sinistral shear. No instinct antithetic shear localisation. The 

crenulation in low strain domains remain relatively parallel to each other. (c) Initial antithetic bands then 

form synthetic bands with crenulation: In this sample we observed two localised bands, the waved bands 

with crenulations show antithetic movement and low moving rate, which are obviously up to left, and the 

horizontal bands illustrate the synthetic shearing character. Crenulations in low strain domains remain 

relatively parallel to each other, but the crenulations about vertical to the shear bands. In our discussion 

in section 4.1.4, the surrounded crenulation domains are very controlled by the movement of antithetic 

shear bands with not only shearing but also rotating in stretching field, due to the geometry in this sample 

reserved well and not deformed much, which indicating the quick and property strain concentration 

shifting from antithetic to synthetic ones. (d) Initial antithetic bands then form synthetic bands with 

crenulation: On this sample we observed two localised bands, the (ironed) inclined bands with 

crenulations show antithetic movement, which are obviously up to left, and the horizontal bands illustrate 

the synthetic shearing character. The synthetic localised bands indicate real sense of shear.  
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4.2.2 Layering parallel to the shear plane  

If layering is parallel to the shear bands, as in both 𝛼0=0° and 𝛼0=33°, shear localisation is 

almost completely masked, for lack of offset marker lines. No distinct geometries to be 

expected and shear localisation may not be detected. 

The initial crenulations in the 𝛼0=45° case are wave-like (Fig.5c, 𝛾=0.4), or in 𝛼0=73° resemble 

ripple marks (Fig.5d, 𝛾=0.4). With increasing strain the offsets along the antithetic shear bands 

becomes distinct. Because of the rotation of the shear bands from their original steep 

orientation, the microlithons in between also rotate and get flattened. Because the initial angle 

between passive layers and initially formed shear bands is much greater than 45° the pattern 

is not consistent with a proper S-C structure. This may help to properly identify the shear band 

as antithetic or C''-type. Figure 8a may be an example of this geometry with C'' shear bands. 

Here Gomez-Rivas et al. (2007) could show that these structures formed in top-to-the-right 

simple shear because shear bands with decreasing angle with the visible layering showed 

increasing offset. However, flattening of the microlithons at a high angle to the internal visible 

layering may also lead to passive folding, making the structure look like trans-compression 

with a sinistral shear component. This structure is similar to the one shown in Fig. 7d from Cap 

de Creus, Spain. It should therefore be considered that it may have formed by dextral simple 

shear in which sinistral C''-type shear bands formed. As the microlithons rotate with the shear 

bands, this angle  remains high (Tanner, 2016). Examples are the sheared banded iron 

formation samples (BIF, Fig.7 c & d). The antithetic shear bands are rotated together with the 

layering inside the microlithons. The overall sense of shear is clear from the layer parallel 

dextral shear bands that overprint the antithetic shears. Superposition of early antithetic and 

late synthetic shear band activity leads to complex patterns at case 𝛼0=73°. In this case, the 

lozenge shape is masked and the structure at 𝛾 =2 could easily be interpreted as pure shear 

shortening at about 45° to the x-axis.  

In summary, a first visible layering or foliation that is not parallel to the CPO shows that a wide 

range of structures can develop, even in only one event of perfect simple shear (Ez, 2000; 

Carreras et al., 2005). These structures may be ambiguous and very difficult to interpret 

(Tanner, 2016). We only provided one example of 0 ≠ 0. It is to be expected that other relative 

orientations of the visible layering may result in an even larger, and possibly confusing, range 

of structures. This will even be more so when pure or general shear and CPOs initially in the 

shortening field are considered. 
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5 Conclusions 

We simulated the deformation of an anisotropic material in simple shear for different 

orientations of the anisotropy. We also considered the structures that develop in passive layers 

parallel to the anisotropy and parallel to the shear plane. 

(1) The resulting crenulation geometries strongly depend on the orientation of the anisotropy 

(CPO), and we observe four types of localisation behaviour: (1) synthetic shear bands, (2) 

antithetic shear bands, (3) initial formation of antithetic shear bands and subsequent 

development of synthetic shear bands, and (4) distributed, approximately shear-margin parallel 

strain localisation.  

(2) Synthetic shear bands are expected at an initial CPO orientation of ≤45°. Initial antithetic 

shear bands are expected at initial CPO orientation ≥45°. Antithetic shear bands become 

deactivated as they rotate towards the extensional field. Depending on the orientation of the 

CPO inside the microlithons, synthetic shear bands may also develop later and overprint the 

initial antithetic ones. 

In addition to the classical interpretation of shear sense of S-C structures, we suggest two 

additional classes of localisation behaviour controlling the crenulation geometries which are (1) 

crenulation with no rotation of shear bands and (2) crenulation with rotation of the shear bands. 

When correctly recognised, these can also be used to determine the sense of shear. 

(3) Layering in low-strain domains deforms contemporaneously with the strain localisation in 

the high-strain shear bands to form crenulations. Both synthetic and antithetic localised bands 

contribute to the formation of crenulations, but patterns can differ. Especially in case of 

antithetic shear bands that rotate and stretch, folds can develop inside the microlithons due to 

flattening of these low-strain domains. 

(4) The visible microstructure depends strongly on the orientation of visible layers or foliations 

relative to the CPO. The same kinematic conditions, here simple shear, can thus lead to very 

different structures.  

  



PAPER I  

56 

Reference 

Adamuszek, M., Schmid, D.W., Dabrowski, M., (2011). Fold geometry toolbox – Automated 

determination of fold shape, shortening, and material properties. Journal of Structural Geology, Volume 

33, 1406-1416. DOI: https://doi.org/10.1016/j.jsg.2011.06.003 

Aslin, J., Mariani, E., Dawson, K., Barsoum M.W., (2019). Ripplocations provide a new mechanism for 

the deformation of phyllosilicates in the lithosphere. Nature Communication 10, 686. 

https://doi.org/10.1038/s41467-019-08587-2 

Berthé, D., Choukroune, P., Jegouzo, P., (1979). Orthogneiss, mylonite and non coaxial deformation of 

granites: the example of the South Armorican Shear Zone. Journal of Structural Geology 1(1), 31-42. 

Doi: https://doi.org/10.1016/0191-8141(79)90019-1 

Biot, M.A., (1957). Folding Instability of a Layered Viscoelastic Medium under Compression. 

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 242(1231), 

444–454. DOI: 10.1098/rspa.1957.0187 

Biot, M.A., (1961). Theory of folding of stratified viscoelastic media and its implications in tectonics and 

orogenesis. Geological Society of America Bulletin, v. 72, p. 1595-1620. DOI: 10.1130/0016-

7606(1961)72[1595:TOFOSV]2.0.CO;2 

Biot, M.A. (1964a). Theory of internal buckling of a confined multi-layered structure, Geological Society 

of America Bulletin, 75, 563–568. Doi: https://doi.org/10.1130/0016-

7606(1964)75[563:TOIBOA]2.0.CO;2 

Biot, M.A. (1964b). Theory of viscous buckling of multilayered fluids undergoing finite strain, Physics of 

Fluids 7, 855–861. Doi: https://doi.org/10.1063/1.1711296 

Biot, M.A., (1965a). Further Development of the Theory of Internal Buckling of Multilayers. Geological 

Society of America Bulletin, 76 (7): 833–840. DOI: 10.1130/0016-7606(1965)76[833:FDOTTO]2.0.CO;2 

Biot, M.A., (1965b). Theory of similar folding of first and second kind, Geological Society of America 

Bulletin, 76, 251–258. Doi: https://doi.org/10.1130/0016-7606(1965)76[251:TOSFOT]2.0.CO;2 

Bons, P.D, Koehn, D, Jessell, M.W (Eds) (2008) Microdynamic Simulation. Lecture Notes in Earth 

Sciences 106, Springer, Berlin. 405 pp. ISBN 978-3-540-44793-1 

Bons, P.D., Jansen, D., Mundel, F., Bauer, C.C., Binder, T., Eisen, O., Jessell, M.W., Llorens, M.G., 

Steinbach, F., Steinhage, D., Weikusat, I., (2016). Converging flow and anisotropy cause large-scale 

folding in Greenland's ice sheet. Nature Communication. 7, 11427 (2016). 

https://doi.org/10.1038/ncomms11427 

Braun, J., Chery, J., Poliakov, A., Mainprice, D., Vauchez, A., Tommasi, A., Daignieres, M., (1999). A 

simple parameterization of strain localization in the ductile regime due to grain size reduction: a case 

study for olivine. Journal of Geophysical Research, 104, 25,167–25,181. 

https://doi.org/10.1029/1999JB900214 

Brun, J.P., Cobbold, P.R., (1980). Strain heating and thermal softening in continental shear zones: a 

review. Journal of Structural Geology. Vol 2: 149-158. https://doi.org/10.1016/0191-8141(80)90045-0 

Carreras, J., (2001). Zooming on Northern Cap de Creus shear zones. JSG, 23(9), 1457–1486. doi: 

https://doi.org/10.1016/s0191-8141(01)00011-6 

Carreras, J., Druguet, E., Griera, A., (2005). Shear zone-related folds. Journal of Structural Geology, 

27(7), 1229–1251. Doi: https://doi.org/10.1016/j.jsg.2004.08.004 

https://doi.org/10.1016/j.jsg.2011.06.003
https://doi.org/10.1038/s41467-019-08587-2
https://doi.org/10.1016/0191-8141(79)90019-1
https://doi.org/10.1098/rspa.1957.0187
https://doi.org/10.1130/0016-7606(1961)72%5b1595:TOFOSV%5d2.0.CO;2
https://doi.org/10.1130/0016-7606(1961)72%5b1595:TOFOSV%5d2.0.CO;2
https://doi.org/10.1130/0016-7606(1964)75%5b563:TOIBOA%5d2.0.CO;2
https://doi.org/10.1130/0016-7606(1964)75%5b563:TOIBOA%5d2.0.CO;2
https://doi.org/10.1063/1.1711296
https://doi.org/10.1130/0016-7606(1965)76%5b833:FDOTTO%5d2.0.CO;2
https://doi.org/10.1130/0016-7606(1965)76%5b251:TOSFOT%5d2.0.CO;2
https://doi.org/10.1038/ncomms11427
https://doi.org/10.1029/1999JB900214
https://doi.org/10.1016/0191-8141(80)90045-0
https://doi.org/10.1016/s0191-8141(01)00011-6
https://doi.org/10.1016/j.jsg.2004.08.004


PAPER I  

57 

Carreras, J., Czeck, D.M., Druguet, E., Hudleston, P.J. (2010). Structure and development of an 

anastomosing network of ductile shear zones. Journal of Structural Geology, 32(5), 656–666. doi: 

https://doi.org/10.1016/j.jsg.2010.03.013 

Carreras, J., Cosgrove, J.W., Druguet, E., (2013). Strain partitioning in banded and/or anisotropic rocks: 

Implications for inferring tectonic regimes. Journal of Structural Geology, 50, 7–21. doi: 

https://doi.org/10.1016/j.jsg.2012.12.003 

Carreras, J., Druguet, E., (2019). Complex fold patterns developed by progressive deformation. Journal 

of Structural Geology. Vol 125: 195-201. https://doi.org/doi:10.1016/j.jsg.2018.07.015 

Carter, N.L. and Tsenn, M.C., (1987). Flow properties of continental lithosphere. Tectonophysics 136, 

27-63. DOI: https://doi.org/10.1016/0040-1951(87)90333-7 

Casey, M., Huggenberger, P., (1985). Numerical modelling of finite-amplitude similar folds developing 

under general deformation histories. Journal of Structural Geology, 7(1), 103–114. doi: 

https://doi.org/10.1016/0191-8141(85)90118-x 

Cobbold, P.R., Cosgrove, J.W., Summers, J.M., (1971). Development of internal structures in deformed 

anisotropic rocks. Tectonophysics, 12: 23-53. DOI: 10.1016/0040-1951(71)90065-5 

Cobbold, P.R., (1975). Fold propagation in single embedded layers. Tectonophysics 27 (4), 333–351. 

DOI: https://doi.org/10.1016/0040-1951(75)90003-7 

Cosgrove, J.W., (1976). The formation of crenulation cleavage. Journal of the Geological Society, 132(2), 

155–178. doi: https://doi.org/10.1144/gsjgs.132.2.0155 

Cosgrove, J.W., (1989). Cleavage, folding and the finite strain ellipsoid. Proceedings of the Geologists 

Association, 100(4), 461–479. doi: https://doi.org/10.1016/s0016-7878(89)80022-7 

Dabrowski, M., Schmid, D. W., Podladchikov, Y. Y. (2012). A two-phase composite in simple shear: 

Effective mechanical anisotropy development and localization potential. Journal of Geophysical 

Research, 117(B8), B08406. doi: https://doi.org/10.1029/2012jb009183 

de Bresser, J.H.P., ter Heege, J.H., Spiers, C.J., (2001). Grain size reduction by dynamic 

recrystallization: can it result in major rheological weakening? International Journal of Earth Sciences 

volume 90, pages28–45. Doi: https://doi.org/10.1007/s005310000149 

de Riese, T., Evans, L., Gomez-Rivas, E., Griera, A., Lebensohn, R.A., Llorens, M.-G., Ran, H., Sachau, 

T., Weikusat, I., Bons, P.D. (2019). Shear localisation in anisotropic, non-linear viscous materials that 

develop a CPO: A numerical study. J. Struct. Geol. 124, 81-90. DOI: 

https://doi.org/10.1016/j.jsg.2019.03.006 

Dubey, A.K., Cobbold, P.R. (1977). Noncylindrical flexural slip folds in nature and experiment. 

Tectonophysics, 38(3-4), 223–239. doi: https://doi.org/10.1016/0040-1951(77)90212-8 

Ez, V., (2000), When shearing is a cause of folding: Earth-Science Reviews, v. 51, p. 155–172, doi: 

https://doi.org/10.1016/S0012-8252(00)00020-9 

Finch, M.A., Bons, P.D., Steinbach, F., Griera, A., Llorens, M.-G., Gomez-Rivas, E., Ran, H., de Riese, 

T., (2020). The ephemeral development of C′ shear bands: A numerical modelling approach, Journal of 

Structural Geology, DOI: https://doi.org/10.1016/j.jsg.2020.104091 

Finch, M.A., Bons, P.D., Weinberg, R.F., Llorens, M.G., Griera, A., Gomez-Rivas, E., (2022). A dynamic 

atlas of interference patterns in superimposed, opposite sense ductile shear zones, Journal of Structural 

Geology, 165, 104739, doi: https://doi.org/10.1016/j.jsg.2022.104739 

Fossen, H., (2016). Structural Geology (second edition). Cambridge University Press (Publisher), 978-

1-316-47427-3 (ISBN) 

https://doi.org/10.1016/j.jsg.2010.03.013
https://doi.org/10.1016/j.jsg.2012.12.003
https://doi.org/doi:10.1016/j.jsg.2018.07.015
https://doi.org/10.1016/0040-1951(87)90333-7
https://doi.org/10.1016/0191-8141(85)90118-x
https://doi.org/10.1016/0040-1951(71)90065-5
https://doi.org/10.1016/0040-1951(75)90003-7
https://doi.org/10.1144/gsjgs.132.2.0155
https://doi.org/10.1016/s0016-7878(89)80022-7
https://doi.org/10.1029/2012jb009183
https://doi.org/10.1007/s005310000149
https://doi.org/10.1016/j.jsg.2019.03.006
https://doi.org/10.1016/0040-1951(77)90212-8
https://doi.org/10.1016/S0012-8252(00)00020-9
https://doi.org/10.1016/j.jsg.2020.104091
https://doi.org/10.1016/j.jsg.2022.104739


PAPER I  

58 

Frehner, M., Schmalholz, S. M. (2006). Numerical simulations of parasitic folding in multilayers. Journal 

of Structural Geology, 28(9), 1647–1657. doi: https://doi.org/10.1016/j.jsg.2006.05.008 

Gardner, R., Piazolo, S., Lynn, E., Nathan, D., (2017). Patterns of strain localization in heterogeneous, 

polycrystalline rocks – a numerical perspective. Earth and Planetary Science Letters, 463, 253–265. doi: 

https://doi.org/10.1016/j.epsl.2017.01.039 

Ghosh, S.K., (1966). Experimental tests of buckling folds in relation to strain ellipsoid in simple shear 

deformations. Tectonophysics, 3, 169–185. DOI: https://doi.org/10.1016/0040-1951(66)90001-1 

Gomez-Rivas, E., Bons, P.D., Griera, A., Carreras, J., Druguet, E., Evans, L., (2007). Strain and vorticity 

analysis using small-scale faults and associated drag folds. jsg, 29(12), 1882–1899. doi: 

https://doi.org/10.1016/j.jsg.2007.09.001 

Gomez-Rivas, E., Griera, A., Llorens, M.-G., Bons, P.D., Lebensohn, R.A., Piazolo, S., (2017). Subgrain 

rotation recrystallization during shearing: Insights from full-field numerical simulations of halite 

polycrystals. J. Geophys. Res. Solid Earth. Doi: 10.1002/2017JB014508. 

Gray, D.R., (1979). Geometry of crenulation-folds and their relationship to crenulation cleavage. Journal 

of Structural Geology, 1(3), 187–205. DOI:10.1016/0191-8141(79)90039-7 

Griera, A., Bons, P.D., Jessell, M.W., Lebensohn, R.A., Evans, L., Gomez-Rivas, E., (2011). Strain 

localization and porphyroclast rotation. Geology, 39(3), 275–278. doi: https://doi.org/10.1130/G31549.1 

Griera, A., Llorens, M.-G., Gomez-Rivas, E., Bons, P. D., Jessell, M. W., Evans, L. A., Lebensohn, R., 

(2013). Numerical modelling of porphyroclast and porphyroblast rotation in anisotropic rocks. 

Tectonophysics, 587, 4–29. DOI: 10.1016/j.tecto.2012.10.008 

Hirth, G., Tullis, J., (1992). Dislocation creep regimes in quartz aggregates. Journal of Structural 

Geology. 14, 145–159. Doi: https://doi.org/10.1016/0191-8141(92)90053-Y 

Hobbs, B.E., Mülhaus, H.B., Ord, A., (1990). Instability, softening and localization of deformation. 

Geological Society London Special Publications 54(1):143-165. DOI: 

https://doi.org/10.1144/GSL.SP.1990.054.01.15 

Hudleston, P.J., (1986). Extracting information from folds in rocks. Journal of Geological Education 34, 

237-245. Doi: https://doi.org/10.5408/0022-1368-34.4.237 

Hudleston, P.J., Lan, L., (1993). Information from fold shapes. Journal of Structural Geology . 15, 253–

264. https://doi.org/10.1016/0191-8141(93)90124-S 

Hudleston, P.J., Lan L., (1994). Rheological controls on the shapes of single-layer folds. Journal of 

Structural Geology, 16(7), 1007–1021. doi: https://doi.org/10.1016/0191-8141(94)90082-5 

Hudleston, P.J., Treagus, S.H., (2010). Information from folds: a review. Journal of Structural Geology. 

32(12), 2042–2071. DOI: 10.1016/j.jsg.2010.08.011 

Jansen, D., Llorens, M.-G., Westhoff, J., Steinbach, F., Kipfstuhl, S., Bons, P. D., Griera, A., and 

Weikusat, I. (2016): Small-scale disturbances in the stratigraphy of the NEEM ice core: observations 

and numerical model simulations, The Cryosphere, 10, 359–370, https://doi.org/10.5194/tc-10-359-

2016 

Kronenberg, A. K., Kirby, S. H., Pinkston J., (1990). Basal slip and mechanical anisotropy of biotite. 

Journal of Geophysical research Solid Earth, 95, 19257-19278. DOI: 

https://doi.org/10.1029/JB095iB12p19257 

Lebensohn, R.A., (2001). N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform. 

Acta Materialia, 49, 2723-2737. Doi: 10.1016/S1359-6454(01)00172-0 

https://doi.org/10.1016/j.jsg.2006.05.008
https://doi.org/10.1016/j.epsl.2017.01.039
https://doi.org/10.1016/0040-1951(66)90001-1
https://doi.org/10.1016/j.jsg.2007.09.001
http://onlinelibrary.wiley.com/doi/10.1002/2017JB014508/full
https://doi.org/10.1016/0191-8141(79)90039-7
https://doi.org/10.1130/G31549.1
https://doi.org/10.1016/j.tecto.2012.10.008
https://doi.org/10.1016/0191-8141(92)90053-Y
https://doi.org/10.1144/GSL.SP.1990.054.01.15
https://doi.org/10.5408/0022-1368-34.4.237
https://doi.org/10.1016/0191-8141(93)90124-S
https://doi.org/10.1016/0191-8141(94)90082-5
https://doi.org/10.1016/j.jsg.2010.08.011
https://doi.org/10.5194/tc-10-359-2016
https://doi.org/10.5194/tc-10-359-2016
https://doi.org/10.1029/JB095iB12p19257
https://doi.org/10.1016/S1359-6454(01)00172-0


PAPER I  

59 

Lebensohn, R.A., Brenner, R., Castelnau, O., Rollett, A. D. (2008). Orientation image-based 

micromechanical modelling of subgrain texture evolution in polycrystalline copper. Acta Materialia, 56, 

3914-3926. Doi: 10.1016/j.actamat.2008.04.016 

Lebensohn, R.A., Rollett, A.D. (2020). Spectral methods for full-field micromechanical modelling of 

polycrystalline materials. Computational Materials Science, 173, 109336. Doi: 

10.1016/j.commatsci.2019.109336 

Leysinger Vieli, G.J.-M. C., Hindmarsh, R.C.A., Siegert, M.J., Bo, S., (2011). Time-dependence of the 

spatial pattern of accumulation rate in East Antarctica deduced from isochronic radar layers using a 3-

D numerical ice flow model. Journal of Geophysical Research, 116(F2), F02018. doi: 

https://doi.org/10.1029/2010jf001785 

Lister, G.S. Snoke, A.W. (1984). S-C mylonites. Journal of Structural Geology. 6, 617-638. Doi: 

https://doi.org/10.1016/0191-8141(84)90001-4 

Llorens, M.-G., Bons, P. D., Griera, A., Gomez-Rivas, E. (2013a). When do folds unfold during 

progressive shear? GEOLOGY, May 2013, v. 41, no. 5, p. 563–566. DOI:10.1130/G33973.1 

Llorens, M.-G., Bons, P. D., Griera, A., Gomez-Rivas, E., Evans, L. A. (2013b). Single layer folding in 

simple shear. Journal of Structural Geology 50, 209-220. DOI: 10.1016/j.jsg.2012.04.002 

Llorens, M.-G., Griera, A., Steinbach, F., Bons, P.D., Gomez-Rivas, E., Jansen, D., Roessiger, J., 

Lebensohn, R.A., Weikusat, I. (2017). Dynamic recrystallization during deformation of polycrystalline ice: 

insights from numerical simulations. Philosophical Transactions of the Royal Society A: Mathematical, 

Physical and Engineering Sciences, 375, 20150346. https://doi.org/10.1098/rsta.2015.0346 

Mancktelow, N.S., (1999). Finite-element modelling of single-layer folding in elastoviscous materials; 

the effect of initial perturbation geometry. Journal of Structural Geology 21, 161-177. DOI: 

https://doi.org/10.1016/S0191-8141(98)00102-3 

Mandal, N., Samanta, S.K., Chakraborty, C., (2004). Problem of folding in ductile shear zones: a 

theoretical and experimental investigation. Journal of Structural Geology, 26(3), 475–489. doi: 

https://doi.org/10.1016/j.jsg.2003.07.004 

Manz, R., Wickham, J., (1978). Experimental analysis of folding in simple shear. Tectonophysics 44, 

79–90. DOI: https://doi.org/10.1016/0040-1951(78)90064-1 

Mares V. M., Kronenberg A. K., (1993). Experimental deformation of muscovite. Journal of Structural 

Geology. Volume 15, Issues 9–10, September–October 1993, Pages 1061-1075. DOI: 10.1016/0191-

8141(93)90156-5 

Marshak, S., Alkmim, F.F., Whittington, A., Pedrosa-Soares A.C., (2006). Extensional collapse in the 

Neoproterozoic Araçuaí orogen, eastern Brazil: a setting for reactivation of asymmetric crenulation 

cleavage, Journal of Structural Geology 28 (2006) 129–147. Doi: 

https://doi.org/10.1016/j.jsg.2005.09.006 

Montési, L.G.J., (2013). Fabric development as the key for forming ductile shear zones and enabling 

plate tectonics. Journal of Structural Geology, 254–266. https://doi.org/10.1016/j.jsg.2012.12.011 

Naus-Thijssen, F.M.J., Johnson, S.E., Koons, P.O. (2010). Numerical modeling of crenulation cleavage 

development: A polymineralic approach. Journal of Structural Geology, 32(3), 330–341. DOI: 

https://doi.org/10.1016/j.jsg.2010.01.004 

Naus-Thijssen, F.M.J., Goupee, A.J., Johnson, S.E., Vel, S.S., Gerbi, C., (2011). The influence of 

crenulation cleavage development on the bulk elastic and seismic properties of phyllosilicate-rich rocks. 

Earth and Planetary Science Letters, 311(3-4), 212–224. DOI: 

https://doi.org/10.1016/j.epsl.2011.08.048 

https://doi.org/10.1016/j.actamat.2008.04.016
https://doi.org/10.1016/j.commatsci.2019.109336
https://doi.org/10.1029/2010jf001785
https://doi.org/10.1016/0191-8141(84)90001-4
https://doi.org/10.1130/G33973.1
https://doi.org/10.1016/j.jsg.2012.04.002
https://doi.org/10.1098/rsta.2015.0346
https://doi.org/10.1016/S0191-8141(98)00102-3
https://doi.org/10.1016/j.jsg.2003.07.004
https://doi.org/10.1016/0040-1951(78)90064-1
https://doi.org/10.1016/0191-8141(93)90156-5
https://doi.org/10.1016/0191-8141(93)90156-5
https://doi.org/10.1016/j.jsg.2005.09.006
https://doi.org/10.1016/j.jsg.2012.12.011
https://doi.org/10.1016/j.jsg.2010.01.004
https://doi.org/10.1016/j.epsl.2011.08.048


PAPER I  

60 

Passchier, C.W., Trouw, R.A., (2005). Microtectonics. Springer Science & Business Media.  

Piazolo, S, Bons, P.D., Griera, A., Llorens, M.-G., Gomez-Rivas, E., Koehn, D., Wheeler, J., Gardner, 

R., J.R.A. Godinho, J.R.A., Evans, L., Lebensohn, R.A., Jessell, M.W. (2019). A review of numerical 

modelling of the dynamics of microstructural development in rocks and ice: Past, present and future. J. 

Struct. Geol. 125, 111-123. DOI: https://doi.org/10.1016/j.jsg.2018.05.025 

Platt, J.P., Vissers, R.L.M. (1980). Extensional structures in anisotropic rocks. Journal of Structural 

Geology, 2(4), 397–410. doi: https://doi.org/10.1016/0191-8141(80)90002-4 

Platt, J.P., Behr, W.M., (2011). Grainsize evolution in ductile shear zones: implications for strain 

localization and the strength of the lithosphere. Journal of Structural Geology. 33, 537–550 doi: 

https://doi.org/10.1016/j.jsg.2011.01.018 

Ponce, C., Druguet, E., Carreras, J. (2013). Development of shear zone-related lozenges in foliated 

rocks. Journal of Structural Geology, 50, 176–186. doi: https://doi.org/10.1016/j.jsg.2012.04.001 

Ramberg, H., (1961). Relationship between concentric longitudinal strain and concentric shearing strain 

during folding of homogeneous sheets of rocks. American Journal of Science May 1961, 259 (5) 382-

390, DOI: https://doi.org/10.2475/ajs.259.5.382 

Ramsay, J.G., (1974). Development of Chevron Folds. Geological Society of America Bulletin, 85(11), 

1741. doi: https://doi.org/10.1130/0016-7606(1974)85<1741:docf>2.0.co;2 

Ramsay, J.G., (1980). Shear zone geometry: A review. Journal of Structural Geology, 2(1-2), 83–99. 

DOI: https://doi.org/10.1016/0191-8141(80)90038-3 

Ramsay, J.G. Huber, M.I., (1987). The Techniques of Modern Structural Geology. Volume 2: Folds and 

Fractures. Academic Press. 

Ran, H., Bons, P.D., Wang, G., Steinbach, F., Finch, M., Griera, A., Gomez-Rivas, E Llorens, M.-G., 

Ran, S., Liang, X., Zhou, J., (2018). High-strain deformation of conglomerates: Numerical modelling, 

strain analysis, and an example from the Wutai Mountains, North China Craton. Journal of Structural 

Geology, Volume 114, September 2018, Pages 222-234. doi: https://doi.org/10.1016/j.jsg.2018.06.018 

Ran, H., de Riese, T., Llorens, M.-G., Finch, M.A., Evans, L.A., Gomez-Rivas, E., Griera, A., Jessell, 

M.W., Lebensohn, R.A., Piazolo, S., Bons, P.D., (2019). Time for anisotropy: The significance of 

mechanical anisotropy for the development of deformation structures. J. Struct. Geol. 125, 41-47. DOI: 

https://doi.org/10.1016/j.jsg.2018.04.019 

Ran, H., Bons, P.D., Wang, G., Griera, A., de Riese, T., Gomez-Rivas, E., Llorens, M.-G., Ran, S., 

Wang, Y., Wang, S., (2022). Folds inside pebbles: When do they form during conglomerate deformation? 

Numerical modelling and comparison with the Hutuo Group conglomerates, North China Craton. Journal 

of Structural Geology, Volume 160, July 2022, Article number 104620. Doi: 

https://doi.org/10.1016/j.jsg.2022.104620 

Rickard, M.J. (1961). A Note on Cleavages in Crenulated Rocks. Geological Magazine, 98(04), 324 - 

332. doi: https://doi.org/10.1017/s0016756800060659 

Schmalholz, S.M., Podladchikov, Y.Y., (1999). Buckling versus folding: Importance of viscoelasticity. 

Geophysical Research Letters, 26(17), 2641–2644. doi: https://doi.org/10.1029/1999gl900412 

Schmalholz, S.M., (2006). Scaled amplification equation: A key to the folding history of buckled viscous 

single-layers. Tectonophysics, 419(1-4), 0–53. doi: https://doi.org/10.1016/j.tecto.2006.03.008 

Schmalholz. S. M., Mancktelow. N.S., (2016): Folding and necking across the scales: a review of 

theoretical and experimental results and their applications. Solid Earth, 7, 1417–1465, 2016. DOI: 

10.5194/se-7-1417-2016 

https://doi.org/10.1016/j.jsg.2018.05.025
https://doi.org/10.1016/0191-8141(80)90002-4
https://doi.org/10.1016/j.jsg.2011.01.018
https://doi.org/10.1016/j.jsg.2012.04.001
https://doi.org/10.2475/ajs.259.5.382
https://doi.org/10.1130/0016-7606(1974)85%3c1741:docf%3e2.0.co;2
https://doi.org/10.1016/0191-8141(80)90038-3
https://doi.org/10.1016/j.jsg.2018.06.018
https://doi.org/10.1016/j.jsg.2018.04.019
https://doi.org/10.1016/j.jsg.2022.104620
https://doi.org/10.1017/s0016756800060659
https://doi.org/10.1029/1999gl900412
https://doi.org/10.1016/j.tecto.2006.03.008
https://doi.org/10.5194/se-7-1417-2016


PAPER I  

61 

Schmid, D.W., Podlachikov, Y.Y. (2006): Fold amplification rates and dominant wavelength selection in 

multilayer stacks, Philos. Mag., 86, 3409–3423. Doi: https://doi.org/10.1080/14786430500380175 

Shea Jr., W.T., Kronenberg, A.K., (1993). Strength and anisotropy of foliated rocks with varied mica 

contents. Journal of Structural Geology. Volume 15, Issues 9–10, September–October 1993, Pages 

1097-1121. https://doi.org/10.1016/0191-8141(93)90158-7 

Steinbach, F., Bons, P.D., Griera, A., Jansen, D., Llorens, M.-G., Roessiger, J., Weikusat, I. (2016): 

Strain localization and dynamic recrystallization in the ice–air aggregate: a numerical study, The 

Cryosphere, 10, 3071–3089, https://doi.org/10.5194/tc-10-3071-2016 

Tanner, G.P.W., (2016). A new model for the formation of a spaced crenulation (shear band) cleavage 

in the Dalradian rocks of the Tay Nappe, SW Highlands, Scotland. Journal of Structural Geology, 84, 

120–141. doi: https://doi.org/10.1016/j.jsg.2015.11.007 

Torvela, T., Kurhila, M., (2020).  How does orogenic crust deform? Evidence of crustal-scalecompetent 

behaviour within the partially molten middle crust during orogenic compression, Precambrian Research, 

DOI: https://doi.org/10.1016/j.precamres.2020.105670 

Tullis, J., Yund, R.A., (1985). Dynamic recrystallization of feldspar: a mechanism for ductile shear zone 

formation. Geology (1985), 13 (4): 238–241. https://doi.org/10.1130/0091-

7613(1985)13<238:DROFAM>2.0.CO;2 

Warren, J.M., Hirth, G., (2006). Grain size sensitive deformation mechanisms in naturally deformed 

peridotites. Earth and Planetary Science Letters. 248, 438–450. Doi: 

https://doi.org/10.1016/j.epsl.2006.06.006 

Westhoff, J., Stoll, N., Franke, S., Weikusat, I., Bons, P., Kerch, J., Jansen, D., Kipfstuhl, S., Dahl-

Jensen, D. (2021). A stratigraphy-based method for reconstructing ice core orientation. Annals of 

Glaciology 62, 191-202. Doi:10.1017/aog.2020.76. 

White, S.H., Burrows, S.E., Carreras, J., Shaw, N.D., Humphreys, F.J., (1980). On mylonites in ductile 

shear zones. Journal of Structural Geology, 175–187. Doi: https://doi.org/10.1016/0191-

8141(80)90048-6 

Williams P.F., Price G.P. (1990). Origin of kinkbands and shear-band cleavage in shear zones: an 

experimental study. JSG 12(2), 145–164. doi: https://doi.org/10.1016/0191-8141(90)90001-f 

Wolovick, M.J., Creyts, T.T., Buck, W.R., Bell, R.E., (2014). Traveling slippery patches produce 

thickness-scale folds in ice sheets. Geophysical Research Letters, 41, 8895–8901, doi: 

https://doi.org/10.1002/2014GL062248 

 

 

  

https://doi.org/10.1080/14786430500380175
https://doi.org/10.1016/0191-8141(93)90158-7
https://doi.org/10.5194/tc-10-3071-2016
https://doi.org/10.1016/j.jsg.2015.11.007
https://doi.org/10.1016/j.precamres.2020.105670
https://doi.org/10.1130/0091-7613(1985)13%3C238:DROFAM%3E2.0.CO;2
https://doi.org/10.1130/0091-7613(1985)13%3C238:DROFAM%3E2.0.CO;2
https://doi.org/10.1016/j.epsl.2006.06.006
https://doi.org/10.1017/aog.2020.76
https://doi.org/10.1016/0191-8141(80)90048-6
https://doi.org/10.1016/0191-8141(80)90048-6
https://doi.org/10.1016/0191-8141(90)90001-f
https://doi.org/10.1002/2014GL062248


PAPER I  

62 

 

 



PAPER II  

63 

PAPER II 

Folding of a single layer in an anisotropic viscous matrix under 

layer-parallel shortening 

 

Yuan-bang Hu1,2, Paul D. Bons1, Tamara de Riese1, Shu-gen Liu2,3,4, Maria-Gema Llorens5, 

Xue-lin Cai2 (Preliminary author list; Only edited by YH and PDB now) 

1 Department of Geosciences, Eberhard Karls Universität Tübingen, Tübingen, Germany. 

2 College of Earth Science, Chengdu University of Technology, Chengdu, China. 

3 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of 

Technology, Chengdu, China 

4 Xihua University, Chengdu, China 

5 Geosciences Barcelona (GEO3BCN-CSIC), Barcelona, Spain. 

 

 

 

Abstract 

Folds are common structures in deformed rocks and give information on kinematics, stress, 

strain, rheological properties, etc. While Biot’s thin plate folding theory applies to isotropic 

materials, rocks can have cleavages and foliations that make them intrinsically anisotropic in 

their rheology. We here consider the effect of a mechanical anisotropy due to a foliated viscous 

matrix, for example by the of alignment of micas. Mechanical anisotropy can enhance shear 

localisation, resulting in low-strain microlithon domains and localised high-strain shear 

domains. We investigate the evolving fold geometries, stress field and strain-rate field 

differences and redistributions resulting from layer-parallel shortening deformation of an 

isotropic, competent layer embedded in an anisotropic, incompetent matrix, systematically 

varying the initial mechanical anisotropy and other rheological properties of the weak viscous 

matrix by using the Viscoplastic Fast-Fourier Transform code coupled with the modelling 

platform ELLE. The simulated results illustrate that localisation behaviour, and hence fold 

geometry, depends on (i) the initial orientation of the anisotropy (here is the initial 

crystallographic preferred orientation, CPO), (ii) the intensity of anisotropy, and (iii) the viscous 
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property of materials. Variation in localisation behaviour that results from different strain-rate 

distributions lead to two end-member geometries, ranging from (1) buckle folding and 

thickening of the layer, while the matrix forms a new axial-plane crenulation cleavage, to (2) 

layer extensional folding with great amplification of amplitude while matrix form conjugate, 

localised bands with lenticular areas. Other geometries are in between. Classical buckle folds 

dominate at initial CPO parallel or subparallel to shortening direction, while extensional folds 

dominate when initial CPO normal or subnormal to shortening direction. 

 

Keywords: Fold geometries, Layer-parallel pure shear, Anisotropy, Crystallographic preferred 

orientation, Strain-rate redistribution, Extensional folding. 

 

1 Introduction 

Folds are common structures in deformed rocks that can give information on strain, rheology, 

kinematics, material properties, deformation histories, etc. (Hudleston, 1986; Ramsay and 

Huber, 1987; Hudleston and Lan, 1993; Passchier and Trouw, 2005; Hudleston and Treagus, 

2010; Bobillo-Ares et al., 2004; Adamuszek et al., 2011; Llorens et al., 2013a, 2013b; 

Schmalholz and Mancktelow, 2016; Llorens, 2019b; Nabavi and Fossen, 2021). Much of this 

information stems from developments in fold theory and simulations over the last several 

decades, beginning with the work of Biot (1957, 1961, 1964a, b, 1965a, b), who developed the 

basic theories for single- and multi-layer folding in elastic-viscous medias and between viscous 

medias. According to this theory, folds initiate from tiny instabilities or perturbations in the 

folding layer or layers (e.g., Ramberg, 1962; Ghosh, 1966; Sherwin and Chapple, 1968; 

Fletcher, 1974; Smith, 1977; Abbassi and Mancktelow, 1992; Griera et al., 2018) and follow 

an exponential growth (Biot, 1961; Johnson and Fletcher, 1994). Note that we here use the 

term 'layer' for any initially planar, sheet-like rock body, which can be a sedimentary layer, but 

also a mineral vein or an igneous dyke or sill. 

Layers become folded because of the amplification of these perturbations during layer-parallel 

shortening of competent (strong) layers and surrounding incompetent (weak) layers or a matrix. 

Biot’s theory predicts that if the layer is given small sinusoidal perturbations of different 

wavelengths, one such perturbation will amplify at a greater rate than all others. This leads to 

folds with a dominant wavelength (𝜆𝑑). For a single competent layer of thickness ℎ and with 

linear viscosity 𝜇𝐿  that is embedded in a less competent matrix with viscosity 𝜇𝑀 , 𝜆𝑑  is 

expected to be (Biot, 1957, 1961; Ramberg, 1962; Nabavi and Fossen, 2021):  
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𝜆𝑑

ℎ
= 2π (

𝜇𝐿

6 𝜇𝑀
)

1 3⁄
         (1) 

As a result, the length scale or wavelength of folds increases with thickness of the folding layer 

and with the viscosity contrast between layer and matrix. This basic rule remains when other 

factors are taken into account, such as elastic properties (Biot, 1961; Currie et al., 1962), multi-

layers (Biot, 1964a, b, 1965a, b; de Riese, 2014), slip along layer-interfaces (Ramberg, 1961, 

Griera et al., 2018), or non-linear viscosity (Bayly, 1970). Reviews of the different equations 

for the dominant wavelength can be found in Hudleston and Treagus (2010) and Schmalholz 

and Mancktelow (2016), Adamuszek et al. (2011) using these equations in Fold Geometry 

Toolbox. Ductile rocks are usually assumed to have a power-law rheology (e.g., Carter and 

Tsenn, 1987).  

Multilayers consist of alternating competent and incompetent layers, with parameters such as 

(i) layer thickness, spacing and distributions, (ii) rheological properties, and (iii) boundary 

conditions (Ramberg, 1963; Ramsay and Huber, 1987; Johnson and Pfaff, 1989; Price and 

Cosgrove, 1990; Johnson and Fletcher, 1994; Schmid and Podlachikov, 2006; de Riese, 

2014;). Because multilayer folding is depends on many more parameters, we in this study first 

focus on single-layer folding. 

Power-law rheology of the folding rock both enhances the growth rate and decreases the 

dominant wavelength compared to linear behaviour (Fletcher, 1974; Smith, 1977; Fletcher, 

1995; Mühlhaus et al., 1998; Kaus and Schmalholz, 2006; Kocher et al., 2006, 2008; 

Schmalholz and Schmid, 2012). The analysis of natural folds can thus be used to get an 

indication of the rheology of the folding layer(s) (Llorens et al., 2013b). 

Another important rock property that affects folding is anisotropy. Minerals are generally 

mechanically anisotropic when they deform by dislocation creep (Linker et al., 1984). In case 

of micas, this anisotropy is very strong as shearing parallel to their basal plane is much easier 

than deformation in any other direction (Kronenberg et al., 1990; Mares and Kronenberg, 1993; 

Shea and Kronenberg, 1993; Fan and El-Awady, 2015; Aslin et al., 2019; Finch et al., 2020).  

A rock as a whole can become anisotropic when crystallographic orientations align in a 

crystallographic preferred orientation (CPO). Tectonic foliations or cleavages are often formed 

by the alignment of micas so that tectonically foliated rocks can be expected to be anisotropic. 

Anisotropy has been recognised as an important factor in the formation of geological structures 

and a cause for strain localisation (Cobbold et al., 1971; Ramsay, 1980; Lan and Hudleston, 

1995; Passchier and Trouw. 2005; Kocher et al., 2006, 2008; Naus-Thijssen, et al., 2011; 

Griera et al., 2013; Bordignon et al., 2015; Steinbach et al., 2016; Gardner et al., 2017; Ran et 

al., 2019; de Riese et al., 2019; Torvela and Kurhila, 2020). 
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Many fold structures that are observed in the field are in foliated rocks. For example (quartz) 

veins can form a competent layer embedded in an anisotropic matrix with an arbitrary angle 

between the layer and the anisotropy. The effect of anisotropy on folding must therefore be 

considered (Kocher et al, 2006; Ran et al., 2019). Mechanical anisotropy can enhance shear 

localisation (Ran, et al., 2018; de Riese et al., 2019), resulting in low-strain domains and high-

strain domains. If strain localisation occurs in the matrix of a layer folds can be expected to 

form.  

Numerical simulations have been applied to investigate how and by what mechanisms 

structures that we observe in nature form. These simulations complement field studies (e.g., 

Quinquis et al., 1978; Ramsay and Huber, 1987; Ormand and Hudleston, 2003; Alsop and 

Carreras, 2007;  Alsop and Holdsworth, 2007; Mukherjee, 2014; Torremans et al., 2014; 

Pérez-Alonso et al., 2016) and analogue experiments (e.g., Hudleston, 1973; Cobbold, 1975; 

Manz and Wickham, 1978; Abbassi and Mancktelow, 1992; Bons and Urai, 1996; Tikoff and 

Peterson, 1998), numerical simulations have been applied to investigate how and by what 

mechanisms structures that we observe in nature form.  

Numerical studies of single-layer folds have included the effects of non-linear rheology (Parrish, 

1973; Lan and Hudleston, 1991; Mancktelow, 1999; Schmalholz and Podladchikov, 2000; 

Kocher et al., 2006; Llorens et al., 2013a, 2013b), anisotropy (Lan and Hudleston, 1996; 

Kocher et al., 2006; Ran et al. 2019), and viscoelastic behaviour (Zhang et al., 1996; 

Mancktelow, 1999; Schmalholz et al., 2001). Numerical simulations of folding in a rock with an 

anisotropic rheology are few (e.g., Kocher et al. 2008; Ran et al., 2019). What has not yet been 

investigated is how the orientation of a mechanical anisotropy due to an CPO (as in a cleavage 

in a micaceous rock) relative to the shortening direction affects the developing folds in a 

competent planar structure, such as a layer, vein or dyke. 

In this numerical study we systematically investigate the controlling parameters on fold 

geometries of a single layer in a power-law rheology, anisotropic matrix under layer-parallel 

shortening. For this purpose, we vary (i) the orientation of the initial anisotropy (𝛼0), (ii) the 

intensity of the anisotropy of the matrix (𝐴𝑀), (iii) rheological contrast between competent layer 

and its surrounding matrix (𝑅𝜂), and (iv) the power-law exponent of the viscous matrix (𝑛).  
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Table.1 Frequently used symbols presented in this study. 

Symbol Meaning 

𝛼 

Angle of crystallographic preferred orientation (CPO, orientation of basal plane), we assume 

a horizontal crystallographic basal plane is 𝛼 = 0° to the x-axis, a rotation in anticlockwise of 

the plane is positive value. The orientation of the initial anisotropy is 𝛼0. 

𝛽 
Orientation of localised band, we assume a horizontal band is 𝛽 = 0° to the x-axis, a rotation 

in anticlockwise of the plane is a positive value.  

𝜏 The shear component of stress 𝜎. 

𝜀 Value of strain, we discuss the strain from 0.0 - ~3.0 in this paper. 

𝜀̇ Strain rate 

𝜎 Total stress  

𝜆 Wavelength is twice the distance between two inflection points 

𝐿 
Arclength is determined along the interface as the length of the competent layer. The initial 

length is 2.0 

𝐻 Thickness of competent layer 

𝐴𝑚𝑝 Classical definition amplitude of fold structure 

𝐴𝑚𝑝𝑚𝑎𝑥 
Measured as the vertical distance between the highest point and the lowest point in our 

simulation 

𝐴 

Intensity of anisotropy, controlled by the intrinsically mechanical properties of minerals and 

materials, we use 𝐴𝑀  and 𝐴𝐿  which represent the intensity of anisotropic matrix and 

competent layer, respectively. If 𝐴 = 1 means an isotropic material.  

𝜇 

Reference viscosity of material, influenced by the material property and environment 

parameters, We use 𝜇𝑀  and 𝜇𝐿  which represent the intensity of anisotropic matrix and 

competent layer, respectively 

𝑅 
Viscosity ratio, viscosity of competent layer verse viscosity of matrix ( 𝜏(𝑙𝑎𝑦𝑒𝑟)/

𝜏(𝑛𝑜𝑛−𝑏𝑎𝑠𝑎𝑙,𝑚𝑎𝑡𝑟𝑖𝑥)).  

𝑛 
Power-law stress exponent (𝑛 ), controlled by the intrinsically mechanical properties of 

minerals and materials 

 

 

 

Fig.1 Fold parameters for describing the fold geometries, corresponding to the Table.1. 
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2 Method 

2.1 Numerical simulation 

The numerical simulations in this study are carried out with the Viscoplastic Fast Fourier 

Transform (VPFFT, Lebensohn, 2001; Lebensohn et al., 2008; Lebensohn and Rollett, 2020) 

crystal plasticity code, which is a full-field model, coupled with the modelling platform Elle 

(http://www.elle.ws; Bons et al., 2008; Griera et al., 2011, 2013; Llorens et al., 2016; Steinbach 

et al., 2016; Llorens et al., 2017; Piazolo et al., 2019; Ran et al., 2019, 2022; de Riese et al., 

2019, Llorens et al., 2019a; Finch et al., 2020, 2022) to investigate the fold geometries and 

strain-fields resulting from pure shear, layer-parallel shortening (up to 75%) of an isotropic 

competent layer surrounded by a weaker matrix with an intrinsic mechanical anisotropy. 

The 2D models consist of a rectangular grid of so-called undoes (Bons et al., 2008). The 

unodes effectively represent crystallites with a constant internal-crystal orientation, defined by 

three Euler angles. The simulations are run at a resolution of 256 * 256 unodes. The initial 

model size is 0.5 in the vertical (y) direction, and 2 in the horizontal (x) direction. Each 

simulation starts with a horizontal competent and isotropic layer embedded in a less-competent 

anisotropic matrix. The initial layer is eight unodes wide, corresponding to a width of 1/32. 

The FFT-code assumes that deformation is achieved by slip along crystallographic lattice 

planes. The strain rate 𝜀𝑖̇𝑗(𝑥) at a unode position (x) is the sum of the shear strain rates (𝛾̇𝑠) on 

the N available individual lattice planes (s). with 𝑚𝑖𝑗
𝑠 (𝑥) the symmetric Schmid tensor, this can 

be expressed as:  

𝜀𝑖̇𝑗(𝑥)  =  ∑ 𝑚𝑖𝑗
𝑠 (𝑥)𝛾̇𝑠(𝑥) 

𝑁𝑆

𝑠=1
       (2) 

The shear strain rate parallel to a slip direction is a power-law function of the shear stress (𝜎𝑠) 

acting on that plane in the direction of slip: 

𝛾̇𝑠 = 𝛾̇0 (
𝜎𝑠

𝜏𝑠
)

𝑛
         (3) 

Here 𝛾̇0 is a reference shear rate that is set to unity for all slip systems in the model materials. 

The stress exponent n is set to three or four in this study. Differences in rheology between 

layer and matrix, and as a function of direction in case of the mechanically anisotropic matrix 

are set through the slip system-dependent critical resolved shear stress or shear-resistance 

parameter 𝜏𝑠. 

We use the hexagonal crystal lattice of ice 1h as an analogue for anisotropic minerals, such 

as mica (as in Griera et al. 2013; Ran et al., 2019; de Riese et al., 2019). Deformation assumed 
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to be accommodated by slipping the basal, prismatic and pyramidal slip systems only. The 

intensity of anisotropy (𝐴) is defined by the ratio of the shear resistance of the non-basal and 

basal slip systems: 

𝐴 =
𝜏𝑠

(𝑛𝑜𝑛−𝑏𝑎𝑠𝑎𝑙)

𝜏𝑠
(𝑏𝑎𝑠𝑎𝑙)          (4) 

For the layer we use 𝐴 = 1, which makes the material is effectively isotropic (Griera et al, 2013. 

If 𝐴 ≠ 1, the material is anisotropic. Here we use 𝐴 = 64 and 𝐴 = 16, which simulates a highly 

or moderately anisotropic matrix with an approximately transverse isotropy, in which shear 

deformation along the basal plane is much easier than along non-basal planes. 

In all starting models, basal planes of all unodes are oriented at an angle 𝛼0 (±10° standard 

deviation) to the horizontal shortening direction. We refer to these aligned basal planes as the 

foliation. We present simulation for 𝛼0 = 0°, 11.25°, 22.5°, 33.75°, 45°, 56.25°, 67.5°, 78.75° 

and 90°, with anticlockwise rotation taken as positive. 

We apply velocity boundary conditions where the velocities along the boundaries on average 

comply with 2% horizontal shortening and 2% vertical stretching per time step. The model is 

fully wrapping, meaning that a material point that moves out of the rectangular model on one 

side, comes into the model at the opposite side.  

Results are presented in the form of maps of the von Mises strain rate field and of model with 

passively deformed grid lines that are initially parallel to the foliation. As the boundary of Elle 

simulations is infinite, the results can be repeated to their surroundings infinitely, which has 

been introduced by e.g., Finch et al., 2020. The von Mises strain rate (𝜀𝑣̇𝑚) and von Mises 

stress (𝜎𝑣𝑚) is defined as: 

𝜀𝑣̇𝑚 =  √
2

3
 𝜀𝑖̇𝑗 𝜀𝑖̇𝑗         (5) 

and  

𝜎𝑣𝑚 =  √
3

2
 𝜎𝑖𝑗

′  𝜎𝑖𝑗
′          (6) 

where 𝜀𝑖̇𝑗 is the strain-rate tensor, 𝜎𝑖𝑗
′  is the stress tensor, and i and j summation indices. 

 

2.2 Fold geometry analysis 

Fold geometry can be described with a number of parameters (Ramsay and Huber 1987, 

Adamuszek et al. (2011). The folding layer has a thickness (𝐻) and a length that can be 
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measured as the distance (𝐿) of a straight line that connects the beginning and end of the fold 

train, or as the arclength (𝐿′), which is the length measured along the fold train. In the models, 

both equal the original layer length 𝐿0 = 2. The normalised arclength is the arclength divided 

by the original length (𝐿′ 𝐿0⁄ ). When a layer does not fold, but only thickens to accommodate 

the shortening, 𝐿′ 𝐿0⁄  decreases steadily. When it does not thicken but only folds, 𝐿′ remains 

equal to 𝐿0. The different length parameters are determined with a C-script that measures this 

for a passive marker line in the middle of the competent layer, deformed according to the 

velocity field that is calculated by the FFT-routine. 

Amplitude (𝐴𝑚𝑝′) is measured as half the distance, normal to the fold train direction, between 

two inflection points at the extremities of the fold. Wavelength (𝜆) is twice the distance between 

two inflection points (Ramsay and Huber, 1987). When folds are irregular, the determination 

of these parameters is not trivial. For a few example cases we therefore used the Fold 

Geometry Toolbox (FGT) of Adamuszek et al. (2011) and the update by Adamuszek (2022). 

In all other cases we used the maximum amplitude (𝐴𝑚𝑎𝑥), which we define as the difference 

between the maximum and minimum height of the fold line, measured in the vertical direction 

of extension. 
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3 Results 

3.1 Series I: non-linear viscous, highly anisotropic intensity, high viscosity ratio 

deformation simulations  

Simulations of series I (Fig.2.a & Fig.3.a) have a starting configuration of a single layer in the 

matrix, which has a stress exponent of 𝑛 = 3, an intensity of anisotropy (𝐴𝑀) is 64, and a 

viscosity ratio (𝑅𝜂) of 125. The initial foliation orientation or CPO (𝛼0) of the matrix ranges 

between 𝛼0 = +0° and 𝛼0 = +90° with respect to the x-axis (Table 2). Deformation is layer-

parallel pure shear up to 75% of shortening. The resulting folds and matrix-foliation patterns 

are shown in Fig. 2.a for 50% shortening and in Fig. 3.a for ~70% shortening. These figures 

show that the folding in the strong layer changes significantly as a function of the foliation 

orientation 𝛼0 . One also sees that this is accompanied by different patterns in the matrix 

foliation. 

The 𝐴𝑚𝑝𝑚𝑎𝑥-curves (Fig. 4.a) show that all layers hardly fold the first 10% of shortening. For 

case I-1 ( 𝛼0  = 0°) to I-4 ( 𝛼0  = 33.75°), 𝐴𝑚𝑝𝑚𝑎𝑥  smoothly increases to 75% shortening 

percentage, as small-wavelength folds develop and the competent layers keeps thickening. At 

𝛼0 = 0° a regular and symmetric axial-planar crenulation cleavage develops in the anisotropic 

matrix. Up to 𝛼0 = 33.75° folds in the competent layer look qualitatively similar but become 

increasingly oblique and irregular with increasing 𝛼0 . An increasing asymmetry is also 

observed in the crenulation cleavage that develops in the matrix. In addition we observe small 

oblique zones of strain localisation in the matrix at 𝛼0 = 22.5°, and especially at 𝛼0 = 33.75°. A 

dramatic change in fold pattern is observed for 𝛼0 ≥45°. Case I-5 (𝛼0 = 45°) and case I-6 (𝛼0 

= 56.25°) have a similar increase rate of 𝐴𝑚𝑝𝑚𝑎𝑥 as case I-4 (𝛼0 = 33.75°) in the early stage 

on their folding, but the amplitude then increases much faster from 45% and 25% shortening, 

respectively. After initial layer thickening, the rapid amplification of the folds leads to extension 

and thinning of the layer. The anisotropic matrix does not form small-scale crenulations, but 

instead shows a general reorientation of the foliation and the development of localised shear 

bands. Case I-7 (𝛼0 = 67.5°), case I-8 (𝛼0 = 78.75°) and case I-9 (𝛼0 = 90°) have an initially 

faster increase of their fold amplitude, accompanied by the layer thinning throughout the 

deformation. Competent layers in these cases deform into folds with stretched limbs and large 

amplitudes. The foliation in the matrix is reorientated and develops obvious strain localisation 

in shear bands that enclose lenticular low-strain areas. 

Wavelengths of folds in the different simulations vary strongly. For the cases that have an initial 

orientation of CPO 𝛼0 ≤ 22.5°, competent layers deform as classical buckling folds, and the  
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Table 2 Simulation setup. In all simulations the strong layer is isotropic (𝐴𝐿=1). All simulations are run 

to a maximum shortening of 75%. 

Series 

name  

Simulation 

name 

Initial CPO 

orientation (𝛼0) 

Initial viscosity 

ratio (𝜇𝐿/𝜇𝑀) 

Intensity of matrix’s 

anisotropy (𝐴𝑀) 

Stress 

exponent (𝑛) 

I I-1 0° 125 64 3 

 I-2 11.25° 125 64 3 

 I-3 22.5° 125 64 3 

 I-4 33.75° 125 64 3 

 I-5 45° 125 64 3 

 I-6 56.25° 125 64 3 

 I-7 67.5° 125 64 3 

 I-8 78.75° 125 64 3 

 I-9 90° 125 64 3 

II II-1 0° 125 16 3 

 II-2 11.25° 125 16 3 

 II-3 22.5° 125 16 3 

 II-4 33.75° 125 16 3 

 II-5 45° 125 16 3 

 II-6 56.25° 125 16 3 

 II-7 67.5° 125 16 3 

 II-8 78.75° 125 16 3 

 II-9 90° 125 16 3 

III III-1 0° 125 16 4 

 III-2 11.25° 125 16 4 

 III-3 22.5° 125 16 4 

 III-4 33.75° 125 16 4 

 III-5 45° 125 16 4 

 III-6 56.25° 125 16 4 

 III-7 67.5° 125 16 4 

 III-8 78.75° 125 16 4 

 III-9 90° 125 16 4 

IV IV-1 0° 66.7 64 3 

 IV-2 11.25° 66.7 64 3 

 IV-3 22.5° 66.7 64 3 

 IV-4 33.75° 66.7 64 3 

 IV-5 45° 66.7 64 3 

 IV-6 56.25° 66.7 64 3 

 IV-7 67.5° 66.7 64 3 

 IV-8 78.75° 66.7 64 3 

 IV-9 90° 66.7 64 3 
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Fig.2: Cases with structural geometries of Series I (a), II (b), III (c), IV (d) with 𝛼0 = 0°, 22.5°, 45°, 90° at 

the 50% shortening percentage (step 069). The controlling parameter of structural geometries is 

obviously the CPO, both the intensity and orientation. Anisotropy of matrix is A = 64 (a, d) could make 

the glide system benefit the basal plane sliding in both layer-parallel shortening and layer-vertical 

extending, these make competent layers deform either thicken layer or buckle folds in different scales. 

Matrix with low anisotropy A = 16 (b, c) lead to a more classical buckle folding geometry. The viscosity 

ratio also has influence on structural geometries while anisotropy in low value. 
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Fig.3: (a-d) Structural geometries of different intensity of anisotropy of matrix verse different initial 

orientation of anisotropy of Series I, II, III and IV at almost 70% shortening (step 120). 
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Fig.3 continue: (a-d) Structural geometries of different intensity of anisotropy of matrix verse different 

initial orientation of anisotropy of Series I, II, III and IV at almost 70% shortening (step 120). 
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Fig.4: The vertical distance between the highest point and the lowest point (𝐴𝑚𝑝𝑚𝑎𝑥) along the layer-

parallel shortening, which here we use this distance as the amplitudes of deformed competent layers in 

our simulations. Figures are amplitude verse shortening percentage, shown the variation of amplitudes, 

maximal amplitude, amplification rate (the slope) for series I (a), II (b), III (c) and IV (d) from initial state 

to 75% shortening percentage. One could easily find out big differences in variation in amplitudes 

between the cases have an initial orientation of CPO are less than 45°, or greater than 45°, or equal 45°, 

while these cases have the same tendency of vary at the point of shortening percentage with the figures 

of von Mises stress and of slip system activities.  
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Fig.5: von Mises strain rate field of series I simulation at ~ 70% shortening (step 120). The competent 

layers always stay at low strain rate, while the matrix always has a spectrum of strain rates. For the low 

𝛼0 cases that have no obvious high strain domains, strain rate is distributed over the whole matrix. For 

the high 𝛼0 cases that have distinct high strain domains, the strain rate is concentring related to the axial 

planes of the folds.  

 

ratio between wavelength and thickness is moderate. However, the cases that have an initial 

foliation orientation of 𝛼0  ≥ 45°, both the fold wavelengths and amplitudes increase 

dramatically, resulting in a much large ratio of wavelength and thickness. As a result their 

arclengths are also much larger than for low 𝛼0. (Fig.7).  

The difference in behaviour between low and high 0 is also distinctly visible in the distribution 

of von Mises strain rates (Fig. 5). 𝛼0 ≤22.5° shows no distinct localisation in the matrix and 

highest strain rates rarely exceed four times the average. This changes for 𝛼0≥33.75° where 

large-scale shear bands develop with strain rates that exceed eight times the average strain 

rate. Except for 𝛼0=33.75°, the high strain domains for a conjugate set. 

 

3.2 Series II: non-linear viscous, moderately anisotropic intensity, high viscosity ratio 

deformation simulations  

Simulations of series II (Fig.2.b & Fig.3.b) have a starting configuration of a single layer in the 

matrix, which has a stress exponent (𝑛) is 3, an intensity of the anisotropy (𝐴𝑀) is 16, the 

viscosity ratio (𝑅𝜂) is 125. The initial foliation orientation or CPO (𝛼0) of the matrix again ranges 

between 𝛼0 = +0° and 𝛼0 = +90° with respect to the x-axis (Table 2), and it is again deformed 

in layer-parallel pure shear up to 75% of shortening. The only difference with series I is thus 

the lower anisotropy, which also affects the viscosity ratio. 

The competent layer folds and thickens in all cases. The anisotropic matrix forms axial-planar 

crenulation cleavages related to the folded competent layer in case of low 𝛼0 . These 

crenulations become increasingly asymmetric with increasing 𝛼0. Whereas deformation in both 

layer and matrix is quite similar in series I and II for 𝛼0 ≤ 22.5°, the deformation patterns 

become distinct at higher 𝛼0. Although shear localisation in shear bands does develop in series 

two at high 𝛼0, it is far less pronounced. There are more shear bands that envelope diffuse 

lenticular low strain domains. Fold amplitudes (Fig.4.b) and wavelengths are therefore much 

smaller than in series I, especially for 45° ≤ 𝛼0 ≤ 67.5°.  
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3.3 Series III: higher non-linear viscous deformation simulations  

Simulation series III (Fig.2.c & Fig.3.c) has identical setting to series II, except that the stress 

exponent (𝑛) is set to four instead of three. The matrix rheology with 𝑛 = 4 is thus similar to 

that of ice 1h (Bons, et al., 2018). 

Resulting deformation patterns (Fig.2.c & Fig.3.c) are very similar to those of series II. Main 

differences are that fold amplitudes (Fig.4.c) are slightly larger than series II, especially at high 

𝛼0, and that strain localisation in the matric is more distinct, but still diffuse as in series II and 

not as strong as in series I. 

3.4 Series IV: non-linear viscous, highly anisotropic intensity, moderate viscosity ratio 

deformation simulations  

The settings for simulation series IV (Fig.2.d & Fig.3.d) are identical to those of series I (𝑛 = 3, 

𝐴𝑀 = 64), except for the viscosity ratio that is halved to 𝑅𝜂 = 66.7.  

With the decreased viscosity ratio, the competent layer in the low-𝛼0 cases IV-1 to IV-4 tends 

to thicken more than cases I-1 to I-4. Deformation of the anisotropic matrix is very similar to 

that of series I. From case IV-5 to IV-9 (𝛼0 = 45° to 90°) the competent layer large folds with 

even larger amplitudes than in series I form, which reflected by the 𝐴𝑚𝑝𝑚𝑎𝑥-trends of series 

IV (Fig.4.d). Wide strain-localisation zones form in matrix that shear and extend the competent 

layer to form the irregular folds in that layer. The general behaviour at high-𝛼0 is comparable 

with that of series I, but the effects of shear localisation appear more intense.  

 

4 Information from fold geometries  

4.1 Folding analysis by FGT 

The Fold Geometries Toolbox (FGT, Adamuszek, et al, 2011, updated by Adamuszek, 2022) 

allows to analyse folds according to a range of fold models from the literature (e.g., Biot, 1961, 

1965c; Currie, et. al., 1962; Fletcher, 1974, 1977; Sherwin and Chapple, 1968). The basic idea 

of the FGT is acquiring useful parameters, such as for example viscosity ratio between layer 

and matrix, by analysing the fold geometries. The test its applicability to folding in an 

anisotropic matrix, we applied the FGT to two basic setting, 𝛼0= 0° and 𝛼0= 90° of series I, to 

estimate the viscosity ratio between competent layer and surrounding less-competent matrix.  
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Fig.6 The position of hinges and inflection points determined by FGT about case I-1 (a, 𝛼0 = 0°) and I-9 

(b, 𝛼0 = 90°) of fold geometries in series I, the grey and yellow areas represent the antiform structure 

and synform structure of the folds. Plot of data by analysing of fold shapes of case I-1 (c, 𝛼0 = 0°) and 

I-9 (d, 𝛼0 = 90°) with the equations by Schmalholz and Podladchikov (2001), 𝐴𝑚𝑝 is amplitude, 𝜆 is 
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dominate wavelength, 𝐻 is the thickness of competent layer, the orange lines show the amount of 

shortening in per cents, while the black lines are the variable viscosity ratio between layer and matrix. 

Light grey dots are the individual data for every single antiformal and synform structure of fold train. The 

black dots are the average data of all antiformal and synform structures of (a) and (b) taken separately.  

 

Figure 6.a-b shows the two end-member fold trains at 70% shortening, divided into antiforms 

and synforms. We see that each of these is different in shape within one fold train. It is also 

not always trivial to determine the inflexion points, as can be seen in the middle of each fold 

train. We chose to plot the amplitude/wavelength ratio ( 𝐴𝑚𝑝 𝜆⁄ ) against the 

thickness/wavelength ratio ( 𝐻 𝜆⁄  ) to obtain the apparent viscosity ratio and finite strain 

according to Schmalholz and Podladchikov (2001) (Fig. 6.c-d). 

In both examples the data of individual antiforms and synforms show a very large spread, as 

can be expected from the highly variable shape of individual folds in the simulations. Most 

individual data underestimate the total strain, as do the averages of all antiforms and synforms, 

especially for 𝛼0=90° (Fig. 6.d). The viscosity ratio between the competent layer and the soft 

direction in the matrix was set to 125. For 𝛼0 = 0°, individual folds give apparent viscosity ratios 

up to about 50, while for 𝛼0 = 90° the ratios vary from <10 to >>250. The analysis would thus 

tend to underestimate the true viscosity ratio, although it should be clear that in case of 

anisotropy no such single ratio exists. 

 

4.2 Variation of arclengths along the competent layers 

The arclength which is used to identify the layer states of our simulated competent layers. Here 

we use the normalised arclength (𝐿𝑛𝑜𝑟𝑚 = arclength divided by original length) of competent 

layer to study whether it is in compressional or extensional situation at any shortening 

percentage. In case of no folding, but only thickening of the layer, 𝐿𝑛𝑜𝑟𝑚, as a function of 

shortening strain, steady decreases according to the finite shortening down to 0.25 at 75% 

shortening. When the layer does not thicken nor thin it keeps is original arclength and 𝐿𝑛𝑜𝑟𝑚  

remains unity. A sharp increase in 𝐿𝑛𝑜𝑟𝑚  means that the layer is stretching. 

In all cases we see a decreasing trend of 𝐿𝑛𝑜𝑟𝑚 from initial state to ~20% shortening, indicating 

that the simulated layers are shortened and thickened at the early stages, with only minor 

variations between the different simulations. The low anisotropy series II and III show a 

flattening of the curves between 20 and 40% shortening and no distinct increase in 𝐿𝑛𝑜𝑟𝑚 . 

This implies a low rate of fold amplification. This is in stark contrast to the high-anisotropy  
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Fig.7: Normalised arclengths (𝐿𝑛𝑜𝑟𝑚 ) along the central line of the competent layer for all simulations of 

series I (a), II (b), III (c) and IV (d) from initial state to 75% shortening percentage. The arclength trends 

correspond to the amplification character (Fig.4).  

 

 

Fig.8: C-axes azimuth frequency distributions for unodes aligned with a Gaussian distribution (±10°) for 

initial state, 10%, 30%, 50% and 70% shortening percentage on the stress curve for case I-1 (purple), 

I-3 (navy), I-5 (green) and I-9 (red) are shown in boxes. The initial state of c-axes azimuth distribution 

before deformation is shown at the left box, which also contains data labelling for all boxes. 

 

simulations (series I and IV; Fig.7.a, d), especially for high 𝛼0. Here we see strong increases 

in 𝐿𝑛𝑜𝑟𝑚 , meaning the layer starts to stretch again. In Fig.3 we have already seen that this is 

associated with the development of large-scale shear bands in the matrix that stretch the limbs 

of the competent layer. There is almost no difference between the 𝑛 = 3 and 𝑛 = 4 cases 
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(Fig.7.b, c) and the viscosity ratio also seems to have little effect (Fig.7.a, d). It appears that 

the anisotropy has to strongest effect on the developing fold patterns, especially at high 𝛼0. 

 

4.3 Evolution of the lattice orientations (CPO) 

The evolution of the orientation of the mechanical anisotropy can be seen in Figs. 2 and 3 as 

the change in orientation of passive marker lines that were originally parallel to the foliation or 

mean weak direction (basal planes). However, these passive marker lines show the finite 

displacement field, and their orientation may start to deviate for the local lattice orientation with 

increasing strain. We therefore show the CPO development in the form of azimuth graphs at 

five shortening stages for Series I and 𝛼0 = 0°, 22.5°, 45° and 90° (Fig.8). Note that the c-axis 

is at 90° to the basal plane: they are at ±90° for 𝛼0 = 0°. For case I-1, c-axes are initially aligned 

at ±90°. The single maximum then evolves to a bimodal distribution with weaker peaks at -60° 

and +60° at 30% shortening. This means that the c-axes rotate in two, opposite directions.  

Finally, the c-axes align to a new and strong single maximum at ~0°, which is parallel to the 

maximum shortening direction. The alignment of c-axes is initially already parallel to the 

maximum shortening direction for case I-9 with 𝛼0 = 90°. The c-axes maximum at 0° remains 

stable, although it decreases in intensity from about 30% shortening. 

For case I-3 (𝛼0 = 22.5°), c-axes alignment starts with a -67.5° maximum. The maximum then 

shifts and weakens until about 40%-50% shortening. From 50% shortening the c-axes to align 

again at a maximum at -9° at 70% shortening. The c-axes distribution of case I-3 is always 

asymmetric. For case I-5 (𝛼0 = 45°), c-axes are aligned at -45° initially. The single maximum 

subsequently rotates to -4.5° at 70% shortening. The single maximum remains strong 

throughout the whole processes.  

At high strain, c-axes align parallel to the maximum finite shortening direction at in all cases. 

This direction is the fabric attractor of Passchier et al. (1997). However, we see two end-

member paths to achieve this final alignment. The first is through a bi-modal distribution, where 

the single c-axes maximum splits into two maxima that rotate towards and finally join at the 

fabric attractor (low 𝛼0). In Figs. 2 and 3 this behaviour leads to small crenulations in the 

foliation. In the second path, the single maximum remains, but rotates towards the fabric 

attractor (high 𝛼0). 
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4.4 Stress evolution 

 

  

  

 

Fig.9: Plot of bulk von Mises stress (𝜎𝑣𝑚 normalised to initial 𝜎𝑣𝑚 at step001 of case I-1, the absolute 

value is 0.129 from calculation of Elle platform) versus shortening percentage for series I (a), series II 

(b), series III (c) and series IV (d). The curvatures show different tendencies and different hardening and 

softening stages for variable anisotropy (𝐴𝑀), viscosity ratio (𝑅) and orientation of initial CPO (𝛼0). For 

all series we set the same rheological property to isotropic competent layer, the less viscosity ratio of 

series IV is made by increased viscosity of soft direction in the matrix. 

 

Folding changes the geometry of the system and therefore typically leads to geometric 

softening or hardening with increasing strain (e.g., Schmalholz et al., 2005; Schmalholz and 

Schmid, 2012; Llorens, 2019b) by changing CPO (Takeda and Griera, 2006; Dabrowski et al., 

2012; Llorens et al., 2016a; de Riese et al., 2019). As the strain rate in the simulations is a 

constant boundary condition, we plot the normalized von Mises stress (𝜎𝑣𝑚) in Fig. 9. For better 

comparison of the four series, all von Mises stresses are normalized relative to the initial 𝜎𝑣𝑚 

of simulation Series I-1 (𝛼0 = 0°).  

For series I (Fig.9a), the normalised von Mises stress show similar trends for 𝛼0 = 0° to 33.75°, 

with buckling of the competent layer at the beginning that causes a ~50% decrease in stress, 
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as the folding requires less mechanical work to shorten the system (Schmalholz and 

Mancktelow, 2016). After that folds only getting tighter and stresses do not change much (Fig. 

2.a). Finally, the stress increases back towards the original stress as it becomes harder to 

compress the by now tight folds (Fig. 3.a). For the cases 𝛼0 = 22.5 and 33.75° the stresses 

start to increase again at an earlier strain to reach a maximum that is equal or higher than the 

initial stress and finally decreases again. 

Case I-5 with 𝛼0 = 45°, requires the least initial stress. At this orientation the CPO in the matrix 

is at an optimal orientation of horizontal shortening at 45° to the alignment of the basal planes. 

From the onset of the simulation, stresses steadily increase to a maximum at about 40% 

shortening (Fig. 2.a) after which stresses decrease again.  

Case I-6 with 𝛼0 = 56.25° shows a similar trend, but with a stress maximum at lower finite 

shortening.  

The cases with 𝛼0 = 67.5° to 90° are remarkably similar with the highest stress at the beginning 

and a steady decrease to ~80% the initial stress at 70% shortening. For series II, III and IV the 

tendencies (Fig.9b, c and d) are quite similar except for the absolute stress values.  

Summarizing, we can recognize three basic trends. At low 𝛼0 stress decreases first and then 

rises again. The opposite is the case at high 𝛼0, where the stress increases at very beginning 

then decreases slowly but steadily with increasing strain. In between stresses first decrease, 

then rise again to finally drop again. The amount of shortening at peak stress decreases with 

increasing 𝛼0. 

 

5 Discussion 

The numerical simulations of single-layer folding in an anisotropic matrix with various initial 

orientations of the anisotropy resulted in a rich variation of fold geometries (Figs. 2 and 3). 

Comparison of the cases 𝛼0=0° (anisotropic foliation parallel to layer and shortening direction) 

and 𝛼0=90° (foliation normal to shortening direction) best illustrate the basic end-member 

types of folding behaviour. 
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Fig.10: Natural examples, in correspond to the simulated results respectively. Black curvatures follow 

the foliations within the matrix, black dash lines are newly formed overprinting cleavages which 

representing the highly strain-localised zones. (a) Thin competent layer deforms compressional buckle 

folding, typical ptygmatic folds (e.g., Llorens et al. 2013b). Both samples (b) and (c) competent layers 

deform compressional folding, and forming isocline folds, the anisotropic matrix forms cleavages parallel 

to the axial plane of folded layer, all cleavages have the equally inclined angle. (d) competent layer 

deforms extensional folding with larger amplitudes, part of layer in low strain zone only experiences little 

deforming, cleavages in matrix are almost vertical to the layer. Both samples (e) and (f) competent layers 

deform extensional folding with larger rations about amplitude vs. wavelength, both foliation and 

cleavages in matrix are vertical to the layer. The outcrop (e) is shortening more than our maximum 

shortening percentage. 
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5.1 Initial CPO 𝛼0=0° 

Ptygmatic folds form in the competent layer and an axial planar crenulation cleavage in the 

matrix (Figs. 2 and 3). Fold wavelengths are typically less than five times the layer thickness. 

The layer also shows significant thickening. The folds in the layer are similar to those modelled 

for an isotropic matrix (Parrish et al., 1976; Anthony and Wickham, 1978; Hudleston and Lan, 

1994; Zhang et al., 1996, 2000; Mancktelow, 1999; Viola and Mancktelow, 2005; Frehner and 

Schmalholz, 2006; Kocher et al., 2006, 2008; Hobbs et al., 2008; Llorens et al. 2013b; Llorens, 

2019b). As such they appear to follow classical Biot-type theories (Biot, 1957, 1961; Ramberg, 

1961; Hudleston and Treagus, 2010; Adamuszek et al., 2011; Schmalholz and Mancktelow, 

2016). However, applying these theories to obtain a viscosity contrast (Fig. 6.c) can only result 

in an effective or apparent viscosity contrast, as there is no single viscosity contrast with the 

anisotropic matrix. At 𝛼0=0° the foliation in the matrix would form crenulation folds with axial 

planes normal to the finite shortening direction (Kocher et al., 2006, 2008; Bons et al., 2018; 

Chapter 3 of this thesis) as is commonly observed in natural rocks (Fig. 10.a) (Ramsay and 

Huber, 1987; Passchier and Trouw, 2005). This crenulation is observed in the c-axes azimuth 

distributions (Fig. 8) where the single maximum divides into two maxima that then each rotate 

in opposite directions towards the fabric attractor.  

Folding of the matrix foliation and of the hard layer act in concert. Initially, both are at their 

strongest orientation relative to the layer and foliation-parallel shortening. Buckling of the 

competent layer and rotation of the basal planes in the matrix both result in a decrease in 

required stress to achieve the constant shortening rate (Fig. 9.a). Strain rate within the matrix 

is distributed relatively homogeneously (Fig. 5), with only small variations on the scale of the 

individual folds in both layer and foliation.  

 

5.2 Initial CPO 𝛼0=90° 

Fold geometries in both competent layer and matrix are completely different at 𝛼0=90° (Figs. 

2 and 3). Here we observe much less thickening of the competent layer and fold wavelength / 

thickness ratios are in the order of ten or more, suggesting a very high apparent viscosity ratio 

(Fig. 3). The different fold geometry is accompanied by a very different pattern of the deformed 

foliation in the matrix. Instead of a small-scale shortening crenulation observed for 𝛼0=0°, we 

see extension of the foliation by the development of shear bands on a larger length scale. 

These shear bands can be regarded as an extensional crenulation (Carreras, 2001; Carreras 

et al., 2010, 2013; Ponce et al., 2013; Tanner, 2016; de Riese et al., 2019) or foliation 

boudinage (Platt and Vissers, 1980; Arslan et al., 2008). The shear bands are clearly visible 
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as zones of high strain rate (Fig. 3). Folds in the competent layer and shear bands are closely 

related, with the shear bands shearing and stretching the layer to form the fold limbs. The low-

strain domains between the shear bands shift up or down relative to each other and form the 

fold hinges in the competent layer. Fig. 10.e and f show natural examples of this type of folding. 

As the folds are mostly passive products of the matrix deformation, their geometry is different 

from that for Biot-type competent-layer buckling (Biot, 1957, 1961).  

 

5.3 Intermediate Initial CPO 𝛼0 

Intermediate initial foliation angles behave between the two end members. Clearly, small 𝛼0 is 

closer to 𝛼0=0°, while large 𝛼0 resembles 𝛼0=90° more. An important aspect is that the mean 

orientation of the foliation rotates when 𝛼0≠90°. At low 𝛼0 deformation of the foliation is still 

dominated be shortening by crenulation that becomes increasingly asymmetric. As 𝛼0 

increases towards 45°, the initial foliation-parallel shortening decreases, while the mean 

rotation rate increases. This suppresses crenulation and at high enough 𝛼0 the mean foliation 

can rotate beyond 45° to enter the stretching field.  

From 𝛼0=45° the foliation is in the stretching field. Close to 45° stretching is minor and rotation 

fast. The matrix is relatively weak, as the foliation is optimally oriented for shear parallel to the 

foliation to accommodate the deformation. However, the stretching rate parallel to the foliation 

increases with increasing rotation that foliation. This leads to an increase in the bulk von Mises 

stress (Fig. 9) until yield when shear bands form and the stress decreases again. These shear 

bands accommodate the stretching of the foliation and allow the 'microlithons' in between to 

shift relative to each other. Strain rate in these microlithons themselves decreases, which also 

decreases the rotation rate of the foliation inside of these. This results in minor folding of the 

competent layer within the microlithons, but the formation of long fold limbs where the shear 

bands intersect the layer.  

From 𝛼0=0° to 90° we see a gradual transition in behaviour from the one to the other end 

member. Classical buckle folds dominate at low 𝛼0 as along as the anisotropy does not rotate 

into the stretching field before crenulation of the foliation has set in. When 𝛼0≥45°, the foliation 

is stretching from the onset and buckling of the foliation does not occur. The main transition in 

behaviour thus occurs at 𝛼0 below 45° where the foliation rotates into the stretching field before 

significant foliation buckling can destroy the single maximum of the c-axis distribution (Fig.8). 
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5.4 Effect of viscosity contrast and stress exponent 

Many more simulation series would be needed to explore the effect of the viscosity contrast 

and the stress exponent. Series II to IV only give a glimpse of the effects.  

The most notable effect of reducing the intensity of anisotropy in the matrix from 𝐴=64 (Series 

I) to 𝐴=16 (Series II) is the suppression of the formation of shear bands at high 𝛼0. Shear 

localisation is more distributed and less intense. This is not surprising as these shear bands 

are the result of the anisotropy. Raising the stress exponent from 𝑛=3 (Series II) to 𝑛=4 (Series 

III) has relatively little effect compared to the intensity of the anisotropy. Deformation patterns 

(Fig. 2 and 3), but also the evolution of the arclengths (Fig. 7) and the von Mises stresses (Fig. 

9) are almost identical between the two series. The intensity of shear localisation is slightly 

more intense for Series III (with 𝑛=4) than for Series II, which is consistent with the observation 

that an increase in stress exponent makes the material less stable and more prone to strain 

localisation (Smith, 1977; Lan and Hudleston, 1995). Finally, halving the viscosity contrast 

(Series IV) while keeping 𝐴 and 𝑛 the same as Series I mostly affects the folding of the strong 

layer at low 𝛼0  (Fig. 3.a and d). This is in line with the observation that at high 𝛼0  the 

deformation pattern is dominantly controlled by the anisotropy. The effect of viscosity contrast 

therefore only comes into play at low 𝛼0 where folding of the layer is partly controlled by Biot-

type buckling. 

 

6 Conclusions 

We modelled folding due to layer-parallel pure-shear shortening of a competent layer that is 

embedded in an anisotropic matrix with various initial orientations (𝛼0) of that anisotropy. We 

observed two basic end-member types of behaviour and resulting fold geometries in both the 

competent layer and matrix. The difference in behaviour is primarily determined by whether 

the foliation, defined as the strong direction, is initially in the shortening (𝛼0<45°) or stretching 

field (𝛼0>45°).  

At low 𝛼0=45°, both the competent layer and foliation buckle. Folds in the layer resemble 

'classical' buckle folds. Buckling of the foliation leads to the development of an axial planar 

crenulation cleavage with the new cleavage domains defined by aligned limbs of the small-

scale folds. The initial single-maximum distribution of c-axes (perpendicular to the strong 

direction or foliation) splits up into two weak maxima that both rotate in opposite directions 

towards the final fabric attractor parallel to the finite shortening direction. The strength of the 

bulk material initially decreases and subsequently increases gradually as folds tighten. 
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Anisotropy dominates the deformation patterns in both competent layer and matrix at high 𝛼0. 

Here the foliation is in the stretching field and cannot accommodate the stretching by buckling. 

Instead, shear bands form that envelope low strain-rate lenses. Folds in the competent layer 

mostly result from passive shearing by the shear bands. The resulting folds are very irregular 

and have much higher wavelength/thickness ratios than at low 𝛼0. The initial single-maximum 

c-axis distribution does not split into two but shifts towards the fabric attractor. The stress 

evolution is also different from the low 𝛼0 cases, as the bulk stress first increases until the 

material yields and stresses drop again due to the formation of the shear bands.  
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Abstract 

Folds in ice sheets are observed on the cm-scale in cloudy bands in drill cores and on the km-

scale in radargrams. We address the question of the folding mechanism for these folds, by 

analysing the power spectra of fold trains to obtain the amplitude as a function of wavelength 

signal. Classical Biot-type buckle folds due to a rheological contrast between layers develop a 

characteristic wavelength, visible as a peak in the power spectrum. Power spectra of ice folds, 

however, follow a power law with a steady increase of amplitude with wavelength. Such a 

power spectrum is also observed in a folded, highly anisotropic biotite schist and in a numerical 

simulation of the deformation of ice Ih with a strong alignment of the basal planes parallel to 

the shortening direction. This suggests that the folds observed in ice are primarily due to the 

strong mechanical anisotropy of ice that tends to have a strong lattice preferred orientation in 

ice sheets. 
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1 Introduction 

Folds are observed on all scales in glaciers and ice sheets. Large-scale folds (100 -1000 m 

scale) are observed via internal reflection horizons (IRHs) in radargrams (Wolovick et al., 2014; 

Bell et al., 2014; Leysinger-Vieli et al., 2018; NEEM community members, 2013; Bons et al., 

2016; Franke et al., 2022a) and in satellite images of the ice surface in west Greenland. Folds 

on the intermediate scale (~m scale) are common in glaciers (Hudleston, 2015), but more 

difficult to observe in ice sheets because of the snow cover.  Small scale folds (≤1 cm) in ice 

cores are visible as undulated cloudy bands, thin layers of high impurity concentration mainly 

occurring in glacial periods (Alley et al., 1997; Thorsteinsson, 1996; Svensson et al., 2005; 

Faria et al., 2010; Fitzpatrick et al., 2014; Jansen et al., 2016; Stoll et al., 2023). These folds 

are the main topic of this paper, using examples from the EGRIP drill core (Westhoff et al., 

2021) in the Northeast Greenland Ice Stream (NEGIS) (Fig. 1). Cloudy bands in EGRIP are 

observed already in the Younger Dryas (Bohleber et al., 2022), but are a recurring stratigraphic 

feature from a depth of 1375 m (Westhoff et al., 2021, Stoll et al., 2023). Chemical data from 

these bands show high impurity concentration, partial layering of certain minerals, and more 

insoluble particles than in the surrounding ice (Bohleber et al., 2022, Stoll et al., 2023). Stoll et 

al. (2023) define different cloudy band types and discuss their formation, but few is known 

about the folding of these bands which is observed at various levels throughout the glacial, i.e., 

below 1375 m at EGRIP. That folds are not always observed can be explained by the 

orientation of the drill-core section relative to the fold axis. Only sections at a large angle to the 

drill core will reveal the cloudy bands (Figure 4 in Westhoff et al., 2021). 

Nabavi and Fossen (2021) define folds as "curviplanar structures that form by transformation 

of any tectonic or primary foliation into curved geometries through a non-linear transformation". 

In geology 'foliation' is used to denote any planar structure in a rock (which includes ice). The 

primary foliation in glaciers and ice sheets is the original sedimentary layering formed by the 

deposition of snow layers on the surface. Other foliations can, for example, be healed fractures 

or fractures filled with frozen water (Hudleston, 2015). Numerous causes for folding in ice 

sheets have been proposed. Variations in bedrock elevation (Krabbendam, 2016), variable 

bedrock sliding (Wolovick et al., 2014), basal melting or freeze-on (Leysinger-Vieli et al., 2018) 

have been proposed to explain large-scale folds of the original stratigraphy. Such external 

causes for folding cannot apply to small to medium-scale folds that must have an internal 

response to layer-parallel shortening (NEEM community members, 2013; Hudleston, 2015; 

Bons et al., 2016; Jansen et al. 2016).  
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Figure 1. Two visual stratigraphy line scan examples of folded cloudy bands in the EGRIP drill core 

from a depth of (a) 1427.8 m and (b) 2017.45 m. Cloudy bands have a variety of widths from about one 

mm to over one cm. Eight axial planes are drawn as yellow lines in (b). These show that the folds are 

upright or moderately inclined. The folds are disharmonic, as axial planes cannot be traced for over 

more than a few times the fold wavelength at the most. 

 

A volume of isotropic and mechanically homogeneous material will not produce folds when 

subject to deformation. Folds can form when the material has a mechanical layering that forms 

a 'composite anisotropy' and/or when it is 'intrinsically anisotropic', for example due to a 

crystallographic preferred orientation (CPO) (Griera et al., 2013; Nabavi and Fossen, 2021). 

The latter is often the case in ice because ice normally deforms by dislocation creep (Glen, 

1955; Weertman, 1983) that results in a CPO that aligns the easy-glide basal planes in certain 

preferred orientations (Duval et al., 1983; Budd and Jacka, 1989; Faria et al. 2014; Llorens et 

al., 2017). In both cases the application of a differential stress will normally lead to a 

heterogenous deformation field, which implies that originally straight planar surfaces get 

distorted: folds develop. Here we will show, based on fold theory and numerical simulations, 

that folds observed in cloudy bands in the EGRIP drill core primarily result from an intrinsic 

anisotropy due to the CPO and not from rheological differences between the individual cloudy 

bands.  

2 Basic fold terminology and theory 

Fore detailed reviews of fold geometry and terminology the reader is referred to the textbooks  
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Figure 2. Fold shape and terminology. (a) Basic fold with a single wavelength. The arc length is the 

length of the fold train measured along the fold, while the finite length is the distance between the two 

ends of the fold train. (b) Fold composed of the superposition of two sine waves with different 

wavelengths and amplitudes. (c) Folds consistent of a range of wavelengths 𝜆𝑁 = 1/𝑁, with N a whole 

number ranging from 1 to 650. The folds are self-similar as amplitude is linearly proportional to N. The 

artificial fold train is sampled every 0.5 mm if the whole fold train is 65 mm, comparable to the length of 

fold trains analysed in the EGRIP drill core. (d) Example of a self-affine folds where the 

amplitude/wavelength ratio systematically decreases with scale (the exponent s is defined in Eq. 2).  

 

 

Figure 3. Examples of folds in rocks from Cap de Creus, northeast Catalonia, Spain. (a) Biot-type folding 

of a strong aplite dyke in a weaker granodiorite matrix. The example clearly shows the positive 

correlation between thickness of the dyke and wavelength that both decrease from the top left to the 

bottom right (Punta Fallarons; N42°20'25", E3°,15'48"). (b) Folded highly anisotropic biotite schist with 

thin quartz veins showing harmonic multi-wavelength folds. The hand-drawn white line was used for the 

analysis shown in Fig. 7b (Puig Culip; N42°19'19", E3°18'12"). 
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of Ramsay and Huber (1987) and Twiss and Moores (2007), or to the extensive reviews by 

Nabavi and Fossen (2021) that also provides an overview of fold theory. Here we only provide 

a summary of the relevant terminology and theory based on the above publications, unless 

otherwise referenced.  

Most fold trains roughly resemble a sinusoidal wavefunction (Fig. 2a). One individual fold 

consists of two limbs that meet at the fold hinge, which is the line of maximum curvature. When 

the fold hinges diverge downwards, the fold is termed an 'antiform', otherwise it is a 'synform'. 

Antiforms and synforms join at the inflection lines in the fold limbs where the direction of 

curvature changes sign. The terms 'anticline' and 'syncline' are reserved for folds in a 

stratigraphic sequence, and therefore apply to folds observed in radargrams or in cloudy bands, 

as these are assumed to represent sedimentary snow layers. Folds can have shapes that 

range from rectangular boxes, semi-ellipses, parabolas, sine waves, through to chevron or 

kink folds (Nabavi and Fossen, 2021). Box folds actually have two fold hinges per fold, but the 

authors are unaware of any box folds reported in ice. Ideal chevron or kink folds have straight 

limbs and highly concentrated curvature in the hinges. Such folds were described in ice drill 

core by Jansen et al. (2016). As most folds resemble a sine wave, the term 'wavelength' () is 

one metric used to describe the length scale of folds. It is defined as double the distance 

between inflection lines in the directions of the fold train (Fig. 2a). Accordingly, the 'amplitude' 

(A) is defined as half the distance between the average antiformal and synformal hinge lines, 

measured in the direction perpendicular to the fold train. Folds can, however, have multiple 

wavelengths (Fig. 2b), in which case defining the amplitude becomes difficult. The arc length 

is the length of a line along the fold trace. The relative arc length ratio is the ratio of the arc 

length and the length of a straight line along the fold trace. The arc length is the same as the 

initial length if a layer only folds and does not become thicker or thinner during folding. 

Folds may form when a composite material consisting of layers with different rheology is 

shortened parallel to the layers. The reason for this 'buckle folding' is that it is energetically 

more favourable to accommodate part of the shortening by bending the stronger layers at 

intervals (the fold hinges) and rotating the sections in between (the fold limbs). The weaker 

layers in between need to accommodate this deformation by deforming at a higher rate. Biot 

(1957) first developed the theory that the final fold wavelength is a function of the amplification 

rate of an infinite range of wavelengths of initial perturbations in the original layer. The basic 

idea is that the final wavelength is the one with the highest amplification rate. For a single layer 

with thickness H and linear viscosity l embedded in an infinite matrix with viscosity m he 

derived for the dominant wavelength d: 

𝜆𝑑 = 2𝜋𝐻 (
𝜂𝑙

6𝜂𝑚
)

1/3
         (1) 
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Since Biot's pioneering work, many authors extended and refined his theory for multilayers, 

elastic components, slip or no slip between layers, and for non-linear (power-law) rheologies 

(see Table 2 in Schmalholz and Mancktelow, 2016). All these theories have in common that 

when the rheological difference between layers approaches zero, the dominant wavelength 

reduces to approximately the layer thickness. Wavelengths smaller than the layer thickness 

cannot be explained by Biot-type buckle-fold theory for layers with different rheological 

properties. It should also be noted that the fold amplification rate decreases with decreasing 

rheological contrasts (Llorens, 2019). This means that while relatively short wavelengths are 

possible at low rheological contrast between layers, one would not see the folds as their 

amplitude would be too small.  

Very little work has been done on folding due to an intrinsic anisotropy, for example the 

alignment of easy-glide basal planes in ice or aligned micas in a schist. Biot-type buckle-fold 

theory cannot be simply applied as there is no layer thickness to provide a length scale. Without 

a length scale in the system, folds of all wavelengths should amplify at the same rate. Instead 

of folds with a dominant wavelength, one would expect folds where the amplitude of each 

wavelength is proportional to that wavelength (Fig. 2.c). In that case we get: 

𝐴(𝜆) = 𝜆0 · 𝜆𝑠,          (2) 

with 0 a proportionality constant and s the scaling exponent. When s=1 the folds are self-

similar, meaning that folds at all scale look similar because the scaling of amplitude and 

wavelength is identical (Fig. 2c). When s<1, large folds have relatively smaller amplitudes than 

small folds (Fig. 2d). When the scaling of amplitudes and wavelengths is not identical, the folds 

are self-affine. 

 

3 Materials and methods 

3.1 Materials 

Metamorphic schists are mechanically highly anisotropic due to the alignment of platy mica 

grains into a foliation. Micas are comparable to ice Ih as the deform most easily along their 

basal planes (Duval et al., 1983; Finch et al., 2021). Metamorphic schists at Cap de Creus, NE 

Catalonia, Spain, show folding of the foliation due to Variscan deformation phase (Druguet et 

al., 1997, Bons et al., 2004). The mechanical anisotropy of the foliated rock is thought to play 

a dominant role in the deformation of these rocks (Carreras et al., 2013). We therefore use 

one outcrop as an example of folding of a strongly anisotropic rock in which layering is absent 

(Fig. 3b).  
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Figure 4. Images of ten of the 15 cloudy-band interfaces (red arrows) that were analysed in this study. 

Red arrows indicate the analysed cloudy band interface. [Editorial note: images of the third bag 3128 

will be added for final submission to the journal] 

 

Figure 5. Traced internal reflection horizon (IRH) in a radargram going through NEGIS perpendicular to 

ice flow (ice flow into the page)- at the location where the EGRIP ice core is drilled. The radargram in 

(a) composed of profiles 20180508_06_004 and 20180514_03_001 (Franke et al., 2022b). (b) The 

same profile showing the centre of NEGIS at the vertical exaggeration at which the layer intersecting 

EGRIP at 1720 m depth was manually traced. 
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The East Greenland Ice Core Project (EGRIP) is a deep drilling project located in the middle 

of the Northeast Greenland Ice Stream (NEGIS) at 75°37.820 N and 35°59.556 W. Line scans 

of the drill core reveal cloudy bands. When the section of the core is suitably oriented relative 

to the flow direction, these cloudy bands show folds (Westhoff et al., 2021) (Fig. 2). Line scan 

images of bags 2597, 3128 and 3677, ranging in depth from 1428 down to 2016 m were used 

to analyse the folded cloudy bands (Fig. 4). 

We use high-resolution radar data from the EGRIP-NOR-2018 survey (Franke et al., 2022b) 

from the onset region of NEGIS. The radar data were acquired in May 2018 with the AWI's 

(Alfred Wegener Institute) airborne multichannel ultra-wideband (UWB) radar and have a 

horizontal resolution of ~ 15 m and vertical resolution of 4.31 m. The radargrams used here 

are centered at the EGRIP drill site and run perpendicular to ice flow (Figure 5). 

3.2 Methods  

3.2.1. Numerical modelling 

We use the full-field Viscoplastic Fast Fourier Transform (VPFFT) crystal plasticity code 

(Lebensohn, 2001; Lebensohn et al., 2008; Lebensohn and Rollett, 2020) , coupled with the 

modelling platform ELLE (http://www.elle.ws; Bons et al., 2008; Griera et al., 2013; Llorens et 

al., 2016a; Steinbach et al., 2016; Llorens et al., 2017; Piazolo et al., 2019; Ran et al., 2019; 

de Riese et al., 2019) to illustrate the fold geometries that form when ice Ih with a mechanically 

anisotropy is shortened. We used the VPFFT-code to simulate deformation of a crystalline 

material by glide along crystallographic planes. We use the crystallography of ice Ih, which is 

mechanically highly anisotropic due to much easier glide along its basal planes, compared to 

glide along the prismatic and pyramidal slip systems (Duval et al. 1983). We use a stress 

exponent of four (Bons et al., 2018) for the power-law relation between strain-rate and stress 

and assigned a 16-times higher slip resistance to the non-basal slip systems. At a given strain 

rate, the stress difference between the basal and non-basal slip systems is thus a factor 16. 

Details of this modelling approach can be found in Griera et al. (2013) and Llorens et al. (2017). 

The 2D models consists of an initially square 256x256 grid of so-called unodes (Bons et al., 

2008) that store the local lattice orientation. The unodes effectively represent crystallites or 

single grains with a constant internal crystal orientation, defined by three Euler angles. Using 

a Potts model we created 1995 clusters of identical orientation or grains.  On average, each 

grain is almost 6x6 unodes in size. The basal planes of the initial model were aligned, so that 

the c-axes normal to the basal planes form a point maximum (with a standard deviation of 10°) 

parallel to the vertical extension direction. Using velocity boundary conditions, the square 
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model was deformed by horizontal shortening of 2% per calculation step up to 40% shortening, 

accommodated by vertical stretching. 

3.2.2. Fold analysis 

Between the two end-member fold shapes of box and chevron folds, folds resemble a wave or 

the addition of multiple waves. Not surprising, Fourier analyses have been applied to folds for 

about50 years (Hudleston, 1973; Ramsay and Huber, 1987; Schmalholz and Mancktelow, 

2016). This can be used to determine whether the fold train has a single dominant wavelength 

or is composed of folds of different wavelengths (Fig. 2). We therefore applied a Fast Fourier 

transform to fold contours of both natural and numerical folds. 

We used 2044x31550 8-bit images of the line scans with a resolution of 18.6 pixel/mm from 

three images. Image 'bag 2597' (Fig. 4a) and 'bag 3128' had a suitable contrast, but a ca 2x 

contrast stretch was applied to 'bag 3677' (Fig. 4b) to achieve a sufficient contrast between 

dark and bright cloudy bands. In each bag five boundaries between dark and bright cloudy 

bands were selected that were both sharp and where the adjacent cloudy bands showed no 

significant lateral variation. A selection of the image was then subjected to a median filter with 

a 4-pixel radius to reduce small-scale noise and then thresholded to a binary image. The folded 

trace was subsequently selected by edge detection between the now black and white bands, 

resulting in the lines shown in Fig. 6a. Only the middle 65 mm of the ca. 70 mm wide drill core 

image was used to avoid artifacts at the edges of the image. The selection was scaled to 1024 

pixels, or 65 mm, width. All this was done with the freeware ImageJ. A script selected the y-

coordinates of the line for each x-coordinate along the trace. The equidistant x,y-data were 

then detrended by subtracting a linear least-squares best fit through the x,y-data. The 

detrended series of 1024 y-data was then subjected to a discrete Fourier transform using the 

routine four1() of Press et al. (1992). The power spectrum was obtained by taking the square 

root of the sum of the squares of the real and imaginary parts of the transform for each 

wavelength.  

For the power spectrum of the numerical folds of Llorens et al. (2013), we applied the above 

method to a black-and-white image of one of the modelled folds (Fig 6c) in that paper to convert 

to upper boundary of the folded layer in a set of 1024 equidistant x,y-coordinates. For the large-

scale folds in NEGIS, we used a radargram that spans across both shear zones of the NEGIS 

(Franke et al., 2022b) and is located closely (a few meters) to the EGRIP ice core (Fig. 5) and 

chose a conspicuous layer at 1720 m depth, close to 'bag 3128'. The layer was traced for 10 

km, only within NEGIS to avoid effects of the higher strain in the shear margins. The image on 

which the layer was traced had a 14.3x vertical exaggeration. For the folded schist we used a 

3008x2000 pixel field photograph (Fig3b). In each case the selected folded surface was hand-
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traced in a drawing program (Canvas12) to create a line that was further processed the same 

way as the cloudy band interfaces. 

In case of folds in an anisotropic material, simulated with Elle-FFT, a straight horizontal line, 

consisting of 102400 nodes, at a chosen level in the model, was subjected to deformation 

according to the velocity field that Elle-FFT records for each deformation step, up to the strain 

for which the power spectrum was to be calculated (Fig. 6b). The resulting line was then divided 

in 256 x,y-coordinates that are equidistant in the x-direction by interpolating between the 

original nodes, after which the procedure is the same as for digitised folds in the cloudy bands. 

 

 

Figure 6. fold traces. (a) Traces of folded cloudy-band interfaces in the EGRIP drill core bags 2597 and 

3362. Numbers on the left indicate the distance in cm from the top of the core section. (b) Traces of an 

originally horizontal line at different amounts of horizontal shortening in a simulation with Elle-FFT with 

pure ice Ih and initially a horizontal alignment of basal planes. (c) Example from fig 7c in Llorens et al. 

(2013) of single-layer buckling in a power-law material (n=3). [Editorial note: images of the third bag 

3128 will be added to (a) for final submission to the journal] 
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Figure 7. Power spectra of analysed folds. The vertical axis showing the amplitude is linear in the left 

column and logarithmic in the right column. (a) Numerical simulation of a single layer in a softer matrix 

(Llorens et al. 2013). The power spectrum shows a distinct peak at a wavelength of 8 length units with 

a total length of the fold train of 60 units. The layer had an initial length of 100 units (b) Folded foliation 

in the Biotite schist from Puig Culip shows an approximately self-similar power-law power-spectrum. (c) 

Numerical simulation with Elle-FFT of the folding of pure ice with an initial strong alignment of basal 

planes parallel to the shortening direction. Dots are the average of data sets in the model, while grey 

lines show the one standard deviation variation. The power spectrum follows an approximately self-

similar power law from a wavelength of about 4 elements-widths of the initial 256x256 model. 
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4 Results 

4.1 Single-layer buckle folds 

Llorens et al. (2013) used finite-element modelling for folding of a competent single layer in a 

homogeneous softer matrix. They used an isotropic power law rheology relating strain rate (𝜀̇) 

to differential stress (s): 

𝜀̇ = 𝐵 · 𝜎𝑛          (3) 

Here B is the pre-exponential factor and n the stress exponent that was set at n=3. We show 

(Fig. 7a) the power spectrum for 40% layer-parallel shortening of a layer of original length 100 

and unit thickness. The layer was made 25 times stronger than the matrix by setting 

Bmatrix=25·Blayer. The resulting fold (Fig. 6c) shows 8-9 distinct antiforms in the fold train, but no 

clear folds with other wavelengths. The power spectrum (Fig. 7a) shows a distinct peak at 7.5 

times the original layer thickness for a fold-train length of 60 after 40% shortening. The initial 

wavelength was thus about 11-12 times the layer thickness.  

4.2 Folded biotite schist 

The folded foliation in the biotite schist from Puig Culip (Fig 3b) shows a power spectrum with 

a steady increase of the amplitude with the wavelength (Fig. 7b). A power-law best fit results 

in an exponent of approximately s=1, implying that the amplitude is linearly proportional with 

the wavelength (Eq. 2) and the folds are approximately self-similar. 

4.3 Elle-FFT folding 

We analysed ten equally spaced originally horizontal lines in the model of folding in ice with 

aligned basal planes. We chose a finite strain of 40% shortening, as the lines folded to achieve 

relative arc lengths of 1.14±0.2, comparable to those obtained from the cloudy bands (see 

below). Initially horizontal lines are folded with various wavelengths. Medium to large folds can 

be traced along their axial planes over many lines, suggesting that the folds are more harmonic 

than those in the cloudy bands if the model is assumed to have a comparative width as the 

EGRIP drill core. 
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Figure 8. Result of the Elle-FFT simulation showing the model at 0, 20 and 40% horizontal shortening 

that is compensated by vertical stretching in plane strain. Lines are passive markers originally aligned 

to the horizontally aligned basal planes. 

 

 

Figure 9. Power spectrum for the internal reflection horizon (IRH) in a radargram that intersects the 

EGRIP drill core at ca. 1720 m depth (Figure 5) traced over a distance of 10 km perpendicular to NEGIS’ 

flow direction. A power-law best fit for ≥100 m results in a scaling exponent of s≈1.5. The vertical 

amplitude axis is linear in the left column and logarithmic in the right column. 
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Figure 10.  (a) Power spectra for all 15 individual cloudy-band interfaces shown in Fig. 4, five each, 

from bags 2597 (top), 3128 (mid) and 3677 (bot). The vertical axis is linear in the left column and 

logarithmic in the right column.  Note the large spread at the longest wavelengths. (b) Power spectrum 

of the average of the 15 power-spectra, shown together with plus/minus one standard deviation (grey 

lines) of the variation in powers. Up to l≈20 mm the data roughly follow a self-similar power law. 

 

 

Figure 11. Combined power spectra of cloudy-band interfaces and the internal reflection horizon (IRH), 

showing the 40 largest wavelengths of each spectrum. A power-law best fit through these data gives an 

exponent s=0.827, suggesting that folding is self-affine (Fig. 2d), with large folds relatively flat compared 

to small folds.  
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The power spectrum shows a steady increase in power with wavelength from ≈4 initial 

element widths (Fig. 7c), which is approximately the mean grain width after 40% horizontal 

shortening A() increases approximately linear with , i.e., s≈1. This means that the folds are 

self-similar: their shape is independent of their wavelength. 

The 1720 m depth layer in NEGIS shows a power-law amplitude-wavelength trend with s≈1.5 

upwards from l=100 m (Fig. 9). This indicates that there is no characteristic wavelength and 

that small folds are flatter in shape than large folds. However, the fold trace may be too smooth 

on the small scale to correct for small vertical shifts and steps in reflector depths that are 

artifacts related to surface elevation variations. A reduction in amplitudes at low wavelengths 

would increase the exponent s. 

4.4 Cloudy bands 

Cloudy bands have a variety of widths, ranging from about a mm to a few cm (Fig. 1 and 4). 

However, it is difficult to define the thickness of one band, as what appears like one dark or 

bright band may itself be composed of several thinner bands of different brightness (Stoll et 

al., 2023). All interfaces are folded on the mm to cm scale (Figs. 1 and 4). Folding is most 

conspicuous in the interfaces of very bright and very dark bands. The folds are upright with 

mostly vertical axial planes, although some zones with tilted axial planes were observed 

(Westhoff et al., 2021). Folds are disharmonic, meaning that individual axial planes can rarely 

be traced from one interface to another, i.e., for more than about 5 mm (Fig. 1). This means 

that the folds in individual interfaces appear independent of those in the next. Relative arc 

length ratios of the 15 folded interfaces are on average 1.15 (±0.03 standard deviation). 

The individual and average power or amplitude spectra of the 15 folded interfaces at the three 

selected depths show no significant differences (Fig 10a). We therefore averaged the powers 

for each wavelength, as shown in Fig. 10b. We see that the amplitudes first increase up to a 

wavelength of about 2 mm, followed by a shallower, linear (s≈1) increase up to about l=20 mm. 

The amplitudes of the largest two wavelengths are below the trend, but it cannot be ascertained 

whether this is significant, or merely due to the large variation in amplitudes. No dominant 

wavelength well below 65 mm was observed.  

 

5 Discussion 

Folds in the cloudy bands do not show a dominant wavelength in the wavelength range shorter 

than the width of the drill core section (Fig. 10). The power spectra of the 15 sampled fold 
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traces all overlap and show no significant variation between them, although the cloudy bands 

immediately adjacent vary in thickness from 1 mm to >1 cm. Both observations suggest that 

the folding has no characteristic length scale. In case of Biot-type buckle folding, this would be 

the thickness of the layers, here the cloudy bands. For Biot-type buckle folding one would 

expect shorter wavelength of the folds in the ca. 1 mm thick cloudy band 3667+11 than in the 

ten times thicker one 3667+14, only 3 cm below in the drill core. Multiple-wavelength folds can 

develop in multi-layers (e.g., Fig. 11 in Frehner and Schmalholz, 2006). These form by the 

addition of different characteristic wavelengths of layers with different thickness and or 

rheology. However, harmonic folds are then expected with axial planes extending across 

several layers that contributed to the multi-wavelength folds. In case of the analysed cloudy 

bands this is not the case, as the axial planes rarely extend for more than 5-10 mm. These 

observations suggest that the folds in the cloudy bands are not the result of Biot-type buckling 

due to rheological differences between individual cloudy bands, where a high viscosity contrast 

between layers (>=25) is required for folding (Llorens et al., 2013). 

The cloudy band folds resemble folds in the biotite schist (Figs. 3b, 7b) and the numerical 

ELLE-FFT folds in ice with a strong CPO (Figs. 7c, 8) much more than Biot-type buckle folds 

(Fig. 3a, 6c, 7a). This holds for both a visual assessment and for the power spectra. Shortening 

parallel to an intrinsic initial (before onset of folding) mechanical anisotropy due to a CPO is 

therefore the preferred mechanism to explain the observed folding in the cloudy bands, as was 

already suggested by Jansen et al. (2016). We observe a similar lack of a characteristic 

wavelength in the large-scale folds inside NEGIS (Fig. 9). This supports the suggestion by 

Bons et al. (2016) that such large-scale folding is also due to shortening parallel to the CPO-

induced anisotropy.  

Folding of an intrinsic anisotropy has no typical length scale, which explains the close to self-

similar (s≈1) power spectra of the cloudy-band interfaces. If the folds were perfectly self-similar 

and the self-similar range would extend to the 10 km scale that we observe in the traced IRH 

in the radargram, we would expect folds about seven times taller than the folds we actually 

observe (Fig. 5).  

Unfortunately, we do not have sufficiently detailed observations in the length-scale range from 

10 cm to about 100 m. It is therefore possible that the power spectra between the small and 

large scale show a break. Another possibility is that the scales are related and that the folds 

are self-affine. A power-law best fit through the cloudy-band and radargram folds results in a 

scaling exponent of s≈0.8 (Fig. 11). This would mean that the folds gradually get flatter with 

increasing scale. Reasons for this could be the effect of the ice-sheet surface, where gravity 

counteracts the development of surface topography due to folding. An additional effect could 
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be the bedrock topography that imposes a second set of folds on top of the anisotropy-induced 

folds. Unfortunately, the radargrams are of poor quality for the detailed fold analyses that are 

applied here. A more systematic analysis of the large-scale folds is needed, but outside the 

scope of this study. 

 

6 Conclusions 

We used power spectra of fold traces to determine the mechanism for folding in ice sheets. 

Biot-type buckle folds due to rheological contrasts between layers have a characteristic length 

scale, related to the layer thickness and the rheological contrast between the layers. Numerical 

simulation of ice with a strong alignment of basal planes parallel to the shortening direction 

resulted in the development of self-similar folds with a power-law power spectrum. This is to 

be expected as anisotropy has no length scale. Self-similar folds were also observed in folded 

biotite schist and in cloudy bands in the EGRIP drill core. We therefore conclude that small-

scale folds in cloudy bands are due to shortening parallel to a strong anisotropy as a result of 

the initial lattice preferred orientation with horizontally aligned basal planes. The spectrum of 

one 10 km-long traced layer inside NEGIS indicated self-affine folding. Combining the small 

cloudy band folds and large NEGIS-scale folds resulted in a self-affine trend, where largest 

folds are relatively flat. This may be caused by additional boundary conditions, such as vertical 

flattening and bedrock irregularities, that modify the anisotropy-induced folds on the large scale.  
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Abstract 

Only a few localised ice streams drain most ice from the Greenland Ice Sheet. Thus, 

understanding ice stream behaviour and their temporal variability is crucially important to 

predict future sea-level change. The interior trunk of the 700 km-long North-East Greenland 

Ice Stream (NEGIS) is remarkable for the lack of any clear bedrock channel to explain its 

presence. We present the first-ever 3-dimensional analysis of folding and advection of 

stratigraphic horizons, which shows that the localised flow and shear margins in the upstream 
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part were fully developed only ca. 2000 years ago. Our results contradict the assumption that 

the ice stream has been stable throughout the Holocene in its current form and show that 

NEGIS-type ice streams can appear suddenly on short time scales, which is a major challenge 

for realistic mass-balance and sea-level rise projections. 

 

1 Introduction 

A significant percentage of discharge of ice into the oceans takes place by solid ice flow via 

ice streams1,2. These are river-like zones where ice flow is significantly faster than in their 

surroundings, assumed to be triggered by either bedrock properties3,4, enhanced sliding2,5, 

and/or by deformation mechanisms leading to shear localization6. The most conspicuous one 

in Greenland is the North East Greenland Ice Stream (NEGIS; Fig. 1a), which extends for 

about 700 km inland from its outlets in northeast Greenland, and its catchment area covers 

17 % of the ice sheet area7. 

NEGIS reaches up to the central ice divide (Fig. 1a), but while the gates in the coastal mountain 

range in northeast Greenland clearly determine the location of the coastal outlet, its course in 

the interior of the ice sheet appears not to be constrained by bed topography10–12. The flow 

velocity increases from about 3 m yr-1 close to the divide to 55 m yr-1 at the EGRIP drilling 

camp8,13, ca 40 m yr-1 faster than the ice flow directly adjacent to NEGIS. The present-day 

shape and surface velocity of NEGIS are well constrained by satellite observations8, but much 

less is known about the spatial and temporal evolution of the stream, and the processes which 

trigger the exceptionally high flow velocities in its upstream region. Satellite and GPS 

measurements show that NEGIS is accelerating slightly, indicating that the ice-dynamic regime 

is possibly not in equilibrium14. Previously it was assumed that NEGIS existed in its current 

shape at least during most of the Holocene, and that its presence can be explained by an area 

of strongly enhanced geothermal heat flux at its upstream end10 causing substantial basal 

melting of the ice sheet. To explain the annual layer thickness along the ice column, 

Fahnestock et al. (2001)10 suggest a basal ice loss of ~ 0.1 m per year over the last 9 kyrs. 

This would require an exceptionally high geothermal heat flux of 950 mWm2. However, a 

comparison with global geothermal heat fluxes shows that the proposed values exceed natural 

heat fluxes by about an order of magnitude15.  
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Figure 1: Area and outline of the radar survey. (a, b) Maps of the survey area and radar lines with 

ice flow velocity8. NG: Nioghalvfjerdsfjorden Glacier, ZI: Zachariae Isstrøm, SG: Storstrømmen Glacier. 

Radar profile PC is shown in panel (d) and in Figure 2b, PU and PD are shown in Figure 2a,c. (c) 7150 

years BP isochrone horizon as a shaded relief above bedrock9 (10 times vertical exaggeration). F1-F4 

indicate the location of fold anticlines also highlighted in the radar profile PC in panel (d). The location of 

PC is indicated by a yellow line. (d) Profile PC across NEGIS in the centre of the survey area. F1-F4 

indicate the anticlines highlighted in panel (c). 

 

Here we use isochronous radar reflections as passive tracers of ice deformation to reveal the 

history of NEGIS over the past few thousand years, and show that the shear margins that 

define it in its present form in the upstream region have been active for only about the last 

2000 yrs. This indicates that streaming can be triggered on short time scales, leading to abrupt 
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ice-flow reconfigurations16, which is contradictory to it being triggered and sustained by a local, 

long-term heat flow anomaly10,17.  

 

2 Radar Stratigraphy 

The data presented in this study have been derived from an airborne radar survey in May 2018 

using an ultra-wide-band radar system (AWI-UWB18,19) with an array of 8 transmitters and 

receivers mounted beneath the fuselage of the AWI aircraft Polar 620. The layout of the survey 

was designed for mapping radar stratigraphy and bedrock properties in the vicinity of the 

EGRIP drilling camp, with an area stretching along flow from 150 km upstream of the camp to 

150 km downstream. The profiles used in this study were recorded in narrow-band mode, with 

the frequency range set to 180-210 MHz. Due to the focus on stratigraphy, the radar lines are 

mostly perpendicular to ice flow in order to best reproduce the deformation pattern in the shear 

margins. Here we only use data from across-flow profiles (Fig. 1b). The distance between the 

profiles is 5 km in the central part of the survey region, in the outer area the distance is 10 km. 

The ages of distinct layers in the radargrams were derived from tracing to or correlating layers 

at the EGRIP drill site where ages are known as a function of depth21. This results in a set of 

layers with known depositional ages. In the central profile up to 21 layers < 8 kyrs BP old could 

be connected to the EGRIP site, while in the downstream profile this number was reduced to 

at least five. The error in dating of the reference layers is in the order of a few tens of years for 

the youngest few thousand-year-old layers, increasing to over 100 years towards 8 kyrs BP 

layers. Most layers within one fold limb cannot be traced all the way to the drill site or can be 

recognised in the radargram at that site. Their ages are estimated by interpolation (see 

methods). 
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Figure 2: Radar sections with the picked layers for fold analysis and the reference age horizons. 

Black lines indicate the hinge position of the syn- and anticlines. Letters at the top identify folds in 

amplitude age plots in Figure 3. (a) Upstream radar profile U, composed of one radar track frame 

(20180514_03_014). (b) Central radar profile C, composed of 2 radar tracks (20180508_06_004 and 

20180514_03_001). (c) Downstream radar profile D, composed of 2 frames (20180509_01_009 and 

20180509_01_010). 
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3 Folds in ice: a record of deformation 

Disturbances in radar isochrones have been conclusive to constrain temporal shifts in ice 

stream flow regimes in Greenland and Antarctica16,22–24. New radar systems now make it 

possible to investigate the processes that influence the shape of the isochrones in great 

detail25–30, and, depending on the arrangements of profiles, also in 3D16,31.  

 

 

Figure 3: Amplitude-age graphs. (a) The centre of the figure shows the 3D visualisation of the 7150 

years BP isochrone horizon. (b) The graph on the lower left shows the mean normalised fold amplitudes 

vs age for the two margins and the outside of NEGIS with shaded standard deviation. The sketch to the 

right shows the origin area of the mean amplitude values. Subfigures show fold amplitude vs. age at 

fold locations for three selected across-flow radar profiles. Black dotted lines in subfigures represent a 

linear fit to the data points from 2000 yrs BP until today and then extrapolated to older ages. Letters U, 

C, and D (Upstream, Central and Downstream) and numbers (increasing from left to right) indicate folds 

and their locations.  

 

To analyse the overall structure of the distortion of the radar isochrones, we visualised a 

selected reflector as a 3D horizon (see Methods) in a recently acquired dense array of 
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radargrams (Fig. 1b). We chose one of the deepest layers in the upper half of the ice column, 

deposited approximately 7150 yrs before present (BP) (EGRIP-core dating21) that could still 

be traced continuously and reliably over the entire survey area (Fig. 1d). The plot of the 

complete 7150 yr-layer (Fig. 1c) reveals that the ice stream has left a significant imprint on the 

layer shape over the entire survey area, with complexity, intensity, and number of the folds 

increasing downstream.  

Outside of NEGIS, we find upright, cylindrical folds with wavelengths up to about ten kilometres. 

Here we define the wavelength as the distance between two adjacent crests or troughs of folds, 

measured perpendicular to their hinge lines. The amplitude is then defined as the difference in 

depth of trough and crest. Hinge lines converge on the ice stream in a fan-like pattern (Fig. 1c), 

with angles relative to NEGIS increasing downstream up to ca. 55° southeast of EGRIP. Here 

the tallest folds are found with amplitudes (A) that reach up to ca. 500 m in the 7150 yr layer 

(Fig. 1d). Disturbed ice without a clear stratigraphy is brought up to over a kilometre in the 

cores of these folds. In the adjacent synclines, the layer of deep disturbed ice is strongly 

reduced in thickness.  

The hinge lines of the folds can be traced from outside of NEGIS into the shear margins and, 

in some cases, even across the shear margin into the interior of NEGIS (yellow dotted line in 

Fig. 3). Inside the shear margin, the fold hinges rotate to almost parallel to the shear margin, 

their wavelengths decrease strongly to < 1 km, and their amplitude is less than outside of 

NEGIS. It should be noticed that hinge lines are at an angle to flow lines of the surface velocity 

field.  

 

4 Timescale of fold formation 

Dating of the active folding process is essential to constrain fold formation but also to determine 

the age of the flow perturbations that lead to fold growth, in this case, the formation of NEGIS. 

Here we address this issue by presenting the results of a novel method, which is based on an 

analysis of how the fold amplitudes change with the age of the layers, and is introduced in 

detail in the method section.  

The method to date the folding events is based on the principle that a new event leads to a 

steady increase in fold amplitude with depth in all existing layers. Layers deposited after the 

folding event are not folded. The timing of the end of the last fold event ended can thus be 

determined by determining at what age the amplitude-depth trend starts to deviate from zero. 

Multiple superimposed folding events result in breaks in the amplitude trend, with each break 



PAPER IV  

124 

representing a folding event (Methods). Here, however, we are only concerned with the end of 

fold amplitude growth in the area. 

The relationship between depth and age is not exactly, but close to linear in the Holocene ice 

in the study area, indicating approximately or only gradually changing precipitation rates. In 

Figure 3, we therefore show amplitude-age, instead of amplitude-depth graphs, for 14 

individual crest-through pairs from three radargrams perpendicular to NEGIS. One (labelled C) 

is at the EGRIP site in the centre of the survey area, one 130 km upstream (U), and one 90 

km downstream (D) (Figs. 2, 3 and Methods). Folds well outside of NEGIS (C6-7, and U3) and 

inside NEGIS (D3-4) show amplitudes that already start to increase from zero at the surface, 

which indicates currently active fold amplification. Folds inside the shear margins (D1-2, C1-3, 

and U1-2) and just adjacent to it southeast of EGRIP (C4-5) show very different amplitude-age 

trends. Here amplitudes in layers younger than 2 kyrs BP are close to zero, signifying that all 

these folds stopped growing by about 2 kyrs at the latest. The difference in the fold groups is 

clearly visible in Figure 3b, which shows the combined-normalised amplitude-age graphs 

(Methods).  

Whereas the end of folding is clearly marked, the onset of the last folding is difficult to 

determine. The onset of folding would be the age where the amplitude-depth trend reaches a 

steady slope because layers deposited towards the end of a folding event experienced less 

folding than those deposited at the beginning. Amplitudes in all folds start to increase steadily 

with depth and, hence, the age for layers older than ca. 3.5-4 kyrs BP. However, some 

amplitude-age trends also show bends at other ages, such as ca. 5-6 kyrs (U1, C2, C3-7, D2, D4, 

and U3) and ca. 8 kyrs (D4 and C4-7). This suggests that the ice sheet here experienced multiple 

folding events over time, which we cannot resolve here. However, here we are concerned with 

the final cessation of fold amplification, which was ca. 2 kyrs in and near the shear margins, 

while fold growth is still ongoing away from the shear margins, both outside NEGIS and in its 

interior. 

 

5 Folds reveal the history of NEGIS 

A conceptual model for the development of the structures in NEGIS that we see in our 

isochrone horizon is summarised in Figure 4. In the upstream region of NEGIS folding was 

initiated before 2 kyrs. The fold hinges trend towards the exit gate of the ice stream (Fig. 4a), 

which is consistent with folding due to convergent flow of ice with a horizontal anisotropy, 

similar to fold patterns observed at Petermann Glacier31.  
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Figure 4: Conceptual model of fold formation. (a) Situation before localisation of strain in shear zones. 

Red lines indicate fold hinges, and white arrows the direction of flow. Below the block diagrams the 

dominating crystal fabric of the ice is illustrated as Schmidt-plots of c-axed directions. (b) After the 

establishment of shear zones (highlighted in yellow) and a plug-flow like regime in the central part: Inside 

of the shear margin the fold hinges are rotated towards towards paralellism with the shear margins. (c) 

Shear zone in schistose rock, with the foliation bending into the top-to-the-right shear zone. The picture 

was taken at Tudela, Cap de Creus, Spain. (d) Sketch to illustrate the three strain indicators at the shear 

margins: (i) reduction of wavelength, (ii) rotation and (iii) offset of fold hinges. 

 

The folds are sheared where they are transected by the shear margins, causing their rotation 

and tightening (Fig. 4d). This implies that the folds existed before the shear margins developed. 

Convergent flow implies the development of horizontal velocity and, hence, strain-rate 

gradients, including zones of non-coaxial strain that are amenable to strain localisation in an 

anisotropic material such as ice32,33. Within the developing shear margins, simple shear along 

the vertical shear plane dominates over all other strain rate components, such as flattening 

due to precipitation. This leads to a rotation of the crystal basal planes to vertical and parallel 

to the shear margins, with concomitant geometric weakening. This kind of fabric has been 
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inferred from airborne radar measurements in the shear margins of Thwaites glacier34, and 

NEGIS35, the latter confirmed by first results from as yet unpublished shallow core 

measurements. The predominating fabric regimes are indicated in Figure 4a,b as schematic 

Schmidt-Plots for c-axes orientations. Numerical simulation suggests that the weakening by 

this change in crystallographic preferred orientation could easily be an increase in shear strain 

rate of one or two orders of magnitude at a given shear stress (Methods). Figure 4c shows an 

example of a shear zone in which folds are rotated towards parallelism with the shear zone. 

Here the anisotropy in metamorphic turbidites is formed by a strong alignment of the highly 

anisotropic mineral biotite axial planar to folds in a composite bedding and schistosity. As with 

the shear margins of NEGIS, the rotating anisotropy is thought to have caused localisation of 

deformation in shear zones36,37. 

 

 

Figure5: (a) Folded isochrone horizon with overlay of shear strain rate. Black lines indicate traced fold 

hinges listed in Suppl. Table 1. Location of EGRIP is shown as the black dot. (b) Same image, rotated 

63° (long axis of NEGIS) and stretched 5x in the vertical axis of the rotated figure, i.e., perpendicular to 

the main flow direction, to highlight bends in the hinges.  

 

Numerical simulations with anisotropic ice, with the full-field Elle+VPFFT38–40 code shows that 

folds form when basal planes are initially aligned to the shortening direction41. However, the 

shortening quickly rotates the basal planes towards parallelism with the extension direction, 
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which causes a cessation of fold amplification. We thus explain the cessation of fold 

amplification in and near the shear margins by the rotation of the anisotropy that caused the 

shear localisation in the shear margins, as compression at a high angle to the planar anisotropy 

does not lead to folding or fold amplification. 

Where the shear margin intersects folds, the hinges of the fold trains rotate towards parallelism 

with the shear margins (Fig. 4d) as the ice in the ice stream is moving faster, and the fold 

hinges are advected with the ice flow. This is apparent in the isochrone horizon shown in Figure 

1c and the centre panel of Figure 3 but becomes even more apparent when the image is 

shortened along the flow direction (Figure 5). The observed offset of fold trains southeast of 

EGRIP is in the order of 75 km. The rotation of the hinges and the resulting shortening of the 

wavelengths of the folds (Figs. 4d and 5) provide additional indications of the amount of finite 

strain in the shear margins, resulting in an estimated shear strain of g≈18 (Methods). The total 

offset is the product of width of the shear margin and finite shear strain. At a width of 3-4 km, 

this results in a total offset of ca. 55-75 km. With the current velocity difference of 40 m yr-1 

across the shear margin, this offset would be achieved in 1375-1875 years. This is 

underestimated as the velocity difference across the shear margin decreases upstream. Thus, 

the current flow velocity is consistent with an age of about 2 kyrs BP, which is the time when 

fold amplification finally ceased in the shear margins (Fig. 3). 

From the amplitude graphs and the strain measurements, we can conclude that the upstream 

part of NEGS and, thus, the present-day NEGIS as an ice stream with distinct shear margins 

(Fig. 4b) was fully established by about 2 kyrs BP. Geological evidence from the northeast 

Greenland coast showed that the three major outlets of NEGIS (Fig.1a, the 

Nioghalvfjerdsfjorden Glacier (NG), the Zachariae Isstrøm (ZI), and the Storstrømmen Glacier 

(SG) retreated behind their current extent and advanced again at least twice during the last 45 

kyrs42. During the Holocene Thermal Maximum (HTM) in the early to middle Holocene, 

temperatures in the Arctic were higher than today43. This had a large effect on Greenland ice 

volume and frontal positions of outlet glaciers44. The onset and end of this warm period were 

regionally different, and there is evidence from geological data that in the area of the three 

major outlets of the NEGIS that warming started around 8 kyrs BP and ended approximately 

4 kyrs BP43 Accordingly, Nioghalvfjerdsfjorden Glacier was smaller than today in its extent until 

at least 4.6 kyrs BP45. 

The two-stage process in the upstream NEGIS, with firstly convergent flow and secondly 

streaming with established shear margins, could be interpreted as a result of increasing 

discharge from the NEGIS catchment area, following the readvance of the ice front after the 

HTM, as ice stream activity is linked to the geometry changes of an ice sheet, with increasing 
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intensity of streaming for higher ice volume46. Around 4 kyrs BP, a still distributed increase of 

the outflow led to a drawdown of ice from the flanks and a confluent flow regime due to the 

geometry of the catchment and the outlet in the northeast. Localisation due to the emerging 

simple shearing along the vertical plane subsequently led to localised shear and the 

establishment of the shear margins, which was completed by about 2 kyrs BP, according to 

our data. Enhanced flow within the ice stream induced ice-stream normal flow in the adjacent 

ice sheet to compensate for the stretching inside the upstream part of the ice stream, resulting 

in the typical bottleneck shape of NEGIS, as the shear margins are advected towards the 

centre of the ice stream47.  

Our observations and dating of folding require a paradigm change in our thinking on NEGIS 

and, therefore, other ice streams. So far, NEGIS was considered a long-lived structure4,10 

controlled by external boundary conditions, in particular high geothermal heat flux at its 

upstream end10,17. Instead, NEGIS is highly dynamic, only a few thousand years old and still 

changing. Our results show that an ice sheet is a delicately balanced system in which the 

whole flow pattern can suddenly and radically change to create major ice streams, such as 

NEGIS. Together with the study by Franke et al. (2022)16, we are able to draw a holistic picture 

of the dynamics of NEGIS-style ice streams, namely that these streams can activate and 

deactivate within a short time span. Our findings also reveal the time scale on which the ice 

sheet reacts to changes at the margins by streaming and that these changes are much more 

likely to trigger the formation and intensification of streaming than local heat flow anomalies15. 

Considering that the ice sheets are now expected to experience massive changes in their 

boundary conditions48, it is imperative to include these dynamics in ice-sheet models and 

predictions of future sea-level rise. 
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6 Methods 

6.1 3D Isochrone horizon 

In order to assess the distortion of the radar isochrones in terms of their deformation history to 

determine the dynamic setting of the ice stream, the 2-dimensional profiles have to be 

combined to produce a 3-dimensional model of the folded isochrone surfaces16,31. For this 

purpose, we picked selected internal reflections, which are detectable throughout most of the 

survey area. To ensure spatial continuity, we restrict our analysis to reflections from the upper 

half of the ice column. By manually assigning profile sections from two neighbouring lines to 

each other, a surface can be generated in a half-automated way. For this step of the analysis, 

we used the structural geology modelling software MOVE, a tool for analysis and 3-D 

visualisation in geosciences and previously employed to visualise folds in Greenland's 

Petermann Glacier31 and upstream of Nioghalvfjerdsfjorden Glacier in north-east Greenland. 

The isochrones are dated by tying them in the depth domain to the age dating of the EGRIP 

ice core21 and transferring age in a particular depth to the respective isochrone at that depth. 

The absolute age and its uncertainty of ca. 90 yrs are of minor importance in our study, as we 

focus on the overall deformation of the initial flat shape of the considered isochrones. 

 

6.2 Dating of folding events 

The method is based on the assumption that a folding event leads to a steady increase in fold 

amplitude with depth in all layers older than the folding event. Thus, every change in the 

amplitude-age trend represents a folding event. If this event happened at time t1, layers 

younger than t1 are not folded, i.e., have zero amplitudes. The amplitude trend caused by a 

subsequent folding event at t2 will again affect all existing layers. Layers between t1 and t2 in 

age only show the resulting amplitude-depth trend from the second folding event, while older 

layers show the cumulative effect of both folding events. Every change in the amplitude-age 

trend thus represents a folding event. It should be borne in mind that folding is not expected to 

occur at a distinct single point in time but over a certain period and that a change in the 

amplitude-age trend will be spread out over that period. One should also note that the method 

is insensitive to changes in precipitation rate or general flow variations over time. These do not 

show up in amplitude-depth graphs, but may instead create bends in amplitude-age graphs.  
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Figure 6: Development of fold amplitudes. (a-c) Conceptual sketches for the effect of folding on layer 

disturbance and development of fold amplitudes (1-3) as a function of depth. (d) Part of radargram 

shown in Figure 2 with traced layers and respective folds. Shown are the uppermost 1400 m y-axes 

ticks represent 200 m) Numbers on the left show amplitudes and the corresponding reference depth for 

3 examples (subscript indicates age of layer), green/red vertical lines on the left indicate the position of 

the fold hinges of the anti- and synclines. Red vertical line on right indicates EGRIP with each reference 

layer annotated with its age in years BP. (e) Distribution of amplitudes of fold limb C1. The top panel 

shows amplitude as a function of depth and the bottom amplitude as a function of age The yellow dots 

indicate the data points derived from the radar layers. Red arrows indicate data points of example folds 

picked in (d). The black and blue lines indicate the trend with a clear kink around 300m depth or 2000 

yrs of age. 

 

Folding of stratigraphy causes a change in vertical position of layers, either upwards (anticlines) 

or downwards (synclines) relative to the undisturbed layer level. This change in height 

increases downwards from approximately zero at the surface since the surface of ice sheets 

shows no or little expression of folding (less than a few tens of metres at the most in the study 

area). We may assume49,50 that the vertical flattening or thickening strain is approximately 

constant throughout most of the ice sheet, except in the bottom-most layers. This assumption 

is not dependent on the cause of the folding, as it essentially states that folding is caused by 

vertical movements that increase towards the base of the ice sheet. This could be because of 
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basal melting or freezing27,29, variable slip rates30, folding due to lateral shortening31 or even 

due to flow over bedrock bumps or depressions51. The vertical displacement can be described 

with the parameter:  

z =e × z
0           (1) 

A problem is that ε can only be determined if the original depth z0 of a layer is known. As this 

is usually not the case, we can compare two adjacent vertical sections with strain ε1 and ε2. 

The difference A in depth for a layer is now given by: 

𝐴 = 𝑧1 − 𝑧2          (2) 

As long as positions 1 and 2 are close to each other (as in the hinges of a single fold), the pre-

fold depths (z0) of a layer at both locations are expected to be approximately the same. This 

results in a linear relationship between the amplitude A and the mean depth of a layer 

<z>=(z1+z2)/2: 
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To determine the amplitude-depth curves, as many layers in a radargram as possible were 

manually traced for anticline-syncline pairs. Axial planes are constructed as lines that connect 

the fold hinges. Near the ice surface, folds may die out upwards, in which case the axial planes 

are extended vertically towards the surface. Depth (z) of a stratigraphic layer is now defined 

as the vertical distance between a hinge of that layer and the ice surface at the point where it 

is intersected by the axial plane. Comparison of independent depth determinations by two of 

the authors (PDB and YZ) showed differences in z up to 3 m, with a standard deviation of the 

differences of 0.9 m. For each anticline-syncline pair, referred to as a fold limb, this results in 

a set of zanti(i) and zsyn(i) data for each layer (i) that was deposited at time t(i). The fold-limb 

amplitude is now defined as A(i)=zsyn(i)-zanti(i), with associated mean depth 

<z(i)>=(zsyn(i)+zanti(i))/2. 

Ages of layers were derived from tracing to or correlating layers at the EGRIP drill site where 

ages are known as a function of depth21. This results in a set of layers with known depositional 

ages. In the central profile up to 21 layers < 8 kyrs BP old could be connected to the EGRIP 

site, while in the downstream profile this number was reduced to at least five. The error in 

dating of the reference layers is in the order of a few tens of years for the youngest few 

thousand-year-old layers, increasing to over 100 years towards 8 kyrs BP layers. Most layers 

within one fold limb cannot be traced all the way to the drill site or can be recognised in the 
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radargram at that site. Their ages are estimated by interpolation, assuming that the relation 

between height of the layer above the bedrock (h) and age (t) is given by:  

h

H
=C exp-k×t

,          (4) 

with H the local thickness of the ice sheet, and C and k two constants derived by fitting to the 

nearest dated layers above and below the layer of unknown age. As layer thickness are 

relatively constant down to layers ca. 8 kyrs in age, this interpolation is close to linear. Note 

that mean depths for each fold were used for the interpolation. All ages are reported as before 

the year 2000 CE. 

 

6.3 Procrustes analysis 

To determine common trends, we use principles of shape analysis as used in biology or 

anthropology. These disciplines often face the problem of comparing shapes, for example to 

assign or distinguish fossil remains of modern humans versus Neanderthals52. Here the issue 

is to find commonalities and difference between the shapes of the various amplitude (A) versus 

depth (z) graphs (Az-graphs). We therefore employ a similar normalisation procedure, known 

as Procrustes analyis53,54, to remove scale and absolute amplitude of the Az-graphs. 

Furthermore, to be able to group folds, we need comparable data points, known as "landmarks" 

in geometric morphometrics. For this we first determine the amplitude A(t,i) of each fold limb 

(i) for a fixed series of ages (t), here every 100 years, by linear interpolation of the raw 

amplitude-age data. This was done for the period from 7500 yr BP to the present, to ensure 

that data for this period are available for all fold limbs. Each Az-graph is thus defined by 76 

such landmarks. 

The first step of the Procrustes normalisation is shifting all landmarks to a common reference, 

here the mean amplitude (<A(i)>): A'(t,i)= A(t,i) - <A(i)>. The next step is the normalisation for 

scale, defined by the mean absolute shifted amplitude <|A'(i)|>: A''(t,i)= A'(t,i)/< |A'(i)|>.  

Fold limbs were then divided into two groups: (i) folds in or near the shear margins, and (ii) 

folds inside NEGIS (only measured in the downstream section) and folds well outside of the 

shear margin on the southeastern side of NEGIS. Due to the very strong distortion in the 

southern shear margin, no folds were analysed directly inside this margin. Depths of layers are 

measured from the surface of the ice sheet, which means that amplitudes at the surface are 

zero, by definition. For plotting, the normalised A'' data are therefore shifted so that A''(i)=0 m. 

Data are plotted (Fig. 3) with 1σ error bars. 
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6.4 Strain from rotation of fold hinges and the reduction of fold wavelength 

Outside NEGIS fold hinges are oriented at an angle α relative to the shear margin (Fig. 4d). 

Inside the shear margin the hinges are rotated to an angle α', depending on the amount of 

shear strain (γ). The shear strain is given, assuming perfect simple shear, by: 

g = 2
1-cos 2a( )( )
tan a -a '( )

- sin 2a( )
ì

í
ï

îï

ü

ý
ï

þï

-1

       (5) 

Shear in the margins does not only rotate the fold axes, but also reduces the wavelength. Folds 

in the shear margins are therefore much narrower than outside the margins. We use the ratio 

w/w', where w is the wavelength outside the shear margin and w' the wavelength inside the 

shear margin, measured in the direction perpendicular to the shear margin (Fig. 4d). Assuming 

simple shear we obtain: 

w

w '
= 1+g 2 cos arctan g( )-a( )

        (6) 

Unfortunately, there is no simple analytical solution to this equation, but the iterative solution 

for γ is trivial.  

Three fold traces (shown in black in Fig. 5a) were traced. They enter the shear margin to the 

east of EGRIP. Their spacing w was determined where the fold-hinge trend α, relative to the 

shear margin, ranges from 54° to 75° and w from 15.9 to 16.6 km. In the marginal shear zone, 

the fold train narrows to approximately one km, giving w/w' ranging from 15.9 to 16.6, 

depending on the value of α that varies within the fold train. Within the shear margin α' is about 

3°. Table 1 provides the shear strain estimates, resulting in an estimated shear strain of γ≈18. 

 

Table 1. Shear strain estimates, assuming perfect simple shear and a final angle of '=3° for three 

traced fold axes, treated as passive marker lines. 

fold  (°) w0 (km) (wavelength) (rotation) 

1 54.1 16.2 19.3 18.4 

2 62.1 15.9 17.5 18.6 

3 74.8 16.6 16.9 18.8 

mean   17.9 18.6 
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6.5 Shear zone softening 

The full-field ELLE+VPFFT32,55–57 simulation code was used to estimate the amount of 

weakening due to simple shearing along a vertical plane in ice with a strong crystallographic 

preferred orientation (CPO) in which the basal planes are initially aligned along the horizontal 

plane. In the semi-2D model, the material is described by 256x256 elements or crystallites, 

each with their own crystallographic orientation. C-axes were initially randomly oriented within 

±5° perpendicular to the model plane. The code uses a spectral solver39 to determine the stress 

and strain-rate field compatible with the imposed boundary conditions. An average dextral 

simple-shear velocity field and zero strain rate in the 3rd dimension was used as boundary 

conditions.  

 

 

Figure7: Modelling shear zone softening. ELLE+VPFFT32,33,55 results of simple shearing of ice 1h, 

starting with a strong vertical point maximum of the c-axis orientations (+-5°), a 16x weaker basal plane, 

and a stress exponent of 4. The simulation illustrates the evolution and reorientation of the CPO from 

the ice sheet into the shear margin. The modelled plane is horizontal (bedrock parallel) and is then 

subjected to simple shear with a vertical shear plane. The graph shows the normalized shear strain rate 

(at a constant stress) vs. shear strain as well as pole figures (lower hemisphere; classical glaciologic 

projection looking down a drill core into the ice) until a shear strain of 𝛾 = 30. The single point maximum 

orientation of c-axes first divides into two point maxima until a shear strain of 𝛾 = 10. Between 𝛾 = 10 

and 𝛾 = 20 a transition occurs, when the two point maxima rotate towards a broad new single maximum 

perpendicular to the shear plane. The total softening is about a hundred at a shear strain of 𝛾 = 30, and 

already 20 at a shear strain of 𝛾 = 10. 
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The code assumes that deformation is achieved by power-law slip along the basal, prismatic 

and pyramidal crystallographic planes of ice 1h, using a stress exponent58 of 4. The strong 

anisotropy of ice 1h is incorporated by setting the friction parameter or critical resolved shear 

stress 16x lower for the basal plane than for any other slip planes. Ice deforming by basal slip 

only is thus 16x weaker than ice deforming by slip along the other planes at a given strain rate. 

Von Mises stress and strain-rates are used to describe the bulk strength of the material as a 

function of strain (Fig. 7). Each step, the velocity field is used to calculate and update the lattice 

rotation in each element. The CPO is visualised (Fig. 7) by plotting the c-axes’ ODF (orientation 

density function) which represents the volume fraction of crystallites with a certain orientation 

in a lower hemisphere stereographic projection (using the texture analysis software MTEX59). 

 

6.6 Folding of anisotropic ice.  

In another ELLE+VPFFT simulation, similar to that to model the shear softening, we 

investigated the folding of passive lines parallel to the shortening direction in pure-shear 

shortening. Modelling code and all settings were identical to those described for modelling 

shear softening (see above), except for the boundary conditions. The initially square model 

was deformed under plane-strain, pure-shear velocity boundary conditions with horizontal 

shortening and vertical extension in steps of 2% shortening. C-axes (normal to the easy-glide 

basal plane) where initially aligned parallel (±5° standard deviation) to the vertical extension 

direction. The deformation of initially horizontal passive marker lines was traced, using the 

calculated velocity field for each step, to reveal folding induced by deformation of the 

anisotropic material. Figure 8a shows that folds form and that the CPO evolves from an initial 

point maximum to a girdle with two maxima, and finally towards a point maximum parallel to 

the shortening direction. Fold amplitudes were determined by taking the distance between the 

highest and lowest point along one folded marker line. Figure 8b shows that active fold 

amplification ceases from about 25% shortening.  
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Figure 8: Result of numerical modelling of folding in anisotropic ice (Elle+VPFFT). (a) Whole 

model at three stages of plane-strain horizontal shortening (0, 25 and 50%) with passive marker lines 

that illustrate the folding of originally horizontal, mechanically passive layers (L). Insets show the 

distribution of c-axes that are perpendicular to the easy glide basal planes of ice. Projection is looking 

down from the top of the model, parallel the vertical extension direction. C-axes are thus initially aligned 

parallel to the extension direction with a standard deviation of ±5°. Folding of the aligned basal planes 

leads to the formation of a girdle distribution with two point maxima that move to the shortening direction 

with increasing strain. (b) Graph of the maximum vertical amplitude of nine equally spaced, initially 

horizontal passive marker lines, highlighted in colour in (a). The maximum vertical amplitude is the 

difference between the highest and lowest point along a marker line (inset). Fold amplification ceases 

at about 25% shortening when the initial strong alignment of c-axes is converted to a partial girdle.  
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Data Availability 

The ice thickness data of the EGRIP-NOR-2018 survey and refined bed topography11 is 

available at: https://doi.pangaea.de/10.1594/PANGAEA.907918  

The complete radar data set will be made available as part of a data collection for Northern 

Greenland. The GICC05-EGRIP-1 timescale for the EGRIP ice core21 can be obtained here: 

https://doi.org/10.1594/PANGAEA.922139. Amplitudes, depths and age of the picked 

isochrones for the dating of the folds are available as Extended Data Material. 
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Appendix 

A1 VPFFT + Elle setup 

A1.1 Structure of initial Elle file 

The initial elle file is consists of several sections.  

First is the ‘OPTIONS’ section (Fig. A1), contains some basic setting of environmental 

parameters. The ‘SwitchDistance’ here related to the unode distance, means the minimum and 

maximum distance between each unode. When the distance greater than maximum distance, 

the system would add one more unode, while the distance less than minimum distance, the 

system would remove one unode. The total number of unodes remain same. The maximum 

distance value always 2 - 2.2 times the minimum (Fig. A1). The ‘SpeedUp’ means incremental 

number of each step. The ‘CellBoundingBox’ means the current box size, related to the initial 

setting and boundary conditions the system experienced. Here in this example the box setting 

is 2.0 width, 0.5 height (Fig. A1). ‘Timestep’ is the assumed time per step, no influence on the 

simulated results.  

Second, the ‘FLYNNS’ section (Fig. A1). In this section, the system defines the shapes of 

grains by connected the sequence number of bnodes within the system. Here in this example, 

the first grain (flynn) is made by the bnode numbers: 0, 580, 0, 2, 12, 13 …, all sequence 

numbers displayed here as one line in text, here is line 21 (Fig. A1). The total amount of lines 

related to the total grains (flynns) numbers. 

 

Fig. A1: Example of the ‘OPTIONS’ section and part of ‘FLYNNS’ section.  
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Fig. A2: Example of the ‘F_ATTRIB_A’ section 

 

Fig. A3: Example of the ‘MINERAL’ section, ‘VISCOSITY’ section and ‘EULER_3’ section 

 

The third section is ‘F_ATTRIB_A’. Stores the numbers of flynns. Not in use now. 

Then the following three sections are ‘MINERAL’ section, ‘VISCOSITY’ section and ‘EULER_3’ 

section. ‘MINERAL’ section stored the mineral information of grain (flynn), here is not in use, 

because the information of mineral(s) is differed by ‘VISCOSITY’ section.  

‘VISCOSITY’ section stores the information of phases within the grain (flynn) of the system. If 

the simulation is modelled with one single mineral, so all the grains (flynns) are the same, so 

the ‘VISCOSITY’ here can be default 1, otherwise the setting of grain (flynn) which is setup 

with the second phase, the ‘VISCOSITY’ can be 2, the third can be 3…, etc. Here in Fig. A3, 

the grains (flynns) number of 64, 65, 66, 67 are setting with ‘VISCOSITY’ = 2, and all rest 

grains (flynns) are setting with default = 1.  

‘EULER_3’ section contains the information of grains (flynns) in the system. All angles are 

described by three Euler angles α, β, and γ.  

The seventh section is ‘LOCATION’. The location of bnodes which are used to define the shape 

of flynns. 
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Fig. A4: Example of the ‘LOCATION’ section

 

Fig. A5: Example of the ‘UNODES’ section 

 

Fig. A6: Example of the ‘U_EULER_3’ section 

 

‘UNODES’ section stored the absolute location related to the ‘CellBoundingBox’. Due to the 

Elle platform models only 2d processes, so only x-axis and y-axis is stored. The total numbers 

of unode in the example (Fig. A5) is 65536 by 256 x 256 pixels. Each unode represent a lattice 

or a mineral.  
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Last ‘U_EULER_3’ section contains the information of angles of unodes in the system. All 

angles are also described by three Euler angles α, β, and γ. Due to the total numbers of unode 

in the example (Fig. A5) is 65536, so the setting of ‘U_EULER_3’ contains 65536 euler angles 

of unodes (Fig. A6). The initial CPO used in this thesis are stored in ‘U_EULER_3’ section of 

each elle file. 

A1.2 Initial package of simulation setting 

The VPFFT + Elle package is assembled by several files displayed in Fig. A7. This package 

contains boot file (*.sh), elle file (*.elle), phase file (*.sx) and boundary condition file (ppc.in).  

 

Fig. A7: General assemble of VPFFT + Elle package.  

 

Fig. A8: Input setting of the boot file (*.sh).  
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Fig. A9: Phase file (*.sx) setting.  

 

Fig. A10: Boundary condition file (ppc.in) setting.   
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The boot file (.sh, shell file) is the guidance to progress the simulation steps. The main loop 

(details in Steinbach, 2017), which includes all processes that operate in an VPFFT + Elle 

simulation are included in boot file. The simplest numerical procedure as a loop here contains 

(1) data from Elle to VPFFT, (2) calculation with VPFFT-code, includes polycrystal deformation 

by dislocation glide, strain-rate and stress fields, CPO re-orientation and dislocation density, 

(3) data from VPFFT to Elle, (4) Import VPFFT data to ellefile, (5) Elle process with several 

topology checks, (6) Subloop steps in Elle, include Recovery, Nucleation and Polygonisation 

and Grain Boundary Migration (only polyphase), (7) attribute the data from flynns to unodes, 

about viscosity, CPO information, (8) create and store new .elle file.  

Fig. A8 displays the main controlling parameters and interpretation in running the simulation. 

Including: (1) the name of input elle file, (2) the name of outroot, (3) total steps, how many 

steps (loops) the simulation will run, (4) dimensions, how many unodes in x- or y- direction, 

generally the two directions have same amount of unodes, (5) reposition (if simulation run 

under the boundary condition of simple shear).  

The phase file (*.sx, Fig. A9) contains the shape of lattice, the slip system information that 

define the shear resistances (critical resolved shear stress, CRSS) of each gliding plane, and 

the viscous property of object mineral or material. In this thesis, the ice3d.sx usually used as 

competent material while air.sx as incompetent material. The stress exponent (𝑛) of each 

material is defined as the value in red cubes (Fig. A9) also in phase file. 𝑛 = 1 is used to 

simulate linear viscous material that deform as Newtonian flow, while 𝑛 ≠ 1 is used to simulate 

power-law viscous material that deform as a non-Newtonian flow. The numbers have blue 

underlines define the shear resistances (CRSS) of each slip plane. Intensity of mechanical 

anisotropy is defined by shear resistance difference of basal and non-basal planes, in this 

example displayed in Fig.A9 the intensity of anisotropy is 64. 

The boundary condition file (ppc.in, Fig. A10) includes the phases that involve into the 

simulation system, the name of phase files (*.sx) have purple underlines show in this initial 

setting there are two phases of materials are involved. The matrix with the green cube defines 

the boundary condition of this initial setting and the simulation the system will experience. The 

value defines the incremental strain in different x- or y- directions. An iterative solver based on 

Fast Fourier Transformation is implemented as iteration number of corrections of the 

calculations.  
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A2 Visualisation of progressive deformation with elle files 

The program ‘showelle’ (Bons et al., 2008) within the Elle platform could display the many 

different information that included in the elle files, e.g., In flynn, viscosity (here the viscosity is 

the different minerals or materials) of flynn, Euler angles of flynn, and e.g., in unodes, Euler 

angles of each unode, strain-rate field, etc.  

As the requirement of display the layers, includes passive marker layer or foliation (the 

mechanical anisotropy) evolving, a C script compiled to achieve the purpose (Fig. A11).  

 

 

Fig. A11 Example of part of C script use to Visualisation of progressive deformation 
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As displayed in Fig. A11, several parameters are related to modification for different purposes. 

Firstly, the C script wants to know the number of unodes in x- or y- direction within the series 

of elle files. And also, the initial size.  

Next, inputting the sequence number of the first step and last step that one wants to. If the first 

step is 0, the last step is 120, the output file would have 121 steps that contain the initial state.  

An important modification is about the layer angles. If the layer angle is set parallel to the 

mechanical anisotropy (CPO), then the lines or curvatures in output file could represent the 

CPO evolution and deformation. If the layer angle is set unparallel to the mechanical anisotropy 

(CPO), the lines or curvatures could be treated as passive marker layer that show different 

geometries. 

Then, the setting of image size leads the output file different length of its side. One can also 

change the node spacing or line spacing to better visualise.  

Finally, letting the C script knows the sequences of elle files, so modify the name from the 

outroot like displayed in Fig. A11, but remove the sequence number. 
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A3 Numerical setup 

Table A1: List of simulations in this PhD projection 
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