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Abstract

Over the last decade, deep neural networks have enabled remarkable technological ad-
vancements, potentially transforming a wide range of aspects of our lives in the future.
It is becoming increasingly common for deep-learning models to be used in a variety of
situations in the modern life, ranging from search and recommendations to financial and
healthcare solutions, and the number of applications utilizing deep neural networks is
still on the rise.

However, a lot of recent research efforts in deep learning have focused primarily on
neural networks and domains in which they excel. This includes computer vision, audio
processing, and natural language processing. It is a general tendency for data in these ar-
eas to be homogeneous, whereas heterogeneous tabular datasets have received relatively
scant attention despite the fact that they are extremely prevalent. In fact, more than half
of the datasets on the Google dataset platform are structured and can be represented in a
tabular form.

The first aim of this study is to provide a thoughtful and comprehensive analysis of
deep neural networks’ application to modeling and generating tabular data. Apart from
that, an open-source performance benchmark on tabular data is presented, where we
thoroughly compare over twenty machine and deep learning models on heterogeneous
tabular datasets.

The second contribution relates to synthetic tabular data generation. Inspired by their
success in other homogeneous data modalities, deep generative models such as varia-
tional autoencoders and generative adversarial networks are also commonly applied for
tabular data generation. However, the use of Transformer-based large language mod-
els (which are also generative) for tabular data generation have been received scant re-
search attention. Our contribution to this literature consists of the development of a novel
method for generating tabular data based on this family of autoregressive generative mod-
els that, on multiple challenging benchmarks, outperformed the current state-of-the-art
methods for tabular data generation.

Another crucial aspect for a deep-learning data system is that it needs to be reliable
and trustworthy to gain broader acceptance in practice, especially in life-critical fields.
One of the possible ways to bring trust into a data-driven system is to use explainable
machine-learning methods. In spite of this, the current explanation methods often fail to
provide robust explanations due to their high sensitivity to the hyperparameter selection
or even changes of the random seed. Furthermore, most of these methods are based on
feature-wise importance, ignoring the crucial relationship between variables in a sample.
The third aim of this work is to address both of these issues by offering more robust and
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Abstract

stable explanations, as well as taking into account the relationships between variables
using a graph structure.

In summary, this thesis made a significant contribution that touched many areas re-
lated to deep neural networks and heterogeneous tabular data as well as the usage of
explainable machine learning methods.



Kurzfassung

In den letzten zehn Jahren haben tiefe neuronale Netze bemerkenswerte technologische
Fortschritte ermoglicht. Sie haben das Potenzial, in Zukunft eine Vielzahl von Aspekten
unseres Lebens zu veridndern. Deep-Learning-Modelle werden immer héufiger in ver-
schiedenen Situationen des modernen Lebens eingesetzt, von der Suche und Empfehlun-
gen bis hin zu Finanz- und Gesundheitslosungen, und die Zahl der Anwendungen, die tie-
fe neuronale Netze nutzen, nimmt weiter zu. Viele der jiingsten Forschungsbemiihungen
im Bereich des tiefen Lernens konzentrierten sich jedoch in erster Linie auf neuronale
Netze und Bereiche, in denen sie sich auszeichnen, wie z.B. Computer Vision, Audio-
verarbeitung und Verarbeitung natiirlicher Sprache. Die Daten in diesen Bereichen sind
in der Regel homogen, wihrend heterogene Tabellendatensétze relativ wenig Beachtung
finden, obwohl sie extrem hiufig vorkommen. Tatsdchlich sind mehr als die Hilfte der
Datensitze auf der Google-Datensatzplattform strukturiert und konnen in Tabellenform
dargestellt werden. Das erste Ziel dieser Studie ist es, eine durchdachte und umfassende
Analyse der Anwendung von tiefen neuronalen Netzen fiir die Modellierung und Ge-
nerierung von tabellarischen Daten zu liefern. Dariiber hinaus wird ein Open-Source-
Benchmark fiir tabellarische Daten vorgestellt, bei dem wir iiber zwanzig maschinelle
und Deep-Learning-Modelle auf heterogenen tabellarischen Datensitzen griindlich ver-
gleichen. Der zweite Beitrag bezieht sich auf die Erzeugung synthetischer tabellarischer
Daten. Inspiriert durch ihren Erfolg in anderen homogenen Datenmodalitéiten werden tie-
fe generative Modelle wie Variation Autoencoder und generative adversarial Networks
auch fiir die Erzeugung tabellarischer Daten verwendet. Die Verwendung von transfor-
matorbasierten groen Sprachmodellen (die ebenfalls generativ sind) fiir die Generierung
tabellarischer Daten wurde jedoch in der Forschung kaum beachtet. Unser Beitrag zu
dieser Arbeit besteht in der Entwicklung einer neuartigen Methode zur Generierung ta-
bellarischer Daten auf der Grundlage dieser Familie autoregressiver generativer Modelle,
die bei mehreren anspruchsvollen Benchmarks die aktuellen State-of-the-Art-Methoden
zur Generierung tabellarischer Daten betrifft. Ein weiterer entscheidender Aspekt fiir ein
Deep-Learning-Datensystem ist, dass es zuverlidssig und vertrauenswiirdig sein muss,
um in der Praxis eine breitere Akzeptanz zu finden, insbesondere in lebenskritischen
Bereichen. Eine Moglichkeit, Vertrauen in ein datengesteuertes System zu bringen, ist
die Verwendung erkldrbarer maschineller Lernmethoden. Dennoch liefern die derzeiti-
gen Erkldrungsmethoden oft keine robusten Erkldrungen, da sie sehr empfindlich auf
die Wahl der Hyperparameter oder sogar auf Anderungen des Zufallsseeds reagieren.
Dariiber hinaus basieren die meisten dieser Methoden auf der Relevanz der Merkmale
und ignorieren die entscheidende Beziehung zwischen den Variablen in einer Sample.
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Kurzfassung

Das dritte Ziel dieser Arbeit ist es, diese beiden Probleme zu 16sen, indem robustere und
stabilere Erkldarungen angeboten und die Beziehungen zwischen den Variablen durch ei-
ne grafische Struktur berticksichtigt werden.

Zusammenfassend ldsst sich sagen, dass diese Arbeit einen bedeutenden Beitrag ge-
leistet hat, der viele Bereiche beriihrt, die mit tiefen neuronalen Netzen und heterogenen
Tabellendaten sowie der Verwendung von Methoden des erkldrenden maschinellen Ler-
nens.
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Chapter 1

Introduction

Various aspects of modern society are impacted by machine learning algorithms that
are based on deep neural networks. There have been numerous successful applications
of deep-learning-based algorithms [11, 12], they can be found in data-driven applica-
tions such as spam filtering [13], machine translation and multilingual tasks [12, 14],
face recognition [15], educational systems [16], object detection [17], robotics [18], au-
tonomous driving [19], and so forth.

Deep learning systems that are driven by data have become tremendously popular and
successful due to several factors, including the availability of data, the power of computa-
tion, and the high flexibility of algorithms [12, 20, 21]. Specifically, deep models based
on convolution networks [11, 22], networks with recurrent mechanisms [23] or self-
attention-based Transformer networks [24] have exhibited unprecedented performance
in a variety of application fields.

Most methods where deep learning algorithms that are particularly effective rely on
homogeneous data, such as images, videos, audio, and text. However, heterogeneous
tabular data is among the oldest forms of data for statistical analysis; it is also ubiquitous
in many important real-world applications [25], such as healthcare [26], finance [27],
manufacturing [28], climate science [29], and many other applications that are based
on structured databases. Moreover, it is one of the leading data formats for anomaly
detection [30], recommendation systems [31], cybersecurity [32], and other data-driven
tasks [33, 34, 35, 36, 37].

The successful application of deep neural network models on heterogeneous tabular
data has the potential to bring significant advancements to the field of machine learning.
First, deep neural networks are known for their ability to capture complex non-linear re-
lationships [38], providing a more comprehensive coverage of data. This can benefit the
machine learning community by allowing better predictions and more accurate modeling
of the underlying patterns in the data. Second, deep neural network models are able to in-
corporate multiple data modalities, a process known as multimodal learning [39]. It can
improve the performance of data-driven systems by enabling an end-to-end learning ap-
proach that can handle diverse data types, such as visual, textual, and tabular data. Lastly,
deep neural network models provide a range of robust learning strategies with limited la-
bels, including self-supervised learning [40], transfer learning [41], and synthetic data
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generation [1]. These methods can facilitate effective learning on heterogeneous tabular
data, even in the absence of large amounts of labeled data.

The generation of synthetic tabular data is another area where deep neural networks
have a crucial role to play [42, 1]. Synthetic tabular data is artificially generated by
algorithms data instead of being collected from real-world sources. This data is useful
in numerous applications, such as testing and evaluating machine learning algorithms,
training machine-learning algorithms, and protecting sensitive information [43]. Deep
neural networks are particularly well suited for generating synthetic tabular data because
they can learn to synthesize data that has the same statistical properties as real-world data,
allowing them to produce data that is similar to what would be collected from real-world
sources. As a result, deep learning approaches are an important tool for synthesizing
tabular data.

Lastly, even though deep neural networks are showing wide adoption in various areas,
one of the main challenges in using deep learning data systems is their lack of explain-
ability [44]. This makes it difficult to understand how the model arrives at its predictions,
which can limit the users’ trust in the results.

To address this issue, researchers and developers are exploring the use of explainable
machine-learning techniques [44, 45, 46, 47, 48, 49]. These techniques aim to make
the inner workings of deep neural networks more transparent, allowing users to better
understand the basis for the model’s predictions. Hence, they help to increase trust in the
model and provide valuable insights into the data and the underlying relationships that
the model has learned.



1.1 Main Objectives
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Figure 1.1: A typical data pipeline for a machine-learning application. The original data
is preprocessed and augmented with synthetic data. This enhanced dataset is then fed
into a machine learning model that generates predictions based on the input data. These
predictions can be further explained through explanation techniques, which provide in-
sights into the decision-making process of the machine learning model. This allows for
a deeper understanding of the model’s behavior and potential limitations. In general,
synthetic data and interpretable models contribute in improving the accuracy and trans-
parency of machine-learning applications. Note this is a simplified version of a data
pipeline.

1.1 Main Objectives

The successful deployment and operation of data-driven applications using deep neural
networks on tabular and other data modalities require numerous tasks (Fig. 1.1), among
which we identified three core challenges, which are the central subjects of the work:

1. Tabular Data Modeling. An imperative aspect of data analysis is inference, which
involves making estimation based on existing observational data. In spite of the
fact that a powerful and robust predictive model is crucial for all applications, the
interaction between tabular data and deep neural networks transcends beyond mere
inference. It has been noted by numerous independent studies [1, 50, 51, 52] — in
comparison to decision tree ensemble-based methods, such as gradient boosting
[53], artificial neural networks demonstrate inferior performance on heterogeneous
tabular data.

2. Synthetic Tabular Data Generation. It has been demonstrated that deep neu-
ral networks can benefit from large labeled or unlabeled datasets utilizing self-
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supervised or unsupervised learning methods [54, 55]. However, the data acqui-
sition is costly and frequently unavailable to the end user [56, 57]. In fact, it is
even more crucial in areas such as medical machine learning, where the price of
new data samples is enormous [58] and the data is often imbalanced. Apart from
collecting more data, synthetic data can be used to address the issue. Furthermore,
data privacy is an open issue in many critical fields, e.g., finance or medical, where
artificially generated data can be used to avoid sensitive information data leakage
[59].

3. Explainability of Machine Learning Models. As a result of strict data protection
laws [60, 61] such as the California Consumer Privacy Act (CCPA) [62] and Eu-
ropean General Data Protection Regulation (European Union [EU] GDPR) [63],
which both mandate the right to explain for automated decision systems, inter-
pretability is becoming a key aspect for predictive models used for tabular data
[48, 64]. In addition to this, interpretability methods can also be valuable tools for
model auditing and debugging during deployment [65].

The following Sections provide a detailed overview of the selected core tasks of this
work. In Section 1.2 key definitions are described.

1.2 Definitions

This Section is devoted to providing definitions of key terms used in the dissertation,
which are central components of the project. For more detailed explanations of the meth-
ods discussed, we also refer you to the original works.

The key concept in this dissertation is a (deep) neural network. Unless stated other-
wise, we use this concept as a synonym for feed-forward networks and artificial neural
network. As described by [12], a deep neural network defines a mapping f,

A

y=rfx)~=fxw), (1.1)

that learns the value of the model parameters W (i.e., the “weights” of a neural network)
that results in the best approximation of the true underlying and unknown function, f. In
this case, x is a multi-dimensional data sample (i.e., x € R") with corresponding target y
(where typically, y € R¥ for k classes and y € R for regression tasks) from a data set of
tuples {(xi,yi) };cz. The network is called feed-forward if the input information flows in
one direction to the output without any feedback connections.

An important aspect for this dissertation deep neural networks architecture is the
Transformer network, which is commonly referred to as the “foundational model” in
the literature [66]. It relies on self-attention mechanisms to capture the dependencies
between different input elements. By learning complex relationships between input ele-
ments using self-attention [24], also known as intra-attention [67], the model is able to
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focus selectively on different parts of the input. The Transformer model can be used for
inference and generative tasks.
Formally, the self-attention mechanism can be represented as:

Attention(Q, K, V) = softmax (QKT) V. (1.2)
s I8 Ja. ) .
where Q, K, and V are the query, key, and value matrices, respectively, and dy is the
dimensionality of the key vector. The self-attention mechanism produces a weighted sum
of the value vectors, with the weights determined by the dot product between the query
and key vectors. In this way, the model can focus on various parts of the input depending
on the relative importance of each element.

This thesis primarily addresses two main types of data: homogeneous and heteroge-
neous data, with deeper focus on the latter data type. Let D be a dataset with N data
points, where each data point x; € D, fori = 1,2...,N, is described by a set of features
(variables) F = { f1, f2, ..., fu }. We assume that each feature f; takes values in a domain
Dom(f;).

The first type, homogeneous data, includes modalities such as images, audio, or text
data where only a single feature type is present. Specifically, a dataset D is said to be
homogeneous if all the features share the same domain, i.e., the domains of all features
are identical.

Definition 1 (Homogeneous Dataset) A dataset D is homogeneous if:

V(fj, fi) € F X F, such that Dom(f;) = Dom(fi). (1.3)

The second type, heterogeneous data, typically contains a variety of attribute types.
These include both continuous and discrete attributes of different types (e.g., binary,
ordinal, and low- and high-cardinality categorical values). A dataset D is said to be
heterogeneous if there exists at least one pair of features (f;, fx) € F, with j # k, such
that the domains of these features, i.e., Dom(f;) # Dom(f,).

Definition 2 (Heterogeneous Dataset) A dataset D is heterogeneous if:

3(f}, fi) € F x F, such that Dom(f;) # Dom(fy). (1.4)

Categorical variables represent an attribute type of significant importance [68, 69].
According to the definition given by Lane [70], categorical variables are qualitative in
nature. They “do not imply a numerical ordering,” unlike quantitative values, which
are “measured in terms of numbers.” Typically, a categorical variable can assume one
of a finite set of values. Examples of common categorical variables include gender,
user_id, product_type, and topic.

Tabular data, also known as structured data [71], is a type of heterogeneous data that
is typically presented in a table format with rows representing data points and columns
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representing features. In this context, we consider a data set to be tabular if it has a
fixed number of features that can be either continuous or categorical. Each data point
can be viewed as a row in the table, or alternatively, as a sample from the underlying
distribution. An illustrative example of five rows of a heterogeneous, tabular data is
provided in Table 1.1. Tabular data is widely used in various fields [1], including finance,
marketing, and healthcare, to analyze and make predictions based on the relationships
between the features.

Synthetic tabular data, on the other hand, is a type of data that is generated using
an algorithm or several methods, rather than being collected from real-world sources.
It is structured in a way that is similar or ideally not distinguishable from original real-
world data, with rows and columns that represent different variables and observations.
However, because it is generated artificially, it can be customized and controlled in ways
that real-world data cannot be, e.g., conditionally sampled.

There are several reasons why synthetic tabular data can be used, for instance, testing
and evaluating machine-learning algorithms. This is because synthetic data can be gener-
ated with known properties and characteristics that allows practitioners and researchers
to easily control the data and test their algorithms in a more controlled environment.
Another reason for using synthesized tabular data is that it can be useful for training
machine learning algorithms. As an example, if real-world data is not available or is
difficult to obtain, synthetic data may be used to train the algorithm and help it become
more accurate. It is also possible to generate synthetic data in a manner that does not
include sensitive information, making it useful for privacy and security purposes [72].

Explainable machine learning. The complexity of current machine learning algo-
rithms, particularly deep-learning-based algorithms, makes it difficult for humans to
comprehend the exact decision making process that occurs during inference. These aim
to make the internal workings of these algorithms more transparent and their outputs
easier to interpret.

In machine learning, an explainable model or algorithm is one that provides a clear and
interpretable explanation for its predictions or decisions. An explanation can be provided
in natural language, a visual representation of the model’s decision-making process, or
other methods of illustrating the model’s logic. Explainability can also be defined as
the degree to which a model’s predictions can be understood or justified by a human
being. It may be necessary to assess both the transparency of the model’s structure and
the interpretability of its output, as well as the reliability of the explanations it provides.

In the literature, there are several definition of explainability. For example, accord-
ing to Miller [73] “Interpretability is the degree to which a human can understand the
cause of a decision.” Kim et al. [74] propose the following definition for explainability
“the degree to which a human can consistently predict the model’s result.” As a general
rule, explainability is critical to machine learning because it helps to establish trust in the
model, increase its accountability, and allow it to be used in real-world situations. This
information may also help users identify potential areas for improvement or further in-
vestigation, as well as understand the machine learning model’s limitations and potential
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Age Education Occupation Sex Workclass Income
39 Bachelors Adm-clerical Male Private <50K
50 Bachelors Exec-managerial Male Private >50K
38 HS-grad Handlers-cleaners Male Private <50K
53 11th Handlers-cleaners Male ? <50K
28 Bachelors Prof-specialty Female State-gov >50K

Table 1.1: An example of a heterogeneous tabular data set. Here we show five random
samples with selected variables and label columns (Income). from the Adult income
data set [77]. As it can be seen, the displayed data samples are highly heterogeneous,
and contain missing values (7).

biases. Also, it provides a better understanding of the data.

Lastly, in the field of explainable machine learning, understanding, interpreting, and
explaining are often used interchangeably [75, 76]. Interpretability typically refers to the
ability to comprehend the overall functioning of a prediction model, while explainabil-
ity involves providing explanations that are not necessarily understandable by the model
itself. This work uses explainability as a synonym for interpretability, unless stated oth-
erwise.

1.3 Deep Neural Networks and Tabular Data

The use of deep neural networks has been proven to be effective in a variety of areas,
including image recognition, natural language processing, and even the prediction of
stock prices. However, when it comes to dealing with heterogeneous tabular data, these
networks face challenges [1, 52, 25, 51]. In this context, decision-tree-based approaches,
such as random forest [78] and gradient boosting decision trees [79], have been found
to be superior to deep neural networks. These methods take advantage of the structured
nature of tabular data and are able to effectively represent complex relationships between
various variables. As such, they have become the state-of-the-art approach for dealing
with this type of data.

Yet, in real-world applications, the most common and one of the oldest data type
is heterogeneous tabular data [25, 80, 81]. According to the Google Dataset Search
platform — over 65% of data sets there contain tabular files in either CSV or XLS formats
[82]. Kadra et al. [83] called tabular data sets the “last unconquered castle” for deep
neural network models.

One of the major disadvantages of decision tree-based methods is the need to store
almost the entire dataset in memory during the training process [84]. This can be a
significant computational burden, particularly for large datasets. In addition, decision
tree-based models are not well-suited for multimodal datasets that include different data
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Figure 1.2: Estimated counts of annually published paper on deep neural network models
for tabular data modeling or generation. This field has been experiencing rapid growth
since 2019. We collect the data utilizing the dimensions.ai web-platform with the
query: deep neural networks and tabular data.

types, such as visual and tabular data. In contrast, deep neural networks can be trained
using batch learning, which does not require the entire dataset to be stored in memory.
Deep learning methods have been shown to provide state-of-the-art performance on mul-
timodal data tasks, making them a superior choice in these cases [39].

Over the past years, specialized deep learning approaches for tabular data have grown
in popularity and have been applied in various fields (Fig.1.2), including life-critical
areas such as medicine [1, 42]. The development of dedicated tabular data deep learning
techniques has allowed for more scalable and fast inference. Consequently, deep learning
approaches to tabular data are becoming an essential tool in many fields and are likely to
continue to play an important role in data analysis for some time to come.

Despite the theoretical benefits of deep neural networks, their application to heteroge-
neous tabular data may pose challenges due to the lack of spatial information, missing
values, a mixture of feature types (numerical, ordinal, and categorical); and a lack of
prior knowledge of the dataset structure. Compared to classical decision tree algorithms,
which are known for their transparency, this lack of transparency or interpretability is a
significant disadvantage. Additionally, the complexity of deep neural networks can make
them difficult to maintain, since the deep learning methods usually require more time for
the hyper-parameter and significant computational resources.

To overcome these challenges, in recent years, numerous work have been proposed [1].
We group these approaches into three categorizes: data encoding methods, specialized
architectures, and regularization models.

Data encoding methods transform categorical and numerical data in order to enable
deep neural network models better extraction of the information signal. These methods
do not require new architectures or adaptations of the existing data processing pipeline.
However, the transformation step comes with an increased preprocessing time, which
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may be a concern for high-load systems [85], particularly in the presence of categorical
variables with high cardinality and growing data set sizes. Single-dimensional encod-
ings and multi-dimensional encodings are two subcategories within this group. Single-
dimensional encodings transform each feature independently, while multi-dimensional
encodings map an entire record to another representation.

Specialized architectures are the most commonly investigated approach for deep learn-
ing on tabular data [1]. These architectures suggest that a different deep neural net-
work architecture is required for tabular data. For example, hybrid models, which fuse
classical machine learning approaches (e.g., decision trees) with neural networks, and
transformer-based models, which rely on attention mechanisms [24], are two important
types of specialized architectures.

Regularization models propose that the moderate performance of deep learning mod-
els on tabular data is due to their extreme sensitivity and model complexity. Therefore,
strong regularization schemes are suggested as a solution, implemented mainly in the
form of special-purpose loss functions. Overall, these approaches offer a range of solu-
tions for deep learning on tabular data, each with their own benefits and drawbacks.

1.4 Tabular Data Generation

There is a lot of cost involved in collecting data, and often new data cannot be obtained
by the user [86]. Therefore, the researches is constantly looking for a new methods for
realistic data generation. Whereas for visual and textual data the generation of realistic
samples are very well studied using variational autoencoders (VAEs) [87], generative
adversarial networks (GANSs) [88], and denoising diffusion probabilistic models [89],
tabular data is still a challenge.

One of the main advantages of synthetic tabular data is that it can be used to augment
or replace real-world data for various purposes [90], such as testing algorithms or training
machine learning models. Another benefit of synthetic tabular data is that it can be used
to generate data with specific characteristics [91], such as a certain distribution of values
or a specific level of noise, applying the conditional sampling. Research can benefit
from testing algorithms or models under various conditions in order to gain a better
understanding of how they will perform under different circumstances.

With that said, synthetic tabular data provides researchers and practitioners with the
ability to generate custom data that can be used for a variety of purposes. As a result, it
is possible to reduce the amount of required real-world data, and it is possible to provide
more controlled and predictable data for testing and experimentation.

In numerous real-life applications, the generation of realistic tabular data is fundamen-
tal. Three of the major purposes are data augmentation [92], data imputation (i.e., the
filling of missing values) [93, 94] and class balancing [95, 96, 97, 98]. An additional
subject is privacy-aware machine learning [43, 99, 100] where the generated data can
potentially be leveraged to overcome privacy concerns.
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1.4.1 Challenges of Tabular Data Generation

There are several challenges associated with the generation of realistic tabular data:

Mixed data types. The first issue is the heterogeneous nature of the tabular data,
e.g., it structured from different discrete and continuous distributions (Sec. 1.2). In
order to synthesize different modalities, deep generative models need to be adapted
to each dataset’s architecture. Also, Srivastava et al. [101] showed that a vanilla
generative adversarial network (GAN) could not model all modes on artificial 2-
dimensional datasets.

Often non-Gaussian distributions. Usually, generative modals utilize the as-
sumption that variables are distributed normally, e.g. pixel values. In the case of
the heterogeneous tabular data, features do not always follow this distribution.

Categorical data. The probabilistic modeling of categorical data is one of the
most critical issues of tabular data generation [102, 103], since categorical vari-
ables can have high cardinality numbers. Furthermore, categorical features from
real-world tabular datasets are regularly imbalanced, which makes it harder to
model.

Semantic coherence between the variables. Even thought there is no connec-
tion between variables in tabular data as there is in textual or visual, the values
in a sample can have semantic coherence, e.g., a data sample contains two vari-
ables: "Car brand" and "Car brand origin." And if the generated data has
this form "Car brand" is "Mercedes" and "Car brand origin" is "Italy,"
we conclude that there is a semantic mistake.

Tabular data quality. Last but not the least, real-world tabular data datasets often
suffer from the low-quality data problem [1]. It is common for tabular datasets
to contain missing values [104], extreme data (e.g., outliers) [105], erroneous or
inconsistent data [106], and to have a small size relative to the high-dimensional
feature vectors that are generated from the data [107]. Moreover, due to the cost
of data collection, tabular data tend to be class-imbalanced. Lastly, it has been
showed that artificial neural networks are less prone to low-quality data issues,
than decision-tree-based methods [1].

All of these challenges need to be addressed in order for deep neural networks to
be able to produce realistic models.

As of now, the most common method of generating synthetic data is through the use
of statistical models [108, 109] or generative deep neural networks [86]. Traditionally,
deep generative models perform well on continuous features, while Bayesian networks
perform well on categorical features.

10



1.4 Tabular Data Generation

One of the most popular statistical methods for the tabular data generation step is syn-
thetic minority over-sampling technique (SMOTE) method [110].The SMOTE algorithm
selects an instance of a minority class at random and locates k of its nearest minority class
neighbors. Other approaches from this group include Bayesian networks and multivari-
ate cumulative distribution functions, e.g., copula models.

In recent years, inspired by the success in homogeneous data generation, approaches
based on deep neural network are rising for tabular data synthesis. These are based on
mostly deep learning architectures: generative adversarial networks (GANs) [88] and
variational autoencoders (VAEs) [87]. Among the most popular and widely used deep
learning models for generating tabular data is conditional tabular GAN (CTGAN) [102].
The same authors of the CTGAN model also proposed tabular VAE (TVAE).

1.4.2 Evaluation of Synthetic Tabular Data

In recent years, numerous measures for evaluation of synthetic data have been pro-
posed. These measures can be divided into two groups: single-dimensional and multi-
dimensional scores. Whereas the first group compare each variable individually, the
latter approaches combine multiple features together.

Besides the dimensional differences of the approaches, they are also distinct in an
algorithmic manner. For example, one group of approaches uses the idea that the syn-
thetic data should be “similar” to the original distribution, whereas the second group uses
surrogate models as a means to differentiate between the original and synthetic data.

In general, the evaluation scores can be categorized into three broad categories:

* Statistical scores. These scores evaluate synthetic tabular data by performing sta-
tistical tests on them. Some compare multiple columns simultaneously, while oth-
ers compare individual columns individually and then provide a combined result.
Another option is to use likelihood metrics, which try to fit a probabilistic model
to the actual data and then assess the likelihood of the synthetic data based on it.

* Detection measure. The central idea of this method is to utilize another machine
learning model to distinguish between real and synthetic samples, after the chosen
performance (e.g., accuracy, F1, ROC-AUC) score is reported. Machine learning
efficacy is one of the most adopted measures.

* Privacy measure. The last set of scores measures the privacy-related metrics.
These metrics test the accuracy of an adversarial attacker model on synthetic data
and then evaluate the model’s accuracy on real data.

The choice of evaluation measures for synthetic data depends on the specific charac-
teristics of the data and the goals of the evaluation. The strengths and weaknesses of both
single-dimensional and multidimensional measures should be considered when selecting
the appropriate measure based on the specific context and requirements of the evaluation.

11
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Input sample Output estimation

Black-box model f

Local Explanations Global Explanations

Figure 1.3: An illustration of local and global explanations for a black-box model f given
a data point of interest x;.

1.5 Explainability of Deep Neural Networks

Recent research studies have drawn considerable attention to the problem of explaining
machine and deep learning models [44, 45, 46, 47, 48, 49]. There are numerous reasons
for this: in visual domains, deep convolutional neural networks have shown superior
performance for various tasks [111]: object detection [17], segmentation [112], classifi-
cation [113], and other areas. In the natural language processing domain, self-attention
models, specifically Transformer models [24] constitute the state of the art for many
applications such as text summarization [114], sentiment analysis [115], and so forth.

Despite the fact that deep learning algorithms have performed well in many real-world
applications, without trust in the data systems, in addition to high-risk decision tasks, it
may be difficult to implement them in the future. As a response, the understanding that
the machine learning model performs as planned can be observed from the explanations.
In this manner, explainable machine learning can be used as a tool for model debugging.

Furthermore, a data system user can also enhance the outcome by learning the rea-
sons behind the specific way the given machine learning model performs, after obtaining
model’s explanation [116]. A machine learning model’s explanation can be used to iden-
tify new data patterns, which might otherwise be invisible to the human eye. The last
thing we ought to mention is that, there have been government regulations made regard-
ing the use of the data-driven algorithms in decision-making systems, e.g., European
Union (GPDR), California Consumer Privacy Act (CCPA) [62, 63].

In regards to the data modalities, for visual data, saliency maps are usually used by
highlighting the most crucial areas. The explanation of tabular data requires additional
efforts [48], such as a handling the categorical variables. Additionally, the use of visual-
izations, such as bar graphs and scatter plots, can aid in the interpretation of tabular data.
Furthermore, the use of natural language explanations is another possibility to explain
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the results of machine learning models [117]. These explanations should be concise and
easy to understand, highlighting the key features and patterns in the data that led to the
model’s estimation.

Moreover, an aggregation of feature attribution metrics [118, 119] can be used for the
global explanations of a machine learning model. The main drawback of this approach
is that the aggregation step is then required significant amount of time, since every local
explanation are generated individual.

We discuss and formally define two common approaches for obtaining post-hoc ex-
planations of machine learning models in the following sections - local and global expla-
nations.

1.5.1 Local and Global Explanations

Overall, there are two major approaches in providing explanations of a given machine
learning model: local explanations and global explanations [120]. The main difference
between them is that the local explanation provides an explanation on a single data sam-
ple, whereas the global explanations usually display the overall importance of several or
all available data points.

We will discuss each of these types in the following sections. It should be noted that
there are other forms of explanation, including counterfactual [121], prototypical [122],
conceptual [123], which are beyond the scope of this dissertation.

Local Explanations

Definition 3 (Local Explanation) A local explanations (feature attribution’) function
can be seen as ¢(f,x,cx) € R", where f:R" — R is a black-box model and x € R"
is an input sample belonging to a class cxy C R. The output of ¢ is an explanation
representation vector ey € R".

Each element of e, is an importance score assigned to a feature value in x. A large
positive or negative value in e, signifies that a particular feature greatly influences the
outcome. Features with near-zero values in e, have little impact. Note that there are
explanation methods that do not require a class specification; thus, for a simpler and
more general notation, a feature scoring function has the form ¢ (f,x).

A vast amount of literature has been dedicated to the local explanation of deep neural
networks in recent years [124]. The local-explanations approaches can be broadly sep-
arated into three groups: gradient-based, attribution, and perturbation-based methods.
There are other approaches for feature attribution analysis [49, 125]; however, in this
dissertation, we concentrate on the three main groups.

'Unless stated otherwise we use the local explanation definition as a synonym for feature attribution
concept.

13



Chapter 1 Introduction

Gradient-based methods. These approaches utilize the gradient of the loss with re-
spect to the information on every layer’s input [126, 127]. The idea is to compute the
gradient, or an approximation of it [128, 129], for the input image. Thus, we get knowl-
edge about how the class information changes with respect to a slight variation in the
input image. The positive gradients show that a small change to that input variable may
increase the output probability; the negative gradient shows the opposite behavior. How-
ever, small changes in the input may lead to a strong increase or decrease of the output
probability for a given class. Normally, these methods’ output is the same shape as the
image, which is easy to interpret and presents a network’s “area of attention” view.

Gradient-based explanation methods for deep neural networks are powerful and scal-
able, but they often generate noisy explanations [130] and indicate only the key pixels
that mark the rest as neutral or unimportant. The saturation problem [131] also limits and
misleads the explanation of the gradient-based methods. Many of these methods require
a baseline input, which can significantly affect the explanation outcome [132]. Also, a
recent work [133] suggests that input gradients do not highlight discriminative features.
Furthermore, it has been shown that gradient-based methods are not robust [134]. An-
other limitation of these approaches is that they are weak in the estimation of trust or
justification, such as estimating uncertainties of the importance score.

Attribution methods. These approaches decompose, in a recursive manner, the de-
cision made by a deep neural network. A layer-wise relevance propagation (LRP) [135]
method works by propagating the prediction backward in the neural network, according
to a set of rules that have been deliberately designed. There are several extensions to LRP
work suggested in recent years, such as contrastive-LRP (CLRP) [136] and Softmax-
Gradient-LRP (SGLRP) [137]. They solve the main disadvantage of the LRP method,
the class agnostic behavior. DeepLIFT [131] compares each neuron’s activation to its
reference activation and assigns contribution scores according to the difference. The
work [138] provides theoretical insights on the limitations of these methods. While the
attribution methods are moderately fast and produce an accurate explanation, they do
not quantify saliency maps with uncertainties. Hence, it is challenging to estimate the
confidence of the feature importance produced by these methods, bringing more trust in
the system.

Perturbation-based methods. The next group of approaches utilizes a simple but
reliable method to generate the local explanation. Perturbation-based methods [139] rely
on the idea that if we change the input image, we will find which areas are critical for
the artificial neural network under test. Thus, these methods are not based on backprop-
agation. The most notable algorithms in this category are the Local Interpretable Model-
Agnostic Explanations (LIME) [118] and SHapley Additive exPlanations (SHAP) [119]
algorithms. SHAP approximates for each feature a Shapley value. Both LIME and SHAP
have a substantial theoretical justification [140, 141, 119]. Another group of methods
uses the random masking approach [142, 143].

The main drawback of these algorithms is that the data perturbation is an enormous
computational complexity task, especially for high-denominational data, as it is fre-
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quently the case in computer vision tasks. Therefore, LIME and SHAP utilize the su-
perpixel strategy for image data. The idea is to arrange pixels on the image into groups
called superpixel and use them as a discrete feature. Such an arrangement significantly
lowers the number of perturbations needed. LIME splits the image to explain in contigu-
ous patches that share color and or brightness similarities, SHAP divides the image into
rectangles ignoring the shapes and colors. However, it has been shown [129, 144] that
superpixel-based explanations are not robust and highly depend on the chosen method of
superpixel generation.

Global Explanations

Definition 4 (Global Explanation) A global explanations (feature selection) function
can be seen as &E(f,D) € R", where f : R" — R is a black-box model and D is a data
set of tuples {(x;,yi)};c7. where T is the total number of samples. The output of § is a
global feature importance vector gy € R".

The elements of g represent feature importance values for each variable in a dataset
D given a machine learning model f. Note the feature selection task [145, 3] can be seen
as global explanation extraction [146], since the output of global explanation function
is feature importance scores. Feature selection is a process for dimensionality reduction
where the purpose is to remove noisy or not-important input variables by identifying the
feature importance.

In the recent years plenty of approaches were proposed for the global explanations
[47]. Usually, these methods utilizing learned parameters for feature scoring procedure.
In case of the decision-tree-based algorithm, features that used the most for data splitting
are ranked higher [147]. For deep neural network models, different ways of assessing
global explanations exist; we identify three major groups of approaches: perturbation-
based methods, regularization-based techniques, special-architecture approaches. Lastly,
an aggregation of local explanation, can be also used for the global explanation task.

For the global explanation of deep learning models (as for local explanation) has nu-
merous approaches. The most common technique is the permutation method; typically,
it involves replacing or removing a variable from the entire training dataset to analyze
changes in the model output. This method allows for the determination of the value of a
given feature, but it is computationally intensive, requiring the training of a deep learning
model n times to evaluate n features. Additionally, the permutation method only provides
an approximation of the importance of a feature as it does not consider the interactions
between features or the overall structure of the model.

Alternative methods such as trained parameters analysis (e.g., gain split information
for decision trees) or feature attribution methods not only can provide more accurate
explanations, but may also be computationally expensive and may not be feasible for
large and complex deep learning models.
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Lastly, the explanation of deep learning models remains an active area of research
[148], with ongoing efforts to develop more efficient and effective methods in interpret-
ing these complex algorithms.

1.5.2 Evaluation of Local and Global Explanations

Due to the absence of the ground truth for local or global explanations. It is crucial to
address the following research question: How fo evaluate obtained interpretations?

In order to assess different attribution methods, an ablation approach is commonly
used [149, 150, 151, 152]. It involves perturbing the most or least significant input
features, such as the pixels of an image or variable in a tabular dataset. As a general
rule, perturbing pixels that have high predictive quality should decrease the confidence
of the machine learning model, whereas perturbing pixels with low predictive quality
should have minimal impact.

According to Doshi-Velez and Kim [152], evaluation methods for explanation algo-
rithms can be organized using two major groups: human-grounded scores, relying on
human judgment, and functional-grounded scores, which utilize a dedicated function for
the evaluation step.

Human-grounded evaluation scores are challenging to obtain due to the inherent cost
of gathering human judgments and the subjectivity involved in evaluating explanations.
They are, however, considered a reliable measure of the quality of an explanation, since
they reflect the perceptions and understanding of users. Some examples of human-
grounded scores are user surveys, user feedback, and expert evaluations [153].

Functional-grounded scores, on the other hand, are easier to obtain and less subjec-
tive, but they may not accurately capture the quality of the explanation from a human
perspective. These scores are based on specific measures and functions that are designed
to evaluate an explanation based on certain criteria, such as accuracy, comprehensibil-
ity, or relevance. Examples of functional-grounded scores include fidelity metrics [151],
interpretability metrics, and coherence metrics [76].

As a result, the choice of the evaluation method for explanation algorithms depends
on the specific goals and constraints associated with the application in question. The use
of human-grounded scores may be more appropriate for applications that prioritize user
satisfaction, while the use of functional-grounded scores may be more appropriate for
applications that require fast and objective evaluation.
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1.6 Contributions

The main focus of this thesis is on the development and evaluation of advanced forms
of deep neural networks for heterogeneous tabular data, as well as the application of
machine learning models for explainability tasks. Our research encompasses a spectrum
of issues, including the limitations of current deep learning approaches on tabular data,
the potential of using pretrained language models for synthetic data generation, and the
need for robust explanations of machine and deep learning models.

Our main contributions to the field include the following:

* A comprehensive survey and taxonomy of state-of-the-art deep learning approaches
for heterogeneous tabular data, as well as the development of an open-source eval-
uation framework for these methods. Additionally, we propose a novel deep tabu-
lar learning algorithm (DeepTLF) for robust learning on tabular and mixture data
modalities.

* A novel approach for the generation of realistic tabular data using pretrained large
language models, coined GReaT, which outperforms existing methods by a signif-
icant margin on multiple challenging experiments.

 Contributions toward reliable and robust explanations of machine and deep learn-
ing algorithms through the development of novel approaches such as relation local
explanations, robust aggregation of feature attributions, and a special layer for deep
neural networks for global explanations — CancelOut.

We believe that our contributions will be of great value to researchers and practitioners
working in the fields of deep learning with tabular data and the explainability of machine
learning models. Since our research provides valuable insights into the potential benefits
and limitations of using deep neural network models for learning on heterogeneous tab-
ular data, the findings of this study will help guide future research in this area and assist
in developing more effective and robust deep learning approaches for tabular data.

Along with this thesis, we also submit two publications on applied topics, such as
cognitive load estimation using machine learning methods and weakly-supervised seg-
mentation for medical machine learning. These contributions have been published in an
international conference and a scholarly journal.

1.7 Outline

The structure of this dissertation can be summarized as follows: In Chapter 2, we provide
the motivation and key findings for each component of this study. A discussion of the
selected topics is provided in Chapter 3 before we conclude in Chapter 4. Appendix A
contains manuscripts included in this thesis.
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Chapter 2
Main Findings

This Chapter summarizes the papers written during my doctoral studies on deep neural
networks for tabular data and the explainability of machine learning methods. It includes
motivations, methodologies, and findings according to the open directions that are pre-
sented in Chapter 1. The discussed papers are available in Appendix A.

2.1 Deep Tabular Learning

This Section is based on two journal articles: “Deep neural networks and tabular data:
A survey”, accepted to the IEEE Transactions on Neural Networks and Learning Systems
journal, and “DeepTLF: Robust deep neural networks for heterogeneous tabular data”
published at the International Journal of Data Science and Analytics.

The Section is organized as follows: each of the following subsections represents
the corresponding publication, containing a detailed discussion of the motivation and
methods employed, followed by a summary of the main findings.

2.1.1 A Comprehensive Survey on Deep Neural Networks and
Tabular Data

Despite the fact that deep neural networks are the current state-of-the-art approach in
many fields that involve visual, audio, or text data, they tend to perform worse than
decision tree ensembles when it comes to heterogeneous, tabular data [78, 53, 154, 155,
156, 157]. Nevertheless, in recent years, numerous deep learning approaches have been
proposed specifically for tabular data [1]. In spite of this, there has not been a systematic
and comprehensive review of these methods in order to assess their effectiveness. As
a result, the primary motivation of this manuscript is to provide a thorough survey of
existing research, conduct an empirical comparison of the research, and facilitate further
progress in the field itself. For a complete text version of the manuscript, please refer to
the Appendix A.1.
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Figure 2.1: The proposed unified taxonomy of deep neural network models for heteroge-
neous tabular data inference tasks.

State-of-the-art deep tabular learning and modeling

There has been an increase in interest in developing novel deep learning approaches de-
voted to heterogeneous tabular data in recent years [1]. To the best of our knowledge, we
are the first who categorize these methods into three major groups: data transformations,
specialized architectures, and regularization models.

For each of these groups, our work offers a comprehensive overview of the main ap-
proaches. Figure 2.1 presents the final taxonomy of deep learning model for tabular
data. In total, we thoughtfully examined twenty-three approaches for deep tabular learn-
ing. Additionally, we have developed an open benchmark to measure the performance of
machine learning algorithms, which will be discussed in greater detail in the following
subsection.

Moreover, we present a detailed overview of twenty-three deep learning approaches
for synthetic tabular data generation (Appendix A.1). We have also included a section
devoted to the assessment of generative quality of tabular data, in which we discuss the
most common existing approaches.

Furthermore, we provide an overview of strategies for explaining deep models on tab-
ular data. Discussing the current approaches and strategies. Notably, the models that
build on Transformer-based approaches such as TabNet [158], TabTransformer [159],
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Method HELOC Adult HIGGS Covertype Cal. Housing
Acc T AUC 1 Acc T AUC 1 Acc T AUC 1 Acc T AUC 1 MSE |
Linear Model 73.0£0.0 80.1+0.1 82.5+0.2 85.4+0.2 64.1+£0.0 68.4+0.0 72.4+0.0 92.8+£0.0 0.528+0.008
%D KNN [162] 72.24+0.0 79.0+0.1 83.2+0.2 87.5+0.2 62.3+0.1 67.1+£0.0 70.2+0.1 90.1+£0.2 0.421+0.009
§ Decision Tree [163] 80.3+0.0 89.3+0.1 85.3+0.2 89.8+0.1 71.3+0.0 78.7+0.0 79.1+£0.0 95.0+0.0 0.40440.007
3 Random Forest [78] 82.1+0.2 90.0+0.2 86.1+0.2 91.7+02 71.940.0 79.7+0.0 78.1+£0.1 96.1+0.0 0.272+0.006
2 XGBoost [155] 83.5+0.2 92.2+0.0 87.3+0.2 92.840.1 77.6+£0.0 85.94£0.0 97.3+£0.0 99.9+0.0 0.206+0.005
% LightGBM [156] 83.5+0.1 92.3+0.0 87.4+0.2 92.9+0.1 77.1+0.0 85.5+0.0 93.5+0.0 99.7+0.0 0.195+0.005
:2“ CatBoost [157] 83.6+0.3 92.440.1 87.2+0.2 92.8+0.1 77.5+0.0 85.840.0 96.4+0.0 99.8+0.0 0.196+0.004
Model Trees [164] 82.6+0.2 91.5+£0.0 85.0+0.2 90.4+0.1 69.8+£0.0 76.7+0.0 - - 0.385+0.019
MLP [165] 73.240.3 80.3+0.1 84.840.1 90.3+0.2 77.1+0.0 85.6+0.0 91.0+04 76.1£3.0 0.263+0.008
VIME [166] 72.7+0.0 79.240.0 84.8+0.2 90.5+0.2 76.9+0.2 85.5+0.1 90.9+0.1 82.9+0.7 0.275+0.007
DeepFM [167] 73.6+0.2 80.44+0.1 86.1+0.2 91.7+0.1 76.94+0.0 83.44+0.0 - - 0.2604-0.006
o DeepGBM [168] 78.0+£0.4 84.1+0.1 84.6+0.3 90.8+£0.1 74.5+0.0 83.0+0.0 - - 0.856+0.065
g NODE [169] 79.840.2 87.5+0.2 85.6+0.3 91.1+0.2 76.9+0.1 85.4+0.1 89.9+0.1 98.7+0.0 0.276+0.005
5 NAM [170] 73.3+0.1 80.7+0.3 83.4+0.1 86.6+0.1 53.9+0.6 55.0+1.2 - - 0.72540.022
‘i Net-DNF [171] 82.6+04 91.5+0.2 85.7+0.2 91.3+0.1 76.6+0.1 85.1+£0.1 94.2+0.1 99.1+0.0 -
8 TabNet [158] 81.0+£0.1 90.0+0.1 85.44+0.2 91.1+0.1 76.5+£1.3 84.9+14 93.1+£02 99.4+0.0 0.346+0.007
2 TabTransformer [159] 73.3£0.1 80.1+£0.2 852402 90.6+0.2 73.840.0 81.940.0 76.54+03 729423 0.45140.014
SAINT [160] 82.1+0.3 90.7+0.2 86.1+£03 91.6+0.2 79.8+0.0 88.3+0.0 96.3+0.1 99.840.0 0.22640.004
RLN [172] 73.2+0.4 80.1+£04 81.0+1.6 759482 71.8402 79.4+0.2 77.2+1.5 92.0+0.9 0.348+0.013
STG [173] 73.1£0.1 80.0+0.1 85.4+0.1 90.9+0.1 73.94+0.1 81.94+0.1 81.8+0.3 96.2+0.0 0.285+0.006

Table 2.1: Open performance benchmark results based on (stratified) fivefold cross-
validation on five real-world datasets Home Equity Line of Credit (HELOC) [174],
Adult Income [77], Higgs bosons (HIGGS) [175], Covertype [77], and California Hous-
ing [176] from the “Deep Neural Networks and Tabular Data: A Survey” manuscript. We
use the same fold splitting strategy for every data set. The top results for each data set are
in bold, we also underline the second-best results. The mean and standard deviation val-
ues are reported for each baseline model. Missing results indicate that the corresponding
model could not be applied to the task type (regression or multi-class classification).

and SAINT [160], claim that using attention maps one can get local explanations. In or-
der to confirm this hypothesis, we examined the local feature attribution characteristics of
these methods to the well-established KerneISHAP values in the community [161]. This
selection of KernelSHAP is justified by the absence of ground truth attribution values.

Last but not least, we conclude our survey with an analysis of current trends and the
identification of open research questions in the areas of self-supervised learning, transfer
learning, tabular data generation, as well as other topics.

Tabular Data Open Performance Benchmarking

Despite recent advances in the research of deep neural networks for heterogeneous tab-
ular data, to the best of our knowledge, there are no open-source benchmarks dedicated
exclusively to tabular data. Consequently, the purpose of the work is to provide a fair
and open-source benchmark for machine learning methods on tabular data that will help
identify significant advances over the current state of the art.

To allow the results to be fully reproducible, we utilize the Docker container [177] and
open-source Python packages. Furthermore, since the hyperparameter selection plays a

21
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huge role in the final performance of a machine learning model [178], we utilize a well-
known optimization framework - Optuna [179]. We set the number of iterations to 100
for each model and cross-validate each set of hyperparameters using five folds. The
hyperparameter ranges we use are available online along with our code. We carefully
designed the search space based on the information provided in relevant papers and rec-
ommendations from the Optuna framework’s authors. The full code is publicly available
online on GitHub!.

Table 2.1 presents results of our extensive evaluation using the proposed benchmark
on five real-world tabular datasets. We used the five fold (stratified) cross-validation
reporting the mean and standard deviation values. The details about datasets are in the
our work in Appendix A.1.

Main findings of the “Deep Neural Networks and Tabular Data: A Survey”
publication

We have identified the following as our main outcomes:

I The discussed in this thesis survey is the first to systematically examine the use
of deep neural networks for heterogeneous tabular data. In this context, we sum-
marize the main challenges and research advances in the modeling, generation,
and explanation of tabular data using these techniques. We have collected and
carefully reviewed over twenty-three methods for learning from tabular data using
deep neural networks, as well as sixteen methods for generating tabular data using
these techniques. Our survey provides a comprehensive overview of the current
state of the field and identifies areas for further research and development.

IT We introduced a unified taxonomy for deep neural network-based methods for
heterogeneous tabular data (Fig. 2.1), categorizing the existing approaches into
three main groups and found subgroups.

IIT We also discussed and assessed explanation properties of the existing deep learning
methods for tabular data. Based on our experiments, we showed that the TabNet
model [158] provides more close to a target explanations, in comparison to other
baselines.

IV We developed an open-source and fully-reproducible benchmark for fair machine
learning models comparison on tabular data. Utilizing our open performance
benchmark, we conducted an unbiased evaluation of the twenty machine learning
models on five real-world datasets, with various number of samples from 10,000
to 10,000,000, and from different domains. In order to compare the machine and

!Open performance benchmark on tabular data: https://github.com/kathrinse/TabSurvey
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Figure 2.2: A data pipeline for the proposed DeepTLF framework. First, the train data is
used to train a gradient boosted decision trees model. The heterogeneous data is trans-
formed by exploiting the structures of the decision trees in the ensemble. More specif-
ically, the TreeDrivenEncoder algorithm distills information from trained decision trees
of the gradient boosting decision tree model to produce homogeneous binary vectors.
These vectors are then used to train a deep neural network. Even considering the con-
struction of the gradient boosted decision tree model as preprocessing for DeepTLF, the
overall preprocessing time is lower than that of typical data preprocessing for deep neu-
ral networks, such as normalization or handling missing or categorical values.

deep learning methods fairly, we tune hyper-parameters for each model for hun-
dred steps. Furthermore, we utilize the (stratified) fivefold cross-validation scheme
for obtained final results.

V Based on the empirical evaluation, we observed that deep neural network-based
methods for heterogeneous tabular data are still, in general, inferior to machine
learning methods based on gradient-boosting decision tree ensembles such XG-
Boost [155], LightGBM [156], or CatBoost [157]. Only on very large data set
with eleven million rows, a Transformer-based model SAINT [160] showed better
performance then the rest of baseline models.

VI We conclude the presented manuscript with a discussion on current trends for the
deep learning on tabular data. Additionally, we have identified a number of open
research questions and challenges that require further exploration.

All our results have important implications for further research in area of learning on
heterogeneous tabular data, especially in the context of deep neural networks. To the
best of our knowledge, the discussed manuscript is the first comprehensive overview of
deep learning techniques for heterogeneous tabular data. As such, this work can serve as
a useful guide for researchers and practitioners working on data-driven tasks with tabular
data. In the following Subsection, a novel deep tabular learning model is presented.
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2.1.2 DeepTLF: A Novel Deep Tabular Learning Framework

This Subsection is based on the journal publication “DeepTLF: Robust deep neural net-
works for heterogeneous tabular data.” For a complete text version of the manuscript,
please refer to the Appendix A.1.

Prior to this, we discuss that deep neural networks constitute the state of the art on the
mostly homogeneous data, e.g., visual, textual, or sound datasets, where tabular data is
often highly heterogeneous [11, 12, 1] (Sec. 1.3). Also, as we empirically demonstrate it
in our survey, where even the specialized for tabular data deep models cannot outperform
the properly-tuned gradient boosting decision tree models (Sec. 2.1.1, Appendix A.1).

The primary motivation for this work is to propose a novel robust deep learning ap-
proach for heterogeneous tabular data, as a response to the mediocre results that deep
neural networks have achieved on the tabular data modality. In order to accomplish the
objective and overcome the data heterogeneity issue, we provide a novel deep tabular
learning framework, coined DeepTLF. As discussed in Chapter 1, the challenge stems
from the concurrent existence of numerical and categorical feature types, complex, ir-
regular dependencies between the features, and other data-related issues such as scales,
outliers, and missing values [1]. In contrast to deep learning-based methods, decision
tree ensemble methods require minimal data preprocessing and are robust to inappropri-
ate training data [180, 181].

The proposed DeepTLF approach is a hybrid machine learning model that combines
the data preprocessing power of decision tree-based ensemble algorithms with the inher-
ent flexibility of deep neural networks. Figure 2.2 presents the DeepTLF data pipeline,
it consists of a heterogeneous tabular dataset, data encoding block, and deep neural net-
work. Considering that decision-tree-ensemble-based models are able to provide robust
data preprocessing powers, such as eliminating the need for scaling variables or filling
in the missing values, which is one of the main issues for deep models on tabular data -
information loss due to the data preprocessing [1].

For the data transformation step in the encoding block we propose a novel knowl-
edge distillation approach - TreeDrivenEncoder. It utilizes the structure of trained de-
cision trees from the state-of-the-art tabular data model gradient boosting [1]. Essen-
tially, TreeDrivenEncoder distills knowledge from a gradient boosting model by exploit-
ing Boolean expressions present in decision nodes. The purpose of this stage can be
described as “feature engineering,” which aims to produce a more homogeneous data
representation that is more suitable for usage with deep neural networks. Furthermore,
According to He et al. [182], the boosted decision tree transformation can be seen as a
supervised feature encoding that transforms the original feature space into a more con-
densed binary-valued feature space. This is because each tree is designed to model the
residual of the previous tree in each iteration.

In the literature, numerous approaches have been developed to distill knowledge from
the leaf outputs of random forest or gradient boosting decision tree algorithms, which
have been extensively examined [183, 184, 182, 168, 185]. These methods demon-
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strate improvements in a variety of applications, such as online advertising [186] and
recommendation system [187]. As opposed to previously published state-of-the-art ap-
proaches, the DeepTLF method utilizes the entire decision tree structure from a gradient
boosting decision tree model and considers each feature’s representation independently
when distilling information; thus, it does non-linearly transformation of tabular data in
the data encoding step.

By combining gradient-boosted trees, which have the ability to handle various scales,
attribute types, missing values, and outliers, with neural networks, we are able to achieve
excellent predictions. On average, the DeepTLF approach demonstrates a 19.6% im-
provement in performance across several tabular datasets compared to standard deep
learning models.

In addition, we also address the issue of multimodal learning, which involves a com-
bination of various data modalities, namely visual and tabular data [188, 189, 190, 191,
39, 192, 193, 194]. Currently, deep learning-based models represent the state-of-the-art
in multimodal learning [195], even when heterogeneous tabular data is involved. This is
due to the challenge posed by applying decision tree ensemble methods in the presence of
other data modalities. With the approach presented in this paper, multimodal problems
involving tabular data can be addressed in an integrated manner, while also achieving
robust performance. Notably, our approach to a multimodal strategy does not rely on
any specific artificial neural network architecture, thereby enabling easy integration into
existing multimodal data workflows.

The implementation of TreeDrivenEncoder and DeepTLF methods is open-sourced
and published on GitHub?. For qualitative and quantitative results of the proposed
DeepTLF method, please refer to Appendix A.1.

Main findings of the “DeepTLF: Robust Deep Learning on Tabular Data”
publication

Our work has resulted in the following main outcomes:

I We demonstrate that one of the major challenges for the deep neural networks
on tabular data is its heterogeneity. To accomplish that, we selected seven real-
world tabular datasets with the sample size from 19,000 to 11,000,000 samples,
and compare the DeepTLF method to eleven baselines on six challenging experi-
ments. Across all datasets and experiments, the proposed framework shows high
results.

IT Furthermore, we present a novel scheme for encoding tabular data called TreeDrive-
nEncoder, which does the non-linearly transformation from heterogeneous tabular
data into homogeneous data modality.

’DeepTLF framework: https://github.com/unnir/DeepTLF
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Original tabular data set

"Age is 39, Education is Bachelors, Occupation is Adm-clerical,
Age Education Occupation Gender Income Gender is Male, Income is < 50K.",
] "Age is 50, Education is HS-grad, Occupation is Exec-managerial,
39 Bachelors Adm-clerical Male < 50K (@ - ]
—» Gender is Female, Income is > 50K.",
"Age is 53, Education is 11th, Occupation is Handler-cleaners,
Gender is Female, Income is > 50K."

®) l

/[“’k'lnpm] [mk‘;pmJ [mk;pmJ [ ] [ TS ] "Education is Bachelors, Income is < 50K, Age is 39,

-— Occupation is Adm-clerical, Gender is Male.",

(c) "Incomeis > 50K, Occupation is Exec-managerial, Age is 50,
Education is HS-grad, Gender is Female.",

][ (£03] ] "Occupation is Handler-cleaners, Education is 11th, Age is 53,
Income is > 50K, Gender is Female."

50 HS-grad Exec-managerial Female > 50K

\53 Bachelors Prof-specialty ~ Female 250K/

Pretrained Generative
Large Language Model

\ (5 ) o)

Tokenizer

Figure 2.3: The GReaT data pipeline for the fine-tuning step. First, a textual encoding
step transforms tabular data into meaningful text (a). Subsequently, a feature order per-
mutation step is applied (b), before the obtained sentences can be used for the fine-tuning
of a large language model (c). The toy tabular data set inspired by the Adult Income data
set [77].

III Within the DeepTLF framework, we also address the issue of the multimodal learn-
ing. And empirically demonstrate that our approach is superior to the common data
fusion technique, relying on the deep neural networks.

As a final note in this Section, results from both works have substantial implications
for further research in the area of learning on heterogeneous tabular data, especially in
the context of deep neural networks.

2.2 Realistic Tabular Generation using
Transformer-networks

This Section is based on a single publication “Language Models are Realistic Tabular
Data Generators”, the paper is accepted to the The Eleventh International Conference on
Learning Representations (ICLR) 2023. For a complete text version of the manuscript,
please refer to the Appendix A.1.

GReaT: Large Language Models are Realistic Tabular Data
Generators

In line with what we discussed previously, tabular data is one of the most common forms
of data in the machine learning field. There is a wide array of real-world applications that
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Input text sequences (Arbitrary conditioning)

['Age"] [tokil"”"lJ [tok'z""”‘] [tokia"p”t] [ ] [ [E0S] J

3
[*Ageis 26,"] (al) g Finetuned Pretrained Generative
L . = Large Language Model
[* Education is Masters, Age is 59," ]
(o™ ™) (o™ (=) (imos1 )
[ De-tokenizer ]
b
Synthetic tabular data set ®) ‘
"Age is 23, Occupation is Adm-clerical, Income is < 50K,
Age Education Occupation  Gender Income Gender is Missing, Education is 11th, "
(c) ' '
23 11th Adm-clerical  Missing < 50K - "Age is 26, Income is > 50K, Occupation is Sales, Education is

HS-grad, Gender is Female"
"Education is Masters, Age is 59, Occupation is Other-service,
Gender is Male, Income is > 50K"

26 HS-grad Sales Female > 50K

59 Masters  Other-service Male > 50K

Figure 2.4: The sampling procedure of the proposed method for synthetic data gener-
ation. In order to generate new data points using a pretrained large language model,
it is necessary to include either a single feature name or an arbitrary combination of
feature-value pairs into text (a). Subsequently, the input sequence is completed by the
fine-tuned large language model (b) and can be transformed back into a tabular format
(c). In comparison to other state-of-the-art approaches, GReaT allows arbitrary condi-
tioning on feature subsets without model retraining, i.e., the sampling can be performed
by conditioning on any feature name or combination of feature names and values.

rely substantially on tabular data. However, as a result of the high cost of data collection,
heterogeneous tabular data sets tend to be class imbalanced.

For example, tabular data sets tend to have long-tail label distributions. Furthermore,
there are a number of reasons that may prevent the sharing of critical person-related
information, including the impurity issues that often impede the application of modern
machine learning algorithms, such as noisy or missing values. In order to alleviate these
crucial issues, synthetic tabular data is used.

A recent research for synthetic tabular data generation mostly based on generative
deep learning architectures [1], for example variational autoencoders or generative ad-
versarial networks, are widely adopted for heterogeneous tabular data generation due to
their success in other homogeneous data modalities.

However, as we have already observed to this point, heterogeneous tabular data sets
represent a significant challenge for deep neural network models because they require
multiple preprocessing steps and the modeling of structured data with a variety of vari-
able types and distribution forms [1]. With a view to resolving the issue, several popular
generative models from the computers vision domain have been adapted for tabular data —
variational autoencoders or generative adversarial networks, for example CTGAN [102],
TVAE [102], and so forth [1].

As we pointed in our work [6], the heterogeneity of feature types and values leads to
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three core challenges in tabular data preprocessing and modeling:

» Extensive and lossy preprocessing. Many of the existing methods for generat-
ing tabular data require significant preprocessing, including converting categorical
data into numerical values, scaling or normalizing the data, replacing missing val-
ues, and removing outliers and smoothing the data. All this may result in informa-
tion loss, and strongly influence the quality of synthetic samples.

* Context knowledge for coherent semantics. As we pointed in Sec. 1.4, often
variables in a tabular dataset have clear unambiguous relationship. Therefore, it is
necessary to learn this connects for a realistic synthetic data generation task.

* Arbitrary conditioning. A model that is versatile and can generate data for var-
ious applications should be able to synthesize data based on an arbitrary set of
variables. This allows for the imputation of missing data patterns or oversampling
of specific subsets. Currently, not all of the modern and state-of-the-art tabular
data generation models provide arbitrary conditioning. For example, the CTGAN
[102] allows conditioning only on a single categorical value.

There is limited research on the use of deep autoregressive large language models
in heterogeneous tabular data, which are generative in nature, for example generative
pretrained transformers (GPT) models [197, 198, 199]. Additionally, Transformers have
demonstrated superior performance in many generation tasks. These findings suggest
that the use of Transformers in the context of heterogeneous tabular data could be a
promising area of study.

Therefore the main motivation of our work is to present a novel approach for hetero-
geneous tabular data generation using pretrained large language models, provide support
for the arbitrary conditioning power, and last but not least, improve the quality of the
synthetic data.

To maximize the usage of pretrained large language models, we propose a novel tex-
tual subject-predicate-attribute encoding scheme for tabular data. This scheme trans-
forms a sample (row) into a set of clauses that form a sentence, utilizing the contextual
information provided by the variable names. To put it simply, this means given a tab-
ular dataset with variable names, we can construct a sentence by concatenating clauses
of a feature name and value for each row. Fig. 2.3 (a) illustrates the process using a
toy example. Then in order to achieve the fully-arbitrary sampling procedure we uti-
lize two components: the autoregressive large language model and random permutation
step during the fine-tuning stage (Fig. 2.3 (b)). The sampling procedure is depicted in
Fig. 2.4.

Figure 2.5 demonstrates the comparison of the original data and synthetic data using
two variables from the California housing dataset [176]. It is evident that the proposed
model synthesizes the most plausible tabular data samples.
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Figure 2.5: A comparison of the original and generated samples for the California Hous-
ing data set [176], which contains characteristic information about different properties in
California, USA. We show joint histogram plots of the highly interconnected variables
Latitude and Longitude. The black outline indicates the true boundary of the state of
California. We select the following baselines for the comparison TVAE [102], Copula-
GAN [196], and CTGAN [102].

We developed and published online an easy-to-use Python framework?, which requires
only a few lines of code to get the synthetic data (Fig. 2.6).

Main findings of the “Language Models are Realistic Tabular Data Generators”
publication

We have identified the following as our main outcomes of the work:

I We demonstrate that the large language models are realistic tabular data generators
though an extensive set of challenging experiments. In comparison to GAN/VAE-
based method, our GReaT approach shows an average improvement of 20% across
on six real-world datasets on the discriminator metric (Sec. 1.4.2).

30pen-source implementation of the GReaT framework:
https://github.com/kathrinse/be_great
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# pip install be-great
from be_great import GReaT
from sklearn.datasets import fetch_california_housing

data = fetch_california_housing(as_frame=True).frame

model = GReaT(llm=’distilgpt2’, batch_size=64, epochs=50)
model.fit (data)
synthetic_data = model.sample(n_samples=100)

Figure 2.6: A Python code example of the GReaT framework for the California housing
tabular dataset [176] from an open-source Scikit-Learn package [200]. This example
illustrates the simplicity of using the GReaT framework to model tabular data.

II We present a novel textual encoding technique for tabular data, which allows the
usage of the pre-trained models from the different data modality. Thereby, we
connect tabular and textual data modalities via a textual encoding scheme.

III Our proposed GReaT demonstrates that autoregressive models are effective at gen-
erating samples, allowing us to achieve the ability to condition generation on any
combination of variables, regardless of their type. This capability has potential ap-
plications in a variety of contexts involving tabular data, such as generating more
comprehensive synthetic data, imputing missing values, and addressing class im-
balance issues.

To conclude, we believe that our research involving the application of large language

pre-trained models on heterogeneous tabular data represents a step closer to new possi-
bilities for the generation of heterogeneous data in the future.
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2.3 Robust Explainability of Deep Neural Networks

This section is based on four manuscripts: “CancelOut: A Layer for Feature Selection
in Deep Neural Networks” published at the international conference on artificial neu-
ral networks (ICANN), 2019, and “A Robust Unsupervised Ensemble of Feature-Based
Explanations using Restricted Boltzmann Machines” published in the 1st Workshop on
eXplainable Al approaches for debugging and diagnosis at the conference on Neural
Information Processing Systems (NeurlPS), 2021, “Consistent and Efficient Evaluation
Strategy for Attribution Methods” published at the international conference on machine
learning (ICML), 2022, and “Relational Local Explanations”, which is currently under
submission to an international conference.

The proposed approaches are not only applicable to tabular data, but also to visual and
textual data modalities, which are common data formats in the field of machine learning.
The presented approaches demonstrate the versatility and potential for broad application
in various data analysis and modeling tasks.

The Section is organized in the following manner: it consisted of four Subsection for
each work, where motivation and main findings are provided.

2.3.1 Relational Local Explanations

Most current methods for post-hoc explanation in machine learning models generate
individual feature attribution scores for each variable, overlooking an essential aspect
such as the interplay among features, which is particularly significant in visual and text
data. In order to address this, we introduce a unique algorithm for feature attribution
that is not only model-agnostic but also permutation-based, focusing on the relationships
between input variables. This approach provides a more comprehensive insight into ma-
chine learning models and data decisions. The local explanations produced through this
method directly assess interactions between local features, covering another critical di-
mension of explanations. Our experimental assessments using both image and text data
types substantiate the effectiveness of our framework and the credibility of the explana-
tions generated.

We present a model-agnostic approach to local explanations, termed Relative Local
Explanations (RLE). This approach addresses one of the challenges of post hoc explana-
tions - interpretability of inter-variable relationships by providing a qualitative measure
of how feature attributions interact. The formal definition of is listed below:

Definition S (Relational Local Explanation) A relational local explanation function can
be seen as W(f,x,cy) € R where f:R" — R is a black-box model as above (Sec.
1.5) and x € R" is an input sample belonging to a class cx C R. The output of the ¥ is a
relational explanation representation in a form of a adjacency matrix Ay.

This form of explanation is helpful for various data types and problems where infor-
mation about the relationship is also essential. Furthermore, the RLE framework pro-
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vides standard local explanations in the form of feature attributions. As a final point,
the proposed feature attribution method, RLE, has shown excellent results in visual and
quantitative experiments when compared with state-of-the-art approaches in the field.

We have made the implementation of our RLE framework publicly available by pub-
lishing and open-sourcing it.* This allows for greater transparency and accessibility for
interested researchers and practitioners in the field. By open-sourcing the implementa-
tion, we hope to facilitate further exploration and advancement of the RLE framework
within the academic community.

Main findings of ‘‘Relational Local Explanations”

We have identified the following as our main outcomes of the work:

I Our study emphasizes the importance of relational interactions among input fea-
tures in explaining local patterns for more holistic local explanations.

IT In light of the fact that visual and textual data are compositional by nature, i.e.
there exists “regional” information between variables, it is imperative to not only
identify and quantify the variables that are most important in a given data sample,
but also to highlight the combinations of variables that are most critical.

IIT We developed and formally described a model-agnostic local feature attribution
technique, coined relational local explanations. To the best of our knowledge,
our proposed explanation framework is the first model-agnostic local explanation
algorithm based on the relationships between input variables.

2.3.2 A Robust Unsupervised Aggregation of Local Explanations
Using Restricted Boltzmann Machines

One of the major challenges in the field of machine and deep learning is the ability to
provide clear and consistent (local) explanations for the decisions made by these models.
In recent years, many approaches have been developed to address this issue, but one
of the key problems with the local feature attribution methods is that they often produce
divergent explanations for the same machine learning model [4], please refer to Table 2.2
for visual comparison of the local explanations. This can make it difficult to understand
how and why a model is making a particular decision, and it can also lead to confusion
and inconsistency in real-world applications.

Furthermore, the same local explanation algorithm can produce varying saliency maps
depending on the chosen hyperparameters or even the random seed used [206]. We refer
to this frequently occurring phenomenon as local-explanation discrepancy. In addition
to this, it is worth noting that obtaining the ground truth for a local explanation is not

4 An open-source implementation of the RLE framework: https://github.com/unnir/rle
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Table 2.2: A visual comparison between baseline methods and ensemble methods on
image data from the ImageNet [204] and MNIST [205] datasets.
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currently possible [49, 4]. Moreover, the complexity of the model and the data used for
training can also impact the accuracy and reliability of the local explanation. As a result,
it is important to carefully evaluate and compare different local explanation methods in
order to choose the most appropriate one for a given task.

Based on aforementioned considerations, the main motivation behind this work can be
summed up as follows: (i) First, verify the local-explanations discrepancy of state-of-the-
art explanation methods. (ii) Next, provide a novel solution for the effect minimization
of the local-expiation discrepancy and theoretically define it. (iii) Lastly, derive a prob-
abilistic aggregation of existing techniques for feature-based, local explanations and a
corresponding easy-to-use Python framework for robust local explanations.

In the machine learning community, ensemble learning is often utilized to amalgamate
methods that may not consistently agree with one another [207, 208]. Compared to
non-ensemble methods, there is generally a marked improvement in performance, with
increased robustness to outliers and noisy data [209, 210]. The principle behind ensemble
learning is the combination of multiple machine learning methodologies to enhance the
overall system performance and mitigate the effects of individual errors by each method.
This approach, backed by both statistical learning theory and practical applications, is
considered a more robust strategy for constructing machine learning systems [211, 212].

Due to the lack of ground truth, we propose using restricted Boltzmann machines
[213] for unsupervised ensemble learning in order to generate reliable and robust feature-
based explanations for deep neural networks. This approach builds upon existing work
on unsupervised ensembling learning [214, 207] by aggregating the results of different
feature-based explanation methods in a probabilistic manner. Furthermore, previous re-
search has demonstrated the effectiveness of restricted Boltzmann machines in a truth
discovery setting, which is similar to our task of finding an accurate feature importance
map from multiple sources [215].

In 2016, Shaham et al. published a paper [214] demonstrating that the Dawid and
Skene model [216], which presupposes independence among models, is equivalent to
a restricted Boltzmann machine with a single hidden node. Similar probabilistic ap-
proaches have also been employed by Kasneci et al. [217, 218] to aggregate information
from multiple independent sources. Therefore, drawing insights from prior work, we
have developed a technique to unearth latent explanations using restricted Boltzmann
machines. In our research, we operate under the assumption that the true local explana-
tion can be approximated using a restricted Boltzmann machine with one hidden unit,
representing whether an input feature or pixel is relevant for the final explanation or not.

To validate our approach, we employ several state-of-the-art feature attribution meth-
ods, to generate local explanations for deep neural network models. These explanations
provide insight into the factors that influenced the model’s prediction for a specific input.
Next, we aggregate the local explanations from the ensemble of models to generate a
single “true feature attribution”, i.e., reliable explanation, through the use of restricted
Boltzmann machines.

By combining the local explanations from multiple models, our proposed method can
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provide a more accurate and robust interpretation of the underlying data and prediction.
This can be useful for a variety of applications, such as improving the transparency and
trustworthiness of machine learning models, or for identifying potential biases or weak-
nesses in the models.

We demonstrated the robustness and reliability of the proposed approach through qual-
itative and quantitative experiments. With noisy attribution maps in an ensemble, the
proposed approach successfully selects only valuable information, mitigating irrelevant
local importance (please refer to Fig. 2.2). Furthermore, our work clarifies and mitigates
the problem of contradictory results that might be obtained using different explanation
and evaluation methods. Lastly, our approach can also be used within a single inter-
pretability framework to reduce the sensitivity to hyperparameters of a feature-based
explanatory approach.

The corresponding implemented framework for the robust aggregation of local expla-
nation is open-sourced and available online.’

Main findings of the “A Robust Unsupervised Aggregation of Local Explanations
Using Restricted Boltzmann Machines” work

We have identified the following main outcomes from this work:

I We demonstrate and theoretically justify that the aggregation of feature attributions
using restricted Boltzmann machines leads to more robust local explanations.

IT The proposed aggregation method can be applied to a single model or multiple
models in an ensemble.

IIT Our approach has several benefits, in addition to providing interpretability, it can
be used for debugging and diagnostic purposes. This can help increase the long-
term trust in and acceptance of deep learning in real-world applications.

2.3.3 A Consistent and Efficient Evaluation of Local Explanations

A variety of local feature attribution methods have been proposed in recent years [44, 45,
46, 47, 49], and follow-up research has suggested a number of strategies for evaluating
these methods [149, 150, 151, 219]. An evaluation strategy that is becoming increasingly
popular is feature perturbation. It is used to determine attribution quality across differ-
ent attribution techniques. Nevertheless, research has found that different evaluation
strategies produce conflicting rankings of attribution methods and that computing these
rankings can be prohibitively expensive [219, 5]. The main motivation of this study is the
identification of bias in the pixel perturbation-based evaluation strategies, which causes
inconsistent results. In order to accomplish the objectives, we present an analysis based

SRobust local explanations using RBMs framework
https://github.com/JohanvandenHeuvel/AggregationOfLocalExplanations
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Figure 2.7: A deep neural network with the CancelOut layer as an input layer, where
X1,X2,Xx3 are input variables, and y is estimated output.

on information-theoretic principles of pixel perturbation-based evaluation strategies and
present a novel algorithm which can be utilized for the comparison of non-contradictory
feature attributes. The code is open-sourced and publicly available.®

Main findings of the “A Consistent and Efficient Evaluation of Local Explanations”
work

We have identified the following as our main outcomes of the work:

I By conducting a comprehensive analysis based on information theory, we exam-
ined the underlying principles of perturbation-based evaluation techniques and
found that the outcomes can be significantly distorted. To address this issue,
we propose and demonstrate the effectiveness of the Noisy Linear Imputation ap-
proach, which mitigates bias. Our method also leads to a significant reduction in
hyperparameters, such as the order of removal.

IT Our research introduces a new evaluation framework called Remove and Debias
(ROAD), which offers two benefits. Firstly, it reduces the impact of bias, leading
to improved consistency among evaluation techniques. Secondly, ROAD does not
require the computationally expensive step of retraining, resulting in a potential
cost saving of up to 99 % compared to Remove and Retrain (ROAR) [219].

2.3.4 Global Explanations Through the CancelOut Layer

Another crucial aspect of the deep learning explanations is to obtain the global variable
importance for a given black-box model. In this work, we propose a new layer for deep
neural networks, coined CancelOut, which can be utilized for global feature attribution

SRemove And Debias (ROAD) framework
https://github.com/tleemann/road_evaluation
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ranking in the context of both supervised and unsurprising learning. Additionally, the
CancelOut layer can be used for (i) feature selection tasks, which in turn can be used to
(i1) minimize the unwanted effects associated with the curse of dimensionality problem
and to minimize (iii) training time by selecting the most informative variables; (iv) last
but not least, it helps to improve the predictive performance and robustness of a model
as well.

An intuitive explanation for this is that it is necessary to update the weights of Can-
celOut during a training stage, so that “noisy” or less informative features will be can-
celed out with a negative weight. In such a case, the variables that contribute most to the
learning process will be given a positive weight. The CancelOut input can be viewed as
a “gate” input; a deep neural network determines which information (related to features)
should pass through. A simple deep learning model with the CancelOut layer depicted
in Fig. 2.7.

As a formal definition of the CancelOut layer, we have the following:

CancelOut(x) =x© g(Weo), (2.1

where © indicates an element-wise multiplication, x is an input vector x € RV, w,, is a
weight vector w., € RN, N is the feature size, and g is an activation function. Note g(x)

. . . . . X1
denotes here element-wise application, e.g. for a two-dimensional vector x = , then

wor=e([])- (1) ”

The CancelOut layer is differentiable in its entirety and can be integrated with various
activation functions. The weight parameter w,, is learned during the training process
using the backpropagation algorithm [220].

In addition, we propose a theorem that theoretically demonstrates the effectiveness
of the CancelOut layer in identifying the most influential variables based on a given
loss function. The formal proof of this theorem can be found in the appendix of the
accompanying paper (Appendix A.2).

In terms of functionality, the CancelOut layer provides a very simple user interface
that makes it very easy to configure and use. To add this to a deep learning training
loop, only a few lines of code need to be added to the code. We have published and
open-sourced the CancelOut implementation’ for major deep learning frameworks such
as PyTorch [221] and TensorFlow/Keras [222, 223].

Main findings of the “CancelOut: A layer for feature selection in deep neural
networks” work

We have identified the following as our main outcomes of the work:

"CancelOut layer open-source implementation: https://github.com/unnir/CancelOut
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We introduced a novel feature ranking method for deep neural networks, which can
be used in supervised settings for classification or regression tasks. In addition, the
CancelOut layer is suitable for unsupervised tasks that are conducted based on the
deep autoencoder architecture.

We demonstrate that deep learning models are capable of self-feature selection
using the CancelOut layer.

Due to the power of the deep neural networks, the presented approach learns linear
and non-linear data dependencies, which helps to identify the complex interaction
between features for the global explanation scoring. Thus, the proposed layer helps
understand the data and its influence on the performance of deep learning models.



2.4 A Summary of the Discussed Publications

2.4 A Summary of the Discussed Publications

In this section, we provide a brief overview of the main motivations and significant find-
ings that led to the development of the work discussed here. There is a wide range
of contributions made by the dissertation. First, we present an extensive and thorough
overview of existing deep learning methods for heterogeneous tabular data inferencing
and generation tasks. We also developed a novel hybrid algorithm called DeepTLF,
which combines the preprocessing power of decision tree ensemble algorithms and the
flexibility of deep neural networks.

In the context of synthetic tabular data generation, we present a novel approach called
Generation of Realistic Tabular data (GReaT) that utilizes autoregressive pretrained large
language models. Our work is particularly noteworthy for eliminating the process of
data preparation and simultaneously modeling all variables, thereby eliminating the need
for data transformation or missing values imputation steps. A series of experiments
were carried out to quantify the validity and quality of the produced data samples from
multiple angles, demonstrating the effectiveness of the proposed approach. Our results
demonstrate that GReaT maintains state-of-the-art performance across a wide range of
real-world data sets.

Furthermore, in this dissertation, we have approached the topic of explainable machine
learning from a variety of perspectives. Specifically, we address the issue of hyper-
parameter sensitivity and propose a solution based on restricted Boltzmann machines for
the problem. We also present a novel approach that takes the spatial correlation between
input variables and generates relational local explanations for them. Our last, but not
least, contribution is the presentation of a method for evaluating local explanations with
a highly-efficient approach.

Each of the papers discussed in this chapter is fully presented in Appendix A. Addi-
tionally, we have open-sourced our algorithm implementations and made them available
online.
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Chapter 3

Discussion

This chapter presents a discussion of the manuscripts summarized in Chapter 2 and fully
presented in Appendix A, addressing three main topics: deep neural networks for het-
erogeneous tabular data, synthetic tabular data generation, and explainability of deep
models. Toward the end of the Chapter, an outlook of future developments is presented.

3.1 Deep Tabular Learning

As part of this dissertation, we provide an extensive summary of the state-of-the-art al-
gorithms for deep tabular learning on tabular data for inference and generation tasks by
categorizing them into three groups, establishing a unified taxonomy of the approaches
(Fig. 2.1). Furthermore, we propose an open-source benchmark for machine learning
on heterogeneous tabular data, which is publicly available. Using our evaluation frame-
work, we evaluate over twenty machine and deep learning models on five real-world
tabular datasets from various domains and sizes. According to our results (Tab. 2.1.1),
gradient-boosted tree ensemble algorithms continue to outperform deep learning models
on supervised learning tasks, suggesting that progress in developing competitive deep
learning models for tabular data has slowed down.

Moreover, we have proposed a novel algorithm for tabular data — DeepTLF, which is
a combination of decision trees and deep neural networks (Sec. 2.1.2). The method can
also be used for problems where multiple modalities exist along with tabular data.

Below, we discuss the current trends and open issues in the deep tabular learning
domain. In addition to this, we provide a discussion on the proposed DeepTLF model.

Unified benchmarking for tabular data. The machine-learning community does not
have an agreement on how to make a fair and efficient comparison of statistical models
with tabular data. For example, Kadra et al. [83] uses about fourteen different tabu-
lar data sets for assessing the predictive performance of machine learning algorithms,
Shwartz-Ziv & Armon [25] show that the choice of benchmarking data sets can have
a non-negligible impact on the performance assessment. While in the presented dis-
sertation in Sec 2.1.1, we chose common data sets with varying characteristics for the
experiments, different choices of data sets, hyperparameters, or preprocessing decisions
such as the encoding used for categorical data (e.g., one-hot encoding or other binary
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encoding schemes) may lead to different outcomes. Because of the excessive number of
tabular datasets, there is a necessity for a standardized benchmarking procedure, which
allows to identify significant progress with respect to the state-of-the-art models. To-
ward this goal, as a part of this dissertation, an open-source benchmark for deep learning
models on tabular data is introduced 2.1.1. We strongly believe that it is critical to share
reproducible results, therefore we suggest a usage of a Docker container [177]. Thus, we
consider the work presented in the survey is a significant step towards a unified bench-
mark for heterogeneous tabular data for machine learning methods.

Standard datasets. There is also a need for standard evaluation datasets in the tabular
data learning area. In comparison to the computer vision domain, there is no standard
evaluation dataset for tabular data like MNIST [205] or ImageNet [204]. Existence of
such datasets would benefit the community for efficient machine and deep learning mod-
els evaluation. A possible standard tabular dataset should contain a variety of variable
types, such as different categorical features with high and low cardinality, numerical
features with outliers. Additionally, since real-world tabular data often contain missing
values [224], it is desirable to include variables that incorporate such elements.

Tabular data pre-processing. The heterogeneity of tabular data (e.g., categorical and
sparse values) presents many challenges for deep neural networks and other machine
learning algorithms. Therefore, a number of deep learning solutions transform them into
a homogeneous representation more suitable for neural networks. While the additional
overhead is small, such transformations can boost performance considerably and should,
thus, be among the first strategies applied in real-world scenarios. Such transformations,
however, may result in loss of information contained in the data [225, 226, 227]. 1

Transformer architectures for deep learning on tabular data. In recent years, from
an architecture perspective, Transformer-based solutions [24] have become increasingly
popular [160, 158, 228, 6]. This architectures offers a number of advantages compared
to standard neural network architectures, such as the ability to learn both categorical
and numerical features simultaneously. In addition, self-supervised or unsupervised pre-
training methods that utilize unlabeled tabular data to train parts of deep learning models
are becoming increasingly popular, and are not limited to transformer-based methods.
Furthermore, attention maps from Transformer models may help to interpret the outcome
of models [229]. However, there is an ongoing debate regarding the viability of attention
maps as explanations for the model’s predictions [230, 231].

Regularization models for tabular data. As we stated in our survey (Sec. 2.1.1),
regularization has also been shown to reduce the hypersensitivity of deep neural network
models and to improve their overall performance [172, 83, 232]. For deep neural net-
works to perform more robustly and accurately on tabular data, regularization might be
a crucial aspect.

Self-supervised learning for tabular data. In order to train deep neural networks,
large amounts of labeled data are usually required; however, the labeling of the data is an
expensive process and takes significant time [233]. Rather than employing this expensive
step, self-supervised methods can be used to learn general feature representations from
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unlabeled data sources. These methods have also shown astonishing results in computer
vision and natural language processing [40, 234]. Recent works in this direction [166,
235, 236, 160] deal with heterogeneous tabular data.

Tabular data transformation using TreeDrivenEncoder. By encoding information
in a decision tree structure, the TreeDrivenEncoder procedure from our DeepTLF frame-
work [2] creates a new homogeneous representation for heterogeneous tabular data,
which can be seen as local feature selection or feature engineering. Since real-valued
features are typically represented as 64-bit float types, the encoded binary data has a
drastically smaller size than the original heterogeneous data, e.g., the generated Boolean
values can be efficiently represented as binary vectors (i.e., 1 bit per value). As a result,
the final component of the DeepTLF model can be trained efficiently. It is also possible
to efficiently encode only categorical data using the TreeDrivenEncoder algorithm, and
concatenate the numerical variables with the encoded vectors. Contrary to leaf-based
encoding methods [182, 168], our transformation scheme produces binary features by
utilizing the entire decision tree, while leaf-based encoding schemes create meta cate-
gorical features by exploiting the leaves.

Decision tree model choice for DeepTLF. Noteworthy, the proposed DeepTLF frame-
work can be implemented with any decision tree ensemble as its basic algorithm; how-
ever, in our paper, we choose to use gradient boosting decision trees [53], which are well
known for their superior performance on tabular data with heterogeneity as well as their
capability of handling a wide range of features and feature value irregularities (such as
missing values, outliers, etc.)[1, 154]. As part of the gradient boosting algorithm, trees
are constructed sequentially, which means each tree minimizes the loss to a possible ex-
tent based on the current state. Due to the conditional dependencies between the trees
in the gradient boosting ensemble, they are able to provide adequate coverage of the
distribution of the training data. Furthermore, DeepTLF can be applied to unsupervised
learning problems. As a possible solution, multiple variables can be used as targets in the
gradient boosting decision trees algorithm after the obtained feature vectors are stacked
into a single meta feature vector. As an alternative, the isolated forest algorithm [237]
can be employed for the first stage of the DeepTLF model.

3.2 Synthetic Data Generation

In this Section, we provide a further discussion on the outcome of our work for heteroge-
neous tabular data generation using pre-trained large language models, called generation
of realistic tabular data (GReaT) (Sec. 2.2).

State-of-art-performance of the GReaT method. Our proposed method GReaT out-
performs state-of-the-art models for tabular data generation with respect to the machine
learning efficiency and discriminator measures [102]. We improved the best existing
methods by up to 44% on the California Housing dataset [176]. Regarding the discrim-
inator measure, our generative model for tabular data outperforms the state of the art by
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up to 30% on the Heloc dataset [174]. We hypothesize that the superior performance of
the GReaT approach comes from its ability to capture complex relationships and patterns
in the data without extensive data pre-processing, allowing it to generate more realistic
and diverse samples. Overall, the GReaT model represents a significant step forward in
the field of tabular data generation and has the potential to improve the performance of
various machine learning tasks.

Processing of numerical values with the GReaT approach. Since we convert het-
erogeneous tabular data into simple text-based representations such that continuous and
discrete numerical values are represented as character sequences (Sec. 2.2), multiple
independent studies have shown that Transformer-based models are capable of under-
standing and processing numerical data encoded in such a way [238, 239]. Thus, these
previous observations are in agreement with the outstanding performance of GReaT. Ad-
ditionally, a smarter encoding of numerical values can also be considered as a possible
improvement.

Textual representation engineering. Our approach introduces new possibilities for
another type of feature engineering concept [240] — which we refer to as textual represen-
tation engineering for tabular data. As demonstrated in the experiment (Appendix A.1),
the use of feature names improves the performance of pretrained large language mod-
els. In this context, representation engineering could also be viewed as prompt creation
[241]. This opens many avenues for future experiments and research.

Variable order independence. One of the key steps in the GReaT algorithm is to
permute the order of the variables. In all our experiments in the presented paper, we
demonstrated that a large language model is able to learn tabular data without explicitly
specifying the order of the variables. This suggests that large language models are able
to generalize and extract meaningful information from the data, even when it is presented
in a random or unstructured manner. Furthermore, we found that for several datasets, the
performance of these models improved when the data was randomly permuted. This in-
dicates that these models are in a position to take advantage of the inherent relationships
and connections within the data, in order to learn and make more accurate predictions.
In general, our results demonstrate the potential of large language models to learn from
tabular data and make valuable contributions in fields such as finance, healthcare, and
marketing.

The importance of pre-training. Furthermore, the experiments in this dissertation,
further demonstrate that pretrained large language models perform better on tabular data.
We hypothesize that this is due to the fact that tabular data often contains textual infor-
mation in the name or value of features, which corresponds well to the ability of large
language models to capture long-term patterns and dependencies in text. It is our in-
tention to continue exploring the use of large language models on tabular data and to
investigate potential applications and improvements in this area in the future. As a result
of the capability of these models to handle structured data, we believe that they have
significant implications for the future of machine learning and data analysis.

Applications of the GReaT method. Based on our qualitative and qualitative eval-
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uation of the proposed synthetic data generation algorithm, we believe that in highly
critical machine learning applications, such as healthcare, where the collection of new
samples is usually costly or might be impossible due to ethical concerns, the quality of
the synthetically generated samples is of great importance, and thus more computational
resources to generate higher quality samples could be well justified. As an illustration,
synthetic data is widely used in medical ML [42]. Therefore, if realistic synthetic data
is required and computation resources are not an issue, the proposed method deserves
consideration.

3.3 Explainable Deep Learning

In this section, we provide a further discussion on explainability of deep learning models.

Relational local explanations. The relational local explanation (RLE) method can
work with multiple data modalities, since local explanations from the RLE framework
show competitive performance against selected feature attribution baselines. Overall,
our quantitative experimental results for the proposed method in our manuscript resem-
bles similar image areas or words from highlighting other state-of-the-art, non-relational
explanation methods. In qualitative experiments, the proposed approach shows the best
results on the selected metric.

Evaluation of the explanations. One of the key challenges in the explainable machine
learning field is the evaluation of the algorithms. This problem comes from the fact that
the ground truth is not available. Furthermore, some of the evaluation method for local
feature attribution are computationally costly. The research within this dissertation has
also contributed to the ROAD method, which is an improvement of the ROAR framework
[219] that bypasses the retraining step by reducing the computation time significantly.

Interpretable deep learning models for tabular data. It is undeniable that inter-
pretability is desirable, particularly for tabular data modeling, since it frequently con-
tains personal data. The number of approaches that offer it out-of-the-box is increasing,
but most the current deep neural network models are still primarily concerned with opti-
mizing with respect to error-related measures. However, it is essential that deep tabular
learning results be interpretable in order to fully understand model decisions and results,
especially when it comes to life-critical applications. Furthermore, explanations of mod-
els can be employed as a means of identifying and mitigating potential unwanted biases
and in eliminating discriminatory practices [242, 243].

The proposed CancelOut layer (Sec. 2.3.4, Appendix A.2), due to its simplicity, can be
easily integrated into most existing deep learning architectures, making it a versatile and
valuable addition to any deep model. By providing a global explanation of the model’s
predictions, the proposed layer can help improve the interpretability of deep learning
models, making them more transparent and easier to understand. This can be especially
useful in domains where trust and accountability are important, such as in healthcare or
finance. Additionally, the global explanations provided by the CancelOut layer can be
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used to identify areas where the model may be performing poorly, allowing researchers
and developers to improve the model and increase its accuracy. Overall, the proposed
layer has the potential to greatly enhance the utility and practicality of deep learning
models.

Unsupervised aggregation of feature attribution. Within the proposed aggregation
method (Sec. 2.3.2) we demonstrate that an ensemble of local explanation helps to im-
prove the performance and increase robustness of the interpretations. This opens new
possibilities for the use of explainable artificial intelligence [244, 148] in complex and
dynamic environments, such as healthcare or finance. By combining the insights from
multiple local explanations, the aggregation method allows for a more comprehensive
and nuanced understanding of the model’s decision-making process. Furthermore, the
aggregation method can be applied to various types of explanations, such as saliency
maps for visual data and perturbation-based explanations for tabular data. This ver-
satility allows for flexibility in the choice of explanation techniques, depending on the
specific task at hand and the needs of the user. In addition, the aggregation method can be
easily integrated into existing explainable machine learning frameworks and tools, mak-
ing it a practical and accessible solution to improve the interpretability of machine and
deep models. This has the potential to enhance the trust and transparency of data-driven
systems, which are crucial for their successful deployment in real-world applications.

3.4 Outlook and Future Work

Although we have addressed a number of issues in the deep tabular learning and explain-
ability domains, there are still a variety of open questions that need to be addressed in the
future. For example, how can we effectively incorporate domain knowledge into deep
tabular models to improve their performance and interpretability? Can we ensure that
the explanations provided by these models are accurate and trustworthy?

For the deep tabular learning domain, in particular, a novel deep learning architecture
that takes into account the tabular data heterogeneity and structure needs to be devised.
As a result, data-driven, low-latency systems that work with tabular data could bene-
fit from this approach. Due to the difficulty of scaling the current decision tree-based
approaches, there is a need to develop new methods.

Self-supervised learning on tabular data. Another point of interest for the future
research could be the adaption of self-supervised learning schemes for tabular data,
where deep models can learn useful data representations. We believe that the proposed
DeepTLF framework can be used in this setting; however, for the data encoding step,
unsupervised decision tree algorithms may be of use.

Novel evaluation measures for synthetic tabular data. Considering the generation
of tabular data, there is a need for reliable and consistent measures that take into account
semantic coherence when generating tabular data. The process can be accomplished by
learning combinations of categorical variables and numerical ranges for corresponding
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features. By utilizing such a measure, synthetic data can be provided with greater assur-
ance.

Multi-modal data generation. Along with the usual numerical values, tabular data
frequently contains textual metadata, e.g., feature names, named categories (“‘male”, “fe-
male”), and open text features (e.g., remarks). The recent evolution of transformer
neural networks now permits to holistically unite this information, which was processed
separately in the past, and learn context-specific, robust, and meaningful representations.
In the case of tabular data, information comes from the textual and numerical data modal-
ities. However, progress is not halted at this point: The recent advances in vision trans-
formers [245]) suggest possible extensions to the domain of image data, which could
possibly also be encoded in tokens and be processed by a transformer network as part
of a multi-modal token sequence. Hence, we argue that by providing additional textual
(and semantically meaningful) information about the data, modern large-scale language
models should be able to model the data more realistically and robustly.

Efficient Transformer models for tabular data. A clear limitation associated with
Transformer-based methods is the computational complexity, due to a high number of
learning parameters, e.g., weights [246]. Since the GReaT approach is based on such
architectures, it requires more time for the fine-tuning step than other methods based
on GAN or VAE models. Therefore, in future work, one can look for more efficient
generative language models dedicated to the heterogeneous tabular data.

Transfer learning for tabular data. Reusing knowledge gained from solving one
problem and adapting it to a different objective is the research problem addressed by
transfer learning. Although transfer learning is successful in computer vision and natural
language processing applications [41, 247], there are no efficient and generally accepted
methods for transfer learning with tabular data. In this regard, there have been recent
developments [248]. One of the possible ways is to utilize the Transformer-based neural
network architecture since they usually do not have the input share restriction as convo-
lutional or recurrent neural networks.

In the case of explainability of machine and deep learning models, several major topics
are worth investigating.

Reliable evaluation of feature attribution algorithms. In addition to reliable and
robust explanations, there must also be trustworthy evaluations of feature attributions.
Another point of the discussed manuscripts’ continuation with (relational) local expla-
nations is the absence of evaluation metrics. In the absence of access to ground truth,
establishing a reliable and plausible measure will prove to be challenging. On the other
hand, with an unambiguous measure, a possible strategy would involve direct optimiza-
tion of it.

Robust local explanations via realistic auxiliary data. One of the main principles
of permutation-based feature attribution methods, such as LIME [118] and SHAP [119],
is to approximate a single data point by creating artificial points around it. However, this
approach is vulnerable to adversarial attacks, as shown in [249]. One potential defense
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against these attacks is to use more realistic auxiliary data samples. In future work, it
may be possible to use the GReaT method 2.2 to generate more realistic samples around
the target data point, providing a more robust explanation.

Relational local explanations for tabular data. Furthermore, further research into
extending our framework for explaining relationships in heterogeneous tabular data would
be beneficial. One potential approach could be to construct a graph using both categor-
ical and binned numerical variables. This would enable a more comprehensive analysis
of the relationships between different data points. Additionally, utilizing the relational
local explanation technique could provide insights into the complex connections between
various variables in heterogeneous tabular data. Thus, this extension of our framework
has the potential to greatly enhance our understanding of heterogeneous data sets.

Probabilistic explanations. Most current approaches for local or global explanations
are deterministic, offering only a point estimate. As a result, assessing the specificity of
these methods can be challenging. One potential solution involves integrating a proba-
bilistic perspective into local explanations. By examining distribution rather than single
points, we can better quantify the uncertainties inherent in the explanation model. This
enables a more comprehensive understanding of the underlying mechanisms and factors
leading to a particular prediction or decision, along with a clearer assessment of its un-
certainty and potential biases. This approach can be especially valuable in high-stakes
situations where the precision and reliability of explanations are crucial for ensuring
decision safety and effectiveness [250, 251]. In future research, both local and global ex-
planations could benefit from the integration of probabilistic models, resulting in a more
robust and accurate framework for understanding prediction and decision-driving factors.
Moreover, this probabilistic approach could be easily incorporated into decision-making
processes, facilitating the quantification and management of uncertainty in high-stakes
situations. This development could represent a significant step towards creating more
transparent and reliable machine learning models, thereby better supporting decision-
making across a range of applications. Future work should concentrate on the creation
of probabilistic models for local and global explanations that can be seamlessly inte-
grated into existing machine learning frameworks, as well as on the evaluation of these
models’ effectiveness in real-world scenarios.

To conclude this Chapter, I would like to use the following quote from Alan M. Turing
[252]: “We can only see a short distance ahead, but we can see plenty there that needs
to be done.”
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Chapter 4

Conclusion

As a result of the research presented in this thesis, a valuable contribution has been
made to scientific knowledge that is related to heterogeneous tabular data modeling and
generation, as well as the explanation of machine learning algorithms.

In the context of deep neural networks and tabular data, we have summarized and
evaluated existing state-of-the-art deep learning approaches for tabular data. We have
also proposed a new hybrid model that combines the preprocessing capabilities of de-
cision tree ensemble algorithms with the flexibility of neural networks. Furthermore,
we have introduced a novel approach for synthetic tabular data generation using large
language models, which outperforms the current state-of-the-art by a significant margin.
This approach will make research on deep learning and tabular data more accessible for
various critical domains, such as healthcare, finance, and other application areas related
to everyday life.

Furthermore, one of the main challenges when it comes to the application of deep
neural networks is their lack of explainability. It is, therefore, vital that explainable
machine learning techniques be applied in order to improve the interpretability of the
results as well as to ensure that the model is trustworthy. To this end, in the present
work, we have addressed the current issues of explainable machine learning methods
and have devised approaches for robust and stable local explanations, as well as, global
explanations for deep neural networks.

Finally, the findings presented in this dissertation can serve as a basis for future re-
search in the area of heterogeneous tabular data modeling, as well as for robust and
explainable machine learning methods. Overall, the outcomes of our studies open up
new possibilities for future research on tabular data and the explainability of deep neural
networks to achieve previously unattainable results.
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This thesis is based on nine manuscripts, all of which are publicly available online. The
versions presented here are identical to those published online.

I am the first author or the primary contributor on the majority of these manuscripts.
Please refer to the subsequent sections for a more detailed breakdown of each author’s
contributions.

A.1 Deep Tabular Data Learning Publications

A.1.1 Deep Neural Networks and Tabular Data: A Survey

Publication: Published in the IEEE Transactions on Neural Networks and Learning
Systems journal, 2022.

Contribution: I came up with an idea about the survey of the deep neural networks
and heterogeneous tabular data for several topics — inference, synthetic data generation,
and explainability. Kathrin SeBler and I collected and analyzed methods for the inference
tasks. Tobias Leemann collected and analyzed approaches for tabular generation tasks.
Martin Pawelczyk analyzed the explainability of deep neural networks for tabular data in
the literature. Together, Kathrin SeBler, Tobias Leemann, and I developed a framework
for evaluating machine learning methods on tabular data. Gjergji Kasneci provided valu-
able input on the structure of the survey. All co-authors and I contributed to the revision
of the final manuscript.
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Abstract— Heterogeneous tabular data are the most commonly
used form of data and are essential for numerous critical
and computationally demanding applications. On homogeneous
datasets, deep neural networks have repeatedly shown excellent
performance and have therefore been widely adopted. However,
their adaptation to tabular data for inference or data generation
tasks remains highly challenging. To facilitate further progress in
the field, this work provides an overview of state-of-the-art deep
learning methods for tabular data. We categorize these methods
into three groups: data transformations, specialized architectures,
and regularization models. For each of these groups, our work
offers a comprehensive overview of the main approaches. More-
over, we discuss deep learning approaches for generating tabular
data and also provide an overview over strategies for explaining
deep models on tabular data. Thus, our first contribution is to
address the main research streams and existing methodologies in
the mentioned areas while highlighting relevant challenges and
open research questions. Qur second contribution is to provide
an empirical comparison of traditional machine learning methods
with 11 deep learning approaches across five popular real-world
tabular datasets of different sizes and with different learning
objectives. Our results, which we have made publicly available
as competitive benchmarks, indicate that algorithms based on
gradient-boosted tree ensembles still mostly outperform deep
learning models on supervised learning tasks, suggesting that
the research progress on competitive deep learning models for
tabular data is stagnating. To the best of our knowledge, this
is the first in-depth overview of deep learning approaches for
tabular data; as such, this work can serve as a valuable starting
point to guide researchers and practitioners interested in deep
learning with tabular data.

Index Terms—Benchmark, deep neural networks, discrete
data, heterogeneous data, interpretability, probabilistic modeling,
survey, tabular data, tabular data generation.

I. INTRODUCTION

VER-INCREASING computational resources and the

availability of large, labeled datasets have accelerated
the success of deep neural networks [1], [2]. In particular,
architectures based on convolutions, recurrent mechanisms [3],
[4], or transformers [5] have led to unprecedented performance
in a multitude of domains. Although deep learning methods
perform outstandingly well for classification or data generation
tasks on homogeneous data (e.g., image, audio, and text
data), tabular data still pose a challenge to deep learning
models [6], [7], [8]. Tabular data—in contrast to image or
language data—are heterogeneous, leading to dense numerical
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2022, and 28 November 2022; accepted 12 December 2022. (Corresponding
authors: Vadim Borisov; Tobias Leemann.)
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https://doi.org/10.1109/TNNLS.2022.3229161.

Digital Object Identifier 10.1109/TNNLS.2022.3229161

and sparse categorical features. Furthermore, the correlation
among the features is weaker than the one introduced through
spatial or semantic relationships in image or speech data.
Hence, it is necessary to discover and exploit relations without
relying on spatial information [9]. Therefore, Kadra et al. [10]
called tabular datasets the “last unconquered castle” for deep
neural network models.

Heterogeneous data are the most commonly used form of
data [8], and it is ubiquitous in many crucial applications,
such as medical diagnosis based on patient history [11], [12],
[13], predictive analytics for financial applications (e.g., risk
analysis, estimation of creditworthiness, the recommendation
of investment strategies, and portfolio management) [14],
click-through rate (CTR) prediction [15], user recommen-
dation systems [16], [17], customer churn prediction [18],
cybersecurity [19], fraud detection [20], psychology [21],
anomaly detection [22], [23], [24], and so forth. In all these
applications, a boost in predictive performance and robust-
ness may have considerable benefits for both end users and
companies that provide such solutions. Simultaneously, this
requires handling many data-related pitfalls, such as noise,
impreciseness, different attribute types and value ranges, or the
missing value problem and privacy issues.

Meanwhile, deep neural networks offer multiple advantages
over traditional machine learning methods. First, these meth-
ods are highly flexible [25], allow for efficient and iterative
training, and are particularly valuable for AutoML [26], [27].
Second, tabular data generation is possible using deep neural
networks and can, for instance, help mitigate class imbalance
problems [28]. Third, neural networks can be deployed for
multimodal learning problems where tabular data can be
one of many input modalities [29], [30], for tabular data
distillation [31], [32], for federated learning [33], and in many
more scenarios.

Successful deployments of data-driven applications require
solving several tasks, among which we identified three core
challenges: 1) inference; 2) data generation; and 3) inter-
pretability. The most crucial task is inference, which is con-
cerned with making predictions based on past observations.
While a powerful predictive model is critical for all the
applications mentioned in the previous paragraph, the interplay
between tabular data and deep neural networks goes beyond
simple inference tasks. Before a predictive model can even
be trained, the training data usually need to be preprocessed.
This is where data generation plays a crucial role, as one of the
standard deployment steps involves the imputation of missing
values [34], [35] and the rebalancing of the dataset [36],
[37] (i.e., equalizing sample sizes for different classes). Fur-
thermore, it might be simply impossible to use the actual
data due to privacy concerns, e.g., in financial or medical

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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applications [38], [39]. Thus, to tackle the data preprocessing
and privacy challenges, probabilistic tabular data generation
is essential. Finally, with stricter data protection laws such as
California Consumer Privacy Act (CCPA) [40] and the Euro-
pean General Data Protection Regulation (EU GDPR) [41],
which both mandate a right to explanations for automated
decision systems (e.g., in the form or recourse [42]), inter-
pretability is becoming a key aspect for predictive models used
for tabular data [43], [44]. During deployment, interpretability
methods also serve as a valuable tool for model debugging
and auditing [45].

Evidently, apart from the core challenges of inference, gen-
eration, and interpretability, there are several other important
subfields, such as working with data streams, distribution
shifts, as well as privacy and fairness considerations that
should not be neglected. Nevertheless, to navigate the vast
body of literature, we focus on the identified core problems
and thoroughly review the state of the art in this work. We will
briefly discuss the remaining topics at the end of this survey.

Beyond reviewing current literature, we think that an
exhaustive comparison between existing deep learning
approaches for heterogeneous tabular data is necessary to put
reported results into context. The variety of benchmarking
datasets and the different setups often prevent the comparison
of results across papers. In addition, important aspects of
deep learning models, such as training and inference time,
model size, and interpretability, are usually not discussed.
We aim to bridge this gap by providing a comparison of
the surveyed inference approaches with classical—yet very
strong—baselines such as XGBoost [46]. We open-source
our code, allowing researchers to reproduce and extend our
findings.

In summary, the aims of this survey are to provide the
following:

1) athorough review of existing scientific literature on deep
learning for tabular data;

a taxonomic categorization of the available approaches
for classification and regression tasks on heterogeneous
tabular data;

a presentation of the state of the art and promising paths
toward tabular data generation;

an overview of existing explanation approaches for deep
models for tabular data;

an extensive empirical comparison of traditional
machine learning methods and deep learning models on
multiple real-world heterogeneous tabular datasets;

a discussion on the main reasons for the limited success
of deep learning on tabular data;

a list of open challenges related to deep learning for
tabular data.

2)

3)
4)

5)

6)

7

Accordingly, this survey is structured as follows. We dis-
cuss related works in Section II. To introduce the reader to
the field, in Section III, we provide definitions of the key
terms, a brief outline of the domain’s history, and propose
a unified taxonomy of current approaches to deep learning
with tabular data. Section IV covers the main methods for
modeling tabular data using deep neural networks. Section V
presents an overview on tabular data generation using deep

neural networks. An overview of explanation mechanisms
for deep models for tabular data is presented in Section VI.
In Section VII, we provide an extensive empirical comparison
of machine and deep learning methods on real-world data,
which also involves model size, runtime, and interpretability.
In Section VIII, we summarize the state of the field and give
future perspectives. Finally, we outline several open research
questions before concluding in Section IX.

II. RELATED WORK

To the best of our knowledge, there is no study dedicated
exclusively to the application of deep neural networks to
tabular data, spanning the areas of supervised and unsuper-
vised learning, data synthesis, and interpretability. Prior works
cover some of these aspects, but none of them systematically
discusses the existing approaches in the broadness of this
survey.

However, there are some works that cover parts of the
domain. There is a comprehensive analysis of common
approaches for categorical data encoding as a preprocessing
step for deep neural networks by Hancock and Khoshgof-
taar [47]. The authors compared existing methods for cate-
gorical data encoding on various tabular datasets and different
deep learning architectures. We discuss the key categorical
data encoding methods in Section IV-Al.

A recent survey by Sahakyan et al. [43] summarizes expla-
nation techniques in the context of tabular data. Hence, we do
not provide a detailed discussion of explainable machine
learning for tabular data in this article. However, for the sake
of completeness, we present some of the most relevant works
in Section VI and highlight open challenges in this area.

Gorishniy et al. [48] empirically evaluated a large number of
state-of-the-art deep learning approaches for tabular data on a
wide range of datasets. He et al. [49] demonstrated that a tuned
deep neural network model with a ResNet-like architecture
shows comparable performance to some state-of-the-art deep
learning approaches for tabular data.

Recently, Shwartz-Ziv and Armon [8] published a study
on several different deep models for tabular data, including
TabNet [6], NODE [7], and Net-DNF [50]. In addition,
they compared deep learning approaches to gradient boosting
decision tree (GBDT) algorithms regarding accuracy, training
effort, inference efficiency, and hyperparameter optimization
time. They observed that deep models had the best results
on their chosen datasets, and however, not one single deep
model could outperform all the others in general. The deep
models were challenged by GBDTs, leading the authors to
conclude that efficient tabular data modeling using deep neural
networks is still an open research problem. In the face of
this evidence, we aim to integrate the necessary background
for future research on the inference problem and on the
intertwined challenges of generation and explainability into
a single work.

III. TABULAR DATA AND DEEP NEURAL NETWORKS
A. Definitions

In this section, we give definitions for central terms used in
this work. We also provide pointers to the original works for
more detailed explanations of the methods. 77
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Fig. 1. Unified taxonomy of deep neural network models for heterogeneous
tabular data.

The key concept in this survey is a (deep) neural network.
Unless stated otherwise we use this concept as a synonym
for feedforward networks, as described in [2], and name the
concrete model whenever we deviate from this concept. A deep
neural network defines mapping f

y=fx)~ fx; W) (1

that learns the value of the model parameters W (i.e., the
“weights” of a neural network) that results in the best approx-
imation of the true underlying and unknown function f. In this
case, x is a multidimensional data sample (i.e., x € R") with
corresponding target y (where typically, y € R¥ for k classes
and y € R for regression tasks) from a dataset of tuples
{(xi, ¥i)}iez. The network is called feedforward if the input
information flows in one direction to the output without any
feedback connections.

Throughout this survey, we focus on heterogeneous data
that usually contain a variety of attribute types. These include
both continuous and discrete attributes of different types (e.g.,
binary values, ordinal values, and high-cardinality categorical
values). This is fundamentally different from homogeneous
data modalities, such as images, audio, or text data where
only a single feature type is present.

Categorical variables are an attribute type of particular
importance. According to Lane’s definition [51], categorical
variables are qualitative values. They “do not imply a numeri-
cal ordering,” unlike quantitative values, which are “measured
in terms of numbers.” Usually, a categorical variable can
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TABLE I

EXAMPLE OF A HETEROGENEOUS TABULAR DATASET. HERE, WE SHOW
FIVE SAMPLES WITH SELECTED VARIABLES FROM THE ADULT
DATASET [54]. SECTION VII-A PROVIDES FURTHER
DETAILS ON THIS DATASET

Age Education Occupation Sex Income
39 Bachelors Adm-clerical Male <50K
50 Bachelors Exec-managerial Male >50K
38 HS-grad Handlers-cleaners Male <50K
53 11th Handlers-cleaners Male <50K
28 Bachelors Prof-specialty Female >50K

take one out of a limited set of values. Examples of typical
categorical variables include gender, user_id, product_type and
topic.

Tabular data, sometimes also called structured data [52],
are the subcategory of the heterogeneous data format that
is usually presented in a table [53] with data points as
rows and features as columns. In summary, for the scope
of this work, we refer to a dataset with a fixed number of
features that are either continuous or categorical as tabular.
Each data point can be understood as a row in the table,
or—taking a probabilistic view—as a sample from the
unknown joint distribution. An illustrative example of five
rows of heterogeneous, tabular data is provided in Table I.

B. Brief History of Deep Learning on Tabular Data

Tabular data are one of the oldest forms of data to be
statistically analyzed. Before digital collection of text, images,
and sound was possible, almost all data were tabular [55], [56],
[57]. Therefore, it was the target of early machine learning
research [58]. However, deep neural networks became popular
in the digital age and were further developed with a focus on
homogeneous data. In recent years, various supervised, self-
supervised, and semisupervised deep learning approaches have
been proposed, which explicitly address the issue of tabular
data modeling again. Early works mostly focused on data
transformation techniques for preprocessing [59], [60], which
are still important today [47].

A huge stimulus was the rise of e-commerce, which
demanded novel solutions, especially in advertising [15],
[61]. These tasks required fast and accurate estimation on
heterogeneous datasets with many categorical variables, for
which the traditional machine learning approaches are not
well suited (e.g., categorical features that have high cardinality
can lead to very sparse high-dimensional feature vectors and
nonrobust models). As a result, researchers and data scientists
started looking for more flexible solutions, e.g., those based
on deep neural networks, that can capture complex nonlinear
dependencies in the data.

In particular, the CTR prediction problem has received a
lot of attention [15], [62]. A large variety of approaches were
proposed, most of them relying on specialized neural network
architectures for heterogeneous tabular data.

A more recent line of research, sparked by Shavitt and
Segal [63], evolved based on the idea that regularization may
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improve the performance of deep neural networks on tabular
data [10]. This has led to an intensification of research on
regularization approaches.

Due to the tremendous success of attention-based
approaches such as transformers on textual [64] and visual
data [65], [66], researchers have recently also started applying
attention-based methods and self-supervised learning tech-
niques to tabular data. After the introduction of transformer
architectures to the field of tabular data [6], a lot of research
effort has focused on transformer architectures that can be
successfully applied to very large tabular datasets.

C. Challenges of Learning With Tabular Data

As we have mentioned in Section II, deep neural networks
often perform less favorably compared to more traditional
machine learning methods (e.g., tree-based methods) when
dealing with tabular data. However, it is often unclear why
deep learning cannot achieve the same level of predictive
quality as in other domains such as image classification and
natural language processing. In the following, we identify and
discuss four possible reasons.

1) Low-Quality Training Data: Data quality is a common
issue with real-world tabular datasets. They often include
missing values [34], extreme data (outliers) [67], and
erroneous or inconsistent data [68] and have a small
overall size relative to the high-dimensional feature
vectors generated from the data [69]. Also, due to the
expensive nature of data collection, tabular data are
frequently class-imbalanced. These challenges affect all
machine learning algorithms; however, most of the mod-
ern decision tree-based algorithms can handle missing
values or different/extreme variable ranges internally
by looking for appropriate approximations and split
values [46], [70], [71].

2) Missing or Complex Irregular Spatial Dependencies:
There is often no spatial correlation between the vari-
ables in tabular datasets [72] or the dependencies
between features are rather complex and irregular. When
working with tabular data, the structure and relationships
between its features have to be learned from scratch.
Thus, the inductive biases used in popular models for
homogeneous data, such as convolutional neural net-
works, are unsuitable for modeling this data type [50],
[73], [74].

3) Dependency on Preprocessing: A key advantage of
deep learning on homogeneous data is that it includes
an implicit representation learning step [2], so only a
minimal amount of preprocessing or explicit feature con-
struction is required. However, for tabular data and deep
neural networks, the performance may strongly depend
on the selected preprocessing strategy [75]. Handling
the categorical features remains particularly challenging
[47] and can easily lead to a very sparse feature matrix
(e.g., by using a one-hot encoding scheme) or introduce
a synthetic ordering of previously unordered values (e.g.,
by using an ordinal encoding scheme). Finally, pre-
processing methods for deep neural networks may lead

to information loss, leading to a reduction in predictive
performance [76].

4) Importance of Single Features: While typically changing
the class of an image requires a coordinated change in
many features, i.e., pixels, the smallest possible change
of a categorical (or binary) feature can entirely flip a
prediction on tabular data [63]. In contrast to deep neural
networks, decision-tree algorithms can handle varying
feature importance exceptionally well by selecting a
single feature and appropriate threshold (i.e., splitting)
values and “ignoring” the rest of the data sample. Shavitt
and Segal [63] have argued that individual weight reg-
ularization may mitigate this challenge and motivated
more work in this direction [10].

With these four fundamental challenges in mind, we continue
by organizing and discussing the strategies developed to
address them. We start by developing a suitable taxonomy.

D. Unified Taxonomy

In this section, we introduce a taxonomy of approaches that
allows for a unified view of the field. We divide the works
from the deep learning with tabular data literature into three
main categories: data transformation methods, specialized
architectures, and regularization models. In Fig. 1, we provide
an overview of our taxonomy of deep learning methods for
tabular data.

1) Data Transformation Methods: The methods in the first
group transform categorical and numerical data. This is usually
done to enable deep neural network models to better extract
the information signal. Methods from this group do not require
new architectures or adaptations of the existing data processing
pipeline. Nevertheless, the transformation step comes at the
cost of an increased preprocessing time. This might be an
issue for high-load systems [77], particularly in the presence
of categorical variables with high cardinality and growing
dataset size. We can further subdivide this area into single-
dimensional encodings and multidimensional encodings. The
former encodings are employed to transform each feature
independently while the latter encoding methods map an entire
record to another representation.

2) Specialized Architectures: The biggest share of works
investigates specialized architectures and suggests that a dif-
ferent deep neural network architecture is required for tabular
data. Two types of architectures are of particular importance:
hybrid models fuse classical machine learning approaches
(e.g., decision trees) with neural networks, while transformer-
based models rely on attention mechanisms.

3) Regularization Models: Finally, the group of regular-
ization models claims that one of the main reasons for the
moderate performance of deep learning models on tabular data
is their extreme nonlinearity and model complexity. Therefore,
strong regularization schemes are proposed as a solution. They
are mainly implemented in the form of special-purpose loss
functions.

We believe that our taxonomy may help practitioners find
the methods of choice that can be easily integrated into their
existing tool chain. For instance, applying data transformations
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can result in performance improvements while maintaining
the current model architecture. Conversely, using specialized
architectures, the data preprocessing pipeline can be kept
intact.

IV. DEEP NEURAL NETWORKS FOR TABULAR DATA

In this section, we discuss the use of deep neural networks
on tabular data for classification and regression tasks according
to the taxonomy presented in Section III. We provide an
overview of existing deep learning approaches in this area
of research in Table II and examine the three methodolog-
ical categories in detail: data transformation methods (see
Section IV-A), architecture-based methods (see Section IV-B),
and regularization-based models (see Section IV-C).

A. Data Transformation Methods

Most traditional approaches for deep neural networks on
tabular data fall into this group. Interestingly, data preprocess-
ing plays a relatively minor role in computer vision, even
though the field is currently dominated by deep learning solu-
tions [2]. There are many different possibilities to transform
tabular data, and each may have a different impact on the
learning results [47].

1) Single-Dimensional Encoding: One of the critical obsta-
cles for deep learning with tabular data is categorical variables.
Since neural networks only accept real number vectors as
inputs, these values must be transformed before a model can
use them. Therefore, the first class of methods attempts to
encode categorical variables in a way suitable for deep learning
models.

Approaches in this group [47] are divided into deterministic
techniques, which can be used before training the model, and
more complicated automatic techniques that are part of the
model architecture. There are many ways for deterministic data
encoding; hence, we restrict ourselves to the most common
ones without the claim of completeness.

The simplest data encoding technique might be ordinal or
label encoding. Every category is just mapped to a discrete
numeric value, e.g., {Apple, Banana} are encoded as {0, 1}.
One drawback of this method may be that it introduces an
artificial order to previously unordered categories. Another
straightforward method that does not induce any order is the
one-hot encoding. One additional column for each unique
category is added to the data. Only the column corresponding
to the observed category is assigned the value one, with the
other values being zero. In our example, Apple could be
encoded as (1,0) and Banana as (0, 1). In the presence
of a diverse set of categories in the data, this method can lead
to high-dimensional sparse feature vectors and exacerbate the
“curse of dimensionality” problem.

One approach that needs no extra columns and does not
include any artificial order is the so-called leave-one-out
encoding. It is based on the target encoding technique pro-
posed in the work in [94], where every category is replaced
with the mean of the target variable of that category. The leave-
one-out encoding excludes the current row when computing
the mean of the target variable to avoid overfitting. This
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approach is also used in the CatBoost framework [71], a state-
of-the-art machine learning library for heterogeneous tabular
data based on the gradient boosting algorithm [95].

A different strategy is hash-based encoding. Every category
is transformed into a fixed-size value via a deterministic hash
function. The output size is not directly dependent on the
number of input categories but can be chosen manually.

2) Multidimensional Encoding: A first automatic encoding
strategy is the value imputation and mask estimation (VIME)
approach [79]. The authors propose a self-supervised and
semisupervised deep learning framework for tabular data that
trains an encoder in a self-supervised fashion by using two
pretext tasks. Those tasks are independent of the concrete
downstream task that the predictor has to solve. The first
task of VIME is called mask vector estimation; its goal is
to determine which values in a sample are corrupted. The
second task, i.e., feature vector estimation, is to recover the
original values of the sample. The encoder itself is a simple
multilayer perceptron. This automatic encoding makes use of
the fact that there is often much more unlabeled than labeled
data. The encoder learns how to construct an informative
homogeneous representation of the raw input data. In the
semisupervised step, a predictive model, which is also a
deep neural network model, is trained using the labeled and
unlabeled data transformed by the encoder. For the encoder,
a novel data augmentation method is used, corrupting an unla-
beled data point multiple times with different masks. On the
predictions from all augmented samples from one original data
point, a consistency loss can be computed, which rewards
similar outputs. To summarize, the VIME network trains an
encoder, which is responsible to transform the categorical and
numerical features into a new homogeneous and informative
representation. This transformed feature vector is used as an
input to the predictive model. For the encoder itself, the
categorical data can be transformed by a simple one-hot encod-
ing and binary encoding. The experimental results highlight
how the self-supervised and semisupervised variants of the
VIME framework can boost the performance over that of other
baselines such as XGBoost. Even in the absence of unlabeled
data, learning encodings in the proposed manner is shown to
be beneficial for downstream performance.

Another stream of research aims at transforming the tabular
input into a more homogeneous format. Since the revival
of deep learning, convolutional neural networks have shown
tremendous success in computer vision tasks. Therefore, Sun
et al. [78] proposed the SuperTML method, which is a data
conversion technique to transform tabular data into an image
data format (2-D matrices), i.e., black-and-white images.
On three datasets, SuperTML shows performance comparable
with or superior to XGBoost.

The image generator for tabular data (IGTD) in [72] follows
an idea similar to SuperTML. The IGTD framework converts
tabular data into images to make use of classical convolutional
architectures. As convolutional neural networks rely on spatial
dependencies, the transformation into images is optimized
by minimizing the difference between the feature distance
ranking of the tabular data and the pixel distance ranking of
the generated image. Every feature corresponds to one pixel,
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TABLE II

OVERVIEW OF DEEP LEARNING APPROACHES FOR TABULAR DATA. WE ORGANIZE THEM IN CATEGORIES ORDERED CHRONOLOGICALLY INSIDE THE
GROUPS. THE “INTERPRETABILITY” COLUMN INDICATES WHETHER THE APPROACH OFFERS SOME FORM INTERPRETABILITY FOR THE MODEL’S
DECISIONS. THE KEY CHARACTERISTICS OF EVERY MODEL ARE SUMMARIZED IN THE LAST COLUMN

Method Interpretability Key Characteristics

SuperTML [78] Transform tabular data into images for CNNs
%D VIME [79] Self-supervised learning and contextual embedding
é IGTD [72] Transform tabular data into images for CNNs
= SCAREF [80] Self-supervised contrastive learning

Wide&Deep [81] Embedding layer for categorical features

DeepFM [15] Factorization machine for categorical data

SDT [82] v Distill neural network into interpretable decision tree

xDeepFM [83] Compressed interaction network
] TabNN [84] DNNs based on feature groups distilled from GBDT
E‘ DeepGBM [62] Two DNNs, distill knowledge from decision tree
E;' NODE [7] Differentiable oblivious decision trees ensemble
§ NAM [85] v Separate neural networks for each input variable
% NON [86] Network-on-network model
< DNN2LR [87] Calculate cross feature wields with DNNs for LR

Net-DNF [50] Structure based on disjunctive normal form

Boost-GNN [88] GNN on top decision trees from the GBDT algorithm

SDTR [89] Hierarchical differentiable neural regression model
. TabNet [6] v Sequential attention structure
g g TabTransformer [90] v Transformer network for categorical data
é u% SAINT [9] v Attention over both rows and columns
g é ARM-Net [91] Adaptive relational modeling with multi-headgated attention network
Non-Param. Transformer [92] Process the entire data set at once, use attention between data points

. RLN [63] v Hyperparameters regularization scheme
50 STG [93] Stochastic gate regularization

Regularized DNNs [10]

A “cocktail” of regularization techniques

which leads to compact images with similar features close at
neighboring pixels. Thus, IGDTs can be used in the absence of
domain knowledge. The authors show relatively solid results
for data with strong feature relationships, but the method
may fail if the features are independent or feature similarities
cannot characterize the relationships. In their experiments,
the authors used only gene expression profiles and molecular
descriptors of drugs as data. This kind of data may lead
to a favorable inductive bias, so the general viability of the
approach remains unclear.

B. Specialized Architectures

Specialized architectures form the largest group of
approaches for deep tabular data learning. In this group,
the focus is on the development and investigation of novel
deep neural network architectures designed specifically for
heterogeneous tabular data. Guided by the types of available
models, we divide this group into two subgroups: hybrid
models (presented in IV-B1) and transformer-based models
(discussed in IV-B2).

1) Hybrid Models: Most approaches for deep neural net-
works on tabular data are hybrid models. They transform
the data and fuse successful classical machine learning
approaches, often decision trees, with neural networks. We dis-
tinguish between fully differentiable models, which can be
differentiated with respect to all their parameters and partly
differentiable models.

a) Fully differentiable models: The fully differentiable
models in this category offer a valuable property: They permit
end-to-end deep learning for training and inference by means
of gradient descent optimizers. Thus, they allow for highly
efficient implementations in modern deep learning frameworks
that exploit GPU or TPU acceleration throughout the code.

Popov et al. [7] proposed an ensemble of differentiable
oblivious decision trees [96]—also known as the NODE
framework for deep learning on tabular data. Oblivious deci-
sion trees use the same splitting function for all nodes on the
same level and can therefore be easily parallelized. NODE is
inspired by the successful CatBoost [71] framework. To make
the whole architecture fully differentiable and benefit from
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end-to-end optimization, NODE utilizes the entmax transfor-
mation [97] and soft splits. In the original experiments, the
NODE framework outperforms XGBoost and other GBDT
models on many datasets. As NODE is based on decision tree
ensembles, there is no preprocessing or transformation of the
categorical data necessary. Decision trees are known to handle
discrete features well. In the official implementation, strings
are converted to integers using the leave-one-out encoding
scheme. The NODE framework is widely used and provides
a sound implementation that can be readily deployed.

Frosst and Hinton [82] contributed another model relying
on soft decision trees (SDTs) to make neural networks more
interpretable. They investigated training a deep neural network
first, before using a mixture of its outputs and the ground-truth
labels to train the SDT model in a second step. The authors
showed that training a neural model first increases accuracy
over SDTs that are directly learned from the data. However,
their distilled trees still exhibit a performance gap to the neural
networks that were fit in the initial step. Nevertheless, the
model itself shows a clear relationship among different classes
in a hierarchical fashion. It groups different categorical values
based on the common patterns, e.g., digits 8 and 9 from
the MNIST dataset [98]. To summarize, the proposed method
allows for high interpretability and efficient inference, at the
cost of slightly reduced accuracy.

Follow-up work [89] extends this line of research to het-
erogeneous tabular data and regression tasks and presents the
SDT regressor (SDTR) framework. The SDTR is a neural
network, which imitates a binary decision tree. Therefore, all
neurons, such as nodes in a tree, get the same input from the
data instead of the output from previous layers. In the case of
deep networks, the SDTR could not beat other state-of-the-art
models, but it has shown promising results in a low-memory
setting, where single tree models and shallow architectures
were compared.

Katzir et al. [50] followed the related idea. Their Net-DNF
builds on the observation that every decision tree is merely
a form of a Boolean formula, more precisely a disjunctive
normal form. They use this inductive bias to design the
architecture of a neural network, which is able to imitate the
characteristics of the GBDT algorithm. The resulting Net-DNF
was tested for classification tasks on datasets with no missing
values, where it showed the results that are comparable to
those of XGBoost [46]. However, the authors did not men-
tion how to handle high-cardinality categorical data, as the
used datasets contained mostly numerical and few binary
features.

Linear models (e.g., linear and logistic regression) provide
global interpretability but are inferior to complex deep neural
networks. Usually, handcrafted feature engineering is required
to improve the accuracy of linear models. Liu et al. [87]
used a deep neural network to combine the features in a
possibly nonlinear way; the resulting combination of fea-
tures then serves as input to the linear model. In their
approach—termed DDN2LR—this enhances the simple, inter-
pretable linear model. In experimental evaluations, DNN2LR
can outperform other more complex DNN models while main-
taining some extent of interpretability.
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The work by Cheng et al. [81] proposes a hybrid archi-
tecture that consists of linear and deep neural network
models—Wide&Deep. A linear model that takes single fea-
tures and a wide selection of handcrafted logical expressions
on features as an input is enhanced by a deep neural net-
work to improve the generalization capabilities. In addition,
Wide&Deep learns an n-dimensional embedding vector for
each categorical feature. All embeddings are concatenated
resulting in a dense vector used as input to the neural net-
work. The final prediction can be understood as a sum of
both models. Experiments with a real-world system for app
recommendation confirmed that users installed apps suggested
by Wide&Deep were significantly more often than those
provided by the previous model. A similar work by Guo
and Berkhahn [99] proposes an embedding using deep neural
networks for categorical variables.

Another contribution to the realm of Wide&Deep models is
DeepFM [15]. The authors demonstrate that it is possible to
replace the handcrafted feature transformations with learned
factorization machines (FMs) [100]. The FM is an extension
of a linear model designed to capture lower order interac-
tions between features within high-dimensional and sparse
data efficiently. Higher order interactions are modeled by
a deep neural network. Similar to the original Wide&Deep
model, DeepFM also relies on the same embedding vectors
for its “wide” and “deep” parts. In contrast to the original
Wide&Deep model, however, DeepFM alleviates the need for
manual feature engineering. The experimental results show
a solid improvement in CTR prediction tasks compared to
a variety of models relying on either low- or high-order
dependencies only and compared to other hybrid approaches.

Finally, network-on-network (NON) [86] is a classifica-
tion model for tabular data, which focuses on capturing
the intrafeature information efficiently. It consists of three
components: a fieldwise network consisting of one unique
deep neural network for every column to capture the column-
specific information, an across-field network, which chooses
the optimal operations based on the dataset, and an operation
fusion network, connecting the chosen operations allowing for
nonlinearities. As the optimal operations for the specific data
are selected, the performance is considerably better than that
of other deep learning models. However, decision trees, the
current state-of-the-art models for tabular data, were not listed
among the baselines. Also, training as many neural networks
as columns and selecting the operations on the fly may lead
to a long computation time.

b) Partly differentiable models: This subgroup of hybrid
models aims at combining nondifferentiable approaches with
deep neural networks. Models from this group usually utilize
decision trees for the nondifferentiable part.

The DeepGBM model [62] combines the flexibility of
deep neural networks with the preprocessing capabilities of
GBDTs. DeepGBM consists of two neural networks—CatNN
and GBDT2NN. While CatNN is specialized to handle sparse
categorical features, GBDT2NN is specialized to deal with
dense numerical features.

In the preprocessing step for the CatNN network, the cate-
gorical data are transformed via ordinal encoding (to convert



A.1 Deep Tabular Data Learning Publications

the potential strings into integers), and the numerical features
are discretized, as this network is specialized for categorical
data. The GBDT2NN network distills the knowledge about
the underlying dataset from a model based on GBDTs by
accessing the leaf indices of the decision trees. This embed-
ding based on decision tree leaves was first proposed in [101]
for the random forest algorithm. Later, the same knowledge
distillation strategy has been adopted for GBDTs [102].

Using the proposed combination of two deep neural net-
works, DeepGBM has a strong learning capacity for both
categorical and numerical features. Distinctively, the authors
implemented and tested DeepGBM’s online prediction per-
formance, which is significantly higher than that of GBDTs.
On the downside, the leaf indices can be seen as meta
categorical features since these numbers cannot be directly
compared. Also, it is not clear how other data-related issues,
such as missing values, different scaling of numeric features,
and noise influence the predictions produced by the models.

The TabNN architecture, introduced by Ke et al. [84],
is based on two principles: explicitly leveraging expressive
feature combinations and reducing model complexity. It distills
the knowledge from GBDTs to retrieve feature groups; it
clusters them and then constructs the neural network based on
those feature combinations. Also, structural knowledge from
the trees is transferred to provide an effective initialization.
The experimental results show that the performance of a
GBDT model can be further improved by leveraging its feature
sets in combination with neural encoders. Furthermore, TabNN
shows promising results on streaming data. However, the
construction of the network already takes different extensive
computation steps of which one is only a heuristic to avoid
an NP-hard problem. Unfortunately, these computational chal-
lenges and the unavailability of an implementation limit the
practical usability of the network.

In similar spirit to DeepGBM and TabNN, the work by
Ivanov and Prokhorenkova [88] proposed using GBDTs for the
data prepossessing step. They exploited the fact that decision
trees are special cases of directed graphs and process decision
trees using graph neural networks. Thus, the proposed frame-
work exploits the topology information from the decision trees
using graph neural networks [103]. The resulting architecture
is coined boosted graph neural network (BGNN). In multiple
experiments, BGNN demonstrates that the proposed architec-
ture is superior to other state-of-the-art graph neural networks
in terms of predictive performance and training time and also
outperforms GDBT models on most of the datasets.

2) Transformer-Based Models: Transformer-based appro-
aches form another subgroup of model-based deep neural
methods for tabular data. Inspired by the recent surge of
interest in transformer-based methods and their successes on
text and visual data [66], [104], researchers and practition-
ers have proposed multiple approaches using deep attention
mechanisms [5] for heterogeneous tabular data.

TabNet [6] is one of the first transformer-based models
for tabular data. Like a decision tree, the TabNet archi-
tecture comprises multiple subnetworks that are processed
in a sequential hierarchical manner. According to [6], each
subnetwork corresponds to one decision step. To train TabNet,
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Fig. 2. Interpretable learning with the TabNet [6] architecture. We compare

the attributions provided by the model for a sample from the UCI Adult dataset
with those provided by the game theoretic KernelSHAP framework [116].
(a) TabNet attributions. (b) KernelSHAP attributions.

each decision step (subnetwork) receives the current data
batch as input. TabNet aggregates the outputs of all decision
steps to obtain the final prediction. At each decision step,
TabNet first applies a sparse feature mask [105] to perform
soft instancewise feature selection. The authors claim that the
feature selection can save valuable resources, as the network
may focus on the most important features. The feature mask
of a decision step is trained using attentive information from
the previous decision step. To this end, a feature transformer
module decides which features should be passed to the next
decision step and which features should be used to obtain
the output at the current decision step. Some layers of the
feature transformers are shared across all decision steps. The
obtained feature masks correspond to local feature weights
and can also be combined into a global importance score.
Accordingly, TabNet is one of the few deep neural networks
that offers different levels of interpretability by design. Indeed,
experiments show that each decision step of TabNet tends to
focus on a particular subdomain of the learning problem (i.e.,
one particular subset of features). This behavior is similar to
convolutional neural networks. TabNet also provides a decoder
module that is able to preprocess input data (e.g., replace
missing values) in an unsupervised way. Accordingly, TabNet
can be used in a two-stage self-supervised learning procedure,
which improves the overall predictive quality. The experi-
ments confirm the improved feature selection process, which
leads to smaller models with less trainable parameters. Also,
TabNet outperforms tree-based models and MLPs consistently
while providing a more accurate interpretation of the feature
importance. One of the popular Python [106] frameworks
for tabular data provides an efficient implementation of Tab-
Net [107]. Recently, TabNet has also been investigated in the
context of fair machine learning [108], [109]. Attention-based
architectures offer mechanisms for interpretability, which is
an essential advantage over many hybrid models. Fig. 2
shows attention maps of the TabNet model and KernelSHAP
explanation framework on the Adult dataset [54].

Another supervised and semisupervised approach is intro-

duced by Huang et al. [90]. Their TabTransformer architecture
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uses self-attention-based transformers to map the categorical
features to contextual embedding. This embedding is more
robust to missing or noisy data and enables interpretability.
The embedded categorical features are then together with the
numerical ones fed into a simple multilayer perceptron. If,
in addition, there is an extra amount of unlabeled data, unsu-
pervised pretraining can improve the results, using masked
language modeling or replacing token detection. Extensive
experiments show that TabTransformer matches the perfor-
mance of tree-based ensemble techniques, showing success
also when dealing with missing or noisy data. The TabTrans-
former network puts a significant focus on the categorical
features. It transforms the embedding of those features into
contextual embedding, which is then used as input for the
multilayer perceptron. This embedding is implemented by
different multihead attention-based transformers, which are
optimized during training.

ARM-net [91] is an adaptive neural network for relation
modeling tailored to tabular data. The key idea of the ARM-net
framework is to model feature interactions with combined
features (feature crosses) selectively and dynamically by first
transforming the input features into exponential space and
then determining the interaction order and interaction weights
adaptively for each feature cross. Furthermore, the authors
propose a novel sparse attention mechanism to generate the
interaction weights given the input data dynamically. Thus,
users can explicitly model feature crosses of arbitrary orders
with noisy features filtered selectively. On five real-world
datasets, ARM-net shows its superior effectiveness in rep-
resenting feature interactions compared to various baselines,
which model the feature interactions in different ways.

Self-attention and intersample attention transformer
(SAINT) [9] is a hybrid attention approach, combining
self-attention [5] with intersample attention over multiple
rows. When handling missing or noisy data, this mechanism
allows the model to borrow the corresponding information
from similar samples, which improves the model’s robustness.
The technique is reminiscent of nearest neighbor imputation.
In addition, all features are embedded into a combined dense
latent vector, enhancing existing correlations between values
from one data point. To exploit the presence of unlabeled data,
a self-supervised contrastive pre-training can further improve
the results, minimizing the distance between two views of the
same sample and maximizing the distance between different
ones. Like the VIME framework (Section IV-Al), SAINT
uses CutMix [110] to augment samples in the input space and
uses mixup [111] in the embedding space. The experimental
results show that SAINT outperforms tree-based models
like XGBoost as well as other deep learning approaches for
tabular data on average. When unlabeled data are available,
the performance can be improved further using the proposed
pretraining.

Finally, even some new learning paradigms are being pro-
posed. For instance, the nonparametric transformer (NPT) [92]
does not construct a mapping from individual inputs to outputs
but uses the entire dataset at once. By using attention between
data points, relations between arbitrary samples can be mod-
eled and leveraged for classifying test samples. Experiments
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confirmed that this new approach can reach state-of-the-
art results on most datasets by using intersample attention
mechanisms.

C. Regularization Models

The third group of approaches argues that extreme flexi-
bility of deep learning models for tabular data is one of the
main learning obstacles and strong regularization of learned
parameters may improve the overall performance.

One of the first methods in this category was the regu-
larization learning network (RLN) proposed by Shavitt and
Segal [63], which uses a learned regularization scheme. The
main idea is based on the observation that features in tab-
ular datasets have very different importances. Contrarily to
other data modalities data such as images or text, a single
tabular feature may change the entire prediction. Therefore,
the authors apply trainable regularization coefficients to each
single weight in a neural network, hence allowing high
sensitivity with respect to certain inputs or network parts
while being insensitive to others. To efficiently determine
the corresponding coefficients, the authors propose a novel
loss function termed “counterfactual loss.” The regularization
coefficients lead to a very sparse network, which also provides
the importance of the remaining input features.

In their experiments, RLNs outperform deep neural net-
works and obtain the results comparable to those of the GBDT
algorithm, but the evaluation relies on a dataset with mainly
numerical data to compare the models. The RLN paper does
not address the issues of categorical data. For the experiments
and the example implementation, datasets with exclusively
numerical data (except for the gender attribute) were used.
A similar idea is proposed in [112], where regularization
coefficients are learned only in the first layer with a goal to
extract feature importance.

Kadra et al. [10] stated that simple multilayer percep-
trons can outperform state-of-the-art algorithms on tabular
data if deep learning networks are properly regularized. The
authors propose a “cocktail” of regularization with 13 different
techniques that are applied jointly. From those, the optimal
subset and their subsidiary hyperparameters are selected. They
demonstrate in extensive experiments that the regulariza-
tion ‘“cocktails” can not only improve the performance of
multilayer perceptrons but these simple models also outper-
form tree-based architectures. On the downside, the extensive
per-dataset regularization and hyperparameter optimization
take much more computation time than the GBDT algorithm.

There are several other noteworthy works [113], [114],
[115], indicating that strong regularization of deep neural
networks can be beneficial for tabular data.

V. TABULAR DATA GENERATION

For many applications, the generation of realistic tabular
data is fundamental. Three of the main purposes are data
augmentation [117], data imputation (i.e., the filling of missing
values) [118], [119], and rebalancing [36], [37], [120], [121].
Another highly relevant topic is privacy-aware machine learn-
ing [38], [39], [122] where generated data can potentially be
leveraged to overcome privacy concerns.
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A. Methods

While the generation of images and text is highly
explored [123], [124], [125], generating synthetic tabular data
is a less frequent concern. The mixed structure of discrete and
continuous features along with their different value distribu-
tions still poses a significant challenge.

Classical approaches for the data generation task include
Copulas [126], [127] and Bayesian networks [128]. Among
Bayesian networks, those based on the Chow—Liu approxima-
tion [129] are especially popular [38], [130], [131], [132].

In the deep learning era, generative adversarial networks
(GANSs) [133] have proven highly successful for the generation
of images [123], [134]. GANs were recently introduced as
an original way to train a generative deep neural network
model. They consist of two separate models: a generator
G that generates samples from the data distribution and a
discriminator D that estimates the probability that a sample
came from the ground-truth distribution. Both G and D are
usually chosen to be nonlinear functions such as multilayer
perceptrons. To learn a generator distribution p, over data
x, the generator G(z;6,) maps the samples from a noise
distribution p.(z) (e.g., the Gaussian distribution) to the input
data space. The discriminator D(x; ;) outputs the probability
that a data point x comes from the training data’s distribution
Ddata Tather than from the generator’s output distribution py.
During joint training of G and D, G will start generating
successively more realistic samples to fool the discriminator
D. For more details on GANs, we refer the interested reader
to the original paper [133].

In Table III, we provide an overview of tabular generation
approaches that use deep learning techniques. Note that due
to the enormous number of approaches, we list the most
influential works that address the problem of data generation
with a particular focus on tabular data. We exclude works that
are targeted toward highly domain-specific tasks.

Although it was found that GANSs lag behind at the genera-
tion of discrete outputs such as natural language [125], they are
still frequently chosen to generate tabular data. Vanilla GANs
or derivates, such as the Wasserstein GAN (WGAN) [135],
WGAN with gradient penalty (WGAN-GP) [136], Cramér
GAN [137], or the Boundary seeking GAN [138], which
is designed to model discrete data, are commonly used
in the literature to generate tabular data (cf. Table III).
Moreover, VeeGAN [139] is frequently used as a reference
for tabular data generation [38], [130], [131]. Apart from
GANS, autoencoder-based architectures—in particular those
relying on variational autoencoders (VAEs) [140]—have been
proposed [130], [141].

In the following, we will briefly discuss the most rele-
vant approaches that helped shape the domain. For example,
MedGAN [39] was one of the first works and provides a deep
learning model to generate patient records. As all the features
in their work are discrete, this model cannot be easily trans-
ferred to arbitrary tabular datasets. The table-GAN approach
in [142] adapts the deep convolutional GAN for tabular data.
Specifically, the features from one record are converted into a
matrix so that they can be processed by convolutional filters of
a convolutional neural network. However, it remains unclear

to which extent the inductive bias used for images are suitable
for tabular data.

The approach by Xu et al. [130] focuses on the correlation
between the features of one data point. The authors first pro-
pose the mode-specific normalization technique for data pre-
processing that allows to transform non-Gaussian distributions
in the continuous columns. They express numeric values in
terms of a mixture component number and the deviation from
that component’s center. This allows to represent multimodal
and skewed distributions. Their generative solution, coined
CTGAN, uses the conditional GAN architecture to enforce
learning proper conditional distributions for each column.
To obtain categorical values and to allow for backpropagation
in the presence of categorical values, the gumbel-softmax
trick [143] is utilized. The authors also propose a model based
on VAEs, named tabular VAE (TVAE), which outperforms
their suggested GAN approach. Both approaches can be con-
sidered state of the art.

While GANs and VAEs are prevalent, other recently
proposed architectures include machine-learned causal mod-
els [144] and invertible flows [38]. When privacy is the main
factor of concern, models, such as PATE-GAN [145], provide
generative models with certain differential privacy guarantees.
Although very relevant for practical applications, such privacy
guarantees and related federated learning approaches with
tabular data [146] are outside the scope of this review.

Fan et al. [122] compared a variety of different GAN archi-
tectures for tabular data synthesis and recommended using
a simple, fully connected architecture with a vanilla GAN
loss with minor changes to prevent mode collapse. They also
use the normalization proposed in [130]. In their experiments,
the WGAN loss or the use of convolutional architectures on
tabular data does boost the generative performance.

B. Assessing Generative Quality

To assess the quality of the generated data, several per-
formance measures are used. The most common approach
is to define a proxy classification task and train one model
for it on the real training set and another on the artificially
generated dataset. With a highly capable generator, the predic-
tive performance of the artificial-data model on the real-data
test set should be almost on par with its real-data counter-
part. This measure is often referred to as machine learning
efficacy and used in [39], [131], and [147]. In nonobvious
classification tasks, an arbitrary feature can be used as a
label and predicted [39], [148], [149]. Another approach is
to visually inspect the modeled distributions per feature, e.g.,
the cumulative distribution functions [117], or compare the
expected values in scatter plots [39], [148]. A more quan-
titative approach is the use of statistical tests, such as the
Kolmogorov—Smirnov test [152], to assess the distributional
difference [149]. On synthetic datasets, the output distribution
can be compared to the ground truth, e.g., in terms of log
likelihood [130], [144]. Because overfitted models can also
obtain good scores, Xu et al. [130] proposed evaluating the
likelihood of a test set under an estimate of the GAN’s
output distribution. Especially in a privacy-preserving context,
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TABLE III

GENERATION OF TABULAR DATA USING DEEP NEURAL
NETWORK MODELS (IN CHRONOLOGICAL ORDER)

Method Based upon Application

medGAN, Autoencoder+GAN Medical Records

medWGAN [39]

TableGAN [142] DCGAN General

Mottini et al. [147] Cramér GAN Passenger Records

Camino et al. [148] medGAN, ARAE General
WGAN-GP,

medBGAN,
medWGAN [149]

Boundary seeking GAN

Medical Records

ITS-GAN [117] g)??oxgglﬁ‘g General
CTGAN, TVAE Wasserstein GAN, VAE General
[130]

artGAN [121] WGAN-GP Health Data
VAEM [141] VAE (Hierarchical) General
OVAE [131] Oblivious VAE General
TAEI [37] ‘:‘nﬁﬁiﬁio;ggg‘ General
Causal-TGAN [150] Causal-Model, WGAN-GP General
Copula-Flow [38] Invertible Flows General
Synthsonic [132] Copula + CLBNs General
GReaT [151] Language Transformer General

the distribution of the distance to closest record (DCR) can
be calculated and compared to the respective distances on
the test set [142]. This measure is important to assess the
extent of sample memorization. Overall, we conclude that
a single measure is not sufficient to assess the generative
quality. For instance, a generative model that memorizes the
original samples will score well in the machine learning
efficiency metric but fail the DCR check. Therefore, we highly
recommend using several evaluation measures that focus on
individual aspects of data quality.

VI. EXPLANATION MECHANISMS FOR DEEP
LEARNING WITH TABULAR DATA

Explainable machine learning is concerned with the prob-
lem of providing explanations for complex machine learn-
ing models. With stricter regulations for automated decision-
making [41] and the adoption of machine learning models
in high-stakes domains such as finance and healthcare [45],
[153], [154], interpretability is becoming a key concern.
Toward this goal, various streams of research follow different
explainability paradigms. Among these, feature attribution
methods and counterfactual explanations are two of the popu-
lar forms [155], [156], [157]. Because these techniques are
gaining importance for researchers and practitioners alike,
we dedicate the following to reviewing these methods.

A. Feature Highlighting Explanations

Local input attribution techniques seek to explain the behav-
ior of machine learning models instance by instance. Those
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methods aim to highlight the influence of the inputs that have
on the prediction by assigning importance scores to the input
features. Some popular approaches for model explanations aim
at constructing classification models that are explainable by
design [158], [159], [160]. This is often achieved by enforcing
the deep neural network model to be locally linear. Moreover,
if the model’s parameters are known and can be accessed,
then the explanation technique can use these parameters to
generate the model explanation. For such settings, relevance-
propagation-based methods, e.g., [161], [162], and gradient-
based approaches, e.g., [163], [164], [165], have been sug-
gested. In cases where the parameters of the neural network
cannot be accessed, model-agnostic approaches can prove
useful. This group of approaches seeks to explain a model’s
behavior locally by applying surrogate models [116], [166],
[167], [168], [169], which are interpretable by design and are
used to explain individual predictions of black-box machine
learning models. In order to test the performance of these
black-box explanations techniques, Liu et al. [170] suggested
a python-based benchmarking library.

B. Counterfactual Explanations

From the perspective of algorithmic recourse, the main pur-
pose of counterfactual explanations is to suggest constructive
interventions to the input of a deep neural network so that
the output changes to the advantage of an end user. In simple
terms, a minimal change to the feature vector that will flip
the classification outcome is computed and provided as an
explanation. By emphasizing both the feature importance and
the recommendation aspect, counterfactual explanation meth-
ods can be further divided into three different groups: works
that assume that all features can be independently manipulated
[171] and works that focus on manifold constraints to capture
feature dependencies.

In the class of independence-based methods, where the input
features of the predictive model are assumed to be indepen-
dent, some approaches use combinatorial solvers to generate
recourse in the presence of feasibility constraints [172], [173],
[174], [175]. Another line of research deploys gradient-based
optimization to find low-cost counterfactual explanations in the
presence of feasibility and diversity constraints [176], [177].
The main problem with these approaches is that they abstract
from input correlations.

To alleviate this problem and to suggest realistic-looking
counterfactuals, researchers have suggested building recourse
suggestions on generative models [178], [179], [180], [181],
[182]. The main idea is to change the geometry of the
intervention space to a lower dimensional latent space, which
encodes different factors of variation while capturing input
dependencies. To this end, these methods primarily use (tabu-
lar data) VAEs [140], [183]. In particular, Mahajan et al. [181]
demonstrated how to encode various feasibility constraints
into such models. However, an extensive comparison across
this class of methods is still missing since it is difficult to
measure how realistic the generated data are in the context of
algorithmic recourse.

More recently, a few works have suggested to develop
counterfactual explanations that are robust to model shifts
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and noise in the recourse implementations [184], [185], [186].
A comprehensive treatment on how to extend these lines of
work to arbitrary high-cardinality categorical variables is still
an open problem in the field.

For a more fine-grained overview over the literature on
counterfactual explanations, we refer the interested reader
to the most recent surveys [187], [188]. Finally, Pawelczyk
et al. [157] implemented an open-source python library, which
provides support for many of the aforementioned counterfac-
tual explanation models.

VII. EXPERIMENTS

Although several experimental studies have been pub-
lished in recent years [8], [10], an exhaustive comparison
between existing deep learning approaches for heterogeneous
tabular data is still missing in the literature. For example,
important aspects of deep learning models, such as training
and inference time, model size, and interpretability, are not
discussed.

To fill this gap, we present an extensive empirical com-
parison of machine and deep learning methods on real-world
datasets with varying characteristics in this section. We discuss
the dataset choice (VII-A), the results (VII-B), and present
a comparison of the training and inference time for all the
machine learning models considered in this survey (VII-C).
We also discuss the size of deep learning models. Finally,
to the best of our knowledge, we present the first comparison
of explainable deep learning methods for tabular data (VII-
D). We release the full source code of our experiments for
maximum transparency.’

A. Datasets

In computer vision, there are many established datasets
for the evaluation of new deep learning architectures such as
MNIST [98], CIFAR [189], and ImageNet [190]. On the con-
trary, there are no established standard heterogeneous datasets.
Carefully checking the works listed in Section IV, we iden-
tified over 100 different datasets with different characteristics
in their respective experimental evaluation sections. We note
that the small overlap between the mentioned works makes
it hard to compare the results across these works in general.
Therefore, in this work, we deliberately select datasets cov-
ering the entire range of characteristics, such as data domain
(e.g., finance, e-commerce, geography, and physics), different
types of target variables (classification and regression), varying
number of categorical variables and continuous variables, and
differing sample sizes (small to large). Furthermore, most
of the selected datasets were previously featured in multiple
studies.

The first dataset of our study is the Home Equity Line of
Credit (HELOC) dataset provided by FICO [191]. This dataset
consists of anonymized information from real homeowners
who applied for home equity lines of credit. An HELOC is a
line of credit typically offered by a bank as a percentage of

'Open benchmarking on tabular data for machine learning models:
https://github.com/kathrinse/TabSurvey.

TABLE IV

MAIN PROPERTIES OF THE REAL-WORLD HETEROGENEOUS TABULAR
DATASETS USED IN THIS SURVEY. WE ALSO INDICATE THE
DATASET TASK, WHERE “BINARY” STANDS FOR BINARY
CLASSIFICATION AND “MULTI-CLASS” REPRESENTS
MULTICLASS CLASSIFICATION

HELOC  Adult HIGGS Covertype  California
Income Housing
#Samples 9.871 32561 11 M. 581.012 20.640
#Num. features 21 6 27 52 8
#Cat. features 2 8 1 2
Task Binary  Binary  Binary Multi-Class Regression
#Classes 2 2 2 7 -

home equity. The task consists of using the information about
the applicant in their credit report to predict whether they will
repay their HELOC account within a two-year period.

We further use the Adult Income dataset [54], which is
among the most popular tabular datasets used in the surveyed
work (five usages). It includes basic information about indi-
viduals such as age, gender, and education. The target variable
is binary; it represents high and low income.

The largest tabular dataset in our study is HIGGS, which
stems from particle physics. The task is to distinguish between
signals with Higgs bosons (HIGGS) and a background
process [192]. Monte Carlo simulations [193] were used to
produce the data. In the first 21 columns (columns 2-22), the
particle detectors in the accelerator measure kinematic proper-
ties. In the last seven columns, these properties are analyzed.
In total, HIGGS includes 11 million rows. We also binarize the
21st variable into a categorical variable with three groups since
DeepFM, DeepGBM, TabTransformer, and SAINT models
require at least one categorical attribute, to benchmark the
method’s special functionality on large datasets.

The Covertype dataset [54] is multiclassification dataset,
which holds cartographic information about land cells (e.g.,
elevation and slope). The goal is to predict which one out of
seven forest cover types is present in the cell.

Finally, we utilize the California Housing dataset [194],
which contains information about a number of properties. The
prediction task (regression) is to estimate the price of the
corresponding home.

The fundamental characteristics of the selected datasets are
summarized in Table IV.

B. Open Performance Benchmark on Tabular Data

1) Hyperparameter Selection: In order to do a fair eval-
uation, we use the Optuna library [199] with 100 iterations
for each model to tune hyperparameters. Each hyperparameter
configuration was cross-validated with five folds. The hyper-
parameter ranges used are publicly available online along with
our code. We laid out the search space based on the informa-
tion given in the corresponding papers and recommendations
from the framework’s authors.

2) Data Preprocessing: We prepossessed the data in the
same way for every machine learning model by applying zero-
mean, unit-variance normalization to the numerical features
and an ordinal encoding to the categorical ones using the
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TABLE V

OPEN PERFORMANCE BENCHMARK RESULTS BASED ON (STRATIFIED) FIVEFOLD CROSS VALIDATION. WE USE THE SAME FOLD SPLITTING STRATEGY
FOR EVERY DATASET. THE TOP RESULTS FOR EACH DATASET ARE IN BOLD, WE ALSO UNDERLINE THE SECOND-BEST RESULTS. THE
MEAN AND STANDARD DEVIATION VALUES ARE REPORTED FOR EACH BASELINE MODEL. MISSING RESULTS INDICATE THAT THE
CORRESPONDING MODEL COULD NOT BE APPLIED TO THE TASK TYPE (REGRESSION OR MULTICLASS CLASSIFICATION)

Method HELOC Adult HIGGS Covertype Cal. Housing
Acc T AUC 1 Acc T AUC 1 Acc T AUC 1 Acc T AUC 1 MSE |

Linear Model 73.040.0 80.1£0.1 82.54+0.2 85.4+0.2 64.1+0.0 68.440.0 72.440.0 92.84+0.0 0.528+0.008

" KNN [58] 72.240.0 79.01+0.1 83.240.2 87.5+0.2 62.31+0.1 67.1+0.0 70.240.1 90.14+0.2 0.421£0.009

§ Decision Trees [195] 80.3+0.0 89.310.1 85.31+0.2 89.840.1 71.3£0.0 78.7+0.0 79.1£0.0 95.0+0.0 0.40440.007

§ Random Forest [196] 82.1+0.2 90.0£0.2 86.1+0.2 91.7+0.2 71.9£0.0 79.7+0.0 78.1£0.1 96.1+0.0 0.27240.006

k] XGBoost [46] 83.5+0.2 92.240.0 87.3+0.2 92.840.1 77.6£0.0 85.940.0 97.3+0.0 99.9+0.0 0.2064+0.005

;:% LightGBM [70] 83.540.1 92.3+0.0 87.41+0.2 92.9+0.1 77.1£0.0 85.5+0.0 93.5+0.0 99.74+0.0 0.195+0.005

CatBoost [71] 83.6+0.3 92.4+0.1 87.240.2 92.840.1 77.5£0.0 85.84+0.0 96.4+0.0 99.840.0 0.1961-0.004

Model Trees [197] 82.6+0.2 91.5+0.0 85.0+0.2 90.4+£0.1 69.8+£0.0 76.7+0.0 - - 0.385+0.019

MLP [198] 73.240.3 80.310.1 84.84+0.1 90.3+0.2 77.1£0.0 85.6+0.0 91.0+0.4 76.1£3.0 0.263+0.008

VIME [79] 72.7+0.0 79.2+0.0 84.84+0.2 90.5+0.2 76.9£0.2 85.54+0.1 90.9+£0.1 82.910.7 0.2754+0.007

DeepFM [15] 73.6+0.2 80.410.1 86.1+0.2 91.7+0.1 76.9£0.0 83.4+0.0 - - 0.26040.006

DeepGBM [62] 78.04+0.4 84.1£0.1 84.64+0.3 90.8+0.1 74.5£0.0 83.0+0.0 - - 0.856+0.065

'g‘] NODE [7] 79.84+0.2 87.54+0.2 85.64+0.3 91.14+0.2 76.910.1 85.440.1 89.940.1 98.740.0 0.276£0.005

% NAM [85] 73.340.1 80.740.3 83.440.1 86.6+0.1 53.940.6 55.04+1.2 - - 0.725+0.022
i Net-DNF [50] 82.6+0.4 91.5+0.2 85.74+0.2 91.310.1 76.6+0.1 85.140.1 94.240.1 99.14+0.0 -

§ TabNet [6] 81.0+0.1 90.0£0.1 85.41+0.2 91.1+0.1 76.5+£1.3 84.9+1.4 93.1£0.2 99.440.0 0.3461+0.007

TabTransformer [90] 73.31+0.1 80.140.2 85.24+0.2 90.6+0.2 73.8+0.0 81.9+0.0 76.5+0.3 72.9+2.3 0.451+0.014

SAINT [9] 82.1+0.3 90.7+0.2 86.1+0.3 91.6+0.2 79.8+0.0 88.3+0.0 96.3£0.1 99.840.0 0.2261+0.004

RLN [63] 73.2+0.4 80.1+0.4 81.0+1.6 75.9+8.2 71.8+0.2 79.4+0.2 77.2£1.5 92.0+0.9 0.348+0.013

STG [93] 73.110.1 80.010.1 85.410.1 90.9+0.1 73.9+£0.1 81.910.1 81.84+0.3 96.24+0.0 0.2854+0.006

alphabetical order. According to Hancock and Khoshgof-
taar [47], the chosen encoding strategy shows comparable
performance to more advanced methods. The missing values
were substituted with zeros for the linear regression and
models based on pure neural networks since these methods
cannot accept them otherwise. We explicitly specify categor-
ical features for LightGBM, DeepFM, DeepGBM, TabNet,
TabTransformer, and SAINT since these approaches provide
special functionality dedicated to categorical values, e.g.,
learning an embedding of the categories. As we noted in
Section III-C, the results of experiments may be affected by
the data preprocessing.

3) Reproducibility and Extensibility: For maximum repro-
ducibility, we run all experiments in a docker container [200].
We underline again that our full code is publicly released so
that the experiments can be replicated. The mentioned datasets
are also publicly available and can be used as a benchmark
for novel methods. We would highly welcome contributed
implementations of additional methods from the data science
community.

4) Results: The results of our experiments are shown in
Table V. They draw a different picture than many recent
research papers may suggest: for all but the very large HIGGS
dataset, the best scores are still obtained by boosted decision
tree ensembles. XGBoost and CatBoost outperform all deep
learning-based approaches on the small and medium datasets,
the regression dataset, and the multiclass dataset. For the

large-scale HIGGS, SAINT outperforms the classical machine
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learning approaches. This suggests that for very large tabu-
lar datasets with predominantly continuous features, modern
neural network architectures may have an advantage over
classical approaches after all. In general, however, our results
are consistent with the inferior performance of deep learning
techniques in comparison to approaches based on decision tree
ensembles (such as GBDT) on tabular data that were observed
in various Kaggle competitions [201].

Considering only deep learning approaches, we observe that
SAINT provided competitive results across datasets. However,
for the other models, the performance was highly dependent on
the chosen dataset. DeepFM performed best (among the deep
learning models) on the Adult dataset and second-best on the
California Housing dataset, but returned only weak results on
the HELOC dataset.

C. Run Time Comparison

We also analyze the training and inference time of
the models in comparison to their performance. We plot
the time—performance characteristic for the models in
Figs. 3 and 4 for the Adult and the HIGGS dataset, respec-
tively. While the training time of gradient boosting-based
models is lower than that of most deep neural network-based
methods, their inference time on the HIGGS dataset with
11 million samples is significantly higher: for XGBoost, the
inference time amounts to 5995 s, whereas inference times
for MLP and SAINT are 10.18 and 282 s, respectively. All
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Fig. 3. Train (left) and inference (right) time benchmarks for selected methods on the Adult dataset with 32.561 samples. The circle size reflects the accuracy

standard deviation.
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Fig. 4. Train (left) and inference (right) time benchmarks for selected methods on the HIGGS dataset with 11 million samples. The circle size reflects the
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Fig. 5. Size comparison of deep learning models on the Adult dataset. The
circle size reflects the standard deviation.

gradient boosting and deep learning models were trained on
the same GPU.

D. Interpretability Assessment

As opposed to the pure on-task performance, interpretabil-
ity of the models is becoming an increasingly important
characteristic. Therefore, we end this section with a distinct
assessment of the interpretability properties claimed by some
methods. The model size (number of parameters) can provide
a first intuition of the interpretability of the models. Therefore,
we provide a size comparison of deep learning models in
Fig. 5.

Admittedly, explanations can be provided in very different
forms, which may each have their own use cases. Hence,
we can only compare explanations that have a common
form. In this work, we chose feature attributions as the
explanation format because they are the prevalent form of
post hoc explainability for the models considered in this
work. Remarkably, the models that build on the transformer
architecture (Section IV-B2) often claim some extent of inter-
pretability through the attention maps [9]. To verify this
hypothesis and assess the attribution provided by some of
the frameworks in practice, we run an ablation test with
the features that were attributed the highest importance over
all samples. Furthermore, due to the lack of ground-truth
attribution values, we compare individual attributions to the
well-known KernelSHAP values [116].

Evaluation of the quality of feature attribution is known to
be a nontrivial problem [202]. We measure the fidelity [203]
of the attributions by successively removing the features that
have the highest mean importance assigned (most relevant first
(MoRF) [203]). We then retrain the model on the reduced
feature set. A sharp drop in predictive accuracy indicates
that the discriminative features were successfully identified
and removed. We do the same for the inverse order, least
relevant first (LeRF), which removes the features deemed
unimportant. In this case, the accuracy should stay high
as long as possible. For the attention maps of TabTrans-
former and SAINT, we either use the sum over the entire
columns of the intrafeature attention maps as an importance
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Fig. 6. Resulting curves of the global attribution benchmark for feature
attributions (fifteen runs on Adult). Standard errors are indicated by the shaded
area. For the MoRF order, an early drop in accuracy is desirable, while for
LeRF, the accuracy should stay as high as possible. (a) MoRF. (b) LeRF.

estimate or only take the diagonal (feature self-attentions) as
attributions.

The obtained curves are visualized in Fig. 6. For the
MoRF order, TabNet and TabTransformer with the diagonal
of the attention head as attributions seem to perform best.
For LeRF, TabNet is the only significantly better method than
the others. For TabTransformer, taking the diagonal of the
attention matrix seems to increase the performance, whereas
for SAINT, there is almost no difference. We additionally
compare the attribution values obtained to values from the
KernelSHAP attribution method. Unfortunately, there are no
ground-truth attributions to compare with. However, the SHAP
framework has a solid grounding in game theory and is
widely deployed [43]. We only compare the absolute values
of the attributions, as the attention maps are constrained to
be positive. As a measure of agreement, we compute the
Spearman rank correlation between the attributions by the
SHAP framework and the tabular data models and show the
results in Table VI. The correlation we observe is surprisingly
low across all models, and sometimes, it is even negative,
which means that a higher SHAP attribution will probably
result in a lower attribution by the model.

In these two simple benchmarks, the transformer models
were not able to produce convincing feature attributions out-
of-the-box. We come to the conclusion that more profound
benchmarks of the claimed interpretability characteristics and
their usefulness in practice are necessary.

VIII. DISCUSSION AND FUTURE PROSPECTS

In this section, we summarize our findings and discuss
current and future trends in deep learning approaches for
tabular data (Section VIII-A). Moreover, we identify several
open research questions that could be tackled to advance the
field of tabular deep neural networks (Section VIII-B).

90

TABLE VI

SPEARMAN RANK CORRELATION OF THE PROVIDED ATTRIBUTION WITH
KERNELSHAP VALUES AS GROUND TRUTH. RESULTS WERE
COMPUTED ON 750 RANDOM SAMPLES
FROM THE ADULT DATASET

Model, attention used Spearman Corr.

TabTransformer, columnw. attention -0.01 £ 0.008
TabTransformer, diag. attention 0.00 + 0.010
TabNet 0.07 £+ 0.009
SAINT, columnw. attention -0.04 £ 0.007
SAINT, diag. attention 0.01 £ 0.007

A. Summary and Trends

1) Decision Tree Ensembles Are Still State of the Art:
In a fair comparison on multiple datasets, we demonstrated
that models based on tree ensembles, such as XGBoost,
LightGBM, and CatBoost, still outperform the deep learning
models on most datasets that we considered and come with
the additional advantage of significantly less training time.
Even though it has been six years since the XGBoost publi-
cation [46] and over 20 years since the publishing of original
gradient boosting paper [95], we can state that despite much
research effort in deep learning, the state of the art for tabular
data remains largely unchanged. However, we observed that
for very large datasets, approaches based on deep learning
may still be able to achieve competitive performance and even
outperform classical models. In summary, we think that a
fundamental reorientation of the domain may be necessary.
For now, the question of whether the use of current deep
learning techniques is beneficial for tabular data can generally
be answered in the negative. This applies in particular to
small heterogeneous datasets that are common in applications.
Hence, instead of proposing more and more complex models,
we argue that a more profound understanding of the reasons
for this performance gap is needed.

2) Unified Benchmarking: Furthermore, our results high-
light the need for unified benchmarks. There is no consensus
in the machine learning community on how to make a fair
and efficient comparison. Shwartz-Ziv and Armon [8] showed
that the choice of benchmarking datasets can have a non-
negligible impact on the performance assessment. While we
chose common datasets with varying characteristics for our
experiments, a different choice of datasets or hyperparameter
such as the encoding use (e.g., one-hot encoding for cate-
gorical variables) may lead to a different outcome. Because
of the excessive number of datasets (in the 18 works listed
in Table II, over 100 different datasets are used), there is a
necessity for a standardized benchmarking procedure, which
allows to identify significant progress with respect to the state
of the art. With this work, we also propose an open-source
benchmark for deep learning models on tabular data. For
tabular data generation tasks, Xu et al. [130] proposed a sound
evaluation framework with artificial and real-world datasets
(Section V-B), but researchers need to agree on common
benchmarks in this subdomain as well.

3) Tabular Data Preprocessing: Many of the challenges
for deep neural networks on tabular data are related to the
heterogeneity of the data (e.g., categorical and sparse values).
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Therefore, some deep learning solutions transform them into a
homogeneous representation more suitable to neural networks.
While the additional overhead is small, such transforms can
boost performance considerably and should thus be among the
first strategies applied in real-world scenarios.

4) Architectures for Deep Learning on Tabular Data:
Architecturewise, there has been a clear trend toward
transformer-based solutions (Section IV-B2) in recent years.
These approaches offer multiple advantages over standard
neural network architectures, for instance, learning with atten-
tion over both categorical and numerical features. More-
over, self-supervised or unsupervised pretraining that leverages
unlabeled tabular data to train parts of the deep learning
model is gaining popularity, not only among transformer-based
approaches. Performancewise, multiple independent evalua-
tions demonstrate that deep neural network methods from the
hybrid (Section IV-B1) and transformer-based (Section 1V-B2)
groups exhibit superior predictive performance compared to
plain deep neural networks on various datasets [9], [48],
[62], [84]. This underlines the importance of special-purpose
architectures for tabular data.

5) Deep Generative Models for Tabular Data: Powerful
tabular data generation is essential for the development of
high-quality models, particularly in a privacy context. With
suitable data generators at hand, developers can use large, syn-
thetic, and yet realistic datasets to develop better models, while
not being subject to privacy concerns [145]. Unfortunately, the
generation task is as hard as inference in predictive models,
so progress in both areas will likely go hand in hand.

6) Interpretable Deep Learning Models for Tabular Data:
Interpretability is undoubtedly desirable, particularly for tab-
ular data models frequently applied to personal data, e.g.,
in healthcare and finance. An increasing number of approaches
offer it out-of-the-box, but most current deep neural network
models are still mainly concerned with the optimization of a
chosen error metric. Therefore, extending existing open-source
libraries (see [157], [170]) aimed at interpreting black-box
models helps advance the field. Moreover, interpretable deep
tabular learning is essential for understanding model decisions
and results, especially for life-critical applications. However,
much of the state-of-the-art recourse literature does not offer
easy support of heterogeneous tabular data and lacks metrics
to evaluate the quality of heterogeneous data recourse. Finally,
model explanations can be used to identify and mitigate
potential unwanted biases and eliminate unfair discrimination
[204], [205].

7) Learning From Evolving Data Streams: Many modern
applications are subject to continuously evolving data streams,
e.g., social media, online retail, or healthcare. Streaming data
are usually heterogeneous and potentially unlimited. There-
fore, observations must be processed in a single pass and can-
not be stored. Indeed, online learning models can only access
a fraction of the data at each time step. Furthermore, they have
to deal with limited resources and shifting data distributions
(i.e., concept drift) [206]. Hence, hyperparameter optimization
and model selection, as typically involved in deep learning, are
usually not feasible in a data stream. For this reason, despite
the success of deep learning in other domains, less complex

methods, such as incremental decision trees [207], [208], are
often preferred in online learning applications.

B. Open Research Questions

Several open problems need to be addressed in future
research. In this section, we will list those we deem funda-
mental to the domain.

1) Information-Theoretic Analysis of Encodings: Encoding
methods are highly popular when dealing with tabular data.
However, the majority of data preprocessing approaches for
deep neural networks are lossy in terms of information content.
Therefore, it is challenging to achieve an efficient, almost
lossless transformation of heterogeneous tabular data into
homogeneous data. Nevertheless, the information-theoretic
view on these transformations remains to be investigated in
detail and could shed light on the underlying mechanisms.

2) Computational Efficiency in Hybrid Models: The work
by Shwartz-Ziv and Armon [8] suggests that the combination
of a GBDT and deep neural networks may improve the pre-
dictive performance of a machine learning system. However,
it also leads to growing complexity. Training or inference
times, which far exceed those of classical machine learning
approaches, are a recurring problem when developing hybrid
models. We conclude that the integration of state-of-the-art
approaches from classical machine learning and deep learn-
ing has not been conclusively resolved yet and future work
should be conducted on how to mitigate the tradeoff between
predictive performance and computational complexity.

3) Individual Regularizations: We applaud recent research
on individual regularization methods, in which we see a
promising direction to tackle the problem of highly sensitive
features. We believe that representing the towering influence
of certain features is crucial to success. Whether context- and
architecture-specific regularizations for tabular data can be
found remains an open question. In addition, it is relevant
to explore the theoretical constraints that govern the success
of regularization on tabular data more profoundly.

4) Novel Processes for Tabular Data Generation: For tab-
ular data generation, modified GANs and VAEs are prevalent.
However, the modeling of dependencies and categorical dis-
tributions remains the key challenge. Novel architectures in
this area, such as diffusion models, have not been adapted to
the domain of tabular data. Furthermore, the definition of an
entirely new generative process particularly focused on tabular
data might be worth investigating.

5) Interpretability: Going forward, counterfactual explana-
tions for deep tabular learning can be used to improve the per-
ceived fairness in human-artificial intelligence (Al) interaction
scenarios and to enable personalized decision-making [188].
However, the heterogeneity of tabular data poses problems for
counterfactual explanation methods to be reliably deployed in
practice. The problem of efficiently handling heterogeneous
tabular data in the presence of feasibility constraints remains
unsolved [157].

6) Transfer of Deep Learning Methods to Data Streams:
Recent work shows that some of the limitations of neural
networks in an evolving data stream can be overcome [25],
[209]. Conversely, changes in the parameters of a neural
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network may be effectively used to weigh the importance
of input features over time [210] or to detect concept drift
[211]. Accordingly, we argue that deep learning for streaming
data—in particular strategies for dealing with evolving and
heterogeneous tabular data—should receive more attention in
the future.

7) Transfer Learning for Tabular Data: Reusing knowledge
gained solving one problem and applying it to a different task
is the research problem addressed by transfer learning. While
transfer learning is successfully used in computer vision and
natural language processing applications [212], there are no
efficient and generally accepted ways to do transfer learning
for tabular data. Hence, a general research question can be how
to share knowledge between multiple (related) tabular datasets
efficiently.

8) Data Augmentation for Tabular Data: Data augmenta-
tion has proven highly effective to prevent overfitting, espe-
cially in computer vision [213]. While some data augmentation
techniques for tabular data exist, e.g., SMOTE-NC [214], sim-
ple models fail to capture the dependency structure of the data.
Therefore, generating additional samples in a continuous latent
space is a promising direction. This was investigated by Darabi
and Elor [37] for minority oversampling. Nevertheless, the
reported improvements are only marginal. Thus, future work
is required to find simple, yet effective random transformations
to enhance tabular training sets.

9) Self-Supervised Learning: Large-scale labeled data are
usually required to train deep neural networks; however, data
labeling is an expensive task. To avoid this expensive step,
self-supervised methods propose to learn general feature repre-
sentations from available unlabeled data. These methods have
also shown astonishing results in computer vision and natural
language processing [215], [216]. Only a few recent works in
this direction [79], [80], [217] deal with heterogeneous data.
Hence, novel self-supervised learning approaches dedicated to
tabular data might be worth investigating.

IX. CONCLUSION

This survey is the first work to systematically explore
deep neural network approaches for heterogeneous tabular
data. In this context, we highlighted the main challenges and
research advances in modeling, generating, and explaining tab-
ular data. We introduced a unified taxonomy that categorizes
deep learning approaches for tabular data into three branches:
data transformation methods, specialized architectures, and
regularization models. We believe that our taxonomy will
help catalog future research and better understand and address
the remaining challenges in applying deep learning to tabular
data. We hope that it will help researchers and practitioners
to find the most appropriate strategies and methods for their
applications.

In addition, we also conducted an unbiased evaluation of
the state-of-the-art deep learning approaches on multiple real-
world datasets. Deep neural network-based methods for het-
erogeneous tabular data are still inferior to machine learning
methods based on decision tree ensembles for small- and
medium-sized datasets (less than ~1M samples). Only for
a very large dataset mainly consisting of continuous and
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numerical variables, the deep learning model SAINT outper-
formed these classical approaches. Furthermore, we assessed
the explanation properties of deep learning models with the
self-attention mechanism. Although the TabNet model shows
promising explanatory capabilities, inconsistencies between
the explanations remain an open issue.

Due to the importance of tabular data to industry and
academia, new ideas in this area are in high demand and can
have a significant impact. With this review, we hope to provide
interested readers with the references and insights they need
to address open challenges and effectively advance the field.
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Abstract

Although deep neural networks (DNNs) constitute the state of the art in many tasks based on visual, audio, or text data,
their performance on heterogeneous, tabular data is typically inferior to that of decision tree ensembles. To bridge the gap
between the difficulty of DNNSs to handle tabular data and leverage the flexibility of deep learning under input heterogeneity,
we propose DeepTLF, a framework for deep tabular learning. The core idea of our method is to transform the heterogeneous
input data into homogeneous data to boost the performance of DNNs considerably. For the transformation step, we develop
a novel knowledge distillations approach, TreeDrivenEncoder, which exploits the structure of decision trees trained on the
available heterogeneous data to map the original input vectors onto homogeneous vectors that a DNN can use to improve
the predictive performance. Within the proposed framework, we also address the issue of the multimodal learning, since
it is challenging to apply decision tree ensemble methods when other data modalities are present. Through extensive and
challenging experiments on various real-world datasets, we demonstrate that the DeepTLF pipeline leads to higher predictive
performance. On average, our framework shows 19.6% performance improvement in comparison to DNNs. The DeepTLF

code is publicly available.

Keywords Deep neural networks - Heterogeneous data - Tabular data - Tabular data encoding - Multimodal learning

1 Introduction

Tabular data is the most commonly used form of data, and
it is ubiquitous in various applications [1], such as medical
diagnosis based on patient history [2], predictive analytics
for financial applications [3], cybersecurity [4]. Although
deep neural networks (DNNss) perform outstandingly well on
homogeneous data, e.g., visual, audio, and textual data [5],
heterogeneous, tabular data still pose a challenge to these
models [1,6].

We hypothesize that the moderate performance of DNNs
on tabular data comes from two major factors. The first is
the inductive bias(es) [7,8]; for example, convolutional neu-
ral networks (CNNs) assume that specific spatial structures
are present in the data, recurrent neural networks (RNNs)
assume that a temporal relationship between data points
exists, whereas tabular data do not have any spatial or tempo-
ral connections. The second reason is the high information
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loss during the data preprocessing step since tabular input
data need to undergo cleansing (dealing with missing, noisy,
and inconsistent values), uniform discretized representa-
tion (handling categorical and continuous values together),
and scaling (standardized representation of features) steps.
Along with these feature-processing steps, important infor-
mation contained in the data may get lost, and hence,
the preprocessed feature vectors! (especially when one-hot
encoded) may negatively impact training and learning effec-
tiveness [9]. As reported in [10], an efficient transformation
of categorical data for training DNNs is still a significant
challenge. Furthermore, a work [11] shows that the embed-
dings (transformations) for numerical features can be also
beneficial for DNNs.

Typically, when heterogeneous tabular data is involved,
the first choice across all machine learning (ML) algorithms
is ensemble models based on decision trees [12], such as
random forests (RF) [13], or gradient-boosted decision trees
(GBDT) [14]. Since the inductive bias(es) of the methods
based on decision trees are well suited to non-spatial het-
erogeneous data, the data preprocessing step is reduced to a

! In this work, we define a feature vector as an n-dimensional vector
of numerical and categorical features that represent a data object.
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minimum. In particular, the most common implementations
of the GBDT algorithm—XGBoost [15], LightGBM [16],
and CatBoost [17]—handle the missing values internally by
searching for the best approximation of missing data points.

However, the most significant computational disadvantage
of the decision tree-based methods is while training the need
to store (almost) the entire dataset in memory [8]. Further-
more, in the multimodal datasets in which different data types
are involved (e.g., visual and tabular data), decision tree-
based models are not able to provide state-of-the-art results,
whereas DNNs models allow for batch-learning (no need to
store the whole dataset), and for those multimodal data tasks,
DNNs demonstrate state-of-the-art performance [18].

Towards the goal of significantly boosting DNNs on tabu-
lar data, we propose DeepTLF, a novel deep tabular learning
framework that exploits the advantages of the GBDT algo-
rithm as well as the flexibility of DNNs. The key element
of the framework is a novel encoding algorithm, TreeDrive-
nEncoder, which transforms the heterogeneous tabular data
into homogeneous data by distilling knowledge from nodes
of trained decision trees. Thus, DeepTLF can preserve most
of the information that is contained in the original data and
encoded in the structure of the decision trees and benefit from
preprocessing power of decision tree-based algorithms.

Through experiments on various freely available real-
world datasets, we demonstrate the advantages of such a
composite learning approach for different prediction tasks.
We argue that by transforming heterogeneous tabular data
into homogeneous vectors, we can drastically improve the
performance of DNNs on tabular data.

The main contributions of this work are: (I) We pro-
pose a deep tabular learning framework—DeepTLF—that
combines the preprocessing strengths of GBDTs with the
learning flexibility of DNNSs. (II) The proposed framework
builds on a generic approach for transforming heterogeneous
tabular data into homogeneous vectors using the structure of
decision trees from a gradient boosting model using a novel
encoding function—TreeDrivenEncoder. Hence, the trans-
formation approach can also be used independently from the
presented deep learning framework. (III) In extensive exper-
iments on eight datasets and compared with state-of-the-art
ML approaches, we show that the proposed framework mit-
igates well-known data-processing challenges and leads to
unprecedented predictive performance, outperforming all the
competitors. (IV) For multimodal settings with tabular data,
we demonstrate the robust performance of our deep tabular
learning framework. (V) We provide an open-source imple-
mentation of proposed algorithm and published it online
https://github.com/unnir/DeepTLF.
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2 Related work

In recent years, deep neural networks on tabular data have
received much attention from the machine learning and data
science communities [1,8,19-32]. The existing approaches
can be grouped into two broad categories— architecture-
based and data transformation-based models.

Architecture-based models This group aims at devel-
oping new deep learning architectures for heterogeneous
data [19,20,23,24,26]. For example, the authors of [23] pro-
posed distinct neural network architecture for reducing the
preprocessing and feature engineering effort by introducing
a data sharing strategy between a deep and a wide network so
that low- and high-level interactions between the inputs can
be learned simultaneously, based on the ideas of factorization
machines (FM) proposed in [33]. The work [34] extended
the sharing strategy using the FM for structured data fur-
ther. In [24], the authors propose an integrated solution by
introducing two special neural networks, one for handling
categorical features and another for numerical data. How-
ever, for mentioned approaches [23,24,34], it is not clear
how other data-related issues, such as missing values, dif-
ferent scaling of numeric features, and noise, influence the
predictions produced by the models.

Another line of research in this group tries to combine the
advantages of decision trees and neural networks. For exam-
ple, the authors of [35] introduced the neural decision forest
algorithm, an ensemble of neural decision trees, where split
functions in each tree node are randomized multilayer per-
ceptrons (MLPs). Another approach [36] presented a strategy
for selecting paths in a neural directed acyclic graph to pro-
duce the prediction for a given input. Hence, the selected
neural paths are specialized to specific inputs. In [37], the
authors empirically showed that neural networks with ran-
dom forest structure could have better generalization ability
across various input domains.

A fully differentiable architecture for deep learning, which
generalizes ensembles of oblivious decision trees on tabu-
lar, is introduced in [20]. Their architecture (coined NODE)
employs the entmax transformation [38] and thus maps a vec-
tor of real-valued scores to a discrete probability distribution.
Furthermore, the work [8] promotes localized decisions that
are taken over small subsets of the features.

Other approaches focus on architectures that build on
attention-based (deep transformers) mechanisms [39]. For
example, the authors of [19] and [22] propose an atten-
tive transformer architecture for deep tabular learning. Their
architecture also offers the possibility to interpret the input
features; however, for reliable performance, a large amount
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Fig. 1 A data pipeline for the DeepTLF framework. First, the train
data is used to train a gradient-boosted decision trees (GBDT) model.
The heterogeneous data is transformed by exploiting the structures of
the decision trees in the ensemble. More specifically, the TreeDrive-
nEncoder algorithm distills information from trained decision trees of
the GBDT model to produce homogeneous binary vectors. These vec-

of training data is needed. Another drawback is that the atten-
tion mechanism is only applied to categorical data. Hence, the
continuous data do not throw the self-attention block, mean-
ing that correlations between categorical and continuous
features are dropped. The work [27] proposes a variation of
a transformer and offers semi-supervised learning. However,
no clear statements can be drawn for all methods described
so far regarding the relationship between data heterogene-
ity and prediction quality (especially robustness under noisy
data or labels). Moreover, many of the solutions in this line
of research are quite challenging from a practical perspective
since it is often unclear which architectural choices should
be employed in realistic scenarios.

These architecture-based approaches generally rely on
novel neural network architectures, which are difficult to (re-
)implement and optimize for specific real-world use cases.
Especially for critical, data-intensive applications, e.g., data
streaming, large-scale recommendation systems [40], and
many more, it is not always clear what additional adjustments
to the working pipeline are needed.

Data transformation-based models Another way to
improve the predictive quality in the presence of tabular data
is to transform heterogeneous data into homogeneous fea-
ture vectors. The transformation can range from simple data
preprocessing, such as the normalization of numerical vari-
ables or binary encoding of categorical variables, to linear or
nonlinear embedding schemes (e.g., generated by advanced
autoencoders) [9,10]. The advantage of such data transfor-
mation approaches is that they do not require adapting the
deep learning architecture. However, they may reduce the
information content by smoothing critical values that might
have been highly relevant for the final prediction.

Independent works [41,42] demonstrate that data can be
encoded using the RF algorithm by accessing leaf indices in
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tors are then used to train a DNN. Note that DeepTLF does not require
data preprocessing, such as normalization, handling missing values, and
encoding categorical features; therefore, in total, it dramatically speeds
up the data preprocessing time. Note that the test data are not used to
train the GBDT algorithm

the decision trees. The idea was also utilized by [25], where
trees from a GBDT model are used for the categorical data
encoding instead of the RF model. These works show that the
decision trees are a powerful and convenient way to imple-
ment nonlinear and categorical feature transformations for
heterogeneous data. The DeepGBM framework [24] further
evolved the idea of distilling knowledge from the decision
tree leaf index by encoding them using a neural network for
online learning tasks. Overall, the leaf embedding approach
received much attention; however, the leaf indices from a
decision tree embedding do not fully represent the whole
decision tree structure. Thus, each boosted tree is treated
as a new meta categorical feature, which might be an issue
for the DNNs [10].

In contrast to related methods, our aim is to holistically
distill the information from decision trees by utilizing the
whole decision tree, not only the output leaves. The DeepTLF
combines the advantages of GBDT (such as handling missing
values and categorical variables) with the learning flexibility
of DNNS to achieve superior and robust prediction perfor-
mance. Also, [43] demonstrates that a DNN trained using
distilled data can outperform models trained on the original
data.

Other approaches such as NODE [20] and Net-DNF [8] try
to mimic the decision trees using DNNs. Also, the work [44]
proposes a gradient-descent-based strategy that exploits the
decision tree structure to propagate gradients in the learning
process. Our approach is different because DeepTLF is more
robust to data inconsistencies and does not require new DNN
architectures. Hence, it is straightforward to use.

Furthermore, the observation that local Boolean features
from decision trees model can be informative for global mod-
eling is also reported in [45], where the authors exploit sparse
local contrastive explanations of a black-box model to obtain
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Fig.2 A toy example of the proposed data transformation performed
by the TreeDrivenEncoder algorithm. On the left, we see two hetero-
geneous input feature vectors X; and X, from the original dataset D,
where x; € R x R x {red, —} x R; f1, f2, fa are numerical features
and f3 is a categorical feature in a tabular dataset. Note there is also
a missing value — for the feature f3 in x. To encode the input data,

custom Boolean features. A globally transparent model is
then trained on the Boolean features; empirically, the global
model shows a predictive performance that is slightly worse
than state-of-the-art approaches.

In summary, in contrast to state-of-the-art methods that
exploit decision tree structures and mainly focus on leaf
indices, DeepTLF utilizes the whole decision tree structure
from a GBDT model, and it furthermore considers the repre-
sentation of each feature independently in the information
distillation process. Our framework combines the advan-
tages of gradient-boosted trees (such as handling different
scales, different attribute types, missing values, outliers, and
many more) with the learning flexibility of neural networks
to achieve excellent predictive performance.

3 DeepTLF: deep tabular learning framework

In this section, we present the main components of our
DeepTLF framework. As it is depicted in Fig. 1, DeepTLF
consists of three major parts: (1) an ensemble of decision
trees (in this work, we utilize the GBDT algorithm), (2) a
TreeDrivenEncoder that performs the transformation of the
original data into homogeneous, binary feature vectors by
distilling the information contained in the structures of the
decision trees through the TreeDrivenEncoder algorithm, and
(3) adeep neural network model trained on the binary feature
vectors obtained from the TreeDrivenEncoder algorithm. We
will describe the details of each component in the following
subsections.

3.1 Gradient-boosted decision tree
For the data encoding step, we selected one of the most pow-

erful algorithms on tabular data, namely the gradient-boosted
decision trees (GBDT) algorithm [14]. GBDT is a well-
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Trained Decision Trees

Homogeneous Tabular
Feature Vectors

we use two trained decision trees on the dataset D, with 5 inner nodes

in total. By evaluating the Boolean function in each inner node for a

given input vector, we construct two homogeneous feature vectors x’l’

and xé’ , where a component of these vectors is set to 1 if the correspond-
ing Boolean function evaluates to true and 0 otherwise (colour figure
online)

known and widely used ensemble algorithm for tabular data
both in research and industrial applications [15] and is partic-
ularly successful for tasks containing heterogeneous features,
small dataset sizes, and “noisy” data [12]. Especially when
it comes to handling variance and bias, gradient boosting
ensembles show highly competitive performance in com-
parison with state-of-the-art learning approaches [12,14]. In
addition, multiple evaluations have empirically demonstrated
that the decision trees of a GBDT ensemble preserve the infor-
mation from the original data and can be used for further data
processing [24,25].

The key idea of the GBDT algorithm is to construct a
strong model by iterative addition of weak learners. The set of
weak learners H is usually formed by shallow decision trees,
which are directly trained on the original data. Consequently,
almost no data preparation is needed, and the information loss
is minimized. We denote a GBDT model as a set of decision
trees:

Teepr = {T1, Tz, ..., Ty},
where k is the number of estimators in the GBDT algorithm.

The formal definition of the GBDT algorithm is in

Appendix A.

3.2 Knowledge distillation from decision trees

The trained GBDT model provides structural data informa-
tion, which also encodes dependencies between the input
features with respect to the prediction task. In order to dis-
till the knowledge from a tree-based model, we propose a
novel data transformation algorithm — TreeDrivenEncoder.
For every input vector from the original data, the proposed
encoding method maps all features occurring in the decision

trees of the GBDT ensemble to a binary feature vector x”.
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This has the advantage that the neural network in the final
component can form its own feature representations from
homogeneous data. In Fig. 2, we illustrate the transformation
obtained by applying the TreeDrivenEncoder algorithm on a
toy example. There we have two input feature vectors x; and
X with categorical and numerical values that are encoded
into corresponding homogeneous binary feature vectors Xll’
and xlz’.

To formally describe the TreeDrivenEncoder algorithm,
we first need a definition of the decision trees:

Definition 1 [Decision Tree] Let T be a structure 7 =
(V,E, ), where V is a set of nodes, E C V x Visa
set of edges and u = (uy)pev is a sequence of mapping
functions u, : RA=> VU that map input vectors to (child)
nodes. We call T a (binary) decision tree if it satisfies the
following properties:

1. (V, E) is a directed acyclic graph
2. There is exactly one designated node v, € V, called the
root, which has no entering edges, i.e., foranode v € V:

v=v & VYweV:(wv)¢E.

3. Every node v € V\{v,} has exactly one entering edge
with the parent node at its other end:

weV:(w,v) € Es w= parent(v).

4. Each node has either two or zero outgoing edges. We call
the nodes with two outgoing edges inner nodes and all
others nodes leaves. We denote the sets of inner nodes
and leaves with V; and V|, respectively.

5. m, maps feature vectors from inner nodes to their child
nodes and from leaves to #.

veVi=VxeRY: (v, up(x)) € E, 1)
ve Ve =>VxeRY: uy(x) =0. )

In the following, we denote the number of inner nodes as
|T| = V;. Furthermore, we assume that the child nodes can
be identified as left or right child. For each innernode v € Vy,
we use a modified mapping function fi, : R — {0, 1} (i.e.,
a Boolean function) where 0 encodes the left child and 1
encodes the right child.

For an input vector x € R?, we exploit the structure of
T to derive a binary vector of length |7T'|. To this end, as
shown in Alg. 1, we employ a breadth-first-search approach
on the nodes of 7. More specifically, for every feature that
is evaluated at an inner node v of 7', we retrieve the corre-
sponding value from x and evaluate that value at v based on
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the associated Boolean function. Note that other node visit-
ing strategies (e.g., depth-first search) can be used as well. It
is only important that the order of (i, is the same.

Finally, we concatenate all the vectors generated from the
single decision trees of the ensemble 7 on the input vector
x, which gives us the final binary representation x” of x. We
summarize the full algorithm in Alg. 1.

For mathematical completeness, the mapping obtained by
applying TreeDrivenEncoder is formalized as follows. Given
the feature vector x that represents an instance from the train-
ing dataset D and a trained decision tree ensemble T (i.e., a
collection of decision trees) on the same dataset, we exploit
the structure of each tree 7 € T to produce a binary feature

vector for the original feature vector x = (x1, ..., xd)T and
employ a transformation function:

mapr : R — {0, 1}, 3)
mapr : X = ([ly(X))vev; , 4)

where V; again represents the inner nodes in a well-defined
order and |T'| their number. The mapping is performed such
that at an inner node v of T, the corresponding component
x;j of X is mapped to 1 if the Boolean function at v evaluates
to true for x j and 0 otherwise. Note that we apply the trans-
formation function to each node in the decision tree 7', even
if a node does not belong to the decision path of x; hence, it
holds that mapr (x) € {0, 1}171.

For the multiple decision trees T, ..., Ty, we construct a
function:
k
TreeDrivenEncoder : R — {0, I}Zf:”m, 5)
with

TreeDrivenEncoder(x) = (motpr1 x), ...,

mapr, (X))T.

3.3 Deep learning models for encoded
homogeneous data

After the data distillation by the TreeDrivenEncoder algo-
rithm, the new binary representations of the feature vectors
are used to train and validate a chosen neural network.

A deep neural network defines a mapping function f :

y=fah =~ fabw), 0

where ¥ is the output of the deep tabular learning frame-
work, x? is a homogeneous tabular data transformed using
TreeDrivenEncoder, and W are learning parameters of the
deep learning model.

Depending on a downstream task, the deep learning archi-
tecture of the proposed framework should be selected. The
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Algorithm 1 Fora GBDT model 7 and an instance x from the
underlying dataset, the TreeDrivenEncoder procedure visits
the inner nodes of each T € 7T (in a breadth-first search
manner) and exploits their Boolean functions to construct a
binary vector according to the feature values of x.

1: procedure TREEDRIVENENCODER(X, 7))
2:  x” vector of length 0

3: fortree T € T do

4: u vector of length |T| > binary vector we aim to construct

5: i:=0 > position index in the binary vector

6: Q = {) an empty queue

7. Q.enqueue(T.root)

8: while Q.notEmpty do

9: v := Q.dequeue()

10: x := getFeatureValue(x, v) © get from X the value of the
Seature that is evaluated at v

11: if v.evaluate(x) == true then > evaluate x at v

12: addu(i) =1

13: else

14: addu(i) =0

15: end if

16: i++

17: for all children v’ of v do

18: if v’ is an inner node (v’ € V;) then

19: Q.enqueue(v’)

20: end if

21: end for

22: end while

23: x? = concat(x’, u)

24:  end for

25:  return x”

26: end procedure

flexibility of the proposed framework allows to utilize almost
any existing types of the DNNs.

3.4 DeepTLF and multimodal data

The proposed deep tabular learning framework can be
employed for multimodal learning problems [18,46], where
multimodal data involve both tabular and other data sources
(e.g., text, image, or sound) in an integrated manner while
achieving a robust performance. Our multimodal strategy is
decoupled from any particular artificial neural network archi-
tecture, and thus, it can be easily integrated into an existing
multimodal pipeline. Practically multimodal learning is done
utilizing different data fusion strategies, i.e., early fusion,
middle fusion, and late fusion [47-49].

In early fusion, input data samples can be directly concate-
nated. Formally, given two feature vectors from modalities
ITand II, x! € R” and x € R™, where n and m are num-
bers of variables in modalities I and II, respectively. Then,
we can define the concatenation as R* @ R™ > R"*" by
the map (L, x> (x{, e x,Il, x{l, R x,g).The concate-
nation procedure can be accordingly further scaled for more
then two modalities.

@ Springer

The middle fusion, sometimes also referred to as inter-
mediate fusion in the literature, is typically used when
data from different modalities come with different struc-
tures and dimensionalities which are homogeneous for each
modality but heterogeneous across modalities, e.g., a multi-
dimensional dataset with visual and audio data along with
single-dimensional tabular data. Thus, it is challenging to
directly concatenate the input data upfront. The middle fusion
is done by utilizing the multi-input deep neural network
architecture with two types of inputs: single-dimensional
input (fully connected layer, recurrent layer, 1D CNN layer)
or multi-dimensional layers (e.g., CNN layer). Then, the con-
catenation of the data signal can be done in the middle of the
DNN. Similar to the middle fusion method, the late fusion
combines data signals using the last layers.

The choice of the data fusion strategy depends on the
modality of the dataset, downstream task, and hardware. In
our experiments, we observe that the middle fusion performs
better on the modalities. However, further research on data
fusion is needed.

4 Experiments

To evaluate the performance of DeepTLF against state-of-
the-art models, we employ eight real-world heterogeneous
datasets of varying sizes from different application domains.

4.1 Experimental settings
4.1.1 Datasets

For the evaluation of DeepTLF, we used six heteroge-
neous and two multimodal dataset from different domains
as described in Table 1; each dataset was previously featured
in multiple published studies. The web access points and
description of each dataset are in Appendix C.1. The data is
preprocessed in the same way for each experiment; we do
normalization and missing values subsection steps, except
for GBDT and DeepTLF; since these approaches can handle
missing values independently.

4.1.2 Baseline models

For the baseline models, we select the following algorithms:
LR, linear or logistic regression models; k-Nearest Neighbors
(KNN) [50] is a nonparametric machine learning method;
Random Forest (RF) [13]; for GBDT [14], we utilize the
XGBoostimplementation [15]; DNN, A deep neural network
with four fully connected layers and two DropOut layers [51];
Leafs+LR, A hybrid model, combining leaf index from a
trained GBDT model and generalized linear models pro-
posed in [25]; RLNs [26], Regularization Learning Networks
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Table 1 Details of the datasets

used in the experimental Dataset #Samples #Num #Cat Task

evaluations DI HIGGS 11,000,000 28 Classification
D2 Default of clients 30,000 14 9 Classification
D3 Telecom churn 51,047 38 18 Classification
D4 Zillow 167,888 31 27 Regression
D5 Avocado prices 18,249 8 3 Regression
D6 California housing 20,640 8 0 Regression
D7 E-commerce clothing reviews 23,486 6 4 Classification
D8 PetFinder adoption prediction 14,993 3 14 Classification

#Sample is the number of data points, #Num is the number of numerical variables, and #Cat is the number of

categorical variables in a dataset

(RLNG5) is a dedicated to tabular learning DNN, which uses
the counterfactual loss to tune its regularization hyperparam-
eters efficiently. TabNet [19] is a deep tabular data learning
architecture, which uses sequential attention to choose which
features to reason from at each decision step; neural obliv-
ious decision ensembles (NODE) [20] is a deep tabular
data learning architecture, which generalizes ensembles of
oblivious decision trees, but benefits from both end-to-end
gradient-based optimization and the power of multilayer
hierarchical representation learning; DeepGBM [24], a deep
learning framework distilled by the GBDT algorithm; Net-
DNF [8]; VIME [27], a self-supervised learning framework
for tabular data; TabTransformer [22], a framework built
using self-attention transformers; lastly, DeepTLF (the pro-
posed algorithm), consisting of a four fully connected layers
with the two DropOut layers to lower the overfitting effect,
the full architecture is presented in Table 2. We deliber-
ately select a relatively simple neural network model without
advanced layers such as the batch normalization or attention
(transformer) to demonstrate the power of our approach. By
applying more sophisticated DL techniques, the model per-
formance can be further improved.

Table 2 The DL architecture of the DeepTLF model

Layer Parameters

Fully connected
SWISH activation
DropOut

Fully connected
SWISH activation
DropOut

Fully connected
SWISH activation

Fully connected

#weights = 384

p =023
#weights = 64

p =023
#weights = 32

#weights = 1 or 2
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4.2 Performance evaluation

Main benchmark In our performance evaluation, we parti-
tioned each of the datasets using (stratified) fivefold cross-
validation. Our quality measures are cross-entropy loss for
classification and mean-squared error (MSE) for regression
tasks. Results are reported in terms of mean and standard
deviation values in Table 3. Furthermore, we conduct the
5 x 2 CV paired statistical ¢-test [52] to compare the pro-
posed framework and GBDT model for all datasets from
Table 3. Under the null hypothesis (Ho) that the GBDT and
DeepTLF models have equal performance, we also set the
significance level to 0.05 (¢ = 0.05), i.e., the critical region
for a significant statistical difference between our model
and the comparison methods. The results are presented in
Table 4.

Corrupted data We also compare the performance of
DeepTLF with a plain DNN and GBDT under corrupted data
to verify the robustness of our deep tabular learning frame-
work in scenarios of noisy labels, noisy data, and missing
values in the training data (Fig. 3).

Noisy training data and labels We use two different setups:
noisy training labels and noisy training data. We artificially
corrupted the customer churn dataset by introducing random
noise either to the training labels (labels were shuffled) and
the training dataset. Note that for validation purposes, the
test dataset was not corrupted. A distinguishing strength of
the DeepTLF framework compared to other state-of-the-art
approaches in the field is that it can handle missing values
internally through the proposed gradient-boosting embed-
dings.

Missing values experiment Figure9 in Appendix shows
the performance of DNN, GBDT, and DeepTLF models with
different proportions of missing in the training dataset. As
we can see, the performance of the DNNs drops drastically,
while DeepTLF shows stable performance.

Sensitivity to hyperparameters This experiment demon-
strates how the GBDT hyperparameters contribute to the final
performance of the DeepTLF such as the number of decision
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Table 3 Experimental results based on (stratified) fivefold cross-validation

Classification datasets Regression datasets

D1 D2 D3 D4 D5 D6
LR 0.637+0.001 0.470£0.001 0.584 +£0.001 0.028 £0.001 0.966 £0.001 0.552+£0.063
KNN [50] Out-of-Memory 0.467 +0.003 0.600 £+ 0.003 0.029 +0.001 0.038 +0.001 0.408 +0.011
RF [13] 0.5024+0.001 0.444 £0.007 0.564 +0.003 0.028 £0.001 0.025£0.001 0.254 £0.008
GBDT [14] 0.498 +0.001 0.429 £ 0.006 0.559+0.003 0.027 £0.003 0.026 £0.003 0.217£0.021
Leafs+LR [25] 0.659+0.001 0.453 £0.002 0.580+0.002 0.029£0.001 0.105£0.036 0.358 £0.032
Deep neural network models
DNN 0.51140.001 0.437 £0.005 0.579 £ 0.002 0.028 +0.001 0.069 £0.002 0.339+£0.122
RLN [26] 0.507 £0.002 0.433+£0.051 0.599 +0.001 0.399£0.042 0.275+£0.244 0.947 £0.228
DeepGBM [24] 0.487+0.001 0.457+0.023 0.5894+0.001 0.026 = 0.001 0.038 +0.045 0.299+0.017
TabNet [19] 0.503 +0.001 0.447 £0.001 0.591 £ 0.005 0.049 £ 0.001 0.073 £0.002 0.455£0.106
VIME [27] 0.51440.001 0.453 £0.006 0.593 £0.002 0.030+0.003 0.120£0.016 0.684 £0.023
TabTransformer [22] 0.581£0.002 0.515+0.003 0.650+0.021 0.029 £ 0.001 0.073 £0.002 0.994 +£0.501
Net-DNF [8] 0.561 +0.001 0.5124+0.001 0.594 +0.003 0.027 +0.001 0.32140.093 2.4914+0.051
NODE [20] 0.489 £ 0.006 0.458 £0.006 0.598 +0.001 0.028 £0.001 0.104 £0.030 0.722 £0.052
DeepTLF (ours) 0.483 +0.001 0.427 £ 0.006 0.557 £0.003 0.026 £ 0.001 0.021 £ 0.005 0.215+0.012

We use the same fold splitting strategy for every dataset. The cross-entropy measure (lower is better) is selected for classification tasks and MSE
measure (lower is better) is selected for regression problems, respectively. The top results for each dataset are marked in bold

Table4 Results of the 5 x 2 CV paired statistical ¢-test between GBDT t-SNE visualizations We also compare t-SNE visual-
and DeepTLF models (where * means p < 0.05, ** means p < 0.01) izations [53] of the default of the clients dataset and a
D1 D2 D3 D4 D5 D6 TreeDrivenEncoder encoded version of the same dataset; the

results are shown in Fig. 5. It can be seen that TreeDrivenEn-
coder indeed preserves valuable information from the trained
decision trees.

Multimodal data In this experiment, we demonstrate how
the proposed framework performs on multimodal data. For
that purpose, we select two multimodal datasets e-commerce
clothing reviews [54] and PetFinder adoption prediction
[55]. There e-commerce clothing reviews dataset consists
of textual and tabular data modalities, and PetFinder adop-

p-value 0.022%*  0.003**  0.027* 0.805 0.044*  0.002*%*

trees (Fig. 4) and learning rate (Fig. 10). For comparison pur-
poses, we also add the GBDT baseline to the figures. It can
be seen that DeepTLF does not require extensive hyperpa-
rameter tuning, since it reaches the saturation level.

0.65 —— DeepTLF
o © 0.65 —— GBDT
[e] []
3 8 —— DNN
O 0.60 O
- 2 0.60
< <
S S
o 025 &2 0.55
= —— DeepTLF =
3 3
© —— GBDT ©
0501 DNN 0.50
10 20 30 45 55 65 80 90 10 20 30 45 55 65 80 90
% of noisy labels in train data % of noisy data samples in train data
(a) Noisy training labels experiment (b) Noisy training data experiment

Fig. 3 The DNN here is identical to the DL part in the DeepTLF. Note the only the train data is corrupted, test data has the original values. We
report the ROC AUC value (higher is better). Results are averages over five trials for the telecom churn (D3) dataset
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0.61 —— DeepTLF
—— GBDT
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0.57

Test cross-entropy loss

1 50 100 200 300
# of decision trees

Fig. 4 A relationship between a number of trees in the GBDT and
the final performance of the proposed DeepTLF framework. The pre-
cise same GBDT model is used for the data encoding in the DeepTLF.
Results are averaged over five trials for the D3 dataset

tion prediction dataset has visual (images) and tabular data
modalities. We compare DNN and DeepTLF models on
unseen validation data (Fig. 6) using the middle-fusion strat-
egy (Sect.3.4) for both datasets. Tabular data representation
is the only difference between DeepTLF and DNN baselines
in this experiment, for DNN it is the original heterogeneous
dataset after the normalization step, where the proposed
framework utilizes TreeDrivenEncoder for the data transfor-
mation step. The results demonstrate the efficiency of our
framework in the multimodal setting.

Training/Inference Runtime Comparison Finally, we com-
pare the runtime performance between several DL-based
algorithms with GBDT (XGBoost [15]). Table 5 summa-
rizes our results. To make a fair comparison, we used the
latest available versions of the corresponding implementa-
tions. Also, we utilize the same DL framework, PyTorch
[56], and the same number of epochs as well as the batch
size, for each DL-based baseline. One of the possible rea-
sons for the gap between the proposed method and other
DL-based approaches is that DeepTLF utilizes a simple deep
neural network, whereas other approaches apply transformer
networks or specialized decision tree-like layers. We also
report the data preprocessing time for each baseline. The
time cost of DeepTLF is increased compared with GBDT in
the inference phase, due to the fact that the GBDT model
is a well-optimized framework and written in C++, where
DeepTLF is not yet fully optimized in terms of time effi-
ciency and mostly written in Python; however, we do utilize
the CUDA acceleration for training and inference steps.

5 Discussion

Empirical evaluations We can derive the following obser-
vations from experiments of the study: Our framework,
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Fig.5 t-SNE visualizations of original heterogeneous tabular default of
clients dataset (top), and the same dataset after the TreeDrivenEncoder
transformation (bottom)

DeepTFL, combines the preprocessing strengths of gradient-
enhanced decision trees with the learning flexibility of deep
neural networks. It can handle heterogeneity in the data
very well and hence shows to be highly efficient. Also, the
DeepTLF shows a stable performance irrespective of data
size. On a large dataset, the DeepTLF approach demonstrates
more than 3% improvement over the GBDT algorithm. We
hypothesize that the improvement comes from the fact that
deep neural networks perform better when a high number
of data samples are available since DL models have more
learnable parameters and, as a consequence, are more flex-
ible than decision trees. Finally, with regard to data quality
issues (noisy data and labels, missing values), our approach
clearly outperforms the DNN and GBDT models, thus show-
ing a robust performance under data quality challenges and
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Fig. 6 We compare the performance of DNN and DeepTLF models
using textual and tabular modalities from the D7 dataset and visual and
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and training setups. The only difference between DeepTLF and DNN
models in the experiment is the tabular data representation. Results are
averaged over five trials

Table5 A comparison of the

traini dinf i Model Training Inference Data preprocessing #Learning

faining and inference runtime time (s) time (s) time (s) parameters

for selected models from

different categories on the whole GBDT (CPU) 13.5 0.5 0 200 trees, depth 4

Zillow dataset (167,888

samples) GBDT (GPU) 3.1 0.3 0 200 trees, depth 4
DNN (GPU) 10.1 0.64 0.3 53,551 weights
RLN (GPU) 10.4 2.22 0.3 60,355 weights
DeepGBM (GPU) 23.9 5.2 0.3 222,548 weights
TabNet (GPU) 79.1 22 0.3 584,832 weights
VIME (GPU) 30.2 5.5 0.3 99,732 weights
NODE (GPU) 310.2 15.5 0.3 27,105,922 weights
DeepTLF (GPU) 15.1 32 0 80,351 weights

The results related to the training, inference and preprocessing time are averages over five runs over the
whole dataset for training and inference tests. The data preprocessing step includes: data scaling and handling

missing values

it can be applicable to many real-world applications where
data loss occurs frequently.

Decision tree model choice Noteworthy, the proposed pre-
diction approach can use any decision tree ensemble as a
basic algorithm; in this work, we adopt the GBDT method
because of its well-known superior performance on heteroge-
neous tabular data and its robust feature handling capacities.
In addition, the GBDT algorithm sequentially constructs the
trees; at each step, the next tree maximally reduces the loss
given the current loss. Thus, there are conditional depen-
dencies between the trees in the GBDT ensemble, and as
a consequence, they provide adequate coverage of the data
distribution.

Hyperparameter selection for DeepTLF In our experi-
ments, we demonstrate that the DeepTLF framework does
not require extensive tinning for the decision tree ensemble
part (Figs.4 and 8); after reaching the saturation level, the

@ Springer

number of trees does not have significant effect the perfor-
mance of proposed framework.

Tabular data encoding Besides constructing a new homo-
geneous representation for the heterogeneous, tabular data,
TreeDrivenEncoder encodes information about the whole
dataset, as represented by the structures of the decision trees,
which can be seen as a local feature selection (and feature
engineering).

Furthermore, in terms of efficient representation, the
encoded binary data has a drastically smaller size than the
original heterogeneous data, since real-valued features are
typically represented as 32-bit float types. In contrast, a
binary vector can be efficiently represented by a sequence
of Boolean values (i.e., 1 bit per value). This allows for effi-
cient training in the final component for the DeepTLF model.

The TreeDrivenEncoder algorithm can be used for effi-
cient categorical data encoding. In comparison with leaf-

107



Appendix A Appendix

based encoding in DeepGBM [24,25], our transformation
scheme utilizes the whole decision tree and produces binary
features, whereas leaf-based encoding creates meta categor-
ical features (indexing the leaves).

A comparison to Transformer-based models Most of the
current state-of-the-art methods for deep learning on tabular
data require an explicit definition of the categorical variables
for a dataset, which might bring issues in the online setting,
especially for environments with an increasing feature space.
Moreover, a drawback of transformer-based methods is that
the attention mechanism is applied to categorical values
only, implying that the possible correlation between cate-
gorical and continuous variables is not taken into account.
Furthermore, transformer-based approaches are learning rep-
resentations for each category, which might be an issue for
categorical variables with high cardinality. The proposed
approach utilized the power of the decision trees encodes
the all type of data together, therefore not suffering from
aforementioned drawbacks.

Future work and limitations We see further potential in
improving the efficiency of DeepTLF by replacing the deci-
sion trees with an efficient neural transformation layer, thus
achieving an end-to-end deep learning mechanism for hetero-
geneous and multimodal data. However, with replacing the
GBDT algorithm, the proposed framework loses the prepro-
cessing powers essential for the tabular format [1]. Further
improvements of our approach could be the usage of more
advanced deep learning architectures such as convolution or
attention-based neural networks [39].

Furthermore, an unsupervised training approach is desir-
able for the self-supervised learning techniques [57]. A
possible way to do that is to use multiple variables as targets
for the GBDT algorithm after the obtained feature vectors can
be stacked into a single meta feature vector. Alternatively, the
isolated forest algorithm [58] can be utilized for the first stage
of the DeepTLF model. Also, the tabular data generation task
is challenging due to its heterogeneous nature; however, with
our proposed technique, which allows converting heteroge-
neous data into homogeneous, we see a lot of potentials.

Lastly, further analysis is needed to investigate the perfor-
mance of DeepTLF in online learning scenarios. The goal
would be to develop feature transformation mechanisms that
can dynamically adjust to the data distribution’s temporal
changes and dimensionality. With regard to the GBDT algo-
rithm, deep-learning-based algorithms allow efficient online
training. However, DeepTLF works in a hybrid setting; there-
fore, for the next step, the gradient boosting decision trees
might be replaced with a deep learning-based solution; this
will lower the training and inference time.
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6 Conclusion

In this work, we discussed the challenge of learning from
heterogeneous tabular data with deep neural networks. The
challenge stems from the concurrent existence of numerical
and categorical feature types, complex, irregular dependen-
cies between the features, and other data-related issues such
as scales, outliers, and missing values. To address the chal-
lenge, we proposed DeepTLF, a framework that exploits
the decision trees’ structures from an ensemble model to
map the original data into a homogeneous feature space
where deep neural networks can be effectively and robustly
trained. This allows DeepTLF to distill and conserve relevant
information in the original data and utilize it in the deep-
learning process. Furthermore, the distillation step reduces
the required preprocessing to a minimum and can mitigate the
mentioned data-related issues by exploiting decision trees’
data-processing advantages (internal handling, missing val-
ues, and data scaling). Our extensive empirical evaluation on
real-world datasets of different sizes and modalities convinc-
ingly showed that DeepTLF consistently outperforms the
evaluated competitors, which are state-of-the-art approaches
in this field. Also, the proposed framework showed robust
performance on corrupted data (noisy labels, noisy data, and
missing values). Compared to most approaches in this field,
DeepTLF is easy to use and does not require changes to
existing ML pipelines, which is essential for many practical
applications. Moreover, we provide an open-source imple-
mentation of DeepTLF which can be used researchers and
practitioners for various learning tasks on heterogeneous or
multimodal tabular data.
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Appendix A: Background: gradient boosting
decision trees

Formally, at each iteration k of the gradient boosting algo-
rithm, the GBDT model ¢ can be defined as:

") = " x) + A (), (Al)

where x is an input feature vector, ¥~ is the strong model

constructed at the previous iteration, % is a weak learner from
a family of functions 7, and A is the learning rate.

C_ aremin §° (L@ )30 )
h —argmmzi:< 30 T(x) h(xi) ) . (A2)

=1y v
More specifically, a pseudo-residual —%

should be approximated as well as possible by the current
weak model 4 (x;). The gradient w.r.t. the current predictions
indicates how these predictions should be changed in order
to minimize the loss function. Informally, gradient boosting
can be thought of as performing gradient descent in the func-
tional space.

Appendix B: Additional experiments

In the following section, we provide further experimental
results to support the proposed deep neural network model
on heterogeneous tabular data.

Validation loss curves We examine DNNs and our
DeepTLF model separately using only the validation (unseen)
data. To enable a fair comparison, the deep learning part in
DeepTLF is identical to the DNN we used. The results are
presented in Fig. 7.

Is there a correlation between GBDT’s performance and
the final performance of the DeepTLF ? In this experiment, we
examine the correlation between the performance of GBDT
(which is used for data encoding) and DeepTLF (Figs.8,
9 and 10). In other words, we want to demonstrate that if
the performance of the GBDT improves, the performance
of the DeepTLF rises. Figure 11 presents the results of the
experiments; as it can be observed, there is indeed a high
positive correlation between the performance of the GBDT
and DeepTLF. It is also noticeable that the DeepTLF perfor-
mance in many cased the GBDT results.

A “sanity check” experiment In this simple experiment,
we want to verify that the proposed encoding function dis-
tills knowledge better than a random “encoding function”.
In order to do so, we design a random function such that it
extracts a random feature f with random splitting value. The
experiment confirms that indeed the proposed encoder per-
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forms better than a random set of Boolean rules for a given
dataset (Fig. 12).

Appendix C: Reproducibility details

We use the following implementation of baseline ML mod-
els: kNN, RF, LR, algorithms are from the widely used
open-source machine learning python library Scikit-Learn
[59], for GBDT we select the python version of distributed
gradient boosting library XGBoost [15], RLN, we use
the official TensorFlow implementation from the GitHub
repository?, we use well-tested PyTorch implementation of
TabNet?. We use the official implementation of Net-DNF*.
We use the official PyTorch implementation of NODE from
the GitHub repository”, we adapt the official implementation
of DeepGBM® to our need using the PyTorch framework.
VIME and TabTansformer® implementations are from offi-
cial GitHub repositories. DeepTLF, for the encoding part,
we employ the XGBoost’ implementation of the GBDT
algorithm; for the deep learning part, PyTorch [56] is used.
Additionally, we will provide a TensorFlow implementa-
tion. Note, other implementations of GBDT can be used as
well. We select the AdaBelief Optimizer [60] for proposed
framework.

The DNN architecture Table?2 presents the architecture
of the DL part of the DeepTLF model, which is identi-
cal to the architecture of the DNN baseline. We utilize the
three common used neural network layers: fully connected
(dense), DropOut [51], and activation layers. For activa-
tion, we select the SWISH function proposed in [61]. For
the hyper-parameter selection task for all baseline, we apply
the tree-structured parzen estimator (TPE) optimization algo-
rithm using the HyperOpt library [62].

t-SNE Experiment For the t-SNE experiments, we scaled
the original datasets by applying the z-score normalization.
We did not preprocessed an encoded homogeneous dataset
after the TreeDrivenEncoder transformation.

Computing infrastructure Out experimental setup for all
experiments has two RTX2080Ti GPUs and a single CPU
AMD 3960X 24-Core with the Ubuntu 20.04 operation sys-
tem.

2 https://github.com/irashavitt/regularization_learning_networks
3 https://github.com/dreamquark-ai/tabnet

4 https://github.com/amramabutbul/DisjunctiveNormalFormNet
5 https://github.com/Qwicen/node

6 https://github.com/motefly/DeepGBM

7 https://github.com/jsyoon0823/VIME

8 https://github.com/lucidrains/tab-transformer-pytorch

9 https://xgboost.readthedocs.io/en/latest/
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data encoding in the DeepTLE. The results are averages over five trials
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Fig. 9 The missing data experiment. The accuracy score (higher is
better), ROC AUC score (higher is better), cross-entopy loss (lower is
better) metrics for the same experiment. The exact same GBDT model

C.1: Datasets description

Among these, the HIGGS dataset, which stems from exper-
imental physics, is the largest dataset in our evaluation. As
an exemplary dataset from the financial industry, we include
the dataset defaults of clients, which contains information
on default payments, demographic factors, credit data, his-
tory of payment, and bill Statements of credit card clients
in Taiwan from April 2005 to September 2005. In addition,
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% of missing train data

(b) ROC AUC score

% of missing train data

(c) Cross-entopy loss

is used for the data encoding in the DeepTLF. The DNN model is identi-
cal in training and architecture to the DeepTLF’s DNN part. The results
are averages over five trials for the telecom churn (D3) dataset

the Zillow dataset represents typical heterogeneous data from
the real estate sector. It is important to emphasize that in this
dataset around 47 % of the data inputs are missing values. The
avocado dataset is another representative of tabular datasets,
which provides historical data on avocado prices. The fele-
com churn dataset presents customer data of different feature
types with the goal to estimate the behavior of a customer.
The California housing dataset which contains information
about house pricing in 1990. Lastly, we employ two mul-
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Fig. 11 Correlation plots for different quality measurements. The exact
same GBDT model is used for the data encoding in the DeepTLF. The
results demonstrate that there is indeed a high positive relationship
between the performance of GBDT and DeepTLF. Thus, the proposed

timodal datasets: E-commerce clothing reviews dataset [54]
with text and tabular data, and the PetFinder adoption pre-
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Fig.12 A “sanity check” experiment. A comparison of the TreeDrive-
nEncoder and random encoding functions. The random encoding
function mimics the TreeDrivenEncoder, but it selects a random feature
and splitting value. The experiment verifies that the TreeDrivenEncoder
is able to distill the knowledge using trained decision trees in a GBDT
algorithm. The results are averaged over five trials for the telecom churn
(D3) dataset
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data distillation algorithm can successfully distill the knowledge from

trees. The results are averaged over five trials for the telecom churn
(D3) dataset

diction dataset [55] with visual and tabular data, it consists
of information on cats and dogs with associated images.

All these datasets are collected from real-world problems
and contain numerical as well as categorical data. Moreover,
these datasets are freely available online and common in tab-
ular data processing: each dataset was previously featured
in multiple published studies. We deliberately chose these
eight datasets to cover different domain areas (web, natural
sciences, etc.), tasks (classification and regression), different
dataset sizes, and various data modalities.

Table 6 presents positive and negative class ratios for the
classification datasets of this study. The online links to each
dataset are provided in Table 7.

We prepossessed the data in the same way for every base-
line model by applying standard normalization. For the linear
regression, logistic regression, and models based on neu-
ral networks, the missing values were substituted with zeros
since these methods cannot handle them otherwise.
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Table 6 Positive and negative

Appendix A Appendix

class ratios for binary Dataset Negative class (0) % Positive class (1) %
classification datasets used in DI HIGGS 0.47 0.53
the study .
D2 Default of Clients 0.778 0.221
D3 Telecom churn 0.712 0.288
D4 E-commerce clothing reviews 0.178 0.822
Table 7 URLs for datasets of Dataset URL
the study
D1 HIGGS https:/archive.ics.uci.edu/ml/datasets/ HIGGS
D2 Default of clients htps://www.kaggl default-of-credit- card-clients- dataset
D3 Telecom churn https://www.kaggle.com/c/zillow- prize- 1
D4 Zillow https://www.kaggle. prices
D5 Avocado prices htps://www.kaggle. customer-churn
D6 California housing hitps://www.kaggle. g ifornia- housing-prices
D7 E-commerce clothing reviews https://www.kaggle. clothing- reviews
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ABSTRACT

Tabular data is among the oldest and most ubiquitous forms of data. However,
the generation of synthetic samples with the original data’s characteristics still
remains a significant challenge for tabular data. While many generative models
from the computer vision domain, such as autoencoders or generative adversar-
ial networks, have been adapted for tabular data generation, less research has
been directed towards recent transformer-based large language models (LLMs),
which are also generative in nature. To this end, we propose GReaT (Generation
of Realistic Tabular data), which exploits an auto-regressive generative LLM to
sample synthetic and yet highly realistic tabular data. Furthermore, GReaT can
model tabular data distributions by conditioning on any subset of features; the re-
maining features are sampled without additional overhead. We demonstrate the
effectiveness of the proposed approach in a series of experiments that quantify the
validity and quality of the produced data samples from multiple angles. We find
that GReaT maintains state-of-the-art performance across many real-world data
sets with heterogeneous feature types.

tl&dr The proposed GReaT approach utilizes the capabilities of pretrained large language models
to synthesize realistic tabular data. A challenging set of experiments validates the GReaT method’s
high generative qualtity.

1 INTRODUCTION

Tabular data is one of the most common forms of data in machine learning (ML) — over 65% of data
sets in the Google Dataset Search platform contain tabular files in either CSV or XLS formats (Ben-
jelloun et al., 2020). However, due to the expensive nature of data collection processes, tabular data
sets (i) are often class imbalanced, (i.e., tabular data sets tend to have long-tailed label distributions
(Cao et al., 2019)), (ii) contain critical person-related information and cannot be shared due to pri-
vacy protection or socio-ethical principles (Gascon et al., 2017), and (iii) often come with impurity
issues such as noisy or missing values which impede the application of modern ML algorithms (Lin
& Tsai, 2020). Synthetically generated data has the potential to alleviate these three important is-
sues. Therefore, the generation of realistic artificial tabular data has received considerable attention
in recent years (Choi et al., 2017; Park et al., 2018; Xu et al., 2019; Borisov et al., 2021).

Apart from real-world impurity issues, there also exist various technical problems that make the
generation of synthetic data difficult. Typically, tabular data contains various feature types, such as
categorical features (e.g., name, countryOfOrigin, jobTit le) and numerical features (e.g.,
age, income), and can be easily visualized in a table (e.g., see upper left panel in Figure 2). The
categorical variables (i.e., words or clauses) may frequently contain most of the information. For
example, the highly used Adult Income data set consists of seven numerical and eight categorical
variables (Dua & Graff, 2017). This heterogeneity of feature types and values leads to three core
challenges in tabular data preprocessing and analysis:

Extensive and lossy preprocessing. For most of the existing tabular data generation methods,
extensive data preprocessing of tabular data is required, which usually includes the following steps:

*Equal contribution
Corresponding authors: kathrin.sessler@tum.de, vadim.borisov@uni-tuebingen.de
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Figure 1: A comparison of the original and generated samples for the California Housing data
set (Pace & Barry, 1997), which contains characteristic information about different properties in
California, USA. We show joint histogram plots of the highly interconnected variables Lat itude
and Longitude. The black outline indicates the true boundary of the state of California.

(i) categorical data encoding into numbers, (ii) data scaling or normalization, (iii) replacing missing
values, and (iv) removing outliers and smoothing. These data transformation steps may result in the
loss of important information or the introduction of artifacts that are not present in the original data.
As an example, the categorical encoding into numeric values may introduce an artificial ordering into
previously unordered values (Borisov et al., 2021). Therefore, the problem of lossy preprocessing
may strongly influence the quality of generated data as a result.

Context knowledge for coherent semantics. Almost all common synthetic data generation meth-
ods transform tabular data into a fully numerical representation. However, tabular data sets fre-
quently consist of variables that are contextually interconnected. In the Adult Income data set (Dua
& Graff, 2017), the features age, marital—-status, and education have a clear coherence
relationship: There is a certain minimal legal age for marriage, and it is challenging to get a Ph.D.
at a young age. Such context knowledge should ideally be considered when generating realistic
synthetic data samples. We refer to this common issue as the contextual knowledge problem.

Arbitrary conditioning. A versatile model that can generate data for a large variety of applications
should be able to synthesize data conditioned on an arbitrary set of variables. This allows impu-
tation of any missingness pattern in the data or oversampling of arbitrary subsets. Currently, the
majority of the methods do not provide extensions to arbitrary conditioning and require the gener-
ative model to be re-trained according to each specific set of features to be conditioned on (Mirza
& Osindero, 2014). We refer to generators that allow for conditional generation with any specified
feature combination as supporting arbitrary conditioning.

Most modern deep-learning approaches for tabular data generation built on generative models trans-
ferred from the computer vision domain (Borisov et al., 2021), such as Variational Autoencoders
(VAEs, Kingma & Welling, 2013) or Generative Adversarial Networks (GANs, Goodfellow et al.,
2014). However, deep learning models have equally revolutionized the field of natural language pro-
cessing (NLP, Radford et al., 2019; Brown et al., 2020; Raffel et al., 2020). Modern large language
models (LLMs) are often constructed in the form of auto-regressive density models over sequences
of words (Radford et al., 2019; Bengio et al., 2000). This begs the question to which extent success-
ful architectures for NLP are apt to the tabular data generation task.
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Carrying this thought further, we present a novel method for probabilistic data generation that covers
the outlined core challenges and results in state-of-the-art performance (see Fig. 1 for a qualitative
example). We argue that pretrained self-attention-based LLMs (Vaswani et al., 2017) are suitable
for the probabilistic modeling of heterogeneous tabular data sets after these data sets have been ap-
propriately transformed into a fextual representation. We do so by constructing syntactically correct
sentences based on feature names and row values without losing information or introducing artificial
orderings and thus mitigate the issue of lossy preprocessing. This step, to which we refer as fextual
encoding, maintains substantially more information than usual transformations. Since we include
the variable names in the encoding, a model trained on this data can directly access contextual infor-
mation. To be able to make sense of this information, we suggest using established and pretrained
language models to perform the generation task. This could be a possible path towards tackling
the contextualization problem. Finally, we introduce a feature order permutation step to shuffle the
feature order in the textual encodings. Training a model on such data will result in a versatile gen-
erator that supports arbitrary conditioning. Specifically, our work offers the following contributions
relative to existing literature on the generation of synthetic tabular data:

* Novel paradigm. We propose the first approach for realistic heterogeneous tabular data
modeling and generation utilizing a transformer-decoder network architecture. Thereby,
we connect tabular and textual data modalities via a textual encoding scheme.

¢ Arbitrary conditioning. When trained on textual encodings with random feature order
permutations, our model inherits its arbitrary conditioning power from the LLM, which
can model the data distribution conditioned on any given subset of features and sample the
remaining features

* Extensive experimental results. We show that our Generation of Realistic Tabular Data
(GReaT) obtains state-of-the-art generative performance on a variety of data sets across
several measures. We have open-sourced our experimental results, making them available
as strong benchmarks for the benefit of the community.

* Python package. Finally, we provide an easy-to-use Python implementation of the GReaT
model, where it takes only three lines of code to generate new synthetic samples. The code
is accessible via pip install be-great.!

2 RELATED WORK

While the generation of images and text is extensively explored (Karras et al., 2020; Subramanian
et al., 2017), the generation of synthetic tabular is less commonly considered in the recent machine
learning literature. Classical methods for tabular data modeling include Bayesian networks, in par-
ticular those based on the Chow-Liu approximation (Chow & Liu, 1968) or statistical tools such as
copulas (Kamthe et al., 2021). More recent methods for probabilistic tabular data modeling utilize
generative adversarial networks (Choi et al., 2017; Park et al., 2018; Mottini et al., 2018; Xu et al.,
2019; Koivu et al., 2020) or variational autoencoders (Xu et al., 2019; Ma et al., 2020; Vardhan
& Kok, 2020; Darabi & Elor, 2021). A related line of work considers the synthetic generation of
multi-variate time series data (Padhi et al., 2021).

The mixed structure of discrete and continuous features along with their different value distributions
still poses a significant challenge. CTGAN, the current state-of-the-art approach by Xu et al. (2019),
places special focus on the conditional distributions between the features to generate semantically
meaningful data. For non-Gaussian feature distributions, the authors propose a mode-specific nor-
malization technique. However, as we pointed out in Section 1, such encoding techniques can be
lossy and introduce artificial orderings. Furthermore, they do not profit from contextual information.
We thoroughly compare our method to their approach in the experimental evaluation section.

In a parallel development, the area of natural language processing was dominated by recurrent neural
networks (RNNs) before self-attention-based neural networks (Vaswani et al., 2017) revolutionized
this field. Based on their technique, various auto-encoding models (Devlin et al., 2018; Sanh et al.,
2019; Lan et al., 2019) for tasks like sentence classification, sequence-to-sequence models (Raffel
et al., 2020; Lewis et al., 2020) for translation or summarizing, and auto-regressive models (Radford

"https://github.com/kathrinse/be_great
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Original tabular data set

"Age is 39, Education is Bachelors, Occupation is Adm-clerical,
Age Education  Occupation Gender Income Gender is Male, Income is < 50K.",
] "Age is 50, Education is HS-grad, Occupation is Exec-managerial,
39 Bachelors Adm-clerical Male < 50K (a) - ;
—» Gender is Female, Income is > 50K.",
"Age is 53, Education is 11th, Occupation is Handler-cleaners,
Gender is Female, Income is > 50K."

® |
D "Education is Bachelors, Income is < 50K, Age is 39,

Occupation is Adm-clerical, Gender is Male.",
"Income is > 50K, Occupation is Exec-managerial, Age is 50,
Education is HS-grad, Gender is Female.",

D "Occupation is Handler-cleaners, Education is 11th, Age is 53,

Income is > 50K, Gender is Female."

50 HS-grad Exec-managerial Female > 50K

53 Bachelors Prof-specialty Female > 50K

Pretrained Generative
Large Language Model

Tokenizer
O

Figure 2: The GReaT data pipeline for the fine-tuning step. First, a textual encoding step transforms
tabular data into meaningful text (a). Subsequently, a feature order permutation step is applied (b),
before the obtained sentences can be used for the fine-tuning of a large language model LLM (c).
The toy tabular data set inspired by the Adult Income data set (Dua & Graff, 2017).

et al., 2019; Brown et al., 2020) for natural language generation tasks showed the strength of the
self-attention mechanism.

There are no prior works on the specific problem of generating realistic tabular with the help of pre-
trained LLMs. Our work is the first to explore this path, which leads to state-of-the-art performance.

3 GREAT: GENERATION OF REALISTIC TABULAR DATA

This section presents the GReaT approach for fully-conditional tabular data generation using
transformer-based neural networks. GReaT consists of two major stages: (1) the fine-tuning of a
pretrained large language model (LLM) on a textually encoded tabular data set as shown in Fig. 2
and (2) sampling from the fine-tuned LLM to generate synthetic tabular data. We illustrate the sam-
pling procedure in Fig. 3. In the following, we describe each component of the fine-tuning and
sampling steps in detail. We conclude this section with a brief summary of our approach.

3.1 GREAT FINE-TUNING

Textual encoding. Standard pretrained generative LLMs expect sequences of words as inputs.
Hence, to apply a LLM on tabular data, we have to convert each row of our data set into a tex-
tual representation. To this end, we propose the textual encoder.

Definition 1 (Textual encoder) Given a tabular data set of n columns with feature names
f1, fo, ..., fn and m rows of samples s1, . . ., Sy, we let the entry v; ;,1 € {1,...,n},j € {1,...,m}
represent the value of the j-th feature of the i-th data point. Taking the feature name and value into
account, each sample s; of the table is transformed into a textual representation t; using the follow-
ing subject-predicate-object transformation:

ti; = Uf5, “is”,vi 5, 7] Vie{l,..,n},je{l,..,m}, (1
ti = [ti1,ti2, s tim] Vie{l,...,n}, (2)

where t;;, the textually encoded feature, is a clause with information about a single value and its
corresponding feature name, and [ - | denotes the concatenation operator.

Remark 1. For the scope of this work, we treat the target variable as a regular feature in our formu-
lations.

Fig. 2 (upper panels) shows an illustrative example of the proposed encoding technique. This result
could be a sequence like “Occupation is doctor, Gender is female, Age is 34,”, which requires min-
imal preprocessing and does not suffer from information loss. While in standard natural language
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Input text sequences (Arbitrary conditioning) -
ra) R )

]
["Ageis 26,"] @ E Finetuned Pretrained Generative
—> 2
Lo . = Large Language Model
[" Education is Masters, Age is 59," ]
)
[ De-tokenizer ]
b
Synthetic tabular data set ® ‘
"Age is 23, Education is 11th, Occupation is Transport-moving,
Age Education Occupation  Gender Income Income is < 50K, Gender is Missing"
(c) - ’
23 11th Adm-clerical  Missing < 50K -«— "Age is 26, Income is > 50K, Occupation is Sales, Education is

HS-grad, Gender is Female"
"Education is Masters, Age is 59, Occupation is Other-service,
Gender is Male, Income is > 50K"

26 HS-grad Sales Female > 50K

59 Masters  Other-service Male > 50K

Figure 3: The sampling procedure of the proposed method for synthetic data generation. In order
to generate new data points using a pretrained LLM, it is necessary to transform either a single
feature name or an arbitrary combination of feature-value pairs into text (a). Subsequently, the input
is completed by the fine-tuned LLM (b) and can be transformed back into a tabular format (c).
In comparison to other state-of-the-art approaches, GReaT allows arbitrary conditioning on feature
subsets without model retraining, i.e., the sampling can be performed by conditioning on any feature
name or combination of feature names and values.

sequences the word order is crucial, in our case there is no preferred order between the individual
features.

Random feature order permutation. The transformation of a tabular feature vector into a sequence
using the above textual subject-predicate-object encoding scheme artificially introduces pseudo-
positional information into the tabular data sample, which is not natural for tabular data. Put simply,
this means that there is no spacial ordering relationship between features in tabular data sets (Borisov
et al., 2021). To reconstruct the feature order independence, we randomly permute the encoded short
sentences ¢; ; of the full textual representation ¢; by permutations k.

Definition 2 (Feature order permutation function) Formally, the result of applying a random
feature order permutation k to t;, where each k; € {1,...,n} is arbitrary and k; # kj for j # j',
is defined as

tz(k) = [ti,k17ti,k27 ---ati,km] Vi € {1, ,n} 3)

When using shuffled orders of the textually encoded features, we fine-tune our generative language
model on samples without order dependencies. Moreover, using permutations of the above form is
highly beneficial as they allow for arbitrary conditioning in tabular data generation, which is further
discussed in the following subsection.

Fine-tuning a pretrained auto-regressive language model. Finally, we describe the fine-tuning
procedure of a pretrained LLM to the encoded tabular data for generation tasks. We suppose a tex-
tually encoded tabular data set 7 = {t;(k;)},_, _,, that was transformed into text by the proposed

encoding scheme. Let k; be randomly drawn permutations and n denote the number of rows.

To be processed with a LLM, the input sentences t € 7 need to be encoded into a sequence of
tokens from a discrete and finite vocabulary Y. These tokens can be character, word or subword
encodings such as the Byte-Pair-Encodings (Sennrich et al., 2015). Thus, ¢t € T is represented by
a sequence of tokens (w1, ..., w;) = TOKENIZE(t) with tokens w1, ...,w; € W, where j denotes
the number of tokens required to describe the character sequence t. Commonly, the probability
of natural-language sequences is factorized in an auto-regressive manner in LLMs (Jelinek, 1980;
Bengio et al., 2000). It is represented as a product of output probabilities conditioned on previously
observed tokens,

J
p(t) = plwy, ..., w5) = Hp(wk|w1, ey Wh—1)- 4
k=1
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In this formulation, it becomes evident that LLMs formally need to be highly capable predictors
for follow-up tokens given an arbitrary-length sequence of preceding tokens. Indeed, the model is
trained to output a probability distribution over possible next tokens wy from an input sequence
wy, ..., wi—1 of arbitrary length. The entire model is usually fitted by optimizing the parameters to
maximize the probability [ [, p(t) of the entire training data set.

As a result, an end-user can choose any existing generative language model for tabular data mod-
eling and exploit the vast amount of contextual knowledge present in these models (Roberts et al.,
2020). For instance, in generative transfomer-decoder LLM architectures (e.g., the GPT models
(Radford et al., 2018; 2019; Brown et al., 2020)) word-embeddings are obtained from large corpus
of text (e.g., GPT3 model trained on 45TB of textual data (Brown et al., 2020)). By learning from
such large collection of data, Transformers are able to build robust contextualized representations of
language (Liu et al., 2021). Fine-tuning enables the model to leverage this contextual information in
combination with the feature and category names to boost the models capabilities in a manner that
is similar to transfer learning by learning bidirectional representations (Raffel et al., 2020).

3.2 GREAT SAMPLING OF SYNTHETIC DATA

Having obtained a fine-tuned auto-regressive model g of the textual training data set that returns a
categorical output distribution z = q(wy, ..., wg_1) over possible follow up tokens for an input
sequence wi,...,Wk—1, we can apply several sampling strategies. Usually, the next token w is
sampled by weighted choice sampling with a temperature parameter 7' > 0 from the output z of the
LLM,
e(zw /T)
p(w\wl,...,wk—ﬂ = W (5)

We note that the auto-regressive paradigm offers the possibility of sampling from token distributions
p(Wk41:5]w1:x) with arbitrary preconditioning wy.;. When we use random feature order permuta-
tions at train time, we can also start the textual sequence with any possible combination of features
and values at inference time. As a result, the GReaT method is particularly flexible and could pos-
sibly be used in a variety of real-world problems such as missing value imputation (Kachuee et al.,
2020) or generation of realistic counterfactual explanations (Pawelczyk et al., 2020). Moreover, the
sampling of the conditional distribution comes at no additional costs.

Sampling and extraction of synthetic tabular data. Therefore, the setup provides several ways
to sample new tabular data points using the GReaT method. We initialize the model with certain
conditions and let the LLM sample the remaining tokens to complete the feature vector (in its textual
representation). In total, we propose three options of preconditioning:

¢ Feature Name Preconditioning. Only a feature name, but no value is provided as an
initial condition. This type of conditioning is able to generate samples from the entire joint
data distribution p(V1, ..., V,,), where V denotes the random variables representing the n
features in the data set.

¢ Name-Value Pair Preconditioning. In this case, a single feature name and a value are
provided. Starting from this input, GReaT will complete the sample. This approach will
generate samples from the distribution p(VA ;1 |Vi = v;). Because modeling a single feature
distribution is usually tractable (by frequentist estimation for categorical features or by
fitting a parametric density estimator for continuous features), we can first sample a value
for V; and then apply Name-Value Pair Preconditioning to sample the remaining features.
Thereby, we can also sample the entire data distribution.

¢ Multiple Name-Value Pair Preconditioning. We can also provide multiple Name-Value
pairs V;, =v;,, ..., V;,=v;, as precondition to the LLM to realize arbitrary conditioning.
By providing the textual encoding of this condition, we are able to sample from the distri-
bution of the remaining features effectively p(V\ i, ..i, 3 Vi, =iy, - - -, Vi, =i, ).

We illustrate the GReaT sampling possibilities in Fig. 3 and Fig. 9 that underline the high flexibility
of the proposed approach for synthetic data generation. We apply commonly accepted pattern-
matching algorithms using regular expressions to convert the generated textual feature representa-
tions back to a tabular format (Aho, 1991). We dismiss the respective samples in the rare case where
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Figure 4: Distance to closest record (DCR) distributions for the California Housing data set with
respect to the original train set. “Original Test Data Set” shows the DCR between the original test set
and the original train set. This experiment shows that the proposed method does not “copy”” samples
from the training set but rather generates new synthetic samples close to the original samples.

the required format is violated. Generation rates of invalid samples were monitored and found to be
consistently below 1 %.

A brief summary of the strengths of the GReaT method. GReaT comes with several significant
advantages over related approaches: It (i) allows the end-user to have full probabilistic control over
the sampling procedure by its arbitrary conditioning powers; it (ii) utilizes the knowledge from large
text data bases to obtain a better representation that includes context knowledge; (iii) the proposed
approach is easy to use, since it does not require a preprocessing of the data values. There is no need
to specify discrete or numerical variables beforehand and the information loss due to preprocessing
is therefore kept at its bare minimum.

4 EXPERIMENTAL EVALUATION

In this section, we empirically demonstrate the performance of the proposed GReaT approach us-
ing multiple qualitative and quantitative experiments. Lastly, for better reproducibility, we provide
information on the packages and parameters for the selected LLMs.

Data sets. For the evaluation of the proposed algorithm, we utilize four real-world data sets that
come from various domains. They also come in different sizes, reaching from less than 1,000 to
over 32,000 samples. We also consider three synthetic data sets with a varying numbers of features.
Key characteristics of each data set are presented in Table 8. We split all data sets into train and
test sets to avoid any data leakage. All models are trained or fine-tuned on the same training data
samples. To demonstrate the power of our synthetic data generation framework to work out-of-the-
box with real-world data, we apply zero data preprocessing, e.g., feature names and values are used
as they are presented in original data sets.

Baselines. As baselines for our experiments, we use three deep learning-based methods. CT-
GAN (Xu et al.,, 2019) is based on a generative adversarial network (GAN) (Goodfellow et al.,
2014) for tabular data that allows to condition the generation process on a only single discrete fea-
ture. The same authors proposed TVAE (Xu et al., 2019), an variational autoencoder (VAE) for
tabular data. The CopulaGAN model from the Synthetic Data Vault (SDV) framework (Patki et al.,
2016) is applying the Gaussian copulas to simplify the underlying CTGAN.

We compare those baselines to the proposed method with two different pretrained transformer-
decoder LLM models of various sizes. The smaller, distilled version of GPT-2 (Sanh et al., 2019)
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has 82 million learned parameters. We term the corresponding tabular data generator Distill-GReaT.
An original version of GPT-2 by Radford et al. (2019) has over 355 million trainable parameters —
we refer to this version simply as GReaT. A description of the architecture of the selected generative
LLMs can be found in Table 9. We apply name-value pair preconditioning to start sampling.

For the evaluation of synthetic tabular data, we select four measures, all of which have been featured
in multiple previous studies on synthetic tabular data generation (Borisov et al., 2021).

Machine learning efficiency (MLE). Since the generated data set should be able to replace the real
data in a training process, this measure evaluates the performance of discriminative models trained
on synthetic data sets. Therefore, the models are tested on real test data, and the scores are compared
to the original performance when the models were trained on the original, real training data set.
Table 1 and Table 4 present the results for the machine learning efficiency of proposed generative
models compared to the baseline models. To be independent of the concrete discriminative model,
we evaluated the synthetic data sets using a Linear/Logistic Regression (LR), a Decision Tree (DT)
and a Random Forest (RF) (Ho, 1995). We observe that either GReaT and Distill-GReaT outperform
all competitors and entail considerable performance improvements.

Original TVAE CopulaGAN  CTGAN  Distill-GReaT GReaT
LR  82.724+0.00  79.58+0.00 73.30+£0.00  73.30+0.00 78.53+0.00 80.10-£0.00
TR (1) DT 89.01+£0.00 81.68+1.28  73.61+0.26  73.30+0.00 77.38+0.51 83.56-£0.42

RF 85.03+0.53 81.68+1.19  73.30+0.00  71.4140.53 79.90+0.53 84.30+0.33

LR 71.80+0.00 71.044+0.00  42.03+0.00  57.72+0.00 70.58+0.00 71.90+0.00
HE (1) DT 81.904+0.02 76.39+0.10  42.36+0.10  61.34+0.09 81.40-£0.15 79.10£0.07
RF  83.19+021  77.24+0.25 42.354+0.34  62.35+0.35 82.14+0.13 80.93+0.28

LR 85.004+0.00 80.534+0.00  80.61+0.00  83.20+0.00 84.65+0.00 84.77+0.00
AD (1) DT 85.27+0.01 82.80+0.08  76.294+0.06  81.32+0.02 84.49+0.04 84.81+0.04

RF  85.93+0.11  83.48+0.11 80.46+0.21  83.5340.07 85.2540.07 85.42:+0.05

LR  0.40+0.00 0.65+0.00 0.98+0.00 0.61+0.00 0.57+0.00 0.34-+0.00
CH({) DT 0.32+0.01 0.45+0.01 1.19+0.01 0.82+0.01 0.43+0.01 0.39-£0.01

RF  0.2140.01 0.35+0.01 0.99+0.01 0.62+0.01 0.324+0.01 0.28+0.01

Table 1: ML efficiency experiment. The best results are marked in bold, the second-best results are
underlined. Four real-world data sets are used, Travel Customers (TR), HELOC (HE), Adult Income
(AD), and California Housing (CH). Each data set is evaluated on three discriminative ML models,
Linear/Logistic Regression (LR), Decision Tree (DT), and Random Forest (RF). For classification
tasks the accuracy score is reported, in case of the regression the mean squared error is used. Results
are averages over five trials with different random seeds (cf. Appendix A for additional measures).

Distance to closest records (DCR) histogram. To verify that the generated data is similar to
original samples while not being exact copies, this measure computes the distance to the clos-
est record in original training data set Ti.qin. For each synthetic record sgen, it is given by
DCR(5g4en) = min{Distance(Sgen, 5i)|5; € Tirain}- As a distance measure, we use the L;-norm
of the differences. We set the difference to be 0 for equal for categorical features and to 1 other-
wise. In the best case, all DCR scores are non-zero and their distribution is close to that of DCRs
computed with points from the original test data set T;.s¢. Visualizations of the distribution of the
minimal distances can be found in Fig. 4 and Appendix A. Indeed, the results show that our model
generates unseen samples in the expected proximity to the original ones. The same holds for all used
models and we did not observe large differences in this metric overall.

Discriminator measure. To check whether the generated data cannot be easily told apart from the
original data, we train a Random Forest discriminator (with hyperparameter tuning) on a mix of the
generated train set (with label 0) and the original train set (with label 1). We then report the test
accuracy on a test data set, which contains equal shares of samples from the generated test set and
the real test set. Scores are shown in Table 2 and demonstrate superior performance of the GReaT
approach, which on average (across all used data sets) decreases the discriminator performance by
16.2 % over other competitive baselines for tabular data generation.

Bivariate joint distribution plots. We qualitatively compare the generated feature distributions by
the baselines and the GReaT approach to that of the original data. As an illustrative example, we
present joint density plots for the Longitude and Latitude features in the Caifornia Housing
data set in Fig. 1. While CTGAN and CopulaGAN fail to model the strong dependency between
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Dataset CopulaGAN TVAE CTGAN  Distill-GReaT GReaT

Adult  88.54+0.09 88.49+0.18  97.234+0.10 69.79+0.17 62.84+0.08
HELOC  97.834+0.12  100.00+0.00  99.99+0.01 68.30+0.47 69.15+0.36
California  85.48+0.16  85.04+0.27  82.98+0.27 76.18+0.15 70.68+0.30
Travel 78.194+0.33  72.80+0.50  71.26+0.40 85.84+0.43 78.68+0.26

Average  87.51+0.04 86.58+0.06  87.86+0.05 75.0340.08 70.34+0.06

Table 2: Discriminator measure (accuracy in %). Lower accuracy values indicate that the discrimi-
nator cannot differentiate between fake records and real samples. The accuracy of a perfectly indis-
tinguishable data set would be 50%. Best results are bold, second-best results are underlined.

Adult HELOC Calfornia Travel
Distill-GReaT discr. () MLE (1) discr.({) MLE (1) discr. () MLE ({) discr.({) MLE (1)

w/o permutation  61.18+0.16  85.71+0.07 79.18+0.23 81.97+0.55 76.47+0.26 0.26+0.01 61.62+0.67 83.77+0.33
with permutation  69.77+0.09  85.25+0.07 68.29+0.34  82.14+0.13  76.09+0.14 0.33+0.01 85.65+0.38 80.31+0.53

w/o pretraining 99.14+0.02  84.15+£0.05 99.51+0.01 76.32+0.20 85.10+0.22 0.34+0.01 62.98+0.71 81.47+0.42
with pretraining  69.77+0.09  85.25+0.07 68.29+0.34 82.14+0.13 76.09+0.14 0.33+0.01 85.65+0.38 80.31+0.53

Table 3: Results of experiments with and without permutation, as well as with and without pre-
training based on discrimination (discr.) and ML efficiency (MLE, measured by the accuracy of a
Random Forest model) on four real-world data sets. In all experiments, we used Distill-GReaT with
the same training and pretraining setup; the only difference is the input data and pretraining.

these variables (indicated by out-of-distribution samples having both high latitude and longitude or
low values for both), Distill-GReaT and GReaT yield densities that align well with the ground truth
boundaries. TVAE shows mediocre performance but still places density mass outside the bounds.

Effects of pretraining and permutations. Having obtained impressive results with the complete
setup, we investigate the role of the individual components towards its success. We compare the full
model (with permutation and pretraining step) to a model without permutation and a model without
pretraining. Tab. 3 presents ML efficiency and discriminator results for the modified models. On
all but the very small “Travel” data set (954 samples in total), we observe pretraining to help boost
the performance. This might be due to the context knowledge made available to GReaT through the
extensive adaptation to large text corpora. The results regarding the feature order permutation step
are mixed — the MLE performance decreases with permutations but the results for the discriminator
metric are inconclusive. With permutations, the learning problem is undoubtedly more demanding.
It provides models with the ability to perform generation based on arbitrary conditioning. However,
we conjecture that it might also increase performance in some cases because it does not introduce
any possibly unnatural, fixed feature ordering into the tabular data.

Reproducibility details. We utilize pretrained generative language models from the established
HuggingFace framework (Wolf et al., 2020). Its routines are also used for the fine-tuning and sam-
pling steps. We plan to open-source all code online. Further details about all experiments, such as
hyperparameters for each baselines and experiment setups are provided in the Appendix B.

# pip install be-great

from great import

model = ("gpt2’)

model.fit (dataset, epochs=100)

synthetic_samples = model.sample (n_samples=1000)

Figure 5: Python pseudo-code to import our model after it was pip-installed.

5 DISCUSSION

Processing of numerical values with LLLMs in the GReaT approach. Since we convert hetero-
geneous tabular data into text (Sec. 3), continuous and discrete numerical values are represented as
character sequences. While this might seem counter-intuitive at first, multiple independent studies
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have shown that transformer-based models are capable of understanding and processing numerical
data encoded in such a way (Wallace et al., 2019; Brown et al., 2020). This is even true in the one-
shot setting for inference tasks (Dinh et al., 2022). The impressive performance of GReaT that en-
compasses the numerical features aligns with these previous observations. Having said that, smarter
encodings for numerical values can also be considered a possible path to further improvement.

Unification of multiple modalities through transformer models. Along with the usual numerical
values, tabular data frequently contains textual metadata, e.g., feature names, named categories
(“male”, “female”), and open text features (e.g., remarks). The recent evolution of transformer
neural networks now permits to holistically unite this information, which was processed separately
in the past, and learn context-specific, robust, and meaningful representations. In the case of tabular
data, information comes from the textual and numerical data modalities. The GReaT approach and
the results presented in this work provide an initial clue of the range of possibilities and opportunities
that may lie in this line of research.

6 CONCLUSION

In our recent work, we investigate how state-of-the-art generative language models can be leveraged
to synthesize highly realistic tabular data samples. Instead of following the usual path of encod-
ing heterogeneous tabular data in a numerical format, we devise a textual encoding strategy and
represent it with sentences that capture each record’s semantics. The resulting transformer-decoder
network fine-tuned on this data exhibits unprecedented generative performance and outstanding flex-
ibility at the same time. We term our method Generation of Realistic Tabular data (GReaT). GReaT
unites several remarkable characteristics that address key problems in tabular data modeling: First,
minimal preprocessing is required, which is efficient and results in the least possible information
loss, thereby tackling the issue of possibly lossy preprocessing. Second, leveraging random feature
order permutations, we exploit the capability of arbitrary conditioning and are thus equipped with
full control over the probabilistic sampling procedure for tabular data. Finally, through pretraining,
we can incorporate contextual and semantic knowledge extracted from terabytes of textual data for
a more authentic tabular data synthesis. Based on all empirical evidence presented in our work, we
could demonstrate that heterogeneous tabular data — if transformed coherently into sentences that
capture the semantics of feature names and values — can be modeled and generated by pretrained
large language models for generative tasks. In conclusion, we see our work as a door opener leading
to yet undiscovered possibilities in the domain of heterogeneous data generation.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 FURTHER MLE MEASURES

Next to the accuracy measures (Tab. 1) we also report the ROCAUC score and the F1 score for the
ML efficiency experiment (Sec. 4).

Original TVAE CopulaGAN CTGAN Distill-GReaT GReaT
ROCAUC F1 ROCAUC Fl1 ROCAUC F1 ROCAUC Fl1 ROCAUC Fl1 ROCAUC Fl1

LR 81.904+0.00 81.84+0.00 80.14+0.00  78.73+0.00  60.784+0.00 62.00+0.00 77.704+0.00 62.004+0.00 ~ 79.61+0.00  77.44+0.00  81.47+0.00 79.53+0.00
TR (1) DT 95.74+0.00 88.34+0.00 83.32+1.93 81.78+1.20  50.59+0.48 62.73+0.60 56.89+0.00 62.00+0.00  71.5040.62 77.01+£0.45 80.35+0.13 83.63+0.38
RF  94.15+0.62 84.684+0.49  87.254+0.45 80.45+1.18  51.56+031 62.00+0.00 66.64+1.12 65.37+1.35 87.90+032  79.79+0.48 89.90+0.30 84.33+0.37

LR 79.43+0.00 71.7940.00 77.05+0.00 ~ 71.01+0.00  43.04+0.00 41.90+0.00 62.73+0.00 57.63+0.00 77.44+0.00  70.59+0.00  78.88+0.00  71.47+0.00
HE (1) DT 89.52+0.04 81.81+0.03 82.56+0.18 76.3940.10 35984020 42.1240.11  62.18+0.12  61.24+0.09  89.10+0.11 81.40+0.15 88.80+0.13 78.68+0.07
RF  90.52+0.13  83.154+020  85.2940.20 77.2040.25  38.60+0.35 42.2740.33  65.34+0.10 62.29+0.35  89.81+0.10 82.12+0.13 89.07+0.09 80.71+0.29
LR 90.48+0.00 84.554+0.00  87.1540.00 81.38+0.00  81.92+0.00 79.80+0.00 87.86+0.00 83.194+0.00 89.52+0.00 84.60--0.00 90.25+0.00 84.52+0.00
AD (1) DT 89.60+0.05 84.31+0.01 84.68+0.14 82.36+0.07 73.41+0.06 76.22+0.04 84.47+0.06 80.76+0.02  88.20+0.12 83.57+0.05 88.07+0.12 84.29+0.04
RF  91.45+0.04 85.21+0.10 88.73+£0.07  83.44+0.09 77.53+0.19 79.11+0.17 88.47+0.06 83.00+0.08 90.54+0.03  84.57+0.10  90.77+0.06  84.85+0.04

Table 4: Additional results of the ML efficiency experiments measuring the ROCAUC score and the
F1 score for the three real-world classification data sets, Travel Customers (TR), HELOC (HE), and
Adult Income (AD). Each data set is evaluated on three discriminative ML models, Linear/Logistic
Regression (LR), Decision Tree (DT), and Random Forest (RF). The best results are marked in bold,
the second-best results are underlined. Results are averages over five trials with different random
seeds.

A.2 AVERAGE NEGATIVE LOG-LIKELIHOOD METRIC FOR SYNTHETIC DATA

The generated data should be likely under the training data’s distribution. Therefore, we generate
three common synthetic data sets, and compute both the likelihood of the sampled data under the
training data’s density (Ls,y,). This can however be prone to overfitting, which is why we addi-
tionally deploy the likelihood fitness metric proposed by Xu et al. (2019) (Lest). To compute this
metric, a parametric density model (BNs and GMMs respectively) is fitted to the generated data.
Then the likelihood of the original test samples is computed. The results in Table 5 indicate that
LLMs are comparable with state-of-the-art deep neural networks when modeling high-dimensional
mixture distributions.
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GMM Asia (BN) Alarm (BN)
Model Esyn ‘Ctest Lsyn ‘ctest £syn Etest
Identity -4.403 -4.403 -2.265 -2.265 -11.739 -11.739
CopulaGAN -4.406 -4.676 -6.321 -3.129 -22.438 -16.828
TVAE -4.205 -4817 -2.418 -2.289 -11919 -12.074
CTGAN -4.427 -4.723 -3999 -2528 -20.804 -15.248
Distill-GReaT -4.372 -5.124 -1.925 -2.355 -6.941 -12.689

Table 5: Average Log-likelihood of synthetic data sampels on a density model derived from the
original data (L, ) and of the original test data on the model derived from the syntethic data (Lyes:).
The best results are marked in bold, the second-best results are underlined.

Original Test Data Set TVAE CTGAN
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Figure 6: Distance to closest record (DCR) distributions for the HELOC Data set with respect to
the original train set. “Original Test Data Set” shows the DCR between the original test set and the
original train set. According to this experiment, the proposed method does not “copy” samples from
the training set but rather generates new synthetic samples close to the original samples.

A.3 DISTANCE TO CLOSEST RECORD RESULTS

We compare the distribution of the minimal distances of the generated samples to the training data
set. Figure 4 shows the distribution for the California Housing data set and Figure 6 for the HELOC
data set. The results indicate that the generated samples are close to the original ones without coping
them exactly.

A.4 ADDITIONAL QUALITATIVE ANALYSIS RESULTS

In Figure 7 we additionally compared the joint feature distribution of two exemplary features from
the Adult Income data set, Age and Educat ionNum. The joint plots were computed using a kernel
density estimator.

Travel Customers
HELOC https
Adult Income

California Housing

>rkiyoliabev

/home—equity-line-of-creditheloc

s.uci.edu/ml/d

https://archiv

https://www.kaggle.com/datasets/camnugent/california-housing-prices

Table 6: URLSs for real-world data sets of the study.
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Figure 7: A comparison of the original and generated data sets for the Adult Income data set using
joint plots for two related features — Age and Educat ionNum.

A.5 RUNTIME COMPARISON

We also analyse the training/fine-tuning and sampling time between baseline models and two ver-
sions of the GReaT method. Table 7 summarizes our time-benchmarking results. To make a fair
comparison, we used the latest available versions of the corresponding implementations. Also, we
utilize the same DL framework - PyTorch (Paszke et al., 2019), and the same number of epochs 200
as well as the sampling size - 1000, for each model.

TVAE  CopulaGAN CTGAN Distill-GReaT = GReaT

training / fine-tuning time  0:46 min 2:30 min 1:10 min 1:35h 9:10h
sampling time  0.28 sec 0.119 sec 0.045 sec 4 sec 17 sec

Table 7: A run time comparison of all generative models of our study. Selected models were
trained/fine-tuned for 100 epochs and 1000 samples were generated.

Domain #Samples #Num #Cat Task #Classes
(TR) Travel Customers Churn 954 2 4 Classification 2
(HE) HELOC Financial 9,871 21 2 Classification 2
(AD) Adult Income Social 32,561 6 8 Classification 2
(CH) California Housing  Real Estate 20,640 8 0 Regression -
Alarm Synthetic 20,000 0 37 - -
Asia Synthetic 20,000 0 8 - -
GMM Synthetic 6,000 2 0 - -

Table 8: Details of the real-world and synthetic data sets used in the experimental evaluations. #Num
and #Cat columns indicate numbers of numerical and categorical features in each data set.
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#Parameters #Layers #Heads Embedding Size Context Size

Distill GPT-2 82M 6 12 768 1024
GPT-2 355M 24 16 1024 1024

Table 9: Structural details about the pretrained large language models used in our study.

Single-Variable Multi-Variable Usage of the Transfer Data
Conditional Sampling Conditional Sampling  Context (Variable Names) Learning Prepossessing
CopulaGAN v v X X Scaling, Encoding
TVAE X X X X Scaling, Encoding
CTGAN v X X X Scaling, Encoding
GReaT v v v v Format conversion

Table 10: An analysis of the main properties of the synthetic generation frameworks for tabular data.

B REPRODUCIBILITY DETAILS

We fine-tune the Distill-GReaT model for each data set for 200 epochs, except for the California
housing data set, for it, we fine-tune it for 100 epochs. The GReaT baseline is fine-tuned for 110,
310, 400, 255 epochs for California, Adult, Travel, and HELOC data sets, respectively. Depending
on the GPU memory limitations, we vary the batch size from 8 to 124. For the sampling step, we
set the temperature parameters 7' to 0.7 for all experiments and data sets. We sample new synthetic
data using the name-value pair preconditioning (Sec. 3), starting with the target feature for all data
sets (see an example in the supplementary materials).

We utilize the AdamW optimizer (Loshchilov

IR DT RF & Hutter, 2017) for the proposed generative

max_iter max_depth max_depth n_estimators models, with the learning rate 5 x 1075, We

Travel Customers 100 6 12 75 plan to share trained weights for the proposed
HELOC e o e 3 - models. The baseline models are trained for

California Housing - 10 12 85 200 CpOChS for each data set.

Our hardware setup consisted of two NVIDIA
2080RTX GPU with 12 GB RAM each, 126
GB system RAM, and AMD Ryzen 3960X
with 24 cores, we use the Ubuntu 20.04 oper-
ation system.

Figure 8: The hyperparameter configuration of the
evaluation models for the ML efficiency experi-
ments.

For the ML efficiency and discriminator experiments (Sec, 4) we additionally use linear/logistic
regression, decision tree, and random forest models from the Scikit-Learn package (Buitinck et al.,
2013), we report the exact hyperparameters for each model in Table 8. For the discriminator measure
experiment (Table 2), we tune hyperparameters for each data set using the 5-fold cross-validation.
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Figure 9: Example of the arbitrary conditioning using the GReaT approach on Adult data set.
For this experiment we select only three variables Education, Income, and Age from the
Adult Income data set (Dua & Graff, 2017). However, the proposed method can be scaled to
the arbitrary number of conditions. The results obtaining by changing the input textual sequence,
e.g., Education is HS-school, Income is >50K, Age is, after we obtain the con-
ditional discriminate distribution p(Age|income => 50K, education = HS — school). Inter-
estingly, the GReaT method successfully learned that there is only two options for the Income
variable. The arbitrary sampling is supported by our Python programming framework.
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A.2 Explainable Deep Learning

A.2.1 CancelOut: A Layer for Feature Selection in Deep Neural
Network

Publication: Published in the 28th International Conference on Artificial Neural Net-
works (ICANN), 2019.

Contribution: I conceived the idea for a new type of layer for deep neural networks
and collaborated with Johannes Haug to conduct experiments assessing its effectiveness.
I developed the code for this layer in all major deep learning frameworks and received
invaluable feedback from Gjergji Kasneci regarding the structure of the paper. All co-
authors, myself included, contributed to the revision process of the final manuscript.
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CancelOut: A layer for feature selection in deep
neural networks

Vadim Borisov'*, Johannes Haug!, and Gjergji Kasneci®-?

! Eberhard Karls University of Tiibingen, Tiibingen, Germany
2 SCHUFA Holding AG, Wiesbaden, Germany
{vadim.borisov, johannes-christian.haug,gjergji.kasneci}@uni-tuebingen.de

Abstract. Feature ranking (FR) and feature selection (FS) are crucial
steps in data preprocessing; they can be used to avoid the curse of dimen-
sionality problem, reduce training time, and enhance the performance
of a machine learning model. In this paper, we propose a new layer for
deep neural networks - CancelOut, which can be utilized for FR and FS
tasks, for supervised and unsupervised learning. Empirical results show
that the proposed method can find feature subsets that are superior to
traditional feature analysis techniques. Furthermore, the layer is easy to
use and requires adding only a few additional lines of code to a deep
learning training loop. We implemented the proposed method using the
PyTorch framework and published it online 3.

Keywords: Deep Learning - Feature Ranking - Feature Selection - Un-
supervised Feature Selection - Machine Learning Explainability

1 Introduction

Feature importance and interpretability of machine learning (ML) models have
received much attention in the recent years due to the fact that accurate estima-
tions are not always enough to solve a data problem. An explanation of machine
learning model outcomes may help not only to understand the model’s results,
but also to introduce new tests, better understand the data, and as a consequence
from above, improve trust in the model, which is important when the model is
used by specialists from other fields. However, most accurate and robust ML
models usually cannot be interpreted [4].

One of the most effective ML methods nowadays is deep learning (DL), which
can be explained in terms of the universal approximation theorem [2]. Which
principally states that any compactly supported continuous function on R™ can
be approximated with a single hidden layer feed-forward neural network (NN).
However, due to DL’s high inherent complexity, most DL models are primarily
handled as a black box. Even though recent attempts have been made to address
the issue of their interpretability and feature selection [4,1], existing methods are
complicated.

3 The code is available at: www.github.com/unnir/CancelOut
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Fig.1: A deep neural network with a CancelOut layer as an input layer.

2 Related work

Many research articles on feature ranking (FR) and feature selection (FS) using
DL propose the permutation method, which is based on the idea that if we
remove or corrupt a feature from a dataset, the performance will change. By
analyzing these changes, it is possible to determine if a feature is valuable or not.
The obvious drawback of this approach is that it is computation intensive, and
in order to check n features, one needs to train a DL model at least n times.

Another similar strategy was proposed in [1], where the dropout layer is
exploited for feature ranking [12]. To analyze which features are important,
an artificial NN model with a dropout layer must achieve minimum loss, and
the dropout layer should learn low dropout rates for important features while
increasing the dropout rate for the rest of the unimportant features. In this case,
a model can be run once.

An interesting approach for quantifying the influence of individual input
signals on the output computed by a deep neural network was proposed in the
paper [6]. This method is based on the estimation of local linear models for each
neuron in the network and the propagation and aggregation of these models into
a net wide model.

The work in [9] introduces a similar idea to the linear models with elastic net
regularization, but it employs a NN with multiple layers. This method regularizes
input weights in a loss function using /1 and /2 norms together; without these
terms the method is unstable.

Furthermore, many articles investigate an interpretation of a decision of the
ANN for a single data sample [13]. However, this approach is hard to apply for
feature ranking of a whole dataset.

The paper is divided into four sections. In Section 3, the proposed approach
for feature ranking is introduced. Section 4 presents the implementation and
result of the study. Finally, Section 5 contains a summary of the work.
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3 CancelOut

In this Section, we present a new layer for deep neural networks - CancelOut, a
method that helps identify a subset of relevant input features (variables) in a
dataset. Also, the proposed method can be applied for feature sensitivity analysis.

CancelOut is an artificial neural network (ANN) layer, which is comparable
to a fully connected (FC) layer with one distinction: neurons in the FC layer
have connections to every input, whereas neurons in the CancelOut layer have
only one connection to one particular input (Fig. 1).

The primary idea behind CancelOut layer is to update its weights (Weo)
during the training stage so that irrelevant features will be canceled out with a
negative weight (Eq. 1). Otherwise, the best variables, which contribute more to
a learning process, are going to be passed through with a positive weight.

CancelOut(X) = X ® g(Weo) (1)

where ® indicates an element-wise multiplication, X is an input vector
X € RY, Weo is a weight vector Weo € RY, N, is the feature size, and g is

an activation function. Note, g(z) denotes here element-wise application, e.g.

x = i men g0 = [3] )= . )

c C g(c)

3.1 Theoretical Justification of the CancelOut layer

For simplicity, consider a three layers artificial neural network (Fig. 1) with linear
activation function after layer (¥ and ), where the CancelOut layer with the
sigmoid activation function o is utilized as input layer (superscript (V). Note
that bias terms in FC layers are omitted for simplicity reasons. Then the output
of the network is given by:

i =X o(Woo) WHu® (2)

where X = [21, 29, 23], Weo € R3, W®) € R3, and w%s) € R. Note, - is the
dot product between two vectors.
The Eq.2 can be seen as a linear regression model:

7= X601+ 0 (3)
where 01:
91 = O’(Wco) . W(Z)wf” (4)

In case of multiple artificial neurons in the hidden layer(?)(Fig. 2), the output
is given by:

=X oocWeo) W20l +X 0 o(Weo) - WiDw?® (5)

91 92
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Fig.2: A deep neural network with a CancelOut layer and two artificial neurons
in the third layer.

From the Eq. 2 it can be seen that if the any value after the activation function

g(w(clc)))) in the CancelOut layer equals 0, than the correspoding input value z,,

to g(w(cl)o)) is also 0. The following lemma summarizes this idea.

Lemma 1. If a value after an activation function from the CancelOut layer is
0, a corresponding input variable does not affect the output of an ANN.

As an illustration: let a value after the activation function from the CancelOut
layer be 0.
1
o(wi’) =0 (6)

Then ¢ from Eq.5 from the ANN 5, can be seen as:

J=X0oWeo) WP + X 0 o(Weo) - WiPw® =

= zyo(w! T wy + xga(wél))wémwgg) + acga(wgl))wg)w%gbr

+ ool T + ol ol + 0wl ul?
(7)

Remark 1. Clearly, if wgz) = wf) = 0 in the Eq. 7 and the bias? term is also

zero, then a CancelOut weight wgl) does not represent beneficial information. In
order to avoid this outcome, we suggest to consider these recommendations:

— a proper choice of activation function in a layer after the CancelOut layer
helps to bypass that issue;
— regularization terms can be used in a loss function;

4 The bias term is omitted here, see Subsection 3.1.
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— finally, it is advisable to have numerous artificial neurons in the layer after
the CancelOut layer, since it diminishes the chance that all neurons weights
in the layer after W2 the CancelOut layer be zeros.

Moreover, if a weight w; in the CancelOut layer is 0, then the gradient with
respect to w; is 0. The following lemma summarizes this idea.

Lemma 2. If a value after an activation function from the CancelOut layer is
approxzimately 0, then the gradient of the weight is also approximately 0.

Combining Lemma 1.1 and Lemma 1.2, we get the following theorem:

Theorem 1. Values after the activation function in the CancelOut layer indicate
contributions to the output of a corresponding variable.

Consequently, the CancelOut layer ranks features in a similar way linear

models do, e.g. the large the absolute values in the CancelOut layer the more
a corresponding input variable contributes to the output. Also, compared to
linear models, the CancelOut method takes into account linear and non-linear
combinations of input data.
Remark 2. A zero coeflicient in CancelOut values O'(Wélo)) leads to fewer opti-
mization parameters, hence, a model learns faster. This also helps to reduce, it
helps to reduce the number of features, therefore mitigating overfitting. Moreover,
feature selection with the CancelOut layer can be adopted in two scenarios; a
user can either specify the number of features or extract features using a chosen
threshold.

Our FR approach is similar to [9], but in our work, the input scalar O'(Wélo))

is bound in the chosen interval (e.g. for the sigmoid activation function is (O, 1))
Therefore our approach is more stable, and it is simpler to rank features since
a user selects only a threshold. Besides, the CancelOut FR method does not
require a penalty coefficient in a loss function.

3.2 CancelOut layer weights initialization

A random weight initialization is not desired for the CancelOut layer, since it
may give an advantage for one subset of features over another. Therefore, weights
are initialized with uniformly distribution [5] with additional /5 coefficient:

1 1
Tt B, Tt B) (8)
where n;, is the size of the previous layer, and § is the coefficient which
depends on the choice of an activation function.

We introduced [ coefficient into Eq. 8 in order to control the initial output
values after an activation function g(Weo), it needs to be g(Weo) # 0, because
we assume that every feature is equally important e.g. for the logistic activation
function 8 € [—3,inf).

Weo ~U(—

137



Appendix A Appendix

138

6 V. Borisov et al.

3.3 Loss function

In order to accelerate the feature ranking process in the CancelOut layer, we
introduce two regularization terms in a loss function (Eq. 9):

Weo

where L is a selected loss function, for the classification task it can be seen as:

L(X,Y) = L(X,Y) =\ mr(%’o

v

)+ Az

1

Lop(X)Y) = 7% Zn:(y(i) Iny(a®) + (1 _ y(z‘)> In (1 _ 1/)(x(i))))
Weo
N,

Weo
)

— A1 var( + A2 (10)

v

1

where X = {x(l), ey x(")} is the set of input examples in the training dataset,
and Y = {y(l), . ,y(")} is the corresponding set of labels. The ¥ (x) represents
the output of the neural network given input x, A\; and Ay are user-specified
parameter coefficients A1 € [0,1], A2 € [0,1], N, is a number of variables in a
dataset, and Wz are CancelOut weights.

The mean square error (MSE) loss can be utilized for regression tasks:

n

1 . . W,
EMSE(X>Y) = o Z(y(l) _ w(x(z)))2 -\ va?“( ]\?O) + A2
i=1 v

Weo
N,

(11)

1

The variance of the weights from the CancelOut layer var(*%¢2) helps to
stimulate diversity in the CancelOut layer, there [1 norm is used to introduce
sparsity in Wgoo weights and to constrain the variation to small weights. Also, [1
penalty restricts the model from selecting correlated features. Lastly, our feature

selection approach supports all losses and does not require the realization terms.

Table 1: Datasets

Dataset Samples Features Target

Statlog (Australian Credit Approval) 690 14 (continuous, nominal) binary
Diabetes 442 10 (continuous, nominal) regression
MNIST 70.000 784 (continuous) multiclass

4 Experimental Results

In this section, we perform several experiments to evaluate different aspects of
our CancelOut layer. In a first experiment, we examine the performance of our
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algorithm for classification and regression tasks, using the Statlog (Australian
Credit Approval) and Diabetes dataset [3] (Sec. 4.1). We choose these datasets,
because they contain different feature types such as continuous and nominal. We
compare the proposed features from a CancelOut NN with a Random Forest and
a Gradient Boosting algorithm using k-fold cross-validations (stratified for the
classification experiment).

In a second experiment, we add a dummy variable (Y +¢;) € X with normally
distributed noise € to the Australien Credit Approval dataset, in order to see
if the proposed method is able to detect a feature that is highly correlated
with the target feature (Sec. 4.2). Additionally, we introduce a "noisy" variable
Xrandom ~ N(0,1) + €5 to assess, whether CancelOut discards irrelevant features.
Note, €1 7é €9.

Next, we compare feature importance characteristics from LASSO, SHAP
[10], and CancelOut (Sec. 4.3). In a final experiment, we evaluate our model for
the unsupervised scenario using a convolutional autoencoder (Sec. 4.4).

CancelOut Hidden Hidden Hidden Output
layer layer 1 layer 2 layer 3 layer

Fig. 3: A deep neural network architecture used for the experiments, where n is a
number of variables.

In all experiments, we use a five layers DL model (Fig. 3) where the input layer
is the CancelOut layer with the sigmoid activation function after each FC layer
the ReLU activation function [5] was applied. Further, we use the optimization
algorithm Adam [7] with learning rate 0.003, $;=0.9, 5,=0.999, and € = 10~°.
We utilize the early stopping technique to control overfitting of our model.

4.1 Feature Ranking

Classification example We illustrate the AUC scores for different sizes of
feature subsets [3| in Fig. 4. The results are obtained by five-fold stratified cross-
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Fig.4: A comparison of FS methods using Naive Bayes classifier (a) and decision
trees (b) for the classification problem, and using linear regression (c) and decision
trees regression (d) algorithms for the regression problem.

validation on the Australian Credit Approval dataset using Naive Bayes (Fig. 4a)
and decision trees (Fig. 4b). Our algorithm achieves consistently good predictions
for both classifiers and all feature set sizes. Moreover, CancelOut obtains superior
predictions for small feature subsets. The variability in AUC is similar for all
algorithms.

Regression example To evaluate CancelOut in context of a regression problem,
we apply linear regression (Fig. 4c) and decision trees regression (Fig. 4d) on
the diabetes dataset. We illustrate the MSE for different sizes of the reduced
feature set in Fig. 4. We obtain the MSE scores again by five-fold cross-validation.
CancelOut has disadvantages for linear regression if the number of features
is smaller than three. However, our algorithm obtains competitive results for
the mid- and end-range of the reduced feature set size. The error measures for
regression tasks with decision trees highly fluctuate with the number of selected
features. Yet, our algorithm obtains best results for a small reduced feature set.
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Fig.5: A feature importance analysis for the Australian credit approval dataset
[3] with two new features.

These observations suggest that CancelOut can generally obtain feature sets that
perform well in regression tasks.

4.2 Identifying target and noisy features

In this experiment, we introduce two new features into the Australian Credit
Approval dataset [3]. The first variable Y + ¢; is highly correlated to the target
feature and the second is a random noise feature generated from the normal
distribution X,.qndom ~ N(0,1) 4+ €2. The idea of the experiment is to show the
ability of the proposed FR method to detect key and noisy features in the dataset.

In Fig. 5, we present a feature importance analysis for the augmented Aus-
tralian Credit Approval dataset. The depicted values are the average of ten runs
of an ANN obtained using the CancelOut layer. The analysis indicates that
our method can successfully detect variables that are highly correlated to the
target by evaluating them as the most important variable. Moreover, CancelOut
mitigates the influence of noisy features by giving them low weights. This is
shown exemplary by the low rank of X,qndom-

4.3 Evaluating individual feature importance

We investigated several feature analysis methods for the diabetes dataset and
summarized it into Fig. 6. The purpose of this comparison is to show that
CancelOut behaves comparable to other algorithms. Although there are differences
in feature importance for the single features age, sex, s2 and s3, the overall
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Fig.6: A feature importance analysis for the diabetes dataset [3] using the
proposed method (CancelOut), LASSO, and SHAP.

distribution of CancelOut weights is comparable to that of the SHAP and LASSO
models.

4.4 Unsupervised feature ranking using autoencoder

In this subsection, we demonstrate how the CancelOut layer can be utilized
for unsupervised learning tasks with a convolutional autoencoder [11]. The
architecture of the autoencoder consists of three convolutional neural network
(CNN) layers in encoder and decoder parts, and the CancelOut as an input layer
for the encoder. For this experiment, the MNIST dataset [8] is used.

Fig. 7 shows CancelOut variable weights after training the convolutional
autoencoder on the whole dataset (a), only on digit 0 (b), only on digit 3 (c),
and only on digit 8 (c). CancelOut captures the most relevant regions of the
picture for all four training sets. The information provided by CancelOut layer
weights can help in model understanding, debugging, and adjustment, e.g. by
introducing a "focus" on relevant features if a model performs poorly.

5 Conclusion

In this paper, we introduced a novel feature ranking method using deep neural
networks for various machine learning problems. The proposed method is ex-
tremely easy to implement, it can be done using all modern DL frameworks, and
this method can be simply scaled. Due to the power of the neural networks, the
presented approach learns linear and non-linear data dependencies. Also, the
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Fig.7: 0(Weo) values from the CancelOut layer after training using MNIST
dataset: (a) the whole dataset, (b) images from 0 class, (c) images from 3 class,
(c) images from 8 class.

CancelOut layer can be applied for any data type and machine learning tasks,
such as classification and regression problems or even for unsupervised problems
as an input layer for an autoencoder. Finally, the proposed layer helps understand
the data and its influence on the performance of DL models.
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Abstract

Understanding the results of deep neural networks is an essential step towards
wider acceptance of deep learning algorithms. Many approaches address the issue
of interpreting artificial neural networks, but often provide divergent explanations.
Moreover, different hyperparameters of an explanatory method can lead to con-
flicting interpretations. In this paper, we propose a technique for aggregating the
feature attributions of different explanatory algorithms using Restricted Boltzmann
Machines (RBMs) to achieve a more reliable and robust interpretation of deep
neural networks. Several challenging experiments on real-world datasets show that
the proposed RBM method outperforms popular feature attribution methods and
basic ensemble techniques.

1 Introduction

As the applications of deep neural networks (DNNs) continue to grow, the black-box nature of DNNs
creates potential trust issues [1]. Moreover, numerous life-critical (such as medical, automotive, or
financial) applications utilize DNNs for various estimation tasks. In such applications, and especially
for the long-term acceptance of artificial intelligence (Al) solutions, a deeper understanding and trust
in the produced results is crucial. Furthermore, feature attribution methods are important tools for
deep model debugging and diagnosis [2].

Explaining how the input influences the output for a given DNN is one form to interpret the black-box
nature of the DNN and bring trust to a system. These so-called feature-based explanation methods
received a lot of attention in recent years [1, 3—5]. They can be grouped into three broad categories,
(1) approaches based on gradient information [6, 7], (2) perturbation-based approaches [8, 9], and (3)
attribution-based approaches [3, 10]. Interestingly, different feature-based explanation approaches
regularly produce mixed views on the main attributes (areas of an image or variables), and in the
absence of the ground truth, it is still a challenge to verify which explanation method is the most
trustworthy. Moreover, in the Al community, there are no yet accepted quality measures for feature-
based explanations. All these difficulties resulted in a large number of different explanation methods
and in a lack of consensus on which techniques are most reliable.

Within the machine learning (ML) community, there is much work on the combination of methods
that do not always agree with each other, i.e. ensemble learning [11, 12]. Normally ensemble models
outperform the non-ensemble models and turn out to be more robust to outliers. The main idea is that
if multiple methods make mistakes in different areas, combining them in an intelligent way improves

*Corresponding author: vadim.borisov@uni-tuebingen.de
TEqual contribution
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performance and reduces the effect of outliers as compared to the single method. Moreover, from
statistical learning theory and practical applications, it is well understood that ensemble learning is
the path of choice towards a more robust machine learning system [13], even in unsupervised learning
scenarios where the target is not available [14, 15].

In this work, utilizing ideas from [15, 11] and [16, 17], we introduce a novel approach for the unsuper-
vised ensemble learning of reliable and robust feature-based explanations for deep neural networks.
To this end, we propose using a model based on Restricted Boltzmann Machines (RBMs), which
achieves this goal by aggregating the results (saliency maps) of different feature-based explanation
methods in a principled probabilistic fashion. Also, it has been shown that an RBM can be used
in the truth discovery setting [18, 19], which is analogous to our task of finding a reliable feature
importance map from different importance maps.

The main contributions of this work are:

* We introduce a novel method for a robust and reliable feature-based explanation using
ensemble learning.

* We empirically and visually show the superior performance of the proposed method in
comparison to state-of-the-art feature attribution baselines.

* We open-source our code and make it publicly available, as an RBM ensemble framework:
(https://github.com/JohanvandenHeuvel/AggregationOfLocalExplanations), Besides, we
also developed a single Python package with various evaluation metrics for feature attribution
methods metrics: https://github.com/meier-johannes94/Explainable AllmageMeasures

The paper is organized as follows: In Section 2 we discuss the related work and provide essential
background information. Section 3 presents the proposed ensemble method for local feature-based
explanations using an RBM. In Section 4, we present the results of various experiments. Section 5
discusses limitations of our work and ways to address them in the future. Section 6 concludes our
work with a short summary.

2 Background and Related Work

This part of the manuscript provides the needed background and discusses related approaches. First,
we present the basic notation used in this work and proceed by presenting two ensemble techniques
for aggregating feature importance maps.

2.1 Feature Attribution Function

Formally, a feature attribution function can be seen as ¢( f, X, ¢;;), where f is a black box model and
X is an input data point from a corresponding class c,.. The output of ¢ is an explanation vector or
matrix ey y), where each element of ey is an importance score for the corresponding feature value
in X. A large positive or negative value in € y) indicates that the corresponding feature (pixel) has a
large influence on the outcome of the black-box model f.

Assumption 2.1 In the following, we assume that a true feature attribution € (x) for a given model f
and input x exists and can be constructed by adequately aggregating available attributions ey ;,% €

{1, ..., N}, where N is the number of baseline explanations (from N baseline methods).
For better readability and simplicity, from here we omit the index f(x).

The goal of any explanation method ¢ is to obtain an attribution e that is as close as possible to e.
Note that our method naturally generalizes to probabilistic local explanation methods [20]. Given the
before-mentioned assumption, we can say that there is a joint probability distribution of the pair (e, €)
parametrized by 6.

Po(e,€) = po(€)py(ele).
The joint distribution pg (e, €) is not known, and neither are the marginals pg(e), pg(€).

For the following theoretical results we require that the explanation methods give independent
explanations when conditioned on the true explanation. However, as with Naive Bayes methods, for
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practical purposes, this assumption can be violated without negatively impacting the aggregation
quality [15]. Also note that we do assume some consistency between the explanations, following the
assumption that feature attributions reflect the underlying (but unknown) importance distributions of
the feature values [21].

Assuming conditional independence between the provided baseline explanations given the (unknown)
true explanation, we have

N
po(efe) = ] pocenle),
n=1
where e,, is a baseline explanation in the ensemble involving N different baseline explanations.

2.2 Ensemble Learning

As we state in the introduction, ensemble learning is a well-studied approach for improving the
performance of an ML system. One of the most basic ensemble methods employs the mean of results
of base learners [13], where a base learner is a single algorithm from the ensemble.

€mean = %Zen ey

A significant drawback of the mean ensemble approach is that it still is sensitive to outliers or noisy
estimations. Furthermore, data scaling may strongly influence the aggregation. In Section 4, these
weaknesses of the mean ensemble approach are also seen in the experimental evaluation.

To mitigate these weaknesses, the authors of [22] propose to take the local uncertainty into account.
To this end, they divide the mean by the local variance plus a constant e for stability reasons, which
results in the variance ensemble approach:

TN ou(eieq. vy) T €

where o, (eie{17___7 N}) is the point-wise standard deviation over all the available explanations e;, ¢ €
{1, ..., N}. This method assigns less relevance to explanations that have high disagreement with the
remaining explanations.

Also, the authors of [23] proposed a novel method to aggregate Shapley values through an explanation
function that minimizes sensitivity.

3 Ensemble Learning using Restricted Boltzmann Machines

In this section, we present an unsupervised aggregation
of feature attribution maps using a Restricted Boltzmann
Machine (RBM). Similar aggregation techniques have been hi hs

proposed in other contexts, e.g., in [15, 18].

I ) T3

3.1 The Restricted Boltzmann Machine

An RBM is an undirected bipartite graph that can be

parametrized by a neural network. It is a variant of the ) o
Boltzmann Machine, with the additional property that there ~Figure 1: .An RBM with three visible
are no connections within both the group of visible nodes or ~ and two hidden units. In our work, we
the group of hidden nodes. The advantage of this property ~use an RBM with a single hidden node.
is that nodes in one group are conditionally independent of

each other, given that we know the state of the nodes in the other group. One of the main charac-
teristics of an RBM is that it can learn a probability distribution over its set of inputs. A graphical
representation of an example RBM is shown in Figure 1.
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The formal definition of an RBM is as follows. There is a set X of n visible binary random variables
and a set H of m hidden binary random variables. The RBM has parameters A = (W, a,b). W is
the weight matrix of the connections between the nodes, a is the bias of the visible layer and b is
the bias of the hidden layer. Each possible state of the RBM, i.e. the particular values of (X, H), is
associated with the following energy function (in matrix notation):

Ex(x,h) = —(a”x + b"h + x"Wh),

which then can also be used to define the joint probability distribution for the visible and hidden
vectors is defined in terms of the energy function:

1
Py(x,h) = Ze_E(x’h)»

where Z is the sum over e ™M for all possible configurations x, h, which can be seen as a

normalization constant to ensure that all probabilities sum to 1, also known as the partition function.

The optimization objective of the RBM is to maximize the expected log probability of a training
sample x:

argmax E[log Py (X =x)] =
A

2
max E|[l gPXf H =h)].
arg)\a [log 4 A\ X, )]

To train an RBM, a gradient-based optimization can be applied using the contrastive divergence
algorithm [24, 25].

3.2 Aggregation of Local Explanations using an RBM

Given an RBM with IV visible nodes and one hidden node, with input x, where N is the number of
baseline explanations in our ensemble, it can be shown that the true posterior probability of y can be
efficiently estimated (Lemma 4.1, Lemma 4.2 from [15]). Furthermore, given the previously discussed
mild assumptions on the input data (which are in line with those in [15]), the maximum likelihood
estimate A/ for the parameters of the RBM, the RBM posterior probability Py, (H = 1|X =
X) converges to true posterior Py(Y = 1| X = x).

Hence, we are able to apply the RBM to the unsupervised aggregation of N available feature-based
explanations. We assume a joint distribution py(e, €), and that the e;’s are conditionally independent
from each other given e. By fitting the RBM we learn the parameters 6 and thus obtain the relationship
between our known explanations e; and the true explanation e. The ensemble pipeline of the proposed
method is depicted in Fig. 2.

In order to preserve the spatial information for visual data using the RBM-based ensemble, we do a
pixel-wise aggregation. Therefore, for each pixel we train a Bernoulli RBM with a single hidden unit.

A known limitation of an RBM is the so-called flipping issue [15, 18, 19], which arises from the
RBM parametrization symmetry. That is, the weights of the RBM can be flipped symmetrically
without changing the behavior of the RBM. In order to avoid this unwanted effect, we propose two
approaches: flip detection and metric optimization. The flip detection algorithm extends the idea from
Remark 4.3 in [15], by comparing the top 5 % of most important and 5 % of less important pixels to
the mean baseline. The algorithm inverts the current important scores if there is a strong disagreement
between the proposed approach and the mean baseline. The metric optimization method utilizes the
chosen metric to overcome the flipping issue. It compares two versions of the RBM ensemble results
and selects the one with a better performance according to the selected metric.

4 Experiments

To demonstrate the effectiveness of the proposed ensemble algorithm we conduct various visual
and quantitative experiments. First, we present the visual inspection results on the MNIST [27] and
ImageNet [26] datasets in two settings, with and without noisy explanation maps in our ensemble.
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Figure 2: An overview on the ensemble of feature attribution maps from three different local
explanation algorithms using an RBM for an image from the ImageNet dataset [26].

Despite a growing body of research focusing on explainable ML, the fair quantitative comparison of
local explanation (or saliency-based) algorithms is still an open question, since the existing methods
mostly utilize the pixel perturbation strategy (e.g., removing the most or least important pixels and
reporting the change in recognition quality) [28, 29]. Also, such evaluations have a significant
drawback, replacing image pixels with black or "mean" or any other pixel values may lead to artifacts
affecting the data distribution [29, 30]. Nevertheless, since pixel perturbation analyses are employed
in many related works, for our quantitative analysis we select the following approaches: the pixel
perturbation for insertion (IAUC) and deletion (DAUC). Furthermore, we utilize the iterative removal
of features (IROF) analysis [31]. We explain each evaluation method in detail in the corresponding
subsections.

In our last experiment, we demonstrate that our ensemble approach can be also used within a singe
feature attribution framework to achieve more robust and stable explanations. Since, it has been
shown that hyperparameters choice can significantly affect the saliency maps [32].

4.1 Visual Inspection for Image Data

In our first experiment, a visual evaluation on images from ImageNet [26] and MNIST [27] is
performed for several baseline and ensemble methods. We provide benchmark outcomes for two
settings, with and without fifteen noisy baseline explanations in an ensemble. The results are depicted
in Table 1.

Without artificial noise in the ensemble. We select four samples from ImageNet dataset [26] and
five baseline explanation methods for the ensemble models: LIME [8], Guided Backpropagation
(GB) [33], Integrated Gradients (IG) [34], Gradient SHAP (GS) [9], and SmoothGrad (SG) [35]. We
compare the proposed RBM ensemble strategy to simple mean and variance ensembles [22]. The
results in Table 1 show that our approach produces sharp and visually appealing saliency maps in
comparison to other ensemble baselines. In comparison to the baseline explanation methods, the
proposed ensemble technique seems to produce more reliable and robust results by highlighting
commonalities among the baseline methods and by mitigating the noise coming from the single
baseline methods.

With artificial noise in the ensemble. We challenge the discussed approaches by adding fifteen
baselines with random noise sampled from the standard normal distribution €,.4,,q ~ N (0, 1) to the
ensemble. The results in Table 1 reveal that the proposed RBM-based aggregation method mitigates
noise and hence results in more robust saliency maps in comparison to the other ensemble baselines.
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Original LIME [8] GB [33] IG[34] GS[9] SG [35] Mean Variance RBM
ensemble ensemble ensemble

Without noisy feature attribution maps in the ensemble
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Table 1: A visual comparison between baseline methods and ensemble methods on ImageNet [26]
and MNIST [27] datasets.
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Method Insertion (IAUC) Deletion (DAUC) IROF [31]

Gradient SHAP [9] 0.61 + 042 0.22 + 0.29 0.73 + 0.24
DeepLIFT [3] 0.62 + 0.42 0.23 £+ 0.30 0.73 + 0.23
LIME [8] 0.80 + 0.31 0.23 + 0.23 0.76 + 0.22
Saliency map [38] 0.50 + 0.35 0.37 + 0.32 0.65 + 0.25
SmoothGrad [35] 0.60 4+ 0.26 0.38 + 0.29 0.63 + 0.26
Integrated Gradients [34] 0.66 + 0.42 0.19 + 0.27 0.75 £+ 0.23
Guided Backpropagation [33] 0.54 £ 0.38 0.49 £+ 0.36 0.65 £ 0.25
Original Image 0.52 £ 0.32 0.53 £ 0.34 0.47 £ 0.30
Mean Ensemble 0.79 + 0.33 0.25 + 0.28 0.70 £ 0.26
Variance Ensemble [22] 0.62 + 0.36 0.39 £+ 0.31 0.71 + 0.26
RBM ensemble with the flip detection 0.76 + 0.38 0.19 £ 0.26 0.76 £ 0.22
RBM ensemble with the metric optimization 0.77 £ 0.37 0.18 = 0.24 0.76 = 0.22

Table 2: A quantitative comparison between single and ensemble methods for the pixel perturbation:
TAUC (higher is better), DAUC (lower is better), and IROF (higher is better) experiments on 10,000
samples from the CIFAR10 validation dataset [36].

4.2 Pixel Perturbation Experiment

In the first quantitative experiments, we compare multiple baseline models and ensemble methods on
the CIFAR10 dataset [36] by removing the most important pixels (according to a scoring function) and
reporting the area under a curve score (DAUC). In addition, we also follow the approach of inserting
the most important pixels into an empty image and again report the area under a curve (IAUC). Thus,
an ideal feature scoring function has a large IAUC and low DAUC. These benchmark methods well
accepted by the research community [37]. For this experiment, we select the following algorithms as
baseline explanation methods: Gradient SHAP [9], DeepLIFT [3], LIME [8], Saliency maps [38],
SmoothGrad [35], Integrated Gradients [34], Guided Backpropagation [33]. As suggested in [11],
we add the original image as a baseline to the ensemble. However, according to our experiments,
adding th original image to the ensemble does improve the overall ensemble performance. We report
all scores for the baseline approaches and the ensemble methods in Table 2.

4.3 IROF Experiment

In [22] the authors propose the IROF measure as an extension to the work [39]. The main idea of the
IROF benchmark is as follows: the image is divided into superpixels using the SLIC algorithm [40].
Superpixels are regional blocks of pixels within an image where the contained pixels share a high
similarity measure among each other. The relevancy for each superpixel is calculated by averaging
over the attribution scores over all contained pixels (inside the superpixel). After, the superpixels are
sorted descending by their relevancy. The entire superpixels are gradually replaced by a baseline and
sent through the network again to measure the new recognition quality for the modified image wrt. to
the target label. For more accurate attribution methods, the recognition quality decreases faster, and
thus the area under the curve is lower. The IROF score is defined as the area over the curve (AOC):
AOC =1 — AUC. Higher values, therefore, indicate a better attribution. We use the same baseline
methods as in the pixel perturbation experiment (Sec. 4.2). The results are listed in Table 2.

4.4 An RBM Ensemble Within a Singe Explanation Framework

In this experiment, we demonstrate that even for multiple baseline explanations of the same explana-
tion method, the unsupervised ensemble with an RBM can lead to an improvement. To this end, we
select the LIME [8] method with a different hyperparameter - the number of superpixels in the image.
For the baselines (LIME-0, LIME-1, and LIME-2), we used 10, 100, and 1000 superpixels per image,
respectively. The results can be seen in Fig. 4. The main idea is that each lime method has a different
granularity level, thus highlighting distinct detail levels, and the proposed method’s aggregation may
help improve the reliability and robustness of feature attributions.
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Original LIME-0 LIME-1 LIME-2 RBM-ensemble

-'1_-Il
"N
-“.r

100
Figure 3: Three local feature attribution maps for a single data sample from CIFAR10 dataset [36]
using the LIME algorithm [8] with different number of superpixels and the proposed RBM ensemble
of the selected feature attribution maps.

# of superpixels:

4.5 Reproducibility

For reproducibility reasons, we describe the data preprocessing step used for all the experiments
and provide information about packages used in this work. Also, the code for every experiment is
publicly available online (see the links provided in Section 1).

To achieve a fair comparison, the image data from all datasets was preprocessed in the same way
for each baseline. We performed a per saliency map normalization before the aggregation. In every
experiment, we used the ResNet18 neural network architecture [41], except for the experiment on
the MNIST dataset where we utilized a simple five layers convolutional neural network. We use a
pre-trained model for ImageNet dataset [26] from torchvision library [42].

For the experiments we used the Bernoulli RBM implementation from the Scikit-Learn library [43]
with following hyperparameters for each experiment: for the MNIST dataset we set the batch size to
5, the learning rate to 0.01, and the number of iterations to 100. For CIFAR10 and ImageNet datasets
we use the following hyperparameters: a batch size of 35, a learning rate of 0.001, and a number of
iterations is 250. The rest of hyperparameters are default to the scikit-learn package. For all baseline
explanation techniques we use the publicly available open-source implementations from the captum
library [44] with their default hyperparameters.

5 Discussion and Future Work

The results of multiple experiments with the proposed RBM ensemble show its competitive perfor-
mance compared to base explanation techniques and other ensemble approaches. We hypothesize
moderate performance of the RBM ensemble on the insertion (IAUC) benchmark is connected to our
data preparation step since we filter the negative values for every saliency map in the ensemble.

The computational complexity of an ensemble method primarily depends on the base learner. In our
case, the base explanation techniques are relatively fast, especially on specialized hardware (GPU or
TPU), where an RBM has low computational complexity.

The gradient-based methods frequently produce noisy explanations. We empirically demonstrated
that our approach reduces the noise in the final ensemble (Tab. 1). Therefore, we believe that the
RBM aggregation of multiple saliency maps from gradient-based feature attributions is a powerful
tool for improving the overall reliability of local explanations.

As part of our future work, we aim to evaluate our aggregation approach on larger datasets. Fur-
thermore, methods for selecting a few quite reliable base explanations for aggregation might lead to
efficient explanations ensembles for larger datasets.

Finally we expect that the proposed approach can be easily adapted to handle local explanations over
structured tabular data, where the explanation of deep neural networks is an essential task for many
crucial applications such as healthcare and finance [45].
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Figure 4: Distributions of differences where the proposed RBM ensemble shows better (green)
and inferior (red) results in comparison to a baseline explanation technique according to insertion,
deletion, and IROF metrics (score 1 means them being equal). The ensemble consists of the feature
attributions from the same algorithm - LIME, but different hyperparameters. We randomly sampled
2000 images from CIFAR10 [36] for this experiment.

6 Conclusion

In this work, we presented a novel approach to unsupervised aggregation of feature-based explanations
using Restricted Boltzmann Machines with the aim of reliably interpreting the influence of inputs
on the output of deep neural networks. In addition to explanatory reasons, the latter is also essential
for debugging and diagnostic purposes and serves the long-term acceptance of deep learning in
real-world applications.

Using the proposed approach, we demonstrated through visual and quantitative experiments its ability
to obtain more robust and reliable explanations than other existing ensemble methods. In a setting
with noisy attribution maps in an ensemble, the proposed approach successfully selects only the
valuable information, mitigating noise. Moreover, our work illuminates and mitigates the problem of
possible contradictory results that may be obtained by different explanation and evaluation methods.
Finally, we note that our approach can also be used within a single interpretability framework to
reduce the sensitivity of a feature-based explanatory approach to its hyperparameters.
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Table 3: A visual comparison between base learners and ensemble methods on ImageNet [26] and

MNIST [27] datasets.

A Additional Experiments

Table 3 presents extended experimental results for the compression with or without noisy feature

attribution maps in the ensemble.
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A.2.3 Consistent and Efficient Evaluation Strategy for Attribution
Methods

Publication: Published in International Conference on Machine Learning (ICML) 2022.
Contribution: I contributed to the process of idea development, while Tobias Lee-
mann and Yao Rong authored the majority of the paper and implemented the ROAD

framework. All co-authors, myself included, actively participated in the revision process
to guarantee the quality of the final manuscript
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A Consistent and Efficient Evaluation Strategy
for Attribution Methods
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Abstract

With a variety of local feature attribution methods
being proposed in recent years, follow-up work
suggested several evaluation strategies. To
assess the attribution quality across different
attribution techniques, the most popular among
these evaluation strategies in the image domain
use pixel perturbations. However, recent advances
discovered that different evaluation strategies
produce conflicting rankings of attribution
methods and can be prohibitively expensive to
compute. In this work, we present an information-
theoretic analysis of evaluation strategies based
on pixel perturbations. Our findings reveal that
the results are strongly affected by information
leakage through the shape of the removed pixels
as opposed to their actual values. Using
our theoretical insights, we propose a novel
evaluation framework termed Remove and Debias
(ROAD) which offers two contributions: First, it
mitigates the impact of the confounders, which
entails higher consistency among evaluation
strategies. Second, ROAD does not require
the computationally expensive retraining step
and saves up to 99 % in computational costs
compared to the state-of-the-art. We release
our source code at https://github.com/
tleemann/road_evaluation.

1. Introduction

Explainable Artificial Intelligence (XAI) has become a
widely discussed research topic (Adadi & Berrada, 2018).
Specifically, feature attribution methods (Springenberg
et al., 2015; Ribeiro et al., 2016; Lundberg & Lee, 2017;
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Copyright 2022 by the author(s).

160

Vadim Borisov' Gjergji Kasneci' Enkelejda Kasneci'

Rank 1 2 3 Removal evaluation
strategy (e.g., ROAR)
MoRF 1G IG-Var 1G-SG
« Consistency: Low
LeRF | IG-SG 1G 1G-Var L .
» Computation : ~60 min
) debiasing
Rank 1 2 3 Debiased removal
evaluation strategy
MoRF | IG-SG 1G 1G-Var
* Consistency: High
LeRF | IG-SG 1G 1G-Var . .
« Computation : ~60 min

) agrees with

Rank 1 2 3 ROAD (ours)
MoRF | 1G-SG G 1G-Var * No retraining

« Consistency: High
LeRF 1G-SG 1G 1G-Var onsts en}cy ot

« Computation : 33 sec

Figure 1. Comparison between previous removal and retraining
evaluation strategies (Top) and ours (Bottom). Previously,
rankings of different attribution methods, Integrated Gradients (IG)
(Sundararajan et al., 2017) and its two variants SmoothGrad (IG-
SG) (Smilkov et al., 2017), SmoothGrad? (IG-SQ) (Hooker et al.,
2019), are highly inconsistent with respect to hyperparameters
such as the removal orders Most Relevant First (MoRF) and Least
Relevant First (LeRF). Our ROAD strategy achieves a consistent
ranking using only 1% of the previously required resources.

Sundararajan et al., 2017; Selvaraju et al., 2017) that
quantify the importance of input features to a model’s
decision are widely used. Such local explanations can
help to analyze and debug predictive models (Bhatt et al.,
2020b; Adebayo et al., 2020), e.g., in the medical domain
(Eitel et al., 2019), in recommender systems (Afchar &
Hennequin, 2020), and many other applications. With an
increasing number of feature attribution methods proposed
in the literature, the need for sound strategies to evaluate
these methods is also increasing (Nguyen & Martinez, 2020;
Hase & Bansal, 2020; Yeh et al., 2019; Hooker et al., 2019).

Evaluation strategies, proposed to compare different
attribution methods, commonly follow an ablation approach
by perturbing the input features, e.g., image pixels, deemed
most or least important. Specifically, perturbing pixels
assigned high importance should decrease predictive quality
whereas perturbing unimportant pixels, should hardly affect
the predictions. These measures aim to capture the fidelity
of explanations (Tomsett et al., 2020), i.e., how well
the explanation genuinely reflects the prediction of the
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underlying model. Fidelity based on a single data sample is
known as local fidelity, while global fidelity is measured on
the whole data set (Tomsett et al., 2020).

The outcome of evaluation strategies is highly sensitive
to parameters such as the perturbation function and order.
Depending on the order chosen, i.e., most relevant pixels
first or least relevant pixels first, such removal strategies
often lead to highly contradictory results. For instance,
local attribution methods that seem to perform well in
one order may perform rather poorly in the other (Tomsett
et al., 2020; Haug et al., 2021; Hooker et al., 2019). This
inconsistency makes it hard for researchers to impartially
compare between different attribution methods and it is

not well understood where the inconsistencies stem from.

Moreover, for conducting the global fidelity check, a
retraining step is required by some methods (Hooker et al.,
2019), which is prohibitively expensive in practice (Tomsett
et al., 2020). These two drawbacks and our improvements
are illustrated in Figure 1.

In this paper, we aim to overcome these shortcomings and
make the evaluation more consistent and efficient. To this
end, we propose a new debiased strategy that compensates
for confounders causing inconsistencies. Furthermore, we
show that in the debiased setting, we can skip the retraining
without significant changes in the results. This results
in drastic efficiency gains as shown in the lower part of
Figure 1. We argue that it is crucial for the community to
have sound evaluation strategies that do not suffer from

limited accessibility due the required compute capacity.

Specifically, we make the following contributions:

* We examine the mechanisms underlying the evaluation
strategies based on perturbation by conducting a
rigorous information-theoretic analysis, and formally
reveal that results can be significantly confounded.

* To compensate for this confounder, we propose the
Noisy Linear Imputation strategy and empirically
prove its efficiency and effectiveness. The proposed
strategy significantly decreases the sensitivity to
hyperparameters such as the removal order.

* We generalize our findings to a novel evaluation
strategy, ROAD (RemOve And Debias), which can
be used to objectively and efficiently evaluate several
attribution methods. Compared to previous evaluation
strategies requiring retraining, e.g., Remove and
Retrain (ROAR) (Hooker et al., 2019), ROAD saves
99 % of the computational costs.

2. Related Work

There is a plethora of works on different explanation
techniques (Tjoa & Guan, 2020), especially attribution

methods that assign importance scores to each input features.
Popular approaches have been proposed by Springenberg
et al. (2015); Lapuschkin et al. (2015); Ribeiro et al. (2016);
Kasneci & Gottron (2016); Sundararajan et al. (2017); Fong
& Vedaldi (2017); Shrikumar et al. (2017); Smilkov et al.
(2017); Petsiuk et al. (2018); Adebayo et al. (2018); Chen
et al. (2018); Xu et al. (2020); Covert et al. (2021), and
many more.

With the growing number of attribution methods, various
scholars have presented desiderata that explanations should
fulfill (Bhatt et al., 2020a; Nguyen & Martinez, 2020;
Fel et al., 2021; Afchar et al., 2021; Nauta et al., 2022).
Doshi-Velez & Kim (2017) consider two subcategories
in this field, namely human-grounded metrics relying on
human judgment and functional-grounded metrics. The
latter do not require a human-generated ground truth that
can be hard or even impossible to obtain. Metrics of this
type frequently rely on the idea that if the most important
part of the image is changed, the output probability of
the given black-box model should also change in return.
Examples include the Sensitivity-n measure proposed by
Ancona et al. (2017) and the infidelity and max-sensitivity
metrics by Yeh et al. (2019). Samek et al. (2016) and
Petsiuk et al. (2018) also propose to perturb the pixels in the
input image according to the importance scores. However,
Hooker et al. (2019) show that the perturbation introduces
artifacts and results in a distribution shift, putting these
no-retraining approaches in question. They propose the
Remove and Retrain (ROAR) framework with an extensive
model retraining step to adapt to the distribution shift.
Therefore, we distinguish between evaluation methods with
retraining and no-retraining approaches. ROAR has been
adopted in several recent studies (Hartley et al., 2020; Izzo
et al., 2020; Meng et al., 2021; Schramowski et al., 2020;
Srinivas & Fleuret, 2019) and variations are being proposed
in concurrent work (Shah et al., 2021).

Only few papers have used and compared different
evaluation strategies for attribution methods and a sound
theoretical explanation for the differences between them
is still missing. Sturmfels et al. (2020) assess different
baselines for feature attribution applying the Integrated
Gradient method (Sundararajan et al., 2017). They also
observe that changing the hyperparameter settings can
lead to varying results. Haug et al. (2021) draw the
same conclusion for attributions on tabular data. Tomsett
et al. (2020) compute the consistency among different, no-
retraining evaluation strategies and report an alarmingly low
agreement. In this work, we conduct a rigorous analysis of
reasons for existing inconsistency and provide a solution to
reduce it, which is not studied in previous works. Moreover,
our solution also reduces high computational costs caused
by retraining.

161



Appendix A Appendix

x (input)

explainer e

for model f , ]
x; (low importance)

Figure 2. Our analytical model of feature removal evaluation
(MoREF order shown): The input image « (9 pixels a—i) is explained
by an explanation method that returns a mask M indicating
important pixels (black). The remaining, less important pixel
values @; can be extracted from the image using the masking
operator M; and transformed via the imputation operator Z; to an
imputed variant of the input &}, which determines the evaluation
outcome. This model allows to separate the information in the
feature values from that contained in the binary mask M.

3. Preliminaries

In this section, we formally define the pixel-perturbation
strategies considered by the following analysis.

3.1. Retraining Evaluation Strategies

We consider a pixel removal strategy, where pixels are
successively replaced by imputed values. Consistent with
the literature (Tomsett et al., 2020; Samek et al., 2016),
we consider two removal orders: MoRF (Most Relevant
First) or LeRF (Least Relevant First), where the subsequent
removal starts with the most important pixels for the former
and the least important ones for the latter. We now provide
a formal definition of MoRF with retraining, i.e., the ROAR
benchmark, that will be used throughout our analysis. We
always use the MoRF order in the analysis presented in this
paper. However, an analogous analysis of its counterpart
LeRF is possible without much additional effort and can be
found in the appendix.

To ease our derivations, we describe the procedure by a
series of operations that can be analyzed independently. A
classifier f : R — {1,...,c} maps inputs z € R? to
labels C' € {1,...,c}, where c is the number of classes.
A feature attribution explanation for the prediction assigns
each input dimension an importance value. In the MoRF
setting, the features are ordered in a descending order of
importance. Subsequently, the £ most important features
per instance are selected for removal, where 0 < k < d is
successively increased during the benchmark. However, for
the moment we consider only one fixed value of k. Thus,
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Class label random variable

Mutual information

Imputation operator

Binary mask in {0, 1}"

Mask selection operator (takes out relevant features)
Input features in R¢

Low importance features only in R?—*

x) | Imputed low importance features in R?

§8§§H~Q

Table 1. Overview of the notation used in this work.

we can model the explanation e, as a choice of features
via a binary mask M = e, (f,z) € {0,1}%, with the
corresponding value set to one, if the corresponding feature
is among the top-k, and to zero otherwise. Furthermore,
suppose M; : {0,1}% x R? — R4~ 10 be the selection
operator for the least important dimensions indicated in
the mask and &; = M; (M, x) to be a vector containing
only the remaining features as shown in Figure 2. We
suppose that the features preserve their internal order in
x, i.e., features are ordered ascendingly by their original
input indices. This definition allows to separately consider
the information flow in the feature mask M and that in the
feature values x;.

The ROAR approach measures the accuracy of a newly
trained classifier f’ on modified samples x; := Z; (M, x;),
where 7, : {0,1}% x R9~* — R? is an imputation
operator that redistributes all inputs in the vector x; to
their original positions and sets the remainder to some
filling value. In the special case of zero imputation, x; =
I (M, M;(M,z)) = (1 — M) ® z. This means the top-
k features are discarded. For a better evaluation result, the
accuracy should drop quickly with increasing k, indicating
that the most influential features were successfully removed.

3.2. Information Theory

‘We now briefly revisit the central concepts of information
theory that will be handy for our analysis and introduce the
notation. The fundamental quantity in information theory is
the entropy H of a discrete random variable X with support

supp { X},

H(X):=— Z

z€supp{ X}

P(X =x)logP(X =z). (1)

The entropy corresponds to the information gained through
observation of a realization of this variable. If the random
variable considered can be easily inferred, we use p(z) as a
shorthand for P(X = z). Furthermore, we denote the joint
entropy between random variables X and Y by H(X,Y),
which is equivalent to the entropy of their joint distribution.
In accordance with Cover & Thomas (2006), we always
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Figure 3. Relation between Mutual Information (MI) and
obtainable accuracy for the two-class problem with equal class
priors. The knowledge of the MI I(x; C') implies strong bounds
for the obtainable accuracy. This connection permits to use MI as
a surrogate for the obtainable accuracy in the perturbation strategy
in our analysis. Figure adapted from Meyen (2016).

separate random variables by comma to denote the joint
distribution of multiple of variables.

The conditional entropy H(X|Y) is the expected amount
of information left in a variable, given the observation of a
condition Y. The most central concept in our analysis will
be mutual information (MI), i.e., the amount of information
in one random variable shared with another. For example, by
I(x;C) == H(C) — H (C|x), we denote the MI between
the complete feature vector and the class variable C. We
separate arguments by a semicolon and allow single random
variables or sets of random variables as arguments to all the
defined quantities. For sets, we always consider the joint
distribution of their member variables. Please confer Cover
& Thomas (2006) for a more profound introduction. We
provide a short overview of our notation in Table 1.

4. Analysis

In this section, we show that the pixel perturbation strategies
are susceptible to a previously unknown confounder: The
binary mask itself can leak class information that might
in not be present in the feature values. After making the
connection between the accuracy and mutual information
as a theoretical tool in Section 4.1, we formally derive
the confounder and identify this leakage on real data in
Section 4.2. We subsequently show how to mitigate it
through Minimally Revealing Imputation in Section 4.3.

4.1. On the Relation Between Accuracy and Mutual
Information

To begin our analysis of the presented strategies and their
underlying mechanisms, we first establish the relation

between classification accuracy and the mutual information.

It is well-known that the classification performance of an
optimal classifier in the Bayesian sense (assigning the class
with the highest posterior) is dependent on the MI between
features and labels (Hellman & Raviv, 1970; Vergara &

Estévez, 2014; Meyen, 2016). Nevertheless, the relationship
is not a function, but comes in form of upper and lower
bounds of the obtainable accuracy. For the simple two-
class problem, the bounds are shown in Figure 3 (cf.
Appendix A.1 for derivations). They impose strong limits
on the optimal classification performance, if the mutual
information I (x; C') is known.

For the pixel removal strategies that use retraining, this
allows us to analyze the frameworks using MI as a surrogate
for the attainable accuracy because higher MI almost
always leads to higher accuracy. In the MoRF setting
with retraining, I(x;; C') will play a key role, because
it quantifies the information left in the least important
features and thus determines obtainable accuracy which is
the outcome of the evaluation. Low mutual information
I(x};C) results in a sharp drop in accuracy and good
benchmarking results:

1 I(z};C) = 1 MoRF benchmark.

Therefore, in the MoRF setting low mutual information of
x; and C'is desirable!.

4.2. Class Information Leakage through Masking

We demonstrate that it is easily possible to leak class
information only through the mask’s shape and to harshly
manipulate the evaluation score. Therefore, we start by
separating the influence of the mask from that of the feature
values. Our derivation relies on the multi-information
I(C;x); M), which is defined by Vergara & Estévez (2014)
as follows:

I(Csxy; M) = I(Ci x| M) — I(C; ;) )
I(Cizp; M) = I(C; Mzy) — I(C; M), (3)

Setting Equation (2) and Equation (3) equal, we arrive at
the identity:

I(x};C) = 1(Cyx)| M)+ I(C; M) — I(C; M|z)) .
—— —_——— —  — —

Eval. Outcome Feature Info. Mask Info. Mitigator

“4)

The quantities involved are visualized in Figure 4a. The
first term “Feature Information” is the class information
contained in the features (and not in the mask) that we
wish to estimate. The second term “Mask Information’
shows that class-discriminative information in the mask can
have a high impact on the result. This influence can be
compensated by the “Mitigator” term.

bl

Class Information Leakage If the Mask Information
term is superior to the Mitigator, I(C; M) > I(C; M |x;}),

'In LeRF, a higher accuracy and thus higher I(x];C) is
beneficial
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I(x}; C) I(C; M)
Eval. . ,» Mask
Outcome Info.

(a) General Case

(b) Invertible Imputation

separation

(c) Minimally Revealing Imputation

Figure 4. The Evaluation Outcome I(z;; C) (red area), is confounded by the Mask Information I(C'; M) (gray area) when there is
some overlap (a). Only the Feature Information I (z;; C| M), the part of the Outcome not overlapping (light red area), should actually
be assessed. In the worst case (which we term Invertible Imputation), the Mask Information is entirely contained in the Outcome (b).
Separating the information in the imputed image x; and the mask M allows to reduce the overlap and the influence (c).

the evaluation outcome is unfairly increased to a value not
justified by the selected features. We term this phenomenon
Class Information Leakage, as some discriminative
information is “leaked” through the used binary mask M.

The Mitigator can entirely vanish when the mask is perfectly
inferable from the imputed image «;. This results in a
non-compensated effect of Class Information Leakage. We
define this imputation operation as follows:

Condition 4.1. Invertible Imputation. Let T, : {0,1}" x
Rk — R be the imputation operator that takes the least
important features as an input. We suppose that there are
inverse functions IEAZ and Il;l, such that

x =T (M,z;) & M =TI /() ANwy = I, (x)).

If, for instance, the pixels removed are set to some reserved
value indicating their absence, the imputation operator is
invertible, as the mask can be reconstructed. Therefore,
H(M|x))=H (Ifjb(a:mwo =0. In this case, also the
Mitigator I (C; M|x;) = 0, because it is bounded by
0 = HMlz;) > I(C;M|x;) > 0. The Feature
Information term is constrained to be positive. Thus,
the Mask Information has a non-negligible impact on the
Evaluation Outcome because a higher Mask Information
term will always increase it. This case is depicted in
Figure 4b.

We can create a simple example that shows how evaluation
scores are influenced: Imagine a two-class problem that
consists of detecting whether an object is located on the
left or the right side of an image. A reasonable attribution
method masks out pixels on the left or the right depending
on the location of the object. In this case, the retraining
step can lead to a classifier that infers the class just from the

location of the masked out pixels and obtain high accuracy.
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This explanation map will be rated far worse in MoRF (no
accuracy drop) than it might actually be. In the context of
amortized explanation methods, a similar finding has been
made by Jethani et al. (2021). We theoretically showed
that this problem also arises in evaluation strategies and
empirically demonstrate that the leakage is significant for
popular attribution methods on real data in Section 5.1.

4.3. Reduction of Information Leakage

To tackle this problem, we follow an intuitive approach:
If we cannot guarantee that there is no class information
contained in the mask itself, we have to stop it from
leaking the class information into the imputed images.
Therefore, we make sure that the mask used cannot be
easily inferred from the imputed image. We would like
to set I(x); M) = 0, i.e., the mask is independent of the
imputed vector allowing to separate the effects as shown
in Figure 4c. Unfortunately, this is not possible in general:
If both should be dependent on the class label, they will
also have to share a minimal amount of information (that
regarding the class). However, we can demand conditional
independence and make I(x;; M) as small as possible.

Condition 4.2. Minimally Revealing Imputation. Let T, :
{0, l}d xR~k — R? be the infilling operator that takes the
least important features as an input. Suppose x; and M are
independent given the class information I (x}; M|C) =0
and I (z}; M) ~ 0.

In this case, I(C; M) — I (C;M|x)) = I(x;; M) —
I (x}; M|C) ~ 0, which implies I(C; M) ~ I (C; M |x))
(also cf. Figure 4c), indicating that the Mitigator effectively
compensates the Mask Information term.
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Figure 5. Accuracy of a trained classifier only using the binary
masks M without feature values as input on the CIFAR-10 data
set. Binary masks M were computed for different variants of IG
and GB. Only the masks contain enough information to reach an
accuracy of almost up to 80 % (compared to 85 % with full images)
highlighting that the feature values do not play an important role
in the evaluation. This underlines the necessity to compensate for
this confounder.

5. Debiasing Evaluation Strategies for Local
Attribution Methods

With the theoretical analysis in Section 4, we can better
understand where the biases come from, and thus mitigate
them. Building on the derivations, we now show the
strong impact of the Class Information Leakage introduced
in Section 4.2 on a real-world data set to highlight the
necessity to compensate for this confounder. We explain
how we reduce its influence by proposing a novel imputation
operator termed Noisy Linear Imputation.

5.1. Extent of Class Information Leakage

To empirically confirm our findings, we performed
experiments on CIFAR-10 (Krizhevsky et al., 2009). We
use the same attribution methods as in Hooker et al. (2019):
Integrated Gradients (IG) (Sundararajan et al., 2017) and
Guided Backprop (GB) (Springenberg et al., 2015) serve
as base explanations, and three ensembling strategies for
each are used in addition: SmoothGrad (SG) (Smilkov
et al., 2017), SmoothGrad? (SQ) (Hooker et al., 2019) and
VarGrad (Var) (Adebayo et al., 2018). In total, we consider
eight attribution methods and provide details and parameters
in the supplementary material.

We empirically show that with fixed value imputation with
the global mean, the explanation masks are leaking class
information. This takes two steps: (1) We show that the
Mask Information I(C; M) is extremely high. (2) We
verify that the Mitigator is small by testing the Invertible
Imputation Condition, which implies that class information
is leaked into the evaluation outcome through I(C'; M).

To assess the class information in the mask, we train a

ResNet-18 (He et al., 2016) that uses only binary masks M
(no pixel values ;) to predict the class. As we discussed
previously, the accuracy of a classifier can be used as a
surrogate for the calculation of MI, which is prohibitively
expensive for high-dimensional data. The curves? are shown
in Figure 5. Stunningly, the mask alone results in high
accuracy curves that reach almost 80 % for IG-SG, only
some percent below the accuracy of the classifier on the full
inputs. This allows us to conclude that the Mask Information
I(C; M) is almost as high as our Evaluation Outcome
I(C;x)).

To show that the Mitigator is almost zero which leads to
class information leakage, we test the Invertible Imputation
condition. Therefore, the inverse function If]\z that predicts
the imputation mask from the imputed imége is required
(having this function, finding Iljwl is trivial). For the
fixed value imputation, an approximate inverse is simple:
Setting all pixels in the mask to O if the corresponding
image pixel has the filling value (which has to be inferred
from the distribution). For a stronger verification, we
train an imputation predictor network consisting of three
convolutional layers, which predicts for each pixel if it was
imputed or original. As Figure 6e (blue curve) shows, the
miss-classification rate when using fixed value imputation
is almost zero, i.e., the network can easily recognize the
pixels that were imputed. According to our analysis, in this
setting close to Invertible Imputation, the Mitigator will be
negligibly small.

This leads us to the conclusion that the mask-related leakage
fundamentally influences many previous evaluations using
fixed value imputation (Shrikumar et al., 2017; Petsiuk et al.,
2018; Hooker et al., 2019) and it is essential to stop the
information leakage through the masks.

5.2. Debiasing with Noisy Linear Imputation

To reduce the Class Information Leakage, we propose a
better-suited imputation operator Z; that adheres to the
Minimally Revealing Imputation condition we derived. The
remaining process is left unchanged and stays as depicted
in Figure 2. However, we face three requirements: (1) We
have to get closer to the theoretical condition of Minimally
Revealing Imputation. (2) The imputation strategy needs to
be highly efficient, since the imputation module has to be
run for each image in the data set. (3) We wish to have as
few hyper-parameters as possible (preferably none to rule
out another confounding factor).

We devise a new strategy called Noisy Linear Imputation,
which fulfills the above goals. In this way, our model
addresses some of the fundamental problems of existing

2Standard Errors are indicated by shaded areas in all figures.
However, they are often hardly visible due to their low magnitude.
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strategies. Intuitively, we search a way to make more subtle
imputations that cannot be easily recognized and result in
lower I (a}; M). To this end, we suppose that each pixel
can be approximated by the weighted mean of its neighbors
(cf. Figure 6d) as image pixels are highly correlated®:

@i j = wq (Tijp1 + Tij1+ Tip1; +Tioj)
+ Wi (Tig1j41 + i1 41+ Tig1j-1 + Tim1j-1)

where wq, w; are constant coefficients for direct neighbors
and indirect, diagonal neighbors. When setting up a
single equation for each removed pixel we arrive at an
equation system. For known pixels, we directly plug in
their values and only consider each removed pixel as an
unknown variable. When neighboring pixels are removed,
the equations become connected and cannot be solved
independently. Nevertheless, the resulting system is sparse
and can be efficiently solved, even for a large number of
missing pixels. To choose the neighbor weights for the
linear interpolation, we draw inspiration from the graph
structure (see Figure 6d): Indirect neighbors have distance
2 from the original node in the graph and direct neighbors
have distance 1. Hence, we gave the direct neighbors twice
the weight of the diagonal ones. Because the weights need
to some up to 1 for a weighted interpolation, this leads to
wd:% and wi:1—12. We add a small random noise (o = 0.1)
to the solution to ensure that the linear dependency cannot
be learned by the model.

Figure 6 (top) provides an example of an imputed sample.

From the imputed version in Figure 6¢, inference on the
mask is significantly harder than the one imputed with
fixed values as in Figure 6b. We again train the imputation
predictor for verification and show the results in Figure 6e.
We confirm that our strategy lies significantly closer to
the optimal, Minimally Revealing Imputation. Admittedly,
there are even more sophisticated imputation strategies,
for example building on Generative Adversarial Networks
(GANSs) such as Generative Adversarial Imputation Nets
(GAIN) proposed by Yoon et al. (2018). However, our
strategy already achieves considerable improvements and
is highly efficient, because it does not require training of
a GAN model. For completeness, we include additional
experiments with GAN imputation in Appendix B.

6. Experiments

Having established that our Noisy Linear Imputation fulfills
its purpose, in this section, we show that it entails even more
benefits in practice. We first highlight how it makes results
among different evaluation strategies more consistent in
Section 6.1. We then present another considerable advantage
in Section 6.2: its agreement with a no-retraining evaluation

3In fact, for direct and indirect neighbors, p=0.89 and p=0.82
respectively on CIFAR-10
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Figure 6. The considered imputation operators. When 50 % of the
original image (a) are removed, they can either be imputed by
a fixed value (b) or by our proposed Noisy Linear strategy (c,d).
Training of an imputation predictor (e) shows that it is much harder
to tell which pixels are original and which were imputed when
using our proposed imputation model. This is closer to the optimal,
minimally revealing imputation (black). Hence, by using imputed
samples of this kind, Class Information Leakage is reduced.

strategy is sufficiently high, so that the retraining step is no
longer required. We name this debiased and no-retraining
evaluation framework ROAD (RemOve And Debias). All
experiments in this section were conducted on CIFAR-10
using the eight attribution methods mentioned. We also use
Food-101 (Bossard et al., 2014), a large-scale dataset of
high-resolution images, to validate the generalizability of
our method. To this end, we train over 1000 models from
scratch on data imputed using the strategies, explanations
and removal percentages. Since the results on Food-101
also support the findings from CIFAR-10, we include them
in Appendix D.

6.1. Consistency under Removal Orders

As we aim for evaluation strategies that are less prone to the
hyperparameter setting and allow for a consistent ranking,
we study the consistency of evaluation results under the
different removal orders MoRF and LeRF. Figure 7 depicts
the obtained curves (using “Retrain”). For a clear view,
we only show four curves of attribution methods based on
IG with retraining and up to 50% pixels are removed. We
include the full curves for the IG with its derivatives as well
as GB with derivatives in Appendix C. The results using
the common fixed value imputation shown in Figure 7a and
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Figure 7. Consistency comparison using fixed value vs. Noisy
Linear Imputation. The higher accuracy is better in LeRF, while
the lower is better in MoRF. Comparing (a) and (c), fixed value
imputation gives different rankings in MoRF and LeRF orders: 1G-
SG is the best in LeRF but the worst in MoRF. Comparing (b) and
(d), Noisy Linear Imputation changes the outcome considerably
and yields a consistent ranking in MoRF and LeRF.

Figure 7c. The results with our Noisy Linear Imputation
are shown in Figure 7b and Figure 7d. In MoREF, a sharp
drop in the beginning indicates a better attribution method,
while a slight drop is desirable in LeRF. Hence, using fixed
imputation, the ranking in MoRF is IG, IG-Var, IG-SQ, IG-
SG, whereas the ranking in LeRF is IG-SG, IG, IG-SQ, and
IG-Var. We see, for instance, that IG-SG is the worst in
MOoREF and the best in LeRF. When using the Noisy Linear
Imputation, the inconsistency vanishes. The ranking in
MoREF is: IG-SG, IG, IG-SQ, and IG-Var, which is the same
as in LeRF.

We quantitatively compute the consistency among all eight
attribution methods with and without retraining. Concretely,
we compute the ranks (from l=best to 8=worst) of our
explanation methods for each percentage of perturbed pixels.
We then calculate the Spearman Rank correlation between
different evaluation strategies. As shown in Table 2, the
correlation score of the fixed value imputation is —0.01
when using retraining and 0.01 when no retraining is applied.
This indicates no consistency in the rankings. When we
deploy our Noisy Linear Imputation, the results change
drastically: The correlation score is improved to 0.61 and
0.58 with and without retraining, respectively. This might
imply that the information leakage is responsible for a major
share of the inconsistency.

6.2. Efficiency

When we apply our Noisy Linear Imputation, we
additionally reduce the difference between evaluation with
and without retraining. This can be attributed to the reduced
distribution shift incurred when using an almost Minimally
Revealing Imputation. If all pixels were perfectly imputed,

Retrain No-Retrain
MOoREF vs. LeRF MOoREF vs. LeRF
fixed lin fixed lin
-0.0140.01 0.61+0.01 0.01+0.00 0.58+0.01

Table 2. Spearman rank correlation between evaluation strategies.
There is almost no agreement between MoRF and LeRF when
using fixed imputation (as in previous works). When using our
imputation (“lin“), consistency across MoRF and LeRF orders
increases drastically.

MoRF LeRF
Retain vs. No-Retr. Retain vs. No-Retr.
fixed lin fixed lin
0.1540.01 0.84+0.01 0.094-0.01 0.94+0.01

Table 3. Spearman rank correlation between evaluation with and
without retraining. Our Noisy Linear Imputation (“lin”") also results
only in marginal differences between “Retrain” and “No-Retrain”.
We conclude that the retraining step is no longer necessary.

the resulting image would not be out-of-distribution. Since
we are interested in the rankings of attribution methods,
we again compute Spearman correlation between the
rankings obtained with and without retraining and show it
in Table 3. The order remains almost always intact between
the “Retrain” with Noisy Linear Imputation and the “No-
Retrain” variant with Noisy Linear Imputation resulting
in a rank correlation of 0.84 in using MoRF and 0.94 in
LeRF. This leads us to the conclusion that “No-Retrain”
and “Retrain” end up with a highly similar ranking when
using Noisy Linear Imputation. Thus, we conclude that the
retraining step is not longer justified and can be skipped
without significant distortion of the results. Qualitative
results are shown in Appendix C.3, cf. Figure 17 (CIFAR-
10) and Figure 23 (Food-101).

These results allow us to introduce a novel evaluation
framework. We refer to the removal with Noisy Linear
Imputation and no retraining as ROAD — Remove and
Debias. We showed that ROAD is highly consistent with
the compensated results of the ROAR, but comes at an
enormous advantage: The retraining step is no longer
required. This permits to save a vast amount of computation
time. In our experiments, evaluation using the ROAD took
only 0.7 % of the resources required for ROAR, as given
by the runtimes in Table 4 obtained on the same hardware
(single Nvidia GTX 2080Ti and 8 Cores).

In the end, we illustrate the evaluation results using ROAD
among all eight attribution methods in MoRF and LeRF
in Figure 8. In MoRF, the best ones are IG-SG, GB-
SQ, GB-Var and IG, which have lower accuracies in the
beginning, whereas they have higher accuracies in LeRF.
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Retrain No-Retrain
Strategy
fixed? lin fixed lin*
Time 3903+117s 46864+2s 18.0+0.1s 33.34+0.1s
Relative 100 % 120 % 0.5% 0.9%

Table 4. Mean runtime (5 runs) for evaluating a single explanation
method (IG). T refers to ROAR, and * to our ROAD.

Accuracy

0.4
1G — GB
0.3 1 — 1GSG GB-SG

— 1G-SQ GB-SQ
024 — IG-Var —— GB-Var
20 40 60 80 20 40 60 80
% removed (MoRF) % removed (LeRF)
(a) MoRF (b) LeRF

Figure 8. Evaluation results in MoRF (a) and LeRF (b) using our
ROAD framework.

GB and GB-Var both perform badly in MoRF and LeRF.
We see that some inconsistencies still remain, which cannot
be compensated by the current imputation. However,
the evaluation strategies might also consider different
characteristics of an attribution method (e.g., one might
be particularly good at identifying irrelevant pixels), which
is why perfect agreement might not even be desirable.

7. Conclusion and Outlook

We introduced ROAD, an evaluation approach for measuring
global fidelity among attribution explanations. ROAD
comes with two key advantages over existing methods: (1) it
is highly efficient, e.g., permitting a 99% runtime reduction
w.r.t. ROAR, and (2) it circumvents the Class Information
Leakage issue, which was thoroughly analyzed in this work.
We believe the ROAD framework will be beneficial to the
research community because it unifies several methods and
is more consistent under varying removal orders. Moreover,
it is broadly accessible due to its low resource requirements.
ROAD is open-source®, and can be readily implemented in
practical use-cases. Going forward, we plan to investigate
more sophisticated imputation models in ROAD as well as
other evaluation metrics besides fidelity.
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A.2 Explainable Deep Learning

A. Additional Theory
A.1. Formulation of the MI Bounds for the Binary Case

As we discussed in our main paper, the relationship between Mutual Information (MI) and accuracy is not a function, but
comes in form of upper and lower bounds of the obtainable accuracy. If, for example, the binary classification case with
equal class priors p(C' = 0) = p(C' = 1) = 3 is considered, the following bounds can be derived (Hellman & Raviv, 1970;
Meyen, 2016):

I(xz;C)+1

5 < Acc(Clz) < Hy'(1 - I(z;C)), )

where Hy ' :[0,1] — [$,1] is the inverse of the binary entropy with support £, 1]. For completeness, we restate the proof
of this upper bound in Appendix A.2.
A.2. Reproduction of the proof of the relation between mutual and accuracy in the binary case

In this section, we reproduce the proofs for the upper and lower bounds of bayesian classifier accuracy given a certain
amount of mutual information from the master’s thesis by (Meyen, 2016) for completeness. The upper bound given there is
tighter than the bounds present in the literature.

We consider the following setting (C, « are random variables):

* binary classification problem, C' € Q¢ = {0, 1}

* equal class priors P(C' =0) = 3, P(C=1) = §

* discrete features « (which can be the product of multiple random variables)
* support set 2, = supp {@} of countable size

We first prove the following Lemma:

Lemma A.1. Let the assumptions stated above be true. Then, the mutual information is the weighted mean of a function of
the conditional accuracies Acc(C|s), where s € Q:

I(Ciz) =) pls) (1 — Hy [Ace(Cls)])

s€Ng

In this formulation, p(s) is a shorthand for P(x = s) and Hy(p) := —plogp — (1 — p) log(1 — p) is the entropy for a
binary random variable.
Proof.

I(C;zx)=H(C)— H(C|z) (6)
1 1
= CEZQ:C p(c)log m - SEZQS p(s) cgz:c p(cls) log M (7
1 1
= ;; p(s) LXQ:C p(c)log o Cgcp(C\S) log EB] ®)
= 3" p(s) [H(C) - H(Cs)] ©)
s€EN,

In our consideration, ¢ = {0,1} and P(C = 0) = 1, P(C = 1) = 1, s0 H(C) = 1. Additionally, the bayesian classifier
rule yields

acc(Cls) = { i( (10)

171



Appendix A Appendix

and
H(C|s) = —P(C =0]s)log P(C =0|s) — P(C = 1|s)log P(C = 1]s) (11)
= Hy(P(C = 0ls)) = Ha(P(C = 1]s)) (12)
= Hs(acc(Cls)) (13)
Plugging in the results H(C') = 1 and H(C|s) = Hy(Acc(C|s)), we obtain the proposed lemma. O

For the derivation of upper and lower bounds, Jenssen’s inequality is used. 1— Ho(+) is a convex function and the {p(s)}
are convex multipliers, i.e., they are non-negative and sum up to one. Then,

s€EQ,

1— Hy(Ace(Clx)) =1— Hs ( Z p(s) Acc(C|s)> (14)
s€EQ,
< 3 (o) [1 - Ha (Ace(Cls))] = I(; C) (1)
s€EQ,

We can restate this equation in terms of accuracy.
Hy (Acc(Cla)) > 1-1(C;x) (16)
Using that H; (-) is decreasing monotonically on the interval [%, 1], so its inverse H{l exists, and that Acc(C|s) > 0.5:
Acc(Clz) < Hy' (1 - I(C;x)). 17)

The inequality sign is flipped again, due to the inverse being monotonically decreasing. Note that the bounds derived for the
special case are much tighter than the general ones provided by Vergara & Estévez (2014) and Cover & Thomas (2006,
Chapter 2.10), that are not of any use, because they are even less strict than the trivial bound Acc(C|x) < 1, for the simple
case considered here.

For the lower bound, we refer the reader to Hellman & Raviv (1970, eqn. 18), where the term I corresponds to H(C|x) =
H(C) — I(C; ) in our notation. Rewriting the result from Hellman & Raviv (1970) in our notation, we obtain

H —I(C;
1— Ace(Cla) < w (18)
Using H(C) = 1 and rearranging yields

1-1I(C;
1 - Ace(Clz) < # (19)

and 1o )
Ace(Clz) > % (20)
(I

A.3. Analysis of the LeRF Ordering

In this section, we analyze the masking impact for the case of the Least Relevant First (LeRF) ordering. We first provide a
definition for the operators involved as we did for the Most Relevant First (MoRF) case. In the LeRF setting, the k least
important important features per instance are removed. We model the explanation as a choice of features via a binary mask
M =e(f,x) € {0, 1}d, with the corresponding value set to one, if the corresponding feature is among the top-k, and
to zero otherwise. Furthermore, suppose My, : {0, 1}d x R% — R¥ to be the selection operator for the highly important
dimensions indicated in the mask and x;, = M}, (M, x) to be a vector containing only the remaining, highly important
features as shown in Figure 9. We suppose that the features preserve their internal order in xy, i.e., features are ordered
ascendingly by their original input indices.

The LeRF approach with retraining (also called “Keep and Retrain”, KAR, by Hooker et al. (2019)) measures the accuracy
of a newly trained classifier f’ on modified samples @/, := T, (M, @), where T, : {0,1}" x R*¥ — R? is an imputation

172



A.2 Explainable Deep Learning

x (input)

explainer e

for model
f x}, (high importance)

Figure 9. Analogous analytical model of feature removal in the opposite order (LeRF): The input image « is explained by an explanation
method that returns a mask M indicating important pixels. The remaining, highly important pixels can be extracted from the image using
the masking operator M}, and transformed to a modified variant of the input &}, via the imputation operator Zj,.

operator that redistributes all inputs in the vector xj, to their original positions and sets the remainder to some filling value.
This means only the top-k features are kept. For a better evaluation result, the accuracy should increase quickly with
increasing k, indicating the most influential features are present. Accuracy should not increase much for the high values of
k, because inserting the low importance features should not have a large effect (equivalently, this means it should not drop
much when the least important features are removed). Overall, higher accuracies indicate better attributions in the LeRF
setting.

For the LeRF benchmark, the quantity of interest in our analysis will be I(x},; C'), the class information contained in the
filled-in version of the selected high important features. We want to maximize I (z},; C') to obtain a good score,

1 I(x},;C) = 1 LeRF benchmark.

As before, we can apply the following, general identity:

I(z},;C) =1(C;z,|M)+I1(C;M)—I(C;M|x}). 21
—_——— —/ —
Evaluation Outcome Feature Info. Mask Info. Mitigator

The interpretation of the terms is analogous to that in our main paper.

Class-Leaking Explanation Map For the case of the class-leaking map, we again require the imputation operator to be
invertible:

Example A.2. Invertible Imputation. Let T, : {0, 1}d x RE — R? be the imputation operator that takes the highly
important features as an input. We suppose that there are inverse functions 1, }\4 and T, i, such that

), =TI (M,xy) & M = I{}w(m%) ANxp, = I;i(wﬁl)

If, for instance, the pixels removed are set to some reserved value indicating their absence, the infilling operator is invertible.
In this case, also the Mitigator I (C; M |z},) = 0 (see Section 4.3 for details). The “Feature Info” term is constrained to be
positive. Thus, the Mask Information has a non-negligible impact on the Evaluation Goal, because a higher Mask term will
always increase it.

We can create a another example of a spurious explanation map that shows how evaluation scores are influenced even worse
for LeRF: Suppose an explanation map that starts masking out pixels at the top for class zero and at the bottom for class
one. Thus, a retrained model will be able to infer the category just from the shape of the masked pixels and obtain the
best possible accuracy and thus score in the LeRF setting. However, it does not provide a reasonable attribution for the
importance of the features.
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B. GAN Imputation

We also use Generative Adversarial Imputation Nets (GAIN) proposed by Yoon et al. (2018) as an imputation operator. We
first train a GAIN model on CIFAR-10. To find the best-performing setup, we run a hyperparameter selection for the GAIN
model. We keep all the default parameters identified by Kachuee et al. (2020), but search for the value of alpha (a), which
can be seen as a weight factor for the reconstruction loss of the non-imputed pixels in the GAN, and the hint _rate (hr)
parameter, which provides the Discriminator with hints to balance the difficulty of the tasks. We train the models for 100
epochs which resulted in converged MSEs and Frechet Inception Distances (FIDs). We use MSE to the original pixels to
assess the generative quality of the model. Kachuee et al. (2020) reported low values for both these parameters to perform
well, but did not provide the exact values. We extended their value ranges to o = 100 and performed and exhaustive search.
The results for the GAIN models on CIFAR-10 can be seen in Table 5. For the experiments we used the best setup with
a = 100 and hr = 0.01.

a=0.1 a=1 a=10 | a=100

hr=0.01 | 0.0131 | 0.0164 | 0.0090 | 0.0085
hr=0.1 | 0.0113 | 0.0133 | 0.0131 | 0.0101
hr=0.3 | 0.0172 | 0.0183 | 0.0151 | 0.0127
hr=0.9 | 0.0303 | 0.0484 | 0.0379 | 0.0088

Table 5. Mean-Squared-Errors for GAIN on CIFAR-10 using different hyperparameter choices.

In Figure 10, we demonstrate imputation results using three operators for one image (a) from CIFAR-10. Compared to
the fixed value imputation (b) and noisy linear imputation (c), GAN imputation (d) yields most natural imputed image.
Although it cannot perfectly reconstruct the original image, for example the background is noisy and the body color is
different from the original one, it is not easy to deduce the mask from (d). A trained imputation predictor also verifies that
GAN imputation is closest to the optimal condition, Minimally Revealing Imputation.

However, there are drawbacks of the GAN imputation. It may introduce some new “features” that do not exist in the original
sample. For instance the dog in (d) has new patterns on its body. Moreover, it does not give very good results when too
many pixels are removed (cf. Figure 12). The GAIN training again requires tuning hyperparameter settings and is highly
expensive. Therefore, this model does not allow for the desired improvements (few hyperparameters, efficiency). Compared
to GAN, our Noisy Linear imputation does not have these drawbacks. Considering all these factors, we recommend to use
Noisy Linear Imputation in the evaluation framework.

===+ min. revealing
0.4 1 —w— fixed imputation
—#— linear imputation
—#—  GAN imputation

0.2 1

missclassification rate

0.0 4

0.0 0.2 0.4
share of pixels imputed

(e)

Figure 10. The considered imputation operators. When 30 % of the original image (a) are removed, they can either be completed by a
fixed value (b) or by our proposed Noisy Linear imputation (c) or GAN imputation (d). Training of an imputation predictor () shows that
it is much harder to tell which pixels are original and which were imputed when using our proposed imputation models, which is closer to
the theoretical optimum (black). Hence, Class Information Leakage is reduced by our imputation methods.
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Modified CIFAR-10 Dataset Modified CIFAR-10 Dataset
MoRF LeRF

A SIS Y LAY e ) N

0% 10% 20%  30% 40% 50% 70% 90% 100% 90% 80% 70% 60% 50% 30% 10%

Figure 11. Illustration of modified data set in MoRF/LeRF and fixed value imputation settings. Left: Modifications in the MoRF
framework. Right: Modifications in the LeRF framework. Top to Bottom: Modifications using Integrated Gradient (IG) (Sundararajan
et al., 2017) and three ensemble variants of IG: SmoothGrad (SG-IG) (Smilkov et al., 2017), SmoothGrad? (SG-SQ-1G) (Hooker et al.,
2019), and VarGrad (Var-IG) (Adebayo et al., 2018). The percentage of pixels that are removed or kept is given at the bottom.

C. Additional Experiments on CIFAR-10

C.1. Implementation Details

In this section, we report implementation details on CIFAR-10 as well as additional results for comparison between fixed
value imputation and our Noisy Linear Imputation. We also include GAN imputation results. In Figure 12, an overview of
using three different imputations with different perturbation percentages are illustrated.

We train a vanilla ResNet-18 (He et al., 2016) on CIFAR-10 and compute different explanations using the trained model.
The model is trained with the initial learning rate of 0.01 and the SGD optimizer (Sutskever et al., 2013). We decrease the
learning rate by factor 0.1 after 25 and train the model for 40 epochs on one GPU. The trained model achieves a test set
accuracy of 84.5 % (comparable to the model in (Tomsett et al., 2020)). For attributions, we use the same settings as in
(Hooker et al., 2019): As base explanations we implement Integrated Gradient (IG) (Sundararajan et al., 2017) and Guided
Backprop (GB) (Springenberg et al., 2015). Additionally, we use three ensembling strategies for each: SmoothGrad (SG)
(Smilkov et al., 2017), SmoothGrad? (SG-SQ) (Hooker et al., 2019) and VarGrad (Var) (Adebayo et al., 2018). For each
explanation method, we modify the data set using the fraction of pixels n = [0,0.1,0.2,0.3,0.4,0.5,0.7,0.9]. Figure 11
illustrates the modified images by using four different explanations in the GB-family within MoRF and LeRF orders (fixed
mean value imputation is used).

We use N = 5 runs and report averaged results for all CIFAR-10 experiments in our paper and indicate the standard errors
(which are very small) as an area behind our plots. In Table 6 and Table 7, we show the mean accuracy and its standard
deviation at each the fraction of pixels 7 for IG-SG and GB-SG explanations. For other explanations we used, the standard
deviation at each 7 in the magnitude of below one percent as well. Mean runtimes (average over 5 runs) for evaluating one
explanation method (IG) using all three imputation methods are listed in Table 8.

C.2. Correlation Analysis

In Table 9, we show a full view of the Spearman Correlation of rankings between all twelve different evaluation strategies
(“Retrain”/*“No-Retrain”, MoRF/LeRF, and fixed value/Noisy Linear/GAN imputation) used in this paper. In this work, our
primary focus was on consistency between the respective Retraining/No-Retraining Methods and the consistency between
MOoRF/LeRF and we mark the results used in the main paper in bold.

C.3. Extended Figures

In this section, we include full qualitative results of using four variants in evaluation strategies (“Retrain”’/*No-Retrain”,
MOoRF/LeRF) for three different imputation operators (fixed value/Noisy Linear/GAN imputation). In Figure 13, the full
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original n. linear imputation ~ fixed imputation ~ GAN imputation rlgmal n.linear imputation GA 1mputation

(b) Sample from Food-101

Figure 12. Sample images from CIFAR-10 and Food-101 imputed with the three methods considered in this work for different percentages.
The missing pixels are determined by the IG attribution method (in MoRF order). While the GAN leads to sharper images for the early
percentage values, where the linearly imputed samples become more blurry. Artefacts are introduced for high missingness percentages
(0.9) in GAN imputation, which may distort the results of the evaluation once again. Therefore, we decide to stick to the Noisy Linear
Imputation that operates more stably.

plots of IG-family attribution methods using fixed value imputation are shown, while Figure 16 illustrates for the GB-based
attribution methods. Figure 14 and Figure 17 show the evaluation results when using our Noisy Linear Imputation for
IG- and GB-family attribution methods, respectively. From results, we see that using our Noisy Linear Imputation, the
consistency between the evaluation rankings conducted in MoRF and LeRF with and without retraining increases, for
instance in Figure 14 compared to Figure 13.

D. Additional Experiments on Food-101
D.1. Implementation Details

We trained a vanilla ResNet-50 (He et al., 2016) on Food-101 (Bossard et al., 2014). Concretely, we trained the model using
the SGD optimizer. Additionally the model was trained with the initial learning rate of 0.01. The learning rate was reduced
by factor of 0.1 after every 10 epochs. In total, we trained 40 epochs with a batch size of 32 and the model achieved the
accuracy of 81.67% on the test set. To run the GAN imputation operator, we first trained a GAIN model on Food-101 as
introduced in Appendix B. We used the hyper-parameters & = 100 and hr = 0.1 and trained the GAIN model with the
batch size of 32 for 100 epochs. We computed the eight explanations and run ROAD and ROAR evaluation using the same
settings as introduced in Appendix C.1 for CIFAR-10.

D.2. Correlation Analysis

In Table 10, we show a full view of Spearman Correlation of rankings given by eight different evaluation strategies
(“Retrain”/*No-Retrain”, MoRF/LeRF, and fixed/Noisy Linear/GAN imputation) on Food-101. In the table, results marked
in bold indicate the consistency of using three imputation operators. We observe that the consistency between the respective
Retrain and No-Retrain methods is still very high, which confirms that the efficiency gains reported in the main paper can be
realized for larger data sets. Consistency between MoRf/LeRF is improved (over fixed imputation) when using retraining,
but decreases slightly when the No-Retraining approach is used. Because the curves are often very close on this dataset
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10 20 30 40 50 70 90

Retrain ﬁ)fed 74.94+0.57 | 75.42+0.45 | 75.62+0.24 | 75.164+0.50 | 74.954+0.45 | 73.73+0.48 | 65.18+0.85
MoRF lin 69.72+£0.49 | 68.10+£0.34 | 67.284+0.34 | 67.324+0.22 | 67.524+0.22 | 66.46+0.54 | 60.37+0.51
gan | 74.78+0.31 | 73.16+0.22 | 72.024+0.03 | 71.40+0.23 | 70.72+0.30 | 68.44+0.43 | 59.37+0.44

No-Retrain ﬁ)'(ed 44.064+0.04 | 29.814+0.03 | 21.9940.03 | 17.35+0.02 | 14.67+0.01 | 11.50+0.04 | 10.90+0.03
MoRF lin 67.66+£0.02 | 59.94+0.03 | 54.0540.05 | 49.464+0.04 | 45.63+0.06 | 36.87+0.05 | 24.55+0.04
gan | 74.53+0.04 | 71.414+0.04 | 69.10+0.06 | 67.55+0.09 | 66.55+0.07 | 60.73+0.12 | 25.46+0.10

Retrain ﬁ).(ed 80.88+0.14 | 81.34+0.15 | 81.41+0.01 | 81.36+0.14 | 81.34+0.11 | 80.95+0.01 | 76.86+0.34
LeRF lin 81.41+0.10 | 81.67+0.18 | 81.88+0.16 | 81.56+0.13 | 81.31+£0.22 | 79.89+0.23 | 72.83+0.36
gan | 81.054£0.22 | 80.9940.15 | 80.144+0.16 | 79.25+0.18 | 78.24+0.22 | 74.92+0.15 | 68.69+0.21

No-Retrain ﬁ)I(ed 74.34+0.02 | 69.04+0.03 | 64.06+0.04 | 59.86+0.03 | 57.594+0.03 | 53.81+0.06 | 46.74+0.02
LeRF lin 82.20+0.04 | 82.04+0.03 | 81.76+0.08 | 81.34+0.06 | 80.97+£0.03 | 77.89+0.07 | 56.74+0.13
gan | 80.80+0.02 | 80.384+0.03 | 79.904+0.02 | 78.85+0.07 | 77.47+0.08 | 71.14+0.10 | 32.96+0.17

Table 6. Mean accuracy at each 7 by using IG-SG in all methods with standard deviations of five individual runs. For LeRF, the accuracy
is at (1-n).

10 20 30 40 50 70 90

Retrain ﬁ)I(ed 76.30+£0.43 | 75.60+£0.27 | 74.89+0.29 | 74.274+0.29 | 73.37+0.28 | 72.154+0.09 | 67.99+0.24
MoRF lin 72.83+£0.37 | 71.87+0.41 | 71.58+0.19 | 70.98+0.15 | 70.47+0.20 | 67.81+£0.45 | 59.38+0.46
gan | 76.64+0.13 | 75.4440.13 | 74.73+0.28 | 73.69+0.30 | 72.85+0.34 | 68.97+0.08 | 56.81+0.30

No-Retrain ﬁx 73.03+£0.03 | 66.72+0.03 | 58.72+0.07 | 52.514+0.04 | 48.52+0.08 | 48.79+0.06 | 44.43+0.06
MoRF lin 74.57+£0.08 | 71.18+0.06 | 68.70+0.08 | 67.244+0.08 | 64.824+0.11 | 57.68+0.06 | 32.59+0.09
gan | 76.5740.03 | 74.704+0.04 | 72.514+0.09 | 71.194+0.07 | 69.64+0.08 | 60.89+0.15 | 21.11+0.16

Retrain ﬁ).(ed 72.39+0.39 | 71.76+0.41 | 71.214+0.30 | 70.26+0.50 | 69.83+0.22 | 68.32+0.45 | 63.29+0.56
LeRF lin 72.86+£0.24 | 71.63+0.27 | 70.67+0.42 | 70.08+0.30 | 69.82+0.22 | 68.10+0.18 | 60.12+0.34
gan | 75.97+0.27 | 74.73+0.27 | 73.41£0.24 | 72.74+0.34 | 72.20+0.28 | 69.89+£0.26 | 57.57+0.24

No-Retrain ﬁ).(ed 69.61+£0.04 | 64.90+£0.02 | 57.88+0.05 | 51.674+0.09 | 46.93+0.06 | 42.40+0.09 | 37.10+0.03
LeRE lin 71.84+0.06 | 66.71+£0.08 | 63.79+0.05 | 61.46+0.09 | 59.69+0.09 | 55.09+0.06 | 35.72+0.13
gan | 75.13+0.02 | 72.134+0.05 | 70.254+0.05 | 68.56+0.08 | 67.35+0.08 | 62.32+0.13 | 24.61+0.19

Table 7. Mean accuracy at each n by using GB-SG in all methods with standard deviations of five individual runs. For LeRF, the accuracy
is at (1-n).

(in particular for the No-Retraining setup), small differences might already lead to a change in the ranking and the results
are in general noisier than on CIFAR-10. In summary, we observe similar trends, although the consistency gain between
MOoRF/LeRF in No-Retrain is not as pronounced. Nevertheless, a perfect agreement between MoRF/LeRF might not be
desirable.

D.3. Extended Figures

Full qualitative results of using four variants in evaluation strategies (“Retrain”/“No-Retrain”, MoRF/LeRF) for three
different imputation operators (fixed value/Noisy Linear/GAN imputation) are listed from Figure 19 to Figure 24. Figure 20
and Figure 23 show the evaluation results when using our Noisy Linear Imputation for IG- and GB-family attribution
methods, respectively. From results, we see that using our Noisy Linear Imputation, the consistency between the evaluation
results using “Retrain” and “No-Retrain” are more consistent compared to using the fixed value imputation. Therefore,
retraining can be safely skipped by using our Noisy Linear Imputation.
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Retrain No-Retrain
Strategy
fixed? lin gan fixed lin* gan
Time 3903+£117s 4686+2s 6421+74s 18.0+£0.1s 33.3£0.1s 35.040.1s
Relative 100 % 120 % 164 % 0.5% 0.9 % 0.9 %

Table 8. Mean runtime (5 runs) for evaluating a single explanation method (IG) on three imputation operators. T refers to ROAR, and  to
our ROAD.

Retrain No-Retrain Retrain No-Retrain
MoRF MoRF LeRF LeRF
fixed’ lin gan fixed lin* gan fixed lin gan fixed lin gan
1.00
Retrain | 4" | £000
MoRF lin 0.68 1.00
+0.02  +0.00
gan 0.76 0.82 1.00
+0.01 +0.01 +0.00
. fixed 0.15 0.38 0.23 1.00
No-Retrain +0.01 +£0.02 +£0.01 | +£0.00
MoRF lin* 0.66 0.84 0.86 0.43 1.00
+0.01 +0.01 =+0.01 | £0.01 =+0.00
oan 0.65 0.62 0.84 0.14 0.78 1.00
+0.01 +0.01 =+0.01 | £0.01 +0.01 +0.00
4 fixed -0.01 0.48 0.28 0.66 0.47 0.13 1.00
Retrain +0.01 +0.02 +0.02 | £0.00 +0.02 +0.01 | £0.00
LeRF lin 0.16 0.61 0.34 0.78 0.50 0.10 0.87 1.00
+0.01 +0.01 =+0.01 | £0.01 +0.01 +0.01 | £0.01 =£0.01
oan 0.15 0.59 0.32 0.74 0.50 0.10 0.90 0.96 1.00
+0.01 +0.01 +0.01 | £0.00 +0.01 +0.01 | £0.01 +0.01 =+0.00
fixed 0.49 0.44 0.69 0.01 0.60 0.77 0.09 0.03 -0.03 1.00
No-Retrain +0.01 +0.01 +0.01 | £0.00 +0.00 +0.00 | £0.01 +0.01 +0.00 | +0.00
LeRF lin 0.21 0.60 0.38 0.81 0.58 0.22 0.85 0.94 0.91 0.10 1.00
+0.01 +0.01 =+0.01 | £0.00 +0.01 40.01 | £0.00 +0.01 =£0.00 | +£0.00 +0.00
oan 0.05 0.47 0.17 0.69 0.36 -0.07 0.85 0.86 0.90 -0.14 0.79 1.00
+0.01 +0.01 =+0.01 | £0.00 +0.00 +0.01 | £0.00 +0.01 +£0.01 | £0.00 +0.00 +0.00

Table 9. CIFAR-10: Rank Correlations between all evaluation strategies used with standard deviations computed by considering the
rankings obtained through five consecutive runs as independent. Results indicated in bold correspond to those reported in the main paper.
The ROAR benchmark is marked by T and our ROAD by *.
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Figure 13. Consistency comparison using Fixed Value imputation on IG-based methods on CIFAR-10

Accuracy
= o
o) o

Accuracy
I o
o) )
j
L

— IG — 1G-SQ — IG — 1G-SQ
— IG-SG — IG-Var — IG-SG — IG-Var
0.4 T T T T 0.4 T T T T
20 40 60 80 20 40 60 80
% removed (MoRF) % removed (LeRF)
(a) MoRF, Retrain (b) LeRF, Retrain
0.8 1 — IG — 1G-SQ 0.8 1
— IG-SG — 1IG-V:
5061 = 5061
§ 0.4 1 § 0.4 1
< < — G — 1G-SQ
0.2 1 024 — IG-SG —— IG-Var
20 40 60 80 20 40 60 80
% removed (MoRF) % removed (LeRF)
(c) MoRF, No-Retrain (d) LeRF, No-Retrain

Figure 14. Consistency comparison using Noisy Linear imputation on IG-based methods on CIFAR-10
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Figure 15. Consistency comparison using GAN imputation on IG-based methods on CIFAR-10
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Figure 16. Consistency comparison using Fixed Value imputation on GB-based methods on CIFAR-10
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Figure 17. Consistency comparison using Noisy Linear imputation on GB-based methods on CIFAR-10

Accuracy
= o
o) o
Accuracy
I o
o) )

— GB —— GB-SQ — GB —— GB-SQ
—— GB-SG —— GB-Var —— GB-SG —— GB-Var
0.4 T T T T 0.4 T T T T
20 40 60 80 20 40 60 80
% removed (MoRF) % removed (LeRF)
(a) MoRF, Retrain (b) LeRF, Retrain
0.8 1 0.8 1
g 0.6 A g 0.6 1
§ 0.4 1 § 0.4 1
< — GB —— GB-SQ < — GB —— GB-SQ
0.2 4 — GB-SG —— GB-Var 0.2 4 — GB-SG —— GB-Var
20 40 60 80 20 40 60 80
% removed (MoRF) % removed (LeRF)
(c) MoRF, No-Retrain (d) LeRF, No-Retrain

Figure 18. Consistency comparison using GAN imputation on GB-based methods on CIFAR-10
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Retrain No-Retrain Retrain No-Retrain
MoRF MoRF LeRF LeRF
fixed' lin gan fixed lin* gan fixed lin gan fixed lin gan
1.00
Retrain fixed! +0.00
MoRF lin 0.48 1.00
+0.03  +0.00
oan 0.50 0.79 1.00
+0.04 +0.03 +0.00
. fixed 0.12 0.57 0.50 1.00
No-Retrain +0.01 40.02 +0.01 | £0.00
MoRF lin* 0.61 0.81 0.67 0.31 1.00
+0.01 +0.02 +0.04 | £0.01 =£0.00
oan 0.74 0.79 0.67 0.35 0.86 1.00
+0.01 £0.02 +0.04 | £0.01 £0.00 =+0.00
fixed -026 041 0.30 0.53 0.10 0.11 1.00
Retrain +0.02 +0.02 +0.02 | £0.01 £0.01 +0.01 | £0.00
LeRF lin -040  0.26 0.19 030  -0.05 0.09 0.83 1.00
+0.02 +0.04 +0.04 | £0.03 £0.01 =+0.01 | £0.01 =£0.00
gan -0.18 0.46 0.32 0.50 0.13 0.14 0.89 0.83 1.00
+0.01 +0.04 +0.04 | £0.03 £0.02 +0.03 | £0.02 +0.01 =£0.00
. fixed 0.79 0.79 0.63 0.32 0.85 0.89 002 -0.15 0.10 1.00
No-Retrain +0.02 +0.03 +0.05 | £0.01 £0.00 =£0.00 | £0.01 +£0.02 +0.03 | +0.00
LeRF lin -0.28 0.35 0.28 0.46 -0.03  -0.06 0.89 0.81 0.87 -0.11 1.00
+0.02 +0.02 +0.04 | £0.00 £0.00 +0.00 | £0.01 =£0.02 £0.01 | £0.00 +0.00
-045  -0.08  -0.04 0.23 -0.37  -0.44 0.58 0.61 0.54 -0.41 0.70 1.00
840 1 1002 £0.03 £0.04 | £0.00 £0.00 +£0.00 | £0.01 001 +0.00 | £0.00 £0.00 =40.00

Table 10. Food-10: Rank Correlations between all evaluation strategies used with standard deviations computed by considering the
rankings obtained through five consecutive runs as independent. The ROAR benchmark is marked by  and our ROAD by *. Bold results
highlight the consistency between Retrain and No-Retrain (still very high) as well as MoRF and LeRF evaluation strategies using different
imputation operators (fair increase when using Noisy Linear and GAN imputations instead of fixed imputation in “Retrain”, decrease in

“No-Retrain”).
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Figure 19. Consistency comparison using Fixed Value imputation on IG-based methods on Food-101.
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Figure 20. Consistency comparison using Noisy Linear imputation on IG-based methods on Food-101.
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Figure 21. Consistency comparison using GAN imputation on IG-based methods on Food-101.
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Figure 22. Consistency comparison using Fixed Value imputation on GB-based methods on Food-101.
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Figure 23. Consistency comparison using Noisy Linear imputation on GB-based methods on Food-101.
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Figure 24. Consistency comparison using GAN imputation on GB-based methods on Food-101.
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A.2.4 Relational Local Explanations

Publication: At the moment of writing, the paper is in submission to an international
machine learning conference.

Contribution: I developed all major parts of the explainability framework and the im-
plementations of the relational local explanation framework. I also performed the exper-
iments and wrote most parts of the paper. Gjergji Kasneci contributed to the paper by
challenging and improving early ideas, formalizations, and the analysis of results. All
co-authors helped revise the final manuscript.
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Relational Local Explanations

Vadim Borisov* Gjergji Kasneci
University of Tiibingen University of Tiibingen

Abstract

The majority of existing post-hoc explanation approaches for machine learning
models produce independent per-variable feature attribution scores, ignoring a
critical characteristic, such as the inter-variable relationship between features
that naturally occurs in visual and textual data. In response, we develop a novel
model-agnostic and permutation-based feature attribution algorithm based on the
relational analysis between input variables. As a result, we are able to gain a
broader insight into machine learning model decisions and data. This type of local
explanation measures the effects of interrelationships between local features, which
provides another critical aspect of explanations. Experimental evaluations of our
framework using setups involving both image and text data modalities demonstrate
its effectiveness and validity.

1 Introduction

The increasing reliance on machine learning (ML) models in various domains of our daily life has
brought a need for explaining the inner workings and decision-making processes of these models [1].
This is particularly relevant for deep convolutional neural networks (CNNs) in visual domains, which
have demonstrated superior performance on tasks such as object detection [2], segmentation [3], and
classification [4]. Also, in the natural language processing (NLP) domain, self-attention models [5],
specifically deep Transformer-based models, have achieved state-of-the-art results on tasks such as
text summarization [6] and sentiment analysis [7].

As a result, it is necessary to have confidence that black-box ML models are functioning as intended,
and explanations that include inter-variable relational information can help achieve this. Moreover,
the interpretability of ML models is a vital aspect for numerous applications, particularly those
involving life-critical uses such as healthcare and autonomous driving [8, 9].

Furthermore, in accordance with the General Data Protection Regulation (GDPR) [10] and California
Consumer Privacy Act (CCPA) [11], it is essential for real-world applications to not only provide
accurate and reliable predictions but also to provide transparent and easily understood explanations
for automated decision systems. Additionally, there is a practical need for model-agnostic feature
methods that can be used with any machine learning system. Last but not least, from a practical
industrial perspective, there is a need for model-agnostic feature methods which can work with any
ML system [12].

Motivation. Although numerous feature attribution approaches exist, the vast majority of them work
with each input variable independently, ignoring the crucial property such as the relationship that
intrinsically exists in the many homogeneous data formats such as visual and textual.

Another issue with the state-of-the-art feature attribution approaches is that many local explanation
methods “corrupt” a data sample to obtain local approximations of it [13, 14], as a result, it leads to
the out-of-the distribution problem [15]. Further discussion of this topic is provided in Section 2 and
Section 5.

*Corresponding author: vadim.borisov@uni-tuebingen.de
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Figure 1: An example of the relational local explanation (left) and standard local explanation (right)
for textual data from the proposed RLE framework, where green color indicates positive influence
and red negative. It can be seen that the relational local explanation allows the analysis of the pairwise
influence of each word. For the task we select a pre-trained Disti1BERT model [16] for the sentiment
analysis task. For more results, please refer to the Sec. 4 and Appendix A.

In response, we propose a new framework for post hoc feature attribution that provides relational
local explanations. Our framework represents homogeneous data as a graph and leverages the edge
information to identify the relationship between features.

The proposed approach presents a double-view on the feature attributions: (1) General local explana-
tions as coefficients of how particular variables (words or a group of pixels) influence the decision of
the given ML model positively or negatively, w.r.t other variables. (2) Relational local explanations
in the form of attention matrices, where the relationship between each input variable and other
variables is represented as a coefficient. This type of explanation answers an important question -
How strongly is this variable related to all other variables? By that, we add another layer of depth to
the explanation.

Contributions. Below, we list the main contributions of our work are:

* We highlight the importance of relational interactions between input features for local
explanations. Since visual and textual data types are “compositional” per nature i.e. the
“regional” information between variables naturally exists, it is crucial not only to understand
what variable is important but also to spotlight and quantify the most critical combinations
of them in a given data sample.

We develop a novel model-agnostic local feature attribution technique - coined relational
local explanations (RLE) - and formally describe it. To the best of our knowledge, this is the
first model-agnostic local explanation algorithm based on the relationships between input
variables.

We extensively evaluate the proposed approach on image and text datasets and empirically
show that it produces explanations that are superior to those produced by state-of-the-art
attribution techniques.

* We open-sourced the RLE implementation https://github.com/unnir/rle.

The remainder of this work is organized as follows. In Section 2, we give a short overview of the
related methods for explaining machine learning models. Section 3 presents the proposed RLE
algorithm. After, in Section 4 we visually and empirically compare our algorithm against other
state-of-the-art feature attribution approaches. Section 5 discusses the properties and limitations of
the proposed method before we conclude in Section 6.
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Figure 2: An example of the relational local explanation (leff) and standard local explanation (right)
for visual data from the proposed RLE framework where green color indicates positive influence,
and red negative. The relational local explanation can be used for a deeper feature analysis of the
image data. For the task we select a pre-trained ResNet-50 model [4] and an image with a class
basketball from the ImageNet data set [24], e.g., to uncover a combination of patches that is the
most important to a model. For more results, please refer to Appendix. 4.

2 Related Work

In recent years, there have been several studies that have focused on methods for explaining feature
interactions and adjacency. Lundberg et al. [17] propose an efficient local explanation method
based on the SHAP framework [18] for decision tree-based models, which allows for the direct
measurement of local feature interaction effects. Cui et al. [19] propose a probabilistic estimation
method to assess the joint effect of two input features and the sum of their marginal effects in order
to evaluate global feature pairwise interactions.

A number of studies have also explored feature interaction approaches specifically for deep neural
networks (DNNs). For example, Greenside et al. [20] explore interactions between variables
using deep feature interaction maps by calculating the difference between the attributions of two
variables. Singh et al. [21] present the generalization of the Contextual Decomposition [22] to explain
interactions for dense DNNs and CNNs.

More recently, Janizel et al. [23] propose an efficient method for feature interaction local explanation
for DNNss called Integrated Hessians (IH). This method is based on an enhancement of the Integrated
Gradients (IG) approach [14] and has been shown to produce trustworthy results. However, from a
practical perspective, the Hessian matrix is significantly larger than gradient matrices and requires a
sufficient memory size.

Limitations of prior approaches. Despite the progress made in understanding feature relationships
through previous approaches, a major limitation of these methods is that they are often tied to specific
model architectures or data types, making them not fully model agnostic. In addition, perturbation-
based algorithms such as LIME [13], SHAP [18], and IG [14] rely on altering the data sample in
order to provide explanations, while our method aims to preserve as much information as possible by
only altering the global structure. We discuss this issue in Section 5.

3 Relational Local Explanation (RLE) Framework

This section introduces the Relational Local Explanation (RLE) algorithm by first discussing its main
components. In addition, we present how the RLE approach can be utilized for visual and textual
data modalities.
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Algorithm 1 Relational Local Explanations (RLE)

Require: ML model f, Instance to explain x,, Number of permutations n

X' {} > New auxiliary data set

foric {1,2,3,...,n} do
x? < permute(x,) > Replace and shuffle the instance to explain
Gi < Graph(z?) > Get the graph structure of patches
A; «+ AdjacencyMatriz(G;) > Get the adjacency matrix
' + Lower(A;) > Get the lower triangle
X — XU, (&)

end for

w < Linear Model (X") > Train an explainable-by-design surrogate model

return w

3.1 Formal definitions

Before proceeding to the description of the proposed method, we introduce central definitions of our
study. The definitions are based on existing works [18, 14].

Definition 1 (Local Explanation) A feature attribution function can be seen as ¢(f,x,c) € R",
where f : R™ — R is a black-box model and x € R" is an input sample belonging to a class c; C R.
The output of ¢ is an explanation representation vector €, € R”.

Each element of e,, is an importance score corresponding to a feature value in . A large positive or
negative value in e, indicates that a corresponding feature greatly influences the outcome. Features
with values close to zero in e, have little impact. Note that there are explanation methods that do not
require a class specification; thus, for simpler and more general notation, a feature scoring function
has the form ¢(f, x).

Taking the description of local explanations, we can extend it to the definition of relational local
explanations.

Definition 2 (Relational Local Explanation) A relational local explanation function can be seen
as V(f,x,c,) € R™*", where f : R™ — R is a black-box model as above and x € R™ is an input
sample belonging to a class c, C R. The output of the VU is an relational explanation representation
in a form of a adjacency matrix A.

The relational local explanation matrix A, contains in each cell A (4, j) the relational interaction
between the ’th and j’th input feature. Note that A, is symmetric, i.e., A, = A; , and thus, the
mean value of column or row elements corresponds to average local importance for the corresponding
feature. Formally, let A, denote the vector of mean values of the rows of matrix A,. Then:

A, = e, D

The symmetry property of relational local explanations is based on the assumption that the association
between two variables has to be symmetrical. This was also indicated in the previous related works
[23].

3.2 RLE : The proposed framework

Our approach follows common strategies for the generation local explanation proposed in LIME [13],
SHAP [18], and Anchors [25], since they have a solid theoretical foundation [26] and established
reputation in the ML community [1, 27]. The main idea of the RLE algorithm is to generate n local
permutations of a data sample to explain, then construct corresponding graph representations and
adjacency matrices of the relationships between input features from the shuffled data. Thus we obtain
a new data set of local relations between features. Next, a linear model (that is explainable by design)
is fitted to the new data set - using information from the adjacency matrices to get the corresponding
coefficients, which can be utilized for the relational local explanation.
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Figure 3: A relational local explanation of a data sample given a vision model using the RLE
algorithm. Where f is a black-box machine learning model to explain, x, is a sample of interest, G;
is a graph of representation of a perturb image sample z?.

Formally, for a given black-box model f : X — Y with X C R", Y C R, we may learn an
interpretable surrogate model g, which is a local approximation of f for a given perturbation of a
particular input ¢, € X. For this purpose, we first divide a data sample (image, text) into discrete
elements of pixel patches for visual data, and groups of words for textual data. Then the chosen data
sample x, is perturbed n times to generate *,, i = 1..n and we randomly replace a single element
(i.e., patch/group) p,; from x, with another randomly selected element from x. After an undirected
graph representation of the shuffled sample is received G% , where each vertex is a discrete element p
(e.g., superpixel or word), and the edge is the connection between them. Further, an adjacency matrix
Ag, for each x! is obtained. Since adjacency matrices for undirected graphs are symmetric, only the
lower triangle is utilized Lower(Ag,) for the next step. The key idea is to permute a data sample
and keep local features since the strong perturbation may lead to the out-of-distribution problem [15];
we examine this issue in detail in Section 5.

These procedures yield a new data set X' = { Lower(Ag,), f(x¥)},. We then learn a sparse linear
regression gy, (€?) = w, ,xP using the local data set X’ by optimizing the following loss function
with (+) as a measure of complexity.

Wg, = argmin L(f, g) + Q(w), 2
w
where L(f, g) is the mean squared loss,

Z [f(l’f) - g(fﬂf,wo)]z. 3)

i=1

S|

L(f g)=

The RLE algorithm yields g, (2'), which approximates the complex model f(x') around . In
case g is a linear model, the components of the weight vector w,, indicate the relative influence of
the relationship between features values of x( based the sample X” and can be used as the relational
local explanation of f(xg). The full approach is summarized in Algorithm 1.

The following subsections discuss how the proposed algorithm can be adapted to the visual and
textual data modalities.

3.3 Relational local explanations for multidimensional visual data

In the case of visual data, we divide an image into patches to disrupt the spatial layout of local image
regions, this is a common approach for the local explanation methods [13, 18]. Formally, given
an input image /, we first uniformly partition the image into N x N sub-regions denoted by R; ;,
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Figure 4: Relational local explanation of a data sample given a textual model using the RLE algorithm.
Where f is a black-box machine learning model to explain, x, is a sentence of interest, G; is a graph
of representation of a perturb sentence .

where 7 and j are the horizontal and vertical indices respectively and 1 < 4,5 < N. The procedure is
presented in Fig. 3. Following that, a single patch R; ; represents a feature for the RLE algorithm.

Note that obtained graph representations for patched images do not consider the neighbor direction,
e.g., a patch connected from the top, bottom, right, or left. To include the directional information, we
may use a simple one-hot-encoding encoding technique for the adjacency matrix Ag,. In practice,
we observe that a meaningful relational local explanation can be constructed even without the
one-hot-encoding step.

We argue that local details are much more important than a global structure for fine-grained image
recognition, as it is these details that distinguish between different classes. In most cases, various fine-
grained categories tend to share similar global structures and vary only in specific local details [28];
therefore, by random permutation, a given computer vision black-box model is forced to focus on the
local details, and it favorites the most distinguished areas. Multiple studies support our argument:
the jigsaw puzzle pretext task for Self-Supervised Learning (SSL) approaches [29], a regularization
scheme for Variational Autoencoders (VAEs) [30], and last but not least for Vision Transformers
(ViTs) an image is divided into patches as well [31, 32]. Besides, graph-based representation of
visual data is a common approach for many downstream tasks [33].

3.4 Relational local explanations for textual data

For relational local explanations of the textual models, in particulate self-attention-based models [5],
we represent a sentence as a graph G;, where each word is expressed as a node. Then, as we presented
before, we permute the sentence by chaining the word order with replacement n times. The whole
procedure is illustrated in Fig. 4. This operation allows learning bidirectional context for a word. As
a result, each position grasps directional context from both “directions”.

The permutation idea was successfully used for training an XLNet [34] and GReaT [35] Transformer
models; thus, it shows that transformer models are able to understand the semantics of a shuffled
sentence. Furthermore, multiple studies [36, 37] made the same observation - a sentence can be
seen as a graph, where words correspond to nodes and the computation of an attention score is the
assignment of a weight to an edge between two worlds.

4 Experiments

We evaluate the RLE framework on several data sets by visually comparing them with state-of-the-art
explanation methods with the goal of ensuring that our method fulfills its purpose. First, in Section 4.1
we present a visual comparison of state-of-the-art methods and the proposed framework. After, we
compare local explanation for a textual data given a pre-trained DistilBERT model [16], furthermore,
we demonstrate relational local explanation for a sentence in Section 4.2. Next, Section 4.3 presents a
quantitative benchmark analysis of the RLE method with a comparison to selected baselines. For more
visual experiments and detailed reproducibility details, please refer to the supplemental materials.
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Original IG [14] LIME [13] SHAP [18] RLE (Ours)

Table 1: A Comparison of different state-of-the-art local explanation methods for a pre-trained
ResNet-50 model [4] given random samples from the ImageNet data set [24]. Name of the original
classes according to the selected model (from top to bottom): American egret, seashore, bottle,
marmot, and basketball.

4.1 Visual analysis on image data

In our first experiment, a qualitative visual evaluation on images from the ImageNet data set [24] is
performed for selected baseline: 1G [14], LIME [13], SHAP [18], and the proposed RLE framework.
We color the explanations from all baselines to illustrate that they distinguish between input variables
that positively (green) and negatively (red) contribute to the CNN model estimations for a given class.
The results are summarized in Table. 1. Also, an example of a relational local explanation for an
image is depicted in Fig. 2.

4.2 Comparison on textual data

For the evaluation of the proposed method on the textual data, we utilize a pre-trained self-attention-
based DistilBERT model for the sentiment analysis task [16] from the open-source Hugging Face
library [38]. The results are summarized in the Table 2. Also, we demonstrate relational local
explanations analysis using the RLE framework (Fig. 1) for the same transformer model and compare
it to results from the IH method in Fig. 5.
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Method \ Local Explanation

1G [14] You gonna suffer but you’ll be happy about it

LIME [13] You gonna suffer but you’ll be happy about it

SHAP [18] You gonna suffer but you’ll be happy about it

IH [23] You gonna suffer but you’ll be happy about it

RLE (ours) You gonna suffer but you’ll be happy about it

1G [14] You might be interested this product performs well
LIME [13] You might be interested this product performs well
SHAP [18] You might be [interested this product performs well

IH [23] You might be interested this product performs well
RLE (ours) You might be interested this product performs well

1G [14] The idea is nicely presented, but it has some limitations
LIME [13] The idea is nicely presented, put it has some limitations
SHAP [18] The idea is nicely presented, but it has some limitations
IH [23] The idea is nicely presented, but it has some limitations
RLE (ours) The idea is nicely presented, but it has some limitations

Table 2: A comparison of state-of-art feature attribution approaches to the presented RLE algorithm.
given a pre-trained DistilBERT model [16] for the sentiment analysis task. We highlight the most
important words according to each feature attribution method. For more results, please refer to the
supplementary materials.

4.3 Quantitative comparison

In order to quantitatively evaluate our novel explanation framework, we utilize the well-accepted
measure in the ML community - Iterative Removal Of Features (IROF) [39]. The IROF measure is
fully described in the supplementary materials. The full definition of the mesure is in the Appendix C.
This technique was featured in multiple studies before [40]. We compare against this study baselines:
IG [14], LIME [13], and SHAP [18]. We also introduce the random baseline as the “sanity check”,
which assigns variable importance randomly. Notably, the authors of [41, 42] show that this primitive
baseline can outperform some of the commonly used explanation approaches based on saliency maps
in ablation tests. Results are in Table 3.

4.4 Reproducibility Details

In this subsection, we briefly introduce the main frame-
works used in this study; further details about all exper-

iments, such as hyperparameters for each baseline and Method | IROF [39]

experiment, are provided in the supplementary materials. Random 0.179+0.18
We selected official implementation for the LIME, SHAP, 1G [14] 0.21140.23
and IH baselines, and for the IG baseline, we employed LIME [13] 0.421+0.19
the Captum library [43]. The graph structure was analyzed SHAP [18] | 0.368+0.24
using the NetworkX library [44]. For all experiments we RLE (ours) | 0.43440.23

use a single NVIDIA 2080TI GPU with 12 GB of memory.
For future comparison, we also open-source the code for
the RLE framework for PyTorch [45] models and publish
it online.

Table 3: A quantitative comparison of se-
lected baselines on the fifty random im-
ages from ImageNet data set [24] given a
pre-trained ResNet-50 model [16]. The
top result is bold, whereas the second

5 Discussion and Future Work result is underlined.

Experimental results. In our challenging experiments

with multiple data modalities, local explanations from the

RLE framework show competitive performance against selected feature attribution baselines. Overall,
our quantitative experimental results resemble similar image areas or words from highlighting by
other state-of-the-art non relational explanation methods. In qualitative experiments, the proposed
approach shows the best results on the IROF measure [39]. For more results, please refer to the
supplementary material.
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Figure 5: A comparison of the relational local explanations from IH [23] and RLE methods for a
sentence “I do not like their customer support”, given a pre-trained DistilBERT model
[16] for the sentiment analysis task. According to the IH method the most negative pair is “like,
their”, where our proposed approach shows the most negative word is “not” with two pairs “not,
support” and “do, not”. Appendix A presents more results.

Permutation step. One of the core steps of the proposed algorithm is the random permutation with
a replacement - we refer to it as a weak perturbation. In comparison to other perturbation-based
feature attribution methods which use a strong perturbation, e.g., perturb a data sample by adding
random noise [13, 14] or removing parts of information [18], the RLE framework preserves the
local attribution unchanged, only shuffling the global structure. Moreover, local details are more
important than a global structure for deep neural network models, as shown for vision and textual
modalities [28, 34, 46]. Another known issue related to the strong perturbation approaches for the
local approximations, this type of perturbation leads to the out-of-the-distribution problem [47],
which creates the vulnerability to adversarial attacks [15].

Evaluation measure for relational local explanations. Another point of the work’s continuation
with relational local explanations is the absence of evaluation technique. For future work, a trustworthy
and plausibility measure is needed; this is challenging since there is no access to the ground truth. On
the flip side, with an unambiguous measure, a possible strategy would involve direct optimization
over it.

Ensembling of feature attributions. To improve the robustness of local and relational explanations,
unsupervised ensemble techniques can be applied to the outputs of multiple runs of the explanation
algorithm. By aggregating the outputs of multiple runs of the algorithm, we can effectively reduce
the impact of any individual run that may have produced biased or inaccurate explanations. This
approach has been shown to be effective at improving the robustness of explanations in a variety of
contexts [48].

RLE limitations. The proposed approach does not currently support the quantification of higher-
order interactions between features for the relational local explanations. A more complex graph-based
representation can be utilized for this task for future work. Furthermore, patches of image data should
have adequate local information, and the adequacy depends on the resolution of the images. In our
experiments using the ImageNet data set - an image usually cropped into the 224 x 224 x 3 format,
we observe that we can operate with up to 36-49 patches (depending on the content of an image).
Lastly, the current implementation of the RLE framework cannot be utilized on tabular modality
since tabular data has no spatial relationships [49].

6 Conclusion

This paper introduces the RLE (Relational Local Explanations) method, a novel, model-agnostic
approach for generating local explanations that addresses a common challenge in post hoc explana-

195



Appendix A Appendix

tions, which is the interpretability of inter-variable relationships. This method provides a qualitative
measure of how different feature attributions interact with each other, which is useful for various data
types and problems where knowledge of the relationships between features is necessary. In addition,
the RLE framework also offers standard feature attributions as local explanations, which provide
insight into the specific contributions of each feature towards the final prediction made by a machine
learning model. Through extensive visual and quantitative experiments, we demonstrate that the
proposed RLE method performs comparably to state-of-the-art methods for generating comprehensive
(relational) local explanations. These results suggest that RLE may be a valuable tool for practitioners
seeking to understand and improve the performance of their machine learning models.
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A Additional Experiments

This section present experimental results on visual (Table 4) and textual (Table 5) data. Additionally,
we show relational local explanations for several visual and text samples in Figures 6, 7, 8, 9, 10,
11, 12. We compare results from the proposed algorithm to the baselines of this study: IG [14],
LIME [13], SHAP [18], and IH [23].

B Further Reproducibility Details

Hyperparameters. We select similar hyperparameters for each baseline to have a fair evaluation; for
image data, the number of perturbations (auxiliary samples) n is set to 5000, and for textual, we set n
to 2000. In our experiments, we observe that a higher number of perturbation steps leads to better
quality local explanations. This was also observed in [50]. The rest of the hyperparameters default to
a selected package.

RLE plotting function. For the relational local explanation visualization we apply a plotting function
from the IH [23] official implementation.2 From the open-source library Captum [43], we utilize
plotting function for visualization feature attribution maps on visual data.’?

Data sets. For image data, we utilize samples from ImageNet data set [24] provided by the official
python package of the SHAP algorithm [18].*

Zhttps://github.com/suinleelab/path_explain
3https://captum.ai/api/utilities.html
“https://shap.readthedocs.io/en/latest/generated/shap.datasets.imagenet50.html
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Figure 6: A comparison of the relational local explanations from IH [23] and RLE methods for a sen-
tence “I really like the new design of your website”, given a pre-trained DistilBERT
model [16] for the sentiment analysis task.

Pre-trained models. In this work, we employ the pre-trained ResNet-50 model [4] from the forchvi-
sion package [45].°. We utilize the pre-trained DistilBERT model [16] from the HugginFace library
[38].°

For even better reproducibility, we also report the used package versions in requirements. txt file.
It can be found in the corresponding code repository of the RLE algorithm.

C The IROF Measure

Choice of the quantitative measure. In our work, we select the IROF framework [39], since it
allows for an efficient and fairly evaluation of feature attribution methods for the visual data. In
comparison to popular approaches for single-pixel-based evaluation of local explanations (e.g.,
DAUC, IAUC), the chosen evaluation framework uses the super-pixel approach. Since the influence
of a single pixel is minimal, the unsupervised grouping of a pixel into local regions allows us for a
more fair comparison of the feature attribution methods.

The IROF approach has several steps: First, the image is divided into coherent segments and bypasses
the input features’ inter-dependency. According to the creators of the IROF measure, we use the
SLIC method for unsupervised image segmentation [51].

Formally, the IROF measure is defined as follows:

N oy N\ L
IROF(e;) = % Z_:l AOC <—§Ei§;@y’)lzo )

where ¢; is a local feature attribution map, IV is the number of super-pixels, 2° is an image to explain,
f is a black-box model, y is a target, and L represents the class score based on how many segments of

the image were removed. Also, the proposed measure utilized the area over the curve (AOC) function.

The higher the IROF score, the more plausible the local explanations, i.e., the more information was
collected.

Shttps://pytorch.org/vision/stable/models.html
®https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english
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Original IG [14] LIME [13] SHAP [18] RLE (Ours)

Table 4: A Comparison of different state-of-the-art local explanation methods for a pre-trained
ResNet-50 model [4] given random samples from the ImageNet data set [24]. Name of the original
classes according to the selected model (from top to bottom): bittern, Indian elephant, hog,
dowitcher, cardigan, and desktop computer. The explanations from the RLE method are less
noisy and rank almost all parts of the image with either positive (green) or negative (red) influence.
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Method Local Explanation

1G [14] The new design is awful

LIME [13] The new design is awful

SHAP [18] The new design is awful

IH [23] The new design is awful

RLE (ours) The new design is awful

IG [14] I love you and I hate you

LIME [13] I love you and I hate you

SHAP [18] I love you and I hate you

IH [23] I love you and I hate you

RLE (ours) I love you and I hate you

IG [14] I’m not sure if I like the new design

LIME [13] I’'m not sure if I like the new design

SHAP [18] I’'m not sure if I like the new design

IH [23] I’m not sure if I like the new design

RLE (ours) I’m not sure if I like the new design

IG [14] I really like the new design of your website

LIME [13] I really like the new design of your website

SHAP [18] I really like the new design of your website

IH [23] I really like the new design of your website

RLE (ours) I really like the new design of your website

1G [14] The bed was super comfy. The chair wasn’t bad, either
LIME [13] The bed was super comfy. The chair wasn’t bad, either
SHAP [18] The bed was super comfy. The chair wasn’t bad, either

IH [23] The bed was super comfy. The chair wasn’t bad, either
RLE (ours) The bed was super comfy. The chair wasn’t bad, either

IG [14] Terrible pitching and awful hitting led to amother crushing loss
LIME [13] Terrible pitching and awful hitting led to another crushing loss
SHAP [18] | Terrible pitching and awful hitting led to amother crushing loss
IH [23] Terrible pitching and awful hitting led to another crushing loss
RLE (ours) | Terrible pitching and awful hitting led to another crushing loss

Table 5: A comparison of state-of-art feature attribution approaches to the presented RLE algorithm
given a pre-trained DistiIBERT model [16] for the sentiment analysis task. We highlight the most
important words according to each feature attribution method, where the green and red colors indicate
the positive and negative impact, respectively.
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Figure 8: A comparison of the relational local explanations from IH [23] and RLE methods for a sen-
tence “The bed was super comfy. The chair wasn’t bad, either”, given a pre-trained
DistilBERT model [16] for the sentiment analysis task.
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Figure 9: An example of the relational local explanation (left) and standard local explanation (right)
for visual data from the proposed RLE framework where green color indicates positive influence, and
red negative. For the task we select a pre-trained ResNet-50 model [4] and an image with a class
desktop computer from the ImageNet data set [24], e.g., to uncover a combination of patches that
is the most important to a model.
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Figure 10: An example of the relational local explanation (/eff) and standard local explanation (right)
for visual data from the proposed RLE framework where green color indicates positive influence, and
red negative. For the task we select a pre-trained ResNet-50 model [4] and an image with a class
tripod from the ImageNet data set [24], e.g., to uncover a combination of patches that is the most
important to a model.
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Figure 11: An example of the relational local explanation (/eff) and standard local explanation (right)
for visual data from the proposed RLE framework where green color indicates positive influence, and
red negative. For the task we select a pre-trained ResNet-50 model [4] and an image with a class
groom from the ImageNet data set [24], e.g., to uncover a combination of patches that is the most

important to a model.
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Figure 12: An example of the relational local explanation (leff) and standard local explanation (right)
for visual data from the proposed RLE framework where green color indicates positive influence, and
red negative. For the task we select a pre-trained ResNet-50 model [4] and an image with a class

bittern from the ImageNet data set [24], e.g., to uncover a combination of patches that is the most
important to a model.
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A.3 Applied Manuscripts

A.3.1 Robust Cognitive Load Detection from Wrist-Band Sensors

Publication: Published in the computers in human behavior reports journal, 2021.

Contribution: I developed all major parts of the explainability framework and the im-
plementations of the relational local explanation framework. I also performed the ex-
periments and wrote most parts of the paper. Gjergji Kasneci and Enkelejda Kasneci
contributed to the paper by challenging and improving ideas, formalizations, and the
analysis of results. All co-authors helped revise the final manuscript.
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ARTICLE INFO ABSTRACT

Keywords:

Cognitive load detection
Human-computer interaction
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Ensemble methods

In recent years, the detection of cognitive load has received a lot of attention. Understanding the circumstances in
which cognitive load occurs and reliably predicting such occurrences, offers the potential for considerable ad-
vances in the field of Human-Computer Interaction (HCI). Numerous HCI applications, ranging from medical and
health-related solutions to (smart) automotive environments, would directly benefit from the reliable detection of
cognitive load. However, this task still remains highly challenging. We present a machine learning (ML) approach
based on ensemble learning for robust cognitive load classification. The features used by the proposed solution are
generated from the interpretation of physiological measurements (e.g., heart rate, r-r interval, skin temperature,
and skin response) from a wearable device. Hence, our approach consists of two steps: (1) transforming the
original data into discriminative features and (2) training an ensemble model to accurately and robustly predict
cognitive load. The empirical results confirm that our method has a superior performance compared to various
state-of-the-art baselines on the original and transformed data. Moreover, in the open-data CoglLoad@UbiComp
2020 Competition, the proposed approach achieved the best results among 17 competing approaches and out-

performed all participating competitors by a considerable margin.

1. Introduction

The degree to which our cognitive resources, e.g., attention, working
memory, decision making, or task-related knowledge, are currently used
is commonly referred to as cognitive load (Sweller, 2011). With emerging
novel multimedia technologies, cognition-aware computing, and
human-centered systems that aim to automatically adapt to the user's
cognitive state, predicting and quantifying cognitive load can be bene-
ficial in various applications of Human-Computer Interaction (HCI).
More specifically, the ability to estimate the proximal zone of a user,
where stress, frustration (as typically resulting from cognitive overload),
and boredom (originating from low levels of cognitive load) can be
avoided, promises to open new avenues towards the development of truly
intelligent user-centered systems and enhanced user experience. For
example, intelligent tutoring systems could have crucially aided learning
and teaching in the current COVID-19 epidemiological situation. Beyond
the learning context, in entertainment-related applications such as
gaming, the online assessment of a user's cognitive load could contribute
significantly to an enhanced user experience. In various medical appli-
cations, the ability to detect the cognitive overload of medical experts
could help in the development of appropriate supporting measures and
systems. Considered a highly important measure towards a better

* Corresponding author.

understanding of human cognition and performance, the measurement
and prediction of cognitive load has been the focus of research works for
more than three decades.

A variety of approaches to cognitive load have been explored during
the past decades (Kramer, 1990; Sweller, 2011), ranging from
questionnaire-based techniques such as the NASA TLX (Hart & Staveland,
1988) self-report to advanced methods based on Deep Neural Networks
on image data (Fridman et al., 2018). The main limitation of self-reports,
however, is the subjective nature of the user responses, which hinders the
identification of ground truth labels. Furthermore, it has been shown that
such questionnaires may induce additional load to the user (Abdelrah-
man et al., 2017) and are not applicable to online settings where a per-
son's cognitive load has to be estimated during task performance.
Therefore, with increasing technological possibilities for user monitoring
(e.g., through electroencephalography, eye-tracking technology,
camera-based user monitoring, or galvanic skin response and heart rate
sensors), estimating cognitive load based on physiological or image data
of a user has progressively gained research focus.

This work aims to achieve the automated detection of cognitive load
on physiological user data sensed non-invasively from a wearable using
machine learning techniques. More specifically, we present the 1st place
solution from the CoglLoad@UbiComp 2020 Competition, which

E-mail addresses: vadim.borisov@uni-tuebingen.de (V. Borisov), enkelejda.kasneci@uni-tuebingen.de (E. Kasneci), gjergji.kasneci@uni-tuebingen.de (G. Kasneci).
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addressed cognitive load detection from low-cost wrist-band sensors
(Microsoft Band 2), i.e. measuring galvanic skin response (GSR), skin
temperature (ST), heart rate (HR), and heart rate variability (RR in-
tervals). Our method consists of two steps; first, data is transformed from
temporal to static data, allowing all standard ML algorithms to be used.
The second step is ensemble learning using decision tree-based models,
which is proved to be robust on various tasks, especially on data.
In summary, the contributions of this work are multi-fold:

@ We present the winning solution of the CogLoad@UbiComp 2020
Competition. The proposed method outperformed all other state-of-
the-art approaches from competitors in terms of predictive perfor-
mance on unseen test data by a considerable margin.

@® We demonstrate how simple yet effective data transformation tech-
niques can improve the state-of-the-art machine learning approaches,
thereby advancing the current state-of-the-art in the area of cognitive
load detection based on wearable sensors.

@ We provide a comprehensive comparison of the proposed ensemble
approach with other state-of-the-art machine learning methods on the
original and transformed data.

@ An open-source implementation of our approach can be found here:
https://www.github.com/unnir/CogLoad_UbiComp2020.

The remainder of this article is organized as follows. In Section 2, we
first provide an overview of related work on cognitive load detection
from physiological data, and especially on methods approaching the
CogLoad@UbiComp 2020 Challenge. The cognitive load data set from
this challenge is described in detail in Section 3. Section 4 presents our
feature transformation methods, followed by our model description for
accurate cognitive load detection in Section 5. The experimental evalu-
ation and performance results of our model are presented and discussed
in Section 6. In Section 7, we discuss the limitation of our approach with
future steps. Section 8 concludes this work.

2. Related work

Beyond questionnaires and self-reports, user monitoring holds enor-
mous potential for the robust measurement of a person's cognitive load in
an online fashion, i.e. during task performance. This information can, in
turn, be employed by the systems with which the user is interacting and,
thus, become beneficial for the user's performance through adaptation or
additional supportive measures. Various approaches have therefore been
proposed during in recent years to tackle the detection of cognitive load
and will be discussed in the following along with specific solutions and
implementations on the same data set of the CogLoad@UbiComp2020
Challenge.

2.1. Detecting cognitive load from brain activity

Common neuro-imaging techniques that have been used to detect
cognitive load are electroencephalography (EEG), e.g., as in (Friedman
etal., 2019; Mills et al., 2017), near-infrared spectroscopy (NIRS, e.g., in
(Grubov et al., 2020; Keshmiri et al., 2017)), or functional magnetic
resonance imaging (fMRI, as for example from (Maki-Marttunen et al.,
2019)). Although brain imaging techniques promise to deliver highly
accurate detection and prediction of cognitive load, the technology has
not yet reached the stage of ubiquity and low-cost availability. These
techniques are therefore not yet applicable to use-cases outside the
laboratory.

2.2. Detecting cognitive load from eye movements and pupil information
With recent advances in eye-tracking technology, a non-intrusive way
to infer information about a person's cognitive state is becoming avail-

able. In recent years, different features of the eye and of eye movements
have been investigated as predictors of cognitive load. For example

208

(Chen et al., 2011; He & McCarley, 2010; Inamdar & Pomplun, 2003; Van
Orden et al., 2001; Wang et al., 2014), associated longer fixations with
more effort and thus with higher levels of cognitive load. However, other
streams of related work have indicated the opposite, i.e., by relating
longer fixation to lower cognitive effort, e.g., (Amadieu et al., 2009; Van
Gog et al., 2005). These results, however, might be influenced by pro-
cessing difficult or visually challenging stimuli (Rayner, 1998). In addi-
tion, a few recent articles have looked at the relationship between
smooth pursuits and cognitive load (Kosch et al., 2018; Stubbs et al.,
2018), and reported a high predictive power of features extracted from
smooth pursuits on cognitive load. In the past few years, enabled through
high-speed eye-tracking devices, a research line in this area has investi-
gated the relationship between microsaccades and cognitive load.
Microsaccades describe small, involuntary eye movements which occur
during a fixation period and are assumed to be highly associated with
cognitive and visual load. More specifically, tasks that induce high visual
load were found to cause an increase of the frequency of microsaccades
(Benedetto et al., 2011), while auditory or arithmetic tasks have been
found to have the opposite effect, i.e., reduce their frequency (Gao et al.,
2015; Krejtz et al., 2018; Siegenthaler et al., 2014). In addition to
eye-movement characteristics, blinks and their frequency have also been
investigated regarding their relation to visual or cognitive load (Bristow
et al., 2005; Fukuda et al., 2005). More specifically, it has been reported
that higher cognitive load induces more frequent blinking (Chen & Epps,
2014; Hogervorst et al., 2014).

Another line of research in this area focuses on predictive features of
cognitive load derived from the eye pupil and its oscillations. It is well
understood that high cognitive load causes characteristic patterns of
pupil dilation (Beatty et al., 2000; Kramer, 1991), which is also known as
the task-evoked pupillary response. It has been further shown that this
effect even persists within a task, between tasks, and between in-
dividuals, concluding that there is a consistent influence of cognitive load
on the pupil diameter (Kahneman, 1973). Since changing illumination
conditions (e.g., environmental lightning or lightning changes of the
visual stimulus itself) also affect pupillary response, several research
articles have focused on generalizable approaches, e.g., (Appel et al.,
2018, 2019; Duchowski et al., 2018, pp. 1-13; Faure et al., 2016; Kun
et al., 2013; Marshall, 2000, 2007; Palinko et al., 2010; Pfleging et al.,
2016).

2.3. Image-based approaches to cognitive load detection

Recent approaches have proposed (deep-learning) frameworks for
cognitive load detection based on image data (Fridman et al., 2018;
Rafiqi et al., 2015) or thermal images (Abdelrahman et al., 2017). The
latter group of methods aims to automatically detect changes in skin
temperature, respiration, or heart rate related to changing levels of
cognitive load based on thermal images. Although image-based tech-
nology is, in general (primarily due to its non-intrusive nature), highly
interesting and relevant, further research is required to determine the
generalizability of such approaches across tasks and subjects.

2.4. Physiological signals for cognitive load estimation: galvanic skin
response (GSR), heart rate (HR), and heart rate variability (HRV)

Physiological sensors measuring GSR, HR, and HRV' are meanwhile
available at low cost and large scale. Thus, these signals can be employed
for user monitoring in a variety of applications. As a measure of skin
conductivity, GSR is considered a strong indicator of stress and cognitive
load and, as such, is used in various approaches to detect cognitive load.
More specifically, various studies have reported an increase in GSR with

! Note that HRV corresponds to R-R intervals. We use the short form RR in the
following sections, which is in accordance with the terminology used in the data
set description of the CogLoad@UbiComp 2020 Challenge.
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increasing cognitive load, e.g. (Kasneci et al., 2017; Nourbakhsh et al.,
2012, 2017; Shi et al., 2007). Cardiac measures such as HR and HRV have
also been successfully employed in many related studies on cognitive
load detection, e.g. (Gjoreski et al., 2018; Hughes et al., 2019; Kiibler
etal., 2014; McDuff et al., 2014; Mehler et al., 2011; Wang & Guo, 2019).

Apart from the above-mentioned lines of related research, various
approaches have proposed multimodal methods of cognitive load
detection to increase the accuracy of predictions (Debie et al., 2021).
Prabhakar et al. (2020) suggested the estimation of cognitive load from
eye-movement and pupil dilation parameters. In four independent
studies with 123 participants, Sharma et al. (2020) analysed the assess-
ment of cognitive load through physiological responses and facial ex-
pressions, a method that works well for recognizing successful
perception, at least by aggregating physiological and eye-tracking signals
(Kasneci et al., 2017). Finally, in the aviation industry, the estimation of
the cognitive load plays a crucial role and has therefore been analysed in
various studies, e.g., (Babu et al., 2019; Di Nocera et al., 2007; Wilson
et al., 1994).

Our work specifically addresses the applicability of machine learning
models to the prediction of the cognitive load of a user from physiological
data collected from smart wearables, since these sensors are not only
non-intrusive and affordable, but also convenient to use. Hence, in the
following, we will briefly discuss the state-of-the-art in this area as well as
competing approaches from the same challenge.

2.5. Cognitive load estimation from wearable sensors

Setz et al. (2010) introduced a machine learning approach in 2009
based on six classifiers to distinguish stress from cognitive load in an
office environment based on data from 33 subjects in a laboratory
intervention study. Their methods achieved an accuracy of 82.8%, thus
exhibiting promising steps towards cognitive load detection based on
low-cost smart devices. Huang et al. (2018) showed that physiological
signals from wearable devices could be used to analyze psychological
factors that can help with disease prevention. In another study, Schaule
et al. (2018) introduced a system coined COLLINS (COgnitive Load
Classification to prevent INterruptionS), which utilized a smart
wrist-band device for cognitive load estimation. This approach showed
that the cognitive load could be estimated using sensors from a smart
device. In an evaluation with ten subjects the authors compared three
machine learning algorithms - SVM, Random Forest, and Naive Bayes
(SVM and Random Forest are selected as baselines for our experiments)
and reported an accuracy between 66% and 86% for individual partici-
pants. For the general classification task, COLLINS achieved an accuracy
between 32% and 36% in a ten-fold cross-validation. The work from
(Gjoreski et al., 2018), based on 25 volunteers, utilized sensor informa-
tion from a simple wearable device in order to measure the cognitive
load. In parallel, they collected physiological data with a device,
extracted features, and then constructed machine learning models for
cognitive load prediction. Although the final accuracy of the statistical
model was only 51%, the work confirmed that it is possible to estimate
cognitive load using a wearable device. The data collected by the authors
was later released to the research community as a challenge and served as
a data foundation of our work.

2.6. Related approaches from the CogLoad@UbiComp 2020 challenge

The CogLoad@UbiComp 2020 Competition, along with an open data
set, was advertised by the 5th International Workshop on Smart &
Ambient Notification and Attention Management (UbiTention 2020) at
UbiComp 2020 (Li & De Cock, 2020) (team Lynx from the University of
Washington). used different combinations of feature engineering steps
(e.g., Fast Fourier Transforms, Sliding Mean Filter) in combination with
machine learning models (e.g., Logistic Regression, (Boosted) Decision
Trees, Random Forests, and Support Vector Machines) to approach the
problem. Their best processing pipelines yielded an accuracy of 63% on

the data set, which is in line with previous work on smartwatch data
(Gjoreski et al., 2020). In another work on this data set, Salfiger (Sal-
finger, 2020) investigated the applicability of deep learning approaches
for cognitive load monitoring. More specifically, the author evaluated
different configurations of Recurrent Neural Networks (Schmidhuber,
2015), namely Gated Recurrent Units (GRUs) and RNNs using Long
short-term memory (LSTM) cells, and found that architectures based on
GRUs achieve the best performance. A limitation of this approach is
however the complexity of the models which have a tendency to overfit
with respect to the small size of the data set from the challenge, which, in
addition, is characterized by considerable between-subject variance and
subject-related bias (Salfinger, 2020). The team HCM-lab from the Uni-
versity of Augsburg, Germany, got second place in the competition by
using a deep learning-based approach. First, they trained an autoencoder
on original data. Second, they utilized the encoder only as an input block
and used a three-layer artificial neural network on top of it. A team from
the VTT Technical Research Centre of Finland (Tervonen et al., 2021)
used a support-vector machine (SVM) based (Boser et al., 1992) approach
with the Bayesian optimization step. Their best mode received the 3rd
place in the CogLoad@UbiComp 2020 competition.

3. The data set

The method we propose in this work was developed and evaluated in
the context of the CogLoad challenge (van Berkel et al.) using the Cog-
Load data set (Gjoreski et al., 2020) provided by UbiComp 2020 (inter-
national joint conference on pervasive and ubiquitous computing, 2020),
the leading venue in the area of ubiquitous and pervasive computing. The
data set is freely available online.?

The data set contains four different physiological measurements,
which were recorded by a Microsoft Band 2 wrist-band from 23 partici-
pants performing six psychological tasks on a PC with varying levels of
difficulty, as well as measurements recorded while the participants were
in a rest state. Participants' mean age was 29.51 (standard deviation is
10.10). The right was the dominant hand of 22 participants, while 1
participant was left-handed. All participants had the wrist-band device
strapped to their left hand. In the conducted trials, the participants solved
cognitive tasks of varying difficulty. The experiments were conducted in
a quiet and normal-temperature room with one participant at a time. The
experimental scenario consisted of two parts. Part 1 was devoted to
estimating the participants' cognitive capacity. For assessing the partic-
ipants’ cognitive capacity, the participants solved two N-back tasks
(Schmiedek et al., 2014), i.e., 2-back and 3-back tasks, with a 3-min rest
after each of them. In Part 2, the participants were presented with six
primary tasks. For each task, three variations of a randomly selected
primary cognitive-load task were presented to the participant. The var-
iations differed in complexity (easy, medium, and difficult). More in-
formation on participants and task are provided in (Gjoreski et al., 2020).

For each participant, 50% of the samples correspond to the cognitive
load state, the other 50% to resting. In the data set, the target variable is
represented by a binary value, i.e., a ‘1’ represents a low cognitive load,
i.e., resting, and a ‘0’ represents a high cognitive load.

The physiological measurements include Galvanic skin response
(GSR), heart rate (HR), R-R intervals (RR), and skin temperature (ST). All
these measurements were sampled at a sampling rate of 1Hz. From the 23
participants, the recorded measurements of 5 participants were used for
testing and the measurements of the remaining 18 participants for
training. The training and test data were generated using time windows
of 30 s.

The sensor files in the training data (GSR, HR, RR, and ST) contain
632 lines x 30 columns, corresponding to 632 instances each containing
30 samples (i.e., generated within 30 s at the sampling rate 1Hz). The
training instances are randomly permuted. The sensor files in the test

2 CogLoad@UbiComp Data set: https://www.ubittention.org/2020/.
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data (GSR, HR, RR, and ST) contain 193 lines x 30 columns, corre-
sponding to 193 instances each containing 30 samples (30 s at the
sampling rate 1 Hz). The test instances are also randomly permuted.

Note, that apart from sampling and resampling, no additional pre-
processing steps (e.g., a fast Fourier transform (FFT) filtering) were used.
Thus, the data is raw as provided by the Microsoft Band 2. As an example,
the data for one of the participants is visualized in Fig. 1.

4. Transformation of the raw data into discriminative features

Each instance from the raw training and test data set can be repre-
sented as a vector of length 120, i.e., as a concatenation of the vectors of
length 30 from the single physiological signals recorded in the 30-s
window. More specifically, let Z denote all instances in the training
and test set. For each instance i € Z, we define a vector X; = (XGsri:XHRi:
XRRi XSTi) S 9{120, where XGSRi; XHRi; XRRi, XST; € 9{30, represent the raw
vectors from the measurements of GSR, HR, RR, and ST, respectively,
within the 30-s window for the same instance i. We denote the set of all
these raw vectors by X7 = {x|ie T}ch'®.

Certainly, the raw vectors generated in this way can readily be used in
combination with state-of-the-art classification techniques with the goal
of recognizing cognitive load (see also Section 6). However, given their
high dimensionality, their time-series character, and the relatively small
size of the training data set, i.e., low number of instances, it is often
practical to transform the raw feature vectors into lower-dimensional
feature vectors that carry the majority of important information from
the raw data. This way, we can avoid the dimensionality problem, also
known as the Curse of Dimensionality (Verleysen & Francois, 2005), and
can develop highly discriminative and robust classifiers. To this end, we
are interested in a transformation function @5 : X — R k < 120, such
that F = {fgsry,fur1,for1:fs715 -+ fasri femi: frrio fori ) i a family of
feature functions of the form f : R*° — %, and

@x(x) = (fosri (Xsr), fur) (XuR ) frr1 (XRR) fsr1 (XsT) -0

Sosrk(XGsr ) fury (Xur ) frr (XrR ) fsri (Xst))
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There exist various possibilities to construct an adequate family of
feature functions F for the described data set. Various approaches
ranging from Wavelet and Fourier Transformations (Bloomfield, 2004;
Chan & Fu, 1999; Chaovalit et al., 2011; Grinsted et al., 2004) to
grammar-based evolutionary approaches (De Silva & Leong, ) are able to
deal with the time-series character of the data and generate
low-dimensional feature vectors. For an overview, we refer the reader to
(Fu, 2011). In fact, at least one of the competitors (Li & De Cock, 2020) in
the CogLoad@UbiComp 2020 Competition builds on some of the
mentioned feature generation strategies for the competing solution.

However, the relatively small size of the training data in the
CogLoad@UbiComp 2020 Competition poses a serious challenge and
does not allow these strategies to generate discriminatory features for
robust predictions. Hence, after some analysis on feature generation
strategies, we decided to use simple aggregation statistics as feature
functions for . These include the minimum, the maximum, the mean, the
median, the standard deviation, the sum, and the skew values from the 30-s
sequence, for each of the 4 physiological signals (i.e., for GSR, HR, RR,
and ST), respectively. The feature generation and model development
pipeline for the solution presented in this article is depicted in Fig. 2.

Finally, we employed the CancelOut mechanism (Borisov et al., 2019)
and the Shapley additive explanations (SHAP) framework (Lundberg &
Lee, 2017) for the analysis of feature importance. The results of this
analysis are shown in Fig. 5 and indicate that the vast majority of the
proposed features (generated from the raw data) contain highly
discriminative information for the prediction task at hand. As expected,
the standard deviation of the physiological signals consistently appears
among the most discriminative features.

5. A robust predictive method for cognitive load detection

In this section, we present our ensemble learning approach to robust
and accurate cognitive load detection based on the CogLoad@UbiComp
2020 data set. The pipeline of feature generation and ensemble model
development is summarized in Fig. 2.
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Fig. 1. Data set visualization for a single participant; the subfigures show galvanic skin responses (a), heart rates (b), R-R Intervals (c), and skin temperature (d). Red
lines indicate a high cognitive load, and green lines represent a resting state, respectively. From the visual inspection, it can be seen that there are no clear distinctions
between the two states. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. Pipeline of feature generation and ensemble model development.

5.1. Base learners

After conducting an empirical evaluation of various machine algo-
rithms as base learners for our ensemble approach, we selected the
Gradient Boosting Decision Trees (GBDT) algorithm (Friedman, 2002).
Our empirical findings on the excellent predictive performance of GBDT
are also supported and complemented by previous results from numerous
Data Science competitions and challenges. According to (Chen &
Guestrin, 2016), in 2015, among the 29 winning solutions of Kaggle
challenges (Kaggle.com), 17 solutions built on the GBDT algorithm.

5.2. Ensemble model

For the proposed ensemble solution, we used eight GBDT models. We
built each of the eight models based on the LightGBM implementation
(Ke et al., 2017). Prior studies have shown that the diversity of base
learners clearly helps to reduce bias (which is very important for small
data sets) and improve the overall performance of the ensemble algo-
rithm (Kuncheva & Whitaker, 2003; Rokach, 2010). Thus, we trained the
base learners by wusing different hyper-parameters. For the
hyper-parameters selection, we utilized the random search and Bayesian
optimization strategies (Bergstra et al., 2013). Since adding more models
to the ensemble did not improve the predictive performance, the final
meta-model consists of eight different GBDT models, where the final
prediction is the mean value from all these models.

5.3. Validation

To provide robust estimations and exploit the training data as effec-
tively as possible, we adopted an out-of-fold (OOF) cross-validation
strategy. More specifically, from the folds that are used for validation
during the cross-validation, we randomly generated hold-out samples,
which served as unseen test examples. Based on these hold-out samples,
we can estimate the predictive performance of each of the eight GBDT
models on unseen data. For the cross-validation we employed a two
iteration of stratified 5-fold cross-validation.

6. Experimental evaluation

In this section, we provide an overview of the experimental setup.
More specifically, we describe the state-of-the-art predictive approaches
that we have considered in the evaluation as baseline models and present
the results of their predictive performance on the original feature vectors
from X, as well as on the transformed feature vectors using ®r (as
described in Section 4), in comparison to the approach proposed in this
article.

6.1. State-of-the-art predictive algorithms as baseline approaches

In our experiments, we compare the proposed ensemble model with
following predictive algorithms:

@ Logistic Regression (LR) (Friedman et al., 2001). LR is a linear clas-
sifier with surprisingly strong predictive performance on many
practical use cases. Moreover, the parameters of LR can also be fitted
quite well on small-size training data.

@ k-nearest neighbors (kNN) (Friedman et al., 2001). The kNN classifier
often shows a nice predictive performance in practice and comes with
strong theoretical guarantees on the possible classification error
(more specifically, the Bayes error rate (Hastie et al., 2009)).

@ Support-Vector-Machine (SVM) (Boser et al., 1992). The SVM clas-
sifier belongs to the most rigorously analysed and refined algorithms
(e.g. (Hastie et al., 2009; Scholkopf & Smola, 2018),) and is often one
of the best-performing predictive methods in practice.

@ Random Forest (RF) (Breiman, 2001). The RF algorithm constructs an
ensemble of decision trees that are sufficiently different from each
other, allowing the RF to achieve a significantly higher predictive
performance than individual decision trees (Hastie et al., 2009).

@ Adaptive Boosting (AdaBoost) (Freund & Schapire, 1997). The Ada-
Boost algorithm is a highly versatile approach and, despite its
simplicity, it works astonishingly well in practice, ranking it among
the best performing ML methods.

@ Gradient-Based Decision Trees (GBDT) (Friedman, 2002). The GBDT
algorithm has proven to be one of the best performing predictive
methods on heterogeneous tabular data (Chen & Guestrin, 2016). Its
generalization and practical capabilities to handle missing values as
well as variance and bias in the feature values make it one of the most
valuable machine learning algorithms.

@ Multilayer Perception (MLP) (Gardner & Dorling, 1998). Given the
current popularity of neural networks, despite the relatively small
data set, we felt that a corresponding approach should definitely be
considered as a baseline. To this end, we decided to use a two-layer,
fully-connected artificial neural network, the weights of which are
optimized through stochastic gradient descent.

For all above algorithms, except GBDT, we used the scikit-learn li-
brary (Pedregosa et al., 2011). For GBDT, we selected the LightGBM
implementation (Ke et al., 2017). For the hyper-parameters selection, we
utilized the random search and Bayesian optimization strategies (Berg-
stra et al., 2013).

6.2. Evaluation measures

Following the instructions of the competition, two evaluation mea-
sures were used for the experiments:

@ Accuracy, which is defined as Accuracy = -t —, where TP and
TN are the true positive and true negative numbers, respectively. FP
and FN represent the numbers of misclassifications for the negative
and the positive class, respectively. Accuracy measures the fraction of
correct predictions and works well for data sets in which the class
frequencies are balanced, which is the case for the CogLoad@Ubi-
Comp 2020 data set. However, for imbalanced data sets, accuracy can
be quite misleading.

@® ROC-AUC (i.e., the area under the receiver operating characteristic
curve), which quantifies the performance of a classification model
over all classification score thresholds. The ROC curve plots two pa-
rameters: (1) the True Positive Rate, i.e., tpr = T,ﬂ—PFN, and (2) the False

Positive Rate, i.e., fpr = . Note that the tpr is a synonym for the

recall of a predictive algorithm, whereas the fpr represents the rate of

false alarms. The ROC curve plots the tpr vs. the fpr values at different
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classification score thresholds. It can be shown that the area under the
ROC curve is the ranking accuracy with respect to the classification
score returned by a classifier. Ideally, instances that belong to the
positive class should be assigned a higher score by the classifier and
thus ranked higher than the instances that belong to the negative
class. Hence, AUC of 1 means that all positive instances are ranked
before the negative instances and the two classes are clearly separated
by the classifier.

6.3. Evaluation results

In order to evaluate both the proposed ensemble method and the
features generated by the proposed data transformation scheme, we
conducted experiments using two data sets. The first data set consists of
the original feature vectors, which are based on the raw (time-series).
The second data set consists of the transformed feature vectors, i.e., using
the @ r-transformation as described in Section 4.

All the evaluated models were developed and tuned on the same
training data set based on a stratified 5-fold cross-validation. Note that
because of the low number of participants, a stratification by participants
leads to highly biased folds and does not allow the classifiers to gener-
alize well to unseen data. Therefore, we only employed a class-based
stratified sampling of the instances (i.e., feature vectors) for the 5
folds. The results of the evaluation are summarized in Table 1.

As shown in Table 1, the results of the comparison of the different
approaches show that the proposed data transformation for the genera-
tion of new feature vectors consistently improves a model's predictive
performance across all methods, regardless of the type of classification
technique.

As was expected, the baseline approach based on the GBDT method
shows an excellent predictive performance. It is in a tie with the SVM
classifier on the original feature vectors and clearly outperforms all other
baseline classifiers on the transformed data set (i.e. the transformed
feature vectors using the ®-transformation). The GBTD classifier is only
outperformed by the proposed ensemble model. Consisting of several
GBDT models, the proposed approach consistently shows the best pre-
dictive performance. It outperforms all the baseline classifiers by a
considerable margin, both in terms of the Accuracy and the ROC-AUC
measure. The ROC curves for the compared models are depicted in
Fig. 3. They were generated on the validation sets of the transformed
training data and clearly show the robust performance of the proposed
ensemble method over all classification thresholds. Fig. 4 presents
confusion matrices for all approaches which are used in the present
study. When compared to other approaches submitted in the context of
the CogLoad@UbiComp 2020 Challenge, our method returned the best
predictions on unseen data, thus winning first place in the competition.
Also, in comparison to the previous work on the cognitive load estima-
tion using sensor information from a wrist-band device (e.g. (Gjoreski

Table 1

The performance comparison between various ML models on the original (raw)
and the transformed data set. We evaluate the models using two iterations of
stratified 5-fold cross-validation (2x5cv) with the following performance metrics:
accuracy (higher is better) and ROC-AUC (higher is better) and report the mean
and =+ std results. The top results for each data set are marked in bold.

Original Data Set Transformed Data Set

Model Accuracy ROC-AUC Accuracy ROC-AUC
LR 0.52 + 0.030 0.54 + 0.037 0.63 £ 0.025 0.65 + 0.015
kNN 0.52 +0.028  0.54 +0.047  0.59 +0.023  0.61 + 0.043
SVM 0.58 +0.025  0.60 +0.018  0.62 4+ 0.040  0.65 + 0.038
RF 0.56 + 0.034  0.60 +0.036  0.64 +0.036  0.67 + 0.043
AdaBoost 0.57 £0.039  0.57 £0.037  0.61 +0.030  0.64 + 0.049
MLP 0.57 +0.038  0.60 +0.037  0.58 +0.030  0.60 + 0.049
GBDT 0.58 +0.027  0.60 +0.036  0.65 4 0.031  0.68 + 0.034
Ensemble 0.59+0.035 0.61 + 0.66 +0.035  0.69 +
Model 0.036 0.035
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Fig. 3. ROC curves for all compared methods on the transformed data.

et al., 2018; Schaule et al., 2018)), our approach showed superior results.

6.4. Variable importance

In Fig. 5, we present the feature importance analysis on the trans-
formed data set. We employ the CancelOut neural layer proposed in
(Borisov et al., 2019) and the Shapley additive explanations (SHAP)
framework (Lundberg & Lee, 2017) to analyze the importance of the
features for the prediction task at hand. Implemented as a neural layer,
CancelOut was included as an additional layer to the MLP network. The
SHAP analysis was conducted based on the GBDT model. The results
depicted in Fig. 5 provide convincing evidence that the features produced
by the standard deviation (std) function are among the most informative;
there are three such features among the top-5 most important features.
This is in line with our intuition and related work in the area of cognitive
load detection which found that the variance of the measured physio-
logical signals contains most of the information among the first three
statistical moments of the (time-series) measures. The temperature
sensor features, on the other hand, do not show a high relative impor-
tance. The RR- and HR-related features are the most informative ac-
cording to the analysis, which is also quite intuitive, since the heart rate
and its variability are known to be strongly correlated to cognitive load
levels, e.g., (Gjoreski et al., 2018; Hughes et al., 2019; Wang & Guo,
2019).

Interestingly, the SHAP method assigns a higher importance to the
skew-related features and lower importance to the mean-related features
than the CancelOut method. Despite such differences, we can see that all
the proposed transformations are valuable for the prediction of cognitive
load from the available physiological signals.

7. Limitations and future work

Although our methods prove robust to subject-related bias and vari-
ability in the data, our results are based on a rather small data set derived
from only 23 participants. Hence, further investigations on large data sets
and higher variability are required. Of particular importance may be the
investigation of inter-subject variability and whether or not and how the
manifestation of cognitive load changes over time. Such an investigation
requires, however, not only data collected in longitudinal studies, but
also methods that are able to re-calibrate to subject-related
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Fig. 5. Global variable importance analysis for the generated features using the CancelOut (a) and SHAP (b) algorithms.

characteristics.Regarding methodology, we also plan to investigate better
ensemble strategies rather than simple mean aggregation. A better ag-
gregation strategy for the ensemble step might improve the overall per-
formance of our approach; one way is to rank models in the ensemble. A
combination of the approaches might also help to estimate the cognitive
load from a wearable device.

8. Conclusion

In this work, we presented an ensemble method for robust cognitive
load detection based on physiological sensor data. With regard to its
predictive power, our model outperformed the competing approaches,
thus proving excellent robustness on unseen and small data. Further-
more, we showed that our proposed data transformation technique for
the generation of new feature vectors from galvanic skin response, skin
temperature, heart rate, and heart rate variability data notably improves
the predictive power of machine learning techniques and might therefore

be applicable to other areas of affective or cognition-aware computing. In
contrast to the competing approaches, the effect of the input features on
the model prediction is explainable, thus allowing a detailed analysis of
cognitive load factors.
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A.3.2 BoxShrink: From Bounding Boxes to Segmentation Masks

Publication: Published in the Medical Image Learning with Limited and Noisy Data
(MILLanD) workshop at the Medical Image Computing and Computer Assisted Inter-
vention (MICCAI) conference, 2022.

Contribution: Michael Groger and I came up with an idea of using superpixes and
conditional random fields for weakly-supersized object detection tasks. Michael Groger
developed all major parts of the explainability framework and the implementations of
the relational local explanation framework. Gjergji Kasneci contributed to the paper by
challenging and improving ideas, formalizations, and the analysis of results. All co-
authors helped revise the final manuscript.
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to Segmentation Masks
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Abstract. One of the core challenges facing the medical image com-
puting community is fast and efficient data sample labeling. Obtaining
fine-grained labels for segmentation is particularly demanding since it
is expensive, time-consuming, and requires sophisticated tools. On the
contrary, applying bounding boxes is fast and takes significantly less
time than fine-grained labeling, but does not produce detailed results. In
response, we propose a novel framework for weakly-supervised tasks with
the rapid and robust transformation of bounding boxes into segmentation
masks without training any machine learning model, coined BoxShrink.
The proposed framework comes in two variants — rapid-BoxShrink for
fast label transformations, and robust-BoxShrink for more precise label
transformations. An average of four percent improvement in IoU is found
across several models when being trained using BoxShrink in a weakly-
supervised setting, compared to using only bounding box annotations as
inputs on a colonoscopy image data set. We open-sourced the code for
the proposed framework and published it online.

Keywords: Weakly-supervised learning - Segmentation -
Colonoscopy * Deep neural networks

1 Introduction

Convolutional neural networks (CNNs) have achieved remarkable results across
image classification tasks of increasing complexity, from pure image classification
to full panoptic segmentation, and have become, as a consequence, the standard
method for these tasks in computer vision [19]. However, there are also certain
drawbacks associated with these methods. One of them is that in order to achieve
satisfactory results, a data set of an appropriate size and high-quality labels
are needed [21]. The costs and time associated with labeling increase with the
complexity of the task, with image classification being the cheapest and image
segmentation being the most expensive one. All of these challenges especially
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apply to medical artificial intelligence (MAI) applications since they depend on
the input and feedback by expensive domain experts [22].

In this work, we present a novel approach for fast segmentation label prepos-
sessing, which is decoupled from any particular artificial neural network archi-
tecture. The proposed algorithmic framework can serve as a first approach for
practitioners to transform a data set with only bounding box annotations into a
prelabeled (i.e., semantically segmented) version of the data set. Our framework
consists of independent components such as superpixels [23], fully-connected
conditional random fields [14] and embeddings. This makes it easy to add our
framework to an existing machine learning pipeline.

To evaluate the proposed framework, we select an endoscopic colonoscopy
data set [4]. Multiple experiments show that our framework helps to consider-
ably reduce the gap between the segmentation performance and efficiency of a
neural network that is trained only on bounding boxes and one trained on fully
segmented segmentation masks.

The main contributions of this work are:

— We propose the BoxShrink framework consisting of two methods. One for a
time-efficient and one for a more robust transformation of bounding-boxes
into segmentation masks. In both methods there is no need to train a model.

— We publish our bounding-box labels for the CVC-Clinic data set for future
research in the area of weakly-supervised learning.

— We open-source our code and publish it online.!

2 Related Work

In this Section, we further define weakly-supervised learning and separate it from
other approaches such as semi-supervised learning. Also, we localize our work
among those which use similar components.

To reduce the need for resources such as time and money, various learning
methodologies were introduced such as semi-supervised and weakly-supervised
learning [30]. Semi-supervised learning leverages labeled data, e.g. for segmenta-
tion tasks correctly and fully segmented images and the availability of a larger
amount of unlabeled data [16]. Weakly-supervised learning on the other hand,
exploits noisy labels as a weak supervisory signal to generate segmentation masks.
These labels can be provided in different forms such as points [3], or image-level
labels [27], being the more simpler ones, or more complex ones such as scribbles
[15,24], or bounding boxes [6,11]. A similar work [29] to ours also utilizes super-
pixel embeddings and CRFs, but their method requires an additional construc-
tion of a graph of superpixels and a custom deep neural network architecture. Our
method, on the other hand, is easier to integrate into existing pipelines. Also, in
contrast to many other weakly-supervised approaches [10,28], we do not apply
CRFs as a postprocessing step on the output of the model but as a preprocessing
step on the input, hence, we leave the downstream model untouched. Furthermore,
the proposed framework does not require special hardware such as GPU or TPU
for the label preprocessing step.

! https://github.com/michaelgroeger /boxshrink.
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Original Image Boundaries

Fig. 1. The impact of varying the threshold ¢, i.e., a hyperparameter of the BoxShrink
framework for tuning the final segmentation quality, where (a) shows two data samples
from the data set after the superpixel assignment step (Sect. 3.2), and (b) demonstrates
pseudo-masks after the FCRF postprocessing. As seen from this experiment, having a
higher threshold might generate better masks but increases the risk of losing correct
foreground pixels.

3 Boxshrink Framework

This section presents our proposed BoxShrink framework. First, we define its
main components: superpixel segmentation, fully-connected conditional random
fields, and the embedding step. We then explain two different settings of the
framework, both having the same goal: to reduce the number of background
pixels labeled as foreground contained in the bounding box mask.

3.1 Main Components

Superpixels aim to group pixels into bigger patches based on their color sim-
ilarity or other characteristics [23]. In our implementation, we utilize the SLIC
algorithm proposed by [1] which is a k-means-based algorithm grouping pixels
based on their proximity in a 5D space. A crucial hyperparameter of SLIC is the
number of segments to be generated which is a upper bound for the algorithm on
how many superpixels should be returned for the given image. The relationship
between the output of SLIC and the maximum number of segments can be seen
in the supplementary material.

Fully-connected-CRFs are an advanced version of conditional random
fields (CRFs) which represent pixels as a graph structure. CRF's take into account
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a unary potential of each pixel and the dependency structure between that pixel
and its neighboring ones using pairwise potentials [25]. Fully-connected-CRFs
(FCRFs) address some of the limitations of classic CRFs, such as the lack of cap-
turing long-range dependencies by connecting all pixel pairs. Equation 1 shows
the main building block of FCRFs which is the Gibbs-Energy function [13].

N N
Bla) = 3 guled) + 3 bl ), (1)
i=1 i<j

where the first term 1, (x;) measures the unary potential, that is, the cost if
the assigned label disagrees with that of the initial classifier, the second term
¥p (24, z;) measures the pairwise potential, which is the cost if two similar pixels
disagree on their label z. The input is over all pixels N. We use FCRF's to smooth
the output pseudo-mask.

Superpixel Embeddings are a key component of the robust-BoxShrink
variant. The embedding function M produces a numerical representation of every
superpixel k; € K by returning an embedding vector. Formally, this operation
can be depicted M : R™ — R™. Practically, this can be done by feeding each
superpixel k; separately into a CNN model, such as a Resnet-50 [9] pretrained on
ImageNet [7]. By doing so, we obtain a 2048-dimensional vector representation
for every superpixel. It allows us to get an aggregated representation of the
foreground and background, by computing the mean embedding of all foreground
and background superpixels in the training data set. These mean vectors are then
used to assign superpixels either to the foreground or background class based on
their cosine similarity.

3.2 rapid-BoxShrink

We first split each image into superpixels using the SLIC algorithm for the rapid-
BoxShrink strategy. We overlap the superpixels with the provided bounding
box mask and build a new mask based on those superpixels, which overlap
the bounding box mask to a certain threshold. This approach is based on the
assumption that the object of interest is always fully contained in the bounding
box. The results depend on the number of segments generated which can be seen
in the supplementary materials and the chosen threshold shown in Fig. 1. To
this end, as shown in the supplementary material in Algorithm 1, to make the
final pseudo-mask more smooth, we run a FCRF as described in Sect. 3.1 on the
thresholded superpixel mask.

3.3 robust-BoxShrink

Leveraging the availability of superpixels, we also explore the use of embed-
dings to shrink the number of background pixels in the pseudo-mask. We seg-
mented each image in the training data set into superpixels and then assigned
them either to the foreground or background group by applying the threshold-
ing approach as we have done it in the rapid-BoxShrink variant (Sect. 3.2). To
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Fig. 2. Overview of the robust-BoxShrink method assuming the mean embedding vec-
tors are given. First, we generate a superpixel mask based on the rapid-BoxShrink
approach but without utilizing the FCRF. Then, we extract each foreground super-
pixel on the boundary between foreground and background. Feeding each superpixel
into a pretrained ResNet model yields one 2048-dimensional embedding vector per
superpixel. Next, we calculate the cosine similarity score of each embedding and the
mean background and foreground embedding. Based on the highest score we either
keep the superpixel as foreground or assign it to the background class. Finally, we
apply a FCRF on the resulting superpixel mask. The dashed line indicates that this
approach can be run iteratively.

generate the pseudo-masks, we start with the bounding box mask and segment
the image using again the thresholding technique. This yields F superpixels for
the foreground and B superpixels for the background. Then we go along the
boundary foreground superpixels F, and assign them either to the background
or foreground class, depending on their cosine similarity score to the mean back-
ground and foreground embedding. The whole process can be seen in Fig. 2. The
Algorithm 2, which can be found in the supplementary materials, summarizes
the main steps of the robust-BoxShrink method.

4 Experiments

This Section presents qualitative and quantitative experiments for both versions
of the BoxShrink framework.

Data Set. For all our experiments we utilize the endoscopic colonoscopy frames
for polyp detection data set (CVC-Clinic DB) [4], it consists of 612 endoscopy
images, each having a size of 288 x 384 x 3. The data set comes along with
binary ground truth segmentation masks, which we utilize for the evaluation of
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U-Net (VGG-16) Outputs for different settings

robust — BoxShrink

Original Image Ground Truth Box — Supervision rapid — BoxShrink Full — Supervision

Fig. 3. Qualitative model prediction masks on four random samples from the CVC-
Clinic test set. The setting on which the model was trained on is indicated on top.

our weakly-supervised framework and to infer the bounding boxes. This data set
was featured in multiple studies [2,8].

4.1 Qualitative and Quantitative Experiments

For our experiments, we utilize two popular deep learning architectures for seg-
mentation tasks - U-Net [20] and DeepLabV3+ [5].

Settings. We have four settings, using: (1) Bounding boxes as labels which
serves as our lower baseline, (2) labels generated with the rapid-BoxShrink label
transformation strategy, (3) labels generated with the robust-BoxShrink label
transformation strategy, and (4) a fully-supervised upper baseline with segmen-
tation masks as labels.

Quality Measure. We use the Intersection over Union (IoU) score as an eval-
uation measure. The IoU, also called Jaccard similarity J between two sets A
and B, is a commonly used measure of how well the prediction aligns with the
ground truth in image segmentation [18]. As the equation below shows, the IoU
is computed by dividing the intersection of two masks by their union.

|A N Bj
A, B 2

JAB)= 355 2)
Results. We present the quantitative results in Table 1. In line with other pub-
lications, we also share situations where our presented Framework fails. Figure
5, which can be found in the supplementary materials shows some examples.
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Figure 3 shows some good prediction masks from the test set made by models
trained on the aforementioned four different settings.

4.2 Reproducibility Details

We split the CVC-Clinic DB data set into 80% training data, 10% validation
data and 10% test data. For splitting, we use the implementation from sklearn
[17] with a random state of 1. To generate the superpixel masks, we set the
maximum number of segments s to 200, a threshold ¢, of 0.6 for all training
images and use the implementation from skimage [26]. To get the embeddings,
we use a maximum number s of 250 segments and a threshold ¢4 of 0.1 to not
loose too much of the foreground. To smooth the superpixel masks we use the
FCRF implementation provided by the pydensecrf package.? Note that we do not
train the FCRF (similar to [10]) and set the FCRF hyperparmeters of the x/y-
standard deviation for the pairwise Gaussian to 5 and for the pairwise bilateral
to 25. We set the rgb-standard deviation to 10. To determine the best performing
model, we use the intersection over union (IoU) during training on the validation
set. After the training, the best performing model is kept and evaluated once on
the test set. Both, the test and validation set consist of ground truth masks. We
generate all models using the segmentation-models PyTorch library.?

For our experiments we select ResNet-18, ResNet-50, and VGG-16 backbones
pretrained on the ImageNet data set paired with U-Net and DeepLabV3+ as a
decoder. We use the Sigmoid function as an activation function and the Adam
[12] optimizer with a learning rate of 0.0001. As the loss function we utilize the
Cross-Entropy Loss. During training, we apply step-wise learning rate scheduling
where we decay the learning rate by 0.5 each 5 epochs. We train the ResNet-18 &
VGG-16 architecture for 25 epochs and the ResNet-50 architecture for 15 epochs.
The training is being done on a 16 GB Nvidia Tesla P-100. We use a batch size
of 64 when using the ResNet-18, 32 for the VGG-16 architecture and 16 when
using ResNet-50. For both methods, rapid-BoxShrink and robust-BoxShrink, we
return the initial bounding box mask if the total mask occupancy, that is the
ratio of the bounding box and the total image is less than 0.1 or the IoU between
the pseudo mask and the bounding box mask is less than 0.1.

5 Discussion

In this Section, we further discuss the application and future work of the pro-
posed weakly-supervised framework.

The choice between rapid-BoxShrink and robust-BoxShrink depends
on multiple factors - the time budget and expected label transformation quality.
In our experiments, we observe that rapid-BoxShrink takes on average only 0.5
seconds to transform the labels for a singe data sample, where robust-BoxShrink

2 https://github.com/lucasb-eyer /pydensecrf.
3 https://github.com/qubvel /segmentation_models.pytorch.
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Table 1. Experimental results on the CVC-Clinic data set. All models are evaluated
on the ground truth segmentation mask in the validation and test set. The label format
indicates the initial input label on which the model was either trained or our proposed
frameworks were applied to. The results are averages of six runs; we also report the
corresponding standard deviation for each setting. This is being done to deliver a more
consistent picture because of the random initialization of the decoder part and the
stochasticity of the optimizer. The best performing results for our proposed methods
are marked in bold. Higher IoU is better.

Segmentation model Label format Backbone | Validation (IoU) | Test (IoU)
U-Net Bounding Boxes | VGG-16 | 0.749 £0.023 0.772£0.030
U-Net (rapid-BoxShrink) Bounding Boxes | VGG-16 | 0.769 £ 0.026 0.807 +0.028
U-Net (robust-BoxShrink) Bounding Boxes | VGG-16 | 0.775+0.013 0.824 £0.010
U-Net Segment. Masks | VGG-16 | 0.796 + 0.025 0.829 +£0.025
U-Net Bounding Boxes | ResNet-18 | 0.691 + 0.051 0.729 4+ 0.060
U-Net (rapid-BoxShrink) Bounding Boxes | ResNet-18 | 0.730 + 0.021 0.781 £0.024
U-Net (robust-BoxShrink) Bounding Boxes | ResNet-18 | 0.755 4-0.021 0.808 +0.021
U-Net Segment. Masks | ResNet-18 | 0.800 £ 0.032 0.859 +£0.044
U-Net Bounding Boxes | ResNet-50 | 0.785 + 0.010 0.810£0.010
U-Net (rapid-BoxShrink) Bounding Boxes | ResNet-50 | 0.807 £ 0.018 0.851+0.019
U-Net (robust-BoxShrink) Bounding Boxes | ResNet-50 | 0.813 £ 0.015 0.852+0.012
U-Net Segment. Masks | ResNet-50 | 0.889 + 0.012 0.920 £ 0.016
DeepLabV3+ Bounding Boxes | VGG-16 | 0.746 £ 0.033 0.766 +0.034
DeepLabV3+ (rapid-BoxShrink) | Bounding Boxes | VGG-16 | 0.779 £0.023 0.817 £0.0201
DeepLabV3+ (robust-BoxShrink) | Bounding Boxes | VGG-16 | 0.767 £0.0187 | 0.809 +0.024
DeepLabV3+ Segment. Masks | VGG-16 | 0.832 £ 0.049 0.858 £0.051
DeepLabV3+ Bounding Boxes | ResNet-18 | 0.723 £ 0.025 0.758 £0.021
DeepLabV3+ (rapid-BoxShrink) | Bounding Boxes | ResNet-18 | 0.743 +0.021 0.787+0.026
DeepLabV3+ (robust-BoxShrink) | Bounding Boxes | ResNet-18 | 0.759 £ 0.005 0.806 + 0.002
DeepLabV3+ Segment. Masks | ResNet-18 | 0.808 + 0.010 0.844 +0.012

needs on average 3 seconds to complete the label transformation, the processing
time can be further optimized in future versions. However, from our extensive
experiments (Sect. 4.1), we can conclude that robust-BoxShrink tends to outper-
form rapid-BoxShrink in the weakly-supervised setting. The difference between
the two variants is smaller for bigger models with rapid-BoxShrink being once
better than robust-BoxShrink for the VGG-16 architecture. One explanation
could be that bigger models are more robust to the label noise than smaller
ones. We want to point out however, that the margin between the two is still
overlapped by the standard deviations of both methods.

Future Work. We want to further integrate the framework into the training
pipeline by, e.g., adjusting the mean foreground and background embeddings as
the model gets better. Also, we have evaluated our approach on a medium-sized
data set with binary class segmentation. For a more detailed quality evalua-
tion, an analysis of BoxShrink’s performance on multi-class problems and bigger
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data sets is required. Lastly, starting with BoxShrink pseudo-masks instead of
bounding box annotations directly could also improve existing state-of-the-art
weakly-supervised learning algorithms.

6 Conclusion

In this work, we presented BoxShrink, a weakly-supervised learning framework
for segmentation tasks. We successfully demonstrate the effectiveness of the
BoxShrink framework in the weakly-supervised setting on a colonoscopy medical
image data set, where we employ bounding-box labeling and output the segmen-
tation masks. Compared to the fully-supervised setting, our weakly-supervised
framework shows nearly the same results. Finally, we open-sourced and published
the code and bounding boxes for the CVC-Clinic data set .
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